
Scientific Workflow Management
for Software Quality Assessment
Replication: An Open Source

Architecture

José Pereira dos Reis1,2(B), Fernando Brito e Abreu2, Glauco de F. Carneiro3,
and Duarte Almeida2

1 Instituto Superior de Tecnologias Avançadas (ISTEC), Lisboa, Portugal
josevicente.reis@my.istec.pt

2 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisboa, Portugal
{jvprs,fba,dsbaa}@iscte-iul.pt

3 Federal University of Sergipe (UFS), Aracaju, Brazil
glauco.carneiro@dcomp.ufs.br

Abstract. Replication of research experiments is important for estab-
lishing the validity and generalizability of findings, building a cumulative
body of knowledge, and addressing issues of publication bias. The quest
for replication led to the concept of scientific workflow, a structured
and systematic process for carrying out research that defines a series of
steps, methods, and tools needed to collect and analyze data, and gen-
erate results.

In this study, we propose a cloud-based framework built upon open
source software, which facilitates the construction and execution of work-
flows for the replication/reproduction of software quality studies. To
demonstrate its feasibility, we describe the replication of a software qual-
ity experiment on automatically detecting code smells with machine
learning techniques.

The proposed framework can mitigate two types of validity threats in
software quality experiments: (i) internal validity threats due to instru-
mentation, since the same measurement instruments can be used in repli-
cations, thus not affecting the validity of the results, and (ii) external
validity threats due to reduced generalizability, since different researchers
can more easily replicate experiments with different settings, popula-
tions, and contexts while reusing the same scientific workflow.

Keywords: scientific workflow · software quality · quality
assessment · replication · code smells · open source

1 Introduction

1.1 Replication

In Science, replication refers to “a conscious and systematic repeat of an orig-
inal study” [16]. Replication is an important process in Software Engineering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. M. Fernandes et al. (Eds.): QUATIC 2023, CCIS 1871, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-43703-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43703-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-43703-8_1


2 J. P. dos Reis et al.

research, and many authors have emphasized its relevance [14]. For instance,
Kitchenham [15] claims that “replication is a basic component of the scientific
method, so it hardly needs to be justified.”. For Shull et al. [24], replication allows
to “better understand Software Engineering phenomena and how to improve the
practice of software development. One important benefit of replications is that
they help mature Software Engineering knowledge by addressing internal and
external validity problems”. The same authors also mention that in terms of
external validation, replications help to generalize the results, demonstrating
that they do not depend on the specific conditions of the original study. Regard-
ing internal validity, replications also help researchers show the range of condi-
tions under which experimental results hold.

However, replication is not consensual. Some authors like Shepperd [23] argue
that “replication is often used to gain confidence in empirical findings, as opposed
to reproduction where the goal is showing the correctness, or validity of the pub-
lished results.” Thus, almost all replications are confirmatory because the pre-
diction intervals are wide. Shepperd suggests to “limit replications to matters of
reproducibility (where warranted)” [23].

One of the framework’s objectives presented in this paper is to enhance the
replication/reproduction of studies repeating a previously performed experiment.

1.2 Software Quality Assessment

In software development and maintenance, especially in complex systems, the
existence of code smells jeopardizes the quality of the software and hinders sev-
eral operations, such as the reuse of code.

Code smells are not bugs since they do not prevent a program from func-
tioning, but rather symptoms of software maintainability problems [30]. They
often correspond to the violation of fundamental design principles and negatively
impact its quality.

Software development and maintenance is a complex task that can be hin-
dered by the presence of code smells [26,30], causing code misunderstanding,
therefore reducing maintenance efficiency and promoting defects injection. Their
removal can be achieved through refactoring operations, thereby improving soft-
ware quality, such as reusability, ease of maintenance, and readability [9].

Code smells detection is not an easy task because it requires a lot of effort if
the process is entirely manual [17]. Depending mainly on the size and complexity
of the source code and the developer’s experience, the greater the experience
of the latter, the easier it is to detect code smells, as well as the greater the
complexity of the detected code. [18,19].

Although there has been some progress in recent years in the detection and
visualization of code smells [22], the main problems remain the same: 1) the
subjectivity of the detection process, which makes it very manual, 2) difficulties
in process automation, with lacking in data for models calibration, 3) absence
of detection and visualization tools in the IDE to help developers.

