
Chapter 8
Three-Dimensional Numerical Analysis of
Natural Vibrations and Stability of Cylindrical
Shells Interacting with Fluid

Sergey A. Bochkarev, Sergey V. Lekomtsev, Valerii P. Matveenko, and Alexander N.
Senin

Abstract Natural vibrations and stability of cylindrical shells interacting with a quies-
cent and flowing ideal fluid are numerically investigated. A solution is implemented
in a three-dimensional formulation using an algorithm that is based on the finite
element method. In the numerical examples, shells with an elliptical cross section,
coaxial shells, and shells with an eccentricity are considered. The influence of a
fluid level inside these structures and axial misalignment on natural frequencies and
vibration modes, and the critical velocities of instability are analyzed. Calculations
has revealed the peculiarities of the dynamic characteristics of the shells under con-
sideration in case of their partial filling with a fluid. It is shown that the stability of
the system can be improved by selecting appropriate geometric parameters.

8.1 Introduction

Thin-walled cylindrical shells are the key structural elements, which are able to
withstand considerable loads, strong vibrations or seismic effects. When they interact
with fluids, resonance phenomena or loss of stability like flutter and divergence are
possible. Dynamic processes that occur in this case can lead to large-amplitude
vibrations, instantaneous or fatigue failure of the structure. In the context of the
onset of an emergency, the greatest hazards are associated with storage tanks for
technological and chemically aggressive fluids located in zones with increased seismic
activity; pillars of river bridges; flexible tubes used in the oil-refining and aerospace
industries; and different types of heat exchangers employed in power plants (assembly
of parallel plates or group of circular cylindrical shells).
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Distinguishing features in the interaction of shell structures with a quiescent or
flowing fluid, as well as with a gaseous medium, have long been studied. An extensive
bibliography of papers on this topic is presented in both parts of the well-known
monograph [1, 2]. Literature reviews that expand this list of research sources and
provide the reader with some pioneering works not mentioned yet can be found in
recent articles by the authors [3–8]. Over the past few decades, analysis of the natural
vibrations and hydroelastic stability of shells of revolution (cylindrical and conical,
coaxial) has been carried out, as a rule, using a variety of numerical-analytical and
numerical approaches implemented in an axisymmetric formulation or reduced to it.
That is the reason why many significant factors remain unexplored, whose influence
on the dynamic characteristics of the system can only be assessed when solving a
3D problem. The circumferential symmetry breaking of a cylindrical shell due to its
partial filling with a fluid [9, 10], use of an open [11] or non-circular cross section
[12–16], coaxial shells misalignment [7, 8, 17, 18], or due to the impact of spatial
force factors, determines the specific behavior of natural vibration frequencies (mode
shapes) and stability parameters, which is different from that of similar symmetrical
configurations. Bearing in mind that the fluid flow has a destabilizing effect on the
elastic shell and leads to significant changes in its dynamic behavior, the above-
mentioned factors require careful analysis.

The main research tool used to solve the problems of hydroelasticity, including
those of real practical interest, is a finite element method. In contrast to other numerous
approaches, it is the most accurate and versatile method because it allows one to
overcome the restrictions on the geometry of the structure and on the kinematic
boundary conditions at its edges. The available commercial finite element analysis
software helps researchers to solve transient, harmonic and modal problems via
simulating the interaction of an arbitrary elastic structure and an acoustic environment
[19]. However, there is no such possibility for stability problems in the case of a
flowing fluid.

In this paper, the findings of studies on the hydroelastic interaction of shell
structures asymmetric in the circumferential direction are generalized. The solution
is found within the framework of a universal approach that is based on the developed
three-dimensional mathematical formulation and its implementation by the finite
element method.

8.2 Mathematical and Numerical Formulations

This section briefly describes the mathematical formulation and the corresponding
finite element algorithm, which are designed to analyze natural vibrations and sta-
bility of three-dimensional thin-walled cylindrical shells in the general case with a
non-circular cross section and interacting with an internal steady flow of an ideal com-
pressible fluid. All basic relation are given for the configuration shown in Fig. 8.1,
but they can be easily generalized to the case of coaxial [5, 6] and eccentric [8]
cylindrical shells.
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Fig. 8.1: Computational
scheme of the elliptical cylin-
drical shell. y
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In the case of small perturbations the vortex-free dynamics of an ideal compressible
fluid is described by wave equation [2, 20, 21], which is formulated in terms of the
perturbation velocity potential 𝜙 in the global Cartesian coordinate system (𝑥, 𝑦, 𝑧)
and transformed to the weak form together with the impermeability and boundary
conditions [21]. Finally, we get:

∫
𝑉 𝑓

∇𝐹𝑚 · ∇𝜙d𝑉 +
∫
𝑉 𝑓

𝐹𝑚
1
𝑐2
𝜕2𝜙

𝜕𝑡2
d𝑉 +

∫
𝑉 𝑓

𝐹𝑚
2𝑈
𝑐2

𝜕2𝜙

𝜕𝑡𝜕𝑥
d𝑉 −

−
∫
𝑉 𝑓

𝐹𝑚
𝑈2

𝑐2
𝜕2𝜙

𝜕𝑥2 d𝑉 −
∫
𝑆𝜎

𝐹𝑚
𝜕 ˆ̄𝑤
𝜕𝑡

d𝑆−
∫
𝑆𝜎

𝐹𝑚𝑈
𝜕 ˆ̄𝑤
𝜕𝑥

d𝑆 = 0, 𝑚 = 1,𝑚 𝑓 . (8.1)

Here: 𝜙 and ˆ̄𝑤 are the trial solutions for the velocity potential 𝜙 and normal dis-
placements of the thin-walled structure �̄�; 𝑉 𝑓 is the volume of fluid; 𝑆𝜎 is the
fluid-structure interface; 𝑐 is the speed of sound in a fluid; 𝑡 is time; 𝐹𝑚 and 𝑚 𝑓 are
the basis functions and their number;𝑈 is the velocity of fluid in the direction of the
𝑥-axis.

