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Preface

Fig. 1: Alexander Konstantinovich Belyaev.

This book is dedicated to our colleague,
and for many of us a friend and a com-
rade Alexander Belyaev. He turns 70 on
August 13, 2023. In this regard, we can
state that he has done a lot already. He
is a universal scientist in the field of me-
chanics, who is able to describe opera-
tion of any mechanism and structure in
the form of a mathematical model. That
is, almost a relationship describing a cer-
tain approximation of the nature. He is
one of the founders of mechatronics, the
author of the theory of high-frequency
vibrations of structures, of models of hy-
drogen brittleness and one of the creators
of the method of acoustic damage. This
book reflects not only our achievements
related to the research fields of our jubilee,
but also the unique breadth of the spec-
trum of interests and studies conducted
by Alexander Belyaev and his scientific
results.

The great Leonhard Euler was known for his active help to colleagues and inventors.
For example, he helped Ivan Kulibin in testing a scale model of the first arched
wooden bridge 200 m long. Alexander Belyaev, as a real scientists, also helped
actively other scientists and engineers solving difficult problems in solid mechanics
and mechatronics. He himself is both a Doctor of physical and mathematical sciences
and a certified engineer.

He is an active participant in many scientific and engineering projects. He ob-
tained various honours and awards, such as the Thomas A. Jaeger Prize (an award
which promotes young scientists working in the field of nuclear engineering) of the
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International Association for Structural Mechanics in Reactor Technology in 1993,
the Michail A. Lavrentiev Award in Mathematics and Mechanics of the RAS in
2016 and the Pafnuty L. Chebyshev Award in Mathematics and Mechanics of St.
Petersburg in 2018.

Alexander Belyaev is an author/co-author of many scientific publications highly
reflected by the community. As the editor of the journal Acta Mechanica and the
editor-in-chief of the journal Vestnik of Saint Petersburg University. Mathematics.
Mechanics. Astronomy, he contributed to the appearance of truly new and original
articles in these journals. Alexander Belyaev translated several fundamental books
of Soviet and Russian mechanicist of the 20th century for the Springer publishing
house.

Alexander Belyaev is a real connecting link of European mechanics, he worked
at Austrian, German, and Russian universities. He was awarded a Doctor Honoris
Causa in 2012 at the Johannes Kepler University of Linz. In 2016, he was awarded
as a Foreign Member of the Austrian Academy of Sciences and in 2019, he was
awarded as a Member of the Russian Academy of Sciences. He has initiated a large
number of scientific contacts all over the world, and he served as Chairman and Co-
Chairman of various international conferences and symposia. Currently, he works as
a Member of Advisory Board of European Mechanics Society (EUROMECH), as a
Member of the Symposia Panel of International Union for Theoretical and Applied
Mechanics (IUTAM) and as a Member of Presidium of Russian National Committee
for Theoretical and Applied Mechanics.

Alexander Belyaev continues all his activities, teaches at three universities (Jo-
hannes Kepler University of Linz, St. Petersburg University and Peter the Great St.
Petersburg Polytechnic University) simultaneously, directs graduate students, edits
journals, organizes conferences, he is the co-head of a megagrant. We wish him
further creative success.

Magdeburg, Holm Altenbach,
Linz, Hans Irschik
St. Petersburg, Vladimir Polyanskiy
Juli 2023 Alexey Porubov
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Chapter 1
A Semi-Empirical Fluid Force Model
for Vortex-Induced Vibration
of an Elastic Structure

Andrei K. Abramian and Sergey A. Vakulenko

Abstract A new semi-empirical model is presented for the vortex-induced vibration
of structures. The lift force on a structure is assumed to consist of two components.
The first component is a non-linear force that has a polynomial dependence on the
velocity of the structure. The second component is a harmonic force with the Strouhal
frequency. Only the crossflow motion of the structure is considered. The maximum
response amplitude of the structure is estimated as well as the phase difference
between the structural displacement and the periodic component of the lift force. The
model predictions are compared with experimental results available in literature to
show good qualitative agreement.

1.1 Introduction

Many flexible engineering structures, such as marine cables towing instruments,
flexible risers used in petroleum production and mooring lines are prone to Vortex
Induced Vibration (VIV), see [1–6]. The VIV can have considerable amplitude and
significantly accelerate fatigue of the structures. This makes VIV one of the most
undesirable phenomena in offshore engineering. If the structure (or its segments)
vibrates at nearly the forcing frequency, the structure and the wake will be in the
state of “synchronization” or lock-in as termed in the classical work of [7]. This
state occurs in a narrow band of cylinder oscillation frequencies which includes the
Strouhal frequency. About three decades ago, several investigators began employing
nonlinear oscillator equations of the van der Pol type to represent the fluctuating lift
force acting on the cylinder [8–10]. The modeling was continued in [11, 12]. The
representation for the lift force in this papers was based on the similarity between
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the vortex-shedding process and the behavior of nonlinear oscillators rather than
on the underlying fluid dynamics. In [12] under the assumption of a sinusoidal lift
and drag force at a single frequency for a stationary cylinder in a cross flow, higher
harmonics that represent non-linearity in the fluid-structure interaction process were
presented. The force model in [12] was developed based on an iterative process and
the modal analysis approach. For other types of the modeling of VIV process see
a review in [13]. In [14] authors explores the accuracy of the semi-empirical wake
oscillator models for VIV based on the optimization of (a) the damping term and (b)
empirical coefficients in the fluid equation. Nevertheless, some fundamental features
of VIV of an elastic cylinder are still not fully understood. For example, what is the
maximum possible amplitude attainable for a cylinder undergoing VIV, for conditions
of extremely small mass and damping? What modes of structural response exist, and
how does the system jump between the different modes? The objective of this paper
is to answer the above questions using an analytical approach and simple numerical
computations with the help of a new semi-empirical model of the lift force. In this
model, the lift force on the structure resulting from the shedding process consists
of two components. The first component is a force that depends non-linearly on the
velocity of the structure across the flow. The second component is a harmonic force
with the vortex-shedding frequency. Only the cross-flow vibration of the structure is
considered.

1.2 A Fluid Force Model

1.2.1 Formulation of the Problem

Consider a flexible, circular cylindrical structure subjected to a uniform cross-flow of
velocity𝑉0 and mass density𝜌. For long structures where tension dominates bending,
the PDE governing geometrically linear transversal vibrations can be written in the
form:

𝜕𝑡 (𝑀𝜕𝑡𝑢𝑦) + 𝜍𝜕𝑡𝑢𝑦 = 𝑇0𝜕𝑥𝑥𝑢𝑦 +𝐹, (1.1)

where 𝑀 = 𝑚𝑐 +𝑚add is the mass per unit length of the structure including the added
fluid mass, 𝑚add is the added mass per unit length, 𝑚𝑐 is the mass of the structure
per unit length, 𝑢𝑦 is the transversal displacement, 𝜍 is the structural damping, 𝑇0
is the tension in the structure (assumed to be constant), 𝐹 is the fluid force, 𝜕𝑡 is a
partial derivative with respect to time, 𝜕𝑥 is a partial derivative with respect to the
coordinate. It is proposed to represent the fluid force as follows:

𝐹 =
1
2
𝑐𝑛𝜌𝑑𝑉

2
0

[
−𝑏1

𝜕𝑡𝑢𝑦

𝑉0
+ 𝑏3

(
𝜕𝑡𝑢𝑦

𝑉0

)3
− 𝑏5

(
𝜕𝑡𝑢𝑦

𝑉0

)5
+ 𝑓0 sin(𝜔𝑠𝑡 + 𝛽)

]
, (1.2)

where 𝑑 is the diameter of the structure, 𝑐𝑛, 𝑏1, 𝑏3, 𝑏5 are coefficients to be found from
experiments, 𝑓 0 is the amplitude of the periodic part of the force, 𝜔𝑠 is the Strouhal
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angular frequency; 𝛽 is the phase of the periodic force. Equation (1.1) should be
supplemented with the boundary conditions.

In the model, the force 𝐹 acting on the structure in the cross flow direction as a
result of the shedding process consists of two components. The first component is a
force depending non-linearly on the velocity of the structural motion in the crossflow
direction. The force is such, that at small velocities it adds to the hydrodynamic
resistance force and is directed opposite to the velocity, this insures the structural
stability. With the velocity rise the force becomes co-directed with the velocity, which
leads to the growth of the vibration amplitude. But with the further velocity rise
the force becomes again directed opposite to the velocity, which limits the vibration
amplitude. Such a nature of the force dependence on the cable velocity is proved
experimentally for marine cables [15]. With the flow velocity rise the frequency
of the force grows, and when it becomes close to the first natural frequency of
the structural vibration, the intensive eigenmode vibration is exited. The non-linear
force/velocity dependence leads to the limitation of the oscillation amplitude. The
structure gets into a self-oscillation regime with the mode close to the eigenmode.
With further increase of the flow velocity, the force frequency continues to grow, and
when it is approaching to the second natural frequency, the intensive vibration is
exited at the second eigenmode. The self-oscillation regime with the mode close to
the first eigenmode ends and the structure gets into the self-oscillation regime with
the mode close to the second eigenmode. With the further increase of the velocity
the jump to the third natural frequency occurs and, correspondingly, to the third
eigenmode. In Eq. (1.2) the non-linear component of the force differs from the model
of classical forced Rayleigh-type oscillator by the additional term (𝜕𝑡𝑢𝑦/𝑉0)5 and
the signs in front of the linear and the first non-linear terms. The term (𝜕𝑡𝑢𝑦/𝑉0)5

allows describing the stabilization of the structural vibration when the vibrating
structure velocity rises. The second component of the lift force is a harmonic force
with the vortex-shedding frequency. It reflects the following experimental result: at
small values of the oscillation amplitudes the lift coefficient varies according to the
sinusoidal law [15]. Inserting Eq. (1.2) into Eq.(1.1), one obtains:

𝜕𝑡 ((𝑚𝑐 +𝑚add)𝜕𝑡𝑢𝑦) + 𝜍𝜕𝑡𝑢𝑦 = 𝑇0𝜕𝑥𝑥𝑢𝑦

+ 1
2
𝑐𝑛𝜌𝑑𝑉

2
0
[−𝑏1𝜕𝑡𝑢𝑦/𝑉0 + 𝑏3 (𝜕𝑡𝑢𝑦/𝑉0)3 − 𝑏5 (𝜕𝑡𝑢𝑦/𝑉0)5 + 𝑓0 sin(𝜔𝑠𝑡 + 𝛽)

]).
(1.3)

Equation (1.3) allows to take into account the possible variation of the added mass
of the fluid in time according to the variation of reduced velocity

𝑉𝑟 =
𝑉0
𝑑𝜈
,

where 𝜈 is natural frequency of the structure. The dependence of added mass on time
and on the reduced velocity for small mass ratio cylinders was studied experimen-
tally in [15–17]. The obtained results show that there are significant cycle-to cycle
variations in added mass and vibration period as shown in [17]. The added mass
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dependence on time was observed for𝑉𝑟 = 4. Once the lock-in commences, at approx-
imately 𝑉𝑟 = 4, then the natural frequency of the cylinder increases with increasing
reduced velocity, enabling lock-in to persist, in this case up to approximately 𝑉𝑟 = 12,
because the mass ratio

𝜇 =
𝑚𝑐
𝜌𝑑2𝐿

was quite low (𝜇 = 3, 𝐿 is the length of the cylinder). On the basis of results obtained
in [17], in the present paper the behaviour of the system is described in the following
way. The model of the system behaviour in the upper and lower branches of the
lock-in range takes into account the dependence of the added mass on the reduced
velocity and outside that regions will not. It was also shown in [17] that the added
mass is influenced by components of the cylinder displacement at frequencies which
are different from the natural vortex-induced vibration response. This fact is not
taken into account in this paper, but will be shortly discussed in the conclusion.
Analytical research of the elastic structure dynamics described by Eq. (1.3) has not
been performed in the past. Such a research can be carried out by perturbations
methods and averaging techniques. The present paper presents preliminary results of
such a research. Let us first consider the structural behaviour when the added mass is
assumed to be constant. Then, Eq. (1.3) can be reduced to the equation for a single
degree of freedom (SDOF) oscillator. SDOF models use a single ordinary differential
equation to describe the behaviour of the structural oscillator (see for references [13]).
Such a model can be obtained for elastic systems that could be described by the one
dimensional damped wave equation (e.g. wires, cables). The results obtained in [12]
indicate that for a particular pure response mode, the equations describing the system
response reduced to those obtained for a rigid cylinder. Using Galerkin procedure,
and seeking the solution of Eq. (1.4) in the form

𝑢𝑦 =
∞∑︁
𝑖=0

𝑦𝑖 (𝑡)𝑍𝑖 (𝑥),

one can come to the solution of the infinite system of ODES for determining time
dependent coefficients 𝑦𝑖 (𝑡). Neglecting interaction of modes, which is of course, the
strong assumption, and dividing both parts of Eq. (1.3) by [, one has the following
equation for i-th mode:

𝑑2𝑦𝑖
𝑑𝑡2

+[ 𝑑𝑦𝑖
𝑑𝑡

+Ω2
𝑖 𝑦𝑖 = 𝐹 ( ¤𝑦𝑖 , 𝑡), (1.4)

where [ is the damping coefficient, 𝑦𝑖 is the modal coefficient of the transverse
displacement of the elastic system, 𝐹 ( ¤𝑦𝑖 , 𝑡) is the hydroroelastic forcing function, Ω𝑖
is the natural circular frequency of the i-th mode. In Eq. (1.3), the expression for the
added mass is as follows:

𝑚𝑎𝑑 =
𝜒𝜋𝑑2

4
;

𝜒 is the coefficient depending on the structure design.
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1.2.2 Solution of the Structure Motion Equation

Although cables and wires very often are made of synthetic fibers, for example Capron
and Kevlar, some cables are made of stainless steel. Underwater cables also can be
armored or have a metal braiding. Thus, deepwater cables contain armor elements
like a compacted conductor or a metal tube for optical modules/optical fibers. Since
the density of the fluid is smaller then the density of the structure material it is natural
to introduce there ratio as a small parameter Y; then the right hand side of Eq. (1.4)
can be represented as follows:

𝐹 ( ¤𝑦, 𝑡) = Y 𝑓 ( ¤𝑦, 𝑡),

where Y is a small parameter,

𝑓 ( ¤𝑦, 𝑡) = 𝑐𝑛
𝑉2

0 𝑑

2𝛿(1+𝑚𝑐/𝑚add)
[− 𝑏1 ( ¤𝑦/𝑉0) + 𝑏3 ( ¤𝑦/𝑉0)3 − 𝑏5 ( ¤𝑦/𝑉0)5

+ 𝑓0 sin(𝜔𝑠𝑡 + 𝛽)
]
,

Y = 𝜌/𝜌𝑐, 𝜌𝑐 is the density of the cylinder material; 𝛿 is the area of the structure
cross section. Here and in the following we omit the index 𝑖 in the frequency and the
displacement notations.

Since the lift coefficient frequency does not coincide with the natural frequency
of the structure, the approximation of the solution of Eq. (1.4) will be constructed in
the form:

𝑦 = 𝐴(𝜏) sin(𝜔𝑡 +𝜓(𝜏)), (1.5)

where 𝐴 is the displacement amplitude, 𝜓 is the displacement phase,𝜔 is the circular
frequency of the structural vibration. In Eq. (1.5) the amplitude and the phase are
time functions slowly changing. In Eq. (1.5) the slow time 𝜏 = Yt is introduced. Then,
the standard averaging procedure (see for an example [18] is used. To eliminate
the secular terms in the approximation of the solution of Eq.(1.5) it is necessary to
multiply Eq. (1.5) by sin(𝜔𝑡 +𝜓) and cos(𝜔𝑡 +𝜓), and integrate over 𝑡 from 0 to 𝑇 .
One can get, up to the order of 𝑂 (Y2):




−𝜔𝐴𝜓𝜏 = 1
𝑇

𝑇∫
0

𝑔( ¤𝑦, 𝑡) sin(𝜔𝑡 +𝜓)𝑑𝑡,

𝜔𝐴𝜏 =
1
𝑇

𝑇∫
0

𝑔( ¤𝑦, 𝑡) cos(𝜔𝑡 +𝜓)𝑑𝑡,
(1.6)

where 𝑔( ¤𝑦, 𝑡) = 𝑅( ¤𝑦) +𝐹0; 𝑅( ¤𝑦) = −𝑏1 ¤𝑦 + 𝑏3 ¤𝑦3 − 𝑏5 ¤𝑦5; 𝐹0 = 𝑓0 sin(𝜔𝑠𝑡 + 𝛽).
The function 𝑔( ¤𝑦, 𝑡) gives two different contributions in the first equation of

Eqs. (1.6). The first is related to 𝑅( ¤𝑦) and the second to 𝐹0. Calculating the con-
tribution from 𝑅( ¤𝑦) we assume that ¤𝑦 ≈ 𝐴𝜔cos(𝜔𝑡 +𝜓) up to 𝑂 (Y2). Then, the
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contribution of 𝑅( ¤𝑦) is equal to zero. At 𝐴 > 0 the phase 𝜓 is changing so, that either
𝜓→∞ or, if the contribution of 𝐹0 has roots 𝜓0,𝜓1, ...𝜓∞, then 𝜓→ 𝜓∞ (𝜏→∞).
It means that the equilibrium values of 𝜓∞ are the roots of the contribution from 𝐹0.
These roots satisfy the following equation:

1
𝑇 (𝜔𝑠 +𝜔) cos

[ (𝜔𝑠 +𝜔)𝑇
2

+ 𝛽+𝜓)
]
sin

(𝜔𝑠 +𝜔)𝑇
2

+ 1
Δ𝜔𝑇

sin
Δ𝜔𝑇

2
cos

(
Δ𝜔𝑇

2
+ 𝛽−𝜓

)
, (1.7)

where Δ𝜔 = 𝜔𝑠 −𝜔.
Let us consider the pure resonance case, the near resonance and the non-resonance

cases. The near resonance behavior (detuning) is not considered in all details in the
present paper, it is a subject of a future research which can be done with a help of
the more accurate averaging technique presented in [18].

1.2.2.1 Pure Resonance Case

At resonance, substituting 𝑇 = 2𝜋/𝜔 into Eq. (1.7) one obtains:

cos(𝛽−𝜓) = 0. (1.8)

Consequently, 𝛽−𝜓 = 𝜋
2 (2𝑘 +1), 𝑘 = 0,±1,±2, . . . with the accuracy 𝑂 (Y2). There-

fore, the phase of the displacement reads:

𝜓∞ = 𝛽− 𝜋
2
(2𝑘 +1). (1.9)

So, one can conclude that the difference in phases between the force and the displace-
ment is equal to ± 𝜋

2 . In experiments the phase difference close to 𝜋
2 was also found

(see [13]). To satisfy the second equation of Eqs. (1.6) it is necessary to substitute
the found values of 𝜓∞, Eq. (1.9), into the equation for 𝐴𝜏 . The steady-state values
of the cable amplitudes are determined from the roots of

1
𝑇

𝑇∫
0

𝑔( ¤𝑦, 𝑡) cos(𝜔𝑡 +𝜓)𝑑𝑡

where 𝜓 = 𝜓∞. The integration of 𝑅( ¤𝑦) as a part of 𝑔( ¤𝑦, 𝑡) gives the following
expression in dimensionless variables:

𝑅 ( �̄�, �̄�) = −1
2
(2𝜋St)𝑏1 ( �̄��̄�) + 3

8
(2𝜋St)3𝑏3 ( �̄��̄�)3 − 5

16
(2𝜋St)5𝑏5 ( �̄��̄�)5,

𝑅
( �̄�
𝑉𝑟

)
= −1

2
(2𝜋)𝑏1

( �̄�
𝑉𝑟

)
+ 3

8
(2𝜋)3𝑏3

( �̄�
𝑉𝑟

)3
− 5

16
(2𝜋)5𝑏5

( �̄�
𝑉𝑟

)5
,
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where �̄� = 𝐴/𝑑 is the dimensionless amplitude with respect to the diameter of the
cable; �̄� = 𝜔/𝜔𝑠, �̄� = 1 at the resonance; St is the Strouhal number. The remaining
part of the

1
𝑇

𝑇∫
0

𝑔( ¤𝑦, 𝑡) cos(𝜔𝑡 +𝜓)𝑑𝑡

which came from 𝐹0, gives the expression: (−1)𝑘 𝑓0, where 𝑓0 is the dimensionless
amplitude of the periodic part of the lift coefficient. So, finally the equation for finding
the dimensionless amplitude of the structure has the form:

(−1)𝑘 𝑓0 +𝑅( �̄�) = 0. (1.10)

The solution of Eq. (1.10) can be found numerically or graphically. For values of
𝑘 = 1,3,5, . . ., Eq. (1.10) has a form:

𝑓0 = 𝑅( �̄�). (1.11)

The different values of 𝑘 correspond to different values of the phase 𝜓 obtained
from the Eq. (1.8). The solution of the Eq. (1.11) is represented in Fig. 1.1. It is seen
that depending on the value of the force amplitude 𝑓0 it is possible to have one, two
or three values of the resonant displacement amplitudes. It is because the different
values of 𝑓0correspond to different shifts of the 𝑅( �̄�) curve up or down with respect

Fig. 1.1: The solution to Eq. (1.11).
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to the ordinate axis. The possibility to have more then one value of the amplitude
of the structural vibration corresponds to the so called hysteresis. Let us consider
the stability of the found solution for the amplitude. Let 𝐴1, 𝐴2, 𝐴3 be the roots of
Eq. (1.11) shown in Fig. 1.1. If 𝐴 < 𝐴2, then in the first equation of Eqs. (1.6) the
right hand side of equation is positive which can be satisfied if 𝐴𝜏 > 0 which means
that 𝐴→ 𝐴2. If 𝐴 > 𝐴2 then the sign of the right hand side of the first Eq. (1.6) is
negative and from this follows: 𝐴→ 𝐴2. In the same way it is possible to show that
𝐴1, 𝐴3 are unstable. So, the values of the amplitudes of structural vibration belonging
to the positive slope of the 𝑅( �̄�) curve correspond to the stable oscillations of the
cable. If the value of the amplitude of the periodic component of the lift coefficient
is bigger than 𝑅( �̄��̄�): 𝑓0 > 𝑅( �̄��̄�), the oscillations of this mode became impossible.
The same effect appears if the velocity of the flow and the frequency of the shedding
change. Then one can get in the vicinity of resonance the case when

𝑓0
sinΔ𝜔𝑇
Δ𝜔𝑇

→ 𝑓0,

and as a result of that one can get the inequality: 𝑓0 > 𝑅( �̄��̄�), and oscillations vanish.
The energy which is transferred to the oscillating structure from the fluid can not be
accumulated by that one mode only. As a result, the structure will start to oscillate on
the next mode. For this mode another curve 𝑅( �̄��̄�) can be obtained and if the velocity
of the flow continues to grow, the jump to the next mode occurs. For 𝑘 = 0,2,4, . . .,
the equation for determination of the structure amplitude can be analyzed in the same
way as for Eq. (1.11).

1.2.2.2 Near Resonance Case

Let us consider the case when 𝜔 = 𝜔𝑠 + Y𝛼, it is the lock-in region, its lower branch
if 𝛼 > 0. Then the system of Eqs. (1.6) with the accuracy 𝑂 (Y2) becomes:{

2�̄�\𝜏 = 2�̄�𝛼+ 𝑓0 cos\,
−�̄�𝜏 = 𝑅( �̄�) + 𝑓0 sin\,

(1.12)

where \ = 𝛽−𝜓 +𝛼Y𝑡 = 𝛽−𝜓 +𝛼𝜏.
Let us now consider the behavior of the system when 𝜔 is closed to 𝜔𝑠 and

detuning parameter 𝛼 is small. For the steady state we have: \𝜏 = 0, 𝐴𝜏 = 0, and then
the system of Eqs. (1.6) takes the form:{

2�̄�𝛼+ 𝑓0 cos\ = 0,
𝑅( �̄�) + 𝑓0 sin\ = 0.

(1.13)

Therefore, the �̄� and \ are given as:
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𝑅( �̄�) ± 𝑓0
√︄

1−4𝛼2 �̄�
2

𝑓 2
0
= 0,

cos\ = −2𝛼
�̄�

𝑓0
.

Let us determine the types of the critical points which satisfy the steady state
conditions (1.13). In the vicinity of \0 = 𝜋

2 , 𝑅( �̄�0) = ± 𝑓0 one can get the following
decomposition:

\ = \0 +𝛼\1 + ...,
𝐴 = 𝐴0 +𝛼𝐴1 + ...

(1.14)

Substituting (1.14) into (1.13) for the small 𝛼 one can get :



\1 =

2𝜔𝐴0
𝑓0

,

𝐴1 =
− 𝑓0
𝑅′ (𝐴0) ,

where 𝑅′ (𝐴0) is a derivative with respect to 𝐴0. For the following investigation of
the stability let us rewrite Eq. (1.6) in the form:



\𝜏 =

1
2𝜔𝐴

(2𝛼𝜔𝐴+ 𝑓0 cos\) = 𝑔1 (𝐴, \),

𝐴𝜏 = − 1
𝜔
(𝑅(𝐴) + 𝑓0 sin\) = 𝑔2 (𝐴, \).

The types of the critical points depend on the eigenvalues of the Jakobian:

𝐽 =

�������
𝜕𝑔1
𝜕\

𝜕𝑔1
𝜕𝐴

𝜕𝑔2
𝜕\

𝜕𝑔2
𝜕𝐴

�������
After standard manipulations one can get the following eigenvalues of J (when 𝛼 > 0):

𝜆1 =
(−1)𝑘 𝑓0
2𝜔𝐴0

, 𝜆2 = − 1
𝜔
𝑅′ (𝐴0)

If 𝜆1,𝜆2 > 0then we have unstable node; if 𝜆1,𝜆2 < 0, then the node is stable, and if
𝜆1 < 0,𝜆2 > 0 or 𝜆1 > 0,𝜆2 < 0 one has saddle. So, if the eigenvalues of the critical
point of the averaged Eqs. (1.6) all have negative real parts, the corresponding periodic
solution of Eq. (1.4) is asymptotically stable for small Y. If one of the eigenvalues
has a positive real part then the solution of Eq. (1.4) is unstable [18]. If 𝛼 is not small
but 𝑓0is small then the first equation of Eqs. (1.6) can be reduced to the equation:
\𝜏 = 𝛼 and from this follows \ = 𝛼𝜏 and −𝜔𝐴𝜏 = 𝑅(𝐴) + 𝑓0 sin𝛼𝜏, then one has small
oscillations near the equilibrium point.
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1.2.2.3 Non-Resonant Case

Let us consider Eq. (1.7) for the case when Δ𝜔 is not in the near resonance zone.
After some algebraic manipulation, taking into account that 𝜔𝑇 = 2𝜋, one can get
from Eq. (1.7) the following expression for the condition of the steady state solution:

𝜔

𝜋(𝜔2
𝑠 −𝜔2) sin𝜋

𝜔𝑠
𝜔

[
𝜔𝑠 cos(𝜋𝜔𝑠

𝜔
+ 𝛽) cos𝜓 +𝜔 sin(𝜋𝜔𝑠

𝜔
+ 𝛽) sin𝜓

]
= 0. (1.15)

Then, if cos( 𝜔𝑠

𝜔 𝜋 + 𝛽) ≠ 0 , for the phase 𝜓 which make the expression (1.15) equal
to 0 one has:

𝜓 = −arctg
[𝜔𝑠
𝜔
𝑐𝑡𝑔(𝜋𝜔𝑠

𝜔
+ 𝛽)

]
+ 𝜋𝑠 and 𝑠 = 0;±1; .... (1.16)

Note that Eq. (1.16) will be satisfied also if: sin𝜋 𝜔𝑠

𝜔 = 𝑜⇒ 𝜔𝑠 = 𝜔𝑙, 𝑙 = 0,±1, ....
It means that sub-harmonics can lead to the stable periodic solutions of Eq. (1.4).
From Eq. (1.16) one can see that the phase angle can change its value by 𝜋 including
the case when 𝜔𝑠

𝜔 = 1. That can be caused by vortex switching which was observed
experimentally in [13]. Let us consider in addition 4 cases:

(a) cos(𝜔𝑠
𝜔
𝜋 + 𝛽) = 0 and sin𝜓 = 0,

(b) sin(𝜔𝑠
𝜔
𝜋 + 𝛽) = 0 and cos𝜓 = 0,

(c) sin(𝜔𝑠
𝜔
𝜋 + 𝛽) = 0 and cos𝜓 = 0, sin

𝜋𝜔𝑠
𝜔

= 0,

(d) cos(𝜔𝑠
𝜔
𝜋 + 𝛽) = 0 and sin𝜓 = 0, sin

𝜋𝜔𝑠
𝜔

= 0.

For the case (a) one can get:

𝜋
𝜔𝑠
𝜔

+ 𝛽 = 𝜋
2
(2 𝑗 +1), 𝜓 = 𝜋𝑛, 𝛽−𝜓 = 𝜋

(
𝑗 −𝑛− 𝜔𝑠

𝜔
+ 1

2

)
,

𝑛 = ±1;±2; ..., 𝑗 = 0;±1; ...

For the case (b) one has:

𝜋
𝜔𝑠
𝜔

+ 𝛽 = 𝜋 𝑗, 𝜓 =
𝜋

2
(2𝑛+1), 𝛽−𝜓 = 𝜋

(
𝑗 −𝑛− 𝜔𝑠

𝜔
− 1

2

)
,

𝑛, 𝑗 = 0;±1; ...

For the case (c) one has:

𝛽−𝜓 = 𝜋( 𝑗 −𝑛− 𝑙 − 1
2
), 𝑗 , 𝑛, 𝑙 = 0;±1; ..., 𝜔𝑠 = 𝜔𝑙.

For the case (d) one has:
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𝛽−𝜓 = 𝜋
(
𝑗 −𝑛− 𝑙 + 1

2

)
, 𝑗 , 𝑛, 𝑙 = 0;±1; ..., 𝜔𝑠 = 𝜔𝑙.

To find the steady state amplitudes of the displacement it is necessary to substitute
the found values of 𝜓 from Eq. (1.16) in the equation for 𝐴𝜏 . Then, for determination
of the displacement amplitude one can get the equation in the form:

�̄�
[
sin( 𝜋�̄� + 𝛽) cos𝜓− �̄�cos( 𝜋�̄� + 𝛽) sin𝜓

]
𝜋(1− �̄�2) 𝑓0 sin

𝜋

�̄�
+𝑅( �̄��̄�) = 0. (1.17)

Analysis of the possible existence of the displacement amplitude can be carried
out in the same way as above using numerical or graphical methods. For the case
when 𝜔𝑠 = 𝜔𝑙 (sub-resonances) the input of 𝑓0 is zero, and for the amplitudes of
oscillations one can get:

𝑅( �̄��̄�) = 0. (1.18)

For that case the roots of 𝑅( �̄��̄�) = 0 are as follows:

𝑧1,2 =
−�̄�3 ±

√︃
�̄�2

3 −4�̄�5�̄�1

2�̄�5
(1.19)

where
�̄�1 =

1
2
(2𝜋St)𝑏1, �̄�3 =

3
8
(2𝜋St)3𝑏3, �̄� =

5
16

(2𝜋St)5𝑏5.

From Eqs. (1.18) and (1.19) one can conclude that the amplitudes of the structural
oscillations do not depend on the amplitude of the periodic component of the force.
To find the influence of the force on the structural oscillation amplitude in this case it
is necessary to keep the terms of order higher then 𝑂 (Y) in Eq. (1.4). For the cases
a, b, c, d the amplitudes can be found from Eq. (1.17).

1.2.3 Effect of Variation of an Added Mass with the Reduced
Velocity

The mean value of the added mass over one period of oscillations as a function of the
reduced velocity was found in [17]. Using that data it is possible to find the frequency
of vibrations in the lock-in region for its lower branch more accurately. Variation of
the mass as a function of the reduced velocity on the basis of data from [17] can be
approximated by the following expression:

𝑚add = 𝑚0e−𝑎𝑉𝑟 −1, (1.20)

where 𝑚0 = 14.135 and 𝑎 = 0.331. If we substitute Eq. (1.20) into Eq. (1.3) then one
can get that not only the natural frequency of the structure but also the structural
damping is influenced by the variation of the added mass and the coefficients of the
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right hand side of the Eq. (1.4) as well. If we take into account the variation of the
mass according to Eq. (1.20) then all formulas obtained in Subsect. 1.2.2 are still
valid.

1.3 An Example

The results obtained in the presented work are compared in this section with experi-
mental results available in literature [15, 19]. Coefficients 𝑏1, 𝑏3, 𝑏5 in the Eq. (1.3)
can be determined by using the measured accelerations and the structure displacement
amplitudes following the technique given in [15]. Measurements given in [15] have
shown that for calculations of elastic cylinder oscillations or oscillations of some
types of cables the same 𝑏𝑖 coefficients can be used for particular parameters of the
fluid flow and structures. The cylinders (straight and bent) used in that experiments
were from 1 to 5m length and have diameters from 0.1–0.4 m. Maximum bend
cylinder deflection was in the range of 0.23 – 0.66 m, Re = 6000 – 50000; the Strouhal
number corresponded St = Stsin𝛼, (where 𝛼 is the angle of attack), was practically
constant (for bent cylinders) when attack angles were smaller then 50◦, and is equal
to St = 0.19 for Re < Recritical.Those experiments have been performed for flows
with the values of velocities 𝑉0 = 0.1 – 3 m/s. For determination of the lift force
parameters the following method was suggested. The lift force as was mentioned
above consists of two non-correlated components. The first one can be estimated
from the data obtained from the tests with fixed cylinder. The value of the second
component, caused by the changing of the type of vortex shedding, can be found
using the method suggested in [15] on the basis of knowledge of the dispersion of the
cylinder oscillation amplitudes and spectrum, for different Reynolds numbers and for
different ranges of the cylinder length and diameters. For the given range of the flow
and structure parameters the above mentioned 𝑏𝑖 , 𝑓0, 𝑐𝑛 coefficients can be taken as
follows for an elastically mounted cylinder:

𝑏1 = 0.17, 𝑏3 = 1.4, 𝑏5 = 0.7, 𝑓0 = 0.6, 𝑐𝑛 = 1.2, St = 0.19. (1.21)

The coefficient 𝑓0 depends on the type of structure (elastic cylinder, cable, wire)
and its value is varying in the range 0.05 – 0.6. In the presented model the value of
the mass-damping parameter 𝑚𝜉 = 0.013 and 𝜇 = 8.72:

𝑚 = 𝑚𝑐/𝑚𝑑 , 𝑚𝑑 = 𝜋𝜌0𝑑
2𝐿/4, 𝜉 =

𝜍

2
√︁
𝜎(𝑚𝑐 +𝑚add)

,

where 𝜎 is the system stiffness. Those values were taken close to those which
were used in [19]. In the near resonance range when 𝑉𝑟 = 4.5 – 5.5 Eqs. (1.9) and
(1.11) were used for calculations of the structure response. For the lower branch of
the lock-in region, when 𝑉𝑟 = 5.5 – 8.5, the dependence of the added mass on the
reduced velocity was taken into consideration. For the calculation of the amplitude
of structure vibrations in that range Eqs. (1.16), (1.17) and (1.19) were used. The
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Fig. 1.2: Dependence of the amplitude of structure vibrations on 𝑉𝑟 .

result of calculations is shown in Fig. 1.2. As can be seen from Fig. 1.2 the suggested
model in the lower branch of the lock-in region has a satisfactory agreement with
the experimental data from [19]. The resonance value of amplitude is 20% higher
then was found in the experiment. The computer simulation for the 𝑉𝑟 = 2 – 4.5 and
𝑉𝑟 = 8.5 – 10 was conducted according to Eq. (1.4) with the help of the Maple 9.5
and show a good agreement with the experimental data from [19].

1.4 Conclusion and Discussion

The proposed in this paper semi-empirical model of the fluid force allows highlighting
some peculiarities of the VIV of the bluff bodies.The maximum amplitude value of
the structure vibrating in the flow for the parameters range indicated in the section
3 has been estimated and found to be 20% higher then the experimental one. The
amplitude of vibrations in the resonance range depends on the amplitude of the
forcing term. When the amplitude of the forcing term reaches a particular value and
the phase difference between the structure displacement and the periodic component
of the lift force is equal to 𝜋/2 then the stable oscillations became impossible even
if the condition 𝜔

𝜔𝑠
= 1 is fulfilled. It is because the flow energy that the structure

gets at some flow velocity cannot be accumulated on that one mode. As a result
the system jumps between the different modes. The analytical results show that the
sub-harmonical periodic regimes are possible. For estimation of the amplitude values
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in the lower branch of the lock-in region the analytical solution according to Eqs.
(1.16), (1.17), and (1.20) were used, and showed a good agreement with experimental
data. An equation for the determination of the phase difference between the periodic
component of the lift force and the structure displacement has been obtained as well.
There are still however many open problems for future research which should be
solved. Some of them are as follows. The case when the added mass is a varying
with time function should be investigated, for example. The equation of the structural
motion in this case is as follows:

(𝑚 +𝑚add) ¥𝑦 + ¤𝑚add ¤𝑦 + 𝜍 ¤𝑦 + 𝑐𝑦 = 𝐹 ( ¤𝑦, 𝑡). (1.22)

This equation is different from the equation which was used in [20]. In Eq. (1.22) the
additional term ¤𝑚 ¤𝑦is introduced. If the added mass is time-varying then in addition
to the change of the oscillation frequency it can lead to the amplitude growth and
instability of the structure. For the case when the forcing and structural damping
terms vanish the exact solution of Eq. (1.22) can be obtained if the dependence of
the added mass on time is a smooth function. In the following manipulation the
abbreviations:

𝑚 +𝑚add = 𝑚0 (1+ 𝜒(𝑡)), �̄� = 1+ 𝜒(𝑡)
are used. A non-dimensional time scale 𝜏 can be introduced by:

𝜏 =

𝑡∫
0

√︂
𝑐

𝑚0 �̄�(𝑡) 𝑑𝑡.

In that case the solution of Eq. (1.22) can be found in the closed form as follows [21]:

𝑦(𝜏) = 𝑍 (𝜏)𝑈 (𝜏),

where
𝑍 (𝜏) = 1

4
√︁
�̄�(𝜏)

,

and𝑈 (𝜏) satisfied the equation of the form:

𝑈′′ (𝜏) +
[
1− 𝑍 (𝜏) 𝑑

2

𝑑𝜏2

( 1
𝑍 (𝜏)

)]
𝑈 (𝜏) = 0. (1.23)

A closed form solution of Eq. (1.23) exists for various functions �̄�. For example
for an exponential variation of the mass

�̄� = 𝐵e−2𝛼𝜔𝑡

the solution for 𝑦(𝜏) has a form:

𝑦(𝑠) = 1
4√
𝐵
𝑠
[
𝐶1𝐽1 ( 𝑠

𝛿
) +𝐶2𝑌1 (

𝑠

𝛿
)
]
, 𝑠 = 1+

√︂
𝑚0𝐵

𝑐
𝛼𝜔𝜏 = e𝛼𝜔𝑡 , 𝛿 = 𝛼𝜔

√︂
𝑚0𝐵

𝑐
.
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From that it follows that when time increases, the oscillation amplitude grows
exponentially. Then a solution for the non-homogeneous equation can be obtained
with the help of the method of variation of constants.That solution will be also
unbounded. Then the only possible reasons for limitation of the amplitude can be a
nonlinearity of the fluid force or a large structural damping. Using the equation of
the form:

(𝑚 +𝑚add) ¥𝑦 + ¤𝑚add ¤𝑦 + 𝜍 ¤𝑦 +Ω2𝑦 = 𝐹 ( ¤𝑦, 𝑡),
and dividing both parts of it by 𝑚 +𝑚add, one can get the equation which will have
time-varying coefficients. For the case when 𝑚add vary with time according to the
harmonic law or as a piece-wise-constant function the solutions of the linear equations
with variable in time coefficients were obtained in [22, 23]. Also the solution of the
non-linear equation with variable in time coefficients and polynomial non-linearity
with respect to the first derivative of the structure displacement of the power of three
was found as well. The results obtained in [22, 23] show that solutions and regions
of the stability depend on the parameters of the system. In stead of the exponentially
decaying mass in the mentioned above cases the stable oscillations are possible for
the particular parameters of the system under consideration.The suggested in the
present paper model should be improved by introducing the added mass dependence
on time for investigation of the structural behavior in the lock-in region. As a first step
it is possible to assume that the second term in the Eq. (1.21) behave in the following
way:

¤𝑚add ¤𝑦 = 𝑑𝑚

𝑑𝜔
· 𝑑𝜔
𝑑𝑡

¤𝑦 = 𝑚′
𝜔𝜙 ¤𝑦

and
𝜙 =

𝑑𝜔

𝑑𝑡
= const.

So, finally one concludes that the type of the dependence of the added mass on time is
an important issue and it is necessary to find out it experimentally for the wide range
of the values of the reduced velocities. The measurements given in [15, 17] show
that the lift force consists of not one but several harmonics. Usually, only the first
harmonic is taken into consideration. The presence of the higher harmonics leads
to the fact that the structural oscillation frequency at resonance is smaller then the
natural frequency of the structure. When the amplitude of vibrations is considered
the influence of the higher harmonics on the amplitude is marginal but is significant
on the vibration frequency. For simplicity assume that the structure is linear and has a
small structural damping which can be neglected. The average values of the potential
and kinetic energies of the structure over one period at resonance should be equal:

1
𝑇

𝑇∫
0

𝑀 ¤𝑦2𝑑𝑡 =
1
𝑇

𝑇∫
0

𝑐𝑦2𝑑𝑡. (1.24)

Then, one can seek a solution of Eq.(1.23) in the form:
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𝑦 = 𝐴1 sin𝜔𝑡 + 𝐴2 sin(2𝜔𝑡 +𝜑2) + ..., ¤𝑦 = 𝐴1𝜔cos𝜔𝑡 + 𝐴22𝜔cos(2𝜔𝑡 +𝜑2) + ...
(1.25)

Then, substituting Eq. (1.25) into Eq. (1.24), and taking into consideration that
the harmonics are orthogonal, one can get:

𝑀𝜔2
∞∑︁
1
𝑛2𝐴2

𝑛 = 𝑐
∞∑︁
1
𝐴2
𝑛,

where
𝜔2

0 =
𝑐

𝑀
.

So, finally for the frequency 𝜔 of the structural vibration one has:

𝜔2 = 𝜔2
0

[𝐴2
1 + 𝐴2

3 + ....𝐴2
𝑛]

[𝐴2
1 +9𝐴2

3 + ...+𝑛2𝐴2
𝑛]
. (1.26)

From Eq. (1.26) it follows that the vibration frequency at resonance became
decreases as a result of the existence of odd harmonics in the lift force spectrum .When
the amplitudes of vibration increase the frequency decreases, which coincide with
experimental results obtained in [15, 17]. So, the influence of the higher harmonics
should be considered and there interaction as well. It can be done with a help of a more
accurate technique provided by the averaging method and a computer simulation.
The next approximations of the solution of the Eq. (1.4) where the terms of the order
higher than 𝑂 (Y) are taking into account have to be found. The coupling of the
different modes of the structural oscillations in the cross-flow and inflow directions
has to be considered as well. The coefficients 𝑏1, 𝑏3, 𝑏5, 𝑓0 were found from the
experimental data under the assumption that the lift force is uniformly distributed
along the length of the tested cylinder. For such structural elements like cables and
wires it is necessary to find the correction coefficients which will take into account
the non-uniform distribution of the lift force along the length of the structure and
its segments. The applicability of the suggested values of 𝑏1, 𝑏3, 𝑏5, 𝑐𝑛 for different
types of structures has to be verified by a comparison with various experimental data.
And, finally, the solution of the Eq. (1.1) should be found.
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Chapter 2
Nonlinear Buckling and Equilibria of Layered
Shallow Parabolic Arches with Interlayer Slip

Christoph Adam, Ivan Paulmichl, and Thomas Furtmüller

Abstract In this paper, the critical loads for instability and nonlinear equilibrium
paths of shallow parabolic arches composed of three symmetrically arranged layers
are determined. The considered members are soft-hinged and immovably supported
at both ends. The interlayer slips due to the flexible bond of the layers yield a
discontinuous displacement in the cross-section. Thus, the kinematic assumptions
of the Euler-Bernoulli theory can only be applied layer-wise when establishing
the boundary value problem. Based on the differential equations of equilibrium
and an infinite series expansion of the governing kinematic variables, nonlinear
analytical relationships are presented for the critical loads in limit point buckling and
in bifurcation buckling. The results indicate the large influence of the interlayer slip
on the critical loads and the equilibrium paths.

2.1 Introduction

In structures composed of several layers, rigid bond between the layers cannot be
always achieved due to the flexibility of the fasteners. In such structures with flexibly
bonded layers, the layers may be displaced relative to each other at the interface.
This deformation behavior, known as interlayer slip, has long been recognized and,
accordingly, numerous theories have been developed to account for interlayer slip in
the analysis of the static (e.g., [1–5]) and dynamic response (e.g., [6–9]) of layered
beams. Other papers deal with buckling of straight beams with flexibly bonded layers
subjected to an axial compressive force (e.g., [10–12]). However, the stability analysis
of shallow arches with interlayer slip has not been paid attention to until recently.
From numerous studies (e.g., [13–16]) on the stability behavior of homogeneous
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shallow arches, it is known that these members may become unstable under radial
loading in the form of limit point buckling or in the form of bifurcation buckling.
In limit point buckling, the member assumes a remote equilibrium position after
reaching the limit point, referred to as snap-through. If instability occurs in the
form of bifurcation buckling, then an adjacent equilibrium state exists. A symmetric
shallow arch subjected to a symmetrically distributed radial load structure responds
symmetrically during limit point buckling, but antimetric during bifurcation buckling.
Stability analysis of homogeneous shallow arches with parabolic shape can be found
in [17–19].

Only recently, the authors of this paper were the first to address the stability
and instability analysis of layered shallow arches with interlayer slip. In [20], the
equilibrium equations for shallow arches composed of two flexibly bonded layers
were derived, followed by a numerical solution procedure to determine the nonlinear
equilibrium paths for buckling and post-buckling analysis. Another paper [21] is
devoted to the nonlinear stability analysis of three-layer sinusoidal shallow arches
with interlayer slip subjected to a sinusoidal radial load, in which analytical relations
for the critical loads and the equilibrium paths for both limit point buckling and
bifurcation buckling have been derived. The nonlinear buckling and post-buckling
analysis of circular three-layer shallow arches with interlayer slip was performed
in [22].

In order to deepen the knowledge on the stability behavior of layered shallow
arches with interlayer slip, the following study investigates the symmetrically layered
three-layer shallow parabolic arch that is soft-hinged supported and immovably fixed
at both ends. Expressions for the critical loads and the equilibrium paths for both
limit point buckling and bifurcation buckling are derived for this member. The basis
is the differential equilibrium equations and boundary conditions of the three-layer
shallow arch with interlayer slip and arbitrary initial deformation derived in [21].
The solution of this nonlinear boundary value problem for the considered parabolic
arches subjected to radial loading is found with the methods used in [22].

2.2 Basic Equations

The considered shallow arch of length 𝑙 is composed of three symmetrically arranged
layers of rectangular cross-section, which are subsequently indicated from top to
bottom by the subscripts 1,2,3, see Fig. 2.1. Thus, the cross-sectional dimensions of
the two outer layers are the same, i.e. their thickness ℎ3 = ℎ1 and their width 𝑏3 = 𝑏1.
Moreover, these layers are made of the same material, thus the modulus of elasticity
is also the same, 𝐸3 = 𝐸1. The thickness and width of the middle layer are denoted
by ℎ2 and 𝑏2, and its elastic modulus by 𝐸2. Due to the symmetrical configuration,
the curved member axis corresponds to the line connecting the centers of gravity of
the middle layer. The arch is soft-hinged and immovably supported at both ends at
the level of the member axis. The quantities of the arch are referenced to a 𝑥, 𝑦, 𝑧
coordinate system whose origin is in the left support. The 𝑥 coordinate extends along
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Fig. 2.1: Immovably soft-hinged supported three-layer shallow parabolic arch with interlayer slip
(modified from [21]).

the member axis, the 𝑦 coordinate is the out-of-plane coordinate, and the 𝑧 coordinate
is oriented in the radial direction, as depicted in Fig. 2.1. In the unloaded state, the
member axis has the shape of a quadratic parabola,

�̂�(𝑥) = 4�̂�0

𝑙2
𝑥 (𝑙 − 𝑥) (2.1)

Here �̂�0 is crown height of the shallow arch, i.e. �̂�(𝑙/2) = �̂�0, which is small compared
to the member length 𝑙. The curvature 𝑘 of this initial deformation, which enters into
the differential equilibrium equations given below, is thus constant over the entire
length of the member,

𝑘 = −�̂�,𝑥𝑥 = 8�̂�0

𝑙2
(2.2)

Since for the shallow arch with circular initial deformation the curvature 𝑘 is also
constant, the procedure presented in [22] for the circular shallow arch with interlayer
slip can be used for the analysis of the response of the present parabolic shallow arch
with interlayer slip.

The three layers are elastically bonded in the tangential direction. The tangential
stiffness of this elastic connection is captured by the slip modulus 𝐾𝑠. Under radial
load

𝑝(𝑥) = 𝑝0 𝑓 (𝑥) (2.3)

with the load amplitude 𝑝0 and the load distribution function 𝑓 (𝑥), these layers are
therefore displaced relative to each other, which is referred to as interlayer slip. In
the following, Δ𝑢1 (𝑥) denotes the interlayer slip between the top and middle layer
and Δ𝑢2 (𝑥) the interlayer slip between the middle and bottom layer, see Fig. 2.2. In
the radial direction, the interlaminar stiffness is assumed to be infinite in the model.

The cross-sectional dimensions of the layers are small compared to the length 𝑙.
Therefore, the kinematic assumptions of the Euler-Bernoulli theory can be assumed
to be valid layerwise. Under these assumptions, the entire deformation field of the
shallow arch is captured by four kinematic variables, namely, the radial deformation
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Fig. 2.2:: Cross-section at 𝑥 in its initial and its deformed state [21].

𝑤(𝑥), which is the same for each fiber parallel to the member axis, the longitudinal
displacement of the member axis 𝑢∞ (𝑥), and the two interlayer slips Δ𝑢1 (𝑥) and
Δ𝑢2 (𝑥) [21], see Fig. 2.2.

In [21], the differential equations of equilibrium of a shallow arch with interlayer
slip with arbitrary curvature were derived,which read as follows for constant curvature
𝑘 = const [22],

Δ𝑢1,𝑥𝑥 +Δ𝑢2,𝑥𝑥 − 𝐾𝑠
𝐸1𝐴1

(Δ𝑢1 +Δ𝑢2) −2𝑤,𝑥𝑥𝑥𝑟 = 0 , (2.4)

Δ𝑢1,𝑥𝑥 −Δ𝑢2,𝑥𝑥 − 𝐾𝑠𝐸𝐴𝑒
𝐸1𝐴1𝐸2𝐴2

(Δ𝑢1 −Δ𝑢2) = 0 , (2.5)

𝑢∞,𝑥𝑥 +𝑤,𝑥𝑘 +𝑤,𝑥𝑤,𝑥𝑥 − 𝐾𝑠
𝐸2𝐴2

(Δ𝑢1 −Δ𝑢2) = 0 , (2.6)

𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 −𝐸1𝐴1𝑟
(
Δ𝑢1,𝑥𝑥𝑥 +Δ𝑢2,𝑥𝑥𝑥

) −𝑁 (
𝑤,𝑥𝑥 − 𝑘

)
= 𝑝 (2.7)

Here 𝑟 is the distance from the member axis to the center of gravity of the upper and
lower layers, respectively, 𝐴1 = ℎ1𝑏1 is the cross-sectional area of the two outer layers
and 𝐴2 = ℎ2𝑏2 is the cross-sectional area of the middle layer, 𝐸𝐴𝑒 = 2𝐸𝐴1 +𝐸𝐴2 is
the extensional stiffness, 𝐸𝐽∞ = 𝐸𝐽0 +2𝑟2𝐸1𝐴1 is the bending stiffness of the arch
with rigid bond of the layers, and 𝐸𝐽0 = 2𝐸1𝐽1 +𝐸2𝐽2 is the bending stiffness without
bond of the layers. The overall normal force 𝑁 is constant over the length 𝑙 [21],
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𝑁 =
𝐸𝐴𝑒
𝑙

𝑙∫
0

(
𝑤𝑘 + 1

2
𝑤2
,𝑥

)
𝑑𝑥− 𝐸1𝐴1

𝑙

𝑙∫
0

(
Δ𝑢1,𝑥 −Δ𝑢2,𝑥

)
𝑑𝑥 (2.8)

and the overall moment 𝑀 (𝑥) as a function of the kinematic variables is [21]

𝑀 (𝑥) = −𝐸𝐽∞𝑤,𝑥𝑥 +𝐸1𝐴1𝑟
(
Δ𝑢1,𝑥 +Δ𝑢2,𝑥

)
(2.9)

For the considered hinged supports, where the interlayer slips at the boundaries
is not constrained (so-called soft-hinged supports), and which are immovable in all
directions, the boundary conditions as a function of the kinematic variables can be
expressed as follows [21],

Δ𝑢1,𝑥 (𝑥𝑟 ) +Δ𝑢2,𝑥 (𝑥𝑟 ) = 0 , (2.10)

𝑢∞ (𝑥𝑟 ) = 0 , (2.11)

2
(
𝑢∞,𝑥 (𝑥𝑟 ) +𝑤(𝑥𝑟 )𝑘 (𝑥𝑟 ) + 1

2
𝑤2
,𝑥 (𝑥𝑟 )

)
− (

Δ𝑢1,𝑥 (𝑥𝑟 ) −Δ𝑢2,𝑥 (𝑥𝑟 )
)
= 0 , (2.12)

𝑤(𝑥𝑟 ) = 0 , 𝑤,𝑥𝑥 (𝑥𝑟 ) = 0 (2.13)

where 𝑥𝑟 = 0 or 𝑥𝑟 = 𝑙.

2.3 Solution

The solution of the present boundary value problem is based on the expansion of
the deflection 𝑤 into the buckling modes 𝜙𝑖 (𝑥) of the associated straight beam with
interlayer slip [16, 22]

𝑤(𝑥) =
∞∑︁
𝑖=1
𝑞𝑖𝜙𝑖 (𝑥) (2.14)

which, under the present boundary conditions, are simply the following sinusoidal
functions [10, 21]

𝜙𝑖 (𝑥) = sin(𝜆𝑖𝑥) , 𝜆𝑖 = 𝑖𝜋
𝑙
, 𝑖 = 1, ...,∞ (2.15)

The other kinematic variables are also to be expressed as a function of the
generalized coordinates 𝑞𝑖 [5]. This is achieved by substituting the Ritz approach
Eq. (2.14) into the differential equations Eqs (2.4), (2.5) and (2.6) and then solving
them analytically together with the boundary conditions Eqs (2.10), (2.11) and (2.12).
For the two interlayer slips, the result is

Δ𝑢1 (𝑥) =
∞∑︁
𝑖=1
𝑞𝑖

[
𝑟𝜆3
𝑖 cos (𝜆𝑖𝑥)
𝜆2
𝑖 + 𝐾𝑠

𝐸1𝐴1

− 𝛽
2

(
1
2
𝜆2
𝑖 𝑞𝑖 − 𝜒𝑖

)]
, (2.16)
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Δ𝑢2 (𝑥) =
∞∑︁
𝑖=1
𝑞𝑖

[
𝑟𝜆3
𝑖 cos (𝜆𝑖𝑥)
𝜆2
𝑖 + 𝐾𝑠

𝐸1𝐴1

+ 𝛽
2

(
1
2
𝜆2
𝑖 𝑞𝑖 − 𝜒𝑖

)]
(2.17)

where

𝜒𝑖 = −2
(
1− (−1)𝑖 )
𝜆𝑖 𝑙

8�̂�0

𝑙2
, 𝑖 = 1, ...,∞ , (2.18)

𝛽(𝑥) =
𝐸𝐴𝑒𝑙 sinh

(
1
2 𝜅 (𝑙 −2𝑥)

)
4𝐸1𝐴1 sinh

(
𝜅𝑙
2

)
+𝐸2𝐴2𝜅𝑙 cosh

(
𝜅𝑙
2

) , 𝜅 = (
𝐾𝑠𝐸𝐴𝑒

𝐸1𝐴1𝐸2𝐴2

)1/2
(2.19)

Substituting the series expansions Eqs (2.14), (2.16), and (2.17) into Eq. (2.8) leads
to the overall normal force also as a function of 𝑞𝑖 [22]

𝑁 =
𝜓

4

∞∑︁
𝑖=1
𝑞𝑖

(
𝜆2
𝑖 𝑞𝑖 −2𝜒𝑖

)
, 𝜓 =

𝐸𝐴𝑒𝐸2𝐴2𝜅𝑙 cosh
(
𝜅𝑙
2

)
4𝐸1𝐴1 sinh

(
𝜅𝑙
2

)
+𝐸2𝐴2𝜅𝑙 cosh

(
𝜅𝑙
2

) (2.20)

The nonlinear equation for finding the generalized coordinates follows by applica-
tion of Galerkin’s method [23] to the equilibrium equation Eq. (2.7). According to
this procedure, the equation where the series expansions of the kinematic variables
have been inserted, is multiplied by the 𝑖-th shape function 𝜙𝑖 (𝑥) and integrated over
the length 𝑙 [22]

𝑙∫
0

[
𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 −𝐸1𝐴1𝑟

(
Δ𝑢1,𝑥𝑥𝑥 +Δ𝑢2,𝑥𝑥𝑥

) −𝑁 (
𝑤,𝑥𝑥 − 𝑘

) − 𝑝] 𝜙𝑖 (𝑥)𝑑𝑥 = 0 ,

𝑖 = 1, ...,∞ (2.21)

Performing this operation for each shape function finally leads to the coupled equa-
tions [22],

ℎ𝑖 =
(
𝜆2
𝑖 𝑞𝑖 − 𝜒𝑖

)
𝑁 + 𝑐𝑖𝑞𝑖 − 2

𝑙
𝑝0 𝑓𝑖 = 0 , 𝑖 = 1, ...,∞ (2.22)

where 𝑐𝑖 is the 𝑖-th generalized stiffness, 𝛼 is the layer interaction coefficient, and 𝑓𝑖
is the 𝑖-th generalized loading function [22],

𝑐𝑖 = 𝜆
4
𝑖

(
𝜆2
𝑖 +𝛼2

) (
𝛼2

𝐸𝐽∞
+ 𝜆2

𝑖

𝐸𝐽0

)−1

, 𝛼 =

√︂
𝐾𝑠𝐸𝐽∞
𝐸1𝐴1𝐸𝐽0

, (2.23)

𝑓𝑖 =

𝑙∫
0

𝑓 (𝑥)𝜙𝑖 (𝑥)𝑑𝑥 , 𝑖 = 1, ...,∞ (2.24)
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2.4 Buckling and Post-Buckling Analysis

For this boundary value problem, analytical expressions for the buckling and post-
buckling analysis of the shallow parabolic arch with interlayer slip are presented
below, based on the derivations in [22].

2.4.1 Primary Equilibrium Path

Equation (2.22) is first solved for 𝑞𝑖 [22],

𝑞𝑖 =
2𝑝0 𝑓𝑖 + 𝑙 𝜒𝑖𝑁
𝑙
(
𝑐𝑖 +𝜆2

𝑖 𝑁
) , 𝑖 = 1, ...,∞ (2.25)

which is subsequently inserted into the series expansion of the overall normal force
𝑁 , Eq. (2.20). This leads to a quadratic equation for the load amplitude 𝑝0 [22],

4
𝑙2
𝐶1𝑝

2
0 −

4
𝑙
(𝐶4 −𝐶2𝑁) 𝑝0 +𝑁 (𝐶3𝑁 −2𝐶5 −1) = 0 (2.26)

with

𝐶1 =
𝜓

4

∞∑︁
𝑖=1

𝜆2
𝑖 𝑓

2
𝑖(

𝑐𝑖 +𝜆2
𝑖 𝑁

)2 , 𝐶2 =
𝜓

4

∞∑︁
𝑖=1

𝜆2
𝑖 𝑓𝑖𝜒𝑖(

𝑐𝑖 +𝜆2
𝑖 𝑁

)2 , 𝐶3 =
𝜓

4

∞∑︁
𝑖=1

𝜆2
𝑖 𝜒

2
𝑖(

𝑐𝑖 +𝜆2
𝑖 𝑁

)2 ,

𝐶4 =
𝜓

4

∞∑︁
𝑖=1

𝑓𝑖𝜒𝑖

𝑐𝑖 +𝜆2
𝑖 𝑁

, 𝐶5 =
𝜓

4

∞∑︁
𝑖=1

𝜒2
𝑖

𝑐𝑖 +𝜆2
𝑖 𝑁

(2.27)

The solution gives 𝑝0 as a function of the overall normal force 𝑁 [22],

𝑝0 (𝑁) = 𝑙

2𝐶1

(
𝐶4 −𝐶2𝑁 ±

√︃
𝐶2

4 +𝐶1𝑁 (1+2𝐶5 −𝐶3𝑁) +𝐶2𝑁 (𝐶2𝑁 −2𝐶4)
)

(2.28)
To find the primary equilibrium path for the other response variables, the above

expression for 𝑝0 is substituted into the generalized coordinates 𝑞𝑖 , Eq. (2.25), which
thus become a function of𝑁 only. This expression is inserted into the series expansions
of the kinematic variables, which thus also become a function of 𝑁 , e.g., Δ𝑢1 (𝑁).
Simultaneously solving the equations for Δ𝑢1 (𝑁) and 𝑝0 (𝑁) (Eq. (2.28)) yields the
desired representation 𝑝0 (Δ𝑢1). The representations 𝑝0 (Δ𝑢2) and 𝑝0 (𝑤) are found
analogously.
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2.4.2 Limit Loads and Limit Points

The critical loads are determined separately for the limit loads (critical loads for limit
point buckling) and the bifurcation buckling loads. The basis for finding the limit
loads is the condition that the tangent stiffness matrix at the stability limit is singular.
This leads to the following simplified buckling equation for limit point buckling [22],

det𝐾𝐾𝐾 = 1+ 𝜓
2

∞∑︁
𝑖=1

(
𝜒𝑖 −𝜆2

𝑖 𝑞
(𝑙𝑐)
𝑖

)2

𝑐𝑖 +𝜆2
𝑖 𝑁

(𝑙𝑐) = 0. (2.29)

The superscript (𝑙𝑐) identifies variables at the stability limit for limit point buckling.
Inserting the generalized coordinate 𝑞 (𝑙𝑐)𝑖 according to Eq. (2.25) into this buckling
equation,a nonlinear equation for the unknown limit loads 𝑝 (𝑙𝑐)0 and the corresponding
critical normal forces 𝑁 (𝑙𝑐) is obtained [22],

4
𝑙2
𝐷1 (𝑝 (𝑙𝑐)0 )2 − 4

𝑙

(
2𝐶2 −𝐷2𝑁

(𝑙𝑐)
)
𝑝 (𝑙𝑐)0 +𝑁 (𝑙𝑐)

(
𝐷3𝑁

(𝑙𝑐) −4𝐶3

)
+2𝐶5 +1 = 0

(2.30)
with

𝐷1 =
𝜓

2

∞∑︁
𝑖=1

𝜆4
𝑖 𝑓

2
𝑖(

𝑐𝑖 +𝜆2
𝑖 𝑁

(𝑙𝑐) )3 ,

𝐷2 =
𝜓

2

∞∑︁
𝑖=1

𝜆4
𝑖 𝑓𝑖𝜒𝑖(

𝑐𝑖 +𝜆2
𝑖 𝑁

(𝑙𝑐) )3 ,

𝐷3 =
𝜓

2

∞∑︁
𝑖=1

𝜆4
𝑖 𝜒

2
𝑖(

𝑐𝑖 +𝜆2
𝑖 𝑁

(𝑙𝑐) )3 . (2.31)

This equation is solved for 𝑝 (𝑙𝑐)0 and 𝑁 (𝑙𝑐) together with the previously determined
nonlinear equation Eq. (2.26) (in which 𝑝0 is replaced by 𝑝 (𝑙𝑐)0 and 𝑁 is replaced by
𝑁 (𝑙𝑐) ).

2.4.3 Bifurcation Loads and Bifurcation Points

In a symmetrical shallow arch, bifurcation buckling is possible only if the radial load
𝑝(𝑥) = 𝑝0 𝑓 (𝑥) is symmetrically distributed, i.e., 𝑓 (𝑥) = 𝑓 (𝑙 − 𝑥) [22]. Bifurcation
buckling occurs antimetrically according to an antimetric buckling mode of the
associated straight beam, which in the case of the soft-hinged supported beam column
with interlayer slip are the antimetric sinusoidal functions sin𝜆𝑛𝑥, 𝑛 = 2,4,6, .... [10].
The bifurcation normal forces 𝑁 (𝑏𝑐)

𝑛 associated to the buckling modes are then [21],
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𝑁 (𝑏𝑐)
𝑛 = − 𝑐𝑛

𝜆2
𝑛

, 𝑛 = 2,4,6, ... (2.32)

Since the bifurcation point is at the primary equilibrium path, the response of the
symmetrically loaded shallow arch at this point is also symmetric, i.e., the generalized
coordinates associated with the antimetric shape functions are zero at this point, i.e.,
𝑞 (𝑏𝑐)𝑖𝑛 = 0, 𝑖 = 2,4,6, ..... To determine the bifurcation load related to the 𝑛-th buckling
mode 𝑝𝑛 (𝑥) (𝑏𝑐) = 𝑝 (𝑏𝑐)0𝑛 𝑓 (𝑥) = 𝑝 (𝑏𝑐)0𝑛 𝑓 (𝑙−𝑥), the nonzero generalized coordinates at
the bifucation point 𝑞 (𝑏𝑐)𝑖𝑛 ≠ 0, 𝑖 = 1,3,5, ... are substituted into the series expansion
for the overall normal force 𝑁 , Eq. (2.20). Then, in this expression, the overall
normal force is replaced by the bifurcation buckling normal force 𝑁 (𝑏𝑐)

𝑛 according
to Eq. (2.32). The result is the following quadratic equation [22],

𝜆4
𝑛

𝑙2
𝐹 (𝑛)

1

(
𝑝 (𝑏𝑐)0𝑛

)2
− 𝜆

2
𝑛

𝑙
𝐹 (𝑛)

2 𝑝 (𝑏𝑐)0𝑛 + 𝑐𝑛
(
1
2
𝐹 (𝑛)

3 + 1
𝜆2
𝑛

)
= 0 , 𝑛 = 2,4,6, ... (2.33)

with

𝐹 (𝑛)
1 = 𝜓

∞∑︁
𝑖=1

𝜆2
2𝑖−1 𝑓

2
2𝑖−1(

𝜆2
𝑛𝑐2𝑖−1 −𝜆2

2𝑖−1𝑐𝑛

)2 ,

𝐹 (𝑛)
2 = 𝜓

©
«
𝑐𝑛

∞∑︁
𝑖=1

𝜆2
2𝑖−1 𝑓2𝑖−1𝜒2𝑖−1(

𝜆2
𝑛𝑐2𝑖−1 −𝜆2

2𝑖−1𝑐𝑛

)2 +
∞∑︁
𝑖=1

𝑓2𝑖−1𝜒2𝑖−1

𝜆2
𝑛𝑐2𝑖−1 −𝜆2

2𝑖−1𝑐𝑛

ª®®
¬
,

𝐹 (𝑛)
3 = 𝜓

©«
𝑐𝑛
2

∞∑︁
𝑖=1

𝜆2
2𝑖−1𝜒

2
2𝑖−1(

𝜆2
𝑛𝑐2𝑖−1 −𝜆2

2𝑖−1𝑐𝑛

)2 +
∞∑︁
𝑖=1

𝜒2
2𝑖−1

𝜆2
𝑛𝑐2𝑖−1 −𝜆2

2𝑖−1𝑐𝑛

ª®®¬
(2.34)

from which the two bifurcation loads for the 𝑛-th buckling mode are obtained [22],

𝑝 (𝑏𝑐) (1)0𝑛 =
𝑙

2𝐹 (𝑛)
1 𝜆3

𝑛

(
𝐹 (𝑛)

2 𝜆𝑛 +
√︂(

𝐹 (𝑛)
2

)2
𝜆2
𝑛 −2𝐹 (𝑛)

1 𝑐𝑛

(
2+𝐹 (𝑛)

3 𝜆2
𝑛

))
, (2.35)

𝑝 (𝑏𝑐) (2)0𝑛 =
𝑙

2𝐹 (𝑛)
1 𝜆3

𝑛

(
𝐹 (𝑛)

2 𝜆𝑛 −
√︂(

𝐹 (𝑛)
2

)2
𝜆2
𝑛 −2𝐹 (𝑛)

1 𝑐𝑛

(
2+𝐹 (𝑛)

3 𝜆2
𝑛

))
. (2.36)

Substituting, for example, 𝑝 (𝑏𝑐) (1)0𝑛 from Eq. (2.35) and 𝑁 (𝑏𝑐)
𝑛 from Eq. (2.32) into

Eq. (2.25) leads to the generalized coordinates 𝑞 (𝑏𝑐) (1)𝑖𝑛 at the bifurcation point and
these in turn inserted into the corresponding series expansions lead to the kinematic
variables at the bifurcation point.
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2.4.4 Post-Bifurcation Equilibrium Path

Now that the bifurcation points are known, the post-bifurcation equilibrium path is
determined for each of the occurring antimetric buckling modes. For better readability,
subsequently the index 𝑛, which identifies the response quantity of corresponding
buckling mode, is omitted where possible. For the purpose of predicting the post-
bifurcation equilibrium path, the response in this path is split into the response at the
bifurcation point and the response relative to that point [14, 24],

𝑤 = 𝑤 (𝑏𝑐) +Δ𝑤 , 𝑢∞ = 𝑢 (𝑏𝑐)∞ +Δ𝑢∞ ,
Δ𝑢1 = Δ𝑢 (𝑏𝑐)1 +Δ(Δ𝑢1) , Δ𝑢2 = Δ𝑢 (𝑏𝑐)2 +Δ(Δ𝑢2). (2.37)

The relative response Δ𝑤 etc. is thereby induced by the load relative to the bifurcation
load 𝑝 (𝑏𝑐) [21],

Δ𝑝(𝑥) = 𝑝(𝑥) − 𝑝 (𝑏𝑐) (𝑥) = Δ𝑝0 𝑓 (𝑥) , Δ𝑝0 = 𝑝0 − 𝑝 (𝑏𝑐)0 . (2.38)

Furthermore, the relative displacement Δ𝑤 is split into the symmetric part Δ𝑤 (𝑠)

and the antimetric part Δ𝑤 (𝑎) in the form of the bifurcation buckling mode, each of
which is expanded into the corresponding shape functions [24],

Δ𝑤 = Δ𝑤 (𝑠) +Δ𝑤 (𝑎) , Δ𝑤 (𝑠) =
∞∑︁
𝑖=1

Δ𝑞2𝑖−1𝜙2𝑖−1, Δ𝑤
(𝑎) = Δ𝑞𝑛𝜙𝑛. (2.39)

Δ𝑞𝑖 is the 𝑖-th generalized coordinate of the relative response. Moreover, along
the post-bifurcation buckling equilibrium path, the overall normal force is constant
[14, 19], i.e.

𝑁 = 𝑁 (𝑏𝑐) , Δ𝑁 = 0. (2.40)

Therefore, the upper and lower interlayer slip relative to the value at the bifurcation
point are equal [21],

Δ(Δ𝑢1) = Δ(Δ𝑢2). (2.41)

Δ(Δ𝑢1) and = Δ(Δ𝑢2) must also be expressed as a function of the generalized relative
coordinates Δ𝑞𝑖 . For this purpose, the equilibrium equation Eq. (2.4) is modified for
the relative response in the bifurcation buckling path, which then becomes [22]

Δ(Δ𝑢1),𝑥𝑥 − 𝐾𝑠
𝐸1𝐴1

Δ(Δ𝑢1) −Δ𝑤,𝑥𝑥𝑥𝑟 = 0. (2.42)

The series expansion Eq. (2.39) is inserted into this differential equation and then
solved together with the boundary conditions Δ(Δ𝑢1),𝑥 (0) = Δ(Δ𝑢2),𝑥 (𝑙) = 0, result-
ing in [22]
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Δ(Δ𝑢1) (𝑥) = Δ(Δ𝑢2) (𝑥) =
∞∑︁
𝑖=1

𝑟𝜆3
2𝑖−1 cos (𝜆2𝑖−1𝑥)
𝜆2

2𝑖−1 + 𝐾𝑠

𝐸1𝐴1

Δ𝑞2𝑖−1 +
𝑟𝜆3
𝑛 cos (𝜆𝑛𝑥)
𝜆2
𝑛 + 𝐾𝑠

𝐸1𝐴1

Δ𝑞𝑛.

(2.43)
The relation for the still unknown generalized coordinates of the symmetric

response part, Δ𝑞𝑖 , 𝑖 = 1,3,5, ..., are derived from the equilibrium equation [22]

𝐸𝐽∞Δ𝑤,𝑥𝑥𝑥𝑥 −2𝐸1𝐴1𝑟Δ(Δ𝑢1),𝑥𝑥𝑥 −𝑁 (𝑏𝑐)Δ𝑤,𝑥𝑥 = Δ𝑝0 𝑓 (𝑥) (2.44)

that follows from adaptation of the differential equilibrium condition Eq. (2.7) for the
relative response. To Eq. (2.44) Galerkin’s method is applied as shown in Eq. (2.21),
yielding [22]

Δ𝑞𝑖 =
2𝜆2
𝑛

𝑙𝜆2
𝑖

(
𝐸𝐽∞𝜆2

𝑖 +𝐸𝐽0𝛼
2

𝜆2
𝑛𝜆

2
𝑖 𝐸𝐽0𝐸𝐽∞

(
𝜆2
𝑖 +𝛼2) − 𝑐𝑛 (

𝐸𝐽∞𝜆2
𝑖 +𝐸𝐽0𝛼2)

)
𝑓𝑖Δ𝑝0 , (2.45)

𝑖 = 1,3,5... , 𝑛 = 2,4,6.... (2.46)

The generalized coordinate Δ𝑞𝑛 for the 𝑛-th bifurcation buckling mode follows
from the condition that the normal force remains constant in the bifurcation buckling
path, or in other words Δ𝑁 = 0, see Eq. (2.40). Splitting off 𝑁 (𝑏𝑐) from Eq. (2.8),
taking into account Eqs (2.37) and (2.41), the following relation is obtained [22]

Δ𝑁 =
𝐸𝐴𝑒
𝑙

𝑙∫
0

(
Δ𝑤𝑘 + 1

2
Δ𝑤2

,𝑥 +𝑤 (𝑏𝑐)
,𝑥 Δ𝑤,𝑥

)
𝑑𝑥 = 0 (2.47)

from which, after substituting Eqs (2.14) and (2.39), the sought generalized coordinate
Δ𝑞𝑛 is obtained,

Δ𝑞𝑛 = ± 1
𝜆𝑛

√√
−

∞∑︁
𝑖=1

(
Δ𝑞2𝑖−1
𝜆2𝑖−1

(
𝜆3

2𝑖−1

(
Δ𝑞2𝑖−1 +2𝑞 (𝑏𝑐)2𝑖−1

)
+ 64�̂�0

𝑙3

))
. (2.48)

2.5 Application

In the following, the presented beam theory is applied to shallow arches subjected
to a uniformly distributed radial load 𝑝(𝑥) = 𝑝0 (i.e., 𝑓 (𝑥) = 1). The parabolic initial
deflection is directed against the positive 𝑧 coordinate, i.e., the initial deflection
amplitude �̂�0 is negative, see Fig. 2.3. The dimensions of the considered members
are given by length 𝑙 = 1.0 m and cross-sectional dimensions 𝑏1 = 𝑏2 = 0.1 m,
ℎ1 = 0.005 m, ℎ2 = 0.01 m. Material parameters chosen are 𝐸1 = 7.0 · 1010 N/m2,
𝐸2 = 2.0 · 1010 N/m2 for Young’s moduli, and 𝐾𝑠 = 1.0 · 109 N/m2 for slip modulus.
Then, the layer interaction coefficient 𝛼𝑙 (for 𝛼 see Eq. (2.23)) becomes 𝛼𝑙 = 19.7,
which corresponds to a moderate interaction of the layers [10].
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Fig. 2.3 Analyzed shallow
parabolic arches subjected to
uniformly distributed load.

l

x

x −ŵ0

p(x) = p0

2.5.1 Example Problem 1

In the first example, the crown height is chosen as �̂�0 = −0.023 m. At this crown
height a limit point buckling problem is present, bifurcation buckling does not occur.
The evaluation of Eqs (2.28) and (2.30) yields the two normalized limit loads of this
structure as 𝑝 (𝑙𝑐) (1)0 = 𝑝 (𝑙𝑐) (1)0 𝑙3/𝐸𝐽∞ = 1.949 and 𝑝 (𝑙𝑐) (2)0 = 𝑝 (𝑙𝑐) (2)0 𝑙3/𝐸𝐽∞ = 0.846.

In addition to the solution with the presented analytical relations, for their veri-
fication the equilibrium path is computed numerically with the finite element (FE)
method in the software suite Abaqus [25] assuming a plane stress state. For this
analysis, the three layers are discretized with plane stress 8-noded quadrilateral two-
dimensional continuum elements with reduced integration (CPS8R). As an additional
quantity, for the plane stress state, the Possion’s ratio must be specified, which is
chosen as 𝜈 = 0.3 for all three layers. A very thin layer of thickness 2.0 · 10−6 m
is introduced between the layers to model the flexible bond, which is discretized
with 4-node two-dimensional cohesive elements (COH2D4). The horizontal stiffness
corresponds to the slip modulus 𝐾𝑠 in the beam model. For the vertical stiffness,
which is infinite in the beam model, the very large value 1.0 ·1013 has been assigned.
To model the soft-hinged boundary conditions in the FE model, the boundary nodes
of the middle layer are coupled with an additional node, which is fixed.

Figure 2.4 shows kinematic response quantities of this shallow arch. In Fig. 2.4(a),
the normalized load amplitude 𝑝0 = 𝑝0𝑙

3/𝐸𝐽∞ is plotted versus the normalized radial
displacement 𝑤(0.5𝑙)/𝑙 at the center of the arch, which illustrates the typical response
behavior of a snap-through problem. The thick blue line is the equilibrium path of
the shallow arch with interlayer slip found with the presented analytical relations, the
thin red dashed line with cross markers is the result of the FE plane stress analyses.
The two solutions are practically identical, which is a verification of the presented
solution equations. In addition, the result of the Euler-Bernoulli theory assuming a
rigid bond of the layers (i.e. 𝐾𝑠 =∞) is shown with a thin black line. In this case, the
critical load at the first limit point 𝑝 (𝑙𝑐) (1)0 is 50% larger than for the member with
interlayer slip, showing how important it is to consider the interlayer slip in the model.
Figure 2.4(b) shows the distribution of the radial displacement 𝑤(𝑥)/𝑙 of the shallow
arch with interlayer slip over 𝑥/𝑙 at the points of the equilibrium path denoted A (first
limit point), B, C (second limit point), and D in Fig. 2.4(a).

The diagram 𝑝0 over the two normalized interlayer slips Δ̄𝑢1 (𝑙) = Δ𝑢1 (𝑙)/𝑙 (black
line) and Δ̄𝑢2 (𝑙) = Δ𝑢2 (𝑙)/𝑙 (blue line) at the member end 𝑥 = 𝑙 in Fig. 2.4(c) show
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Fig. 2.4: Crown height �̂�0/𝑙 = −0.023. Uniformly distributed load. (a) Load amplitude over radial
displacement at 𝑥/𝑙 = 0.5; (b) radial displacement over 𝑥/𝑙 at discrete load levels; (c) load
amplitude over upper/lower interlayer slip at 𝑥/𝑙 = 1; (d) upper/lower interlayer slip over 𝑥/𝑙 at
discrete load levels. Non-dimensional representation.

a much more complex shape than that of the radial displacement. The deviation of
the FE solution (thin red lines with cross markers) from the presented beam solution
is very small and only visually noticeable in the region of the loop of the upper
interlayer slip. The distribution of the two interlayer slips over the member axis (𝑥/𝑙)
at points A, B, C, D (upper interlayer slip) and A’, B’, C’, D’ (lower interlayer slip),
respectively, is shown in Fig. 2.4(d).

Figure 2.5 shows the equilibrium path for the normalized overall normal force
(left) and for the normalized overall moment at beam center 𝑀 (𝑙/2)/𝐸𝐽∞ (right)
for this shallow parabolic arch with interlayer slip from the beam theory presented
(blue lines), from the FE plane stress analyses (red dashed lines with cross markers),
and for the shallow arch with rigid bond of the layers (thin black lines). The beam
solution and FE solution also agree excellently for the internal forces. Also with the
internal forces, it can be seen that in this example, neglecting the interlayer slip leads
to an incorrect prediction of the response.
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Fig. 2.5: Crown height �̂�0/𝑙 = −0.023. Uniformly distributed load. (a) Load amplitude over overall
normal force; (b) overall and layer-wise normal forces over 𝑥/𝑙 at discrete load levels; (c) load
amplitude over overall bending moment at 𝑥/𝑙 = 0.5; (d) overall bending moment over 𝑥/𝑙 at
discrete load levels. Non-dimensional representation.

2.5.2 Example Problem 2

In the second example, the crown height is increased to �̂�0/𝑙 = −0.0325, all other
quantities are the same as before. The critical loads for bifurcation buckling and
𝑝 (𝑏𝑐) (2)0 = 0.218 are

𝑝 (𝑏𝑐) (1)0 = 𝑝 (𝑏𝑐) (1)0 𝑙3/𝐸𝐽∞ = 3.901

(Eqs. (2.28) and (2.30)), and those for limit point buckling are

𝑝 (𝑙𝑐) (1)0 = 4.154 and 𝑝 (𝑙𝑐) (2)0 = 0.208

(Eqs. (2.35) and (2.36)). Since

𝑝 (𝑏𝑐) (1)0 < 𝑝 (𝑙𝑐) (1)0 ,

this structure becomes unstable due to bifurcation buckling.
Figures 2.6 and 2.7 show the response variables of this structure in the same way

as Figs 2.4 and 2.5 for Example 1. However, in addition to the primary equilibrium
path, the post-bifurcation buckling equilibrium path is plotted with dashed lines.
In Figs 2.6(b) and 2.6(d), which show the distribution of radial deformation and
interlayer slip, respectively, at the two bifurcation points (points A and C and A’
and C’, respectively), at the center of the post-bifurcation path (point E and E’,
respectively), and at point B on the primary equilibrium path, the symmetry of the
response in the primary equilibrium path and the asymmetry in the post-bifurcation
path can be seen. The comparative FE plane stress analysis with the perfect uniformly
distributed load yield the primary equilibrium path. To approximate the bifurcation
buckling path, a second FE analysis was performed with a perturbed distributed load
in the form 𝑓 (𝑥) = 0.99+ 0.02𝐻 (𝑥 − 𝑙/2), with 𝐻 (𝑥 − 𝑙/2) denoting the Heaviside
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Fig. 2.6: Crown height �̂�0/𝑙 = −0.0325. Uniformly distributed load. (a) Load amplitude over
radial displacement at 𝑥/𝑙 = 0.5; (b) radial displacement over 𝑥/𝑙 at discrete load levels; (c) load
amplitude over upper/lower interlayer slip at 𝑥/𝑙 = 1; (d) upper/lower interlayer slip over 𝑥/𝑙 at
discrete load levels. Non-dimensional representation.

Fig. 2.7: Crown height �̂�0/𝑙 = −0.0325. Uniformly distributed load. (a) Load amplitude over
overall normal force; (b) overall and layer-wise normal forces over 𝑥/𝑙 at discrete load levels; (c)
load amplitude over overall bending moment at 𝑥/𝑙 = 0.5; (d) overall bending moment over 𝑥/𝑙 at
discrete load levels. Non-dimensional representation.

step function. As observed, the results of the presented solution equations and the
comparative FE plane stress results agree excellently. Also in this example, the
analysis with perfectly bonded layers overestimates the buckling loads significantly
and cannot reproduce the equilibrium paths.
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2.5.3 Critical Loads

Next, the critical loads of this shallow parabolic archwith interlayer slip are determined
as a function of crown height according to Eqs (2.28), (2.30), (2.35) and (2.36).
Figure 2.8 shows the two non-dimensional critical loads for limit point buckling,
𝑝 (𝑙𝑐) (1)0 and 𝑝 (𝑙𝑐) (2)0 , and for bifurcation buckling, 𝑝 (𝑏𝑐) (1)0 and 𝑝 (𝑏𝑐) (2)0 , plotted
against −�̂�0/𝑙. The blue vertical lines indicate the two shallow arches of example
problems 1 and 2. As observed, the minimum crown height for limit point buckling
is �̂�0/𝑙 = 0.0148. The black lines indicate the limit loads. With increasing crown
height also the limit load 𝑝 (𝑙𝑐) (1)0 becomes larger. At crown height �̂�0/𝑙 = 0.0237, two
bifurcation buckling loads 𝑝 (𝑏𝑐)0 occur in addition, depicted with red lines. The red
dashed lines indicate the range where the bifurcation loads are on the unstable branch
of the primary equilibrium path. This means that in this range of crown heights the
structure becomes unstable due to limit point buckling, since the bifurcation points
are not reached. However, for crown heights larger than the intersection of the limit
point buckling and bifurcation buckling lines, bifurcation buckling occurs because
the bifurcation loads are on the ascending branch of the primary equilibrium path.

2.5.4 Parabolic Shallow Arch vs. Circular Shallow Arch

The curvature of the circular shallow arch [22],

𝑘 =
8�̂�0

4�̂�2
0 + 𝑙2

(2.49)

is constant (i.e., independent form 𝑥), as in the case of the parabolic arch. Comparison
of Eq. (2.2) and Eq. (2.49) shows that the curvatures differ only in the denominator
by 4�̂�2

0. Since for the shallow arches �̂�2
0 ≪ 𝑙2, the curvatures for the parabolic arch

Fig. 2.8: Normalized critical
loads over normalized crown
height. Uniformly distributed
load. Shallow parabolic arch
with interlayer slip
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and the circular arch are only insignificantly different. Therefore, the critical loads
of the parabolic arch with interlayer slip and the circular arch with interlayer slip are
virtually the same. This was verified for the present examples using both the present
beam theory and FE plane stress analyses.

2.6 Summary and Conclusions

Based on the differential equations of equilibrium and an expansion of the radial
displacement into the buckling modes of the corresponding straight beam, analytical
relations for the critical loads, the primary and the post-bifurcation equilibrium path
have been presented for the layered parabolic arch with interlayer slip. The results
of example applications demonstrate the large influence of the interlayer slip on the
critical loads and nonlinear response paths of these structural members with moderate
layer interaction. Therefore, the classical beam theory assuming a rigid bond of the
layers is not suitable to estimate the response of such shallow arches.
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Chapter 3
On the General Strategies to Formulate Shell and
Plate Theories

Holm Altenbach and Victor A. Eremeyev

Abstract Different approaches exist to formulate general shell or plate theories. The
approaches can be classified, for example, by the starting point of the derivation.
This can be the well-known three-dimensional continuum mechanics equations. At
present these equations are preferred by the engineers. In contrast, one can introduce
à priory a two-dimensional deformable surface which is the basis for a more natural
formulation of the two-dimensional governing equations. Here we discuss the theories
based on the Cosserat approach.

3.1 Introduction

One of the basic problems in engineering mechanics is the analysis of the strength,
the vibration behavior and the stability of structural elements with the help of
structural models. Examples are thin-walled structures (discs, plates, shells, folded
structures, etc.) which are used in various engineering applications. Their main
advantage is the high load bearing capacity, combined with low weight and excellent
stiffness properties. Modern thin-walled structures are made from different materials
- common structural materials like steel or concrete, but also advanced materials, for
example, composites like laminates, or sandwiches, metallic and polymeric foams,
and functionally graded materials.

Increasing safety requirements or the need of optimization in an early design stage
has lead again to a strong interest in the analysis of thin-walled structures. A common
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modeling approach is to use shell and plate theories, which can be derived by different
procedures. Here a clear classification of the approaches to model elements under
consideration will be given.

For the sake of simplicity the discussions are limited by some assumptions. At
first, only the linear elastic behavior is taken into account. At second, the thin-walled
structure has a constant thickness. Finally, the presented equations are valid only for
plates.

3.2 Classification Principles

3.2.1 Classification of Structural Models

Structural models are special cases or approximations of the general continuum
theory. The structural models can be classified, for example, [1]

• by their suitability for bodies with certain geometrical (spatial) dimensions,
• by their suitability for certain applied loads,
• by the use of kinematical and/or statical hypotheses approximating its mechanical

behavior.

A complex structure can be built up by different individual structural elements.
The behavior of the whole structure can often be described by combining different
structural models for the individual elements. Care must however be taken that the
interface conditions between two neighboring elements are compatible with the
assumptions and restrictions of their structural models.

Structural elements and the structural models for their analysis can be categorized
into three classes, depending on the ratio of their characteristic dimensions [2]:
three-dimensional structural elements with three spatial dimensions of the same
order, two-dimensional structural elements, which have two spatial dimensions of
comparable size, and a third spatial dimension, the so-called thickness, which is at
least one order of magnitude smaller, and one-dimensional structural with two spatial
dimensions, which can be related to the cross-section, having a comparable size and
a third dimension, which is related to the length of the structural element and has at
least one order of magnitude larger than the size of the cross-section dimensions.

In general, it is possible to introduce other classes. For example, in shipbuilding,
thin-walled structural elements with a special profile are often used. If the spatial
dimensions are of significantly different order and the thickness of the profile is
small in comparison to the other cross-section dimensions, and the cross-section
dimensions are much smaller in comparison to the length of the structure one can
introduce quasi-onedimensional structural elements. Suitable theories for the analysis
of quasi-onedimensional structural elements are the thin-walled beam theory (Vlasov-
Theory) and the semi-membrane theory or generalized beam theory [3].
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3.2.2 Classification of Theories for Two-Dimensional Structures

Since the thickness is much smaller than the characteristic length in the surface
directions, for two-dimensional structures it is tempting to look for procedures that
eliminate the thickness dimension. The mathematical consequence is obvious - instead
of a three-dimensional problem, which is represented by a system of coupled partial
differential equations with respect to three spatial coordinates, one can analyze a two-
dimensional problem considering two spatial coordinates only. These coordinates
represent a surface in the three-dimensional space,and a procedure has to be developed
that maps the real behavior in thickness direction onto the mechanical behavior of the
surface. The transition from the three-dimensional to the two-dimensional problem
is non-trivial, but once a two-dimensional theory has been obtained, the solution
effort decreases significantly, and the possibilities to solve problems analytically are
increased.

The two-dimensional equations can be established applying different approaches
[4–9]. The first one is the reduction technique, which starts from the equations of the
three-dimensional continuum and develops approximate two-dimensional continuum
theories. The second one is the direct approach, which starts from a rigorous two-
dimensional continuum theory (deformable material surface). Applying the first
approach common techniques are: the use of hypotheses on the stresses, strains
and/or displacements to approximate the three-dimensional equations, or the use of
mathematical approaches, such as series expansions, special functions or asymptotic
expansion. All these approaches have their own advantages and disadvantages, and
it is difficult to argue what is the best method for establishing the two-dimensional
equations. Note that in many cases different derivation methods result in identical
sets of governing equations.

Theories which are based on hypotheses are preferred by engineers. For example,
there is a huge number of theories which are based on displacement approximations.
Let us mention here only Kirchhoff’s plate theory or Love’s shell theory with the
kinematical hypothesis that an arbitrary cross-section is plane and orthogonal to
the mid-surface before and after deformation. On the base of these theories one
gets satisfying results for classical applications. But they ignore such effects like
transverse shear strains and thickness changes. From this follows the necessity to
develop improved theories, for examples, with additional degrees of freedom like
independent cross-section rotations. But the introduction of independent rotations is
in some cases not enough, since it is assumed again that any cross-section will be
plane before and after deformation. A weaker assumptions are proposed in several
papers. One example for plates is given in Levinson [10] or Reddy [11]. These refined
theories can be understood as theories with additional degrees of freedom, or as some
part of a power series expansion. A generalization of the power series approach in
the plate theory is given in Meenen and Altenbach [12], which can be extended to
shells.

The method of hypotheses considering assumptions for the stress and/or the strain
(displacement) states are also applied in many cases. It can be shown that shell
theories based on different hypothesis result in partly identical equations, but that
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the coefficients take slightly different values and that their physical interpretation is
partly not clear. Pure mathematical approaches are mostly based on power series,
trigonometric functions, on special functions, etc. The mathematical approaches are
very helpful if the accuracy of the given approximation should be checked.

The direct approach is based on the a priori introduction of a two-dimensional
deformable surface. This approach is applied in Rubin [13], Zhilin [14], and Ere-
meyev and Zubov [15], Eremeyev and Altenbach [16], Eremeyev et al [17] among
others. The main advantage of these theories is that their derivation does not rely on
assumptions or series expansions and mathematically and physically they are strong
and exact as the three-dimensional continuum mechanics. This approach is still under
discussion [18], since the application is not trivial, and a satisfying relationship
between the constitutive laws of the two-dimensional surface and the corresponding
three-dimensional body up to now is not established. Further we discuss the family
of the elastic shell theories based on the model of directed surface.

3.3 Direct Approach

3.3.1 General Cosserat Surface Theory

One of the most general theories of shells based on the direct approach is proposed
in [19] and developed in many papers, see e.g. [13, 20]. The kinematical model of a
simple shell is based on the introduction of a directed material surface 𝜔(𝑡), which
is determined in the actual configuration by

{𝑟𝑟𝑟 (𝑞1, 𝑞2, 𝑡); 𝑑𝑑𝑑𝑘 (𝑞1, 𝑞2, 𝑡)}; 𝑘 = 1, . . . , 𝑝 (3.1)

with 𝑟𝑟𝑟 (𝑞1, 𝑞2, 𝑡) – the position vector defining the geometry of 𝜔, 𝑞1, 𝑞2 ∈ 𝜔 and
𝑑𝑑𝑑𝑘 (𝑞1, 𝑞2, 𝑡) – a set of vectors called directors, see Fig. 3.1. In the reference configu-
ration the following quantities are introduced

{𝑅𝑅𝑅(𝑞1, 𝑞2); 𝐷𝐷𝐷𝑘 (𝑞1, 𝑞2)}; 𝑘 = 1, . . . , 𝑝 . (3.2)

On this stage each material point of the shell has 3+3𝑝 degrees of freedom.
The kinematics of the shell with 𝑝 directors is too complicated. Hence, this theory

is mostly formulated with the help of the introduction of one deformable director
𝑑𝑑𝑑, see Rubin [13]. For the elastic Cosserat shell there exists a surface strain energy
function W

W =W(𝐹𝐹𝐹,𝑑𝑑𝑑,∇𝑑𝑑𝑑), 𝐹𝐹𝐹 = ∇𝑟𝑟𝑟, ∇(. . .)
a

= 𝑅𝑅𝑅𝛼 ⊗ 𝜕 (. . .)
𝜕𝑞𝛼

𝑅𝑅𝑅𝛼 ·𝑅𝑅𝑅𝛽 = 𝛿𝛼𝛽 , 𝑅𝑅𝑅𝛼 ·𝑁𝑁𝑁 = 0, 𝑅𝑅𝑅𝛽 =
𝜕𝑅𝑅𝑅

𝜕𝑞𝛽
.

(3.3)

Using the principle of frame indifference, the following equation should be satisfied
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Fig. 3.1 Cosserat surface
with 𝑝 deformable directors
in the actual configuration,
𝑛𝑛𝑛 is the unit normal, and
𝑟𝑟𝑟 𝛼 = 𝜕𝑟𝑟𝑟/𝜕𝑞𝛼.
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W[𝐹𝐹𝐹 ·𝑂𝑂𝑂,𝑑𝑑𝑑 ·𝑂𝑂𝑂, (∇𝑑𝑑𝑑) ·𝑂𝑂𝑂] =W(𝐹𝐹𝐹,𝑑𝑑𝑑,∇𝑑𝑑𝑑) (3.4)

for an arbitrary orthogonal tensor𝑂𝑂𝑂. The Lagrangian equilibrium equations have the
form

∇ ·𝑇𝑇𝑇 + 𝑓𝑓𝑓 = 000, ∇ ·𝑀𝑀𝑀 − 𝜕W
𝜕𝑑𝑑𝑑

+ℓℓℓ = 000,

𝑇𝑇𝑇
a

=
𝜕W
𝜕𝐹𝐹𝐹

, 𝑀𝑀𝑀
a

=
𝜕W
𝜕∇𝑑𝑑𝑑 .

(3.5)

3.3.2 12-Parameter Theory

The so-called micromorphic shell theory is based on the introduction of the triad
of deformable directors (Fig. 3.2). With other words, the micromorphic shell is the

Fig. 3.2 Cosserat surface
with 3 deformable directors
(micromorphic shell).
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𝑛𝑛𝑛

𝑑𝑑𝑑3

𝑟𝑟𝑟1
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two-dimensional analog of the three-dimensional micromorphic continuum [21, 22].
The strain energy function of an elastic micromorphic shell is given by the relation

W =W(𝐹𝐹𝐹,𝐺𝐺𝐺,∇𝐺𝐺𝐺), 𝐺𝐺𝐺
a

= 𝐷𝐷𝐷𝑘 ⊗𝑑𝑑𝑑𝑘 , (3.6)

where 𝐷𝐷𝐷𝑘 are reciprocal to 𝐷𝐷𝐷𝑘 , the second-order tensor 𝐺𝐺𝐺 is the microdistorsion
tensor, and the following relation holds true

W(𝐹𝐹𝐹,𝐺𝐺𝐺,∇𝐺𝐺𝐺) =W[(𝐹𝐹𝐹 ·𝑂𝑂𝑂,𝐺𝐺𝐺 ·𝑂𝑂𝑂, (∇𝐺𝐺𝐺) ·𝑂𝑂𝑂]
∀𝑂𝑂𝑂𝑇 =𝑂𝑂𝑂−1 .

(3.7)

In the theory of micromorphic shells the surface stress, couple stress tensors, and, in
addition, the tensor of double stresses are present and in this theory the force dipoles
are taking into account.

3.3.3 6-Parameter Theory

In contrast to the Cosserat surface theory or the micromorphic shell theory, in the
6-parameter theory of shell in each point of𝜔 three orthonormal vectors 𝑑𝑑𝑑𝑘 , 𝑘 = 1,2,3,
are attached, i.e. 𝑑𝑑𝑑𝑘 ·𝑑𝑑𝑑𝑚 = 𝛿𝑘𝑚 and 𝐷𝐷𝐷𝑘 ·𝐷𝐷𝐷𝑚 = 𝛿𝑘𝑚. This variant of shell theory is
also named micropolar shell theory and it is developed in [6, 7, 23], and [15] among
others. A micropolar shell is a two-dimensional continuum in which the interaction
between different parts of the shell is described by forces and moments only. The
strain energy function of an elastic micropolar shell is given by

W =W(𝐹𝐹𝐹,𝐻𝐻𝐻,∇𝐻𝐻𝐻), 𝐻𝐻𝐻
a

= 𝐷𝐷𝐷𝑘 ⊗𝑑𝑑𝑑𝑘 . (3.8)

𝐻𝐻𝐻 is the orthogonal tensor which is named the microrotation tensor. After application
of the principle of the frame indifference W takes the form

W =W(𝐸𝐸𝐸,𝐾𝐾𝐾),

𝐸𝐸𝐸
a

= (∇𝑟𝑟𝑟) ·𝐻𝐻𝐻𝑇 , 𝐾𝐾𝐾
a

=
1
2
𝑅𝑅𝑅𝛼 ⊗

(
𝜕𝑣𝐻𝐻𝐻

𝜕𝑞𝛼
· 𝑣𝐻𝐻𝐻𝑇

)
×
.

(3.9)

The Lagrangian equilibrium equations are given by

∇ ·𝐷𝐷𝐷 + 𝑓𝑓𝑓 = 000, ∇ ·𝑃𝑃𝑃+ [
𝐹𝐹𝐹𝑇 ·𝐷𝐷𝐷]

× + 𝑙𝑙𝑙 = 000,

𝐷𝐷𝐷
a

=
𝜕W
𝜕𝐸𝐸𝐸

·𝐻𝐻𝐻, 𝑃𝑃𝑃
a

=
𝜕W
𝜕𝐾𝐾𝐾

·𝐻𝐻𝐻 .
(3.10)

Within the framework of the Cosserat-surface shell model one can discuss the
material surface consisting of deformable particles on which forces and moments and
some hyper-stresses act. At the same time the micropolar shell can be represented by a
surface composed of rigid microparticles of arbitrary shape. The interaction between
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these particles are given by forces and moments only. Now the Cosserat-surface shell
model can be presented by a surface composed of microparticles of beam shape
changing during the deformation its length, but they does not reflect the rotation
about there axis. For the six-parameter shell theory we refer to [6, 7, 15–17, 24–26].

3.3.4 5-Parameter Theory

One of the most satisfying theories of shells based on the direct approach is the theory
of simple shells [14, 27]. A simple shell is a two-dimensional continuum in which
the interaction between different parts of the shell is due to forces and moments. The
kinematical model of a simple shell is based on the introduction of a directed material
surface 𝜔, which is determined in the actual configuration by Eq. (3.1) considering
𝑘 = 1,2,3. Now 𝑑𝑑𝑑𝑘 (𝑞1, 𝑞2) are a triad of orthonormal vectors obeying the condition
𝑑𝑑𝑑3 = 𝑛𝑛𝑛. In the reference configuration Eq. (3.2) with 𝐷𝐷𝐷𝑘 = 𝑁𝑁𝑁 holds true, where 𝑁𝑁𝑁 is
the unit normal to the shell surface in the reference configuration. On this stage each
material point of the shell has 5 degrees of freedom. Making the standard derivation
the linear and the angular velocities 𝑣𝑣𝑣(𝑞, 𝑡), 𝝎(𝑞, 𝑡) can be introduced.

In the case of infinitesimal deformations, the local equations of motion can be
written as

∇∇∇ ·𝑇𝑇𝑇 + 𝑓𝑓𝑓 = 𝜌(𝑣𝑣𝑣+𝚯𝑇1 ·𝝎) · ,
∇∇∇ ·𝑀𝑀𝑀 +𝑇𝑇𝑇× + 𝑙𝑙𝑙 = 𝜌(𝚯1 ·𝑣𝑣𝑣+𝚯2 ·𝝎) · + 𝜌𝑣𝑣𝑣×𝚯𝑇1 ·𝝎,

(3.11)

where 𝑇𝑇𝑇 = 𝑅𝑅𝑅𝛼 ⊗𝑇𝑇𝑇 𝛼,𝑀𝑀𝑀 = 𝑅𝑅𝑅𝛼 ⊗𝑀𝑀𝑀𝛼 denote the force and moment tensors and 𝑇𝑇𝑇× ≡
𝑅𝑅𝑅𝛼 ×𝑇𝑇𝑇 𝛼. The vectors 𝑓𝑓𝑓 and 𝑙𝑙𝑙 are the surface density of the external forces and
moments, respectively.

Let U be the mass density of the internal energy. The local form of the balance
of energy can be expressed as

𝜌 ¤U =𝑇𝑇𝑇T······∇∇∇𝑣𝑣𝑣−𝑇𝑇𝑇× ·𝝎−𝑀𝑀𝑀T ······∇∇∇𝝎. (3.12)

Introducing the energetic tensors we obtain another form of the balance of energy with
the first and the second deformation tensors [27]. The specific elastic deformation
energy U contains 12 scalar arguments. It can be shown that only 11 are independent.
One can choose the following integrals

E =
1
2

[(𝐸 + 𝑎)(𝐸 + 𝑎)(𝐸 + 𝑎) ·𝑎𝑎𝑎 · (𝐸 + 𝑎)(𝐸 + 𝑎)(𝐸 + 𝑎)𝑇 −𝑎𝑎𝑎] ,
𝚽 = (𝐹 − 𝑏𝐹 − 𝑏𝐹 − 𝑏 ·𝑐𝑐𝑐) ·𝑎𝑎𝑎 · (𝐸 + 𝑎𝐸 + 𝑎𝐸 + 𝑎)𝑇 +𝑏𝑏𝑏 ·𝑐𝑐𝑐 · E +𝑏𝑏𝑏 ·𝑐𝑐𝑐,
𝜸 = 𝐸𝐸𝐸 ·𝑛𝑛𝑛, 𝜸∗ = 𝐹𝐹𝐹 ·𝑛𝑛𝑛.

(3.13)

U does not depend on 𝜸∗. Tensors E,𝚽,𝜸 are called the reduced deformation tensors.
Here E denote plane tensile and shear strains, 𝚽 - bending and torsional strains and
𝜸 - transverse shear.
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For a shell made from an elastic material the strains are relatively small while
the displacements and rotations can be relatively large. In such a case the following
quadratic approximation can be introduced

2𝜌0U = 2𝑇𝑇𝑇0 ······EEE +2𝑀𝑀𝑀𝑇
0 ······𝚽+2𝑁𝑁𝑁0 ·𝜸 + E ······ (4)𝐶𝐶𝐶1 ······ E +2E ······ (4)𝐶𝐶𝐶2 ······𝚽

+ 2𝚽 ······ (4)𝐶𝐶𝐶3 ······𝚽+𝜸·𝚪·𝜸+2𝜸· ((3)𝚪1······E+ (3)𝚪2······𝚽).
(3.14)

Here 𝑇𝑇𝑇0,𝑀𝑀𝑀0,𝑁𝑁𝑁0, (4)𝐶𝐶𝐶1,
(4)𝐶𝐶𝐶2,

(4)𝐶𝐶𝐶3, (3)𝚪1,
(3) 𝚪2, 𝚪 denote stiffness tensors of dif-

ferent order. They express the effective elastic properties of the simple shell. The
differences between various classes of simple shells are connected with different
expressions of the stiffness tensors. The stiffness tensors do not depend on the
deformations. Thus they may be found from tests based on the linear shell theory.

3.3.5 3-P arameter Theory

Finally, it is worst to mention the classical Kirchhoff-Love theory of shells. Within the
discussed above director-based approach the classical shell model could be related
the case when directors coincide with coordinate base vectors, and we refer to the
books by [4, 26, 28–30].

3.4 Conclusions

Starting from the multipolar approach we briefly discussed some approaches based
on consistent reduction of the kinematics descriptors. So in the same framework we
introduced twelve-, six-, and five-parametric theories of plates and shells. For the
current state of the art in the field of plates and shells we mention recent proceedings
[31–34] and the review by [35].
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Chapter 4
Conceptual Generalizations of the Kapitsa
Problem

Alexey V. Babenko, Oksana R. Polyakova, and Tatyana P. Tovstik

Abstract The problem of an inverted pendulum stability under the action of vibration
of its base for the first time was published in the works of A. Stephenson and it was
analyzed in detail in the works of P.L. Kapitsa. The problem continues to interest
scientists. The areas of its practical application are growing. The purpose of the work
is to reveal the influence of elastic transverse and longitudinal deformations of the
Kapitsa pendulum on its stability and on the pattern of oscillations at steady state.
The dynamic problem of the Kapitsa pendulum movement in the generalized case
for a flexible tensile rod is solved analytically and numerically. The problem of small
transverse vibrations of a longitudinally compressed flexible rod on a vibrating base
is solved by introducing an auxiliary boundary value problem of the static equilibrium
bifurcation of a rod under its own weight with a free upper end and a hinged lower
end. The problem is reduced to a system of Mathieu-type equations. For solution we
used the method of two-scale asymptotic expansion into a series in powers of a small
parameter, where the amplitude of the vertical oscillation of the support is small with
respect to the length of the pendulum. The Pade approximation is used in numerical
calculations for coefficients depending on the base vibration frequency in a complex
way. The obtained results make it possible to evaluate the effects of the influence of
the second and third forms of bending oscillations and four longitudinal resonances
on the stability and dynamics of the pendulum. Four dimensionless parameters are
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proposed, which include all parameters of the linear dimensional problem in the
general case of a flexible tensile Kapitsa pendulum. The results are shown in the
graphs.

4.1 Introduction

The problem of the upper position stability of an inverted pendulum in the case of
the suspension point vibration was considered at the beginning of the 20th century
by A. Stephenson [1]. Stephenson found an approximate solution to the equation
of motion of a pendulum with a vibrating base in the case of small deviations of
the pendulum and derived the condition for the stability of the upper equilibrium
position. The equation he used belongs to Mathieu-type equation and assumes a
solution by series expansion. The Mathieu equation was also used in the works of the
next stage in the development of the inverted pendulum problem [2–7] in the 20-30s
of the last century. It is rightly points out in the article [8] that it was a time when
published works went unnoticed, since the time had not yet come and the problem
of a pendulum with a vibrating base was simply “waiting for its time”.

A new stage began 20 years later, with the development of the stability theory,
when N.N. Bogolyubov [9] solved a more general problem than Stephenson’s. The
resulting solution allowed us to derive the stability condition. Unlike N.N. Bogoliubov,
P.L. Kapitsa [10] considers the nonlinear equation of pendulum oscillations without
taking damping into account and obtains the result for the stability parameters not
only for the first approximation, which coincides with the result of [9], but also for
higher approximations. P.L. Kapitsa constructed a theory for calculating the pendulum
oscillation period. He obtained not only the equilibrium condition,but also an estimate
of the accuracy under the assumption of small amplitude of the suspension point
oscillation. He also solved the problem with the deviation of the pendulum from the
upper equilibrium position by a finite angle and found the restoring moment acting
on the pendulum.

Along with new theoretical results obtained for the case of more complex suspen-
sion oscillations P.L. Kapitsa also conducts its an experimental study and denotes
options for practical applications. P.L. Kapitsa writes [11] that “the beautiful and
instructive phenomenon of the dynamic stability of an inverted pendulum has not only
not been included in modern manuals on mechanics, but is even almost unknown to
a wide range of specialists”. The situation has changed significantly with the advent
of the works of N.N. Bogolyubov and P.L. Kapitsa. The approach of L.D. Landau
in relation to the problem of a pendulum with a vibrating base supposed the in-
troduction “effective potential energy” concept. It is precisely the minimum of the
effective potential energy function corresponds to the position of stable equilibrium.
The problem of a pendulum with a vibrating base took pride of place in the first
volume of L.D. Landau and E.M. Lifshitz [12].
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Works by N.N. Bogolyubov and P.L. Kapitsa opened a new trend in vibrational
dynamics. The development of this trend was continued by such prominent scientists
as V.N. Chelomei [13], V.I. Arnold [14], I.I. Blekhman [15].

For today the application of the effect, which was studied in detail for the first time
for the Kapitsa pendulum, is being expanded. The stability of oscillatory systems of
classical mechanics [16], physics [17], microscopic particles [18] is studied. New
fundamental and technological problems are being solved. At the same time, the
nature of the studied high-vibration effects on a body or system of bodies can be both
mechanical and electromagnetic.

4.2 Mathieu Equation

The famous Mathieu equation

𝑑2𝜑

𝑑𝑡21
− (𝑞− Y sin 𝑡1) 𝜑 = 0, (4.1)

to which, in the case of small deflection of the pendulum from the vertical, the Kapitsa
problem is reduced, contains two parameters – 𝑞 and Y, in the plane of which the
stability or instability of vibrations near the equilibrium state 𝜑 = 0 is determined. On
the plane of these parameters, a diagram of stability regions is constructed, known
as the Ince–Strutt diagram[19], Fig. 4.1.

Let us show the physical meaning of the quantities included here. To do this, we
write the equation of vibrations of an inverted mathematical pendulum of length 𝐿
under the action of vertical vibrations of the base 𝑧(𝑡) = 𝑎 sin (𝜔𝑡 + 𝛽) in the field of
gravity with acceleration of free fall 𝑔

¥𝜑−
(
𝑔

𝐿
− 𝑎𝜔

2

𝐿
sin (𝜔𝑡 + 𝛽)

)
sin𝜑 = 0. (4.2)

By introducing the dimensionless time 𝑡1 = 𝜔𝑡 + 𝛽, for small deflection angles of the
pendulum sin𝜑 = 𝜑, Eq. (4.2) is reduced to (4.1), and 𝑞 =

𝑔

𝐿𝜔2 – is responsible for

Fig. 4.1 Fragment of the
Ince–Strutt diagram. The
stability regions are hatched. 0 0.1
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the contribution of gravity. For the problem of a pendulum oscillating in the lower
equilibrium position, the quantity 𝑞 in Eq. (4.1) is negative.

The parameter |𝑞 | can be represented as the ratio of squared angular velocities

𝑞 =
𝜔2

1
𝜔2 , 𝜔2

1 =
𝑔

𝐿
, (4.3)

where 𝜔1 is the frequency of free vibration of the pendulum in its lower equilibrium
position in the absence of vibrations of the suspension point, and 𝜔 is the specified
frequency of oscillation of the base. Such an approach, which includes angular
velocities in the formulation and solution of the stability problem, was developed by
D.J. Acheson [20] for the case of multilink pendulums.

The parameter Y in Eq. (4.1) has the physical meaning of the dimensionless
amplitude of oscillations of the base

Y =
𝑎

𝐿
. (4.4)

The diagram (Fig. 4.1) gives an idea of the movement of the pendulum under the
action of vibration of the base and gravity in the entire range of parameters. In
particular, even in the lower position of the pendulum, there are modes of oscillation
in which the lower equilibrium position is unstable (non hatched parts of the graph
for 𝑞 < 0).

The classical Kapitsa effect for a problem with small pendulum deflection angles
𝜑(𝑡) is realized for small values of the ratio of the base oscillation amplitude to the
pendulum length Y =

𝑎

𝐿
≪ 1. The equations for the boundaries of the stability region

of an inverted pendulum (for 𝑞 > 0) are known [19], and the stability conditions have
the form

0.5Y2 > 𝑞 > 0.595(Y−0.454). (4.5)

The right side of the inequality holds for all small Y, the left side in dimensional
variables gives

𝑎2

2𝐿2 >
𝑔

𝐿𝜔2 . (4.6)

Inequality (4.6) will be satisfied for sufficiently large values of the frequency𝜔. Thus,
for the Kapitsa problem, equation (4.1) includes two parameters: the small factor Y
with the oscillating term 𝜑 sin 𝑡1 and the factor 𝑞 ∼ Y2, 𝑞 > 0 of the second order of
smallness with the term responsible for the destabilizing effect.

4.3 Model of the Flexible Rod of the Kapitsa Pendulum

There is a video recording of interesting experiments conducted by colleagues
of our institute [21, 22]. In the first of the experiments, a rope was taken as a
model of Kapitsa’s pendulum. In the absence of vibrations, the rope is bent and
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placed horizontally on the table. The vibration of the support is turned on and the
vibration speed gradually increases until the rope becomes vertical. With an even
greater increase in the frequency of vibrations, the system passes twice through
areas with large amplitudes of transverse vibrations, and in the first and second
cases it is visually seen that the shapes are different. Adopting the Kapitsa flexible
compressible pendulum model, we investigate this phenomenon on our model. The
second experiment shows a working model of an inverted pendulum with an internal
degree of freedom in the form of a mass on an elastic spring.

In this section, we develop the approach started in [23–27]. Let us consider
the generalized model of the Kapitsa pendulum and find what effect the condition
of deformability and flexibility of the pendulum can have on its stability. Let the
pendulum be a homogeneous deformable rod, the bending of which is described by
the Bernoulli-Euler beam model. The rod is fixed on a hinged support that performs
harmonic oscillations with a given frequency and amplitude in the vertical direction.
The movement takes place in the field of gravity. We will assume that the support
vibration amplitude 𝑎 is small compared to the rod length 𝐿.

In the general case, to describe the motion of the Kapitsa pendulum, it is necessary
to consider two boundary value problems that describe small transverse oscillations
and longitudinal oscillations, respectively. The equation of transverse vibrations of a
longitudinally compressed rod near the upper equilibrium position has the form [28]

𝐷
𝜕4𝑤

𝜕𝑥4 + 𝜕

𝜕𝑥

(
𝑃(𝑥, 𝑡) 𝜕𝑤

𝜕𝑥

)
+ 𝜌𝑆 𝜕

2𝑤

𝜕𝑡2
= 0, (4.7)

where 𝑤(𝑥, 𝑡) – transverse deflection, 𝐷 = 𝐸𝐼 – bending stiffness, 𝐸 – Young’s
modulus, 𝜌 – mass density, 𝑆 is the cross-sectional area. The upper end 𝑥 = 𝐿 of the
rod is free, and at the lower end 𝑥 = 0 we consider the hinge support

𝜕2𝑤

𝜕𝑥2

����
𝑥=𝐿

=
𝜕3𝑤

𝜕𝑥3

����
𝑥=𝐿

= 0, 𝑤(0, 𝑡) = 𝜕2𝑤

𝜕𝑥2

����
𝑥=0

= 0. (4.8)

The axial force 𝑃 consists of two terms, the first of which is related to the weight
of the rod 𝑃0, and the second is due to the harmonic vertical vibrations of the base
𝑎 sin (𝜔𝑡 + 𝛽). For the inextensible rod model

𝑃(𝑥, 𝑡) = 𝑃0
𝐿− 𝑥
𝐿

− 𝜌𝑎𝜔2𝑆(𝐿− 𝑥) sin (𝜔𝑡 + 𝛽) , 𝑃0 = 𝜌𝑔𝑆𝐿. (4.9)

In the case of a tensile rod model, the axial force is found from the boundary value
problem of the propagation of longitudinal waves along the rod

𝜌𝑆

(
𝜕2𝑢

𝜕𝑡2
+𝑔− 𝑎𝜔2 sin (𝜔𝑡 + 𝛽)

)
= 𝐸𝑆

𝜕2𝑢

𝜕𝑥2 , 𝑢(0, 𝑡) = 0,
𝑑𝑢

𝑑𝑥

����
𝑥=𝐿

= 0, (4.10)

where 𝑢(𝑥, 𝑡) is the longitudinal displacement. The axial compressive force is related
to the longitudinal deformation by the formula
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𝑃(𝑥, 𝑡) = −𝐸𝑆𝑢𝑥 . (4.11)

Let us introduce dimensionless parameters Y, 𝑞, 𝑃𝐷 and pass to dimensionless
variables

𝑥 =
𝑥

𝐿
, 𝑡 = 𝜔𝑡, �̂� =

𝑤

𝐿
, �̂� =

𝑢

𝐿
, 𝑃𝐷 =

𝑃0𝐿
2

𝐷
, Y =

𝑎

𝐿
, 𝑞 =

𝑔

𝐿𝜔2 . (4.12)

In what follows, theˆ icon will be omitted.
For the model of an inextensible pendulum, the Eq. (4.7) in dimensionless variables

takes the form

𝜕4𝑤

𝜕𝑥4 +𝑃𝐷 𝜕

𝜕𝑥

[
(1− 𝑥) 𝜕𝑤

𝜕𝑥

] [
1− Y

𝑞
sin(𝑡 + 𝛽)

]
+ 𝑃𝐷
𝑞

𝜕2𝑤

𝜕𝑡2
= 0. (4.13)

For the model of an extensible pendulum, we first find the longitudinal force from
Eq. (4.10) problem, which in dimensionless variables has the form

𝜕2𝑢

𝜕𝑡2
+ 𝑞− Y sin (𝑡 + 𝛽) = 𝐸

𝐿2𝜌𝜔2
𝜕2𝑢

𝜕𝑥2 , 𝑢(0, 𝑡) = 0,
𝑑𝑢

𝑑𝑥

����
𝑥=1

= 0. (4.14)

We are looking for a solution (4.14) in the form

𝑢(𝑥, 𝑡) = 𝑃0
𝐸𝑆

(
𝑥2

2
− 𝑥

)
+𝑈 (𝑥) sin (𝑡 + 𝛽) , 𝑃0 = 𝜌𝑔𝑆𝐿. (4.15)

For the function𝑈 (𝑥) we obtain the boundary value problem

𝑑2𝑈

𝑑𝑥2 + 𝜈2 (𝑈 + Y) = 0, 𝑈 (0) = 0,
𝑑𝑈

𝑑𝑥

����
𝑥=1

= 0, 𝜈2 =
𝜔2𝐿2

𝑐2 , 𝑐2 =
𝐸

𝜌
, (4.16)

where 𝑐 is the speed of sound in the rod material. We find a solution𝑈 (𝑥)

𝑈 (𝑥) = −Y(1− cos𝜈𝑥− sin𝜈𝑥 tan 𝜈) (4.17)

and axial force

𝑃(𝑥, 𝑡) = −𝐸𝑆 𝐿
2

𝐷

𝜕𝑢

𝜕𝑥
= 𝑃𝐷

[
1− 𝑥− Y

𝑞

cos𝜈𝑥 tan𝜈− sin𝜈𝑥
𝜈

sin (𝑡 + 𝛽)
]
. (4.18)

For an inextensible rod 𝐸 →∞, 𝑐→∞, 𝜈→ 0 and, passing to the limit in Eq. (4.18)
for 𝜈→ 0, we find

𝑃 = 𝑃𝐷 (1− 𝑥)
[
1− Y

𝑞
sin (𝑡 + 𝛽)

]
,

which coincides with the formula (4.9) in its dimensionless writing.
Substituting the force 𝑃(𝑥, 𝑡) into the equation for transverse oscillations (4.7), we

obtain
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𝜕4𝑤

𝜕𝑥4 +𝑃𝐷 𝜕

𝜕𝑥

{[
1− 𝑥− Y

𝑞

cos𝜈𝑥 tan𝜈− sin𝜈𝑥
𝜈

sin (𝑡 + 𝛽)
]
𝜕𝑤

𝜕𝑥

}
+

+𝑃𝐷
𝑞

𝜕2𝑤

𝜕𝑡2
= 0.

(4.19)

The solution to the problem of small transverse oscillations of a longitudinally
compressed flexible rod on a vibrating base (4.19) is sought as the sum of the series

𝑤(𝑥, 𝑡) =
𝑁∑︁
𝑛=1

Ψ𝑛 (𝑥)𝑤𝑛 (𝑡), (4.20)

where Ψ𝑛 (𝑥) are eigenfunctions of the auxiliary boundary value problem of the static
equilibrium bifurcation of a rod under its own weight with a free upper end and a
hinged lower end

𝑑4Ψ𝑛
𝑑𝑥4 +𝜆𝑛 𝑑

𝑑𝑥

[
(1− 𝑥) 𝑑Ψ𝑛

𝑑𝑥

]
= 0, Ψ𝑛 (0) = Ψ𝑛

′′ (0) = Ψ𝑛
′′ (1) = Ψ𝑛

′′′ (1) = 0,

(4.21)
where the orthogonality condition is satisfied

1∫
0

(1− 𝑥) 𝑑Ψ𝑘
𝑑𝑥

𝑑Ψ𝑛
𝑑𝑥

𝑑𝑥 = 0, 𝑘 ≠ 𝑛, (4.22)

It is convenient that the eigenfunctions Ψ𝑛 and the dimensionless Euler critical
values 𝜆𝑛 depend only on the pendulum fixing conditions and do not depend on
the parameters of the Kapitsa problem. Integrating the equation with the boundary
conditions (4.21), we arrive at the Airy equation

𝑉 ′′ (𝑥,𝜆) +𝜆(1− 𝑥)𝑉 (𝑥,𝜆) = 0 (4.23)

for

Ψ𝑘 (𝑥) =
𝑥∫

0

𝑉 (𝑥,𝜆𝑘)𝑑𝑥, (4.24)

and taking into account 𝑉 ′ (1,𝜆) = 0, to the solution [19] as a series

𝑉 (𝑥,𝜆) =
∞∑︁
𝑘=0

[−𝜆(1− 𝑥)3] 𝑘
𝑎𝑘

, 𝑎0 = 1, 𝑎𝑘 = 3𝑘 (3𝑘 −1)𝑎𝑘−1. (4.25)

We substitute the resulting solution (4.20) into Eq. (4.19), and taking into account
the orthogonality conditions (4.22), similarly to Eq. [24], we obtain a system of
differential equations with variable coefficients
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𝑁∑︁
𝑘=1

𝑎𝑛𝑘
𝑑2𝑤𝑘
𝑑𝑡2

+𝑞𝑏𝑛
(
𝜆𝑛
𝑃𝐷

−1
)
𝑤𝑛+

𝑁∑︁
𝑘=1

Y𝑐𝑛𝑘 sin (𝑡 + 𝛽)𝑤𝑘 = 0, 𝑛 = 1, . . . , 𝑁. (4.26)

It is convenient to write the same system in matrix form by introducing the vector𝑊𝑊𝑊
of unknown functions {𝑤𝑘}𝑇𝑘=1,𝑁 and coefficient matrices

𝐴𝐴𝐴
𝑑2𝑊𝑊𝑊

𝑑𝑡2
+ 𝑞𝑃𝑃𝑃 ·𝑊𝑊𝑊 + Y𝐶𝐶𝐶 ·𝑊𝑊𝑊 sin (𝑡 + 𝛽) = 0, Y =

𝑎

𝐿
, 𝑞 =

𝑔

𝐿𝜔2 , (4.27)

where 𝐴𝐴𝐴 and𝐶𝐶𝐶 are symmetric matrices, 𝑃𝑃𝑃 is a diagonal matrix

𝑃𝑛𝑛 = 𝑏𝑛

(
𝜆𝑛
𝑃𝐷

−1
)
, 𝑏𝑛 =

1∫
0

(1− 𝑥)
(
𝑑Ψ𝑛
𝑑𝑥

)2
𝑑𝑥, (4.28)

𝑎𝑛𝑘 =

1∫
0

Ψ𝑛 (𝑥)Ψ𝑘 (𝑥)𝑑𝑥, 𝑐𝑛𝑘 =

1∫
0

(cos𝜈𝑥 tan𝜈− sin𝜈𝑥)
𝜈

𝑑Ψ𝑛
𝑑𝑥

𝑑Ψ𝑘
𝑑𝑥

𝑑𝑥. (4.29)

The first eigenvalues of the problem are

𝜆1 = 0, 𝜆2 = 25.64, 𝜆3 = 95.96, 𝜆4 = 210.68, 𝜆5 = 369.83. (4.30)

From the expressions (4.28), (4.30) we see that the first principal minor of the matrix
𝑃𝑃𝑃 is negative for any positive pendulum weight 𝑃𝐷 > 0. This term will make a
contribution that has a destabilizing effect on the motion of the pendulum. The next
elements of the diagonal matrix 𝑃𝑃𝑃 will be negative only for values of the pendulum
weight parameter 𝑃𝐷 exceeding the corresponding eigenvalues 𝜆𝑛 of the problem of
static deflection of an hinged rod. The oscillating term will have a stabilizing effect.

