
Coercion Mitigation for Voting Systems
with Trackers: A Selene Case Study

Kristian Gjøsteen1, Thomas Haines2, and Morten Rotvold Solberg1(B)

1 Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,mosolb}@ntnu.no

2 Australian National University, Canberra, Australia
thomas.haines@anu.edu.au

Abstract. An interesting approach to achieving verifiability in voting
systems is to make use of tracking numbers. This gives voters a sim-
ple way of verifying that their ballot was counted: they can simply look
up their ballot/tracker pair on a public bulletin board. It is crucial to
understand how trackers affect other security properties, in particular
privacy. However, existing privacy definitions are not designed to accom-
modate tracker-based voting systems. Furthermore, the addition of track-
ers increases the threat of coercion. There does however exist techniques
to mitigate the coercion threat. While the term coercion mitigation has
been used in the literature when describing voting systems such as Selene,
no formal definition of coercion mitigation seems to exist. In this paper
we formally define what coercion mitigation means for tracker-based vot-
ing systems. We model Selene in our framework and we prove that Selene
provides coercion mitigation, in addition to privacy and verifiability.

Keywords: E-voting · Coercion mitigation · Selene

1 Introduction

Electronic voting has seen widespread use over the past decades, ranging from
smaller elections within clubs and associations, to large scale national elections
as in Estonia. It is therefore necessary to understand the level of security that
electronic voting systems provide. In this paper, we define precisely what verifi-
ability, privacy and coercion mitigation means for voting systems using so-called
trackers, and we prove that Selene provides these properties.

Verifiability is an interesting voting system property, allowing a voter to
verify that their particular ballot was counted and that the election result cor-
rectly reflects the verified ballots. One example of a system with verifiability
is Helios [2], which is used in the elections of the International Association for
Cryptologic Research [1], among others. However, the Benaloh challenges used
to achieve verifiability in Helios are hard to use for voters [26].

Schneier [33] proposed using human-readable tracking numbers for verifiabil-
ity. Each voter gets a personal tracking number that is attached to their ballot.
c© The Author(s) 2023
M. Volkamer et al. (Eds.): E-Vote-ID 2023, LNCS 14230, pp. 69–86, 2023.
https://doi.org/10.1007/978-3-031-43756-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43756-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-43756-4_5

70 K. Gjøsteen et al.

At the end of the election, all ballots with attached trackers are made publicly
available. A voter can now trivially verify that their ballot appears next to their
tracking number, which gives us verifiability as long as the trackers are unique.
Multiple voting systems making use of tracking numbers have been proposed
and deployed. Two notable examples are sElect [27] and Selene [31]. Tracking
numbers intuitively give the voters a simple way of verifying that their ballot
was recorded and counted. However, other security properties must also be con-
sidered. In particular, it is necessary to have a good understanding of how the
addition of tracking numbers affects the voters’ privacy.

Verifiable voting may exacerbate threats such as coercion, in particular for
remote electronic voting systems (e.g. internet voting) where a coercer might be
present to “help” a coerced voter submit their ballot. Coercion resistant voting
systems [9,25] have been developed. Coercion resistance typically involves voters
re-voting when the coercer is not present, but this often complicates voting
procedures or increases the cost of the tallying phase. Furthermore, re-voting
might not always be possible and may even be prohibited by law.

Like verifiability in general, tracking numbers may make coercion simpler: if
a coercer gets access to a voter’s tracker, the coercer may also be able to verify
that the desired ballot was cast. While tracking numbers complicate coercion
resistance, it may be possible to mitigate the threat of coercion. For instance, if
the voter only learns their tracking number after the result (ballots with trackers)
has been published, as in Selene, they may lie to a coercer by observing a suit-
able ballot-tracker pair. Coercion mitigation is weaker than coercion resistance,
but may be appropriate for low-stakes elections or where achieving stronger
properties is considered to be impractical.

1.1 Related Work

Privacy. Bernhard et al. [6] analysed then-existing privacy definitions. They
concluded that previous definitions were either too weak (there are real attacks
not captured by the definitions), too strong (no voting system with any form
of verifiability can be proven secure under the definition), or too narrow (the
definitions do not capture a wide enough range of voting systems).

The main technical difficulty compared to standard cryptographic privacy
notions is that the result of the election must be revealed to the adversary. Not
only could the result reveal information about individual ballots, but it also pre-
vents straight-forward cryptographic real-or-random definitions from working.
Roughly speaking, there are two approaches to defining privacy for voting sys-
tems, based on the two different questions: “Does anything leak out of the casting
and tallying prosesses?” vs. “Which voter cast this particular ballot?” The first
question tends to lead to simulation-based security notions, while the second
question can lead to more traditional left-or-right cryptographic definitions.

Bernhard et al. [6] proposed the BPRIV definition, where the adversary plays
a game against a challenger and interacts with two worlds (real and fake). The
adversary first specifies ballots to be cast separately for each world. In the real
world, ballots are cast and then counted as usual. In the fake world, the specified

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 71

ballots are cast, but the ballots from the left world are counted and any tally
proofs are simulated. The adversary then gets to see one of the worlds and must
decide which world it sees. The idea is that for any secure system, the result in
the fake world should be identical to what the result would have been in the real
world, proving that – up to the actual result – the casting and tallying processes
do not leak anything about the ballots cast, capturing privacy in this sense.

Bernhard et al. [6] proposed MiniVoting, an abstract scheme that models
many voting systems (e.g. Helios), and proved that it satisfies the BPRIV defini-
tion. Cortier et al. [10] proved that Labelled-MiniVoting, an extension of MiniV-
oting, also satisfies BPRIV. Belenios [13] also satisfies BPRIV [11].