The hydrodynamic pressure acting on the elastic structure wall is calculated using
linearized Bernoulli’s formula:

𝑝 = −𝜌 𝑓

(
𝜕𝜙

𝜕𝑡
+𝑈 𝜕𝜙

𝜕𝑥

)
, (8.2)

where 𝜌 𝑓 is the density of a fluid. We use the following boundary conditions to solve
Eq. (8.1):

𝑥 = 0 : 𝜙 = 0, 𝑥 = 𝐿 : 𝜕𝜙/𝜕𝑥 = 0, (8.3)

where 𝐿 is the length of the structure.
Modeling the shells partially filled with a fluid is based on the assumption that the

free surface of the liquid 𝑆free does not move and is not under the action of dynamic
pressure and surface tension. An appropriate boundary condition is given by [10]:

𝑥𝑥𝑥 ∈ 𝑆free : 𝜙 = 0. (8.4)
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A curvilinear surface of the structure is represented with sufficient accuracy as a
set of flat rectangular segments (Fig. 8.1) [22]. Small strains in each of these segments
are determined in the framework of the classical plate theory [23]:

{
Y �̄� �̄� , Y �̄� �̄� , 𝛾�̄� �̄�

}T
=
{
Y0
�̄� �̄� , Y

0
�̄� �̄� , 𝛾

0
�̄� �̄�

}T
+ 𝑧

{
Y1
�̄� �̄� , Y

1
�̄� �̄� , 𝛾

1
�̄� �̄�

}T
, (8.5)

ȲYY0 =
{
Y0
�̄� �̄� , Y

0
�̄� �̄� , 𝛾

0
�̄� �̄�

}T
=

{
𝜕�̄�

𝜕𝑥
,
𝜕�̄�

𝜕�̄�
,
𝜕�̄�

𝜕�̄�
+ 𝜕�̄�
𝜕𝑥

}T
,

ȲYY1 =
{
Y1
�̄� �̄� , Y

1
�̄� �̄� , 𝛾

1
�̄� �̄�

}T
=

{
−𝜕

2�̄�

𝜕𝑥2 ,−
𝜕2�̄�

𝜕�̄�2 ,−2
𝜕2�̄�

𝜕𝑥�̄�

}T

,

where �̄�, �̄�, �̄� are the displacements of the points on the middle surface of the plane
segment in the direction of the corresponding axes of the Cartesian coordinate system
(𝑥, �̄�, 𝑧) (Fig. 8.1).

The generalized vector ȲYY, which contains the middle surface strains ȲYY0 and the
curvatures ȲYY1, is written as:

ȲYY =

{
ȲYY0

ȲYY1

}
=
{
Y0
�̄� �̄� , Y

0
�̄� �̄� , 𝛾

0
�̄� �̄� , Y

1
�̄� �̄� , Y

1
�̄� �̄� , 𝛾

1
�̄� �̄�

}T
. (8.6)

The physical relations between the vector of forces and moments 𝑡𝑡𝑡 and the vector
of generalized strains ȲYY are formulated in the following form:

𝑡𝑡𝑡 =
{
𝑁 �̄� �̄� , 𝑁 �̄� �̄� , 𝑁 �̄� �̄� , 𝑀�̄� �̄� , 𝑀�̄� �̄� , 𝑀�̄� �̄�

}T
= 𝑆𝑆𝑆ȲYY, (8.7)

where the coefficients entering the matrix 𝑆𝑆𝑆 are calculated for isotropic material using
Young’s modulus 𝐸 and Poisson’s ratio 𝜈 by known way [23].

A mathematical formulation of the dynamics problem of thin-walled structure
relies on the variational principle of virtual displacements, which takes into account
the equation for hydrodynamic pressure (8.2) and the work done by inertial forces.
In the absence of external loads it can be written in the matrix form as:∫

𝑆𝑠

𝛿Ȳ̄ȲYT𝑆𝑆𝑆Ȳ̄ȲYd𝑆 +
∫
𝑆𝑠

𝛿𝑑𝑑𝑑T𝐽𝐽𝐽 ¥̄𝑑¥̄𝑑¥̄𝑑d𝑆 +
∫
𝑆𝜎

𝛿�̄� 𝜌 𝑓

(
𝜕𝜙

𝜕𝑡
+𝑈 𝜕𝜙

𝜕𝑥

)
d𝑆 = 0, (8.8)

where �̄�𝑑𝑑 = {�̄�, �̄�, �̄�, 𝜃 �̄� , 𝜃 �̄� , 𝜃 �̄�}T is the generalizedvectorof the thin-walled structure dis-
placements, including rotation angles 𝜃 �̄� , 𝜃 �̄� , 𝜃 �̄� with respect to the corresponding axes
of the coordinate system (𝑥, �̄�, 𝑧); 𝑆𝑠 is the shell surface; 𝐽𝐽𝐽 = diag (𝐽0, 𝐽0, 𝐽0, 𝐽2, 𝐽2, 𝐽2)
is the inertia matrix, 𝐽0 = 𝜌𝑠ℎ, 𝐽2 = 𝜌𝑠ℎ3/12 and 𝜌𝑠 is the density of the elastic struc-
ture material.