Thus, the stability of the Kapitsa pendulum in the problem for a flexible com-
pressible rod, in contrast to the problem for a non-deformable pendulum, is affected
by four parameters. The parameters 𝑃𝐷 and 𝜈 are added to the parameters of the
dimensionless amplitude Y and the dimensionless acceleration of gravity 𝑞, which
determine the dynamics of the classical Kapitsa problem (Sect. 4.2). When the
bending stiffness of a rod tends to infinity, the weight parameter 𝑃𝐷 associated with
bending tends to zero. Letting the tensile-compressive stiffness tend to infinity, we
obtain the zero value of the compressibility parameter 𝜈.

By numerically solving the system (4.27), one can obtain separate results regarding
the influence of certain parameter values on the stability. Next, we continue the
analytical study using the asymptotic two-scale expansion in order to obtain a general
picture of the stability of the pendulum with small deviations from the vertical.
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4.4 Asymptotic Expansion

Previously, for a non-deformable pendulum (Sect. 4.2), an estimate was obtained

𝑞 ∼ Y2, (4.31)

let’s take the designation
𝑞 =

𝑞

Y2 . (4.32)

Let a small deviation of the pendulum and zero initial speed be given at the initial
moment of time. Then the equation (4.27) and the initial conditions for it will look
like

𝐴𝐴𝐴
𝑑2𝑊𝑊𝑊

𝑑𝑡2
+ Y2𝑞𝑃𝑃𝑃 ·𝑊𝑊𝑊 + Y𝐶𝐶𝐶 ·𝑊𝑊𝑊 sin (𝑡 + 𝛽) = 0, 𝑊𝑊𝑊 (0) =𝑊𝑊𝑊0,

𝑑𝑊𝑊𝑊

𝑑𝑡

����
𝑡=0

= 000. (4.33)

Consider the stability of the zero solution of the system (4.33). For Y = 0 this system
has a solution 𝑊𝑊𝑊 (\) =𝑊𝑊𝑊0, where the components of the vector 𝑊𝑊𝑊0 are constant.
Therefore, for Y≪ 1, we will look for a solution to the system in the form of periodic
functions with slowly varying amplitudes [19]. The vector function

𝑊𝑊𝑊 =𝑊𝑊𝑊 (𝑡, \, Y), \ = Y𝑡, (4.34)

where \ is slow time, is sought in the form of an asymptotic expansion

𝑊𝑊𝑊 (𝑡, \, Y) =
∞∑︁
𝑚=0

(𝑈𝑈𝑈𝑚 (\) +𝑉𝑉𝑉𝑚 (𝑡, \))Y𝑚,
2𝜋∫

0

𝑉𝑉𝑉𝑚 (𝑡, \)𝑑𝑡 = 0, 𝑚 = 0,1, . . . (4.35)

Taking into account the relation

𝑑2𝑊𝑊𝑊

𝑑𝑡2
=
𝜕2𝑊𝑊𝑊

𝜕𝑡2
+2Y

𝜕2𝑊𝑊𝑊

𝜕𝑡𝜕\
+ Y2 𝜕

2𝑊𝑊𝑊

𝜕\2 (4.36)

we successively find

Y0 : 𝑉𝑉𝑉0 (𝑡, \) ≡ 0,

Y1 : 𝑉𝑉𝑉1 (𝑡, \) = 𝐴𝐴𝐴−1 ·𝐶𝐶𝐶 ·𝑈𝑈𝑈0 sin (𝑡 + 𝛽) ,

Y2 : 𝐴𝐴𝐴 · 𝑑
2𝑈𝑈𝑈0

𝑑\2 +𝐷𝐷𝐷 ·𝑈𝑈𝑈0 = 0, 𝐷𝐷𝐷 = 𝑞𝑃𝑃𝑃+ 1
2
𝐶𝐶𝐶 ·𝐴𝐴𝐴−1 ·𝐶𝐶𝐶. (4.37)

For the zero solution of Eq. (4.37) to be stable, the matrix𝐷𝐷𝐷 must be positive definite,
since the matrix 𝐴𝐴𝐴 is positive definite. The loss of positive definiteness 𝐷𝐷𝐷 serves to
determine the critical value of the parameters.

The initial conditions in the linear approximation do not affect the stability, but
affect the oscillation amplitude. Let us write the initial conditions (4.33) for Eq. (4.37)
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𝑈𝑈𝑈0 (0) =𝑊𝑊𝑊0,

𝑑𝑊𝑊𝑊

𝑑𝑡
= Y

𝑑𝑈𝑈𝑈0
𝑑\

+ 𝑑

𝑑𝑡

[
Y𝐴𝐴𝐴−1 ·𝐶𝐶𝐶 ·𝑈𝑈𝑈0 sin (𝑡 + 𝛽)] +𝑂 (

Y2
)
,

𝑑𝑊𝑊𝑊

𝑑𝑡

����
𝑡=0

= 000 =>
𝑑𝑈𝑈𝑈0
𝑑\

����
𝜃=0

= −𝐴𝐴𝐴−1 ·𝐶𝐶𝐶 ·𝑊𝑊𝑊0 cos 𝛽.

(4.38)

We see that for slowly varying deflections of the rod along the eigenmodes𝑈𝑈𝑈0 (\),
the initial conditions included the value of the initial phase of vibrations of the base
𝛽. Indeed, calculations have shown that for some values of 𝛽, the amplitude of the
pendulum oscillations 𝑤1 (𝑡) is several times greater than the initial value of the
deflection.

4.5 Pade Approximation

Let us write down for the first three modes of oscillations the numerical values of
the coefficients (4.28), (4.29) included in Eq. (4.37). For oscillations in the first three
modes, we have

𝜆1 = 0, Ψ1 (𝑥) = 𝑥, 𝑎11 = 1/3, 𝑏1 = 0.5,

𝑎12 = 0.0331, 𝑎22 = 0.02 𝑏2 = 0.162,

𝑎13 = 0.00195 𝑎23 = 0.00576, 𝑎33 = 0.00633, 𝑏3 = 0.131,

𝑃11 = −0.5, 𝑃22 = 0.162
(
25.6
𝑃𝐷

−1
)
, 𝑃33 = 0.131

(
96
𝑃𝐷

−1
)
.

(4.39)

Here and below, we give values with an accuracy of one to three significant figures,
but the calculations were made with an accuracy of six or more significant figures.

The components of the matrix𝐶𝐶𝐶 depend in a complicated way on the compress-
ibility parameter 𝜈. For an incompressible rod, the matrix𝐶𝐶𝐶 is diagonal, and 𝑐𝑛𝑛 = 𝑏𝑛.
Graphs of coefficients 𝑐𝑖 𝑗 (𝜈) are shown in Fig. 4.2.

These coefficients are calculated using the formulas (4.24), (4.25), (4.29). The
first of the coefficients can be written out explicitly, for the rest we use the Pade
approximation [29] on the interval 0.07 < 𝜈 < 8.3, chosen so that the relative error
in the indicated region is less than 0.5%. Approximation works up to 𝜈 = 12, while
the error increases, but the visually accurate and approximate graphs are almost the
same.

𝑐11 (𝜈) = (tan𝜈 sin𝜈 + cos𝜈−1)/𝜈2, (4.40)

𝑧 = 𝑧(𝜈) =
(
1− 4𝜈2

𝜋2

) (
1− 4𝜈2

9𝜋2

) (
1− 4𝜈2

25𝜋2

) (
1− 4𝜈2

49𝜋2

)
, 𝜋 = 3.14,
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𝑐22 (𝜈) =10−6 (162000−13.9𝜈−7460𝜈2−35.7𝜈3+212𝜈4−5.8𝜈5−.13𝜈6−.098𝜈7+.004𝜈8 )/𝑧,
𝑐33 (𝜈) =10−6 (131000−23.8𝜈−5970𝜈2−88.6𝜈3+169𝜈4−15.3𝜈5+2.1𝜈6−.27𝜈7+.01𝜈8 )/𝑧,
𝑐12 (𝜈) =10−6 (−15−14.9𝜈+13500𝜈2−32𝜈3−291𝜈4−5.1𝜈5+2.6𝜈6−.086𝜈7+.004𝜈8 )/𝑧,
𝑐13 (𝜈) =10−6 (32.9−14𝜈−1450𝜈2−39𝜈3+205𝜈4−6.5𝜈5−.331𝜈6−.11𝜈7+.005𝜈8 )/𝑧,
𝑐23 (𝜈) =10−6 (−18+1.7𝜈+5510𝜈2+4.06𝜈3−119𝜈4+.68𝜈5+.88𝜈6+.013𝜈7−.0008𝜈8 )/𝑧.

The obtained approximations are especially convenient when it is necessary to
perform calculations in a large range of 𝜈 values.

In our previous papers, we limited ourselves to approximating the absolute values
of 𝑐𝑖 𝑗 (𝜈), since Eq. (4.37) equation included the quadratic form of these coefficients,
and 𝑐𝑖 𝑗 (𝜈) all changed sign simultaneously. Starting from the third form ofoscillations,
it will not be possible to limit ourselves to the approximation of modules. As we
see from Fig. 4.2, the quantity 𝑐13 (𝜈), unlike the other 𝑐𝑖 𝑗 , changes sign not only at
resonances.

4.6 Discussion of Results

4.6.1 Resonances of Longitudinal Vibrations

Let us discuss the physical meaning of resonances of longitudinal vibrations. The
first resonant frequency is the value 𝜈 = 𝜋/2. Rewrite the formula (4.16)

𝜈 = 𝜔
𝐿

𝑐
=

2𝜋
𝑇𝜔

𝑇𝐿 , (4.41)

where 𝑇𝜔 is the dimensional value of the support oscillation period, 𝑇𝐿 is the travel
time of the tension-compression wave along the length of the pendulum 𝐿 in one
direction. Equating 𝜈 to the first resonant value, we get
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Fig. 4.2: Plot of the coefficients 𝑐𝑖 𝑗 (𝜈) . (𝑎)(𝑎)(𝑎) The functions 𝑐11, 𝑐22, 𝑐33 are shown as blue, green
and red lines respectively. (𝑏)(𝑏)(𝑏) Functions 𝑐12, 𝑐13, 𝑐23 are shown with cyan, purple and yellow
lines.
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4𝑇𝐿 = 𝑇𝜔 , (4.42)

that is, during the period of one oscillation of the base, the tension-compression wave
passes 4 times along the length of the rod. Note that the fourfold passage of the length
of the rod by the tension-compression wave is the full period for this wave under
the given conditions of the rod fixing. If at the first moment a compression wave
was generated, then, having reflected from the upper free end of the rod, it becomes
a tension wave. Further, reflecting from the lower boundary, the wave continues to
move as a stretching wave to the upper end, and, finally, reflecting from the free upper
end, then goes down as a compression wave. For the next two resonances, we get

4𝑇𝐿 = 3𝑇𝜔 , 4𝑇𝐿 = 5𝑇𝜔 . (4.43)

In all these cases, energy is pumped into the system: at the moment 2𝑇𝐿 , when the
tension wave arrives, the support goes down, further increasing the tension of the
rod; at the moment 4𝑇𝐿 when the compression wave comes down, the support goes
up, increasing the compression even more (Fig. 4.3.) Naturally, the picture is much
more complicated, we just followed the wave front.

4.6.2 General Picture of Stability by Asymptotic Formulas

In real structures, it is often possible to change the angular velocity in the course of
one experiment. The dimensionless quantities included in the pendulum oscillation
formula in the asymptotic approximation (4.37) depend on the angular velocity.
The angular velocity enters into two dimensionless parameters – 𝜈 and 𝑞. In the
dimensionless parameter 𝑞, we single out separately the factor associated with 𝜈,
and separately the factor associated with the amplitude of the oscillations and the
parameters of the pendulum rod – 𝑞. Using the formulas (4.16), (4.27), (4.32), we
find

𝜈2 = 𝜔2 𝐿
2𝜌

𝐸
, 𝑞 =

1
𝜔2

𝑔𝐿

𝑎2 =
1
𝜈2
𝑔𝐿3𝜌

𝑎2𝐸
, 𝑞 =

𝑞

𝜈2 , 𝑞 =
𝑔𝐿3𝜌

𝑎2𝐸
. (4.44)

L LL LL LL L

T
� 3T

�

4T
L 4T

L

ba

Fig. 4.3: Longitudinal resonance. (𝑎)(𝑎)(𝑎) . First resonance. (𝑏)(𝑏)(𝑏) . Second resonance.
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The figures show graphs of the three principal minors of the matrix 𝐷𝐷𝐷 of the
equation (4.37) versus the frequency 𝜈. Asymptotic stability requires that all three
minors be positive. The value of the first minor is shown in blue, the value of the
second in red and the third in green. For comparison, calculations are given when
only the first two vibration modes were taken into account. In this case, the figure
shows the first two minors of the 𝐷𝐷𝐷 matrix, in blue and red, respectively. The results
for an inflexible compressible rod are also shown, one curve in blue. And a graph is
given for an inflexible compressible rod without taking into account compressibility
(𝑐𝑖 𝑗 (𝜈) = 𝑐𝑖 𝑗 (0) = 𝑏𝑖𝛿𝑖 𝑗 ) – a cyan line.

Graphs in Fig. 4.4(a,b,c) show the stability conditions for a rod with low flexibility
𝑃𝐷 = 0.1 at 𝑞 = 1 in case of taking into account three, two and one mode of vibrations
respectively. We see that, taking into account the three modes of oscillation, the
pendulum becomes stable in the region between the first and fourth resonances,
where the inflexible rod was unstable.

If at 𝑃𝐷 = 0.1 we decrease the parameter 𝑞 associated with the force of gravity,
then for the calculation by the first form of vibrations, on the graph (Fig. 4.4(c))
between the third and fourth resonances, we obtain the stability region. Between the
second and third resonances, the region of instability will remain.

Figure 4.5(a,b,c) shows the stability conditions for a highly flexible rod 𝑃𝐷 = 100
at 𝑞 = 1. The flexibility parameter does not affect the results for the first waveform,
and Fig. 4.5(c) is the same as Fig. 4(c). As 𝑃𝐷 increases, the instability regions
expand, and the negative values of the second and third principal minors increase in
absolute value. Also, with the growth of 𝑃𝐷 , an interesting effect appears – negative
peaks of the graphs not far from the resonances. If we compare the magnitude of
the negative green peak (𝐷 𝐼 𝐼 𝐼 ), which has the order of ∼ 10−3 (Fig. 4.5a), with the
magnitude of the negative blue region (𝐷 𝐼 ) for of the first form (Fig. 4.5c), then it
should be taken into account that the value of the third principal minor of the matrix
is the sum of the cubes of its elements, that is, the elements themselves, on average,
have the order of ∼ 10−1. Figure 4.5(d,e,f) shows the stability conditions for a large
gravity parameter 𝑞 = 10 for a rod with medium flexibility 𝑃𝐷 = 10. We see that
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Fig. 4.4: The principal minors of the matrix𝐷𝐷𝐷. The stability condition is the positive definiteness
of the matrix. (𝑎)(𝑎)(𝑎) Accounting for three forms. (𝑏)(𝑏)(𝑏) Accounting for two forms. (𝑐)(𝑐)(𝑐) Accounting for
one form according to the compressible pendulum model (blue line) and without taking into
account compressibility, 𝑐11 (𝜈) = 𝑏1, (cyan line).
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Fig. 4.5: Principal minors of the matrix𝐷𝐷𝐷. (𝑎, 𝑏, 𝑐)(𝑎, 𝑏, 𝑐)(𝑎, 𝑏, 𝑐) – 𝑃𝐷 = 100, �̂� = 1. (𝑑, 𝑒, 𝑓 )(𝑑, 𝑒, 𝑓 )(𝑑, 𝑒, 𝑓 ) –
𝑃𝐷 = 10, �̂� = 10.

taking into account the second and third vibration modes gives wider stability regions
in the region of the second and third resonances.

4.6.3 Comparison with the Exact Solution

Comparing the results of calculation by the approximate (4.37) and exact (4.27)
formulas, we found out that the value of the small parameter Y = 𝑎/𝐿 of the order of
0.1 does not always ensure the agreement of the obtained results. But for Y ∼ 0.01
the obtained results agree. Let us take the problem parameters from Fig. 4.4 and
calculate the motion of the pendulum at 𝜈 = 7.27 with the given dimensionless initial
deviation according to the first form. Previously, we found that for a given value of
𝜈, counting only in the first form gives the instability of the system, and when all
three forms are taken into account, stability. On Fig. 4.6. graphs of fluctuations of
three variables 𝑤𝑖 (𝑡) and three averaged functions𝑈0𝑖 (\) for Y = 0.005 and Y = 0.05
are shown. We see that for insufficiently small Y the obtained results do not coincide.
When calculating taking into account only the first form, both results turned out to be
unstable (not shown on the graphs), which is consistent with the result of Fig. 4.4c.

For small values of 𝑃𝐷 , small amplitudes of the second and third vibration modes
are obtained in the process of movement, if the rod is initially deflected according
to the first mode. As the parameter 𝑃𝐷 , which is responsible for the flexibility of
the rod, increases, the amplitudes of higher frequencies noticeably increase. Three
calculation results obtained with the same other parameters and different values of
𝑃𝐷 are shown in the graph (Fig. 4.7).
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Fig. 4.6: Vibration forms of the rod at 𝜈 = 7.27, �̂� = 1.05, 𝑃𝐷 = 0.1, 𝛽 = −𝜋/2,
𝑤01 = 1, 𝑤02 = 0, 𝑤03 = 0. (𝑎)(𝑎)(𝑎) 𝜀 = 0.005, 𝑤𝑖 (𝑡 ) , 𝑡 ∈ (0, 5000) . (𝑏)(𝑏)(𝑏)
𝜀 = 0.005, 𝑈0𝑖 (𝜃 ) , 𝜃 ∈ (0, 25) . (𝑐)(𝑐)(𝑐) 𝜀 = 0.05, 𝑤𝑖 (𝑡 ) , 𝑡 ∈ (0, 100) . (𝑑)(𝑑)(𝑑)
𝜀 = 0.05, 𝑈0𝑖 (𝜃 ) , 𝜃 ∈ (0, 5) .
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Fig. 4.7: The results of the calculation of pendulum oscillations at 𝜈 = 3, �̂� = 0.18, 𝜀 = 0.01,
𝑡 = 10000, 𝛽 = −𝜋/2, 𝑤01 = 1, 𝑤02 = 0, 𝑤03 = 0. (𝑎)(𝑎)(𝑎) 𝑃𝐷 = 0.1. (𝑏)(𝑏)(𝑏) 𝑃𝐷 = 1. (𝑐)(𝑐)(𝑐) 𝑃𝐷 = 10.

4.6.4 Conclusions

The problem of stability of the generalized Kapitsa pendulum for a flexible rod
is solved in the zero asymptotic approximation, taking into account longitudinal
resonances. The regions of stability are found taking into account three modes of
oscillation of the rod, as well as the effects of the influence of the second and third
forms of bending oscillations on the stability of the pendulum. Four dimensionless
parameters that affect the dynamics of the pendulum model are determined. It is
shown that taking into account the second and third forms of transverse oscillations
can change the picture of the stability of a compressible pendulum, despite the fact
that this pendulum can be rigid enough not to lose static stability in these forms.

The parameter Y affects the dynamics of the pendulum, but is not included in
the asymptotic stability conditions. For insufficiently small Y, the accuracy of the
asymptotic method will decrease.

Even with a sufficiently rigid pendulum that does not lose static stability in the
second form, under the influence of vibrations of the base we obtain not small
transverse oscillations in the second and third forms.
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4.7 Some Hypotheses Regarding the Possible Application of the
Kapitsa Pendulum Effect in Modern and Advanced
Technology

If we look at the effect of the Kapitsa pendulum as the effect of stabilizing the system
in some specific state, which requires a multifactorial impact on the system on two
(or several) scales at once, both in time and in space, then what future do we see in
its application? The invention of new materials and the improvement of the accuracy
of manufacturing parts will make it possible to increase the speed and energy, and,
consequently, the efficiency of new installations operating in a two-scale mode.

Various combinations of the Kapitsa effects with gyroscopic effects can give rise
to new devices for stabilizing spacecraft while moving along a chosen course.

We see the deepening of the possibilities of mechatronics, when with the use of
new materials the ability to convert mechanical motion into electrical motion and use
it in various sensors and other mechatronic devices, up to the damping of mechanical
vibrations by generating electrical energy, expands.

Vibration effect, perhaps, will be achieved, for example, the orientation of protein
molecules in solution and the construction of protein structures of given parameters.
It can be assumed that the technologies for the separation of heavy metal isotopes
based on the principle of the difference in the atomic masses of the nuclei of elements
will be developed with the use of combinations of vibrational effects.

In elementary particle physics, the problem of both stabilizing and compactifying
a beam of charged beam and streamlining the motion of particles in a beam in
circular accelerators continues to be relevant. At the moment, particle acceleration
is carried out due to the synchronous acceleration effect [30], in which particles
pass through the accelerating intervals of the accelerator in approximately the same
phase of the accelerating phase of the magnetic field. The introduction of yet another
high-frequency electric field matched to the magnetic field is a theoretically real and
interesting possibility for solving this problem.
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Chapter 5
Dynamic Properties of Periodic Structures with
Symmetric Inclusions

Ludmila Ya. Banakh and Igor S. Pavlov

Abstract Oscillations and waves in multisection periodic systems with symmetric
subsystems are investigated. Many engineering systems, building structures, as well
as models of acoustic metamaterials have a similar structure. The structure of the
natural frequency spectrum for such a class of systems is found, taking into account
the elastic properties of the constituent subsystems. It is shown that such systems
have band gaps of a harmonic signal and the dispersion curve consists of 𝑛 branches
according to the number of degrees of freedom in the subsystem. The boundaries
of the harmonic signal band gaps have been found in the analytical form. Vibration
modes have been obtained in different frequency ranges. Modulated waves are shown
to arise in the system due to modulation by lower frequencies that correspond
to system oscillations without taking into account the elasticity of the constituent
subsystems. In the analysis of symmetric structures, the theory of groups is used in
combination with wave dispersion equations.
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5.1 Introduction

Multisection periodic systems composed of identical subsystems are of great interest
in mechanics. Generating subsystems (inclusions) can have a various structure, for
example, periodic or symmetrical. Multisection systems with periodic inclusions are
studied in [1]. A dispersion equation has been obtained, band gaps of a harmonic
signal have been found, and vibration modes have been classified for them.

Dynamic properties of periodic systems with symmetric inclusions are investi-
gated in this article. Such systems are widely used in engineering practice. Really,
some features of the dynamic behavior of symmetric systems make their application
extremely convenient. So, such systems are characterized by independence between
translational and rotational displacements, moreover, there is a “calm” point during
the rotational vibrations - the center of symmetry that is very important for vibration
isolation of equipment.

Engineering applications of periodic systems with symmetrical inclusions are
found in various fields of mechanical engineering. Layered space grids (typically
double-layer and triple-layer configurations) having a high degree of symmetry
are used as roofs for industrial warehouses, exhibition pavilions, and indoor sports
complexes [2]. Vibrations of polygonal ducts are investigated in [3] using the group
theoretic approach.

Longitudinal elastic vibrations of multistage liquid-propellant launch vehicle body
are studied in [4]. The use of symmetry properties made possible to reduce the
corresponding vibration modes to launch vehicle stabilization planes.

The dynamics of the planetary gearbox having a high degree of geometric sym-
metry is analyzed in [5]. Using the group-theoretic approach, generalized oscillation
modes of the gear elements are found, including differential gear, satellites, and
epicycle. It is shown that errors in engagement cause asymmetry of the system that
leads to the interaction of vibration modes and degrades the quality of the gearbox.
Three-dimensional, but shallow cable net, formed by two families of highly tensioned
cables is considered in [6].

Structures with geometric symmetry are widely used in industrial and civil en-
gineering as supporting and frame structures (see, for instance, [7]). Such types of
structures are the frame of the bored pile (Fig. 5.1a) and frame scaffolding (Fig. 5.1b).

In [8] the group theory is extended to asymmetric systems with multiple symmetric
stages. Symmetry of any component stage is arbitrary, including cyclic and dihedral
symmetry. The theory of groups for elastic structural problems is discussed in [9]. As
examples, classic bifurcation problems including isotropic and composite laminate
panels under compression loading are investigated. The resonant vibrations in weakly
coupled nonlinear identical cyclic symmetric structures are studied in [10]. A careful
bifurcation analysis of the amplitude equations is performed in the fundamental
resonance case for an illustrative example consisting of a three-particle system. The
role of coupling strength in creating/destroying localized solutions is discussed. The
paper [11] reviews the advances made in the application of group theory in areas such
as bifurcation analysis, vibration analysis and finite element analysis, and summarizes
the various implementation procedures currently available.
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 (a)
 

(b)

Fig. 5.1: Support and frame structures: (a) a bored pile skeleton with hexagonal frames, (b) frame
scaffolding.

A wide class of systems with symmetric inclusions is also represented by systems
with rotating symmetry, particularly, rotor systems with bladed-disk assemblies. A lot
of references (see, for example [12–14]) are devoted to computational, experimental
and theoretical investigations of oscillations of such systems. Engineering applications
of periodic systems with symmetrical inclusions can be also acoustic and vibro-
insulating metamaterials [15].

The dynamic model of an acoustic metamaterial representing a symmetrical one-
dimensional lattice with local resonators coupled through linear springs of three
types (Fig. 5.2) is considered in [16]. Such a system is shown to have three band
gaps. Parameters are found to achieve the maximum total width of the band gap in
the low-frequency range.

The model of an acoustic metamaterial, which represents a chain of “cantilevers-
in-mass”, is proposed in [17]. Analysis of this model has confirmed the efficiency
of damping stress waves at a certain resonance frequency. An acoustic metamaterial
beam (AMB) based on the normal square grid structure with local resonators possess-
ing both flexible band gaps and high static stiffness is studied in [18] (Fig. 5.3). Such
a structure is widely used in architectural and mechanical field for its high strength
and saving material, as well as for vibration control.

In addition to one-dimensional models of acoustic metamaterials, two-dimensional
models are often used. Thus, a lattice consisting of square particles has been con-
sidered in [19]. Based on the division of this lattice into two sublattices, a two-field
model has been developed, within which the frequency band gaps are found.

 

Fig. 5.2: The acoustic metamaterial model as a 1D “mass-in-mass” lattice with three types of
springs [16].



68 Ludmila Ya. Banakh and Igor S. Pavlov

 

 

 

Fig. 2 

 

 

 

 

 

 

Fig. 3 

 

 

 

   

   

                       а) b) c) 

 

Fig. 4. 

 

 

 

Fig. 5.3: The geometry of square grid structure with internal resonators [18].

At present, the structures of metamaterials are becoming more and more compact,
thin-walled, therefore approaches to the analysis of the physical and mechanical
properties of such materials should be improved. They must take into account
elastic properties of inclusions in various frequency ranges. In order to analyze
wave processes in infinite periodic structures, impedance approaches have also been
developed [20].

The purposes of this article are to study the vibrational and wave properties of
periodic structures with symmetrical inclusions and to reveal the spectrum structure,
taking into account an elasticity of inclusions. To this goal, the article proposes a
method for deriving a dispersion equation for such systems. The combination of
the mathematical apparatus of the group theory with dispersion equations, which
has been presented in the article, enables one identifying the modulated oscillation
modes of the entire system and finding the band gaps of the harmonic signal, as
well as the frequency ranges corresponding to various modes of elastic oscillations
of the constituent subsystems. In this case, it becomes possible to consider discrete
models in the high-frequency range without their continualization and to identify
additional frequency band gaps, furthermore, in an analytical form, using only the
elastic properties of inclusions. As it will be shown below, despite the variety of
components and engineering applications, periodic systems with inclusions are well
predicted and, what is especially important, admit the analytical solutions.

Let us now describe the methods of analysis of symmetric systems. The universal
method for studying systems with a discrete symmetry is the group representation
theory [21–24]. Group-theoretic approaches are widely used in theoretical physics
and chemistry. Recently, as it can be seen from the given above review, these methods
have also been successfully used in problems of mechanics. Indeed, this approach
enables one finding the main features of the behavior of systems using only symmetry
properties without solving the motion equations. In addition, it also comprises the
prediction and systematization of all possible oscillation modes provided by the
symmetry of a given type, the selection of nodal lines and stationary points, as well
as the separation of multiple frequencies. In this case, structural elements, which are
not sensitive to the effects of certain loads, as well as multiple frequencies that cause
system instability, are easily identified.

An addition from an engineering point of view the main attraction of group-
theoretic methods has been their potential to reduce computational effort in the
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Fig. 2 

Fig. 3 

а) b) c) 

Fig. 4. 

Fig. 5.4: A multi-section system with symmetrical subsystems: a) a general view, b) a subsystem
with free ends, c) a subsystem with fixed ends.

analysis of large-scale problems. The use of finite element approaches is especially
effective in this case.

In the group theory, projective symmetry operators 𝑃𝑃𝑃 and basis vectors𝑉𝑉𝑉 are used.
The coordinate transformation 𝑉 = 𝑃𝑥𝑉 = 𝑃𝑥𝑉 = 𝑃𝑥 decomposes the initial 𝑛-dimensional space
of the problem into independent invariant subspaces, each of which corresponds to
its own symmetry operation. We employed earlier the group representation theory to
study oscillations of multidimensional mechanical systems [21]. The description of
these approaches on the example of a mechanical system with triangle-type symmetry
is given in Appendix. More detailed information about the application of group theory
for mechanical systems is available, for example, in [22, 23]. In this paper, we consider
multi-section systems with symmetric subsystems of the 𝑛-gon type (Fig.5.4).

5.2 Oscillations of Symmetric 𝒏-gon Frames

Before proceeding to the dynamic analysis of the multi-section system shown in
Fig. 5.4, we describe the group-theoretic approach employed by us using the example
of bending vibration analysis for a hexagonal frame in the (𝑥, 𝑦)-plane (Fig. 5.5).
Let the frame be made up of beam elements. In this case, it is convenient to obtain
governing equations using the Finite-Element Method (FEM) in the analytical form
[21]. Let us assume without loss of generality that each span of the frame 1-2-. . .-6
can be represented as one finite element.

The stiffness matrix for a plane beam element (Fig. 5.5c) has the form [25]-[26]:

𝐾𝐾𝐾 =

[
𝐾𝐾𝐾11 𝐾𝐾𝐾12

𝐾𝐾𝐾21 𝐾𝐾𝐾22

]
, 𝐾𝐾𝐾11 =



12𝐸𝐼
𝑙3

6𝐸𝐼
𝑙2

6𝐸𝐼
𝑙2

4𝐸𝐼
𝑙


,

𝐾𝐾𝐾12 =𝐾𝐾𝐾𝑇 21 =


−12𝐸𝐼

𝑙3
−6𝐸𝐼
𝑙2

6𝐸𝐼
𝑙2

2𝐸𝐼
𝑙


, 𝐾𝐾𝐾22 =



12𝐸𝐼
𝑙3

−6𝐸𝐼
𝑙2

−6𝐸𝐼
𝑙2

4𝐸𝐼
𝑙


.

(5.1)
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а) b) c) 

Fig. 5 (a, b, c)

Fig. 6. 

Fig. 7. 

a) b) c)

Fig. 5.5: The symmetrical frame: a) an initial coordinate system for each node, b) a coordinate
system symmetrical with respect to each node, c) a beam finite element: 𝑦1 and 𝑦2 are
displacements of the 1st and 2nd ends of the beam element, 𝜑 is the rotation angle.

𝐾𝐾𝐾 𝑖 𝑗 are blocks of stiffness and inertia matrices of the finite element for the 1st and
2nd beam ends, respectively. The motion of each node is described by vector 𝑌𝑌𝑌 𝑠
with coordinates [𝑦𝑠 , 𝜑𝑖], where 𝑦𝑠 is the displacement of the 𝑖-th node and 𝜑𝑠 is
the rotation angle. Expressions (5.1) coincide with the static stiffness matrix of the
beam [21]. In the low-frequency range, it is possible to model the beam by one finite
element, if the length of the finite element is 𝑎 < 𝐿/4, where 𝐿 is the wavelength.

Traditionally, the directions of the coordinate axes are chosen in FEM uniformly for
each node (Fig. 5.5a). But for the practical application of group-theoretic approaches,
it is much more convenient to choose a local coordinate system located symmetrically
with respect to each node (Fig. 5.5b) [21]. In these axes, the matrix describing the
vibrations of a symmetrical frame takes on an especially simple form. So, for a
hexagonal frame shown in Fig. 5.5b it has the form

𝐷𝐷𝐷 =



𝑎𝑎𝑎11 𝑎𝑎𝑎12 0 0 0 𝑎𝑎𝑎21

𝑎𝑎𝑎21 𝑎𝑎𝑎11 𝑎𝑎𝑎12 0 0 0
0 𝑎𝑎𝑎21 𝑎𝑎𝑎11 𝑎𝑎𝑎12 0 0
0 0 𝑎𝑎𝑎21 𝑎𝑎𝑎11 𝑎𝑎𝑎12 0
0 0 0 𝑎𝑎𝑎21 𝑎𝑎𝑎11 𝑎𝑎𝑎12

𝑎𝑎𝑎12 0 0 0 𝑎𝑎𝑎21 𝑎𝑎𝑎11



−𝜆𝑀𝑀𝑀, (5.2)

where 𝑎𝑎𝑎11 = \\\tr
𝜗𝐾𝐾𝐾11\\\𝜗 +\\\tr

−𝜗𝐾𝐾𝐾22\\\−𝜗 + 𝑘, 𝑎𝑎𝑎12 = 𝑎𝑎𝑎𝑡𝑟21 = \\\
𝑡𝑟
𝜗𝐾𝐾𝐾12\\\−𝜗 , and 𝜗 = 2𝜋/6. Here

\\\𝜗 =

[
cos𝜗 −sin𝜗
sin𝜗 cos𝜗

]

is the matrix for rotation of local coordinate axes of finite elements by angle 𝜗.
The coordinates 𝑋𝑋𝑋 ′ = (𝑥′, 𝑦′) in the “symmetrical” coordinate system (Fig. 5.5b)

are related with the coordinates 𝑋 = (𝑥, 𝑦) in the traditional coordinate system (Fig.
5.5a) by the equation
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𝑋 ′𝑋 ′𝑋 ′ = \𝑋\𝑋\𝑋,

where
\\\ = diag𝐸𝐸𝐸 \\\𝜗 ... \\\5𝜗 .

The form of matrix (5.2) is quite obvious from symmetry considerations, since
each node is completely identical in the chosen “symmetric” coordinate system.
Further, a "symmetric" coordinate system will be used in the article.

For a hexagon, the projective operator, as follows from (5.11), has the form:

𝑉𝑉𝑉6 = 𝑃𝑃𝑃6𝑋𝑋𝑋, 𝑃𝑃𝑃6 =
1
6



1 1 1 1 1 1
2 1 −1 2 −1 1
1 2 1 −1 −2 −1
2 −1 −1 2 −1 −1

−1 2 −1 −1 2 −1
1 −1 1 −1 1 −1


(5.3)

It follows from the form of the operator 𝑃𝑃𝑃6 and the basis vectors 𝑉𝑉𝑉 𝑖 (5.3) that
the lowest vibration mode corresponds to the motion of all nodes in phase and
the highest one is in antiphase, whereas the natural frequencies of the remaining
vibration modes are multiples of two. The presence of multiple roots is a characteristic
feature of symmetrical structures, and this leads to their oscillation instability at these
frequencies.

Applying group transformation (5.3) to matrix (5.2), one can obtain a block-
diagonal matrix𝐷∗𝐷∗𝐷∗

6, i.e. splitting of the original matrix into independent blocks, that
greatly simplifies both the calculation and the analysis of symmetric systems.

𝐷∗𝐷∗𝐷∗ = 𝑃𝑃𝑃𝑡𝑟𝐷𝑃𝐷𝑃𝐷𝑃 =



𝐴𝐴𝐴11
𝐴𝐴𝐴22 𝐴𝐴𝐴23
𝐴𝐴𝐴32 𝐴𝐴𝐴33

𝐴𝐴𝐴44 𝐴𝐴𝐴45
𝐴𝐴𝐴54 𝐴𝐴𝐴55

𝐴𝐴𝐴66


−𝜆𝑀∗𝑀∗𝑀∗,

where
𝐴11 = 𝑎11 + 𝑎12 + 𝑎21, 𝐴44 = 6𝑎11 − 𝑎12 − 𝑎21𝐴11 = 𝑎11 + 𝑎12 + 𝑎21, 𝐴44 = 6𝑎11 − 𝑎12 − 𝑎21𝐴11 = 𝑎11 + 𝑎12 + 𝑎21, 𝐴44 = 6𝑎11 − 𝑎12 − 𝑎21.

Here, block 𝐴𝐴𝐴11 describes the in-phase oscillations of all nodes and block 𝐴𝐴𝐴66
characterizes the anti-phase oscillations, whereas the double blocks correspond to
multiple frequencies.
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5.3 Oscillations of Periodic Systems Containing Symmetric
Subsystems

Let us now determine a structure of frequency spectrum for an infinite periodic
system with symmetrical inclusions (Fig. 5.4). First, we introduce the designations:
𝑘1 is the stiffness along the 𝑧-axis for elastic elements connecting the frame nodes,
𝑘2 is the rigidity of springs between the frames, and 𝑚 is mass of each node. We
consider the longitudinal vibrations of the system, assuming for the convenience of
analytical calculations that each node has one degree of freedom. For a triangle 𝑛 = 3,
we find the basis vectors (5.12)

𝑉 = 𝑃𝑋𝑉 = 𝑃𝑋𝑉 = 𝑃𝑋, 𝑃𝑃𝑃 =
1
3


1 1 1
2 −1 −1
−1 2 −1


. (5.4)

In order to obtain the oscillation equations for the system of Fig. 5.5a, we divide
the variables into three groups according to the number of disks in a section. Taking
into account (5.3), we will search for a solution in the form of harmonic functions by
Floquet’s theorem

𝑥3𝑠 = 𝑏1e𝑖 (𝜔𝑡−3𝑠 𝜇) , 𝑥3𝑠−1 = 𝑏2e𝑖 [𝜔𝑡−(3𝑠−1) 𝜇] , 𝑥3𝑠−2 = 𝑏3e𝑖 [𝜔𝑡−(3𝑠−2) 𝜇] , (5.5)

where 𝜇 is the propagation constant. In the “symmetric” reference frame, the equations
for the 𝑠-th subsystem take on the form:

𝑚 ¥𝑥3𝑠 + 𝑘11𝑥3𝑠 − 𝑘1𝑥3𝑠−1 − 𝑘1𝑥3𝑠−2 − 𝑘2𝑥3𝑠−3 − 𝑘2𝑥3𝑠+3 = 0, 3𝑠 = 3,6, ...;
𝑚 ¥𝑥3𝑠−1 + 𝑘11𝑥3𝑠−1 − 𝑘1𝑥3𝑠−2 − 𝑘1𝑥3𝑠 − 𝑘2𝑥3𝑠−4 − 𝑘2𝑥3𝑠+2 = 0, 3𝑠−1 = 2,5, ...;
𝑚 ¥𝑥3𝑠−2 + 𝑘11𝑥3𝑠−2 − 𝑘1𝑥3𝑠−2 − 𝑘1𝑥3𝑠−1 − 𝑘2𝑥3𝑠−5 = 0, 3𝑠−2 = 1,4, ...

(5.6)
𝑘11 = 2𝑘12 + 𝑘13 is the total stiffness of the elements included in the 𝑖-th node
(𝑖 = 1,2,3).

From (5.5) and (5.6) the characteristic equation yields:

𝐷𝐷𝐷 =


𝐴− 𝑘2

(
e−3𝑖𝜇 + e3𝑖𝜇 ) −𝑘1e−𝑖𝜇 −𝑘1e−2𝑖𝜇

−𝑘1e𝑖𝜇 𝐴− 𝑘2
(
e−3𝑖𝜇 + e3𝑖𝜇 ) −𝑘1e−𝑖𝜇

−𝑘1e2𝑖𝜇 −𝑘1e𝑖𝜇 𝐴− 𝑘2
(
e−3𝑖𝜇 + e3𝑖𝜇 )


= 0, (5.7)

where 𝐴 = −𝑚𝜔2 + 𝑘11. Expanding the determinant in (5.7), we obtain

(𝐴−2𝑘2 cos3𝜇)3 −2𝑘3
1 −2𝑘2

1 (𝐴−2𝑘2 cos3𝜇) = 0. (5.8)

The relationship (5.8) is a periodic dispersion equation. Its period equals 𝜋/3,
therefore the limiting wavelength 𝐿lim corresponds to 𝜇 = 𝜋/3. For each wavelength
𝜇 there are three frequencies𝜔. Hence, the dispersion curve consists of three segments,
each of which corresponds to its own vibration mode of the triangular frame.
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Thus, the straight lines 𝜇 = 0 (the ordinate axis) and 𝜇 = 𝜋/3 are limiting for the
dispersion curve. Let us find the limiting points on these axes. For 𝜇 = 0, equation
(5.8) can be rewritten in the form

𝐷𝐷𝐷 =


−𝑚𝜔2 +2𝑘1 −𝑘1 −𝑘1

−𝑘1 −𝑚𝜔2 +2𝑘1 −𝑘1

−𝑘1 −𝑘1 −𝑚𝜔2 +2𝑘1


= 0, (5.9)

which corresponds to the equation for vibrations of the frame subsystem with free
ends (Fig. 5.4b). Using the basis vectors for the triangle (5.4), we reduce Eq. (5.9) to
a diagonal form and find the points of the dispersion curve on the axis 𝜇 = 0:

𝜔1 = 0, 𝜔2 = 𝜔3 = (3𝑘1/𝑚)1/2 .

In order to find the limiting points 𝜔∗
1 and 𝜔∗

2 = 𝜔
∗
3 on the axis 𝜇 = 𝜋/3, we obtain

the following equation from Eqs. (5.6) and (5.7):

𝐷𝐷𝐷 =


−𝑚𝜔2 +2𝑘1 +4𝑘2 −𝑘1 −𝑘1

−𝑘1 −𝑚𝜔2 +2𝑘1 +4𝑘2 −𝑘1

−𝑘1 −𝑘1 −𝑚𝜔2 +2𝑘1 +4𝑘2


= 0. (5.10)

Equation (5.10) corresponds to oscillations of an isolated subsystem with fixed ends
(Fig. 5.4c). It should be noted that for an isolated section (but not for the system as
a whole) its boundary passes in the middle of the elastic element 𝑘2 connecting the
sections, therefore its stiffness equals 2𝑘2. From Eq. (5.10) the limiting points are
similarly determined on the straight line 𝜇 = 𝜋/3. Thus, we have found all the limiting
points of the dispersion curve without solving the system as a whole, but only using
the oscillation frequencies of an isolated section under various boundary conditions.

The dispersion curves have been plotted in Fig. 5.6 using Eqs. (5.6) and (5.7), as
well as the relations for limiting points. Thus, the dispersion curve consists of two
branches, each of which corresponds to its own oscillation mode of the section. There
is a band gap for the harmonic signal between these branches in the frequency range

Fig. 5.6 Dispersion curves
of the multi-section system
shown in Fig. 5.4: 1 and 2
are parts of the dispersion
curves. The shading marks
the frequency band gap of the
harmonic signal.
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𝜔∗
1 < 𝜔 < 𝜔2.

Since the dispersion curve does not depend on the boundary conditions, the harmonic
signal is attenuated in this range under any boundary conditions, that ensures good
vibroisolation for the entire system.

5.4 An Example of Calculation of a 3-Section System with
Symmetric Subsystems

Let us consider as an example a 3-section system (Fig. 5.7). The system parameters
are as follows: 𝑘1 = 1×105 N/m, 𝑘2 = 0.3×105 N/m, 𝑚 = 1 kg. Due to the Matrix
Calculator program, vibration frequencies and modes have been found for this system
(Table 5.1). As it is visible from the table, the three highest frequencies are multiples.
The subsystem frequencies are as follows:

• for a subsystem with free ends: 𝜔1 = 0, 𝜔2 = 𝜔3 = (3𝑘1/𝑚)1/2 =
√

3sec−1;
• for a subsystem with fixed ends: 𝜔∗

1 = 1.1sec−1, 𝜔∗
2 = 𝜔

∗
3 = 2.04sec−1.

Due to the multiplicity of natural frequencies, there are two branches of the
dispersion curve plotted in Fig. 5.6. The low-frequency branch 1 corresponds to
the system oscillations, in which the sections are not deformed. Oscillations of the

Fig. 5.7: A 3-section peri-
odic system with symmetric
subsystems of the triangle type
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Table 5.1: Vibration frequencies and modes for the system given in Fig. 5.7.

Number of a node
The frequency s−1

1 2 3 4 5 6 7 8 9

0.419 1 1 1
√

2
√

2
√

2 1 1 1

0.77 -1 -1 -1 0 0 0 1 1 1

1.01 1 1 1 -
√

2 -
√

2 -
√

2 1 1 1

1.78 -1 1 0 -
√

2
√

2 0 -1 1 0
(multiple) -1 0 1 -

√
2 0

√
2 -1 0 1

1.9 1 -1 0 0 0 0 -1 1 0
(multiple) 1 0 -1 0 0 0 -1 0 1

2 -1 1 0
√

2 -
√

2 0 -1 1 0
(multiple) -1 0 1

√
2 0 -

√
2 -1 0 1
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entire structure arise, in which the sections can be considered as a solid body. The
high-frequency branch - 2 - describes modulated oscillations due to the interaction
of elastic vibrations of the sections and low-frequency vibrations of the structure,
without taking into account the elastic oscillations of the sections determined by the
first branch of the dispersion curve. The frequency band gap of the harmonic signal
in Fig. 5.6 is shaded.

In order to determine the natural frequencies, we assume that the system is rigidly
fixed at the ends for 𝑠 = 1−3 and 𝑠 = 7−9. An equation 𝑥3𝑠 =𝐶1 sin3𝜇𝑠+𝐶2 cos3𝜇𝑠
yields from Eq. (5.10). Assuming 𝑥0 = 𝑥3(𝑛+1) = 0, one can find

𝜇𝑁 +1 = 𝜋 𝑗, 𝑗 +1...𝑛.

Here 𝑁 = 3 is the number of sections. Hence, 𝜇 = 𝜋/12, 𝜋/6, 𝜋/4. Due to the equidis-
tance of the spectrum of wave numbers 𝜇, the joint solution of these equations can be
easily found both numerically and graphically, as follows from Fig. 5.6. The natural
frequencies (see Table 5.1) are determined by points of intersection of the lines
𝜇 = 𝜋/12, 𝜋/6 and 𝜋/4 with the dispersion curve. In Fig. 5.6 they are marked with
dots on the dispersion curve.

As it follows from Table 5.1, the three minimal frequencies lie on the lower branch
of the dispersion curve, whereas the maximal frequencies (multiples) are located
on the second branch. This fact completely corresponds to the theoretical results
obtained in Sect. 5.2.

5.5 Structure of the Spectrum of Natural Frequencies of a
Multisection Structure

Thus, the structure of the natural frequency spectrum is as follows:

1. the limiting points on the lines 𝜇 = 0 and 𝜇 = 𝜋/3, corresponding to the maximum
and minimum wavelengths, are equal to the natural frequencies of the isolated
section under different conditions of fixing;

2. the natural frequencies are divided into 𝑁 groups, according to the number of
sections. In each group the vibration modes have the same wavelength, but different
frequencies, since they belong to various segments of the dispersion curve. In the
system at issue, these are groups with frequency numbers (1, 4), (2, 5), (3, 6);

3. the dispersion curve is divided into 𝑛 branches, each of which corresponds to its
own vibration mode of the section.

There are two branches of the dispersion curve in the system at issue, since only
two frequencies are different due to the multiplicity of the natural frequencies of the
triangular frame. These are the following frequency subgroups: (1, 2, 3) and multiple
frequencies (4, 5, 6). So, in the second subgroup, the oscillations of the sections occur
according to the second vibration mode (Fig. 5.5).
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Let us remark that there is a certain analogy in the structure of the spectrum for
multisection systems with periodic subsystems considered in [1]. It should be also
noted that all the results for natural vibrations of a multisection system have been
obtained without calculating the system as a whole, only on the basis of an analysis
of the vibrational and wave properties of a separate section under various boundary
conditions (see Sect. 5.2).

Obviously, rotary systems with discs equipped with blades can also be attributed
to the considered class of periodic systems. Many computational and experimental
studies of such systems [27] show a close qualitative nature of oscillations for rotor
systems with discs equipped with blades. There arise collective oscillations of the
blades.

The oscillation modes are similarly divided into groups. The first group includes
oscillation modes, in which the blade has one oscillation node (the first oscillation
mode). The second group involves oscillations, in which the blade has two vibration
nodes, etc. The case, when 𝑚 = 0, corresponds to in-phase oscillations. With an odd
number of blades, the 𝑛-th frequency of the in-phase oscillation mode is non-multiple.
For an even number of blades, there is another non-multiple mode corresponding to
𝑚 = 𝑛/2. In case of this oscillation mode, all adjacent blades vibrate in antiphase.
Depending on the bandage rigidity, modulated oscillations arise. The specificity of
such rotor systems is the occurrence of coupled flexural-torsional vibrations of the
blades.

5.6 Conclusions

The main oscillatory and wave properties of multisection periodic systems with
symmetrical inclusions have been revealed. Such a structure is typical for a lot of
engineering systems and for many acoustic metamaterials. These systems are shown
to have frequency band gaps of a harmonic signal, the number of which is one less
than the number of degrees of freedom of the inclusion subsystems. The boundaries
of band gaps are determined analytically as the frequencies of a separate subsystem
of inclusions with fixed and free boundaries. The presence of multiple frequencies
in symmetrical structures leads to their instability at these frequencies.

Natural frequencies are divided into 𝑁 groups according to the number of sections.
The vibration modes in eachgroup have the same wavelength,but different frequencies.
As a result, modulated vibrations of a system arise due to modulation by lower
frequencies corresponding to vibrations of the system without tak-ing into account
the elasticity of the constituent subsystems.

In this paper, the representation theory of discrete symmetry groups is used
in combination with dispersion equations obtained under the assumption that the
periodic structure is infinite. This enables one studying the discrete models of the
considered systems in the high-frequency range without their continualization.
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Appendix A. Application of the Group Representation Theory for
Mechanical Systems

A.1. Basic Concepts of the Representation Theory of Symmetry
Groups

Here we clarify the concepts introduced above and define the form of projective
operators and basis vectors for mechanical systems with cyclic symmetry. In the
group representation theory, a system having the triangle-type symmetry (Fig. 5.8)
is denoted as 𝐶3𝑣.

In the general case, the character table is used to obtain projective symmetry
operators [8–10]

𝑃𝑘 =
𝑓𝑘
𝑛

∑︁
𝑖

𝜒𝑘 (𝑔∗𝑖 𝑔𝑖), (5.11)

where 𝑛 is the group order, 𝑓𝑘 is the dimension of the 𝑘-th irreducible representation,
𝜒 is its character, 𝜒(𝑔∗) = 𝜒(𝑔−1) for real operators, and 𝑔𝑖 are the elements of group
𝐺. Tables of group characters are known [15, 16]. For a triangle, such a table looks
like

C3v E 2C3 3𝜎
A1 1 1 1
A2 1 1 -1
E1 2 -1 0

The top line of the table shows the symmetry operators for this group: the identical
transformation, two rotations by angles ±2𝜋/3, and three reflections around the axes
connecting vertices (1,2,3) of the triangle with its center. The characters of the
corresponding symmetry operators are located in the right-hand side of the table.
The left column shows the dimension of this representation.

a) b)

Fig. 5.8: A system with cyclic symmetry of the triagonal type: a) the first oscillation mode of the
system (displacement as a rigid body); b) the second (third) oscillation mode..
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Based on Eq. (5.11), we define the projective symmetry operators and basis
vectors 𝑉𝑖:

𝑉 = 𝑃𝑋, 𝑃 =
1
3

𝑉 = 𝑃𝑋, 𝑃 =
1
3𝑉 = 𝑃𝑋, 𝑃 =
1
3


1 1 1
2 −1 −1
−1 2 −1


, (5.12)

where𝑃𝑃𝑃 is a projective operator. The basis vectors𝑉𝑖𝑉𝑖𝑉𝑖 , in fact, determine the oscillation
modes. The physical meaning of the vectors 𝑉𝑖𝑉𝑖𝑉𝑖 in (5.12) is clear. 𝑉1𝑉1𝑉1 means that all
nodes 1, 2, 3 are in phase and correspond to a one-dimensional subspace.𝑉2𝑉2𝑉2 and𝑉3𝑉3𝑉3
mean that oscillations are associated with the deformation of the triangle: nodes 1
and 3 are in phase, whereas 2 is in antiphase. These operators correspond to multiple
roots and any linear combination of them will also be an eigenmode.

A.2. Matrix Symmetry Operators

The application of the group representation theory to problems in mechanics has
some features. So, elements or subsystems of a large dimension (for example, 𝑛) can
be used as a node in mechanical systems. For taking into account these features of
mechanical systems, the block projective symmetry operators are introduced, which
elements related to a node with 𝑛 degrees of freedom are block matrices of 𝑛×𝑛-order
[1, 21].

For example, let each node in Fig. 5.8 has three degrees of freedom. Then the
entire system possesses nine degrees of freedom and the generalized operator 𝑃𝑃𝑃, with
account of (5.12), takes on the form of a block matrix:

𝑉 = 𝑃𝑋, 𝑃 =
1
3

𝑉 = 𝑃𝑋, 𝑃 =
1
3𝑉 = 𝑃𝑋, 𝑃 =
1
3


𝐸𝐸𝐸 𝐸𝐸𝐸 𝐸𝐸𝐸

2𝐸𝐸𝐸 −𝐸𝐸𝐸 −𝐸𝐸𝐸
−𝐸𝐸𝐸 2𝐸𝐸𝐸 −𝐸𝐸𝐸


, 𝐸𝐸𝐸 =


1

1
1


(5.13)

Here 𝐸𝐸𝐸 is the identity matrix, which order is equal to the number of independent
coordinates in the node. Consequently, the projective operator (5.13) defines the basis
vectors𝑉𝑉𝑉1,𝑉𝑉𝑉2,𝑉𝑉𝑉3, which will currently determine some generalized vibration modes
describing the oscillations of nodes. Using the operator (5.13), the original matrix
𝐾 −𝜆𝑀𝐾 −𝜆𝑀𝐾 −𝜆𝑀 is reduced to a block-diagonal form, i.e. the original matrix equations are
split into independent blocks.
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Chapter 6
Mathematical Model for Myopia Correction with
MyoRing Implants

Svetlana M. Bauer, Liudmila A. Venatovskaya, Eva B. Voronkova, Vladimir V.
Kornikov, Larisa A. Avershina, and Anna E. Terenteva

Abstract A finite-element simulation for the implantation of corneal rings for patients
with high myopia is presented. The eyeball is modelled by joined spherical segments
with different geometries and elastic properties. The ring implantation process is
modelled by three surface-surface contact pairs: contact between corneal layers and
contacts of the ring and with the lower and upper surface of the corneal pocket. The
role of the surgical parameters (the MyoRing thickness and the implantation depth)
on the stress-strain state is studied. The results of the simulation were compared with
the clinical data on the change in curvature after the surgery.

6.1 Introduction

Myopia or shortsightedness is the most common refractive error. It is expected that
by 2050, half of the world’s population will have myopia. Laser vision correction
provides safe and effective treatment for myopia by removing tissue to reshape the
cornea (the transparent front part of the eye). However, complicated cases of myopia
(high degree and/or thin cornea, irregular corneal surface etc.) make laser refractive
surgery not eligible due to the increased risk of postoperative keratectasia or myopic
regression with time [1].
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The implantation of intrastromal corneal ring segments (ICRS) or intrastromal
continuous rings (ICR) is one of the alternative methods to reshape (flatten) the
human cornea and improve vision. Nowadays, the use of ICRSs is one of the most
common treatments for patients with keratoconus (KC) — an eye disorder caused by
noninflammatory thinning of the corneal tissue [2].

A new technology, named corneal intrastromal implantation surgery (CISIS), for
the surgical treatment of high myopia (6−20 diopters [D]), was presented in 2007 [1].
The procedure involves the use of a small deformable close ring (MyoRing, Dioptex
GmbH) introduced into a pocket under the surface of the cornea. The MyoRing
implantation consists of two main steps. First, a corneal pocket is formed with
the PocketMaker microkeratome or a femtosecond laser. With a femtosecond laser
ophthalmologists can make slices inside the cornea with the highest precision in terms
of exposure depth and diameter. Then, a soft ring implant is inserted into the corneal
pocket through a tunnel micro-incision. The tunnel incision heals independently and
does not require sutures. Although MyoRing was designed for permanent wear, the
procedure is reversible, and the inlay can easily be removed. It is also important to
note, that the advantage of this technique is that it doesn’t affect corneal biomechanics,
since the PocketMaker microkeratome or femtosecond laser does not create a flap
and forms a corneal pocket using incisions parallel to the collagen fibres and not
through or perpendicular to the fibrils [1].

Currently, surgical planning (choosing the optimal type of ICR, depth of the
implantation), as well as, achieving a certain refractive outcome, are mainly based
on clinical practice and statistical studies. However, mechanical factors, such as
intraocular pressure (IOP) and tissue biomechanics, play a role and should be taken
into account. Finite-element simulation can help the clinician to take decisions and
observe the results while modifying many factors which would not be possible to
modify in a real environment.

Bagheri et al. investigated the influence of ICRS implementation techniques on
the postoperative biomechanical state [3]. They developed a three-dimensional (3D)
patient-specific finite-element model (FEM) of the keratoconic cornea, using clinical
data of three patients with different stages and patterns of keratoconus. Then, several
surgical scenarios with different ICRS designs (complete or incomplete segment) and
surgical implementation techniques (tunnel incision and lamellar pocket cut) were
simulated.

A patient-specific finite element (FE) model of the human cornea was used to
predict the outcomes of the surgery after the ICRS implantation in real patients by
Lago and coauthors [4]. They obtained the 3D geometry of the cornea of each patient
from its specific topography. To characterise the mechanical behavior of the cornea
a hyperelastic model was assumed. The curvature of the corneal profile predicted by
FE simulation was compared with the real curvature after the surgery.

Ariza-Gracia et al. [5] used in silico models to determine the corneal shape and
stresses after ring implantation. They consider generic implants with an elliptical
cross-section to focus on studying the size and diameter of the implants. The study
showed that implants create a local bulkening effect that regularizes the corneal shape.
The authors also mentioned that for MyoRing type implants, shallower implantation
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depths could provide a higher refractive correction. In the present study, we use two
segments eyeball model to estimate the effect of different surgical and biomechanical
parameters on the mechanical behaviour of the cornea after the MyoRing implantation.

6.2 Problem Statement

The corneoscleral coat of the eye is modelled as two joint segments of different
geometric and mechanical properties [6, 7]. The average parameters were used to
model the geometry of the simulated eyeball. The outer surface of the cornea is
approximated by a spherical segment with radius 𝑅𝑐 = 7.76 mm. We assumed that
the thickness of the cornea is minimum at the apex ℎ𝐴𝑃 = 0.49 mm, increases linearly
along the meridional direction and achieves its maximum at the limbus where the
cornea connects to the sclera ℎ𝐿 = 0.75 mm. The sclera was represented as a spherical
segment with the outer radius 𝑅𝑠 = 12 mm. We proposed that scleral thickness is
equal to ℎ𝐸 = 0.6 mm near the equator (see Fig. 6.1).

We assume materials of the cornea and sclera are close to transversely isotropic
material. Young’s moduli of the cornea and sclera in the isotropic surface are taken
𝐸𝑐 = 0.3 MPa, 𝐸𝑠 = 10.0 MPa, corresponding Young’s moduli in the normal (thick-
ness) direction are 𝐸 ′

𝑐 = 𝐸𝑐/20, 𝐸 ′
𝑠 = 𝐸𝑠/10 [8], Poisson’s ratios for all considered

materials are taken as 𝜈 = 0.49 in the isotropic surface and 𝜈′ = 0.01 in the thickness
direction.

Nonlinear analyses were performed using engineering finite element software
Ansys®, Release 18. Due to symmetry, two-dimensional (2D) modelling was carried
out with finite element PLANE182. The axisymmetric problem was considered with
the axis of symmetry 𝑌 and the 𝑋 axis was directed along the normal to the isotropic

Fig. 6.1 Finite-element simu-
lation of the corneoscleral eye
shell filled by incompressible
liquid.
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surface. The symmetry boundary conditions were applied along the anterior-posterior
axis of the eye (at the top of the cornea and the posterior pole of the sclera), and at
the equator, the displacement of the sclera in a vertical direction was prohibited.

The MyoRing implants are available in different dimensions with diameters
ranging from 5 to 7 mm and thicknesses ranging from 200 to 400 µm in 20 µm
increments. According to the technique, the ring is implanted into a corneal pocket
9 mm in diameter, formed by femtosecond laser, to a depth of 80% of the initial
corneal thickness. Figure 6.2 shows the human cornea 2 after years after MyoRing
implantation surgery. The thickness of the implanted ring was 280 µm. The corneal
pocket was performed with a femtosecond laser at a depth of 380 µm.

Corneal pocket modelling is performed by dividing the cornea into two separate
layers. The ring implantation process is modelled by three surface-surface contact
pairs (Fig. 6.3). The first contact pair sets the contact between corneal layers as a
result of corneal pocket formation. The other two pairs simulate the contact of the
ring with the lower and upper surface of the corneal pocket, in which the ring is
inserted. Then, the nonlinear problem at large deformations is solved. In contact
pairs with a ring, an initial geometrical gap is set, which gradually decreases at each
step of the solution until the ring is completely installed in the pocket area. Since
the elastic properties of the ring significantly exceed the elastic properties of the soft

Fig. 6.2: The OCT image 2 years after MyoRing implantation.

Fig. 6.3 Contact interaction
between the layers: contact
pair 1 — between the inner
corneal layers (as a result of
corneal pocket formation),
contact pair 2 — between
the lower corneal layer and
the lower surface of the ring,
contact pair 3 — between the
upper corneal layer and the
upper surface of the ring.
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cornea, the ring can therefore be considered as an absolutely solid body compared to
the cornea during the FE calculations.

6.3 Results and Discussion

Figure 6.4 shows the total displacement distribution and von Mises stress distribution
of the simulated cornea at a physiological pressure of 15 mm Hg before implantation.
Figures 6.5 and 6.6 depict the same mechanical characteristics for the cornea after
MyoRing implantation of different thicknesses. We set the stiffness of the ring inlays
as of 1800 MPa. The difference in the stress-strain states of the shells shows that
the installation of thicker rings has a stronger effect on changes in the cornea profile,
respectively, allowing to correct large refractive errors.

Table 6.1 presents the values of corneal curvature radii calculated from the
displacement of the corneal apex during deformation in response to the application of

Fig. 6.4: Deformed state of the cornea under intraocular pressure of 15 mm Hg before
implantation: displacements (in the left) and von Mises stress distribution (in the right).

Fig. 6.5: Deformed state of the cornea at an intraocular pressure of 15 mm Hg after implantation of
200 µm ring implant.
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Fig. 6.6: Deformed state of the cornea at an intraocular pressure of 15 mm Hg after implantation of
280 µm ring implant.

Table 6.1: Radius of curvature at apex of cornea, mm.

Before implantation After implantation

MyoRing thickness, µm - 200 240 280
Radius of curvature
at apex of cornea, mm 7,76 7,818 7,815 7,812

15 mm Hg pressure before and after MyoRing implantation simulation. Figures 6.7,
6.8 and Table 6.2 demonstrate how the corneal mechanical characteristics affect the
stress-strain state both before and after MyoRing correction surgery. The distributions
of corneal displacements for the corneal elastic modulus in isotropic surface varying
that ranges from 0.4 MPa to 0.1 MPa. are displayed in Figs. 6.7 and 6.8. Table 6.2
compares the flattening of the corneal profile due to an increase of the apex curvature)
after the surgery for different sets of mechanical parameters. One can see that the

Table 6.2: Corneal apex curvature radius values before and after implantation of a 200 µm
thickness ring for corneas with different elastic moduli, mm.

Corneal elasticity moduli 𝐸𝑐 = 0.4 MPa 𝐸𝑐 = 0.3 MPa 𝐸𝑐 = 0.2 MPa 𝐸𝑐 = 0.1 MPa

Radius of curvature
before implantation, mm 7.71 7.76 7.85 8.11

Radius of curvature
after implantation, mm 7.76 7.82 7.93 8.21

Changes in radius of curvature
before and after implantation, mm 0.05 0.06 0.08 0.10
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Fig. 6.7: Deformed state of cornea with elastic modulus of 0.4 MPa and 0.3 MPa before and after
vision correction with 200 µm ring.

elastic properties of the cornea could affect refractive outcomes and should be taken
into account.

To study the relationships between change in the apex radius of curvature (Δ𝑅)
before and after the surgery and the surgical parameters (ring thickness and implanta-
tion depths) we employed statistical analysis to analyse the clinical data (see Fig. 6.9).
For linear regression models, the determination coefficients are equal to 𝑅2 = 0.864
and 𝑅2 = 0.876 for the relationships between change in the apex radius of curvature
and a MyoRing thickness and the implantation depth, respectively. We see that each
of the considered parameters explains more than 86% of the variability of the Δ𝑅
variable, which indicates a fairly good quality of the linear model. The difference in
quality between the linear and quadratic models is insignificant and therefore we can
restrict ourselves to the linear model only.

Due to its limitations, the presented model can only provide a qualitative assess-
ment of the eyeball’s behaviour as a result of the MyoRing implant surgery. One of
the model limitations is the characterization of the eyeball tissue as linear elastic
materials. It was reported, that the eyeballs’ tissues (cornea, sclera) exhibit nonlinear
elastic behaviour [9–11].

Several models (𝑁-order Ogden model, modified Gasser-Holzapfel-Ogden model,
Neo-Hookean hyperelastic model etc.) have been proposed and used in the literature
to describe the mechanical properties of the cornea [3, 4, 12]. Determination of
the assumed model parameters is a topical problem in computational biomechanics
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Fig. 6.8: Deformed state of cornea with elastic modulus of 0.2 MPa and 0.1 MPa before and after
vision correction with 200 µm ring.

Fig. 6.9: Statistical analysis of the clinical data. Solid lines represent linear regression curves,
Dash-Dotted lines correspond to quadratic regression curves.
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nowadays, particularly when creating personalized patient models. According to [13],
the problem of estimation of the eye material parameter can be fully solved only
when all three main mechanical characteristics of the eye are determined in complex:
two stiffnesses (corneal and scleral) and the true intraocular pressure.

One of the methods for selecting nonlinear material characteristics is presented
in [14] and is based on the optimization method and finite element model. The
Levenberg-Marquardt least-squares algorithm is used as an optimization approach
to estimate corneal material properties.

Mathematical models togetherwith clinical statistical data could be used for a better
understanding of tissues biomechanics and for describing their mechanical behaviour.
The data-driven approach (model-free) for the determination of constitutive relations
is presented in [15]. Instead of assuming a certain parametric representation of the
elastic potential, the authors obtain the material characteristics from experimental
data.

6.4 Conclusion

Two segments eyeball model to estimate the mechanical behaviour of the cornea after
the MyoRing implantation is presented. Numerical calculations show that MyoRing
implants enable changing of corneal profile without surgical impact on its outer or
inner layers, as in myopia correction by other methods. Deformations in the central
corneal zone are mostly influenced by the ring diameter and its implantation depth.
Analysis of the stress state showed that the greatest stresses occur in the MyoRing
itself, thus the ring acts as an additional corneal framework.
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Chapter 7
Numerical Modeling the Stresses in
Incompressible and Rigid Bodies

Nikolai M. Bessonov and Yaroslava I. Litvinova

Abstract Issues related to the calculation of stresses in an incompressible medium
are considered. The problems of modeling the flow of a classical Newtonian viscous
liquid and micropolar liquid are discussed. The problem of calculating stresses in
incompressible elastomers (rubber-like) bodies is considered. The problem of deter-
mining stresses in a fully incompressible (rigid) body is considered also. Examples
are given.

7.1 Introduction

The model of an absolutely or perfectly rigid (or rigid for the shortest) body is used
in analytical mechanics when solving dynamic problems. But analytical mechanics
does not allow looking inside a rigid body and solving the problem of finding stresses.
On the other hand, the theory of elasticity studies the stresses in elastic bodies in
detail, but rarely does anyone ask the question, is it possible to calculate the stresses
in a rigid body from the standpoint of the theory of elasticity?

An absolutely solid body is a model concept of classical mechanics, denoting a
set of material points, the distances between which are preserved in the process of
any movements made by this body. In other words, an absolutely solid body not only
does not change its shape but also keeps the distribution of mass inside unchanged.
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It is a traditional opinion that for a rigid material, the stress is undetermined [1].
This idea arises also from the observation that no constitutive relation connecting
the stress to the motion is necessary to determine the motion of a rigid body, unlike
what happens for deformable continua.

We could find only a few articles devoted to the study of a rigid body from the
point of view of the theory of elasticity. For example, the question of the limiting
transition from an elastic to a rigid body was studied in articles [2], [3]. A brief
review of this question in the literature is also given here.

An Internet search for an answer to a question: “Is there and if there is, is it possible
to find stresses in an absolutely solid body?” gave two variants of answers. The first
one is: “What you are asking is not physical”, and the second one is: “If the stiffness
is infinite and the strain is zero, then the stress is mathematically indeterminate”.

In this article, we do not discuss the fundamental aspects of these problems in
detail. Our goal is to consider this problem from the point of view of numerical
modeling.

The model of an incompressible media can be considered the first approximation
to the model of a perfectly rigid body. In the theory of elasticity, the incompress-
ibility condition is used, for example, when modeling rubber-like bodies, for which
the incompressibility condition determines the invariance of the volume, but shear
deformations remain. The study of rubber-like bodies is of great practical interest;
therefore, many different methods have been developed for finding stresses and strains
in such bodies. Also, a large section of hydrodynamics deals with the description of
the behavior of incompressible liquids.

In Sect. 7.2, examples of the numerical solution of problems in the hydrodynamics
of incompressible classical and micropolar liquids are considered. In Sect. 7.3, the
solution to the problem of deformation of an elastomer (an incompressible elastic
body) is considered. In Sect. 7.4, the problem of calculating the stresses in a rigid
body is considered and examples are given.

7.2 Numerical Modeling of the Flow of the Incompressible
Micropolar Liquids

The classical model of Newtonian liquid is a well-known example of an incompress-
ible medium. Methods for numerical simulation of the flow of an incompressible
Newtonian viscous liquid are considered [4–6], among others. The restriction to in-
compressible flow introduces the computational difficulty that the continuity equation
contains only velocity components, and there is no obvious link with the pressure as
there is for compressible flow through the density 𝜌.

Two broad approaches to computing incompressible flow are available. First, the
source (or elementary) variables, (𝑢, 𝑣, 𝑝) in two dimensions, are used and special
procedures are introduced to handle the continuity equation. The extension to three
spatial dimensions creates no additional difficulty. Second, in two dimensions the
explicit treatment of the continuity equation can be avoided by introducing the stream
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function. In addition, the introduction of a transport equation for the vorticity leads
to the stream function vorticity formulation. The extension of this formulation to
three dimensions is not straightforward, since a three-dimensional stream function is
not available [4].

An approach based on the use of source variables was applied in [7–10]. For
the solution of the discretized equations the iterative alternative direction implicit
method was used [5, 11–13].

There is a significant class of hydrodynamic problems in which the liquid flow
cannot be correctly described using the classical Navier-Stokes equations. An example
of such a model is the micropolar fluid model, which is based on the assumption
of incompressibility also. The model of micropolar liquid is applied in the theory
of lubrication, porous media, liquid crystals, thin films of polymers, the flow of
suspensions, physiological liquids (blood), and soil mechanics as well as in several
other areas.

Micropolar liquids are incompressible liquids with microstructure. They belong to
a class of liquids with nonsymmetric stress tensors and include, as a special case, the
Newtonian model of classical viscous liquids. The model of micropolar fluids was
introduced by Eringen in 1966 [14] “micropolar” hydrodynamics, and independently
by Aero, Buligin, and Kuvshinsky in 1965 [15] “asymmetrical” hydrodynamics. Here
in addition to the usual tensor of force stresses 𝝈 the tensor of moment stresses 𝑴 is
introduced.

The equations of motion of micropolar liquid (in absence of external body forces
and moments) have the next form [15, 16]:

∇ · ®𝑣 = 0, (7.1)

𝜌
𝑑®𝑣
𝑑𝑡

= ∇ ·𝝈, (7.2)

𝜌𝐼
𝑑 ®𝜔
𝑑𝑡

= ®𝑖1 ×
(
®𝑖1 ·𝝈

)
+®𝑖2 ×

(
®𝑖2 ·𝝈

)
+®𝑖3 ×

(
®𝑖3 ·𝝈

)
+∇ ·𝑴, (7.3)

where 𝜌 is the density; ®𝑣 is the velocity; ®𝜔 is the microrotation velocity; 𝐼 is the
moment of microinertia per mass unit; 𝑡 is the time; ®𝑖1, ®𝑖2 and ®𝑖3 are the unit vectors
along coordinate axes. In the classical model of the liquid microparticles are regarded
to point. Therefore the terms underlined in Eq. (7.3) disappear. Then Eq. (7.3) gives
the equalities for components of tensor 𝝈

𝜎23 = 𝜎32, 𝜎31 = 𝜎13, 𝜎12 = 𝜎21, (7.4)

that point to its symmetry in classical (“symmetrical”) hydrodynamics. In micro-
polar hydrodynamics the tensor 𝝈 is asymmetrical (hence the term “asymmetrical”
hydrodynamics).

The connection between kinematic anddynamic characteristics of liquidmovement
is set here by the following linear rheological relations [15]

𝜎𝑛𝑘 = −𝑝𝛿𝑛𝑘 + 𝜇
(
𝜐𝑛,𝑘 +𝜐𝑘,𝑛

) + 𝜇𝑟 (
𝜐𝑘,𝑛 −𝜐𝑛,𝑘 −2𝜔𝑞𝜖𝑞𝑛𝑘

)
, (7.5)
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𝑀𝑛𝑘 = 𝛾𝜔𝑘,𝑛 +𝜆𝜔𝑛,𝑘 +𝜗𝛿𝑛𝑘𝜔𝑞,𝑞 , 𝑛, 𝑘, 𝑞 = 1,2,3, (7.6)

where 𝜇𝑟 is the coefficient of microrotation viscosity; 𝑝 is the pressure; 𝛾, 𝜆 and 𝜗
are the coefficients of dissipation in consequence of microrotation gradients; 𝛿𝑛𝑘 and
𝜖𝑞𝑛𝑘 are Kroenecker’s and permutation symbols correspondingly; 𝜐𝑛,𝑘 = 𝜕𝜐𝑛/𝜕𝑥𝑘 ,
etc., (doubly repeated subscripts imply summation over the range 1,2,3).

The substitution of Eqs. (7.5) and (7.6) in Eqs. (7.2) and (7.3) give the full system
of equations for incompressible micropolar liquid

∇ · ®𝑣 = 0, (7.7)

𝜌

(
𝜕®𝑣
𝜕𝑡

+∇ · ®𝑣®𝑣
)
= −∇𝑝 + 𝜇∇2®𝑣+ 𝜇𝑟∇× (2 ®𝜔−∇×®𝑣) , (7.8)

𝜌𝐼

(
𝜕 ®𝜔
𝜕𝑡

+∇ · ®𝑣 ®𝜔
)
= 𝛾∇2 ®𝜔+ (𝜆+𝜗) ∇ (∇ · ®𝜔) −2𝜇𝑟 (2 ®𝜔−∇×®𝑣) . (7.9)

Let the scales of length, translation velocity, time, microrotation velocity, and
pressure are taken to be ℎ, 𝑈, ℎ/𝑈, 𝑈/ℎ and 𝜌𝑈2 correspondingly, where ℎ is the
transverse dimension of the flow region and 𝑈 is the characteristic velocity of the
flow. Then the Eqs. (7.7)–(7.9) take the following nondimensional form

∇ · ®𝑣 = 0, (7.10)

𝑑®𝑣
𝑑𝑡

= −∇𝑝 + 1
Re

∇2®𝑣+ 1
Rer

∇× (2 ®𝜔−∇×®𝑣) , (7.11)

(
𝐿1
ℎ

)2
Re

d𝜔
dt

=

(
L2
h

)2
∇2𝜔+

(
L3
h

)2
∇ (∇ ·𝜔) − 2Re

Rer
(2𝜔−∇×v) , (7.12)

where Re = 𝜌hU/𝜇; Rer = 𝜌hU/𝜇r; 𝐿1 = 𝐼1/2; 𝐿2 = (𝛾/𝜇)1/2; 𝐿3 = ((𝜆+𝜗/𝜇))1/2.
All nondimensional values in Eqs. (7.10)–(7.12) keep the same notations as the
correspondent dimensional ones in Eqs. (7.7)–(7.9). The complexes 𝐿1, 𝐿2, and 𝐿3
have the dimensions of the length and play the role of inner linear scales of the liquid
microstructure. The role of nonclassical terms in Eqs. (7.10)–(7.12) (in other words
– the influence of fluid microstructure) grows with decreasing of the dimension ℎ
of the flow region. In contrast when ℎ becomes much bigger than 𝐿1, 𝐿2 and 𝐿3.
Eq. (7.12) converts to the relation ®𝜔 = 1/2∇×®𝑣 and Eq. (7.11) transforms into the
classical Navier-Stokes equation as the partial case.

Parameter 𝐼 characterizes the moment of rotation of fluid particles at a given point.
As a rule, this value is negligible and can be considered equal to zero. for simplicity
below we will consider the stationary two-dimensional equations in projection form:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0, (7.13)

−𝜕𝑢𝑢
𝜕𝑥

− 𝜕𝑣𝑢
𝜕𝑦

+ 1
Re

(
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2

)
− 𝜕𝑝
𝜕𝑥

+ 2
Rer

[
𝜕𝜔

𝜕𝑦
+ 1

2

(
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2

)]
= 0, (7.14)
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−𝜕𝑢𝑣
𝜕𝑥

− 𝜕𝑣𝑣
𝜕𝑦

+ 1
Re

(
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2

)
− 𝜕𝑝
𝜕𝑦

+ 2
Rer

[
−𝜕𝜔
𝜕𝑥

+ 1
2

(
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2

)]
= 0, (7.15)

𝐵

(
𝜕2𝜔

𝜕𝑥2 + 𝜕
2𝜔

𝜕𝑦2

)
+ 𝜕𝑣
𝜕𝑥

− 𝜕𝑢
𝜕𝑦

−2𝜔 = 0, (7.16)

where 𝑢, 𝑣 are components of ®𝑣; 𝜔 = ®𝜔𝑧; 𝐵 = 2𝐿2Rer/Re 𝐿 = 𝐿2/ℎ.
In [17] a numerical method for solving the system of micropolar Eqs. (7.10)–

(7.12) in a domain with complex boundaries was described. Let us rewrite the system
(7.13)–(7.16) in the form

Λ 𝑓 = 0, (7.17)

where 𝑓 is the column with components 𝑝, 𝑢, 𝑣, 𝜔;

Λ =

©
«

0, − 𝜕

𝜕𝑥
, − 𝜕

𝜕𝑦
, 0

− 𝜕

𝜕𝑥
, −∇𝑥𝑦 + ( 1

Re
+ 1

Rer
)∇2, 0,

2
Rer

𝜕

𝜕𝑦

− 𝜕

𝜕𝑦
, 0, −∇𝑥𝑦 + ( 1

Re
+ 1

Rer
)∇2,

2
Rer

𝜕

𝜕𝑦

0, − 𝜕

𝜕𝑦
,

𝜕

𝜕𝑥
, 𝐵∇2 −2

ª®®®®®®®®®®
¬

; (7.18)

∇𝑥𝑦𝜑 = 𝜕𝑢𝜑/𝜕𝑥 + 𝜕𝑣𝜑/𝜕𝑦; ∇2𝜑 = 𝜕2𝜑/𝜕𝑥2 + 𝜕2𝜑/𝜕𝑦2 (𝜑 is a any function).
Let us split the operator Λ into two parts:

Λ = Λ1 +Λ2, (7.19)

where

Λ1 =

©«

0, − 𝜕

𝜕𝑥
, 0, 0

− 𝜕

𝜕𝑥
, −𝜕𝑢

𝜕𝑥
+ ( 1

Re
+ 1

Rer
) 𝜕

2

𝜕𝑥2 , 0, 0

0, 0, −𝜕𝑢
𝜕𝑥

+ ( 1
Re

+ 1
Rer

) 𝜕
2

𝜕𝑥2 , −
2

Rer

𝜕

𝜕𝑥

0, 0,
𝜕

𝜕𝑥
, 𝐵

𝜕2

𝜕𝑥2 −2

ª®®®®®®®®®®¬

; (7.20)

Λ2 =

©
«

0, 0, − 𝜕

𝜕𝑦
, 0

0, − 𝜕𝑣
𝜕𝑦

+ ( 1
Re

+ 1
Rer

) 𝜕
2

𝜕𝑦2 , 0,
2

Rer

𝜕

𝜕𝑦

− 𝜕

𝜕𝑦
, 0, − 𝜕𝑣

𝜕𝑦
+ ( 1

Re
+ 1

Rer
) 𝜕

2

𝜕𝑦2 , 0

0,
𝜕

𝜕𝑦
, 0, 𝐵

𝜕2

𝜕𝑦2 −2

ª®®®®®®®®®®®¬

. (7.21)
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Let 𝑓 1 = 𝑓 is an initial estimate of 𝑓 . The numerical method is based on the
following iterative procedure:

Step 1:
𝜉𝑛 = 𝜏Λ 𝑓 𝑛,

max |𝜉𝑛 | < Y→ 𝑦𝑒𝑠→ 𝑓 𝑛 is solution of (7.17) → 𝑆𝑇𝑂𝑃.

↓
no

↓
Step 2:

𝜉𝑛+1/2 − 𝜉𝑛
𝜏

= Λ1𝜉
𝑛+1/2,

Step 3:
𝜉𝑛+1 − 𝜉𝑛+1/2

𝜏
= Λ2𝜉

𝑛+1,

Step 4:
𝑓 𝑛+1 = 𝑓 𝑛 + 𝜉𝑛+1,

Go to Step 1.

Here 𝜉 is residual of 𝑓 ; 𝑛 = 1,2,3, . . . is number of iteration; max |𝜉 | is maximum of
𝜉 overall mesh nodes; Y is small parameter; a parameter 𝜏 playing the role of the step
of pseudo-time in the iterations,

𝑓 =
©
«

𝑝
𝑢
𝑣
𝜔

ª®®®
¬
, 𝜉 =

©
«

𝜉𝑝
𝜉𝑢
𝜉𝑣
𝜉𝜔

ª®®®
¬
.

The difference approximation of differential operators (7.18), (7.20), (7.21) are per-
formed on the three-point stencil. Let us describe in detail the approximation in the
example of Step 2:

𝜉𝑛+1/2
𝑝 − 𝜉𝑛𝑝

𝜏
= −𝜕𝜉

𝑛+1/2
𝑢

𝜕𝑥
, (7.22)

𝜉𝑛+1/2
𝑢 − 𝜉𝑛𝑢

𝜏
= −𝜕 (𝑢

𝑛𝜉𝑛+1/2
𝑢 )
𝜕𝑥

+
(

1
Re

+ 1
Rer

)
𝜕2𝜉𝑛+1/2

𝑢

𝜕𝑥2 − 𝜕𝜉
𝑛+1/2
𝑝

𝜕𝑥
, (7.23)

𝜉𝑛+1/2
𝑣 − 𝜉𝑛𝑣

𝜏
= −𝜕 (𝑢

𝑛𝜉𝑛+1/2
𝑣 )
𝜕𝑥

+
(

1
Re

+ 1
Rer

)
𝜕2𝜉𝑛+1/2

𝑣

𝜕𝑥2 − 2
Rer

𝜕𝜉𝑛+1/2
𝜔

𝜕𝑥
, (7.24)

𝜉𝑛+1/2
𝜔 − 𝜉𝑛𝜔

𝜏
= 𝐵

𝜕2𝜉𝑛+1/2
𝜔

𝜕𝑥2 −2𝜉𝑛+1/2
𝜔 + 𝜕𝜉

𝑛+1/2
𝑣

𝜕𝑥
. (7.25)
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The Eqs. (7.22)–(7.25) are solved in the following sequence. The value of 𝜉𝑛+1/2
𝑝 is

determined from Eq. (7.22):

𝜉𝑛+1/2
𝑝 = 𝜉𝑛𝑝 − 𝜏

𝜕𝑢𝑛+1/2

𝜕𝑥
. (7.26)

As a result of substituting Eq. (7.26) in (7.23) we get the Eq. (7.27) with respect to
𝜉𝑛+1/2
𝑢 :

𝜉𝑛+1/2
𝑢 − 𝜉𝑛𝑢

𝜏
= −𝜕 (𝑢

𝑛𝜉𝑛+1/2
𝑢 )
𝜕𝑥

+
(

1
Re

+ 1
Rer

+ 𝜏
)
𝜕2𝜉𝑛+1/2

𝑢

𝜕𝑥2 −
𝜕𝜉𝑛𝑝

𝜕𝑥
. (7.27)

For numerical simulations orthogonal mesh 𝐼 × 𝐽 (𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽)
was introduced. The structure of the equations suggests defining the projections of
translational velocity 𝑢, 𝑣, and rotational velocity 𝜔 at the nodes of the mesh (nodal
variables) and the pressure 𝑝 is defined inside the mesh cells (elements variable).

The finite-difference approximation of Eq. (7.26) in all grid cells and Eqs. (7.24),
(7.25), (7.27) in all internal nodes has the next form:

𝜉𝑛+1/2
𝑝𝑖, 𝑗 − 𝜉𝑛𝑝𝑖, 𝑗

𝜏
= −

𝜉𝑛+1/2
𝑢𝑖, 𝑗 + 𝜉𝑛+1/2

𝑢𝑖, 𝑗+1 − 𝜉
𝑛+1/2
𝑢𝑖+1, 𝑗+1 − 𝜉

𝑛+1/2
𝑢𝑖+1, 𝑗

2Δ𝑥𝑖
, (7.28)

𝜉𝑛+1/2
𝑢𝑖, 𝑗 − 𝜉𝑛𝑢𝑖, 𝑗

𝜏
= 𝐾𝑢𝜉

𝑛+1/2
𝑢𝑖, 𝑗 −

𝜉𝑛𝑝𝑖, 𝑗 + 𝜉𝑛𝑝𝑖, 𝑗−1 − 𝜉𝑛𝑝𝑖−1, 𝑗−1 − 𝜉𝑛𝑝𝑖−1, 𝑗

Δ𝑥𝑖 +Δ𝑥𝑖−1

+
(

1
Re

+ 1
Rer

+ 𝜏
) ©
«
𝜉𝑛+1/2
𝑢𝑖+1, 𝑗 − 𝜉

𝑛+1/2
𝑢𝑖, 𝑗

Δ𝑥𝑖
−
𝜉𝑛+1/2
𝑢𝑖, 𝑗 − 𝜉𝑛+1/2

𝑢𝑖−1, 𝑗

Δ𝑥𝑖−1

ª®
¬

2
Δ𝑥𝑖 +Δ𝑥𝑖−1

,

(7.29)

𝜉𝑛+1/2
𝑣𝑖, 𝑗 − 𝜉𝑛𝑣𝑖, 𝑗

𝜏
= 𝐾𝑢𝜉

𝑛+1/2
𝑣𝑖, 𝑗 − 2

Rer

𝜉𝑛+1/2
𝜔𝑖+1, 𝑗 − 𝜉

𝑛+1/2
𝜔𝑖−1, 𝑗

Δ𝑥𝑖 +Δ𝑥𝑖−1
+

(
1

Re
+ 1

Rer

) ©«
𝜉𝑛+1/2
𝑣𝑖+1, 𝑗 − 𝜉

𝑛+1/2
𝑣𝑖, 𝑗

Δ𝑥𝑖
−
𝜉𝑛+1/2
𝑣𝑖, 𝑗 − 𝜉𝑛+1/2

𝑣𝑖−1, 𝑗

Δ𝑥𝑖−1

ª®¬
2

Δ𝑥𝑖 +Δ𝑥𝑖−1
,

(7.30)

𝜉𝑛+1/2
𝜔𝑖, 𝑗 − 𝜉𝑛𝜔𝑖, 𝑗

𝜏
=
𝜉𝑛𝑣𝑖+1, 𝑗 − 𝜉𝑛𝑣𝑖−1, 𝑗

Δ𝑥𝑖 +Δ𝑥𝑖−1
− 𝜉𝑛+1/2

𝜔𝑖, 𝑗

+𝐵©«
𝜉𝑛+1/2
𝜔𝑖+1, 𝑗 − 𝜉

𝑛+1/2
𝜔𝑖, 𝑗

Δ𝑥𝑖
−
𝜉𝑛+1/2
𝜔𝑖, 𝑗 − 𝜉𝑛+1/2

𝜔𝑖−1, 𝑗

Δ𝑥𝑖−1

ª®¬
2

Δ𝑥𝑖 +Δ𝑥𝑖−1
,

(7.31)

where Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖;
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𝐾𝑢𝜑
𝑛+1/2
𝑖, 𝑗 =

2
Δ𝑥𝑖 +Δ𝑥𝑖−1

( |𝑢𝑛𝐿 | +𝑢𝑛𝐿
2

𝜑𝑛+1/2
𝑖−1, 𝑗 +

( |𝑢𝑛𝑅 | +𝑢𝑛𝑅
2

+ |𝑢
𝑛
𝐿 | −𝑢𝑛𝐿

2

)
𝜑𝑛+1/2
𝑖, 𝑗 + |𝑢𝑛𝑅 | −𝑢𝑛𝑅

2
𝜑𝑛+1/2
𝑖+1, 𝑗

)
,

𝑢𝐿 = (𝑢𝑖−1, 𝑗 +𝑢𝑖, 𝑗 )/2; 𝑢𝑅 = (𝑢𝑖, 𝑗 +𝑢𝑖+1, 𝑗 )/2; 𝜑 is the nodal variable (𝑢, 𝑣 or 𝜔).
In the nodes beyond solid boundaries, the 𝜉𝑢, 𝜉𝑣, 𝜉𝜔 values are set to zero.
The solution of the finite-difference Eqs. (7.28)– (7.31) is carried out in the

following sequence. By the method of tridiagonal matrix algorithm, the Eq. (7.29)
is solved, and the values of the 𝜉𝑛+1/2

𝑢𝑖, 𝑗 in all nodes of the grid are determined. Then
the values of 𝜉𝑛+1/2

𝑝𝑖, 𝑗 are determined (7.28). Equations (7.30), (7.31) is solved by the
method of tridiagonal matrix algorithm also. The finite-difference approximation of
steps 1 and 3 are done similarly.

The Fig. 7.1 shows the results of the numerical simulation of the flow of micropolar
liquid in the 2D channel with a ledge. The height of the channel equals 1, its length
equals 5. The following parameters for micropolar liquid have been set: Re = 500,
Rer = 500, 𝐵 = 1. A unit velocity profile was set at the inlet, and the boundary
conditions 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/𝜕𝑥 = 𝜕𝜔/𝜕𝑥 = 0 were set at the outlet.

Figure 7.1a shows that one vortex flow is formed behind the barrier. Simulation
shows that the flow of micropolar liquid is stationary here.

For comparison, the modeling of the flow of classical liquid in the same channel
and for the same Reynolds number Re = 500 was done. For numerical modeling
the non-stationary generalization of the method described above was used [18, 19]
(see appendix also). Modeling shows that the flow of classical liquid becomes non-
stationary. One frame of this flow is shown in Fig. 7.2a.

Fig. 7.1: Flow of micropolar fluid in a channel with the ledge. Re = 500, Rer = 500, 𝐵 = 1.
a) streamline flow, b) distribution of ∇ · ®𝑣.
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Fig. 7.2: The flow of classical fluid in a channel with the ledge. Re = 500. a streamline flow,
b) distribution of ∇ · ®𝑣.

The numerical simulation shows important differences in the flow of a micropolar
liquid compare to a classical one. The transition of the flow from continuous to
recirculation occurs in a micropolar liquid much later [17].

The main topic of this article is the numerical simulation of incompressible media.
For a liquid, the incompressibility condition is given by (7.7). The measure of the
accuracy of the fulfillment of the incompressibility condition in numerical simulation
is the deviation of ∇ · ®𝑣 from zero.

The distribution of ∇ · ®𝑣 in the computational domain for micropolar liquid is
shown in Fig. 7.1b. As can be seen from this figure, the maximum of ∇ · ®𝑣 does
not exceed the value of 10−13. Which is almost close to the accuracy of computer
calculations. The distribution of this value in the computational domain looks like
white noise, which is vanishingly small in magnitude.

The results of the calculation of the distribution of ∇ · ®𝑣 for a classical fluid are
shown in Fig. 7.2b. Figure 7.2b shows the incompressibility condition (7.7) is satisfied
with high accuracy.

7.3 Numerical Modeling of the Deformation of a Rubber-Like
Incompressible Solid Body

This chapter deals with the problems of numerical modeling of an incompressible
hyperelastic material. Elastomers or rubber-like materials are usually used in applica-
tions in which material must deform easily. That material exhibit a highly nonlinear
behavior characterized by hyperelastic deformability and incompressibility. The study
of rubber-like bodies is of great practical interest, so many different methods have
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been developed for finding stresses and deformations in such bodies. Extensive litera-
ture is devoted to modeling the stationary and non-stationary behavior of elastomers
[20–22] among others.

For example, in [23, 24] a computational technique for steady and unsteady
deformations of elastomers as applied to seals in hydroelastic lubrication applications
was developed. Consider the features of solving the problem of modeling the behavior
of an incompressible elastomer. The general system includes conservation laws of
mass, and momentum:

∇ · ®𝑣 = 0, (7.32)

𝜌
𝑑®𝑣
𝑑𝑡

= ∇ ·𝝈 (7.33)

and constitutive relationship for hyperelastic media [25]

𝝈 = −𝑝𝑰 + ℎ1𝑩+ ℎ2𝑩
2, (7.34)

where
𝑩 = 𝑭 ·𝑭𝑇 , 𝑭 = 𝑑®𝑟/𝑑 ®𝑅 ≡ ®𝑟∇ ®𝑅, (7.35)

𝑡 is the time; ®𝑣 is the velocity; 𝜌 is the density; 𝝈 is the stress tensor; 𝑝 is the pressure;
𝑰 is a unit tensor; ∇ ®𝑅 = ®𝑖𝑖𝜕/𝜕𝑋𝑖; ®𝑖𝑖 are the unit vectors (𝑖 = 1,2,3); ®𝑟 = ®𝑒𝑖𝑥𝑖 is the
actual radius vector; ®𝑅 = ®𝑒𝑖𝑋𝑖 is the initial radius vector; ℎ1 and ℎ2 are the material
properties that are functions of the invariants of 𝑩 [21]; the summation convention
from 1 to 3 over dummy subscripts is applied.

Let a 3D nonorthogonal Lagrangian mesh consists of linear tetrahedral elements
(Fig. 7.3), unloaded at the initial moment and changing further under the action of
an external load [24].

Let us find a finite-difference approximation of Eq. (7.34) for the tetrahedron (see
Sect. 7.2 also for 2D case). We set a linear transformation of tetrahedron from the
initial ®𝑅 to the actual ®𝑟 configuration [24]:

®𝑟 = 𝑨 · ®𝑅 + ®𝑏, (7.36)

where 𝑨 and ®𝑏 are 3D tensor and 3D vector which contain coefficients of linear
transformation. Then substitution (7.36) to (7.35) we obtain

𝑭 =
𝑑®𝑟
𝑑 ®𝑅

=
𝑑 (𝑨 · ®𝑅 + ®𝑏)

𝑑 ®𝑅
= 𝑨. (7.37)

Fig. 7.3: Tetrahedral element.
a) initial (unloaded) configura-
tion, b) actual configuration.
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We can write for the tetrahedron (Fig. 7.3) the next system



®𝑟1 = 𝑨 · ®𝑅1
®𝑟2 = 𝑨 · ®𝑅2
®𝑟3 = 𝑨 · ®𝑅3

, (7.38)

where ®𝑅1 = ®𝑅𝐵 − ®𝑅𝐴, ®𝑅2 = ®𝑅𝐶 − ®𝑅𝐴, ®𝑅3 = ®𝑅𝐶 − ®𝑅𝐴 and ®𝑟1 = ®𝑟𝐵 − ®𝑟𝐴, ®𝑟2 = ®𝑟𝐶 − ®𝑟𝐴,
®𝑟3 = ®𝑟𝐶 − ®𝑟𝐴 are the triples of vectors, that define the tetrahedron at the initial and
actual moments (Fig. 7.3).

The system ( 7.38) has the solution:

𝑨 = ®𝑟𝑖 ®𝑅𝑖 . (7.39)

Here ®𝑅𝑖 and ®𝑅𝑖 (𝑖 = 1,2,3) are the reciprocal set vectors, i.e.:

®𝑅1 =
®𝑅2 × ®𝑅3

®𝑅1 · ( ®𝑅2 × ®𝑅3)
, ®𝑅2 =

®𝑅3 × ®𝑅1

®𝑅1 · ( ®𝑅2 × ®𝑅3)
, ®𝑅3 =

®𝑅1 × ®𝑅2

®𝑅1 · ( ®𝑅2 × ®𝑅3)
. (7.40)

Then the finite-difference representation of the tensor 𝑩 (7.35) becomes:

𝑩 = ®𝑟𝑖®𝑖𝑖 ·𝑮 · ®𝑖𝑚®𝑟𝑚, (7.41)

or
𝑩 = ®𝑟𝑖®𝑖𝑖 · 𝒈−1 · ®𝑖𝑚®𝑟𝑚,

where tensors 𝑮 and 𝒈 are expressed in components form:

𝑮 =

������
®𝑅1 · ®𝑅1 ®𝑅1 · ®𝑅2 ®𝑅1 · ®𝑅3

®𝑅2 · ®𝑅1 ®𝑅2 · ®𝑅2 ®𝑅2 · ®𝑅3

®𝑅3 · ®𝑅1 ®𝑅3 · ®𝑅2 ®𝑅3 · ®𝑅3

������ , 𝒈 =

������
®𝑅1 · ®𝑅1 ®𝑅1 · ®𝑅2 ®𝑅1 · ®𝑅3
®𝑅2 · ®𝑅1 ®𝑅2 · ®𝑅2 ®𝑅2 · ®𝑅3
®𝑅3 · ®𝑅1 ®𝑅3 · ®𝑅2 ®𝑅3 · ®𝑅3

������ , 𝑮 = 𝒈−1. (7.42)

Remark 7.1. From expression (7.42) follows that an arbitrary relative rotation of the
initial (Fig. 7.3a) and actual (Fig. 7.3b) tetrahedrons does not affect the value of the
tensor 𝑩 and, therefore, does not require to correct the results of simulation from the
rigid body rotation.

Remark 7.2. The 3D approximation of any differential relations ∇Φ, ∇ ·Φ, ∇×Φ, etc.
for the tetrahedral element can be expressed symbolically in the following compact
and universal form [24] (see Sect. 7.2, Eq. (7.22) for comparison)

∇⊙Φ = ®𝑟𝑠 ⊙Φ𝑠 , (7.43)

where Φ is scalar, vector, or tensor nodal variables; ⊙ denotes distributive opera-
tion (dot, cross products, etc.) permissible for Φ; Φ1 = Φ𝐵 −Φ𝐴, Φ2 = Φ𝐶 −Φ𝐴,
Φ3 = Φ𝐶 −Φ𝐴. For example

∇ · ®𝑣 = ®𝑟𝑠 · ®𝑣𝑠 , ∇®𝑣 = ®𝑟𝑠®𝑣𝑠 , ®𝑣∇ = ®𝑣𝑠®𝑟𝑠 , ∇𝑇 = ®𝑟𝑠𝑇𝑠 .
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Follow to the expression (7.41) the next finite-difference scheme for tetrahedral
element

𝑩 = ℎ1®𝑟𝑖®𝑖𝑖 ·𝑮 · ®𝑖𝑚®𝑟𝑚 + ℎ2®𝑟 𝑗®𝑖 𝑗 ·𝑮 · ®𝑖𝑛®𝑟𝑛 · ®𝑟𝑝®𝑖𝑝 ·𝑮 · ®𝑖𝑞®𝑟𝑞 (7.44)

can be written for constitutive relationship (7.34). The finite difference-representation
of the incompressibility condition (7.32) corresponds to the condition:

𝑉 =𝑉0, (7.45)

where 𝑉0 = ®𝑅1 · ( ®𝑅2 × ®𝑅3)/6 is the initial volume of tetrahedron; 𝑉 = ®𝑟1 · (®𝑟2 × ®𝑟3)/6
is the actual volume of the tetrahedron. For the numerical solution of the system
(7.32)–(7.34) the implicit numerical method was used (see Appendix).

Figure 7.4 shows the results of the simulation of the bending of a hyperelastic
thick-walled tube with the radius R=1cm and wall thickness R/4. Material properties
ℎ1 and ℎ2 were taken similarly with natural rubber. The initial mesh and initial
(unloaded) configuration is shown in Figs. 7.4a,b. The distribution of deformation is
shown in Figs. 7.4e,f.

Numerical experiments have shown that, after bending, the hyperelastic tube can
take various stationary shapes. The final shapes of the tube are greatly influenced by
how the bending takes place during the simulation. Two such stable solutions and
their cross-sections in the median plane of the tube are shown in Figs. 7.4c,d.

Figure 7.5 shows the results of the simulation of the rebounding of the hyperelastic
ball from a rigid obstacle. The unloaded diameter of the ball equals to 6cm. The
ball flies up to the obstacle with components of speed 𝑉𝑥 = 𝑉𝑦 =50m/sec, 𝑉𝑧 =-
50m/sec. The coordinate axes x and y lie in the plane of the obstacle, and the z-axis
is perpendicular to the obstacle. Rebound from the obstacle occurs without slipping.

Fig. 7.4: The bending of
hyperelastic incompressible
thick-walled tube.
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Fig. 7.5: Rebound of hyper-
elastic incompressible ball.
a) 𝑡 = 0 s, b) 𝑡 = 2 · 10−3 s.

7.4 Numerical Modeling of Stresses in the Rigid Body

The question of finding stresses in the absolutely solid (rigid) body was discussed in
literature [2, 3], and more. They relied on the idea that the concept of a rigid body,
although different from the concept of an elastic body, it is possible to imagine the
development of the former as the limit of the sequence of the latter. In this article, we
will try to approach the solution to the problem from the point of view of numerical
simulation and numerical experimentation.

The model of a rigid body is used in analytical mechanics when solving dynamic
problems that do not include the problem of finding stresses. An absolutely solid
body is an ideal structure obtained as the limit of deformable bodies. The determining
relation between binding stresses and displacements is not necessary to determine
the motion of a solid, unlike deformable continuous media.

In elastic body mechanics, the incompressible condition is used, for example, for the
simulation of rubber-like bodies, for which the incompressible condition determines
the immutability of the volume, but the shear deformations remain. A large section
of hydrodynamics is engaged in describing the behavior of incompressible liquids.

Consider an equation of momentum and constitutive relation for the elastic body
(Hooke’s low):

∇ ·𝝈 = 0,
𝑝 = −𝐾 (∇ · ®𝑢),

𝑺 = 𝐺 (∇®𝑢 + ®𝑢∇−2/3𝑰(∇ · ®𝑢)) ,
(7.46)

where 𝝈 = −𝑝 ®𝐼 + ®𝑆; ®𝑢 is the displacement. Let stress be given on a part of the outer
boundary of the body 𝝈∗.

Let us write the system in dimensionless form. Introduce the scales as follow: [𝐿]
is for length, [𝑈] is for displacement and [|𝝈∗ |] is for stress. Substituting the scales
in (7.46), we obtain dimensionless equations:
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∇ ·𝝈 = 0,

𝑝 = − 𝐾 [𝑈]
[𝐿] [|𝝈∗ |] (∇ · ®𝑢),

𝑺 =
𝐺 [𝑈]

[𝐿] [|𝝈∗ |] (∇®𝑢 + ®𝑢∇−2/3𝑰(∇ · ®𝑢)) .

(7.47)

Here and below, the notation for dimensionless quantities (for simplicity) is retained.
Let [𝑈] = [𝐿] [|𝝈∗ |]/𝐾 , then Eq. (7.47) are rewritten in the form:

∇ ·𝝈 = 0,
𝑝 = −∇ · ®𝑢,

𝑺 =
𝐺

𝐾
(∇®𝑢 + ®𝑢∇−2/3𝑰(∇ · ®𝑢)) .

(7.48)

In continuum mechanics, incompressibility is represented by the equation

∇ · ®𝑣 = 0 (7.49)

for incompressible liquid and
∇ · ®𝑢 = 0 (7.50)

for incompressible elastic media. Thus, the system (7.48) can be rewritten for an
incompressible elastic media in the form:

∇ ·𝝈 = 0,
∇ · ®𝑢 = 0,

𝑺 =
𝐺

𝐾
(∇®𝑢 + ®𝑢∇−2/3𝑰(∇ · ®𝑢)) .

(7.51)

Here we propose to do the next step and define a rigid body as:

∇ · ®𝜎 = 0,
∇ · ®𝑢 = 0,

∇®𝑢 + ®𝑢∇−2/3®𝐼 (∇ · ®𝑢) = 0.
(7.52)

In other words, in addition to the incompressibility condition (7.51) second equation,
the condition associated with the unchanged shape of a body is introduced (7.52) in
the third equation.

Let us ask the question: does there exist a nontrivial solution of system (7.52) such
that the conditions

®𝑢 = 0, ®𝜎 ≠ 0 (7.53)

are satisfied? To answer this question, we have done several numerical experiments.
The main purpose of this section is to show the possibility of numerical simulation

of stresses in a perfectly rigid body. At this stage of research, we did not care about the
development of effective numerical methods, leaving this for later. For the solution
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of the system (7.52), we used the next simple explicit method. Let ®𝑢𝑘 , 𝑝𝑘 , ®𝑆𝑘 , are an
initial estimates of ®𝑢, 𝑝, ®𝑆 for 𝑘 = 0, where 𝑘 is a number of interaction.

Step 1:
®𝜉𝑘𝑢 = −𝜏𝑢 (∇ · ®𝜎𝑘),
𝜉𝑘𝑝 = −𝜏𝑝 (∇ · ®𝑢𝑘),

®𝜉𝑘𝑆 = 𝜏𝑆
(
∇®𝑢𝑘 + ®𝑢𝑘∇−2/3®𝐼 (∇ · ®𝑢𝑘)

)
,

max

(
| ®𝜉𝑘𝑢 |
𝜏𝑢

,
|𝜉𝑘𝑝 |
𝜏𝑝

,
| ®𝜉𝑘𝑆 |
𝜏𝑆

)
< Y→ 𝑦𝑒𝑠→ ®𝑢𝑘 , 𝑝𝑘 , ®𝑆𝑘 are the solution of (7.52) → 𝑆𝑇𝑂𝑃

↓
no

↓
Step 2:

®𝑢𝑘+1 = ®𝜉𝑘𝑢 ,
𝑝𝑘+1 = 𝑝𝑘 + 𝜉𝑘𝑝 ,
®𝑆𝑘+1 = ®𝑆𝑘 + ®𝜉𝑘𝑆 ,
Go to Step 1.

Here 𝜏𝑢, 𝜏𝑆 and 𝜏𝑝 are an iteration parameters; Y is a small parameter. Numerical
calculations were carried out with double precision. Consider the results of the
numerical simulations.

7.4.1 First Example

2D square 1× 1 under compressive external stress. The simulation was done in
2D Cartesian coordinates (𝑥, 𝑦). The square is mounted on a rigid base with the
possibility of slipping. An external normal stress equal to 1 is applied to a region
with a length of 0.5 (Fig. 7.6).

A non-trivial solution (7.53) of system (7.52) was found numerically. The dis-
tribution of the pressure and the modulus of displacement | ®𝑢 | in the rigid body are
shown in Figs. 7.6a,b reciprocally. As can be seen from the Fig. 7.6b, displacements
in any point of the computational domain are vanishingly and small equal to or less
than ∼ 5× 10−17, which indicates the complete fulfilment of the incompressibility
conditions (7.52) (second and third equations). The value ∼ 5×10−17 corresponds
to zero for the range of numerical values of the quantities involved in the calculation
and calculations with double precision.
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Fig. 7.6: Rigid square under external stress. 𝜏𝑢 = 10−6, 𝜏𝑝 = 2, 𝜏𝑆 = 1. a) distribution of the
pressure 𝑝, b) distribution of the displacement modulus | ®𝑢 |.

The numerical experiments show that the results of modeling do not depend on
the values of 𝜏𝑢 and depend on the ratio 𝜏𝑆/𝜏𝑝 . Different values of this ratio lead
to a different distribution of stresses in the body (the displacement values remained
below the given small value Y always).

For comparison, a numerical simulation for the same body was done according to
the system (7.48) (elastic body) using the next explicit numerical algorithm:

Step 1:
®𝜉𝑘𝑢 = −𝜏(∇ · ®𝜎𝑘),
𝜉𝑘𝑝 = −∇ · ®𝑢𝑘 ,

®𝜉𝑘𝑆 =
𝐺

𝐾

(
∇®𝑢𝑘 + ®𝑢𝑘∇−2/3®𝐼 (∇ · ®𝑢𝑘)

)
,

max( | ®𝜉𝑘𝑢 |/𝜏) < Y→ 𝑦𝑒𝑠→ ®𝑢𝑘 , 𝑝𝑘 , ®𝑆𝑘 are the solution of (7.48) → 𝑆𝑇𝑂𝑃

↓
no

↓
Step 2:

®𝑢𝑘+1 = ®𝑢𝑘 + ®𝜉𝑘𝑢 ,
𝑝𝑘+1 = 𝜉𝑘𝑝 ,

®𝑆𝑘+1 = ®𝜉𝑘𝑆 ,
Go to Step 1.

Here 𝜏 is an iteration parameter.
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Fig. 7.7: Solid square under external stress. 𝜏 = 10−6, 𝐾 = 2, 𝐺 = 1. a) distribution of the pressure
𝑝, b) distribution of the displacement modulus | ®𝑢 |.

Figure 7.7 illustrates a distribution of pressure (Fig. 7.7a) and modulus of dis-
placement | ®𝑢 | (Fig. 7.7b) within the solid square for 𝐺/𝐾 = 0.5. We can see that the
distributions of pressure in rigid (Fig. 7.6a) and solid (Fig. 7.7a) squares are identical.
Calculations show that the values of other components of the stress tensor completely
coincide. In contrast, as can be seen from the comparison of Fig. 7.6b and Fig. 7.7b,
the distribution of displacement is completely different.

7.4.2 Second Example

The loading of the rectangular channel is considered. The height and width of the
rectangular channel are both equal to 1. The width of the supports of the rectangular
channel is equal to 0.2.

Two variants of the problem are considered: rigid rectangular channel Fig. 7.8 and
solid rectangular channel Fig. 7.9. All parameters are the same as in the previous
example. The base of the left support of the rectangular channel is fixed. The gap
between the base and the unloaded right support of the rectangular channel equals
10−12. The channel is loaded with the same external stress equal to 1 as shown in
Figs. 7.8 and 7.9.

The distribution of a 𝑝 for the rigid rectangular channel is shown in Fig. 7.8a.
As can be seen from this figure, the gap between the right support and the base has
not changed. As a result, the entire load fell on the left support. The distribution
of a 𝑝 for the solid rectangular channel is shown in Fig. 7.9a. Here the pattern is
opposite compared to Fig. 7.8a. As a result of the external stress the gap between the
rectangular channel and the base became equal to zero and the entire load fell on the
right support. As can be seen from the Fig. 7.8b, displacements in any point of the
rigid rectangular channel equal or less than ∼ 3×10−5, which indicates the complete
fulfilment of the incompressibility conditions (7.52) (second and third equations).
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Fig. 7.8: Rigid rectangular channel. 𝜏𝑢 = 10−6, 𝜏𝑝 = 2, 𝜏𝑆 = 1. a) distribution of the pressure 𝑝,
b) distribution of the displacement modulus | ®𝑢 |.

Fig. 7.9: Solid rectangular channel. 𝜏𝑢 = 10−6, 𝜏𝑝 = 2, 𝜏𝑆 = 1. a) distribution of the pressure 𝑝,
b) distribution of the displacement modulus | ®𝑢 |.

Further continuation of steps 1 and 2 of the algorithm allows for decreasing this
quantity indefinitely. However, this accuracy of 10−3...10−4 is already sufficient.

Acknowledgements The authors would like to thank Professor A.M. Krivtsov for his help and
many useful discussions.

Appendix A: 3D Iterative Alternative Direction Implicit Method

Let us solve the 3D system of equations:

Λ 𝑓 + 𝑎 𝑓 + 𝑏 = 0, (7.54)
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where 𝑓 is a unknown vector; Λ is a differences operator; 𝑎 and 𝑏 are coefficients.
Let 𝑓 1 = 𝑓 is an initial estimate of 𝑓 .

Step 1:
𝜉𝑘 = 𝜏(Λ 𝑓 𝑘 + 𝑎 𝑓 𝑘 + 𝑏),

max |𝜉𝑘 | < Y→ 𝑦𝑒𝑠→ 𝑓 𝑘 is solution → 𝑆𝑇𝑂𝑃.

↓
no

↓
Step 2:

𝜉𝑘+1/3 − 𝜉𝑘
𝜏

= Λ1𝜉
𝑘+1/3 + 𝑎1𝜉

𝑘+1/3,

Step 3:
𝜉𝑘+2/3 − 𝜉𝑘+1/3

𝜏
= Λ1𝜉

𝑘+2/3 + 𝑎1𝜉
𝑘+2/3,

Step 4:
𝜉𝑘+1 − 𝜉𝑘+2/3

𝜏
= Λ1𝜉

𝑘+1 + 𝑎1𝜉
𝑘+1,

Step 5:
𝑓 𝑘+1 = 𝑓 𝑘 + 𝜉𝑘+1,

Go to Step 1.

𝜉 is residual of 𝑓 ; 𝑘 = 1,2,3, . . . is number of iteration; max |𝜉 | is maximum of 𝜉 over
all mesh nodes; Y is small parameter; Λ1, ,Λ2 and Λ3 are the differences operators;
𝑎1, 𝑎2 and 𝑎3 are the coefficients; 𝜏 is an iteration parameters.

Let Λ = Λ1 +Λ2 +Λ3 and 𝑎 = 𝑎1 + 𝑎2 + 𝑎3 then from steps 2–4 follows that



(𝐼 − 𝜏Λ1 − 𝜏𝑎1)𝜉𝑘+1/3 = 𝜉𝑘

(𝐼 − 𝜏Λ2 − 𝜏𝑎2)𝜉𝑘+2/3 = 𝜉𝑘+1/3

(𝐼 − 𝜏Λ3 − 𝜏𝑎3)𝜉𝑘+1 = 𝜉𝑘+2/3
, (7.55)

where 𝐼 is a unit operation, or

(𝐼 − 𝜏Λ1 − 𝜏𝑎1) (𝐸 − 𝜏Λ2 − 𝜏𝑎2) (𝐼 − 𝜏Λ3 − 𝜏𝑎3)𝜉𝑘+1 = 𝜉𝑘 ,

or
𝜉𝑘+1 − 𝜉𝑘 = 𝜏(Λ𝜉𝑘+1 + 𝑎𝜉𝑘+1) + 𝜏2 (Λ1Λ2 + . . . )𝜉𝑘+1. (7.56)

Then
𝜉𝑘+1 = 𝜏(Λ𝜉𝑘+1 + 𝑎𝜉𝑘+1 + 𝑏) + 𝜏2 (Λ1Λ2 + . . . )𝜉𝑘+1. (7.57)
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From (7.57) follows that this method correspond with the accuracy 𝑂 (𝜏2) to the
completely implicit scheme

𝑓 𝑘+1 − 𝑓 𝑘
𝜏

= Λ𝜉𝑘+1 + 𝑎𝜉𝑘+1 + 𝑏. (7.58)

Remark 7.3. Let Λ ≠ Λ1 +Λ2 +Λ3, or 𝑎 ≠ 𝑎1 +𝑎2 +𝑎3. Nevertheless if 𝜉𝑘+1 → 0 then
𝑓 𝑘+1 is a solution of equation (7.54).

For example, in the simplest case when Λ1 = 0, Λ2 = 0 and Λ3 = 0 then steps 2–4
are disappeared and the method is transformed to the simplest explicit method for
solving Eq. (7.55).

Step 1:
𝜉𝑘 = 𝜏(Λ 𝑓 𝑘 + 𝑎 𝑓 𝑘 + 𝑏),

max |𝜉𝑘 | < Y→ 𝑦𝑒𝑠→ 𝑓 𝑘 is solution → 𝑆𝑇𝑂𝑃.

↓
no

↓
Step 2:

𝑓 𝑘+1 = 𝑓 𝑘 + 𝜉𝑘+1,

Go to Step 1.
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Chapter 8
Three-Dimensional Numerical Analysis of
Natural Vibrations and Stability of Cylindrical
Shells Interacting with Fluid

Sergey A. Bochkarev, Sergey V. Lekomtsev, Valerii P. Matveenko, and Alexander N.
Senin

Abstract Natural vibrations and stability of cylindrical shells interacting with a quies-
cent and flowing ideal fluid are numerically investigated. A solution is implemented
in a three-dimensional formulation using an algorithm that is based on the finite
element method. In the numerical examples, shells with an elliptical cross section,
coaxial shells, and shells with an eccentricity are considered. The influence of a
fluid level inside these structures and axial misalignment on natural frequencies and
vibration modes, and the critical velocities of instability are analyzed. Calculations
has revealed the peculiarities of the dynamic characteristics of the shells under con-
sideration in case of their partial filling with a fluid. It is shown that the stability of
the system can be improved by selecting appropriate geometric parameters.

8.1 Introduction

Thin-walled cylindrical shells are the key structural elements, which are able to
withstand considerable loads, strong vibrations or seismic effects. When they interact
with fluids, resonance phenomena or loss of stability like flutter and divergence are
possible. Dynamic processes that occur in this case can lead to large-amplitude
vibrations, instantaneous or fatigue failure of the structure. In the context of the
onset of an emergency, the greatest hazards are associated with storage tanks for
technological and chemically aggressive fluids located in zones with increased seismic
activity; pillars of river bridges; flexible tubes used in the oil-refining and aerospace
industries; and different types of heat exchangers employed in power plants (assembly
of parallel plates or group of circular cylindrical shells).
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Distinguishing features in the interaction of shell structures with a quiescent or
flowing fluid, as well as with a gaseous medium, have long been studied. An extensive
bibliography of papers on this topic is presented in both parts of the well-known
monograph [1, 2]. Literature reviews that expand this list of research sources and
provide the reader with some pioneering works not mentioned yet can be found in
recent articles by the authors [3–8]. Over the past few decades, analysis of the natural
vibrations and hydroelastic stability of shells of revolution (cylindrical and conical,
coaxial) has been carried out, as a rule, using a variety of numerical-analytical and
numerical approaches implemented in an axisymmetric formulation or reduced to it.
That is the reason why many significant factors remain unexplored, whose influence
on the dynamic characteristics of the system can only be assessed when solving a
3D problem. The circumferential symmetry breaking of a cylindrical shell due to its
partial filling with a fluid [9, 10], use of an open [11] or non-circular cross section
[12–16], coaxial shells misalignment [7, 8, 17, 18], or due to the impact of spatial
force factors, determines the specific behavior of natural vibration frequencies (mode
shapes) and stability parameters, which is different from that of similar symmetrical
configurations. Bearing in mind that the fluid flow has a destabilizing effect on the
elastic shell and leads to significant changes in its dynamic behavior, the above-
mentioned factors require careful analysis.

The main research tool used to solve the problems of hydroelasticity, including
those of real practical interest, is a finite element method. In contrast to other numerous
approaches, it is the most accurate and versatile method because it allows one to
overcome the restrictions on the geometry of the structure and on the kinematic
boundary conditions at its edges. The available commercial finite element analysis
software helps researchers to solve transient, harmonic and modal problems via
simulating the interaction of an arbitrary elastic structure and an acoustic environment
[19]. However, there is no such possibility for stability problems in the case of a
flowing fluid.

In this paper, the findings of studies on the hydroelastic interaction of shell
structures asymmetric in the circumferential direction are generalized. The solution
is found within the framework of a universal approach that is based on the developed
three-dimensional mathematical formulation and its implementation by the finite
element method.

8.2 Mathematical and Numerical Formulations

This section briefly describes the mathematical formulation and the corresponding
finite element algorithm, which are designed to analyze natural vibrations and sta-
bility of three-dimensional thin-walled cylindrical shells in the general case with a
non-circular cross section and interacting with an internal steady flow of an ideal com-
pressible fluid. All basic relation are given for the configuration shown in Fig. 8.1,
but they can be easily generalized to the case of coaxial [5, 6] and eccentric [8]
cylindrical shells.
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In the case of small perturbations the vortex-free dynamics of an ideal compressible
fluid is described by wave equation [2, 20, 21], which is formulated in terms of the
perturbation velocity potential 𝜙 in the global Cartesian coordinate system (𝑥, 𝑦, 𝑧)
and transformed to the weak form together with the impermeability and boundary
conditions [21]. Finally, we get:

∫
𝑉 𝑓

∇𝐹𝑚 · ∇𝜙d𝑉 +
∫
𝑉 𝑓

𝐹𝑚
1
𝑐2
𝜕2𝜙

𝜕𝑡2
d𝑉 +

∫
𝑉 𝑓

𝐹𝑚
2𝑈
𝑐2

𝜕2𝜙

𝜕𝑡𝜕𝑥
d𝑉 −

−
∫
𝑉 𝑓

𝐹𝑚
𝑈2

𝑐2
𝜕2𝜙

𝜕𝑥2 d𝑉 −
∫
𝑆𝜎

𝐹𝑚
𝜕 ˆ̄𝑤
𝜕𝑡

d𝑆−
∫
𝑆𝜎

𝐹𝑚𝑈
𝜕 ˆ̄𝑤
𝜕𝑥

d𝑆 = 0, 𝑚 = 1,𝑚 𝑓 . (8.1)

Here: 𝜙 and ˆ̄𝑤 are the trial solutions for the velocity potential 𝜙 and normal dis-
placements of the thin-walled structure �̄�; 𝑉 𝑓 is the volume of fluid; 𝑆𝜎 is the
fluid-structure interface; 𝑐 is the speed of sound in a fluid; 𝑡 is time; 𝐹𝑚 and 𝑚 𝑓 are
the basis functions and their number;𝑈 is the velocity of fluid in the direction of the
𝑥-axis.

The hydrodynamic pressure acting on the elastic structure wall is calculated using
linearized Bernoulli’s formula:

𝑝 = −𝜌 𝑓
(
𝜕𝜙

𝜕𝑡
+𝑈 𝜕𝜙

𝜕𝑥

)
, (8.2)

where 𝜌 𝑓 is the density of a fluid. We use the following boundary conditions to solve
Eq. (8.1):

𝑥 = 0 : 𝜙 = 0, 𝑥 = 𝐿 : 𝜕𝜙/𝜕𝑥 = 0, (8.3)

where 𝐿 is the length of the structure.
Modeling the shells partially filled with a fluid is based on the assumption that the

free surface of the liquid 𝑆free does not move and is not under the action of dynamic
pressure and surface tension. An appropriate boundary condition is given by [10]:

𝑥𝑥𝑥 ∈ 𝑆free : 𝜙 = 0. (8.4)
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A curvilinear surface of the structure is represented with sufficient accuracy as a
set of flat rectangular segments (Fig. 8.1) [22]. Small strains in each of these segments
are determined in the framework of the classical plate theory [23]:

{
Y �̄� �̄� , Y �̄� �̄� , 𝛾�̄� �̄�

}T
=

{
Y0
�̄� �̄� , Y

0
�̄� �̄� , 𝛾

0
�̄� �̄�

}T
+ 𝑧

{
Y1
�̄� �̄� , Y

1
�̄� �̄� , 𝛾

1
�̄� �̄�

}T
, (8.5)

ȲYY0 =
{
Y0
�̄� �̄� , Y

0
�̄� �̄� , 𝛾

0
�̄� �̄�

}T
=

{
𝜕�̄�

𝜕𝑥
,
𝜕�̄�

𝜕�̄�
,
𝜕�̄�

𝜕�̄�
+ 𝜕�̄�
𝜕𝑥

}T
,

ȲYY1 =
{
Y1
�̄� �̄� , Y

1
�̄� �̄� , 𝛾

1
�̄� �̄�

}T
=

{
−𝜕

2�̄�

𝜕𝑥2 ,−
𝜕2�̄�

𝜕�̄�2 ,−2
𝜕2�̄�

𝜕𝑥�̄�

}T

,

where �̄�, �̄�, �̄� are the displacements of the points on the middle surface of the plane
segment in the direction of the corresponding axes of the Cartesian coordinate system
(𝑥, �̄�, 𝑧) (Fig. 8.1).

The generalized vector ȲYY, which contains the middle surface strains ȲYY0 and the
curvatures ȲYY1, is written as:

ȲYY =

{
ȲYY0

ȲYY1

}
=

{
Y0
�̄� �̄� , Y

0
�̄� �̄� , 𝛾

0
�̄� �̄� , Y

1
�̄� �̄� , Y

1
�̄� �̄� , 𝛾

1
�̄� �̄�

}T
. (8.6)

The physical relations between the vector of forces and moments 𝑡𝑡𝑡 and the vector
of generalized strains ȲYY are formulated in the following form:

𝑡𝑡𝑡 =
{
𝑁 �̄� �̄� , 𝑁 �̄� �̄� , 𝑁 �̄� �̄� , 𝑀�̄� �̄� , 𝑀�̄� �̄� , 𝑀�̄� �̄�

}T
= 𝑆𝑆𝑆ȲYY, (8.7)

where the coefficients entering the matrix 𝑆𝑆𝑆 are calculated for isotropic material using
Young’s modulus 𝐸 and Poisson’s ratio 𝜈 by known way [23].

A mathematical formulation of the dynamics problem of thin-walled structure
relies on the variational principle of virtual displacements, which takes into account
the equation for hydrodynamic pressure (8.2) and the work done by inertial forces.
In the absence of external loads it can be written in the matrix form as:∫

𝑆𝑠

𝛿Ȳ̄ȲYT𝑆𝑆𝑆Ȳ̄ȲYd𝑆 +
∫
𝑆𝑠

𝛿𝑑𝑑𝑑T𝐽𝐽𝐽 ¥̄𝑑¥̄𝑑¥̄𝑑d𝑆 +
∫
𝑆𝜎

𝛿�̄� 𝜌 𝑓

(
𝜕𝜙

𝜕𝑡
+𝑈 𝜕𝜙

𝜕𝑥

)
d𝑆 = 0, (8.8)

where �̄�𝑑𝑑 = {�̄�, �̄�, �̄�, \ �̄� , \ �̄� , \ �̄�}T is the generalizedvectorof the thin-walled structure dis-
placements, including rotation angles \ �̄� , \ �̄� , \ �̄� with respect to the corresponding axes
of the coordinate system (𝑥, �̄�, 𝑧); 𝑆𝑠 is the shell surface; 𝐽𝐽𝐽 = diag (𝐽0, 𝐽0, 𝐽0, 𝐽2, 𝐽2, 𝐽2)
is the inertia matrix, 𝐽0 = 𝜌𝑠ℎ, 𝐽2 = 𝜌𝑠ℎ3/12 and 𝜌𝑠 is the density of the elastic struc-
ture material.