The original BPRIV definition does not attempt to model corruption in any
part of the tally process. Cortier et al. [15] proposed mb-BPRIV which models
adversarial control over which encrypted ballots should go through the tally
process. Drăgan et al. [18] proposed the du-mb-BPRIV model which also covers
systems where verification happens after tallying.

The other approach to privacy is a traditional left-or-right game, such as
Benaloh [4], where the adversary interacts with the various honest components
of a voting system (voters, their computers, shuffle and decryption servers, etc.),
all simulated by an experiment. Privacy is captured by a left-or-right query, and
the adversary must determine if the left or the right ballots were cast. The game
becomes trivial if the left and the right ballots would give different tallies, so
we require that the challenge queries taken together yield the same tally for left
and right. In the simplest instantiation, the left and right ballots contain distinct
permutations of the same ballots, so showing that they cannot be distinguished
shows that the election processes do not leak who cast which ballots. Smyth [36]
and Gjøsteen [20] provide examples of this definitional style. As far as we know,
no definition in this style captures tracker-based voting systems.

The advantage of the traditional cryptographic left-or-right game relative
to the BPRIV approach is that it is easier to model adversarial interactions
with all parts of the protocol, including the different parts of the tally process,
though authors before Gjøsteen [20] do not seem to do so. In principle, the
BPRIV requirement that the tally process be simulatable is troublesome, since
such simulators cannot exist in the plain model, which means that the definition
itself technically exists in some unspecified idealised model (typically the random
oracle model). In practice, this is not troublesome. Requiring balanced left and
right ballots is troublesome for some systems with particular counting functions,
but not if the system reveals plaintext ballots.

Verifiability. Verifiability intuitively captures the notion that if a collection of
voters verify the election, the result must be consistent with their cast ballots.
For voters that do not verify or whose verification failed, we make no guarantees.

Several definitions of verifiability have appeared in the literature, see e.g. [12]
or [37] for an overview. Furthermore, the verifiability properties of Selene have
been thoroughly analysed both from a technical point of view (e.g. [3,31]) and
with respect to the user experience (e.g. [17,38]).

72 K. Gjøsteen et al.

Coercion. Coercion resistance models a coercer that controls the voter for a
period of time. We refer to Smyth [35] for an overview of definitions. A weaker
notion is receipt-freeness, where the coercer does not control the voter, but
asks for evidence that the voter cast the desired ballot. This was introduced
by Benaloh and Tuinstra [5], while Chaidos et al. [7] gave a BPRIV-style security
definition. Selene, as generally instantiated, is not receipt-free. Coercion mitiga-
tion is a different notion, where we assume that the coercer is not present during
vote casting and is somehow not able to ask the voter to perform particular oper-
ations (such as revealing the randomness used to encrypt). This could allow the
voter to fake information consistent with following the coercer’s demands. While
the term coercion mitigation has been used to describe the security properties
provided by Selene (e.g. in [23,31,38]), there seems to be no formal definition of
coercion mitigation in the literature.

Selene. Selene as a voting system has been studied previously, in particular with
respect to privacy [18]. But a study of the complete protocol, including the tally
phase, is missing. The coercion mitigation properties of Selene have also been
extensively discussed [23,31], but have not received a cryptographic analysis.

1.2 Our Contribution

We define security for cryptographic voting systems with trackers, capturing pri-
vacy, verifiability and coercion mitigation. An experiment models the adversary’s
interaction with the honest players through various queries.

To break privacy, the adversary must decide who cast which ballot. Our
definition is based on a similar definition by Gjøsteen [20, p. 492], adapted to
properly accommodate voting systems using trackers. To break verifiability, the
adversary must cause verifying voters to accept a result that is inconsistent with
the ballots they have cast (similar to Cortier et al. [12]). To break coercion miti-
gation, the adversary is allowed to reveal the verification information of coerced
voters and must decide if the coerced voter lied or not. Selene is vulnerable to
collisions among such lies; e.g. multiple coerced voters claim the same ballot. We
want to factor this attack out of the cryptographic analysis, so we require that
the coercer organises the voting such that collisions do not happen. For schemes
that are not vulnerable, we would remove the requirement.

Our definitions are easy to work with, which we demonstrate by presenting
a complete model of Selene (expressed in our framework) and prove that Selene
satisfies both privacy, verifiability and coercion mitigation. Selene has seen some
use [32], so we believe these results are of independent interest.

We developed our definitions with Selene in mind, but they also accommo-
date other tracker based voting systems such as Hyperion [30] and (with some
modifications to accomodate secret key material used in the shuffles) sElect [27].
Furthermore, our models also capture voting systems that do not use trackers.

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 73

2 Background

2.1 Notation

We denote tuples/lists in bold, e.g. v = (v1, . . . , vn). If we have multiple tuples,
we denote the jth tuple by vj and the ith element of the jth tuple by vj,i.

2.2 Cryptographic Building Blocks

We briefly introduce some cryptographic primitives we need for our work. Due
to space constraints we omit much of the details.

To protect voters’ privacy, ballots are usually encrypted. Selene makes use
of the ElGamal public key encryption system [19], which is used to encrypt
both ballots and trackers. Throughout this paper, we will denote an ElGamal
ciphertext by (x,w) := (gr,m · pkr), where g is the generator of the cyclic group
G (of prime order q) we are working in, m is the encrypted message, pk = gsk

is the public encryption key (with corresponding decryption key sk) and r is a
random element in Zq (the field of integers modulo q).

Cryptographic voting systems typically make use of zero-knowledge proofs
to ensure that certain computations are performed correctly. We refer to [16] for
general background on zero-knowledge proofs. In particular, we use equality of
discrete logarithm proofs and correctness proofs for shuffles of encrypted ballots.
The former ensures correctness of computations. The latter preserves privacy by
breaking the link between voters and their ballots. It is necessary that the shuffles
are verifiable to ensure that no ballots are tampered with in any way. We refer
to [22] for an overview of verifiable shuffles. In Selene it is necessary to shuffle
two lists of ciphertexts (ballots and trackers) in parallel. Possible protocols are
given in [29] and we detail a convenient protocol in the full version [21].