The formulation of the natural vibrations problem is based on the representation

𝑢𝑢𝑢(𝑥𝑥𝑥, 𝑡) = {𝑑𝑑𝑑 (𝑥𝑥𝑥, 𝑡), 𝜙(𝑥𝑥𝑥, 𝑡)}T = �̃�𝑢𝑢(𝑥𝑥𝑥)ei𝜆𝑡 , (8.9)
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where �̃�𝑢𝑢 =
{
𝑑𝑑𝑑 (𝑥𝑥𝑥), 𝜙(𝑥𝑥𝑥)}T is the vector function depending only on coordinates 𝑥𝑥𝑥; i is

the imaginary unit; 𝜆 = 𝜔+ i𝛾 is the characteristic index; 𝜔 is the natural frequency
of vibrations; 𝛾 is the value, characterizing the damping of the system.

After substituting expression (8.9) into Eqs. (8.1) and (8.8), dividing by the
exponent and implementing the known procedures of the finite element method, we
obtain a coupled system of equations:(

−𝜆2𝑀𝑀𝑀 + i𝜆𝐶𝐶𝐶 +𝐾𝐾𝐾 +𝐴𝐴𝐴
)
�̃�𝑢𝑢 = 0, (8.10)

𝑀𝑀𝑀 =

[
𝑀𝑀𝑀𝑠 0
0 𝑀𝑀𝑀 𝑓

]
, 𝐶𝐶𝐶 =

[
0 𝐶𝐶𝐶𝑠 𝑓

𝐶𝐶𝐶 𝑓 𝑠 𝐶𝐶𝐶 𝑓

]
, 𝐾𝐾𝐾 =

[
𝐾𝐾𝐾𝑠 0
0 𝐾𝐾𝐾 𝑓

]
, 𝐴𝐴𝐴 =

[
0 𝐴𝐴𝐴𝑠 𝑓

𝐴𝐴𝐴 𝑓 𝑠 𝐴𝐴𝐴 𝑓

]
,

where typical finite element matrices are determined in a well-known manner [6, 22]:

𝑀𝑀𝑀𝑒
𝑓 =

∫
𝑉 𝑓

1
𝑐2𝐹𝐹𝐹

T𝐹𝐹𝐹d𝑉, �̄�𝑀𝑀
𝑒
𝑠 =

∫
𝑆𝑠

𝑁𝑁𝑁T𝐽𝐽𝐽𝑁𝑁𝑁d𝑆,

𝐶𝐶𝐶𝑒
𝑓 =

∫
𝑉 𝑓

2𝑈
𝑐2
𝜕𝐹𝐹𝐹T

𝜕𝑥
𝐹𝐹𝐹d𝑉, �̄�𝐶𝐶

𝑒
𝑓 𝑠 = −

∫
𝑆𝜎

𝐹𝐹𝐹T𝑁𝑁𝑁𝑤d𝑆, �̄�𝐶𝐶
𝑒
𝑠 𝑓 =

∫
𝑆𝜎

𝜌 𝑓𝑁𝑁𝑁
T
𝑤𝐹𝐹𝐹d𝑆,

𝐾𝐾𝐾𝑒
𝑓 =

∫
𝑉 𝑓

(∇𝐹𝐹𝐹)T∇𝐹𝐹𝐹d𝑉, �̄�𝐾𝐾
𝑒
𝑠 =

∫
𝑆𝑠

𝐵𝐵𝐵T𝑆𝑆𝑆𝐵𝐵𝐵d𝑆,

𝐴𝐴𝐴𝑒
𝑓 = −

∫
𝑉 𝑓

𝑈2

𝑐2
𝜕𝐹𝐹𝐹T

𝜕𝑥

𝜕𝐹𝐹𝐹

𝜕𝑥
d𝑉, �̄�𝐴𝐴𝑒

𝑓 𝑠 = −
∫
𝑆𝜎

𝑈𝐹𝐹𝐹T 𝜕𝑁𝑁𝑁𝑤

𝜕𝑥
d𝑆, �̄�𝐴𝐴𝑒

𝑠 𝑓 =
∫
𝑆𝜎

𝜌 𝑓𝑈𝑁𝑁𝑁
T
𝑤

𝜕𝐹𝐹𝐹

𝜕𝑥
d𝑆.

Here: 𝐹𝐹𝐹, 𝑁𝑁𝑁 , 𝑁𝑁𝑁𝑤 are the shape functions the trial solutions for the velocity potential
of the fluid 𝜙, the generalized vector of the nodal displacements of the thin-walled
structure 𝑑𝑑𝑑 and its normal component �̄�; 𝐵𝐵𝐵 is the gradient matrix, which links the
deformation vector with the vector of nodal displacements of the shell finite element.
The constitutive relations defined in Eq. (8.5) do not contain the equation for rotation
about the axis 𝑧. To eliminate this problem, it is necessary to introduce zero rows
and columns and a fictitious moment 𝑀�̄� into the stiffness matrix [22]. The matrices
with overbar (�̄�𝐾𝐾𝑒

𝑠 , �̄�𝑀𝑀
𝑒
𝑠 , �̄�𝐶𝐶

𝑒
𝑠 𝑓 , etc.) are formed in the coordinate system (𝑥, �̄�, 𝑧). Their

transformation to the global Cartesian coordinates (𝑥, 𝑦, 𝑧) is performed for each
element using the directional cosine matrix in a known way [6, 22].