The formulation of the natural vibrations problem is based on the representation

𝑢𝑢𝑢(𝑥𝑥𝑥, 𝑡) = {𝑑𝑑𝑑 (𝑥𝑥𝑥, 𝑡), 𝜙(𝑥𝑥𝑥, 𝑡)}T = �̃�𝑢𝑢(𝑥𝑥𝑥)ei𝜆𝑡 , (8.9)
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where �̃�𝑢𝑢 =
{
𝑑𝑑𝑑 (𝑥𝑥𝑥), 𝜙(𝑥𝑥𝑥)}T is the vector function depending only on coordinates 𝑥𝑥𝑥; i is

the imaginary unit; 𝜆 = 𝜔+ i𝛾 is the characteristic index; 𝜔 is the natural frequency
of vibrations; 𝛾 is the value, characterizing the damping of the system.

After substituting expression (8.9) into Eqs. (8.1) and (8.8), dividing by the
exponent and implementing the known procedures of the finite element method, we
obtain a coupled system of equations:(

−𝜆2𝑀𝑀𝑀 + i𝜆𝐶𝐶𝐶 +𝐾𝐾𝐾 +𝐴𝐴𝐴
)
�̃�𝑢𝑢 = 0, (8.10)

𝑀𝑀𝑀 =

[
𝑀𝑀𝑀𝑠 0
0 𝑀𝑀𝑀 𝑓

]
, 𝐶𝐶𝐶 =

[
0 𝐶𝐶𝐶𝑠 𝑓
𝐶𝐶𝐶 𝑓 𝑠 𝐶𝐶𝐶 𝑓

]
, 𝐾𝐾𝐾 =

[
𝐾𝐾𝐾𝑠 0
0 𝐾𝐾𝐾 𝑓

]
, 𝐴𝐴𝐴 =

[
0 𝐴𝐴𝐴𝑠 𝑓
𝐴𝐴𝐴 𝑓 𝑠 𝐴𝐴𝐴 𝑓

]
,

where typical finite element matrices are determined in a well-known manner [6, 22]:

𝑀𝑀𝑀𝑒
𝑓 =

∫
𝑉 𝑓

1
𝑐2𝐹𝐹𝐹

T𝐹𝐹𝐹d𝑉, �̄�𝑀𝑀
𝑒
𝑠 =

∫
𝑆𝑠

𝑁𝑁𝑁T𝐽𝐽𝐽𝑁𝑁𝑁d𝑆,

𝐶𝐶𝐶𝑒𝑓 =
∫
𝑉 𝑓

2𝑈
𝑐2
𝜕𝐹𝐹𝐹T

𝜕𝑥
𝐹𝐹𝐹d𝑉, �̄�𝐶𝐶

𝑒
𝑓 𝑠 = −

∫
𝑆𝜎

𝐹𝐹𝐹T𝑁𝑁𝑁𝑤d𝑆, �̄�𝐶𝐶
𝑒
𝑠 𝑓 =

∫
𝑆𝜎

𝜌 𝑓𝑁𝑁𝑁
T
𝑤𝐹𝐹𝐹d𝑆,

𝐾𝐾𝐾𝑒𝑓 =
∫
𝑉 𝑓

(∇𝐹𝐹𝐹)T∇𝐹𝐹𝐹d𝑉, �̄�𝐾𝐾
𝑒
𝑠 =

∫
𝑆𝑠

𝐵𝐵𝐵T𝑆𝑆𝑆𝐵𝐵𝐵d𝑆,

𝐴𝐴𝐴𝑒𝑓 = −
∫
𝑉 𝑓

𝑈2

𝑐2
𝜕𝐹𝐹𝐹T

𝜕𝑥

𝜕𝐹𝐹𝐹

𝜕𝑥
d𝑉, �̄�𝐴𝐴𝑒𝑓 𝑠 = −

∫
𝑆𝜎

𝑈𝐹𝐹𝐹T 𝜕𝑁𝑁𝑁𝑤
𝜕𝑥

d𝑆, �̄�𝐴𝐴𝑒𝑠 𝑓 =
∫
𝑆𝜎

𝜌 𝑓𝑈𝑁𝑁𝑁
T
𝑤

𝜕𝐹𝐹𝐹

𝜕𝑥
d𝑆.

Here: 𝐹𝐹𝐹, 𝑁𝑁𝑁 , 𝑁𝑁𝑁𝑤 are the shape functions the trial solutions for the velocity potential
of the fluid 𝜙, the generalized vector of the nodal displacements of the thin-walled
structure 𝑑𝑑𝑑 and its normal component �̄�; 𝐵𝐵𝐵 is the gradient matrix, which links the
deformation vector with the vector of nodal displacements of the shell finite element.
The constitutive relations defined in Eq. (8.5) do not contain the equation for rotation
about the axis 𝑧. To eliminate this problem, it is necessary to introduce zero rows
and columns and a fictitious moment 𝑀�̄� into the stiffness matrix [22]. The matrices
with overbar (�̄�𝐾𝐾𝑒𝑠 , �̄�𝑀𝑀

𝑒
𝑠 , �̄�𝐶𝐶

𝑒
𝑠 𝑓 , etc.) are formed in the coordinate system (𝑥, �̄�, 𝑧). Their

transformation to the global Cartesian coordinates (𝑥, 𝑦, 𝑧) is performed for each
element using the directional cosine matrix in a known way [6, 22].

In the finite elementmodel, the perturbation velocity potential𝜙, the basis functions
𝐹𝑚, and the membrane displacements of the shell �̄� and �̄� are described using by
Lagrange bi-linear shape functions. The bending displacement �̄�, the rotation angles
\ �̄� and \ �̄� are approximated by the nonconforming cubic Hermite polynomials [22].
The discretization of the computational domains of the fluid and the thin-walled
structure is carried out using the spatial 8-node prismatic and flat rectangular finite
elements, respectively.

The system of equations (8.10) is converted into the generalized eigenvalue
problem [24], which is solved by the implicitly restarted Arnoldi method [25]:
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𝐶𝐶𝐶 𝐾𝐾𝐾 +𝐴𝐴𝐴
−𝐼𝐼𝐼 0

]
+ i𝜆

[
𝑀𝑀𝑀 0
0 𝐼𝐼𝐼

] ) {
i𝜆�̃�𝑢𝑢
�̃�𝑢𝑢

}
= 0. (8.11)

The model described above and the finite element algorithm allow us to investigate
a system of two coaxial or eccentric cylindrical shells with a fluid in the annular gap

between them. In this case �̃�𝑢𝑢 =
{
�̃�𝑑𝑑
(1)
, �̃�𝑑𝑑

(2)
,𝜙𝜙𝜙

}T
and the global matrices in equation

(8.10) take the form:

𝑀𝑀𝑀 =


𝑀𝑀𝑀 (1)
𝑠 0 0
0 𝑀𝑀𝑀 (2)

𝑠 0
0 0 𝑀𝑀𝑀 𝑓


, 𝐾𝐾𝐾 =


𝐾𝐾𝐾 (1)
𝑠 0 0
0 𝐾𝐾𝐾 (2)

𝑠 0
0 0 𝐾𝐾𝐾 𝑓


, (8.12)

𝐶𝐶𝐶 =


0 0 −𝐶𝐶𝐶 (1)

𝑠 𝑓

0 0 𝐶𝐶𝐶 (2)
𝑠 𝑓

−𝐶𝐶𝐶 (1)
𝑓 𝑠 𝐶𝐶𝐶

(2)
𝑓 𝑠 𝐶𝐶𝐶 𝑓


, 𝐴𝐴𝐴 =


0 0 −𝐴𝐴𝐴(1)

𝑠 𝑓

0 0 𝐴𝐴𝐴(2)
𝑠 𝑓

−𝐴𝐴𝐴(1)
𝑓 𝑠 𝐴𝐴𝐴

(2)
𝑓 𝑠 𝐴𝐴𝐴 𝑓


.

where �̃�𝑑𝑑 (1) and �̃�𝑑𝑑 (2) are the generalized vectors of displacements of the inner and
outer shells.

The numerical implementation of the finite element algorithm has been carried
out in MATLAB software using the capabilities of the ANSYS package to create a
mesh. The stability estimation is based on the analysis of complex eigenvalues of
problem (8.11), which were obtained under the condition of gradually increasing
fluid velocity. In our simulations we consider the shells with different kinematic
boundary conditions at the edges and denote them as: F – free edge, S – simple
support (𝑣 = 𝑤 = 0) and C – rigid clamping (𝑢 = 𝑣 = 𝑤 = 0, \𝑥 = \𝑦 = \𝑧 = 0).

8.3 Single Cylindrical Shells

The developed finite-element algorithm was applied to investigate the influence of
the fluid level, the ratio of ellipse semi-axes and the linear dimensions on the natural
frequencies and mode shapes of vibrations, and the boundary of the hydroelastic
stability of circular and elliptical cylindrical shells interacting with quiescent and
flowing fluid (Fig. 8.1). The analysis of the obtained results was carried out using
the dimensionless quantities, such as the fluid level [, the ellipticity parameter 𝛽, the
eigenvalue Λ, the natural frequency of vibrations Ω and the flow velocity Y:

[ =
𝑉 𝑓

𝑉𝑖
, 𝛽 =

𝑅𝑧
𝑅𝑦
, Λ = 𝜆𝑅𝑦𝜓, Ω = 𝜔𝑅𝑦𝜓, Y =𝑈𝜓, 𝜓 =

√︄
𝜌𝑠

(
1− 𝜈2)
𝐸

, (8.13)

where 𝑉𝑖 is the volume of the shell interior, 𝑅𝑧 and 𝑅𝑦 are the ellipse semi-axes
(Fig. 8.1). The parameters used in computations are listed in the Table 8.1.
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Table 8.1: Computation parameters.

Case 𝐸, GPa 𝜈 𝜌𝑠 , kg/m3 𝑐, m/s 𝜌 𝑓 , kg/m3 𝑅𝑦 , mm ℎ, mm 𝐿/𝑅𝑦

I 205 0.3 7800 1500 1000.0 77.25 1.5 2.99
II 206 0.3 7850 1500 1004.8 200 2.0 5.00

8.3.1 Circular Cylindrical Shells

It is known that the empty and fluid-filled vertical circular (𝛽 = 1) cylindrical shells
are characterized by the multiple frequencies of the spectrum. They correspond to the
symmetric and antisymmetric mode shapes with the same number of circumferential
( 𝑗) and meridional (𝑚) half-waves, which differ only by rotation in the circumfer-
ential direction. When horizontal shells are partially filled, mode shapes with one
combination of the wave numbers (𝑚, 𝑗) correspond to unequal natural frequencies
(Fig. 8.2a, b). This difference varies and depends on the fluid level [ of the structure
(Fig. 8.3). The interesting thing about the lowest vibration modes is that, at any values
of the parameter [, the displacements are always at a maximum in the fluid-structure
interface (Fig. 8.2). A similar conclusion was made earlier in [10].

The change of the six lowest natural vibration frequencies of a horizontal circular
cylindrical shells (Case I, 𝛽 = 1) in response to the filling level [ is shown in Fig. 8.3
for different variants of boundary conditions. It is seen that even a small amount of a
fluid inside the structure causes a notable decrease in the vibration frequency, which
most significantly affects the shell rigidly clamped at both edges (Fig. 8.3b).

Figure 8.4 illustrates the comparison of the natural vibration frequencies of the
shells of different orientations depending on the amount of a fluid inside these struc-
tures (Case I, 𝛽 = 1). In the case of horizontally located shells, we confine ourselves
to considering the odd modes Ω1, Ω3, Ω5, since the frequencies of even modes Ω2,
Ω4, Ω6 differ only slightly from them (Fig. 8.3). For the vertical configurations,
the symmetric and antisymmetric mode shapes have multiple frequencies, and thus

a b c d

� = 0.5 � = 0.5 � = 0.094 � = 0.906

Fig. 8.2: Schematic view of mode shapes of a horizontal cylindrical shell (SS): a – 𝜔1 = 282 Hz,
b – 𝜔2 = 287 Hz, c – 𝜔2 = 399 Hz, d – 𝜔1 = 265 Hz.
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Fig. 8.3: Six lowest natural vibration frequencies of a horizontal cylindrical shell at different fluid
level: a – CF, b – CC.

Ω1 = Ω2, Ω3 = Ω4 and Ω5 = Ω6. Analysis of the obtained dependencies showed that
not only the added mass of a fluid but also the hydroelastic interaction on the wetted
surface cause significant changes in the spectrum. This is reflected in the fact that,
at the same amounts of the fluid, the natural vibration frequencies of the partially
filled vertically and horizontally oriented shells fail to coincide in most cases. As
seen in Fig. 8.4a, the frequencies of the horizontal structure clamped at one edge are
lower compared to the vertical one. An exception is almost completely filled shells,
for which the difference at [ > 0.9 can be termed insignificant. A more complex
dependence is observed under boundary conditions referring to rigid clamping at
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Fig. 8.4: Natural vibration frequencies Ω1 (◦, •) , Ω3 (□,■) , Ω5 (△,▲) of a horizontal (dashed
lines) and vertical (solid lines) cylindrical shell at different fluid level: a – CF, b – CC.
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both edges (Fig. 8.4b). In this case, situations may arise where the natural vibration
frequencies of the systems with different orientations coincide. As an example, we
consider the modes Ω1 and Ω3 at [ ≈ 0.72 and [ ≈ 0.35 (the points of intersection of
the dashed and solid lines), respectively.

The next example illustrates the problem of hydroelastic stability of a simply
supported cylindrical shell (SS) interacting with an internal fluid flow (Case II, 𝛽 = 1).
The analytical solution of this problem at complete filling ([ = 1) was derived in
work [26]. It was found that, under such conditions for fixing the structure, the loss of
stability occurs through divergence. With an increase in the flow velocity, the lowest
natural frequency of the system decreases until it becomes equal to zero at Y = Y𝐷 .
At this moment, there appears a pair of imaginary parts of this mode, one of which
is negative. Considering the results presented in Fig. 8.5, it follows that an increase
in the length of the shell 𝐿 leads to a noticeable decrease in the critical velocity of
divergence Y𝐷 . This dependence exhibits a non-monotonic character that can be
attributed to the change in the vibration mode, according to which the loss of stability
is implemented. As a result, the curve has a break, after which, instead of the local
region of increase, the region of decrease appears. Fig. 8.5 shows that a decrease
in the fluid level [ leads to an increase in the critical velocities of instability. The
calculation results demonstrate that the type of stability loss remains the same in this
case. Dotted line in Fig. 8.5 corresponds to the results obtained in the framework
of the two-dimensional formulation using the semi-analytical finite element method.
The presented data illustrate the identity of the found critical velocities for different
linear dimensions.

8.3.2 Elliptical Cylindrical Shells

In the numerical examples given in this section, horizontally located elliptical cylin-
drical shells (Case I) are considered. The study of the results revealed several

Fig. 8.5: Dimensionless crit-
ical velocities of divergence
Y𝐷 for circular cylindrical
shells as a function of the ratio
𝐿/𝑅.
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distinguishing features in the behavior of the lowest natural frequencies of vibrations
of these structures [3]. Analysis of the effect of the ellipticity parameter 𝛽 was per-
formed assuming that the size of the vertical semi-axis 𝑅𝑦 is kept constant, unless
otherwise specified. In this case a change in the value of 𝛽 is associated with a
monotonic change in the cross-sectional area of the shell and the fluid level in it at a
fixed value of [.

Figure 8.6a shows that the presence of even a small amount of a fluid inside the
horizontal circular and elliptical cylindrical shells promotes a significant decrease
in their lowest natural frequency of vibrations. Moreover, at 𝛽 < 1 it monotonically
decreases over the entire range of the values of the parameter [ and at 𝛽 > 1 becomes
an asymptotic dependence. It is seen that when a certain fluid level is reached, the
frequency ceases to change from its further increase (Fig. 8.6a). The threshold value
[, at which the asymptotic behavior occurs, is determined by the ellipticity parameter.
This feature is clearly visible in Fig. 8.6b, where several curves begin to merge with
each other at 𝛽 > 1.2.

It should be noted that the dependence of the lowest natural frequency on the
ellipticity parameter 𝛽 exhibits the non-monotonic behavior (Fig. 8.6b) and reaches
its maximum at 𝛽 < 1. This feature is caused by a change in the vibration mode and
is illustrated in more detail in Fig. 8.7 for the shells completely filled with a fluid. At
𝛽 = 1, the frequencies corresponded to the symmetric and antisymmetric mode shapes
with one combination of wave numbers (𝑚, 𝑗) coincide. However, at 𝛽 ≠ 1, there
may be more than two modes with the same number of half-waves in the longitudinal
and circumferential directions. In this case, only the lowest frequency mode is taken
into account. As can be seen from Fig. 8.7a, the lowest natural vibration frequency is
determined by the frequencies which correspond to three mode shapes with different
numbers of circumferential half-waves ( 𝑗 = 2,3,4). The deviation of the cross section
of the shell from the circular profile due to a change in the ellipticity parameter leads

β = 1.0

β = 0.75

β = 1.5

β = 2.0

a

N
at

ur
al

 fr
eq

ue
nc

y 
Ω

1 ×
 1

02

0.5

0.9

1.3

1.7

2.1

2.5

Fluid level η
0.0 0.2 0.4 0.6 0.8 1.0

η = 0.142

η = 0.804η = 1.0

η = 0.5 η = 0

b

N
at

ur
al

 fr
eq

ue
nc

y 
Ω

1 ×
 1

02

0.5

0.9

1.3

1.7

2.1

2.5

Ellipse semi-axes β
0.5 0.8 1.1 1.4 1.7 2.0

Fig. 8.6: The lowest natural vibration frequencies of an elliptical cylindrical shell (CC) at different
fluid level (a) and ratio of ellipse semi-axes (b).
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Fig. 8.7: Natural vibration frequencies of an elliptical cylindrical shells completely filled with a
fluid (𝑚 = 1): a – CC, b – CF.

to a non-uniform rigidity of the structure along the circumferential coordinate. In
turn, this contributes to the appearance of various vibration mode shapes. The jumps
in frequency were driven by the degeneration of one of the vibration modes and
its transformation to a new one. For example, at 𝛽 ≈ 1.13, mode (1,3) converts
into (1,5). With a further increase in the parameter 𝛽, mode (1,3) is not realized
on the considered frequency spectrum, but it appears again, starting from 𝛽 ≈ 1.24.
The features mentioned above continue to exist at another variant of the kinematic
boundary conditions. The dependence of the lowest natural vibration frequency of
the shell fixed at one edge on the ellipticity parameter is also nonmonotonic and has
a pronounced extremum (at 𝛽 = 0.82). As one can see in Fig. 8.7b, the number of
circumferential half-waves changes at this point from 𝑗 = 2 to 𝑗 = 3.

It is also important to point out one more feature previously determined for the
horizontal circular cylindrical shells and which is preserved for elliptical one. The
maximum height of the half-waves in the circumferential direction of the lowest
vibration mode is observed on the fluid-structure interface. For the vibration modes
corresponding to the highest frequencies of the spectrum, this pattern does not always
manifest itself.

The dependencies of the critical velocities of instability of the completely filled
simply supported cylindrical shells with circular and elliptical cross-sections on the
ratio 𝐿/𝑅𝑦 are shown in Fig. 8.8a. In both cases, the divergence boundary significantly
depends on the linear dimensions of the structure. With an increase in the length of
the shell 𝐿, the critical velocities Y𝐷 decrease. The kinks of the curves are due to a
change in the mode according to which the loss of stability occurs. For example, for
the shell with 𝛽 = 1.5 the number of circumferential half-waves 𝑗 changes from 𝑗 = 4
to 𝑗 = 3 at 𝐿/𝑅𝑦 > 5.

In the next series of examples, the hydroelastic stability of the partially filled
shells clamped at both edges is considered at different ratios of the ellipse semi-axes.
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Fig. 8.8: Dimensionless critical velocity of instability Y𝐷 for elliptical cylindrical shells depend on
the ratio 𝐿/𝑅𝑦 (a) (𝜂 = 1, Case II, SS) and the ratio of the ellipse semi-axes (b) (Case I, CC).

Analysis of the results presented in Fig. 8.8b indicates that a decrease in the fluid level
[ leads to an increase in the critical flow velocities Y𝐷 . However, there are such values
of [ and 𝛽, starting from which the value of Y𝐷 changes insignificantly (at 𝛽 > 1.25,
the curves almost coincide). In the case of a quiescent fluid, the dependence of the
lowest natural vibration frequency of such structures on the ellipticity parameter 𝛽
has an extremum, which is observed at 𝛽 < 1 and shifts depending on the fluid level
(Fig. 8.6b). Figure 8.8b shows that this feature is also characteristic of the critical flow
velocities. In both cases, everything is explained by the fact that the cross-sectional
area of the cylindrical shell is not a constant value at a change in 𝛽 (since 𝑅𝑦 = const).
Further, we will consider the situation where the ellipticity parameter changes and
the cross-sectional area of the shell remains equal to a similar circular configuration.
The results obtained are shown as line with circles in Fig. 8.8b. In this example,
there is no difference between the critical velocities at 𝛽 > 1 and 𝛽 < 1, and the given
dependence has a maximum at 𝛽 = 1.

8.4 System of two Circular Cylindrical Shells

In this section we consider examples, which are concerned with two horizontally
oriented circular cylindrical shells (Fig. 8.9), and use the following parameters:
isotropic shells

𝐿 (1) = 𝐿 (2) = 𝐿 = 1 m, 𝑅 (2) = 0.1 m, ℎ (1) = ℎ (2) = ℎ = 5×10−4 m,
𝐸 (1) = 𝐸 (2) = 𝐸 = 200 GPa, 𝜈 (1) = 𝜈 (2) = 𝜈 = 0.3, 𝜌 (1)𝑠 = 𝜌 (2)𝑠 = 𝜌𝑠 = 7800 kg/m3,

ideal fluid
𝜌 𝑓 = 1000 kg/m3, 𝑐 = 1500 m/s.



8 Three-Dimensional Numerical Analysis of Natural Vibrations . . . 125

Fig. 8.9 Section of eccentric
cylindrical shells with the
annular gap partially filled
with a flowing fluid.
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The computations were done for different values of the dimensionless annular gap
between them, which is defined as 𝑘 =

(
𝑅 (2) −𝑅 (1) ) /𝑅 (1) . In the analysis of the

influence of the fluid level 𝐻, consideration is given only to such values of 𝐻 at which
both shells remain wetted. This yields to the following condition:(

𝑅 (2) −𝑅 (1)
)
≤ 𝐻 ≤ 2𝑅 (2) . (8.14)

Hereinafter, superscripts “(1)” and “(2)” denote the inner and outer shells, respectively.
The obtained results are represented in terms of dimensionless quantities. Some of
them are given in expressions (8.13) and new ones are defined below:

[ =
𝐻

2𝑅 (2) , Λ = 𝜆𝑅 (1)𝜓, Ω = 𝜔𝑅 (1)𝜓, 𝜉 =
𝑎(

𝑅 (2) −𝑅 (1) ) , (8.15)

where [ is the fluid level, 𝜉 is the eccentricity (Fig. 8.9), 𝑎 is the distance between
the rotation axes of the shell.

8.4.1 Coaxial Shells

As has been shown previously, the violation of circumferential symmetry of the
horizontally oriented shells partially filled with a fluid causes the frequency spectrum
to split. For this reason, the frequencies for the mode shapes with the same combination
of wave numbers are different, which is shown in Fig. 8.10a for 𝑘 = 1/10. In the
calculations, it was assumed that the inner elastic shell is clamped at both edges
(CC), and the outer shell is absolutely rigid. The natural frequencies of vibrations of
such configuration, corresponding to symmetric and antisymmetric modes, coincide
when the annular gap is completely filled ([ = 1). When the fluid level decreases
in this gap ([ < 1), they begin to differ from each other, and their further change
goes along different branches. Another limiting case corresponds to the configuration
with ([ = 0). Under such conditions, the frequency spectrum will be closest to the



126 Sergey A. Bochkarev et. al

a

(2,1)1

(2,1)2

(3,1)1

(3,1)2

N
at

ur
al

 fr
eq

ue
nc

y 
Ω

 ×
 1

03

4

8

12

16

20

24

Fluid level η
0 0.2 0.4 0.6 0.8 1

b

(3,1)1

(3,1)2N
at

ur
al

 fr
eq

ue
nc

y 
Ω

 ×
 1

03

0.0

1.2

2.4

3.6

4.8

6.0

Flow velocity Υ × 103

0 4 8 12 16 20
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vibrations of shells with air in the annular gap, and different branches will coincide.
By virtue of Eq. (8.14), this situation cannot arise at all frequencies. On the other
hand, the dependencies presented in Fig. 8.10a for the same combination of wave
numbers ( 𝑗 ,𝑚) clearly demonstrate that in some cases the coincidence between
symmetric and antisymmetric components also takes place at the values ([ > 0).

Figure 8.10b shows the variation of the natural frequencies with the same set
of wave numbers ( 𝑗 ,𝑚) depend on the flow velocity Y. It follows from the graphs
that, when the annular gap is only partially filled with fluid, there is no qualitative
difference in the behavior of the presented curves. In particular, the imaginary parts
of these two modes do not merge together due to their proximity, and the instability
mode remains unchanged.

Figure 8.11 presents the dependencies of the lowest natural frequencies Ω1 and the
critical flow velocities Y𝐷 on the dimensionless fluid level [ in the annular channel
at different values of 𝑘 . This example illustrates the case when two elastic coaxial
shells are rigidly clamped at their edges. The above graphs show that a decrease
in the fluid level leads to an increase in both frequencies and critical velocities.
This behavior occurs due to a decrease in the total area of wetted surfaces and is
associated with diminishing the role of the added mass of a fluid. The wavy character
of the curves in Fig. 8.11a is associated with the alternation of the minimum values
corresponding to the vibration modes with the same combination of wave numbers.
A rapid change in the quantities under study is observed at a low fluid level [ for the
gap 𝑘 = 1/100. Similar results were obtained for the partial filling of single shells
[3, 5]. This phenomenon occurs only at small values of 𝑘 due to the need for the
existence of a wetted surface of the inner shell, that may be absent when the amount
of a fluid in a relatively wide annular channel is small (see condition (8.14)). As in
the case of complete filling ([ = 1), an increase in the annular gap (Fig. 8.11b) and in
the rigidity of the outer shell causes the critical velocities to increase as well . Thus,
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the narrower is the annular channel (i.e., the smaller is 𝑘), the greater is the range
within which the fluid level has little effect on the characteristics under consideration.

8.4.2 Eccentric shells

During operation or due to the imperfect shell manufacturing process, the alignment
of coaxial shells can be broken. In [8] the influence of the eccentricity 𝜉 and the
angle \, characterizing, respectively, the value and direction of axial deviation of
the inner shell is described in detail. It was shown that, when the annular gap is
completely filled with fluid and the body forces are absent, the angle \ does not affect
the stability boundary, while the eccentricity (𝜉 increases in absolute value) reduces
critical velocity.

In the case of partial filling, the picture becomes much more complicated. When
the inner shell is displaced along the free surface, the added mass of the liquid is
redistributed. This reduces the critical velocity, regardless of the direction of axial
deviation (\ = 0◦ or \ = 180◦) and the fluid level [. The angle \ = 90◦ and the positive
values of eccentricity 𝜉 (𝜉 > 0) characterize the rise of the inner shell out of the
fluid. In response to the changes in the wetted surface area and to the hydrodynamic
pressure redistribution, the critical flow velocities increase or decrease, respectively.
The size of the annular gap 𝑘 has no qualitative effect on the dependence of the
critical velocities Y𝐷 on the inner shell eccentricity. A decrease in the value of 𝑘
leads to a decrease in the stability boundary. This has been established previously for
the coaxial cylindrical shells in case of full or partial filling of the annular channel
[2, 6].
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The results demonstrate that, as the filling level [ increases, the influence of
the angle \ on the stability boundary decreases until it ceases to have any effect
in case of complete filling. The minimum critical velocity Y𝐷 is always obtained
at the same eccentricity (𝜉 ≈ −1) regardless of the values of \ and [. As for the
maximum value of Y𝐷 , it can be achieved at different values of eccentricity on the
half-interval 𝜉 ∈ [0; 1) through the selection of \ and [. As noted earlier, this is
explained by changes in the inner shell wetted surface and in the fluid added mass.
These statements are true when the values of the angle \ are positive, and the negative
values of 𝜉 match positive values, though in the direction of the negative angles \.
Furthermore, the data presented in Fig. 8.12 can be arguments for the existence of
such configurations in which, subject to proper selection of all parameters, the higher
hydroelastic stability threshold than obtained at the coaxial shells can be provided.

The dependencies of the critical velocity Y𝐷 on the angle \ and the eccentricity
of the inner shell 𝜉 are presented in Fig. 8.12b. When the angle \ decreases, there
is such a range of its values where the Y𝐷 remains unchanged. The calculations
showed in [8] that, as the fluid level increases, the size of this interval increases as
well until the angle \ ceases to affect the stability boundary in the case of full filling
(the straight line is parallel to the abscissa axis). At the same time, with an increase
in the eccentricity 𝜉 the critical velocity Y𝐷 changes over a wide range (Fig. 8.12b),
thus providing more opportunities to control dynamic behavior of such structures.

Figures 8.13 and 8.14 gives the mode shapes of the shells for 𝑘 = 1/10 at different
variants of annular gap filling, assuming that the value and direction of axial deviation
of the inner shell are also different. For each configuration, the flow velocity was
set close to the critical value Y𝐷 . In the figures, the dotted lines denote the non-
deformed shells, and the solid lines correspond to the deformed one; the fluid level
is given in grey. In the spatial mode shapes, the displacements are scaled for clarity
in presentation of the data on the relative maximum value of the given configuration.
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Fig. 8.13: Mode shapes of
eccentric shells interacting
with the fluid (the cross
section at 𝑥 = 𝐿/2, the inner
and outer shells) for 𝑘 = 1/10
at Y ≈ Y𝐷 : a – 𝜂 = 1, 𝜉 = 0;
b – 𝜂 = 1, 𝜉 = 0.95, 𝜃 = 90◦;
c – 𝜂 = 0.5, 𝜉 = 0.

a b c
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Red and blue on the color scale indicates the displacement in the direction of the
outer normal to the shell surface and in the opposite them.

For the completely filled coaxial shells ([ = 1, 𝜉 = 0), the circumferential half-
waves have the same height, the size of which is different for the inner and outer
shells. In the presence of eccentricity ([ ≠ 0), their height within the same shell
becomes different. The maximum displacements occur in the surface areas, which
correspond to the minimum distance between the shells. With a decrease in the
fluid level ([ < 1), there appear half-waves of different heights, while the maximum
displacements develop on those parts of the surfaces which interact with the fluid.
For the partially filled eccentric structures, the largest half-wave size is observed on
the wetted surfaces. Based on the data, we can come to a conclusion that the fluid
level of the annular gap has a greater effect on the displacement of the shells subject
to vibrations than the eccentricity.
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Fig. 8.14: Mode shapes of
eccentric shells interacting
with the fluid (the cross
section at 𝑥 = 𝐿/2, the inner
and outer shells) for 𝑘 = 1/10
at Y ≈ Y𝐷 : a – 𝜂 = 0.50,
𝜉 = 0.95, 𝜃 = 0◦; b – 𝜂 = 0.50,
𝜉 = 0.95, 𝜃 = 90◦; c – 𝜂 = 0.5,
𝜉 = 0, 𝜃 = −90◦.
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8.5 Conclusion

Natural vibrations and stability of cylindrical shells interacting with quiescent and
flowing fluid has been investigated in a three-dimensional formulation based on the
proposed mathematical model and developed finite element algorithm. In the first
group of numerical examples single circular and elliptical cylindrical shells with
different boundary conditions, linear dimensions and filling level were analyzed. In
another part of the calculations, we studied a system of two coaxial and eccentric
circular cylindrical shells. The influence of the fluid level, the annular gap size, the
value and direction of axial deviation of the inner shell on the natural vibration
frequencies and hydroelastic stability boundary were investigated. The obtained
results can be summarized as follows:

• horizontal cylindrical shells partially filled with fluid can have more than two
mode shapes with the same number of half-waves in the circumferential and
the meridional directions, which correspond to different natural frequencies of
vibrations;

• small amount of the fluid in horizontal circular, elliptical and coaxial cylindrical
shells lead to an essential decrease in the lowest vibration frequency;
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• the lowest natural vibration frequency of horizontal elliptical cylindrical shells
has a local extremum, which depends on the fluid level and the ratio of ellipse
semi-axes;

• a decrease in the fluid level leads to a growth of the critical flow velocities;
• an increase in the structure length decreases the critical flow velocities;
• for coaxial cylindrical shells with narrow annular gap there is a wide range of the

fluid level in which it has little effect on the lowest natural frequency of vibrations
and critical velocity of instability;

• hydroelastic stability threshold of the eccentric circular cylindrical shells can be
improved by selecting appropriate value and direction of axial deviation of the
inner shell.
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registration number of theme AAAA19-119012290100-8.
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Chapter 9
On the Problem of Modeling the Influence of Ice
Cover and Surface Waves of a Liquid on the
Dynamics of a Floating Body

Anastasiia A. Chevrychkina, Nikolai M. Bessonov, and Andrei K. Abramian

Abstract An approach to numerical simulation of the evaluation of the influence
of a semi-infinite ice cover on the dynamics of a floating body is proposed. The
problem is solved numerically for 2D case. The ice cover is modeled as a semi-infinite
beam with a bending stiffness equal to the cylindrical bending stiffness of the plate.
Considered cases of action on a floating body (plate) are concentrated unsteady
and stationary harmonic forces. Water was considered as an ideal incompressible
homogeneous fluid, and its motion is irrotational. Nonlinear boundary conditions
were assumed on the free surface of the fluid. Displacement values and angles of
rotation of the floating body has been found. It is shown that under non-stationary load
the maximum displacements and rotation angles of a floating body can exceed their
values in stationary modes. Examples are found in which, for nonlinear conditions on
the free surface, the values of displacements and angles of rotation exceed the values
obtained for linear conditions. At the same time, for a wide range of parameters of
the considered hydroelasticity system, considering nonlinear boundary conditions
does not give a difference in the values of displacements and angles of rotation of
the floating body from the case of using a linear boundary condition. The existence
of low-frequency range of the acting harmonic force, in which the ice cover does not
affect the angles of rotation of the floating body has been found. The calculations
showed that for floating body parameters corresponding to the parameters of real
offshore structures, it is not necessary to consider the bending rigidity of the floating
body, and the motion of the body can be considered as the motion of a rigid body.
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9.1 Introduction

The operation of floating-type structures in the presence of ice cover in various
marine conditions and external loads acting on structures were studied in many
works. Historically, the first studies were devoted to the behavior of ships near ice
floes, which was caused by the need to ensure safe navigation [1–4]. Currently,
floating oil platforms and nuclear power plants have increased the class of objects,
ensuring the safety of navigation of which has become the subject of research [5–8].
When posing problems related to the above issue, the floating structure was modeled
either as a rigid body [4–7] or as a plate (beam) [1–3, 8]. As an external influence on
a floating object, harmonic force [2–7] or moment actions [8], as well as progressive
waves [3–6], were considered. Water was considered as an ideal incompressible heavy
liquid, and the ice cover as a plate floating on its surface. The paper [9] presents
a solution to the linear hydroelasticity problem of steady-state forced vibrations
of a semi-infinite ice cover under the action of a localized external load. The ice
cover is modeled by a viscoelastic thin plate, the liquid layer thickness is assumed
to be small, and the shallow water theory is used. The paper [10] considers the
problem of determining the stationary field of forced joint gravitational motions of
an incompressible fluid in a cylindrical reservoir and a round elastic plate covering
its surface. To solve problems in [1–7], linear boundary conditions on the water
surface were used. In [1–7, 9, 10], various analytical methods were used to obtain
solutions, and in [8, 11, 12] numerical methods were used. A review of works devoted
to various methods for solving problems on the interaction of an ice cover, a floating
body, and water is presented in [13]. The result of solving problems was usually the
dependence of displacements (including angular ones) of both the floating body and
the ice cover on the frequencies of the external action and on the spatial coordinate.
In this paper, we consider issues that have not been considered previously in other
papers. One of these questions is, for example, the question of the behavior of a
floating body and an ice cover in an unsteady regime. The results obtained in this
work indicate that the maximum displacements of a floating body and ice cover in an
unsteady regime can be significantly greater than in a steady regime. Another issue
is the question of the influence of the elasticity of a floating body on the maximum
displacements under the action of external forces applied to it. Although in [11] an
assumption was made about the smallness of the influence of nonlinearity in the
boundary conditions on the surface of a liquid on the displacements of a floating
body and ice cover, in the present work, the values of the parameters of the considered
system are found for which such an influence is significant. In this article, the authors
from the very beginning abandoned the attempt to solve the problem analytically
and used a numerical method. The reason for this is that a mathematically rigorous
solution of the problem requires the construction of a solution that not only takes
into account the singularity that occurs at the edge of the ice plate, but also obtains
a solution that correctly describes waves that go to infinity. As far as the authors of
this article know, researchers have not yet been able to overcome both difficulties and
obtain a satisfactory analytical solution.
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9.2 Statement of the Problem

Consider the problem of joint motion of the ice cover, body (floating structure) and
water under them (Fig. 9.1). An ice cover floating on the water surface will be
considered as an elastic plate lying on a base of an incompressible fluid [1]. The
floating body is also represented as an elastic plate with its cylindrical rigidity much
greater than that of ice. Elastic plates located on the water surface are separated
by areas with a free surface. The problem will be considered in a two-dimensional
setting. In this regard, instead of the equations of the plates, the equations of the
beam type will be used, in which the cylindrical stiffness of the plate will be taken
as the bending stiffness of the beam. The Cartesian coordinate system in the plane
will be used.

Following the assumptions accepted in the literature, water is considered an ideal,
incompressible fluid, and its flow is irrotational [1]. The potential of fluid motion
velocities Φ satisfies the Laplace equation in the area occupied by the fluid:

ΔΦ = 0, (9.1)

𝜕Φ
𝜕𝑡

+ |∇Φ|2
2

= − 1
𝜌
𝑝−𝑔𝑦, (9.2)

where 𝑝 is a pressure, 𝜌 is a water density, 𝑔 is the acceleration of gravity.
Let us assume, for definiteness, that here and below the pressure 𝑝 is measured

from the atmospheric pressure.
In what follows, we confine ourselves to small flexural vibrations of the ice cover.

We will simulate the movement of the ice cover, the free surface of the liquid and
the floating body as the movement of a beam of variable stiffness. The equation of
motion of such a beam can be written in the following form:

𝜌0ℎ
𝜕2𝑤

𝜕𝑡2
= − 𝜕2

𝜕𝑥2

(
𝐷
𝜕2𝑤

𝜕𝑥2

)
+ 𝑝 + 𝑞, (9.3)

where 𝑤(𝑥, 𝑡) is a vertical movement of the beam from the equilibrium horizontal
position; 𝜌0 is a beam material density; 𝑝 is a liquid side pressures; 𝑞 is an external
force applied to the body; 𝐷 = 𝐷 (𝑥) is a plate cylindrical stiffness

Fig. 9.1: Schematic arrange-
ment of the ice cover and the
body simulating the floating
structure in the calculated
area.

bodyice plate 
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𝐷 =
𝐸ℎ3

12(1− 𝜈2) ,

where 𝐸, 𝜈 are the modulus of elasticity and the Poisson’s ratio, ℎ is a plate thickness.
The stiffness of the beam is given as a variable along its longitudinal axis and is equal
to either the cylindrical stiffness of the ice part of the beam, or the stiffness of the
floating body, or is taken on the free surface of the liquid to be small compared to
the cylindrical stiffness of ice on the free water surface, so that the bending moment

𝑀 = 𝐷
𝜕2𝑤

𝜕𝑥2

in Eq. (9.3) is negligibly small. Similarly, the density 𝜌0 is given as a variable and
equals either the density of ice, or the reduced density of the floating body, or, on
the free surface, a much lower density of ice. To test the proposed model of a beam
with variable stiffness, the results obtained using this model were compared with the
results obtained using analytical and numerical methods in [11]. In [11], the problem
of the behavior of the same hydroelasticity system as in the present work was solved,
but in a linear formulation. A comparison of the results obtained in this work with
the results obtained in [11] is presented in Sect. 9.4. Also, as a test problem, we
considered the problem of the dynamics of a single finite beam in contact with a
basin of finite depth and infinite length along the coordinate x, which is affected
by the harmonic force, attached to its center. The results of this test problem were
compared with the results obtained in [6] and showed a qualitative agreement.

Thus, an approach is proposed that allows to describe an ice beam, a free surface,
and a floating body by the general Eq. (9.3) and boundary conditions on the surface,
bottom, and side surfaces of the calculated area.

9.3 Numerical Method

The equations describing the motions of the system have the form.

ΔΦ = 0, (9.4)

𝜕Φ
𝜕𝑥

|𝑥=0 = 0,
𝜕Φ
𝜕𝑥

|𝑥=𝐻𝑥
= 0,

𝜕Φ
𝜕𝑦

|𝑦=−𝐻𝑦
= 0,

𝜕Φ
𝜕𝑦

|𝑦=0 =
𝑑𝑤

𝑑𝑡
, (9.5)

𝜌0ℎ
𝜕2𝑤

𝜕𝑡2
= − 𝜕2

𝜕𝑥2

(
𝐷
𝜕2𝑤

𝜕𝑥2

)
+ 𝑞− 𝜌

(
𝜕Φ
𝜕𝑡

+𝛼 |∇Φ|2
2

)
− 𝜌𝑔𝑤− 𝜇 𝜕𝑤

𝜕𝑡
, (9.6)

𝜕𝑤

𝜕𝑥
|𝑥=0 = 0, 𝑤 |𝑥=0 = 0,

𝜕𝑤

𝜕𝑥
|𝑥=𝐻𝑥

= 0, 𝑤 |𝑥=𝐻𝑥
= 0, (9.7)
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where 𝐻𝑥 , 𝐻𝑦 are a width and a depth of the calculated area. The initial conditions
are given as

Φ|𝑡=0 = 0, 𝑤 |𝑡=0 = 0,
𝑑𝑤

𝑑𝑡
|𝑡=0 = 0.

In the literature, usually, the case of small surface displacements is considered,
when it is assumed

𝑑Φ
𝑑𝑡

≈ 𝜕Φ
𝜕𝑡
. (9.8)

In this paper, we consider a more general, non-linear case

𝑑Φ
𝑑𝑡

=
𝜕Φ
𝜕𝑡

+𝛼 |∇Φ|2
2

. (9.9)

Here the linear case corresponds to 𝛼 = 0 and the non-linear case corresponds to
𝛼 = 1.

The system of Eqs. (9.4)–(9.7) was solved numerically. A two-dimensional or-
thogonal non-uniform mesh 𝐼 × 𝐽 was introduced with steps Δ𝑥𝑖 and Δ𝑦𝑖 in 𝑥 and 𝑦
respectively (𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽). To improve the accuracy of calculations, the
mesh was thickened along the axis in the vicinity of the ends of the body and the
edges of the ice cover and expanded near the left and right sides of the computational
domain. Vertically, the mesh thickened near the water surface.

The size of the region o extends to “infinity” in reality. However, in numerical
simulation, one has to set these dimensions to be limited, although they are as far
apart as possible. To move away the boundaries of the computational domain without
increasing the number of mesh nodes, an uneven mesh was used with a gradually
increasing step towards the boundaries of the domain. However, starting from the
moment of time equal to the time of passage of surface waves to the boundaries of
the computational domain and back, the solution begins to be affected by the waves
reflected from the boundaries of the domain. To reduce the influence of the reflection
effect, damping boundary conditions were introduced at the boundaries of the region,
which damped the incoming waves. Such a numerical technique has proven itself well
in practice and is often used to reduce the influence of reflection from boundaries
[14, 15]. The term −𝜇𝜕𝑤/𝜕𝑡 was added to the right side of Eq. (9.6) to introduce
damping boundary conditions, where 𝜇 is the coefficient of external friction. The
experience of test calculations to study the effect of 𝜇 on the degree of reflection
of waves from the boundaries showed that the optimal solution, which reduces the
influence of reflected waves by 85-95%, is to set on an area with a length of about 5%
of the size of the entire area. In the rest (central) part of the computational domain,
the value 𝜇 was set equal to zero. Test calculations also showed that a very sharp
change in the value 𝜇 does not give the desired result, but, on the contrary, leads to
the appearance of additional reflected waves at the boundary of a sharp change in
the 𝜇. In the rest (central) part of the computational domain, the value was set equal
to zero. Test calculations also showed that a very sharp change in the value 𝜇 does
not give the desired result, but, on the contrary, leads to the appearance of additional
reflected waves at the boundary of a sharp change in the 𝜇.
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When calculating numerically, system (9.4)-(9.7) was divided into two subsystems
(9.4), (9.5) and (9.6), (9.7), which were solved sequentially in two stages at each time
step. At each time step, nodal values were calculated for the potential Φ𝑛𝑖, 𝑗 , where
𝑛 is a time step number. At the mesh nodes corresponding to the liquid surface, the
deviations of the surface from the equilibrium horizontal position were determined
𝑤𝑛𝑖 .

The sequence of calculations was as follows. Let the potential values Φ𝑛𝑖,1 at all
nodes and vertical deviations at near-surface nodes 𝑤𝑛𝑖 and 𝑤𝑛−1

𝑖 be known either
from the previous time step Δ𝑡 or taken from the initial conditions.

• Using the values 𝑤𝑛𝑖 and 𝑤𝑛−1
𝑖 find the velocities

(
𝑑𝑤

𝑑𝑡

)𝑛
≈ (𝑤𝑛𝑖 −𝑤𝑛−1

𝑖 )/Δ𝑡, 𝑖 = 1, . . . , 𝐼

in all near-surface nodes.
• The found values (𝑑𝑤/𝑑𝑡)𝑛 are substituted into the boundary condition (9.5), then

system (9.4), (9.5) is solved numerically and new values Φ𝑛+1
𝑖, 𝑗 are found at all

mesh nodes.
• Using the obtained values Φ𝑛+1

𝑖, 𝑗 and the values Φ𝑛𝑖, 𝑗 , taken from the previous time
step, the values (𝑑Φ/𝑑𝑡)𝑛+1 are calculated at all near-surface mesh nodes using
difference approximations of relations (9.8) or (9.9).

• The obtained values (𝑑Φ/𝑑𝑡)𝑛+1 are substituted into Eq. (9.6), which is solved
numerically, as a result of which the values 𝑤𝑛+1

𝑖 are found at all near-surface
nodes. Then the process is repeated.

The iterative method [12] was used to numerically solve system (9.4) and (9.5).
To solve Eq. (9.6), we used the substitution

𝑀 = 𝐷 (𝑥) 𝜕
2𝑤

𝜕𝑥2 .

This made it possible to replace the fourth-order Eq. (9.6) in 𝑥 with a system of
two second-order equations. This system was approximated by a three-point implicit
difference scheme and solved using the matrix sweep method.

9.4 Results

The presence of ice makes the problem asymmetric with respect to the floating body.
The waves reflected from the ice come only to the left of the floating body, which
leads not only to the movement of the floating body, but also to its rotation, due to
the presence of asymmetric water pressure. The tangent of the angle of rotation of
the floating body was calculated as the ratio of the difference in the displacements
of its ends to its length. This is true in the case of a large flexural rigidity of the
body, for which the calculations were carried out. The displacement and rotation
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angle of the floating body and ice were calculated for the case of the action of a force
non-stationary harmonic action concentrated in the center of the body, given in the
following form:

𝑞 = 𝐴 sin(𝜔𝑡)𝛿(𝑥−𝐻𝑥/2)𝐻 (𝑡),
where 𝐴 is an impact amplitude, 𝜔 is a circular impact frequency, 𝛿(𝑥) is the delta
function, the floating body is in the center of the calculated width pool 𝐻𝑥 , 𝐻 (𝑡) is
the Heaviside function:

𝐻 (𝑡) =
{
0 , 𝑡 < 0
1 , 𝑡 ⩾ 0

The load values were chosen the same as in [11] or close, which made it possible to
compare the results obtained in it with the results of this article. The values of the
main parameters are given in Table 9.1.

Figures 9.2 and 9.3 show typical dependencies of the maximum displacement of
a floating body under the action of a force concentrated in the center of the body on
its frequency at different ice thicknesses in unsteady and steady modes, respectively.
The steady-state mode is the mode in which the maximum amplitude of oscillations
practically does not change for at least 10 periods. All graphs show the maximum
displacements or angles of rotation in steady or unsteady conditions.

Table 9.1: Values of physical parameters, geometry parameters of the pool and floating body. 𝑙2 is
a floating body length, ℎ2𝜌2 is a product of thickness and density of a body, 𝜌1 is a ice density, ℎ is
a ice thickness.

𝐻𝑦 , m 𝐻𝑥 , m h, m 𝜌1, kg/m3 𝜈ice 𝐸ice, GPa ℎ2𝜌2, kg/m2 𝑙2, m

100 200 1 925 0.3 5 3218 30

Fig. 9.2 Dependence of the
displacement of the left edge
of the body on the frequency
of the force with an amplitude
of 294300 N/m in an unsteady
regime. Comparison for
different ice thicknesses ℎ.
Line 1 - ℎ = 0 - no ice; line 2
- ℎ = 0.1 m; line 3 - ℎ = 1 m;
line 4 - ℎ = 10 m.
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Fig. 9.3 Dependence of the
displacement of the left edge
of the body on the frequency
of the force with an amplitude
of 294300 N/m in steady state.
Comparison for different ice
thicknesses ℎ. Line 1 - ℎ = 0 −
no ice; line 2 - ℎ = 0.1 m; line
3 - ℎ = 1 m; line 4 - ℎ = 10 m.

The dependencies are obtained for the distance from the ice edge to the floating
body 𝐿 = 15 m. The dependence of the movement of the left edge of the body on
frequency shown in Fig. 9.3 shows that there are frequency ranges in which the
influence of reflected waves on these movements is visible. When a body vibrates,
it transfers energy into the liquid in the form of radiated waves. Part of this energy,
which fell into the gap between the body and ice, is contained in the resulting quasi-
standing wave [11]. In these frequency ranges, the surface wave length is proportional
to the gap length. At the same time, there is an increase in the energy transmitted
to this wave in the formed “trap” and an increase in the maximum displacements
of the edge of the body. It should be noted that when the phases of the reflected
waves and the floating body coincide, a resonance occurs, leading to an increase in
the displacements of the body. In the case of antiphase motion, the reflected waves
reduce the displacement of the body.

In addition, based on the graphs in Figs. 9.2 and 9.3, it can be concluded that it is
important to consider the unsteady loading mode, since the maximum displacements
in this mode exceed the maximum displacements in the steady state. It should be
noted that with an increase in the thickness of the ice, the displacement of the floating
body also increases. At the same time, as calculations showed, the displacements of
the ice edge under the action of the same harmonic force decreased with increasing
ice thickness as a result of an increase in the cylindrical rigidity of the plate. The
results presented in Fig. 9.3 were compared with the results obtained in [11] with an
ice thickness of 1 m. The comparison showed that the dependencies of displacements
on the force frequency have a similar form. However, the resonance peaks obtained
in this article are slightly shifted to the left towards lower frequencies compared to
the peaks in [11]. At the same time, the values of displacements on the peaks of
the curves in this article are slightly larger than those on the curves in [11]. This
difference can be explained by the fact that the fluid pressure in the nonlinear setting
is somewhat higher than in the linear one.
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As can be seen from the graphs in Fig. 9.4, the number of resonant peaks increases
with a decrease in the cylindrical stiffness of ice, which qualitatively coincides with
the results obtained in [6] for the case of a free-floating beam.

Most of the calculations performed by the authors of this article confirm the
conclusion made in [11] about the insignificant effect of nonlinear conditions on the
liquid surface. The results of solving the linear problem performed by the authors of
this article showed good agreement with the results given in [11] using the analytical
method of expansion in terms of vertical eigenmodes in the steady state for a harmonic
external disturbance. Due to the good agreement between the displacement values
obtained from the solution of the problem by numerical and analytical methods, the
solution by analytical formulas is not shown on the graphs. However, for some values
of the parameters of the system under consideration, it turned out that considering
the nonlinearity in the boundary conditions on the liquid surface leads to a difference
from the case of a linear condition. The displacements of the edge of the floating body
for linear and non-linear conditions on the water surface are shown in Fig. 9.5 for the
values 𝐿 = 5 m and the value of the amplitude of the applied force of 250000 N/m
up to the frequency value corresponding to the first resonant peak. The limitation of
the frequency range is due to the fact that the difference between the displacements
between the nonlinear and linear cases is most noticeable at the first peak. At other
peaks, the difference between the nonlinear and linear cases is not so noticeable. From
the graphs in Fig. 9.5, it can be seen that at a frequency of the applied force equal to
0.5 rad/s, the magnitude of the displacement amplitude of the floating body in the
non-linear case is greater than the linear one. Also, an increase in the displacement
amplitude was observed for nonlinear boundary conditions for the values of the
distance to the ice edge 𝐿 = 15 m at the same frequency as for 𝐿 = 5 m.

In addition, differences were found in the values of the maximum angle of rotation
of the floating body in linear and non-linear cases in steady state for frequencies in
the range of 0.6−1.3 rad/s, as follows from the curves in Fig. 9.6.

Fig. 9.4 Dependence of the
ice edge displacement on
the force frequency with an
amplitude of 294300 N/m in
steady state. Comparison for
different ice thicknesses ℎ.
Line 1 - ℎ = 0 − no ice; line 2
- ℎ = 0.1 m; line 3 - ℎ = 1 m;
line 4 - ℎ = 10 m.
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Fig. 9.5 Comparison of the
linear and non-linear cases
of the dependence of the
displacement of the left edge
of the body on the frequency
of the force with an amplitude
of 250000 N/m in the steady
state at a distance between the
ice and the body 𝐿 = 5 m. Line
1 - 𝛼 = 0; line 2 - 𝛼 = 1.

Fig. 9.6 Comparison of the
dependence of the angle of
rotation of the body on the
frequency of the force with
an amplitude of 294300 N/m
at a distance between the ice
and the body 𝐿 = 3 m. Line
1 - 𝛼 = 0 steady state; line 2
- 𝛼 = 1 steady state; line 3 -
𝛼 = 0 unsteady state; line 4 -
𝛼 = 1 unsteady state.

However, in a wide range of values of the system parameters, the difference
between displacements and rotation angles of a floating body in a linear and non-
linear setting is not observed. Figure 9.7 shows a typical dependence of the angles
of rotation on the frequency of the acting force in a steady linear regime for various
distances from the ice edge to the body.

To interpret the results shown in Fig. 9.7, it is necessary to note the following: due
to the symmetry of the floating body itself, in the absence of ice, the angle of rotation
of the body under force loading is zero. In addition, as can be seen from the graphs in
Fig. 9.7, the presence of ice has little effect on the angle of rotation of the floating body
up to a frequency of 0.55 rad/s acting force. At frequencies greater than 0.55 rad/s,
the effect of the presence of ice is significant and manifests itself, among other things,
in the presence of resonant peaks. The reason for the lack of influence of ice on the
angle of rotation in a certain frequency range is due to the interaction of reflected and
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Fig. 9.7: Dependence of the
angle of rotation of the body on
the frequency of the force with
an amplitude of 200000 N/m
in steady state. Comparison of
the influence of the distance
between the ice and the body
and nonlinearity. Line 1 -
𝐿 = 15 m, 𝛼 = 0; line 2− 𝐿 =
15 m, 𝛼 = 1; line 3 - 𝐿 = 10
m, 𝛼 = 0; line 4 - 𝐿 = 10 m,
𝛼 = 1.

incident waves on the edge of the ice. It was shown in [12] that when a low-frequency
wave is incident normal to the edge, its energy is transferred to a floating plate, while
when a high-frequency wave is incident, its energy is completely reflected into the
water. A similar behavior can be seen in Fig. 9.7, where at frequencies below 0.55
rad/s, the waves are almost not reflected. Non-propagating waves that can form in
the space between the ice and the body quickly decay along the coordinate and do
not affect the floating body. Therefore, propagating reflected surface waves are the
main ones in the process. In Fig. 9.7 at ℎ = 1 m results presented were compared
with the results obtained in [11]. The comparison showed that the dependencies of
the angle of rotation of the floating body on the force frequency have a similar form.
The resonance peaks obtained in this article are slightly shifted to the left towards
lower frequencies compared to the peaks presented in [11]. The values of the rotation
angles obtained in this article are larger at resonant frequencies than the values of
the rotation angles obtained in [11]. According to the authors, this difference in
the values of these angles is a consequence of taking into account the nonlinearity,
which leads to large values of the fluid pressure on the floating body. In addition, a
comparison of the dependences in Figs. 9.6 and 9.7 allows us to conclude that the
number of resonant peaks decreases with decreasing distance between the ice cover
and the floating body.

The dependence of the displacements of a floating body on frequency as the
distance between it and the ice edge was also studied. The dependencies of the
maximum displacement of the left edge of the floating body on the frequency of the
harmonic force with an amplitude of 200000 N/m for various distances to the ice
edge are shown in Fig. 9.8. As can be seen from the graphs in Fig. 9.8, a decrease
in the distance to the ice edge increases the maximum displacements of the floating
body in the frequency range from 0.75 to 1.25 rad/s. However, other calculations for
other parameters of the system do not show a clear dependence of the displacement
amplitude on the distance to the ice edge. A similar result is associated with a complex
wave pattern of waves reflected from the ice edge, which depends on the lengths
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Fig. 9.8: Dependence of the
ice edge displacement on the
frequency of the force with an
amplitude of 200,000 N/m in
steady state. Comparison of
the influence of the distance
between the ice and the body
and nonlinearity. Line 1 -
𝐿 = 15 m, 𝛼 = 0; line 2 -
𝐿 = 15 m, 𝛼 = 1; line 3 - 𝐿 = 1
m, 𝛼 = 0; line 4 - 𝐿 = 1 m,
𝛼 = 1.

of the interacting waves. The lack of symmetry of the problem makes it difficult to
interpret the result.

Another factor was considered that presumably affects the movement of ice and
a floating body, namely its cylindrical rigidity. As the calculations showed, the
cylindrical rigidity of the body begins to affect the maximum displacements of both
ice and the floating body, only in the case of a significant decrease in its value, namely,
by 1000 times compared with the parameters of offshore structures selected in [11].
Therefore, we can consider the behavior of a real offshore structure in the problem
under consideration as the behavior of a rigid whole. As for the influence of the mass
of the floating body, then, as in [11], an increase in the mass of the floating body led
to a decrease in the magnitude of the resonance peaks, but the resonances themselves
occurred at the same frequencies as at other masses.

9.5 Conclusion

In this paper, we propose an approach to the numerical solution of the problem of
the effect of ice cover and surface waves of a liquid on the dynamics of a floating
body. Based on the obtained numerical solution, the analysis of the behavior of
displacements and angles of rotation of a floating body under the action of a harmonic
concentrated force on the latter is carried out. It was shown that in an unsteady
loading regime, the values of the maximum displacements and angles of rotation
of a floating body can differ significantly from the values determined in the steady
state. It was shown that the assumption made earlier in [11] about the possibility
of using linear boundary conditions on the liquid surface can be used for most of
the system parameters that are possible in practice. At the same time, for several
parameters, and at certain impact frequencies, the nonlinear boundary conditions lead
to larger values of the maximum displacements and rotation angles of the floating
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body than in the linear setting. The flexural rigidity of a floating body begins to
affect the displacements and angles of rotation of the body on the liquid surface at its
values far from those that floating offshore structures can have. The influence of the
distance from the ice edge to the floating body requires additional analysis. It should
also be noted that such important factors as the influence of the three-dimensional
formulation of the problem on the results obtained, the inhomogeneities of the ice
cover (inclusions of old ice, cavities filled with brine, etc.), slush, momentary effects
on the floating body, and its speed proximity to ice. All these factors are expected to
be considered in the following works.
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Chapter 10
Nonlinear Stationary Waves in a Thin-Walled
Bar Affected by Deplanation of Its Cross-Section
in Torsion

Vladimir Erofeev, Boris Lampsi (Jr.), Anna Leonteva, and Nadezhda Semerikova

Abstract A mathematical model is herein considered which enables one to describe
the propagation of a torsional wave in a thin-walled bar. The model includes geo-
metric and physical elastic nonlinearities, as well as warping or deplanation, i.e. the
withdrawal of the cross section from the initial plane state in the course of the bar
deformation. It is determined based on the model analysis that warping, which causes
the occurrence of dispersion in the phase velocity of a torsional wave also entails
the emergence of the quadratic nonlinearity specific for intense longitudinal vibra-
tions but having never been encountered before in mathematical models describing
torsional vibrations. It is shown that a stationary torsional wave can be formed in
a bar with quadratic nonlinearity. This is a periodic wave and it moves faster than
any linear perturbation. The wave has a saw-tooth shape; the wavelength extends
with the increase of its amplitude. Furthermore, it is shown that the joint action of
cubic nonlinearity (generated by high vibration intensity) and dispersion (resulted
from warping) in the bar can cause the formation of non-sinusoidal stationary waves
propagating at a constant velocity without changing their shape.
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10.1 Introduction

Torsional waves on par with bending and longitudinal waves play a major role in the
formation of vibration fields of engineering structures [1–3]. Mathematical models,
which describe torsional waves propagating in homogeneous thin bars, are generally
based on the engineering theory of torsion (Coulomb’s theory) or on the theory of
constrained torsion refining thereof.

Coulomb’s engineering theory is based on assumptions of the nondeformity of the
cross section in its plane (rigid contour) and the lack of warping (deplanation), i.e. the
withdrawal of the cross section from the initial plane state. Under these hypotheses
the bar cross-sections slide over each other rotating in their plane through a small
angle like rigid platforms. Torsional waves are described by a wave equation and they
propagate without dispersion at the shear wave velocity in an unbounded medium.

It is known that for circular and annular cross-section bars the effect of warping
remains minor even at significant angles of torsion and it is usually neglected in
calculations [1, 2]. For thin-walled bars of other cross sections the warping can be
significant even at small angles of torsion.

It is assumed in the theory of constrained torsion that the bar torsion is composed
of two interrelated motions: the rotation of cross sections in their plane (Coulomb
torsion) and their warping. Such warping results from the not-uniform stretching
of longitudinal fibers during torsion. According to the theories of Timoshenko and
Vlasov the warping is proportional to the relative angle of torsion. Timoshenko
equation and Vlasov equation in common with the “wave” operator (d’Alembert
operator) contain terms describing the torsional wave dispersion, i.e. the dependence
of wave velocity on frequency.

Slivker [4] proposed an improved theory wherein the relationship of the torsion
angle \ (𝑥, 𝑡) and warping measure 𝛽(𝑥, 𝑡) is not postulated as in the theories of
Timoshenko and Vlasov but is determined when solving the problem. In [5] showed
that the Slivker model states that the propagation of a torsional wave is characterized
by two dispersion branches (“acoustic” and “optical”).

10.2 Differential Equation for Torsional Vibrations of a Bar
Taking into Account the Nonlinearity and Deplanation of the
Bar Cross Section

In [6–8] Slivker model is generalized for the case of consideration to geometric and
physical elastic nonlinearities. The expression for the kinetic deformation energy is
as follows:

𝑊𝑘 =
1
2

[
𝜌𝐼𝑟

(
𝜕\

𝜕𝑡

)2
+ 𝜌𝐼𝜔

(
𝜕𝛽

𝜕𝑡

)2
]

(10.1)

where 𝜌 is the bar material density; 𝐼𝑟 is a polar moment of inertia; 𝐼𝜔 is a sectorial
moment of inertia.
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To take into account the elastic nonlinearity in the expression for the potential
energy density, there shall be retained not only quadratic terms but also terms in the
fourth power:

𝑊𝑝 =
1
2
𝐺𝐼𝑥

(
𝜕\

𝜕𝑥

)2
+ 1

2
𝐸𝐼𝜔

(
𝜕𝛽

𝜕𝑥

)2
+ 1

2
𝐺𝐼𝑔

(
𝜕\

𝜕𝑥
− 𝛽

)2
+𝛼1

(
𝜕\

𝜕𝑥

)4
+

+𝛼2

(
𝜕𝛽

𝜕𝑥

)4
+𝛼3

(
𝜕\

𝜕𝑥
− 𝛽

)4 (10.2)

where𝐺 = 𝐸/[2(1+𝛾)] is the shear modulus; 𝐸 is Young’s modulus; 𝐼𝑥 is the torque
of inertia; 𝛾 is Poisson’s ratio; 𝐼𝑔 = 𝐼𝑥/(𝜓−1) is the warping moment of inertia; 𝜓 is
geometric parameter (see [4]); 𝛼𝑖 are coefficients characterizing the geometric and
physical non-linearity of the bar. If the bar is geometrically nonlinear, 𝛼𝑖 > 0, if it is
physically nonlinear, 𝛼𝑖 < 0.

By compiling Lagrangian 𝐿 =𝑊𝑘 −𝑊𝑝 and applying the Hamilton-Ostrogradsky
variational principle [2], we obtain the following system of equations for the bar
dynamics: 



𝜕

𝜕𝑡

(
𝜕𝐿

𝜕\𝑡

)
+ 𝜕

𝜕𝑥

(
𝜕𝐿

𝜕\𝑥

)
− 𝜕𝐿
𝜕\

= 0

𝜕

𝜕𝑡

(
𝜕𝐿

𝜕𝛽𝑡

)
+ 𝜕

𝜕𝑥

(
𝜕𝐿

𝜕𝛽𝑥

)
− 𝜕𝐿
𝜕𝛽

= 0

(10.3)

where the following notations are introduced:

\𝑡 =
𝜕\

𝜕𝑡
; \𝑥 =

𝜕\

𝜕𝑥
; 𝛽𝑡 =

𝜕𝛽

𝜕𝑡
; 𝛽𝑥 =

𝜕𝛽

𝜕𝑥
.

Upon the completion of necessary differentiations and transformations (10.3) will be
written as follows:




𝜌𝐼𝑟
𝜕2\

𝜕𝑡2
−𝐺 (𝐼𝑥 + 𝐼𝑔) 𝜕

2\

𝜕𝑥2 +𝐺𝐼𝑔 𝜕𝛽
𝜕𝑥

+𝑁1 = 0

𝜌𝐼𝜔
𝜕2𝛽

𝜕𝑡2
−𝐸𝐼𝜔 𝜕

2𝛽

𝜕𝑥2 −𝐺𝐼𝑔
(
𝜕\

𝜕𝑥
− 𝛽

)
+𝑁2 = 0

(10.4)

Here the non-linear terms are designated through 𝑁1,2:

𝑁1 = −12(𝛼1 +𝛼3)
(
𝜕\

𝜕𝑥

)2
𝜕2\

𝜕𝑥2 +24𝛼3𝛽
𝜕\

𝜕𝑥

𝜕2\

𝜕𝑥2 +12𝛼3

(
𝜕\

𝜕𝑥

)2
𝜕𝛽

𝜕𝑥
−

−24𝛼3𝛽
𝜕𝛽

𝜕𝑥

𝜕\

𝜕𝑥
−12𝛼3𝛽

2 𝜕
2\

𝜕𝑥2 +12𝛼3𝛽
2 𝜕𝛽

𝜕𝑥

(10.5)

𝑁2 = −12𝛼3
𝜕𝛽

𝜕𝑥

𝜕2𝛽

𝜕𝑥2 −4𝛼3

(
𝜕\

𝜕𝑥

)3
+12𝛼3𝛽

(
𝜕\

𝜕𝑥

)2
−12𝛼3

𝜕\

𝜕𝑥
𝛽2 +4𝛼3𝛽

3 (10.6)
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System (10.4) - (10.6) is rather complicated for analysis. To simplify it, we will
assume that deplanation 𝛽(𝑥, 𝑡) is quite small. Since non-linear effects are displayed
at values of a higher order of smallness than linear ones, it enables us to consider
the deplanation only in the linear part of equations and to approximately assume in
non-linear terms that 𝛽 ≈ 𝜕𝜃

𝜕𝑥 . The nonlinear terms will thereat be as follows:

𝑁1 = −12𝛼1

(
𝜕\

𝜕𝑥

)2
𝜕2\

𝜕𝑥2 , (10.7)

𝑁2 = −12𝛼3
𝜕\

𝜕𝑥

𝜕2\

𝜕𝑥2 (10.8)

With the introduced assumptions the system of equations (10.4) is reduced to one
equation for \ (𝑥, 𝑡). In order to obtain it, from the first equation of the system we
express

𝜕𝛽

𝜕𝑥
=
(𝐼𝑥 + 𝐼𝑔)
𝐼𝑔

𝜕2\

𝜕𝑥2 − 𝐼𝑟 𝜌

𝐺𝐼𝑔

𝜕2\

𝜕𝑡2
+ 12𝛼1
𝐺𝐼𝑔

(
𝜕\

𝜕𝑥

)2
𝜕2\

𝜕𝑥2

and substitute thereof into the second equation pre-differentiated with respect to
𝑥. Thus, the nonlinear differential equation for torsional vibrations of the bar with
consideration to the warping of its cross section will be as follows:

𝜕2\

𝜕𝑡2
− 𝑐2

𝑠

𝜕2\

𝜕𝑥2 + 𝐼𝜔

𝑐2
𝜏 𝐼𝑔

(
𝜕2

𝜕𝑡2
− (𝐼𝑥 + 𝐼𝑔)𝑐2

𝜏

𝐼𝑔

𝜕2

𝜕𝑥2

) (
𝜕2

𝜕𝑡2
− 𝑐2

0
𝜕2

𝜕𝑥2

)
\−

−12𝐼𝜔𝛼1
𝐺𝐼𝑔 𝐼𝑟

𝜕2

𝜕𝑡2

[(
𝜕\

𝜕𝑥

)2
𝜕2\

𝜕𝑥2

]
+ 12𝐼𝜔𝛼1𝐸𝐼𝜔

𝜌𝐼𝑟𝐺𝐼𝑔

𝜕2

𝜕𝑥2

[(
𝜕\

𝜕𝑥

)2
𝜕2\

𝜕𝑥2

]
−

−12𝛼1
𝜌𝐼𝑟

(
𝜕\

𝜕𝑥

)2
𝜕2\

𝜕𝑥2 + 12𝛼3
𝜌𝐼𝑟

𝜕

𝜕𝑥

(
𝜕\

𝜕𝑥

𝜕2\

𝜕𝑥2

)
= 0

(10.9)

Here 𝑐𝑠 =
√︁
𝐺𝐼𝑥/𝜌𝐼𝑟 is the velocity of the torsional wave propagation in the bar.

Note that equation (10.9) contains in addition to the cubic nonlinearity typical
of intense torsional vibrations of bars also the quadratic nonlinearity (the last term)
typical of intense longitudinal vibrations and having not been encountered before in
mathematical models describing torsional vibrations.

10.3 Wave Processes in a Thin-Walled Bar Taking into Account
the Quadratic Nonlinearity

We will further consider wave processes taking into account the quadratic nonlinearity
(𝛼3 ≠ 0) and neglecting the cubic nonlinearity (𝛼1 = 0). Equation (10.9) in this case
may be written as follows:
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𝜕2\

𝜕𝑡2
− 𝑐2

𝑠

𝜕2\

𝜕𝑥2 + 𝐼𝜔

𝑐2
𝜏 𝐼𝑔

(
𝜕2

𝜕𝑡2
− (𝐼𝑥 + 𝐼𝑔)𝑐2

𝜏

𝐼𝑔

𝜕2

𝜕𝑥2

) (
𝜕2

𝜕𝑡2
− 𝑐2

0
𝜕2

𝜕𝑥2

)
\+

+6𝛼3
𝜌𝐼𝑟

𝜕2

𝜕𝑥2

(
𝜕\

𝜕𝑥

)2
= 0

(10.10)

Here 𝑐0 =
√︁
𝐸/𝜌 is the longitudinal wave propagation velocity in the bar; 𝑐𝜏 =

√︁
𝐺/𝜌

is the shear wave propagation velocity.
Linear torsional waves in the bar have the phase velocity dispersion [5]. Thus,

the propagation of torsional waves described by Eq. (10.10) will be affected by
the following two factors: dispersion and nonlinearity. The nonlinearity causes the
generation of new harmonics in the wave spectrum, thus promoting the emergence of
sharp spikes in the moving wave profile. But the dispersion, on the contrary, smooths
out such spikes because of the difference in phase velocities of harmonic components
of a wave. The joint action of these factors may cause the formation of stationary
waves which propagate at a constant speed without changing their shape. [9] contains
the review of the main results obtained in theoretical and experimental studies of
nonlinear stationary waves in bars, plates and shells.

We will search for the solution of Eq. (10.10) in the form: \ (𝑥, 𝑡) = \ (𝜉), where
𝜉 = 𝑥 −𝑉𝑡, 𝑉 is the stationary wave velocity (unknown before). Partial differential
equation (10.10) for the bar cross-section torsion Θ = 𝑑\/𝑑𝜉 will be reduced to an
ordinary differential equation:

𝑑2Θ

𝑑𝜉2 +𝑚1Θ+𝑚2
𝑑

𝑑𝜉
(Θ)2 = 0 (10.11)

where

𝑚1 =
𝑉2 − 𝑐2

𝜏 𝐼𝑥
𝐼𝑟

𝐼𝜔
𝑐2
𝜏 𝐼𝑔

(
𝑉2 − (𝐼𝑥+𝐼𝑔 )𝑐2

𝜏

𝐼𝑔

)
(𝑉2 − 𝑐2

0)
, 𝑚2 =

6𝛼3𝑐
2
𝜏 𝐼𝑔

𝜌𝐼𝑟 𝐼𝜔

(
𝑉2 − (𝐼𝑥+𝐼𝑔 )𝑐2

𝜏

𝐼𝑔

)
(𝑉2 − 𝑐2

0)
.

The analysis of Eq. (10.11) on the phase plane (Θ, 𝑑Θ𝑑𝜉 ) shows that closed phase
trajectories, whereas only finite solutions of the equation correspond thereto, are
possible, if 𝑚1 > 0. Therefore, nonlinear torsional stationary waves can only exist
when 𝑚1 > 0. It is possible, if a non-linear wave is “fast”, i.e. its velocity exceeds the
velocities of all linear perturbations:

𝑉 > 𝑐0 > 𝑐𝜏

√︄
(𝐼𝑥 + 𝐼𝑔)
𝐼𝑔

> 𝑐𝑠 (10.12)

or if a non-linear wave is “slow” and its velocity is within the interval:

𝑐𝑠 < 𝑉 < 𝑐𝜏

√︄
(𝐼𝑥 + 𝐼𝑔)
𝐼𝑔

(10.13)
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A singular “center”-type point is available at the origin of coordinates on the
phase plane. The straight line 𝑑Θ

𝑑𝜉 = Y∗ determines steady motions (closed phase
trajectories):

Y∗ =
𝑚1
2𝑚2

=
𝜌𝐼𝑟𝑐

2
𝑠

12𝛼3

(
𝑉2

𝑐2
𝑠

−1
)

(10.14)

This parameter increases with a growing relative value of the nonlinear stationary

wave velocity, i.e. |Y∗ | ∼
(
𝑉
𝑐𝑠

)2
, and decreases with increasing 𝛼3 : |Y∗ | ∼ 1

|𝛼3 | . The
sign of 𝑚2 is determined by the sign of 𝛼3.

Figure 10.1 shows the phase portrait of Eq. (10.11) at 𝛼3 < 0 (10.1a) and the
stationary wave profile at amplitudes close to Y∗ (10.1b). Analytical constructions
made for the case of 𝛼3 > 0 are shown in Fig. 10.2.

(a) (b)

Fig. 10.1: Phase portrait of Eq. (10.11) for 𝛼3 < 0 (a) and stationary wave profile (b).

(a) (b)

Fig. 10.2: Phase portrait of Eq. (10.11) for 𝛼3 > 0 (a) and stationary wave profile (b).
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The phase portrait enables us to assess the dependence of the wavenumber of
nonlinear wave (𝑘) on its amplitude (𝑎):

𝑘

𝑘0
=

1√︂
1+

(
𝑎/𝑎0
𝜋𝜀∗

)2
(10.15)

where 𝑘0, 𝑎0 are the wavenumber and amplitude of a harmonic (linear) wave.
With the increasing wave amplitude the relative value of the wavenumber decreases

(the wavelength increases) (Fig. 10.3). The nonlinear wave profiles at the fixed
amplitude (𝑎/𝑎0 = const) and various values of Y∗ re shown in Fig. 10.4.

10.4 Wave Processes in a Thin-Walled Bar Taking into Account
the Cubic Nonlinearity

We will further consider wave processes taking into account the cubic nonlinearity
(𝛼3 = 0) and neglecting the quadratic nonlinearity (𝛼1 ≠ 0). Equation (10.9) may be
written in this case as follows:

Fig. 10.3 Dependence of the
wave number of a nonlinear
periodic wave on its amplitude.

(a) (b)

Fig. 10.4: Profiles of a nonlinear periodic wave at a fixed amplitude (𝑎/𝑎0 = const) and at various
values of 𝜀∗ : 𝜀∗ = 𝜀∗1 (a), 𝜀∗ = 𝜀∗2 (b), where 𝜀∗2 > 𝜀

∗
1 .
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𝜕2\

𝜕𝑡2
− 𝑐2

𝑠

𝜕2\

𝜕𝑥2 + 𝐼𝜔

𝑐2
𝜏 𝐼𝑔

[
𝜕2

𝜕𝑡2
− 𝐼𝑥 + 𝐼𝑔

𝐼𝑔
𝑐2
𝜏

𝜕2

𝜕𝑥2

] (
𝜕2

𝜕𝑡2
− 𝑐2

0
𝜕2

𝜕𝑥2

)
\−

−4𝛼1
𝜌𝐼𝑟

𝜕

𝜕𝑥

(
𝜕\

𝜕𝑥

)3
= 0

(10.16)

The third term in equation (10.16) appeared because of available warping, which
causes the emerging dispersion of the torsional wave phase velocity; the fourth
term appeared in the equation because of the available nonlinearity. Coefficient
𝛼1 characterizes the geometric and physical non-linearity of the bar. If the bar is
geometrically nonlinear, 𝛼1 > 0, if it is physically nonlinear, 𝛼1 < 0.

Thus, the propagation of torsional waves described by equation (10.16) will be
affected by the following two factors: dispersion and nonlinearity. The nonlinearity
causes the generation of new harmonics in the wave spectrum, thus promoting the
emergence of sharp spikes in the moving wave profile. But the dispersion, on the
contrary, smooths out such spikes because of the difference in phase velocities of
harmonic components of a wave. The joint action of these factors may cause the
formation of stationary waves which propagate at a constant speed without changing
their shape.

We will search for the solution of equation (10.16) in the form: \ (𝑥, 𝑡) = \ (𝜉),where
𝜉 = 𝑥 −𝑉𝑡, 𝑉 is the stationary wave velocity (unknown before). Partial differential
equation (10.16) for the relative angle of the cross section rotation of the barΘ= 𝑑\/𝑑𝜉
will be reduced to an ordinary differential equation (Duffing equation) [10]:

𝑑2Θ

𝑑𝜉2 +𝑚1Θ+𝑚2Θ
3 = 0 (10.17)

where

𝑚1 =
(𝑉2 − 𝑐2

𝑠)𝑐2
𝜏 𝐼𝑔

𝐼𝜔 [𝑉2 − ((𝐼𝑥 + 𝐼𝑔)/𝐼𝑔)𝑐2
𝜏] (𝑉2 − 𝑐2

0)

𝑚2 =
−4𝛼1𝑐

2
𝜏 𝐼

2
𝑔

𝜌𝐼𝑟 𝐼𝜔 [𝑉2 − ((𝐼𝑥 + 𝐼𝑔)/𝐼𝑔)𝑐2
𝜏] (𝑉2 − 𝑐2

0)

(10.18)

For linear perturbation velocities included in (10.18) the following inequality is
valid:

𝑐0 > 𝑐𝜏

√︄
𝐼𝑥 + 𝐼𝑔
𝐼𝑔

> 𝑐𝜏 > 𝑐𝑠

If the bar has the geometric nonlinearity (𝛼1 > 0), there are no stationary torsional
waves within the velocity range 𝑉 < 𝑐𝑠. In all other ranges non-linear stationary
waves can develop. However, depending on the value of the velocity 𝑉 there are
qualitatively different wave patterns, since the Duffing equation (10.17) has thereat
various solutions.

Equation (10.17) has the first integral:
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1
2

(
𝑑Θ
𝑑𝜉

)2
= 𝐸 − 𝑚1

2
Θ2 − 𝑚2

4
Θ4 (10.19)

which may be interpreted as the energy conservation law for an anharmonic oscillator.
Here 𝐸 – is the integration constant, which has the meaning of the initial energy of
the system and the function

𝑓 (Θ) = (𝑚1/2)Θ2 − (𝑚2/4)Θ4

has the meaning of potential energy.
Equation (10.19) allows the separation of variables:

√
2𝑑𝜉 =

𝑑Θ√︁
𝐸 − 𝑓 (Θ)

(10.20)

and has bounded solutions in the region between any real roots of the polynomial
𝐸 − 𝑓 (Θ), where 𝐸 − 𝑓 (Θ) > 0. Let 𝑚1 > 0, 𝑚2 < 0. It is possible, if the stationary
wave velocity is within the range 𝑐𝑠 < 𝑉 < 𝑐𝜏

√︁(𝐼𝑥 + 𝐼𝑔)/𝐼𝑔) or 𝑉 > 𝑐0. In this case
the potential energy function 𝑓 (Θ) = (𝑚1/2)Θ2 − (𝑚2/4)Θ4 has the local maximum
𝑓𝑚𝑎𝑥 = −𝑚2

1/4𝑚2 at points Θ = ±
√︁
−𝑚1/𝑚2 and the local minimum 𝑓𝑚𝑖𝑛 = 0 at

Θ = 0 (Fig. 10.5a). Therefore, the point (0;0) on the phase plane (Θ;𝑑Θ/𝑑𝜉) is
the stable “center”-type equilibrium position and points (±

√︁
𝑚1/𝑚2;0) are unstable

“node”-type equilibrium positions. The phase portrait of the system is shown in Fig.
10.5b.

Bounded solutions of equation (10.20) in this case only exist at 0 ≤ 𝐸 ≤ 𝑓𝑚𝑎𝑥 .
The polynomial 𝐸 − 𝑓 (Θ) has thereat four real roots Θ1,2 = ±𝛼, Θ3,4 = ±𝛽, where

𝛼2 =
𝑚1 −

√︃
𝑚2

1 +4𝑚2𝐸

−𝑚2
, 𝛽 =

𝑚1 +
√︃
𝑚2

1 +4𝑚2𝐸

−𝑚2
, (𝛼2 > 𝛽2) (10.21)

(a) (b)

Fig. 10.5: Potential energy of the Duffing equation (10.17) for 𝑚1 > 0, 𝑚2 < 0 (a) and the phase
portrait corresponding to this case (b).
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and takes positive values at −𝛼 < Θ < 𝛼. At 𝐸 = 𝑓𝑚𝑎𝑥 = −𝑚1/4𝑚2 the roots coincide
in pairs Θ1 = Θ3, Θ2 = Θ4, it corresponds to the motion along the separatrix on the
phase plane.

Equation (10.20) takes on the following form:

𝛼𝛽

√︂
−𝑚2

2
𝑑𝜉 =

𝑑Θ√︃(
1− (Θ2/𝛼2)) (1− (Θ2/𝛽2)) (10.22)

and with substituting
Θ
𝛼

= 𝑧 (10.23)

is reduced to an elliptic integral of the first kind

√︂
𝑚2
2

(𝜉 − 𝜉0) = 1
𝛽

𝑧∫
0

𝑑𝑧√︁
(1− 𝑧2) (1− 𝑠2𝑧2)

, (10.24)

where 𝑠2 = 𝛼2/𝛽2.
By converting the elliptic integral in the right-hand side of (10.24) at 𝑧 = 0, 𝜉0 = 0

we obtain the solution describing nonlinear periodic vibrations as follows:

Θ(𝜉) = 𝛼 sn

(
−
√︂

1
2
𝑚2𝛽2𝜉, 𝑠

)
(10.25)

In expression (10.25) we introduce the following notations:

𝐴 = 𝛼 =

√√√
(𝑚1 −

√︃
𝑚2

1 +4𝑚2𝐸)
−𝑚2

,

𝑘 =

√︂
−1

2
𝑚2𝛽2 =

√︄
1
2

(
𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

)
,

𝑠2 =
𝛼2

𝛽2 =
𝑚1 −

√︃
𝑚2

1 +4𝑚2𝐸

𝑚1 +
√︃
𝑚2

1 +4𝑚2𝐸

(10.26)

where 𝐴 is the stationary wave amplitude, 𝑘 is the nonlinear analog of the wavenumber,
𝑠 is the elliptic function modulus and the wavelength Λ is equal to

Λ = 4
𝐾𝐾𝐾 (𝑠)
𝑘

.

It follows from relations (10.26) that when changing 𝐸 from 0 to 𝐸𝑚𝑎𝑥 =−𝑚2
1/4𝑚2 the

vibration frequency decreases from 𝑘 =
√
𝑚1 to

√︁
𝑚1/2 and the vibration amplitude

changes within the ranges
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0 ≤ 𝐴 ≤ 𝐴1
𝑐 =

√︂
𝑚1
𝑚2
,

where 𝐴1
𝑐 is the vibration amplitude corresponding to the motion along the separatrix

on the phase plane. The elliptic function modulus (linear distortion factor) thereat
changes within the range 0 ≤ 𝑠2 ≤ 1. Similarly, by excluding E from expressions
(10.26), we obtain relationships of the parameters 𝐴, 𝑘, 𝑠 in the solution (10.25):

𝑠2 = − 𝑚1𝐴
2

2𝑚1 +𝑚2𝐴2 , 𝑘 =

√︂
2𝑚1 +𝑚2𝐴2

2
, Λ =

4𝐾𝐾𝐾 (𝑠)√︁
𝑚1 +𝑚2𝐴2/2

(10.27)

Another form of these expressions shall be:

𝐴 = ±
√︄
−2𝑚1
𝑚2

𝑠2

1+ 𝑠2 , 𝑘 =
√︂

𝑚1

1+ 𝑠2 (10.28)

Taking into account the introduced notations the solution (10.25), which describes
nonlinear periodic vibrations along closed phase trajectories near the separatrix, can
be represented as an elliptic sine:

Θ(𝜉) = 𝐴 sn(𝑘𝜉, 𝑠) (10.29)

The parameters of a torsional stationary wave are bound by correlation (10.29). When
substituting expressions (10.18) into (10.29), we obtain:

𝐴 = ±
√︄

(𝑉2 − 𝑐2
𝑠)𝜌𝐼𝑟

2𝛼1

𝑠2

(1+ 𝑠2) (10.30)

Hence, the wave amplitude grows in direct proportion to its increasing velocity and
the angle of curve slope (10.30) increases as s grows from 0 to 1. At s which are
close to unity, the shape of vibrations is shown in Fig. 10.6a.

A solitary wave is the limiting case of periodic wave (10.29). At 𝐸 = 𝐸𝑚𝑎𝑥 =
−𝑚2

1/4𝑚2, 𝑠2 = 1 the expression (10.25) describes the separatrix solution:

(a) (b)

Fig. 10.6: Profiles of a nonlinear stationary wave: periodic, described by formula (10.29) (a) and
solitary, described by formula (10.31) (b).
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Θ(𝜉) = 𝐴 th
(
𝜉

Δ

)
, (10.31)

where

𝐴 = ±
√︂
−𝑚1
𝑚2

= ±
√︄

(𝑉2 − 𝑐2
𝑠)𝜌𝐼𝑟

4𝛼1
(10.32)

Δ =
1
𝑘
=

√︂
2
𝑚2

=

√︄
2𝐼𝜔

[
𝑉2 − ((𝐼𝑥 + 𝐼𝑔)/𝐼𝑔) 𝑐2

𝜏

] (𝑉2 − 𝑐2
0)

(𝑉2 − 𝑐2
𝑠)𝑐2

𝜏 𝐼𝑔
(10.33)

𝑉 is the solitary wave velocity, 𝐴 is the amplitude, Δ is the width. The separatrix
solution has the form of overfall, its view is shown in Fig. 10.6b. The solitary
wave amplitude increases with growing velocity but the graph thereof lies above the
relevant dependence (10.30) for a periodic wave.

The width of the solitary wave (10.33) at 𝑐𝑠 < 𝑉 < 𝑐𝜏
√︁(𝐼𝑥 + 𝐼𝑔)/𝐼𝑔 decreases

proportionally to 1/𝑉 . At velocities 𝑉 > 𝑐0 an anomalous behaviour of a solitary
wave is displayed, which is expressed in the extension of its width (Δ ∼ 𝑉) with its
growing velocity and amplitude.

Let 𝑚1 < 0, 𝑚2 > 0. This case is valid for velocities within the interval
𝑐𝜏

√︁(𝐼𝑥 + 𝐼𝑔)/𝑖𝑔 < 𝑣 < 𝑐0. In this case, the potential-energy function 𝑓 (Θ) =
(𝑚1/2)Θ2 − (𝑚2/4)Θ4 has the local maximum 𝑓𝑚𝑎𝑥 = 0 at Θ = 0 and the local mini-
mum 𝑓𝑚𝑖𝑛 =−𝑚2

1/4𝑚2 at pointsΘ=±
√︁
−𝑚1/𝑚2 (Fig. 10.7a). Points (±

√︁
−𝑚1/𝑚2,0)

on the phase plane (Θ;𝑑Θ/𝑑𝜉) are the stable “center”-type equilibrium position and
the point (0,0) is the “saddle” (Fig. 10.7b). Bounded solutions of equation (10.20)
are available, if the integration constant varies within the range 𝑓𝑚𝑖𝑛 ≤ 𝐸 < +∞,
and qualitatively different motion modes correspond to different values of the initial
energy 𝐸 .

Let 𝑓𝑚𝑖𝑛 ≤ 𝐸 ≤ 0. The polynomial 𝐸 − 𝑓 (Θ) has thereat four real roots Θ1,2 = ±𝛼,
Θ3,4 = ±𝛽, where

(a) (b)

Fig. 10.7: Potential energy of the Duffing equation (10.17) for 𝑚1 < 0, 𝑚2 > 0 (a) and the phase
portrait corresponding to this case (b).
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𝛼2 =
−𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

𝑚2
, 𝛽2 =

−𝑚1 −
√︃
𝑚2

1 +4𝑚2𝐸

𝑚2
, (𝛼2 ≥ 𝛽2) (10.34)

and takes positive values in the regions |𝛼 | ≤ Θ ≤ |𝛽 | (Fig. 10.7a). Closed trajectories
lying inside the separatrix correspond thereto on the phase plane. Equation (10.20)
takes the following form:

𝛼𝛽

√︂
𝑚2
2
𝑑𝜉 =

𝑑Θ√︁
−(1− (Θ2/𝛼2)) (1− (Θ2/𝛽2))

(10.35)

and with substituting
Θ
𝛼

=

√︂
1− 𝛼

2 − 𝛽2

𝛼2 𝑧2 (10.36)

it is reduced to an elliptic integral of the first kind

√︂
𝑚2
2

(𝜉 − 𝜉0) = 1
𝛼

𝑧∫
0

𝑑𝑧√︁
(1− 𝑧2) (1− 𝑠2𝑧2)

, (10.37)

where 𝑠2 = (𝛼2− 𝛽2)/𝛼2. By converting the elliptic integral at 𝑧 = 0, 𝜉0 = 0, we obtain
the solution which describes nonlinear periodic vibrations as follows:

Θ(𝜉) = 𝛼 𝑑𝑛
(√︂

1
2
𝑚2𝛼2𝜉, 𝑠

)
(10.38)

In expression (10.38) we introduce the following notation:

𝐴 = 𝛼 =

√√√√√ (
−𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

)
𝑚2

𝑘 =

√︂
−1

2
𝑚2𝛼2 =

√︄
1
2

(
−𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

)

𝑠2 =
𝛼2 − 𝛽2

𝛽2 =
2
√︃
𝑚2

1 +4𝑚2𝐸

−𝑚1 +
√︃
𝑚2

1 +4𝑚2𝐸

(10.39)

where 𝐴 is the stationary wave amplitude, 𝑘 is the nonlinear analog of the wavenumber,
s is the elliptic function modulus, Λ = 4𝐾𝐾𝐾 (𝑠)/𝑘 is the wavelength. It follows from
relations (10.39) that when 𝐸 changes from 𝐸𝑚𝑖𝑛 = −𝑚2

1/4𝑚2 to 0 the vibration
frequency increases from 𝑘 =

√︁
−𝑚1/2 to 𝑘 = √−𝑚1, and the amplitude of periodic

vibrations changes from 𝐴 = 𝐴1
𝑐 =

√︁
−𝑚1/𝑚2 to 𝐴 = 𝐴2

𝑐 =
√︁
−2𝑚1/𝑚2, where 𝐴1

𝑐,
𝐴2
𝑐 are amplitudes of vibrations corresponding to movements along separatrices
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for phase portraits shown in Fig. 10.5 and 10.7, respectively. The elliptic function
modulus varies within 0 ≤ 𝑠2 ≤ 1.

Eliminating the integration constant 𝐸 from expressions (10.39) we obtain the
relationship of parameters 𝐴, 𝑘, 𝑠 in solution (10.38):

𝑠2 = 2
(
1+ 𝑚1

𝑚2𝐴2

)
, 𝑘 =

√︂
𝑚2𝐴2

2
, Λ =

4
√

2𝐾𝐾𝐾 (𝑠)√︁
𝑚2𝐴2

, (10.40)

which may be represented as:

𝐴 =

√︂
−2𝑚1
𝑚2

1
2− 𝑠2 =

√︄
(𝑉2 − 𝑐2

𝑠)𝜌𝐼𝑟
2𝛼1

1
2− 𝑠2 , 𝑘 =

√︂
− 𝑚1

2− 𝑠2 , 0 ≤ 𝑠2 ≤ 1 (10.41)

i.e. 𝐴 ∼ 𝑉 , but the periodic wave amplitude at any s is less than the solitary wave
amplitude.

With the notations introduced, solution (10.38) describing nonlinear periodic
vibrations along closed phase trajectories inside the separatrix may be represented
as an elliptic function of the delta amplitude:

Θ(𝜉) = 𝐴𝑑𝑛(𝑘𝜉, 𝑠) (10.42)

These vibrations do not have any linear degeneracy, since at 𝐸→ 𝐸𝑚𝑖𝑛 = − 𝑚2
1

4𝑚2
𝑠→ 0

and 𝑑𝑛(𝑘𝜉, 𝑠) = 1. At 𝐸 = 0, 𝑠 = 1 from (10.38) we obtain degeneration into a
separatrix solution (Fig. 10.8c):

Θ(𝜉) = 𝐴2
𝑐 𝑐ℎ

−1 (𝜉/Δ) (10.43)

where:

𝐴2
𝑐 = ±

√︂
−2𝑚1
𝑚2

= ±
√︄

(𝑉2 − 𝑐2
𝑠)𝜌𝐼𝑟

2𝛼1

Δ =
1
𝑘
=

√︂
− 1
𝑚1

=

√︄
𝐼𝜔

[
𝑉2 − ((𝐼𝑥 + 𝐼𝑔)/𝐼𝑔)𝑐2

𝜏

] (𝑉2 − 𝑐2
0)

(𝑉2 − 𝑐2
𝑠)𝑐2

𝜏 𝐼𝑔

(10.44)

𝐴2
𝑐 is the vibration amplitude, Δ is the solitary wave width. It is seen that within this

range 𝐴 ∼𝑉 and Δ ∼
√︃

1−𝑉2/𝑐2
0. The qualitative type of nonlinear periodic motions

described by the delta amplitude is shown in Fig. 10.8a and Fig. 10.8b shows a
separatrix solution.

If 𝐸 = 0, in this case the polynomial 𝐸 − 𝑓 (Θ) has two real roots Θ1,2 = ±𝛼,
Θ3,4 = ±𝑖𝛽, where

𝛼2 =
−𝑚1 +

√︃
𝑚2

1 +2𝑚2𝐸

𝑚2
, 𝛽2 =

𝑚1 +
√︃
𝑚2

1 +4𝑚2𝐸

𝑚2
(10.45)
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(a) (b)

(c)

Fig. 10.8: Profiles of a nonlinear stationary wave: periodic, described by formulas (10.29) (a) and
(10.53) (b), solitary, described by formula (10.43) (c).

and takes positive values within the regions −𝛼 < Θ < 𝛼 (Fig. 10.7a). Closed phase
trajectories lying outside the separatrix loop correspond to bounded solutions on the
phase plane at such values of 𝐸 (Fig. 10.7b).

Equation (10.20) takes the following form:

𝛼𝛽

√︂
𝑚2
2
𝑑𝜉 =

𝑑Θ√︁
(1− (Θ2/𝛼2)) (1− (Θ2/𝛽2))

(10.46)

and with substituting
Θ
𝛼

=
√︁

1− 𝑧2 (10.47)

it is reduced to an elliptic integral of the first kind

√︂
𝑚2
2

(𝜉 − 𝜉0) = − 1√︁
𝛼2 + 𝛽2

𝑧∫
0

𝑑𝑧√︁
(1− 𝑧2) (1− 𝑠2𝑧2)

, (10.48)

where 𝑠2 = 𝛼/(𝛼2 + 𝛽2).
By converting the elliptic integral at 𝑧 = 0, 𝜉0 = 0, we obtain the solution describing

nonlinear periodic vibrations as follows:

Θ(𝜉) = 𝛼𝑐𝑛
(√︂

𝑚1
2

(𝑚2
1 + 𝛽2)𝜉, 𝑠

)
(10.49)

In expression (10.49) we introduce the following notations:
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𝐴 = 𝛼 =

√√√√√ (
−𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

)
𝑚2

𝑘 =

√︂
𝑚1
2

(𝛼2 + 𝛽2) = (𝑚2
1 +4𝑚2𝐸)1/4

𝑠2 =
𝛼2

𝛼2 + 𝛽2 =
−𝑚1

√︃
𝑚2

1 +4𝑚2𝐸

2
√︃
𝑚2

1 +4𝑚2𝐸

(10.50)

where 𝐴 is the stationary wave amplitude, 𝑘 is the nonlinear analog of the wavenumber,
𝑠 – is the elliptic function modulus, Λ = 4𝐾𝐾𝐾 (𝑠)/𝑘 is the wavelength.

While analyzing relations (10.50), we find that when 𝐸 varies from 0 to +∞, the
vibration frequency increases from 𝑘 =

√−𝑚1 to +∞, the vibration amplitude also
indefinitely increases from 𝐴 = 𝐴1

𝑐 =
√︁
−2𝑚1/𝑚2 and the elliptic function modulus

decreases within the range 0.5 ≤ 𝑠 ≤ 1. Eliminating the integration constant 𝐸 from
(10.50) we obtain the relationship of parameters 𝐴, 𝑘 , 𝑠 in the solution:

𝑠2 =
𝑚2𝐴

2

2(𝑚1 +𝑚2𝐴2) ,

𝑘 =
√︁

2𝑚1 +𝑚2𝐴2,

Λ =
4𝐾𝐾𝐾 (𝑠)√︁
𝑚1 +𝑚2𝐴2

.

(10.51)

This relationship may be represented as follows:

𝐴 =

√︄
−2𝑚1
𝑚2

𝑠2

2𝑠2 −1
=

√︄
(𝑉2 − 𝑐2

𝑠)𝜌𝐼𝑟
2𝛼1

𝑠2

2𝑠2 −1
,

𝑘 =

√︂
− 𝑚1

2𝑠2 −1
,

1 > 𝑠2 >
1
2

(10.52)

With the notations introduced, solution (10.49) describing vibrations along closed
phase trajectories outside the separatrix may be represented as follows:

Θ(𝜉) = 𝐴cn(𝑘𝜉, 𝑠) (10.53)

This solution describes non-linear vibrations,which do not have any linear degeneracy.
Their shape at 𝑠2, which are close to unity, is shown in Fig. 10.8b. At 𝑠 = 1 we
obtain from (10.53) the separatrix solution (10.43). The amplitude of such periodic
vibrations is always greater than the amplitude of solitary ones.

Based on the above reasoning the following conclusion may be drawn: if the bar
has the geometric nonlinearity (𝛼1 > 0), no stationary torsional waves are available
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within the velocity range 𝑉 < 𝑐𝑠 . In all other ranges non-linear stationary waves can
develop. But depending on the value of velocity 𝑉 there are qualitatively different
wave patterns, since Duffing equation (10.17) has thereat different solutions. If the
stationary wave velocity is 𝑐𝑠 < 𝑉 < 𝑐𝜏

√︁(𝐼𝑥 + 𝐼𝑔)/𝐼𝑔 or 𝑉 > 𝑐0, Duffing equation
(10.17) has two types of finite solutions - periodic solution (10.29) expressed through
the elliptic sine and solitary solution (10.31), which is the limiting case of the periodic
one.

For velocities within the interval 𝑐𝜏
√︁(𝐼𝑥 + 𝐼𝑔)/𝐼𝑔 < 𝑉 < 𝑐0, the phase portrait of

Eq. (10.17) contains two stable equilibrium positions, in the vicinity thereof phase
trajectories have a near-ellipse shape. In this case, the following three types of finite
solutions are available. One of them is the solitary stationary wave (10.43) linking two
classes of periodic waves. This solution corresponds on the phase plane to separatrix
passing through the origin of coordinates and separating one solution region from
another. The second type of the finite solution corresponds to a closed-path motion
near the equilibrium position and is described by the elliptic delta-amplitude function
(10.42). Another type of the periodic motion is described by elliptic cosine (10.53).

If the bad has the physical nonlinearity (𝛼𝑖 < 0), depending on the stationary wave
velocity there are possible phase portraits of equation (10.17), which are shown in
Fig. 10.9. Let 𝑚1 > 0, 𝑚2 > 0. It is valid, if the stationary wave velocity is within
the range 𝑐𝑠 < 𝑉 < 𝑐𝜏

√︁(𝐼𝑥 + 𝐼𝑔)/𝐼𝑔 or 𝑉 > 𝑐0. In this case the potential energy
function 𝑓 (Θ) = (𝑚1/2)Θ2 − (𝑚2/4)Θ4 has the local minimum 𝑓𝑚𝑖𝑛 = 0 at Θ = 0
(Fig. 10.10a). The point with coordinates (0,0) on the phase plane (Θ;𝑑Θ/𝑑𝜉) is the
stable “center”- type equilibrium position (Fig. 10.10b).

Bounded solutions of equation (10.20) are available at 0 < 𝐸 < +∞. The polyno-
mial 𝐸 − 𝑓 (Θ) has in this case two real roots Θ1,2 = ±𝛼 and two imaginary roots
Θ3,4 = ±𝑖𝛽, where

𝛼2 =
−𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

𝑚2
, 𝛽2 =

𝑚1 +
√︃
𝑚2

1 +4𝑚2𝐸

𝑚2
(10.54)

Fig. 10.9: Types of phase portraits of the Duffing equation (10.17) depending on the speed of a
stationary wave for a rod with geometric nonlinearity (𝛼1 > 0).
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and takes positive values within the regions −𝛼 < Θ < 𝛼 (Fig. 10.10a). Equation
(10.20) will be written as follows:

𝛼𝛽

√︂
𝑚2
2
𝑑𝜉 =

𝑑Θ√︁
(1− (Θ2/𝛼2)) (1− (Θ2/𝛽2))

(10.55)

and with substituting
Θ
𝛼

=
√︁

1− 𝑧2 (10.56)

it is reduced to an elliptic integral of the first kind

√︂
𝑚2
2

(𝜉 − 𝜉0) = − 1√︁
𝛼2 + 𝛽2

𝑧∫
0

𝑑𝑧√︁
(1− 𝑧2) (1− 𝑠2𝑧2)

, (10.57)

where 𝑠2 = 𝛼/(𝛼2 + 𝛽2).
By converting the elliptic integral in the right-hand side of (10.57) at 𝑧 = 0, 𝜉0 = 0,

we obtain the solution describing nonlinear periodic vibrations as follows:

Θ(𝜉) = 𝛼 cn
(√︂

𝑚1
2

(𝛼2 + 𝛽2)𝜉, 𝑠
)

(10.58)

In expression (10.58) we introduce the following notations:

(a) (b)

Fig. 10.10: Potential energy of the Duffing equation (10.17) for 𝑚1 > 0, 𝑚2 > 0 (a) and the phase
portrait corresponding to this case (b).
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𝐴 = 𝛼 =

√√√√√ (
−𝑚1 +

√︃
𝑚2

1 +4𝑚2𝐸

)
𝑚2

𝑘 =

√︂
𝑚1
2

(𝛼2 + 𝛽2) = (𝑚2
1 +4𝑚2𝐸)1/4

𝑠2 =
𝛼2

𝛼2 + 𝛽2 =
−𝑚1

√︃
𝑚2

1 +4𝑚2𝐸

2
√︃
𝑚2

1 +4𝑚2𝐸

(10.59)

where 𝐴 is the stationary wave amplitude, 𝑘 is the nonlinear analog of the wavenumber,
𝑠 is the elliptic function modulus, which has the meaning of the coefficient of non-
linear distortion of the waveform Θ(𝜉). It can be seen from relations (10.59) that
when 𝐸 varies from 0 to +∞, the vibration amplitude and frequency vary within the
ranges 0 < 𝐴 < +∞, √𝑚1 < 𝑘 <∞, and the nonlinear distortion coefficient changes
within the range 0,5 ≤ 𝑠2 ≤ 1.

By eliminating the integration constant 𝐸 from (10.59) we obtain relations of
parameters 𝐴, 𝑘 , 𝑠 in solution (10.58):

𝑠2 =
𝑚2𝐴

2

2(𝑚1 +𝑚2𝐴2) , 𝑘 =
√︁
𝑚1 +𝑚2𝐴2, Λ =

4𝐾𝐾𝐾 (𝑠)√︁
𝑚1 +𝑚2𝐴2

. (10.60)

where Λ is the wavelength, 𝐾𝐾𝐾 (𝑠) is the complete elliptic integral of the first kind.
From these relations we express the dependence of the amplitude and frequency
of vibrations on the nonlinear distortion coefficient and the coefficients of Duffing
equation:

𝐴 =

√︄
2𝑚1
𝑚2

𝑠2

1−2𝑠2
=

√︄
(𝑉2 − 𝑐2

𝑠)𝜌𝐼𝑟
−2𝛼1

𝑠2

1−2𝑠2
, 𝑘 =

√︂
𝑚1

1−2𝑠2
(10.61)

At 𝐸 →+∞ (𝑠2 ≈ 0 and 𝐴→ 0) the expression describes quasi-harmonic oscilla-
tions near the equilibrium position as follows:

Θ = 𝐴 cos(𝑘, 𝜉) (10.62)

At 𝐸 → +∞, 𝑠2 → 1/2 and in this case (10.58) describe essentially non-linear
vibrations,

Θ = 𝐴cn(𝑘𝜉, 𝑠), (10.63)

which have a saw-tooth shape (Fig. 10.11). The phase portrait of equation (10.17)
contains within the velocity range 𝑉 < 𝑐𝑠 two “center”- type equilibrium positions
and the point (0,0) is a saddle (see Fig. 10.7b). In this case, as for a geometrically
nonlinear bar, three types of finite solutions will be available; periodic waves (10.48)
and (10.53) will correspond to two of them and a solitary wave (10.43) to the third
one.
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The solitary wave velocity, amplitude and width are bound by correlations (10.44).
The parameters of a periodic wave (10.42) are bound by correlation (10.41) and
the parameters of a periodic wave (10.53) by correlation (10.52). If velocity 𝑉 is
within the range 𝑐𝜏

√︁(𝐼𝑥 + 𝐼𝑔)/𝐼𝑔 <𝑉 < 𝑐0 and it means that𝑚1 < 0,𝑚2 > 0, equation
(10.17) does not have closed phase trajectories. Hence, non-linear stationary waves
are not available within this range of velocities.

Types of phase portraits of Duffing equation depending on the stationary wave
velocity for a bar with physical nonlinearity are shown in Fig. 10.12. It is shown based
on the performed analysis that the joint action of the nonlinearity (caused by high
vibration intensity) and dispersion (resulted from warping) non-sinusoidal stationary
waves can develop in a bar which propagate at a constant speed without changing
their shape.

10.5 Wave Processes in a Thin-Walled Bar with Simultaneous
Consideration to the Quadratic and Cubic Nonlinearities

If in the analysis of stationary waves both the cubic and quadratic nonlinearities
are taken into account in (10.9), the ordinary differential equation, thereto (10.9) is
reduced, will be as follows:

𝑑2Θ

𝑑𝜉2 +𝑚1Θ+𝑚2Θ
𝑑Θ
𝑑𝜉

+𝑚3Θ
3 = 0 (10.64)

The following system is equivalent to this equation:

Fig. 10.11 Profile of a nonlin-
ear periodic stationary wave
described by formula (10.63)

Fig. 10.12: Types of phase portraits of the Duffing equation (10.17)) depending on the speed of a
stationary wave for a rod with physical nonlinearity (𝛼1 < 0).
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𝑑Θ
𝑑𝜉

= 𝜑

𝑑𝜑

𝑑𝜉
= 𝑚3Θ3 −𝑚1Θ−𝑚2Θ𝜑

(10.65)

The equilibrium position coordinates are sought on the phase plane (Θ, 𝜑) from the
conditions (Θ = 0, 𝜑 = 0). Thus, the ordinates of all equilibrium positions are equal to
zero and the abscissas are the real roots of the algebraic equation of the third degree:

𝑚1Θ−𝑚3Θ
3 = 0 (10.66)

At𝑚1𝑚3 < 0 origin of coordinates, the point (0,0) is the only equilibrium position;
and in any case, at 𝑚1 < 0 it is the “saddle” and at 𝑚1 > 0 it is the “center”. If there
is the only “saddle” point in the system, there are no periodic motions, so, this case
is of no interest for the search of stationary waves. If there is the only “center” in the
system, all motions are periodic and the phase portrait is a set of non-intersecting
closed curves. For a certain set of parameters, namely 𝑚1 > 0, 𝑚1 = 3 and 𝑚1 = −1
it is possible to write the exact analytical solution:

Θ(𝜉) =
√
𝑚1 (𝐶1 sin(√𝑚1𝜉) +𝐶2 cos(√𝑚1𝜉))
𝐶1 sin(√𝑚1𝜉) +𝐶2 cos(√𝑚1𝜉) +𝐶3

(10.67)

where 𝐶1, 𝐶2, 𝐶3 - integration constants are to be found from the initial conditions.
At first sight it may seem strange that the equation is of the second order but

there are three integration constants; that is not the case, since the numerator and
denominator can be divided by any non-zero constant and there will be two unknowns.
This form of the solution is here presented just for generality, assuming that any of the
constants can become zero and vanish. The non-periodic solution at such parameter
values and 𝑚1 < 0 can also be written in terms of exponents with indices ±

√︁
|𝑚1 |𝜉.

With any other set of parameters 𝑚2 and 𝑚3 surely with the same signs, the system
dynamics does not qualitatively change but no exact solutions can be found. A
nonlinear term with coefficient 𝑚2 is asymmetric; therefore, the phase portrait is
asymmetric about the abscissa axis. When the sign of coefficient 𝑚2 changes to the
opposite one, the phase portrait (and in the case of a non-single equilibrium position)
is symmetrically reflected with respect to (0,Θ) and the solution (10.67) just changes
the sign. The movement along closed phase trajectories always occurs clockwise.

At 𝑚1𝑚3 > 0 three equilibrium positions are available with coordinate
(−

√︁
𝑚1/𝑚3,0), (0,0) and (

√︁
𝑚1/𝑚3,0), at 𝑚3 > 0,. . . (±

√︁
𝑚1/𝑚3,0) it is a “sad-

dle”, with (0,0) it is the “center”. In this case, all periodic motions are within the
region bounded by a pair of separatrices emanating from the left “saddle” to the right
and from the right to the left. Because of the asymmetric nonlinearity the separatrices
are also asymmetrical and are differently described, though the value of the transition
(amplitude) from one state to another is the same but the transition rate is different.
So, at 𝑚1 > 0 the separatrix from the left “saddle” to the right one has the following
form:
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Θ(𝜉) = −
√︂
𝑚1
𝑚3
𝑡ℎ

©«

2𝑚1𝑚3

√︂
𝑚1
𝑚3

𝑚1𝑚2 −
√︃
𝑚2

1𝑚
2
2 +8𝑚2

1𝑚3

𝜉

ª®®®®¬
(10.68)

and from the right “saddle” to the left one:

Θ(𝜉) = −
√︂
𝑚1
𝑚3
𝑡ℎ

©«

2𝑚1𝑚3

√︂
𝑚1
𝑚3

𝑚1𝑚2 +
√︃
𝑚2

1𝑚
2
2 +8𝑚2

1𝑚3

𝜉

ª®®®®¬
(10.69)

If the sign before 𝑚2 is changed, the pattern is symmetrically reflected about the
abscissa.

In the case of 𝑚1 < 0 and 𝑚3 < 0 the origin of coordinates is the “saddle” and
points (±

√︁
𝑚1/𝑚3,0) are “foci” at 𝑚2 > 0 the left “focus” is unstable, the right

one is stable. When the sign before 𝑚2 is changed, the stability of the foci is also
changed to the opposite. With increasing the coefficient 𝑚2 the domain of attraction
of a stable “focus” increases, behind this domain there is a periodic movement
domain corresponding to closed phase trajectories. Unfortunately, no exact analytical
solutions are found for this case. All qualitatively different phase portraits are shown
in the Table 10.1.

10.6 Conclusions

A mathematical model is herein discussed, which enables to describe the torsional
wave propagation in a thin-walled bar. The model includes the geometric and physical
elastic nonlinearities, as well as the warping (deplanation). The relationship of an
angle of torsion of the bar and the degree of warping is not postulated in this model
as in most known models, but is in the process of solving the problem. Based on
the model analysis it is determined that warping, which causes the emergence of
dispersion of the phase velocity of a torsional wave, also results in the occurrence of
the quadratic nonlinearity specific to intense longitudinal vibrations, which has never
been encountered before in mathematical models describing torsional vibrations. It is
shown that non-sinusoidal strain waves localized in space can develop in a thin-walled
bar, which performs intense torsional vibrations.

Acknowledgements The work was supported by Russian Science Foundation (project 20-19-
00613).



10 Nonlinear Stationary Waves in a Thin-Walled Bar Affected by Deplanation 169

Table 10.1: Phase portraits.

𝑚1 𝑚3 𝑚2 > 0 𝑚2 < 0

< 0 < 0

< 0 > 0

> 0 < 0

> 0 > 0
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Chapter 11
Linear Reduced Elastic Isotropic Cosserat
Medium Subjected to the External Follower
Viscoelastic Torque as a Smart Acoustic
Metamaterial

Elena F. Grekova and Sabina M. Isaeva

Abstract We consider a linear elastic isotropic reduced Cosserat medium under
viscoelastic follower torque. Reduced Cosserat elastic medium is an elastic continuum
whose body points possess both rotational and translational degrees of freedom, but
the medium does not react on the gradient of micro-rotation. Such an isotropic
medium has a bandgap for the shear–rotational wave, i.e. it is an acoustic single
negative metamaterial in this frequency domain. Introducing a volume follower
elastic torque, we change the bandgap parameters. A viscoelastic external torque
changes qualitatively the wave propagation in the medium: there appears a running
evanescent solution, in many cases having a decreasing part of the dispersion curve,
thus demonstrating properties of a double negative acoustic metamaterial.

11.1 Introduction and Notation

After the seminal work by E. & F. Cosserat, which opened the new area in mechanics,
namely, mechanics of 3D continua with rotational degrees of freedom, many investi-
gations were performed on various Cosserat-type theories [1–3]. Foundations of this
theory one can find in [4, 5]. Full basic equations of 3D elastic Cosserat media were
firstly suggested in [1], but the universal method to obtain the equations of elastic
complex media, based on the fundamental laws of balance and the material objectivity,
was proposed in [6]. Thermoelastic Cosserat media are considered in [7, 8]. Space
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(eulerian) approach to the Cosserat media is developed in [9] and successive works
of these authors.

Rotational degrees of freedom influence wave propagation in minerals [10] and
granular materials [11]. Reduced elastic isotropic linear Cosserat theory was firstly
suggested for the description of dynamic behaviour of granular materials in [12].
Reduced Cosserat continuum is a medium where the strain energy depends on the
micro-rotation but not on its gradient. Waves in such a medium are investigated
in [13]. This continuum possesses a band gap, i.e. it is a single negative acoustic
metamaterial. Adding a small viscosity to the elastic interactions, we transform it to
a double negative acoustic metamaterial, i.e. a medium that has a decreasing part of
the dispersion curve [14, 15].

Acoustic metamaterials demonstrate peculiar dynamic properties. Single negative
acoustic metamaterials possess band gaps, and double negative acoustic metamateri-
als have frequency domains where group velocity and phase velocities have different
signs. These materials are often designed to mask objects, control wave beams and
reduce vibration [16, 17]. Reduced continua, where the stresses depend on a certain
special generalised co-ordinate but not on its gradient, in the elastic case under certain
symmetry conditions behave as single negative acoustic metamaterials [18], and in
the viscoelastic case may occur to be double negative acoustic metamaterials [19].
They can be schematically represented as a bearing continuum enhanced by a dis-
tributed dynamic absorber (corresponding to the special generalised co-ordinate).
This “dynamic absorber” may have different nature, e.g. mass-in-mass model is also
an example of such an acoustic metamaterial [20].

This reminds a mixed continuum-discrete (structural) approach, where discrete
elements are considered to be embedded into a whole structure, described as a
continuum, and they have a coupled dynamics [21, 22]. However, in this work
pseudo-“discrete” elements (dynamic absorbers) are distributed in a continuous way,
they simply do not interact in a direct way, but only via the bearing continuum. Note
that this important feature is present also in the discrete-continuum model considered
in [22] and leads to the existence of resonant absorption at the partial eigen-frequency
of the distributed dynamic absorbers.

We will consider a linear elastic medium consisting of infinitesimal body points.
Denote by 𝒖 the translational displacement, by \\\ an infinitesimal micro-rotation
vector (rotation tensor can be approximated as 𝑬 +\\\ × 𝑬, where 𝑬 is the identity
tensor), let ∇ = 𝑑

𝑑𝒓 be the gradient operator, 𝒓 the position vector.

11.2 Equations of the Reduced Elastic Linear Isotropic Cosserat
Medium Subjected to a Viscoelastic Follower Body Torque.
Spectral Problem

First here we recall some facts for the convenience of the reader that can be found
in [12, 13].
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• Constitutive equations for the linear reduced isotropic elastic Cosserat medium
can be written in the following way:

𝜏𝜏𝜏 = 𝜆∇ ·𝒖 𝑬 +2𝜇(∇𝒖)𝑆 +2𝛼(∇𝒖 +\\\ ×𝑬)𝐴, 𝜇𝜇𝜇 = 0.

Here 𝜏𝜏𝜏 is the stress tensor, 𝜇𝜇𝜇 is the couple tensor, 𝜆, 𝜇 are Lamé parameters, 𝛼 the
Cosserat couple modulus.

• Dynamic equations for the reduced Cosserat medium are: balance of force

∇ ·𝜏𝜏𝜏 + 𝜌𝑭 = 𝜌 ¥𝒖, (11.1)

𝜌𝑭 is the density of the external body force, and balance of moments

𝜏𝜏𝜏× + 𝜌𝑳 = 𝜌𝐼 ¥\\\, (11.2)

where 𝜏𝜏𝜏× = 𝜏𝑚𝑛 𝒊𝑚× 𝒊𝑛, 𝜌𝑭 is the density of the external body torque, 𝜌𝐼𝑬 is the
density of tensor of inertia, considered as spherical for sake of simplicity.

• Equations in displacements take the form

(𝜆+2𝜇)∇∇ ·𝒖− (𝜇+𝛼)∇× (∇×𝒖) +2𝛼∇×\\\ = 𝜌 ¥𝒖

2𝛼∇×𝒖−4𝛼\\\ + 𝜌𝐿𝐿𝐿 = 𝜌𝐼 ¥\\\
We will consider plane waves in this medium 𝒖 = 𝒖0e𝑖 (𝜔𝑡−𝒌 ·𝒓 ) , \\\ = \\\0e𝑖 (𝜔𝑡−𝒌 ·𝒓 ) ,
for zero external body forces and viscoelastic external body torque with density
𝜌𝑳 = −𝑐\\\ −𝐶 ¤\\\. We will investigate plane waves in the same way as is was done
in [13] but taking into account the body external moment.

Then we obtain the following spectral problem:

−𝑘2 (𝜆+2𝜇) �̂� �̂� ·𝒖− 𝑘2 (𝜇+𝛼) �̂� × ( �̂� ×𝒖) +2𝛼𝑖𝑘 �̂� ×\\\ = −𝜌𝜔2𝒖, (11.3)

2𝛼𝑘 �̂� ×𝒖−4𝛼\\\ − (𝑐+ 𝑖𝜔𝐶)\\\ = −𝜌𝐼𝜔2\\\. (11.4)

We express \\\ via 𝒖 from the last equation (balance of moments):

\\\ =
2𝛼𝑘

4𝛼+ 𝑐+ 𝑖𝜔𝐶 − 𝜌𝐼𝜔2 �̂� ×𝒖 (11.5)

and substitute it into the balance of force, thus obtaining a reduced spectral problem:

(𝜌𝜔2 − 𝑘2 (𝜆+2𝜇)) �̂� �̂� ·𝒖

+ (𝜌𝜔2 − 𝑘2 (𝜇+𝛼− 4𝛼2

4𝛼+ 𝑐+ 𝑖𝜔𝐶 −𝜔2𝜌𝐼
)) (𝑬 − �̂� �̂�) ·𝒖 = 0. (11.6)

Due to isotropy we can separate the P-wave, whose dispersion equation is classical
(𝜔 =

√︃
𝜆+2𝜇
𝜌 𝑘). The spectral problem for the shear–rotational wave looks as follows
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(𝜌𝜔2 − 𝑘2 (𝜇+𝛼− 4𝛼2

4𝛼+ 𝑐+ 𝑖𝜔𝐶 −𝜔2𝜌𝐼
)) (𝑬 − �̂� �̂�) ·𝒖 = 0. (11.7)

11.3 Isotropic Linear Elastic Reduced Cosserat Medium
Subjected to an Elastic Follower Torque

Let us consider𝐶 = 0, 𝜌𝑳 =−𝑐\\\. Then we obtain from (11.7) the following dispersion
relation:

𝑘2 =
𝜔2

𝑐2
𝑠𝛼

(𝜔2 −𝜔2
0𝑒)

(𝜔2 −𝜔2
1𝑒)
,

where

𝑐2
𝑠𝛼 =

𝜇+𝛼
𝜌

, 𝜔2
0𝑒 =

4𝛼+ 𝑐
𝜌𝐼

,

𝜔2
1𝑒 = 𝜔

2
0𝑒 −

4𝛼2

(𝜇+𝛼)𝜌𝐼 .

Note that at low frequencies the wave velocity depends on the external elastic torque,
and its square is equal to

𝑐2
0 = 𝑐

2
𝑠

1+ 𝑐

4𝛼Ω2
1

1+ 𝑐

4𝛼

, (11.8)

Ω2
1 =

𝜔2
1

𝜔2
0
=

𝜇

𝜇+𝛼 , (11.9)

𝑐2
𝑠 =

𝜇
𝜌 is a square of the shear–rotational velocity at low frequencies when there is

no external torque,

𝜔0 =

√︄
4𝛼
𝜌𝐼
, 𝜔1 =

√︂
𝜇

𝜇+𝛼𝜔0 (11.10)

are the cut-off frequency and boundary frequency, respectively, in the medium without
external torque. In the high-frequency limit the elastic torque does not influence the
wave velocity, it is equal to 𝑐𝑠𝛼. An example of dispersion curves under action of an
external moment and without it is shown in Fig. 11.1.

Let us see how the band gap changes under the action of the external follower
body moment:

𝜔0𝑒 −𝜔1𝑒
𝜔0

=

√︂
1+ 𝑐

4𝛼
−

√︂
Ω2

1 +
𝑐

4𝛼
. (11.11)
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Fig. 11.1 Dispersion curves
for the shear–rotational wave,
under (solid) / without (dashed)
follower external elastic mo-
ment.

This is a monotonically decreasing (to zero at infinity) function of 𝑐
4𝛼 at fixed 𝜇/𝛼, it

reaches the maximal value
√︃

1−Ω2
1 = 1/

√︁
1+ 𝜇/𝛼 at 𝑐

4𝛼 = −Ω2
1. An example of this

dependence is shown in Fig. 11.2.

Fig. 11.2: Band gap 𝜔0𝑒 − 𝜔1𝑒 vs follower elastic torque. Positive follower elastic moment
reduces the band gap, but does not destroy it. Boundary and cut-off frequencies increase. Negative
follower moment increases the size of the band gap and moves it downwards.
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11.4 Isotropic Elastic Reduced Cosserat Medium Subjected to a
Viscous or Viscoelastic Follower Torque

Considering 𝜌𝑳 = −𝐶 ¤\\\, i.e. 𝑐 = 0 in (11.7), we obtain the dispersion relation for the
shear–rotational wave:

𝑘2 =
𝜔2

𝑐2
𝑠𝛼

(𝜔2 −𝜔2
0 − 𝑖𝜔𝐶

𝜌𝐼

𝜔2 −𝜔2
1 − 𝑖𝜔𝐶

𝜌𝐼

)
(11.12)

Analogy with polarization wave in non-polar dielectrics. The same dispersion
relation characterizes wave propagation of polarization field in non-polar dielectrics,
initially induced by an external field [23]. The external follower viscous body moment
corresponds to the dissipation coefficient for polarization, 𝑐𝑠𝛼 to the light velocity,
𝜔2

0 = 𝜔
2
𝑟 + 2

3𝜔
2
𝑝 , where 𝜔𝑟 is the resonant frequency of electron oscillations in the

molecule, 𝜔𝑝 the plasma frequency, 𝜔2
1 = 𝜔

2
𝑟 − 1

3𝜔
2
𝑝 . The case of purely elastic or

zero external torque corresponds to the case of dielectric without dissipation.
Viscoelastic follower torque −𝑐\\\ −𝐶 ¤\\\ will give us the dispersion relation

𝑘2 =
𝜔2

𝑐2
𝑠𝛼

(𝜔2 −𝜔2
0 − 𝑐+𝑖𝜔𝐶

𝜌𝐼

𝜔2 −𝜔2
1 − 𝑐+𝑖𝜔𝐶

𝜌𝐼

)
=
𝜔2

𝑐2
𝑠𝛼

(𝜔2 −𝜔2
0𝑒 − 𝑖𝜔𝐶

𝜌𝐼

𝜔2 −𝜔2
1𝑒 − 𝑖𝜔𝐶

𝜌𝐼

)
,

thus all the results for the viscous external body torque presented further in this section
can be extrapolated to the case of the viscoelastic external body torque, substituting
𝜔0 for 𝜔0𝑒 and 𝜔1 for 𝜔1𝑒. In what follows we consider 𝑐 = 0.