In recent years we have seen an evolution in the automatic detection of smells,
with various automation techniques based on machine learning, to be applied



Scientific Workflow Management for Software Quality Assessment 3

[2,8,9,17,20,21,26], but remains its detection difficult because of two main prob-
lems: 1) there is no formal definition of code smell, according to Wang, “Auto-
matic detection of code smells has been studied to help users find which parts of
their application codes should be refactored. However, code smells have not been
defined in a formal manner” [27]; 2) the calibration of detection algorithms is a
key point to good accuracy, and for such the existence of reliable data is needed.

In this context, we focus on software quality, namely the automatic detection
of code smells with machine learning.

1.3 Scientific Workflows

Scientific workflows provide a visual representation of the research process,
including data inputs, processing steps, and outputs, and enable researchers to
organize and automate complex tasks. Enacting scientific workflows can help
to improve the reproducibility, efficiency, collaboration, quality control, and
reusability of research, leading to more reliable and impactful research results.

Defining scientific workflows has several advantages in research:

– Reproducibility: Scientific workflows define a clear and systematic process for
carrying out research, which enables others to reproduce the research results.
By making the workflow explicit and transparent, researchers can ensure that
others follow the same steps and obtain the same results.

– Efficiency: Scientific workflows provide a structured and efficient way to carry
out research. By breaking down the research process into smaller, manageable
steps, workflows enable researchers to identify bottlenecks, optimize resource
utilization, and reduce the time and effort required to complete the research.

– Collaboration: Scientific workflows facilitate collaboration among researchers
by providing a common framework for data and information exchange. By
standardizing the data and methods used in the research, workflows enable
researchers to share data and result more easily and collaborate on common
research objectives.

– Quality Control: Scientific workflows help to ensure the quality and accuracy
of research results. By standardizing methods and data collection, workflows
can help to minimize errors and inconsistencies and enable researchers to
identify and correct errors more easily.

– Reusability: Scientific workflows can be reused for different research projects,
saving time and effort in future research. By standardizing methods and data
collection, workflows can be adapted for use in different research contexts and
as a starting point for future research projects.

The Taverna workflow tool suite was designed to combine distributed Web
Services and/or local tools into complex analysis pipelines [28]. Taverna Work-
flows can be designed and executed on local desktop machines through the Tav-
erna Workbench, or they can be executed through other clients or web interfaces
using the Taverna Server. Taverna Workbench connects to myExperiment, allow-
ing us to import and export workflows directly from this collaborative environ-
ment. myExperiment is a Virtual Research Environment for collaboration and
sharing workflows and experiments [5].



4 J. P. dos Reis et al.

1.4 Contribution

In this study, we present a framework supported by two open source software,
Taverna Server/Taverna Workbench [28] and JGU WEKA REST Service1,
which allows the construction of workflows for the replication/reproduction of
quality studies based on machine learning. To demonstrate the availability of
the framework, we present the replication of a study that aims to understand
the best machine learning algorithm in code smells detection. It should be noted
that other applications can be used to create this framework. For example, we
can use Pegasus [7] instead of usingTaverna Server to manage the workflows.

Our goal is to contribute to a solution to the problem presented by Ivie
and Thain [13] where they claim, “For a workflow that can run on a single
machine, solutions exist for replicability, but for distributed systems, and/or for
reproducibility, existing systems are generally inadequate for scientists who are
experts in their scientific domain and not experts on computer systems.”

The paper is organized through the following Sections: in 2, we introduce
some related works; in 3, we describe our framework based on Taverna and Weka
Servers; in 4, we present an example of replication based on our framework.
Finally, Sect. 5 provides some conclusions and future work.

2 Background

Although replication/reproduction of studies is widely considered an essential
requirement of the scientific process and plays an important role in building
knowledge in Software Engineering, several serious concerns have recently been
raised. Thus, in Software Engineering, the use of workflows for the replica-
tion/reproduction of studies is still limited and far from standard practice.

Unlike in other areas, e.g., bioinformatics and biomedical sciences, where the
use of Scientific workflows management systems are increasingly used [3,29], in
Software Engineering is not yet a common practice. For example, searching at
myExperiment, workflows for Software Engineering, we found very few in the
universe of nearly 4.000 workflows in this collaborative environment.