In the finite elementmodel, the perturbation velocity potential𝜙, the basis functions
𝐹𝑚, and the membrane displacements of the shell �̄� and �̄� are described using by
Lagrange bi-linear shape functions. The bending displacement �̄�, the rotation angles
𝜃 �̄� and 𝜃 �̄� are approximated by the nonconforming cubic Hermite polynomials [22].
The discretization of the computational domains of the fluid and the thin-walled
structure is carried out using the spatial 8-node prismatic and flat rectangular finite
elements, respectively.

The system of equations (8.10) is converted into the generalized eigenvalue
problem [24], which is solved by the implicitly restarted Arnoldi method [25]:
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𝐶𝐶𝐶 𝐾𝐾𝐾 +𝐴𝐴𝐴
−𝐼𝐼𝐼 0

]
+ i𝜆

[
𝑀𝑀𝑀 0
0 𝐼𝐼𝐼

] ) {
i𝜆�̃�𝑢𝑢
�̃�𝑢𝑢

}
= 0. (8.11)

The model described above and the finite element algorithm allow us to investigate
a system of two coaxial or eccentric cylindrical shells with a fluid in the annular gap

between them. In this case �̃�𝑢𝑢 =
{
�̃�𝑑𝑑
(1)
, �̃�𝑑𝑑

(2)
,𝜙𝜙𝜙
}T

and the global matrices in equation
(8.10) take the form:

𝑀𝑀𝑀 =


𝑀𝑀𝑀 (1)

𝑠 0 0
0 𝑀𝑀𝑀 (2)

𝑠 0
0 0 𝑀𝑀𝑀 𝑓


, 𝐾𝐾𝐾 =


𝐾𝐾𝐾 (1)

𝑠 0 0
0 𝐾𝐾𝐾 (2)

𝑠 0
0 0 𝐾𝐾𝐾 𝑓


, (8.12)

𝐶𝐶𝐶 =


0 0 −𝐶𝐶𝐶 (1)

𝑠 𝑓

0 0 𝐶𝐶𝐶 (2)
𝑠 𝑓

−𝐶𝐶𝐶 (1)
𝑓 𝑠 𝐶𝐶𝐶

(2)
𝑓 𝑠 𝐶𝐶𝐶 𝑓


, 𝐴𝐴𝐴 =


0 0 −𝐴𝐴𝐴(1)

𝑠 𝑓

0 0 𝐴𝐴𝐴(2)
𝑠 𝑓

−𝐴𝐴𝐴(1)
𝑓 𝑠 𝐴𝐴𝐴

(2)
𝑓 𝑠 𝐴𝐴𝐴 𝑓


.

where �̃�𝑑𝑑 (1) and �̃�𝑑𝑑 (2) are the generalized vectors of displacements of the inner and
outer shells.

The numerical implementation of the finite element algorithm has been carried
out in MATLAB software using the capabilities of the ANSYS package to create a
mesh. The stability estimation is based on the analysis of complex eigenvalues of
problem (8.11), which were obtained under the condition of gradually increasing
fluid velocity. In our simulations we consider the shells with different kinematic
boundary conditions at the edges and denote them as: F – free edge, S – simple
support (𝑣 = 𝑤 = 0) and C – rigid clamping (𝑢 = 𝑣 = 𝑤 = 0, 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0).

8.3 Single Cylindrical Shells

The developed finite-element algorithm was applied to investigate the influence of
the fluid level, the ratio of ellipse semi-axes and the linear dimensions on the natural
frequencies and mode shapes of vibrations, and the boundary of the hydroelastic
stability of circular and elliptical cylindrical shells interacting with quiescent and
flowing fluid (Fig. 8.1). The analysis of the obtained results was carried out using
the dimensionless quantities, such as the fluid level 𝜂, the ellipticity parameter 𝛽, the
eigenvalue Λ, the natural frequency of vibrations Ω and the flow velocity Y:

𝜂 =
𝑉 𝑓

𝑉𝑖
, 𝛽 =

𝑅𝑧

𝑅𝑦
, Λ = 𝜆𝑅𝑦𝜓, Ω = 𝜔𝑅𝑦𝜓, Y =𝑈𝜓, 𝜓 =

√︄
𝜌𝑠

(
1− 𝜈2)
𝐸

, (8.13)

where 𝑉𝑖 is the volume of the shell interior, 𝑅𝑧 and 𝑅𝑦 are the ellipse semi-axes
(Fig. 8.1). The parameters used in computations are listed in the Table 8.1.
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Table 8.1: Computation parameters.

Case 𝐸, GPa 𝜈 𝜌𝑠 , kg/m3 𝑐, m/s 𝜌 𝑓 , kg/m3 𝑅𝑦 , mm ℎ, mm 𝐿/𝑅𝑦

I 205 0.3 7800 1500 1000.0 77.25 1.5 2.99
II 206 0.3 7850 1500 1004.8 200 2.0 5.00

8.3.1 Circular Cylindrical Shells

It is known that the empty and fluid-filled vertical circular (𝛽 = 1) cylindrical shells
are characterized by the multiple frequencies of the spectrum. They correspond to the
symmetric and antisymmetric mode shapes with the same number of circumferential
( 𝑗) and meridional (𝑚) half-waves, which differ only by rotation in the circumfer-
ential direction. When horizontal shells are partially filled, mode shapes with one
combination of the wave numbers (𝑚, 𝑗) correspond to unequal natural frequencies
(Fig. 8.2a, b). This difference varies and depends on the fluid level 𝜂 of the structure
(Fig. 8.3). The interesting thing about the lowest vibration modes is that, at any values
of the parameter 𝜂, the displacements are always at a maximum in the fluid-structure
interface (Fig. 8.2). A similar conclusion was made earlier in [10].