11.4.1 Dispersion Relation for the Shear–Rotational Wave

We will introduce dimensionless wave number 𝐾 , dimensionless frequency Ω and
dimensionless parameter 𝑏, expressing in these terms dispersion relation (11.12):

𝐾2 =
𝑐2
𝑠𝛼

𝜔2
0
𝑘2 = Ω2 Ω2 −1− 𝑖𝑏Ω

Ω2 −Ω2
1 − 𝑖𝑏Ω

(11.13)

Ω =
𝜔

𝜔0
, Ω2

1 =
𝜇

𝛼+ 𝜇 , 𝑏 =
𝐶

𝜌𝐼𝜔0
=
𝐶𝜔0
4𝛼

(11.14)

We can transform dispersion relation (11.13) as follows

(ℜ𝐾)2 − (ℑ𝐾)2 +2𝑖ℜ𝐾ℑ𝐾

= Ω2 (Ω2 −1) (Ω2 −Ω2
1) + 𝑏2Ω2 − 𝑖𝑏Ω(1−Ω2

1)
(Ω2 −Ω2

1)
2 + 𝑏2Ω2

(11.15)

Thus we obtain
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2ℜ𝐾ℑ𝐾 = − 𝑏(1−Ω2
1)Ω3

(Ω2 −Ω2
1)

2 + 𝑏2Ω2
, (11.16)

(ℜ𝐾)4 +Ω2 (Ω2 −1) (Ω2 −Ω2
1) + 𝑏2Ω2

(Ω2 −Ω2
1)

2 + 𝑏2Ω2
(ℜ𝐾)2

− 𝑏2 (1−Ω2
1)2Ω6

4((Ω2 −Ω2
1)

2 + 𝑏2Ω2)2
= 0. (11.17)

We solve this biquadratic equation:

(ℜ𝐾)2 =
1
2

(Ω2

𝑧

(
(Ω2 −1) (Ω2 −Ω2

1) + 𝑏2Ω2
)
±
√
𝐷

)
, (11.18)

where

𝐷 =
(Ω2

𝑧

(
(Ω2 −1) (Ω2 −Ω2

1) + 𝑏2Ω2
))2

+ 𝑏
2Ω6 (1−Ω2

1)2

𝑧2
, (11.19)

𝑧 = (Ω2 −Ω2
1)2 + 𝑏2Ω2. (11.20)

Imaginary part of the wave number can be obtained as

(ℑ𝐾)2 =
1
2

(
− Ω2

𝑧

(
(Ω2 −1) (Ω2 −Ω2

1) + 𝑏2Ω2
)
±
√
𝐷

)

Denote
𝑓 (Ω) = (Ω2 −1) (Ω2 −Ω2

1) + 𝑏2Ω2. (11.21)

Then
𝐷1/2 =

Ω2

𝑧
( 𝑓 2 + 𝑏2 (1−Ω2

1)2Ω2)1/2, (11.22)

2(ℜ𝐾)2 =
Ω2

𝑧
( 𝑓 ± ( 𝑓 2 + 𝑏2 (1−Ω2

1)2Ω2)1/2), (11.23)

2(ℑ𝐾)2 =
Ω2

𝑧
(− 𝑓 ± ( 𝑓 2 + 𝑏2 (1−Ω2

1)2Ω2)1/2), (11.24)

( ℑ𝐾
ℜ𝐾

)2
=
− 𝑓 ± ( 𝑓 2 + 𝑏2 (1−Ω2

1)2Ω2)1/2

𝑓 ± ( 𝑓 2 + 𝑏2 (1−Ω2
1)2Ω2)1/2

(if 𝑓 ≠ 0) =
−sgn 𝑓 ± (1+ 𝑏2 (1−Ω2

1)2 Ω2

𝑓 2 )1/2

sgn 𝑓 ± (1+ 𝑏2 (1−Ω2
1)2 Ω2

𝑓 2 )1/2
. (11.25)

We see that we always have positive expression in the right side of (11.23)–(11.25),
i.e. there exist a running evanescent plane wave solution at all frequencies. This is a
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qualitative difference with the elastic case. We can see various numerical examples
for the dispersion curves of the shear–rotational waves. Figures 11.3 and 11.4 present
dispersion curves for 2𝛼 = 𝜇 = 10, 𝑏 = 0.22 and 𝑏 = 2.2 respectively. In the first case,
for a not very large dissipation parameter, we observe a decaying part of ℜ𝐾 (𝜔),
maximum of the logarithmic decrement inside the former bandgap and the maximal
attenuation at a fixed distance just above the lower limit of the former band gap. In
the second case, for larger 𝑏, attenuation in the former band gap is much less than for
𝑏 = 0.22, the real part of the wave number is slightly dispersive and monotone.

In case 𝛼 > 𝜇 the tendencies are similar. Indeed, in Figs. 11.5, 11.6 and 11.7
dispersion curves are presented for large dissipation 𝑏 = 1.58, and in Figs. 11.8, 11.9
and 11.10 for a relatively small dissipation 𝑏 = 0.158. For a large viscous torque,
there is no decreasing part of the dispersion curve. For a small dissipation parameter,
we observe in numerical examples a decreasing part of the dispersion curve. The
type of acoustic metamaterial changes. We will show it analytically further.

Fig. 11.3: Dispersion curves, Ω2
1 = 0.816, 𝜔2

0 = 20, 𝑏 = 0.22. Dashed lines: elastic case, solid lines:
viscous external body torque. Left part of the graph: ℑ𝐾 , right part of the graph:
|ℑ𝐾/ℜ𝐾 | = (2𝜋𝑄)−1, ℜ𝐾 , 𝐾 the dimensionless wave number. Running evanescent solution
exists at all frequencies and has a decreasing part of dispersion curve in the lower part of the former
band gap and somewhat below it.
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Fig. 11.4: Dispersion curves, Ω2
1 = 0.816, 𝜔2

0 = 20, 𝑏 = 2.2. Dashed lines: elastic case, solid lines:
viscous external body torque. Left part of the graph: ℑ𝐾 , right part of the graph:
|ℑ𝐾/ℜ𝐾 | = (2𝜋𝑄)−1, ℜ𝐾 , 𝐾 the dimensionless wave number. Running evanescent solution
exists at all frequencies, it has no decreasing part of dispersion curve. It is slightly dispersive.

11.4.2 Small Dissipation far from Characteristic Frequencies
𝛀 =𝛀1 and 𝛀 = 1

11.4.2.1 Real Part of the Wave Number

Consider a small dissipation parameter 𝑏2 = 𝑜(1). If we are near the elastic band gap
limits Ω =Ω1 and Ω = 1, functions 𝑧(Ω) and 𝑓 (Ω) take infinitesimal values, and this
case requires a separate consideration. Let us consider in this section the case when
|Ω−Ω1 | ≫ 𝑏, |Ω−1| ≫ 𝑏.

Then we may write down the following approximations of formulae (11.23)–
(11.25):

2(ℜ𝐾)2 =
Ω2 𝑓

(Ω2 −Ω2
1)

2 (1+ 𝑏2 Ω2

(Ω2−Ω2
1 )

2 )
(1± (1+ 𝑏2 (1−Ω2

1)2Ω
2

𝑓 2 )
1/2)

=
Ω2 (Ω2 −Ω2

1) (Ω2 −1) (1+ 𝑏2 Ω2

(Ω2−Ω2
1 ) (Ω2−1) )

(Ω2 −Ω2
1)

2 (1+ 𝑏2 Ω2

(Ω2−Ω2
1 )

2 )
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Fig. 11.5: Dispersion curves for the real part of dimensionless wave number, large dissipation
parameter 𝑏 = 1.58. There is no decreasing part of the dispersion curve.

Fig. 11.6: Dispersion curves for the imaginary part of dimensionless wave number, large
dissipation parameter 𝑏 = 1.58. Attenuation decreases in comparison with the small dissipation
inside the band gap and increases outside it.
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Fig. 11.7: Dispersion curves for |ℑ𝐾/ℜ𝐾 | = (2𝜋𝑄)−1, where 𝑄−1 is the logarithmic decrement,
large dissipation parameter 𝑏 = 1.58. Attenuation decreases in comparison with the small
dissipation inside the band gap and increases outside it. Maximum of the logarithmic decrement is
situated below the band gap.

· (1± (1+ 𝑏2 (1−Ω2
1)2 Ω2

(Ω2 −Ω2
1)

2 (Ω2 −1)2 (1+ 𝑏2 (1−Ω2
1)2 Ω2

(Ω2−Ω2
1 )

2 (Ω2−1)2 )
)1/2)

=
Ω2 (Ω2 −1) (1+ 𝑏2 Ω2

(Ω2−Ω2
1 ) (Ω2−1) )

(Ω2 −Ω2
1) (1+ 𝑏2 Ω2

(Ω2−Ω2
1 )

2 )

· (1± (1+ 𝑏
2 (1−Ω2

1)2

2
Ω2 (1+ 𝑜(𝑏2))

(Ω2 −Ω2
1)

2 (Ω2 −1)2 (1+ 𝑏2 (1−Ω2
1)2 Ω2

(Ω2−Ω2
1 )

2 (Ω2−1)2 )
))

=
Ω2 (Ω2 −1) (1+ 𝑏2 Ω2

Ω2−Ω2
1
( 1
Ω2−1 − 1

Ω2−Ω2
1
))

Ω2 −Ω2
1

· (1± (1+ 𝑏
2 (1−Ω2

1)2 (1+ 𝑜(𝑏2))
2

Ω2 (1− 𝑏2 (1−Ω2
1)2 Ω2

(Ω2−Ω2
1 )

2 (Ω2−1)2 )

(Ω2 −Ω2
1)

2 (Ω2 −1)2
)). (11.26)

Now we have to consider two cases: the frequency is inside the band gap in the elastic
case (Ω1;1) and it is outside it. Recall that we do not consider the vicinities of its
limits.



182 Elena F. Grekova and Sabina M. Isaeva

Fig. 11.8: Real part of the dimensionless wave number for the elastic case (dashed line) and under
viscous follower torque 𝑐 = 1 (solid line). Dissipation parameter 𝑏 = 𝑐/𝜌𝐼𝜔0 = 0.158, Ω2

1 = 1/6.
We observe a decreasing part of the dispersion curve approximately from 𝜔/𝜔0 = 0.36 to
𝜔/𝜔0 = 0.82.

Fig. 11.9: Imaginary part of the dimensionless wave number for the elastic case (dashed line) and
under viscous follower torque 𝑐 = 1 (solid line). Dissipation parameter 𝑏 = 𝑐/𝜌𝐼𝜔0 = 0.158,
Ω2

1 = 1/6. We observe the maximal attenuation just above the lower limit of the band gap, at
𝜔/𝜔0 ≈ 0.45.
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Fig. 11.10: Dispersion curves for |ℑ𝐾/ℜ𝐾 | = (2𝜋𝑄)−1, where 𝑄−1 is the logarithmic
decrement, dissipation parameter 𝑏 = 0.158. Attenuation is larger in comparison with the big
dissipation inside the band gap and less outside it. Maximum of the logarithmic decrement is
situated inside the band gap.

Outside the band gap (Ω1;1) the solution is given by the “+” sign, since (ℜ𝐾)2 ⩾ 0,
and the main term in this expression is finite. We obtain

ℜ𝐾 =
Ω(Ω2 −1)1/2

(Ω2 −Ω2
1)

1/2

(
1+ 𝑏2 (1−Ω2

1)Ω2

2(Ω2 −Ω2
1)

2 (Ω2 −1)

)
+ 𝑜(𝑏2),

Ω < Ω1 or Ω > 1.

(11.27)

In this domain ℜ𝐾 (Ω) increases. It is slightly changed by the small dissipation in
comparison with the elastic case.

Inside the band gap (Ω1;1) the solution is given by the “-” sign, the main term
in (11.26) is of order 𝑂 (𝑏2). We have

(ℜ𝐾)2 = −𝑏
2 (1−Ω2

1)2

4
Ω4

(Ω2 −Ω2
1)

3 (Ω2 −1)

· (1+ 𝑏2 (1−Ω2
1)

Ω2

(Ω2 −Ω2
1)

2 (Ω2 −1)
(1− 1−Ω2

1
Ω2 −1

)) (1+ 𝑜(𝑏2)). (11.28)

The main term is of the order of the dissipation parameter:
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ℜ𝐾 =
𝑏(1−Ω2

1)
2

Ω2

(Ω2 −Ω2
1)

3/2 (1−Ω2)1/2 , Ω1 < Ω < 1 (11.29)

This expression is in accordance with [19], formula (6.47), case of viscoelastic
foundation for the dynamic absorber, coupling between the dynamic absorber co-
ordinate and the gradient of the bearing continuum co-ordinate, zero elastic foundation
for the bearing continuum. We observe a decaying part of the dispersion curve above
Ω1.

Looking for the extremum of ℜ𝐾 (Ω) inside the bandgap (function defined by
eq. (11.29)), we find that at

Ω∗ =
1
2
(1−Ω2

1 + (1+14Ω2
1 +Ω4

1)1/2)1/2 (11.30)

it reaches a minimal value. It can be easily proved that it takes minimum always
inside the interval (Ω1;1) but we skip the proof since it is a simple technical exercise.
This point is upper limit of the zone of anomalous refraction, where

𝑑𝜔

𝑑ℜ𝐾 < 0. This
limit does not depend on the small dissipation parameter in the first approximation,
but only on Ω1 determined by the parameter 𝛼/𝜇. For instance, if 𝛼 = 10, 𝜇 = 2, then
Ω∗ =

√︁
2/3 ≈ 0.816. The value, calculated using formula (11.29) at this point for

𝑏 = 0.158, gives us the minimal value ℜ𝐾 ≈ 0.216. We see in Fig. 11.8 that this
point indeed corresponds to the upper limit of the decreasing part of the dispersion
curve, though the dissipation in this numerical example is not so small.

11.4.2.2 Imaginary Part of the Wave Number

Note that (ℜ𝐾)2+ = −(ℑ𝐾)2− , and (ℜ𝐾)2− = −(ℑ𝐾)2+, where “+” and “-” correspond
to the choice of the signs in Eqs. (11.23) and (11.24). Therefore the approxima-
tion (11.29) inside the band gap for ℜ𝐾 , multiplied by −𝑖, can serve as an approxi-
mation for ℑ𝐾 outside the band gap:

ℑ𝐾 = −𝑏(1−Ω2
1)

2
Ω2

(Ω2 −Ω2
1)

3/2 (Ω2 −1)1/2 , Ω < Ω1 or Ω > 1 (11.31)

Note that this function has no extremum outside the band gap: |ℑ(Ω) | increases
monotonically below the band gap (Ω < Ω1) and decreases monotonically above the
band gap (Ω > 1). Thus, since |ℑ𝐾 | is continuous, it must have a maximum inside
the band gap or close to its borders.

Vice versa, the approximation (11.27) for ℜ𝐾 outside the band gap, multilplied
by −𝑖, gives us the approximation for ℑ𝐾 inside the band gap, thus resulting in
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ℑ𝐾 = −Ω(1−Ω2)1/2

(Ω2 −Ω2
1)

1/2

(
1− 𝑏2 (1−Ω2

1)Ω2

2(Ω2 −Ω2
1)

2 (1−Ω2)

)
+ 𝑜(𝑏2),

Ω1 < Ω < 1.

(11.32)

We see that inside the band gap small dissipation enhances the wave propagation:
the wave decays less at a fixed distance. This effect is often, though not in all cases,
observed in systems with small dissipation, added to a single negative elastic acoustic
metamaterial [19]. We see that the main term for ℑ𝐾 has no extremum inside the
band gap. Therefore, it must be in the vicinity of one of the characteristic frequencies.
We will show it further.

11.4.2.3 Logarithmic Decrement

We calculate the logarithmic decrement multiplied by 2𝜋. Outside the band gap
���� ℑ𝐾ℜ𝐾

���� = 𝑏(1−Ω2
1)

2
Ω

(Ω2 −Ω2
1) (Ω2 −1) + 𝑜(𝑏

2) (11.33)

It increases from zero below the band gap and decreases above it, tends to zero for
large frequencies. It grows if we increase the viscous follower torque.

Inside the band gap the relation is inverse:
���� ℑ𝐾ℜ𝐾

���� = 2
𝑏(1−Ω2

1)
(Ω2 −Ω2

1) (1−Ω2)
Ω

+ 𝑜(1) (11.34)

It has a maximum at

ΩDmax =
(Ω2

1 +1+ (Ω4
1 +14Ω2

1 +1)1/2)1/2
√

6
(11.35)

One can check that this frequency belongs to the band gap. It does not depend on the
small dissipation in the first approximation, but the maximal value of the logarithmic
decrement does. It decreases as the small dissipation increases. This apparently
strange behaviour is observed due to the fact that attenuation is not related to the
dissipation but to the existence of standing evanescent waves in the elastic medium (in
this zone the logarithmic decrement was infinite in the elastic case). For the parameters
corresponding to Fig. 11.10 we obtain ΩDmax =

√
2/2, |ℑ𝐾/ℜ𝐾 |max = 3.58. We see

that Fig. 11.10 confirms this result.
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11.4.3 Small Dissipation near the Lower Characteristic Frequency
𝛀1

Let us consider the case 𝑏 = 𝑜(1), Ω2 = Ω2
1 −𝑎1𝑏, where 𝑎1 =𝑂 (1) is a certain finite

parameter. Then we obtain the following approximations:

𝑧 = 𝑏2 (𝑎2
1 +Ω2

1) + 𝑜(𝑏2), (11.36)

𝑓 = 𝑏𝑎1 (1−Ω2
1) + 𝑜(𝑏), (11.37)

2(ℜ𝐾)2 =
Ω2

1 (1−Ω2
1)

𝑏

𝑎1 ± (𝑎2
1 +Ω2

1)1/2

𝑎2
1 +Ω2

1
=
Ω1 (1−Ω2

1)
𝑏

𝜉 + (𝜉2 +1)1/2

1+ 𝜉2 , (11.38)

where 𝜉 = 𝑎1/Ω1. We have to choose the “+” root for this domain of frequencies
since “-” gives a negative value for (ℜ𝐾)2. Note that Ω = Ω1 − 𝑏𝜉/2. We see that in
this domain ℜ𝐾 is large for small dissipation 𝑏.

It is easy to obtain that this function takes a maximal value at 𝜉 = 1/√3, i.e.
ℜ𝐾 (Ω) reaches its maximal value

ℜ𝐾 =
33/4Ω1/2

1 (1−Ω2
1)1/2

2
√

2𝑏
at Ω = Ω1 − 𝑏

2
√

3
. (11.39)

Below this point we have a zone of normal refraction (positive 𝑑𝜔/𝑑ℜ𝑘), and above it
a zone of negative refraction (negative 𝑑𝜔/𝑑ℜ𝑘). For the parameters corresponding
to Fig. 11.5 the lower limit of the band gap equals Ω1 − 𝑏/(2

√
3) ≈ 0.363.

In the same frequency domain

2(ℑ𝐾)2 =
Ω2

1 (1−Ω2
1)

𝑏

(𝑎2
1 +Ω2

1)1/2 − 𝑎1

𝑎2
1 +Ω2

1
=

Ω1 (1−Ω2
1)

𝑏

(𝜉2 +1)1/2 − 𝜉
1+ 𝜉2 , (11.40)

Here we have chosen again the “+” branch for the same reason as above. In this
domain attenuation is large for small dissipation 𝑏. It has its maximum at 𝜉 = −1/√3,
i.e. |ℑ𝐾 (Ω) | reaches its maximal value

|ℑ𝐾 | = 33/4Ω1/2
1 (1−Ω2

1)1/2

2
√

2𝑏
at Ω = Ω1 + 𝑏

2
√

3
. (11.41)

At this frequency we have a maximal attenuation at a fixed distance. For parameters
shown in Fig. 11.9 we obtain Ω = 0.454, |ℑ𝐾 |max = 1.18. We see that the graph
confirms this prediction. At Ω2

1 = 1/3, i.e. 𝛼 = 2𝜇 we have the maximal attenuation
at a fixed distance in the former bandgap, reached at the frequency

Ω1 + 𝑏

2
√

3
,
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corresponding to |ℑ𝐾 | = 1/(2
√
𝑏).

The logarithmic decrement can be obtained from the approximation
( ℑ𝐾
ℜ𝐾

)2
=
−𝑎1 (1−Ω2

1)𝑏 + (𝑎2
1 +Ω2

1)1/2 (1−Ω2
1)𝑏

𝑎1 (1−Ω2
1)𝑏 + (𝑎2

1 +Ω2
1)1/2 (1−Ω2

1)𝑏
=
−𝜉 + (1+ 𝜉2)1/2

𝜉 + (1+ 𝜉2)1/2 (11.42)

We see that the main term for the logarithmic decrement does not depend neither
on the small dissipation 𝑏 nor on the elastic constants in the vicinity of Ω1, it is a
monotonically increasing function of frequency in this domain, and |ℑ𝐾/ℜ𝐾 | = 1
at Ω1.

11.4.4 Small Dissipation near the Upper Characteristic Frequency
𝛀 = 1

Now consider the case 𝑏 = 𝑜(1), Ω2 = 1− 𝑎0𝑏, where 𝑎0 = 𝑂 (1) is a certain finite
parameter (Ω = 1− 𝑎0𝑏/2). We proceed again with approximations:

𝑧 = (1−Ω1)2 +𝑂 (𝑏2) (11.43)

𝑓 = −𝑏𝑎0 (1−Ω2
1) + 𝑜(𝑏), (11.44)

2(ℜ𝐾)2 =
𝑏

1−Ω2
1
((𝑎2

0 +1)1/2 − 𝑎0), (11.45)

it is a small in value, monotonically decreasing function of 𝑎0, i.e. in this domain
ℜ𝐾 (Ω) increases. We have to choose the “+” root since the “-” root gives negative
(ℜ𝐾)2 and (ℑ𝐾)2. For the imaginary part we have the following approximation

2(ℑ𝐾)2 =
𝑏

1−Ω2
1

[
(𝑎2

0 +1)1/2 + 𝑎0

]
, (11.46)

it is a small in value, monotonically increasing function of 𝑎0, i.e. in this domain
|ℑ𝐾 | (Ω) decreases.

The logarithmic decrement can be obtained from the approximation
( ℑ𝐾
ℜ𝐾

)2
=
(1+ 𝑎2

0)1/2 − 𝑎0

(1+ 𝑎2
0)1/2 + 𝑎0

(11.47)

We see that the main term for the logarithmic decrement does not depend on the
small dissipation in the vicinity of Ω = 1, it is a monotonically increasing function
of frequency in this domain, and |ℑ𝐾/ℜ𝐾 | = 1 at Ω = 1.
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11.5 Conclusions

Linear elastic reduced isotropic homogeneous Cosserat medium, subjected to a
follower viscoelastic body torque, is a smart acoustic metamaterial.

1. Elastic follower torque controls properties of the single negative acoustic metama-
terial.
Positive elastic follower moment:

• increases the shear–rotational wave velovity at low frequencies
• moves the band gap upwards
• reduces the width of band gap

Negative elastic follower moment:

• decreases the wave velocity at low frequencies
• increases the width of band gap and moves it downwards

2. Viscous (not large) follower torque converts it into a double negative acoustic
metamaterial. Positive viscous follower moment:

• completely destroys the band gap for ℜ𝑘 (there is always a running evanescent
solution, no standing waves)

• makes to appear a decreasing part of the dispersion curve for enough small
torque values

• reduces the wave attenuation in the former band gap

We have obtained the expressions for the zone of anomalous refraction for the
small dissipation. In the first approximation its upper limit does not depend on
the dissipation parameter and is situated inside the band gap. The lower limit is
just below the bandgap, its dimensionless frequency equals Ω1 − 2𝑏/√3, 𝑏 is the
dimensionless dissipation parameter. The maximal attenuation for small dissipation
at a fixed distance is reached inside the band gap, just above Ω1, on the same distance
from it. Attenuation inside the band gap far from the characteristic frequencies is
inverse proportional to the dissipation 𝑏, and the local maximal value of ℜ𝐾 near
the band gap is inverse proportional to

√
𝑏, if 𝑏 is small. Thus changing the external

viscoelastic moment we can control the properties of the acoustic metamaterial and
change its type. The same dispersion relation characterizes wave propagation of
polarization field in non-polar dielectrics.

Acknowledgements This work is carried out within the state assignment of Ministry of Science
and Higher Education of the Russian Federation in IPME RAS.
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Chapter 12
Nonlinear Vibrations of Bimodular Continua by
Means of Isogeometric Analysis

Rudolf Heuer and Galeb El Chabaan

Abstract The modeling and numerical analysis of the dynamic response of originally
straight homogeneous Bernoulli-Euler beam rigid in shear with classical boundary
conditions under time-varying excitation are studied. However, the beam is composed
of a bimodular material, thus behaving differently in tension and compression. This
implies that the neutral axis does not pass through the geometric centroid of the
cross-section and depends not only on the elastic material properties but also on
the curvature’s sign and the geometry of the cross-section. Within this study, an
isosceles triangular cross-section is analyzed, showing a difference in neutral axis
position between positive and negative curvature with respect to the modular ratio.
The governing equation for flexural oscillations of the bimodular beam is formulated
based on the model with effective two-layer laminates and discontinuous natural beam
axis with respect to the axis through the cross-section’s geometric centroid, which is
used as an independent reference axis of the bimodular beam structure. The numerical
analysis of the dynamic response of the bimodular beam is investigated by means of
isogeometric analysis (IGA). The fundamental idea behind isogeometric analysis is
to use the same basis functions for constructing the exact original geometric model
and for approximating the unknown solution fields. Finally, a numerical study is given
to verify the effectiveness of the isogeometric approach on the dynamic analysis of
the bimodular beam.

12.1 Introduction

The stress-strain curve of these so-called bimodular materials is usually approximated
by two straight lines with a slope discontinuity at the origin, see e.g. [1]. A com-
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prehensive study about the mechanical behavior of bimodular composite structures
can be found in [2]. Publication [3] focuses on the nonlinear bending of laminated
fibrous composite beams by incorporating a higher-order shear deformation beam
theory. Bert and Tran [4] analyze the transient response of moderately thick bimodular
beams using the transfer-matrix method. An analytical solution of tapered bimodular
beams can be found in [5]. In [6], the authors considered the influence of the various
cross-section geometry and material properties on the position of the neutral axis as
well as on the dynamic response of the bimodular beam. A detailed introduction and
review of the concept of isogeometric analysis and applications of this computational
approach to structural vibration analysis are presented in [7] and [8]. Based on [6],
the first section of this paper gives a brief overview of kinematic assumptions and
governing equations. Beams of isosceles triangle cross-section are considered show-
ing the nonlinear effect of the discontinuous natural axis on the dynamic response.
The aim of this study is to introduce the central concept of isogeometric analysis and
apply it to the dynamic analysis of the bimodular Bernoulli-Euler beam.

12.2 Mechanical Modeling

12.2.1 Kinematic Relations

According to Bernoulli-Euler beam theory, the plane of the cross-section remains
plane and orthogonal to the beam axis during the deformation. In this case, the effect
of transverse shear deformation can be neglected, which implies that the rotation of
the cross-section 𝜓(𝑥; 𝑡) is equal to the negative slope of the beam axis

𝜓(𝑥; 𝑡) = −𝜕𝑤(𝑥; 𝑡)
𝜕𝑥

= −𝑤(𝑥; 𝑡),𝑥 (12.1)

where 𝑥 denotes the axial beam coordinate and 𝑡 is time. Based on these assumptions,
the displacement field expressed by the axial displacement 𝑢(𝑥, Z ; 𝑡), transverse dis-
placement in the [-direction 𝑣(𝑥, Z ; 𝑡) and transverse displacement in the Z-direction
𝑤(𝑥, Z ; 𝑡) can be written as

©«

𝑢(𝑥, Z ; 𝑡)
𝑣(𝑥, Z ; 𝑡)
𝑤(𝑥, Z ; 𝑡)

ª®®®¬
=

©«

𝑢0 (𝑥; 𝑡) +
(
Z0 (𝑡) − Z

)
𝑤(𝑥; 𝑡),𝑥

0

𝑤(𝑥; 𝑡)

ª®®®¬
(12.2)

The Cartesian (𝑥,[, Z) -coordinate system is located in the geometrical centroid of
the cross-section 𝑆, as shown in Fig. 12.1 for the case of the triangle cross-section.
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Fig. 12.1: Geometry and deformation of a bimodular beam in case of upward bending (𝑤,𝑥𝑥 < 0) .

12.2.2 Governing Equations of Elastic Bimodular Beams

Based on the kinematic assumption made in Subsect. 12.2.1 and for the case when
only transverse load 𝑞(𝑥; 𝑡) is considered, the equation of motion for the bimodular
Bernoulli-Euler beam can be written as(

𝐷 −𝐵 Z0

)
𝑤(𝑥; 𝑡),𝑥𝑥𝑥𝑥 + 𝜇 ¥𝑤(𝑥; 𝑡) = 𝑞(𝑥; 𝑡) (12.3)

where 𝐷 and 𝐵 define bending and bending-extensional coupling stiffness expressed
in terms of time-independet Young’s modulus 𝐸 , respectively, as

𝐷 =
∫
𝐴

𝐸 Z2 d𝐴 =
∫
ℎ

𝐸 (Z) Z2 𝑏(Z) dZ (12.4)

𝐵 =
∫
𝐴

𝐸 Z d𝐴 =
∫
ℎ

𝐸 (Z) Z 𝑏(Z) dZ (12.5)

Furthermore, the position of the neutral axis Z0 can be found from nonlinear algebraic
equation obtained from the following condition

Z0 =
𝐵

𝐴
=

∫
𝐴

𝐸 Z d𝐴

∫
𝐴

𝐸 d𝐴
=

2∑︁
𝑖=1
Z
𝑆𝑖
𝐸

𝑖
𝐴

𝑖

2∑︁
𝑖=1
𝐸

𝑖
𝐴

𝑖

(12.6)

where 𝐴 denotes the extensional stiffness defined as
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𝐴 =
∫
𝐴

𝐸 d𝐴 =
∫
ℎ

𝐸 (Z) 𝑏(Z) dZ (12.7)

The mass per unit length 𝜇 is defined as integral of the mass density 𝜌 over the
cross-section area 𝐴

𝜇 =
∫
𝐴

𝜌 d𝐴 =
∫
ℎ

𝜌(𝑥, Z) 𝑏(Z) dZ (12.8)

The detailed derivation of the kinematic relations (12.2.1) and governing equation
(12.3) of the bimodular Bernoulli-Euler beam can be found in [6].

12.3 Considered Geometries - Isosceles Triangle Cross-Section

Considering beams with isosceles triangle cross-section (see Fig. 12.1), the width
can be expressed by a linear function as

𝑏(Z) = 𝑏
(
2
3
− Z
ℎ

)
(12.9)

Determination of the stiffness parameters according to Eqs. (12.7), (12.5) and (12.4)
renders in case of the configuration “upward bending”, 𝑤,𝑥𝑥 < 0,

𝐴
(−)

= 𝐸𝑐𝑏

[
ℎ

18

(
4𝛿+5

)
− 2

3

(
𝛿−1

)
Z0 + 1

2ℎ

(
𝛿−1

)
Z2

0

]
(12.10)

𝐵 (−) = 𝐸𝑐𝑏

[
4
81
ℎ2

(
𝛿−1

)
− 1

3

(
𝛿−1

)
Z2

0 +
1
3ℎ

(
𝛿−1

)
Z3

0

]
(12.11)

𝐷 (−) = 𝐸𝑐𝑏

[
ℎ3

972

(
16𝛿+11

)
− 2

9

(
𝛿−1

)
Z3

0 +
1
4ℎ

(
𝛿−1

)
Z4

0

]
(12.12)

and for “downward bending”, 𝑤,𝑥𝑥 > 0,

𝐴
(+)

= 𝐸𝑐𝑏

[
ℎ

18

(
5𝛿+4

)
+ 2

3

(
𝛿−1

)
Z0 − 1

2ℎ

(
𝛿−1

)
Z2

0

]
(12.13)

𝐵 (+) = 𝐸𝑐𝑏

[
− 4

81
ℎ2

(
𝛿−1

)
+ 1

3

(
𝛿−1

)
Z2

0 −
1
3ℎ

(
𝛿−1

)
Z3

0

]
(12.14)

𝐷 (+) = 𝐸𝑐𝑏

[
ℎ3

972

(
11𝛿+16

)
+ 2

9

(
𝛿−1

)
Z3

0 −
1
4ℎ

(
𝛿−1

)
Z4

0

]
(12.15)
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where the modular ratio
𝛿 =

𝐸𝑡
𝐸𝑐

(12.16)

contains both Young’s modulus of tension, 𝐸𝑡 , and of compression, 𝐸𝑐. The cross-
section with the areas of compression and tension for both cases is presented in
Fig. 12.1, where it is assumed that 𝐸𝑡 > 𝐸𝑐. The position of the neutral axis can be
obtained from the lowest root of an algebraic equation of fourth order, which follows
from Eq. (12.6), giving for the configuration of negative curvature, 𝑤,𝑥𝑥 < 0,(

𝛿−1
)
Z

4
0 −5ℎ

(
𝛿−1

)
Z

3
0 + ℎ2

(
9𝛿−6

)
Z

2
0 −7ℎ3𝛿Z0 +2ℎ4𝛿 = 0 (12.17)

and for configuration of positive curvature, 𝑤,𝑥𝑥 > 0,(
𝛿−1

)
Z

4
0 −5ℎ

(
𝛿−1

)
Z

3
0 + ℎ2

(
6𝛿−9

)
Z

2
0 +7ℎ3Z0 −2ℎ4 = 0 (12.18)

12.4 Application of Isogeometric Analysis to the Bimodular Beam

12.4.1 B-Splines

Starting from a knot vector in one dimension as a non-decreasing set of coordinates
in the parameter space

Ξ = {𝜉1, 𝜉2, . . . , 𝜉𝑛+𝑝+1} (12.19)

where 𝜉𝑖 ∈ R is the 𝑖-th knot, 𝑖 is the knot index, 𝑛 is the number of basis functions
and 𝑝 is the polynomial order. The B-spline basis functions are defined by the Cox-de
Bor recursion formula. For 𝑝 = 0 (piecewise constants)

𝑁𝑖,0 (𝜉) =
{

1 if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

0 otherwise
(12.20)

and for 𝑝 ≥ 1

𝑁𝑖, 𝑝 (𝜉) = 𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖 𝑁𝑖, 𝑝−1 (𝜉) +

𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝑁𝑖+1, 𝑝−1 (𝜉) (12.21)

The first derivative of a B-spline basis function with respect to the parametric
coordinates is computed by the following recursive formula

𝑑

𝑑𝜉
𝑁𝑖, 𝑝 (𝜉) = 𝑝

𝜉𝑖+𝑝 − 𝜉𝑖 𝑁𝑖, 𝑝−1 (𝜉) − 𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1, 𝑝−1 (𝜉) (12.22)

By differentiating both sides, this can be generalized to higher derivatives
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𝑑𝑘

𝑑𝜉𝑘
𝑁𝑖, 𝑝 (𝜉) = 𝑝

𝜉𝑖+𝑝 − 𝜉𝑖

(
𝑑𝑘−1

𝑑𝜉𝑘−1 𝑁𝑖, 𝑝−1 (𝜉)
)
− 𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1

(
𝑑𝑘−1

𝑑𝜉𝑘−1 𝑁𝑖+1, 𝑝−1 (𝜉)
)

(12.23)
where 𝑘 denotes the 𝑘-th derivative. A picewise-polynomial B-spline curve of the
order 𝑝 can be obtained by taking a linear combination of 𝑛 B-spline basis functions
and control points 𝑃𝑃𝑃𝑖 , which are points in the physical space

𝐶𝐶𝐶 (𝜉) =
𝑛∑︁
𝑖=1

𝑁𝑖, 𝑝 (𝜉)𝑃𝑃𝑃𝑖 (12.24)

12.4.2 Isogeometric Analysis of Bimodular Beam Vibration

The method of separation of variables can be applied to the homogeneous partial
differential equation (12.3) with 𝑞(𝑥; 𝑡) = 0 to transform the equation into two ordinary
differential equations, one governing the time function and the other governing the
following spatial function(

𝐷 −𝐵Z0

)
𝑤(𝑥),𝑥𝑥𝑥𝑥 −𝜔2𝜇𝑤(𝑥) = 0 (12.25)

The weak form of the differential equation (12.25) can be derived using the method of
weighted residuals, namely multiplying the equation with a test function 𝑣(𝑥), taking
the integral over the length of the beam 𝐿 and applying twice integration by parts of
the first term

𝐿∫
0

(
𝐷 −𝐵Z0

)
𝑤(𝑥),𝑥𝑥 𝑣(𝑥),𝑥𝑥 d𝑥−𝜔2

𝐿∫
0

𝜇𝑤(𝑥) 𝑣(𝑥) d𝑥

=
(
𝐷 −𝐵Z0

) [
𝑤(𝑥),𝑥𝑥 𝑣(𝑥),𝑥 −𝑤(𝑥),𝑥𝑥𝑥 𝑣(𝑥)

]𝐿
0

(12.26)

Specifically, considering a simply supported bimodular beam with the following
homogeneous boundary conditions

𝑤(𝑥 = 0) = 0 𝑤(𝑥 = 0) = 0
𝑤(𝑥 = 0),𝑥𝑥 = 0 𝑤(𝑥 = 𝐿),𝑥𝑥 = 0 (12.27)

the weak form (12.26) reduces to

𝐿∫
0

(
𝐷 −𝐵Z0

)
𝑤(𝑥),𝑥𝑥 𝑣(𝑥),𝑥𝑥 d𝑥−𝜔2

𝐿∫
0

𝜇𝑤(𝑥) 𝑣(𝑥) d𝑥 = 0 (12.28)
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The isogeometric analysis utilizes the isoparametric concept, which refers to the use
of the same basis function for constructing the exact original geometric model and
for approximating the unknown solution fields. Using a B-spline curve of order 𝑝
with knot vector Ξ and control points 𝑃𝑃𝑃𝑖 , the parametrization of the 𝑥-coordinate is
given by

𝑥(𝜉) =𝐶𝐶𝐶 (𝜉) =
𝑛∑︁
𝑖=1

𝑁𝑖, 𝑝 (𝜉)𝑃𝑃𝑃𝑖 (12.29)

The bending displacement field 𝑤(𝑥) and the test function 𝑣(𝑥) can be approximated
as

𝑤ℎ (𝑥) =
𝑛∑︁
𝑖=1

𝑁𝑖, 𝑝 (𝑥)𝑤𝑖 = 𝑁𝑤𝑁𝑤𝑁𝑤 𝑣ℎ (𝑥) =
𝑛∑︁
𝑗=1
𝑁 𝑗 , 𝑝 (𝑥) 𝑣𝑖 = 𝑁𝑣𝑁𝑣𝑁𝑣 (12.30)

where 𝑤𝑖 and 𝑣𝑖 are the control variables. Inserting the shape-function expansions for
𝑤ℎ (𝑥) and 𝑣ℎ (𝑥) into the weak form (12.28) gives the well-known discrete eigenvalue
problem for the 𝑘-th natural circural frequency 𝜔𝑘 and the 𝑘-th natural mode 𝜙𝜙𝜙𝑘(

𝐾𝐾𝐾 −𝜔2
𝑘𝑀𝑀𝑀

)
𝜙𝜙𝜙𝑘 = 0 (12.31)

The global stiffness and mass matrices are obtained in a standard way by assembly
of the element matrices

𝐾𝐾𝐾 =
𝑛𝑒
A
𝑒=1

𝑙𝑒∫
0

𝑁𝑁𝑁𝑇,𝑥𝑥

(
𝐷 −𝐵Z0

)
𝑁𝑁𝑁 ,𝑥𝑥 d𝑥 (12.32)

𝑀𝑀𝑀 =
𝑛𝑒
A
𝑒=1

𝑙𝑒∫
0

𝑁𝑁𝑁𝑇𝜇𝑁𝑁𝑁 d𝑥 (12.33)

where A is the assembly operator, 𝑛𝑒 is the number of elements and 𝑙𝑒 is the length
of element 𝑒.

12.5 Numerical Studies

In order to validate the isogeometric approach to the bimodular beam vibration
analysis and compare the natural circular frequencies by isogeometric analysis using
B-splines with the values from [6], a simply supported beam is considered with the
same geometrical and material parameters as in [6], except the trapezoidal cross-
section, for which an isosceles triangular cross-section is considered. The material of
the beam is characterized by the following properties: Young’s modulus of tension,
𝐸𝑡 = 12 000 kN/cm2,Young’s modulus of compression,𝐸𝑐 = 3 000 kN/cm2 and mass
density, 𝜌 = 2 500 kg/m3. The damping effects are included by the assumption of
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a viscous damping with a modal damping ratio of Z𝑛 = 0.03. As mentioned before,
within this analysis, two cross-sections are considered, namely the isosceles triangle
and rectangular cross-section, whose parameters are listed in Table 12.1 below. From
Table 12.1 it is obvious that the dimensions of both cross-sections are chosen in
such a way that they have approximately equal cross-sectional area as well as the
approximately equal moment of inertia with respect to the [-axis. The initial beam
geometry is straight and described by a 5-th order B-spline curve with the open knot
vector Ξ = {0,0,0,0,0,1,2,3,4,5,6,7,8,8,8,8,8} and corresponding control points.
The number of elements is defined by the number of non-zero knot spans in the knot
vector. In this case, the bimodular beam is represented by eight elements. Table 12.2
contains a comparison between the natural circular frequencies in the case of upward,
𝜔 (−)

0 , and downward, 𝜔 (+)
0 , bending motion for the first eight vibration modes. The

last column of the Table 12.2 contains values from [6].
Within the second example forced vibrations are considered, where the following

half-cycle sine pulse force is applied to the beam with the isosceles triangle cross-
section

𝑞(𝑥; 𝑡) =


𝑞0 sin

𝜋 𝑡

𝑡𝑑
𝑡 ≤ 𝑡𝑑

0 𝑡 ≥ 𝑡𝑑
(12.34)

where 𝑞0 = 5 kN/m is the amplitude of uniformly distributed transverse dynamic
load over the entire beam length of 𝑙 = 8 m and 𝑡𝑑 = 0.3 s is the half-cycle sine
pulse duration. The corresponding initial conditions of displacement and velocity
are assumed to be zero. The dynamic response of the bimodular beam strongly
depends not only on the modular ratio 𝛿 but also on the geometry of the cross-section.
Figure 12.2 indicate that, based on different bending stiffness, there are significant
differences between the amplitudes of displacement response of unimodular and
bimodular beams. The effect of the geometry of the cross-section on the amplitude

Table 12.1: Cross-section parameters.

Triangle
cross-section

Rectangular
cross-section

Height h [cm] 36.74 30.00

Top width b [cm] 32.67 20.00

Cross-sectional area 𝐴 [cm2 ] 600.15 600.00

Moment of inertia about 𝜂-axis 𝐼𝜂 [cm4 ] 45 005.34 45 000.00

Neutral axis position (𝑤,𝑥𝑥 < 0) 𝜁 (−)
0 [cm] 5.27 5.00

Neutral axis position (𝑤,𝑥𝑥 > 0) 𝜁 (+)
0 [cm] -4.53 -5.00
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Table 12.2: Numerical comparison of natural circular frequencies 𝜔0 [rad/s].

Triangle cross-section Rectangular cross-section

𝜔 (−)
0 𝜔 (+)

0 𝜔 (−)
0 = 𝜔 (+)

0 𝜔 (−)
0 = 𝜔 (+)

0 [6]

n=1 66.15 58.37 61.68 61.68

n=2 264.61 233.49 246.74 246.74

n=3 595.41 525.38 555.20 555.16

n=4 1 059.08 934.51 987.55 986.96

n=5 1 659.98 1 464.74 1 547.87 1 542.13

n=6 2 425.16 2 139.92 2 261.37 2 220.66

n=7 3 441.16 3036.42 3 208.76 3 022.56

n=8 4 237.65 3 739.23 3 951.46 3 947.84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.01

0

0.01

0.02

0

t [s]

w
(l
/
2;
t)

[m
]

Unimodular - rectangular cross-section (E = 3000 kN/cm2)

Unimodular - isosceles triangle cross-section (E = 3000 kN/cm2)

Bimodular - rectangular cross-section (δ = 4)

Bimodular - isosceles triangle cross-section (δ = 4)

Fig. 12.2: Comparison of displacement response 𝑤(𝑙/2; 𝑡 ) .

and period of the vibration is also graphically illustrated. The reason for that is the
influence of the cross-section geometry on finding the neutral axis position (hence
on determining the stiffness and frequency), whose absolute values are different for
negative and positive curvature in the case of the isosceles triangle but equal in
the case of the rectangular cross-section. Because of that, the period of vibration
of the bimodular beam with the isosceles triangle cross-section is also affected by
curvature-dependent frequency.
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12.6 Conclusions

Composites exhibiting load-dependent elastic properties cannot be treated as struc-
tures with, e.g., effective isotropic parameters, which implies that the bimodular
beams can be modeled as effective two-layer laminates. However, their neutral axis
depends not only on the elastic material properties but also on the curvature’s sign and
the geometry of the cross-section. In the case of the isosceles triangle cross-section,
the position of that natural axis follows from a nonlinear equation of fourth order
depending on the cross-section’s geometry and the elastic material properties. Thus,
an independent reference axis must be used when formulating the equations of motion
for flexural oscillations.

Within numerical studies, the dynamic response of simply supported beams with
the isosceles triangle as well as rectangular cross-section are analyzed for half-cycle
sine pulse excitation. Comparison to the response of unimodular beams shows a
significant influence of the nonlinear bimodular effect. Computational application of
the isogeometric finite element discretization with B-splines to the straight Bernoulli-
Euler bimodular beam is presented as a powerful tool for the analysis of bimodular
structural vibrations.
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Chapter 13
On the Equivalence Between Singular Waves
Propagating in Force Loaded Viscoelastic Bodies
and in Elastic Bodies Additionally Loaded by
Eigenstrains

Hans Irschik, Michael Krommer, and Astrid S. Pechstein

Abstract The present contribution is devoted to a special equivalence problem
concerning the linear dynamic theories of elasticity and viscoelasticity. We seek for
distributions of eigenstrain-induced actuation stresses acting upon a force loaded
linear elastic body, such that the resulting displacements are equal to the displacements
of a viscoelastic body that is loaded by the same set of forces, but in the absence of
actuating stresses. Special emphasis is given to the presence of propagating singular
waves. A three-dimensional solution for this equivalence problem is presented first.
The presented special solution yields equivalence of stresses in both problems, so
that a complete analogy is obtained. The solution then is exemplified for the one-
dimensional case of a uni-axial shock wave propagating in a semi-infinite half-space
made of a viscoelastic material of the Maxwell-type.

13.1 Introduction

It was Ernst Mach [1], who systematically proposed the advantages of searching
for similarities and analogies that may exist between apparently different scientific
problems. As pointed out by Mach, similarity can be understood as an identity in
parts. In the present contribution, we deal with a special partial identity, namely
with the equivalence that may exist between the displacement fields in elastic and
inelastic bodies, but not necessarily for the corresponding stresses. Particularly, our
present study refers to the linear theories of elasticity and viscoelasticity, see e.g.
Lurie [2], Gurtin [3] and Leitman and Fisher [4] for comprehensive representations.
We deal with a force loaded viscoelastic body as our original object, and we seek for
eigenstrain loadings that, additionally to the given force loading, act upon an auxiliary
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elastic body of the same shape, such that the displacements in both problems become
equivalent, i.e. that they are identical. For this question we use the notion of a
displacement equivalence problem. We particularly will treat this problem in the
dynamic setting of singular wave propagation, referring to the presence of shock
and acceleration waves. It is hoped that the subsequently developed solution of this
problem will contribute to the completeness of the underlying theories of elasticity
and viscoelasticity by adding respective eigenstrain analogies.

Hence, eigenstrains represent the source of possible similarity in the present
displacement equivalence problem. The notion of eigenstrains refers to various
physical effects; e.g., thermal actuation represents an important classical example for
eigenstrains, see e.g. Parkus [5, 6] and Carlson [7] for thermally induced dynamic
elastic displacements and stresses. Another example, being of particular importance
in smart structures and intelligent material systems, are piezoelectric eigenstrains, see
e.g. Fung et al. [8] and Haddad [9] for thermally and electrically induced eigenstrains
in elastic and viscoelastic solids. In the linear theories under consideration, it usually
can be assumed that the dependence of material parameters on the amount of
eigenstrains can be disregarded; eigenstrains then do appear as isolated extra terms
in the constitutive relations only. The latter terms are subsequently gathered as what
we call actuation stresses: we seek for actuation stresses, such that our equivalence
problem is solved. Our subsequent results thus hold whether or not eigenstrains are
considered as being thermodynamically coupled to the time rate of displacement
gradients. The problem of computing the necessary eigenstrains from the required
actuation stresses, which is a comparatively straightforward task in the uncoupled
case, is not treated in the subsequent contribution.

That certain similarities between displacements of elastic and inelastic bodies do
exist in the form of eigenstrain analogies has long been known, and it has been used
by the senior author of the present contribution, in cooperation with the late Professor
Franz Ziegler and co-workers, to develop numerical computation methods, which
utilize advances of linear schemes in an inelastic and non-linear context, see e.g.
Refs. [10, 11] and the literature cited there. While vibrations were the main objects
of these studies, also numerical schemes for wave propagation in inelastic bodies
have been developed using the eigenstrain analogy, see e.g. Refs. [12, 13]. In the
following, we particularly will refer to Ref. [14], to which important contributions
were made by Professor Alexander K. Belyaev, who served as Guest-Professor at the
Johannes Kepler University of Linz at that time, and to whom the present book is
dedicated on the occasion of his 70th birthday.

A problem that is related to the present displacement equivalence context is
represented by the problem of controlling the displacement of force loaded solids
and structures by means of eigenstrains, [15] in the present book, and the literature
cited there for displacement control in linear elastic structures. Seen from the present
equivalence point of view, one could shortly interpret this displacement control
problem as follows: one again seeks for similarities between an original and an
auxiliary problem, where however both problems are governed by the same linear
elastic constitutive relations, the original problem being loaded by forces only, while
the auxiliary problem is loaded by actuation stresses only. Having found a distribution
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of actuation stresses that guarantees that the displacements of the auxiliary problem
are equivalent to the sum of the desired displacement field and the negative of the
original displacements, then, applying the so found actuation stresses in addition to
the forces will produce the desired displacement field to be controlled. Of course, it
is more convenient to formulate displacement control in a more direct manner, cf.
Ref. [15], where emphasis however is given to the more complex problem of strain
control in subdomains.

As already mentioned, in the present contribution we seek for equivalence between
the displacements in force loaded viscoelastic bodies and in linear elastic ones with an
additional actuation stress loading, giving special emphasis to the presence of singular
wave fronts. Our paper is organized as follows: In the next section, we formulate
the three-dimensional (3D) basic relations for linear viscoelastic bodies loaded by
forces and actuation stresses, including the relations of jump at the propagating wave
fronts. Constitutive relations are presented in the Boltzmann hereditary integral form,
considering a vanishing initial past history. The displacement based formulation of
this initial-boundary value problem is given. In the latter formulation, a original
viscoelastic problem is stated, in which actuation stresses are absent. Moreover,
an auxiliary linear elastic problem is formulated by taking the tensorial relaxation
function to be independent of time. The latter problem is loaded by the same forces
as the original one, but has an additional actuation stress distribution. The actuation
stresses necessary for equivalence of displacements in the two problems are derived
from the uniqueness assumption that the homogeneous auxiliary problem, i.e. the
linear elastic problem with zero input data, has vanishing displacements as the
only solution. The resulting conditions for the actuation stresses allow non-unique
solutions; however, a special solution for the actuation stresses is presented, for which
not only the displacements, but also the stresses of the two problems turn out to
be equivalent, so that a complete analogy is derived. The 3D results afterwards are
applied to the one-dimensional (1D) problem of uni-axial wave propagation in a
semi-infinite half-space (or, equivalently, in a semi-infinite rod) that is made of a
Maxwell-type viscoelastic material. Using symbolic computations, the case of a half-
space loaded by a tensile Heaviside-type normal surface traction, i.e. by a suddenly
applied force normal to the surface, the intensity of which is maintained, is treated.
Correctness of the results is analytically checked in the Laplace-domain, and the
time-evolution of the 1D propagating displacements, stresses and actuation stresses
is depicted. We note that the corresponding results accompany the 1D numerical
results presented in the study [14] by providing analytic expressions for the necessary
actuation stresses. It is also noted that the complementary problem of displacement
tracking of 1D singular wave propagation in a linear elastic half-space loaded by
a suddenly applied surface traction and in a Maxwell-type viscoelastic half-space
under the action of additional actuation stresses has recently been established by
Irschik and Krommer [16]. Before, displacement control of singular waves in linear
elastic bodies by eigenstrains was treated by Irschik and Brandl [17] in a contribution
dedicated to Professor Alexander K. Belyaev on the occasion of his 65th birthday.
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13.2 Basic Relations

The set of field equations of the linear theory of viscoelasticity is written as

div𝑆𝑆𝑆 + 𝒃 = 𝜌 ¥𝒖 , 𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑇 , (13.1)

𝑆𝑆𝑆 = G0 [𝐸𝐸𝐸 (𝑡)] +
𝑡∫

0

¤G(𝑠) [𝐸𝐸𝐸 (𝑡 − 𝑠)] 𝑑𝑠−𝑆𝑆𝑆𝐴, (13.2)

𝐸𝐸𝐸 = ∇𝒖𝑆 , (13.3)

see Leitman and Fisher [4] for details and mathematical notation, see also Gurtin [3]
and Carlson [7]. In the present section, we consider three-dimensional (3D) solids
or structures. The symmetric Cauchy stress tensor is denoted as 𝑆𝑆𝑆, the linearized
strain tensor is 𝐸𝐸𝐸 , and 𝒖 stands for the displacement vector. Time is denoted as
𝑡, a superimposed dot stands for the time derivative, and ∇ is the Nabla-operator
of the undeformed configuration. Mass density is written as 𝜌; it is taken as time-
independent in the linear theory. Imposed body forces per unit volume are denoted by
𝒃. In the viscoelastic constitutive relation, Eq. (13.2), the tensorial actuation stress 𝑆𝑆𝑆𝐴
gathers the effect of eigenstrains, stemming e.g. from temperature, moisture, or similar
physical fields. In smart structures, piezoelectric eigenstrains represent the most
promising candidates for applications. The tensor of initial elasticity, G0 = G(𝑡 = 0),
is taken as symmetric and positive definite, where G is the tensorial relaxation
function, and ¤G(𝑠) = 𝜕G/𝜕𝑠. The relaxation function remains constant for a purely
elastic material, which thus is included as a special case. In the hereditary integral in
Eq. (13.2) we have assumed the case of a vanishing initial past history, for which the
strain vanishes up to time 𝑡 = 0. In the present dynamic context, the motion is assumed
to start from rest, adding homogeneous initial conditions to the field equations in
Eqs. (13.1) – (13.3):

𝑡 = 0 : 𝒖 = 0 , ¤𝒖 = 0. (13.4)

The field equations stated in Eqs. (13.1) – (13.3) are accompanied by mixed boundary
conditions at the boundary 𝜕𝐵 = 𝜕𝐵𝑢 ∪ 𝜕𝐵𝑆 of the solid 𝐵 under consideration:

𝜕𝐵𝑢 : 𝒖 = �̂�, (13.5)

𝜕𝐵𝑆 : 𝑆𝑆𝑆𝒏 = �̂�, (13.6)

where 𝒏 denotes the unit outward normal vector of 𝜕𝐵, and �̂� is the surface traction
applied at 𝜕𝐵𝑆 The kinematic boundary condition in Eq. (13.5) must be consistentwith
the quiet initial conditions in Eq. (13.4). In the present contribution, we particularly
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consider the presence of singular waves of order 1, so-called shock waves, and of
singular waves of order 2, also denoted as acceleration waves, that propagate through
𝐵. The relations of jump at the fronts 𝜕𝐵1 and 𝜕𝐵2 of the shock and acceleration
waves are

𝜕𝐵1 : J𝑆𝑆𝑆K𝒎 + 𝜌𝑉J ¤𝒖K = 0, (13.7)

𝜕𝐵2 : J ¤𝑆𝑆𝑆K𝒎 + 𝜌𝑉J ¥𝒖K−𝑉J𝒃K = 0. (13.8)

The propagating fronts are assumed to be smooth and orientable surfaces, with the
unit normal vector 𝒎 pointing in the direction of propagation, and with the speed of
propagation 𝑉 . Double square brackets denote a jump across the fronts.

Eliminating the stress tensor𝑆𝑆𝑆 and the strain tensor𝐸𝐸𝐸 from the above relations gives
the displacement based formulation of the considered dynamic linear viscoelastic
problem to

div©«
G0 [∇𝒖(𝑡)] +

𝑡∫
0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠ª®¬
− 𝜌 ¥𝒖 = div𝑆𝑆𝑆𝐴− 𝒃, (13.9)

𝑡 = 0 : 𝒖 = 0 , ¤𝒖 = 0, (13.10)

𝜕𝐵𝑢 : 𝒖 = �̂�, (13.11)

𝜕𝐵𝑆 : ©
«
G0 [∇𝒖(𝑡)] +

𝑡∫
0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠ª®
¬
𝒏 = 𝑆𝑆𝑆𝐴𝒏+ �̂�, (13.12)

𝜕𝐵1 : JG0 [∇𝒖(𝑡)] +
𝑡∫

0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠K𝒎 + 𝜌𝑉J ¤𝒖K = J𝑆𝑆𝑆𝐴K𝒎, (13.13)

𝜕𝐵2 : ©
«
𝑑

𝑑𝑡
JG0 [∇𝒖(𝑡)] +

𝑡∫
0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠Kª®¬
𝒎 + 𝜌𝑉J ¥𝒖K

= J ¤𝑆𝑆𝑆𝐴K𝒎 +𝑉J𝒃K. (13.14)

In the present paper we consider a viscoelastic problem, in which the actuation stress
is absent, 𝑆𝑆𝑆𝐴 = 000, as a reference problem. Using this assumption in the displacement
based formulation of Eqs. (13.9) – (13.14), we will talk about the original viscoelastic
problem in the following.
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Secondly, we also consider an auxiliary problem in Eqs. (13.9) – (13.14), which
will be indicated by an asterisk. In this auxiliary problem, a displacement field 𝒖∗

due to an auxiliary actuation stress 𝑆𝑆𝑆∗𝐴 is considered, assuming the same imposed
body forces and imposed surface traction as in the original problem, 𝒃∗ = 𝒃 in
Eqs. (13.9) and (13.14), and �̂�∗ = �̂� in Eq. (13.12). The same kinematic boundary
condition is used as in the original problem, �̂�∗ = �̂� in Eq. (13.11). Particularly, we
assume that the auxiliary problem is purely elastic

G∗ (𝑡) = G0 , ¤G∗ (𝑠) = 000. (13.15)

Hence, the displacement based formulation for this auxiliary elastic problem reads

div (G0 [∇𝒖∗]) − 𝜌 ¥𝒖∗ = div𝑆𝑆𝑆∗𝐴− 𝒃, (13.16)

𝑡 = 0 : 𝒖∗ = 0 , ¤𝒖∗ = 0, (13.17)

𝜕𝐵𝑢 : 𝒖∗ = �̂�, (13.18)

𝜕𝐵𝑆 : (G0 [∇𝒖∗]) 𝒏 = 𝑆𝑆𝑆∗𝐴𝒏+ �̂�, (13.19)

𝜕𝐵1 : JG0 [∇𝒖∗]K𝒎 + 𝜌𝑉J ¤𝒖∗K = J𝑆𝑆𝑆∗𝐴K𝒎, (13.20)

𝜕𝐵2 :
(
𝑑

𝑑𝑡
JG0 [∇𝒖∗]K

)
𝒎 + 𝜌𝑉J ¥𝒖∗K = J ¤𝑆𝑆𝑆∗𝐴K𝒎 +𝑉J𝒃K. (13.21)

Note that homogeneous initial conditions are considered in Eq. (13.17), likewise
to the original viscoelastic problem. We moreover assume that shock or accelera-
tion fronts in the auxiliary elastic problem do occur at the same wave fronts 𝜕𝐵1
and 𝜕𝐵2 as in the original viscoelastic problem. This assumption is backed by
the fact that the direction and the speed of propagation of wave fronts is dictated
by the initial elasticity of the viscoelastic materials, see Herrera and Gurtin [18]
and Fisher and Gurtin [19] for a corresponding elastic-viscoelastic correspondence
principle, see also Leitman and Fisher [4].

For later use we note that under rather mild conditions, among them the symmetry
and definiteness of the initial tensor of elasticity G0, it can be assumed that the
completely homogeneous version of the elastic relations in Eqs. (13.16) – (13.21),
namely

div (G0 [∇𝒚]) − 𝜌 ¥𝒚 = 0, (13.22)

𝑡 = 0 : 𝒚 = 0 , ¤𝒚 = 0, (13.23)
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𝜕𝐵𝑢 : 𝒚 = 0, (13.24)

𝜕𝐵𝑆 : (G0 [∇𝒚]) 𝒏 = 0, (13.25)

𝜕𝐵1 : JG0 [∇𝒚]K𝒎 + 𝜌𝑉J ¤𝒚K = 0, (13.26)

𝜕𝐵2 :
(
𝑑

𝑑𝑡
JG0 [∇𝒚]K

)
𝒎 + 𝜌𝑉J¥𝒚K = 0, (13.27)

has a vanishing displacement as its only solution,

𝒚 = 0. (13.28)

For a thorough discussion of the uniqueness of the mixed initial boundary value
problem of the linear theory of elasticity, from which Eq. (13.28) follows, see e.g.
Gurtin [3].

13.3 An Equivalence Problem and its Solution

We now seek for an actuation stress 𝑆𝑆𝑆∗𝐴 acting upon the auxiliary elastic problem in
Eqs. (13.16) – (13.21), such that the displacement fields 𝒖 of the original viscoelastic
problem and 𝒖∗ of the auxiliary problem are equivalent:

𝒖 = 𝒖∗. (13.29)

For a solution of this equivalence problem, we subtract the displacement based for-
mulation of the original viscoelastic problem, Eqs. (13.9) – (13.14) with 𝑆𝑆𝑆𝐴 = 000, from
the displacement based formulation of the auxiliary elastic problem, Eqs. (13.16) –
(13.21). Setting 𝒖−𝒖∗ = 𝒚, we eventually enforce the right hand sides of the resulting
set of equations to vanish, such that 𝒖 − 𝒖∗ = 𝒚 = 0, according to the uniqueness
formulation stated in Eqs. (13.22) – (13.28). This gives

div𝑆𝑆𝑆∗𝐴 = −div©
«

𝑡∫
0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠ª®
¬
, (13.30)

𝜕𝐵𝑆 : 𝑆𝑆𝑆∗𝐴𝒏 = −©«
𝑡∫

0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠ª®¬
𝒏, (13.31)
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𝜕𝐵1 : J𝑆𝑆𝑆∗𝐴K𝒎 = −J
𝑡∫

0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠K𝒎, (13.32)

𝜕𝐵2 : J ¤𝑆𝑆𝑆∗𝐴K𝒎 = −©«
𝑑

𝑑𝑡
J

𝑡∫
0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠Kª®¬
𝒎. (13.33)

Obviously, Eqs. (13.30) – (13.33) are satisfied when we set

𝑆𝑆𝑆∗𝐴 = −
𝑡∫

0

¤G(𝑠) [∇𝒖(𝑡 − 𝑠)] 𝑑𝑠 = G0 [∇𝒖] −𝑆𝑆𝑆, (13.34)

cf. the constitutive relation in Eq. (13.2). The result given in Eq. (13.34) can
be evaluated directly in case the displacement 𝒖 and the stress 𝑆𝑆𝑆 in the original
viscoelastic problem are known. Then, the actuation stress𝑆𝑆𝑆∗𝐴 according to Eq. (13.34)
enforces equivalence between the displacement 𝒖∗ of the auxiliary elastic problem
and the displacement 𝒖 of the original viscoelastic problem. This coincidence will be
exemplified in the subsequent one-dimensional (1D) example. Before,we note that the
stress 𝑆𝑆𝑆 in the original viscoelastic problem and the stress 𝑆𝑆𝑆∗ in the auxiliary elastic
problem are equal, too. This follows simply by applying the constitutive relation in
Eq. (13.2) to the elastic problem, which gives 𝑆𝑆𝑆∗𝐴 = G0 [∇𝒖∗] −𝑆𝑆𝑆∗. Comparing to
Eq. (13.34), it follows that

𝑆𝑆𝑆∗ = 𝑆𝑆𝑆, (13.35)

when Eq. (13.29) holds. A complete analogy between the original viscoelastic and
the auxiliary linear elastic problem has thus been obtained. Concerning the presence
of singular waves, note that satisfaction of the relations of jump across the wave
fronts, Eq. (13.32) and (13.33), is immediately guaranteed by Eq. (13.34).

13.4 1D Shock Wave Propagating in a Semi-Infinite Half-Space or
Rod

The following one-dimensional (1D) example is considered: As the original problem,
we study the uni-axial deformation of a viscoelastic half-space under the action
of a suddenly applied tensile surface traction of the Heaviside type at 𝑥 = 0, i.e.
the stress intensity is maintained constant after its application at time 𝑡 = 0. In its
mathematical formulation, this problem coincides with the wave propagation in a
slender viscoelastic semi-infinite rod under a suddenly applied tensile force at its
end, see e.g. Kolsky [20]. A uni-axial shock wave propagates into the half-space (or
semi-infinite rod) in this problem. Our goal is to find a spatial distribution of actuation
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stresses such that the displacement of an auxiliary purely elastic half-space coincides
with the shock wave produced in the viscoelastic half-space due to the suddenly
applied surface traction. We particularly consider a half-space made of a viscoelastic
Maxwell-type material. In a uni-axially deforming Maxwell-type material, the scalar
1D relaxation function, which replaces the tensorial relaxation function G(𝑡) from
above, see Eq. (13.2), can be formulated as

𝑌 (𝑡) = 𝑌0e−
𝑡
𝜏 , (13.36)

where 𝑌0 denotes an (effective) Young’s modulus, and the relaxation time of the
Maxwell-type material is 𝜏 = (𝑌0𝜇)−1, see Leitman and Fisher [4], who used the
parameter 𝜈 = 𝜇−1. The viscosity parameter 𝜇 vanishes for a purely elastic material.
The Heaviside-type tensile surface traction suddenly applied in 𝑡 = 0 is

𝑥 = 0 : 𝑆𝑥𝑥 ≡ 𝜎 = 𝜎0𝐻 (𝑡), (13.37)

where the axial normal stress component is shortly written as𝜎, and𝜎0 is the intensity
of the suddenly applied surface traction. The Heaviside function is abbreviated by
𝐻 (𝑡). The original viscoelastic problem under consideration is complementary to
the problem of a suddenly applied axial surface velocity, see Lee and Kanter [21],
who obtained an analytic representation of the respective stress field by means
of the Laplace transform technique, see e.g. Churchill [22]. The problem of the
stress propagation in a Maxwell-type viscoelastic rod under the action of a box-
type impulsive load at its end was solved by Irschik, Belyaev and Raschl [14],
who utilized Green’s function representation together with the Laplace transform
technique. This analytic solution was considered in [14] for a successful comparison
with the stress outcome of a numerical technique based on an eigenstrain analogy.
Recently, the following analytic formulation for the axial displacement 𝑢𝑥 ≡ 𝑢 of the
viscoelastic shock wave due to the surface traction in Eq. (13.37) was presented by
Irschik and Krommer [16], who for their derivation utilized symbolic computation
using Maple1 in the framework of the Laplace transform technique:

𝑢 =
𝜎0
𝑌0
𝑐

𝑡∫
0

((𝑠− 𝑡)𝜇𝑌0 −1)𝐻
( 𝑐𝑠− 𝑥

𝑐

)
e−

𝑠𝜇𝑌0
2 𝐼0

(√
𝑐2𝑠2 − 𝑥2𝜇𝑌0

2𝑐

)
𝑑𝑠, (13.38)

see [16] for details of computation. The shock wave front to be observed in Eq. (13.38)
travels with the elastic speed of propagation

𝑉 = 𝑐 =

√︄
𝑌0
𝜌
.

No further singular fronts are present in the semi-infinite half-space under the action
of the suddenly applied surface traction in Eq. (13.37). In Eq. (13.38), 𝐼0 denotes

1 Maple is a trademark of Waterloo Maple Inc.
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the modified Bessel function of first kind. The viscoelastic displacement 𝑢 is shown
in Fig. 13.1 as a function of the axial coordinate 𝑥 for three time instants, while
Fig. 13.2 shows the stress distributions 𝜎, see Irschik and Krommer [16] for the
corresponding analytic expression, which also involves the modified Bessel function
𝐼1. In Figs. 13.1 and 13.2, and in the subsequent figures, consistent dimensions are
presumed, where the artificial input parameters 𝜎0 = 1, 𝑌0 = 1.5, 𝑐 = 1 and 𝜇 = 2 are
considered; a different set was used for presentation in [16]. Results are depicted
for three time-instants: 𝑡 = 0.5 (dash-dotted line), 𝑡 = 1.5 (dashed line) and 𝑡 = 2.5
(solid line). Setting 𝜇 = 0 gives the elastic counterparts to Figs. 13.1 and 13.2, where
Fig. 13.3 shows the respective elastic displacements, which we denote as 𝑢tel, the
index t referring to the action of the surface traction 𝜎0, and the corresponding elastic
stresses 𝜎tel are depicted in Fig. 13.4.

The equivalence problem formulated in the preceding section requires the total
elastic displacement

𝑢∗ = 𝑢tel +𝑢ael (13.39)

to be equal to the viscoelastic displacement 𝑢 in Eq. (13.38), see Eq. (13.29), where
𝑢ael is the elastic displacement due to the actuation stress stated in Eq. (13.34) for the
3D case. In the present 1D example, the latter relation reduces to

𝑆∗𝐴𝑥𝑥 ≡ 𝜎∗
𝐴 = 𝑌0

𝜕𝑢

𝜕𝑥
−𝜎, (13.40)

Fig. 13.1 Viscoelastic dis-
placements 𝑢 due to 𝜎0.

Fig. 13.2 Viscoelastic stresses
𝜎 due to 𝜎0.
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Fig. 13.3 Elastic displace-
ments 𝑢tel due to 𝜎0.

Fig. 13.4 Elastic stresses 𝜎tel
due to 𝜎0.

where 𝜎∗
𝐴 denotes the axial actuation stress in the elastic half-space. For the sake of

brevity, we here check the validity of Eq. (13.40) in the Laplace-domain. Using 𝑢
from Eq. (13.38) and the corresponding formulation for 𝜎 stated in [16], the Laplace
transform of 𝜎∗

𝐴 according to Eq. (13.40) becomes

L {
𝜎∗
𝐴

}
= 𝜎0

𝜇𝑌0

𝑝2 e−
𝑥
𝑐

√
𝑝
√
𝜇𝑌0+𝑝 , (13.41)

where 𝑝 denotes the coordinate in the Laplace domain. For completeness, we note
the Laplace transform of the viscoelastic stress 𝜎:

L {𝜎} = 𝜎0
1
𝑝

e−
𝑥
𝑐

√
𝑝
√
𝜇𝑌0+𝑝 . (13.42)

The time-domain representation of𝜎∗
𝐴 is depicted in Fig. 13.5 for the set of parameters

under consideration.
Setting 𝑏 = 0 and 𝑠 = 0, the Laplace transform of the actuation stress 𝜎∗

𝐴, see
Eq. (13.41) is introduced into the Laplace transform of the 1D version of the
displacement-based elastic formulation in Eqs. (13.16) – (13.21), which yields the
following expression for the Laplace transform of the elastic displacement 𝑢ael due
to 𝜎∗

𝐴:

L {𝑢ael} = 𝜎0
𝑌0

𝑐

𝑝2 e−
𝑝𝑥

𝑐 − 𝜎0
𝑌0

(
e−

𝑥
𝑐

√
𝑝
√
𝜇𝑌0+𝑝

) 𝑐

𝑝5/2
√︁
𝜇𝑌0 + 𝑝. (13.43)



212 Hans Irschik, Michael Krommer, and Astrid S. Pechstein

Fig. 13.5 Actuation stress 𝜎∗
𝐴

necessary for equivalence.

Now, the second part on the right hand side of Eq. (13.43) is the Laplace transform
of the relation for 𝑢 stated in Eq. (13.38), and the first part is the Laplace transform
of (−𝑢tel), following from the second part by setting 𝜇 = 0. Exemplarily, this proves
that there is

𝑢∗ = 𝑢tel +𝑢ael = 𝑢.

The time domain representation of 𝑢ael is shown in Fig. 13.6, compare also
Figs. 13.1 and 13.3. Again using symbolic computation by Maple, the Laplace
transform of the stress 𝜎ael due to 𝜎∗

𝐴, see Eq. (13.41), is obtained as

L {𝜎ael} = 𝜎0
1
𝑝

e−
𝑥
𝑐

√
𝑝
√
𝜇𝑌0+𝑝 −𝜎0

1
𝑝

e−
𝑥
𝑐
𝑝 . (13.44)

The first part on the right hand side of Eq. (13.44) is the Laplace transform of the
stress 𝜎, see Eq. (13.42), and the second part is the Laplace transform of (−𝜎tel),
following from the first part by setting 𝜇 = 0. Hence, the total stress in the elastic
auxiliary problem is equal to the stress in the original viscoelastic one,

𝜎∗ = 𝜎tel +𝜎ael = 𝜎,

as this should be according to Eq. (13.35). The time domain representation of 𝜎ael is
shown in Fig. 13.7, compare also Figs. 13.2 and 13.4. Satisfaction of the relations of
jump across the shock front is checked by using symbolic computation. The presented

Fig. 13.6 Displacement 𝑢ael
due to 𝜎∗

𝐴
.
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Fig. 13.7 Stress 𝜎ael due to
𝜎∗

𝐴
.

1D study gives evidence for the appropriateness of the 3D solution of the equivalence
problem at hand, Eq. (13.34).
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Chapter 14
Influence Tensors for the Analytical Mechanics of
Anisotropic Eigenstressed Composites with
Inclusions of Various Shapes and Orientations

Nabor Jiménez Segura, Bernhard L.A. Pichler, and Christian Hellmich

Abstract The Mori-Tanaka-Benveniste scheme is very popular for the homogeniza-
tion of the elastic stiffness of microheterogeneous composites consisting of one
matrix phase and any number of inclusion phases. In addition, the scheme allows for
homogenization of eigenstresses/eigenstrains, e.g. in the fields of poroelasticity, ther-
moelasticity, drying shrinkage, and elastoplasticity. Still, the Mori-Tanaka-Benveniste
scheme cannot appropriately represent matrix-inclusion composites with non-aligned
ellipsoidal inclusion phases, because

(i) the respective homogenized stiffness estimate becomes non-symmetrical, and
(ii) the eigenstrain influence tensors do not satisfy the elastic reciprocal theorem.

This problem has been recently solved by direct symmetrization of the homogenized
Mori-Tanaka-Benveniste stiffness estimate, with corresponding modification of the
matrix strains leading to improved macro-to-micro strain concentration tensor esti-
mates. The present contribution extends these recent progress towards eigenstressed
media, in terms of novel estimates for microscopic eigenstress-to-strain influence
tensors which are

(i) kinematically compatible, in the sense of satisfying the strain average rule,
(ii) statistically admissible, in the sense that the stress average rule delivers the

same macroscopic stress state as Levin’s theorem, and
(iii) energetically consistent, in the sense of satisfying the elastic reciprocal theo-

rem.
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Notation: Mathematical Symbols, Abbreviations, and Operators

Variables:
111 = second-order identity tensor
A𝑟 = average strain concentration tensor of phase 𝑟
A∞
𝑟 = Eshelby-problem-related strain concentration tensor associated with

phase 𝑟
Cℎ𝑜𝑚 = macroscopic homogenized stiffness tensor
C𝑟 = microscopic stiffness tensor of phase 𝑟
C𝐼 = stiffness of ellipsoidal inhomogeneity
C𝑀 = matrix stiffness
𝐸𝐸𝐸 = macroscopic strain acting on the RVE

𝐸𝐸𝐸∞ = remote strain imposed on an infinite matrix
𝑓𝑟 = volume fraction of phase 𝑟

( 𝑉𝑟
𝑉RVE

)
𝐺𝐺𝐺𝑀 = Green’s function of infinite elastic medium with stiffness C𝑀
I = symmetric fourth-order identity tensor

I𝑑𝑒𝑣 = deviatoric part of I
I𝑣𝑜𝑙 = volumetric part of I
𝑘𝑟 = bulk modulus of phase 𝑟
M = fourth-order RVE-to-remote strain conversion tensor
𝑛𝐼 = number of inclusion phases (𝑛𝑝 −1)
𝑛𝑝 = total number of phases
P𝑀𝐼 = Hill tensor which accounts for shape and orientation of inclusion phase 𝐼
Q𝑟𝑠 = eigenstress-to-strain influence tensor quantifying the effect of eigen-

stresses in phase 𝑠 on the strains in phase 𝑟
RVE = representative volume element
𝑆RVE = surface of the RVE

𝑢 = microscopic displacement field
𝑉𝑟 = volume of phase 𝑟

𝑉RVE = volume of the RVE
W𝑖 = base vector of Walpole base
𝑥 = microscopic position vector
𝑦 = microscopic position vector in convolution integral formulation

𝛿𝑖 𝑗 = Kronecker delta
𝜺 = microscopic strain tensor field
𝜺𝑟 = average microstrain in phase 𝑟
𝜇𝑟 = shear modulus of phase 𝑟
𝝈𝑟 = average microstress in phase 𝑟
𝝈𝐸𝑟 = microscopic eigenstress in phase 𝑟
𝚺 = macroscopic stress acting on the RVE

𝚺𝐸ℎ𝑜𝑚 = macroscopic homogenized eigenstress
𝜔 = aspect ratio of prolate inclusion

Operators:
𝑡 = transpose operator, acting on second-order tensor 𝑿 as 𝑋 𝑡𝑖 𝑗 = 𝑋 𝑗𝑖

and on fourth-order tensor X as 𝑋 𝑡𝑖 𝑗𝑘ℓ = 𝑋𝑘ℓ𝑖 𝑗 ;
implying the following rules:
𝑿𝑡 +𝒀 𝑡 = (𝑿 +𝒀)𝑡 X𝑡 +Y𝑡 = (X+Y)𝑡
(𝑿 ·𝒀)𝑡 = (𝒀 𝑡 · 𝑿)𝑡 (X : Y)𝑡 = (Y𝑡 : X)𝑡
(𝑿−1)𝑡 = (𝑿𝑡 )−1 (X−1)𝑡 = (X𝑡 )−1∑𝑁

𝑟=1 = summation over variable 𝑟 from 1 to 𝑁
∇𝑆𝑥 = microscopic symmetric gradient with respect to variable 𝑥
· = dot product or contraction product
: = double contraction product
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14.1 Introduction

The current megatrend of defossilizing human activities [1] calls for biologization
of the traditional engineering fields, from the integration of plants into buildings
[2], to the transformation of building materials towards biological role models [3–
5]. Typically, the latter are hierarchically organized, fiber-reinforced materials with
anisotropic constituents and a pronounced variability of fiber orientations, see Fig.
14.1a).

In order to integrate such materials into an engineering design process, efficient
and reliable mathematical tools for their physical and mechanical behavior are re-
quired, and recent years have shown that the theoretical, analytical, and computational
framework of continuum micromechanics [7] or composite material mechanics [8] is
particularly suitable for the aforementioned design challenge. This field gains superior
efficiency from the smart assembly of solutions of matrix-inclusions problems of the
Eshelby-Laws type [9, 10]; and it is exactly this characteristic of the approach which
calls for continuous theory refinement when it comes to more and more anisotropic
and morphologically rich microstructural patterns.

The present contribution deals with an important aspect of the aforementioned
refinement, namely the overcoming of certain limitations of one of the most popu-
lar, versatile, and successful methods in composite material mechanics: the Mori-
Tanaka-Benveniste scheme [11, 12] for materials with matrix-inclusion morphologies.
Namely, the Mori-Tanaka method delivers physically senseless, non-symmetrical elas-
ticity tensor estimates whenever one or several of the following conditions are not
met [13]

(a) (b) (c)

𝑢(𝑥 ∈ 𝑆RVE ) =𝐸𝐸𝐸 · 𝑥

𝜺𝑀

𝝈𝐸
𝑀 𝝈𝐸

𝑀

𝝈𝐸
𝑀

𝜺 (𝑥→∞) =𝐸𝐸𝐸∞≠𝜺𝑀

𝜺 (𝑥→∞) =𝐸𝐸𝐸∞≠𝜺𝑀

Fig. 14.1: Anisotropic multishape composites with anisotropic constituents undergoing total
strains and eigenstresses: (a) photograph of biocomposite, edited from CoE BBE [6], (b) (2D
sketch of a 3D) representative volume element (RVE) subjected to homogeneous boundary
conditions (microsopic displacements 𝑢 associated with macroscopic strains are imposed onto the
RVE boundary denoted by 𝑆RVE); the RVE being built up by (c) eigenstressed
matrix-inhomogeneity problems with fictitious strains fulfilling stress and strain average rules,
Levin’s theorem, and the elastic reciprocal theorem.
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1. all phases and the overall composite behave isotropically [14, 15];
2. all inclusion phases have the same stiffness [14, 16];
3. all inclusion phases have the same shape and the same orientation [14, 16, 17].

These limitations of the Mori-Tanaka method have been classically circumvented
by turning towards the rich collection of tools available in the field of “computational
homogenization” [18], requiring, however, much higher computational efforts in
terms of CPU and data storage demands. It is only recently that the symmetry
violation problem has been solved by a straightforward symmetrization step [14],
and it has been even more recently that the implications of this symmetrization
steps on the concentration tensors linking macroscopic and microscopic strains in
an elastic composites have been understood and analytically represented [13]. We
regard this as a major step forward in (semi-)analytical micromechanics, along with
a significant widening of its practical application range, in particular so given the
enormous technological challenges to be tackled nowadays.

Still, from the viewpoint of material design, not only elastic, but also strength
properties are essential; and this motivates the present contribution which covers
the interactions of inelastic (e.g. free) eigenstresses and eigenstrains throughout
the material microstructure, through complementation of concentration tensors by
influence tensors in the sense of the transformation field analyses pioneered by Dvorak
and colleagues [19, 20], and later generalized towards more complex morphologies
[21, 22]. In fact, the influence tensor concept has been an essential step towards the
understanding of the dissipative deformations in hierarchically organized materials,
governing their overall strength [23, 24].

Accordingly, this contribution is organized as follows: after a concise summary of
theoretical pillars of continuum micromechanics, novel estimates for influence tensors
are derived from eigenstressed Eshelby-type matrix-inclusion problems, considering
recent results for concentration tensors associated with symmetrized Mori-Tanaka
schemes [13]. The contribution is completed by illustrative numerical examples,
followed by concluding comments.

14.2 Fundamentals of Continuum Micromechanics and
Composite Mechanics

14.2.1 Representative Volume Element, Average Rules, and Scale
Transition Relations

In classical continuum mechanics, a finite body is envisioned as the assembly of
infinitely many, infinitesimally small material points to which stresses and strains, as
well as (macroscopic) material properties are assigned. Physically speaking, these ma-
terial points relate to small volumes of matter which are much smaller than the overall
body or the characteristic length of its loading conditions. In continuum microme-
chanics or composite mechanics [7, 25], classical (macroscopic) material points are
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indeed represented by (microscopically) finite volumes called representative volume
elements (RVEs) which need to be much smaller than the scale of (macroscopic)
structural loading and much larger than the microstructural features inside the RVE.
The latter are represented by homogeneous subdomains called material phases, to
which (microscopic) material properties, as well as (microscopic) stresses and strains
are assigned.

Microscopically homogeneous geometric boundary conditions allow for derivation
of the strain average rule [25]

𝐸𝐸𝐸 =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 𝜺𝑟 , (14.1)

with 𝐸𝐸𝐸 standing for the macroscopic (linearized) strain tensor, while 𝜺𝑟 and 𝑓𝑟 stand
for the (average) microscopic strain tensor of phase 𝑟 and the volume fraction of this
phase; the total number of phases is given by 𝑛𝑝 . Combination of the strain average
rule with equilibrated forces and their virtual power duals allows for the derivation
of the stress average rule [26]

𝚺 =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 𝝈𝑟 , (14.2)

with 𝚺 standing for the macroscopic stress tensor, while 𝝈𝑟 stands for the (average)
microscopic stress tensor of phase 𝑟 . Stress average rule (14.2) may also be motivated
from homogeneous stress boundary conditions [7] or macroscopic testing customs, i.e.
tractions and displacements measured at surfaces of material samples in macroscopic
material tests [27]. The phases exhibit elastic and inelastic behavior, according to the
format

𝝈𝑟 = C𝑟 : 𝜺𝑟 +𝝈𝐸𝑟 , ∀𝑟 ∈ {1,2, . . . , 𝑛𝑝} , (14.3)

with C𝑟 as the symmetric stiffness tensor of phase 𝑟 exhibiting eigenstresses 𝝈𝐸𝑟 .
(14.1) and (14.3) imply the existence of concentration-influence relations of the form
[28]

𝜺𝑟 = A𝑟 : 𝐸𝐸𝐸 +
𝑛𝑝∑︁
𝑠=1

𝑓𝑠Q𝑟𝑠 : 𝝈𝐸𝑠 , ∀𝑟 ∈ {1,2, . . . , 𝑛𝑝} , (14.4)

withA𝑟 as the concentration tensor of phase 𝑟 andQ𝑟𝑠 as influence tensor quantifying
the effect of eigenstresses in phase 𝑠 on the strains in phase 𝑟. Insertion of (14.4)
into the phase behavior law (14.3) and averaging the resulting phase microstresses
according to (14.2) yields the macroscopic stress-strain law

𝚺 = Cℎ𝑜𝑚 : 𝐸𝐸𝐸 +𝚺𝐸ℎ𝑜𝑚 , (14.5)

whereby the macroscopic (homogenized) symmetric stiffness tensor, which charac-
terizes the behavior of the RVE, and hence of the macroscopic material point, reads
as

Cℎ𝑜𝑚 =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 C𝑟 : A𝑟 , (14.6)
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while the macroscopic eigenstress reads as

𝚺𝐸ℎ𝑜𝑚 =
𝑛𝑝∑︁
𝑟=1

(
𝑓𝑟 𝝈

𝐸
𝑟 +

𝑛𝑝∑︁
𝑠=1

𝑓𝑟 𝑓𝑠C𝑟 : Q𝑟𝑠 : 𝝈𝐸𝑠
)
. (14.7)

Moreoever, eigenstress averaging is governed by Levin’s theorem [7, 29]

𝚺𝐸ℎ𝑜𝑚 =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 𝝈
𝐸
𝑟 : A𝑟 . (14.8)

14.2.2 Characteristics of Strain Concentration and
Microeigenstress-to-Microstrain Influence Tensors

Inserting the phase-specific concentration-influence relations according to (14.4) into
the strain average rule (14.1) yields

𝐸𝐸𝐸 =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟

(
A𝑟 : 𝐸𝐸𝐸 +

𝑛𝑝∑︁
𝑠=1

𝑓𝑠Q𝑟𝑠 : 𝝈𝐸𝑠
)
. (14.9)

This relation has to hold for the case of vanishing phase eigenstresses, yielding

I =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 A𝑟 , (14.10)

where I denotes the symmetric fourth-order identity tensor with components

𝐼𝑖 𝑗𝑘𝑙 =
1
2
[𝛿𝑖𝑘 𝛿 𝑗𝑙 + 𝛿𝑖𝑙 𝛿 𝑗𝑘] .

The Kronecker delta 𝛿𝑖𝑘 is equal to 1 if 𝑖 = 𝑘 and 0 otherwise. Furthermore, the
condition (14.9) has to hold for the case of vanishing macroscopic strains and phase
eigenstresses except for eigenstresses in a single phase, 𝝈𝐸𝑠 , this yields

𝑛𝑝∑︁
𝑟=1

𝑓𝑟 Q𝑟𝑠 = 0 , ∀𝑠 ∈ {1, . . . , 𝑛𝑝} . (14.11)

The two independent expressions for the homogenized eigenstress, namely Eqs. (14.7)
and (14.8) can be identified, yielding

𝑛𝑝∑︁
𝑟=1

(
𝑓𝑟 𝝈

𝐸
𝑟 +

𝑛𝑝∑︁
𝑠=1

𝑓𝑟 𝑓𝑠C𝑟 : Q𝑟𝑠 : 𝝈𝐸𝑠
)
=
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 𝝈
𝐸
𝑟 : A𝑟 . (14.12)
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Considering RVEs in which only one single phase 𝑠 exhibits an eigenstress and all
other material phases are free of eigenstresses, Eq. (14.12) yields the condition

A𝑡𝑠 − I =
𝑛𝑝∑︁
𝑟=1

𝑓𝑟 C𝑟 : Q𝑟𝑠 , ∀𝑠 ∈ {1, . . . , 𝑛𝑝} , (14.13)

where X𝑡 stands for the transpose operator

X𝑡𝑖 𝑗𝑘𝑙 = X𝑘𝑙𝑖 𝑗 .

Finally, the elastic reciprocal theorem implies an influence tensor transposition rule
of the form [19, 22]

Q𝑟𝑠 = Q
𝑡
𝑠𝑟 ∀𝑟, 𝑠 ∈ {1,2, . . . , 𝑛𝑝} . (14.14)

We will now employ an eigenstressed matrix-inclusion problem of the Eshelby-Laws
type, in order to derive novel analytical expressions for the influence tensors – also
referring to the concentration tensor expressions derived in [13].

14.3 Derivation of Influence Tensors for Inclusions in Anisotropic
Multishape Composites, from Eigenstressed
Matrix-Inclusion Problems

The dedicated use of matrix-inclusion problems of the Eshelby-Laws-type for the
derivation of RVE-related properties has been one of the most successful strategies
in the broad field of micromechanics or multiscale mechanics. We here provide a
further extension of this strategy, by resorting to the problem of an eigenstressed
inhomogeneity being embedded in an eigenstressed, infinite matrix, see Fig. 14.1
b), c). The homogeneous strains within an ellipsoidal inhomogeneity of stiffness C𝐼
and eigenstress 𝝈𝐸𝐼 , being embedded into an infinite matrix with stiffness C𝑀 and
eigenstress 𝝈𝐸𝑀 can be given in the following analytical format [7, 22]

𝜺𝐼 = A
∞
𝐼 :

[
𝐸∞𝐸∞𝐸∞−P𝑀𝐼 : (𝝈𝐸𝐼 −𝝈𝐸𝑀 )

]
, (14.15)

whereby the remote-to-inhomogeneity strain conversion tensor A∞
𝐼 reads as

A∞
𝐼 =

[
I+P𝑀𝐼 : (C𝐼 −C𝑀 )]−1 (14.16)

and 𝐸∞𝐸∞𝐸∞ is the (homogeneous) auxiliary strains imposed infinitely far from the inho-
mogeneity, see Fig. 14.2. In (14.15) and (14.16), P𝑀𝐼 denotes the Hill or morphology
tensor, which can be traced back to the Green’s function𝐺𝐺𝐺𝑀 of an infinitely extended
elastic medium with stiffness C𝑀 , through [10]
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Fig. 14.2 Eshelby problem
for the inclusion phase 𝐼: The
properties of the inhomogene-
ity are equal to the properties
of phase 𝐼 . The stiffness of
the infinite matrix is equal
to the stiffness of the matrix
phase. The eigenstress in the
infinite matrix is equal to
the eigenstress of the matrix
phase. The auxiliary matrix is
subjected to a remote strain
𝐸𝐸𝐸∞, acting infinitely far from
the inhomogeneity.

stiffness: CM

uniform strains at infinity:
ε(x → ∞) = E∞

infinite 3D matrix:

eigenstress: σE
M

ellipsoidal (3D)

eigenstress: σE
I

stiffness: CI

eigenstressed inhomogeneity:

P𝑀𝐼 = −
∫
𝑉𝐼

∇𝑆𝑥∇𝑆𝑥𝐺𝐺𝐺𝑀 (𝑥− 𝑦) d𝑉 (𝑦) , (14.17)

with 𝑉𝐼 standing for the volume of the inhomogeneity and ∇𝑆𝑥 standing for the sym-
metrized nabla operator, i.e. the symmetrized gradient with respect to the microscopic
location variable. The latter equation allows for the derviation of many different ana-
lytical formats of P𝑀𝐼 , related to different symmetry properties of both inhomogeneity
shape and elasticity of the infinite matrix [30, 31].

The landmark works of Mori, Tanaka, and Benveniste [11, 12] have shown the
extreme usefulness of deriving estimates for the concentrations tensorsA𝐼 of inclusion
phases with an approximately ellipsoidal shape and stiffness C𝐼 from the remote-
to-inhomogeneity strain conversion tensors A∞

𝐼 of inhomogeneities with the same
stiffness and the same shape; a corresponding general estimation scheme, which
preserves symmetry of the overall stiffness tensor irrespective of anisotropy or
shape properties of the material phases or the RVE, has been proposed in [13].
Mathematically, this scheme reads as

A𝐼 = A
∞
𝐼 :M. (14.18)

with the RVE-to-remote strain conversion tensorM reading as [13]

M =

{
𝑓𝑀 I+

( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼

)
− 1

2

[( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼

)
:
( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : A∞
𝐼

)−1

−
( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : A∞
𝐼

)−1
:
( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞,𝑡
𝐼

)]
:
( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : A∞
𝐼

)}−1

,

(14.19)

with 𝑛𝐼 = 𝑛𝑝−1 standing for the number of inclusion phases which are, in a composite
material, embedded in a contiguous matrix phase.
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With the concentration tensor of the inclusions being known, we are left with the
determination of the concentration tensor of the matrix strains, which is determined
from the concentration tensor average rule (14.10), yielding

A𝑀 =
1
𝑓𝑀

(
I−

𝑛𝐼∑︁
𝐼=1

𝑓𝐼A𝐼

)
. (14.20)

We note that this is a fundamental difference to the Mori-Tanaka-Benveniste scheme
where A𝑀 , by definition, is set equal to the symmetric identity tensor of fourth order.

Turning towards the estimation of influence tensors, i.e. the relation between
phase eigenstresses and phase strains in the RVE, we identify eigenstresses and
strains averaged over inclusion phases with the eigenstresses and strains occurring in
an inhomogeneity of the same stiffness, being embedded in an infinite eigenstressed
matrix, governed by Eq. (14.15). As regards the matrix phase, indicated by index
“𝑀”, we specify (14.4) for 𝑟 = 𝑀 , yielding

𝜺𝑀 = A𝑀 : 𝐸𝐸𝐸 + 𝑓𝑀Q𝑀𝑀 : 𝝈𝐸𝑀 +
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 Q𝑀𝐼 : 𝝈𝐸𝐼 . (14.21)

A link between the auxiliary strain 𝐸𝐸𝐸∞ and the quantities from the RVE (real
macrostrain 𝐸𝐸𝐸 and phase eigenstresses 𝝈𝐸𝑗 ) is established by specification of the
strain average rule (14.1) for the considered matrix-inclusion composite,

𝐸𝐸𝐸 = 𝑓𝑀𝜺𝑀 +
𝑛𝐼∑︁
𝐼=1

𝑓𝐼𝜺𝐼 , (14.22)

while applying the elastic reciprocal theorem (14.14) to Q𝑀𝐼 ,

Q𝑀𝐼 = Q
𝑡
𝐼𝑀 . (14.23)

Mathematically speaking, insertion of the matrix microstrains 𝜺𝑀 according to
(14.21) and the phase strains in the inclusion phases according to (14.15), into the
strain average rule according to (14.22), while considering (14.23), yields

𝐸𝐸𝐸∞ =
( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼

)−1
:
[
(I− 𝑓𝑀A𝑀 ) : 𝐸𝐸𝐸 − 𝑓𝑀 𝑓𝑀Q𝑀𝑀 : 𝝈𝐸𝑀

−
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 𝑓𝑀Q
𝑡
𝐼𝑀 : 𝝈𝐸𝐼 +

𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼 : P𝐼 : (𝝈𝐸𝐼 −𝝈𝐸𝑀 )

]
.

(14.24)

Insertion of (14.24) into (14.15) provides a multilinear form containing concentration
and influence tensors associated with the inclusion phase 𝐼, namely

𝜺𝐼 = A𝐼 : 𝐸𝐸𝐸 + 𝑓𝑀Q𝐼𝑀 : 𝝈𝐸𝑀 +
𝑛𝐼∑︁
𝐽=1

𝑓𝐽Q𝐼 𝐽 : 𝝈𝐸𝐽 , ∀𝐼 ∈ {1,2, . . . , 𝑛𝐼 } , (14.25)
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whereby the concentration and influence tensors are “abbreviations” for the following
expressions

∀𝐼 ∈ {1,2, . . . , 𝑛𝐼 } : A𝐼 = A
∞
𝐼 : (

𝑛𝐼∑︁
𝐽=1

𝑓𝐽A
∞
𝐽 )−1 : (I− 𝑓𝑀A𝑀 ) , (14.26)

∀𝐼 ∈ {1,2, . . . , 𝑛𝐼 } :

Q𝐼𝑀 =
1
𝑓𝑀
A∞
𝐼 :

( 𝑛𝐼∑︁
𝐽=1

𝑓𝐽A
∞
𝐽

)−1
:
[
− 𝑓 2

𝑀Q𝑀𝑀 −
𝑛𝐼∑︁
𝐽=1

𝑓𝐽A
∞
𝐽 : P𝑀𝐽

]

+ 1
𝑓𝑀
A∞
𝐼 : P𝑀𝐼 , (14.27)

∀𝐼, 𝐽 ∈ {1,2, . . . , 𝑛𝐼 }, 𝐽 ≠ 𝐼 :

Q𝐼 𝐽 = A
∞
𝐼 :

( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾

)−1
:
(
− 𝑓𝑀Q𝑡𝐽𝑀 +A∞

𝐽 : P𝑀𝐽
)
, (14.28)

∀𝐼 ∈ {1,2, . . . , 𝑛𝐼 } :

Q𝐼 𝐼 = A
∞
𝐼 :

( 𝑛𝐼∑︁
𝐽=1

𝑓𝐽A
∞
𝐽

)−1
:
(
− 𝑓𝑀Q𝑡𝐼𝑀 +A∞

𝐼 : P𝑀𝐼
)
− 1
𝑓𝐼
A∞
𝐼 : P𝑀𝐼 . (14.29)

These concentration and influence tensor expressions deserve further discussion:
Firstly, (14.26) is identical to (14.18), as can be seen from insertion of (14.18) into
(14.20), solution of the corresponding result for M, and insertion of the obtained
expression forM back into (14.18). Secondly, all influence tensor expressions depend
on the yet unknown influence tensor Q𝑡𝑀𝑀 , which will be derived in the next section.
Thirdly, all influence tensors fulfill the elastic reciprocal theorem, as is proved in the
next but one subsection.

14.4 Determination of Matrix Influence Tensor Q𝑴𝑴

Specification of (14.13) for the matrix phase of a composite material, 𝑠 =𝑀 , consisting
of one matrix phase and 𝑛𝐼 = 𝑛𝑝 −1 inclusion phases, yields

A𝑡𝑀 − I = 𝑓𝑀 C𝑀 : Q𝑀𝑀 +
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : Q𝐼𝑀 . (14.30)

Insertion of Q𝐼𝑀 according to Eq. (14.27) into (14.30) yields
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A𝑡𝑀 − I = 𝑓𝑀 C𝑀 : Q𝑀𝑀 + 1
𝑓𝑀

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 : P𝑀𝐼 −

− (
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1 :

[
(
𝑛𝐼∑︁
𝑖=𝐼

𝑓𝐼 A
∞
𝐼 : P𝑀𝐼 ) − 𝑓 2

𝑀Q𝑀𝑀

]
.

(14.31)

Eventually, solving (14.31) for Q𝑀𝑀 yields the desired result as

Q𝑀𝑀 =
1
𝑓 2
𝑀

[
C𝑀 − (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1

]−1
:

:
[
𝑓𝑀 (A𝑡𝑀 − I) − (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 : P𝑀𝐼 )+

+ (
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1 : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼 : P𝑀𝐼 )

]
.

(14.32)

14.5 Check of Influence Tensor Expressions

14.5.1 Fulfillment of Influence Tensor Average Rule

In order to check the fulfillment of the influence tensor average rule (14.11), this
condition is specified for one matrix phase and 𝑛𝐼 inclusion phases. In this context,
we start with 𝑠 = 𝑀 , yielding

𝑓𝑀Q𝑀𝑀 +
𝑛𝐼∑︁
𝐼=1

𝑓𝐼Q𝐼𝑀 = 0 , (14.33)

Insertion of Q𝐼𝑀 from (14.27) into (14.33) yields

𝑓𝑀Q𝑀𝑀 −
𝑛𝐼∑︁
𝐼=1

𝑓𝐼
1
𝑓𝑀
A∞
𝐼 :

[( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾

)−1
:
(
𝑓 2
𝑀Q𝑀𝑀 −

𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾 : P𝐾

)
+P𝐼

]
= 0 .

(14.34)
Noting that ( 𝑛𝐼∑︁

𝐼=1
𝑓𝐼A

∞
𝐼

)
:
( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾

)−1
= I , (14.35)

condition (14.34) can be simplified to

𝑓𝑀Q𝑀𝑀 −
(
𝑓𝑀Q𝑀𝑀 − 1

𝑓𝑀

𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾 : P𝐾

)
− 1
𝑓𝑀

𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼 : P𝐼 = 0 . (14.36)
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Because both 𝐾 and 𝐼 are silent indexes in (14.36), is readily seen that the condition
(14.36) is fulfilled, which proves that the influence tensor expression (14.27) fulfills
the influence tensor average rule (14.33).

Next, we specify (14.11) for a composite consisting of 𝑛𝐼 inclusion phases being
embedded in one matrix phase 𝑀 , and choose 𝑠 = 𝐼, yielding

𝑓𝑀Q𝑀𝐼 +
𝑛𝐼∑︁
𝐽=1

𝑓𝐽Q𝐽𝐼 = 0 , ∀𝐼 ∈ {1,2, . . . , 𝑛𝐼 } . (14.37)

Insertion of Q𝑀𝐼 from (14.23), of Q𝐽𝐼 according to (14.28), and of Q𝐼 𝐼 from (14.29)
into (14.37) yields

𝑓𝑀Q
𝑡
𝐼𝑀 +

𝑛𝐽∑︁
𝐽=1

[
𝑓𝐽A

∞
𝐽 :

( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾

)−1
:
(
− 𝑓𝑀Q𝑡𝐼𝑀 +A∞

𝐼 : P𝐼
)]

−A∞
𝐼 : P𝐼 = 0 .

(14.38)
When considering the relation (14.35), it is readily seen that the condition (14.38)
is fulfilled, which proves that the influence tensor expressions (14.27) and (14.28)
fulfill the influence tensor average rule (14.37).

14.5.2 Consistency of Influence Tensor Expressions with Levin’s
Theorem

Equating the two alternative expressions for the macroscopic eigenstress, i.e.

(i) the combination of stress average rule, microscopic material behavior, and
concentration-influence relations, leading eventually to (14.7), and

(ii) Levin’ theorem (14.8),

has yielded the condition (14.13); specification of the latter has given access to the
influence tensor Q𝑀𝑀 .

We are left with checking whether the influence tensor expressions for Q𝐼𝑀
according to (14.27), Q𝐼 𝐽 according to (14.28), and Q𝐼 𝐼 according to (14.29) fulfill
specification of (14.13) for the inclusion phases, namely the condition

A𝑡𝐼 = I− 𝑓𝑀 C𝑀 : Q𝑀𝐼 −
𝑛𝐼∑︁
𝐽=1

𝑓𝐽 C𝐽 : Q𝐽𝐼 , ∀𝐼 = 1, . . . , 𝑛𝐼 . (14.39)

Insertion of Q𝑀𝐼 according to (14.23), of Q𝐽𝐼 according to (14.28), and of Q𝐼 𝐼
according to (14.29) into (14.39) yields

A𝑡𝐼 = I− 𝑓𝑚C𝑚 : Q𝑡𝐼𝑀 +
( 𝑛𝐼∑︁
𝐽=1

𝑓𝑖C𝐽 : A∞
𝐽

)
:
( 𝑛𝐼∑︁
𝐽=1

𝑓𝐽A
∞
𝐽

)−1
:

−
(
𝑓𝑀Q

𝑡
𝐼𝑀 +A∞

𝐼 : P𝑀𝐼
)
C𝐼 : A∞

𝐼 : P𝑀𝐼 .
(14.40)
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Transposing (14.28), inserting the corresponding result into (14.40), and considering

A∞
𝐼 : P𝑀𝐼 = P𝐼 : (A∞

𝐼 )𝑡 , (14.41)

yields, after a few simplification steps,

A𝑡𝐼 = I−
(
C𝐼 −C𝑀

)
: P𝐼 : (A∞

𝐼 )𝑡 +
[
C𝑀 −

( 𝑛𝐼∑︁
𝐽=1

𝑓𝐽 C𝐽 : A∞
𝐽

)
:
( 𝑛𝐼∑︁
𝐽=1

𝑓𝐽 A
∞
𝐽

)−1
]

:

[
𝑓 2
𝑀Q

𝑡
𝑀𝑀 −

𝑛𝐼∑︁
𝐽=1

𝑓𝐼 P
𝑀
𝐼 : (A∞

𝐼 )𝑡
]

:
[ 𝑛𝐼∑︁
𝐽=1

𝑓𝐽 (A∞
𝐽 )𝑡

]−1
: (A∞

𝐼 )𝑡 . (14.42)

Solving (14.16) for the Hill tensor, yielding

P𝑀𝐼 =
(
C𝐼 −C𝑀

)−1
:
[
(A∞

𝐼 )−𝑇 − I
]
, (14.43)

and insertion of this relation, as well as of (14.18) into (14.42), and solving the result
forM𝑡 yields

M𝑡 = I+
[
C𝑀 −

( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼

)
:
( 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼

)−1
]

:

[
𝑓 2
𝑀Q

𝑡
𝑀𝑀 −

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 P𝐼 : (A∞
𝐼 )𝑡

]
:
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡

]−1
. (14.44)

Insertion ofM according to (14.19) and of Q𝑀𝑀 = Q𝑡𝑀𝑀 according to (14.32) into
(14.44) yields

(1− 𝑓𝑀 ) I−
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 =

𝑛𝐼∑︁
𝐼=1

𝑓𝐼

(
C𝐼 −C𝑀

)
: P𝑀𝐼 : (A∞

𝐼 )𝑡 , (14.45)

Considering again (14.43) and the obvious rule for volume fractions, reading for the
considered matrix-inclusion composites as

𝑓𝑀 +
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 = 1 , (14.46)

(14.45) turns out to be fulfilled. Consequently, the presented expressions for the
influence tensors, together with the corresponding expression for the macroscopic
eigenstress, are fully consistent with the macroscopic eigenstress expressions accord-
ing to Levin’s theorem.
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14.5.3 Consistency of Influence Tensor Expressions with Elastic
Reciprocal Theorem

The reciprocity of influence tensor associated with the matrix phase, given through
Eq. (14.23), was explicitly used for the derivation of the influence tensors associated
with the inclusion phases, given through (14.28) and (14.29). Hence, we are left with
showing that the latter fulfill the elastic reciprocal theorem as well, i.e. with showing
that

Q𝐼 𝐽 = Q
𝑡
𝐽 𝐼 , ∀𝐼, 𝐽 ∈ {1, . . . , 𝑛𝐼 }, 𝐼 ≠ 𝐽 . (14.47)

Transposing expression (14.28) yields

Q𝑡𝐽 𝐼 = −
[
𝑓𝑀Q𝐼𝑀 +P𝑀𝐼 : (A∞

𝐼 )𝑡
]

:
( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾A
∞
𝐾

)−𝑡
: (A∞

𝐽 )𝑡 . (14.48)

Insertion of the expressions for Q𝐼 𝐽 according to (14.28) and for Q𝑡𝐽 𝐼 according
to (14.48) into (14.47), followed by insertion of the expressions for Q𝐼𝑀 and Q𝑡𝐽𝑀
according to (14.27), while considering (14.41), proves the validity of (14.47):

Q𝐼 𝐽 = Q𝑡𝐽 𝐼 = A
∞
𝐼 :

( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾 A
∞
𝐾

)−1
:
(
𝑓 2
𝑀Q𝑀𝑀 −

𝑛𝐼∑︁
𝐾=1

𝑓𝐾 A
∞
𝐾 : P𝑀𝐾

)
:

[ 𝑛𝐼∑︁
𝐾=1

𝑓𝐾 (A∞
𝐾 )𝑡

]−1
: (A∞

𝐽 )𝑡 .
(14.49)

Similarly, in the case of 𝐽 = 𝐼,

Q𝐼 𝐼 = Q𝑡𝐼 𝐼 = A
∞
𝐼 :

( 𝑛𝐼∑︁
𝐾=1

𝑓𝐾 A
∞
𝐾

)−1
:
(
𝑓 2
𝑀Q𝑀𝑀 −

𝑛𝐼∑︁
𝐾=1

𝑓𝐾 A
∞
𝐾 : P𝑀𝐾

)
:

[ 𝑛𝐼∑︁
𝐾=1

𝑓𝐾 (A∞
𝐾 )𝑡

]−1
: (A∞

𝐼 )𝑡 −
1
𝑓𝐼
A∞
𝐼 : P𝑀𝐼 .

(14.50)

Finally, the elastic reciprocal theorem referring to the influence of the eigenstress
in the matrix phase on its own strain will be treated, i.e.

Q𝑀𝑀 = Q𝑡𝑀𝑀 . (14.51)

Transposing expression (14.32) yields
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Q𝑡𝑀𝑀 =
1
𝑓 2
𝑀

:
{
𝑓𝑀 (A𝑀 − I) − [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 P

𝑀
𝐼 : (A∞

𝐼 )𝑡 : C𝐼
]

+[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼P
𝑀
𝐼 : (A∞

𝐼 )𝑡
]

:
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡

]−1 :
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]}
:

:
{
C𝑀 − [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 (A∞

𝐼 )𝑡
]−1 :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]}−1
.

(14.52)

Insertion of the expressions for Q𝑀𝑀 according to (14.32) and for Q𝑡𝑀𝑀 according
to (14.52) into (14.51), followed by multiplication of the corresponding result by

[
C𝑀 − (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1

]

from the left, and by

{
C𝑀 − [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 (A∞

𝐼 )𝑡
]−1 :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]}

from the right, yields, after simplification,

[
𝑓𝑀 (A𝑡𝑀 − I) − (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 : P𝑀𝐼 ) + (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1 :

: (
𝑛𝐼∑︁
𝐼=1

𝑓𝐼A
∞
𝐼 : P𝑀𝐼 )

]
:
{
C𝑀 − [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 (A∞

𝐼 )𝑡
]−1 :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]}
=

=
[
C𝑀 − (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1

]
:

:
{
𝑓𝑀 (A𝑀 − I) − [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 P

𝑀
𝐼 : (A∞

𝐼 )𝑡 : C𝐼
] + [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼P

𝑀
𝐼 : (A∞

𝐼 )𝑡
]

:

:
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡

]−1 :
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]}
.

(14.53)

Insertion ofA𝑀 andA𝑡𝑀 , according to (14.20) and its transpose, followed by adequate
grouping of terms, yields
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(
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 : P𝑀𝐼 ) : C𝑀 − [

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : P𝑀𝐼 : (A∞
𝐼 )𝑡 ] :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡

]−1 :

:
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]−M𝑡 : [ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : (C𝐼−C𝑀 )]+(1− 𝑓𝑀 ) [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 (A∞

𝐼 )𝑡
]−1 :

:
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : C𝐼

]
= C𝑀 :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 P
𝑀
𝐼 : (A∞

𝐼 )𝑡 : C𝐼
] − (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) :

: (
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1 :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 P
𝑀
𝐼 : (A∞

𝐼 )𝑡 : (C𝐼 −C𝑀 )]−
− [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 (C𝐼 −C𝑀 ) : A∞

𝐼

]
:M+ (1− 𝑓𝑀 ) (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 C𝐼 : A∞
𝐼 ) : (

𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 )−1.

(14.54)

Insertion of Eq. (14.43) into Eq. (14.54), and subsequent simplification of the corre-
sponding result yields

M𝑡 :
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : (C𝐼 −C𝑀 )] = [ 𝑛𝐼∑︁

𝐼=1
𝑓𝐼 (C𝐼 −C𝑀 ) : A∞

𝐼

]
:M . (14.55)

Insertion of M and M𝑡 according to (14.19) and its transposed, respectively, into
Eq. (14.55) yields, under consideration of the tensor property A : B−1 = (B :A−1)−1,

{1
2
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : (C𝐼 −C𝑀 )]−1 :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡

] + 1
2
(
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 ) :

:
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : (C𝐼 −C𝑀 )]−1 + 𝑓𝑀

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡 : (C𝐼 −C𝑀 )]−1

}−1
=

=
{
𝑓𝑀

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : A∞
𝐼

]−1 + 1
2
(
𝑛𝐼∑︁
𝐼=1

𝑓𝐼 A
∞
𝐼 ) :

[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : A∞
𝐼

]−1+

+ 1
2
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (C𝐼 −C𝑀 ) : A∞
𝐼

]−1 :
[ 𝑛𝐼∑︁
𝐼=1

𝑓𝐼 (A∞
𝐼 )𝑡

]}−1
.

(14.56)

The validity of (14.56), and therefore (14.51), becomes trivial when noting, from
(14.16), the following identity

(C𝐼 −C𝑀 ) : A∞
𝐼 = (A∞

𝐼 )𝑡 : (C𝐼 −C𝑀 ) =
[
(C𝐼 −C𝑀 )−1 +P𝑀𝐼

]−1
. (14.57)
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14.6 Benchmark Examples

The new scheme for influence tensor computations for anisotropic multishape-
multiorientation composites, summarized in Table 14.1, is illustrated by two bench-
mark examples, which have already been used for illustrating concentration tensors
preserving symmetry of the homogenized stiffness of anisotropic multishape com-
posites [13]. Both benchmark examples refer to a matrix-inclusion composite with
two types of inclusions, one spherical phase (index 1, aspect ratio 𝜔1 = 1) and one
prolate phase (index 2, aspect ratio 𝜔2 = 3, major axis aligned with the 𝑧-direction),
see Fig. 14.3 and Table 14.2 for the phase volume fractions.

The benchmark examples differ in terms of the elastic phase properties, being
isotropic and transversely isotropic, respectively. Both benchmark examples are
problematic from the viewpoint of the classical Mori-Tanaka-Benveniste scheme,
because the homogenized composite is neither isotropic, nor do the inclusion phases
have the same stiffness, nor do the inclusion phases have the same shape and
orientation, see [14, 15, 17] and remarks made in the Introduction section; hence the
use of the conversion tensorM according to (14.19), and of the novel expressions for

Table 14.1: Flowchart for computing influence tensors for matrix and inclusion phases in
anisotropic multishape multiorientation composites..

1. Define matrix phase (in terms of elasticity tensor) and inclusion phases (in terms of shape,
orientation, elasticity tensor, and volume fractions).

2. Compute the Hill tensors of the inclusion phases P𝑀
𝐼

and their auxiliary strain concentration
tensor from the Eshelby problem A∞

𝐼
from Eq. (14.16).

3. Compute the RVE-to-remote strain conversion tensorM from Eq. (14.19).

4. Compute strain concentration tensors of the inclusion phases andof the matrix,A𝐼 andA𝑀 , from
Eqs. (14.18) and (14.20), respectively; followed by computation of the homogenized stiffness
tensor Cℎ𝑜𝑚 from Eq. (14.6), and of the homogenized eigenstress 𝚺𝐸

ℎ𝑜𝑚
from Eq. (14.8).

5. Compute the influence tensor relating matrix eigenstress to matrix strain, Q𝑀𝑀 , from
Eq. (14.32).

6. Compute the influence tensors relating matrix eigenstress and strains in inclusions 𝐼 , Q𝐼𝑀

from Eq. (14.27).

7. Compute the influence tensor relating eigenstress in inclusion 𝐼 to matrix strain, Q𝑀𝐼 , from
Eq. (14.23).

8. Compute influence tensor relating eigenstress in inclusion 𝐽 to strains in inclusion 𝐼 ,Q𝐼𝐽 , with
𝐼 ≠ 𝐽 , from Eq. (14.28).

9. Compute influence tensor relating eigenstress to strain in inclusion 𝐼 , Q𝐼𝐼 , from Eq. (14.29).



232 Nabor Jiménez Segura, Bernhard L.A. Pichler, and Christian Hellmich

Fig. 14.3 Benchmark mate-
rial: matrix-inclusion compos-
ite with two types of inclusions,
one spherical phase (index 1,
aspect ratio 𝜔1 = 1) and one
prolate phase (index 2, as-
pect ratio 𝜔2 = 3, major axis
aligned with the 𝑧-direction),
see Table 14.2 for the volume
fractions and the isotropic
elastic stiffness constants of
the three material phases; two-
dimensional representation
showing qualitative properties
of a three-dimensional RVE

matrix phase: m

prolate inclusion: 2

spherical inclusion: 1

x2

x3

Table 14.2: Volume fractions and isotropic elastic stiffness constants of the three material phases
of the composite illustrated in Fig. 14.3.

property matrix phase inclusion phase 1 inclusion phase 2

volume fraction 𝑓𝑀 = 0.60 𝑓1 = 0.25 𝑓2 = 0.15
bulk modulus 𝑘𝑀 = 80.63GPa 𝑘1 = 19.29GPa 𝑘2 = 160.0GPa
shear modulus 𝜇𝑀 = 37.10GPa 𝜇1 = 14.30GPa 𝜇2 = 79.30GPa
phase shape – spherical prolate
aspect ratio – 𝜔1 = 1 𝜔2 = 3

the influence tensors introduced through Eqs. (14.27), (14.28), (14.29), and (14.32)
are mandatory.

14.6.1 Benchmark I: Multishape Composite with Isotropic Phase
Properties

The isotropic phase properties in terms of bulk and shear moduli, see Table 14.2,
enter the phase elasticity tensors according to

C 𝑗 = 3𝑘 𝑗 I𝑣𝑜𝑙 +2𝜇 𝑗 I𝑑𝑒𝑣, (14.58)

where I𝑣𝑜𝑙 and I𝑑𝑒𝑣 denote the volumetric and deviatoric part of the symmetric
fourth-order identity tensor. Their components read as

I𝑣𝑜𝑙𝑖 𝑗𝑘𝑙 =
1
3
𝛿𝑖 𝑗 𝛿𝑘𝑙
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and
I𝑑𝑒𝑣𝑖 𝑗𝑘𝑙 =

1
2
[𝛿𝑖𝑘 𝛿 𝑗𝑙 + 𝛿𝑖𝑙 𝛿 𝑗𝑘] − 1

3
𝛿𝑖 𝑗 𝛿𝑘𝑙;

whereby 𝛿𝑖 𝑗 = 1 for 𝑖 = 𝑗 , and zero otherwise.
The components of a tensor X𝑖 𝑗𝑘𝑙 with so-called minor symmetries X𝑖 𝑗𝑘𝑙 = X 𝑗𝑖𝑘𝑙

and X𝑖 𝑗𝑘𝑙 = X𝑖 𝑗𝑙𝑘 can be represented in Kelvin-Mandel-Walpole notation [32–34] as
a 6×6 matrix:

X =

©«

X1111 X1122 X1133
√

2X1123
√

2X1131
√

2X1112
X2211 X2222 X2233

√
2X2223

√
2X2231

√
2X2212

X3311 X3322 X3333
√

2X3323
√

2X3331
√

2X3312√
2X2311

√
2X2322

√
2X2333 2X2323 2X2331 2X2312√

2X3111
√

2X3122
√

2X3133 2X3123 2X3131 2X3112√
2X1211

√
2X1222

√
2X1233 2X1223 2X1231 2X1212

ª®®®®®®®®¬
. (14.59)

As regards both the general derivation of the Hill or morphology tensor [10, 31, 35],
and its specification for the spherical and prolate inclusion phases seen in Fig. 14.3,
we refer to [13], and start here with directly giving the corresponding results

P𝑀1 =

©«

+5.1312 −1.2845 −1.2845 0 0 0
−1.2845 +5.1312 −1.2845 0 0 0
−1.2845 −1.2845 +5.1312 0 0 0

0 0 0 +6.4157 0 0
0 0 0 0 +6.4157 0
0 0 0 0 0 +6.4157

ª®®®®®®®¬
×10−12 Pa−1 ,

(14.60)

P𝑀2 =

©
«

+6.0532 −1.9863 −0.6416 0 0 0
−1.9863 +6.0532 −0.6416 0 0 0
−0.6416 −0.6416 +2.1187 0 0 0

0 0 0 +6.1880 0 0
0 0 0 0 +6.1880 0
0 0 0 0 0 +8.0395

ª®®®®®®®
¬
×10−12 Pa−1 .

(14.61)
The Eshelby-problem-related strain concentration tensors of the inclusion phases are
computed according to (14.16):

A∞
1 =

©«

+1.5731 +0.1596 +0.1596 0 0 0
+0.1596 +1.5731 +0.1596 0 0 0
+0.1596 +0.1596 +1.5731 0 0 0

0 0 0 +1.4135 0 0
0 0 0 0 +1.4135 0
0 0 0 0 0 +1.4135

ª®®®®®®®¬
, (14.62)
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A∞
2 =

©«

+5.9261 −0.0315 −0.5855 0 0 0
−0.0315 +5.9261 −0.5855 0 0 0
+0.0547 +0.0547 +8.1750 0 0 0

0 0 0 +6.5692 0 0
0 0 0 0 +6.5692 0
0 0 0 0 0 +5.9576

ª®®®®®®®¬
×10−1 . (14.63)

The RVE-to-remote strain conversion tensor is computed according to (14.19):

M =

©«

+9.3326 −0.2574 −0.1607 0 0 0
−0.2574 +9.3326 −0.1607 0 0 0
−0.4982 −0.4982 +8.8409 0 0 0

0 0 0 +9.5064 0 0
0 0 0 0 +9.5064 0
0 0 0 0 0 +9.5900

ª®®®®®®®¬
×10−1 . (14.64)

The strain concentration tensors of the inclusion and the matrix phases according to
(14.18) and (14.20) , respectively:

A1 =

©
«

+1.4560 +0.1005 +0.1132 0 0 0
+0.1005 +1.4560 +0.1132 0 0 0
+0.0664 +0.0664 +1.3856 0 0 0

0 0 0 +1.3438 0 0
0 0 0 0 +1.3438 0
0 0 0 0 0 +1.3556

ª®®®®®®®
¬
, (14.65)

A2 =

©
«

+5.5605 −0.1528 −0.6123 0 0 0
−0.1528 +5.5605 −0.6123 0 0 0
−0.3576 −0.3576 +7.2257 0 0 0

0 0 0 +6.2449 0 0
0 0 0 0 +6.2449 0
0 0 0 0 0 +5.7134

ª®®®®®®®
¬
×10−1, (14.66)

A𝑀 =

©«

+9.2097 −0.3804 −0.3187 0 0 0
−0.3804 +9.2097 −0.3187 0 0 0
−0.1874 −0.1874 +9.0868 0 0 0

0 0 0 +9.5064 0 0
0 0 0 0 +9.5064 0
0 0 0 0 0 +9.5900

ª®®®®®®®¬
×10−1. (14.67)

The symmetric homogenized stiffness tensor is computed according to (14.6):
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Cℎ𝑜𝑚 =

©«

+1.0570 +0.3972 +0.3985 0 0 0
+0.3972 +1.0570 +0.3985 0 0 0
+0.3985 +0.3985 +1.0947 0 0 0

0 0 0 +0.6679 0 0
0 0 0 0 +0.6679 0
0 0 0 0 0 +0.6598

ª®®®®®®®¬
×1011 Pa.

(14.68)
As key original contribution of the present chapter, the novel influence tensors are
obtained from (14.32), (14.27), (14.28) and (14.23), as

Q𝑀𝑀 =

©«

+4.2193 −1.4600 +0.0729 0 0 0
−1.4600 +4.2193 +0.0729 0 0 0
+0.0729 +0.0729 +0.0953 0 0 0

0 0 0 +4.4005 0 0
0 0 0 0 +4.4005 0
0 0 0 0 0 +5.6893

ª®®®®®®®¬
×10−12 Pa−1,

(14.69)

Q1𝑀 =

©
«

−0.7757 +0.2370 +0.0240 0 0 0
+0.2370 −0.7757 +0.0240 0 0 0
+0.0155 +0.0155 −0.2028 0 0 0

0 0 0 −0.8375 0 0
0 0 0 0 −0.8375 0
0 0 0 0 0 −1.0126

ª®®®®®®®
¬
×10−11 Pa−1,

(14.70)

Q2𝑀 =

©«

−3.9495 +1.9307 −0.6924 0 0 0
+1.9307 −3.9495 −0.6924 0 0 0
−0.5505 −0.5505 +2.9983 0 0 0

0 0 0 −3.6430 0 0
0 0 0 0 −3.6430 0
0 0 0 0 0 −5.8802

ª®®®®®®®¬
×10−12 Pa−1,

(14.71)

Q11 =

©
«

+2.1014 −0.5706 −0.1995 0 0 0
−0.5706 +2.1014 −0.1995 0 0 0
−0.1995 −0.1995 +1.1228 0 0 0

0 0 0 +2.3628 0 0
0 0 0 0 +2.3628 0
0 0 0 0 0 +2.6719

ª®®®®®®®
¬
×10−11 Pa−1,

(14.72)

Q12 =

©«

−0.3997 +0.0031 +0.2364 0 0 0
+0.0031 −0.3997 +0.2364 0 0 0
+0.2704 +0.2704 −1.0602 0 0 0

0 0 0 −0.5878 0 0
0 0 0 0 −0.5878 0
0 0 0 0 0 −0.4027

ª®®®®®®®¬
×10−11 Pa−1,

(14.73)
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Q21 =

©«

−0.3997 +0.0031 +0.2704 0 0 0
+0.0031 −0.3997 +0.2704 0 0 0
+0.2364 +0.2364 −1.0602 0 0 0

0 0 0 −0.5878 0 0
0 0 0 0 −0.5878 0
0 0 0 0 0 −0.4027

ª®®®®®®®¬
×10−11 Pa−1,

(14.74)

Q22 =

©«

+2.2459 −0.7774 −0.1737 0 0 0
−0.7774 +2.2459 −0.1737 0 0 0
−0.1737 −0.1737 +0.5677 0 0 0

0 0 0 +2.4368 0 0
0 0 0 0 +2.4368 0
0 0 0 0 0 +3.0233

ª®®®®®®®¬
×10−11 Pa−1,

(14.75)

Q𝑀1 =

©«

−0.7757 +0.2370 +0.0155 0 0 0
+0.2370 −0.7757 +0.0155 0 0 0
+0.0240 +0.0240 −0.2028 0 0 0

0 0 0 −0.8375 0 0
0 0 0 0 −0.8375 0
0 0 0 0 0 −1.0126

ª®®®®®®®¬
×10−11 Pa−1,

(14.76)

Q𝑀2 =

©
«

−3.9495 +1.9307 −0.5505 0 0 0
+1.9307 −3.9495 −0.5505 0 0 0
−0.6924 −0.6924 +2.9983 0 0 0

0 0 0 −3.6430 0 0
0 0 0 0 −3.6430 0
0 0 0 0 0 −5.8802

ª®®®®®®®
¬
×10−12 Pa−1.