Ivie and Thain [13] describe a set of problems that make replication difficult,
such as technical barriers. These authors claim that, in principle, it should be
possible to specify a computation to sufficient detail that anyone should be
able to reproduce the study exactly. But in practice, there are fundamental,
technical, and social barriers to doing so. They also present how various authors
have defined reproducibility and the need for more consensus on this subject.
Another significant contribution of this study is the chapter “technical barriers
to reproducing a workflow”, which presents the advantages of using scientific
workflows and presents a set of recommendations for their use.

De Magalhães et al. [4] performed a systematic mapping study where they
analyzed 37 papers reporting studies about replication published in the last 17

1 This application is developed by the Institute of Computer Science at the Johannes
Gutenberg University Mainz, inserted in the openrisk project.



Scientific Workflow Management for Software Quality Assessment 5

years. The purpose of this paper is to understand the current state of work on
replication in empirical Software Engineering research. These authors have con-
cluded that for replication to be a frequently used means of achieving robust
results, it still has a long way to go. In replication, there is not yet a set of stan-
dardized concepts and terminology, so it is important that the Software Engi-
neering research community engage in an effort to create and evaluate taxonomy,
frameworks, guidelines, and methodologies to support replications’ development
fully.

Regarding the replication of studies, there are other important works on this
subject, which emphasize the importance of replication, defined concepts, and
guidelines for performing replication [1,11,12,14,23].

Regarding the use of scientific workflows, several works point out the chal-
lenges and recommendations for their use [6,25,29].

There are some applications that allow machine learning workflows to be cre-
ated for users who are not experts on computer systems. Still, these applications
are not free or are not for server system architectures. Some of these systems
will be presented below.

Azure Machine Learning Studio2 is a web-based integrated development envi-
ronment (IDE) for developing data experiments. It is a collaborative, drag-and-
drop tool to build, test, and deploy predictive analytics solutions on your data.
The user can develop a predictive analytics model by creating a machine learning
workflow only by drag-and-drop blocks.

Weka3 is, according to the authors, “a collection of machine learning algo-
rithms for data mining tasks. It contains tools for data preparation, classifica-
tion, regression, clustering, association rules mining, and visualization.”. Weka
is a local open source software.

RapidMiner4 presents a concept similar to Azure Machine Learning Studio
for creating machine learning workflows. Provides products for local operation,
such as RapidMiner Studio (visual workflow designer for predictive models),
and for servers with RapidMiner Server (Share and re-use predictive models,
automate processes, and deploy models into production). RapidMiner is not
open source software.

Orange5 is an open source machine learning and data visualization that uses
the same concept as Azure and RapidMinder to create machine learning pro-
cesses. Orange only works locally.

H20.ai6 offers a full suite of products designed to make it easy for every
user and every enterprise to accelerate the adoption of Machine Learning and
artificial intelligence, providing a web-based platform.

None of the above solutions cumulatively has the flexibility of our framework
in terms of 1) costs, as we only use free software; 2) possibilities of use, since

2 https://studio.azureml.net/.
3 https://www.cs.waikato.ac.nz/ml/index.html.
4 https://rapidminer.com/.
5 http://orange.biolab.si/.
6 https://www.h2o.ai/.

https://studio.azureml.net/
https://www.cs.waikato.ac.nz/ml/index.html
https://rapidminer.com/
http://orange.biolab.si/
https://www.h2o.ai/


6 J. P. dos Reis et al.

we can build our interface if we do not intend to use Taverna Workbench; 3)
It is not a local solution, and can be all installed in microservices; 4) ease of
availability of scientific workflows in myExperiment.

3 Description of the Proposed Framework

3.1 Introduction

The model we present is based on creating workflows of the experiences per-
formed in the studies and making these workflows publicly available. In this
way, we allow the entire community to replicate the experiences and confirm the
results obtained.

The proposed framework is based on the use of Taverna for creating scientific
workflows and JGU WEKA REST Service for creating machine learning models.

To create a workflow, we first use Taverna Workbench (Fig. 1) to design the
workflows and perform the first tests, ensuring that the workflow works. Our
workflow is essentially a task set that interacts with Weka Server through Web
Services, in this case, RESTful Web Services.

Fig. 1. Taverna Workbench.

Figure 2 shows an example of a workflow that produces the training of a Weka
machine learning algorithm by creating its model. This workflow has as inputs
the algorithm to be used (e.g.,“J48”, “RandomForest”, “libsvm”, etc.) and the



Scientific Workflow Management for Software Quality Assessment 7

training dataset. The outputs are the model, model ID, and task ID. Creating
workflows in Taverna Workbench consists of choosing the components you want
to add to the workflow from the menus since the interface is graphical.