Furthermore, in Selene, the election authorities make use of Pedersen-style
commitments [28] to commit to tracking numbers.

3 Voting Systems with Trackers

We model a voting protocol as a simple protocol built on top of a cryptographic
voting scheme in such a way that the protocol’s security properties can be easily
inferred from the cryptographic voting scheme’s properties. This allows us to
separate key management (who has which keys) and plumbing (who sends which
message when to whom) from the cryptographic issues, which simplifies analysis.

Due to space limitations, we model a situation with honest setup and tracker
generation, as well as a single party decrypting. The former would be handled
using a bespoke, verifiable multi-party computation protocol (see [31] for a suit-
able protocol for Selene), while the latter is handled using distributed decryption.

74 K. Gjøsteen et al.

3.1 The Syntax of Voting Systems with Trackers

A verifiable voting system S consists of the following algorithms (extending
Gjøsteen [20]):

– Setup: takes as input a security parameter and returns a pair (pk, sk) of election
public and secret keys.

– UserKeyGen: takes as input an election public key pk and returns a pair
(vpk, vsk) of voter public and secret keys.

– TrackerGen: takes as input an election public key pk and a list (vpk1, . . . , vpkn)
of voter public keys and returns a list t of trackers, a list et of ciphertexts, a
list ct of commitments, a list op of openings and a permutation π on the set
{1, . . . , n}.

– ExtractTracker: takes as input a voter secret key vsk, a tracker commitment ct
and an opening op and returns a tracker t.

– ClaimTracker: takes as input a voter secret key vsk, a tracker commitment ct
and a tracker t and returns an opening op.

– Vote: takes as input an election public key pk and a ballot v and returns a
ciphertext ev, a ballot proof Πv and a receipt ρ.

– Shuffle: takes as input a public key pk and a list evt of encrypted ballots and
trackers, and returns a list evt′ and a proof Πs of correct shuffle.

– DecryptResult: takes as input a secret key sk and a list evt of encrypted ballots
and trackers and returns a result res and a result proof Πr.

– VoterVerify: takes as input a receipt ρ, a tracker t, a list evt of encrypted
ballot/tracker pairs, a result res and a result proof Πr and returns 0 or 1.

– VerifyShuffle: takes as input a public key pk, two lists evt, evt′ of encrypted
ballots and trackers and a shuffle proof Πs and returns 0 or 1.

– VerifyBallot: takes as input a public key pk, a ciphertext ev and a ballot proof
Πv and returns 0 or 1.

– VerifyResult: takes as input a public key pk, a list evt of encrypted ballots and
trackers, a result res and a result proof Πr and returns 0 or 1.

We say that a verifiable, tracker-based voting system is (nv, ns)-correct if for
any (pk, sk) output by Setup, any (vpk1, vsk1), . . . , (vpknv

, vsknv
) output by

UserKeyGen, any lists t, et, ct,op and permutations π : {1, . . . , nv} → {1, . . . , nv}
output by TrackerGen(pk, sk, vpk1, . . . , vpknv

), any ballots v1, . . . , vnv
, any

(evi,Π
v
i , ρi) output by Vote(pk, vi), i = 1, . . . , nv, any sequence of ns sequences of

encrypted ballots and trackers evti and proofs Πs
i output by Shuffle (pk, evti−1),

and any (res,Πr) possibly output by DecryptResult (sk, evtns
), the following hold:

– DecryptResult(sk, evtns
) did not output ⊥,

– VoterVerify(ρi, ti, evtns
res,Πr) = 1 for all i = 1, . . . , nv,

– VerifyShuffle
(
pk, evtj−1, evtj ,Π

s
j

)
= 1 for all j = 1, . . . , ns,

– VerifyResult (pk, evtns
, res,Πr) = 1,

– VerifyBallot(pk, evi,Π
v
i) = 1 for all i = 1, . . . , nv, and

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 75

for any voter key pair (vpk, vsk), ct in ct and tracker t in t, we have that

ExtractTracker(vsk, ct,ClaimTracker(vsk, ct, t)) = t.

We will describe later how Selene fits into our framework, but we note that
this framework also captures voting systems that do not use trackers for verifi-
cation. Such protocols are simply augmented with suitable dummy algorithms
for TrackerGen, ExtractTracker and ClaimTracker.

3.2 Defining Security

We use a single experiment, found in Fig. 1, to define privacy, integrity and
coercion mitigation. Verifiability is defined in terms of integrity. The experiment
models the cryptographic actions of honest parties.

The test query is used to model integrity. The challenge query is used to
define privacy. The coerce and coercion verification queries are used to model
coercion, again modified by freshness. The coerce query specifies two voters
(actually, two indices into the list of voter public keys) and two ballots. The
first voter is the coerced voter. The first ballot is the coerced voter’s intended
ballot, while the second ballot is the coercer’s desired ballot. The second voter
casts the opposite ballot of the coerced voter. In the coercion verification query,
the coerced voter either reveals an opening to their true tracker, or an opening
to the tracker corresponding to the coercer’s desired ballot, cast by the second
voter, thereby ensuring that the coerced voter can lie about its opening without
risking a collision (as discussed in Sect. 1.2). We note that this does not capture
full coercion resistance, as that would require that the adversary is able to see
exactly which ciphertext the coerced voter submitted (as, for example in [14]).
In our definition, however, the adversary gets to see two ciphertexts, where one
is submitted by the coerced voter, but he receives no information about which
of the two ciphertexts the coerced voter actually submitted.

We make some restrictions on the order and number of queries (detailed in
the caption of Fig. 1), but the experiment allows the adversary to make combina-
tions of queries that do not correspond to any behaviour of the voting protocol.
Partially, we do so because we can, but also in order to simplify definitions of
certain cryptographic properties (such as uniqueness of results).