The change of the six lowest natural vibration frequencies of a horizontal circular
cylindrical shells (Case I, 𝛽 = 1) in response to the filling level 𝜂 is shown in Fig. 8.3
for different variants of boundary conditions. It is seen that even a small amount of a
fluid inside the structure causes a notable decrease in the vibration frequency, which
most significantly affects the shell rigidly clamped at both edges (Fig. 8.3b).

Figure 8.4 illustrates the comparison of the natural vibration frequencies of the
shells of different orientations depending on the amount of a fluid inside these struc-
tures (Case I, 𝛽 = 1). In the case of horizontally located shells, we confine ourselves
to considering the odd modes Ω1, Ω3, Ω5, since the frequencies of even modes Ω2,
Ω4, Ω6 differ only slightly from them (Fig. 8.3). For the vertical configurations,
the symmetric and antisymmetric mode shapes have multiple frequencies, and thus

a b c d

� = 0.5 � = 0.5 � = 0.094 � = 0.906

Fig. 8.2: Schematic view of mode shapes of a horizontal cylindrical shell (SS): a – 𝜔1 = 282 Hz,
b – 𝜔2 = 287 Hz, c – 𝜔2 = 399 Hz, d – 𝜔1 = 265 Hz.
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Fig. 8.3: Six lowest natural vibration frequencies of a horizontal cylindrical shell at different fluid
level: a – CF, b – CC.

Ω1 = Ω2, Ω3 = Ω4 and Ω5 = Ω6. Analysis of the obtained dependencies showed that
not only the added mass of a fluid but also the hydroelastic interaction on the wetted
surface cause significant changes in the spectrum. This is reflected in the fact that,
at the same amounts of the fluid, the natural vibration frequencies of the partially
filled vertically and horizontally oriented shells fail to coincide in most cases. As
seen in Fig. 8.4a, the frequencies of the horizontal structure clamped at one edge are
lower compared to the vertical one. An exception is almost completely filled shells,
for which the difference at 𝜂 > 0.9 can be termed insignificant. A more complex
dependence is observed under boundary conditions referring to rigid clamping at
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lines) and vertical (solid lines) cylindrical shell at different fluid level: a – CF, b – CC.
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both edges (Fig. 8.4b). In this case, situations may arise where the natural vibration
frequencies of the systems with different orientations coincide. As an example, we
consider the modes Ω1 and Ω3 at 𝜂 ≈ 0.72 and 𝜂 ≈ 0.35 (the points of intersection of
the dashed and solid lines), respectively.

The next example illustrates the problem of hydroelastic stability of a simply
supported cylindrical shell (SS) interacting with an internal fluid flow (Case II, 𝛽 = 1).
The analytical solution of this problem at complete filling (𝜂 = 1) was derived in
work [26]. It was found that, under such conditions for fixing the structure, the loss of
stability occurs through divergence. With an increase in the flow velocity, the lowest
natural frequency of the system decreases until it becomes equal to zero at Y = Y𝐷 .
At this moment, there appears a pair of imaginary parts of this mode, one of which
is negative. Considering the results presented in Fig. 8.5, it follows that an increase
in the length of the shell 𝐿 leads to a noticeable decrease in the critical velocity of
divergence Y𝐷 . This dependence exhibits a non-monotonic character that can be
attributed to the change in the vibration mode, according to which the loss of stability
is implemented. As a result, the curve has a break, after which, instead of the local
region of increase, the region of decrease appears. Fig. 8.5 shows that a decrease
in the fluid level 𝜂 leads to an increase in the critical velocities of instability. The
calculation results demonstrate that the type of stability loss remains the same in this
case. Dotted line in Fig. 8.5 corresponds to the results obtained in the framework
of the two-dimensional formulation using the semi-analytical finite element method.
The presented data illustrate the identity of the found critical velocities for different
linear dimensions.

8.3.2 Elliptical Cylindrical Shells

In the numerical examples given in this section, horizontally located elliptical cylin-
drical shells (Case I) are considered. The study of the results revealed several

Fig. 8.5: Dimensionless crit-
ical velocities of divergence
Y𝐷 for circular cylindrical
shells as a function of the ratio
𝐿/𝑅.
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distinguishing features in the behavior of the lowest natural frequencies of vibrations
of these structures [3]. Analysis of the effect of the ellipticity parameter 𝛽 was per-
formed assuming that the size of the vertical semi-axis 𝑅𝑦 is kept constant, unless
otherwise specified. In this case a change in the value of 𝛽 is associated with a
monotonic change in the cross-sectional area of the shell and the fluid level in it at a
fixed value of 𝜂.

Figure 8.6a shows that the presence of even a small amount of a fluid inside the
horizontal circular and elliptical cylindrical shells promotes a significant decrease
in their lowest natural frequency of vibrations. Moreover, at 𝛽 < 1 it monotonically
decreases over the entire range of the values of the parameter 𝜂 and at 𝛽 > 1 becomes
an asymptotic dependence. It is seen that when a certain fluid level is reached, the
frequency ceases to change from its further increase (Fig. 8.6a). The threshold value
𝜂, at which the asymptotic behavior occurs, is determined by the ellipticity parameter.
This feature is clearly visible in Fig. 8.6b, where several curves begin to merge with
each other at 𝛽 > 1.2.