(14.77)
The concentration tensors (14.65)–(14.67) and the influence tensors (14.69)–(14.77)
fulfill the conditions related to the strain average rule, see (14.10)–(14.11), the
homogenized eigenstress, see (14.13), and the elastic reciprocal theorem, see (14.14).

14.6.2 Benchmark II: Multishape Composite with Transversely
Isotropic Matrix Phase

In order to show that our method also holds for matrices which are not isotropic, we
now consider the matrix to be transversely isotropic, with the anisotropic axis being
aligned with the long axis of the prolate inclusion 2 shown in Fig. 14.3. In more
detail, we adopt the transversely isotropic properties of zinc, which according to [36]
are defined by the following independent component of the elasticity tensor

𝐶𝑀,3333 = 73.4GPa ,
𝐶𝑀,1111 = 𝐶𝑀,2222 = 164.07GPa ,
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𝐶𝑀,1133 = 33.43GPa , (14.78)
𝐶𝑀,1122 = 49.99GPa ,

𝐶𝑀,1313 = 𝐶𝑀,2323 = 38.15GPa .

Again referring to [13], the corresponding Hill tensors read as

P𝑀1 =

©
«

+3.7499 −0.8497 −1.0623 0 0 0
−0.8497 +3.7499 −1.0623 0 0 0
−1.0623 −1.0623 +7.5258 0 0 0

0 0 0 +6.2742 0 0
0 0 0 0 +6.2742 0
0 0 0 0 0 +1.4501

ª®®®®®®®
¬
×10−3 GPa−1 ,

(14.79)

P𝑀2 =

©
«

+4.3326 −1.2311 −0.4655 0 0 0
−1.2311 +4.3326 −0.4655 0 0 0
−0.4655 −0.4655 +2.5425 0 0 0

0 0 0 +6.1766 0 0
0 0 0 0 +6.1766 0
0 0 0 0 0 +1.5508

ª®®®®®®®
¬
×10−3 GPa−1 .

(14.80)
The RVE-to-remote strain conversion tensor, see (14.19), and the strain concentration
tensors, see (14.18) and (14.20) read as

M =

©
«

+0.8783 −0.0049 −0.0071 0 0 0
−0.0049 +0.8783 −0.0071 0 0 0
−0.0022 −0.0022 +0.9742 0 0 0

0 0 0 +1.0505 0 0
0 0 0 0 +1.0505 0
0 0 0 0 0 +1.0098

ª®®®®®®®
¬
, (14.81)

A1 =

©
«

+1.4953 +0.0398 +0.0560 0 0 0
+0.0398 +1.4953 +0.0560 0 0 0
+0.0008 +0.0008 +1.2383 0 0 0

0 0 0 +1.1174 0 0
0 0 0 0 +1.1174 0
0 0 0 0 0 +1.0532

ª®®®®®®®
¬
, (14.82)

A2 =

©«

+0.6656 −0.0422 −0.0731 0 0 0
−0.0422 +0.6656 −0.0731 0 0 0
−0.0514 −0.0514 +0.6975 0 0 0

0 0 0 +0.6023 0 0
0 0 0 0 +0.6023 0
0 0 0 0 0 +0.8724

ª®®®®®®®¬
, (14.83)
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A𝑀 =

©«

+0.8772 −0.0060 −0.0050 0 0 0
−0.0060 +0.8771 −0.0050 0 0 0
+0.0125 +0.0125 +0.9763 0 0 0

0 0 0 +1.0505 0 0
0 0 0 0 +1.0505 0
0 0 0 0 0 +1.0098

ª®®®®®®®¬
. (14.84)

The symmetric homogenized stiffness tensor, see (14.6), reads as

Cℎ𝑜𝑚 =

©«

1.2589 0.3819 0.2975 0 0 0
0.3819 1.2589 0.2975 0 0 0
0.2975 0.2975 0.8037 0 0 0

0 0 0 0.4636 0 0
0 0 0 0 0.4636 0
0 0 0 0 0 0.6284

ª®®®®®®®¬
×102 GPa . (14.85)

Finally, the novel influence tensors obtained from (14.32), (14.27), (14.28) and
(14.23), as

Q𝑀𝑀 =

©«

+3.3097 −0.7358 −1.2702 0 0 0
−0.7358 +3.3097 −1.2702 0 0 0
−1.2702 −1.2702 +9.0801 0 0 0

0 0 0 +3.8894 0 0
0 0 0 0 +3.8894 0
0 0 0 0 0 +0.8903

ª®®®®®®®¬
×10−12 Pa−1,

(14.86)

Q1𝑀 =

©
«

−0.5824 +0.1094 +0.2367 0 0 0
+0.1094 −5.8242 +0.2367 0 0 0
+0.2514 +0.2514 −1.8905 0 0 0

0 0 0 −0.7096 0 0
0 0 0 0 −0.7096 0
0 0 0 0 0 −0.1369

ª®®®®®®®¬
×10−11 Pa−1,

(14.87)

Q2𝑀 =

©«

−3.5318 +1.1206 +1.1351 0 0 0
+1.1206 −3.5318 +1.1351 0 0 0
+0.8910 +0.8910 −4.8123 0 0 0

0 0 0 −3.7316 0 0
0 0 0 0 −3.7316 0
0 0 0 0 0 −1.2791

ª®®®®®®®¬
×10−12 Pa−1,

(14.88)

Q11 =

©«

+1.6342 −0.3360 −0.5701 0 0 0
−0.3360 +1.6342 −0.5701 0 0 0
−0.5701 −0.5701 +4.3551 0 0 0

0 0 0 +1.9391 0 0
0 0 0 0 +1.9391 0
0 0 0 0 0 +0.4204

ª®®®®®®®¬
×10−11 Pa−1,

(14.89)
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Q12 =

©«

−3.9390 +1.2251 +0.0331 0 0 0
+1.2251 −3.9390 +0.0331 0 0 0
−0.5528 −0.5528 +3.0346 0 0 0

0 0 0 −3.9371 0 0
0 0 0 0 −3.9371 0
0 0 0 0 0 −1.5293

ª®®®®®®®¬
×10−12 Pa−1,

(14.90)

Q21 =

©«

−3.9390 +1.2251 −0.5528 0 0 0
+1.2251 −3.9390 −0.5528 0 0 0
+0.0331 +0.0331 +3.0346 0 0 0

0 0 0 −3.9371 0 0
0 0 0 0 −3.9371 0
0 0 0 0 0 −1.5293

ª®®®®®®®¬
×10−12 Pa−1,

(14.91)

Q22 =

©«

+2.0692 −0.6524 −0.3619 0 0 0
−0.6524 +2.0692 −0.3619 0 0 0
−0.3619 −0.3619 +1.4192 0 0 0

0 0 0 +2.1488 0 0
0 0 0 0 +2.1488 0
0 0 0 0 0 +0.7665

ª®®®®®®®¬
×10−11 Pa−1,

(14.92)

Q𝑀1 =

©
«

−0.5824 +0.1094 +0.2514 0 0 0
+0.1094 −0.5824 +0.2514 0 0 0
+0.2367 +0.2367 −1.8905 0 0 0

0 0 0 −0.7096 0 0
0 0 0 0 −0.7096 0
0 0 0 0 0 −0.1369

ª®®®®®®®
¬
×10−11 Pa−1,

(14.93)

Q𝑀2 =

©«

−3.5318 +1.1206 +0.8910 0 0 0
+1.1206 −3.5318 +0.8910 0 0 0
+1.1351 +1.1351 −4.8123 0 0 0

0 0 0 −3.7316 0 0
0 0 0 0 −3.7316 0
0 0 0 0 0 −1.2791

ª®®®®®®®¬
×10−12 Pa−1.

(14.94)

14.7 Conclusions

A new homogenization scheme for eigenstressed matrix-inclusion composites is
proposed; which even holds for anisotropic composites comprising anisotropic inclu-
sion phases of different shapes and orientations, and hence overcoming limitations
arising from the traditional assumption of Mori and Tanaka, to assume the aver-
age matrix strain to be the average strain in the fictitious matrix of the auxiliary
matrix-inhomogeneity problem of the Eshelby-Laws-type. In more detail, we adopt
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the eigenstresses of different inhomogeneities as those of eigenstressed inclusion
phases in the composite, and the eigenstresses of the fictitious infinite matrix as
those of the matrix of composite, while we determine the matrix strains in such a
way that key fundaments of continuum micromechanics, such as symmetry of the
homogenized stiffness tensor, Levin’s theorem, and the elastic reciprocal theorem are
fulfilled. This widely extends the application range of eigenstressed Eshelby-problem-
based homogenization theory for the realistic representation of anisotropic inelastic
composites composed of anisotropic constituents, including the ever increasing set
of biogenic and biological materials considered as key players in the ongoing Green
Transformation.
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Chapter 15
Computation of Eigenstrains for Static Shape
Control of Arbitrarily Shaped Sub-Domains of
Force-Loaded Elastic Bodies

Michael Krommer, Astrid S. Pechstein, and Hans Irschik

Abstract The present paper is concerned with static shape control of sub-domains
of material bodies. Eigenstrains or their corresponding actuation stresses are used as
the actuation applied only in the sub-domain. Two problems are of particular interest,
strain tracking and displacement tracking of the sub-domain. Exact solutions for the
two tracking problems are derived and numerical results computed with the Finite
Element method are presented for a plane stress problem for validation.

15.1 Introduction

The notion of shape control was introduced by Haftka and Adelman [1] for com-
puting temperatures in control elements to minimize the overall distortion of large
space structures from their original shape. In [1] static shape control refers to the
situation, in which external disturbances are associated with fixed deformations or
those that are slowly varying in time; in case, external disturbances are transient
the problem is denoted as dynamic shape control. For reviews on both, static and
dynamic shape control of structures we refer to Irschik [2], Irschik et al. [3] and
Irschik and Krommer [4]. In the present paper only static shape control is studied.

In order to control the shape or deformation of a material body, which is under the
action of external forces, a proper source of actuation must be available. Besides using
forces in addition to the original external forces as the actuation, imposed eigenstrains
or their corresponding actuation stresses can be used as well. In the present paper, we
only consider the latter as the actuation for static shape control. Actuation stresses
and eigenstrains are assumed to represent any possible source of self-stress. Sources
of self-stress or Eigenspannungsquellen - as they are called in German - have been
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studied in the literature for about a century, see e.g. the original papers by Nemenyi [5]
and Reissner [6] or the more recent one by Irschik and Ziegler [7]. The notion of
eigenstrain was originally introduced by Mura [8] for inelastic strains resulting from
e.g. thermal expansion, phase transformation, initial strains, plastic strains and misfit
strains. In the context of shape control, Irschik and Pichler [9] used eigenstrains due
to thermal expansion for dynamic shape control of solids and structures. Another
example for eigenstrains are piezoelectric strains, which in the context of structural
control are often considered as proper candidates for actuation stresses. Examples
for both, static and dynamic shape control using piezoelectric actuation strains can
be found in e.g. [10–14].

As already mentioned, Haftka and Adelman [1] introduced shape control in the
sense of minimizing the deformation of a force loaded structure. However, in many
problems one may not be interested in minimizing the deformation, but rather to
assign a desired deformation or displacement to the structure. The latter problem
has been introduced by Irschik and Krommer [15] using the notion of displacement
tracking, and further contributions can be found in [16–19]. As with shape control
static and dynamic displacement tracking is possible. The original notion of shape
control is a particular case of displacement tracking, also called zero displacement
tracking, as the displacement to be tracked is zero. In the present paper we study both,
static displacement tracking and static zero displacement tracking referring to both
problems as shape control.

There may also be situations, where either the actuation stress is not applicable
throughout the whole material body, but only within a sub-domain, or where one seeks
to control only the deformation of a sub-domain. Either way, the resulting problem is
denoted as shape control of sub-domains. A very first contribution to shape control
of sub-domains was presented by Krommer and Varadan [20], who studied the
problem of controlling the sub-domain of a structure, to which a conformal antenna is
attached. The method was further extended to problems of structural mechanics, such
as moderately thick beams [21] and thin plates [22, 23]. Concerning shape control of
sub-domains of three-dimensional material bodies, we refer to Krommer [24]. In the
present paper we study static shape control of sub-domains with respect to tracking
either the strain or the displacement, extending the methodology developed in [24].

Therefore, the present paper is concerned with static shape control of sub-domains
of material bodies. Eigenstrains or their corresponding actuation stresses, which are
used for control, are applied in the sub-domain only. Two problems are of particular
interest, strain tracking and displacement tracking of the sub-domain. Besides the
imposed eigenstrains, the material body itself is linear elastic and we remain with
the geometrically linear regime. The paper is structured as follows. After a brief
introduction into static shape control of whole material bodies is given in Sect. 15.2,
we focus on the problem of static shape control of sub-domains of force-loaded
material bodies by eigenstrains in Sect. 15.3. First, strain tracking is discussed as a
problem, in which the eigenstrain acts only in the sub-domain to be controlled. Then,
displacement tracking is studied. In the latter problem the controlled sub-domain
is chosen slightly larger than the sub-domain, for which we track the displacement.
In any case, exact solutions for the corresponding tracking problem are presented.
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For each of the shape control problems discussed in Sects. 15.2 and 15.3 numerical
results for a plane stress problem validate the proposed shape control methodologies.
Standard finite elements are used to compute the numerical solutions.

15.2 Static Shape Control of Material Bodies - a Brief
Introduction

Before we focus on the particular problem of static shape control of arbitrarily shaped
sub-domains of a material body, we present a brief introduction to the problem of
static shape control for a whole material body. In particular, quasi-static problems
in a geometrically and physically linear regime are studied. We consider generic
eigenstrains to provide the actuation needed for the control problem at hand without
discussing their physical nature.

Hence, we study a material body of volume Ω with the boundary 𝜕Ω. Kinematic
boundary conditions are prescribed such that no rigid body motion can occur. 𝒏 is
the unit normal vector of the boundary pointing outwards. A sketch of the material
body is shown in Fig. 15.1 with applied body forces 𝒃 and surface tractions 𝒕; these
external forces are applied sufficiently slow, such that the solution at any time instant
𝑡 can be approximately computed from equilibrium conditions. The body is assumed
linear elastic with imposed eigenstrains 𝜺∗, to which so-called actuation stresses

𝝈∗ = −C · ·𝜺∗

are assigned, see Mura [8] for the notion of eigenstrains and the original papers by
Nemenyi [5] and Reissner [6] for the equivalent notion of sources of self-stress. With
the elasticity tensor C the constitutive relations are

𝝈 = C · · (𝜺−𝜺∗) = C · ·𝜺 +𝝈∗, (15.1)

Fig. 15.1 Material body under
the action of external forces
and eigenstrains.
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with the symmetric stress tensor 𝝈 and the symmetric linearized strain tensor 𝜺
defined as

𝜺 =
1
2

(
∇𝒖 + (∇𝒖)𝑇

)
= ∇𝒖𝑆; (15.2)

𝒖 is the displacement vector. Now, we turn our attention to the actual static shape
control problem, which we formulate as follows:

Problem 15.1 (Static shape control problem). Static shape control is concerned
with the problem of computing an eigenstrain 𝜺∗, such that the displacement field
of the material body under the action of quasi-static external forces 𝒃 and 𝒕 either
vanishes or is prescribed. In the first problem we talk about zero displacement tracking,
whereas we refer to the second problem as displacement tracking. Eigenstrains are
assumed to be distributed freely within the body without any constraints.

Note, that the zero displacement tracking problem refers to the notion of shape control,
as it has been originally introduced by Haftka and Adelman [1].

15.2.1 Displacement Tracking

To derive a solution of the static shape control problem we start with the equilibrium
and boundary conditions, which are

Ω : ∇ ·𝝈 + 𝒃 = 0,
𝜕Ω𝜎 : 𝝈 · 𝒏 = 𝒕 , 𝜕Ω𝑢 : 𝒖 = 0. (15.3)

Here, we have assumed the boundary to be rigidly supported at 𝜕Ω𝑢 and tractions to
be applied at 𝜕Ω𝜎 . We now seek for the displacement field of the material body to be
prescribed as 𝒖 = 𝒛; note, that 𝒛 must satisfy 𝒛 = 0 at 𝜕Ω𝑢 and it must be kinematically
admissible. Next, we insert the constitutive relation from Eq. (15.1) and the desired
displacement field 𝒖 = 𝒛 into the equilibrium conditions and the dynamic boundary
conditions at 𝜕Ω𝜎 . The result is

Ω : ∇ ·𝝈∗ + 𝒃∗ = 0,
𝜕Ω𝜎 : 𝝈∗ · 𝒏 = 𝒕∗ , 𝜕Ω𝑢 : 𝒛 = 0, (15.4)

with effective body forces 𝒃∗ and surface tractions 𝒕∗ defined as

𝒃∗ = 𝒃 +∇ · (C · ·∇𝒛𝑆) , 𝒕∗ = 𝒕− (C · ·∇𝒛𝑆) · 𝒏. (15.5)

The solution for the displacement tracking problem is:

Lemma 15.1. The displacement field 𝒖 of a material body under external force
loadings 𝒃 and 𝒕 coincides with a desired displacement field 𝒛, if the actuation stress
𝝈∗ = −C · ·𝜺∗ is any statically admissible stress for effective force loadings 𝒃∗ and 𝒕∗.
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The effective force loadings are defined in Eq. (15.5) and the notion statically
admissible stress refers to the equilibrium conditions and the dynamic boundary
conditions at 𝜕Ω𝜎 in Eq. (15.4). If 𝒛 = 0, we have the solution for zero displacement
tracking as a special case of the above solution. Concerning the proof of this solution
we refer to Irschik and Pichler [25] in case of zero displacement tracking and to
Irschik and Krommer [26] for displacement tracking in elastic and viscoelastic
structures. It has been pointed out in the literature, that statically admissible stresses
for given force loadings are in general non unique. Any stress tensor that satisfies

Ω : ∇ ·𝝈∗
nil = 0 , 𝜕Ω𝜎 : 𝝈∗

nil · 𝒏 = 0, (15.6)

when used as an actuation stress produces no displacement in the material body. Such
actuation stresses 𝝈∗

nil and their corresponding eigenstrains

𝜺∗nil = −C−1 · ·𝝈∗
nil

are denoted as nilpotent actuation stresses / nilpotent eigenstrains. They produce no
displacement, but only stresses 𝝈 = 𝝈∗

nil in the material body under consideration.
The notion of nilpotent eigenstrains has been introduced by Irschik and Ziegler [27]
and further discussed by Irschik and Pichler [28]. The inappropriateness of nilpotent
eigenstrains for shape control has been pointed out by Irschik et al. [29].

A simple and straightforward way to compute a particular 𝜺∗ for the displacement
tracking problem is as follows. First, we compute a solution for the displacement 𝒖f
in the absence of eigenstrains from

Ω : ∇ ·𝝈f + 𝒃 = 0,
𝜕Ω𝜎 : 𝝈f · 𝒏 = 𝒕 , 𝜕Ω𝑢 : 𝒖f = 0, (15.7)

with 𝝈f = C · ·𝜺f = C · ·∇𝒖𝑆
f . Then the effective force loadings in Eq. (15.5) are

𝒃∗ = ∇ · (C · ·∇(𝒛−𝒖f)𝑆) , 𝒕∗ = −(C · ·∇(𝒛−𝒖f)𝑆) · 𝒏, (15.8)

and the particular eigenstrain and actuation stress follow to

𝜺∗ = ∇(𝒛−𝒖f)𝑆 , 𝝈∗ = −C · ·∇(𝒛−𝒖f)𝑆 . (15.9)

If we insert this solution of the static shape control problem into the original equi-
librium and dynamic boundary conditions, Eq. (15.3), we derive a homogenous
boundary-value problem for the deviation of the displacement field 𝒖 from the
desired displacement field 𝒛 as

Ω : ∇ ·
(
C · ·∇(𝒖− 𝒛)𝑆

)
= 0,

𝜕Ω𝜎 :
(
C · ·∇(𝒖− 𝒛)𝑆

)
· 𝒏 = 0 , 𝜕Ω𝑢 : 𝒖− 𝒛 = 0, (15.10)
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the unique solution of which can be easily shown to be 𝒖 = 𝒛, see e.g. Gurtin [30].
The stress tensor is

𝝈 = C · · (∇𝒖𝑆 −∇(𝒛−𝒖f)𝑆) = C · ·∇𝒖𝑆
f = 𝝈f , (15.11)

because 𝒖 = 𝒛 holds. Hence, the stress tensor in the problem with external forces 𝒃
and 𝒕 and with the eigenstrain

𝜺∗ = ∇(𝒛−𝒖f)𝑆

is equal to the stress tensor in the problem without the eigenstrain. Indeed, as 𝒛
is kinematically admissible and 𝒖f is an actual displacement, the eigenstrain 𝜺∗ is
compatible, and it therefore does not produce any stress in the material body, but
only a deformation, 𝜺 = 𝜺∗, as long as a quasi-static problem is considered. Such
compatible eigenstrains 𝜺∗ ≡ 𝜺∗imp and their corresponding actuation stress

𝝈∗
imp = −C · ·𝜺∗imp

are denoted as stress-free or impotent eigenstrains and actuation stresses, see
Irschik and Ziegler [27] and Mura [8], who introduced the notion of impotent
eigenstrain. Concerning the unique decomposition of any eigenstrain

𝜺∗ = 𝜺∗imp +𝜺∗nil

into an impotent eigenstrain and a nilpotent eigenstrain we refer to Nyashin et al. [31],
where the orthogonality relation

∫
Ω

𝜺∗imp · ·C · ·𝜺∗nil𝑑Ω = 0 (15.12)

of the two parts has been proven as well.

15.2.2 Numerical Example

Without any loss of generality, we compute numerical results for a plane stress
problem only. As a particular problem, we consider the plane problem as shown in
Fig. 15.2. The material is assumed isotropic, such that the plane stress constitutive
relation is

𝝈 = 𝑌𝜈(tr𝜺e)𝐼𝐼𝐼 +𝑌 (1− 𝜈)𝜺e, (15.13)

with the elastic part of the strain tensor

𝜺e = 𝜺−𝜺∗.
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Fig. 15.2 Plane stress prob-
lem.
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is the plane stress Young’s modulus, with Young’s modulus 𝐸 and the Poisson ratio
𝜈. Parameters for the numerical solution are given in Table 15.1.

First we solve the problem in the absence of any eigenstrain. Figure 15.3 shows
the deformed configuration; in the left plot the norm of the strain tensor

‖𝜺f ‖ =
√
𝜺f · ·𝜺f

is plotted, whereas the right plot presents the von Mises stress 𝝈v,f . Now, we set 𝒛 = 0
for zero displacement tracking. With the solution 𝒖f of the force problem at hand, we
compute the impotent eigenstrain

Table 15.1: Parameters for example problem.

𝐸/Nm2 𝜈/1 𝑎/m 𝑝0/Nm−2

210× 109 0.3 1× 10−2 1× 109

0.000e+00                 1.550e-02                   3.100e-02                    4.650e-02                 6.200e-02   0.000e+00                 3.125e+09                 6.250e+09                   9.375e+09               1.250e+10

Fig. 15.3: Deformed configuration under pure force loading: Norm of strain tensor ‖𝜺f ‖ (left) and
von Mises stress 𝝈v,f (right).
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𝜺∗imp = −𝜺f = −∇𝒖𝑆
f ,

which is applied to the material body together with the original force loading. As
before, we show the deformed configuration in Fig. 15.4, with the norm of the strain
tensor ‖𝜺‖ in the left plot, and the von Mises stress 𝝈v in the right plot. Obviously,
no deformation occurs (note the color scheme in the left plot), as 𝜺∗imp produces a
deformation, which is the negative of the force induced one. In contrast, as we use
an impotent eigenstrain, the stress is identical to the one in the previous case without
actuation. As the desired displacement 𝒛 = 0 is zero, zero displacement tracking is
exactly achieved within the context of a numerical finite element solution. Concerning
the numerical solution, we used standard vector-valued third order displacement ele-
ments implemented in the open-source software package Netgen/NGSolve available
at https://ngsolve.org.

Next, we introduce a non-zero displacement 𝒛 as

𝑧𝑥 = 0 , 𝑧𝑦 = −𝑎 4𝑥−15𝑦
15𝑎− 𝑥

− 𝑦; (15.14)

this particular displacement field maps our original domain from Fig. 15.2 into
a rectangular domain with dimensions 5𝑎 × 3𝑎. The Cartesian coordinates of the
corresponding strain tensor ∇𝒛𝑆 are

𝜀𝑥𝑥 =
𝜕𝑧𝑥
𝜕𝑥

= 0 , 𝜀𝑦𝑦 =
𝜕𝑧𝑦

𝜕𝑦
=

15𝑎
15𝑎− 𝑥

−1,

𝜀𝑥𝑦 =
1
2

(
𝜕𝑧𝑥
𝜕𝑦

+ 𝜕𝑧𝑦

𝜕𝑥

)
=
−4𝑎(15𝑎− 𝑥) − 𝑎(4𝑥−15𝑦)

2(15𝑎− 𝑥)2 . (15.15)

Results for applying an impotentent eigenstrain

𝜺∗imp = ∇(𝒛−𝒖f)𝑆

0.000e+00                 1.550e-02                   3.100e-02                    4.650e-02                 6.200e-02   0.000e+00                 3.125e+09                 6.250e+09                   9.375e+09               1.250e+10

Fig. 15.4: Deformed configuration under combined force loading and eigenstrain for zero
displacement tracking: Norm of strain tensor ‖𝜺‖ (left) and von Mises stress 𝝈v (right).

https://ngsolve.org
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together with the original force loading are shown in Fig. 15.5. The deformed
configuration corresponds to the prescribed displacement field 𝒛, the strain is 𝜺 = ∇𝒛𝑆
and the stress is again the original load stress. Hence, displacement tracking with
𝒖 = 𝒛 is achieved without changing the stress distribution.

15.3 Static Shape Control of Sub-Domains

After our brief introduction into static shape control for a whole material body, we
turn our attention to the actual topic of this paper - static shape control of sub-domains
of material bodies. Based on our previous research on this topic, see [20–24], which
was targeting systems of structural mechanics, such as beams and plates, we present
an approach, which is applicable to arbitrarily shaped three-dimensional material
bodies with arbitrarily shaped sub-domains, and compute numerical solutions for
plane stress problems.

We introduce a sub-domain Ωs within the material body, in which an eigenstrain or
its corresponding actuation stress is applied. In the domainΩo =Ω\Ωs no eigenstrain
is applied. Again, body forces 𝒃 and surface tractions 𝒕 are applied and kinematic
boundary conditions prevent a rigid body motion of the material body. A sketch is
presented in Fig. 15.6.

15.3.1 Strain Tracking

It is near at hand to ask, whether displacement tracking with an arbitrary prescribed
𝒛 can be achieved within a sub-domain, if the eigenstrain is only applied to the sub-
domain. As was already shown in our previous research, see the references on shape
control of sub-domains above, this is not possible. Only the strain in the sub-domain

0.000e+00                 1.588e-01                   3.175e-01                    4.763e-01                 6.350e-01   0.000e+00                 3.125e+09                 6.250e+09                   9.375e+09               1.250e+10

Fig. 15.5: Deformed configuration under combined force loading and eigenstrain for displacement
tracking: Norm of strain tensor ‖𝜺‖ (left) and von Mises stress 𝝈v (right).
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Fig. 15.6 Material body under
the action of external forces
and eigenstrains applied in the
sub-domain Ωs only.
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Ωs can be controlled, if the eigenstrain is only applied in this sub-domain. Therefore,
we discuss the following static shape control problem:

Problem 15.2 (Static shape control problem of sub-domains #1). Static shape
control of sub-domains is concerned with the problem of computing an eigenstrain
𝜺∗ acting within the sub-domain Ωs, such that the strain field of the material body
under the action of external forces either vanishes or is prescribed within the sub-
domain. In the first problem we talk about zero strain tracking, whereas we refer to
the second problem as strain tracking of sub-domains. Eigenstrains are assumed to
be distributed freely within the sub-domain without any constraints.

We denote the desired strain field in the sub-domain as 𝜻 , which must be compatible
∇× 𝜻 ×∇ = 0. Therefore, we can compute the corresponding displacement field in
the sub-domain as

𝒛 = 𝒛0 +𝒖𝐴+𝝎× 𝒓𝑃𝐴. (15.16)

𝐴 is a given point in the sub-domain and 𝒖𝐴 is its displacement vector. 𝒓𝑃𝐴 is a vector
pointing from the point 𝐴 to an arbitrary point of the sub-domain and 𝝎 is the rigid
body rotation of the sub-domain. 𝒛0 is a displacement field with the desired strain
tensor as its corresponding strain tensor 𝜻 = ∇𝒛𝑆0 . To compute 𝝈∗ = −C · ·𝜺∗ acting
within the sub-domain Ωs, such that the strain tensor within Ωs is 𝜺 = 𝜻 , we apply a
two step procedure. In the first step, we only consider the outer domain Ωo, which
is not actuated. Forces 𝒃 and 𝒕 are acting, kinematic boundary conditions prevent
a rigid body motion of the whole material body and the displacement at the inner
surface 𝜕Ωs is prescribed as 𝒖o = 𝒛; we denote the displacement vector in the outer
domain as 𝒖o. The boundary value problem for 𝒖o is

Ωo : ∇ ·𝝈o + 𝒃 = 0,
𝜕Ω𝜎 : 𝝈o · 𝒏 = 𝒕 , 𝜕Ω𝑢 : 𝒖o = 0 , 𝜕Ωs : 𝒖o = 𝒛, (15.17)
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with the constitutive relation 𝝈o =C · ·𝜺o and the strain tensor 𝜺o =∇𝒖𝑆
o . As 𝒛 depends

on the unknown rigid body motion through the six rigid body degrees of freedom
𝒖𝐴 and 𝝎, six additional conditions are needed to compute the solution. These are

𝑹 =
∫
Ωs

𝒃𝑑Ω+
∫
𝜕Ωs

𝝈o · 𝒏s𝑑𝑆 = 0,

𝑴 (𝐴) =
∫
Ωs

𝒓𝑃𝐴× 𝒃𝑑Ω+
∫
𝜕Ωs

𝒓𝑃𝐴× (𝝈o · 𝒏s)𝑑𝑆 = 0; (15.18)

the resulting force 𝑹 and moment 𝑴 (𝐴) acting on the sub-domain Ωs must be
equilibriated. The result of the first step is the displacement field 𝒖o, the corresponding
strain tensor 𝜺o = ∇𝒖𝑆

o and the stress tensor 𝝈o = C · ·𝜺o. In the second step, we
consider the actuated sub-domain only. At 𝜕Ωs surface tractions 𝒕s = 𝝈o · 𝒏s are
applied, within the sub-domain 𝒃 is acting together with an eigenstrain 𝜺∗. The
corresponding boundary value problem is

Ωs : ∇ ·𝝈s + 𝒃 = 0,
𝜕Ωs : 𝝈s · 𝒏s = 𝒕s, (15.19)

with the constitutive relation 𝝈s = C · · (𝜺s − 𝜺∗) and the strain tensor 𝜺s = ∇𝒖𝑆
s . As

we are discussing strain tracking within the sub-domain, the strain tensor in the
sub-domain is actually known as 𝜺s = 𝜻 = ∇𝒛𝑆0 . Therefore, we have the problem

Ωs : ∇ ·𝝈∗ + 𝒃∗ = 0,
𝜕Ωs : 𝝈∗ · 𝒏s = 𝒕∗, (15.20)

with the actuation stress 𝝈∗ = −C · ·𝜺∗, and effective force loadings

𝒃∗ = 𝒃 +∇ · (C · ·∇𝒛𝑆0 ) , 𝒕∗ = 𝒕s − (C · ·∇𝒛𝑆0 ) · 𝒏s. (15.21)

Obviously, this is formally a displacement tracking problem, as we have introduced
it in Eqs. (15.4) and (15.5). Therefore, the solution is

𝜺∗ = ∇(𝒛0 − �̄�f)𝑆 = 𝜻 −∇�̄�𝑆
f = −C−1 · ·𝝈∗, (15.22)

with �̄�f as the solution of the boundary value problem

Ωs : ∇ · �̄�f + 𝒃 = 0,
𝜕Ωs : �̄�f · 𝒏s = 𝒕s, (15.23)

with �̄�f = C · ·∇�̄�𝑆
f . As 𝒃 and 𝒕s are equilibriated, we only need to prevent the sub-

domain from any rigid motion for the numerical solution. Finally, the stress in the
actuated sub-domain Ωs is 𝝈s = C · · (𝜺s −𝜺∗), and with 𝜺s = 𝜻 and 𝜺∗ = 𝜻 −∇�̄�𝑆

f we
find
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𝝈s = C · · (𝜺s −𝜺∗) = C · ·∇�̄�𝑆
f = �̄�f . (15.24)

Therefore, 𝜺∗ = 𝜻 −∇�̄�𝑆
f does not produce any stress in addition to the stress �̄�f of

the force problem for the sub-domain defined in Eq. (15.23).

15.3.1.1 Variational Formulation

Computing �̄�f from Eq. (15.23) is straighforward; it respresents a standard static
problem for a linear elastic body under the action of given external forces in a
geometrically linear regime, which can be solved numerically with standard finite
elements. In contrast, the computation of the solution for 𝒖o in the outer domain Ωo
and the rigid body motion 𝒖𝐴 and 𝝎 is not straightforward. Therefore, we introduce
the variational formulation of the problem as the basis for a numerical solution. We
start with the principle of virtual work for the whole body in the form

∫
Ω

𝒃 · 𝛿𝒖𝑑Ω+
∫

𝜕Ω𝜎

𝒕 · 𝛿𝒖𝑑𝑆−
∫
Ω

𝝈 · ·𝛿∇𝒖𝑆𝑑Ω = 0. (15.25)

Now, we split the volume integrals into two parts; one integrating over the outer
domain and one integrating over the sub-domain. Moreover,we introduce the variation
of the displacement vector 𝛿𝒖s in the sub-domain as

𝛿𝒖s = 𝛿𝒛 = 𝛿(𝒛0 +𝒖𝐴+𝝎× 𝒓𝑃𝐴) = 𝛿𝒖𝐴+ 𝛿𝝎× 𝒓𝑃𝐴; (15.26)

as 𝒛0 is prescribed, 𝛿𝒛0 = 0 holds. Therefore, the virtual work of the internal forces in
the sub-domain vanishes. Finally, the constraint that the displacement vector at 𝜕Ωs
must be continuous,

𝒖o |𝜕Ωs = 𝒛0 |𝜕Ωs +𝒖𝐴+𝝎× 𝒓𝑃𝐴 |𝜕Ωs (15.27)

is accounted for by augmenting the principle of virtual work with

𝛿𝐶 =
∫
𝜕Ωs

𝛿 [𝝀 · (𝒛0 +𝒖𝐴+𝝎× 𝒓𝑃𝐴−𝒖o)] 𝑑𝑆; (15.28)

𝝀 is a vector-valued Lagrange multiplier. The final form of the variational formulation
is

0 =
∫
Ωo

𝒃 · 𝛿𝒖o𝑑Ω+
∫

𝜕Ω𝜎

𝒕 · 𝛿𝒖o𝑑𝑆−
∫
Ωo

𝝈o · ·𝛿∇𝒖𝑆
o 𝑑Ω−

∫
𝜕Ωs

𝛿 [𝝀 ·𝒖o] 𝑑𝑆

+ 𝛿𝒖𝐴 ·
∫
Ωs

𝒃𝑑Ω+ 𝛿𝝎 ·
∫
Ωs

𝒓𝑃𝐴× 𝒃𝑑Ω+
∫
𝜕Ωs

𝛿 [𝝀 · (𝒛0 +𝒖𝐴+𝝎× 𝒓𝑃𝐴)] 𝑑𝑆. (15.29)
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Introducing proper FE spaces for 𝒖o and 𝝀, the problem can be discretized and a
numerical solution for 𝒖o, 𝝀, 𝒖𝐴 and 𝝎 can be computed.

On the other hand, we can derive the strong form of the problem from the
variational principle as well. From the variation 𝛿𝝀 of the Lagrange multiplier, we
recover the continuity of the displacement vector at 𝜕Ωs

𝜕Ωs : 𝒖o = 𝒛0 +𝒖𝐴+𝝎× 𝒓𝑃𝐴 = 𝒛, (15.30)

and the variation of the displacement vector in the outer domain 𝛿𝒖o results into

Ωo : ∇ ·𝝈o + 𝒃 = 0,
𝜕Ω𝜎 : 𝝈o · 𝒏 = 𝒕 and 𝜕Ωs : 𝝀 = 𝝈o · 𝒏s; (15.31)

the last relation identifies the Lagrange multiplier as the traction 𝒕s = 𝝈o · 𝒏s acting
on the sub-domain. Finally, the variations of the rigid body degrees of freedom 𝛿𝒖𝐴

and 𝛿𝝎 recover the equilibrium conditions for the sub-domain as

𝑹 =
∫
Ωs

𝒃𝑑Ω+
∫
𝜕Ωs

𝝀𝑑𝑆 = 0,

𝑴𝐴 =
∫
Ωs

𝒓𝑃𝐴× 𝒃𝑑Ω+
∫
𝜕Ωs

𝒓𝑃𝐴×𝝀𝑑𝑆 = 0. (15.32)

Therefore, the variational formulation is identical to our previous formulation in
Eqs. (15.17) and (15.18).

15.3.1.2 Numerical Example

We consider the same example problem as before, but with the actuation applied
only within a rectangular sub-domain, see Fig. 15.7. The center of the rectangle
is located at 𝑥 = 1.2𝑎 and 𝑦 = 0, and the dimension is 1.6𝑎 × 1.5𝑎 in 𝑥 and 𝑦
directions. In the numerical scheme, it proves more efficient to enforce the kinematic
constraint Eq. (15.27) directly through an appropriate choice of six displacement
ansatz functions representing the six degrees of freedom of the rigid body motion
of Ωs. These functions are added to the set of nodal basis functions associated to
nodes outside Ωs. They are constructed as a linear combination of shape functions
associated to nodes in Ωs including its boundary nodes in such a way that a rigid
body motion is achieved in Ωs – this can be done exactly for any classical set of
finite element shape functions. Note that in doing so, these additional functions
are kinematically admissible, as they extend naturally to the outer domain Ωo by
using the according finite element shape functions of boundary nodes on 𝜕Ωo. In
case of a prescribed strain different from zero, the displacement component 𝒛0 has
to be treated in a similar manner, and will contribute to the residual vector of the
ensuing finite element problem. Once a finite element solution is computed, interface
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Fig. 15.7 Plane stress problem
with rectangular sub-domain
Ωs.
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tractions 𝝀 = 𝒕s are computed as reaction forces that appear in the residual vector for
the boundary nodes on 𝜕Ωs.

First, we show the solution without an actuation in Fig. 15.8, which is identical to
the one before. The reason for re-presenting this solution is to show the deformation,
the strain and the stress of the rectangular sub-domain, if no eigenstrain is applied.
The only difference to the previous result for this force problem is the fact that we
use an unstructured mesh with triangles in order to mesh the sub-domain and to use
a fine mesh in the corners.

Now, we consider the case of zero strain tracking with 𝜻 = 0, for which we compute
the eigenstrain as 𝜺∗ =−∇�̄�𝑆

f . Note that in the context of strain tracking of sub-domains
�̄�f is not the displacement vector in the problem under pure force loading that is
shown in Fig. 15.8, but �̄�f is the solution of Eq. (15.23). Numerical results are shown
in Fig. 15.9. In the left plot the norm of the strain tensor ‖𝜺‖ is presented; indeed,
the strain is zero in the rectangular sub-domain 𝜺 = 𝜻 = 0, such that the goal of zero
strain tracking is exactly reached. The von Mises stress is shown in the right plot.
In contrast to zero displacement tracking with an eigenstrain applied in the whole
domain Ω, the stress distribution changes compared to the case no eigenstrain is

0.000e+00                 1.550e-02                   3.100e-02                    4.650e-02                 6.200e-02   0.000e+00                 3.125e+09                 6.250e+09                   9.375e+09               1.250e+10

Fig. 15.8: Deformed configuration under pure force loading: Norm of strain tensor ‖𝜺f ‖ (left) and
von Mises stress 𝝈v,f (right).
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0.000e+00                 1.550e-02                   3.100e-02                    4.650e-02                 6.200e-02   0.000e+00                 3.125e+09                 6.250e+09                   9.375e+09               1.250e+10

Fig. 15.9: Deformed configuration under combined force loading and eigenstrain for zero strain
tracking with 𝜻 = 0: Norm of strain tensor ‖𝜺‖ (left) and von Mises stress 𝝈v (right).

applied. The displacement in the sub-domain is not zero, but it represents a rigid
body motion.

We proceed to the case of tracking a non-zero strain. In particular, we seek to
deform the rectangular sub-domain such that the rectangle is transformed into a
rhombus with side length 1.5𝑎 and angles 90◦ ± 𝛾; the prescribed strain tensor is
𝜻 = 𝜀𝑥𝑥𝒆𝑥𝒆𝑥 + 𝜀𝑥𝑦 (𝒆𝑥𝒆𝑦 + 𝒆𝑦𝒆𝑥) with

𝜀𝑥𝑥 = − 1
16

, 𝜀𝑥𝑦 =
𝛾

2
= − 1

20
. (15.33)

The eigenstrain is computed as 𝜺∗ = 𝜻 −∇�̄�𝑆
f , in which �̄�f is the solution of Eq. (15.23).

We refer to this problem a shear strain tracking. Numerical results for ‖𝜺‖ and 𝝈v
are shown in Fig. 15.10. In the left plot one can see the rhombus and the constant
strain in the sub-domain. The von Mises stress in the right plot shows a significant
increase compared to the case of zero strain tracking.

Finally, the norm of the eigenstrain ‖𝜺∗‖ for both problems, zero strain tracking
and shear strain tracking is presented in Fig. 15.11. Likewise to the von Mises stress,

0.000e+00                 3.000e-02                   6.000e-02                    9.000e-02                 1.200e-01   0.000e+00                 7.500e+09                 1.500e+10                   2.250e+10               3.000e+10

Fig. 15.10: Deformed configuration under combined force loading and eigenstrain for shear strain
tracking with 𝜻 = 𝜀𝑥𝑥𝒆𝑥𝒆𝑥 + 𝜀𝑥𝑦 (𝒆𝑥𝒆𝑦 +𝒆𝑦𝒆𝑥 ): Norm of strain tensor ‖𝜺 ‖ (left) and von Mises
stress 𝝈v (right).
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0.000e+00                 4.375e-02                   8.750e-02                    1.312e-01                 1.750e-01   0.000e+00                1.250e-01                   2.500e-01                   3.750e-01                 5.000e-01

Fig. 15.11: Deformed configuration under combined force loading and eigenstrain: Norm of
eigenstrain tensor ‖𝜺∗ ‖ for zero strain tracking (left) and for shear strain tracking (right).

the eigenstrain is significantly higher for shear strain tracking than for zero strain
tracking.

15.3.2 Displacement Tracking

So far we have been discussing strain tracking within sub-domains only. Therefore,
only the strain was prescribed in the sub-domain Ωs, in which the eigenstrain was
applied. As a result we were not able to control the rigid-body motion of the sub-
domain. If for some reason, it is imperative to fully control the displacement of the
sub-domain Ωs, we must add a so-called interface domain Ωi enclosing the sub-
domain Ωs, and apply the eigenstrain within Ωi ∪Ωs. A sketch of the problem is
shown in Fig. 15.12. The resulting static shape control problem is stated as follows:

Fig. 15.12 Material body
under the action of external
forces and eigenstrains applied
in the sub-domain Ωs and in
the interface domain Ωi.
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σ∗ = −C · · ε∗
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Ωi
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Problem 15.3 (Static shape control problem of sub-domains #2). Static shape
control of sub-domains is concerned with the problem of computing eigenstrains 𝜺∗
acting within an extended sub-domain Ωs∪Ωi, such that the displacement field of the
material body under the action of external forces either vanishes or is prescribed within
the sub-domain Ωs. In the first problem we talk about zero displacement tracking,
whereas we refer to the second problem as displacement tracking of sub-domains.
Eigenstrains are assumed to be distributed freely within the extended sub-domain
without any constraints.

The solution to this particular shape control problem is actually straightforward. First,
we solve a purely elastic problem without any eigenstrain, but only with applied forces
𝒃 and 𝒕 in the whole domain of the material body Ω = Ωs ∪Ωi ∪Ωo, from which
we obtain the displacement field 𝒖f . Then, we recall the solution of displacement
tracking for the whole material body. The desired displacement is chosen as 𝒛 = 𝒖f in
Ωo and as an arbitrary displacement field within Ωs ∪Ωi, which satisfies 𝒛 |𝜕Ωi = 𝒖f .
The solution of this displacement tracking problem for the whole material body is

𝜺∗ = ∇(𝒛−𝒖f)𝑆; (15.34)

the corresponding proof was given in Sec. 2. No eigenstrain must be applied within
Ωo, because 𝒖 = 𝒛 = 𝒖f holds in Ωo. As the eigenstrain is impotent 𝜺∗ = 𝜺∗imp, the
stress is equal to the stress in the purely elastic problem without any eigenstrain,
𝝈 = 𝝈f = C · ·∇𝒖𝑆

f .

15.3.2.1 Optimization

Finally, we discuss the choice of 𝒛 in the actuated domain. We denote the desired
displacement in the interface domain as 𝒛 = 𝒛i and in the sub-domain as 𝒛 = 𝒛s. In the
zero displacement tracking problem we have 𝒛s = 0 and in the displacement tracking
problem 𝒛s can be chosen sufficiently free as long as it is kinematically admissible.
With 𝒛s prescribed, 𝒛i must satisfy the two conditions

𝒛i |𝜕Ωi = 𝒖f |𝜕Ωi and 𝒛i |𝜕Ωs = 𝒛s |𝜕Ωs ; (15.35)

𝒖f still refers to the displacement vector in the force problem without eigenstrains.
Within the interface domain Ωi, we seek to find an eigenstrain of smallest maximal
absolute value,

sup
𝒙∈Ωi

‖𝜺∗(𝒙)‖ = ‖𝜺∗‖𝐿∞ → min . (15.36)

Above, ‖𝜺∗(𝒙)‖ =
√
𝜺∗(𝒙) · ·𝜺∗(𝒙) denotes the local Frobenius norm of a tensor as

introduced earlier, while ‖𝜺∗‖𝐿∞ is the Lebesgue norm for the function space 𝐿∞(Ωi).
As the condition in Eq. (15.36) is not differentiable, we resort to minimizing the 𝐿𝑝

norm ‖𝜺∗‖𝐿𝑝 for large 𝑝 � 2. This implies a choice of 𝜺∗ = ∇�̃�𝑆 such that �̃� = 𝒛i −𝒖f
respects the boundary conditions �̃� |𝜕Ωi = 0 and �̃� |𝜕Ωs = (𝒛s −𝒖f) |𝜕Ωs , and further
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‖𝜺∗‖ 𝑝𝐿𝑝
=
∫
Ωi

‖𝜺∗‖ 𝑝𝑑Ω =
∫
Ωi

‖∇�̃�𝑆 ‖ 𝑝𝑑Ω→ min . (15.37)

For 𝑝 ≠ 2, the above optimization problem requires the numerical solution of a
non-linear system of equations. Otherwise, the numerical solution for displacement
tracking of sub-domains is straightforward, as it only requires the computation of the
solution 𝒖f of a linear elastic problem with external forces.

15.3.2.2 Numerical Example

We stick to our previous example. The sub-domain Ωs is chosen as a slightly
smaller rectangle with its center located at 𝑥 = 1.2𝑎 and 𝑦 = 0 and with dimensions
1.2𝑎×1.1𝑎 in 𝑥 and 𝑦 directions. The interface domain surrounds the sub-domain
and its thickness is ℎ = 0.3𝑎. For a sketch see Fig. 15.13. We only consider the
case of zero displacement tracking 𝒛s = 0 within Ωs. The stress tensor is identical to
the one we computed for the force problem in Secs. 2 and 3, see the right plots in
Figs. 15.3 and 15.8. The deformed configuration under applied forces and eigenstrains
is shown in Fig. 15.14. The norm of the strain tensor is plotted; in the left plot for the
case of minimizing ‖𝜺∗‖𝐿2 and in the right plot for the case of minimizing ‖𝜺∗‖𝐿16 ;
𝑝 = 16 has been chosen, as for any 𝑝 > 16 the computed solution did not improve
any more, but convergence of the damped Newton iteration deteriorates for larger
values of 𝑝. Due to the large strains in the interface domain, the strain in the outer
domain appears to be close to zero; in reality, it is just much smaller than in the
interface domain and therefore, its distribution is not resolved with the color scheme
that was chosen to resolve the distribution in the interface domain. However, the
strain in the outer domain is identical to the uncontrolled case, which has already
been presented in Figs. 15.3 and 15.8. The corresponding eigenstrains are shown in
Fig. 15.15. Obviously, the results for 𝑝 = 2 and 𝑝 = 16 are significantly different. To
quantify this difference, we compute the mean value of the norm of the eigenstrain

Fig. 15.13 Plane stress prob-
lem with rectangular sub-
domain Ωs, interface-domain
Ωi and outer domain Ωo.
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Fig. 15.14: Deformed configuration: Norm of strain tensor ‖𝜺 ‖ for minimizing ‖𝜺∗ ‖𝐿2 (left) and
for minimizing ‖𝜺∗ ‖𝐿16 (right).

0.000e+00                 7.500e-02                   1.500e-01                    2.250e-01                 3.000e-01   0.000e+00                7.500e-02                   1.500e-01                   2.250e-01                 3.000e-01

Fig. 15.15: Deformed configuration: Norm of eigenstrain ‖𝜺∗ ‖ for minimizing ‖𝜺∗ ‖𝐿2 (left) and
for minimizing ‖𝜺∗ ‖𝐿16 (right).

in the interface domain; when using the mesh displayed in Fig. 15.15, a maximum
of ‖𝜺∗‖ = 0.739 is observed for 𝑝 = 2, whereas for 𝑝 = 16 we have the maximum
‖𝜺∗‖ = 0.301. Finally, Fig. 15.16 shows the norm ‖𝒖‖ of the displacement vector for
the two cases 𝑝 = 2 and 𝑝 = 16. The displacement is zero in the sub-domain, in the

0.000e+00                 8.750e-04                   1.750e-03                    2.625e-03                 3.500e-03   0.000e+00                8.750e-04                   1.750e-03                   2.625e-03                 3.500e-03

Fig. 15.16: Deformed configuration: Norm of displacement vector ‖𝒖 ‖ for minimizing ‖𝜺∗ ‖𝐿2
(left) and for minimizing ‖𝜺∗ ‖𝐿16 (right)..



262 Michael Krommer, Astrid S. Pechstein, and Hans Irschik

outer domain it is identical to the one in the problem without an eigenstrain and in
the interface domain it smoothly transitions from the one in the outer domain to zero.
The goal of zero displacement tracking of sub-domains is achieved exactly.
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Chapter 16
Flexural Deformations and Vibrations of a
Three-Layer Beam-Strip with a Stiff Core and
Soft Skins

Gennadi Mikhasev, Marina Botogova, and Nguyen Le

Abstract The paper deals with the asymptotic derivation of governing equations
predicting long-wave flexural response of a three-layer beam-strip with high-contrast
mechanical properties. It is assumed that the material of each layer is isotropic,
the core being stiff and the outer layers being soft. In the general case, the soft
layers material can be considered as visco-elastic with the complex Young’s and
shear moduli. Three dimensionless parameters, the thickness-to-wavelength ratio,
and ratios of the Young’s moduli of soft and stiff layers are introduced as the small
parameters with the first being assumed as the main parameter. The procedure of
asymptotic step-by-step integration of the two-dimensional equations with respect
to the transverse coordinate is proposed. Considering the first two approximations
resulted in the novel one-dimensional Timoshenko-Reissner type differential equation
taking into account shears in the stiff core and the deformations in the axial and
transverse directions in the soft outer layers. The two examples on free low-frequency
vibrations of three- and two-layer beam-strip with the simply supported edges are
considered. In particular, the effect of a magnetorheological elastomer attached to an
elastic strip on the natural frequencies and corresponding decrements under different
intensity of the applied magnetic field is examined.
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16.1 Introduction

Thin-walled sandwich beams and plates assembled from laminae with contrasting
mechanical and geometrical properties are intensively used as important elements in
various engineering structures [1–4] as well as components of lightweight vehicles
and building constructions [5, 6]. In particular, windscreens of up-to-date cars,
windowpanes and photovoltaic panels are usually designed as three layer structures [3,
7–11]. Such sandwiches typically consists of a thin stiff and heavy facings as compared
with the core. For instance, sandwich glasses have two stiff glass outer layers and
relatively soft polymeric core [3, 12]. Another and rarer variant of a sandwich structure
with high contrast properties is when the facing is much softer than the interlayer.
An example of such laminate is a dust-covered precipitator plate being an important
part of the gas filters [2].

There are not many papers considering bending sandwiches with contrast mechan-
ical constants. All these studies can be conditionally subdivided into two main groups.
Papers of the first group are based on engineering approaches and/or the introduction
of kinematic hypotheses [8, 10, 12]. In particular, [12] considered a three-layer beam
with the thick glass facings and the very thin thermoplastic (polyvinyl butyral) core;
assuming the classical Bernoulli-Euler (BE) hypotheses for the outer stiff layers and
introducing transverse shear only for the soft core, they derived three coupled differ-
ential equations with respect to the lateral and axial displacements. In paper by [8],
the direct approach [13, 14] and the first order shear deformation plate theory were
used for the analysis of bending of three-layer plates with both thin and thick soft core.
The multiscale method with the finite element simulation has been utilized by [10]
for the coupled global-local structural analysis of photovoltaic modules consisting
of symmetric three-layered composite panels. Among many works, we mention also
the papers by [15, 16], where the equivalent single-layer shell theory based on the
generalised hypotheses of Timoshenko [17] was applied under studying free and
forced vibrations of thin-walled structures consisting of stiff elastic layers and soft
layers made of magneto- and electro-rheological composites.

Papers composing the second group are based on using the asymptotic approach
which seems to be natural and very effective for analysing the dynamics of thin-walled
layered structures with high contrast properties. The majority of these studies are
devoted to the asymptotic analysis of the dispersion relations corresponding to the
plane anti-symmetric [18, 19] and antiplane shear waves [20–22] in layered plates
with contrast properties. Using the asymptotic procedure, [23] derived the dispersion
equations corresponding to the wave motion of thin multi-layered structures composed
of contrasting “strong" and “weak" layers. And in papers by [24] and [25], the
Saint-Venant’s principle in combination with the asymptotic approach taking into
account the contrast in mechanical properties of the laminae were used to derive the
asymptotically correct boundary conditions.

As for the derivation of asymptotically correct governing equations for layered
structures with high-contrast properties, there are few works on the subject. Here,
we mention the noticeable contribution by Tovstik and co-authors. Averaging the
elastic moduli over the plate thickness, without focusing on their distribution in the
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transverse direction, [26, 27] developed the procedure of asymptotic integration of
2D/3D equations of elasticity in the thickness direction and proposed the equivalent
single layer model, which can be treated as the generalized Timoshenko-Reissner (TR)
type model. Compared to the conventional BE, Kirchhoff-Love (KL) and TR models,
the generalized TR model can be used for the prediction of bending deformations
and vibrations of both functionally graded in the transverse direction and laminated
beams/plates with the relatively large ratio between elastic moduli of layers [28–32].
In contrast to the above contributions, [33] and [34] introduced the ratios of moduli
for soft and stiff layers as the additional small parameters. At that, [33] proposed a
variational-asymptotic method that allows one to obtain various variational models
of sandwiches depending on the assumed types of deformations of the soft core
and hard facings, and [34] developed the asymptotic procedure [27, 35] for the step-
by-step integration of the original 2D equations that makes it possible constructing
hierarchical models for a two-layer beam strip with the high contrast mechanical
properties.

In this paper, we generalize the approach developed in [34] for the three-layer
beam-strip with a stiff core and soft skins. We restrict ourselves with the case of the
high contrast mechanical constants of isotropic layers. In general, the material of outer
soft layers may be viscoelastic. Considering the first two approximations, we derive
the governing equation corresponding to the Timoshenko-Reissner model capturing
the shear effects in the hard core and accounting for the transverse and longitudinal
deformations in soft facings with their inertias. As examples, free low-frequency
vibrations of three- and two-layered beam-strip assembled from high contrast material
are considered. Particularly, the effect of viscoelastic magnetorheological elastomer
attached to the hard ABS-plastic layer on the natural frequencies and decrement of
free vibrations at different values of the applied magnetic field induction is analysed.

16.2 Statement of the Problem

We consider a three-layer strip consisting of an isotropic elastic stiff core and two
isotropic relatively soft facings rigidly attached to the core. Let ℎ𝑘 be layer thickness,
𝜆𝑘 , 𝜇𝑘 be the Lamé constants, and 𝜌𝑘 are material densities of layers, where subscripts
𝑘 = 1,3 and 𝑘 = 2 correspond to the facings and core, respectively. In general, the
material of outer layers may be considered as viscoelastic with the material constants
𝜆 𝑗 , 𝜇 𝑗 being complex for 𝑗 = 1,3. The peculiarity of the problem under consideration
is that

|𝜆 𝑗 | ≪ 𝜆2, |𝜇 𝑗 | ≪ 𝜇2

for 𝑗 = 1,3.
The local coordinate systems 𝑂𝑘𝑥𝑘𝑦𝑘 are introduced as shown in Fig. 16.1 with

𝑥1 = 𝑥2 = 𝑥3 = 𝑥 and 0 ≤ 𝑦𝑘 ≤ ℎ𝑘 . Let the beam-strip be under action of the body
forces F𝑘 =

(
𝑓 (𝑘 )1 , 𝑓 (𝑘 )2

)
, where 𝑓 (𝑘 )𝜍 (𝑥𝑘 , 𝑦𝑘) are functions of the longitudinal and

transverse coordinates 𝑥𝑘 , 𝑦𝑘 . Possible external forces acting at the soft facings are



268 Gennadi Mikhasev, Marina Botogova, and Nguyen Le

assumed to be weak and ignored in our study. The 2D equations for each layer read

Fig. 16.1 Three-layer beam-
strip under body forces. Coor-
dinate systems.
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𝜕𝑠 (𝑘 )11
𝜕𝑥

+ 𝜕𝑠
(𝑘 )
12

𝜕𝑦𝑘
−𝜌𝑘

𝜕2𝑢 (𝑘 )1
𝜕𝑡2

+ 𝑓 (𝑘 )1 = 0,
𝜕𝑠 (𝑘 )21
𝜕𝑥

+ 𝜕𝑠
(𝑘 )
22

𝜕𝑦𝑘
−𝜌𝑘

𝜕2𝑢 (𝑘 )2
𝜕𝑡2

+ 𝑓 (𝑘 )2 = 0, (16.1)

where 𝑠 (𝑘 )𝑖 𝑗 are components of the stress tensor in the 𝑘 𝑡ℎ layer under the plane stress
state, and 𝑢 (𝑘 )1 , 𝑢 (𝑘 )2 are the longitudinal and transverse displacements. The material
for each layer is assumed to be isotropic and obeys the classical Hooke’s law

𝑠 (𝑘 )𝑖 𝑗 = 𝜆𝑘𝑒
(𝑘 )
𝑖𝑖 𝛿𝑖 𝑗 +2𝜇𝑘𝑒 (𝑘 )𝑖 𝑗 , (16.2)

where 𝑒 (𝑘 )𝑖 𝑗 are linear components of the strain tensor.
Let Y = ℎ/𝑙 be a small parameter, where ℎ = ℎ1 + ℎ2 + ℎ3 is the total thickness of

the beam-strip, and 𝑙 is either the characteristic size of bending deformation or the
beam-strip length. We introduce the following assumption

𝐸 ′
𝑚

𝐸2
= Y2𝜍𝑚, 𝜍𝑚 ∼ 1, 𝑚 = 1,3 (16.3)

where 𝐸2 are the Young’s modulus of the elastic stiff core, and 𝐸 ′
𝑚 =ℜ𝐸𝑚 is the real

part of the complex Young’s modulus for the 𝑚𝑡ℎ soft layer.
We introduce the dimensionless variables,

𝑥 = 𝑙𝜉, 𝑦𝑘 = ℎ𝑘𝑧𝑘 ,
{
𝑢 (𝑘 )1 , 𝑢 (𝑘 )2

}
= ℎ

{
𝑢 (𝑘 ) , 𝑤 (𝑘 )

}
,

𝑠 (𝑘 )𝑖 𝑗 = 𝐸 ′
𝑘𝜎

(𝑘 )
𝑖 𝑗 , 𝑓 (𝑘 )2 =

𝐸 ′
𝑘

ℎ𝑘
𝑓 (𝑘 )2 , 𝑓 (𝑘 )1 =

Y𝐸 ′
𝑘

ℎ𝑘
𝑓 (𝑘 )1 , 𝑖, 𝑗 , 𝑘 = 1,2.

(16.4)

where the dimensionless forces are values of the order 𝑂 (1) as Y → ∞. In what
follows, considering the 𝑘 𝑡ℎ layer, we omit the subscript in 𝑧𝑘 .

Note that for low-frequency bending vibrations of beams and plates with a large
characteristic strain size, the following asymptotic estimates are valid [34–36]:

𝑤 (𝑘 ) = Y−4𝑊 (𝑘 ) , 𝑢 (𝑘 ) = Y−3𝑈 (𝑘 ) , 𝜎 (𝑘 )
12 = Y−1𝜏 (𝑘 ) , 𝜎 (𝑘 )

22 = 𝜎 (𝑘 ) , (16.5)

where 𝑊 (𝑘 ) ,𝑈 (𝑘 ) , 𝜏 (𝑘 ) ,𝜎 (𝑘 ) ∼ 1. Taking into account relations (16.4) and (16.5),
Eqs. (16.1) and (16.2) can be reduced to the following system of differential equations,
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𝜕𝑊 (𝑘 )

𝜕𝑧
= −Y2𝜅𝑘𝑐

(𝑘 )
𝜈
𝜕𝑈 (𝑘 )

𝜕𝜉
+ Y4𝜅𝑘𝑐

(𝑘 )
3 𝜎 (𝑘 ) ,

𝜕𝑈 (𝑘 )

𝜕𝑧
= −𝜅𝑘 𝜕𝑊

(𝑘 )

𝜕𝜉
+ Y2𝜅𝑘𝑐

(𝑘 )
𝑔 𝜏 (𝑘 ) ,

𝜕𝜏 (𝑘 )

𝜕𝑧
= −𝜅𝑘𝑐 (𝑘 )0

𝜕2𝑈 (𝑘 )

𝜕𝜉2 − Y2𝜅𝑘𝑐
(𝑘 )
𝜈
𝜕𝜎 (𝑘 )

𝜕𝜉
+ Y2[𝑘

𝜕2𝑈 (𝑘 )

𝜕𝑡2
− Y2 𝑓 (𝑘 )1 ,

𝜕𝜎 (𝑘 )

𝜕𝑧
= −𝜅𝑘 𝜕𝜏

(𝑘 )

𝜕𝜉
+[𝑘 𝜕

2𝑊 (𝑘 )

𝜕𝑡2
− 𝑓 (𝑘 )2

(16.6)

with
𝜅𝑘 =

ℎ𝑘
ℎ
, 𝑐 (𝑘 )3 =

𝐸 ′
𝑘

𝜆𝑘 +2𝜇𝑘
, 𝑐 (𝑘 )𝜈 =

𝜆𝑘
𝜆𝑘 +2𝜇𝑘

,

𝑐 (𝑘 )0 =
4𝜇𝑘 (𝜆𝑘 + 𝜇𝑘)
𝐸 ′
𝑘 (𝜆𝑘 +2𝜇𝑘) , 𝑐 (𝑘 )𝑔 =

𝐸 ′
𝑘

𝜇𝑘
, [𝑘 =

𝜌𝑘ℎ𝑘ℎ

Y4𝐸 ′
𝑘

.
(16.7)

The boundary conditions at the face lines are assumed to be homogeneous:

𝜏 (1) |𝑧=0 = 𝜎
(1) |𝑧=0 = 0, 𝜏 (3) |𝑧=1 = 𝜎

(3) |𝑧=1 = 0. (16.8)

At the interface lines, we consider the rigid contact conditions. When taking
Eqs. (16.3)-(16.5) into account, these conditions become:

• for displacements,

𝑊 (1) |𝑧=1 =𝑊
(2) |𝑧=0, 𝑈 (1) |𝑧=1 =𝑈

(2) |𝑧=0,

𝑊 (2) |𝑧=1 =𝑊
(3) |𝑧=0, 𝑈 (2) |𝑧=1 =𝑈

(3) |𝑧=0,
(16.9)

• for stresses

𝜏 (2) |𝑧=0 = Y
2𝜍1𝜏

(1) |𝑧=1, 𝜎 (2) |𝑧=0 = Y
2𝜍1𝜎

(1) |𝑧=1,

𝜏 (2) |𝑧=1 = Y
2𝜍3𝜏

(3) |𝑧=0, 𝜎 (2) |𝑧=1 = Y
2𝜍3𝜎

(3) |𝑧=0
(16.10)

We arrived at the boundary-value problem (16.6), (16.9), and (16.10).

16.3 Asymptotic Integration of Boundary-Value Problem

A solution of the boundary-value problem can be sought in the form of formal
asymptotic series

𝑊 (𝑘 ) = 𝑤 (𝑘 )
0 + Y2𝑤 (𝑘 )

2 + . . . , 𝑈 (𝑘 ) = 𝑢 (𝑘 )0 + Y2𝑢 (𝑘 )2 + . . . ,
𝜏 (𝑘 ) = 𝜏 (𝑘 )0 + Y2𝜏 (𝑘 )2 + . . . , 𝜎 (𝑘 ) = 𝜎 (𝑘 )

0 + Y2𝜎 (𝑘 )
2 + . . . , 𝑘 = 1,2,3.

(16.11)

We substitute series (16.11) into Eqs. (16.6) and the boundary conditions (16.8)-
(16.10) and consider arising boundary-value problems step-by-step.
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16.3.1 Leading Approximation

In the leading approximation, one has the sequence of equations

𝜕𝑤 (𝑘 )
0
𝜕𝑧

= 0,
𝜕𝑢 (𝑘 )0
𝜕𝑧

= −𝜅𝑘
𝜕𝑤 (𝑘 )

0
𝜕𝜉

,

𝜕𝜏 (𝑘 )0
𝜕𝑧

= −𝜅𝑘𝑐 (𝑘 )0
𝜕2𝑢 (𝑘 )0
𝜕𝜉2 ,

𝜕𝜎 (𝑘 )
0
𝜕𝑧

= −𝜅𝑘
𝜕𝜏 (𝑘 )0
𝜕𝜉

+[𝑘
𝜕2𝑤 (𝑘 )

0
𝜕𝑡2

− 𝑓 (𝑘 )2

(16.12)

with the boundary conditions for displacements,

𝑤 (1)
0 |𝑧=1 = 𝑤

(2)
0 |𝑧=0, 𝑢 (1)0 |𝑧=1 = 𝑢

(2)
0 |𝑧=0,

𝑤 (2)
0 |𝑧=1 = 𝑤

(3)
0 |𝑧=0, 𝑢 (2)0 |𝑧=1 = 𝑢

(3)
0 |𝑧=0,

(16.13)

and stresses,

𝜏 (1)0 |𝑧=0 = 𝜎
(1)
0 |𝑧=0 = 0, 𝜏 (3)0 |𝑧=1 = 𝜎

(3)
0 |𝑧=1 = 0,

𝜏 (2)0 |𝑧=0 = 𝜎
(2)
0 |𝑧=0 = 0, 𝜏 (2)0 |𝑧=1 = 𝜎

(2)
0 |𝑧=1 = 0,

(16.14)

respectively. We note that in the leading approximation the interface condi-
tions (16.10) for the stresses 𝜏 (2)0 ,𝜎 (2)

0 in the hard core degenerate into the ho-
mogeneous ones.

Sequential integration of Eqs. (16.12) over the segment 1 ≤ 𝑧 ≤ 1 with the boundary
conditions (16.13), (16.14) taken into account leads to the formulas for displacements,

𝑤 (𝑘 )
0 = 𝑤0 (𝜉, 𝑡) for any 𝑘 = 1,2,3,

𝑢 (1)0 = −1
2
[2𝜅1 (𝑧−1) − 𝜅2] 𝜕𝑤0

𝜕𝜉
, 𝑢 (2)0 = −1

2
𝜅2 (2𝑧−1) 𝜕𝑤0

𝜕𝜉
,

𝑢 (3)0 = −1
2
(2𝜅3𝑧+ 𝜅2) 𝜕𝑤0

𝜕𝜉
,

(16.15)

and stresses,
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𝜏 (1)0 =
1
2
𝑐 (1)0 𝜅1 [𝜅1𝑧

2 − (2𝜅1 + 𝜅2)𝑧] 𝜕
3𝑤0

𝜕𝜉3 ,

𝜏 (2)0 =
1
2
𝑐 (2)0 𝜅2

2 (𝑧2 − 𝑧)
𝜕3𝑤0

𝜕𝜉3 ,

𝜏 (3)0 =
1
2
𝑐 (3)0 𝜅3 [𝜅3𝑧

2 + 𝜅2𝑧− 𝜅2 − 𝜅3] 𝜕
3𝑤0

𝜕𝜉3 ,

𝜎 (1)
0 = − 1

12
𝑐 (1)0 𝜅2

1 [2𝜅1𝑧
3 −3(2𝜅1 + 𝜅2)𝑧2] 𝜕

4𝑤0

𝜕𝜉4 +[1𝑧
𝜕2𝑤0

𝜕𝑡2
−𝐹 (1)

2 ,

𝜎 (2)
0 = − 1

12
𝑐 (2)0 𝜅3

2 (2𝑧3 −3𝑧2) 𝜕
4𝑤0

𝜕𝜉4 +[2𝑧
𝜕2𝑤0

𝜕𝑡2
−𝐹 (2)

2 ,

𝜎 (3)
0 = − 1

12
𝑐 (3)0 𝜅2

3 [2𝜅3𝑧
3 +3𝜅2𝑧

2 −6(𝜅2 + 𝜅3)𝑧+4𝜅3 +3𝜅2] 𝜕
4𝑤0

𝜕𝜉4

+ [3 (𝑧−1) 𝜕
2𝑤0

𝜕𝑡2
+𝐹 (3)

2 ,

(16.16)

where

𝐹
( 𝑗 )
2 (𝜉, 𝑧) =

𝑧∫
0

𝑓
( 𝑗 )

2 (𝜉, 𝑧)𝑑𝑧, 𝐹 (3)
2 (𝜉, 𝑧) =

1∫
𝑧

𝑓 (3)2 (𝜉, 𝑧)𝑑𝑧, 𝑗 = 1,2, (16.17)

and the function 𝑤0 (𝑥, 𝑡) is determined from the classical differential equation,

1
12
𝑐 (2)0 𝜅3

2
𝜕4𝑤0

𝜕𝜉4 +[2
𝜕2𝑤0

𝜕𝑡2
= 𝐹 (2)

2 (𝜉,1), (16.18)

which is related to the Bernoulli-Euler type model.

16.3.2 First-Order Approximation

In the first-order approximation, we arrive at the following system of equations:

𝜕𝑤 (𝑘 )
2
𝜕𝑧

= −𝜅𝑘𝑐 (𝑘 )𝜈
𝜕𝑢 (𝑘 )0
𝜕𝜉

,
𝜕𝑢 (𝑘 )2
𝜕𝑧

= −𝜅𝑘
𝜕𝑤 (𝑘 )

2
𝜕𝜉

+ 𝜅𝑘𝑐 (𝑘 )𝑔 𝜏 (𝑘 )0 ,

𝜕𝜏 (𝑘 )2
𝜕𝑧

= −𝜅𝑘𝑐 (𝑘 )0
𝜕2𝑢 (𝑘 )2
𝜕𝜉2 − 𝜅𝑘𝑐 (𝑘 )𝜈

𝜕𝜎 (𝑘 )
0
𝜕𝜉

+[𝑘
𝜕2𝑢 (𝑘 )0
𝜕𝑡2

− 𝑓 (𝑘 )1 ,

𝜕𝜎 (𝑘 )
2
𝜕𝑧

= −𝜅𝑘
𝜕𝜏 (𝑘 )2
𝜕𝜉

+[𝑘
𝜕2𝑤 (𝑘 )

2
𝜕𝑡2

(16.19)

with 𝑘 = 1,2,3. The corresponding interface conditions (16.13) for displacements
remain the same, and the boundary conditions (16.14)1 for stresses at the outer layers
are again homogeneous, with the replacement everywhere subscript 0 by 2. As for
the interface conditions for stresses, they become inhomogeneous:
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𝜏 (2)2 |𝑧=0 = 𝜍1𝜏
(1)
0 |𝑧=1, 𝜎 (2)

2 |𝑧=0 = 𝜍1𝜎
(1)
0 |𝑧=1,

𝜏 (2)2 |𝑧=1 = 𝜍3𝜏
(3)
0 |𝑧=0, 𝜎 (2)

2 |𝑧=1 = 𝜍3𝜎
(3)
0 |𝑧=0.

(16.20)

Consider this approximation in more details. The integration of the first two
equations from (16.19), with the boundary conditions taken into account, gives the
corrections for displacements:

𝑤 (1)
2 =

1
2
𝑐 (1)𝜈 𝜅1 [𝜅1𝑧

2 − (2𝜅1 + 𝜅2)𝑧+ 𝜅1 + 𝜅2] 𝜕
2𝑤0

𝜕𝜉2 +𝑤20 (𝜉, 𝑡),

𝑤 (2)
2 =

1
2
𝑐 (2)𝜈 𝜅2

2 (𝑧2 − 𝑧)
𝜕2𝑤0

𝜕𝜉2 +𝑤20 (𝜉, 𝑡),

𝑤 (3)
2 =

1
2
𝑐 (3)𝜈 𝜅3 (𝜅3𝑧

2 + 𝜅2𝑧) 𝜕
2𝑤0

𝜕𝜉2 +𝑤20 (𝜉, 𝑡),

𝑢 (1)2 =
1
12
𝜅2

1

{
𝑐 (1)4

[
2𝜅1𝑧

3 −3(2𝜅1 + 𝜅2)𝑧2
] −6𝑐 (1)𝜈 (𝜅1 + 𝜅2)𝑧

+ 𝑐 (1)4 (4𝜅1 +3𝜅2) +6𝑐 (1)𝜈 (𝜅1 + 𝜅2)
} 𝜕3𝑤0

𝜕𝜉3 − 𝜅1 (𝑧−1) 𝜕𝑤20
𝜕𝜉

+𝑢20 (𝜉, 𝑡),

𝑢 (2)2 =
1
12
𝑐 (2)4 𝜅3

2 (2𝑧3 −3𝑧2) 𝜕
3𝑤0

𝜕𝜉3 − 𝜅2𝑧
𝜕𝑤20
𝜕𝜉

+𝑢20 (𝜉, 𝑡),

𝑢 (3)2 =
1
12
𝜅2

3

{
𝑐 (3)4 (2𝜅3𝑧

3 +3𝜅2𝑧
2) −6𝑐 (3)0 𝑐 (3)𝑔 (𝜅2 + 𝜅3)𝑧− 𝑐 (2)4

} 𝜕3𝑤0

𝜕𝜉3

− (𝜅3𝑧+ 𝜅2) 𝜕𝑤20
𝜕𝜉

+𝑢20 (𝜉, 𝑡),
(16.21)

where
𝑐 (𝑘 )4 =

3𝜆𝑘 +4𝜇𝑘
𝜆𝑘 +2𝜇𝑘

, (16.22)

and 𝑤20 (𝜉, 𝑡), 𝑢20 (𝜉, 𝑡) are unknown functions to be determined below.
Consider the third equation from (16.19) for 𝑘 = 2. Substituting corrections (16.21)

for displacements into this equation and integrating it over the segment 0 ≤ 𝑧 ≤ 1
and satisfying the inhomogeneous boundary conditions (16.20) at the interfaces, we
obtain the equation

𝑐 (2)0 𝜅2
𝜕2𝑢20

𝜕𝜉2 =
1
12
𝑐 (2)0 𝜅4

2
𝜕4𝑤0

𝜕𝜉4 + 1
2

[
𝜍3𝑐

(3)
0 𝜅3 (𝜅2 + 𝜅3)

−𝜍1𝑐
(1)
0 𝜅1 (𝜅1 + 𝜅2)

] 𝜕3𝑤0

𝜕𝜉3 − 1
2
[2𝑐

(2)
𝜈 𝜅2

𝜕3𝑤0

𝜕𝜉2𝜕𝑡

+ 1
2
𝑐 (2)0 𝜅2

2
𝜕3𝑤20

𝜕𝜉3 +
1∫

0

𝐺 (2) (𝜉, 𝑧)𝑑𝑧,

(16.23)

with respect to the function 𝑢20 and the relation for correction of the shear stress in
the stiff layer as well,
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𝜏 (2)2 = − 1
12
𝑐 (2)0 𝜅4

2 (𝑧4 −2𝑧3 + 𝑧) 𝜕
5𝑤0

𝜕𝜉5 − 1
2

[
𝜍1𝑐

(1)
0 𝜅1 (𝜅1 + 𝜅2) (1− 𝑧)

+ 𝜍3𝑐
(3)
0 𝜅3 (𝜅2 + 𝜅3)𝑧

] 𝜕3𝑤0

𝜕𝜉3 − 1
4
[2𝜅2𝑐

(2)
0 𝑐 (2)𝑔 (𝑧2 − 𝑧) 𝜕

3𝑤0

𝜕𝜉2𝜕𝑡

+ 1
2
𝑐 (2)0 𝜅2

2 (𝑧2 − 𝑧)
𝜕3𝑤20

𝜕𝜉3 +
𝑧∫

0

𝐺 (2) (𝜉, 𝑧)𝑑𝑧− 𝑧
1∫

0

𝐺 (2) (𝜉, 𝑧)𝑑𝑧,

(16.24)

where the function 𝑤20 (𝜉, 𝑡) is not yet defined, and

𝐺 (2) (𝜉, 𝑧) = 𝑐 (2)𝜈 𝜅2
𝜕𝐹 (2)

2
𝜕𝜉

− 𝑓 (2)1 . (16.25)

The functions 𝜏 (1)2 , 𝜏 (3)2 related to the soft layers can be determined in the same
way by integrating the third equation from Eqs. (16.19) at 𝑘 = 1,3. We do not write
down here the final relations, but note only that they are required to construct the
next approximation and, particularly, to find the high-order correction Y4𝜏 (2)4 for the
stiff core.

Finally, consider the last equation from (16.19). Integrating it in the thickness
direction with the functions 𝜏 (2)2 , 𝑤 (2)

2 taken into account, we arrive at the following
formula for the correction to the normal stress:

𝜎 (2)
2 =

1
120

𝑐 (2)0 𝜅5
2 (2𝑧5 −5𝑧4 +5𝑧2) 𝜕

6𝑤0

𝜕𝜉6

+ 1
4
𝜅2

{[
𝑐 (3)0 𝜍3𝜅3 (𝜅2 + 𝜅3) − 𝑐 (1)0 𝜍1𝜅1 (𝜅1 + 𝜅2)

]
𝑧2

+ 2𝑐 (1)0 𝜍1𝜅1 (𝜅1 + 𝜅2)𝑧
} 𝜕4𝑤0

𝜕𝜉4 + 1
12
[2𝜅

2
2𝑐

(2)
6 (2𝑧3 −3𝑧2) 𝜕

4𝑤0

𝜕𝜉2𝜕𝑡2

− 1
12
𝑐 (2)0 𝜅3

2 (2𝑧3 −3𝑧2) 𝜕
4𝑤20

𝜕𝜉4 +[2𝑧
𝜕2𝑤20

𝜕𝑡2

− 𝜅2

𝑧∫
0

𝑧∫
0

𝐺 (2) (𝜉, 𝑧)𝑑𝑧+ 1
2
𝜅2𝑧

2
1∫

0

𝐺 (2) (𝜉, 𝑧)𝑑𝑧+𝜎 (2)
20 (𝜉, 𝑡),

(16.26)

where
𝑐 (2)6 = 𝑐 (2)𝜈 𝑐 (2)4 + 𝑐 (2)0 𝑐 (2)3 = (1+ 𝜈2)/(1− 𝜈2)

with the Poisson’s ratio 𝜈2 for the stiff core, and 𝜎 (2)
20 (𝜉, 𝑡) is an unknown function.

Substituting Eq. (16.26) into the second condition (16.20) at the interface, we
obtain the required function

𝜎 (2)
20 (𝜉, 𝑡) = 1

12
𝑐 (1)0 𝜍1𝜅

2
1 (4𝜅1 +3𝜅2) 𝜕

4𝑤0

𝜕𝜉4 + 𝜍1[1
𝜕2𝑤0

𝜕𝑡2
− 𝜍1

1∫
0

𝑓 (1)2 𝑑𝑧. (16.27)
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Applying the forth inhomogeneous condition (16.20) to function (16.26) with rela-
tion (16.27) taken into account, we arrive at the following inhomogeneous differential
equation

1
12
𝑐 (2)0 𝜅3

2
𝜕4𝑤20

𝜕𝜉4 +[2
𝜕2𝑤20

𝜕𝑡2
= − 1

60
𝑐 (2)0 𝜅 (5)2

𝜕6𝑤0

𝜕𝜉6

− 1
12

[
𝜍1𝑐

(1)
0 𝜅1 (4𝜅2

1 +6𝜅1𝜅2 +3𝜅2
2) + 𝜍3𝑐

(3)
0 𝜅3 (4𝜅2

3 +6𝜅3𝜅2 +3𝜅2
2)

] 𝜕4𝑤0

𝜕𝜉4

+ 1
12
[2𝑐

(2)
6 𝜅2

2
𝜕4𝑤0

𝜕𝜉2𝜕𝑡2
− (𝜍1[1 + 𝜍3[3) 𝜕

2𝑤0

𝜕𝑡2
+F (𝜉)

(16.28)

with respect to the function 𝑤20, where

F (𝜉) = − 𝜅2
2

1∫
0


𝐺 (2) (𝜉, 𝑧) −2

𝑧∫
0

𝐺 (2) (𝜉, 𝑧)𝑑𝑧

𝑑𝑧+ 𝜍1𝐹

(1)
2 (𝜉,1) + 𝜍3𝐹

(3)
2 (𝜉,0)

(16.29)
is the given function depending on the volume forces.

Now, having determined the function 𝑤20, one can calculate the corrections 𝜏 (2)2
and 𝜎 (2)

2 by formulas (16.24) and (16.26), respectively. The functions 𝜎 (1)
2 ,𝜎 (3)

2 are
defined in the same way by integrating the last equation from (16.19) at 𝑘 = 1,3, but
we do not give here the final relations because of their unhandiness.

We note that the maximum order of the derivative with respect to 𝑥 on the right-
hand side of Eq. (16.28) can be reduced to the forth order. Accounting for Eq. (16.18),
we rewrite Eq. (16.28) as follows:

1
12
𝑐 (2)0 𝜅3

2
𝜕4𝑤20

𝜕𝜉4 +[2
𝜕2𝑤20

𝜕𝑡2
=

− 1
12

[
𝜍1𝑐

(1)
0 𝜅1 (4𝜅2

1 +6𝜅1𝜅2 +3𝜅2
2) + 𝜍3𝑐

(3)
0 𝜅3 (4𝜅2

3 +6𝜅3𝜅2 +3𝜅2
2)

] 𝜕4𝑤0

𝜕𝜉4

+[2𝜅
2
2

(
1
5
+ 𝑐

(2)
6
12

)
𝜕4𝑤0

𝜕𝜉2𝜕𝑡2
− (𝜍1[1 + 𝜍3[3) 𝜕

2𝑤0

𝜕𝑡2
+F (𝜉) − 1

5
𝜅2

2
𝜕2𝐹 (2)

2 (𝜉,1)
𝜕𝜉2 .

(16.30)
The process of integrating Eqs. (16.6) could be continued indefinitely, however,

it involves complex transformations and leads to very cumbersome relations for
corrections for displacements and stresses.

16.3.3 Governing Equation

We consider the transverse dimensionless displacements in the stiff core:
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𝑊 (2) (𝜉, 𝑧, 𝑡) = 𝑤 (2)
0 (𝜉, 𝑡) + Y2𝑤 (2)

2 (𝜉, 𝑧, 𝑡) +𝑂
(
Y4

)
, (16.31)

where 𝑤 (2)
2 is determined by the second equation from (16.21). Note that

𝑤 (2)
2 (𝜉,0, 𝑡) = 𝑤 (2)

2 (𝜉,1, 𝑡) = 𝑤20 (𝜉, 𝑡),

where 𝑤20 is defined from Eq. (16.30). Then the displacement of points lying at the
interface lines reads

𝑤◦ (𝜉, 𝑡) = 𝑤 (2)
0 (𝜉, 𝑡) + Y2𝑤20 (𝜉, 𝑡) +𝑂

(
Y4

)
. (16.32)

Summation of Eq. (16.18) and Eq. (16.30) multiplied by Y2, taking into account
Eq. (16.32), leads to the following differential equation for interface lines:

𝐼
𝜕4𝑤◦

𝜕𝜉4 +𝐽𝐽𝐽 𝜕
4𝑤◦

𝜕𝑡2
= 𝐹 (𝜉), (16.33)

where
𝐼 =

1
12

{
𝑐 (2)0 𝜅3

2 + Y2
[
𝜍1𝑐

(1)
0 𝜅1

(
4𝜅2

1 +6𝜅1𝜅2 +3𝜅2
2

)]
+ 𝜍3𝑐

(3)
0 𝜅3

(
4𝜅2

3 +6𝜅3𝜅2 +3𝜅2
2

)} (16.34)

is the reduced dimensionless flexural rigidity of the three-layer beam-strip,

𝐽𝐽𝐽 = [2 + Y2

[
𝜍1[1 + 𝜍3[3 −[2𝜅

2
2

(
1
5
+ 𝑐

(2)
6
12

)
𝜕2

𝜕𝜉2

]
(16.35)

is the operator of the so-called modified transverse inertia, and

𝐹 (𝜉) = 𝐹 (2)
2 (𝜉,1) + Y2

[
F (𝜉) − 1

5
𝜅2

2
𝜕2𝐹 (2)

2 (𝜉,1)
𝜕𝜉2

]
(16.36)

is the dimensionless resultant of volume forces reduced to the reference surface
(i.e., the interface surface between the upper layer and the core) with the functions
F (𝜉), 𝐹 (2)

2 (𝜉, 𝑧) defined by Eqs. (16.29), (16.25) and (16.17).
Equation (16.33) can be rewritten in the original dimensional variables:

𝐼𝑟
𝜕4𝑢◦2
𝜕𝑥4 +𝐽𝐽𝐽𝑟

𝜕4𝑢◦2
𝜕𝑡2

= 𝐸2𝐹 (𝑥/𝑙). (16.37)

In Eq. (16.37), 𝑢◦2 is the transverse displacement of the core reference surface, and
𝐼𝑟 and 𝐽𝐽𝐽𝑟 are the dimensional flexural rigidity and the operator of the modified
transverse inertia, respectively, calculated by the following formulas:
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𝐼𝑟 =
1
12

[
𝐸2ℎ

3
2

1− 𝜈2
2
+ 𝐸1ℎ1

1− 𝜈2
1

(
4ℎ2

1 +6ℎ1ℎ2 +3ℎ2
2

)
+ 𝐸3ℎ3

1− 𝜈2
3

(
4ℎ2

3 +6ℎ3ℎ2 +3ℎ2
2

)]
,

𝐽𝐽𝐽𝑟 =
3∑︁
𝑘=1

𝜌𝑘ℎ𝑘 − 𝜌2ℎ
3
2

[
1
5
+ 1+ 𝜈2

12(1− 𝜈2)

]
𝜕2

𝜕𝑥2 .

(16.38)
Equation (16.37) taking into account shears in the hard core is related to the

Timoshenko-Reissner type model [37, 38]. The equation describes the flexural re-
sponse of a single-layer beam-strip being equivalent to the considered three-layer
beam-strip with the high contrast properties. When assuming ℎ3 = 0 in all aforemen-
tioned equations, then Eq. (16.37) together with relations (16.36), (16.38) degenerates
into the governing equation for a two-layer beam-strip with contrast mechanical prop-
erties [34].

We note the presented above model is free of any kinematic hypotheses, it is
asymptotically consistent for the long-wave vibrations and deformations, and under
constructing more high approximations permits to obtain more correct distributions
of displacements and stresses in the transverse direction when comparing it with the
hypotheses based models.

We remind also that in the general case the moduli 𝐸1 and 𝐸3 can be complex
values, so that Eq. (16.37) as well as other relations for calculating the strain-stress
state can be used for the beam-strips with attached viscoelastic layers.

16.4 Free Vibrations

We apply our model for studying free low-frequency vibrations of the three-layer
beam-strip of the length 𝑙 with simply supported edges. Assume a small transverse
displacement in the form of a function

𝑢◦2 = 𝐴 sin
( 𝜋𝑛𝑥1
𝑙

)
exp (i𝜔𝑡),

where 𝐴 is an arbitrary constant, i =
√
−1, 𝜔 is a natural frequency, and 𝑛 is a number

of semi-waves. Substituting this form into the homogeneous Eq. (16.37), we obtain
the formula for natural frequencies:

𝜔 =
(𝜋𝑛)2𝐼1/2𝑟

𝑙2

√√√ 3∑︁
𝑘=1

𝜌𝑘ℎ𝑘 + 𝜌2ℎ
3
2

[
1
5
+ 1+ 𝜈2

12(1− 𝜈2)

] ( 𝜋𝑛
𝑙

)2
, 𝑛 = 1,2,3, . . . (16.39)

As the first example, we consider the three-layer beam-strip of the length 𝑙 = 1 m
with the fixed total thickness ℎ = ℎ1+ℎ2+ℎ3 = 0.1 m. The mechanical properties of the
core and the outer layers correspond to steel and ABS-plastic SD-0170, respectively.
The input mechanical parameters are the following:
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𝐸2 = 200 GPa, 𝜌2 = 7.8 g/cm3, 𝜈2 = 0.3,
𝐸1 = 𝐸3 = 1.5 GPa, 𝜌1 = 𝜌3 = 1.4 g/cm3, 𝜈1 = 𝜈3 = 0.4. (16.40)

The calculations were performed for the beam-strip with the same thickness for the
outer layers, ℎ1 = ℎ3, and the core thickness ℎ2 varying from 0 to 0.1 m. It can be seen
from Fig. 16.2 that for the fixed total thickness the effect of soft outer layers on natural
frequencies is qualitatively the same for both low-frequency and high-frequency
modes. The attachment of soft layers and increase of their thickness first results in
the decrease of all eigenfrequencies. However, there is a critical small value of the
core thickness, ℎ2, at which an eigenfrequency 𝜔 has a minimum.

In the second example, we study free vibrations of the two-layer beam-strip (here,
ℎ3 = 0) with mechanical properties of the magnetorheological elastomer (MRE)
and ABS-plastic SD-0170 for the bottom and upper layers, respectively. As the
MRE, we consider the rubber based MRE elaborated by [39] and containing 33%
of iron practicals, 7% of carbon black and 60% of the rubber matrix. The principle
characteristic of any MRE is the complex shear modulus 𝐺𝑣 = 𝐺′

𝑣 + i𝐺′′
𝑣 , where

i =
√
−1, and𝐺′

𝑣 and𝐺′′
𝑣 are the storage and loss moduli, respectively. These quantities

for the considered MRE, as functions of the magnetic field induction, are presented
in Table 16.1. When assuming the MRE as an isotropic material, then the complex
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Fig. 16.2: Natural frequencies of the three-layer beam-strip with the mechanical properties of steel
and ABS-plastic SD-0170 for the core and outer layers, respectively, vs. the core thickness ℎ2: a)
number of semi-waves 𝑛 = 1; b) number of semi-waves 𝑛 = 10.

Table 16.1: Storage and loss moduli 𝐺′
𝑣 ,𝐺

′′
𝑣 vs. the magnetic induction 𝐵 for the MRE [39]

containing 33% of iron practicals and 7% of carbon black.

Magnetic induction 𝐵, mT Storage modulus 𝐺′
𝑣, kPa Loss modulus 𝐺′

𝑣, kPa

0 4050 567
200 4250 723
400 6000 960
600 7900 1185
800 8000 1120



278 Gennadi Mikhasev, Marina Botogova, and Nguyen Le

0.096 0.098 0.100

0.05

0. 01

0.15

0.4

0.6

0.8

0.2

w
,
k
H
z

0.0
0.02 0.04 0.06 0.08 0.100.00

h
1

1

2

3

1

2

32

Fig. 16.3: The lowest (𝑛 = 1) natural frequencies of the two-layer beam-strip with the mechanical
properties of MRE and ABS-plastic SD-0170 vs. the MRE layer thickness ℎ1 at different values of
the magnetic field induction 𝐵: curve 1 (red line ) - 𝐵 = 0 mT, curve 2 (green) - 𝐵 = 400 mT, curve
3 (blue) - 𝐵 = 700 mT.

Young’s modulus can be determined as 𝐸𝑣 = 2(1+𝜈𝑣)𝐺𝑣,where 𝜈𝑣 is the Poison’s ratio
for the MRE. In our calculations, we assume 𝐸1 = 𝐸𝑣, 𝜈𝑣 = 0.45. The total thickness
ℎ = ℎ1 + ℎ2 = 0.1 m and the beam-strip length 𝑙 = 0.845 m are fixed, while the MRE
layer thickness ℎ1 is varied. Figure 16.3 displays the lowest natural frequencies versus
the MRE layer thickness ℎ1 for different levels of the applied magnetic field, and
Fig. 16.4 shows the corresponding logarithmic decrements

𝐷𝑙 =
2𝜋ℑ𝜔√︁

(ℜ𝜔)2 − (ℑ𝜔)2
, (16.41)

where ℜ𝑍 and ℑ𝑍 denote the real and imaginary parts of the complex quantity 𝑍 ,
respectively.

It can be seen that an increase in the thickness of the MRE layer leads to a decrease
in natural frequencies and an increase in the corresponding decrements of free

Fig. 16.4 The logarithmic
decrement 𝐷𝑙 for the first
mode of the two-layer beam-
strip with the mechanical
properties of MRE and ABS-
plastic SD-0170 vs. the MRE
layer thickness ℎ1 at different
values of the magnetic field
induction 𝐵: curve 1 (red line)
- 𝐵 = 0 mT, curve 2 (green) -
𝐵 = 400 mT, curve 3 (blue) -
𝐵 = 700 mT.
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oscillations. As for the influence of magnetic field, it affects the above characteristics
only at large values of the thickness ℎ1, the higher the magnetic field induction, the
greater the natural frequencies and the corresponding decrements.

16.5 Conclusions

We considered the three layer beam-strip with the isotropic hard core and soft skins.
Introducing three small parameters, the strip width-to-length ratio and the ratios of
moduli of soft facings and hard core, we performed asymptotic integrations of the
2D equations of elasticity with respect to the transverse coordinate. Considering only
the leading and first-order approximations, we derived the one-dimensional differ-
ential equation predicting bending deformation and free low-frequency vibrations
of the beam-strip corresponding to the Timoshenko-Reissner type model. The novel
governing equation contains terms taking into account shears in the hard core as
well as effects of the lateral and longitudinal displacements in the soft outer layers.
As the first example, we considered free low-frequency vibrations of the three-layer
"plastic-steel-plastic" beam-strip and analysed the influence of the quantity of the
relatively soft plastic under the fixed total thickness on the natural frequency of the
simply supported beam. In the second example, we studied the effect of the magne-
torheological elastomer attached to the ABS-plastic on the natural frequencies and
decrement of free vibrations of the two-layer beam under different intensity of the
applied magnetic field.

Acknowledgements The authors would like to thank the Belarusian State University for support
of the work carried out within the framework of the State Program of Scientific Research in the
Republic of Belarus “Convergence-2025” (No. 1.7.01.2).

References

[1] Vinson JR (1999) The behavior of sandwich structures of isotropic and com-
posite materials. CRC Press

[2] Lee P, Chang N (1979) Harmonic waves in elastic sandwich plates. Journal of
Elasticity 9(1):51–69

[3] Schulze S, Pander M, Naumenko K, Altenbach H (2012) Analysis of laminated
glass beams for photovoltaic applications. International Journal of Solids and
Structures 49(15):2027–2036

[4] Ivanov I (2006) Analysis, modelling, and optimization of laminated glasses
as plane beam. International Journal of Solids and Structures 43(22-23):6887–
6907

[5] Njuguna J (2016) Lightweight Composite Structures in Transport: Design,
Manufacturing, Analysis and Performance. Woodhead Publishing



280 Gennadi Mikhasev, Marina Botogova, and Nguyen Le

[6] Davies J (2008) Lightweight Sandwich Construction. Wiley, New York
[7] Weps M, Naumenko K, Altenbach H (2013) Unsymmetric three-layer laminate

with soft core for photovoltaic modules. Composite Structures 105:332–339
[8] Altenbach H, Eremeyev VA, Naumenko K (2015) On the use of the first order

shear deformation plate theory for the analysis of three-layer plates with thin
soft core layer. ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik 95(10):1004–1011

[9] Naumenko K, Eremeyev V (2014) A layer-wise theory for laminated glass and
photovoltaic panels. Composite Structures 112:283–291

[10] Aßmus M, Naumenko K, Altenbach H (2016) A multiscale projection approach
for the coupled global–local structural analysis of photovoltaic modules. Com-
posite Structures 158:340–358

[11] Aßmus M, Nordmann J, Naumenko K, Altenbach H (2017) A homogeneous
substitute material for the core layer of photovoltaic composite structures. Com-
posites Part B 112:353–372

[12] Aşik M, Tezcan S (2005) A mathematical model for the behavior of laminated
glass beams. Computes & Structures 83(21):1742–1753

[13] Altenbach H (2000) An alternative determination of transverse shear stiffnesses
for sandwich and laminated plates. Intenational Journal of Solids and Structures
37(25):3503–3520

[14] Altenbach H, Eremeyev V (2008) Direct approach based analysis of plates
composed of fuctionally graded materials. Archives of Applied Mechanics
78(10):775–794

[15] Mikhasev G, Altenbach H (2019) Equivalent single layer model for thin lami-
nated cylindrical shells. In: Thin-walled Laminated Structures, Advanced Struc-
tured Materials, vol 106, Springer, Cham, pp 29–84

[16] Mikhasev G, Altenbach H (2019) Vibrations of laminated structures composed
of smart materials. In: Thin-walled Laminated Structures, Advanced Structured
Materials, vol 106, Springer, Cham, pp 199–272

[17] Grigoliuk E, Kulikov G (1988) Multilayered Reinforced Shells. Calculation of
Pneumatic Tires (in Russ.). Mashinostroenie, Moscow

[18] Kaplunov J, Prikazchikov D, LA P (2017) Dispersion of elastic waves in a
strongly inhomogeneous three-layered plate. International Journal of Solids and
Structures 113-114:169–179

[19] Kaplunov J, Prikazchikov D, Prikazchikova L (2017) Dispersion of elastic waves
in laminated glass. Procedia Engineering 199:1489–1494

[20] Prikazchikova L, Aydin Y, Erbas B, Kaplunov J (2020) Asymptotic analysis
of an anti-plane dynamic problem for a three-layered strongly inhomogeneous
laminate. Mathematics and Mechanics of Solids 25(1):3–16

[21] Alkinidri M, Kaplunov J, Prikazchikova L (2020) A two mode non-uniform ap-
proximation for an elastic asymetric sandwich. In: Papadrakakis M, Fragiadakis
M, Papadimitriou C (eds) EURODYN 2020 XI International Conference on
Structural Dynamic, pp 528–536

[22] Alkinidri M, Kaplunov J, Prikazchikova L (2021) Two-mode long-wave low-
frequency approximations for anti-plane shear deformation of a high-contrast



16 Flexural response of a three-layer beam-strip with contrast mechanical properties 281

asymmetric laminate. In: Awrejcewicz J (ed) Perspectives in DynamicalSystems
II: Mathematical and Numerical Approaches. DSTA 2019,SpringerProceedings
in Mathematics and Statistics, vol 363, Springer, Cham, pp 275–285

[23] Kaplunov J, Prikazchikova L (2018) Low-frequency vibration modes of strongly
inhomogeneous elastic laminates. Izvestiya Saratovskogo Universiteta (new
seria), Ser Math Mech Inform 18(4):447–457

[24] Kaplunov J,Prikazchikova L,Alkinidri M (2021) Antiplane shearof an asymmet-
ric sandwich plate. Continuum Mechanics and Thermodynamics 33:1247–1262

[25] Prikazchikova L (2022) Decay conditions for antiplane shear of a high-contrast
multi-layered semi-infinite elastic strip. Symmetry 14:1697–9

[26] Tovstik P, Tovstik T (2014) A thin-plate bending equation of second-order
accuracy. Doklady Physics 59(8):389–392

[27] Tovstik PE, Tovstik TP (2017) Generalized timoshenko-reissner models for
beams and plates, strongly heterogeneous in the thickness direction. ZAMM -
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik 97(3):296–308

[28] Morozov N, Tovstik P, Tovstik T (2016) Generalized timoshenko–reissner model
for a multilayer plate. Mechanics of Solids 51(5):527–537

[29] Morozov NF, Tovstik PE, Tovstik TP (2016) The timoshenko-reissner general-
ized model for a plate highly nonuniform in thickness (english transl.). Doklady
Physics 61(8):394–398

[30] Belyaev AK,Morozov NF,Tovstik PE,Tovstik TP (2020) Some two-dimensional
non-classical models of anisotropic plates. In: Altenbach H, Chinchaladze N,
Kienzler R, Müller WH (eds) Analysis of Shells, Plates, and Beams: A State of
the Art Report, Advanced Structured Material, vol 134, Springer International
Publishing, Cham, pp 75–94

[31] Mikhasev G, Botogova M, Mikhievich A (2020) Analysis of free vibrations of
sandwich panel with electrorheological layer based on two models of laminated
shells. Journal of the Belarusian State University: Mathematics and Informatics
3:51–59

[32] Morozov N, Belyaev A, Tovstik P, Tovstik T (2021) Applicability ranges for
four approaches to determination of bending stiffness of multilayer plates.
Continuum Mechanics and Thermodynamics 33:1659–1673

[33] Berdichesky V (2010) An asymptotic theory of sandwich plates. International
Journal of Engineering Science 48(3):383–404

[34] Mikhasev G, Le N (2023) Asymptotically correct analytical model for flexural
response of a two-layer strip with contrast elastic constants. In: Altenbach
H, Berezovski A, dell’Isola F, Porubov A (eds) Sixty Shades of Generalized
Continua, Advanced Structured Materials, vol 555, Springer, Cham, pp 497–517

[35] Mikhasev G (2022) On governing equations for a nanoplate derived from the 3d
gradient theory of elasticity. Mathematics and Mechanics of Solids 27(9):1688–
1702

[36] Tovstik P, Tovstik T (2007) On the 2D models of plates and shells including the
transversal shear. ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik 87(2):160–171



282 Gennadi Mikhasev, Marina Botogova, and Nguyen Le

[37] Reissner E (1944) On the theory of bending of elastic plates. Journal of Mathe-
matics and Physics 23:184–191

[38] Reissner E (1945) The effect of transverse shear deformation on the bending of
elastic plates. Journal of Applied Mechanics, Trans ASME 12(2):A69–A67

[39] Chen L, Gong X, Li W (2008) Effect of carbon black on the mechanical
peformances of magnetorheological elastomers. Polymer Testing 27(3):340–
345



Chapter 17
Maxwell’s Equations Through the Ages

Wolfgang H. Müller and Elena N. Vilchevskaya

Abstract Ever since their appearance in Maxwell’s famous Treatise the way of how
to write His equations went through many changes. These changes were not just of
cosmetic nature. Rather with every alteration new aspects of their meaning appeared.
In this paper we shall pursue and comment on their development.

17.1 Introduction and Scope of the Paper

A first complete overview of what we call today Maxwell equations was given in
Maxwell’s famous Treatise [1] in Chapter IX, pp. 229. As we shall see below it was
written in rather archaic notation, because the notion of vectors was just about to
be developed. Based on this archaic form the equations were quickly adopted and
investigated further by Maxwell’s contemporaries, e.g., by Boltzmann [2] and Hertz
[3]. If we look at the titles Hertz choose for his presentation of the electromagnetic
foundations, namely Ueber die Grundgleichungen der Elektrodynamik für ruhende
Körper and Ueber die Grundgleichungen der Elektrodynamik für bewegte Körper1
two important issues become immediately obvious. First, the question of how to
formulate electrodynamics in matter and not just in vacuum is posed. Second, the
problem of a change in observer is addressed, at least indirectly, because of the impact
motion or velocity may have on the form of the equations. Consequently, one may
ask such awkward questions as
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• “Are the electromagnetic fields transported with moving matter?”
• “How are the electromagnetic fields transported in vacuum, is there a carrier or

an agent?”
• “Is electromagnetism a phenomenon of (instantaneous) action at a distance by

particles or is it close range interaction through fields?”

It is fair to say that until today these points are still subject to scientific discussion
although there exist also dogmatic tendencies to consider the case as closed.

The intention of this paper is to shed some light on this and to review the existing
evidence. We will start by stating the two physical principles on which electromag-
netism is based: the conservation of electromagnetic flux and the conservation of
charge. We will formulate this in mathematical form, globally and locally, in 3D-space
and time using contemporary vector formalism. Next we compare the results in the
way they were written and stated by the pioneers, i.e., Maxwell, Boltzmann, Hertz,
etc.

Our next step is the 4D-spacetime formulation of electromagnetism. This will
provide some answers regarding the impact of the choice of observer and movement on
the Maxwell equations and it will lead us to the world of general frame indifference,
i.e., (general) relativity. It will also allow to introduce a special set of spacetime
transformations, which guarantee a simple proportional relationship between the two
sets of electromagnetic fields, the Lorentz transformations. We shall also see that the
simple proportionality between the two sets of fields can be viewed as a constitutive
equation for the vacuum or – if preferred – a constitutive relation for the material
known as ether.

Finally we will present a metric free formulation of the Maxwell equations based
on the so-called exterior differential calculus on manifolds, where the two electro-
magnetic world-tensors are reformulated as 1, 2, and 3-forms of exterior products
and the Maxwell equations are reinterpreted in “geometric language”. We will also
see how this approach may connect the worlds of mechanics and electrodynamics.

17.2 Physical Principles of Electromagnetism

Wheeler states in [4] that “Maxwell’s synthesis of all the known laws of electricity and
magnetism in 1865 can be condensed into either two or four equations, depending
on whether one merges space and time into space-time or treats space and time
separately.” This is very true indeed, but no matter which form one prefers they are
all based on two axioms for the conservation of two physical qualities, namely the
electromagnetic flux and the electric charge. In this section we will state these axioms
verbally and then recast them into mathematical form.
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17.2.1 Conservation of Electromagnetic Flux

The first axiom of electrodynamics according to which the magnetic flux is conserved
is based on Cavendish’s and Faraday’s experiments. It quantifies the belief that the
electric and the magnetic force fields,𝐸𝐸𝐸 (𝑥𝑥𝑥, 𝑡) and𝐵𝐵𝐵(𝑥𝑥𝑥, 𝑡), respectively, are responsible
that resting and/or moving charges experience forces around condensers and magnets.
In modern continuum balance notation it can be written like this:

d
d𝑡

∫
𝑎 (𝑡 )

𝐵𝐵𝐵 ·𝑛𝑛𝑛 d𝑎 = −
∮

𝜕𝑎 (𝑡 )

(𝐸𝐸𝐸 +𝑣𝑣𝑣×𝐵𝐵𝐵) ·𝜏𝜏𝜏 d𝑙, (17.1)

where 𝑎(𝑡) is an open, surface in 3D-space with outer normal 𝑛𝑛𝑛 and peripheral
tangent vector 𝜏𝜏𝜏. The surface 𝑎(𝑡) \ 𝜕𝑎(𝑡) can be material or immaterial. 𝑣𝑣𝑣 denotes
the velocity of the material points constituting the noose of the wire 𝜕𝑎(𝑡). Note
that we need a material circumference 𝜕𝑎(𝑡), e.g., a noose made of metal to observe
an induction effect. The description of the various fields can be material if there is
(electrically charged) matter that moves. However, if a spatial description of fields is
used, one is always on the safe side since both the electric and the magnetic field do
not need matter. They can exist and propagate in vacuum as electromagnetic waves.
Sometimes Eq. (17.1) is referred to as Faraday’s law of induction in global form and

𝐸𝐸𝐸 +𝑣𝑣𝑣×𝐵𝐵𝐵

is referred to as the electromotive intensity.
It is noteworthy that Eq. (17.1) is a flux balance for a conserved quantity, namely

the magnetic flux on its left hand side. The right hand side is simply a line flux that in
principle can be controlled by choosing a non-conducting and non-moving material
for the periphery 𝜕𝑎(𝑡). There is no volumetric supply of magnetic flux and, what is
particularly important, there is no (volumetric) production of magnetic flux. Hence
it can be considered as a conserved quantity.

If the surface is closed 𝑎(𝑡) → 𝜕𝑣(𝑡) Eq. (17.1) obviously yields:∮
𝜕𝑣(𝑡 )

𝐵𝐵𝐵 ·𝑛𝑛𝑛 d𝑎 = 0, (17.2)

which is also referred to as the law of non-existing magnetic monopoles according to
which the magnetic field lines are always closed. 𝑣(𝑡) is the volume surrounded by
the closed surface 𝜕𝑣(𝑡), both of which do not necessarily need to be material. The
application of Gauss’ theorem and the usual localization procedures yield in regular
points:

∇ ·𝐵𝐵𝐵 = 0. (17.3)

If now the transport theorem for open surfaces (see [5], Eqs. (1.12.12), (3.8.12)
and its proof in the Appendix of [6]) is used for Eq. (17.1):
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d
d𝑡

∫
𝑎 (𝑡 )

𝐵𝐵𝐵 ·𝑛𝑛𝑛 d𝑎 =
∫
𝑎 (𝑡 )

(
𝜕𝐵𝐵𝐵

𝜕𝑡
+𝑣𝑣𝑣∇ ·𝐵𝐵𝐵

)
·𝑛𝑛𝑛 d𝑎 +

∮
𝜕𝑎 (𝑡 )

𝐵𝐵𝐵×𝑣𝑣𝑣 ·𝜏𝜏𝜏 d𝑙, (17.4)

and Eq. (17.3) is observed the usual localization procedure in regular points yields:

𝜕𝐵𝐵𝐵

𝜕𝑡
+∇×𝐸𝐸𝐸 = 000. (17.5)

Similarly one obtains for points on a singular surface with normal 𝑛𝑛𝑛 moving with
the velocity 𝑤𝑤𝑤I the following jump or continuity conditions:

J𝐵𝐵𝐵K ·𝑛𝑛𝑛 = 0 , 𝑛𝑛𝑛× J𝐸𝐸𝐸K−𝑛𝑛𝑛 ·𝑤𝑤𝑤IJ𝐵𝐵𝐵K = 000. (17.6)

Note that Eq. (17.5) is also frequently referred to as Faraday’s law of induction
in local form and (17.2) or (17.3) are known as the law of non-existing magnetic
monopoles in global and local form.

17.2.2 Conservation of Electric Charge

It is believed that electric charge cannot exists without matter carrying mass. For that
reason it suffices to formulate the conservation of charge in material description by
using material volumes 𝑣(𝑡). The generalization to open, matter containing volumes
can be found in [6] . The second axiom of electromagnetism states that charge is a
conserved volumetric quantity, such that:

d
d𝑡

∫
𝑣(𝑡 )

𝑞 d𝑣 = −
∮

𝜕𝑣(𝑡 )

𝑗𝑗𝑗 ·𝑛𝑛𝑛d𝑎. (17.7)

It should be emphasized that 𝑞 denotes the total charge density and 𝑗𝑗𝑗 the total
electric current of the system. This means that charge densities and currents due
to a response of the matter are included and not only contributions through free
charges or currents. For readers not familiar with electrodynamic notions but versed
in continuum mechanics it might be helpful to point out that the electric current 𝑗𝑗𝑗
is not a convective transport 𝑞𝑣𝑣𝑣 of electric charge. The latter is not missing but, as
we shall see, appears immediately if we move to the local form of (17.7) (see the
divergence term in Eq. (17.8)1). In contrast to that 𝑗𝑗𝑗 is a non-convective flux, similar
in its continuum nature to the heat flux 𝑞𝑞𝑞 of the energy balance. It is possible to
relate 𝑗𝑗𝑗 to the movement of elementary electric charges if a microscopic model and
subsequent homogenization is used, which brings us to the continuum scale (see, e.g.,
[5], Sects. 2.4 and 3.3).

As in the case of Eq. (17.1) the conservation character of this relation should be
emphasized. This time the conserved physical quantity is the total charge on the left.
The right hand side is simply a (non-convective) flux of charge through the surface
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of the material volume. It can in principle be controlled, for example by insulating
the surface. There is no volumetric supply of charge and, what is more, there is no
volumetric production: Electric charge is a conserved quantity.

The localization of Eq. (17.7) is performed by using the volumetric transport
theorem and pillbox arguments. We obtain in regular points:

𝜕𝑞

𝜕𝑡
+∇ · (𝑞𝑣𝑣𝑣+ 𝑗𝑗𝑗) = 0 ⇔ 𝛿𝑞

𝛿𝑡
+ 𝑞∇ ·𝑣𝑣𝑣+∇ · 𝑗𝑗𝑗 = 0, (17.8)

where
𝛿(.)
𝛿𝑡

refers to the material time derivative, and in singular points the jump condition:

J 𝑗𝑗𝑗 + 𝑞
(
𝑣𝑣𝑣−𝑤𝑤𝑤I

)
K ·𝑛𝑛𝑛 = 0. (17.9)

(17.8) is a partial differential equation that bears a certain similarity to the mass
balance

𝜕𝜌

𝜕𝑡
+∇ · (𝜌𝑣𝑣𝑣) = 0 ⇔ 𝛿𝜌

𝛿𝑡
+ 𝜌∇ ·𝑣𝑣𝑣 = 0, (17.10)

the purpose of which is to determine the field of mass density 𝜌. Consequently it is
logical to think that the purpose of (17.8) is to determine the charge density field
𝜌. However, note the differences: First, 𝜌 is a field of “its own right,” whereas 𝑞
bears an intrinsic constitutive aspect. Indeed, there is a part of the charge density that
exists “by itself,” like the mass density. We call it the free charge density 𝑞f and an
example for it are the charges spread over the plates of a condensor. However, charge
densities can also be created by the presence of an external electric field 𝐸𝐸𝐸 in certain
types of materials, which we call dielectric materials. This charge density is called
the polarization charge density 𝑞p.

Second, unlike the mass balance the balance of charge contains the non-convective
part 𝑗𝑗𝑗 . This is an additional vector field and, surely, the scalar equation (17.8) is
insufficient for its determination. And, third, just like 𝑞 the electric current density
𝑗𝑗𝑗 also shows an intrinsic constitutive aspect. Indeed, there are free currents 𝑗𝑗𝑗 f , for
example, realized on the atomic scale by the electron cloud drift in a conductor
triggered by an external electric field 𝐸𝐸𝐸 . However, when polarized dielectric matter
moves this macroscopic movement will lead to what we call polarization current 𝑗𝑗𝑗p.
Moreover, if the material is magnetizable, an external magnetic field 𝐵𝐵𝐵 will induce
magnetization currents 𝑗𝑗𝑗m, which also need to be taken into account in a constitutive
type of treatment.

In summary: Eq. (17.8) is not solved directly. It is solved formally by introducing
two additional electromagnetic vector fields, called charge and current potentials 𝐷𝐷𝐷
and 𝐻𝐻𝐻, respectively. These are a.k.a. electric and magnetic excitation fields and they
will address the constitutive aspects mentioned above: Matter and surrounding space
are “excited” by external fields and, in turn, the space surrounding matter is “excited”
by the presence of electric charges and electric currents. We proceed to introduce
these fields.
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The charge relation Eq. (17.7) is now formally solved by introducing the second
set of electromagnetic fields 𝐷𝐷𝐷 (𝑥𝑥𝑥, 𝑡) and 𝐻𝐻𝐻 (𝑥𝑥𝑥, 𝑡). The first one is introduced by:∮

𝜕𝑣(𝑡 )

𝐷𝐷𝐷 ·𝑛𝑛𝑛 d𝑎 ≡
∫
𝑣(𝑡 )

𝑞 d𝑣, (17.11)

a.k.a. Gauss’ law.
The pioneers of electrodynamics believed that the electric charge excites the

surrounding space around it, may it be filled with matter or be a vacuum. Exactly
this is expressed by this relation, and it is for this reason that 𝐷𝐷𝐷 is also known as the
electric excitation. Its presence is a consequence of the presence of electric charge.
However, it is also called electric charge potential, and the reason for that will become
obvious when we will move to its local form in regular points. To this end we use
the Gauss-Ostrogradski theorem and perform the corresponding localization of Eq.
(17.11) in regular points:

∇ ·𝐷𝐷𝐷 = 𝑞, (17.12)

which reveals the potential character of 𝐷𝐷𝐷. Moreover, the localization on a singular
surface carrying a surface charge density 𝑞I yields

J𝐷𝐷𝐷K ·𝑛𝑛𝑛 = 𝑞I. (17.13)

Surely Eq. (17.11) does not solve by itself the balance of charge Eq. (17.7). To
this end an extension is required, which introduces the last electromagnetic field 𝐻𝐻𝐻
through:

d
d𝑡

∫
𝑎 (𝑡 )

𝐷𝐷𝐷 ·𝑛𝑛𝑛 d𝑎 =
∮

𝜕𝑎 (𝑡 )

(𝐻𝐻𝐻 +𝐷𝐷𝐷 ×𝑣𝑣𝑣) ·𝜏𝜏𝜏 d𝑙 −
∫
𝑎 (𝑡 )

𝑗𝑗𝑗 ·𝑛𝑛𝑛 d𝑎. (17.14)

This way we return to a flux balance for a conserved quantity, namely the flux
of the electric excitation 𝐷𝐷𝐷 (on the left) through an open (material or immaterial)
surface 𝑎(𝑡): There is a supply through the periphery,

𝐻𝐻𝐻 +𝐷𝐷𝐷 ×𝑣𝑣𝑣

which, in view of what was said about the right hand side in Eq. (17.1), we are
tempted to call magnetomotive intensity, although this is not customary. However, it
contains the magnetic excitation 𝐻𝐻𝐻, which is the field response of the surrounding
to the presence of an electric current. It is a.k.a. current potential, a name that will
become clearer if we move to the localization of in regular points further below.
Indeed on the right hand side of Eq. (17.14) we have two controllable fluxes, one
through the periphery 𝜕𝑎(𝑡) and one through the open surface 𝑎(𝑡). There are no
productions, which confirms the status of this relation as a conservation law. It is also
known as the Ampère-Øersted law, because it was based on researches of these two
scientists that involved electric currents and moving charges (which are convective
currents so to speak).
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If a surface transport theorem of the type shown in Eq. (17.4) is used on the left
hand side of (17.14) the localization of Eq. (17.14) in regular points leads to:

−𝜕𝐷𝐷𝐷
𝜕𝑡

+∇×𝐻𝐻𝐻 = 𝑞𝑣𝑣𝑣+ 𝑗𝑗𝑗 , (17.15)

and in singular points:

𝑛𝑛𝑛× J𝐻𝐻𝐻K+𝑛𝑛𝑛 ·𝑤𝑤𝑤IJ𝐷𝐷𝐷K = 𝑗𝑗𝑗 I + 𝑞I𝑤𝑤𝑤I, (17.16)

𝑗𝑗𝑗 I being a possible line current on the singular surface.
We finally return to the quote by Wheeler at the beginning of this section. The

following can be said: The relations (17.5), (17.12), and (17.15) are the four equations
that were mentioned in the quote. As we shall see in Section 17.4 Eqns. (17.5)2 and
(17.12) are time components of a 4D world-tensor relation where space and time are
merged, whereas (17.5)1, (17.15) belong to spatial components in the 4D-formalism.
However, before we turn to the 4-vector formalism, we will take a look how the
pioneers of electromagnetism struggled with the concepts and their nomenclature,
before the compact vector form used in this section resulted.

17.3 Early Forms of Maxwell’s Equations

In this paper we restrict our review to four books of the early pioneers of elec-
tromagnetism: Maxwell himself in his Treatise on electromagnetism [1] and four
ardent followers of his new lore, Boltzmann [2], Hertz [3], and Abraham & Föppl
[7]. However, before we can start, a few remarks are in order:

• In an inertial frame of reference or (better) in a Lorentz system the two electric
and the two magnetic fields are simply proportional, i.e.,

𝐷𝐷𝐷 = 𝜖0𝐸𝐸𝐸

and
𝐵𝐵𝐵 = 𝜇0𝐻𝐻𝐻

with the vacuum electric permittivity 𝜖0 = 8.854× 10−12 As2

Nm2 and the vacuum
magnetic permeability 𝜇0 = 4𝜋×10−7 N

A2 in SI units. In Gaussian units they are
numerically (but not conceptually) equal. Maxwell (and contemporaries) used
Gaussian units, which he called electrostatic system. If one so wishes these are
(linear) constitutive relations of the material we call “the ether”, which have this
simple form only in an inertial or Lorentz frame.2

• If we want to use and study the electromagnetic fields in matter, it is useful to
decompose the total charge density 𝑞 and the total current 𝑗𝑗𝑗 additively into their

2 More information on this cumbersome topic can be found in [6], Sects. 4.1 and 5.3 or [8], Sects.
1.6.2–1.6.5.
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so-called “free” part (identified by an index f) and a response due to the material.
In the case of the total charge density we write

𝑞 = 𝑞f −∇ ·𝑃𝑃𝑃,

where 𝑃𝑃𝑃 is known as polarization. In the case of the electric current we have

𝑗𝑗𝑗 = 𝑗𝑗𝑗 f + 𝑗𝑗𝑗p +∇×𝑀𝑀𝑀,

where 𝑀𝑀𝑀 is known as (the Minkowski) magnetization. Hence the second set of
Maxwell equations in regular points now reads:3

−𝜕 (𝐷𝐷𝐷 +𝑃𝑃𝑃)
𝜕𝑡

+∇× (𝐻𝐻𝐻 −𝑀𝑀𝑀 −𝑃𝑃𝑃×𝑣𝑣𝑣) = 𝑞f𝑣𝑣𝑣+ 𝑗𝑗𝑗 f , ∇ · (𝐷𝐷𝐷 +𝑃𝑃𝑃) = 𝑞f. (17.17)

• Just one remark on the side in order to touch upon the constitutive aspects of 𝑞 and
𝑗𝑗𝑗 once more: Let us assume that the dielectric responds linearly to the presence of
an external electric field 𝐸𝐸𝐸 . Then we have in an inertial frame for the combination
𝐷𝐷𝐷 +𝑃𝑃𝑃 in the last expression

𝑃𝑃𝑃 = 𝜖0𝜒𝐸𝐸𝐸 ⇒ 𝐷𝐷𝐷 +𝑃𝑃𝑃 = 𝜖0𝜖r𝐸𝐸𝐸 , 𝜖r = 1+ 𝜒. (17.18)

If one so wishes one can call the combination 𝐷𝐷𝐷 +𝑃𝑃𝑃 electric excitation in matter and
frequently the symbol 𝐷𝐷𝐷 is used for that, which clearly will give rise for confusion.
𝜒 is known as dielectric susceptibility and 𝜖r is the relative dielectric permittivity
constant. Similar relations can be established for linearly magnetizable matter, i.e.,
for the combination 𝐻𝐻𝐻 −𝑀𝑀𝑀 .

17.3.1 Maxwell’s Treatise on Electromagnetism

As with all historic literature Maxwell’s treatise on electromagnetism in two volumes,
[10] and [1] is difficult to read. The difficulties start with the notions and the
corresponding mathematical symbols he uses. As a starting points we will use the
compilation of his notation on pp. 238 and the Table of Dimensions on pp. 244.

Maxwell knew vectors,which, as he emphasizes, are identified by “German letters”.
He also decomposes them into (Cartesian) components. However, the corresponding
components are not written in a manner customary to us. Rather he uses different
letters for each of them, similarly as Love does for the stress vector in the early
versions of his treatise of elasticity ([11], pg. 57). All of this shows that vector and
tensor calculus were just in their infancy at that time.

Let us concentrate on the four electromagnetic fields first: We read of a magnetic
induction 𝔅 with components (𝑎, 𝑏, 𝑐). Next there is an electromotive force 𝔈 with
components (𝑃,𝑄, 𝑅). Then there is the electric displacement 𝔇, and its components

3 The polarization current 𝑗𝑗𝑗p and the derivation are detailed in [9].
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are ( 𝑓 , 𝑔, ℎ). And,finally,we encounter a magnetic forceℌ or (𝛼, 𝛽, 𝛾) componentwise.
Of course, one is tempted to identify them with “our” fields 𝐵𝐵𝐵,𝐸𝐸𝐸 ,𝐷𝐷𝐷, and𝐻𝐻𝐻. However,
care must be exercised, in view of the remarks above. To begin with, 𝔅 corresponds
directly to the magnetic field 𝐵𝐵𝐵. This is confirmed in Art. 405 of the treatise, where
the vector potential 𝐴𝐴𝐴 is introduced, such that

𝐵𝐵𝐵 = ∇×𝐴𝐴𝐴.

Maxwell puts 𝐴𝐴𝐴→ 𝔄 = (𝐹,𝐺,𝐻) and later (in Art. 604) calls it also electromagnetic
momentum. Not surprisingly the equation of non-existing magnetic monopoles Eq.
(17.5)2 is stated several times (e.g., pg. 26 and 230) in the form:

𝑑𝑎

𝑑𝑥
+ 𝑑𝑏
𝑑𝑦

+ 𝑑𝑐
𝑑𝑧

= 0. (17.19)

In this context it should be noted that Maxwell uses straight d’s instead of proper
partials 𝜕. This was common in his days, cf., [12], pg. xii.4

Gauss’ law in the form Eq. 17.172 is stated in Art. 612 in the form

𝜌 =
𝑑𝑓

𝑑𝑥
+ 𝑑𝑔
𝑑𝑦

+ 𝑑ℎ
𝑑𝑧
. (17.20)

where Maxwell calls 𝜌 the volume-density of the free electricity, what we called
𝑞f and, unlike us, he puts it on the left hand side. Hence we must conclude that
𝔇→𝐷𝐷𝐷 +𝑃𝑃𝑃.