The adversary decides which ballots should be counted. We need to recognise
when the adversary has organised counting such that it results in a trivial win.
We say that a sequence evt of encrypted ballots and trackers is valid if

– Ls contains a sequence of tuples (evtj−1, evtj ,Π
s
j)ns

j=1, not necessarily appear-
ing in the same order in Ls, with evtns

= evt;
– Lv contains tuples

(i1, j1, v0,1, v1,1, ev1,Π
v
1 , ρ1), . . . , (inc

, jnc
, v0,nc

, v1,nc
, evnc

,Πv
nc

, ρnc
)

such that evt0 = (ev1, . . . , evnc
); and

76 K. Gjøsteen et al.

Fig. 1. Security experiment for privacy, integrity and coercion mitigation. The bit b′′

is not used in the experiment, but simplifies the definition of advantage. The adversary
makes register and chosen voter key queries, followed by a single tracker generation

query, followed by other queries. Queries in framed boxes are only used for privacy and

coercion mitigation. Queries in dashed boxes are only used for coercion mitigation.

Queries in doubly framed boxes are only used for privacy and integrity (with b fixed

to 0). Queries in shaded boxes are only used for integrity.

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 77

– for any k, k′ ∈ {1, . . . , nc} with k �= k′, we have ik �= ik′ (only one ballot per
voter public key).

In this case, we also say that evt originated from evt0, alternatively from

(i1, j1, v0,1, v1,1, ev1,Π
v
1 , ρ1), . . . , (inc

, jnc
, v0,nc

, v1,nc
, evnc

,Πv
nc

, ρnc
).

Furthermore, we say that a valid sequence evt is honest if at least one of the
tuples (evtj−1, evtj ,Π

s
j) comes from a shuffle query. A valid sequence is balanced

if the ballot sequences (v0,1, . . . , v0,nc
) and (v1,1, . . . , v1,nc

) are equal up to order.
An execution is fresh if the following all hold:

– If a voter secret key, a receipt or a tracker is revealed, then any challenge query
for that voter contains the same ballot on the left and the right side.

– For any result query evt that does not return ⊥, evt is balanced and honest.
– For any voter verification query (j, evt, res,Πr), evt contains an encryption

of vb,j and VerifyResult(pk, evt, res,Πr) evaluates to 1.
– For any encrypted ballot returned by a coerce query, if it is in an origin of any

result query, the other encrypted ballot returned by the coerce query is also
in the same origin of the same result query.

– There is no election key reveal query.

We define the joint privacy and coercion mitigation event Ep to be the event
that after the experiment and an adversary has interacted, the execution is fresh
and b′ = b, or the execution is not fresh and b′ = b′′. In other words, if the
adversary makes a query that results in a non-fresh execution of the experiment,
we simply compare the adversary’s guess to a random bit, giving the adversary
no advantage over making a random guess.

In the integrity game, the adversary’s goal is to achieve inconsistencies:

– The count failure event Fc is that a result query for a valid sequence of
encrypted ballots and trackers results in ⊥.

– The inconsistent result event Fr is that a test query (evt, res,Πr) evaluates
to 1, evt originated from

(i1, ·, v0,1, v1,1, ev1,Π
v
1 , ρ1), . . . , (inc

, ·, v0,nc
, v1,nc

, evnc
,Πv

nc
, ρnc

)

and there is no permutation π on {1, . . . , nc} such that for i = 1, . . . , nc, either
vb,i = ⊥ or Dec(sk, evπ(i)) = vb,i.

– The no unique result event Fu is that two test queries (evt, res1,Πr
1) and

(evt′, res2,Πr
2) both evaluate to 1, evt and evt′ have a common origin, and

res1 and res2 are not equal up to order.
– The inconsistent verification event Fv is that a sequence of voter verifica-

tion queries {(kj , evt, res,Πr)}n
j=1 all return 1, evt is valid, and with Lv =(

(i1,⊥, v0,1, v1,1, ev1,Π
v
1 , ρ1), . . . , (inc

,⊥, v0,nc
, v1,nc

, evnc
,Πv

nc
, ρnc

)
)

there is
no permutation π on {1, . . . , nc} such that Dec

(
sk, evπ(kj)

)
= vb,kj

for all
j = 1, . . . , n, i.e. that all the specified voters think their ballots are included
in the tally, but at least one of the ballots is not.

78 K. Gjøsteen et al.

We define the advantage of an adversary A against a voting system S to be

Advvote−x
S (A) =

{
2 · |Pr[Ep] − 1/2| x = priv or x = c−mit, or
Pr[Fc ∨ Fr ∨ Fu ∨ Fv] x = int.

3.3 The Voting Protocol

The different parties in the voting protocol are the nv voters and their devices, a
trusted election authority (EA) who runs setup, registration, tracker generation
and who tallies the cast ballots, a collection of ns shuffle servers, one or more
auditors, and a public append-only bulletin board BB. There are many simple
variations of the voting protocol.

In the setup phase, the EA runs Setup to generate election public and secret
keys pk and sk. The public key pk is posted to BB.

In the registration phase, the EA runs UserKeyGen(pk) to generate per-voter
keys (vpk, vsk) for each voter. The public key vpk is posted to BB and the secret
key vsk is sent to the voter’s device.

In the tracker generation phase, the EA runs TrackerGen(pk, sk,
vpk1, . . . , vpknv

) to generate trackers, encrypted trackers, tracker commitments
and openings to the commitments. To break the link between voters and their
trackers, the trackers are encrypted and put through a re-encryption mixnet
before they are committed to. Each encrypted tracker and commitment is
assigned to a voter public key and posted to BB next to this key. Plaintext
trackers are also posted to BB.