It should be noted that the dependence of the lowest natural frequency on the
ellipticity parameter 𝛽 exhibits the non-monotonic behavior (Fig. 8.6b) and reaches
its maximum at 𝛽 < 1. This feature is caused by a change in the vibration mode and
is illustrated in more detail in Fig. 8.7 for the shells completely filled with a fluid. At
𝛽 = 1, the frequencies corresponded to the symmetric and antisymmetric mode shapes
with one combination of wave numbers (𝑚, 𝑗) coincide. However, at 𝛽 ≠ 1, there
may be more than two modes with the same number of half-waves in the longitudinal
and circumferential directions. In this case, only the lowest frequency mode is taken
into account. As can be seen from Fig. 8.7a, the lowest natural vibration frequency is
determined by the frequencies which correspond to three mode shapes with different
numbers of circumferential half-waves ( 𝑗 = 2,3,4). The deviation of the cross section
of the shell from the circular profile due to a change in the ellipticity parameter leads
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Fig. 8.6: The lowest natural vibration frequencies of an elliptical cylindrical shell (CC) at different
fluid level (a) and ratio of ellipse semi-axes (b).
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Fig. 8.7: Natural vibration frequencies of an elliptical cylindrical shells completely filled with a
fluid (𝑚 = 1): a – CC, b – CF.

to a non-uniform rigidity of the structure along the circumferential coordinate. In
turn, this contributes to the appearance of various vibration mode shapes. The jumps
in frequency were driven by the degeneration of one of the vibration modes and
its transformation to a new one. For example, at 𝛽 ≈ 1.13, mode (1,3) converts
into (1,5). With a further increase in the parameter 𝛽, mode (1,3) is not realized
on the considered frequency spectrum, but it appears again, starting from 𝛽 ≈ 1.24.
The features mentioned above continue to exist at another variant of the kinematic
boundary conditions. The dependence of the lowest natural vibration frequency of
the shell fixed at one edge on the ellipticity parameter is also nonmonotonic and has
a pronounced extremum (at 𝛽 = 0.82). As one can see in Fig. 8.7b, the number of
circumferential half-waves changes at this point from 𝑗 = 2 to 𝑗 = 3.

It is also important to point out one more feature previously determined for the
horizontal circular cylindrical shells and which is preserved for elliptical one. The
maximum height of the half-waves in the circumferential direction of the lowest
vibration mode is observed on the fluid-structure interface. For the vibration modes
corresponding to the highest frequencies of the spectrum, this pattern does not always
manifest itself.

The dependencies of the critical velocities of instability of the completely filled
simply supported cylindrical shells with circular and elliptical cross-sections on the
ratio 𝐿/𝑅𝑦 are shown in Fig. 8.8a. In both cases, the divergence boundary significantly
depends on the linear dimensions of the structure. With an increase in the length of
the shell 𝐿, the critical velocities Y𝐷 decrease. The kinks of the curves are due to a
change in the mode according to which the loss of stability occurs. For example, for
the shell with 𝛽 = 1.5 the number of circumferential half-waves 𝑗 changes from 𝑗 = 4
to 𝑗 = 3 at 𝐿/𝑅𝑦 > 5.

In the next series of examples, the hydroelastic stability of the partially filled
shells clamped at both edges is considered at different ratios of the ellipse semi-axes.
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Analysis of the results presented in Fig. 8.8b indicates that a decrease in the fluid level
𝜂 leads to an increase in the critical flow velocities Y𝐷 . However, there are such values
of 𝜂 and 𝛽, starting from which the value of Y𝐷 changes insignificantly (at 𝛽 > 1.25,
the curves almost coincide). In the case of a quiescent fluid, the dependence of the
lowest natural vibration frequency of such structures on the ellipticity parameter 𝛽
has an extremum, which is observed at 𝛽 < 1 and shifts depending on the fluid level
(Fig. 8.6b). Figure 8.8b shows that this feature is also characteristic of the critical flow
velocities. In both cases, everything is explained by the fact that the cross-sectional
area of the cylindrical shell is not a constant value at a change in 𝛽 (since 𝑅𝑦 = const).
Further, we will consider the situation where the ellipticity parameter changes and
the cross-sectional area of the shell remains equal to a similar circular configuration.
The results obtained are shown as line with circles in Fig. 8.8b. In this example,
there is no difference between the critical velocities at 𝛽 > 1 and 𝛽 < 1, and the given
dependence has a maximum at 𝛽 = 1.

8.4 System of two Circular Cylindrical Shells

In this section we consider examples, which are concerned with two horizontally
oriented circular cylindrical shells (Fig. 8.9), and use the following parameters:
isotropic shells

𝐿 (1) = 𝐿 (2) = 𝐿 = 1 m, 𝑅 (2) = 0.1 m, ℎ (1) = ℎ (2) = ℎ = 5×10−4 m,
𝐸 (1) = 𝐸 (2) = 𝐸 = 200 GPa, 𝜈 (1) = 𝜈 (2) = 𝜈 = 0.3, 𝜌 (1)𝑠 = 𝜌 (2)𝑠 = 𝜌𝑠 = 7800 kg/m3,

ideal fluid
𝜌 𝑓 = 1000 kg/m3, 𝑐 = 1500 m/s.
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Fig. 8.9 Section of eccentric
cylindrical shells with the
annular gap partially filled
with a flowing fluid.
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The computations were done for different values of the dimensionless annular gap
between them, which is defined as 𝑘 =