Another problem is to understand the various electric currents Maxwell intro-
duces. There is the total electric current ℭ = (𝑢, 𝑣,𝑤) and the current of conduction
𝔎 = (𝑝, 𝑞,𝑟). However, the temporal change of 𝔇 is also a current for him. On pg.
235 he writes:

ℭ = 𝔎+ ¤𝔇. (17.21)

The dot could refer to a partial time derivative, which (indirectly5) is supported
by the fact that when he switches to components he writes instead of (17.21):

𝑢 = 𝑝 + 𝑑𝑓
𝑑𝑡
, 𝑣 = 𝑞 + 𝑑𝑔

𝑑𝑡
, 𝑤 = 𝑟 + 𝑑ℎ

𝑑𝑡
. (17.22)

Now, in order to retrieve the Ampère-Øersted law in a form similar to Eq. (17.17)1
we have to combine this with Eq. (E) on pg. 233 of the Treatise:

4 At this point a comment is in order: There is some belief in the St. Petersburg school of Rational
Mechanics that Maxwell used 𝑑/𝑑𝑡 to indicate a total (not to be confused with a substantial and
also not (synonymously used) with a material time derivative), see e.g., [13], pp. 312, or [14], Sect.
2.2. As it is shown in the reference time-dependent coordinate transformations (not to be confused
with a change of observer) would then lead to internal contradictions. It is the belief of the first
author that Maxwell never thought of that and conceived only non-moving coordinates spanning
space and time. Unfortunately he cannot ask.
5 Recall the belief of the first author that Maxwell’s straight 𝑑’s mean partials.
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4𝜋𝑢 =
𝑑𝛾

𝑑𝑦
− 𝑑𝛽
𝑑𝑧

, 4𝜋𝑣 =
𝑑𝛼

𝑑𝑧
− 𝑑𝛾
𝑑𝑥

, 4𝜋𝑤 =
𝑑𝛽

𝑑𝑥
− 𝑑𝛼
𝑑𝑦
. (17.23)

The factor 4𝜋 appears because Maxwell uses Gaussian units. The right hand sides
correspond to ∇×ℌ in modern notation. Hence in comparison with Eq. (17.17)1 we
conclude that ℌ→𝐻𝐻𝐻 −𝑀𝑀𝑀 −𝑃𝑃𝑃×𝑣𝑣𝑣.

The meaning ofMaxwell’s𝔈 = (𝑃,𝑄, 𝑅) becomes clear ifwe lookat his “Equations
of Electromotoric force” on pg. 221 of the Treatise:

𝑃 = 𝑐
𝑑𝑦

𝑑𝑡
− 𝑏 𝑑𝑧

𝑑𝑡
− 𝑑𝐹
𝑑𝑡

− 𝑑Ψ
𝑑𝑥
,

𝑄 = 𝑎
𝑑𝑧

𝑑𝑡
− 𝑐 𝑑𝑥

𝑑𝑡
− 𝑑𝐺
𝑑𝑡

− 𝑑Ψ
𝑑𝑦
,

𝑅 = 𝑏
𝑑𝑥

𝑑𝑡
− 𝑎 𝑑𝑦

𝑑𝑡
− 𝑑𝐻
𝑑𝑡

− 𝑑Ψ
𝑑𝑧
.

(17.24)

Recall that Maxwell uses (𝑥, 𝑦, 𝑧) for the Cartesian components of the position vector,
(𝐹,𝐺,𝐻) for the vector potential of the magnetic field 𝐴𝐴𝐴, and (𝑎, 𝑏, 𝑐) for the magnetic
field 𝐵𝐵𝐵. Moreover, by Ψ he denotes the electric potential. Hence in modern notation
we find 𝔈 → 𝑣𝑣𝑣×𝐵𝐵𝐵+𝐸𝐸𝐸 , because we have

𝐸𝐸𝐸 = −𝜕𝐴𝐴𝐴
𝜕𝑡

−∇Ψ.

In other words 𝔈 is not the electric field 𝐸𝐸𝐸 . Rather it is what was called electromotive
intensity above.

But where in Maxwell’s Treatise is Faraday’s induction law, i.e., Eq. (17.5)1?
Nowhere, at least not in that form. The closest we get to it is in a note by Maxwell
from 1868, reprinted in his complete works [15], pp. 137, where we find

𝑎 (𝑃−𝑃0) = − 𝑑
𝑑𝑡

𝑧∫
0

𝑎𝜇𝛽𝑑𝑧. (17.25)

According to Maxwell the meaning of the various (new) symbols is: 𝑎 and 𝑧 are the
sides of a parallelogram (which embraces the lines of force, in other words, through
which the magnetic field lines are streaming) along the axis of 𝑥 and 𝑧, respectively,
𝑎 (𝑃−𝑃0) is the total electromotive force per unit length in the direction of 𝑥, 𝜇 is
the coefficient of magnetic induction and 𝛽 is referred to as the magnetic intensity, a
notion that is not used on the summary on pp. 238 of the Treatise.

In short, Eq. (17.25) seems to be a somewhat corrupted version of the integral
form of the induction law Eq. (17.1). It clearly shows that the ongoing struggle of
how to include the influence of matter (𝜇!) on the electromagnetic fields began early.
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17.3.2 Maxwell’s Disciples

A complete discussion of the electromagnetic literature of Maxwell’s contemporaries
is beyond the scope of this paper. May it suffice to comment on just a few.

The first edition Maxwell’s Treatise was published in 1873. Boltzmann’s series
of lectures on electromagnetic theory were published twenty years later ([2], [16])
in 1891 and 1893, respectively. Boltzmann admires Maxwell, almost glorifies his
findings and equations. This becomes obvious by the lyrical quotes of Goethe and
reference to Schiller he uses at the beginning of both books: “So soll ich denn mit
saurem Schweiss Euch lehren, was ich selbst nicht weiss,” “Kein Wunder daher, dass
sich zur Fortführung des Baues nun die Kärrner einfinden. Ein solcher Kärrner,
dem die Aufgabe ward, den Weg zum Gebäude zu ebnen, die Façade zu putzen,
vielleicht auch’ dem Fundamente noch den einen oder anderen Stein einzufügen, will
ich sein, und ich bin stolz darauf; denn gäbe es keine Kärrner, wie möchten wohl die
Könige bauen?,” and finally “War es ein Gott, der diese Zeichen schrieb, Die mit
geheimnisvoll verborg’nem Trieb Die Kräfte der Natur um mich enthüllen Und mir
das Herz mit stiller Freude füllen.” 6

Hence it is not surprising that his summary of the Maxwell equations on pg. 87
in [2] basically coincides with Maxwell’s summary in the Treatise and uses exactly
the same symbols. Faraday’s law of induction in the form of Eq. (17.5)1 is also not
presented. However, his book still needs to be mentioned, because, first, it certainly
added to the dissemination of Maxwell’s ideas on the Continent and particularly in
Germany. Second, it supports the viewpoint of the first author of this article regarding
the use of 𝜕 and 𝑑 in the Maxwell equations. Note that Boltzmann constantly switches
notation. For example, in his summary on pg. 84 of [2] he writes the law of non-
existing monopoles in the form (17.19) Maxwell wrote it, whereas at the beginning
of the very same lecture (pg. 81) we see:

𝜕𝑎

𝜕𝑥
+ 𝜕𝑏
𝜕𝑦

+ 𝜕𝑐
𝜕𝑧

= 0.7 (17.26)

Hertz is different. His two famous papers on the foundations of electrodyna-
mics for bodies at rest and bodies in motion ([3], pp. 208) must be considered as
a clarification, maybe even as a new beginning of electrodynamics. On pg. 214 of
the first paper (bodies at rest) we find two times two sets of two equations each
representing the electromagnetic effects for the ether, or we may simply want to say
the vacuum viewed from a Lorentz system. Hertz uses (𝑋,𝑌, 𝑍) for what he calls

6 “So I shall teach you with sour sweat what I do not know myself,” “No wonder, therefore, that for
the continuation of the construction now the carters come together. I want to be one of these carters,
who has the task of paving the way to the building, cleaning the facade, and perhaps adding a stone
or two to the foundation, and I am proud of it, because if there were no carters, how would the kings
like to build?,” and finally “Was it a God who wrote these symbols, Which with mysteriously hidden
impulse The forces of nature around me reveal And fill my heart with quiet joy.”
7 The first author thinks this proves his point of view that neither Maxwell nor Boltzmann thought
of time-dependent coordinate transformations. They were simply sloppy.
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elektrische Kraft8 and (𝐿,𝑀,𝑁) for what he calls magnetische Kraft9 and writes:

𝐴
𝑑𝐿

𝑑𝑡
=
𝑑𝑍

𝑑𝑦
− 𝑑𝑌
𝑑𝑧
, 𝐴

𝑑𝑋

𝑑𝑡
=
𝑑𝑀

𝑑𝑧
− 𝑑𝑁
𝑑𝑦
,

𝐴
𝑑𝑀

𝑑𝑡
=
𝑑𝑋

𝑑𝑧
− 𝑑𝑍
𝑑𝑧
, 𝐴

𝑑𝑌

𝑑𝑡
=
𝑑𝑁

𝑑𝑥
− 𝑑𝐿
𝑑𝑧
,

𝐴
𝑑𝑁

𝑑𝑡
=
𝑑𝑌

𝑑𝑥
− 𝑑𝑋
𝑑𝑦

; 𝐴
𝑑𝑍

𝑑𝑡
=
𝑑𝐿

𝑑𝑦
− 𝑑𝑀
𝑑𝑥

;

(17.27)

and
𝑑𝐿

𝑑𝑥
+ 𝑑𝑀
𝑑𝑦

+ 𝑑𝑁
𝑑𝑧

= 0, 10
𝑑𝑋

𝑑𝑥
+ 𝑑𝑌
𝑑𝑦

+ 𝑑𝑍
𝑑𝑧

= 0. (17.28)

If we wish to link (17.27) to the Faraday law of induction in (17.5)1 and to the
Ampère-Øersted law from (17.15) we obviously have to assign a Minus to Hertz’
magnetische Kraft. In this context several comments are in order:

• In a Lorentz system, where the ether is at rest so-to-speak, there is simple propor-
tionality and no cross-linking within the pair 𝐵𝐵𝐵 and 𝐻𝐻𝐻 and within the pair 𝐷𝐷𝐷 and
𝐸𝐸𝐸 , which explains the full symmetry of the equations in (17.27). In SI units we
have

𝐷𝐷𝐷 = 𝜖0𝐸𝐸𝐸, 𝐵𝐵𝐵 = 𝜇0𝐻𝐻𝐻, 𝑐 =
1√
𝜖0𝜇0

.

• The constant 𝐴, as Hertz remarks, is a property of the ether and is a reciprocal
velocity, namely what we call vacuum speed of light, 𝑐 ≡ 1

𝐴 . In summary we write
(17.27) in modern notation as follows:

𝜕 (−𝑐𝐵𝐵𝐵)
𝜕𝑐𝑡

= ∇×𝐸𝐸𝐸 ;
𝜕 (𝐸𝐸𝐸)
𝜕𝑐𝑡

= ∇× (−𝑐𝐵𝐵𝐵). (17.29)

In a way this anticipates Minkowski’s space-time notation, which we will discuss
in Section 17.4 below.

After the discussion of the situation in vacuum Hertz extends the theory to isotropic
and anisotropic non-conducting materials as well as to conductors obeying Ohm’s
law, in which the free current is proportional to the electric field, 𝑗𝑗𝑗 f = 𝜎𝐸𝐸𝐸 , 𝜎 being
the electric conductivity.

His second paper on electrodynamics of moving bodies addresses the question
of how Maxwell’s equations are affected if a change of observer is performed.
This is a cumbersome topic and we shall not discuss it here. Rather we touch
upon this issue in a slightly different way in the next section, which is dedicated
to the space-time notation of Maxwell’s equations. Finally, note that Minkowski
already states in 1910 in [17] “Über die Grundgleichungen der Elektrodynamik für
bewegte Körper herrschen zur Zeit noch Meinungsverschiedenheiten. Die Ansätze

8 electric force
9 magnetic force
10 There is a typo in the last term, where Hertz writes 𝑑𝑁

𝑑𝑥
.
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von Hertz ... (1890) mußten verlassen werden, weil sich herausgestellt hat, daß sie
mit verschiedenen experimentellen Ergebnissen in Widerspruch geraten.11 This led
straight to the famous Abraham-Minkowski controversy that circles around the correct
formulation of electrodynamic constitutive equations for (fast) moving bodies (see
the literature, e.g., compiled in [18]). And because Hertz is all but easy to read a
detailed examination of what he knew and did not know is left to future work.

Finally in this section a few comments are due to the work of Abraham, which
was co-authored by the Munich professor of technical mechanics, Föppl. The latter
embraced enthusiastically the new electromagnetic theory and, what is more, the
tensor calculus in the formulation of Heaviside. Indeed, in [7] he provides us with
an introduction to this formerly new type of mathematics. He also compares the
Heaviside version of tensor rules to the quaternion formalism established by Hamil-
ton. This is extremely useful for understanding Maxwell’s work, the mathematical
formulation of which is somewhere in between so-to-speak. As it was emphasized
above at least one of the authors of this work had a strong mechanical background.
The work of the St. Petersburg school is a continuation of this unison of mechanics
and electrodynamics so-to-speak.

Moreover, the Abraham book is the ancestor to the works of Becker and Sauter,
cf., [19–21], which are used until today as the reference to electromagnetism by the
physics community throughout the world.

17.4 World-Tensor Form of Maxwell’s Equations

We start our world-tensor formulation with the famous quote by Minkowski from [22]:
M. H.! Die Anschauungen über Raum und Zeit, die ich Ihnen entwickeln möchte, sind
auf experimentell-physikalischem Boden erwachsen. Darin liegt ihre Stärke. Ihre
Tendenz ist eine radikale. Von Stund an sollen Raum fur sich und Zeit fur sich völlig zu
Schatten herabsinken und nur noch eine Art Union der beiden soll Selbstständigkeit
bewahren.12

Now we shall proceed as follows: First, we will give a somewhat naive explanation
how Maxwell’s equation can be written in spacetime coordinates. No absolute
notation will be presented. Second, we will go through the modern literature and
show how Maxwell’s equation can be written in absolute coordinate and metric
independent form, based on absolute world-tensors and exterior differential forms.

11 “At present there are still differences of opinion about the basic equations of electrodynamics for
moving bodies. The ansätze of Hertz ... (1890) had to be abandoned because they turned out to be
in contradiction with various experimental results.”
12 Gentlemen! The views of space and time which I wish to lay before you have sprung from the soil
of experimental physics, and therein lies their strength. Their tendency is a radical one. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two shall preserve independence.
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17.4.1 A Naive Introduction of the World-Tensors of
Electrodynamics and Maxwell’s Equation in Space-Time
Formulation

By combining time and space we say that a change of the frame of reference of a
world-event occurs when one observer – at rest in the frame 𝑆 – locates the event at
𝑥𝐴 = (𝑐𝑡, 𝑥𝑎) and another observer – at rest in frame 𝑆′ – locates it at 𝑥𝐴′ = (𝑐𝑡′, 𝑥′𝑎).
The maps

𝑥𝐴
′
= 𝑥𝐴

′ (𝑥𝐵) ⇔ 𝑥𝐵 = 𝑥𝐵 (𝑥𝐴′ ). (17.30)

are called spacetime transformation laws. Following [23] the electric and magnetic
fields,𝐸𝐸𝐸 and 𝐵𝐵𝐵 will be combined in an absolute, covariant, completely antisymmetric
tensor of rank 2, 𝐹𝐹𝐹, the electromagnetic field tensor, a.k.a. Faraday in [24],

𝐹𝐴𝐵 =

[
0 −𝐸𝑏/𝑐

𝐸𝑎/𝑐 Y𝑎𝑏𝑐𝐵𝑐
]
, (17.31)

which transforms according to:13

𝐹𝐴′𝐵′ =
𝜕𝑥𝐴

𝜕𝑥𝐴′
𝜕𝑥𝐵

𝜕𝑥𝐵′ 𝐹𝐴𝐵. (17.32)

If we introduce the 4D Levi-Civita tensor by:

𝜖 𝐴𝐵𝐶𝐷 =



+1 if 𝐴, 𝐵,𝐶,𝐷 = 0,1,2,3 and even permutations
−1 if 𝐴, 𝐵,𝐶,𝐷 = 1,0,2,3 and even permutations
0 otherwise

, (17.33)

which is a relative contravariant tensor of rank 4,

Y𝐴
′𝐵′𝐶′𝐷′

=

����𝜕𝑥𝑥𝑥′𝜕𝑥𝑥𝑥
����
−1 𝜕𝑥𝐴

′

𝜕𝑥𝐴
𝜕𝑥𝐵

′

𝜕𝑥𝐵
𝜕𝑥𝐶

′

𝜕𝑥𝐶
𝜕𝑥𝐷

′

𝜕𝑥𝐷
Y𝐴𝐵𝐶𝐷 , (17.34)

we can write the Maxwell equations for the electromagnetic flux (17.5), which were
established in an inertial frame, in the following form,

Y𝐴𝐵𝐶𝐷
𝜕𝐹𝐶𝐷
𝜕𝑥𝐵

= 0. (17.35)

Note that the spatial choice 𝐴 = (1,2,3) leads to Faraday’s law of induction Eq.
17.51 (in Cartesian component form), and the temporal component 𝐴 = 0 to the law
of non-existing magnetic monopoles, Eq. 17.51. This explains in hindsight the quote
by Wheeler at the beginning of Sect. 17.2.

13 See [23] and [6] for more details on this and other transformation laws below. Some information
reg. the useful distinction of co- and contravariant components in spatial Cartesian coordinates is
provided in [6].
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We now combine the charge density 𝑞 and the total electric current 𝑞𝑣𝑣𝑣 + 𝑗𝑗𝑗 in
a world object. In the nomenclature of [23] this charge-current vector 𝐽𝐽𝐽 is a rela-
tive contravariant tensor of rank 1, which in the inertial system reads in Cartesian
coordinates:

𝐽𝐴 = [𝑐𝑞, 𝑞𝑣𝑎 + 𝑗𝑎] , (17.36)

and which transforms according to:

𝐽𝐴
′
=

����𝜕𝑥𝑥𝑥′𝜕𝑥𝑥𝑥
����
−1 𝜕𝑥𝐴

′

𝜕𝑥𝐴
𝐽𝐴. (17.37)

Then the conservation of charge (17.8) in the inertial system can be expressed by:

𝜕𝐽𝐴

𝜕𝑥𝐴
= 0. (17.38)

However, by means of (17.37) and the identity

𝜕

𝜕𝑥𝐴

(����𝜕𝑥𝑥𝑥′𝜕𝑥𝑥𝑥
���� 𝜕𝑥𝐴𝜕𝑥𝐴′

)
= 0 (17.39)

we can immediately transform this equation into an arbitrary other world frame (or
better to arbitrary other world coordinates 𝑥𝐴′ ):

0 =
𝜕𝐽𝐴

𝜕𝑥𝐴
=

𝜕

𝜕𝑥𝐴

(����𝜕𝑥𝑥𝑥′𝜕𝑥𝑥𝑥
���� 𝜕𝑥𝐴𝜕𝑥𝐴′

𝐽𝐴
′
)
= ... =

����𝜕𝑥𝑥𝑥′𝜕𝑥𝑥𝑥
���� 𝜕𝐽𝐴

′

𝜕𝑥𝐴′
⇒ 𝜕𝐽𝐴

′

𝜕𝑥𝐴′
= 0. (17.40)

This confirms form invariance of the conservation of charge when written in
space-time notation. We may say it is valid in every frame and its concrete form can
be specified if the space-time transformation (17.30) between an inertial frame and
another completely arbitrarily moving one is detailed. Note that it was important that
in (17.38) partial and not covariant differentiation is used. As mentioned above this
is an inherent property of space-time conservation laws.

Eq. (17.38) is satisfied if the antisymmetric charge current potential world tensor
𝐻𝐻𝐻, a.k.a. electromagnetic excitation tensor is used:

𝜕𝐻𝐴𝐵

𝜕𝑥𝐵
= 𝐽𝐴 with 𝐻𝐴𝐵 = −𝐻𝐵𝐴. (17.41)

In view of (17.37) and in order to fulfill the requirement that the tensorial properties
on both sides of the tensor equation (17.41) are the same, it is required that 𝐻𝐴𝐵
transforms like a contravariant relative tensor:

𝐻𝐴
′𝐵′

=

����𝜕𝑥𝑥𝑥′𝜕𝑥𝑥𝑥
����
−1 𝜕𝑥𝐴

′

𝜕𝑥𝐴
𝜕𝑥𝐵

′

𝜕𝑥𝐵
𝐻𝐴𝐵. (17.42)

If we now put in (17.41)
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𝐻𝐴𝐵 =

[
0 𝑐𝐷𝑏

−𝑐𝐷𝑎 Y𝑎𝑏𝑐𝐻𝑐

]
, (17.43)

the second set of Maxwell equations (17.12) and (17.15) results in Cartesian coor-
dinates. Note that Gauss’ law (17.12) is hidden in the temporal component 𝐴 = 0
and the Ampère-Øersted law (17.15) results component-wise from the spatial part
𝐴 = (1,2,3). Forminvariance under arbitrary transformations can be shown if we
observe Eqs. (17.37), (17.39), and (17.42):

𝜕𝐻𝐴
′𝐵′

𝜕𝑥𝐵′ = 𝐽𝐴
′
. (17.44)

The connection between 𝐻𝐻𝐻 and 𝐹𝐹𝐹 is known as the Maxwell-Lorentz ether relation
in [23] and as the electromagnetic spacetime relation in [25]. As detailed in [23]
and [8] it becomes simple for the case of Lorentz transformations. Then is shows a
direct proportionality between the vectors of the two pairs of the electromagnetic
fields without coupling as mentioned above. The connection may be considered as
constitutive equation of the ether (see [26]). This issue is also indirectly addressed
by the Moscow school of mechanics in [27], Section 5.

It should be noted that making a distinction between 𝐹𝐴𝐵 and 𝐻𝐴𝐵 and not simply
considering one to be the co- or contravariant version of the other, must not be taken
for granted.14 In [26] we find the following interesting statement: In his [= Einstein’s]

“Meaning of Relativity” . . . , in the part on GR–often overlooked by aficionados of the
two Poincaré covariant equations in (1)–he [= Einstein] picked the letter 𝜙 for the
field strength apparently in order to stress the different nature ofF and 𝜙. For [23] this
distinction is imperative, and we kept this tradition from the very beginning on in our
paper. In other words, two sets of two electromagnetic fields are required to describe
electromagnetic phenomena. Moreover, the use of Maxwell ether relations between
the fields of the two sets and emphasizing their simplicity for Lorentz transformations
is also non-standard in textbooks on electrodynamics and was (maybe) clearly stated
for the first time in [23].

17.4.2 Absolute Space-Time Notations

In [24] the coordinate form of Faraday 𝐹𝐴𝐵 is rewritten in absolute world-tensor
form as follows:

𝐹𝐹𝐹 = 𝐹𝐴𝐵𝑑𝑑𝑑𝑥
𝐴⊗𝑑𝑑𝑑𝑥𝐵, (17.45)

where 𝑑𝑑𝑑𝑥𝐴 are called basis 1-forms. With a grain of salt we may envisage them
as not necessarily orthogonal, non-normalized tangent vectors to spacetime lines
intersecting an event point, such that they form a basis, meaning they are linearly
independent. Then the first set of Maxwell equations (17.35) can be written in
coordinate- and metric-free form by using the so-called exterior derivative 𝑑𝑑𝑑 ([24],

14 See for example the opposite approach in [28] or [24].
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[26], [29]):15
𝑑𝑑𝑑𝐹𝐹𝐹 = 0. (17.46)

Alternatively ([24], pg. 81) it is possible to write in absolute world-tensor notation:

∇ ·∗𝐹𝐹𝐹 = 0, (17.47)

where ∇ is a space-time Nabla operator and ∗𝐹𝐹𝐹 is the dual tensor to 𝐹𝐹𝐹.
The world-vector 𝐽𝐴 from (17.36) is now redefined in a dual 3-form ∗𝐽𝐽𝐽 ([25], pg.

145, and [24], pg. 81), such that the conservation of charge and current (17.38) can
be expressed by:

𝑑𝑑𝑑∗𝐽𝐽𝐽 = 0. (17.48)

Finally the second set of Maxwell equations is written in exterior differential forms
as

𝑑𝑑𝑑∗𝐻𝐻𝐻 =∗𝐽𝐽𝐽, (17.49)

where the excitation world-tensor ∗𝐻𝐻𝐻 is a dual 2-form. Alternatively, the duals to the
duals, can be defined, called 𝐽𝐽𝐽 and 𝐻𝐻𝐻 ([24], pg. 83, §4.5), to write

∇ ·𝐻𝐻𝐻 = 𝐽𝐽𝐽, (17.50)

This way of writing is probably closest to (17.41). Then obviously ∇ is what one
would call in traditional continuum mechanics tensor calculus a Nabla operation
from the right side.

Summing up it should be mentioned that in [29], pg. 29 a nice table can be found
to accompany our journey through time of writing the Maxwell equations.

17.5 Conclusions and Outlook

The following was achieved in this paper:
• Initially Maxwell’s equations were stated in vector form of 3D-space based on the

principles of conservation of electromagnetic flux and charge.
• The importance of two sets of two (independent) fields was emphasized. The

Maxwell-Lorentz-ether relations connecting the fields were introduced.
• The origin of these equations in the works of Maxwell,Boltzmann,Hertz,Abraham

and Föppl was explored.
• A spacetime notation was introduced, world-tensors were defined and the Maxwell

equations were rewritten, first, in coordinate form and, second, in absolute notation
following the mathematical principles of exterior differential forms.
What remains to be done? Maybe the following:

• A constitutive theory, i.e., the material response of matter to the electrodynamic
fields, is still not available in a rational way of presentation and subject of discussion.

15 The mathematical definitions and details can be found in [24], [30] or [25].
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Here the main problem is the clash between a 3D and a 4D formulation, small
velocities of matter and velocities close to the speed of light.

• It needs to be clarified as to whether the world-tensor formalism is the key to what
in classical continuum theory is known as change of observer. This should not ne
confused with coordinate transformations, which seem to be meant in (17.30).

• What did the pioneers know about that? Is the theory by Hertz (and others) already
an answer to the last two bullet points?

• How can electrodynamics and continuum mechanics be reconciled? Is electro-
dynamics possibly explainable by a refined mechanistic theory following up on
Maxwell’s vortices, maybe in the framework of micropolar theory (see [31–33])?

The future will tell!

Acknowledgements This paper was prepared during a stay of E.N.V. in Berlin during March/April
2023 sponsored by TU Berlin.
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Chapter 18
Multi-Objective Optimization of the Helix Shape
of Cylindrical Milling Tools

Chigbogu Ozoegwu and Peter Eberhard

Abstract Milling flutes primarily often have helix shapes for dynamical and functional
benefits like reducing impacts and easing chip evacuation. Traditionally, a milling
flute is defined with a fixed helix angle and, much less frequently, with a varying helix
angle. A segmented helix shape was proposed recently as a special case of generalized
helix shape description of milling flutes with potential for significant cutting force
reduction. Cutting force components in the feed and feed-normal directions are
reported in some works to be competing criteria when tools with different fixed helix
angles were compared. This work presents a multi-objective optimization for the
force components that identifies the trade-off helix shapes from the space of feasible
variable helix shapes (which includes also fixed and harmonic shapes) for cylindrical
milling tools. The optimization is based on analytical expressions for cutting force
components in terms of multiple helix angles describing the segmented flute and
applying a genetic algorithm in determining the force-minimizing set of helix angles.
Numerically computed illustrations are presented to show that significant reductions
of the cutting force components can result from the optimization by choosing a
preferred helix shape among the trade-off shapes.

18.1 Introduction

The dependence of cutting force on the helix shape of cutting tools during the milling
process has received significant research interest. Cutting forces are known to reduce
with increase of helix angle [1]. This is because larger helix angles elongate the
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duration and geometric contact length of the tool with the workpiece thus reducing
impact loads [2]. Experimental results show that the tangential and normal force
components in milling processes decrease with increase of helix angle [3–5]. The
axial force is found to increase with increase of helix angle [4, 5]. In [6], the helix
angle is varied from 30 to 60 degrees and the finite element method is used to simulate
the varying cutting force. The study shows that the resultant cutting force decreases
for helix angle rise up to 45 degrees and increases thereafter. A similar trend is
reported in [7] for the peak value of the feed-normal cutting force component that is
modeled using the mechanistic approach. The optimal helix angle is dependent on
the diameter, number of flutes, and axial depth of cut. Increase of the mean value
of harmonically changing helix angles is seen in [8] to cause decrease of resultant
cutting forces.

In the cited studies, the cutting tool is considered to have either fixed or harmon-
ically varying helix angle. The thrust of the works is limited to modifying cutting
forces by varying the fixed helix angle over very limited parametric ranges. On-flute
harmonic variation of helix angle is typically used to reduce cutting forces in rough-
ening operations [9]. The results in [6] show that the feed force increases while the
feed-normal force decreases with increase of helix angle over the limited range 30
to 60 degrees. This contradicts the results in [1] that both the feed and feed-normal
forces increase with decrease of helix angle when right-handed end-mills with helix
angles 5, 25 and 45 degrees are compared. The contradiction could be a result of
the different limited ranges studied in these works. Therefore, it can be said that
the cutting force components constitute a pair of conflicting performance criteria in
some portions of the set of helix shapes. The question of what helix shape minimizes
cutting forces in a milling operation, and what range of trade-off helix shapes exist for
the conflicting cutting force components has not been addressed sufficiently. Multi-
objective optimization as carried out in this work is, therefore, advisable since the
conflicting cutting force components correspond to conflicting objectives in milling
operations. For example, increase of productivity, leads to unwanted increase in power
demand and unwanted decrease of machining accuracy (as a result of form errors
and chatter, see [10, 11]). These conflicting objectives are influenced by the cutting
force components.

To address these researchquestions, the goal in this work is to establish an algorithm
for systematic search of the trade-off helix shapes. This is done by formulating cutting
force-based multi-objective functions using the geometric model for helix shape
segmentation of a milling flute as introduced in [2], setting up the relevant optimization
problem and solving the problem using an evolutionary algorithm. Evolutionary
algorithms are typically applied in the optimization of the complex dynamics of
different types of mechanical systems in manufacturing [12–14], multibody dynamics
[15], automobile impact[16], and others.

An overview of the adopted force model of the milling process is presented in
Sect. 18.2. A segmented-flute analytical model for determining the integrated cutting
force is formulated in Sect. 18.3 to serve as the basis for the formulation of the
objective functions. The multi-objective functions and the appropriate dynamical
and geometric constraints are formulated in Sect. 18.4 to set up the optimization



18 Multi-Objective Optimization of the Helix Shape of Cylindrical Milling Tools 305

problem. Results of the optimization based on a genetic algorithm are presented in
Sect. 18.5. A conclusion is presented in Sect. 18.6.

18.2 Milling Flute Cutting Force

The cutting force is the primary performance indicator of the machining process since
it is the driver of most of the other important metal cutting performance indicators.
For example, higher cutting force translates to higher tool/workpiece deflection which
causes higher form error, higher vibration amplitude which causes higher surface
waviness, higher heat generation which causes more aggravated wear problems, and
higher cutting energy demand. Cutting force components will serve as the building
blocks of the objective functions for the intended optimization study. It is instructive
at this point to first describe the applicable cutting force model.

The measurable cutting forces are usually integrated from the distributed or local
forces (of interaction between the tool and the workpiece) for all the points on the
cutting edge. Figure 18.1 shows a cutting edge element of a tool with diameter 𝐷.
The element, which has the axial height 𝑑𝑧 and the helical length 𝑑𝑆 = 𝑑𝑧/cos 𝛽(𝑧)
where 𝛽(𝑧) is the helix angle, is positioned at the axial location 𝑧. The cutting edge
element rotates about the spindle axis (or axial direction) 𝑋3 at the spindle speed Ω
(given in revolutions per minute), translates along the feed direction 𝑋1 at the velocity
(feed rate) 𝑣, and, at the time instant 𝑡, is subjected to the local force vector 𝑑𝑭l (𝑡, 𝑧)
with the components

𝑑𝑭l (𝑡, 𝑧) = [𝑑𝐹t (𝑡, 𝑧) 𝑑𝐹n (𝑡, 𝑧) 𝑑𝐹a (𝑡, 𝑧)]T (18.1)

in the tangential, radial and axial directions.

Fig. 18.1: Differential cutting
edge element of a flute.
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In machining operation, the local force components are usually captured using
the dual-mechanism model [17] whereby each local force component is contributed
from two sources. For the linear dual-mechanism model, the sources are the chip-
forming force which is directly proportional to the undeformed chip cross-section
(the product of the undeformed chip thickness and width or depth of cut) and the edge
or ploughing force which is directly proportional to the contact length between the
cutting edge flank and the machined surface. The constants of proportionality in the
linear dual-mechanism model are called force coefficients in literature. In [18–21],
the contact length 𝑆 between the machined surface and the cutting edge which is
needed for modeling the milling process edge force is considered to be helical in
shape hence the local force components are given as

𝑑𝐹t (𝑡, 𝑧) = 𝑔(𝑡, 𝑧) (𝐾ctℎ(𝑡, 𝑧)𝑑𝑧+𝐾et𝑑𝑆),
𝑑𝐹n (𝑡, 𝑧) = 𝑔(𝑡, 𝑧) (𝐾cnℎ(𝑡, 𝑧)𝑑𝑧+𝐾en𝑑𝑆),
𝑑𝐹a (𝑡, 𝑧) = 𝑔(𝑡, 𝑧) (𝐾caℎ(𝑡, 𝑧)𝑑𝑧+𝐾ea𝑑𝑆).

(18.2)

The constants𝐾ct,𝐾cn, and𝐾ca are the chip-forming force coefficients in the tangential,
radial and axial directions of the cutting edge and 𝐾et, 𝐾en and 𝐾ea are the edge force
coefficients in the corresponding directions. The screening function 𝑔(𝑡, 𝑧) guarantees
the switching dynamics of the milling process by taking the value 1 if the cutting
edge element is engaged with the workpiece at the time 𝑡 and the value zero if not
engaged. The chip thickness ℎ(𝑡, 𝑧) is given as

ℎ(𝑡, 𝑧) = 𝑣𝜏 sin\ (𝑡, 𝑧) (18.3)

with

\ (𝑡, 𝑧) = 𝜋Ω
30
𝑡 + \ (0,0) −𝛼(𝑧), 𝛼(𝑧) = 2

𝐷

𝑧∫
0

tan 𝛽(Z)𝑑Z, (18.4)

where the parameter

𝜏 =
60
𝑁Ω

is the rotational time lag between the flute and the preceding flute, 𝑁 is the number of
flutes of the tool, \ (𝑡, 𝑧) is the rotational displacement of the local force component
𝑑𝐹n from the feed-normal direction 𝑋2 (or the angular displacement of the cutting
edge element from −𝑋2 direction), and 𝛼(𝑧) is the lag angle of the cutting edge
element at the axial position 𝑧 which is integrated from the differential lag angles
𝑑𝛼 of the lower-positioned elements. The angle \ (0,0), which is the initial angular
position of a flute at the tool tip (𝑧 = 0), is expressed in terms of the reference number
𝑗 of the flute under consideration as

\ 𝑗 (0,0) = 2𝜋
𝑁

( 𝑗 −1) for 𝑗 = 1, 2, 3, . . . , 𝑁. (18.5)

The cutting edge element enters the cutting zone at the angular position \ (𝑡, 𝑧) = \𝑠
and leaves at the angular position \ (𝑡, 𝑧) = \𝑒 which causes the earlier-mentioned
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switching dynamic of milling. These boundary angles are given as

\𝑠 = 0 and \𝑒 = arccos(1−2𝜌) for up-milling,
\𝑠 = arccos(2𝜌−1) and \𝑒 = 𝜋 for down-milling,

(18.6)

where 𝜌 = 𝐵/𝐷 is the radial immersion and 𝐵 is the radial depth of cut. In terms of
\ (𝑡, 𝑧), \𝑠 and \𝑒, the screening function 𝑔(𝑡, 𝑧) is given in [22] as

𝑔(𝑡, 𝑧) = 0.5(1+ sign(𝐺 (𝑡, 𝑧))),
𝐺 (𝑡, 𝑧) = sin(\ (𝑡, 𝑧) − arctan 𝜒) − sin(\𝑠 − arctan 𝜒),

𝜒 =
sin\𝑠 − sin\𝑒
cos\𝑠 − cos\𝑒

.

(18.7)

For the milling modes that combine up-milling and down-milling, the equations for
the angles \𝑠 and \𝑒, and the screening function 𝑔(𝑡, 𝑧) are given in [23].

The directions in that dynamical responses and operational motions are usually
referred in milling operations are the feed (𝑋1), feed-normal (𝑋2), and axial (𝑋3)
directions, see also Fig. 18.1. These are the directions that cutting forces are measured
in the laboratory. Therefore, the local forces must be referred to these directions using
an appropriate rotation matrix. For the purpose of the rotation, the local force vector
is based on Eq. (18.2) written in the form

𝑑𝑭l (𝑡, 𝑧) = 𝑔(𝑡, 𝑧)
(
ℎ(𝑡, 𝑧)𝑲c + 1

cos 𝛽(𝑧) 𝑲e

)
𝑑𝑧, (18.8)

where
𝑲c = {𝐾ct 𝐾cn 𝐾ca}T, 𝑲𝑒 = {𝐾et 𝐾en 𝐾ea}T. (18.9)

The cutting force vector 𝑭(𝑡) (with its components 𝐹1 (𝑡), 𝐹2 (𝑡) and 𝐹3 (𝑡) in the 𝑋1,
𝑋2, and 𝑋3 directions) can now be integrated over an axial depth of cut 𝑤 from the
rotated local forces (𝐴𝐴𝐴(𝑡, 𝑧)𝑑𝑭l (𝑡, 𝑧)) to read

𝑭(𝑡) =
𝑤∫

0

𝑔(𝑡, 𝑧)𝐴𝐴𝐴(𝑡, 𝑧)
(
ℎ(𝑡, 𝑧)𝑲c + 1

cos 𝛽(𝑧) 𝑲e

)
𝑑𝑧, (18.10)

where 𝐴𝐴𝐴(𝑡, 𝑧) is the rotation matrix. Since the local force component 𝑑𝐹n is rotationally
displaced clockwise from the 𝑋2 axis by \ (𝑡, 𝑧) as depicted in Fig. 18.1, the rotation
matrix 𝐴𝐴𝐴(𝑡, 𝑧) is given as

𝐴𝐴𝐴(𝑡, 𝑧) =


cos\ (𝑡, 𝑧) sin\ (𝑡, 𝑧) 0
−sin\ (𝑡, 𝑧) cos\ (𝑡, 𝑧) 0

0 0 1


. (18.11)

As it is almost always the case that milling tools have multiple flutes, the foregoing
analysis is repeated for each of the flutes noting that what differentiates one flute from
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the other is Eq. (18.5) and the resulting force 𝑭(𝑡) for such tools should be viewed
as the summation from all the flutes.

To optimize the shape of a milling tool, the cutting forces must first be expressed
in terms of an unknown distribution of the shape parameters of interest and an
optimization algorithm is then used to determine the distribution of the parameters that
optimizes the shape. The cutting force vector as given in Eq. (18.10) can only be used
for formulating the objective functions for optimization analysis when the integration
is evaluated symbolically so that the parameters of interest (helix angle distribution
𝛽(𝑧)) can be retained as the optimization variable. Such a symbolic integration is not
possible because 𝛽(𝑧) is assumed to be arbitrary and the lag angle 𝛼(𝑧) can only be
evaluated symbolically for very simple forms of 𝛽(𝑧) such as when fixed at a constant
value. There is, therefore, the need to apply the discretization concept so that the
distributed parameter 𝛽(𝑧) can be replaced with a set of symbolic parameters (helix
angles 𝛽𝑝 at heights 𝑧𝑝) such that each element of the set approximates the distribution
between a pair of nodes. The discrete model can then be integrated symbolically. The
geometric model for a segmented flute (a form of coarse discretization) as described
in [2] is applied in the next section for this purpose.

18.3 An Analytical Cutting Force Model

The aim of the analysis that follows is to apply the segmented flute concept in
formulating closed-form expressions for cutting forces in terms of the helix angles
𝛽𝑝 which changes discretely from one segment of the flute to the next. This will
enable the use of 𝛽𝑝 as optimization variables when the cutting force components
are used in the formulation of the objective functions such that the optimal set of 𝛽𝑝
represents the optimal helix shape of the flute. The closed-form expressions for the
cutting forces are derived in Subsection 18.3.1 while the dependence of the forces
on 𝛽𝑝 is explained in Subsection 18.3.2.

18.3.1 The Integrated Force Components

As hinted in the foregoing, the cutting force modeling idea in [2] of a milling tool
with segmented (non-smooth) helix shape is built upon here to derive closed-form
expressions for the cutting force components of any cylindrical helical milling tool. A
segmented flute is made up of segments 𝑆𝑝 of helix angles 𝛽𝑝 for 𝑝 = 1, 2, 3, . . . , 𝑃.
The segment 𝑆𝑝 lies between the axial positions 𝑧𝑝−1 = (𝑝 − 1)Δ𝑧 and 𝑧𝑝 = 𝑝Δ𝑧
where Δ𝑧 = 𝑤/𝑃 is the fixed height for all segments and 𝑤 is the axial depth of cut. For
the segmented flute, the cutting force 𝑭(𝑡) is the summation of the segment forces

𝑭 (𝑝) (𝑡) =
[
𝐹 (𝑝)

1 (𝑡) 𝐹 (𝑝)
2 (𝑡) 𝐹 (𝑝)

3 (𝑡)
]T
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on the segments 𝑆𝑝 . It follows from Eq. (18.10) that the force 𝑭 (𝑝) (𝑡) on the segment
𝑆𝑝 is

𝑭 (𝑝) (𝑡) =
𝑧𝑝∫

𝑧=𝑧𝑝−1

𝑔(𝑡, 𝑧)𝐴𝐴𝐴(𝑡, 𝑧)
(
ℎ(𝑡, 𝑧)𝑲c + 1

cos 𝛽𝑝
𝑲e

)
𝑑𝑧. (18.12)

In Eq. (18.12), cos 𝛽𝑝 is used instead of cos 𝛽(𝑧) because the helix angle has a fixed
value 𝛽𝑝 in the segment 𝑆𝑝 . Though Eq. (18.12) is derived in view of a segmented
tool, it also applies when Δ𝑧 is small enough (fine segmentation). Fine segmentation
allows further simplification of applying the screening function 𝑔(𝑡, 𝑧) at the center
of the segment 𝑆𝑝 . Hence under fine segmentation, the screening function is assigned
a fixed value 𝑔𝑝 (𝑡) = 𝑔(𝑡, 𝑧𝑝−0.5) where 𝑧𝑝−0.5 = (𝑝−0.5)Δ𝑧 over the segment 𝑆𝑝 .
Equation (18.12) becomes

𝑭 (𝑝) (𝑡) = 𝑔𝑝 (𝑡)
𝑧𝑝∫

𝑧=𝑧𝑝−1

𝐴𝐴𝐴(𝑡, 𝑧)
(
ℎ(𝑡, 𝑧)𝑲c + 1

cos 𝛽𝑝
𝑲e

)
𝑑𝑧

︸                                              ︷︷                                              ︸
𝚽(𝑝) (𝑡)

= 𝑔𝑝 (𝑡)𝚽(𝑝) (𝑡). (18.13)

There is then the need to evaluate the integral 𝚽(𝑝) (𝑡) in order to determine its
close-form expression, and hence the close-form expressions for the cutting force
components. By carrying out the matrix multiplications in the integrand using Eqs.
(18.11) and (18.9), the components of 𝚽(𝑝) (𝑡) become

Φ(𝑝)
1 (𝑡) =

𝑧𝑝∫
𝑧=𝑧𝑝−1

(𝐾ctℎcos\ +𝐾cnℎ sin\

+ 1
cos 𝛽𝑝

𝐾et cos\ + 1
cos 𝛽𝑝

𝐾en sin\
)
𝑑𝑧,

Φ(𝑝)
2 (𝑡) =

𝑧𝑝∫
𝑧=𝑧𝑝−1

(−𝐾ctℎ sin\ +𝐾cnℎcos\

− 1
cos 𝛽𝑝

𝐾et sin\ + 1
cos 𝛽𝑝

𝐾en cos\
)
𝑑𝑧,

Φ(𝑝)
3 (𝑡) =

𝑧𝑝∫
𝑧=𝑧𝑝−1

(
𝐾caℎ+ 1

cos 𝛽𝑝
𝐾ea

)
𝑑𝑧.

(18.14)

where ℎ ≡ ℎ(𝑡, 𝑧) and \ ≡ \ (𝑡, 𝑧) for brevity of the equations. In order to evaluate the
integrals in Eqs. (18.14) effectively, it should be noted that ℎ(𝑡, 𝑧) and \ (𝑡, 𝑧) are the
only functions of 𝑧 (according to Eq. (18.3)) in the integrands.
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The evaluation process is simplified by transforming the integration variable from
𝑧 to \ as follows. It can be seen from Eq. (18.3) that

𝑑\

𝑑𝑧
=
𝑑𝛼

𝑑𝑧
.

The rate of change of the lag angle at the axial position 𝑧 is [2]

𝑑𝛼

𝑑𝑧
=

2
𝐷

tan 𝛽(𝑧).

This can also be inferred from Fig. 18.1. Since 𝛽(𝑧) is fixed at 𝛽𝑝 in the segment 𝑆𝑝 ,
then

𝑑\

𝑑𝑧
=

2
𝐷

tan 𝛽𝑝

giving the transformation
𝑑\ =

2
𝐷

tan 𝛽𝑝𝑑𝑧.

The transformed integrals are evaluated between the corresponding limits

\𝑝−1 (𝑡) = \ (𝑡, 𝑧𝑝−1) and \𝑝 (𝑡) = \ (𝑡, 𝑧𝑝)

for 𝑆𝑝 to give

Φ(𝑝)
1 (𝑡) = 𝐾ct𝑣𝜏

𝐷

8
𝐶2𝑝 (𝑡)
tan 𝛽𝑝

−𝐾cn𝑣𝜏
𝐷

4
𝑆2𝑝 (𝑡)
tan 𝛽𝑝

−𝐾et
𝐷

2
𝑆1𝑝 (𝑡)
sin 𝛽𝑝

+𝐾en
𝐷

2
𝐶1𝑝 (𝑡)
sin 𝛽𝑝

,

Φ(𝑝)
2 (𝑡) = 𝐾ct𝑣𝜏

𝐷

4
𝑆2𝑝 (𝑡)
tan 𝛽𝑝

+𝐾cn𝑣𝜏
𝐷

8
𝐶2𝑝 (𝑡)
tan 𝛽𝑝

−𝐾et
𝐷

2
𝐶1𝑝 (𝑡)
sin 𝛽𝑝

−𝐾en
𝐷

2
𝑆1𝑝 (𝑡)
sin 𝛽𝑝

,

Φ(𝑝)
3 (𝑡) = 𝐾ca𝑣𝜏

𝐷

2
𝐶1𝑝 (𝑡)
tan 𝛽𝑝

+𝐾eaΔ𝑧
1

cos 𝛽𝑝
(18.15)

with the time-varying abbreviation in Eqs. (18.15) being given as

𝐶1𝑝 (𝑡) = cos\𝑝 (𝑡) − cos\𝑝−1 (𝑡),
𝐶2𝑝 (𝑡) = cos(2\𝑝 (𝑡)) − cos(2\𝑝−1 (𝑡)),
𝑆1𝑝 (𝑡) = sin\𝑝 (𝑡) − sin\𝑝−1 (𝑡),

𝑆2𝑝 (𝑡) = − 2
𝐷
Δ𝑧 tan 𝛽𝑝 − 1

2
(sin(2\𝑝 (𝑡)) − sin(2\𝑝−1 (𝑡))).

(18.16)

Equations (18.15) do not apply when 𝛽𝑝 = 0. Under this case, none of the integrands
in Eqs. (18.14) is a function of 𝑧, therefore, they can be evaluated to become



18 Multi-Objective Optimization of the Helix Shape of Cylindrical Milling Tools 311

Φ(𝑝)
1 (𝑡) =𝐾ctℎΔ𝑧 cos\𝑝 (𝑡) +𝐾cnℎΔ𝑧 sin\𝑝 (𝑡)

+𝐾etΔ𝑧 cos\𝑝 (𝑡) +𝐾enΔ𝑧 sin\𝑝 (𝑡),
Φ(𝑝)

2 (𝑡) =−𝐾ctℎΔ𝑧 sin\𝑝 (𝑡) +𝐾cnℎΔ𝑧 cos\𝑝 (𝑡)
−𝐾etΔ𝑧 sin\𝑝 (𝑡) +𝐾enΔ𝑧 cos\𝑝 (𝑡),

Φ(𝑝)
3 (𝑡) =𝐾caℎΔ𝑧+𝐾eaΔ𝑧.

(18.17)

The components of the segment forces 𝑭 (𝑝) (𝑡) in Equation (18.13) can now be
summed to give the needed closed-form expressions for the components of the
cutting force 𝑭(𝑡) in Equation (18.10), hence

𝑭(𝑡) =
𝑃∑︁
𝑝=1

𝑭 (𝑝) (𝑡) =
𝑃∑︁
𝑝=1

𝑔𝑝 (𝑡)𝚽(𝑝) (𝑡). (18.18)

It should be noted that this closed-form model in Eq. (18.18) is one of the special
cases of the generalized closed-form model in [24]. These closed-form expressions
for cutting force components can now be applied in the optimization of the helix shape
of a cylindrical milling tool when the helix angles 𝛽𝑝 are selected as independent
optimization variables. Before that is done in Sect. 18.4, the dependence of the
closed-form expressions for cutting force components, Eq. (18.18), on the changing
helix angles 𝛽𝑝 is first discussed in Subsect. 18.3.2.

18.3.2 Force Dependence on the Variable Helix Angle 𝜷 𝒑

The dependence of the closed-form expressions for cutting force components on
the changing helix angles 𝛽𝑝 can be seen from the lag angle function 𝛼(𝑧) of a
segmented flute. The geometric definition of segmented helix shape in [2] in terms
of the lag angle variation with axial coordinate 𝑧 is

𝛼(𝑧) =




2
𝐷
𝑧 tan 𝛽1 for 𝑆1,

2
𝐷
(𝑧− 𝑧𝑝−1) tan 𝛽𝑝 + 2

𝐷
Δ𝑧

𝑝−1∑︁
𝑓 =1

tan 𝛽 𝑓 for 𝑆𝑝∀ 𝑝 > 1.
(18.19)

It can be seen from Eqs. (18.19) and (18.3) that the nodal lag angles 𝛼𝑝 = 𝛼(𝑧𝑝) and
angular displacements \𝑝 (𝑡) = \ (𝑡, 𝑧𝑝) are given as

𝛼𝑝 =
2
𝐷
Δ𝑧

𝑝∑︁
𝑓 =1

tan 𝛽 𝑓 , \𝑝 (𝑡) = 𝜋Ω30
𝑡 + \ (0,0) −𝛼𝑝 . (18.20)

It is visible in from Eqs. (18.20) that 𝛼𝑝 and \𝑝 (𝑡) are dependent on the set of
parameters 𝜷𝑝 = {𝛽1 𝛽2 . . . 𝛽𝑝}. This means that Φ(𝑝)

𝑖 (𝑡) in Eqs. (18.15) can be
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written as Φ(𝑝)
𝑖 (𝑡, 𝜷𝑝) since the terms in Eq. (18.16) are expressed in terms of \𝑝 (𝑡)

which in turn are dependent on 𝛼𝑝 . This further implies that the integrated cutting
force 𝑭(𝑡) can be represented as 𝑭(𝑡, 𝜷) where 𝜷 = {𝛽1 𝛽2 . . . 𝛽𝑃} to highlight the
dependence on the changing helix angle. Note that 𝜷𝑝 is a subset of 𝜷 since the
former is the set of the helix angles of the first 𝑝 segments while the latter is the set
of the helix angles of all the segments. When the cutting force is the performance
consideration, the peak values of the forces can be used as the critical characteristic
of interest. The time 𝑡peak at which the cutting force on a flute peaks cannot the
determined analytically for the arbitrary flute. A simpler alternative to 𝑡peak is the
mid-engagement time 𝑡mid which is the time instant of coincidence of the cutting
zone center (that is, the angular position (\e + \s)/2 where the angles \s and \e are
as defined in Eq. (18.6) such that the flute enters the cutting zone at the angle \s
and leaves at the angle \e) and the mid-axial depth of the cutting edge (that is, when
𝑧 = 𝑤/2). The justification is that 𝑡mid maximizes the contact between the tool and
the workpiece which in addition to the chip thickness distribution ℎ(𝑡, 𝑧) determines
the peak force. Following this consideration, Eq. (18.20) gives

\𝑃/2 =
𝜋Ω
30
𝑡mid + \ (0,0) −𝛼𝑃/2 =

\e + \s
2

which yields

𝑡mid =
30
𝜋Ω

(
\e + \s

2
− \ (0,0) +𝛼𝑃/2

)
, (18.21)

assuming that 𝑃 is an even positive integer greater than 1. The dependence of 𝑡mid
on the set of parameters {𝛽1 𝛽2 . . . 𝛽𝑃/2} ⊂ 𝜷 is as a result of the dependence of
𝛼𝑃/2 on the set of parameters {𝛽1 𝛽2 . . . 𝛽𝑃/2}, see Eq. (18.20). Therefore, the mid-
engagement cutting force 𝑭(𝜷) which is used as objective functions in the next
section can be written as

𝑭(𝜷) ≡ 𝑭(𝑡mid (𝛽1, 𝛽2, . . . , 𝛽𝑃/2), 𝜷) (18.22)

since {𝛽1 𝛽2 . . . 𝛽𝑃/2} ⊂ 𝜷. Finally, the segmented force model, being a function of
𝑃 helix angles in 𝜷, can be optimized yielding the optimal helix shape. Note that
𝑭(𝑡, 𝜷) is time dependent while 𝑭(𝜷) is for just one time instant.

18.4 Optimization

The aim of this section is to formulate the objective functions depending on the pa-
rameters 𝜷 = {𝛽1 𝛽2 . . . 𝛽𝑃} as presented in Subsect. 18.4.1, to set up the optimization
problem as presented in Subsect. 18.4.2 and to describe how to select the preferred
solution from the Edgeworth-Pareto front as presented also in Subsect. 18.4.2.



18 Multi-Objective Optimization of the Helix Shape of Cylindrical Milling Tools 313

18.4.1 The Objective Functions

Here, the objective functions for the optimization are defined but the rationale behind
the choice of the building blocks (the cutting force components in the feed and
feed-normal directions) for the objective functions is first discussed. The relevance
of the different cutting force components depends on the milling process under
consideration. For example, when the tool-point feed power is of interest, the feed
force 𝐹1 (𝑡) becomes the relevant component since the cutting power is estimated as
𝐹1 (𝑡)𝑣 where 𝑣 is the feed rate, see [25]. A decision maker might be interested only
on minimizing the cutting power for peculiar technical reasons, therefore, will seek
the model parameters that minimize 𝐹1 (𝑡). When the machined-surface accuracy is
of interest, the feed-normal force 𝐹2 (𝑡) becomes the relevant component, see [26].
The interest of another decision maker might be to minimize surface inaccuracy for
peculiar technical reasons. This decision maker will seek for the model parameters
that minimize 𝐹2 (𝑡). The interest of a decision maker might be on a trade-off which
lies between the two extremes choices, for example the choice that minimizes the
magnitude of the resultant force in the (1,2) plane ((𝐹1 (𝑡))2 + (𝐹2 (𝑡))2)1/2.

Through multi-objective optimization, the decision maker can be furnished with
a range of solutions to choose from. Typical graphical representations of these two
force components of interest for the constant helix angle shape defined by 𝛽𝑝 = 𝛽∀ 𝑝
are shown in Fig. 18.2. The graphs are generated using 𝑃 = 20 segments of𝑤 = 10 mm
axial depth of cut and the values in Table 18.1. From the cutting speed 𝑉𝑡 value in
Table 18.1, the spindle speed Ω is calculated using the equation

𝑉𝑡 =
𝜋𝐷Ω
60
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Fig. 18.2: Cutting force components.
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Table 18.1: Parameters for cutting force simulations taken from [4].

parameter symbol value unit
tool diameter 𝐷 12.7 mm
feed per tooth 𝑓 0.1 mm
cutting speed 𝑉𝑡 7.98 mmin−1

radial immersion 𝜌 1
force coefficient 𝑲 𝑐 {613.920 330.750 78.003}T Nmm−2

𝑲 𝑒 {12.7850 12.9020 1.3672}T Nmm−1

The flat surfaces (zero cutting force values) on the figures indicate the conditions
under which no cutting edge element is engaged with the workpiece as a result of the
switching dynamics of milling.

The axial force 𝐹3 (𝑡) is the important consideration regarding the issues of tool
holding and workpiece clamping. Since the holding and clamping issues can be solved
by proper practice, 𝐹3 (𝑡) is not seen here as an important consideration compared to
𝐹1 (𝑡) and 𝐹2 (𝑡).

The objective functions are here, therefore, according to Eq. (18.22) for a certain
time instant 𝑡mid formulated as

𝚿(𝜷) =
[
𝐹

2
1 (𝜷)

𝐹
2
2 (𝜷)

]
. (18.23)

The objective functions emphasize that the absolute values of the force components
are of interest.

18.4.2 The Optimization Problem

Based on the objective functions in Eq. (18.23) defined in Subsect. 18.4.1, a multi-
objective optimization problem is formulated as

minimize
𝜷∈P

[
𝐹

2
1 (𝜷)

𝐹
2
2 (𝜷)

]
,

with P := {𝜷 ∈ R𝑃 |𝛽L ⩽ 𝛽𝑝 ⩽ 𝛽U},
(18.24)

where 𝜷 is the vector of optimization parameters (the helix angles of all segments).
The bounds satisfy 𝛽L > −90𝑜 and 𝛽U < 90𝑜.

The problem reduces to determining the Edgeworth-Pareto front,and then selecting
a preferred solution from the Edgeworth-Pareto set 𝜷EP. The traditional methods
of selecting a preferred solution which is designated here as 𝜷∗ ∈ 𝜷EP include the
pseudo-weight, the gain-to-loss and the 𝑙𝑝 − norm methods [27]. In this work, the
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Euclidean norm, that is the minimum geometric distance to the origin in the criteria
space, is the selection criterion used. The preferred solution 𝜷∗ is, therefore, defined
as the solution that corresponds to the minimum value for the distance metric

𝑑 =
(
(𝐹1 (𝜷) −𝐹1 (𝜷utop))2 + (𝐹2 (𝜷) −𝐹2 (𝜷utop))2

)1/2
∀ 𝜷 ∈ 𝜷EP, (18.25)

where 𝜷utop is the utopian solution. The utopian solution correspond to the objective
vector

𝚿(𝜷utop) = [𝐹2
1 (𝜷utop) 𝐹

2
2 (𝜷utop)]T

resulting from single criterion optimization. The components of the objective vector
𝚿(𝜷utop) satisfy

𝐹
2
1 (𝜷utop) ⩽ 𝐹

2
1 (𝜷),

𝐹
2
2 (𝜷utop) ⩽ 𝐹

2
2 (𝜷),

∀ 𝜷 ∈ 𝜷EP. (18.26)

This method is used in the next section for choosing a preferred solution from the
Edgeworth-Pareto set.

18.5 Numerical Results

The goal in this section is to solve the optimization problem using the genetic
algorithm solver gamultiobj that is provided in the Matlab optimization toolbox.

For a numerical solution of the optimization problem, the milling process param-
eters in Table 18.1 are used. Guided by the range of helix angles encountered in
literature [4, 6, 7, 28], the lower bound 𝛽L and the upper bound 𝛽U for 𝛽𝑝 are set
at 0◦ and 70◦. Suppose the profile of a flute is to be optimized for a 10 mm axial
depth of cut using 𝑃 = 20 segments. This becomes a 20-parameter multi-objective
optimization problem. The Edgeworth-Pareto front which results after 50000 itera-
tions is given in Fig. 18.3a and the point corresponding to the preferred objective
vector is marked on the front. Forty five minutes of computational time was needed
for the 50000 iterations. The front represents the section of the objective front where
the two objectives conflict. Figure 18.3b is a plot of all the 70 Edgeworth-Pareto
solutions. The preferred solution is shown in Fig. 18.3c alongside the smoothed
version which is generated by fitting the exponential function 𝛽(𝑧) = 𝑎0exp(𝑎1𝑧) to
the first four and the last four data points. The shapes corresponding to the preferred
solution (PS) and the smoothed version are shown in Fig. 18.4. The two dimensional
curves in Fig. 18.4 represent how the cutting edges would look when unwrapped on
a two-dimensional plane. The inclination of the curves to the axial direction at any
axial location represents the helix angles.

The optimization results in the foregoing arise from the exploitation of the derived
analytical forces 𝐹1 (𝑡) and 𝐹2 (𝑡) in formulating the objective functions for the time
instant 𝑡 = 𝑡mid yielding 𝐹1 (𝜷) and 𝐹2 (𝜷). An important question to be addressed is
how the preferred solution (helix shape) modifies the time-history of the cutting force
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Fig. 18.3: Optimization results.

components when compared to the traditional tool helix shapes. This is investigated
by substituting the preferred solution 𝜷∗ and the conventional constant-helix shapes
𝛽𝑝 = 𝛽∀ 𝑝 for the cases 𝛽 = 30◦, 45◦, and 60◦ into the milling model as given in
Eq. (18.10) and solving by numerical means. The trapezoidal rule is the adopted
numerical method in solving Eq. (18.10), see [2, 22, 29] for more details on computing
helix-induced milling dynamics using numerical integration. The force components
𝐹1 (𝜷) and 𝐹2 (𝜷) for the compared helix shapes are marked with asterisks on the time
histories in Fig. 18.5. It should be noted that the fact that 𝑡mid differs for the compared
shapes can be explained on the basis of the deduction in Subsect. 18.3.2 that 𝑡mid
depends on the first half of the elements of the helix shape 𝜷. As expected from an
optimization (minimization) that is based on the components of𝚿(𝜷) as the objective
functions, the marked points in Fig. 18.5 show that the preferred solution 𝜷∗ leads to
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Fig. 18.4: Optimal helix shapes.
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Fig. 18.5: Predicted cutting forces.

relative reduction of the cutting forces 𝐹1 (𝜷) and 𝐹2 (𝜷) which correspond to 𝑡mid.
As can be seen in Fig. 18.5, the preferred solution 𝜷∗ also leads to relative reduction
of the peak cutting forces justifying the choice of 𝑡mid as an alternative to 𝑡peak as
made Subsect. 18.3.2 for constructing the objective functions. There is 48.67 %
and 43.20 % reduction of cutting force variation range in the feed and feed-normal
directions for the 𝛽 = 30◦ tool. The corresponding cutting force reductions are 39.84
% and 37.55 % for the 𝛽 = 45◦ tool and 18.60 % and 21.38 % for the 𝛽 = 60◦ tool.
The results in Fig. 18.5 show that smoothing does not significantly affect the cutting
forces of the preferred helix shape.

It is seen that although the peak forces and variation ranges of the cutting forces
are suppressed, there is worsening of the cutting forces in some portions of the
time-history. However, reduction of peak forces is of immense practical value since
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that amounts to reduction of surface location error, and guarantees more that the
machine tool power capacity is not exceeded. The results show that the proposed
optimization method can be used in systematic search of trade-off helix shapes for
the decision maker to choose from. It specifically demonstrates to be potentially
useful in the milling of engineering parts for reducing cutting force components of
interest (feed and feed-normal forces in this study) in comparison to the conventional
constant-helix tools.

18.6 Conclusions

Milling cutting forces in the feed and feed-normal directions can serve different
competing objectives. These force components are affected by the milling tool helix
shape. Multi-objective optimization can be used to determine the trade-off shapes for
the conflicting forces. To carry out the optimization, the cutting force components
are first expressed in terms of unknown distribution of helix angle on the flute of
a cylindrical milling tool. Analytical models for the forces are derived in terms of
discretized approximation of the unknown distribution. Two objective functions that
separately represent cutting forces in the feed and feed-normal directions for the
time instant 𝑡mid are defined. The Matlab genetic algorithm solver gamultiobj is
used to solve the optimization problem to give the trade-off helix shapes. Though
the optimization is formulated for the time instant 𝑡mid, it is seen that the preferred
trade-off helix shape can translate to reduction of the peaks and variation ranges of the
cutting force components. In conclusion, the proposed optimization method provides
a means of systematic search of non-conventional helix shapes for reducing the
cutting force components in the milling of engineering parts, and for other purposes.
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Chapter 19
Experimental and Numerical Studies on the
Tensile Strength of Lap Joints of PEEK Plates
and CF Fabric Prepregs Formed by Ultrasonic
Welding

Sergey V. Panin, Svetlana A. Bochkareva, Iliya L. Panov, Vladislav O. Alexenko,
Anton V. Byakov, and Boris A. Lyukshin

Abstract Ultrasonic welding (USW) is a promising technology for permanent joint
fabrication of thermoplastic based both particulate and laminated composites. One of
the topical issues in this field is to improve their mechanical characteristics (including
the interlayer shear strength/ISS). This paper presents the results of experimental
and numerical studies aimed at increasing the tensile strength of USW lap joints
of polyetheretherketone (PEEK) plates, which was achieved by placing a prepreg
(a fabric based on high-modulus carbon fibers (CFs) impregnated with a high-
temperature thermoplastic binder) in the fusion zone. The experimental studies of
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the influence of the prepreg ‘design’ on the tensile strength of the USW joints of the
PEEK plates showed that the prepreg thickness (related to the CF fabric-to-binder
ratio) determined the ability of the thermoplastic to melt and subsequently spread
in the USW process. This phenomenon governed the formation of the macro- and
microstructure at the interface between the joined components via their mutual
mixing. For a detailed analysis of the influence of the structure of the USW joints
on the tensile strength and the fracture mechanisms, parametric investigations were
performed based on both 2D and 3D numerical simulations. For doing so, software
developed by the authors and the ABAQUS package, respectively were employed.
The designed models of the USW lap joints considered:

i) the prepreg orthotropic properties,
ii) the non-linearity of the PEEK characteristics,
iii) the presence of discontinuities at the interface, and
iv) the interlayer adhesion strength.

The models implemented the fracture processes of the USW lap joints due to cracking
of the joined materials as well as delamination at the interfaces. The significance of
some factors was analyzed, including

i) the adhesion level between the prepreg and the PEEK plates,
ii) the shear strength of the prepreg in the reinforcement plane, and
iii) the adhesion uniformity over the contact area of the USW joints.

The detailed investigations of stress–strain states of the USW lap joints enabled to
conclude that macroscopic bending of the PEEK plates was one of the key factors
determining their tensile strength, so its quantitative analysis was carried out.

19.1 Introduction

Ultrasonic welding of polymers is widely used in some industries. This process is
performed in three main stages:

1. At the first stage, a gradual increase in the clamping force on the parts to be joined
at the weld zone is implemented until a threshold level is reached.

2. Next, ultrasonic (US) vibrations of preset both frequency and amplitude are
applied. In this case, US oscillations of a welding tool is converted into heat
(due to frictional heating of the joined parts mutually moving relative to each
other) during a certain period of time. As a rule, the clamping force is maintained
constant at this stage.

3. At the third stage, the molten material is solidified without US vibrations but under
the clamping force for a preset period. At the same time, polymer chains on the
surfaces of the joined polymer plates should mutually penetrate.

When determining such parameters as the clamping force, as well as durations of
both US vibrations and holding under pressure upon cooling, both glass transition
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and melting temperatures of a polymer, its molecular structure (molecular weight
and polarity of units) seem to be relevant. Due to the application of a compressive
load at the interface of the parts to be joined, a diffusion rheological interaction
of molecules should occur with a structural transition. Such mutual penetration is
effectively implemented when the polymer is in a viscous state, and its molecules
possess both maximum mobility and minimum packing density.

At present, there is an increased interest to application of the USW for joining
laminated thermoplastic-based composites, while aspects of the process are actively
discussed [1–3]. The relevance of this problem is caused by the possibility of
manufacturing large-scale products. In this case, the use of energy directors (EDs)
ensures formation of reliable permanent joints. In the USW process, the ED’s
melting occurs and a dense layer is formed that connects joined plates (made of
similar materials, as a rule).

For manufacturing of EDs, in addition to films of the same materials as the
laminates being joined, more fusible thermoplastics are used. Their thickness and
porosity are varied, as well as reinforcing particles and fibers are additionally loaded
[4, 5]. Some aspects of the USW fabricated laminates based on thermoplastic binders
are actively studied nowadays [6, 7].

In addition to the mechanical characteristics of such USW joints, patterns of
their structure formation are determined by the thermophysical properties of polymer
binders, as well as the stacking sequence and orientation of fibers in the boundary layer
facing the interface. Due to the anisotropic structure, carbon fibers (CFs) show high
thermal conductivity along their direction, while it is extremely low perpendicular
to them. It is obvious that the thermal conductivity inside each unidirectionally
reinforced composite layer depends on the laying direction of CFs and their volume
fraction [8, 9].

However, the interlayer shear strength (ISS) of USW joints is generally below the
shear strength of a thermoplastic binder. Placing a prepreg (reinforcing fabric in a
binder) into the fusion zone can improve their mechanical characteristics, but this
issue has not been fully studied so far.

Most researchers emphasize that the bonding between the reinforcing synthetic
fiber and PEEK is relatively weak because of i) the different polarity of the filler and
the binder; ii) the absence of reactive functional groups in PEEK, and iii) the smooth
fiber surfaces, as a rule [10–13]. Due to the low interfacial adhesion between the
fiber and the polymer matrix, delamination occurs under mechanical loading, which
limits the use of laminated PEEK-based composites.

Fiber surface modification is of relevance there,which is implemented, in particular,
by (cold) plasma treatment [14–16]. It was shown that the strength characteristics
can be improved by the formation of the C-O functional groups, which enhance the
adhesion strength of the composites’ components.

Common methods for the formation of functional oxygen-containing groups on
the surface of fibers are chemical [17–21], thermal [22] and electrochemical oxidation
[23], as well as treatment of CFs with low-temperature plasma [24]. All of them
can be effectively applied over an industrial scale for functionalization of reinforcing
fillers. Thus, the strength properties of laminated composites with a PEEK binder
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cannot be improved without an increase in the interfacial adhesion, which depends
on a number of parameters.

In this study, the influence of the macro- and microstructure on the tensile strength
of USW lap joints was experimentally and numerically investigated. Two PEEK
plates were joined with a prepreg from a solution-impregnated thermoplastic CF
fabric at the interface. The influence of both properties and compositions of an ED
and the prepreg, as well as USW parameters were analyzed in detail for improving
the tensile strength of the USW lap joints.

19.2 Experimental Investigation of the Influence of the Prepreg
‘Design’ and its Properties on the Tensile Strength of the
USW Lap Joints

As mentioned above, the prepreg properties could exert a significant effect on rising
the interlaminar adhesion level (d) in the USW joints. An experimental study was
performed on the influence of the (PEEK-CF) prepreg thickness (determined by the
CF fabric–to–binder volume ratio) on the tensile strength of the USW lap joints of
PEEK plates.

19.2.1 Samples’ Fabrication

The USW lap joints included two PEEK plates (adherends), two EDs, and the PEEK-
CF prepreg (Fig. 19.1). The 770PF powder (Zeepeek, China) was used as a feedstock
for manufacturing the PEEK adherends with an ‘RR/TSMP’ injection molding ma-
chine (Ray-Ran Test Equipment Ltd., Nuneaton, UK). A temperature range for heating 

 

 

 

Fig. 19.1: A scheme of the formation of the USW joints.
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a mold was 200–205◦C; a hopper with the powder was heated up to a temperature of
395◦C. As a result, rectangular shape adherends 100 mm×20 mm×2.2 mm in size
were cast.

A PEEK film 250 µm thick (Victrex, Aptiv 2000) was used for ED fabrication.
Square fragments 22 mm×22 mm in size was cut out from commercially availble
film. Then, they were placed between the PEEK adherends and the prepreg at the
center of the lap joints in the USW process (Fig. 19.1). The prepregs, in the form
of square films 50 mm×50 mm in size, were made by pre-impregnating the ‘ACM
C285S’ CF fabric (5/2 satin weave, UMATEX, Russia) with an alcohol suspension
of the ‘PEEK 770PF’ powder, followed by evaporation of the liquid in a ‘Memmert
UF 55’ oven (Memmert GmbH Co., Germany) at 150◦C. Then, they were subjected
to compression sintering in a mold at a temperature of 400◦C and a pressure of 6
MPa. Thicknesses of the prepregs were varied by extruding a part of the melted
PEEK binder. In this case, the CF fabric content also changed from 40 up to 70 wt.%.
Table 19.1 presents the main parameters of the fabricated prepregs.

For the formation of the USW joints, an ‘UZPS-7’ ultrasonic welding machine
(SpetsmashSonic, Russia) was employed. The overlap area of the joined adherends
and the sonotrode size was 20 mm×20 mm. The PEEK plates to be welded were
placed in a fixing clamp, which excluded their mutual movement during the USW
process. Durations of US vibrations (t), hereinafter referred to as the ‘USW durations’,
were 800 and 1400 ms. The clamping force was 3 atm (764 N). A time duration
under the clamping upon cooling was 5000 ms. By varying the USW parameters,
regimes were determined that made it possible to obtain a uniform interface structure
(without visible damage to the CF fabric), as well as high mechanical properties.

19.2.2 Tensile Tests of the USW Joints

The tensile strength of the USW joints was evaluated according to ASTM D5868
(Russian state standard GOST R 57066). The tests were carried out with an ‘Instron
5582’ electro-mechanical machine at a cross head speed of 13 mm/min. Figure 19.2
shows the ultimate tensile strength (𝜎U) levels for the USW joints with all three
prepregs at both USW durations. With an increase in the 𝑡, the 𝜎U values increased
in all studied cases. However, the tensile strength was lower at both USW durations
of 800 and 1400 s for the prepreg with the maximum thickness of 620 µm.

Table 19.1: The prepreg parameters.

Designation Thickness, µm CF/PEEK, wt. %
30PEEK/70CF 280± 30 70/30
50PEEK/50CF 480±30 50/50
60PEEK/40CF 620±30 60/40
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Fig. 19.2 The ultimate tensile
strength levels for the USW
joints with various prepregs at
both USW durations.
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Figure 19.3 presents images of the fractured samples with the prepreg thickness of
280 µm. The fracture initiated at the ‘PEEK adherends–USW joint’ interface (a blue
frame in Fig. 19.3, a). Then, a macrocrack propagated along the fusion boundary with
a noticeable effect of macroscopic bending, which completed with the PEEK fracture
at a stress of 28 MPa. In the fusion zone, the ED was predominantly melted (the
color became milky-cloudy, in contrast to the transparent one for the initial ED). The
CF fabric was not damaged and did not spread out from the fusion zone. According
to the authors, this fact was caused by the low content of the PEEK binder in the
prepreg.

At the USW duration of 1400 ms, the USW joint thickening was 400 µm, while it
did not exceed 200 µm at 𝑡 = 800 ms. Thus, in addition to the melting of the binder
in the prepreg, the ED did intensively melt and extrude. As a result, the USW joint
fractured by the CF fabric tearing mechanism (Fig. 19.3, b). Despite the fact that the
USW joint showed the maximum tensile strength of 54.9 MPa, this USW mode had
no prospects for any practical implementations due to the damaging of the CF fabric
in the prepreg.
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Fig. 19.3: The images of fractured USW lap joints. Prepreg thickness of 280 µm; the USW
durations of 800 (a) and 1400 (b) ms.
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Figure 19.4 shows images of the fractured USW joints at the prepreg thickness
of 480 µm. At 𝑡 = 800 ms, the USW joint components were melted slightly, the ED
in the fusion zone was partially melted (its shade became dull), but not enough to
ensure a high adhesion level. The USW joint thinning was 200 µm. A main crack
initiated at the ‘PEEK adherends–USW joint’ interface (highlighted by a blue frame
in Fig. 19.4, a), then it propagated approximately to the middle of the USW joint.
The failure occurred due to macroscopic bending of the partially exfoliated PEEK
adherends at a stress of 22 MPa (Fig. 19.2).

At 𝑡 = 1400 ms, the maximum USW joint thinning of 500 µm was observed, which
indicated complete melting of the components, besides adherends. This effect was
not accompanied by a pronounced violation of the prepreg structural integrity. In the
area circled by a red oval in Fig. 19.4, b, the polymer intensively squeezed out of the
fusion zone, but the fractured fragments of the CF fabric were not found as part of a
‘burr’. The fracture initiated at the ‘PEEK adherends–USW joint’ interface (a blue
frame) and completed due to macroscopic bending at a stress of ∼70 MPa (Fig. 19.2).
According to the authors, the molten polymer squeezed out of the fusion zone at the
prepreg thickness of 480 µm and the prolonged USW duration, strengthening the
USW joint perimeter and preventing the initiation a main crack and its propagation
to the interface. As a result, the maximum tensile strength value was registered.

Figure 19.5 presents images of the fractured USW lap joints at the prepreg
thickness of 620 µm. At 𝑡 = 800 ms, the USW joint thinning was 150 µm due to the
low PEEK content in the prepreg and the short USW duration. Similar to the previous
case, the ‘excess’ PEEK melted in the fusion zone squeezed out (marked with a red
oval in Fig. 19.5, a). A crack initiated at the left edge of the USW joint, i.e. at the
interface between the PEEK adherends and the ED (a blue frame in Figure 19.5, a).
The fracture completed via macroscopic bending of the partially delaminated (upper)
PEEK adherend.

At 𝑡 = 1400 ms, the USW joint thinning was 300 µm, which was accompanied by
intense extrusion of PEEK from the fusion zone (red ovals in Fig. 19.5, b). The main
crack initiated at the right edge of the USW joint, i.e. at the ‘PEEK adherend–ED’
interface (a blue frame in Fig. 19.5, b). The fracture completed due to macroscopic
bending of the partially delaminated (upper) PEEK adherend. Since local damage
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Fig. 19.4: The images of the fractured USW lap joints. The prepreg thickness of 480 µm; the USW
durations of 800 (a) and 1400 (b) ms.
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Fig. 19.5: The images of the fractured USW lap–joints. The prepreg thickness of 620 µm; the
USW durations of 800 (a) and 1400 (b) ms.

of the PEEK plates was observed at 𝑡 = 1400 ms, this mode is to be excluded for
practical applications.

Figure 19.6 shows cross sections of the USW joints with the prepreg thickness
of 280 µm for both USW durations. At 𝑡 = 800 ms, the only CF fabric was clearly
observed at the interface (a thickness of this “layer” was about 280 µm, corresponding
to that of the prepreg), but no ED traces were found (despite the fact that the USW
joint thinning was less than 250 µm). It could be concluded that the interface structure
was homogeneous, the CF fabric showed no signs of damage, and no discontinuities
(e.g., pores) were observed in the PEEK adherends.

At 𝑡 = 1400 ms, traces of polymer both melting and flowing were found in the
fusion zone (Fig. 19.6, b). Probably, the reason was local melting of the ED. To the
left and right of the ‘CF fabric layer’, another layer was observed that differed in 
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 Fig. 19.6: The images of the cross sections of the USW joints with the prepreg thickness of 280
µm; the USW durations of 800 (a) and 1400 (b) ms.



19 Experimental and Numerical Studies on the Tensile Strength of Lap Joints 329

shade from the base PEEK material. In addition, individual pores were present. A
thickness of the ‘CF fabric layer’ of 390 µm was noticeably greater than that of the
prepreg. Intensive melting of the polymer components due to frictional heating, as
well as the development of mass transfer (mixing) processes upon joining, caused
partial local damage to the CF fabric as well.

Figure 19.7 presents cross sections of the USW joints with the prepreg thickness
of 460 µm. At 𝑡 = 800 ms, a well-pronounced interface between the ED/prepreg and
the PEEK adherends was evident. In the prepreg, the CF fabric retained its integrity,
while its thickness was 340 µm (in comparison with the initial value of 460 µm).
The interface between the ED and the PEEK adherends was contrast, while it was
hardly distinguishable between the ED and the prepreg. The reason was both melting
and mixing of the thinner components compared to the PEEK adherends with the
thickness of ∼2.2 mm each. Due to both incomplete melting of the ED and low
interlaminar adhesion, this composite showed the lower tensile strength than that of
the 30PEEK/70CF prepreg (Fig. 19.2).

After rising the USW duration up to 1400 ms, melting of both the ED and the
prepreg was observed (Fig. 19.7, b). The PEEK adherends had a low-contrast interface
with the prepreg, and the distance between them could be estimated as ∼1050 µm
that was greater than the total thickness of both original prepreg and two EDs of
∼960 µm. At the same time, a large number of pores were found at the fusion zone,
while the CF fabric was noticeably damaged. Moreover, the thickness of the “layer”
corresponding to the CF fabric could be estimated as ∼610 µm, which was almost
two times thicker than that of the original prepreg of ∼340 µm (Fig. 19.7, a). This
indicated damage of both the prepreg and the CF fabric. Note that the formation of the
revealed macrostructure at the fusion zone was even accompanied by an increase in
the tensile strength of the USW joint of 70 MPa (the maximum among all registered 
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 Fig. 19.7: The images of the cross sections of the USW joints with the prepreg thickness of 460
µm; the USW durations of 800 (a) and 1400 (b) ms.
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values according to Fig. 19.2). Thus, for structural reasons, this prepreg ‘design’ and
the USW duration could not be recommended for further practical applications.

Figure 19.8 shows cross sections of the USW joints with the prepreg thickness of
620 µm at both USW durations. At 𝑡 = 800 ms, a pronounced interface was observed
between the ‘prepreg–ED’ and ‘ED–PEEK adherend’ boundaries. In this case, both
surface layers of the prepreg was fused with the ED and the ED thickness changed
little, while the CF fabric retained its structural integrity. The USW joint thinning
was 100 µm according to Fig. 19.8, a.

At 𝑡 = 1400 ms, a large number of large pores were found in the fusion zone,
actually located between the CF fabric and the PEEK adherends (Fig. 19.8, b). A
thickness of the CF fabric layer could be estimated as 440 µm, which was greater by
about 100 µm than that of the original prepreg of 340 µm (Fig. 19.6, a). In the USW
process, melting of the prepreg obviously accompanied by fracture of the CF fabric.
Note that the formation of pores was more intense in the case of the binder content in
the prepreg of 60% compared to other USW joints (Figs. 19.6 and 19.7). Similar to
the above results, at the USW duration of 1400 ms and the prepreg thickness of 620
µm, the USW joint possessed the minimum tensile strength of 43 MPa. According to
the authors, the reason for the high porosity was the excessive content of the PEEK
binder, both melting and extrusion of which from the fusion zone was accompanied
by active mixing of the polymer components during the USW process. Needless to
note, this USW mode could not be relevant for any practical applications.

Thereby, based on the experimental data analysis, it was revealed that the structure
of the USW lap joints was heterogeneous and their tensile strengths depended on
several factors. The heterogeneity was caused by the composition and the properties
of the EDs and the prepreg, as well as their total thickness (the CF fabric to binder
ratio) and the USW parameters. It was rather difficult to differentiate the influence 
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 Fig. 19.8: The images of the cross sections of the USW joints with the prepreg thickness of 620
µm; the USW durations of 800 (a) and 1400 (b) ms.
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of the identified factors on the tensile strength of the USW joints, but such estimates
could be made by numerical simulation.

19.3 A Parametric Study of the Tensile Deformation Behavior of
the USW Joints Based on Numerical Simulation

The properties of the USW lap joints were heterogeneous due to the fact that PEEK
was melted and gradually extruded under the normal load from the center to the edges
of the fusion zone. Inhomogeneity appeared because practically nothing prevented
the material extrusion along the edges, while it was more difficult to extrude it in the
center. This could be prevented by both PEEK and CFs, which could be moved, bent,
or fractured due to both normal and shear loads in the USW process. On the other
hand, pores could be formed in the fusion zone. In addition to affecting the USW lap
joint properties, their presence at the interfaces between the prepreg and the PEEK
adherends as well as between the layers in the prepreg could also affect the adhesion
level at the contact areas and result in such inhomogeneities and discontinuities.

In this way, the factors identified in the experiment required numerical investiga-
tions for assessing the influence degree for each of them separately, including the
interfacial adhesion level, the presence of discontinuities at the interface, as well as
the thickness, composition and properties of the prepreg on the tensile strength of
the USW lap joints. Numerical simulation enabled to study in detail the dynamics of
stress–strain states (SSS) in the USW lap joints upon the tensile tests for evaluating
the fracture development and tracking the influence of each of the factors on the
failure mechanism separately.

19.3.1 The Problem Statement for the Parametric Studies on the
Tensile Deformation Behavior of the USW Lap Joints

The SSS study in the USW lap joints upon the tensile tests was carried out via
numerical simulations using both 2D software developed by the authors based on
the finite element method (FEM) and the 3D Abaqus/CAE 2019 package. A scheme
of the computational domain in the 3D formulation (Fig. 19.9) corresponded to the
conditions of the tensile tests of lap joints according to ASTM D5868 (Russian state
standard GOST R 57066). In the 2D formulation, the longitudinal section of the USW
lap joints was taken as a computational domain (Fig. 19.10).

As in the experiment, the USW lap joints included two PEEK adherends with
the dimensions of 45 mm×20 mm×2.2 mm, overlapped over the area of 20×20 mm.
The model considered only the fused part of the USW lap joints without the areas
clamped in the grips. In the center between the PEEK adherends, the prepreg layer
was included, consisting of the CF fabric impregnated with PEEK. The prepreg
thicknesses varied from 0.28 mm to 0.62 mm, depending on the PEEK contents,
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Fig. 19.9: The 3D scheme of the computational domain for the numerical simulation of tensile
tests of the USW lap joints.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19.10: The 2D scheme of the computational domain for the numerical simulation of the tensile
tests of the USW lap joints.

which was mainly located on both sides of the middle layer with the CF fabric (the
so-called ‘facing’ layers). In the experiment, the ED was placed between the prepreg
and the PEEK adherends for improving the strength characteristics. Since the ED
was completely melted in the USW process, its presence was taken into account by
varying the adhesion level between the PEEK adherends and the prepreg.

For both models, the following boundary conditions were accepted:

• the left end of the USW lap joints was rigidly fixed, so no displacements were
allowed in all directions;

• on the right end, displacements were set step-by-step in the direction of the Ox
axis, so displacements were prohibited on along other axes (in the 2D formulation,
displacements were set symmetrically on the left and right boundaries);

• all other boundaries remained free.

For PEEK, the non-linear pattern of the stress–strain diagram was considered, the
elastic modulus was 2.4 GPa, the Poisson’s ratio was 0.38, the ultimate strength
values were assumed to be 109 MPa for normal stresses and 41 MPa for shear ones.
The ED properties between the PEEK adherends and the prepreg were assumed to
be the same. The CF fabric layer impregnated with PEEK (prepreg) was taken as a
homogeneous material with the orthotropic properties obtained analytically [25–27].

The following designations were introduced: 𝐸F, 𝐸M and 𝐺F,𝐺M, which were the
elastic and shear modulus of CFs and the matrix, respectively; 𝜙 was the volumetric
CF content. In the ideal adhesion case (𝐸F ≫ 𝐸M), the longitudinal elastic modulus
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of the composite (in the reinforcement direction) was determined by that of CFs and
their relative content in this direction according to the following expressions [26, 27]:

𝐸𝑥 = 𝐸F𝜙.

and similarly, for the strength values

𝜎𝑥 = 𝜎F𝜙.

The transverse both elastic modulus and strength can be estimated as follows

𝐸𝑦 =
𝐸M

1−𝜙 ; 𝜎𝑦 =
𝜎M

1−𝜙 .

The shear modulus can be computed by

𝐺 =
𝐺M𝐺F

𝜙𝐺M + (1−𝜙)𝐺F
.

The strength of CFs was 4.9 GPa, while their elastic modulus was 240 GPa. The
longitudinal elastic modulus of the CF fabric impregnated with PEEK, at the CF to
PEEK ratio of 70/30 vol.% (with the prepreg thickness of 280 µm) was taken equal to
75 GPa in the direction along the 𝑂𝑥 and 𝑂𝑦 axes, but the transverse value along the
𝑂𝑧 axis was 4.3 GPa. The ultimate strengths were 1.7 GPa along the reinforcement
direction and 166 MPa across it, respectively.

When developing the 3D FEM model, the C3D8R volumetric hexahedral elements
with a linear approximation of displacements were used. Between the layers, the
‘Cohesive behavior’ and ‘Damage’ contact conditions were considered, which did
not enable mutual penetration of the layers, but allowed their delamination at the
adhesion level (delamination stresses).

In the 2D formulation of the problem, triangular finite elements were used. A
contact between surfaces was preset by linking displacements in the nodes of the
dependent surface (layer) with sides of the main surface (plate). To ensure joining
of the prepreg and the PEEK adherends, conditions of the equality of displacements
were set in the contact nodes and the corresponding changes were made to the stiffness
matrix, described in [28].

So, if the 𝑚 and 𝑙 nodes of one contacting surface (plate) were taken as the main
ones, and the 𝑘 node of another contacting surface (layer) was considered dependent,
then its displacement was calculated through the movements of the main nodes:

𝑢𝑘 = 𝑢𝑙 (1− ℎ) + ℎ𝑢𝑚, 𝑣𝑘 = 𝑣𝑙 (1− ℎ) + ℎ𝑣𝑚,

where 𝑢 and 𝑣 were displacements along the 𝑥 and 𝑦 axes, respectively; ℎ determined
the normalized distance of the 𝑘 point from the 𝑙 node:

ℎ =

√︄
(𝑦𝑘 − 𝑦𝑙)2 + (𝑥𝑘 − 𝑥𝑙)2

(𝑦𝑚− 𝑦𝑙)2 + (𝑥𝑚− 𝑥𝑙)2 , ℎ ∈ [0,1] .
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In both formulations, the problems were solved step by step. At each step in each finite
element, the elastic modulus of the polymer was corrected according to the non-linear
stress–strain dependence under tension and the fracture criteria were checked.

19.3.2 Criteria for the Damage Simulation

The Abaqus/Explicit software package enabled to simulate progressive damage and
failure of connected elements, whose response was determined by the level of stresses
at the contact interface (adhesion) and in the materials (cohesion). The general fracture
scheme allowed to combine several damage mechanisms acting simultaneously on the
same material. The fracture mechanism as a whole consisted of three components:

i) the damage initiation criterion,
ii) the damage evolution law, and
iii) the reaching of the completely damaged state.

The following criteria were used:

• The material fractured if the components of the stress tensor (normal and shear
stresses) in the elements or the intensity of stresses and strains were greater than
those corresponding to the yield and shear points in the corresponding directions.
As a result, a crack initiated in the 3D formulation. In the 2D formulation, if the
criterion was met in an element, then the elastic modulus in it decreased by a
factor of 100 relative to the polymer level and the stresses were zeroed, which
corresponded to fracture of the relevant element. If the element in which the
criterion was fulfilled contained a contact node, then delamination between CFs
and the PEEK binder was additionally implemented.

• Delamination was realized in nodes and surfaces at the contact boundaries, if both
normal and shear stresses in the elements adjacent to the contact boundary were
greater than the adhesion level (delamination stresses), the maximum values of
which corresponded to the yield and shear points of PEEK in the corresponding
directions. In the 3D formulation, the damage evolution was linear in the contact
layer from the very beginning of the fracture process.

The tensile strength (at fracture) of the USW joints as a whole was estimated by the
fact of a sharp drop in stresses on the stress–strain diagrams, as a result of the loss
of their bearing capacity. Also, the initiation of a crack led to a termination in the
calculation (equivalent to the fracture completing) when performing simulations in
the Abaqus package.

In the 2D formulation, the step convergence was tested by varying its size (dis-
placement) from 5 µm up to 50 µm. To achieve the convergence of the results, the step
was 30 µm or less. The load step value was set automatically in the 3D formulation.
The mesh convergence was refined at its different partitions in the contact areas,
considering their uniformity (dimensions of the sides of adjacent elements differed
by no more than 3 times, the angles in triangular elements were at least 30 degrees
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in the 2D formulation). As a result, the minimum size of an element at the contact
was 100 µm in the 3D formulation. The total number of elements was about 250
000. In the 2D formulation, the minimum element size was 30 µm, considering the
convergence, and the number of elements was approximately 30 000.

19.3.3 A Study of the Tensile Strength of the USW Joints in the 3D
Formulation

In order to evaluate the effect of the adhesion level (d) on the tensile strength of the
USW joints, they were varied in the simulations: 1) between the prepreg and the
PEEK adherends and 2) between the layers in the prepreg, i.e. between the CF fabric
and the ‘facing’ PEEK layers, in the range from 30 up to 110 MPa (the maximum
level of stresses corresponded to the PEEK yield point). As noted in the introduction,
the adhesion level was not always the same at the interface between the prepreg and
the PEEK adherends. There were regions with different adhesion, which affected
the fracture mechanism and, ultimately, the strength characteristics of the USW lap
joints in general. In this case, the adhesion heterogeneity was taken into account by
simulating partial contacts between the prepreg and the PEEK adherends. The effect
of the prepreg thicknesses (ℎ) from 280 up to 620 µm on the tensile strength of the
USW joints was evaluated at the adhesion levels of 30–110 MPa.

19.3.3.1 The Effect of the Prepreg Thickness on the Tensile Strength of the
USW Lap Joints

In the experiment, the prepreg thickness varied from 0.28 to 0.62 mm by changing the
PEEK contents, while it was located on both sides of the middle CF fabric layer (Figs.
19.7 and 19.8) and had different thicknesses depending on the USW mode. Therefore,
the prepreg thickness (h) was varied from 280 to 620 µm at the adhesion levels of
30–110 MPa. Rising the prepreg thickness by increasing the PEEK content at the
same adhesion level caused a slight decrease in the ultimate stresses (Fig. 19.11).
The slope of the stress–strain curves and the tensile strength decreased slightly, since
the prepreg thickness was several times lower than those of the PEEK adherends.
Thus, the prepreg thickness did not significantly affect the tensile strength, but the
adhesion level was the determining factor (Fig. 19.11).

Figure 19.12 shows distributions of the stress intensity at the prepreg thickness
of 620 µm and the adhesion level of 60 MPa. In this case, the ultimate both stresses
and strains were achieved due to macroscopic bending of the PEEK adherends at the
beginning and at the end of the contact zone, causing fracture in these areas. The
fracture proceeded symmetrically on both sides of the USW lap joints. Firstly, a slight
delamination began (to the left of the USW lap joint in Fig. 19.11). Then, a crack
initiated in the PEEK adherends (on the right) and propagated along the edge of the
USW lap joint to its center. Due to delamination, stresses reduced in the prepreg at
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Fig. 19.11: The stress–strain diagrams for the USW lap joints with the prepreg thicknesses (ℎ)
from 280 to 620 µm and the adhesion levels (d) from 30 to 110 MPa.

the edges of the USW lap joints, but they remained high in the center, where there
was no delamination. In this case, fracture of the USW lap joint completed in the
PEEK adherends along the crack. On the whole, the process did not differ from those
with the prepreg thicknesses of 280 and 460 µm at this adhesion level. The observed
phenomenon also confirmed the fact that the prepreg thickness was not a significant
factor for the strength characteristics of the USW lap joints.

19.3.3.2 The Effect of the Adhesion Level Between the Prepreg and the PEEK
Adherends on the Tensile Strength of the USW Lap Joints

As shown above, the tensile strengths for all USW lap joints at the adhesion level of
60 MPa were much higher than those at 30 and 110 MPa (Fig. 19.11). At the highest
adhesion level of 110 MPa, fracture occurred earlier than at the lower ones. To explain
this feature, the SSS of the USW lap joints were analyzed at the prepreg thickness
of 280 µm and different adhesion levels. Figure 19.13 presents the Mises stress
distributions for the adhesion levels (delamination stresses) between the prepreg and
the PEEK adherends of 110, 60 and 30 MPa.

At the considered dimensions of the USW lap joints and the material properties,
macroscopic bending and interlaminar shear were observed in addition to tension.
The PEEK adherends experienced the maximum bending near the edges of the
USW joints, which led to fracture of these areas due to large plastic strains. The
ultimate stresses were reached at the edges of the USW joints, then delamination
began. As a result, stresses reduced in the bending region. At the highest adhesion
level (Fig. 19.13, a), failure occurred via the crack propagation even in the absence
of delamination. Therefore, the shear strength of the USW lap joint was the lowest



19 Experimental and Numerical Studies on the Tensile Strength of Lap Joints 337
 

 
 

 

 
а 

 
b 

Fig. 19.12: The distributions of the intensity of stresses (a) and plastic strains (b) in the USW lap
joint with the prepreg thickness of 620 µm and the adhesion level of 60 MPa.

because of fracture of the PEEK adherends in the bending areas at the maximum
adhesion level.

Thus, the adhesion levels in combination with the specified properties of the PEEK
adherends and the sizes of the USW joints determined the fracture mechanism:

1. At the high adhesion level, bending of the PEEK adherends increased upon loading;
if delamination did not occur, then cracks initiated in the bending area on both
sides of the USW joint due to large plastic strains (Fig. 19.13, a).

2. At the average adhesion level, bending of the PEEK adherends enhanced upon
loading and delamination began. Stresses decreased in this region and did not lead
to large plastic strains. With further loading, bending intensified and, despite the
gradual delamination, caused the accumulation of plastic strains; in doing so, the
initiation of cracks in the PEEK adherends on both sides of the USW joint (Fig.
19.13, b), completing fracture.
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Fig. 19.13: The von Mises stress distributions in the USW lap joints in the tensile tests at the
adhesion levels between the prepreg and the PEEK adherends of 110 (a), 60 (b) and 30 (c) MPa;
the prepreg thickness of 280 µm.
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3. At the low adhesion level, delamination occurred in the areas of the maximum
stresses in the PEEK adherends at the contact edges. Then, stresses decreased in
this region, so they did not give rise to the development of great plastic strains.
Upon further loading, fracture was caused by completing delamination (at the
low adhesion level), without the initiation of cracks in the PEEK adherends (Fig.
19.13, c).

19.3.3.3 The Effect of the Adhesion Level Between the CF Fabric and the
PEEK ‘Facing’ Layer on the Tensile Strength of the USW Lap Joints

At the prepreg thicknesses of 460 and 620 µm, in addition to the impregnated CF
fabric layer, a ‘facing’ PEEK one was formed, located between the PEEK adherends
and the CF fabric (prepreg), according to Figs. 19.7 and 19.8. When varying the
USW parameters, the adhesion level also changed both at the interface between the
‘facing’ PEEK layers and the CF fabric (prepreg), as well as between them and the
PEEK adherends. Figure 19.14 shows examples with the prepreg thickness of 460
µm, when the adhesion levels of the ‘facing’ PEEK layers to the prepreg were lower
than those to the PEEK adherends and vice versa, for comparison, other cases are
presented when the adhesion levels were the same between all layers.

When the adhesion levels were 60 and 30 MPa between the ‘facing’ layers and
the prepreg and between them and the PEEK adherends, respectively, the strength
and the fracture processes were the same as in the case of the similar adhesion levels
of 30 MPa at these interfaces. At the same time, the corresponding curves coincided
in Fig. 19.12 (Prepreg d = 60 MPa; PEEK d = 30 MPa and d = 30 MPa). When
the adhesion level of the ‘facing’ layers to the prepreg was lower than that to the
PEEK adherends (30 and 60 MPa, respectively), the tensile strength was almost the 
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Fig. 19.14: The stress–strain diagrams of the USW lap joints with various locations of the contact
areas and adhesion levels between the layers.



340 Sergey V. Panin et al.

same as when the adhesion levels were 30 MPa at both interfaces. However, it was
significantly lower than at both adhesion levels of 60 MPa. This fact showed that the
decrease in the adhesion level at one of the interfaces reduced the tensile strength. In
these cases, fracture occurred via delamination at the interface with the low adhesion
level.

In the case of the adhesion levels between the ‘facing’ layers and the prepreg of
110 MPa and between them and the PEEK adherends of 60 MPa, the tensle strength
and the fracture processes were the same as with the similar adhesion levels of 60
MPa at these interfaces. The corresponding curves match in Figure 14 (Prepreg d =
110 MPa; PEEK d = 60 MPa and d = 60 MPa). In the USW joint, the Mises stress
distributions were also identical (Fig. 19.15, a). In this region, delamination was
caused by the low adhesion level between the ‘facing’ layers and the PEEK adherends.
Besides this, cracks initiated and propagated in the PEEK adherends on both sides
of the USW joint (Fig. 19.15, a). The same fracture mechanism was observed with
the same adhesion levels of 60 MPa (Figure 19.11).

If the opposite case was analyzed (Fig. 19.15, b), the adhesion level was lower at
the interface between the ‘facing’ layers and the prepreg than that at the interface
with the PEEK adherends (60 and 110 MPa, respectively). In this case, the tensile
strength was higher compared to that with the same adhesion levels of 110 MPa at
both interfaces. Nevertheless, it was lower than that with the same adhesion levels
of 60 MPa. Figure 19.15, b indicates that delamination occurred at the interface of
the prepreg with the ‘facing’ PEEK layer, and a crack initiated and propagated in the
PEEK adherends as well (Fig. 19.15, b). This was similar to the case presented in 
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Fig. 19.15: The von Mises stress distributions in the USW joints at different adhesion levels
between the layers: (a) Prepreg 𝑑 = 110 MPa, PEEK 𝑑 = 60 MPa; (b) Prepreg 𝑑 = 60 MPa, PEEK
𝑑 = 110 MPa.
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Fig. 19.15, a, since the crack was caused by bending of the PEEK adherends at that
region.

Note that the increase in the tensile strength in the last two cases with respect
to that with the same adhesion levels of 110 MPa was caused by the delamination
(which was absent at 𝑑 = 110 MPa), stresses in the PEEK adherends were reduced
at the edges of the USW joint. In turn, this decreased the intensity of plastic strains
caused by stress concentrators (at the edges) upon bending.

Thus, if the change in the tensile strength at 110 MPa, caused by macroscopic
bending, was excluded from the consideration, then delamination occurred at the
weaker interface between the layers. At the same time, the adhesion levels between
the ‘facing’ layers and the PEEK adherends and between them and the prepreg were
almost equally significant. When varying the adhesion levels relative to the value of
110 MPa, its effect on the tensile strength was ambiguous, due to the development of
macroscopic bending.

In practice, one of the ways to change the adhesion levels of the CF fabric to the
‘facing’ PEEK layer was treatment of CFs with low-temperature plasma [19], as well
as the selection of technological parameters at which the adhesion level between
the prepreg and the PEEK adherends was higher, with a reduced number of defects
(pores, fractured CFs, etc.). The absence of a ‘facing’ layer between the prepreg and
the PEEK adherends corresponded to obtaining a prepreg with a thickness equal to
that of the used CF fabric (calculated as 280 µm), perfectly impregnated with PEEK.
This eliminated the presence of ‘facing’ PEEK layers. Based on the above, the results
below were based on the prepreg thickness of 280 µm, with no ‘facing’ PEEK layers
between the prepreg and the PEEK adherends.

19.3.3.4 The Effect of the Adhesion Heterogeneity Between the Prepreg and
the PEEK Adherends on the Tensile Strength of the USW Lap Joints

Investigations were carried out on the effect of imperfect contacts, when materials
were joined not over the entire surface areas, but partially in several regions. Such
a contact in 2D and 3D formulations was represented by identifying areas where
adhesion was present or absent. Figure 19.16 shows examples of the location of the
contact areas (shaded in red). For the v1 and v2 variants, the length of the sections
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Fig. 19.16: The USW joints with the schematic arrangements of the contact areas for the following
variants: (a) v1 (s=52%), (b) v2 ( s=48%), (c) v3 (s=50%).
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with adhesion was 4 mm each, and the contact area was about 50% of the entire joint.
Fundamentally, the v1 and v2 variants differed in that a contact was at the corners
of the joint in the first case (Fig. 19.16, a), while there was no contact in the second
case. For the v3 variant, the length of the adhesion areas was 2 mm.

The contact between the prepreg layer and the PEEK adherends was taken into
account due to a certain adhesion level at the interface, but there was no adhesion
at the others. The ultimate stresses varied from 30 up to 110 MPa. Figure 19.17
presents stress–strain diagrams for the USW joints shown in Fig. 19.16 (v2 and v3)
at the prepreg thickness of 280 µm, but with different adhesion levels and the one
with the full contact area, for comparison.

At the adhesion level of 110 MPa, the tensile strength of the USW joints with
both partial and full contact areas remained practically unchanged. Similar to the
cases described above, fracture of the PEEK plates occurred at such an adhesion
level. However, the strength decreased by about 30% at the adhesion levels of 60 and
30 MPa. Dependences were almost the same at the adhesion levels of 30 MPa (with
the full contact area) and 60 MPa (with the v2 and v3 partial contact areas). Thus,
the tensile strengths of the USW joints were the same at the high adhesion level of
60 MPa, but with the partial contact of 50% as at the low adhesion of 30% with the
full contact.

Figures 19.18 and 19.19 show distributions of the intensity of strains (a) and
stresses (b) in the USW lap joints with the v3 contact variant at the adhesion levels
of 110 and 30 MPa. The uneven distributions of stresses and strains is observed
in Fig. 19.18. In the case of the incomplete contact, the greatest plastic strains and
stresses were found at the edges of the USW joints, but only at the contact points,
contributing to the initiation and propagation of cracks. 
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Fig. 19.17: The stress–strain diagrams for the USW lap joints in tensile tests at different locations
of the contact areas for the v2 and v3 variants, according to Fig. 19.16; the full contacts at different
adhesion levels.
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Fig. 19.18: The distributions of the intensity of plastic strains (a) and stresses (b) in the USW lap
joint with the prepreg thickness of 280 µm and the adhesion level of 110 MPa; the v3 contact
variant.

At the adhesion level of 30 MPa (Fig. 19.19), the uneven distribution of stresses
and strains was also observed. However, plastic strains and stresses were much lower
in magnitude than those at the high adhesion level (Fig. 19.18, a). Due to this reason,
fracture of the PEEK adherends was not found, but delamination occurred. It was
caused by the fact that stresses reached the adhesion level at the contact points, and
since they occupied 50% of the joined region, delamination proceeded faster. So,
it was illustrated how the adhesion inhomogeneity in the fusion zone significantly
reduced the tensile strength of the USW joints.

At the high adhesion level of 110 MPa, the effect of the contact inhomogeneity was
insignificant. As noted above, this was due not only to the concentration of stresses,
but also the SSS of the USW lap joint. The latter was caused by misalignment of the
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Fig. 19.19: The distributions of the intensity of plastic strains (a) and the stresses (b) in the USW
lap joint with the prepreg thickness of 280 µm and the adhesion level of 30 MPa; the v3 contact
variant.

PEEK adherends, resulting in macroscopic bending. This intensified the development
of plastic strains and led to fracture of the PEEK adherends. Nevertheless, the USW
joint was not failed completely, because the stiffness of the PEEK adherends was not
high enough at this adhesion level.
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19.3.4 The Effect of the Dimensions of the PEEK Adherends, Their
Properties and the Loading Type on the Tensile Strength of
the USW Lap Joints (2D Formulation)

As repeatedly shown above, macroscopic bending was characteristic of the USW lap
joints because of the development of a torque moment under the uniaxial tension.
As a result, several SSS types simultaneously arose in different regions, including
tension, compression and shear stresses. The macroscopic bending degree depended
on the dimensions of the PEEK adherends, the properties of the materials, and the
adhesion level in the USW lap joints. With the maximum adhesion levels at the
edges of the USW joints, macroscopic bending led to accelerated achievement of
the ultimate stresses and strains in the PEEK adherends and their earlier fracture
(compared to the case of the low adhesion level, as discussed above). Therefore, the
tensile strength was lower at the maximum adhesion level of 110 MPa, although the
USW lap joint was not failed completely. To avoid this and correctly assess the tensile
strength of the USW lap joints, it was necessary to exclude the macroscopic bending.
In order to reduce its contribution to the fracture process, the authors analyzed the
effect of the dimensions and the properties of the PEEK adherends on macroscopic
bending in the tensile tests of the USW lap joints.

Figure 19.20 presents the USW lap joints with the FEM mesh, where the joint
rotation angle is clearly shown. Thicknesses of the PEEK plates were 2.2 and 1.1
mm. The rotation angle remained quite large as the thickness decreased. In addition,
changing the thickness of the PEEK adherends had to cause significant variation of
the USW lap joint properties, so the thinner one was not considered further.

Then, a case for the length of the PEEK adherends of 45 mm was consider, but
with limited displacement of the USW lap joint in the vertical direction (by varying
the adhesion level between the layers). Figure 19.21 shows its stress–strain diagrams.
At the adhesion level of 110 MPa, the tensile strength was much higher than that at
60 MPa.

It was found on distributions of strains and stresses in the USW lap joints
(Fig. 19.22) that no macroscopic bending occurred when the vertical displacements
were restricted. Because of the high adhesion level, the PEEK adherends fractured
due to the development of plastic strains. In the direction perpendicular to the surface
of the PEEK adherends, necking was observed on both sides of the USW lap joints.
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Fig. 19.20: Enlarged areas of the USW joints with the FEM mesh at the adhesion level of 110 MPa
and the thicknesses of the PEEK plates 2.2 (a) and 1.1 (b) mm.
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Fig. 19.21 The strain–stress
diagrams in the tensile tests
of the USW lap joints with
the limitation of their displace-
ments in the vertical direction
for various adhesion levels
between the layers.
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Fig. 19.22: The distributions of the intensity of strains (a) and stresses (b) in the USW lap joint and
the corresponding gray scale images at the adhesion level of 110 MPa with the limited vertical
displacements.

Since it was not always possible to limit the vertical displacements of the PEEK
adherends in the experiment, the effect of the length of the plates on the tensile strength
of the USW joints was investigated. Figure 19.23 shows parts of the computational
domains with the FEM mesh at failure when varying the length of the PEEK adherends
from 45.0 mm down to 22.5 mm.
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Fig. 19.23: Enlarged areas of the USW lap joints with the FEM mesh at the maximum adhesion
level and the lengths of the PEEK adherends of 45 (a), 30 (b) and 22.5 (c) mm.
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With a decrease in the length of the PEEK adherends, other things being equal,
the rotation angle reduced significantly. At the length of the PEEK adherends of
22.5 mm, the SSS was close to that for ‘pure shear’. At the maximum adhesion level,
failure began via the formation of a neck in the PEEK adherends at the edges of the
USW lap joints. However, delamination developed then under the action of shear
stresses. Thus, to exclude the neck development, the length of the PEEK adherends
was not taken less than 22.5 mm. Nevertheless, the effect of macroscopic bending
increased with rising their length.

Figure 19.24 presents enlarged areas of the USW lap joints with the FEM mesh
for the PEEK adherends 22.5 mm long and different adhesion levels, at which
macroscopic bending was not observed.

For comparison, Fig. 19.25 shows stress–strain diagrams for the USW lap joints
with the PEEK adherends 45.0 mm and 22.5 mm long and various adhesion levels
between the layers. For the shortest PEEK adherends, the tensile strength at the
adhesion levels of 110 MPa was much greater than that at 60 MPa (Fig. 19.25, b), in
contrast to the case of the longest PEEK adherends, possessing the tensile strength
lower at 110 MPa than at 60 MPa (Fig. 19.25, a).

Figure 19.26 presents distributions of the intensity of strains and stresses. Levels
of the maximum stresses and strains enabled to conclude that fracture of the PEEK
adherends occurred along the edges of the USW joints. However, due to the absence
of macroscopic bending at the greater adhesion levels, it proceeded later (see the
diagram in Fig. 19.25, b).Thus, lengths of the PEEK adherends less than 22.5 mm
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Fig. 19.24: The enlarged areas of the USW lap joints with the FEM mesh at the maximum
adhesion level and the length of the PEEK adherends of 22.5 mm for the adhesion levels of 110 (a),
60 (b) and 30 (c) MPa.
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Fig. 19.25: The strain–stress diagrams for various adhesion levels between the layers at the lengths
of the PEEK adherends of 45.0 mm (a) and 22.5 mm (b).
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Fig. 19.26: The distributions of the intensity of strains (a) and stresses (b) in the USW lap joint at
the length of the PEEK adherends of 22.5 mm and the adhesion level of 110 MPa.

made it possible to estimate more reliably the shear strength for the USW lap joints
under the uniaxial tension.

Figure 19.27 shows the calculated areas of the USW lap joints at the elastic
modulus of the PEEK plates of 30 GPa (for the length of 45 mm) and both adhesion
levels of 550 and 110 MPa. The rotation angle was greater at the adhesion level
of 550 MPa, while macroscopic bending was not observed at 110 MPa. Thereby,
it was important to provide a certain combination of the elastic modulus and the
adhesion level in the USW lap joints to obtain correct results at the length of the
PEEK adherends of 45 mm. This fact had to be considered when testing the tensile
strength of the USW lap joints at the high adhesion levels between the layers.

19.3.4.1 The Effect of the Prepreg’s Elastic Modulus on the Tensile Strength of
the USW Lap Joints

The CF fabric with the 5/2 satin weave was used for fabricating the prepreg (Fig. 19.28).
Changing the rotation angle when laying the fabric in the prepreg, primarily varied
its elastic tensile and shear modulus and the tensile strength [19].

Treatment of CFs with low-temperature plasma, as a rule, led to a decrease in
both elastic and shear moduli of prepregs, and also reduced their strength due to
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Fig. 19.27: The enlarged areas of the USW lap joints with the FEM mesh at the elastic modulus of
the PEEK adherends of 30 GPa and the adhesion levels of 550 (a) and 110 (b) MPa.
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Fig. 19.28: A sample of the CF fabric with the 5/2 satin weave for manufacturing the prepreg (a); a
laying pattern for the prepreg (b).

the appearance of stress risers and damage (weakening) of CFs upon processing.
At the same time, this treatment increased adhesion levels of CFs to polymers [24],
which contributed to rising the adhesion level between the prepreg and the PEEK
adherends.

In order to evaluate the dependence of the tensile strength of the USW lap joints on
the variation in both elastic modulus and the adhesion level of the prepreg, numerical
studies were performed in the 2D formulation. The prepreg thickness was 280 µm.
The length of the PEEK adherends was assumed to be 22.5 mm.

The elastic (tensile) modulus of the prepreg in the reinforcement plane was varied
in a range from 25 MPa up to 75 MPa. Since the layer properties were orthotropic,
the transverse elastic modulus changed in proportion to the longitudinal component
in tension along the 𝑦 axis, thus varying the ultimate both normal and shear stresses.
The obtained results are presented in Fig. 19.29. At the same adhesion level, the
tensile strength changed slightly due to lowering the elastic modulus from 75 MPa
down to 50 MPa.

At the lowest elastic modulus of 25 MPa, the slope of the curves and the tensile
strength were was lower at both adhesion levels of 110 MPa and 60 MPa than those
for other cases (Fig. 19.29). Additional calculations showed that the decrease in the

Fig. 19.29 The strain–stress
diagrams in the tensile tests of
the USW lap joint for various
both elastic modulus and
adhesion levels between the
layers.
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tensile strength at the same adhesion level was mainly caused by reducing the shear
stiffness of the prepreg in the reinforcement plane (this was caused by the decrease
in the elastic moduli proportionally in all directions in the above calculation). For the
considered example, the shear strength was significantly higher at the adhesion level
of 110 MPa than that at 60 MPa, in contrast to the results presented above, which
were caused by the change in the length of the PEEK adherends.

19.3.4.2 The Effect of the Partial Interlayer Contact on the Tensile Strength of
the USW Lap Joints in the Case of the Short PEEK Adherends

Below, the estimated results are reported on the tensile strength of the USW joints
in the case of the partial contact at the adhesion level of 110 MPa and the length
of the PEEK adherends of 22.5 mm (in the 2D formulation). Figure 19.30 shows
distributions of the intensity of strains and stresses in the USW lap joint at the
adhesion level of 60 MPa and the contact area of 50% of the entire USW lap joint.
The length of the joined areas was 1.6 mm. At the boundaries and in the contact
nodes, large strains and stresses were observed.

For comparison, Fig. 19.31 presents the calculated stress–strain diagrams at the
contact areas of 100% and 50% (with partial adhesion at the contact lengths of 4.0
and 1.6 mm) when varying the adhesion levels between layers. In the case of the
contact length of 4.0 mm (Fig. 19.31, a), the tensile strength decreased with lowering
the adhesion level: the smaller the contact area and the adhesion levels were, the
lower was the tensile strength. With the shortest contact length of 1.6 mm (Fig. 19.31,
b), the tensile strength decreased equally for different contact areas with reducing the
adhesion levels. This testified in favor of the important role of the adhesive contact
homogeneity.
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Fig. 19.30: The distributions of the intensity of strains (a) and stresses (b) in the USW joint at the
length of the PEEK adherends of 22.5 mm and the adhesion level of 60 MPa (𝑙 = 1.6 mm).
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So, it was shown that the dimensions of the PEEK plates, their elastic modulus,
and the adhesion level of the USW joints determined their fracture process. The
combination of the low elastic modulus of the PEEK adherends and the high adhesion
levels in the USW joints caused great macroscopic bending in the PEEK adherends,
and could not always correctly reflect the tensile strength of the USW joints as a whole.
Some methods were proposed to solve the issue for these cases, such as reducing the
length of the PEEK adherends to avoid macroscopic bending, or limiting the vertical
displacements of the USW joints. It was justified that for certain combinations of
the elastic modulus values of the PEEK adherends and the adhesion levels, their
macroscopic bending was negligible or absent at all.

19.4 Conclusions

The experimental studies of the effect of the PEEK-CF prepreg on the tensile strength
of the USW lap joints of the PEEK adhrends showed that the prepreg thickness/binder
content determined its ability to melt and subsequently form the macro- and mi-
crostructure, including maintaining the structural integrity of the CF fabric.

The developed and implemented numerical models of the USW lap joints in the
2D and 3D formulations enabled to analyze the effect of individual parameters on
the fracture mechanism and the tensile strength of the USW lap joints, as well as to
identify the most significant factors.

The numerical study of the influence of the prepreg thickness (determined by
the binder content inside) on the tensile strength showed that the thickness of the
prepreg layers was not a determining factor. With different prepreg thicknesses at
the same adhesion level, the fracture mechanisms did not differ, the tensile strength
decreased slightly with increasing the thickness. On the other hand, it was presented
that delamination occurred at the interface between the ‘facing’ layers and the PEEK
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adherends with the same adhesion levels of the ‘facing’ layers to the prepreg and
to the ‘PEEK’ adherends. Nevertheless, it was not observed at the weaker interface
with different adhesion levels to the PEEK adherends and to the prepreg. Thus, the
adhesion levels of the ‘facing’ layers to the CF fabric should not be less than those to
the PEEK adherends, or this interface should be excluded by minimizing the ‘facing’
layer in the USW lap joints. In the experiment, the absence of the ‘facing’ layer
between the prepreg and the PEEK adherends corresponded to the decrease in the
prepreg thickness almost to that of the CF fabric. However, the CF fabric should be
perfectly impregnated with PEEK to obtain high adhesion levels.

A significant effect on the tensile strength of the USW lap joints had the decrease
in that of the shear strength prepreg in the reinforcement plane. In the experiment,
this could take place upon fracture of the CF fabric in the USW process.

The analysis of the obtained results by varying the adhesion levels between the
prepreg and the PEEK adherends under the uniaxial tension enabled to conclude that
the tensile strength of the USW lap joints increased with its rising, but its maximum
values led to lowering the tensile strength due to bending stresses in the PEEK
adherends at the edges of the USW lap joints.

Under the uniaxial tension, macroscopic bending of the USW lap joints played
a great role in their failure. Its appearance was typical for a certain combination of
the PEEK adherends stiffness (the elastic modulus) and the adhesion level. At the
great stiffness combined with a certain adhesion level, macroscopic bending was not
observed. Some corrected versions of the test models were proposed to avoid the
development of macroscopic bending or to minimize it via combining the optimal
length of the PEEK adherends, their stiffness and the adhesion levels. The selection
was made on the basis of some preliminary estimations in the framework of the
simulation.

The study of the effect of the adhesion levels in the USW lap joints between the
prepreg and the PEEK adherends on the tensile strength showed that the decrease
in the contact area led to its non-linear reducing. The lower the adhesion level was,
the more the partial contact strength decreased. It was justified that the low adhesion
level at the full contact provided the same tensile strength as with the twofold increase
in the adhesion level (although the contact area was two times smaller). Obviously, it
is necessary to strive for a uniform adhesion distribution over the entire contact area
and its high levels in the case of the contact inhomogeneity.
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Chapter 20
On two Approaches for Determination of the
Effective Conductivity of a Polycrystalline
Material by Homogenization Methods

Dmitry Pashkovsky, Ksenia Frolova, and Elena Vilchevskaya

Abstract This paperconsiders two approaches to calculating the effective conductivity
tensor of a polycrystalline material with parallel orientation of spheroidal grains. The
polycrystal models are based on consideration of a two-phase material consisting of
an isotropic matrix and an isolated inhomogeneities. In the first approach the grains
are modeled by inhomogeneities and grain boundaries are modeled by a matrix. In
the second approach the grain boundaries are modeled by inhomogeneities and the
grains are modeled by matrix. The Mori-Tanaka scheme is used to take into account
the interaction between the inhomogeneities. The models are compared to each other.
The paper is focused on the question about what model is better for polycrystalline
material with parallel spheroidal grains.

20.1 Introduction

The problem of calculation of the effective conductivity coefficients of polycrystalline
material is relevant to industrial and construction areas. Polycrystal consists of grains
and grain boundaries and can be considered as inhomogeneous material. The problem
of calculating the effective conductivity of microheterogeneous materials, in turn,
has been addressed by many authors [1–13]. Fricke [1] calculated the coefficients
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of effective electrical conductivity of a suspension of spheroids in the case of
isotropic orientation distribution of spheroidal particles. Zimmerman [2, 3] estimated
effective conductivity in the case of arbitrarily oriented two-dimensional elliptical
inhomogeneties of finite conductivity embedded in an isotropic matrix and in the case
of three-dimensional spheroids. Next, Hoenig in [4, 5] derived expression for effective
conductivity of a three-dimensional solid with elliptical crack-like inhomogeneties
with finite conductivity. Willis [6] obtained constraints of Hashin-Shtrikman type
and estimated the effective conductivity of a solid with ellipsoidal inhomogeneities
of finite conductivity. Next, Hatta and Taya [7, 8] considered a similar problem and
applied results to the case when all inhomogeneities have the same shape. Chen
and Wang [9] calculated the effective conductivity of a three-dimensional solid with
randomly oriented short fibers in the framework of the Mori-Tanaka scheme [10].
Chen and Wang’s results were generalized by Shafiro and Kachanov [11] in the case
of ellipsoidal inhomogeneities.

In [1–13] the effective properties are found on the base of solution of the homoge-
nization problem for an inhomogeneous material consisting of a matrix and isolated
inhomogeneities. This approach can be applied to determination of the effective
properties of a polycrystalline material. At the same time, the question arises what to
choose as a matrix, and what as inhomogeneities (grains or grain boundaries). It is a
common practice to choose the grain boundaries as the material matrix and grains as
the inhomogeneities [14]. However, in principle, grain boundaries could be chosen
as inhomogeneities and grains as a matrix. Both approaches have their shortcomings.
In the polycrystal, the grains are located close to each other. And if the grains are
chosen as inhomogeneities, then the isolation of inhomogeneities may be violated in
the approach. In the second approach, where the inhomogeneities are chosen as grain
boundaries, there is a small volume fraction of the inhomogeneities and they can
be considered as isolated. However, the inhomogeneities have non-trivial geometric
shape. Thus, it is necessary to compare the two approaches with each other in order
to determine how big the difference is between them. If there is a difference, then
a comparison with experimental data is required to answer the question of which
approach is better.

The discussed approaches were compared in our previous work [13]. The most
simple geometry of polycrystal was considered. In the first approach, the grains
were chosen as spherical inhomogeneities and the grain boundaries as the material
matrix. In the second approach, vice versa, grain boundaries were chosen spheroidal
inhomogeneities with random distribution over orientation, and the grain boundaries
were chosen as matrix. A considerable difference between the first and second
approaches was found. The first approach was found to approximate the experimental
data from work [15] better than the second one. To our opinion, the problem of
second approach may be the incorrect choice of geometry for the shape of the
inhomogeneities.

This paper considers a more complex geometry of polycrystal, which contains
spheroidal grains of parallel orientation. As in [13], two approaches are constructed.
In the first approach, the grains are modeled by the spheroidal inhomogeneities, and
in the second approach grain boundaries are modeled by two groups of ellipsoidal
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inhomogeneities. The aim of the this work is to compare these two approaches to
estimation as the polycrystal conductivity properties. It is necessary to determine
which of the approaches is better for estimating the properties of polycrystalline
material and what differences exist between these approaches.

20.2 Problem Statement

Two models of polycrystalline material are considered. In the first model (M1) the
grains are chosen as the inhomogeneities and the grain boundaries as matrix. In the
second model (M2), the grain boundaries are chosen as the inhomogeneities and
the grains boundary are chosen as the matrix. The visualisations of approaches is
shown on Fig. 20.1. Figure 20.1 shows representative volume of polycrystal. This
polycrystal is associated with two model M1 and M2. In the first line of Fig. 20.1
shows two projections of representative volume for the model M1 to planes based on
vectors 𝒆1, 𝒆3 and 𝒆1, 𝒆2. These are spheroidal grains. The second and the third line
are projections of representative volume for the model M2. The View 2 in the second

Fig. 20.1: General scheme.
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line for the model M2 have two cross sections of representative volume (S1 and S2).
Cross sections S1 and S2 of representative volume are shown on the View 1. These
are two groups of ellipsoidal grain boundaries and each of them is oriented parallel.

In order to compare M1 andM2 it is necessary to construct an effective conductivity
tensor in the form of a tensor function depending on the microstructural parameters.

𝑲eff = 𝑭(microstructural parameters) (20.1)

The following parameters are used as microstructural ones: volume fraction of
inhomogeneities; conductivity coefficients of the matrix and inhomogeneities; shape
parameters of inhomogeneities.

The materials of grains and grain boundaries are isotropic. Hence, the conductivity
tensor of grain boundaries has the form 𝑲𝐺𝐵 = 𝐾𝐺𝐵𝑬 and the conductivity tensor
of grains has the form 𝑲𝐺 = 𝐾𝐺𝑬; 𝐾𝐺𝐵 is conductivity coefficient of the grain
boundaries, 𝐾𝐺 is conductivity coefficient of the grains.