In the voting phase, a voter instructs her device on which ballot v to cast.
The voter’s device runs the Vote algorithm to produce an encrypted ballot ev
and a proof of knowledge Πv of the underlying plaintext. The encrypted ballot
and the proof are added to the web bulletin board next to the voter’s public key,
encrypted tracker and tracker commitment.

In the tallying phase, the auditors first verify the ballot proofs Πv
i , subse-

quently ignoring any ballot whose ballot proof does not verify. The pairs (evi, eti)
of encrypted ballots and trackers are extracted from the bulletin board and sent
to the first shuffle server. The first shuffle server uses the shuffle algorithm Shuffle
on the input encrypted ballots and trackers, before passing the shuffled ballots
on the next shuffle server, which shuffles the ballots again and sends the shuffled
list to the next shuffle server, and so on. All the shuffle servers post their output
ciphertexts and shuffle proofs on the bulletin board, and the auditors verify the
proofs. If all the shuffles are correct, the EA runs DecryptResult on the output
from the final shuffle server, to obtain a result res and a proof Πr. The auditors
verify this too and add their signatures to the bulletin board.

In the verification phase, the EA tells each voter which tracker belongs to
them (the exact details of how this happens depends on the underlying voting
system). The voters then run VoterVerify to verify that their vote was correctly
cast and counted. For voting systems without trackers (such as Helios [2] and
Belenios [13]), voters simply run VoterVerify without interacting with the EA.

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 79

Security Properties. It is easy to see that we can simulate a run of the voting
protocol using the experiment. It is also straight-forward for anyone to verify,
from the bulletin board alone, if the list of encrypted ballots and trackers that
is finally decrypted in a run of the protocol is valid.

For simplicity, we have assumed trusted setup (including tracker generation)
and no distributed decryption. We may also assume that any reasonable adver-
sary against the voting scheme has negligible advantage.

It follows, under the assumption of trusted tracker generation, that as long as
the contents of the bulletin board verifies, we have verifiability in the sense that
the final result is consistent with the ballots of voters that successfully verify.
(Though we have not discussed this, one can also verify eligibility by verifying
the bulletin board against the electoral roll. When Selene is used without voter
signatures, it does not protect against voting on behalf of abstaining honest
voters, though such voters could detect this.)

If at least one of the shuffle servers is honest and the election secret key has
not been revealed, and the adversary does not manage to organise the voting to
get a trivial win, we also have privacy and coercion mitigation.

4 The Selene Voting System

We provide a model of Selene and analyse it under our security definition. Rela-
tive to the original Selene paper, there are three interesting differences/choices:
(1) We do not model distributed setup and tracker generation, nor distributed
decryption. (2) The voter proves knowledge of the ballot using an equality of
discrete logarithm proof. (3) We assume a particular shuffle described in the
full version [21] is used. The latter two simplify the security proof by avoiding
rewinding. The first is due to lack of space (though see [31] for distributed setup
protocols, and [20] for how to model distributed decryption).

4.1 The Voting System

Let G be a group of prime order q, with generator g. Let E = (Kgen,Enc,Dec)
be the ElGamal public key encryption system. Let Σdl = (Pdl,Vdl) be a proof
system for proving equality of discrete logarithms in G (e.g. the Chaum-Pedersen
protocol [8]). We abuse notation and let Σs = (Ps,Vs) denote both a proof
system for shuffling ElGamal ciphertexts and a proof system for shuffling pairs
of ElGamal ciphertexts. Our instantiation of Selene works as follows:

– Setup: sample hv
r← G and compute (pkv, skv) ← Kgen(1λ) and (pkt, skt) ←

Kgen(1λ). The election public key is pk = (pkv, pkt, hv) and the election secret
key is sk = (skv, skt).

– UserKeyGen(pk): compute (vpk, vsk) ← Kgen(1λ).
– TrackerGen(pk, vpk1, . . . , vpkn): set t ← (1, . . . , n). Choose a random permu-

tation π on the set {1, . . . , n}. For each i, choose random elements ri, si
r←

{0, . . . , q − 1}, compute ElGamal encryptions eti ← (grπ(i) , pkt
rπ(i)gtπ(i)) and

80 K. Gjøsteen et al.

commitments cti ← vpksi
i · gtπ(i) . Set opi = gsi . The public output is the list

of trackers t, the list of encrypted trackers et and the list of tracker commit-
ments ct. The private output is the list of openings op to the commitments
and the permutation π.

– ExtractTracker(vsk, ct, op): compute gt ← ct · op−vsk.
– ClaimTracker(vsk, ct, gt): compute op ← (ct/gt)1/vsk.
– Vote(pk, v): sample r r← {0, . . . , q − 1} and compute x ← gr, x̂ ← hr

v and
w ← pkr

vv. Compute a proof Πdl ← Pdl((g, hv, x, x̂), r) showing that logg x =
loghv

x̂ = r. Output c = (x,w), Πv = (x̂,Πdl) and ρ = v.
– Shuffle(pk, evt): sample two lists rv, rt

r← {0, . . . , q − 1}n and a random per-
mutation on the set {1, . . . , n}. For each ((xv,i, wv,i), (xt,i, wt,i)) ∈ evt, com-
pute x′

v,i ← grv,π(i)xv,π(i), w
′
v,i ← pk

rv,π(i)
v wv,π(i), x

′
t,i ← grt,π(i)xt,π(i) and

w′
t,i ← pk

rt,π(i)
t wt,π(i). Compute a proof Πs ← Ps((evt, evt′), (rv, rt, π)) of

correct shuffle and output (evt′,Πs).
– DecryptResult(sk, evt): for each ((xv,i, wv,i), (xt,i, wt,i)) ∈ evt, compute

vi ← Dec(skv, (xv,i, wv,i)), ti ← Dec(skt, (xt,i, wt,i)) and proofs Πdl
v,i ←

Pdl((g, xv,i, pkv, wv,i/vi), skv) and Πdl
t,i ← Pdl((g, xt,i, pkt, wt,i/ti), skt), prov-

ing that logg pkv = logxv,i
(wv,i/vi) = skv and logg pkt = logxt,i

(wt,i/ti) = skt.
Set res ← v and Πr ← ({Πdl

v,i}, {Πdl
t,i}, t) and output (res,Πr).