(
𝑅 (2) −𝑅 (1) ) /𝑅 (1) . In the analysis of the

influence of the fluid level 𝐻, consideration is given only to such values of 𝐻 at which
both shells remain wetted. This yields to the following condition:(

𝑅 (2) −𝑅 (1)
)
≤ 𝐻 ≤ 2𝑅 (2) . (8.14)

Hereinafter, superscripts “(1)” and “(2)” denote the inner and outer shells, respectively.
The obtained results are represented in terms of dimensionless quantities. Some of
them are given in expressions (8.13) and new ones are defined below:

𝜂 =
𝐻

2𝑅 (2) , Λ = 𝜆𝑅 (1)𝜓, Ω = 𝜔𝑅 (1)𝜓, 𝜉 =
𝑎(

𝑅 (2) −𝑅 (1) ) , (8.15)

where 𝜂 is the fluid level, 𝜉 is the eccentricity (Fig. 8.9), 𝑎 is the distance between
the rotation axes of the shell.

8.4.1 Coaxial Shells

As has been shown previously, the violation of circumferential symmetry of the
horizontally oriented shells partially filled with a fluid causes the frequency spectrum
to split. For this reason, the frequencies for the mode shapes with the same combination
of wave numbers are different, which is shown in Fig. 8.10a for 𝑘 = 1/10. In the
calculations, it was assumed that the inner elastic shell is clamped at both edges
(CC), and the outer shell is absolutely rigid. The natural frequencies of vibrations of
such configuration, corresponding to symmetric and antisymmetric modes, coincide
when the annular gap is completely filled (𝜂 = 1). When the fluid level decreases
in this gap (𝜂 < 1), they begin to differ from each other, and their further change
goes along different branches. Another limiting case corresponds to the configuration
with (𝜂 = 0). Under such conditions, the frequency spectrum will be closest to the
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vibrations of shells with air in the annular gap, and different branches will coincide.
By virtue of Eq. (8.14), this situation cannot arise at all frequencies. On the other
hand, the dependencies presented in Fig. 8.10a for the same combination of wave
numbers ( 𝑗 ,𝑚) clearly demonstrate that in some cases the coincidence between
symmetric and antisymmetric components also takes place at the values (𝜂 > 0).

Figure 8.10b shows the variation of the natural frequencies with the same set
of wave numbers ( 𝑗 ,𝑚) depend on the flow velocity Y. It follows from the graphs
that, when the annular gap is only partially filled with fluid, there is no qualitative
difference in the behavior of the presented curves. In particular, the imaginary parts
of these two modes do not merge together due to their proximity, and the instability
mode remains unchanged.

Figure 8.11 presents the dependencies of the lowest natural frequencies Ω1 and the
critical flow velocities Y𝐷 on the dimensionless fluid level 𝜂 in the annular channel
at different values of 𝑘 . This example illustrates the case when two elastic coaxial
shells are rigidly clamped at their edges. The above graphs show that a decrease
in the fluid level leads to an increase in both frequencies and critical velocities.
This behavior occurs due to a decrease in the total area of wetted surfaces and is
associated with diminishing the role of the added mass of a fluid. The wavy character
of the curves in Fig. 8.11a is associated with the alternation of the minimum values
corresponding to the vibration modes with the same combination of wave numbers.
A rapid change in the quantities under study is observed at a low fluid level 𝜂 for the
gap 𝑘 = 1/100. Similar results were obtained for the partial filling of single shells
[3, 5]. This phenomenon occurs only at small values of 𝑘 due to the need for the
existence of a wetted surface of the inner shell, that may be absent when the amount
of a fluid in a relatively wide annular channel is small (see condition (8.14)). As in
the case of complete filling (𝜂 = 1), an increase in the annular gap (Fig. 8.11b) and in
the rigidity of the outer shell causes the critical velocities to increase as well . Thus,
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the narrower is the annular channel (i.e., the smaller is 𝑘), the greater is the range
within which the fluid level has little effect on the characteristics under consideration.

8.4.2 Eccentric shells

During operation or due to the imperfect shell manufacturing process, the alignment
of coaxial shells can be broken. In [8] the influence of the eccentricity 𝜉 and the
angle 𝜃, characterizing, respectively, the value and direction of axial deviation of
the inner shell is described in detail. It was shown that, when the annular gap is
completely filled with fluid and the body forces are absent, the angle 𝜃 does not affect
the stability boundary, while the eccentricity (𝜉 increases in absolute value) reduces
critical velocity.

In the case of partial filling, the picture becomes much more complicated. When
the inner shell is displaced along the free surface, the added mass of the liquid is
redistributed. This reduces the critical velocity, regardless of the direction of axial
deviation (𝜃 = 0◦ or 𝜃 = 180◦) and the fluid level 𝜂. The angle 𝜃 = 90◦ and the positive
values of eccentricity 𝜉 (𝜉 > 0) characterize the rise of the inner shell out of the
fluid. In response to the changes in the wetted surface area and to the hydrodynamic
pressure redistribution, the critical flow velocities increase or decrease, respectively.
The size of the annular gap 𝑘 has no qualitative effect on the dependence of the
critical velocities Y𝐷 on the inner shell eccentricity. A decrease in the value of 𝑘
leads to a decrease in the stability boundary. This has been established previously for
the coaxial cylindrical shells in case of full or partial filling of the annular channel
[2, 6].
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The results demonstrate that, as the filling level 𝜂 increases, the influence of
the angle 𝜃 on the stability boundary decreases until it ceases to have any effect
in case of complete filling. The minimum critical velocity Y𝐷 is always obtained
at the same eccentricity (𝜉 ≈ −1) regardless of the values of 𝜃 and 𝜂. As for the
maximum value of Y𝐷 , it can be achieved at different values of eccentricity on the
half-interval 𝜉 ∈ [0; 1) through the selection of 𝜃 and 𝜂. As noted earlier, this is
explained by changes in the inner shell wetted surface and in the fluid added mass.
These statements are true when the values of the angle 𝜃 are positive, and the negative
values of 𝜉 match positive values, though in the direction of the negative angles 𝜃.
Furthermore, the data presented in Fig. 8.12 can be arguments for the existence of
such configurations in which, subject to proper selection of all parameters, the higher
hydroelastic stability threshold than obtained at the coaxial shells can be provided.