The M1 model is based on consideration of a two-phase material with isolated
spheroidal inhomogeneities. The parameters of the M1 model are given in Table 20.1,
where 𝜑𝐺 is volume fraction of grains, 𝑎1 = 𝑎2 = 𝑎 are semiaxes along 𝒆1 and 𝒆2, 𝑎3
is semiaxis along 𝒆3. We will vary the semiaxis 𝑎3.

The M2 model is based on consideration of a two-phase material with two groups
parallel inhomogenities: GB1 and GB2 (Fig. 20.1). The inhomogeneities in groups
GB1 and GB2 are oriented in parallel. Groups GP1 and GB2 have the same volume
fraction which is equal to 𝜑𝐺𝐵 = 0.5 · (1− 𝜑𝐺). Parameters of the M2 model are
shown in Table 20.2.

Two models can be compared if they describe a material with the same type
of symmetry. The above models describe a transversally isotropic material with
a symmetry axis along 𝒆3. Note that the proposed models can, in principle, also
describe a material with spherical grains. In this case, 𝛾 = 1 in the first model and
the material is isotropic at the macro level. In the second model, grain boundaries

Table 20.1: The model M1 parameters.

Conductivity of
matrix, 𝐾𝐺𝐵

Conductivity of
inhomogenei-
ties, 𝐾𝐺

Volume fraction,
𝜑

Spheroid shape fac-
tor, 𝛾 = 𝑎3 /𝑎

Spheroid axis of
symmetry, 𝒏

0.01 0.1 𝜑𝐺 𝑎3 /𝑎 𝒆3

Table 20.2: The model M2 parameters.

Conductivity
of matrix, 𝐾𝐺

Conductivity
of inhomoge-
neities, 𝐾𝐺𝐵

Volume frac-
tion of GB1,
𝜑𝐺𝐵1

Volume frac-
tion of GB2,
𝜑𝐺𝐵2

GB1: ellipsoid’s
semiaxises
along directions
𝒆1, 𝒆2, 𝒆3

GB2: ellipsoid’s
semiaxises
along directions
𝒆1, 𝒆2, 𝒆3

0.1 0.01 0.5(1 −
𝜑𝐺 )

0.5(1 −
𝜑𝐺 )

(𝑎, 0.1𝑎, 𝑎3) (0.1𝑎, 𝑎, 𝑎3)
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are modeled by spheroidal inhomogeneities. In this case, the model M2 describes a
transversally isotropic material. In order for the material to be isotropic in the M2
model, three groups of spheroids must be considered [13].

The homogenization problem must be solved to obtain the expression for trans-
versely isotropic tensor 𝑲eff of effective conductivity. The interaction of inhomo-
geneities is taken into account by using energy schemes. This paper uses the Mori-
Tanaka scheme [10] because this scheme gives correct results for large volume
fractions. The effective conductivity tensor is a solution of the homogenization prob-
lem [16–18], when the inhomogeneous material is replaced by homogeneous one
which, in general, has anisotropic properties.

The temperature field is set on the boundary Γ𝑉 of the representative volume 𝑉 :

𝑇 (𝒙)
��
Γ𝑉

= 𝑮0 · 𝒙 (20.2)

where 𝑮0 is the temperature gradient for the representative volume boundary. The
effective conductivity tensor 𝑲eff relates averaged heat flux ⟨𝒒⟩𝑉 and averaged tem-
perature gradient ⟨∇𝑇⟩𝑉 by Fourier’s Law:

⟨𝒒⟩𝑉 = −𝑲eff · ⟨∇𝑇⟩𝑉 (20.3)

where ⟨. . .⟩ =
∫
𝑉

. . . 𝑑𝑉 /𝑉 . The temperature gradient averaged over the representative

volume 𝑉 is written as follows:

𝑮0 = ⟨∇𝑇⟩𝑉 =
1
𝑉

𝑛∑︁
𝑖=1
𝑉𝑖 ⟨∇𝑇⟩𝑖𝑖𝑛 + (1−𝜑)⟨∇𝑇⟩𝑚 (20.4)

where ⟨∇𝑇⟩𝑖𝑖𝑛 is average temperature gradient over 𝑖-th inhomogeneity, ⟨∇𝑇⟩𝑚 is the
average temperature gradient over matrix, 𝑉𝑖 is volume of 𝑖-th inhomogeneity, 𝜑 is
volume fraction of inhomogeneities. The averaged heat flux over the representative
volume ⟨𝒒⟩𝑉 is represented as follows:

⟨𝒒⟩𝑉 =
1
𝑉

𝑛∑︁
𝑖=1
𝑉𝑖 ⟨𝒒⟩𝑖𝑖𝑛 + (1−𝜑)⟨𝒒⟩𝑚 (20.5)

where ⟨𝒒⟩𝑖𝑖𝑛 is averaged heat flux for inhomogeneity, ⟨𝒒⟩𝑚 is averaged heat flux for
matrix.

We have to take into account the interaction between the inhomogeneities. We
use for this the Mori-Tanaka scheme [10]. In this scheme, each of the isolated
inhomogeneities is placed in a uniform field of a temperature gradient equal to the
average over the matrix:

⟨∇𝑇⟩𝑖𝑖𝑛 = 𝚲(𝑖)
𝑐 · ⟨∇𝑇⟩𝑚 (20.6)

where 𝚲𝑖𝑐 is a concentration tensor:
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𝚲(𝑖)
𝑐 =

[
𝑬 + 𝑷𝑖 · (𝑲𝑖 −𝑲0)

]−1
(20.7)

where 𝑷𝑖 is Hill’s tensor, which depends on the shape of inhomogeneities, 𝑲𝑖 is the
conductivity tensor of 𝑖-th inhomogenity, 𝑲0 is the conductivity tensor of matrix, 𝑬
is the identity tensor.

In accordance with [18], the general expression for the tensor 𝑲eff is as follows:

𝑲eff = 𝑲0 + 1
𝑉

𝑛∑︁
𝑖=1
𝑉𝑖 (𝑲𝑖 −𝑲0) ·𝚲𝑖𝑐 ·

[
1
𝑉

𝑛∑︁
𝑖=1
𝑉𝑖𝚲

𝑖
𝑐 + (1−𝜑)𝑬

]−1
(20.8)

The difference between models M1 and M2 is that they are determined by a different
sets of microstructural parameters, whereas the general form of the expression is the
same. Next, we apply the general formula (20.8) to models M1 and M2.

Let us first consider the M1 model. For spheroidal inhomogeneities (𝑎1 = 𝑎2 = 𝑎,
𝛾 = 𝑎3 /𝑎), the Hill’s tensor takes the form [18]:

𝑷 =
1

𝐾𝐺𝐵

(
𝑓0 (𝛾) (𝒆1 𝒆1 + 𝒆2 𝒆2) + (1−2 𝑓0 (𝛾))𝒆3 𝒆3

)
(20.9)

where the function 𝑓0 (𝛾) has form:

𝑓0 (𝛾) = (1−𝑔(𝛾))𝛾2

2(𝛾2 −1) , 𝑔(𝛾) =




1
𝛾
√︁

1−𝛾2
arctan

(√︁1−𝛾2

𝛾

)
, 𝛾 < 1

1
2𝛾

√︁
1−𝛾2

log
( 𝛾 +√︁

𝛾2 −1
𝛾−

√︁
𝛾2 −1

)
, 𝛾 > 1

(20.10)

And the expression 𝚲𝑐 for spheroidal inhomogeneities has the following form:

𝚲𝑐 = 𝐴1𝑬 + 𝐴2𝒆3 𝒆3 (20.11)

𝐴1 =

(
1+ 𝑓0 (𝛾) (𝐾𝐺 −𝐾𝐺𝐵)

𝐾𝐺𝐵

)−1

𝐴2 =
𝐾𝐺𝐵 (3 𝑓0 (𝛾) −1) (𝐾𝐺 −𝐾𝐺𝐵)

(𝐾𝐺 −2𝐾𝐺 𝑓0 (𝛾) +2𝐾𝐺𝐵 𝑓0 (𝛾)) (𝐾𝐺 𝑓0 (𝛾) +𝐾𝐺𝐵 −𝐾𝐺𝐵 𝑓0 (𝛾))
The Eq. (20.8) for the model M1 is reduced to this form:

𝑲eff = 𝐾𝐺𝐵𝑬 + (𝐾𝐺 −𝐾𝐺𝐵)𝜑𝐺𝚲𝑐 ·
[
𝜑𝐺𝚲𝑐 + (1−𝜑𝐺)𝑬

]−1
(20.12)

where 𝜑 = 𝜑𝐺 is volume fraction of grains,𝚲𝑐 is concentration tensor of the spheroidal
inhomogeneities (20.11).

Next, the M2 model is considered. For ellipsoidal inhomogeneities, the Hill’s
tensor takes the form [18]:
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𝑷 =
1

2𝜋𝐾𝐺

(
𝐼1𝒆1𝒆1 + 𝐼2𝒆2𝒆2 + 𝐼3𝒆3𝒆3

)
(20.13)

where 𝐼 𝑗 , 𝑗 = 1,2,3 is the elliptic integrals in Carlson’s form [19]:

𝐼 𝑗 = 𝐼 (𝑎1, 𝑎2, 𝑎3, 𝑎 𝑗 ) = 𝜋𝑎1𝑎2𝑎3

+∞∫
0

𝑑𝑝

(𝑎2
𝑗 + 𝑝)

√︃
(𝑎2

1 + 𝑝) (𝑎2
2 + 𝑝) (𝑎2

3 + 𝑝)

The expression 𝚲𝑐 for ellipsoidal inhomogeneities has the following form:

𝚲𝑐 = 𝐵1𝒆1𝒆1 +𝐵2𝒆2𝒆2 +𝐵3𝒆3𝒆3 (20.14)

where 𝐵 𝑗 =
[
1+ 𝐼 𝑗 (𝐾𝐺𝐵 −𝐾𝐺)

]−1 for 𝑗 = 1,2,3.
The Eq. (20.8) for the model M2 is reduced to the next form:

𝑲eff = 𝐾𝐺𝑬 + (𝐾𝐺𝐵 −𝐾𝐺)
[
𝜑𝐺𝐵𝚲

(1)
𝑐 +𝜑𝐺𝐵𝚲(2)

𝑐

]
·

·
[
𝜑𝐺𝐵𝚲

(1)
𝑐 +𝜑𝐺𝐵𝚲(2)

𝑐 + (1−2𝜑𝐺𝐵)𝑬
]−1 (20.15)

where 𝜑𝐺𝐵1 +𝜑𝐺𝐵2 = 2𝜑𝐺𝐵 = 1−𝜑𝐺 are volume fractions of first and second group
inhomogeneities, 𝚲(1)

𝑐 and 𝚲(2)
𝑐 are concentration tensors (20.14) of the first and the

second group of ellipsoids (GB1 and GB2).

20.3 Results

The tensor 𝑲eff (20.12) is used to calculate the effective conductivity in the M1 model.
The parameters for M1 are given in Table 20.1. The tensor 𝑲eff for M2 is calculated
by using the Eq. (20.15). The parameters for M2 are given in Table 20.2. In this case,
the parameter 𝑎3 = 5 (𝛾 = 5) for models M1 and M2.

Figure 20.2 shows the dependencies of the tensor components 𝐾eff
𝑖𝑖 /𝐾𝐺𝐵 on grain

volume fraction 𝜑𝐺 , here 𝐾eff
11 = 𝐾eff

22 . According to Fig. 20.2 the models M1 and M2
are similar at small and large values of the volume fraction of grains. In a polycrystal,
the volume fraction of grains should be at least 90% of the total volume. The models
give almost the same result in the case of large volume fractions of grains (Fig. 20.2).
Therefore, the models can be used to simulate polycrystals. But there are cases where
this difference can be significant for modeling. Next, let us explore how the difference
between the models is changed when considering more or less elongated grains. The
parameter 𝑎3 changes in models M1 and M2 (see Table 20.1 and 20.2).

The Fig. 20.3 shows the dependence of the tensor components 𝐾eff
𝑖𝑖 /𝐾𝐺𝐵 as a

function of the grain volume fraction 𝜑𝐺 for M1 and M2 for different grain size
𝑎3 = 2, 10. The minimum and maximum values of the spheroidal grain size from



362 Dmitry Pashkovsky, Ksenia Frolova, and Elena Vilchevskaya

Fig. 20.2: The components 𝐾eff
𝑖𝑖
/𝐾𝐺𝐵 as a function of 𝜑𝐺 for the models M1 and M2

(𝑎3 = 5, 𝑎 = 1).

Fig. 20.3: The components 𝐾eff
𝑖𝑖
/𝐾𝐺𝐵 as a function 𝜑𝐺 for different 𝑎3 = 2, 5, 10.

the considered range are taken on Fig. 20.3. The red curves are the components
of the effective conductivity tensor of the M1 model, and the green curves are the
components of the effective conductivity tensor of the M2 model. Solid lines and
dashed lines correspond to different values of parameter 𝑎3. Figure 20.3 shows that
the difference between third components of 𝑲eff for models M1 and M2 decreases
with increasing parameter 𝑎3. It is also seen that the tensor components 𝐾eff

11 = 𝐾eff
22

are almost unchanged for different 𝑎3. The 𝐾eff
33 /𝐾𝐺𝐵 components of the M2 model
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Table 20.3: The maximum difference between the tensor 𝑲 eff components for the models M1 and
M2, 𝑎3 = 2, 5, 10.

Difference 𝑎3 = 2 𝑎3 = 5 𝑎3 = 10
| (𝐾eff

11 )𝑀1 − (𝐾eff
11 )𝑀2 | / 𝐾𝐺𝐵 0.0859 0.1086 0.112

| (𝐾eff
33 )𝑀1 − (𝐾eff

33 )𝑀2 | / 𝐾𝐺𝐵 0.2767 0.0897 0.0372

for different 𝑎3 are almost equal to each other. This is due to the choice of the ellipsoid
parameters in Table 20.2.

Table 20.3 shows the difference of the tensor components when the parameter
𝑎3 is changed. Let us calculate maximum deviation between curves for parameters
𝑎3 = 2, 5, 10 and 𝑎 = 1 (𝛾 = 2,5,10). The difference between the conductivity along
𝒆3 for models M1 and M2 decreases with increasing parameter 𝑎3 (Table 20.3). Also
the first component of the 𝑲eff tensor practically does not change with increasing
parameter 𝑎3.

The differences between models M1 and M2 for parallel grains orientation are
not a big for large 𝑎3. If we want to estimate this difference, the models M1 and M2
must be compared with experimental data. In some cases, even this difference can
be significant. For more correct modeling, it is necessary to take into account more
complex geometry in the second model.

20.4 Conclusion

This paper compares two approaches to calculating the effective conductive properties
of polycrystals. In the first approach, the grains were chosen as spherical inhomo-
geneities and the grain boundaries as the material matrix. In the second approach,
vice versa, grain boundaries were chosen as the spheroidal inhomogeneities and the
grain boundaries were chosen as matrix. In the second model, there were two groups
of the grain boundaries that have ellipsoidal shape and the grains are chosen as matrix.
The models M1 and M2 are similar at small and large values of the volume fraction
of grains. In real polycrystals, the volume fraction of grains is on the range of 90%
to 95% of the total volume. Hence, the both approaches can be used to simulate real
polycrystalline material. But there are cases when the difference between models can
be critical. Also note that the difference between the conductivity along 𝒆3 for models
M1 and M2 decreases with increasing grain size along 𝒆3. But the components along
𝒆1 and 𝒆2 stay stable with increasing grain size along 𝒆3. Further analysis of the
approaches and evaluation of the influence of the difference between the models
requires comparison with experimental data or numerical simulation.
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Chapter 21
The Functionally Invariant Solutions and
Nonlinear Wave Equations

Yuri V. Pavlov

Abstract An overview of the application of the functionally invariant solutions
method for the nonlinear wave equation is given. A generalization of this method
is presented to the case of the presence of the first derivatives and non-linearity of
different types on the right side of the equation. The possibility of construction of
the exact analytical solutions is discussed.

21.1 Introduction

The nonlinear sine-Gordon wave equation and its generalizations often appear
in physics and mechanics. The sine-Gordon equation describes dislocations in
solids [1, 2], deformation of a crystal media with complex lattice [3, 4], nonlin-
ear wave processes [5]. It is used in field theory models and in elementary particle
physics [6].

The efficient methods have been developed for solving nonlinear differential
equations, including the sine-Gordon equation. These are the Lamb method [7] for
the two-dimensional sine-Gordon equation, the Bäcklund transformation, the inverse
scattering method [8, 9], etc. However, the needs of the development of the theory
of nonlinear equations and problems of practical modeling of numerous physical
phenomena necessitate finding new methods for the solution of nonlinear wave
equations.

Here we consider the application of the functionally invariant solutions method
to the search for a solution to the nonlinear wave equation
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𝑈 +
𝑛∑
𝑖=1

𝜆𝑖
𝜕𝑈

𝜕𝑥𝑖
+𝛾

𝜕𝑈

𝜕𝑡
=𝑉 ′ (𝑈), (21.1)

where

𝑈 =
𝑛∑
𝑖=1

𝜕2𝑈

𝜕𝑥2
𝑖

− 1
𝑣2

𝜕2𝑈

𝜕𝑡2
(21.2)

is the d’Alembert operator in 𝑛-dimensional space, 𝜆𝑖 (𝑖 = 1, . . . , 𝑛), 𝛾, 𝑣 are constants,
𝑉 (𝑈) is some differentiable function.

In the absence of the first derivatives and with 𝑉 ′ (𝑈) = sin𝑈, the Eq. (21.1) is
the sine-Gordon equation, for the case 𝑉 ′ (𝑈) = 𝑝1 sin𝑈 + 𝑝2 sin2𝑈 — the double
sine-Gordon equation, for 𝑉 ′ (𝑈) = 𝑝1 sin𝑈 + 𝑝2 sin2𝑈 + 𝑝3 sin3𝑈 — the triple sine-
Gordon equation (𝑝1, 𝑝2, 𝑝3 = const), for 𝑉 ′ (𝑈) = exp𝑈 — the Liouville equation,
for 𝑉 ′ (𝑈) = sinh𝑈 — the sinh-Gordon equation etc. In the field theory models [10]
the Eq. (21.1) with 𝑉 ′ (𝑈) = 𝑝1𝑈

3 − 𝑝2𝑈 is widely applied.

21.2 Functionally Invariant Solutions

Let’s consider the wave equation

�𝑈 = 0. (21.3)

The solution 𝑢(𝑥1, . . . 𝑥𝑛, 𝑡) of the equation (21.3) is called functionally invariant
if for arbitrary twice differentiable function 𝑓 , the function 𝑓 [𝑢(𝑥1, . . . 𝑥𝑛, 𝑡)] will
also be the solution. D’Alembert’s solution of string oscillation equations in the
form of traveling waves is obviously functionally invariant. It was found in the
XVIII-th century (1749). In the middle of the XIX-th century, Jacobi obtained [11]
the functional invariant solutions for the 3-dimensional Laplace equation. For the
𝑛-dimensional Poisson equation and the 3-dimensional wave equation, such solutions
were obtained for the first time by Forsyth [12]. A number of functionally invariant
solutions of the wave equation and electromagnetic field equations were obtained
in [13]. Smirnov and Sobolev applied the functionally invariant solutions of wave
equation for solving specific problems of mathematical physics [14].

Functionally invariant solutions of the wave equation can be found as solutions of
the system of equations

𝑛∑
𝑖=1

(
𝜕Ω
𝜕𝑥𝑖

)2
−
(
𝜕Ω
𝑣𝜕𝑡

)2
= 0, (21.4)

�Ω = 0. (21.5)

In the three-dimensional case, all real and some part of complex functionally invariant
solutions of the wave equation can be obtained from the expression [15]

�

�
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𝑛∑
𝑖=1

𝑥𝑖 𝑙𝑖 (Ω) − 𝑡𝑣2𝑝(Ω) + 𝑞(Ω) = 0, (21.6)

where 𝑙1 (Ω), . . . , 𝑙𝑛 (Ω), 𝑝(Ω), 𝑞(Ω) are the arbitrary twice differentiable functions
satisfying the condition

𝑛∑
𝑖=1

𝑙2𝑖 (Ω) = 𝑣2𝑝2 (Ω). (21.7)

In the two-dimensional case (𝑛 = 2), such formulas give all functionally invariant
solutions of the wave equation [16].

From the relation (21.6) one obtains

𝜕Ω
𝜕𝑥𝑖

=
−𝑙𝑖
𝜆

,
𝜕Ω
𝜕𝑡

= 𝑣2 𝑝

𝜆
, 𝜆 =

𝑛∑
𝑖=1

𝑥𝑖
𝑑𝑙𝑖
𝑑Ω

− 𝑣2𝑡
𝑑𝑝

𝑑Ω
+ 𝑑𝑞

𝑑Ω
, (21.8)

𝜕2Ω

𝜕𝑥2
𝑖

=
1
𝜆2

(
2𝑙𝑖

𝑑𝑙𝑖
𝑑Ω

− 𝑙2𝑖
𝜇

𝜆

)
,

𝜕2Ω

𝜕𝑡2
=

𝑣4

𝜆2

(
2𝑝

𝑑𝑝

𝑑Ω
− 𝑝2 𝜇

𝜆

)
, (21.9)

where the duplicate indexes do not imply summation and

𝜇 =
𝑛∑
𝑖=1

𝑥𝑖
𝑑2𝑙𝑖
𝑑Ω2 − 𝑣2𝑡

𝑑2𝑝

𝑑Ω2 +
𝑑2𝑞

𝑑Ω2 . (21.10)

Obviously, the nonlinear equations, in particular (21.1), cannot have functionally
invariant solutions. Also, not every linear equation can have a functionally invariant
solution. For example, the equation for spherical waves in three-dimensional space

𝜕2𝑈

𝜕𝑟2 + 2
𝑟

𝜕𝑈

𝜕𝑟
− 1

𝑣2
𝜕2𝑈

𝜕𝑡2
= 0 (21.11)

has the general solution

𝑈 =
1
𝑟
(𝐹 (𝑟 + 𝑣𝑡) +𝐺 (𝑟 − 𝑣𝑡)) (21.12)

with arbitrary twice differentiable functions 𝐹, 𝐺. Due to the presence of the factor
1/𝑟 on the right side of (21.12), the functions 𝑟 − 𝑣𝑡 and 𝑟 + 𝑣𝑡 cannot be functionally
invariant solutions to the wave equation (21.11).

Courant ([17], Chapt. 6, Sect. 18) introduced the concept of “relatively undistorted
waves”, generalizing the concept of spherical waves in three-dimensional space,
namely, the solutions of the form

𝑈 (𝑥𝑥𝑥, 𝑡) = 𝑔(𝑥𝑥𝑥, 𝑡)𝐹 (Ω(𝑥𝑥𝑥, 𝑡)), 𝑥𝑥𝑥 = (𝑥, 𝑦, 𝑧), (21.13)

where 𝐹 (Ω) is an arbitrary twice differentiable function, 𝑔(𝑥𝑥𝑥, 𝑡), Ω(𝑥𝑥𝑥, 𝑡) are some
function. For an arbitrary equation, the functions of the form (21.13), which are its
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solutions with arbitrary 𝐹 (Ω) and a special type functions 𝑔(𝑥𝑥𝑥, 𝑡) and Ω(𝑥𝑥𝑥, 𝑡), are
called generalized functional invariant solutions [18].

The functionally invariant solutions to equation (21.1) cannot exist if there is a
nonlinear function𝑉 (𝑈) on the right side. However, after the series of transformations
the search for some solutions to the sine-Gordon equation and its generalizations
has been reduced in [19–21] to solving the auxiliary system of partial differential
equations, which corresponds to the system of equations for functionally invariant
solutions of the wave equation.

21.3 Solving the Nonlinear Equation

If you transform the Eq. (21.1) in a standard way by excluding the first derivatives, then
on the right side we get a function that depends explicitly on the variables (𝑥𝑖 , 𝑡). This
will not allow to use of known methods for solving the nonlinear partial differential
equations. So let us find for a solution to Eq. (21.1) in the form 𝑈 = 𝐹 [Ω(𝑥, 𝑦, 𝑧, 𝑡)].
Then from (21.1) we get

𝐹′ ′ (Ω)
[

𝑛∑
𝑖=1

(
𝜕Ω
𝜕𝑥𝑖

)2
−
(
𝜕Ω
𝑣𝜕𝑡

)2]
+ 𝐹′ (Ω)

[
�Ω+

𝑛∑
𝑖=1

𝜆𝑖
𝜕Ω
𝜕𝑥𝑖

+𝛾
𝜕Ω
𝜕𝑡

]
=𝑉 ′ [𝐹 (Ω)] .

(21.14)
Equation (21.14) will be solved if

𝐹′ ′ (Ω) 𝑃(Ω) +𝐹′ (Ω)𝑄(Ω) =𝑉 ′ [𝐹 (Ω)], (21.15)

𝑛∑
𝑖=1

(
𝜕Ω
𝜕𝑥𝑖

)2
−
(
𝜕Ω
𝑣𝜕𝑡

)2
= 𝑃(Ω), (21.16)

�Ω+
𝑛∑
𝑖=1

𝜆𝑖
𝜕Ω
𝜕𝑥𝑖

+𝛾
𝜕Ω
𝜕𝑡

=𝑄(Ω), (21.17)

where 𝑃(Ω), 𝑄(Ω) are some arbitrary functions.
In the case

∑𝑛
𝑖=1𝜆

2
𝑖 ≠ 0, let us choose 𝑃(Ω) = Ω2, 𝑄(Ω) = Ω and enter the substi-

tution

Ω = 𝑒𝜙𝜔, 𝜙 =
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 −𝜎𝑣2𝑡, (21.18)

Equation (21.14) will be solved if

𝐹′ ′ (Ω)Ω2 +𝐹′ (Ω)Ω =𝑉 ′ [𝐹 (Ω)], (21.19)

𝑛∑
𝑖=1

𝑎2
𝑖 = 1+𝜎2𝑣2, (21.20)
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𝑛∑
𝑖=1

𝑎𝑖𝜆𝑖 = 𝛾𝜎𝑣2, (21.21)

𝑛∑
𝑖=1

𝜆𝑖
𝜕𝜔

𝜕𝑥𝑖
+𝛾

𝜕𝜔

𝜕𝑡
= 0, (21.22)

𝑛∑
𝑖=1

𝑎𝑖
𝜕𝜔

𝜕𝑥𝑖
+𝜎

𝜕𝜔

𝜕𝑡
= 0, (21.23)

�𝜔 = 0, (21.24)
𝑛∑
𝑖=1

(
𝜕𝜔

𝜕𝑥𝑖

)2
−
(
𝜕𝜔

𝑣𝜕𝑡

)2
= 0. (21.25)

Note that the arbitrary twice differentiable function �̃� = 𝑓 (𝜔) of ansa.tz
𝜔(𝑥1, . . . , 𝑥𝑛, 𝑡) will satisfy the same Eqs (21.22)–(21.25) if it is satisfied with the
ansatz 𝜔.

After replacing the variable 𝜁 = lnΩ, Eq. (21.19) will take the form

𝑑2𝐹

𝑑𝜁2 =
𝑑𝑉

𝑑𝐹
. (21.26)

Therefore, the solution to the equation (21.19) is the function 𝐹 (Ω), implicitly defined
from the expression ∫

𝑑𝐹√
𝑉 (𝐹) +𝐸

= ±
√

2lnΩ+𝐶, (21.27)

where 𝐸 and 𝐶 are constants. For the generalized sine-Gordon equation under the
choosing 𝑉 (𝐹) = −cos𝐹, 𝐸 = 1, 𝐶 = 0 (and sign plus in right side of (21.27)), we
will receive

𝑉 ′ (𝐹) = sin𝐹 ⇒ 𝐹 = 4arctanΩ. (21.28)

Other values of constants lead to need the inversion of the corresponding elliptic
integral. For the generalized sinh-Gordon equation under the choosing𝑉 (𝐹) = cosh𝐹,
𝐸 = 1, 𝐶 = 0, one has

𝑉 ′ (𝐹) = sinh𝐹 ⇒ 𝐹 = 4artanhΩ. (21.29)

The function 𝑈 = 𝐹 (𝑒𝜙𝜔)will solve the initial problem (21.1). The conditions for
the solvability of the system of equations (21.20)–(21.25) in the three-dimensional
case (𝑛 = 3) are analyzed in [20]. Note that not all solutions of (21.1) can be found in
this way. However, the variety of solutions thus obtained is large due to the functional
invariance of the set of valid functions 𝜔. The number of different types of such
solutions grows with the increase in the number of spatial dimensions 𝑛.

The proposed replacementΩ= 𝑒𝜙𝜔 does not allow to find real solutions depending
on time, if in Eq. (21.1) there is only the first derivative with respect to time, i.e.
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𝜆1 = . . . = 𝜆𝑛 = 0. In this case, from (21.22), (21.25) it would follow that 𝜔 = const
and 𝜎 = 0.

If you have only the first time derivative, let’s choose 𝑃(Ω) = 0, 𝑄(Ω) = Ω. Then
Eq. (21.15) can be integrated into the form

∫
𝑑𝐹

𝑉 ′ (𝐹) = ln |Ω|. (21.30)

For the generalized sine-Gordon equation

𝑉 ′ (𝐹) = sin𝐹 ⇒ 𝐹 = 2arctanΩ (21.31)

one gets (with the appropriate selection of the integration constant). For the general-
ized sinh-Gordon equation one has

𝑉 ′ (𝐹) = sinh𝐹 ⇒ 𝐹 = 2artanhΩ. (21.32)

In accordance to (21.14), Eq. (21.1) will be solved if the following equations are
fulfilled together with (21.15)

𝑛∑
𝑖=1

(
𝜕Ω
𝜕𝑥𝑖

)2
−
(
𝜕Ω
𝑣𝜕𝑡

)2
= 0, (21.33)

�Ω+𝛾
𝜕Ω
𝜕𝑡

= Ω. (21.34)

To solve this system of equations, one can use the same approach as when finding the
functionally invariant solutions of the wave equation. An example of such a solution
of the system (21.33), (21.34) is given in [20]. A simple solution can be found in the
form

𝐺 = 𝐴exp

(
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 + 𝑎0𝑡

)
, (21.35)

where 𝐴, 𝑎0, 𝑎1, . . . 𝑎𝑛 are some constants. From (21.33), (21.34) it follows that

𝑎0 =
1
𝛾
,

𝑛∑
𝑖=1

𝑎2
𝑖 =

1
𝛾2𝑣2 . (21.36)

For the sinh-Gordon equation with the first time derivative the solution will be

𝑈 = 2artanh 𝐴exp

(
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 + 𝑡

𝛾

)
. (21.37)

For the case of 𝑛 = 1 for example, the solution is

𝑈 = 2artanh 𝐴exp
𝑡𝑣± 𝑥

𝛾𝑣
. (21.38)



21 The Functionally Invariant Solutions and Nonlinear Wave Equations 373

Note that Eq. (21.15) for the arbitrary right side 𝑉 (𝐹) can be integrated in
quadratures in the case

𝑄(Ω) = 𝑃 ′ (Ω)/2. (21.39)

The solution for 𝑃(Ω) > 0 (see 2.9.2.34 in [22]) is
∫

𝑑𝐹√
𝐸 +𝑉 (𝐹)

= ±
√

2
∫

𝑑Ω√
𝑃(Ω)

. (21.40)

If 𝑃(Ω) = 0, then the solution of (21.15) is determined from
∫

𝑑𝐹

𝑉 ′ (𝐹) =
∫

𝑑Ω
𝑄(Ω) . (21.41)

To find 𝐹 (Ω) we need to inverse the integrals on the left side of (21.40), (21.41).
For the sine-Gordon and double sine-Gordon equations, this reduced to the inversion
of the elliptic integrals. For the triple sine-Gordon equation, the complex problem
arises of the inversion of ultra-elliptic integrals [23].

Let us consider separately the case when the first derivatives are absent,

�𝑈 =𝑉 ′ (𝑈). (21.42)

According to (21.14), the function 𝑈 = 𝐹 (Ω) will be the solution if, together
with (21.15), the relations

𝑛∑
𝑖=1

(
𝜕Ω
𝜕𝑥𝑖

)2
−
(
𝜕Ω
𝑣𝜕𝑡

)2
= 𝑃(Ω), (21.43)

�Ω =𝑄(Ω) (21.44)

are performed.
Under the limit 𝑣 →∞, the system of equations (21.43), (21.44) passes into the

system
𝑛∑
𝑖=1

(
𝜕Ω
𝜕𝑥𝑖

)2
= 𝑃(Ω), (21.45)

ΔΩ =𝑄(Ω), Δ =
𝑛∑
𝑖=1

𝜕2

𝜕𝑥2
𝑖

. (21.46)

In the three-dimensional case (𝑛 =3), all real solutions of the system (21.45), (21.46)
were found in [24]. The compatibility of the system of Hamilton-Jacobi equa-
tions (21.43) and the nonlinear Klein-Fock-Gordon equation (21.44) was investigated
in [25, 26]. It was found that in addition to the case 𝑃(Ω) =𝑄(Ω) = 0, the system of
equations (21.43), (21.44) with 𝑃 ≠ 0 and 𝑛 = 3, is also compatibility under conditions

1√
𝑃(Ω)

(
𝑄(Ω) − 𝑃′ (Ω)

2

)
=

𝑁

𝛼+𝐶
, 𝑁 = 0,1,2,3,

𝑑𝛼

𝑑Ω
=

1√
𝑃(Ω)

, (21.47)



374 Yuri V. Pavlov

where 𝐶 is an arbitrary constant. To obtain exact analytical solutions of Eq. (21.42), it
is necessary to find an exact solution of Eq. (21.15). Therefore, at 𝑃 ≠ 0, we consider
only the case 𝑄(Ω) = 𝑃′ (Ω)/2, i.e. the value 𝑁 = 0 in the conditions (21.47).

For the function 𝛼 by the relation on the right side of (21.47), we get instead
of (21.43), (21.44)

𝑛∑
𝑖=1

(
𝜕𝛼

𝜕𝑥𝑖

)2
−
(
𝜕𝛼

𝑣𝜕𝑡

)2
= 1, (21.48)

�𝛼 = 0. (21.49)

Let us make the substitution
𝛼 = 𝜙+𝜔 (21.50)

with 𝜙 defined in (21.18) and satisfying the conditions (21.20). For 𝜔 we get
Eqs. (21.23)–(21.25), which can be solved by the method of functionally invari-
ant solutions of the wave equation with help the expression (21.6). The integral on
the right side of (21.40) gives the expression of 𝛼 from Ω. Thus, solving Eq. (21.42)
without the first derivatives under the condition 𝑄(Ω) = 𝑃 ′ (Ω)/2, 𝑃 ≠ 0, regardless
of the choice 𝑃(Ω) has the form

𝑈 = 𝐹 (𝜙+ 𝑓 (𝜔)) (21.51)

with an arbitrary twice differentiable function 𝑓 and with the functions 𝐹 and
𝜙, 𝜔 defined by Eqs. (21.18), (21.20), (21.23)–(21.25). Note that the method of
functionally invariant solutions can be used also for the case of a non-autonomous
wave equation (in particular, the sine-Gordon equation with variable amplitude (see,
for examples, [27, 28]).

21.4 Conclusion

The presented method of solving the nonlinear wave equation (21.1) with arbitrary
nonlinearity on the right side of 𝑉 ′ (𝑈) does not allow to find a general solution to
such equation. However, the obtaining of some set of exact solutions to the nonlinear
partial differential equation is of undeniable interest. The solutions obtained by
this method have been used in nonlinear models of deformation of solids (see, for
example, [29]). The set of types of solutions obtained in this way increase with the
growth of the dimension of space, since the number of arbitrary functions in the
system of equations for the ansatz Ω increases.

This work provides an overview of functionally invariant methods for solving
the nonlinear wave equation and a generalization of the previously proposed [20]
method for the case of first-order partial derivatives and arbitrary nonlinearity 𝑉 ′ (𝑈)
is obtained.
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Chapter 22
Hydrogen Skin Effect vs. Hydrogen Diffusion

Vladimir A. Polyanskiy, Dmitry G. Arseniev, Anastasiia A. Chevrychkina, and Yuri
A. Yakovlev

Abstract Finite element simulation of hydrogen diffusion from charged samples
during TDS measurement was carried out. Several variants of models were considered
within the framework of the hydrogen diffusion model with traps of various nature
McNabb and Foster. The simulation took into account the skin effect observed when
charging the metal samples with hydrogen. It was found that the experimentally
observed additional low-temperature peak of hydrogen on the TDS was observed
only in the case of a hundredfold increase in the density of hydrogen sites in the
surface layer. It was concluded that in some cases, after charging the samples, the
diffusion fluxes of hydrogen in the skin layer change to gas fluxes of molecular
hydrogen through the system of micropores formed during charging.

22.1 Introduction

The problems ofmetal hydrogen-inducedcracking,hydrogen embrittlement,hydrogen
brittleness and hydrogen-induced fracture have been very important for practice for
more than 100 years. This is due to the fact that hydrogen and hydrogen-containing
compounds such as water and hydrocarbons are found everywhere.

In the oil and gas industry, for example, hydrogen-induced destruction occurs
during corrosion of the walls of pipelines, vessels and metal parts of machines [1].
The strengthening of the destructive influence of hydrogen occurs in the presence of
H2S sf. [2–5], at high mechanical stresses sf. [4, 6, 7] and in case of Stress Oriented
Hydrogen Induced Cracking (SOHIC) sf. [8–10], in the presence of sulfur oxides
Sulfide Stress Corrosion cracking (SSC) [2, 4].
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The use of high-strength metals enhances the influence of hydrogen significantly.
Hydrogen brittleness and hydrogen cracking occur at significantly lower concentra-
tions of hydrogen in the metal. Decrease in the maximum permissible concentration
of hydrogen leads to the fact that not only metallurgical hydrogen, but also hydrogen
accumulated during production and operation of metal begins to play a significant role
even in cases where there is no pure hydrogen in the metal surrounding environment.
Simultaneously with natural metallurgical hydrogen, hydrogen accumulated from
the external environment begins to affect significantly the mechanical properties of
metals and alloys which are: strength, ductility, impact viscosity, crack resistance
[11].

A special role of hydrogen is worth mentioning if it is used as an energy source in
various hydrogen energy projects. Transportation of a natural gas with hydrogen sf.
[12–16] leads to a decrease in ductility, impact strength and crack resistance of pipe
steels [17–20] even without mentioning transportation of pure hydrogen gas [20, 21].

To study the effect of hydrogen on the properties of metals and for industrial
testing of metals for resistance to hydrogen brittleness, chemical and electrochemical
methods of saturation of metals with hydrogen are widely used. The main methods
are standardized: the saturation of metals by hydrogen using acid solution due to
corrosion or stress corrosion [22–24]. The saturation of metals by hydrogen using
cathodic hydrogen charging [22, 25]. The saturation of metals by hydrogen using
in electrolyte associated with near-neutral pH SCC, simulating sea or groundwater
or transported natural gas [26–30]. For instance, see Ref. [26] for standard set of
test conditions for consistent evaluation of pipeline and pressure vessel steels and
compares test results from different laboratories pertaining to the results of the
absorption of hydrogen generated by corrosion of steel in wet H2S.

There are many experimental works in which show that charging with hydrogen
can lead to a strong inhomogeneity of the distribution of hydrogen concentrations, see
[31–34]. We proposed to call the observed effect "the hydrogen skin effect" because
of its similarity to the electric skin effect. The observed skin effect is reported in
[33, 34]. Due to this effect, the hydrogen concentration in the surface layer with
a thickness of the order of one metal grain size (60-100 micron) can exceed the
concentration inside the sample by tens of times.

Numerous test results of hydrogen-charged samples show that, despite the shallow
depth of the skin effect, it affects the strength and ductility of the metal significantly.
The mechanism of such influence is discussed and modeled in the works, see [35, 36].
The test results show that, due to the skin effect, destruction occurs with a variable
nature of the fracture of the samples. One part of the main crack grows according
to brittle mechanism, another part grows according to viscous one. That was the
reason for the development of new models of hydrogen embrittlement HELP+HEDE
[37–39], combining the well-known models of hydrogen-enhanced decohesia HEDE
[40, 41] and hydrogen-enhanced local plasticity HELP [42].

The nature of the hydrogen skin effect itself remains not fully investigated. In a
number of papers, it is explained by the slow diffusion of hydrogen [43, 44]. This
view allows many experimenters to use long-term charging of samples [45–47]
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and exposure of samples to air after charging, as a method of homogenizing the
concentration of hydrogen [48].

At the same time, there is an evidence that the additional concentration of hydrogen
evaporates quickly after holding the samples in atmosphere, and even more so in
vacuum, which should not be the case with slow diffusion [34]. Thus, the question of
the nature of the skin effect is of direct importance for the technologies of preparation
and industrial testing of metals for resistance to hydrogen brittleness.

22.2 The Theoretical Observation

The most popular method for researching the hydrogen diffusion and for determining
the hydrogen binding in solid samples is the method based on thermal desorption
spectra (TDS). There is an extensive literature, see for example, [48–59, 59–63]. After
experimental measurement of several TDS with different heating rates of the identical
samples, the Choo-Lee graph is plotted. The binding energies are determined from
the results of linearization of Choo-Lee plot. The method is based on chemical
kinetics, see [64].

A paradoxical but generally accepted approach is that for the case of hydrogen
TDS, the emission of hydrogen from traps during heating of the samples is considered
as a first-order chemical reaction. Diffusion of hydrogen which removes hydrogen
from the sample is considered to be a significantly faster process. This allows one to
neglect the account of diffusion while calculating the hydrogen binding energy, at
least it was not taken into account by Kissinger who is the author of the method for
determining the binding energy, [64].

Numerous studies carriedout by means ofmathematicalmodeling,see, for example,
[65–69], have shown that the process of hydrogen diffusion does not significantly
distort the thermal desorption spectra. The binding energies determined by the
Kissinger [64] formula using the Choo-Lee plot correspond to the binding energies
of the traps. There are some contradictions here, since some authors consider the
diffusion activation energy as an addition to the binding energy of traps, while other
authors do not take into account this "diffusion addition". But the binding energy
in traps, as a rule, significantly exceeds the diffusion activation energy assumed
by the authors. Therefore, these contradictions fit into the 15% range which can
be recognized as the accuracy of the used methodology. In some standards for the
measurement of diffusion-mobile hydrogen, it is even defined as hydrogen dissolved
in a metal that does not have an activation or binding energy, see [70].

It is important to note that the simulation assumes, as a rule, a uniform or almost
uniform initial distribution of hydrogen in the metal sample, see [71, 72]. Cases of
uneven distribution have been considered in a relatively small number of papers, see
[73–77].

In most articles the distribution of hydrogen concentration is specified as the
initial condition for integrating the diffusion equations. It can also be calculated by
simulating the saturation of a sample with zero initial concentration from a hydrogen-
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containing medium such as in [74, 75]. When modeling the saturation process, the
same equations of hydrogen diffusion and its capture in traps are used as in the
simulation of degassing during the TDS measurement. The distribution of traps over
the sample volume is assumed to be uniform.

At the same time, there is a problem of the sensitivity of the equipment used to
measure the TDS. The hydrogen flux from a slowly heated sample must be accu-
rately measured against the background of hydrogen fluxes both in the environment
surrounding the sample and from the heated parts of the experimental setup. The
water adsorbed on the sample surface can also affect the results of hydrogen flux
measurements. Its volume concentration even in a specially dried gas is much higher
than the concentration of hydrogen extracted gradually from the sample. The most
popular solution to these measurement problems is to artificially saturate (or charge)
the samples with hydrogen before taking the TDS measurements. Very often, first,
the heat treatment and mechanical tests are carried out, and then, immediately before
measuring the TDS, the samples are charged with hydrogen, see for example [78–83].
This approach makes it possible to minimize the effect of background hydrogen fluxes
on the measurement results, since the hydrogen flux from the sample significantly
exceeds the background one.

As experimentally found in [34, 84], the hydrogen charging of metal samples in
an electrolyte or neutral solution leads to a strong unevenness in the distribution
of hydrogen or the "skin effect" of hydrogen charging. In the articles [85, 86] we
have already reported how the "skin effect" affects TDS. We performed simulations
using diffusion equations. This approach was based on the assumption by Oriani [87]
that the sites in the crystal lattice are weakly filled with hydrogen dissolved in the
sample. That is, the limited capacity of the crystal lattice has practically no effect on
diffusion. We have shown the "pure effect" of the uneven distribution of diffusely
mobile hydrogen in the sample by comparing the model and experimental TDS [86].
We found that the skin effect of hydrogen charging can greatly distort the TDS curves.
Additional peaks of the spectrum with fictitious binding energies appear. We noticed
that such peaks are quite often observed in experimental TDS, their main feature is
a low maximum temperature (less than 200◦C) and, on the contrary, a high binding
energy corresponding to the peak, see [88–92]. This energy is usually referred to as
the binding energy of hydrogen traps.

At the same time, we did not discuss the physical origin of the skin effect. In an
experimental study, it is extremely difficult to separate quantitatively the hydrogen
located in the sites of the crystal lattice and that in the sites of traps, since the
hydrogen is distributed inside the sample in microscopic traps of a very small volume.
Therefore, mathematical modeling of the transport of hydrogen inside the sample
and its extraction from the sample is the most accessible method, which does not
require cutting the samples into pieces or other significant mechanical effects that
can greatly change the initial distribution of hydrogen.
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22.2.1 Hydrogen Transport Model

The Fick equation (22.1) is the simple one used to model the transport of hydrogen
inside a solid [93]:

𝜕𝐶

𝜕𝑡
= ∇ · [𝐷 (𝑇,𝑟)∇𝐶] . (22.1)

Here 𝐶 is the hydrogen concentration, 𝑡 is the time, 𝑟 is the polar coordinate, 𝐷 is
the diffusion coefficient, and 𝑇 is the absolute temperature. The diffusion coefficient
depends on the temperature according to the Arrhenius law [94]:

𝐷 (𝑇) = 𝐷0e−
𝑢
𝑅𝑇 , (22.2)

where 𝑢 is the activation energy of diffusion, 𝐷𝑜 is the diffusion constant, 𝑅 is the
universal gas constant.

Experimental studies have shown that the use of the Fick equation in the ap-
proximation of experimental data does not allow describing the dependence of the
hydrogen flux on time, and the fitting of the parameters gives a large scatter of the
diffusion coefficients and activation energies for the same materials. Darken and
Smith [95] explained this variation by the fact that when metals are saturated with
hydrogen, there is a limit value for the concentration of hydrogen, which depends
on the way the sample is processed. That is, the laws of diffusion work only if the
hydrogen concentration is less than the limiting values. Therefore, the concept of
binding hydrogen and hydrogen traps distributed in the material was introduced into
the description of the transport of hydrogen in a solid. The trap model of hydrogen
transport by Mac Nabb and Foster [96] in the one-dimensional form proposed by the
authors [96] is written as



𝜕𝐶𝐿
𝜕𝑡

+𝑁𝑥 𝜕\𝑥
𝜕𝑡

= 𝐷𝐿
𝜕2𝐶𝐿
𝜕𝑥2 ,

𝜕\𝑥
𝜕𝑡

= 𝑘𝑥𝐶𝐿 (1− \𝑥) − 𝑘𝐿\𝑥 .
(22.3)

Here 𝐶𝐿 is the hydrogen concentration in the "normal" crystal lattice, 𝐷𝐿 is the
diffusion coefficient in the "normal" crystal lattice, 𝑁𝑥 is the volume density of
hydrogen traps, \𝑥 is the fraction of occupied sites in the traps (0 ≤ \𝑥 ≤ 1),𝑁𝑥\𝑥 =𝐶𝑥
is the volume concentration of hydrogen concentrated in traps, 𝑘𝑥 represents the
probability of jumping from a normal lattice to a trap, on the contrary 𝑘𝐿 describes
the probability from a trap to a normal lattice. The first equation describes diffusion,
while the second one can be interpreted as "trap".
Here {

𝑘𝑥 (𝑇) = 𝑘𝑥0e−
𝑢𝑡
𝑅𝑇 ,

𝑘𝐿 (𝑇) = 𝑘𝐿0e−
𝑢𝑑
𝑅𝑇 = 𝑘𝐿0e−

𝑢𝑏+𝑢𝑡
𝑅𝑇 ,

(22.4)
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where 𝑢𝑏 is the binding energy of hydrogen in traps, 𝑢𝑡 is the energy of hydrogen
capture by traps. Traps are understood as the bindingaries of single-crystal grains,
foreign inclusions, internal defects, dislocations, vacancies, microcracks etc., see
[97–100].

Another mathematical model was proposed by Oriani [87]. This model takes into
account the bulk density of distribution of sites not only of trap-defect, but also of
the "normal crystal lattice". Thus, the concentration of mobile hydrogen is written
as the product

𝐶𝐿 = 𝑁𝐿\𝐿 , (22.5)

where 𝑁𝐿 is the density of the distribution of the sites of the traps of the normal crystal
lattice, which does not depend on the external pressure of hydrogen in the atmosphere
above the metal, Hydrogen concentration inside the metal and the temperature, \𝐿
is the fraction of occupied sites in the normal crystal lattice (0 ≤ \𝐿 ≤ 1). At low
hydrogen concentrations and a constant density of sites in the crystal lattice, the
MacNabb and Foster equations can be obtained from the Oriani model, but when the
traps of the crystal lattice are occupied, additional nonlinearity appears, associated
with restrictions on the coefficient . Thus, in the Oriani model, a number of additional
parameters appear to describe the process of hydrogen transport. If we assume
the presence in the material simultaneously of several types of traps with different
binding energies, then there are even more "trap equations" and parameters for fitting
to experimental data. This allows interpretation of almost any experiment [71, 72].
An important addition that Oriani introduced into his model is the thermodynamic
dependence between the fraction of occupied sites in the crystal lattice \𝐿 (diffusion)
and distributed traps \𝑥 .

𝐾 = e−
Δ𝑢
𝑅𝑇 =

\𝑥
1− \𝑥 ·

1− \𝐿
\𝐿

, (22.6)

here Δ𝑢 is the difference between the activation energy of diffusion (diffusion sites)
and the binding energy of traps (trap’s sites).

Dependence (22.6) was obtained by means of the McLean equations [101], that
is, under conditions of static thermodynamic equilibrium. The existence of this
equilibrium in the case of nonstationary diffusion of hydrogen can, with some
error, be assumed only with a very slow change in the distribution of the hydrogen
concentration. Otherwise, the temperature change leads to an instantaneous change
in the values of the occupation levels of the traps \𝑥 , \𝐿 . This is possible if we neglect
the diffusion time constant and, as Oriani points out, under the assumption that the
hydrogen concentration in the crystal lattice 𝐶𝐿 satisfies the condition \𝐿 ≪ 1 . In
this case

𝐾 =
\𝑥

1− \𝑥 ·
1
\𝐿

(22.7)

and we can express the diffusion flux of hydrogen 𝐽 in terms of the total concentration
of hydrogen 𝐶 = 𝐶𝐿 +𝐶𝑥

𝐽 = −𝐷𝑒 𝑓 𝑓 𝑑𝐶
𝑑𝑥
.
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Here we used the effective diffusion coefficient 𝐷𝑒 𝑓 𝑓 . Using relation (22.6), we
obtain the formula:

𝐷𝑒 𝑓 𝑓 = 𝐷𝐿
𝑑𝐶𝐿
𝑑𝐶𝑇

= 𝐷𝐿
𝐶𝐿

𝐶𝐿 +𝐶𝑥 (1− \𝑥) . (22.8)

The relations (22.6) also allow us to describe the multichannel diffusion of
hydrogen through traps [102–104], which is a further development of the Oriani
model. Now we can list the significant limitations of the Oriani model:

• small parameter \𝐿 ≪ 1,
• artificial restrictions on the ratio between the values 𝐶𝐿 and 𝐶𝑥 due to the

assignment of the density of sites,
• quasi-static character of the Oriani approach, see (22.6).

Such restrictions may not correspond to the experimental conditions for measuring
the TDS, both in the case of a sufficiently rapid heating of the sample, and in the case
of strong hydrogen saturation of the crystal lattice. These considerations allow us to
consider the McNabb and Foster model (see [96] and Eqs. (22.3)) as more general.

22.2.2 Model Description

We consider the case of measuring the thermal desorption spectra of a hydrogen flux
from cylindrical samples of radius 𝑅 and height 2𝑍 in the presence of the skin effect
of their preliminary charging with hydrogen. In cylindrical coordinates with axial
symmetry, the McNabb and Foster model is, see [96],




1
𝐷 (𝑡)

𝜕𝐶𝐿
𝜕𝑡

=
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝐶𝐿 (𝑟, 𝑧, 𝑡)

𝜕𝑟

)
+ 𝜕2𝐶𝐿 (𝑟, 𝑧, 𝑡)

𝜕2𝑧
− 𝑁𝑡𝑟
𝐷𝐿 (𝑡)

𝜕\tr
𝜕𝑡

,

𝜕\𝑡𝑟
𝜕𝑡

= 𝜅\𝐿 (1− \𝑡𝑟 ) − 𝑝\𝑡𝑟 ,
𝐶𝐿 (𝑅, 𝑧, 𝑡) = 𝐶𝐿 (𝑟, 𝑍, 𝑡) = 0, sample boundary condition

𝜕𝐶𝐿
𝜕𝑟

(0, 𝑧, 𝑡) = 𝜕𝐶𝐿
𝜕𝑧

(𝑟,0, 𝑡) = 0, symmetry condition

𝐶𝐿 (𝑟, 𝑧,0) +𝐶𝑡𝑟 (𝑟, 𝑧,0) = 𝐶0 (𝑟, 𝑧) . initial condition

(22.9)

where 𝐶𝐿 is the volume concentration of hydrogen in the crystal lattice, 𝑁𝑡𝑟 is the
volume concentration of hydrogen in the trap sites, 𝑁𝐿 is the volume concentration of
hydrogen sites in the crystal lattice, \𝐿 is the fraction of occupied sites in the lattice,
\𝑡𝑟 is the fraction of occupied sites in the traps, 𝜅 is the trap capture rate, 𝑝 is the
trap release rate, 𝐷 is the diffusion coefficient in the crystal lattice of the metal
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𝐶𝐿 (𝑟, 𝑧, 𝑡) = \𝐿 (𝑟, 𝑧, 𝑡)𝑁𝐿 (𝑟, 𝑧, 𝑡) ,
𝐶𝑡𝑟 (𝑟, 𝑧, 𝑡) = \𝑡𝑟 (𝑟, 𝑧, 𝑡)𝑁𝑡𝑟 (𝑟, 𝑧, 𝑡) ,

𝐷 = 𝐷0 exp
(
− 𝑈
𝑘𝑇

)
,

𝜅 = 𝜅0 exp
(
−𝑈𝑡
𝑘𝑇

)
,

𝑝 = 𝑝0 exp
(
−𝑈𝑑
𝑘𝑇

)
.

Here 𝑇 is the absolute temperature. 𝑈 is the diffusion activation energy, 𝑈𝑡 is the
activation energy of hydrogen capture into traps,𝑈𝑑 is activation energy of hydrogen
liberation from traps, 𝐷0, 𝜅0, 𝑝0 are the constants adjusted according to experimental
data, 𝑘 is the Boltzmann constant.

We assume is a uniform heating of the samples at a constant rate 𝑣, that is, the
dependence of the absolute temperature 𝑇 on time has the form:

𝑇 (𝑡) = 𝑇0 + 𝑣𝑡.
According to experimental data on the skin effect [34, 84], the initial distribution

of hydrogen in the sample (Fig. 22.1) is

𝐶0 (𝑟, 𝑧) = \𝐿 (𝑟, 𝑧,0)𝑁𝐿 (𝑟, 𝑧) + \𝑡𝑟 (𝑟, 𝑧,0)𝑁𝑡𝑟 (𝑟, 𝑧)

is non-uniform, namely, a jump in the hydrogen concentration at the boundary of
the sample is observed. The initial distribution of the total hydrogen concentration
𝐶0 (𝑟, 𝑧) can be decomposed in different ways into the hydrogen concentration in the
traps 𝐶𝑡𝑟 and the concentration of diffuse hydrogen in the 𝐶𝐿 lattice. To analyze the
effect of traps on TDS, we will consider four cases of hydrogen distribution, when the
skin effect of hydrogen concentration is described only in \𝐿 , \𝑡𝑟 , 𝑁𝐿 or 𝑁𝑡𝑟 , and the
rest of the components corresponds to a uniform distribution of hydrogen. In general,
the initial distribution, e.g. \𝐿 (𝑟, 𝑧,0), can be given by the following function:

Fig. 22.1 The initial distribu-
tion of hydrogen concentration
in a cylindrical sample accord-
ing to Eq. (22.10).

z

r

(z)

(r)

0
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\𝐿 (𝑟, 𝑧,0) =
{
𝛾 (𝑟) , 𝑧 ≤ 𝑍1 −𝑤 or 𝑟 ≥ 𝑧+ (𝑅1 − 𝑍1)
𝛾 (𝑧) , 𝑧 > 𝑍1 −𝑤 and 𝑟 < 𝑧 + (𝑅1 − 𝑍1) , (22.10)

where the function 𝛾 is a piecewise linear function (here 𝑥means one of the coordinates
𝑟 or 𝑧):

𝛾 (𝑥) =




\1
𝐿 , 𝑥 ≤ 𝑋1 −𝑤

\1
𝐿 +

\2
𝐿 − \1

𝐿

𝑤
(𝑥− (𝑋1 −𝑤)) , 𝑋1 −𝑤 < 𝑥 ≤ 𝑋1

\1
𝐿 −

\2
𝐿 − \1

𝐿

𝑤
(𝑥− (𝑋1 +𝑤)) , 𝑋1 < 𝑥 ≤ 𝑋1 +𝑤

\1
𝐿

𝑋 − (𝑋1 +𝑤) (𝑋 − 𝑥) , 𝑋1 +𝑤 < 𝑥 ≤ 𝑋

Here, if \2
𝐿 = \1

𝐿 , then we obtain a uniform distribution of hydrogen in the sample;
in the case \2

𝐿 > \
1
𝐿 , the hydrogen distribution will be piecewise linear, which in our

case corresponds to the presence of a skin layer in the sample.

22.2.3 Computational Algorithm of the Model

To solve system (22.9), a two-stage explicit difference scheme is used. Solution at an
intermediate time step 𝑡 +Δ𝑡/2 is as follows:

𝑟𝑖

𝐷𝑛+1/2
𝐶𝑛+1/2
𝐿𝑖 −𝐶𝑛𝐿𝑖
Δ𝑡/2 =

𝑟𝑖+1/2
(
𝐶𝑛+1/2
𝐿𝑖+1, 𝑗 −𝐶

𝑛+1/2
𝐿𝑖, 𝑗

)
+ 𝑟𝑖−1/2

(
𝐶𝑛+1/2
𝐿𝑖−1, 𝑗 −𝐶

𝑛+1/2
𝐿𝑖, 𝑗

)
Δ𝑟2 +

+𝑟𝑖
𝐶𝑛𝐿𝑖, 𝑗+1 −2𝐶𝑛𝐿𝑖, 𝑗 +𝐶𝑛𝐿𝑖, 𝑗−1

Δ𝑧2
− 𝑟𝑖

𝐷𝑛+
1
2
𝑁𝑡𝑟

©«
𝜅0\

𝑛+ 1
2

𝐿𝑖, 𝑗

𝑁𝐿

(
1− \𝑛𝑡𝑟 ,𝑖 𝑗

)
− 𝑝0\

𝑛
𝑡𝑟 ,𝑖 𝑗

ª®®¬
.

(22.11)
Here the superscript 𝑛, 𝑛+1/2, denotes the time step, the subscripts are the number of
the finite element. Using the solution to Eq. (22.11), we find the value of the fraction
of the trap occupancy at the intermediate step 𝑡 +Δ𝑡/2:

\𝑛+1/2
𝑡𝑟 = \𝑛𝑡𝑟 +

Δ𝑡
2

©«
𝜅0𝐶

𝑛+ 1
2

𝑖, 𝑗

𝑁𝐿

(
1− \𝑛𝑡𝑟

) − 𝑝0\
𝑛
𝑡𝑟

ª®®¬
. (22.12)

At the second stage, the value of the hydrogen concentration in the lattice at the full
step 𝑡 +Δ𝑡 is determined by the difference equation:
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𝑟𝑖
𝐷𝑛+1

𝐶𝑛+1
𝑖 −𝐶𝑛+1/2

𝑖

Δ𝑡/2 =
𝑟𝑖+1/2

(
𝐶𝑛+1/2
𝑖+1, 𝑗 −𝐶𝑛+1/2

𝑖, 𝑗

)
+ 𝑟𝑖−1/2

(
𝐶𝑛+1/2
𝑖−1, 𝑗 −𝐶

𝑛+1/2
𝑖, 𝑗

)
Δ𝑟2 +

+𝑟𝑖
𝐶𝑛+1
𝑖, 𝑗+1 −2𝐶𝑛+1

𝑖, 𝑗 +𝐶𝑛+1
𝑖, 𝑗−1

Δ𝑧2
− 𝑟𝑖
𝐷𝑛+1 𝑁𝑡𝑟

(
𝜅0𝐶

𝑛+1
𝑖, 𝑗

𝑁𝐿

(
1− \𝑛+

1
2

𝑡𝑟 ,𝑖 𝑗

)
− 𝑝0\

𝑛+ 1
2

𝑡𝑟 ,𝑖 𝑗

)
.

(22.13)
Using the solution to Eq. (22.13), we find the value of the fraction of the trap

occupancy at the step 𝑡 +Δ𝑡:

\𝑛+1
𝑡𝑟 = \𝑛+1/2

𝑡𝑟 + 𝑑𝑡
2

(
𝜅0𝐶

𝑛+1
𝑖, 𝑗

𝑁𝐿

(
1− \𝑛+

1
2

𝑡𝑟

)
− 𝑝0\

𝑛+ 1
2

𝑡𝑟

)
. (22.14)

Successive solution of Eqs. (22.11) - (22.14) makes it possible to find the hydrogen
concentrations 𝐶𝐿 ,𝐶𝑡𝑟 and the hydrogen desorption flux.

22.3 Simulation Results

Consider four limiting cases of the non-uniform distribution of each of the hydrogen
distribution parameters: \𝐿 , \𝑡𝑟 , 𝑁𝐿 , 𝑁𝑡𝑟 . In the case of the presence of a skin layer
in \𝐿 or \𝑡𝑟 we assume that the skin effect arises due to the non-uniform occupancy
of sites in the crystal lattice or in traps, respectively. In the case of 𝑁𝐿 or 𝑁𝑡𝑟 , it is
assumed that the site occupancy is uniform, but their bulk density in the crystal lattice
or in trap defects has an unevenness corresponding to the skin effect. We compare
the result with the case of uniform distribution \𝐿 , \𝑡𝑟 , 𝑁𝐿 , 𝑁𝑡𝑟 , that is, without the
skin effect.

The numerical solution of Eq. (22.9) obtained by means of Eqs. (22.11) - (22.14)
is in Figs. 22.2–22.4. The curves of plots 22.2–22.4 are normalized to the maximum
value of flux in the case of a uniform hydrogen distribution in the lattice and traps.
The values of the mechanical parameters are given in Table 22.1 and correspond
to the parameter estimates made in [105]. The parameters of the initial hydrogen
distribution are adjusted in such a way as to provide the distribution of the total
hydrogen concentration observed in the experiment when studying the results of
charging samples from various steels [74, 75, 85]. The data are shown in Tables 22.2
and 22.3.

Table 22.1: Diffusion and trap parameters.

𝐷0,mm2/s 𝑈, eV 𝜅0, 1/s 𝑝0, 1/s 𝑈𝑡 , eV 𝑈𝑑 , eV

0.05 0.2 5000 10 0.3 0.6
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Fig. 22.2: Influence of the skin layer in the initial distribution of hydrogen in the lattice on the
solution of system (22.9) at the heating rate 𝑣 = 0.5 K/s and the parameters from Tables 22.1 – 22.3,
taking into account 𝜃2

𝑡𝑟 = 𝜃
1
𝑡𝑟 and 𝑁 2

𝑡𝑟 = 𝑁
1
𝑡𝑟 . No skin-effect 𝜃2

𝐿
= 𝜃1

𝐿
and 𝑁 2

𝐿
= 𝑁 1

𝐿
; skin-effect

due to lattice sites occupation 𝜃2
𝐿
= 10𝜃1

𝐿
and 𝑁 2

𝐿
= 𝑁 1

𝐿
; skin-effect due to lattice sites density

𝜃2
𝐿
= 𝜃1

𝐿
and 𝑁 2

𝐿
= 10𝑁 1

𝐿
.

Table 22.2: Sample geometry parameters.

𝑅,mm 𝑅1, mm 𝑤, mm 𝑍 , mm 𝑍1, mm

3 2.94 0.02 10 9.84

Table 22.3: Initial condition parameters.

𝑁 1
𝐿

,
sites/mm3

𝑁 2
𝐿

,
sites/mm3

𝜃1
𝐿

𝜃2
𝐿

𝑁 1
𝑡𝑟 ,

sites/mm3
𝑁 2

𝑡𝑟 ,
sites/mm3

𝜃1
𝑡𝑟 𝜃2

𝑡𝑟

1020 10𝑁 1
𝐿

2 · 10−6 10𝜃1
𝐿

1016 10𝑁 1
𝑡𝑟 0.01 10𝜃1

𝑡𝑟
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Fig. 22.3: Influence of the skin layer in the initial distribution of hydrogen in traps on the solution
of system (22.9) at the heating rate and the parameters from Tables 22.1 – 22.3, taking into account
𝜃2
𝐿
= 𝜃1

𝐿
and 𝑁 2

𝐿
= 𝑁 1

𝐿
. No skin-effect 𝜃2

𝑡𝑟 = 𝜃
1
𝑡𝑟 and 𝑁 2

𝑡𝑟 = 𝑁
1
𝑡𝑟 ; skin-effect due to traps sites

occupation 𝜃2
𝑡𝑟 = 10𝜃1

𝑡𝑟 and 𝑁 2
𝑡𝑟 = 𝑁

1
𝑡𝑟 ; skin-effect due to traps sites density 𝜃2

𝑡𝑟 = 𝜃
1
𝑡𝑟 and

𝑁 2
𝑡𝑟 = 10𝑁 1

𝑡𝑟 .

Figure 22.2 shows the effect of the skin layer in the crystal lattice on the thermal
desorption spectrum. Three curves are displayed: (i) the skin layer in 𝑁𝐿 and the
uniform distribution \𝐿 , (ii) the skin layer in \𝐿 and the uniform distribution 𝑁𝐿 , and
(iii) the case of uniform distribution of hydrogen in the lattice \2

𝐿 = \
1
𝐿 and 𝑁2

𝐿 = 𝑁
1
𝐿

is also given for comparison. The skin layer in both cases demonstrates similar
effects. The thermal desorption spectrum contains an additional low-temperature
peak corresponding to the extraction of hydrogen from the near-surface part of the
sample.

On the contrary, the skin layer in the distribution of sites and the occupancy of
sites in the traps \𝑡𝑟 , 𝑁𝑡𝑟 does not affect the thermal desorption curve, see Fig. 22.3.
An additional peak associated with the skin layer in \𝑡𝑟 , 𝑁𝑡𝑟 is absent on the TDS.
From a mathematical point of view, this is due to the fact that the equation for \𝑡𝑟
does not contain spatial derivatives. From a physical point of view, this is due to
the absence of a separate channel for hydrogen diffusion through traps. There is a
slight change in comparison with the uniform distribution of the position of the peak
corresponding to the extraction of hydrogen from the traps. Skin layer in \𝑡𝑟 and 𝑁𝑡𝑟
gives the same effect on TDS.
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Fig. 22.4: Influence of the skin layer the lattice sites occupancy and traps sites occupancy on the
solution of system (22.9) at the heating rate 𝑣 = 0.5 K/s and the parameters from Tables 22.1 – 22.3,
taking into account 𝑁 2

𝐿
= 𝑁 1

𝐿
and 𝑁 2

𝑡𝑟 = 𝑁
1
𝑡𝑟 . No skin-effect 𝜃2

𝐿
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𝐿
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𝐿
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1
𝑡𝑟 ; skin-effect due to traps sites occupation

𝜃2
𝐿
= 𝜃1

𝐿
, 𝜃2

𝑡𝑟 = 10𝜃1
𝑡𝑟 .

For greater clarity, Fig. 22.4 displays the comparison of TDS with the non-uniform
distribution of the trap occupancy in the crystal lattice \𝐿 , defects \𝑡𝑟 with the uniform
distribution of hydrogen in the sample. Modeling the skin layer in the crystal lattice
shows that the second peak of the TDS curve is shifted relative to the other two peaks,
see Fig. 22.4. As shown in our previous work [86] the second peak corresponds to
the release of hydrogen from the inner part of the sample due to the skin effect. Fig.
22.4 shows that, in the case of a cylindrical sample, the position of the maximum
of the second peak is displaced, and from a formal point of view, this is due to the
features that arise when using a cylindrical coordinate system.

Simulation results are also presented for various values of the skin depth 𝑅1 and 𝑍1.
The results in Fig. 22.5 show that skin depth strongly influences the position of the
first TDS peak. A decrease in depth leads to the shift to the low-temperature region
of an additional peak. In this case, it is more difficult to detect it experimentally.
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Fig. 22.5: Change in the low-temperature peak with a change in the depth of the skin layer at the
heating rate of 0.5 K/s. Solution of system (22.9) with the parameters from Tables 22.1 – 22.3,
taking into account 𝜃2

𝑡𝑟 = 𝜃
1
𝑡𝑟 , 𝑁 2

𝐿
= 𝑁 1

𝐿
and 𝑁 2

𝑡𝑟 = 𝑁
1
𝑡𝑟 .

22.4 The Discussion of the Results

Consideration of various possible options for the formation of the skin effect, see
Figs. 22.2–22.4, shows that it is formed due to diffuse hydrogen accumulated in the
crystal lattice. Consequently, the additional low-temperature peak of TDS is often
observed in real measurements of spectra, see, for example, experimental work with
a concave peak at low temperatures [106–112] associated with the hydrogen traps
outside the normal crystal lattice.

The study of samples charged with hydrogen after prolonged exposure to air shows
that hydrogen is completely extracted from the skin layer by itself after about a month
of exposure at room temperature [85]. This indirectly proves that the skin layer is
formed due to diffuse hydrogen located in the sites of the normal crystal lattice.

With the skin effect, there is an uneven distribution of hydrogen in the sample.
Excess hydrogen appears at the border of the sample, the concentration of which is
hundreds of times higher than the average values inside the sample. We have shown
by modeling that experimental manifestations of this effect are observed only in the
case when excess hydrogen is in traps or in sites with their own dedicated diffusion
channel. That is, the possibility of equalizing the hydrogen concentration in isolation
of the other diffusion flows.
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If this is a common diffusion channel operating throughout the metal, an inex-
plicable kinetic paradox appears. It lies in the fact that huge gradients of hydrogen
concentrations, of the order of 1 ppm/micron, are formed in a few hours and remain
stable for several hundred hours [31–34].

The stability of the skin effect is preserved when saturated with hydrogen. After
the samples are extracted from the electrolyte, hydrogen is extracted into the external
environment. Despite the huge gradients at the inner boundary of the skin layer, this
extraction is not accompanied by significant diffusion into the metal [34].

When the samples are placed in a vacuum at room temperature, the additional
hydrogen is extracted about a hundred times faster than when kept in the atmosphere
[34]. This effect is also inexplicable from the point of view of ordinary diffusion,
since diffusion depends on the difference in hydrogen concentrations, but there is
practically no hydrogen in the atmosphere, nor in vacuum.

Thus, theoretical consideration shows that the nature of the skin effect cannot be
explained simply by hydrogen diffusion. In fact, it turns out that different diffusion
channels work inside the skin layer and in other internal areas of the metal, and there
is a fundamentally larger number of hydrogen sites inside the crystal lattice.

This conclusion is confirmed by the results of microscopic studies. The paper
[113] describes the formation of blisters, bubbles and microcracks in the surface layer
of iron samples after hydrogen saturation. The paper [114] describes the formation of
micropores and microcracks in the surface layer of nickel-based superalloy samples
after cathodic charging. The paper [115] describes the formation of a whole system of
subsurface micropores at the top of the incision on the sample surface after saturation
of low-alloy steel after electrochemical saturation. A similar result is described in
[116] for dual-phase steel. In [32] the formation of a system of nanosize hollowness
in the surface layer of copper during cathodic charging is described. In [117] a similar
result is presented for aluminum alloys.

Comparing these results with the theoretical description of various variants of
hydrogen diffusion in metals after electrochemical or chemical charging of metal
samples allows us to draw the main conclusion that the diffusion of hydrogen into the
metal with all standardized methods of hydrogen charging leads to the destruction
of the internal microstructure of the metal in the skin layer. This helps to stabilize
the distribution of hydrogen concentrations in the metal. At the same time, such
destruction makes the diffusion of hydrogen from charged samples fundamentally
different from the diffusion inside the metal, up to the formation of ordinary gas flows
of hydrogen through a system of near-surface micropores and microcracks in which
it accumulated when charging.

22.5 Conclusions

The modeling of the effect of the skin effect on the TDS is carried out taking into
account the hydrogen traps. The simulation results show that the skin effect is formed



392 Vladimir A. Polyanskiy et al.

due to diffuse hydrogen located in the sites of the normal crystal lattice. This is
confirmed indirectly by some experimental data.

A comparison of mathematical modeling data with the features of the skin effect
shows that, when hydrogen is charged, the main mechanism or channel of hydrogen
diffusion in the crystal lattice of the metal surface layer with a thickness of about
50 microns changes and about a hundred times more sites for hydrogen retention
appear. This explains the stability of the skin effect over time and the absence of
hydrogen diffusion into the samples when exposed to air, despite the huge gradients
of hydrogen concentrations of the order of 1 ppm/micron.
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Chapter 23
Bending Waves in Mass-in-Mass Metamaterial

Alexey V. Porubov and Yuting Zhao

Abstract Bending waves are studied for the mass-in -mass metamaterial model. The
discrete equations of motion are derived from the variational principle. The long
wavelength continuum limits of the equations are obtained in the form of the coupled
partial differential equations. Dispersion relation analysis of the continuum equations
demonstrates dependence of the band gap on the order of continualization. Also,
no band gap of the constant width is obtained for the phase velocity as the order of
continualization growths. Dispersion analysis of the discrete equations confirms this
finding.

23.1 Introduction

Complex structure of the crystalline lattices provides effective modelling of new
mechanical processes in solids [1–4]. Considerable attention is paid to the acoustic
metamaterials [5–7], in particular, metamaterial mass-in-mass lattice model [5–14].
Propagation or non-propagation of acoustic waves in an acoustic metamaterial is
caused by the presence of a band gap in the dispersion relation. Experimental
realization of the metamaterial model with the internal resonators can be found in
[15–18].

Longitudinal and shear strain waves are mainly studied in solids. Much less papers
are devoted to consideration of bending waves [19, 20]. Usually bending waves
are modelled in the continuum approach, however, there are papers where discrete
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consideration of the lattices is used [21]. Discrete modeling based on the study of the
difference governing equations is a most favorable method for finding the solution of
the metamaterial problems. The continuum modelling is used much less frequently
[11–14]. The usual transfer from discrete to continuum approach is based on the long
wavelength continuum limit giving rise to the partial differential governing equations
[1–4]. It restricts the study by the long strain waves, however, continuum equations
for the mass-in-mass metamaterial chain predict the same features of the band gap for
longitudinal waves as the original lattice models even outside the long wavelengths
[14].

The present paper concerns continuum modelling of the bending waves in the
mass-in-mass metamaterial chain. In Sect. 23.2 the model of bending waves in
the linearly elastic mass-in-mass metamaterial system is developed. The discrete
equations of motion are obtained as well as their long wavelength continuum limit.
The dispersion analysis is performed in Sect. 23.3 for the continuum equations
of the basic and higher-order continuum limits. Next Section 23.4 is devoted to a
comparison of the dispersion curves of the continuum equations with those obtained
for the discrete equations.

23.2 Bending in Mass-in-Mass Chain

Consider the lattice model shown in Fig 23.1. The attached masses 𝑚 are located
inside the main masses 𝑀 being attached to them by the springs with the stiffness
𝜅. The masses 𝑀 are connected each other by the springs with the stiffness 𝐶. We
consider the bending motion of the main chain, and 𝐶 accounts for the bending
stiffness. The displacements of the masses of the main chain are denoted by 𝑌𝑛 while
those of the attached masses by 𝑦𝑛.

Fig. 23.1: Bending mass-in-mass metamterial chain.
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The motion is described by the angular variations. We introduce 𝜑𝑛 to account
for the angles realtive to the horizontal direction as shown in Fig. 23.1. Then

𝜑𝑛 = arcsin
(
𝑌𝑛+1 −𝑌𝑛

ℎ

)
, (23.1)

where ℎ is the distance between masses 𝑀 . Then the angular variation of the mass
with the number 𝑛 is described by the angle \𝑛,

\𝑛 = 𝜑𝑛 −𝜑𝑛−1 (23.2)

We consider only neighbouring interactions of the mass with the number 𝑛 taking
into account an influence of the masses with the numbers 𝑛−1 and 𝑛+1. Then we
use

\𝑛+1 = 𝜑𝑛+1 −𝜑𝑛, \𝑛−1 = 𝜑𝑛−1 −𝜑𝑛−2 (23.3)

We consider the case of infinitesimal small variations of the displacements that
corresponds to the linearized problem. In this case Eq.(23.1) becomes

𝜑𝑛 =
𝑌𝑛+1 −𝑌𝑛

ℎ
, (23.4)

and the functions \s are

\𝑛 =
𝑌𝑛+1 −2𝑌𝑛 +𝑌𝑛−1

ℎ
, \𝑛+1 =

𝑌𝑛+2 −2𝑌𝑛+1 +𝑌𝑛
ℎ

, \𝑛−1 =
𝑌𝑛 −𝑌𝑛−1 +𝑌𝑛−2

ℎ
(23.5)

Then the potential energy Π𝑛 includes terms responsible for interactions between
the masses 𝑀 in the main chain and those of between the masses 𝑀 and the attached
masses 𝑚,

Π𝑛 =
𝐶

2

(
\2
𝑛−1 + \2

𝑛 + \2
𝑛+1

)
+ 𝜅

2
(𝑌𝑛 − 𝑦𝑛)2 , (23.6)

The kinetic energy, 𝐾𝑛 is

𝐾𝑛 =
𝑀

2
¤𝑌2
𝑛 +

𝑚

2
¤𝑦2
𝑛 +

𝐽

2
¤\2
𝑛 (23.7)

where 𝐽 is the inertia.
We use the variational Hamilton- Ostrogradsky principle or the Lagrange equations

to obtain the equations of motion. The Lagrange equations in our case are

𝑑

𝑑𝑡

𝜕 (𝐾𝑛 −Π𝑛)
𝜕 ¤𝑌𝑛

− 𝜕 (𝐾𝑛 −Π𝑛)
𝜕 𝑌𝑛

= 0,
𝑑

𝑑𝑡

𝜕 (𝐾𝑛 −Π𝑛)
𝜕 ¤𝑦𝑛 − 𝜕 (𝐾𝑛 −Π𝑛)

𝜕 𝑦𝑛
= 0 (23.8)

These equations allow us to obtain coupled differential-difference equations of motion

𝑀 ¥𝑌𝑛−2𝐽 ( ¥𝑌𝑛−1−2 ¥𝑌𝑛 + ¥𝑌𝑛+1)+𝐶 (𝑌𝑛−2−4𝑌𝑛−1+6𝑌𝑛−4𝑌𝑛+1+𝑌𝑛+2)+ 𝜅(𝑌𝑛 − 𝑦𝑛) = 0,
𝑚 ¥𝑦𝑛 + 𝜅(𝑦𝑛 −𝑌𝑛) = 0.

(23.9)
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These equations can be solved directly. Another method of the study is obtaining
of the long wavelength continuum limit of Eqs. (23.9). In this case the continuum
functions 𝑉 (𝑥, 𝑡), 𝑣(𝑥, 𝑡) are introduced for description of the displacements 𝑌𝑛, 𝑦𝑛
of the masses 𝑀 , 𝑚. The continuum displacements of the neighboring masses are
sought using the long wavelength approximation [1], based on the Taylor series,

𝑌𝑛±1 = 𝑉 ± ℎ 𝑉𝑥 + ℎ
2

2
𝑉𝑥𝑥 ± ℎ

3

6
𝑉𝑥𝑥𝑥 + ℎ

4

24
𝑉𝑥𝑥𝑥𝑥 + ...,

Substituting these series into Eqs. (23.9) and retaining there only the first nonzero
terms, we obtain the basic-order continuum limit in the form of coupled partial
differential equations,

𝑀 𝑉𝑡𝑡 −2 𝐽 ℎ2𝑉𝑥𝑥𝑡𝑡 +𝐶 ℎ4𝑉𝑥𝑥𝑥𝑥 + 𝜅(𝑉 − 𝑣) = 0, 𝑚 𝑣𝑡𝑡 + 𝜅(𝑣−𝑉) = 0. (23.10)

The particular case 𝜅 = 0, 𝑚 = 0, 𝑣 = 0 corresponds to the equation for the bending
waves in an elastic wave guide obtained previously in [19, 22].

Retaining more non-zero terms in the continuum equations, we obtain ahigher-
order continuum model instead of Eqs. (23.10),

𝑀 𝑉𝑡𝑡 −2𝐽 ℎ2𝑉𝑥𝑥𝑡𝑡 +𝐶 ℎ4𝑉𝑥𝑥𝑥𝑥 − 𝐽 ℎ
4

6
𝑉𝑥𝑥𝑥𝑥𝑡𝑡 + 𝐶 ℎ6𝑉𝑥𝑥𝑥𝑥𝑥𝑥

6
+ 𝜅(𝑉 − 𝑣) = 0,

(23.11)
𝑚 𝑣𝑡𝑡 + 𝜅(𝑣−𝑉) = 0. (23.12)

where higher-order dispersion of the main chain is taken into account.

23.3 Dispersion Analysis

The solution to Eqs. (23.10) is sought in the form

𝑉 = 𝐴exp
(
𝚤 (𝑘 𝑥−𝜔𝑡 − 𝑥0)

)
, 𝑣 = 𝐵exp

(
𝚤 (𝑘 𝑥−𝜔𝑡 − 𝑥0)

)
, (23.13)

where 𝑥0 accounts for an initial position of the wave, 𝐴 and 𝐵 are the wave amplitudes,
𝑘 is the wave number, 𝜔 is the wave frequency, 𝚤 is the imaginary unit. Substitution
of Eq. (23.13) into Eqs. (23.10) gives rise to

𝐴 =
𝐵(𝜅−𝜔2 𝑚)

𝜅
, (23.14)

and the dispersion relation,

𝑚 (𝑀 +2𝐽 ℎ2 𝑘2) 𝜔4 − (𝜅(𝑀 +𝑚) +2𝜅𝐽 ℎ2 𝑘2 +𝑚𝐶 ℎ4𝑘4) 𝜔2 +𝐶 ℎ4𝑘4𝜅 = 0,
(23.15)

whose solutions are 𝜔 = 𝜔𝑎, 𝜔 = 𝜔𝑜, where
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𝜔2
𝑎 =

𝜅(𝑀 +𝑚)2𝜅 +2𝐽 ℎ2 𝑘2 +𝑚𝐶 ℎ4𝑘4)
2𝑚 (𝑀 +2𝐽 ℎ2 𝑘2) −

√︁
(𝜅(𝑀 +𝑚) +2𝜅𝐽 ℎ2 𝑘2 +𝑚𝐶 ℎ4𝑘4))2 −4𝐶 ℎ4𝑘4𝑚 𝜅(𝑀 +2𝐽 ℎ2 𝑘2)

2𝑚 (𝑀 +2𝐽 ℎ2 𝑘2) . (23.16)

𝜔2
𝑜 =

𝜅(𝑀 +𝑚) +2𝜅𝐽 ℎ2 𝑘2 +𝑚𝐶 ℎ4𝑘4)
2𝑚 (𝑀 +2𝐽 ℎ2 𝑘2) +

√︁
(𝜅(𝑀 +𝑚) +2𝜅𝐽 ℎ2 𝑘2 +𝑚𝐶 ℎ4𝑘4))2 −4𝐶 ℎ4𝑘4𝑚 𝜅(𝑀 +2𝐽 ℎ2 𝑘2)

2𝑚 (𝑀 +2𝐽 ℎ2 𝑘2) . (23.17)

The acoustic branch of the frequency 𝜔𝑎 varies from 0 to
√︁
𝜅/𝑚, while the optic

one, 𝜔𝑜, lies in the interval (
√︁
𝜅(𝑚 +𝑀)/(𝑚 𝑀),∞). Therefore, there is a band gap√︁

𝜅/𝑚 < 𝜔 <
√︁
𝜅(𝑚 +𝑀)/(𝑚 𝑀) where no harmonic traveling wave propagates. It

has the same width as that known for longitudinal waves.Typical curves for 𝜔𝑎 and
𝜔𝑜 are shown in Fig. 23.2. Despite the long wavelength limit is considered, the band
gap is observed at semi-infinite interval of the values of 𝑘 .

We proceed with consideration of the phase velocities, 𝑉𝑝 , where 𝑉𝑝𝑎 = 𝜔𝑎/𝑘 ,
𝑉𝑝𝑜 = 𝜔𝑜/𝑘 . Shown in Fig. 23.3 are the curves of the phase velocities. We see non-
monotonic tendency to the asymptotic values at 𝑘 →∞ for both velocities, curves 1
and 5 in 23.3. As a result, the band gap lies between the maximum and the minimum
of the curves, lines 3 and 4. this is different from the case of longitudinal waves,
where the dependence for the phase velocity demonstrates the band gap between the
asymptotes like for the frequency [14].

We continue with the study of the higher-order continuum limit. The solution of
Eqs. (23.11), (23.12) is sought in the form of (23.13). The dispersion relation is

𝑚
(

6𝑀 + 𝐽 ℎ2 𝑘2 (12− ℎ2𝑘2)
)
𝜔4 +𝐶 ℎ4𝑘4𝜅(6− ℎ2𝑘2)−

(
6𝜅(𝑀 +𝑚) + 𝐽 𝜅 ℎ2 𝑘2 (12− ℎ2𝑘2) +𝐶 𝑚 ℎ4𝑘4 (6− ℎ2𝑘2)

)
𝜔2 = 0, (23.18)

whose solutions are

Fig. 23.2 Dispersion curves
for the frequency. 1. Optic
branch 𝜔𝑜 (23.17).2. Horizon-
tal dashed line corresponding
to 𝜔𝑜 at 𝑘 = 0. 3. Horizontal
dashed line corresponding to
acoustic branch 𝜔𝑎 (23.16) at
𝑘→∞. 4. Acoustic acoustic
branch 𝜔𝑎 (23.16)

3 4

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k

0.5

1.0

1.5

2.0
ω

.



406 Alexey V. Porubov and Yuting Zhao

Fig. 23.3 Dispersion curves
for the phase velocity. 1. Optic
branch 𝜔𝑜/𝑘. 2. Horizontal
dashed line corresponding to
𝜔𝑜/𝑘 at 𝑘→∞. 3. Horizontal
dashed line corresponding to
the minimum of the optic
branch. 4. Horizontal dashed
line corresponding to the
maximum of the acoustic
branch 𝜔𝑎/𝑘 (23.16). 5.
Acoustic branch 𝜔𝑎/𝑘 (23.16)
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.

𝜔2
𝑎 =

6𝜅(𝑀 +𝑚) + 𝐽 𝜅 ℎ2 𝑘2 (12− ℎ2𝑘2) +𝐶 𝑚 ℎ4𝑘4 (6− ℎ2𝑘2)
2𝑚 (6𝑀 + 𝐽 𝜅 ℎ2 𝑘2 (12− ℎ2𝑘2)) −

1
2𝑚 (6𝑀 + 𝐽 ℎ2 𝑘2 (12− ℎ2𝑘2))

(
[6𝜅(𝑀 +𝑚) + 𝐽 𝜅 ℎ2 𝑘2 (12− ℎ2𝑘2)+

𝐶 𝑚 ℎ4𝑘4 (6− ℎ2𝑘2)]2 −4𝐶 ℎ4𝑘4𝜅(6− ℎ2𝑘2)𝑚 (6𝑀 + 𝐽 ℎ2 𝑘2 (12− ℎ2𝑘2))
) 1

2
.

(23.19)

𝜔2
𝑜 =

6𝜅(𝑀 +𝑚) + 𝐽 𝜅 ℎ2 𝑘2 (12− ℎ2𝑘2) +𝐶 𝑚 ℎ4𝑘4 (6− ℎ2𝑘2)
2𝑚 (6𝑀 + 𝐽 ℎ2 𝑘2 (12− ℎ2𝑘2)) +

1
2𝑚 (6𝑀 + 𝐽 ℎ2 𝑘2 (12− ℎ2𝑘2))

(
[6𝜅(𝑀 +𝑚) + 𝐽 𝜅 ℎ2 𝑘2 (12− ℎ2𝑘2)+

𝐶 𝑚 ℎ4𝑘4 (6− ℎ2𝑘2)]2 −4𝐶 ℎ4𝑘4𝜅(6− ℎ2𝑘2)𝑚 (6𝑀 + 𝐽 ℎ2 𝑘2 (12− ℎ2𝑘2))
) 1

2
.

(23.20)
We see that the denominator of the solutions becomes zero as the wave number

growths. The solutions becomes unbounded, that is why we can visualize the solutions
for the frequency and the phase velocity only for small values of 𝑘 as shown in Figs.
23.4 and 23.5. It does not contradict long wavelength continuum limit used on
obtaining continuum equations from original discrete equations (23.9).

We see the band gap between lines 3 and 4 in Fig. 23.4 in the interval of small
values of 𝑘 , the width and the position of the band gap is the same as for basic model
shown in Fig. 23.2 with the exception of small variations of the curve 3 around upper
band 2. However, increase in the value of 𝑘 results in the fatal variations in 𝜔 and
breaking of the tendency to the asymptotes.

The phase velocities in Fig. 23.5 demonstrate variation in the width of the area
between the acoustic, curve 2, and optic curve 1, velocities. The width decreases as
the value of 𝑘 increases. It seems this area between the velocities can’t be considered
as the band gap.



23 Bending Waves in Mass-in-Mass Metamaterial 407

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k

0.5

1.0

1.5

2.0
ω

Fig. 23.4: Dispersion curves for the frequencies for the higher-order model. 1. Maximum of the
optic frequency 2. Optic frequency 3. Line corresponding to the value of 𝜔𝑜 of the basic -order
model at 𝑘 = 0. 4. Line corresponding to the value of 𝜔𝑎 of the basic -order model at 𝑘→∞. 5.
Acoustic frequency 𝜔𝑎 .

Fig. 23.5 Dispersion curves
for the phase velocities for the
higher-order model. 1. Optic
branch. 2. Acoustic branch.
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23.4 Discussion

The analysis of the dispersion relations of the continuum models of different order
reveals variation in the description of the band gap area. Since continuum models are
the long wavelength approximations of the discrete model (23.9), we study now the
dispersion relation of the original equations. The solution of Eqs. (23.9) is sought in
the form

𝑌𝑛 = 𝐴 exp
(
𝚤 (𝑘 ℎ 𝑛−𝜔𝑡

)
, 𝑦𝑛 = 𝐵 exp

(
𝚤 (𝑘 ℎ 𝑛−𝜔𝑡)

)
. (23.21)

Substitution of Eqs. (23.21) into Eqs. (23.9) gives rise to the dispersion relation,

𝑚(𝑀 +8𝐽 sin2
(
𝑘 ℎ

2

)
) 𝜔4 −

[
𝜅(𝑚 +𝑀) −8𝐽𝜅 sin2

(
𝑘 ℎ

2

)
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+16𝑚 𝐶 sin4
(
𝑘 ℎ

2

)]
𝜔2 +16 𝐶 sin4

(
𝑘 ℎ

2

)
= 0. (23.22)

The solution to Eq. (23.22) consists of two branches, acoustic and optic,

𝜔2
𝑎 =

𝜅(𝑚 +𝑀) −8𝐽𝜅 sin2
(
𝑘 ℎ
2

)
+16𝑚 𝐶 sin4

(
𝑘 ℎ
2

)
2𝑚(

[
𝑀 +8𝐽 sin2

(
𝑘 ℎ
2

)] −

1

2𝑚
[
𝑀 +8𝐽 sin2

(
𝑘 ℎ
2

)]
( (

𝜅(𝑚 +𝑀) −8𝐽𝜅 sin2
(
𝑘 ℎ

2

)
+16𝑚 𝐶 sin4

(
𝑘 ℎ

2

) )2
−

64𝑚𝐶 sin4
(
𝑘 ℎ

2

) [
𝑀 +8𝐽 sin2

(
𝑘 ℎ

2

)] ) 1
2

(23.23)

𝜔2
𝑜 =

𝜅(𝑚 +𝑀) −8𝐽𝜅 sin2
(
𝑘 ℎ
2

)
+16𝑚 𝐶 sin4

(
𝑘 ℎ
2

)
2𝑚(

[
𝑀 +8𝐽 sin2

(
𝑘 ℎ
2

)] +

1

2𝑚
[
𝑀 +8𝐽 sin2

(
𝑘 ℎ
2

)]
( (

𝜅(𝑚 +𝑀) −8𝐽𝜅 sin2
(
𝑘 ℎ

2

)
+16𝑚 𝐶 sin4

(
𝑘 ℎ

2

) )2
−

64𝑚𝐶 sin4
(
𝑘 ℎ

2

) [
𝑀 +8𝐽 sin2

(
𝑘 ℎ

2

)] ) 1
2

(23.24)

The shapes of the solution are shown in Fig. 23.6. The band gap is seen, and it
the same as in the continuum limit. We can observe small oscillations near the upper
border of the band gap. As for the phase velocity. we see in Fig. 23.7 a decrease
in the width of the area between the velocity curves similar to that shown for the
higher-order continuum model.

Therefore, higher-order continuum limit predicts the dispersion properties better
than the basic-order one. However, dispersion curves are obtained on the basis of the
periodic solution, and further numerical study is needed to see how the band gap is

Fig. 23.6 Dispersion curves
for the frequencies for the
discrete model. 1. Optic fre-
quency. 2. Line corresponding
to the upper boundary of the
basic-order continuum model.
4. Line corresponding to the
lower boundary of the basic-
order continuum model. 5.
Acoustic frequency 𝜔𝑎 .
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Fig. 23.7 Dispersion curves
for the phase velocities for the
discrete model. 1 Optic branch.
2 - Acoustic branch.
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realized in an unsteady process. One possibility is the periodic boundary excitation.
Of special interest are the localized bending waves. Recently no band gap has been
found in the study of localized longitudinal wave dynamics for the mass-in-mass
model [14]. Similar study should be performed for the bending waves. Of course
non-linear consideration of the bending wave mass-in-mass model deserves special
study both analytical and numerical like it was already done for longitudinal waves.
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Chapter 24
Numerical Investigations of Large Amplitude
Oscillations of Planar Parametrically Excited
Beams

Alois Steindl, Roman Buchta, Michael Ruttmann, and Yury Vetyukov

Abstract We consider a straight slender visco-elastic beam under periodic axial exci-
tation. In order to determine the stability boundary of the undeformed configuration
and the parameter domain for periodic solutions we apply different analytical and
numerical methods, like simulation of a FE-model and path-following packages for
different versions of reduced order models.

24.1 Introduction and Model Description

Periodic excitations of mechanical devices are a frequently investigated research topic
with a lot of practical results [1, 2]. In this article we focus on parametric excitations,
which act indirectly by causing variations of parameters. A very simple and well
known example is the pendulum with vertically oscillating support; if the excitation
frequency is close to twice the eigenfrequency of the pendulum, large oscillations
may occur. Elaborate investigations of the Mathieu equation, which governs this type
of oscillations, can be found in [3, 4].

Equations for the oscillations of a beam under periodic axial forcing are derived in
[5], these equations will be used for the analytical treatment; the author also considers
a periodic motion of the fixed support and an additional mass at the free end. It turns
out, that the additional mass can change the branching behaviour of the bifurcating
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periodic solutions. In [5] numerical and experimental results are compared showing
good agreement.

In our treatment of the problem we investigate numerical methods to determine the
stability limit of the straight state of the beam and to obtain the range and stability of
the excited periodic oscillations. Even for moderate excitation forces the oscillation
amplitudes become quite large.

24.1.1 Model of a Parametrically Excited Beam

We consider a straight slender beam of length 𝐿, bending stiffness 𝐸𝐽, mass per unit
length 𝜚𝐴, and tensional stiffness 𝐸𝐴, which is simply supported at its endpoints,
where the left support is fixed and the right roller support can slide freely, as shown in
Fig. 24.1. At the right end an axial periodic compressive force 𝑃(𝑡) = 𝑃0 +𝑃𝑡 sin(𝜗𝑡)
is applied.

Explicit nonlinear differential equations for an inextensible beam were derived in
[5]. The equations of planar motion (Fig. 24.2) for a relaxed beam are

𝜚𝐴𝒓𝑡𝑡 (𝑠, 𝑡) = 𝒏𝑠 (𝑠, 𝑡), (24.1a)
𝜚𝐽\𝑡𝑡 (𝑠, 𝑡) = 𝒎𝑠 (𝑠, 𝑡) +𝝉(𝑠, 𝑡) × 𝒏(𝑠, 𝑡), (24.1b)

where 𝝉(𝑠, 𝑡) = 𝒓𝑠 (𝑠, 𝑡), 𝒏(𝑠, 𝑡) = 𝑁 (𝑠, 𝑡)𝒃1 (𝑠, 𝑡) +𝑄(𝑠, 𝑡)𝒃2 (𝑠, 𝑡),𝒎(𝑠, 𝑡) = 𝑀 (𝑠, 𝑡)𝒆3,
respectively, denote internal force and internal moment, transmitted in cross-section
with the material length coordinate 𝑠 at time 𝑡. Subscripts denote partial derivatives
and the unit vectors (𝒃1, 𝒃2) are collinear with the normal and transverse directions
of the deformed beam cross section. The position vector is given by

𝒓 (𝑠, 𝑡) = (𝑠+𝑢(𝑠, 𝑡))𝒆1 + 𝑣(𝑠, 𝑡)𝒆2, (24.2)
2 Alois Steindl and Roman Buchta and Michael Ruttmann and Yury Vetyukov

𝑃 (𝑡 )
𝑥

𝑦

𝐿

𝑦 (𝑥, 𝑡 )

Fig. 1 Simply supported beam under axial excitation

In our treatment of the problem we investigate numerical methods to determine
the stability limit of the straight state of the beam and to obtain the range and
stability of the excited periodic oscillations. Even for moderate excitation forces the
oscillation amplitudes become quite large.

1.1 Model of a parametrically excited beam

We consider a straight slender beam of length 𝐿, bending stiffness 𝐸𝐽, mass per unit
length 𝜚𝐴, tensional stiffness 𝐸𝐴, which is simply supported at its endpoints, where
the left support is fixed and the right roller support can slide freely, as shown in
Fig. 1. At the right end an axial periodic compressive force 𝑃(𝑡) = 𝑃0 + 𝑃𝑡 sin(𝜗𝑡)
is applied.

Explicit nonlinear differential equations for an inextensible beam were derived in
[5]: The equations of planar motion for a relaxed beam are

𝜚𝐴𝒓𝑡𝑡 (𝑠, 𝑡) = 𝒏𝑠 (𝑠, 𝑡), (1a)
𝜚𝐽𝜃𝑡𝑡 (𝑠, 𝑡) = 𝒎𝑠 (𝑠, 𝑡) + 𝝉(𝑠, 𝑡) × 𝒏(𝑠, 𝑡), (1b)

where 𝝉(𝑠, 𝑡) = 𝒓𝑠 (𝑠, 𝑡), 𝒏(𝑠, 𝑡) = 𝑁 (𝑠, 𝑡)𝒃1 (𝑠, 𝑡) + 𝑄(𝑠, 𝑡)𝒃2 (𝑠, 𝑡) and 𝒎(𝑠, 𝑡) =
𝑀 (𝑠, 𝑡)𝒆3, respectively, denote internal force and internal moment, transmitted in
cross-sectionwith thematerial length coordinate 𝑠 at time 𝑡. Subscripts denote partial
derivatives and the unit vectors (𝒃1, 𝒃2) are collinear with the normal and transverse
directions of the deformed beam cross section. The position vector is given by

𝒓 (𝑠, 𝑡) = (𝑠 + 𝑢(𝑠, 𝑡))𝒆1 + 𝑣(𝑠, 𝑡)𝒆2, (2)

where 𝑢 and 𝑣 denote the horizontal and vertical deflections of the beam from the
undeformed position 𝑠𝒆1.

The boundary conditions are

Fig. 24.1: Simply supported beam under axial excitation.
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𝒃1

𝒃2

𝒆1

𝒆2

𝒓 (𝑠, 𝑡 )
𝑠
𝑢
𝑣 𝑃 (𝑡 )

Fig. 2 Deformed planar configuration of the beam. The orientation of the cross section is described
by the orthogonal tripod (𝒃1, 𝒃2, 𝒃3 = 𝒆3 ) . For an Euler-Bernoulli beam the tangent vector to the
centerline 𝒓 (𝑠, 𝑡 ) coincides with 𝒃1.

𝑢(0, 𝑡) = 0, 𝑣(0, 𝑡) = 0, 𝑣(𝐿, 𝑡) = 0,
𝑀 (0, 𝑡) = 0, 𝑀 (𝐿, 𝑡) = 0, 𝒏(𝐿, 𝑡) · 𝒆1 = −𝑃(𝑡). (3)

Assuming that the beam is inextensible and unshearable as per the kinematic con-
straint 𝝉 = 𝒃1 (which also implies that 𝑠 remains the arc length coordinate in the
deformed state), neglecting the rotatory inertia and using the variables

𝜃 = arcsin(𝑣𝑠), 𝜅 = 𝜃𝑠 = 𝑣𝑠𝑠/cos 𝜃 = 𝑣𝑠𝑠/
√︃
1 − 𝑣2𝑠 ,

where 𝜃 denotes the inclination angle of the centerline, 𝜅 is the curvature and taking
the inner product of (1a) with 𝒃1 we obtain the equation

𝑁𝑠 = 𝜅𝑄 + 𝜚𝐴𝒓𝑡𝑡 · 𝒃1, (4)

which together with the boundary condition 𝑁 (𝐿) cos(𝜃 (𝐿))−𝑄(𝐿) sin(𝜃 (𝐿)) = −𝑃
yields the integral expression

𝑁 (𝑠, 𝑡) = −𝑃(𝑡)
cos(𝜃 (𝐿, 𝑡)) +𝑄(𝐿, 𝑡) tan(𝜃 (𝐿, 𝑡)) −

∫ 𝐿

𝑠
𝜅𝑄+ 𝜚𝐴(𝑢𝑡𝑡 cos 𝜃 + 𝑣𝑡𝑡 sin 𝜃)𝑑𝜉.

(5)
Assuming a visco-elastic material law

𝑀 = 𝐸𝐽 (𝜅 + 𝛼𝜅𝑡 ) (6)

we obtain with 𝑄 = −𝑀𝑠 , which follows from (1b),

𝜚𝐴(−𝑢𝑡𝑡 sin 𝜃 + 𝑣𝑡𝑡 cos 𝜃) = −𝑀𝑠𝑠 + 𝜅𝑁 (7)

by projecting (1a) into the direction of 𝒃2.
The horizontal motion 𝑢(𝑠, 𝑡) is obtained by integrating the inextensibility con-

straint 𝒓2𝑠 = 1

𝑢(𝑠, 𝑡) =
∫ 𝑠

0

√︃
1 − 𝑣2𝑠 (𝜉, 𝑡)𝑑𝜉 − 𝑠. (8)

Fig. 24.2: Deformed planar configuration of the beam. The orientation of the cross section is
described by the orthogonal tripod (𝒃1,𝒃2,𝒃3 = 𝒆3 ) . For an Euler-Bernoulli beam the tangent
vector to the centerline 𝒓 (𝑠, 𝑡 ) coincides with 𝒃1.

where 𝑢 and 𝑣 denote the horizontal and vertical deflections of the beam from the
undeformed position 𝑠𝒆1.

The boundary conditions are

𝑢(0, 𝑡) = 0, 𝑣(0, 𝑡) = 0, 𝑣(𝐿, 𝑡) = 0,
𝑀 (0, 𝑡) = 0, 𝑀 (𝐿, 𝑡) = 0, 𝒏(𝐿, 𝑡) · 𝒆1 = −𝑃(𝑡). (24.3)

Assuming that the beam is inextensible and unshearable as per the kinematic constraint
𝝉 = 𝒃1 (which also implies that 𝑠 remains the arc length coordinate in the deformed
state), neglecting the rotatory inertia and using the variables

\ = arcsin(𝑣𝑠), 𝜅 = \𝑠 = 𝑣𝑠𝑠/cos\ = 𝑣𝑠𝑠/
√︃

1− 𝑣2𝑠 ,

where \ denotes the inclination angle of the centerline, 𝜅 is the curvature and taking
the inner product of (24.1a) with 𝒃1 we obtain the equation

𝑁𝑠 = 𝜅𝑄 + 𝜚𝐴𝒓𝑡𝑡 · 𝒃1, (24.4)

which together with the boundary condition 𝑁 (𝐿) cos(\ (𝐿)) −𝑄(𝐿) sin(\ (𝐿)) = −𝑃
yields the integral expression

𝑁 (𝑠, 𝑡) = −𝑃(𝑡)
cos(\ (𝐿, 𝑡)) +𝑄(𝐿, 𝑡) tan(\ (𝐿, 𝑡)) −

𝐿∫
𝑠

𝜅𝑄 + 𝜚𝐴(𝑢𝑡𝑡 cos\ + 𝑣𝑡𝑡 sin\)𝑑𝜉.

(24.5)
Assuming a visco-elastic material law

𝑀 = 𝐸𝐽 (𝜅 +𝛼𝜅𝑡 ) (24.6)

we obtain with 𝑄 = −𝑀𝑠 , which follows from (24.1b),

𝜚𝐴(−𝑢𝑡𝑡 sin\ + 𝑣𝑡𝑡 cos\) = −𝑀𝑠𝑠 + 𝜅𝑁 (24.7)
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by projecting (24.1a) into the direction of 𝒃2.
The horizontal motion 𝑢(𝑠, 𝑡) is obtained by integrating the inextensibility con-

straint 𝒓2
𝑠 = 1

𝑢(𝑠, 𝑡) =
𝑠∫

0

√︃
1− 𝑣2𝑠 (𝜉, 𝑡)𝑑𝜉 − 𝑠. (24.8)

It should be noted, that this formula is valid, as long as the beam has no vertical
segment. For large deflections different variables must be used.

In order to obtain the linearized equations for small deformations |𝑣𝑠 | ≪ 1 we set

\ = 𝑣𝑠 , 𝜅 = 𝑣𝑠𝑠, 𝑀 = 𝐸𝐽 (𝑣𝑠𝑠 +𝛼𝑣𝑠𝑠𝑡 ), 𝑁 = −𝑃

and observe, that (24.8) does not contribute linear terms. That gives the linear PDE

𝜚𝐴𝑣𝑡𝑡 = −𝐸𝐽 (𝑣𝑠𝑠𝑠𝑠 +𝛼𝑣𝑠𝑠𝑠𝑠𝑡 ) −𝑃𝑣𝑠𝑠 . (24.9)

24.1.2 Finite Element Formulation

In order to treat the model with an FE code, the centerline of the beam in both
directions is approximated by cubic Hermite polynomials on an equidistant grid
with 𝑁 intervals, which guarantees the necessary 𝐶1 smoothness [6]. Because the
inextensibility condition cannot be fulfilled exactly with this type of approximation,
we introduce a large tension stiffness 𝐸𝐴 and also a small amount of material damping
in the longitudinal direction to avoid high frequency vibrations. The strain energy is
an integral of the quadratic form of the tensional deformation 𝜖 and curvature 𝜅,

𝑈 =
1
2

𝐿∫
0

(
𝐸𝐴𝜖2 +𝐸𝐽𝜅2

)
𝑑𝑠, (24.10)

where

𝜖 =
𝒓2
𝑠 −1
2

,

𝜅 =
𝑟1,𝑠𝑟2,𝑠𝑠 − 𝑟2,𝑠𝑟1,𝑠𝑠

𝒓2
𝑠

.

The potential of the excitation force 𝑃(𝑡) is given by

𝑉𝑃 = 𝑟1 (𝐿, 𝑡)𝑃(𝑡), (24.11)

and the kinetic energy by
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𝑇 =
𝜚𝐴

2

𝐿∫
0

𝒓2
𝑡 𝑑𝑠. (24.12)

The influence of the damping forces is modelled by Rayleighs dissipation function

𝑅 =

𝐿∫
0

1
2

(
𝐸𝐴𝛼1𝜖

2
𝑡 +𝐸𝐽𝛼2𝜅

2
𝑡

)
𝑑𝑠. (24.13)

The integrals are evaluated by a 3-point Gauss-Legendre quadrature and the equations
of motion are obtained as Lagrangian equations

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖,𝑡
− 𝜕𝑇

𝜕𝑞𝑖
+ 𝜕𝑉
𝜕𝑞𝑖

= − 𝜕𝑅

𝜕𝑞𝑖,𝑡
, (24.14)

where𝑉 =𝑈+𝑉𝑃 and the unknowns 𝑞𝑖 are the coefficients of the Hermite polynomials.
The equations (24.14) are evaluated within Mathematica ([7]) and can be used for
simulations.

In order to use these equations for finding periodic solutions using the multiple
shooting algorithm Boundsco ([8]), the equations were exported to Fortran. Due
to the severe stiffness of the equations (for 𝑁 = 12 there occur stable eigenvalues
of magnitude −𝑂 (109) in the axial direction), we had to use the implicit solver
Radau ([9]) for integrating the initial value problems. The calculation of the periodic
solution is numerically still very expensive, but it is more efficient than to carry out
simulations and wait, until the solution becomes approximately periodic. For finding
the periodic solutions for varying excitation frequencies the continuation algorithm
Hom ([10]) with tangential updating and a remarkable simple and efficient step size
control was used.

24.1.3 Parameter Values and Non-Dimensionalization

By using non-dimensional quantities the number of parameters can be reduced and
the expressions can be simplified. As usual we introduce new length, time and force
scales.

𝜔𝑏 =

√︄
𝐸𝐽

𝜚𝐴𝐿4 , 𝑡★ = 𝑡/𝜔𝑏,

𝜈 = 𝜗/𝜔𝑏, 𝛼★ = 𝜔𝑏𝛼,

𝑠★ = 𝑠/𝐿, 𝒓 = 𝒓★/𝐿,
𝑝 = 𝑃𝐿2/𝐸𝐽, 𝑎 = 𝐿2𝐸𝐴/𝐸𝐽.
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After carrying out the rescalings, the star superscript is dropped for simplicity. We
also use dots and primes to denote derivatives w.r.t. 𝑡★ and 𝑠★, respectively. For our
investigations we consider a beam with the parameters shown in Table 24.1.

Table 24.1: Parameter values for the beam model.

Parameter Value Parameter Value
𝐿 1 m 𝐸𝐽 500/3 Nm2

𝜚𝐴 0.79 kg/m 𝐸𝐴 20 MN
𝑃0 50 N 𝑃𝑡 120 – 1200 N
𝛼1 0.0005 s 𝛼 = 𝛼2 0.0001 – 0.001 s
𝜔𝑏

√︁
500/(3∗0.79) 𝑝0 0.3

𝑝𝑡 0.72 – 7.2

24.2 Stability of the Trivial Solution

Using nondimensional equations (24.9) takes the form

¥𝑣 = −𝑣′′′′ −𝛼¤𝑣′′′′ − (𝑝0 + 𝑝𝑡 sin𝜈𝑡)𝑣′′. (24.15)

with the boundary conditions

𝑣(0, 𝑡) = 𝑣′′ (0, 𝑡) = 𝑣(1, 𝑡) = 𝑣′′ (1, 𝑡) = 0.

24.2.1 Analytical Approximation of the Stability Limit (Bolotin’s
Method)

Our first goal is to find the stability limits of the straight beam in the (𝜈, 𝑝𝑡 ) parameter
plane, keeping 𝛼 and 𝑝0 fixed. Assuming small excitation forces and sinusoidal mode
shapes, we set

𝑣(𝑠, 𝑡) =
∞∑︁
𝑘=1

𝑞𝑘 (𝑡) sin(𝑘𝜋𝑠)

and obtain the family of oscillation equations

¥𝑞𝑘 = −𝑘2𝜋2 [𝑘2𝜋2 − 𝑝(𝑡)]𝑞𝑘 −𝛼𝑘4𝜋4 ¤𝑞𝑘 , 𝑘 ∈ N. (24.16)

In order to transform these equations into the usual form of the damped Mathieu’s
equation
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¥𝑞𝑘 + 𝛿𝑘 ¤𝑞𝑘 + [𝑎𝑘 −2Y𝑘 cos(2𝜏)]𝑞𝑘 = 0, (24.17)

we rescale and shift the time 𝑡 ↦→ (𝜋/2+ 𝜈𝑡)/2 to get

𝛿𝑘 = 2𝛼𝑘4𝜋4/𝜈, 𝑎𝑘 = 4𝑘2𝜋2 (𝑘2/𝜋2 − 𝑝0)/𝜈2, Y𝑘 = 2𝑘2𝜋2𝑝𝑡/𝜈2.

These equations can be rewritten in a more convenient form

¥𝑞 + 𝛿 ¤𝑞 + 4Ω2

𝜈2 [1−2𝜇 cos(2𝜏)]𝑞, (24.18)

where 𝛿 denotes the damping coefficient and the index 𝑘 has been left out for simplicity
and

Ω2 = 𝑎𝑘 , 𝜇 = Y𝑘/𝑎𝑘 .
The stability limits of the undamped Mathieu equation (24.17) are already available

as library functions in programs like Mathematica ([7]). For practical purposes there
are also simpler approximations available for sufficiently small values of Y. The
leading power series expansions for the low order resonances for (24.17) with 𝛿 = 0
are given by

𝑙 = 1 : 𝑎 = 1± Y +O(Y2), (24.19a)

𝑙 = 2 : 𝑎 = 4+ 1
6
Y2 ± 1

4
Y2 +O(Y3), (24.19b)

𝑙 = 3 : 𝑎 = 9+ 1
16
Y2 ± 1

64
Y3 +O(Y4). (24.19c)

For the resonances close to 𝑎 = 𝑙2 for 𝑙 ∈ {1,2,3} Bolotin [11] derived the formulas
for the critical frequencies 𝜈★

𝑙 = 1 : 𝜈★ = 2Ω
√︁

1± 𝜇, (24.20a)

𝑙 = 2 : 𝜈★ = Ω

{√︃
1−2𝜇2,

√︃
1+ 𝜇2/3

}
, (24.20b)

𝑙 = 3 : 𝜈★ =
2Ω
3

√︄
1− 9𝜇2

8±9𝜇
. (24.20c)

In order to find the critical excitation frequencies 𝜈★ for given values of Ω and 𝜇, we
have to solve the equations

4
Ω2

𝜈2
★

= 𝑎(Y) = 𝑎
(
𝜇
Ω2

𝜈2
★

)

for 𝜈★.
For 𝑙 > 1 we can avoid to solve polynomial equations by simply performing a

power series expansion: With
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𝜓 = 4
Ω2

𝜈2
★

we have to solve 𝜓 = 𝑎(𝜇𝜓/4) up to the order of the given expansion in (24.19). For
𝑙 = 1 we obtain from (24.19a)

𝜓 = 4(1± 𝜇𝜓/4) ⇒ 𝜓 = 4(1± 𝜇) +O(𝜇2). (24.21)

Now we can solve 𝜓 = 4Ω2/𝜈2 for 𝜈 to obtain

𝜈★ = 2Ω/
√︁
𝜓 = 2Ω

√︁
1∓ 𝜇+O(𝜇2), (24.22)

which agrees well with (24.20).
Similarly we obtain from (24.19b) for 𝑙 = 2

𝜓 = 4+
(
1
6
± 1

4

)
𝜇2𝜓2 ⇒ 𝜓 ≈ 4+16

(
1
6
± 1

4

)
𝜇2, (24.23)

giving

𝜈★ =
2Ω√
𝜓

≈Ω

√︄
1−4

(
1
6
± 1

4

)
𝜇2, (24.24)

which differs slightly from (24.20). Finally we obtain from (24.19c) for 𝑙 = 3

𝜓 = 9+ 92

16
𝜇2 ± 93

64
𝜇3. (24.25)

The leading power series of 1/𝜓 is

1/𝜓 ≈ 1
9

(
1− 9𝜇2

16
∓ 81

64
𝜇3

)
,

yielding

𝜈★ =
2Ω
3

√︂
1− 9𝜇2

32
∓ 81

64
𝜇3 ≈ 2Ω

3

(
1− 9𝜇2

64
∓ 81

128
𝜇3

)
. (24.26)

A comparison of the different approximations is shown in Fig. 24.3
In the preceding calculations we neglected the influence of the damping; as it is

shown below in Subsubsect. 24.3.3, damping usually decreases the linearly unstable
domain. Using Normal Form theory it is possible to improve the given expansions
to include the influence of damping.

24.2.2 Numerical Determination of the Stability Boundaries

In order to verify the approximate stability boundaries (24.20) numerically,we applied
different numerical methods.
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Fig. 24.3 Comparison of the
expansion formulas for the
critical excitation frequency
𝜈★ for the undamped Mathieu
equation (24.18). Black (red)
[blue] curves indicate exact
solutions (approximations by
Bolotin) and [approximations
by (24.22,24.24,24.26)], re-
spectively.
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24.2.2.1 Simulation with Fixed Values of Frequency 𝝂

The simplest method to check the stability boundaries was to simulate the equations
obtained by the FE formulation in Subsect. 24.1.2 for a number of fixed values of 𝜈,
starting from a small steady deflection 𝑦(𝑠,0) = 𝑦0 sin(𝑘𝜋𝑠) with 𝑦0 ≪ 1 over a fixed
time interval. By monitoring the amplitude of the oscillation, we could approximately
determine the unstable values of 𝜈. The method also provides a good guess about the
stationary oscillation of the nonlinear system.

This method is of course not very efficient: Close to the stability limits it is
numerically difficult to precisely detect increasing amplitudes. Due to the stiffness
of the equations the simulations take quite long and admit only a rather coarse grid.

The method can be somewhat improved by starting the individual simulations
from the previously obtained solutions. The time intervals can be chosen smaller and
by varying 𝜈 into the proper direction, we can also find stable oscillations outside the
unstable interval of the trivial solution. Figure 24.4 displays results obtained by this
method: The blue points were obtained for decreasing excitation frequencies.

The stability boundaries could also be obtained numerically by calculating the
monodromy matrix of the linearized system over two excitation periods and calculat-
ing its eigenvalues, the Floquet multipliers. If one of these eigenvalues leaves the unit
circle, the trivial solution becomes unstable. To calculate the stability for a specific
value of 𝜈, one has to integrate the system for approximately 8𝑁 different initial
conditions, which is comparable to the simple simulation method, but the results are
quite accurate. The disadvantage of this method is, that it gives no information about
the stationary solutions.
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Fig. 24.4: Stationary oscillation amplitude at midspan for varying excitation frequencies 𝜗
(unscaled). The green (blue) dots are obtained for increasing (decreasing) values of 𝜗, taking the
last point of the previous solution as initial value. The red dots indicate the linear stability boundary.

24.2.2.2 Simulation of the FE Equations with Slowly Varying Frequency

Instead of carrying out many simulations with fixed values of 𝜈, we also performed
simulations with slowly varying frequency

𝜈(𝑡) = 𝜈0 +𝜆𝑡, with |𝜆 | ≪ 1.

The excitation force takes the form

𝑝(𝑡) = 𝑝0 + 𝑝𝑡 sin(𝜈0𝑡 +𝜆𝑡2/2).

For sufficiently small values of 𝜆 the trajectory follows closely a branch of stable
periodic solutions, as can be seen in Fig. 24.5, where the simulations for different
values of 𝜆 are displayed. This method can also be used to monitor solution branches
in the linear stable parameter range.

24.3 Calculation of Periodic Solutions Bifurcating from the
Primary Resonance

In the simulation results for calculating the stability boundaries one could observe,
that the branches of periodic oscillations continue across the lower stability boundary.
So we tried to find out, how far the branches extend into the linearly stable domain and
what happens at the endpoints. In the simplest analytical treatment of the nonlinear
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Fig. 24.5: Simulation of oscillations with 𝑝0 = 0.3, 𝑝𝑡 = 7.2, and slowly varying excitation
frequency 𝜈 (𝑡 ) . Green: 𝜆 = 0.07, blue: 𝜆 = 0.035. Close to the stability boundary the oscillation
amplitude decreases strongly.

Mathieu equation using only cubic terms one can see, that a branch of periodic
solutions bifurcates from both stability boundaries, one of which is stable. These
branches either continue infinitely, if the nonlinear damping term vanishes, or they
connect in a limit point cycle. The behaviour for stronger nonlinearities might be
considerably more complicated. In order to study the behaviour of our model for
large amplitudes, we applied different numerical methods.

24.3.1 FE Simulations and Use of a Boundary Value Problem
Solver

In order to directly obtain the periodic solutions bifurcatiing from the periodic solu-
tions at the stability boundaries, we used the multiple shooting procedure Boundsco
[8] for the equations generated in Mathematica [7]. To follow branches of periodic
solutions, the continuation method Hom [10] was used, which is able to efficiently
follow solution branches of nonlinear equations with tangential updating and auto-
matic stepsize control. It is also able to follow the branches around turning points.
The calculations were carried out for 𝑁 = 8 and 𝑁 = 12 intervals. Due to the severe
stiffness of the equations the calculations needed several days for some branches, but
one could obtain quite precise information about the periodic solutions.
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Fig. 24.6 Periodic solution
branches bifurcating from the
stability boundaries of the
primary resonance.
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The excitation amplitude 𝑝𝑡 turned out to be an important parameter: For 𝑝𝑡 <
2.5 we observe closed solution branches. At 𝑝𝑡 ≈ 2.5 there occurs a transcritical
bifurcation and the lower and upper branch become disconnected. Figure 24.6 displays
periodic solution branches obtained from the FE equations with 𝑁 = 8. For 𝑁 = 12
only for 𝑝𝑡 ≤ 0.3 closed branches could be obtained due to the strong stiffness of
the problem and the intricate behaviour of the large amplitude periodic solutions. A
typical phase portrait of the midpoint position for large oscillations is displayed in
Fig. 24.7.

Fig. 24.7 Phase plane plot
of the midpoint’s vertical
position 𝑦 (𝐿/2) and velocity
¤𝑦 (𝐿/2) close to the turning
point for 𝑝𝑡 = 2.16.
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24.3.2 Application of the Galerkin Method

Equation (24.7) looks well suited for treatment by a Galerkin method. As first step
we use an ansatz with one mode
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𝑣(𝑠, 𝑡) = 𝑞(𝑡) sin(𝜋𝑠), (24.27)

which satisfies all boundary conditions, and expand the equations up to third order
in 𝑞. For 𝑢(𝑠, 𝑡) and ¥𝑢(𝑠, 𝑡) we obtain from (24.8) the second order expansion in 𝑞:

𝑢(𝑠, 𝑡) = −𝑞
2𝜋2

4

(
𝑠+ sin(2𝜋𝑠)

2𝜋

)
, (24.28)

¥𝑢(𝑠, 𝑡) = − (𝑞 ¥𝑞 + ¤𝑞2)𝜋2

2

(
𝑠+ sin(2𝜋𝑠)

2𝜋

)
. (24.29)

Further we obtain up to third order

\ =𝜋𝑞 cos(𝜋𝑠) + (𝜋𝑞 cos(𝜋𝑠))3/6, (24.30a)
cos(\) =1− (𝜋𝑞 cos(𝜋𝑠))2/2, (24.30b)

tan(\) =𝜋𝑞 cos(𝜋𝑠) + (𝜋𝑞 cos(𝜋𝑠))3 /2, (24.30c)
𝜅 =\′ = −𝜋2𝑞 sin(𝜋𝑠) − 𝜋4𝑞3 cos2 (𝜋𝑠) sin(𝜋𝑠)/2, (24.30d)
𝑀 =(1+𝛼𝜕𝑡 )𝜅, (24.30e)

𝑄 =(1+𝛼𝜕𝑡 )
(
𝜋3𝑞 cos(𝜋𝑠) + 𝜋5𝑞3 (cos3 (𝜋𝑠) −2cos(𝜋𝑠) sin2 (𝜋𝑠))

)
, (24.30f)

𝑁 =−𝑃(1+ 𝜋2𝑞2/2) − 𝜋4𝑞(𝑞 +𝛼 ¤𝑞)

−
𝐿∫

𝑠

𝜋6𝑞(𝑞 +𝛼 ¤𝑞) sin2 (𝜋𝑠)𝑑𝜉

−
𝐿∫

𝑠

𝜋 ¥𝑞𝑞 sin(𝜋𝑠) cos(𝜋𝑠) − 𝜋(2𝜋𝜉 + sin(2𝜋𝜉))) ( ¤𝑞2 + 𝑞 ¥𝑞)/4𝑑𝜉

=−𝑃(1+ 𝜋2𝑞2/2) − 𝜋4𝑞(𝑞 +𝛼 ¤𝑞)
− 𝜋5𝑞(2𝜋(𝑠−1) + sin(2𝜋𝑠)) (𝑞 +𝛼 ¤𝑞)/4
−

(
(𝜋2 (𝑠2 −1) + sin2 (𝜋𝑠)) ¤𝑞2 + (𝜋2 (𝑠2 −1) − sin2 (𝜋𝑠))𝑞 ¥𝑞

)
/4. (24.30g)

Inserting these terms into (24.7) and taking the inner product with sin(𝜋𝑠), we arrive
at the scalar oscillation equation(

1+ (3+8𝜋2)𝑞2

48

)
¥𝑞 =− (𝜋4 − 𝑝𝜋2)𝑞− 𝜋4𝛼(1+ 𝜋2𝑞2) ¤𝑞

− (6𝜋4 −5𝜋2𝑃)𝑞3

8
+ (9−8𝜋2)𝑞 ¤𝑞2

48
. (24.31)
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24.3.3 Local Analytical Investigation of the Oscillation Equation
Close to the 2 : 1-Resonance

First we approximate (24.31) by its cubic expansion

¥𝑞 = −(𝜔2
0 − 𝑝)𝑞−𝛼1 ¤𝑞 + 𝛽𝑞3 +𝛾𝑞 ¤𝑞2 +𝛼2𝑞

2 ¤𝑞, (24.32)

where we neglect terms of order O(𝑃𝑞3, | (𝑞, ¤𝑞) |5) and

𝜔2
0 = 𝜋

4 − 𝜋2𝑝0, 𝑝 = 𝑝𝑡 sin(𝜈𝑡),
𝛼1 = 𝛼𝜋

4, 𝛼2 = 𝛼𝜋
6 (45−8𝜋2)/48,

𝛽 = −𝜋6 (33−8𝜋2)/48, 𝛾 = 𝜋2 (9−8𝜋2)/48.