– VoterVerify(ρ, t, evt,v,Πr): parse Πr as ({Πdl
v,i}, {Πdl

t,i}, t) and check if ρ ∈ v,
and t ∈ t, and that if t = ti then ρ = vi, i.e. the ballot appears next to the
correct tracker.

– VerifyShuffle(pk, evt, evt′,Πs): compute d ← Vs(pk, evt, evt′,Πs).
– VerifyBallot(pk, ev,Πv): parse Πv as (x̂,Πdl) and compute d ← Vdl((g,

h, x, x̂),Πdl).
– VerifyResult(pk, evt, res,Πr) : parse Πr as ({Πdl

v,i}, {Πdl
t,i}, t) and compute

dv,i ← Vdl((g, xv,i, pkv, wv,i/vi),Πdl
v,i) and dt,i ← Vdl((g, xt,i, pkt, wt,i/ti),Πdl

t,i)
for all i = 1, . . . , n, where ((xv,i, wv,i), (xt,i, wt,i)) ∈ evt, vi ∈ res, ti ∈ t.

The correctness of Selene follows from the correctness of ElGamal, the complete-
ness of the verifiable shuffles and the straight-forward computation

ExtractTracker(vsk, ct,ClaimTracker(vsk, ct, gt)) = ct·
((

ct/gt
)1/vsk

)−vsk

= gt.

Note that in the original description of Selene [31], the exact manner of which
the voters prove knowledge of their plaintext in the voting phase is left abstract.
However, several different approaches are possible. One may, for example, pro-
duce a Schnorr proof of knowledge [34] of the randomness used by the encryption
algorithm. We choose a different approach, and include a check value x̂ and give
a Chaum-Pedersen proof that loghv

x̂ = logg x. Both are valid approaches, how-
ever our approach simplifies the security proof by avoiding rewinding.

4.2 Security Result

We say that an adversary against a voting scheme is non-adaptive if every voter
key reveal query is made before the tracker generation query.

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 81

Theorem 1. Let A be a non-adaptive (τ, nv, nc, nd, ns)-adversary against
Selene, making at most nv registration and chosen voter key queries, nc challenge
and coerce queries, nd chosen ciphertext queries, and ns shuffle/chosen shuffle
queries, and where the runtime of the adversary is at most τ . Then there exist
a τ ′

1-distinguisher B1, a τ ′
2,1-distinguisher B2,1, a τ ′

2,2-distinguisher B2,2 and a
τ ′
3-distinguisher B3, all for DDH, τ ′

1, τ
′
2,1, τ

′
2,2, τ

′
3 all essentially equal to τ , such

that

Advvote−x
Selene (A) ≤ AdvddhG,g(B1) + 2ns(AdvddhG,g(B2,1) + AdvddhG,g(B2,2))

+ AdvddhG,g(B3) + negligible terms,

where x ∈ {priv, c−mit, int}.
(Better bounds in the theorem are obtainable, but these are sufficient.)

4.3 Proof Sketch

We begin by analysing the integrity events. Count failures cannot happen. If we
get an inconsistent result, then either the equality of discrete logarithm proofs
used by the decryption algorithm or the shuffle proofs are wrong. The soundness
errors of the particular proofs we use are negligible (and unconditional), so an
inconsistent result happens with negligible probability. The same analysis applies
to non-unique results as well as inconsistent verification.

We now move on to analysing the privacy event. The proof is structured
as a sequence of games. We begin by simulating the honestly generated non-
interactive proofs during ballot casting. This allows us to randomize the check
values x̂v in honestly generated ballot proofs, so that we afterwards can embed
a trapdoor in hv. The trapdoors allow us to extract ballots from adversarially
generated ciphertexts. The shuffle we use also allows us to extract permuta-
tions from adversarially generated shuffles by tampering with a random oracle.
This allows us to use the ballots from chosen ciphertext queries to simulate the
decryption, so we no longer use the decryption key. The next step is to also sim-
ulate the honest shuffles, before randomising the honestly generated ciphertexts
(including encrypted trackers) and the re-randomisations of these ciphertexts.
Finally, we sample tracker commitments at random and compute the openings
from tracker generation using the ClaimTracker algorithm. This change is not
observable, and makes the computation of tracker commitments and openings
independent of the challenge bit. This makes the entire game independent of the
challenge bit, proving that the adversary has no advantage.

The complete security proof can be found in the full version [21].

5 Other Variants of Selene

There are [30,31] some challenges tied to the use of trackers in Selene. First, if
the coercer is also a voter, there is a possibility that a coerced voter points to

82 K. Gjøsteen et al.

the coercer’s own tracker when employing the coercion evasion strategy. Second,
publishing the trackers in the clear next to the ballots might affect the voters’
perceived privacy, and some might find this troublesome.

To address the first challenge, the authors of Selene have proposed a variant
they call Selene II. Informally, the idea is to provide each voter with a set of
alternative (or dummy) trackers, one for each possible candidate, in a way that
the set of alternative trackers is unique to each voter. This way, it is not possi-
ble for a coerced voter to accidentally point to the coercer’s tracker. However,
trackers are still published in the clear.

Both challenges are also addressed by Ryan et al. [30], who have proposed a
voting system they call Hyperion. The idea is to only publish commitments next
to the plaintext ballots, rather than plaintext trackers. Furthermore, to avoid
the issue that voters might accidentally point to the coercer’s own tracker, each
voter is given their unique view of the bulletin board.