The dependencies of the critical velocity Y𝐷 on the angle 𝜃 and the eccentricity
of the inner shell 𝜉 are presented in Fig. 8.12b. When the angle 𝜃 decreases, there
is such a range of its values where the Y𝐷 remains unchanged. The calculations
showed in [8] that, as the fluid level increases, the size of this interval increases as
well until the angle 𝜃 ceases to affect the stability boundary in the case of full filling
(the straight line is parallel to the abscissa axis). At the same time, with an increase
in the eccentricity 𝜉 the critical velocity Y𝐷 changes over a wide range (Fig. 8.12b),
thus providing more opportunities to control dynamic behavior of such structures.

Figures 8.13 and 8.14 gives the mode shapes of the shells for 𝑘 = 1/10 at different
variants of annular gap filling, assuming that the value and direction of axial deviation
of the inner shell are also different. For each configuration, the flow velocity was
set close to the critical value Y𝐷 . In the figures, the dotted lines denote the non-
deformed shells, and the solid lines correspond to the deformed one; the fluid level
is given in grey. In the spatial mode shapes, the displacements are scaled for clarity
in presentation of the data on the relative maximum value of the given configuration.
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Fig. 8.13: Mode shapes of
eccentric shells interacting
with the fluid (the cross
section at 𝑥 = 𝐿/2, the inner
and outer shells) for 𝑘 = 1/10
at Y ≈ Y𝐷 : a – 𝜂 = 1, 𝜉 = 0;
b – 𝜂 = 1, 𝜉 = 0.95, 𝜃 = 90◦;
c – 𝜂 = 0.5, 𝜉 = 0.
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Red and blue on the color scale indicates the displacement in the direction of the
outer normal to the shell surface and in the opposite them.

For the completely filled coaxial shells (𝜂 = 1, 𝜉 = 0), the circumferential half-
waves have the same height, the size of which is different for the inner and outer
shells. In the presence of eccentricity (𝜂 ≠ 0), their height within the same shell
becomes different. The maximum displacements occur in the surface areas, which
correspond to the minimum distance between the shells. With a decrease in the
fluid level (𝜂 < 1), there appear half-waves of different heights, while the maximum
displacements develop on those parts of the surfaces which interact with the fluid.
For the partially filled eccentric structures, the largest half-wave size is observed on
the wetted surfaces. Based on the data, we can come to a conclusion that the fluid
level of the annular gap has a greater effect on the displacement of the shells subject
to vibrations than the eccentricity.
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Fig. 8.14: Mode shapes of
eccentric shells interacting
with the fluid (the cross
section at 𝑥 = 𝐿/2, the inner
and outer shells) for 𝑘 = 1/10
at Y ≈ Y𝐷 : a – 𝜂 = 0.50,
𝜉 = 0.95, 𝜃 = 0◦; b – 𝜂 = 0.50,
𝜉 = 0.95, 𝜃 = 90◦; c – 𝜂 = 0.5,
𝜉 = 0, 𝜃 = −90◦.
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8.5 Conclusion

Natural vibrations and stability of cylindrical shells interacting with quiescent and
flowing fluid has been investigated in a three-dimensional formulation based on the
proposed mathematical model and developed finite element algorithm. In the first
group of numerical examples single circular and elliptical cylindrical shells with
different boundary conditions, linear dimensions and filling level were analyzed. In
another part of the calculations, we studied a system of two coaxial and eccentric
circular cylindrical shells. The influence of the fluid level, the annular gap size, the
value and direction of axial deviation of the inner shell on the natural vibration
frequencies and hydroelastic stability boundary were investigated. The obtained
results can be summarized as follows:

• horizontal cylindrical shells partially filled with fluid can have more than two
mode shapes with the same number of half-waves in the circumferential and
the meridional directions, which correspond to different natural frequencies of
vibrations;

• small amount of the fluid in horizontal circular, elliptical and coaxial cylindrical
shells lead to an essential decrease in the lowest vibration frequency;



8 Three-Dimensional Numerical Analysis of Natural Vibrations . . . 131

• the lowest natural vibration frequency of horizontal elliptical cylindrical shells
has a local extremum, which depends on the fluid level and the ratio of ellipse
semi-axes;

• a decrease in the fluid level leads to a growth of the critical flow velocities;
• an increase in the structure length decreases the critical flow velocities;
• for coaxial cylindrical shells with narrow annular gap there is a wide range of the

fluid level in which it has little effect on the lowest natural frequency of vibrations
and critical velocity of instability;

• hydroelastic stability threshold of the eccentric circular cylindrical shells can be
improved by selecting appropriate value and direction of axial deviation of the
inner shell.
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