The linear approximation of (24.32)

¥𝑞 = −(𝜔2
0 − 𝑝)𝑞−𝛼1 ¤𝑞 (24.33)

is the well known damped Mathieu equation with main resonance close to 𝜈𝑐 = 2𝜔0.
Using the ansatz

𝑞(𝑡) = 𝑟 (𝑡) cos(𝜑(𝑡)), ¤𝑞 = −𝜔𝑟 (𝑡) sin(𝜑(𝑡))

with𝜔 =𝜔0+𝜎/2 and 𝜑(𝑡) = 2𝜔𝑡+𝜓(𝑡),where𝜎 = 𝜈−2𝜔0 is the detuning parameter
and 𝜓(𝑡) is a slowly varying variable, the averaging method yields the bifurcation
equations

¤𝑟 = −𝛼1
2
𝑟 + 𝛼2

8
𝑟3 − 𝑝𝑡

4
𝑟 sin(2𝜓), (24.34)

𝑟 ¤𝜓 = −𝜎
2
𝑟 − 3𝛽

8
𝑟3 − 𝑝𝑡

4
𝑟 cos(2𝜓) (24.35)

with 𝛽 = 𝛽+3𝜔0𝛾. Nontrivial stationary solutions are obtained from the equation

(𝛼1
2

− 𝛼2
8
𝑟2

)2
+

(
𝜎

2
+ 3𝛽

8
𝑟2

)2

=
𝑝2
𝑡

16
. (24.36)

For fixed values of 𝑟 (24.36) describes a circle in the (𝛼1,𝜎) parameter plane with
radius 𝑝𝑡/4 and center at (𝛼2𝑟

2/4,−3𝛽𝑟2/4). The stability boundary of the trivial
solution is obtained for 𝑟 = 0:

𝛼2
1 +𝜎2 = 𝑝2

𝑡 /4. (24.37)

The interior of this circle corresponds to unstable trivial solutions. For fixed values
of the damping 𝛼1 one obtains the well known hyperbolic stability boundaries in the
(𝜎, 𝑝𝑡 )-plane.
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Fig. 24.8 Periodic solution
branches obtained for the
FE-model with 𝑁 = 8 and for
the Galerkin approximation
with different numbers 𝑁
of modes and approximation
orders𝑂. For 𝑁 = 1 and𝑂 = 3
Eqn. (24.31) was used.
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In order to explore the behaviour of the bifurcating solution branches, we used
the continuation package MatCont [12], which is able to trace bifurcation branches
and find critical points, like secondary bifurcations. The obtained solution branches
close to the primary resonance at 𝜈 ≈ 2𝜋2 are displayed in Fig. 24.8: For quite small
values of 𝑝0 = 0.3 and 𝑝𝑡 = 0.72 the bifurcation points from the straight configuration
are detected precisely, but the large amplitude solutions do not make sense: Due
to the boundary conditions the maximum amplitude can never exceed the value
𝑞max = 0.5. In the derivation of the differential equations the lowest order expansion
for 𝑢′ =

√
1− 𝑣′2 was used, which becomes inaccurate for large deflections of the

centerline.
In order to improve the accuracy, we can increase the number 𝑁 of ansatz functions

𝑣(𝑠, 𝑡) =
𝑁∑︁
𝑘=1

𝑞𝑘 (𝑡) sin(𝑘𝜋𝑠)

or the order 𝑂 of the terms considered in the expansion. Since the complexity of
the expressions increases very rapidly with 𝑁 and 𝑂, a symbolic Algebra system
[7] was used to obtain the equations for the Galerkin reduction. As can be seen in
Fig. 24.8, the results from the Galerkin method become considerably better, if more
modes or higher orders are used. But for larger values of the excitation coefficient 𝑝𝑡
the approximation deteriorates at large amplitudes, because the deflection angle \
becomes larger than 𝜋/2.

24.3.4 Approximation by the Ritz Method

In order to avoid the difficulties due to the large deflection, we used an ansatz
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\ (𝑠, 𝑡) = Y
𝑁∑︁
𝑘=1

𝑞𝑘 (𝑡) cos(𝑘𝜋𝑠)

for the angle \ (𝑠, 𝑡), where Y is a book-keeping variable for the involved power series
expansions, which is then set to 1. The deformations 𝑢 and 𝑣 are given up to order
O(Y𝑂) by

𝑢(𝑠, 𝑡) =
𝑠∫

0

cos(\ (𝜉, 𝑡))𝑑𝜉 − 𝑠, (24.38)

𝑣(𝑠, 𝑡) =
𝑠∫

0

sin(\ (𝜉, 𝑡))𝑑𝜉. (24.39)

Since the ansatz functions enter the kinetic energy quadratically, it is sufficient to
expand the velocities up to order 𝑂/2 to obtain terms of order 𝑂 in the Lagrangian.
For the damping terms the virtual variations

𝛿\ (𝑠, 𝑡) = Y
𝑁∑︁
𝑘=1

𝛿𝑞𝑘 (𝑡) cos(𝑘𝜋𝑠) (24.40)

are required. The virtual work of the damping forces is given by

𝛿𝐴 = −𝛼
1∫

0

¤\′ (𝑠, 𝑡)𝛿 ¤\′ (𝑠, 𝑡)𝑑𝑠 = −Y
2𝛼𝜋2

2

𝑁∑︁
𝑘=1

𝑘2 ¤𝑞𝑘 (𝑡)𝛿𝑞𝑘 (𝑡), (24.41)

leading to the generalized linear damping forces

𝑄𝑘 = −Y
2𝛼𝜋2𝑘2

2
¤𝑞𝑘 (𝑡). (24.42)

Also the elastic energy takes a nice form with these ansatz functions

𝑈𝐸 =

1∫
0

\′2 (𝑠, 𝑡)
2

𝑑𝑠 =
Y2𝜋2

4

𝑁∑︁
𝑘=1

𝑘2𝑞2
𝑘 (𝑡). (24.43)

For 𝑁 > 1 the ansatz functions violate the boundary condition 𝑣(1, 𝑡) = 0; for 𝑁 = 3
we obtain at leading order

𝑣(1, 𝑡) = −Y3𝑞1 (𝑡)𝑞2 (𝑡) (𝑞1 (𝑡) +2𝑞3 (𝑡))
8

.

Therefore we add the penalty term
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Fig. 24.9 Periodic solution
branches obtained for the
FE-model with 𝑁 = 8 and for
the Ritz approximation with
different numbers 𝑁 of modes
and approximation orders𝑂.
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(24.44)

with some large parameter 𝑃𝑝 to the potential energy; for our calculations we use the
value 𝑃𝑝 = 50, which is significantly larger than the considered excitation force. It
would also be possible to regard the condition 𝑣(1, 𝑡) = 0 as isoperimetric constraint,
but that would lead to a differential-algebraic system of index 3, which would have
to be converted into an explicit system in order to treat it with MatCont.

In the simplest case 𝑁 = 1, 𝑂 = 4 we obtain the oscillation equation with cubic
terms(

1+ 8𝜋2 −9
48

𝑞2
1

)
¥𝑞1 = −(𝜋4 − 𝜋2𝑝)𝑞1 −𝛼𝜋4 ¤𝑞1 −

𝜋2𝑝𝑞3
1

8
− (8𝜋2 −9)𝑞1 ¤𝑞2

1
48

, (24.45)

which differs sligthly from (24.32). We observe, that (24.45) contains no nonlinear
damping term and the coefficients of 𝑞1 ¤𝑞2

1 and 𝑞2
1 ¥𝑞1 agree. For larger values of 𝑁

and 𝑂 the equations become very lengthy and are again obtained using a CAS ([7]).
A comparison between the periodic branches obtained by the FE equations and

the Ritz method for different orders of approximation is displayed in Fig. 24.9. As
expected, the agreement between the branches improves with increasing order𝑂, but
the range of existence for the different orders varies significantly. For 𝑂 = 6 there is
almost no difference between the branches for 𝑁 = 3 and 𝑁 = 5, respectively.

24.4 Conclusions and Further Research Goals

Using the applied methods it was possible to precisely determine the stability bound-
ary of an axially excited beam. Also the initial behaviour of the periodic solutions
branching off the stability boundaries can be computed sufficiently well. Problems
arise for the determination of the endpoints of the branches, especially for large am-
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plitude solutions. For these cases also the approaches using FE methods work quite
poorly. Approximation methods would require a large number of ansatz functions,
leading to overly complicated and untractable equations.

Since the problem turns out to be extremely stiff and the obtained numerical
solutions display a quite regular spatial structure, this model would be an excellent
benchmark example for advanced dimension reduction methods, like Nonlinear
Galerkin methods.
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Chapter 25
Continuum Mechanics Applied for Studying
Instabilities in Nanoparticles

Melanie Todt, Markus A. Hartmann, and Franz G. Rammerstorfer

Abstract Nanoparticles quite often consist of single ormultiple layers of 2D materials,
like graphene. For instance, carbon nanotubes, carbon crystallites forming the meso
structure of high strength carbon fibers, as well as carbon onions can be treated as
structures consisting of multiple layers of graphene, bond together by van der Waals
forces and covalent inter-layer bonds. Despite the fact, that these carbon nanoparticles
can hardly be considered as continuous systems, theirmechanical response can – under
certain limitations – be investigatedusing continuum mechanics. This chapterpresents
a review over published work related to models and methods which can be used to
study the stability behaviour of nanoparticles by applying continuum mechanics. The
determination of effective mechanical properties as well as the limitations of the
continuum mechanics approaches are discussed. Some specific applications, in which
peculiar phenomena such as the limited size of carbon onions or the shift in neutral
axis of bent carbon fibers are clarified by computational simulations, are described
in more detail.

25.1 Introduction

Within the wide variety of nanoparticles, the most investigated and promising ones
are those consisting of two-dimensional carbon layers. Hence, in the present review
layered carbon nonoparticles, such as graphene [1–5], carbon crystallites [6, 7], carbon
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nanotubes [8–11], fullerenes [12, 13], and carbon onions [14–17], are considered.
Bulk graphite and pyrolytic carbon are note considered in the present review.

Graphene is the main building block of all the carbon nanoparticles considered
here and the strongest and thinnest material ever discovered [2]. Thus, all carbon
nanoparticles should inherit the exceptional properties of graphene, making them
promising candidates as fillers in nanocomposites especially for electronics applica-
tions [8, 18–20] and sensing devices [21, 22]. More potential applications can be
found, e.g., in [8, 23, 24]. However, for an expedient application of carbon nanoparti-
cles their properties, including their mechanical response, should be well understood.
For this reason, a lot of experimental work has already been done to study the structure
and properties such nanoparticles, see [12, 14, 25] and computational techniques have
also shown to be powerful tools for this purpose, see e.g. [11, 26, 27] and references
therein.

There exist a number of modelling methods of different accuracy and length-scale
applicability to study the mechanical behavior of nanoparticles. Most accurate for
atomistic modelling are ab initio methods that solve Schrödinger equation more or
less directly. Atomistic classical molecular dynamics and Monte Carlo methods rely
on the use of force fields whose parameters can be determined by ab initio methods.
Lastly, continuum mechanical methods which disregard the atomistic nature of matter
using macroscopic, i.e., effective material parameters. The descriptions of the models
and their applications as provided in the present review paper are presented in more
detail in [28].

Continuum mechanics approaches for studying the mechanical behaviour of lay-
ered nanoparticles quite often use shell models. Thus, the knowledge of properties like
Young’s modulus E, Poisson’s ratio 𝜈, and shell thickness ℎ, is required. Surprisingly,
as will be shown in the following sections, published values for these parameters
differ by orders of magnitude! Some of them are useful for describing the membrane
behaviour of nanolayers but not for bending. The problem lies in the fact that one layer
of atoms, as is found in graphene, does not have a clearly defined “physical thickness”,
ℎ, in the sense of structural mechanics. However, graphene exhibits a measurable
membrane and bending stiffness, both being structural characteristics of plates or
shells that depend on the three mentioned parameters as long as linear elasticity and
isotropy can be assumed. Certainly, 𝐸 , ℎ, and 𝜈 must be seen as “effective“ properties
characterizing atomic layers in terms of continuum mechanical structures, such as
plates or shells.

Nanoparticles can be considered as structures in the sense of mechanics. Thus,
like structures in engineering constructions, they can lose their stability of equilib-
rium under certain circumstances, and bifurcation or snap-through buckling can be
observed. In this review paper, instability is to be understood in the above mentioned
sense. The focus is on the analytical and computational treatment of instabilities in
carbon nanoparticles, especially carbon crystallites and carbon onions. Here, we refer
to [29].

This review has two main goals: first, to provide a way for the determination of
effective elastic constants in terms of continuum mechanics; second, to explain some
peculiar experimental observations. Regarding determination of effective properties,
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one should bear in mind that the buckling behaviour of layered carbon nanoparticles
depends on both the membrane as well as the bending stiffness. It will be shown
that this can be utilized in clarifying the unclear situation regarding the values of
𝐸 , ℎ, and 𝜈. For this purpose stability analyses on well defined nanoparticles will
be performed using atomistic simulations in conjunction with continuum mechanics
approaches. Regarding clarification of the peculiar experimental observations, this
review focuses on the buckling of (i) carbon crystallites and (ii) carbon onions.

It is well known that in carbon fibres built by carbon nanocrystallites the longitudi-
nal Young’s modulus in compression is smaller than in tension. Directly measuring
the compression modulus is very difficult. Thus, bending experiments are performed
in which a shift of the neutral axis towards the compressed portion of the fibre’s cross
section can be observed indicating a lower stiffness under compression than under
tension. It has been argued that buckling of the nanocrystallites could be the reason for
this stiffness reduction [7]. Computational simulations on the nano level [30] confirm
this argument and allow determining the nonlinear elastic behaviour of carbon fibres
by evaluating the post-buckling deformation of the nanocrystallites.

Carbon onions are special carbon nanoparticles with promising prospects of
revolutionizing such diverse fields as electronic devices, photovoltaic applications,
light weight materials, or lubricants. The number of layers in carbon onions can
become very large, still it seems to be limited. Thus, the question arises what might
cause such a growth limit. As shown in [31], loss of stability could be the reason
for this. Interestingly, carbon onions buckle even without external loading. Another
example for buckling of carbon nanostructures in the absence of external loads is the
buckling of patches of graphene sheets as discussed in [32] and papers cited therein.

In the present review article instability of nanoparticles is mainly treated under
the above mentioned aspects rather than in a fully general way. This is the reason
why buckling of nanotubes, widely studied in the literature see, e.g., [8, 33, 34], is
not considered here.

25.2 Methods and Models

The simulation of the mechanical behaviour and, thus, in particular the simulation
of instabilities in layered nanoparticles involves different aspects, which are the
correct representation of the layers, the van der Waals (vdW) interactions and for
curved nanoparticles also the description of the excess surface energy. The input
parameters required and the simplifications to be made depend strongly on the
simulation technique used. Which methods and models should be applied, depends
on the size of the investigated layered nanoparticles and on the specific goals of the
investigations. In general a distinction is made between atomistic and continuum
mechanics approaches.
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25.2.1 Atomistic Approaches

Ab initio simulations, due to their complexity and, hence, high computational costs,
are usually not used to investigate complex mechanical behaviours in single or
multi-layer nanoparticles. Furthermore, in ab initio simulations the treatment of
vdW interactions is a complicated task due to their non-local long-range nature.
Nevertheless some concepts are proposed in [35, 36]. In the context of investigating
instability phenomena in large nanoparticles ab initio methods are mainly used for
determining input parameters required in Monte Carlo (MC), molecular dynamics
(MD) or continuum mechanics (CM) simulations and also for gaining information
about the excess surface energy in curved carbon nanoparticles.

In the quantum mechanical framework, addressing the solution of Schroedinger
equation for many-body problems, the inter-atomic forces governing structural re-
laxations as well system dynamics, are obtained from the electronic structure via
Hellman-Feynmann theorem. Using the Born-Oppenheimer approximation (called
also the adiabatic approximation), the many-body eigenvalue problem can be decou-
pled into a separate many-body problem for electrons and ions. Since the ions are
several orders of magnitude heavier and their motion is several orders of magnitude
slower than electrons, their motion is well described by classical Newtonian equations
of motion. The electronic part, however, has to be treated fully quantum mechanically.
The most common approach in material science is the density functional theory
(DFT) [37, 38] in which the search for many-body wave-function is replaced with the
search for charge density distribution. The biggest advantage of ab initio techniques
is that only information on the atoms making up a the structure (i.e., the type of ele-
ments) and their approximate structure is needed. Subsequently, scenarios including
bond breaking and bond formation can also be considered which is not possible in
other simulations. However, solving the underlying equations is a computationally
expensive task, and therefore only applicable for small structures.

Monte Carlo (MC) simulation is a tool used in statistical physics to determine the
static, i.e. time-independent, equilibrium properties of many particle systems [39].
The basic input of MC simulation is an expression for the potential (configurational)
energy of the system, which is nothing more than the force field in MD.

In MC simulations the atoms forming the layers are explicitly modelled where the
interactions between the individual atoms are described via potentials. Potentials are
either found empirically or by ab initio calculations. Thus,most important for a reliable
simulation is the knowledge of the underlying potential. One of the most famous
potentials used for modelling of carbon is the Tersoff-Brenner potential [40–42].

The covered length scales of MC (and MD) simulations lie in between ab initio
and continuum mechanical methods. Still atomistic in nature MC methods can deal
with system sizes ranging from several thousands to millions of atoms.
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25.2.2 Continnuum Mechanics Approaches

Continuum mechanical methods do not (explicitly) take into account the atomistic
nature of matter but use macroscopic constitutive laws. When studying the mechanical
behaviour of complex layered nanoparticles, the arising boundary value problem is
typically solved by discretisation methods, such as the finite element (FE) method.

In comparison with ab initio and MC (and MD) simulations, continuum mechanics
approaches have rather low computational costs and have shown to be appropriate
for studying the mechanical properties of nanoparticles [10, 11, 43, 44]. Within
the continuum approach the layers of nanoparticles can be modelled either as a
space frame structure using beam and/or spring elements [45, 46] or as continuum
shells [10, 11], where only continuum shell models are considered in this review.

Using continuum shells formodelling carbon layers was first proposedby Yakobson
et al. [11]. It is assumed that the layers can be modelled as thin, linear elastic, isotropic
shells possessing a membrane stiffness𝐶 = 𝐸ℎ

1−𝜈2 and a bending stiffness 𝐷 = 𝐸ℎ3

12(1−𝜈2 ) ,
where 𝐸 is the Young’s modulus, 𝜈 the Poisson’s ratio, and ℎ the layer thickness. It
should be noted that 𝐸 , 𝜈, and ℎ should be treated as “effective“ properties; they must
always be considered in combination, leading at the same time to proper values for
the membrane and the bending stiffness.

25.3 Mechanical Properties Used in Continuum Shell Models

Continuum shell models require the knowledge of the values of the effective elastic
properties, such as - at least - 𝐸 , 𝜈, and ℎ. More advanced shell models are proposed,
e.g. in [47–50] allowing to capture some features like the anisotropy of carbon layers
due to chirality, but increase also the complexity of the models. However, the effect of
anisotropy vanishes fast with increasing size of the nanoparticles, see [49] and needs
not to be considered as long as strains are small [51]. When curved nanoparticles,
such as fullerenes, carbon onions or carbon nanotubes, are considered, the intrinsic
curvature induced excess surface energy must be considered, too, and in case of a
multi-layer structure a proper continuum mechanics modelling of the vdW interaction
is required.

25.3.1 Effective Elastic Properties and Thickness

As mentioned, the first who used continuum shell models were Yakobson et al. [11].
There, the elastic constants were obtained by MD simulations leading to 𝐸 = 5500GPa,
𝜈 = 0.19, and ℎ = 0.066nm. The consistency of this approach has been confirmed
in [52] by investigating the strain energy of carbon nanotubes. Isotropic thin shell
models were successfully applied, e.g., in [10] to study buckling of multi-walled
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carbon nanotubes. The small strain assumption holds for the carbon nanoparticles
being investigated in the following, so the shell model proposed in [11] could be
used.

Nanoindentation experiments revealed that graphene behaves elastic [53] almost
until breaking. Therefore, the layer properties can be described using three indepen-
dent parameters: the elastic modulus 𝐸 , Poisson’s ratio 𝜈, and the layer thickness ℎ.
However, the choice of appropriate values for these parameters is far from obvious.
Since the first attempts to determine these parameters made in [11] a lot of experi-
mental and theoretical work has been carried out to estimate the elastic properties
of a single carbon layer. Nevertheless, the values of the parameters given span an
extremely wide range. The values reported for the membrane stiffness range from 159
to 480N/m [1, 50, 53, 54] (and references therein). An even broader range of different
values spanning one order of magnitude is reported for the effective thickness of
graphene, ranging from ℎ = 0.617 to 6.9Å [55]. This peculiar behaviour of the thick-
ness was given the name “Yakobson Parodox” [56]. Among the different suggestions
proposed to resolve this paradox is the observation that the thickness of nanotubes is
not constant, but may depend on its size, chirality and loading situation [55] or that
plate theory breaks down for a monolayer of graphene [5].

In [28] the membrane and bending stiffness as well as the Poisson’s ratio of
graphene is determined by stretching and bending graphene ribbons in MC simula-
tions, There, the classical potentials for sp2 bonded carbon derived in [57] from ab
initio calculations are used. The reliability of these potentials was tested using MC
simulations. The bonded interaction between carbon atoms is described by 2-atom
bond-stretching 𝐸𝑆 , 3-atom bond-bending 𝐸𝐵 and 4-atom bond-torsion 𝐸𝑇 energy
contributions:

𝐸𝑆 (𝑟𝑖 𝑗 ) = 𝐸0{[1− exp(−𝛽(𝑟𝑖 𝑗 − 𝑟0))]2 −1} (25.1)

𝐸𝐵 (\𝑖 𝑗𝑘) = 1
2
𝑘 𝜃 (cos\𝑖 𝑗𝑘 − cos\0)2 (25.2)

𝐸𝑇 (𝜙𝑖 𝑗𝑘𝑙) = 1
2
𝑘𝜙 (1− cos2𝜙𝑖 𝑗𝑘𝑙) (25.3)

In the stretching potential, 𝐸0 denotes the binding energy of two carbon atoms, 𝑟0
the equilibrium carbon-carbon bond length, 𝛽−1 the width of the potential and 𝑟𝑖 𝑗 the
actual distance between atoms 𝑖 and 𝑗 . The bending contribution is characterized by
the bond angle \𝑖 𝑗𝑘 between three carbon atoms, the equilibrium bond angle \0 and
the bending force constant 𝑘 𝜃 , the torsion contribution by the dihedral angle 𝜙𝑖 𝑗𝑘𝑙
between four atoms and the torsion force constant 𝑘𝜙 .

These potentials were used in MC simulations in the (𝑁𝑃𝑇) ensemble using the
classical algorithm of McDonald [58] to perform computational mechanical tests on
graphene.

Figure 25.1 shows the model used in these MC simulations. The test length 𝐿𝑥
was varied in a wide range in order to determine the size-limit of the structure up to
which the computed effective properties can be used. In addition to the atoms forming
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(a)

(b)

Fig. 25.1: MC Models: (a) schematic presentation of zig-zag and arm chair models for tension
tests, 𝐿𝑥 denotes the actual test length; (b) model for bending and buckling tests; the atoms
forming the left boundary (gray) are held fixed, while the atoms on the right boundary (gray) can
move collectively in 𝑥-direction allowing for a change of length of the stripe. In 𝑦-direction
periodic boundary conditions are used. Figure adapted and reproduced with permission from [28].

the area for evaluation (i.e., within 𝐿𝑥), twelve rows of atoms were added on either
side of the graphene ribbon. While the additional atoms on the left side of the ribbon
were held fixed during the simulation, the corresponding atoms on the right side were
allowed to move collectively in 𝑥-direction. These boundary conditions allow for a
deformation of a finite sized graphene ribbon without the effect of dangling bonds,
because the atoms of the last rows do not contribute to the total energy of the system.
Both zig-zag and arm-chair configurations were considered.

Being interested in the ground state only, in the simulations the temperature was
set to the small value of 𝑘𝐵𝑇 = 25 𝜇eV. More details as well as the values of the used
parameters in the potentials can be found in [28].

Figure 25.2 shows the results from uniaxial tension tests on graphene in terms of a
load-displacement (in fact strain) diagram, i.e. the value of the applied distributed line
load 𝑞𝑥 versus the corresponding strain Y𝑥 . The load was gradually increased until
failure, i.e. until no stable elongation was found but the system steadily increased its
length. The strength and ultimate strain of graphene are found to be 𝑞𝑆 = 46±0.4 N/m
and Y𝑆 = 0.28. The quantity 𝑌 = 𝐸ℎ = (313.2±0.17) N/m was obtained by a linear
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Fig. 25.2 Uni-axial stretching
of graphene until failure.
𝑌 and 𝜈 were obtained by
evaluation of the linear part
of the curve (𝜀𝑥 < 0.005).
For large strains the deviation
from the straight line is visible.
Figure adapted and reproduced
with permission from [28].

regression of the first, linear part of the curve (Y𝑥 < 0.005), and the Poisson’s ratio
𝜈 = 0.1844±0.0003 was obtained by averaging the corresponding values of −Y𝑦/Y𝑥 .
Zig-zag and arm chair configurations yielded almost the same values for 𝑌 and 𝜈
confirming the in-plane isotropy of graphene. Accordingly the membrane stiffness is
given by 𝐶 =𝑌/(1− 𝜈2) = 324 N/m. The values obtained are in good agreement with
the measurements by Lee et al. [53] who report𝑌 = 340±50 N/m and 𝑞𝑆 = 42±4 N/m
and the simulation results by Kalosakas et al. [59] who report𝑌 = 320 N/m, a slightly
higher Poisson’s ratio of 0.22 and a strength of 39−45 N/m. A further compilation
of experimental and theoretical elastic constants of graphene can be found in [1] and
references therein.

The effective thickness of monolayer graphene was determined by buckling tests.
In these tests the distributed line load, applied as compression in 𝑥-direction, was
gradually increased until buckling of the layer set in. The buckling load of in-plane
loaded thin plates is (according to structural continuum mechanics) given by [60]

𝑞𝑐 = 𝜎𝑐ℎ = 𝑘𝐸ℎ

(
ℎ

𝐿𝑥

)2
(25.4)

The buckling factor 𝑘 depends on the boundary conditions, the ratio 𝐿𝑥/𝐿𝑦 and
on the Poisson’s ratio of the material the plate is made of. For the given boundary
conditions and for 𝐿𝑦 approaching infinity (see Fig. 25.1) its value can be taken from
[60] as 𝑘0.3 = 3.62. This value is valid for 𝜈 = 0.3.

In order to take into account the influence of the different Poisson’s ratio for
graphene on the bending stiffness and, thus, on the buckling load, the value of 𝑘 must
be adopted as: 𝑘0.1844 = 𝑘0.3 (1−0.32)/(1−0.18442) = 3.41. Thus, one gets

𝑞𝑐 = 3.41𝑌
(
ℎ

𝐿𝑥

)2
(25.5)

Using the values of the buckling load 𝑞𝑐, determined by MC simulations in
dependence of 𝐿𝑥 , the corresponding effective thickness can be calculated as a
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function of 𝐿𝑥 by comparing with Eq. (25.5) and using the value of 𝑌 derived from
the tensile test. The results are shown in Fig. 25.3.

For short ribbons (shorter than 50 Å) the calculated thickness decreases, which
can be attributed to the breakdown of the continuum approximation for structures
composed of too few atoms. For increasing length the effective thickness of graphene
levels off approaching approximately ℎ = 1.32 Å, resulting in a bending stiffness
𝐾 = 0.47 nN.nm = 2.94 eV being in good agreement with the results from [61]
obtained from molecular dynamics.

For cross checking these results, MC simulations of 3-point and 4-point bending
tests, i.e. applying transversely acting loads in the middle or one third from the left
and from the right end of the evaluation length 𝐿𝑥 , were performed. Comparing the
computed out-of-plane displacements at the load application lines with the analytical
solutions of the accordingly loaded plates also resulted in values of the effective
thickness. These values are shown in Fig. 25.3 by triangles.

It has been argued that the effective mechanical properties are not intrinsic prop-
erties of graphene, but depend on the topology of the carbon nanoparticle and on the
loading situation [55, 62]. For checking the dependence of the effective properties
on the loading situation, the above described cross checks by bending tests have
not given any indication that there is a substantial difference between values for
stretching and those for bending. However, for simulating the behaviour of curved
nanostructures like carbon onions, it is essential to know whether curved layers can
be described with the effective elastic properties found for planar graphene, too.

To answer this question additional mechanical tests were performed on fullerenes.
Hydrostatic loading was applied to fullerenes of different size. The results for the
reduction of the radius Δ𝑅 as a function of applied hydrostatic radial pressure 𝑝
was compared to the corresponding analytical solution for thin spherical continuum
shells modelled with the effective mechanical parameters found for planar monolayer
graphene. This analytical solution can be expressed in the following form:

Fig. 25.3 Effective thickness
of mono layer graphene
determined from models
with different length of the
evaluation area 𝐿𝑥 . Results
derived from buckling tests are
presented by black circles. For
cross checking, results from
3-point and 4-point bending
tests are shown, too. Figure
adapted and reproduced with
permission from [28].
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𝐹 = 𝜅Δ𝑅 =
8𝜋𝐸ℎ
1− 𝜈 Δ𝑅 =

8𝜋𝑌
1− 𝜈Δ𝑅 (25.6)

There, the applied load intensity is expressed by

𝐹 =
∫
𝑆

𝑝𝑑𝑆

where the integration is carried out over the surface of the sphere. For thin spherical
shells, the value of 𝜅 = 𝐹/Δ𝑅 is independent of the size of the shell. Using 𝑌 and 𝜈
as obtained from the MC simulation of the tensile test leads to a constant theoretical
value 𝜅 = 9651 N/m.

The values of 𝜅 obtained in the MC simulations for pressure loaded spherical
carbon nanostructures of different size in combination with Eq. (25.6) are presented
in Fig. 25.4. These values should be constant and close to the theoretical value.

In Fig. 25.4 a slight decrease in 𝜅 with fullerene size can be observed. The
smallest investigated fullerene (𝐶60) shows 𝜅 = 10021 N/m, the largest fullerene
(𝐶8820) 𝜅 = 9297 N/m, which is a decrease of ≈ 7 % while the radius of the fullerenes
changed more than a factor of 10. Thus, the requirement of constant values for 𝜅
can be seen as sufficiently fulfilled. Furthermore, because 𝜅 as derived from the
MC simulations of fullerenes corresponds well with the theoretical value, these
effective properties appear to be useful also for curved carbon nanoparticles, at least
for spherical ones.

In conclusion, the results of the MC simulations show that graphene and fullerenes
(and presumably also nanotubes) as well as corresponding multi-layer nanoparticles
larger than 50 Å can be described as thin, isotropic shells with effective parameters
𝐸 = 2.4 TPa, 𝜈 = 0.1844 and ℎ = 1.32 Å, independently of loading and deformation
conditions. Care has to be taken for structures smaller than 50 Å, because the
continuum approximation breaks down and no consistent bending stiffness can be
deduced.

Fig. 25.4 Values of 𝜅 for
fullerenes of different sizes.
The theoretical value is shown
by the gray line, the dashed
lines indicate 5 % deviations.
Figure adapted and reproduced
with permission from [28]
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25.3.2 Continuum Mechanics Models for van der Waals Interaction
and the Intrinsic Curvature Induced Excess Surface Energy

In multi-layer carbon nanoparticles the vdW interactions in terms of interaction forces
between the individual layers must be considered in addition to the layer behaviour.
VdW interactions are non-local induced dipole interactions between uncharged atoms
or molecules and are relatively weak compared to covalent bonds between the atoms
forming a layer. The non-local interactions between two atoms can be described
using a pair potential of the interaction forces, where usually the Lennard-Jones (LJ)
potential [63]

𝑈12 = 4𝜖
[(𝜎
𝑟

)12
−

(𝜎
𝑟

)6
]
, (25.7)

is used with 𝑟 being the current atom-atom distance. The parameters 𝜎 and 𝜖 describe
the atom-atom distance at 𝑈12 = 0 and the depth of the potential well, respectively,
see Fig. 25.5. These parameters are usually referred to as Lennard-Jones parameters,
and values can be found in [64, 65]. The pair potential consists of an attractive part
𝑈atr =

(
𝜎
𝑟

)6 and a repulsive part 𝑈rep =
(
𝜎
𝑟

)12. The 6th power in the attractive part
follows from the London equation [66], whereas the 12th power in the repulsive part
is used only for practical reasons and has no specific physical meaning.

In atomistic description the vdW interactions between two layers result from
vdW interactions between the discrete atoms forming the layers. In MD or MC
simulations the vdW interactions are included via an additional energy term 𝐸nonbond
where for 𝐸nonbond the LJ-potential given in Eqn. (25.7) can be used. The atom-atom
interactions, however, are not applicable in continuum mechanical shell models where
pressure-distance relations are more feasible.

Appropriate pressure-distance relations can be derived by integrating over the
vdW interactions between the individual atoms in adjacent layers, where the number

Fig. 25.5 Van der Waals
interaction potential 𝑈
of two interacting carbon
atoms for Lennard-Jones
parameters 𝜎 = 0.3415nm
𝜖 = 0.00239eV. Values of the
Lennard-Jones parameters are
taken from [64]
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of atoms within each layer is represented by an atom area density [64, 67, 68]. This
allows to take different numbers of atoms in adjacent layers of curved nanoparticles
into account. For the different multi-layer nanoparticles the pressure-distance relations
are found as

𝑝(𝛼) = 𝐶33
6

[(𝜎
𝛼

)10
−

(𝜎
𝛼

)4
]

(25.8)

for graphite [63] with 𝐶33 = 36.5GPa and

𝑝(𝛼) = 8 𝜖 (𝜌∞)2 𝜎 𝜋︸            ︷︷            ︸
𝐶0

[(𝜎
𝛼

)11
−

(𝜎
𝛼

)5
]

(25.9)

for planar carbon nanoparticles such as multi-layer graphene [68],

𝑝1 = 𝐶0
𝑅2
𝑅1

[
231

(
𝜎

𝑅1 +𝑅2

)11 (
𝑅2 −𝑅1
𝑅2 +𝑅1

𝐸13 −𝐸11

)

−160
(

𝜎

𝑅1 +𝑅2

)5 (
𝑅2 −𝑅1
𝑅2 +𝑅1

𝐸7 −𝐸5

)]
, (25.10)

𝑝2 = 𝐶0
𝑅1
𝑅2

[
231

(
𝜎

𝑅1 +𝑅2

)11 (
𝑅2 −𝑅1
𝑅2 +𝑅1

𝐸13 +𝐸11

)

−160
(

𝜎

𝑅1 +𝑅2

)5 (
𝑅2 −𝑅1
𝑅2 +𝑅1

𝐸7 +𝐸5

)]
, (25.11)

with 𝐶0 = 3𝜋
32 𝜖𝜎𝜌

2∞ for multi-walled carbon nanotubes [64] and

𝑝1 =
1
𝑅1

𝐶0

[
2 �̂�11 𝜎

11

(𝑅2
2 −𝑅2

1)11
− 5 �̂�12 𝜎

5

(𝑅2
2 −𝑅2

1)5

]
, (25.12)

𝑝2 =
1
𝑅2

𝐶0

[
5 �̂�21 𝜎

5

(𝑅2
2 −𝑅2

1)5
− 2 �̂�22 𝜎

11

(𝑅2
2 −𝑅2

1)11

]
, (25.13)

with 𝐶0 = 32
5 (𝑅 (0)

1 𝑅 (0)
2 𝜌∞)2𝜖𝜋𝜎 for carbon onions [68] where 𝑅 (0)

1 and 𝑅 (0)
2 denote

the radii of the inner and outer layer before the vdW interactions become active,
respectively. In Eqs. (25.8) to (25.13) the parameter 𝛼 denotes the current interlayer
distance. In Eqs. (25.10) to (25.13) 𝑅1 and 𝑅2 refer to the current deformed radii
of the inner (smaller) and outer (larger) layers involved in the vdW interactions,
respectively. The parameters 𝐸13, 𝐸11, 𝐸7, 𝐸5 (Eqs. (25.10) and(25.11)) as well as
the parameters �̂�11, �̂�12, �̂�21, �̂�22 in (Eqs. (25.12) and(25.13)) depend on 𝑅1 and
𝑅2. For more details see [64] and [68], respectively.



25 Continuum Mechanics Applied for Studying Instabilities in Nanoparticles 441

All pressure distance relations given here account only for vdW interactions
between adjacent layers. This is admissible as the vdW interactions vanish fast with
increasing atom-atom distance. It should be noted that for curved nanoparticles the
vdW pressure experienced by the inner layer is different than the pressure experienced
by the outer layer. This is a consequence of the different numbers of atoms within
adjacent layers. Accounting for the different number of atoms in adjacent layers within
the vDW model is especially crucial if the displacements and the subsequent stresses
in the layers are of importance [64, 68], e.g., if the mechanical stability of a structure is
considered. However, the analytical vdW models stated in Eqs. (25.10) to 25.13 have
the drawback that they can hardly be incorporated into standard commercial FE codes.
Thus, for finite element simulations usually the pressure distance relations derived
for planar carbon nanoparticles, see Eqs. (25.8) and (25.9), are used [10, 31, 44].

For curved nanoparticles such as fullerenes, carbon onions, or carbon nanotubes
the intrinsic curvature induced excess surface energy 𝐸 (S) [57] has to be considered.
In [57] both ab initio and MC simulations have shown that the excess surface energy
can be well fitted by a power law 𝐸 (S) ∼ 𝑟𝛽 , where 𝑟 is the radius of the curved
structure. The values obtained for the fitting parameter 𝛽 range from −1.40 to −2.51
depending on the type of nanostructure considered, see Fig. 25.6.

Due to the high computational costs ab initio calculations could only be performed
for fullerenes up to the 𝐶240, while MC simulations could extend this range up to
𝐶5120. The MC simulations also revealed that for curved structures like fullerenes the
4-atom-bond torsion contribution is by far the largest contribution to the total energy
albeit its small force constant. Due to the presence of the excess surface energy

Fig. 25.6: Double logarithmic plot of excess surface energy vs radius: (a) the zigzag (down
triangle) and armchair (up triangle) SWNTs from the DFT calculations, (b) fullerenes as calculated
by ab initio (circles) Figure adapted with permission from Ref. [57]. Copyrighted (2010) by the
American Physical Society.
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a surface stress 𝜎 (S) develops as a "plane hydrostatic" stress state. For spherical
particles the Shuttleworth equation [69]

𝜎 (S) = 𝐸 (S) + d𝐸 (S)

dY (S)

holds, where Y (S) is the strain in each circumferential direction. For a first estimate
the second term of this relation can be neglected leading to 𝜎 (S) = 𝐸 (S) . Note that
𝐸 (S) and 𝜎 (S) are physically different quantities possessing the same unit (force per
unit length). In a finite element model 𝜎 (S) can be taken into account by applying an
external pressure

𝑝 (S) =
2𝜎 (S)

𝑟
.

As can bee seen from Fig. 25.6 the excess surface energy, and consequently the surface
stress, decreases fast with increasing radius 𝑟. Therefore, it is only of relevance for
small carbon nanoparticles.

25.4 Some Examples for Application of Continuum Mechanics to
Nanoparticles

In the previous Section the derivation of “effective parameters“ needed for investigat-
ing the stability behaviour of nanoparticles by using continuum mechanics concepts
has been shown. Now, two examples for the application of this approach will be given
- see also [29]

25.4.1 Carbon Crystallites

Bending experiments of polyacrylonitril (PAN) based fibres revealed a non-Hookean
fibre behaviour in compression, which is related to buckling phenomena occurring in
the nanostructure of the fibre [70]. The cross section of such a PAN fibre is depicted
in Fig. 25.7. PAN fibres usually show a skin-core structure [71], where the outer
surface is formed by a skin-like layer and randomly distributed carbon crystallites
form the inner region. In [72, 73] it is assumed that these crystallites buckle if the fibre
is subjected to compressive loading and in [74] fibre failure is related to crystallite
buckling. Microbeam X-ray diffraction of bent carbon fibers revealed a shift of
the neutral axis towards the streched area of the cross section indicating crystallite
buckling [7]. These experimental results show that the mechanical behaviour of
carbon fibres under compression is dominated by instability phenomena on the nano
scale, i.e. crystallite buckling.

To get further insight into the mechanisms determining the compressive behaviour
of PAN fibres a continuum mechanical study on the stability of carbon crystallites
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under compressive loading was performed in [30]. For this purpose a continuum
shell model of a single crystallite is used and the finite element method is employed
for solving the arising boundary value problem. In the following the modelling
assumptions used and the results obtained in [30] are briefly discussed.

In [30] the layers of the crystallite, schematically shown in Fig. 25.7, are assumed
to be oriented parallel to the fibre axis and modelled as thin elastic plates with 𝐸 =
5.5TPa,𝜈 = 0.19, and0.066nm (values taken from [11]), interacting with eachotherby
vdW interactions and covalent interlayer bonds. For the crystallite dimensions parallel
and perpendicular to the fibre axis 𝐿a∥ = 4.32nm and 𝐿a⊥ = 3.87nm, respectively, are
usedbeing in goodagreementwith experimental values [72, 74]. The vdW interactions
between adjacent layers are considered using the pressure-distance-relation given
in Eqn. (25.8). The equilibrium vdW distance 𝛼eq = 𝜎 is chosen as 𝜎 = 0.344nm
giving a good approximation of experimental values ranging from 0.339nm to
0.356nm [6, 72]. The crystallite is assumed to consist of eight layers resulting in
a total width of 𝐿c = 2.512nm which is in the range of experimentally determined
values [74]. Furthermore, covalent interlayer bonds connecting two adjacent layers
(see Fig. 25.7) are taken into account. Possible sources of such bonds are vacancies
or interstitial atoms [75] within the layers or dangling bonds at their edges [75].
In [76] it is shown that covalent interlayer bonds constrain sliding between nanotube
walls and that the load transfer between the tubes is best if the bonds are uniformly
distributed. Covalent interlayer bonds may also be an explanation of the "compared
to graphite" increased shear modulus of carbon crystallites in PAN fibres observed
in [6]. For the sake of simplicity, in [30] the interlayer bonds are modelled as trusses
with their axial stiffness being far larger than the membrane stiffness of the layers.
It is assumed that the bonds at the edges and in the interior of the crystallite are
similar and that they locally reduce the interlayer distance to 𝑑c = 0.258nm [75]. Two
different distributions of the interlayer bonds are investigated where (i) the bonds
are distributed over the whole crystallite (including the edges) and (ii) the bonds are
distributed only along the edges.

To get a reasonable representation of the self-equilibrated stress state in the layers
due to interlayer bond formation the bonds are first introduced with an initial length
of

𝑑 (0)c = 0.344nm.

Fig. 25.7 Nanostructure
of PAN-based carbon fibres.
Figure adapted and reproduced
with permission from [30].
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Fig. 25.8: Deformation states of carbon crystallites with their interlayer bonds being randomly
distributed over the whole crystallite (a) or being located only at the edges (b). The side view of the
deformation state after the formation of the interlayer bonds and the corresponding contour lines of
the 𝑧-displacements of the uppermost layer are depicted on the left side and in the middle,
respectively [30]. The right figure shows the post-buckling state due to the applied axial
displacement. Figures on the left side and in the middle are adapted and reproduced with
permission from [30]..

Then the bonds are subjected to a virtual temperature change, Δ𝑇 , reducing their
length from 𝑑 (0)c to 𝑑c = 0.258nm, where the boundary conditions are chosen in
a form to constrain the crystallite as little as possible. The deformations of the
crystallite obtained by this initial step are illustrated in Fig. 25.8 (left and middle).
The vdW interactions between adjacent layers prevent a uniform distance reduction
leading to the formation of dimples at the interlayer bond locations. If the bonds are
randomly distributed within the whole crystallite the layers remain almost parallel to
the fibre axis (𝑦-axis) and only local dimples form, see Fig. 25.8 (a). In contrast to
this deformation pattern a pre-bending deformation in the form of an overall bulge
can be observed if the interlayer bonds are located only at the edges, as shown in
Fig. 25.8 (b). This bulge leads to a misalignment of the whole crystallite with respect
to the fibre axis, resulting in a larger geometrical imperfection in terms of structural
stability analysis notations.

The different deformation states obtained after the initial step lead to different
behaviours of the crystallites when subjected to compressive loading. The axial
compression is applied via prescribed displacements 𝑢𝑦 in direction of the fibre
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Fig. 25.9: Secant modulus 𝐸S in compression in dependence on the different proportions of
covalent interlayer bonds, expressed in terms of % of bonded pairs of atoms; for interlayer bonds
distributed randomly in the whole crystallite (a), see [30], and for bonds distributed at the edges
only (b). Figure (a) reproduced with permission from [30].

axis, where all layers are assumed to be subjected to the same axial displacement
at the upper edge. The obtained post-buckling states of the compressed crystallites
are depicted in Fig. 25.8 (right). The distribution of the interlayer bonds has no
significant influence on the character of the post-buckling shape. In both cases
an overall bending deformation occurs and no layer separation can be observed.
Although the post-buckling behaviour seems to be independent of the distribution
of interlayer bonds, the load-displacement behaviour shows a strong dependency
on the bond distribution and also on the amount of interlayer bonds. Figure 25.9
shows the obtained secant modulus 𝐸S of the crystallites depending on the amount
of interlayer bonds and the distribution of the bonds. If the interlayer bonds are
distributed over the whole crystallite, secant moduli in the range of 1076GPa to
1158GPa are obtained for the pre-buckling state. 𝐸S remains almost constant until
buckling occurs, where the critical strain increases substantially with the amount of
interlayer bonds. If the interlayer bonds are located only at the edges of the crystallite
much lower secant moduli ranging from 670GPa to 812GPa are obtained and no
constant regime of 𝐸S is observed. 𝐸S decreases with increasing compressive strain
and is almost independent of the amount of interlayer bonds. It can be concluded
that covalent bonds randomly distributed over the whole crystallite have a stabilizing
effect, whereas interlayer bonds located only at the edges lead to a reduction of the
axial stiffness of the crystallites already for small compressive loads. Comparison
with experimental values of the secant modulus (1140±40GPa [6]) show that it is
more likely that interlayer bonds form within the whole crystallite and not only at
the edges. The reduction of the secant modulus after the onset of buckling observed
for this distribution of interlayer bonds is a possible explanation for the shift of the
neutral axis observed experimentally for bent PAN fibres. Generally it can be said
that with the used continuum shell model the behaviour of carbon crystallites can
be well predicted. Although the crystallite model includes some simplifications it
can serve as basis for further investigations regarding the compressive behaviour of
carbon fibres.
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25.4.2 Carbon Onions

Carbon onions have first been discovered by Iĳima in 1980 [25]. They are almost
spherical in shape and consist of a number of concentric graphene-like carbon layers.
Figure 25.10 shows a transmission electronmicrograph and a sketch of the atomic
structure of this kind of carbon nanoparticles, respectively.

Today several production techniques are available for producing carbon onions in-
cluding the intense electron irradiation of soot [16], electron irradiation of graphite at
elevated temperatures (≥ 300°) [14, 77], annealing of diamond nanoparticles [78, 79],
high pressure transformation of single-crystal graphite [80], using a radio frequency
plasma process [81, 82], or synthesis by decomposition of phenolic resin [83].

Carbon onions are not only of scientific interest but are also promising candidates
for practical applications, e.g., as fillers in nanocomposites, especially for electronics
applications due to their high electron density [8, 18, 19], as additives in lubricants
[78], or as solid lubricants [84]. In all of these applications the size of the particles
is of major interest.

In reality carbon onions can consist only of a few layers [17, 78], be of intermediate
size [77, 80], or consists of many layers [85, 86] with diameters up to 50nm. The size
of the onions seems to depend on the production technique, the precursor material
[86], as well as on the annealing temperature and dose [14, 87, 88]. Based on this
information the questions arise whether or not the size of carbon onions is limited or
if the particles can be grown to an arbitrary number of layers. These questions are
intensively addressed in [31]. The main modelling assumptions and results discussed
therein are briefly reviewed in the following.

Fig. 25.10: Transmission electron microscope (TEM) micrograph of a carbon onion (left) taken
with permission from [77], and the atomic structure of carbon onions (right) taken with permission
from [17].
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All investigations in [31] are based on the theory that the size of carbon onions
is limited by the occurrence of a structural instability. These instability is stated to
be evoked by the formation of an additional layer on an already existing onion. The
carbon onions are assumed to consist of perfectly spherical and concentric layers
which posses the same number of atoms as so-called icosahedral fullerens [15, 89, 90].
These assumptions are admissible as some of the existing production techniques lead
to rather facetted onion layers [12, 80, 82, 83] which are comparable to fullerens. This
facetted particles can then be transformed to spherical ones by intense irradiation
where the degree of sphericity depends on the irradiation temperature [14, 16, 77]. The
increased sphericity can, e.g., be explained by the formation of additional pentagonal
rings or so-called Stone-Wales defects in the layers being not necessarily caused by
the loss of atoms in the layers [91, 92].

The assumption of perfect spericity of the carbon onions is exploited by using an
axi-symmetric model leading to low computational requirements. The axi-symmetry
is admissible for the pre- as well as for the post-buckling state, see, e.g., [93, 94]. The
layers are modelled using thin shells with

𝐸 = 4840GPa, 𝜈 = 0.19 and ℎ = 0.075nm.

This set of shell parameters has shown to give reasonable results for the mechanical
properties of single fullerene layers [95]. The vdW interactions between the layers are
described using the pressure-distance relation given in Eqn. (25.9) for graphene which
neglects the sphericity of the particles. This simplification seems to be admissible
as due to the relatively high stiffness of the innermost layers, buckling most likely
occurs in the outer regions of the onions where the curvature effect within the vdW
interactions is only of minor importance [10]. The parameter sets used in the vdW
model are summarized in Table 25.1.

The carbon onion is assumed to grow from the inside to the outside imitating
the growth scenario observed in [96] and [26]. In the growth model the individual
layers are added sequentially starting with the innermost layer. As each of the layers
is assumed to be an icosahedral fullerene the number of atoms 𝑛𝑖 forming a layer 𝑖
can be computed as 𝑛𝑖 = 60𝑖2 [13], where 𝑖 = 1 corresponds to the innermost layer.
The radius 𝑅 (0) of a layer is related to the number of its atoms 𝑛𝑖 by [97]

𝑅 (0) = 𝑎 (0)
√︁

0.103374 𝑛𝑖 −0.424548

whith 𝑎 (0) being the carbon-carbon bond length. Therefore, the radii of the onion
layers are not arbitrary leading to a distance 𝛼 between an already existing onion

Table 25.1: Nonlinear vdW models used in the stability analysis of carbon onions.

Parameter Set 𝜎 in nm 𝜖 in eV 𝐶0 in GPa
PS1 (values from [64]) 0.3415 0.00239 4.79
PS2 (values from [65]) 0.3345 0.00319 6.26
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and a newly formed layer that is usually different from the equilibrium distance 𝛼eq
of the vdW interactions. As a consequence the vdW interactions become active
introducing compressive stresses in the new layer and a tensile stress contribution
in all layers underneath, respectively. The excess surface energy, causing membrane
compressive stresses in the layers, introduce significant contributions to the stress
states only in small, i.e. in the most inner fullerenes (compare Fig. 25.6 and [57]) and
can be neglected in the growth limit considerations [31, 98]. The boundary value
problem arising when a new layer is added to an existing onion is solved using the
finite element method.

The self-equilibrated stress state introduced by the vdW interactions may lead to
the occurrence of a structural instability. Therefore, a buckling analysis is performed
after each added layer in order to check whether or not the carbon onion has grown
to its critical size. The corresponding eigenvalue problem is defined as(

𝐾𝐾𝐾
𝑁
+ �̄� 𝑗𝑁Δ𝐾𝐾𝐾𝑁

)
ΦΦΦ
𝑗

𝑁 = 000 (25.14)

with 𝐾𝐾𝐾
𝑁

being the stiffness matrix of the 𝑁-layered onion in its equilibrium state
including the vdW interactions. The matrix Δ�̄�𝐾𝐾

𝑁
represents the change in the

stiffness of the onion due to an external pressure 𝑝 (ext)
𝑁 applied to the outermost layer.

The variables �̄� 𝑗𝑁 and ΦΦΦ
𝑗

𝑁 are the eigenvalues and the corresponding eigenvectors,
respectively. For this model the smallest eigenvalue �̄�1

𝑁 is the factor by which the
pressure 𝑝 (ext)

𝑁 has to be multiplied to bring the 𝑁-layered onion to its critical state.
The external pressure 𝑝 (ext)

𝑁 is required as perturbation load in the eigenvalue analysis
and must not necessarily have a physical meaning. It is defined as the critical pressure
of the newly added layer without the supporting layers underneath reading [99]

𝑝 (ext)
𝑁 =

2𝐸ℎ2√︁
3(1− 𝜈2) (𝑅 (0)

𝑁 )2

where 𝑅 (0)
𝑁 is the radius of the newly added layer. The choice of 𝑝 (ext)

𝑁 as critical
pressure of the layer is not based on necessity but provides information about the
effect of bedding due to the inner layers. An eigenvalue �̄�1

𝑁 ≤ 1 means that the
external pressure leading to buckling of the onion is smaller than the critical pressure
of the outermost layer. The growth limit of the onion is indicated by �̄�1

𝑁 = 0 meaning
that no external pressure is required to bring the onion to its critical state and that the
self-equilibrated stress state introduced by the vdW interactions is sufficient to cause
buckling.

Figure 25.11 (left) shows the results of the eigenvalue analysis for the different
parameter sets used in the continuum vdW model, see Table 25.1. For a low number
of layers �̄�1

𝑁 first increases to values far larger than 1. This indicates that the critical
pressure of the onion is larger than the critical pressure of the outermost layer, i.e. the
outermost layer is sufficiently supported by the layers underneath to prevent buckling.
After a certain number of layers is reached the inner layers still support the outermost
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layer but the supporting effect is reduced with every additional layer. An eigenvalue
�̄�1
𝑁 = 0 is not reached as the algebraic system describing the boundary value problem

becomes ill-conditioned (the stiffness matrix 𝐾𝐾𝐾
𝑁

approaches a singularity). The
maximum number of layers reached depends strongly on the LJ-parameters used
in the continuum vdW model. The largest onion obtained in the analysis has about
72 layers, which is close to experimental observations [77]. In Fig. 25.11 (right) an
example of a buckling mode is depicted, revealing that the outermost layers start to
buckle whereas the innermost layers remain almost unaffected. This is because only

Fig. 25.11: Lowest eigenvalue �̄�1
𝑁

versus the current number of layers 𝑁 forming the carbon onion
(left), where the different curves correspond to the different parameter sets used in the continuum
vdW model, see Table 25.1. The right figure shows an example of a buckling mode of a carbon
onion where only every second layer is shown.

the outermost layers of the onion are under compression, see Fig. 25.12, where the
number of layers under compression increases during the growth of the onion.

The continuum mechanics simulations of the growth process of carbon onions
show that the occurrence of a structural instability is a possible explanation for the
limited size of this kind of nanoparticles. The self-equilibrating stress state leading to

Fig. 25.12: Number of layers under compression (black) and tension (grey) for onions of different
sizes.
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this instability emerges due to accommodation of misfitting carbon layers during the
growth process and is introduced by the vdW interactions between the layers. The
obtained critical sizes of the onions are highly sensitive to the interlayer distances and
compressive constants used in the vdW model and, thus have a rather qualitative than
a quantitative character. Furthermore, some other effects, such as interlayer bonds or
other combinations of fullerens can lead to much larger layer numbers. Nevertheless,
the used models clearly indicate a growth limit of carbon onions and can serve as
basis for further investigations concerning the growth of such particles.

25.5 Conclusion

In this review paper an overview on methods and models for simulating the stability
behaviour of nanoparticles is provided. In particular the rather unclear situation
regarding “effective” structural mechanical properties, such as Young’s modulus,
Poisson’s ratio, and thickness of graphene layers is clarified.

In two examples the application of continuum mechanics concepts for studying the
stability behaviour of nanoparticles has been demonstrated and it is shown that such
carefully performed simulations can help in explaining and interpreting experimental
observations at the micro and nano level.

In this sense, it could be shown that the difference of the longitudinal Young’s
modulus of carbon fibres between compression and tension is caused by buckling of
the nanocrystallites forming the fibre when loaded in compression. Furthermore, the
appearance of an instability has been identified as a possible answer to the question
what limits the size of carbon onions.

Acknowledgements MH is grateful for financial support from the AUVA (Research funds of the
Austrian workers compensation board) and OEGK (Austrian Social Health Insurance Fund).

References

[1] Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear Elasticity of
Monolayer Graphene. Physical Review Letters 102:235,502

[2] Geim A (2009) Graphene: Status and prospects. Science 324:1530–1534
[3] Geim A, Novoselov K (2007) The rise of graphene. Nature Materials 6:183–191
[4] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, et al SD (2004) Electric

field effect in atomically thin carbon films. Science 306:666–669
[5] Zhang DB, Akatyeva E, Dumitrica T (2011) Bending Ultrathin Graphene at the

Margins of Continuum Mechanics. Physical Review Letters 106:255,503
[6] Loidl D, Peterlik H, Müller M, Riekel C, Paris O (2003) Elastic moduli of

nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffrac-
tion. Carbon 41:563–570



25 Continuum Mechanics Applied for Studying Instabilities in Nanoparticles 451

[7] Loidl D,Paris O,Burghammer M,Riekel C,Peterlik H (2005) Direct observation
of nanocrystallite buckling in carbon fibers under bending load. Physical Review
Letters 95:225,501

[8] Baughman R, Zakhidov A, de Heer W (2002) Carbon nanotubes – the route
toward applications. Science 297:787–792

[9] Iĳima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
[10] Pantano A, Parks D, Boyce M (2004) Mechanics of deformation of single- and

multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids
52:789–821

[11] Yakobson B, Brabec C, Bernholc J (1996) Nanomechanics of carbon tubes:
Instabilities beyond linear response. Physical Review Letters 76:2511–2514

[12] Kroto H, Heath J, O’Brien S, Curl R, Smalley R (1985) C60: Buckminster-
fullerene. Nature 318:162–163

[13] Tang A, Huang F (1995) Stability rules of icosahedral (Ih or I) fullerenes.
Chemical Physics Letters 247:494–501

[14] Banhart F, Ajayan P (1996) Carbon onions as nanoscopic pressure cells for
diamond formation. Nature 382:433–435

[15] Kroto H (1992) Carbon onions introduce new flavour to fullerene studies. Nature
359:670–671

[16] Ugarte D (1992) Curling and closure of graphitic networks under electron-beam
irradiation. Nature 359:707–709

[17] Ugarte D (1995) Onion-like graphitic particles. Carbon 33:989–993
[18] Macutkevic J, Seliuta D, Valusis G, Banys J, Kuzhir P, et al SM (2009) Dielectric

properties of onion-like carbon based polymer films: Experiment and modeling.
Solid State Sciences 11:1828–1832

[19] Stankovich S, Dikin D, Dommett G, Kohlhaas K, Zimney E, Stach E, Piner
RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature
442:282–286

[20] Poothanari MA, Pottathara YB, Thomas S (2019) Chapter 8 - carbon nanos-
tructures for electromagnetic shielding applications. In: Thomas S, Grohens Y,
Pottathara YB (eds) Industrial Applications of Nanomaterials, Micro and Nano
Technologies, Elsevier, pp 205–223

[21] Sakhaee-Pour A, Ahmadian M, Vafai A (2008) Applications of single-layered
graphene sheets as mass sensors and atomistic dust detectors. Solid State
Communications 145:168–172

[22] Sakhaee-Pour A, Ahmadian M, Vafai A (2008) Potential application of single-
layered graphene sheet as strain sensor. Solid State Communications 147:336–
340

[23] Berger C, Song Z, Li T, Li X, Ogbazghi A, Feng R, Dai Z, Marchenkov A,
Conrad E, First P, de Heer W (2004) Ultrathin epitaxial graphite: 2D electron
gas properties and a route toward graphene-based nanoelectronics. The Journal
of Physical Chemistry B 108:19,912–19,916

[24] Wu Y, Yu T, Shen Z (2010) Two-dimensional carbon nanostructures: Fundamen-
tal properties, synthesis, characterization, and potential applications. Journal of
Applied Physics 108:071,301



452 Melanie Todt, Markus A. Hartmann, and Franz G. Rammerstorfer

[25] Iĳima S (1980) Direct observation of the tetrahedral bonding in graphitized
carbon black by high resolution electron microscopy. Journal of Crystal Growth
50:675–683

[26] Chuvilin A, Kaiser U, Bichoutskaia E, Besley N, Khlobystov A (2010) Direct
transformation of graphene to fullerene. Nature Chemistry 2:450–453

[27] Los J, Pineau N, Chevrot G, Vignoles G, Leyssale J (2009) Formation of multi-
wall fullerenes from nanodiamonds studied by atomistic simulations. Physical
Review B 80:155,420

[28] Hartmann MA, Todt M, Rammerstorfer FG, Fischer FD, Paris O (2013) Elastic
properties of graphene obtained by computational mechanical tests. European
Physical Society Letters 103:68,004

[29] Todt M, Toth F, Hartmann M, Holec D, Cordill M, Fischer F, Rammerstorfer
F (2014) Computational simulation of instability phenomena in nanoparticles
and nanofilms. Computational Technology Reviews 10:89–119

[30] Todt M, Rammerstorfer FG, Paris O, Fischer FD (2010) Nanomechanical studies
of the compressive behavior of carbon fibers. Journal of Material Science
45:6845–6848

[31] Todt M, Bitsche RD, Hartmann MA, Fischer FD, Rammerstorfer FG (2014)
Growth limit of carbon onions - A continuum mechanical study. International
Journal of Solids and Structures 51:706– – 715

[32] Schwarzbart M, Steindl A (2013) Buckling of a supported annular plate with a
non-euclidean metric. In: Altenbach H, Morozov NF (eds) Surface Effects in
Solid Mechanics: Advanced Structured Materials 30, Springer-Verlag, Berlin
Heidelberg

[33] Shima H (2012) Buckling of carbon nanotubes: A state of the art review.
Materials 5:47–84

[34] Annin BD, Baimova YA, Mulyukov RR (2020) Mechanical properties, stability,
and buckling of graphene sheets and carbon nanotubes (review). Journal of
Applied Mechanics and Technical Physics 61:834–846

[35] Dion M, Rydberg H, Schröder E, Langreth D, Lundqvist B (2004) Van der Waals
density functional for general geometries. Physical Review Letters 92:246,401

[36] Grimme S (2004) Accurate description of van der Waals complexes by density
functional theory including emprical conditions. Computational Chemistry
25:1463–1473

[37] Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Physical Review
136:B864–B871

[38] Kohn W, Sham LJ (1965) Self-consistent equations including exchange and
correlation effects. Physical Review 140:A1133–A1138

[39] Landau DP, Binder K (2014) A Guide to Monte-Carlo Simulations in Statistical
Physics. Cambridge University Press

[40] Tersoff J (1988) Empirical Interatomic Potential for Carbon, with Applications
to Amorphous Carbon. Physical Review Letters 61:2879

[41] Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating
the chemical vapor deposition of diamond films. Physical Review B 42:9458



25 Continuum Mechanics Applied for Studying Instabilities in Nanoparticles 453

[42] Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002)
A second-generation reactive empirical bond order (REBO) potential energy
expression for hydrocarbons. Journal of Physics: Condensed Matter 14:783

[43] Sun C, Liu K (2008) Combined torsional buckling of multi-walled carbon
nanotubes coupling with axial loading and radial pressures. International Journal
of Solids and Structures 45:2128–2139

[44] Yao X, Han Q, Xin H (2008) Bending buckling behaviors of single- and multi-
walled carbon nanotubes. Computationa Material Science 43:579–590

[45] Li C, Chou T (2003) A structural mechanics approach for the analysis of carbon
nanotubes. International Journal of Solids and Structures 40:2487–2499

[46] Sakhaee-Pour A (2009) Elastic properties of single-layered graphene sheet.
Solid State Communications 149:91–95

[47] Ansari R, Rouhi H (2012) Analytical treatment of the free vibration of single-
walled carbon nanotubes based on the nonlocal flugge shell theory. Journal of
Engineering Materials and Technology 134:011,008

[48] Arash B, Wang Q (2012) A review on the application of nonlocal elastic models
in modeling of carbon nanotubes and graphenes. Computational Materials
Science 51:303–313

[49] Chang T (2010) A molecular based anisotropic shell model for single-walled
carbon nanotubes. Journal of the Mechanics and Physics of Solids 58:1422–
1433

[50] Wu J, Hwang K, Huang Y (2008) An atomistic-based finite-deformation shell
theory for single-wall carbon nanotubes. Journal of the Mechanics and Physics
of Solids 56:279–292

[51] Wu J, Peng J, Hwang K, Song J, Huang Y (2008) The intrinsic stiffness of
single-wall carbon nanotubes. Mechanics Research Communications 35:2–9

[52] Xin Z, Jianjun Z, Zhong-can Q (2000) Strain energy and Young’s modulus of
single-wall carbon nanotubes calculated from electronic energy-band theory.
Physical Review B 62:13,692–13,696

[53] Lee C, Wei X, Kysar J, Hone J (2008) Measurement of the elastic properties
and intrinsic strength of monolayer graphene. Science 321:385–388

[54] Zhang P, Huang Y, Geubelle P, Klein P, Hwang K (2002) The elastic modulus of
single-wall carbon nanotubes: a continuum analysis incorporating interatomic
potentials. International Journal of Solids and Structures 39:3893–3906

[55] Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall
carbon nanotubes. Physical Review B 74:245,413

[56] Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon Nanostructures.
Critical Reviews in Solid State and Materials Sciences 27:227

[57] Holec D, Hartmann MA, Fischer FD, Rammerstorfer FG, Mayrhofer PH, Paris
O (2010) Curvature-induced excess surface energy of fullerenes: Density func-
tional theory and Monte Carlo simulations. Physical Review B 81:235,403

[58] McDonald I (1972) NpT-ensemble Monte Carlo calculations for binary liquid
mixtures. Molecular Physics 23(1):41–58



454 Melanie Todt, Markus A. Hartmann, and Franz G. Rammerstorfer

[59] Kalosakas G, Lathiotakis NN, Galiotis C, Papagelis K (2013) In-plane
force fields and elastic properties of graphene. Journal of Applied Physics
113(13):134,307

[60] Rammerstorfer F, Daxner T (2009) Berechnungs- und Design-Konzepte für den
Leichtbau. In: Degischer HP, Lüftl S (eds) Leichtbau, Wiley-VCH, pp 14–49

[61] Kang JW, Lee S (2013) Molecular dynamics study on the bending rigidity of
graphene nanoribbons. Computational Materials Science 74:107–113

[62] Kysar JW (2008) Direct comparison between experiments and computations
at the atomic length scale: a case study of graphene. Scientific Modeling and
Simulation SMNS 15:143–157

[63] Kelly B (1981) Physics of Graphite, Advanced Science Publishers, pp 79–80
[64] Lu W, Liu B, Wu J, Xiao J, Hwang K, et al SF (2009) Continuum modeling of

van der Waals interactions between carbon nanotube walls. Applied Physics
Letters 94:101,917

[65] Zhang H, Wang L, Wang J (2007) Computer simulation of buckling behavior
of double-walled carbon nanotubes with abnormal interlayer distances. Com-
putational Materials Science 39:664–672

[66] London F (1930) Zur Theorie und Systematik der Molekularkräfte. Zeitschrift
für Physik 63:245–279

[67] Hamaker H (1937) The London–van der Waals attraction between spherical
particles. Physica IV 10:1058–1072

[68] Todt M, Rammerstorfer FG, Fischer FD, Mayrhofer PH, Holec D, Hartmann
MA (2011) Continuum modeling of van der Waals interactions between carbon
onion layers. Carbon 49:1620–1627

[69] Fischer F, Waitz T, Vollath D, Simha N (2008) On the role of surface energy
and surface stress in phase-transforming nanoparticles. Progress in Materials
Science 53:481–527

[70] Hawthorne H (1993) On non-Hookean behavior of carbon fibers in bending.
Journal of Material Science 28:2531–2535

[71] Paris O, Peterlik H (2009) The structure of carbon fibres. In: Eichhorn S, Hearle
J, Jaffe M, Kikutani T (eds) Handbook of textile fibre structure, vol 2, Woodhead
Publishing Limited, Cambridge, UK

[72] Oya N, Johnson D (2001) Longitudinal compressive behaviour and microstruc-
ture of PAN-based carbon fibres. Carbon 39:635–645

[73] Nakatani M,Shioya M,Yamashita J (1999) Axial compressive fracture of carbon
fibers. Carbon 37:601–608

[74] Dobb M, Guo H, Johnson D, Park C (1995) Structure-compressional property
relations in carbon fibres. Carbon 33:1553–1559

[75] Telling R, Ewels C, El-Barbary A, Heggie M (2003) Wigner defects bridge the
graphite gap. Nature Materials 2:333–337

[76] Byrne E,Letertre A,McCarthy M,Curtin W,Xia Z (2010) Optimizing load trans-
fer in multiwall nanotubes through interwall coupling: Theory and simulation.
Acta Materialia 58:6324–6333



25 Continuum Mechanics Applied for Studying Instabilities in Nanoparticles 455

[77] Banhart F, Füller T, Redlich P, Ajayan P (1997) The formation, annealing and
self-compression of carbon onions under electron irradiation. Chemical Physics
Letters 269:349–355

[78] Joly-Pottuz L, Matsumoto N, Kinoshita H, Vacher B, Belin M, et al GM (2008)
Diamond-derived carbon onions as lubricant additives. Tribology International
41:69–78

[79] Tomita S, Burian A, Dore J, LeBolloch D, Fujii M, Hayashi S (2002) Diamond
nanoparticles to carbon onions transformation: X-ray diffraction studies. Carbon
40:1469–1474

[80] Blank V, Denisov V, Kirichenko A, Kulnitskiy B, Martushov SY, Mavrin B,
Perezhogin I (2007) High pressure transformation of single-crystal graphite to
form molecular carbon onions. Nanotechnology 18:345,601

[81] Du AB, Liu XG, Fu DJ, Han PD, Xu BS (2007) Onion-like fullerenes synthesis
from coal. Fuel 86:294–298

[82] Fu D, Liu X, Lin X, Li T, Jia H, Xu B (2007) Synthesis of encapsulating and
hollow onion-like fullerenes from coal. Journal of Material Science 42:3805–
3809

[83] Zhao M, Song H, Chen X, Lian W (2007) Large-scale synthesis of onion-
like carbon nanoparticles by carbonization of phenolic resin. Acta Materialia
55:6144–6150

[84] Hirata A, Igarashi M, Kaito T (2004) Study on solid lubricant properties of
carbon onions produced by heat treatment of diamond clusters or particles.
Tribology International 37:899–905

[85] Wesolowski P, Lyutovich Y, Banhart F, Carstanjen H, Kronmüller H (1997)
Formation of diamond in carbon onions under MeV ion irradiation. Applied
Physics Letters 71:1948–1950

[86] Zwanger M, Banhart F, Seeger A (1996) Formation and decay of spherical
concentric-shell carbon clusters. Journal of Crystal Growth 163:445–454

[87] Banhart F (1997) The transformation of graphitic onions to diamond under
electron irradiation. Journal of Applied Physics 81:3440–3445

[88] RedlichP,Banhart F,Lyutovich Y,Ajayan P (1998) EELS study of the irradiation-
induced compression of carbon onions and their transformation to diamond.
Carbon 36:561–563

[89] Klein D, Seitz W, Schmalz T (1986) Icosahedral symmetry carbon cage
molecules. Nature 323:703–706

[90] Tang A, Huang F (1995) Theoretical study of multishell fullerenes. Physical
Review B 52:17,435–17,438

[91] Terrones H, Terrones M (1997) The transformation of polyhedral particles into
graphitic onions. Journal of the Physics and Chemistry of Solids 58:1789–1796

[92] Wang B,Wang H,Chang J,Tso H,Chou Y (2001) More spherical large fullerenes
and multi-layer fullerene cages. Journal of Molecular Structure 540:171–176

[93] Drmota M, Scheidl R, Troger H, Weinmüller E (1987) On the imperfection
sensitivity of complete spherical shells. Computational Mechanics 2:63–74



456 Melanie Todt, Markus A. Hartmann, and Franz G. Rammerstorfer

[94] Sato M, Wadee M, Iiboshi K, Sekizawa T, Shima H (2012) Buckling patterns of
complete spherical shells filled with an elastic medium under external pressure.
International Journal of Mechanical Sciences 59:22–30

[95] Todt M, Rammerstorfer FG, Hartmann MA (2014) Continuum shell models for
closded cage carbon nanopraticles. In: Pietraszkiewicz W, Górski J (eds) Shell
Structures: Theory and Applications, Taylor & Francis Group, London, UK, pp
149–152

[96] Füller T, Banhart F (1996) In situ observation of the formation and stability of
single fullerene molecules under electron irradiation. Chemical Physics Letters
254:372–378

[97] Voytekhovsky Y (2003) A formula to estimate the size of a fullerene. Acta
Crystallographica A 59:193–194

[98] Todt M, Rammerstorfer FG, Hartmann MA, Paris O, Fischer FD (2011) Shell-
models for multi-layer carbon nano-particles. In: Altenbach H, Eremeyev V
(eds) Advanced Structured Materials: Shell-like Structures, Springer-Verlag,
Berlin, pp 585–602

[99] Pflüger A (1975) Stabilitätsprobleme der Elastostatik. Springer-Verlag, Berlin



Chapter 26
Spectral Domain Approach for the Numerical
Modeling of Elastodynamic Fields in Layered
Structures

Thomas Voglhuber-Brunnmaier and Bernhard Jakoby

Abstract We review the concept and utilization of a semi-numerical method based
on Stroh’s formalism for modeling elastodynamic fields in stratified (layered) media
and demonstrate its application to selected problems comprising linear piezoelectric,
elastic, and liquid domains thus illustrating its versatility. Particular features of
this method, which is based on the Boundary Element Method (BEM) are the
representation of the considered fields in a spectral domain obtained by implementing
a spatial Fourier transform in two dimensions. By doing so,Green’s functions required
for the BEM model can be established for layered structures fully considering the
interface discontinuities associated with such geometries such that these interfaces
between the layers do not have to be discretized anymore.

26.1 Introduction

In this contribution, we review a method related to the well-known Boundary Element
Methods (BEMs), e.g., treated in [1, 2], where a spectral representation utilizing a
spatial Fourier transform is employed. Generally, the Boundary Element Method in
comparison to the Finite Element or the Finite Difference Methods requires only
discretization of boundaries rather than volumes (see Fig. 26.1). This significant
simplification comes at the cost of the construction of Green’s functions describing
the fields to a point excitation. Such Green’s functions are particularly simple in
uniform regions but can be involved if media boundaries are present. In classical
BEM the simulation domain is thus split into sub-domains featuring uniform media
each and the different sub-domains are then coupled imposing appropriate boundary
conditions. The method reviewed here (see also [3]) considers uniformity only in two
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Fig. 26.1: Discretizations using finite elements (left) and boundary elements (right).

spatial directions (which we will label 𝑥 and 𝑦), yet allows some material parameter
variation in a third direction (𝑧), where only piecewise constant material parameters
are required, in short, we are considering layered geometries. The effects of the layers
can be incorporated in the used Green’s functions such that the interfaces between
the layers need not be discretized. Compared to using Finite Element Methods, BEM
approaches also represent a distinct benefit when layered structures with high aspect
ratios are modeled1. This can be illustrated using the example of modeling resonant
fluid sensors for viscosity measurement, where this approach is very efficient. Here,
the fluid of density 𝜌 and dynamic viscosity 𝜂 to be characterized is brought in
contact with a surface of the sensor vibrating harmonically in-plane thus exciting
shear waves in the fluid, whose penetration depth depends on the viscosity of the fluid.
In particular, the amplitude decays according to exp(−|𝑧 |/𝛿) in the surface-normal
direction 𝑧 with 𝛿 denoting the characteristic penetration depth given by [5, 6]

𝛿 =

√
2𝜂
𝜌𝜔
. (26.1)

For instance, in the case of a conventional 330 μm thick quartz disk vibrating at
5 MHz in the so-called thickness-shear mode, the penetration depth 𝛿 becomes approx
250 nm when it is immersed in water (𝜌 = 1000 kg/m3, 𝜂 = 1 mPa s). In comparison
to the typical lateral dimensions of such a device (e.g., 12.7 mm diameter), the aspect
ratio associated with relevant changes of the variables (e.g., displacement) is therefore
approx. 50000, which is difficult to handle in a finite element implementation.

1 We note that special elements can be used to tackle this issue, see, e.g., [4]
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26.2 Modeling

26.2.1 Governing Equations

In the following, the governing equations of linear elasticity, electromagnetism, and
piezoelectricity are provided.

26.2.1.1 Linear Elastodynamics

The equations of elastodynamics are given by Newton’s second law of motion in
differential form and the elastic constitutive equations, which, in continuum form,
can be written as [7]

𝜌 �𝒖 = ∇ ·𝑻, 𝑻 = 𝒄 : 𝑺, 𝑺 = ∇s𝒖. (26.2)

The quantities 𝑻, 𝑺, and 𝒖 denote stress and strain tensor and the mechanical displace-
ment vector, respectively. Material constants are mass density 𝜌 and linear stiffness
tensor 𝒄. The operators ∇ · () and ∇s () denote divergence and symmetric gradient.
The double dot product indicates summation over pairs of indices.

26.2.1.2 Electrodynamics

Electrodynamics are governed by Maxwell’s Eq. (26.3) and the constitutive Eq. (26.4)

∇ ·𝑫 = 𝜚, ∇×𝑬 = −𝜕𝑩
𝜕𝑡
, ∇ · 𝑩 = 0, ∇×𝑯 = 𝑱 + 𝜕𝑫

𝜕𝑡
, (26.3)

𝑫 = 𝜺 ·𝑬, 𝑩 = 𝝁 ·𝑯. (26.4)

The vector field quantities 𝑫,𝑬,𝑩,𝑯,and 𝑱 denote electric displacement, electric
field, magnetic flux density, magnetic field, and current density, respectively. For
lower frequencies, the electric field 𝑬 can often be considered as being approximately
curl-free (i.e., no significant fields 𝜕𝑩/𝜕𝑡 are present) such that it can be expressed in
terms of the gradient of a scalar potential 𝜑 (i.e., the quasistatic approximation [8])

𝑬 = −∇𝜑. (26.5)

26.2.1.3 Piezoelectric Media

In piezoelectric media, mechanical stresses and deformations are linked to electric
field and polarization, which, for the linear case, can be represented by expanding
the constitutive equations of electrostatics and elasticity by coupling them in terms
of a third-rank piezoelectric stress tensor 𝒆 [7]
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𝑻 = 𝒄𝐸 : 𝑺− 𝒆 : 𝑬, 𝑫 = 𝒆 : 𝑺+𝜺𝑆 ·𝑬. (26.6)

The superscripts 𝐸 and 𝑆 denote that the respective quantity is measured under a
constant electric field or constant strain. By combining Eqs. (26.2), (26.5), and (26.6)
and considering no free charges 𝜚 and current densities 𝑱 present within the material,
the complete set of equations describing the dynamics of a piezoelectric element is
obtained as

𝜌 �𝒖 = ∇ ·
(
𝒄𝐸 : ∇s𝒖

)
+∇ · (𝒆 : ∇𝜑) , (26.7)

0 = ∇ · (𝒆 : ∇s𝒖) −∇ ·
(
𝜺𝑆 · ∇𝜑

)
.

These are four coupled partial differential equations (PDE) of second order in 𝒖
and 𝜑. In the following, the most general examples will refer to problems involving
piezoelectric media, where, as a special case, also an introductory electrostatic
problem is considered. In the following treatment, we will thus in general consider
the case of piezoelectric media if not noted otherwise.

26.2.2 Dimensional Analysis and Scaling

26.2.2.1 Non-Dimensionalization

The approach most often employed to enhance numerical stability is to introduce
non-dimensional variables, e.g.,

𝒖 = 𝑢0𝒖
′, 𝜑 = 𝜑0𝜑

′, 𝜌 = 𝜌0𝜌
′, 𝒄 = 𝑐0𝒄

′,𝜺 = 𝜀0𝜺
′,∇ = ∇′/𝐿0,∇s = ∇′

s/𝐿0, 𝑡 = 𝑡0𝑡
′,

(26.8)
where the primed quantities are dimensionless variables and the scales 𝑐0, 𝜀0, and
𝑒0 are chosen such that the matrices in Eq. 26.17 are of similar magnitude. When
moving into the spectral domain, the associated scaled wavenumbers (spatial-spectral
variables) 𝑘 ′𝑥 = 𝑘𝑥𝐿0 and 𝑘 ′𝑦 = 𝑘𝑦𝐿0, as well as the scaled angular frequency (temporal-
spectral variable) 𝜔′ = 𝜔𝑡0 should be close to 1. It is, therefore, suitable to choose
𝐿0 ≈ 𝜆/2𝜋 where 𝜆 corresponds to the expected dominant wavelength, and 𝑡0 = 1/𝜔.
By furthermore demanding the following relations

𝑒2
0

𝑐0𝜀0
= 1,

𝜀0𝜑0
𝑒0𝑢0

= 1,
𝐿2

0𝜌0

𝑡20𝑐0
= 1, (26.9)

the resulting equations are of the same form as Eq. (26.7)

𝜌′
𝜕2𝒖′

𝜕𝑡′2
= ∇′ ·

(
𝒄′𝐸 : ∇′

s𝒖
′
)
+∇′ · (𝒆′ : ∇′𝜑′) , (26.10)

0 = ∇′ · (𝒆′ : ∇′
s𝒖

′) −∇′ ·
(
𝜺′𝑆 · ∇′𝜑′

)
.
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Considering the usual range of parameters, a reasonable choice for the scaling factors
for instance is

𝑢0 = 10−12 m, 𝑐0 = 1012 N/m2, 𝑒0 = 1, 𝜑0 = 1V, 𝜀0 = 10−12 F/m, (26.11)

𝜌0 = 104 kg/m3, 𝐿0 = 10−2 m, 𝑡0 = 10−6 s.

26.2.2.2 Scaling of Physical Units

Numerical stability can also be enhanced by scaling the physical base units by
attaching an arbitrary number to the required four base SI-units kilogram (𝑠kg), meter
(𝑠m), second (𝑠s), and Ampere (𝑠A). All physical quantities enter the computation
multiplied by these numbers. For instance, if a voltage of 1V is prescribed at an
electrode, one sets the potential to 𝜑′ = 1𝑉𝑠kg𝑠

2
m𝑠

−1
A 𝑠−3

s . After the computation was
performed, the results are scaled back. The calculated displacement 𝒖 due to an
electrode potential is obtained by 𝒖 = 𝒖′/𝑠m. This approach features four degrees of
freedom such as the non-dimensionalization above, but the adjustment of the scales is
not as straightforward. However, this method has the valuable property of disclosing
unit errors in the computation code very conveniently, because if the four scales are
varied, the back-scaled computation results must not change.

26.2.3 Conversion to Ordinary Differential Equations

The PDE in Eq. (26.10) are reduced to a system of ordinary differential equations
(ODE) by performing a partial Fourier transform (i =

√
−1) with the transformation

pair in Eqs. (26.12) and (26.13)

𝑓 (𝑘𝑥 , 𝑘𝑦 , 𝑧,𝜔) =
∞

−∞
𝑓 (𝑥, 𝑦, 𝑧, 𝑡)𝑒−i(𝜔𝑡−𝑘𝑥 𝑥−𝑘𝑦 𝑦)𝑑𝑥𝑑𝑦𝑑𝑡, (26.12)

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = 1
(2𝜋)3

∞

−∞
𝑓 (𝑘𝑥 , 𝑘𝑦 , 𝑧,𝜔)𝑒i(𝜔𝑡−𝑘𝑥 𝑥−𝑘𝑦 𝑦)𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝜔. (26.13)

Upon Fourier transform from {𝑥, 𝑦, 𝑧, 𝑡} → {𝑘𝑥 , 𝑘𝑦 , 𝑧,𝜔}, differential operators can
be replaced using the substitutions

𝜕/𝜕𝑥→−i𝑘𝑥 , 𝜕/𝜕𝑦→−i𝑘𝑦 , and 𝜕/𝜕𝑡→ i𝜔. (26.14)

Application of this transform to the governing equations for fields in piezoelectric
media, in a straightforward manner thus yields a system of ODEs of order two and
dimension four with matrices 𝑷 and 𝑸, which are not specified in more detail at this
point:
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𝜕2�̃�
′

𝜕𝑧2
= 𝑷 · 𝜕�̃�

′

𝜕𝑧
+𝑸 · �̃�′ with �̃�

′
=

[
�̃�
�̃�

]
. (26.15)

By applying a suitable transform, the second derivatives can be replaced using
elements of the stress tensor and the dielectric displacement associated with the
normal direction 𝑧 yielding a system of dimension 8×8

𝜕�̃�

𝜕𝑧
(𝑘𝑥 , 𝑘𝑦 , 𝑧,𝜔) = 𝑨(𝑘𝑥 , 𝑘𝑦 ,𝜔) · �̃�(𝑘𝑥 , 𝑘𝑦 , 𝑧,𝜔) (26.16)

with
�̃� = [�̃�𝑥 , �̃�𝑦 , �̃�𝑧 , 𝜑,𝑇𝑥𝑧 ,𝑇𝑦𝑧 ,𝑇𝑧𝑧 , �̃�𝑧]T.

As it turns out, the field variables gathered in the vector �̃� exactly represent the field
components that are subject to interface conditions when crossing interfaces between
regions filled with different materials with a surface normal oriented in 𝑧 direction
(the so-called axis of stratification). This becomes useful when considering layered
structures. In the following, the matrix 𝑨 is given by

𝑨(𝑘𝑥 , 𝑘𝑦 ,𝜔) =
[

𝑷−1
A 𝑷T

B 𝑷−1
A

𝑷B𝑷
−1
A 𝑷T

B + 𝑷C 𝑷B𝑷
−1
A

]
, (26.17)

𝑷B = i𝑘𝑥𝑷B𝑥 + i𝑘𝑦𝑷B𝑦 ,

𝑷C = 𝑘2
𝑥𝑷C𝑥𝑥 + 𝑘𝑥 𝑘𝑦 (𝑷C𝑥𝑦 + 𝑷T

C𝑥𝑦) + 𝑘2
𝑦𝑷C𝑦𝑦 −𝜔2𝑷C𝑡𝑡 ,

𝑷C𝑡𝑡 = diag ( [𝜌, 𝜌, 𝜌,0]) ,

𝑷A =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐55 𝑐45 𝑐35 𝑒35
𝑐45 𝑐44 𝑐34 𝑒34
𝑐35 𝑐34 𝑐33 𝑒33
𝑒35 𝑒34 𝑒33 −𝜀33

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑷B𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐15 𝑐14 𝑐13 𝑒31
𝑐56 𝑐46 𝑐36 𝑒36
𝑐55 𝑐45 𝑐35 𝑒35
𝑒15 𝑒14 𝑒13 −𝜀13

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝑷B𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐56 𝑐46 𝑐36 𝑒36
𝑐25 𝑐24 𝑐23 𝑒32
𝑐45 𝑐44 𝑐34 𝑒34
𝑒25 𝑒24 𝑒23 −𝜀23

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑷C𝑥𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐11 𝑐16 𝑐15 𝑒11
𝑐16 𝑐66 𝑐56 𝑒16
𝑐15 𝑐56 𝑐55 𝑒15
𝑒11 𝑒16 𝑒15 −𝜀11

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝑷C𝑥𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐16 𝑐12 𝑐14 𝑒21
𝑐66 𝑐26 𝑐46 𝑒26
𝑐56 𝑐25 𝑐45 𝑒25
𝑒16 𝑒12 𝑒14 −𝜀12

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑷C𝑦𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑐66 𝑐26 𝑐46 𝑒26
𝑐26 𝑐22 𝑐24 𝑒22
𝑐46 𝑐24 𝑐44 𝑒24
𝑒26 𝑒22 𝑒24 −𝜀22

⎤⎥⎥⎥⎥⎥⎥⎦
,

which is also particularly useful when considering the fields within a single layer of
a layered structure (again assuming 𝑧 to be the axis of stratification). Considering
layered media of this type, all material parameters do not show any dependence
with respect to 𝑥 and 𝑦 and, within such a layer, also not with respect to 𝑧. The
independence with respect to 𝑥 and 𝑦 particularly simplifies the problem as the
material parameters can then be treated as constant when performing the Fourier
transform. By considering usual material parameter ranges and field amplitudes, it
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is apparent that they differ by up to 20 orders of magnitudes. Appropriate scaling as
outlined in Sec. 26.2.2 is therefore necessary to avoid numerical instability.

26.2.4 Equation System and Green’s Function

The solution of the ODE system in Eq. (26.16) can be composed by the eigenvalues
𝜆𝑖 and the eigenvectors 𝒗𝑖 . This becomes obvious when a solution ansatz featuring
a 𝑧-dependence proportional to exp (𝜆𝑧) is made, which directly yields a matrix
eigenproblem. Using the matrix 𝑿 (𝑧) to denote the fundamental matrix, we may thus
write for the complete solution

�̃�(𝑧) =
8∑
𝑖=1

𝒗𝑖𝑒
𝜆𝑖 𝑧𝑐𝑖 = 𝑿 (𝑧) · 𝒄 with 𝑿 (𝑧) = 𝑽 ·diag( [𝑒𝜆1𝑧 , . . . , 𝑒𝜆8𝑧]), (26.18)

which represents a superposition of all possible solutions associated with the eight
eigenvalues and eigenvectors with thus far unknown expansion coefficients 𝑐𝑖 . For
layered problems, this general solution can be established for each layer and the
expansion coefficients can be determined from interface and boundary conditions. If
the layered structure is bounded by a half-space, radiative boundary conditions, e.g.,
for infinite air half-spaces above and below the layered structure, can be established
by setting up a reduced fundamental matrix of dimension 8×4 which incorporates
only the outward decaying field components (i.e., the ones featuring an outward
decaying Poynting vector). Doing so, we may write

�̃�(𝑧) =
4∑
𝑖=1

𝒗′𝑖𝑒
𝜆′𝑖 𝑧𝑐𝑖 = 𝑿rad (𝑧) · 𝒄rad (26.19)

with
𝑿rad (𝑧) = 𝑽′ ·diag( [𝑒𝜆′1𝑧 , 𝑒𝜆′2𝑧 , 𝑒𝜆′3𝑧 , 𝑒𝜆′4𝑧]).

For multilayered material systems consisting of 𝑁 layers, the interface conditions
are

𝑿𝑛+1 (−𝑑𝑛+1/2) · 𝒄𝑛+1 = 𝑿𝑛 (𝑑𝑛/2) · 𝒄𝑛 +Δ𝝍𝑛 ∀𝑛 = 0, . . . , 𝑁 −1. (26.20)

This condition enforces continuity of the field components represented in �̃�(𝑧) at
each interface if the term Δ𝝍𝑖 vanishes. The latter represents a "source term" that
can account for discontinuities due to sources embedded at the interfaces (see the
discussion below). Note that in the above representation, local coordinate systems
were used, where 𝑧𝑖 = 0 is defined at the center of the respective layer 𝑖. In the case
of infinite half-spaces, the local coordinate origin is defined at the interface itself.
These local coordinates were introduced, since using a global thickness coordinate
would result in strongly differing magnitudes of the fundamental matrices, and are
therefore numerically problematic.
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In Eq. (26.20), the term Δ𝝍𝑖 represents a "source term" causing a discontinuity
of the field’s components represented in �̃� across the interface. Of particular phys-
ical relevance is the discontinuity of the mechanical stresses contained in �̃� (i.e.,
𝑇𝑥𝑧 ,𝑇𝑦𝑧 ,𝑇𝑧𝑧), which are equivalent to surface force densities ( 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 , also known as
tractions) acting at the interface. Similarly, a discontinuity in the vertical component
of the dielectric displacement �̃�𝑧 is equivalent to an electrical surface charge density
�̃� located at the interface. For the investigated applications, the piezoelectric elements
are excited by time-harmonic currents applied to conductive paths at the faces of
the piezoelectric material, i.e., no interfacial stress sources are considered between
the layers. As an example, a typical problem featuring a single piezoelectric layer
with an electrically grounded and mechanically fixed underside and electrodes on
the topside (adjacent to a halfspace 𝑧 > 𝑑2 filled with air) is shown in Fig. 26.2. To
solve for the fields associated with this problem, the matrices describing the spectral
domain fields in the piezoelectric layer and the half-space above are established as
discussed before and the interface conditions are enforced by setting up the following
matrix equation:

[
�̃�

rad
1 (0) −�̃�2 (𝑑2/2)
0 �̃�

BC
2 (−𝑑2/2)

] [
𝒄rad

1
𝒄2

]
= −

[
Δ�̃�
0

]
. (26.21)

The source terms at the air/piezo interface are collected in Δ�̃� and the boundary
conditions at the lower face of the piezoelectric layer (at 𝑧 = 0) are implemented by
selecting the components which should be identical zero (i.e., the first 4 elements of
�̃�2, see Eq. (26.16)), i.e.,

�̃�
BC
2 = �̃�2 [1 . . .4,1 . . .8], (26.22)

which means that �̃�BC
2 represents the upper half (first four rows) of the matrix �̃�2.

Although the air half-space could be well replaced by a mechanical zero stress condi-
tion at low frequencies, it has to be considered for the electrical field which extends

Fig. 26.2: Layer of piezoelectric material with air-halfspace above. At the air/piezo interface the
fields are continuous, except for the jump in dielectric displacement caused by a point charge.
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largely into the surrounding air. Solving Eqs. (26.21) for surface displacements and
potential at the top side of material (II) yields therefore the dyadic spectral Green’s
functions relating the surface displacements 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 and the potential 𝜑 to the
surface force vector [ 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧]𝑇 and the charge �̃� at the piezo/air interface (which
excite these responses) as

⎡⎢⎢⎢⎢⎢⎢⎣

�̃�𝑥
�̃�𝑦
�̃�𝑧
�̃�

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

�̃�𝑢𝑥; 𝑓𝑥 �̃�𝑢𝑥; 𝑓 𝑦 �̃�𝑢𝑥; 𝑓 𝑧 �̃�𝑢𝑥;𝜚
�̃�𝑢𝑦; 𝑓 𝑥 �̃�𝑢𝑦; 𝑓 𝑦 �̃�𝑢𝑦; 𝑓 𝑧 �̃�𝑢𝑦;𝜚
�̃�𝑢𝑧; 𝑓 𝑥 �̃�𝑢𝑧; 𝑓 𝑦 �̃�𝑢𝑧; 𝑓 𝑧 �̃�𝑢𝑧;𝜚
�̃�𝜑; 𝑓 𝑥 �̃�𝜑; 𝑓 𝑦 �̃�𝜑; 𝑓 𝑧 �̃�𝜑;𝜚

⎤⎥⎥⎥⎥⎥⎥⎦
·
⎡⎢⎢⎢⎢⎢⎢⎣

𝑓𝑥
𝑓𝑦
𝑓𝑧
�̃�

⎤⎥⎥⎥⎥⎥⎥⎦
. (26.23)

When considering piezoelectric devices such as sensors, most often no external time-
harmonic forces but only electrical currents are applied. Therefore, only the Green’s
functions for surface charges have to be considered:

⎡⎢⎢⎢⎢⎢⎢⎣

�̃�𝑢𝑥;𝜚
�̃�𝑢𝑦;𝜚
�̃�𝑢𝑧;𝜚
�̃�𝜑;𝜚

⎤⎥⎥⎥⎥⎥⎥⎦
= �̃�2 (𝑑2/2) · 𝒄2. (26.24)

To calculate these (and other) Green’s functions, the source vector Δ�̃� (appearing in
Eq. (26.21)) in this case is set to

Δ�̃� = [0,0,0,0,0,0,0,1]T, (26.25)

where the 1 represents a constant spectral surface charge over all wavenumbers which
corresponds to a unit point charge in the spatial domain, which, in turn, is the proper
excitation term for these Green’s functions.

26.2.5 Electrical Field Calculation

In the time-harmonic spatial domain, the electric surface charge and the electric
potential are related by the convolution integral

𝜑(𝑥, 𝑦, 𝑑2/2,𝜔) = 𝐺𝜑;𝜚 (𝑥− 𝑥′, 𝑦− 𝑦′,𝜔)𝜚(𝑥′, 𝑦′, 𝑑2/2,𝜔)𝑑𝑥′𝑑𝑦′, (26.26)

since the lateral spatial uniformity of the structure (i.e., the independence of the
material parameters from 𝑥 and 𝑦) imposes a lateral translation invariance. This
means that if a particular source distribution is shifted laterally by some distance, the
associated fields generated by these sources shift by the same distance. If we consider
the case that some portions of an interface (between layers and/or half-spaces) are
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covered by conducting electrodes2, the electric potential at each of these electrodes
will be constant and surface charges will only appear in electrode-covered regions.
By applying voltages to the electrodes (e.g., to generate mechanical deformations in
the structure by virtue of piezoelectricity) the potential at the electrodes is prescribed
and the electrode charge has to be determined. The relation between potential and
charge can be described by the above convolution integral. Thanks to the properties
of the Fourier transform, in the spectral domain the convolution is replaced by a
simple multiplication

�̃�(𝑘𝑥 , 𝑘𝑦 , 𝑑2/2,𝜔) = �̃�𝜑;𝜚 (𝑘𝑥 , 𝑘𝑦 ,𝜔) �̃�(𝑘𝑥 , 𝑘𝑦 , 𝑑2/2,𝜔), (26.27)

which is exploited for the electrostatic field computation by the so-called method of
moments as will be described below.

26.2.5.1 Method of Moments

In electrodynamics, a common approach for solving field problems is using the
methods of mean weighted residuals, which is also known by the term method of
moments (MoM) [9]. Here, the charge distribution is approximated by a set of trial
(or basis) functions 𝐵𝑖 (𝑥, 𝑦) with corresponding Fourier transform �̃�𝑖 (𝑘𝑥 , 𝑘𝑦):

𝜚(𝑥, 𝑦) =
∞∑
𝑖=0
𝑎𝑖𝐵𝑖 (𝑥, 𝑦) � � �̃�(𝑘𝑥 , 𝑘𝑦) =

∞∑
𝑖=0
𝑎𝑖 �̃�𝑖 (𝑘𝑥 , 𝑘𝑦). (26.28)

The expansion coefficients 𝑎𝑖 are determined by the potentials prescribed at the
electrodes. The derivation of Green’s function and therefore the application of the
MoM is particularly efficient in the spectral domain. Starting point is therefore the
inverse Fourier transform of Eq. (26.27) (omitting the arguments 𝑑2/2 and 𝜔 for
notational simplicity) and the expansion of the charges in Eq. (26.28) yielding

𝜑(𝑥, 𝑦) = 1
4𝜋2

∞∑
𝑖=0
𝑎𝑖

∞∫
−∞

∞∫
−∞

�̃�𝜑;𝜚 (𝑘𝑥 , 𝑘𝑦)�̃�𝑖 (𝑘𝑥 , 𝑘𝑦)𝑒−i(𝑘𝑥 𝑥+𝑘𝑦 𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 . (26.29)

As the expansion of the charge distribution is an approximation of the real
(unknown) charge distribution, the above potential cannot be expected to match
the required (prescribed) potential at the electrodes everywhere on the electrodes.
To fulfill these boundary conditions at least in an averaged sense, the equation is
therefore multiplied (weighted) by the functions 𝑇𝑗 (𝑥, 𝑦) (often also referred to as
test functions) and integrated with respect to 𝑥 and 𝑦. The resulting integrals over 𝑥
and 𝑦 on the right-hand side concern the test functions 𝑇𝑗 (𝑥, 𝑦) and the exponential
𝑒−i(𝑘𝑥 𝑥+𝑘𝑦 𝑦) which can be written as the conjugated Fourier transform of the testing

2 We adopt the approximation that these electrodes can be considered as infinitely thin, perfectly
conducting, and massless.
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functions3, yielding

∞∫
−∞

∞∫
−∞

𝑇𝑗 (𝑥, 𝑦)𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦

︸����������������������������︷︷����������������������������︸
𝑏 𝑗

=
∞∑
𝑖=0
𝑎𝑖

1
4𝜋2

∞∫
−∞

∞∫
−∞

�̃�𝜑;𝜚 (𝑘𝑥 , 𝑘𝑦)�̃�𝑖 (𝑘𝑥 , 𝑘𝑦)𝑇∗
𝑗 (𝑘𝑥 , 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

︸������������������������������������������������������������������︷︷������������������������������������������������������������������︸
𝑀𝑖 𝑗

.

(26.30)

Evaluating the integrals (which is straightforward as they run over the known
weighting and trial functions), a linear equation system is obtained which can be
solved for the expansion coefficients 𝑎𝑖 from which, in turn, the spatial charge
distribution 𝜚(𝑥, 𝑦) can be calculated using Eq. (26.28):

𝑏 𝑗 = 𝑀𝑖 𝑗𝑎𝑖 → 𝑎𝑖 =
(
𝑴−1

)
𝑖 𝑗
𝑏 𝑗 . (26.31)

The integrals in Eq. (26.30) may also be represented by inner product notation for
convenience:

� 𝑇𝑗𝜑�=
1

4𝜋2

∞∑
𝑖=0
𝑎𝑖 � �̃�𝜑;𝜚 �̃�𝑖𝑇

∗
𝑗 � . (26.32)

The Galerkin method and point-matching (collocation) are two common variations
of the method. Although the trial and weighting functions can be independently
chosen, in the so-called Galerkin method, due to advantages in terms of accuracy
and convergence [10] equal sets are chosen:

� 𝐵 𝑗𝜑�=
1

4𝜋2

∞∑
𝑖=0
𝑎𝑖 � �̃�𝜑;𝜚 �̃�𝑖 �̃�

∗
𝑗 � . (26.33)

In the point matching method, the potential 𝜑 is enforced to match the boundary
conditions at discrete points 𝑥 𝑗 and 𝑦 𝑗 only, i.e.,

𝜑(𝑥 𝑗 , 𝑦 𝑗 ) = 1
4𝜋2

∞∑
𝑖=0
𝑎𝑖 � �̃�𝜑;𝜚 �̃�𝑖𝑒

−i(𝑘𝑥 𝑥 𝑗+𝑘𝑦 𝑦 𝑗 ) � . (26.34)

Point-matching is known as being less accurate [10] on average but can be imple-
mented very efficiently using the fast Fourier transform (FFT). The calculation of
the 𝑴 matrix, requires two-dimensional infinite integrals, generally with a highly
oscillating kernel for which generally no closed-form representations are available
thus representing the major numerical cost of the method. For handling this problem,

3 The conjugate results from the minus sign in the exponential.
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several options can be considered, depending on properties of the Green’s function
and the computational domain. E.g., for periodic problems with periods 𝐿𝑥 and 𝐿𝑦 in
the lateral directions, the Fourier integral can be replaced by a Fourier series yielding
for the MoM:

1
𝐿𝑥𝐿𝑦

𝐿𝑥/2∫
−𝐿𝑥/2

𝐿𝑦/2∫
−𝐿𝑦/2

𝑇𝑗 (𝑥, 𝑦)𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦

︸�����������������������������������︷︷�����������������������������������︸
𝑏 𝑗

=
∞∑
𝑖=0
𝑎𝑖

∞∑
𝑚=−∞

∞∑
𝑛=−∞

�̃�𝜑;𝜚 (𝑘𝑚, 𝑘𝑛)�̃�𝑖 (𝑘𝑚, 𝑘𝑛)𝑇∗
𝑗 (𝑘𝑚, 𝑘𝑛)

︸���������������������������������������������������������︷︷���������������������������������������������������������︸
𝑀𝑖 𝑗

,

(26.35)

with 𝑘𝑚 = 2𝜋𝑚/𝐿𝑥 and 𝑘𝑛 = 2𝜋𝑛/𝐿𝑦 .
For the numerical implementation, the wavenumbers and the trial functions have

to be truncated. The best choices for the trial functions are functions that already
approximate the expected solution to a certain degree and whose wavenumber
spectrum decays fast.

26.3 Examples

In the following, the application of the methods outlined above is illustrated using
a selection of problems including electrostatic, elastodynamic, and piezoelectric
systems, where more details can be found in the references provided. We start with a
quasi-electrostatic example of interdigitated electrodes buried in isotropic dielectric
media.

26.3.1 Electrical Capacitance Calculation of Interdigital Capacitors

Screen-printed, interdigital capacitors implemented in polymer coatings of steel sub-
strates for touch-sensitive applications first presented in [11] are discussed in this
example. A simple numerical method for the calculation of the electrical charac-
teristics for an idealized periodic sequence of electrodes for the structure shown in
Fig. 26.3 is presented. A special feature of this example is the use of global trial
functions (shown in Fig. 26.4) instead of functions with local support (e.g., triangles)
and the simple implementation of periodicity by using a Fourier series instead of
Fourier integrals. Furthermore, the implementation of an even/odd analysis is simple
and allows a full analysis of different electrical contact schemes, as shown in Fig. 26.5
(right). The layer composition comprises a polymeric primer layer on a steel substrate
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Fig. 26.3 Interdigital capac-
itor included in coatings of
metal substrates. The period is
𝑃 = 1.8 mm and the electrode
width 𝑤 = 0.45 mm.

Fig. 26.4: First four trial functions for even and odd mode. © 2017 IEEE. Reprinted, with
permission, from [11]. .

Fig. 26.5: Relative capacitance changes from air to water (simulating touching finger). The changes
of even and odd capacitance (left) are comparably small, but large for the coupled capacitance
(middle). The given capacitance values are per finger pair of varying finder width 𝑤 for the
water-covered (𝜎 = 1.9 mS/m and 𝜀 = 80𝜀0) case at low frequency (1 kHz). © 2017 IEEE.
Reprinted, with permission, from [11]. The right figure shows the measurement arrangements for
even, odd, and coupling mode operations..
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with electrode fingers on top, covered by a polymeric top coating layer. The layer
above the top coat is either air or loaded with an ohmic-permittive material that
mimics a touching finger.

The method outlined above is reduced to the 2D quasi-electrostatic case (magnetic
fields are neglected) and an even/odd field analysis is performed. By superimposing
the results for even and odd analysis a so-called coupling mode is realized, i.e., where
the left fingers are driven (e.g., by a voltage generator) and the current from the
right fingers shunted to the ground is measured. This mode has shown to be of
extraordinary sensitivity for detecting a touching finger [12].

For the numerical model, the materials are considered non-piezoelectric and no
mechanical forces are prescribed. The piezoelectricity tensor 𝒆 in Eq. (26.17) is
therefore set to 0, and the governing equations for the electrical part degenerate to

𝑫 = −𝜀∇𝜑 and ∇ ·𝑫 = 0. (26.36)

The system matrix according to Eq. (26.36) is obtained by selecting only elements 4
and 8 yielding for 𝑨 from Eq. (26.17)

𝜕

𝜕𝑧

[
�̃�
�̃�𝑧

]
=

[
0 −1/𝜀
𝑘2𝜀 0

]
·
[
�̃�
�̃�𝑧

]
with 𝑘2 = 𝑘2

𝑥 + 𝑘2
𝑦 . (26.37)

The finite length of the fingers in 𝑦-direction is disregarded by setting wavenumber
𝑘𝑦 to zero, which is associated with infinitely long fingers. The resulting capacitances
are then obtained as quantities per unit length in 𝑦-direction. The eigensystem to
Eq. (26.37) is 𝜆1,2 = ±i𝑘 and 𝒗1,2 = [±1, i𝜀𝑘]𝑇 . The spectral Green’s functions4 �̃�
for the multilayered structure can be determined by the global matrix method [13],
or more straightforwardly by assembling individual layers exemplarily shown in
Fig. 26.6. Layer 𝑛 transforms the underlying layers represented by Green’s function
�̃�𝑛−1 according to

�̃�L =
𝜀𝑛�̃�𝑛−1𝑘 + tanh(ℎ𝑛𝑘)

𝜀𝑛𝑘 (1+ 𝜀𝑛�̃�𝑛−1𝑘 tanh(ℎ𝑛𝑘))
. (26.38)

The complete Green’s function is obtained by reciprocal addition of the upper
(�̃�U = �̃�𝑛+1) and lower Green’s function, i.e.,

�̃� = (�̃�−1
U + �̃�−1

L )−1. (26.39)

Fig. 26.6 The Green’s func-
tion �̃� a the upper interface
of layer 𝑛 is determined by
reciprocal adding of functions
seen above (𝐺U) and below
(𝐺L).

4 The subscripts are dropped, i.e., �̃� = �̃�𝜑;𝜚 .
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The interdigitated structure is 𝑃-periodic. This is conveniently implemented in the
spectral domain representation using a Fourier series at the discrete wavenumbers
𝑘𝑚 = 2𝜋𝑚/𝑃 for integer 𝑚. For this simple problem, global trial functions yielding
fast convergence are used, which provide already remarkable accuracy if only, e.g.,
two trial functions are used (see, e.g., the demo code in [14]). In Fig. 26.4 the
first four trial functions for even and odd mode are shown. They represent scaled
periodical repetitions of the rectangular function for order 𝑖 = 0 and of the form
T2(𝑖−1) (𝑥)/

√
1− 𝑥)2 ∀𝑖 ∈ {1,2, . . . }, where T𝑝 (𝑥) denotes the Chebyshev polynomi-

als of order 𝑝. The 𝑛-th Fourier coefficient for trial function 𝑖 is given by

�̃�e/o,0;𝑛 = sin(α𝑛𝜋)/𝑛𝜋(1± (-1)𝑛), (26.40)

�̃�e/o,𝑖;𝑛 = (-1)𝑖-1α𝜋
2

J2(𝑖−1) (α𝑛𝜋) (1± (-1)𝑛), 𝑖 = 1,2,... (26.41)

with α = 𝑤/𝑃 and J𝑝 denoting the Bessel function of first kind and order 𝑝. Using
the + sign in the equations gives the even functions (e), using − the odd ones (o).

𝑏e/o, 𝑗 =
1
𝑃

𝑃/2∫
−𝑃/2

𝐵e/o, 𝑗 (𝑥)𝜑(𝑥)𝑑𝑥, (26.42)

𝑀e/o,𝑖 𝑗 =
∞∑

𝑛=−∞
�̃� (2𝜋𝑛/𝑃)�̃�e/o,𝑖;𝑛 �̃�

∗
e/o, 𝑗;𝑛 (26.43)

The expansion coefficients for even and odd mode 𝑎e/o,𝑖 are calculated by using
Eq. (26.31) and subsequently the charge density is evaluated with Eq. (26.28) from
which the capacitances are calculated by integration over one electrode divided by the
driving voltage. The authors showed in [11] by even/odd analysis that for capacitive
touch sensor applications the measurement of a coupling capacitance as shown in
Fig. 26.5 is most sensitive in terms of relative capacitance change from air to a
highly permittive and moderately conductive (𝜎) applied layer, which is also verified
experimentally in [12]. The low-pass frequency dependence, caused by the corner
frequency of the conductive-permittive overlayer, shows that the best sensitivities are
achieved using lower oscillation frequencies.

26.3.2 Vibrating Fluid Sensor

In this example the application of the spectral method to a fluid cell covered by
vibrating elastic membranes, as shown in Fig. 26.7a and published in detail in [15], is
discussed. The interesting features of this example are that the system matrix 𝑨 and
the eigensystems are given by simple expressions for isotropic materials. The fluid
is modeled by the same formalism using equivalent complex-valued elastic material
properties which is equivalent to using Navier-Stokes equations with neglected
convective components. This approach is therefore valid for vibration velocities
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Fig. 26.7: a) A sample cell (5.6x12x1mm3) is covered by Lorentz force actuated (for (2,1)-mode
excitation, i.e., 2/1 anti-nodes in 𝑥/𝑦-direction) and inductively read out membranes (50μm
PMMA). b) Membrane deflection for the two principal excitations. c) Artificial periodization for
the implementation of rigid cell walls by periodic boundary conditions in the lateral directions and
zero displacement constraint at the boundaries of each cell. © 2013 Elsevier. Reprinted, with
permission, from [15].

much lower than the speed of sound and Reynolds numbers much below the critical
values [16]. The walls of the center frame (see Fig. 26.7a) that limit the fluid cell in
the lateral directions are implemented by an artificial periodization which realizes a
no-flow condition by a periodic boundary condition. Also, an even/odd analysis is
performed, but for this example, it concerns the normal and not the lateral direction,
i.e., there is a symmetric and an anti-symmetric membrane motion, as depicted in
Fig. 26.7b. The even and odd cases are therefore realized by two different Green’s
functions instead of different sets of trial functions as in the example in Sect. 26.3.1.
The membranes carry separate conductive paths for Lorentz-force excitation and
inductive readout, that excite membrane deflections as shown in Fig. 26.7b. With
driving currents in equal direction on both membranes an anti-symmetric mode
with predominately vertical fluid vibration is realized, while changing the polarity
e.g., of driving current in the path at the bottom membrane, a symmetric mode
with mostly horizontal fluid oscillation is realized (see Fig. 26.8). For the analysis,
only the mechanical resonance of the structure is analyzed. This means that the
electrodynamical interactions between driving and readout paths (predominantly
cross-talk) are not considered at this point. However, they can be added in the

Fig. 26.8: Flow fields calculated at the cross-section shown left, for anti-symmetric (middle) and
symmetric mode (right).
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electrical domain when the mechanical resonance is described by an equivalent RLC
circuit. These details are discussed, e.g., in [17].

The considered materials are isotropic and either elastic solids or viscous fluids.
Therefore,only the six mechanical variables with zero piezoelectricity andpermittivity
𝒆 = 0,𝜺 = 0 are used. The elements of the symmetric (𝑐𝑖 𝑗 = 𝑐 𝑗𝑖) isotropic stiffness
tensor are best described by the elastic Lamé parameters 𝜆 and 𝜇 by setting

𝑐11 = 𝑐22 = 𝑐33 = 𝜆+2𝜇 𝑐44 = 𝑐55 = 𝑐66 = 𝜇, 𝑐12 = 𝑐13 = 𝑐23 = 𝜆, (26.44)

yielding for the system of ODEs 𝜕�̃�/𝜕𝑧 = 𝑨�̃� with �̃� = [�̃�𝑥 , �̃�𝑦 , �̃�𝑧 ,𝑇𝑥𝑧 ,𝑇𝑦𝑧 ,𝑇𝑧𝑧]T

the compact matrix

𝑨 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 i𝑘𝑥 1/𝜇 0 0
0 0 i𝑘𝑦 0 1/𝜇 0

i𝑘𝑥𝜆/𝛼 i𝑘𝑦𝜆/𝛼 0 0 0 1/𝛼
𝑘2
𝑥𝛾 + 𝑘2

𝑦𝜇− 𝜌𝜔2 𝑘𝑥𝑘𝑦𝛽 0 0 0 i𝑘𝑥𝜆/𝛼
𝑘𝑥𝑘𝑦𝛽 𝑘2

𝑥𝜇+ 𝑘2
𝑦𝛾− 𝜌𝜔2 0 0 0 i𝑘𝑦𝜆/𝛼

0 0 −𝜌𝜔2 i𝑘𝑥 i𝑘𝑦 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26.45)

with 𝛼 = 2𝜇+𝜆, 𝛽 = 𝜇(1+2𝜆/𝛼) and 𝛾 = 4𝜇(1− 𝜇/𝛼).

For this case, also a compact form for the eigensystem can be determined as shown
in [18]. A reduction of dimensions of the global matrix approach is obtained by
exploiting the symmetry of the layer composition and performing a decomposition
in a symmetric and anti-symmetric membrane deflection (see [15]). Alternatively
to the global matrix approach, the dyadic Green’s function can also be determined
by assembling, similar to the electrostatic example in Sect. 26.3.1. For this purpose,
the generalized acoustic impedance matrix approach (see, e.g., also [19–21]) can be
efficiently used. The viscous fluids can be represented for small steady-state time-
harmonic vibrations by using equivalent complex-valued elastic Lamé parameters
given by

𝜇 = i𝜔𝜂 and 𝜆 =
1
𝜉
− 2

3
i𝜔𝜂, (26.46)

with 𝜂 and 𝜉 denoting the dynamic shear viscosity and the adiabatic compressibility
coefficient, respectively. These equivalent parameters are determined by rearrang-
ing the time-harmonic linearized Navier-Stokes equations [16] using the Stokes
hypothesis [22]. The structure is considered periodic, in 𝑥− and 𝑦−directions. For
the implementation of the rigid cell walls, however, the fundamental period is taken
twice the actual sensor dimension in 𝑥-direction. The rigid cell walls are then im-
plemented by a symmetric boundary condition, where excitation in adjacent periods
is mirrored in 𝑥-direction, and repeated in 𝑦-direction. Due to the expected smooth
variations of the displacement fields, point-matching provides reasonable accuracy
and can efficiently be implemented by using the discrete two-dimensional fast Fourier
transform.

To assess the accuracy and to validate the approach of enforcing boundary con-
ditions by mirrored excitation, simplified problems for which the modeshapes and



474 Thomas Voglhuber-Brunnmaier and Bernhard Jakoby

vibration frequencies are known from literature, are studied. A single elastic beam
(density 𝜌 = 1190 kg/m3, Young’s modulus 𝐸 = 3 GPa, length 𝑙 = 5.6 mm, thickness
ℎ) is compared to the Euler-Bernoulli beam theory. Simulated and theoretical eigen-
modes are compared in Fig. 26.9a, where the dots denote the collocation points of
the numerical method. The results of the BEM converge to the EB theory for very
thin beams (i.e., large 𝑙/ℎ). In Fig. 26.9b the plate modes for the actual dimensions
𝑙 × 𝑏 = 5.6×12 mm2 are shown. A comparison with the resonance frequencies for
plates e.g. given in [23] shows a similar degree of deviation as observed for the
beams.

In Fig. 26.8 the simulated displacement fields within the sensor cell are shown for
the two principal excitation modes. The fluid is sheared stronger in the symmetric
excitation mode and therefore the 𝑄-factor which is closely related to energy dis-
sipation, increased with fluid viscosity. The anti-symmetric mode is better suited
for density measurements because the fluid motion is mainly in the direction of the
elastic membrane and acts therefore as additional mass with smaller shear gradients.
A strongly influential degree of freedom is the height of the fluid cell. By decreas-
ing it, the resonance characteristics shift qualitatively as indicated by the arrows in
Fig. 26.10. The low 𝑄-factors of the vibration, even at low fluid viscosities, is a
consequence of the internal damping of the polymeric membrane material (PMMA),
which has been added to the simulation by complex-valued elasticity to meet the
experimentally observed values.

Fig. 26.9: a) Comparison of eigenmodes of Euler-Bernoulli beam theory (solid line) and the
numerical method (points) for the first five modes shown in the upper figure. Shown below are the
relative deviations between EB theory and the numerical method. The numbers to the left and right
are the eigen frequencies in kHz of the respective mode for the extremes 𝑙/ℎ = 15 and 𝑙/ℎ = 250. b)
Eigenmodes for a single elastic plate. The mode used in the actual application is the (2,1)-mode.
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Fig. 26.10: a) Resonance frequency for varying fluid densities at a viscosity of 𝜂 =1mPas. b) 𝑄 for
varying viscosity at constant fluid density 𝜌 = 1000kg/m3. When the cell height is decreased, the
curves shift qualitatively as indicated by the arrows. © 2013 Elsevier. Reprinted, with permission,
from [15].

26.3.3 Piezoelectric Fluid Sensor

The spectral method is used to model resonant piezoelectric fluid sensors where
the full anisotropy of the piezoelectric disk is implemented and local square trial
functions are utilized. The fluid is modeled by equivalent complex-valued elastic
constants such as in Sect. 26.3.2, before.

A sketch of a piezoelectric disk element where electrodes arranged on both
major faces generate electric fields in the thickness direction in the crystal is shown
Fig. 26.11a. This thickness field excitation (TFE) is the common mechanism used
in quartz crystal resonators which typically oscillate in the lower MHz range. The
fundamental resonance frequency is determined by a standing half-wave in the
thickness direction. These resonators are therefore also known as bulk acoustic
wave (BAW) devices, which are either designed for shear or extensional vibration by

Fig. 26.11: a) Thickness field excitation (TFE): electrical fields in thickness direction excite waves
propagating in thickness direction. b) Also lateral fields can excite thickness modes..
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material selections and crystal cut orientation. Shear-resonators are commonly used
for clock generation in electronic circuits, but they can also be used as fluid sensors
simply by removing the metal enclosure of a commercially available component
and bringing one side into contact or immersing the whole disk into the test fluid.
The electrical impedance spectrum measured between both electrodes, each of area
𝐴, for a single-sided fluid loading is derived using a one-dimensional model of a
ℎ thick piezoelectric layer with effective scalar material parameters 𝜌, 𝑐, 𝑒, and 𝜀,
reading [24]

𝑍el (𝜔) = 1
i𝜔𝐶

(
1+ 𝑘

2
𝑚

𝛼

i𝑍f sin(𝛼) −2𝑍p (1− cos(𝛼))
𝑍p sin(𝛼) − i𝑍f cos(𝛼)

)
, (26.47)

where 𝐶 = 𝐴𝜀/ℎ represents the static capacitance, 𝛼 = 𝜔ℎ/𝑣p the phase constant,
and 𝑘2

𝑚 = 𝑒2/(𝑐∗𝜀) the electromechanical coupling factor. The phase velocity is
𝑣p =

√
𝑐∗/𝜌 with 𝑐∗ = 𝑐 + 𝑒2/𝜀, i.e., the piezoelectrically stiffened elastic constant.

𝑍p =
√
𝑐∗𝜌 denotes the characteristic acoustic impedance (i.e., stress to particle

displacement velocity of the form 𝑍 = −𝑇/𝑣) of the piezoelectric material and 𝑍f
a respective impedance of the fluid loading. Eq. (26.47) describes one of three
thickness modes which are either the slow or fast shear or the extensional mode, each
with different resonance characteristics, determined by the selected piezoelectric
material and thickness. The mechanical impedance of a fluid with density 𝜌 𝑓 and
viscosity 𝜂 𝑓 is for the shear mode 𝑍 𝑓 =

√
i𝜔𝜂 𝑓 𝜌 𝑓 . Therefore, only the product of

density times dynamic viscosity of the fluid enters the electrical impedance spectrum
in Eq. (26.47), such that both quantities can not individually be determined from
measured impedance spectra.

Alternatively, a thickness vibration can also be generated by lateral field excitation
(LFE) as shown in Fig. 26.11b. From the 1D model, the admittance spectrum 𝑌el (𝜔)
can be derived for the LFE modes, reading [8]

𝑌el (𝜔) = i𝜔𝐶
(
1− 𝐾

2
𝑚

𝛼

i𝑍f sin(𝛼) −2𝑍p (1− cos(𝛼))
𝑍p sin(𝛼) − i𝑍f cos(𝛼)

)
, (26.48)

where for the calculation of coupling constant (𝐾 = 𝑒2/(𝑐𝜀)), phase constant (𝛼)
and characteristic impedance of the piezoelectric material (𝑍p), the regular elastic
stiffness 𝑐 instead of 𝑐∗ is used. The effective permittivity and piezoelectricity values
parameters are different for LFE, and with it, also the coupling strengths. A practical
realization for TFE is shown in Fig. 26.12a) where the electrical field is well-confined
to the piezoelectric disk and the 1D model is a reasonably accurate representation5.

For practical LFE sensors the electrodes are arranged at one side of the disk as
shown in Fig. 26.12b. The wanted electrical fields in lateral direction are accompanied
by unwanted thickness fields extending into the surrounding media. The electrical
properties of the liquid affect the mechanical resonance characteristics, as they
influence also the electric field distribution within the piezoelectric disk. All these

5 Subtle effects such as spurious pressure wave generation due to lateral displacement gradients
cause by the limited excitation area are for instance analyzed in [25].
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Fig. 26.12: a) Conventional thickness field excited (TFE) piezoelectric disk with confined fields. b)
One-sided electrodes for excitation with lateral fields (LFE). © 2014 IEEE. Reprinted, with
permission, from [26].

effects can conveniently be studied using the spectral method which yields a so-
called full-wave model, i.e., it includes all three bulk waves and also all higher
harmonics. For an efficient use of the spectral method, the piezoelectric material
is considered infinitely extended in the lateral directions, thus neglecting the free
boundary conditions at the edge of the disk, which in fact exclude some spurious
modes associated with standing surface waves. The spectral electrostatic Green’s
function �̃�𝜑;𝜚 (𝑘𝑥 , 𝑘𝑦 ,𝜔) is generated using the approach outlined in Sect. 26.2. It
represents the electrical potential caused by a point charge at the electrode area. The
fluid in contact with the plain face of the piezoelectric disk is modeled by the same
approach but with piezoelectricity tensor 𝒆 set to zero. Fluid conductivity 𝜎 𝑓 is
implemented by a complex-valued isotropic dielectricity tensor 𝜺 𝑓 = 𝑰(𝜀− i𝜎 𝑓 /𝜔),
with 𝑰 denoting the identity matrix. The method of moments is employed using
square trial functions as shown in Fig. 26.13a. The weights are determined such

Fig. 26.13: a) Charge distribution on electrodes for square element discretization. b) Simulated
electrical admittance spectra for different water/glycerol mixtures. Higher viscosity (higher
glycerol content) results in stronger damping. The units of viscosity 𝜂 and density 𝜌 are mPa s and
kg/m3, respectively. © 2014 IEEE. Reprinted, with permission, from [26].

that the electrical potential equals on average the prescribed electrode potential.
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Fig. 26.13a shows the thus obtained charge distribution. The charge accumulations at
the electrode edges are typical and can be considered a cause of the repelling forces of
equal charges that can move freely on the electrode. Admittance spectra for a lithium
tantalate (LiTaO3 YXl -16.51°) piezoelectric disk material that is particularly suitable
for LFE with a water/glycerol layer of 0.1 mm thickness are shown in Fig. 26.13b.
An equivalent electrical circuit according to Fig. 26.14 with parameters derived from
the simulation can be established. It can be shown that for highly conductive liquids,
such as watery solutions, the application of thick liquid layers results in diminishing
lateral fields and increased thickness fields. For thicker conductive fluid layers, the
device, therefore, acts more like two TFE than one LFE device. This can also be
observed by considering the static capacitance of the sensors over fluid height. In
Fig. 26.14 the active LFE region is shown for different piezoelectric materials.

Fig. 26.14: a) Four-layer model of the simulated structure. b) Variation of static capacitance with
heights ℎ of a water layer for different materials suitability for LFE. © 2014 IEEE. Reprinted, with
permission, from [26].
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