For both Selene II [31] and Hyperion [30], we refer to the original papers
for the full details of the constructions, but we briefly describe here how these
systems fit into our framework. We first remark that in Selene II, it is necessary
that the encryption system used to encrypt the ballots supports plaintext equiv-
alence tests (PETs). As in the original description of Selene, we use ElGamal
encryption to encrypt the ballots, so PETs are indeed supported (see e.g. [24]).

For Selene II, we need to change the TrackerGen algorithm so that it outputs
c+1 trackers for each voter, where c is the number of candidates, and c “dummy”
ciphertexts, one ciphertext for each candidate. We let the last tracker be the one
that is sent to the voter to be used for verification. By construction, for all
voters there will be an extra encrypted ballot for each candidate. Thus, the
DecryptResult algorithm works similarly as for Selene, except that it needs to
subtract nv votes for each candidate, where nv is the number of voters. The
voting protocol must also be changed. Before notifying the voters of their tracking
numbers, the EA must now perform a PET between each voter’s submitted
ciphertext, and each of the “dummy” ciphertexts belonging to the voter, before
removing the ciphertext (and the corresponding tracker) containing the same
candidate as the voter voted for. This way, all voters receive a set of trackers,
each pointing to a different candidate, which is unique to them. The opening to
their real trackers is transmitted as usual, and thus the ExtractTracker algorithm
works as in Selene. The ClaimTracker algorithm also works exactly as in Selene,
except that voters now can choose a tracker from their personal set of dummy
trackers, thus avoiding the risk of accidentally choosing the coercer’s tracker.

For Hyperion, the modification of the TrackerGen algorithm is straight for-
ward: we simply let it compute tracker commitments as described in [30], namely
by (for each voter) sampling a random number ri and computing the commit-
ment as vpkri

i . At the same time, an opening is computed as opi ← gri . The
Shuffle algorithm still shuffles the list of encrypted ballots and tracker commit-
ments in parallel, in the sense that they are subjected to the same permutation.
However, the encrypted ballots are put through the same re-encryption shuffle
as before, but the tracker commitments are put through an exponentiation mix,

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 83

raising all commitments to a common secret power s. The DecryptResult algo-
rithm now performs additional exponentiation mixes to the commitments, one
mix for each voter (by raising the commitment to a secret power si, unique to
each voter), giving the voters their own unique view of the result. For each voter,
it also computes the final opening to their commitments, as opi ← gri·s·si . Again,
we need to change the voting protocol, this time so that each voter actually
receives their own view of the bulletin board. The ExtractTracker algorithm raises
the opening opi to the voter’s secret key and loops through the bulletin board to
find a matching commitment. The ClaimTracker algorithm uses the voter’s secret
key to compute an opening to a commitment pointing to the coercer’s desired
ballot.

Acknowledgments. We thank the anonymous reviewers at E-Vote-ID for their help-
ful comments. This work was supported by the Luxembourg National Research Fund
(FNR) and the Research Council of Norway (NFR) for the joint project SURCVS
(FNT project ID 11747298, NFR project ID 275516). Thomas Haines is the recipient
of an Australian Research Council Australian Discovery Early Career Award (project
number DE220100595).

References

1. Final report of IACR electronic voting committee. https://www.iacr.org/elections/
eVoting/finalReportHelios 2010-09-27.html. Accessed 05 May 2023

2. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security 2008, pp. 335–348. USENIX Association (2008)

3. Baloglu, S., Bursuc, S., Mauw, S., Pang, J.: Election verifiability in receipt-free
voting protocols. In: 2023 2023 IEEE 36th Computer Security Foundations Sym-
posium (CSF) (CSF), pp. 63–78. IEEE Computer Society, Los Alamitos (2023).
https://doi.org/10.1109/CSF57540.2023.00005

4. Benaloh, J.: Verifiable Secret-Ballot Elections. Ph.D. thesis (September
1987). https://www.microsoft.com/en-us/research/publication/verifiable-secret-
ballot-elections/

5. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: 26th ACM STOC, pp. 544–553. ACM Press (1994). https://doi.
org/10.1145/195058.195407

6. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehen-
sive analysis of game-based ballot privacy definitions. Cryptology ePrint Archive,
Report 2015/255 (2015). https://eprint.iacr.org/2015/255

7. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1614–1625.
ACM Press (2016). https://doi.org/10.1145/2976749.2978337

8. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

9. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer
Society Press (2008). https://doi.org/10.1109/SP.2008.32

https://www.iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html
https://www.iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html
https://doi.org/10.1109/CSF57540.2023.00005
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://eprint.iacr.org/2015/255
https://doi.org/10.1145/2976749.2978337
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1109/SP.2008.32

84 K. Gjøsteen et al.

10. Cortier, V., Dragan, C.C., Dupressoir, F., Schmidt, B., Strub, P.Y., Warinschi, B.:
Machine-checked proofs of privacy for electronic voting protocols. In: 2017 IEEE
Symposium on Security and Privacy, pp. 993–1008. IEEE Computer Society Press
(2017). https://doi.org/10.1109/SP.2017.28

11. Cortier, V., Dragan, C.C., Dupressoir, F., Warinschi, B.: Machine-checked proofs
for electronic voting: privacy and verifiability for Belenios. In: Chong, S., Delaune,
S. (eds.) CSF 2018 Computer Security Foundations Symposium, pp. 298–312. IEEE
Computer Society Press (2018). https://doi.org/10.1109/CSF.2018.00029

12. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for E-voting protocols. In: 2016 IEEE Symposium on Security and Privacy,
pp. 779–798. IEEE Computer Society Press (2016). https://doi.org/10.1109/SP.
2016.52

13. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable elec-
tronic voting system. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic,
D. (eds.) Foundations of Security, Protocols, and Equational Reasoning. LNCS,
vol. 11565, pp. 214–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19052-1 14

14. Cortier, V., Gaudry, P., Yang, Q.: Is the JCJ voting system really coercion-
resistant? Cryptology ePrint Archive, Report 2022/430 (2022). https://eprint.iacr.
org/2022/430

15. Cortier, V., Lallemand, J., Warinschi, B.: Fifty shades of ballot privacy: privacy
against a malicious board. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Secu-
rity Foundations Symposium, pp. 17–32. IEEE Computer Society Press (2020).
https://doi.org/10.1109/CSF49147.2020.00010

16. Damg̊ard, I.: Commitment schemes and zero-knowledge protocols. In: Damg̊ard,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48969-X 3

17. Distler, V., Zollinger, M.L., Lallemand, C., Roenne, P.B., Ryan, P.Y.A., Koenig,
V.: Security - visible, yet unseen? CHI ’19, pp. 1–13. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3290605.3300835

18. Dragan, C.C., et al.: Machine-checked proofs of privacy against malicious boards for
Selene & co. In: CSF 2022 Computer Security Foundations Symposium, pp. 335–
347. IEEE Computer Society Press (2022). https://doi.org/10.1109/CSF54842.
2022.9919663

19. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug (1984). https://doi.org/10.1007/3-540-39568-7 2

20. Gjøsteen, K.: Practical Mathematical Cryptography. Chapman and Hall/CRC,
Boca Raton (2023)

21. Gjøsteen, K., Haines, T., Solberg, M.R.: Coercion mitigation for voting systems
with trackers: a Selene case study. Cryptology ePrint Archive, report 2023/1102
(2023). https://eprint.iacr.org/2023/1102

22. Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: Jia, L., Küsters,
R. (eds.) CSF 2020 Computer Security Foundations Symposium, pp. 49–64. IEEE
Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00012

23. Iovino, V., Rial, A., Rønne, P.B., Ryan, P.Y.A.: Using Selene to verify your vote in
JCJ. In: Brenner, M., et al. (eds.) FC 2017 Workshops. LNCS, vol. 10323, pp. 385–
403. Springer, Heidelberg (Apr (2017). https://doi.org/10.1007/978-3-319-70278-
0 24

https://doi.org/10.1109/SP.2017.28
https://doi.org/10.1109/CSF.2018.00029
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
https://eprint.iacr.org/2022/430
https://eprint.iacr.org/2022/430
https://doi.org/10.1109/CSF49147.2020.00010
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1145/3290605.3300835
https://doi.org/10.1109/CSF54842.2022.9919663
https://doi.org/10.1109/CSF54842.2022.9919663
https://doi.org/10.1007/3-540-39568-7_2
https://eprint.iacr.org/2023/1102
https://doi.org/10.1109/CSF49147.2020.00012
https://doi.org/10.1007/978-3-319-70278-0_24
https://doi.org/10.1007/978-3-319-70278-0_24

Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study 85

24. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 13

25. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
Cryptology ePrint Archive, Report 2002/165 (2002). https://eprint.iacr.org/2002/
165

26. Karayumak, F., Olembo, M.M., Kauer, M., Volkamer, M.: Usability analysis of
Helios-an open source verifiable remote electronic voting system. In: EVT/WOTE,
vol. 11, no. 5 (2011)

27. Küsters, R., Müller, J., Scapin, E., Truderung, T.: sElect: a lightweight verifiable
remote voting system. In: Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Secu-
rity Foundations Symposium, pp. 341–354. IEEE Computer Society Press (2016).
https://doi.org/10.1109/CSF.2016.31

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

29. Ramchen, K.: Parallel shuffling and its application to Prêt à voter. In: EVT/WOTE
(2010)

30. Ryan, P.Y.A., Rastikian, S., Rønne, P.B.: Hyperion: an enhanced version of the
Selene end-to-end verifiable voting scheme. E-Vote-ID 2021, 285 (2021)

31. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

32. Sallal, M., et al.: VMV: augmenting an internet voting system with Selene verifia-
bility (2019)

33. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd edn. John Wiley & Sons Inc, Hoboken (1995)

34. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

35. Smyth, B.: Surveying definitions of coercion resistance. Cryptology ePrint Archive,
Report 2019/822 (2019). https://eprint.iacr.org/2019/822

36. Smyth, B.: Ballot secrecy: security definition, sufficient conditions, and analysis
of Helios. J. Comput. Secur. 29(6), 551–611 (2021). https://doi.org/10.3233/JCS-
191415

37. Smyth, B., Clarkson, M.R.: Surveying definitions of election verifiability. Cryptol-
ogy ePrint Archive, Report 2022/305 (2022). https://eprint.iacr.org/2022/305

38. Zollinger, M.L., Distler, V., Rønne, P., Ryan, P., Lallemand, C., Koenig, V.: User
experience design for E-voting: how mental models align with security mechanisms
(2019). https://doi.org/10.13140/RG.2.2.27007.15527

https://doi.org/10.1007/3-540-44448-3_13
https://eprint.iacr.org/2002/165
https://eprint.iacr.org/2002/165
https://doi.org/10.1109/CSF.2016.31
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2019/822
https://doi.org/10.3233/JCS-191415
https://doi.org/10.3233/JCS-191415
https://eprint.iacr.org/2022/305
https://doi.org/10.13140/RG.2.2.27007.15527

86 K. Gjøsteen et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Background
	2.1 Notation
	2.2 Cryptographic Building Blocks

	3 Voting Systems with Trackers
	3.1 The Syntax of Voting Systems with Trackers
	3.2 Defining Security
	3.3 The Voting Protocol

	4 The Selene Voting System
	4.1 The Voting System
	4.2 Security Result
	4.3 Proof Sketch

	5 Other Variants of Selene
	References