Fig. 2. Workflow to create the Machine Learning model.

Taverna Workbench. Works in local mode, i.e., on local desktop machines, so
using very large datasets can cause the machine to slow down or even not have
enough resources for Workflow processing. In the second phase, we use Taverna
Server to solve this problem. The process is to create workflows in Taverna
Workbench and then import and run them in Taverna Server. As the Taverna
Server is in the cloud and the Weka Server, we have no problems with processing
speed or lack of resources.

With this architecture, we are convinced that we contribute to solving the
problem presented by Ivie and Thain [13] when they say, “For a workflow that
can run on a single machine, solutions exist for replicability, but for distributed
systems, and/or for reproducibility, existing systems are generally inadequate for
scientists who are experts in their scientific domain and not experts on computer
systems.”.

3.2 Architecture of the Framework

The framework is based on two docker containers, one for JGU WEKA REST
Service and another for Taverna Server, communicating through RESTful API
(Application Program Interface), as illustrated in Fig. 3.



8 J. P. dos Reis et al.

Fig. 3. Framework architecture.

As already mentioned, Taverna Workbench works in local mode and serves
to produce the workflows that are then loaded into the Taverna Server. Once
the models are in Taverna Server, they are available to be called by different
local clients. When a client calls a Workflow in the Taverna Server, it interacts
with JGU WEKA REST Service, which is in another docker container, through
the API provided by Weka Server.

The workflows we created are for software quality assessment replication
using Machine Learning techniques (see Fig. 2), although the same principle
holds true for other experiments. Thus, the operating principles are as follows:

a) The workflow that is in the Taverna Server receives the ML algorithm and
the training dataset as input. These parameters are stored in the Taverna
Server ;

b) Invoking the JGU WEKA REST Service API, we pass Weka the two parame-
ters from the previous point, and Weka performs the training of the algorithm
with the dataset;

c) JGU WEKA REST Service returns the result in a JSON format containing
various information, such as training success, model ID, etc.;

d) In Taverna Server we will extract the various information from JSON;
e) Obtain from JGU WEKA REST Service the created ML model and its eval-

uation, passing as a parameter the model ID;

This framework presents a scalable solution where it is possible to add more
docker containers with other services, thus creating the possibility to produce
more elaborate workflows with more functionalities.



Scientific Workflow Management for Software Quality Assessment 9

We are currently developing a Java graphical user interface so that users
can easily interact with the Taverna Server. Currently, the workflows placement
in the Taverna Server is performed manually, and the results are consulted in
the server directories, also manually, through a browser. However, it should be
noted that it is always possible to invoke a Workflow directly from the Taverna
Workbench (see Fig. 1), particularly when datasets are small and do not require
large computational resources.

4 Replication Example

To exemplify our framework, we have replicated an article that compares various
machine learning algorithms to determine the best algorithm for detecting code
smells.

4.1 Study to Be Replicated

We chose to replicate Fontana’s paper “Code Smell Detection: Towards a
Machine Learning-based Approach” [10]. This paper has conducted a study where
the authors use six different machine learning algorithms to detect four code
smell types, i.e., Data Class, Large Class, Feature Envy, and Long Method.

This study aims to compare and benchmark code smell detection with super-
vised machine learning techniques. For this purpose, four datasets were created,
one for each code smell, to train the machine learning algorithms. The applica-
tion used in this experiment to train and evaluate machine learning algorithms
was Weka (open source software from Waikato University), and the following
algorithms available in Weka were implemented:

– J48 is an implementation of the C4.5 decision tree, and its three types of
pruning techniques: pruned, unpruned, and reduced error pruning;

– JRip implements a propositional rule learner;
– Random Forest consists of a large number of individual decision trees that

operate as an ensemble;
– Näıve Bayes is a probabilistic model based on the Bayes theorem;
– SMO is a Sequential Minimal Optimization algorithm widely used for training

support vector machines;
– LibSVM is a library for Support Vector Machines (SVMs), integrated software

for support vector classification.

Experiments were performed to evaluate the performance values of the
machine learning algorithms with their default parameters for each type of
code smell. Cross-validation was the statistical technique applied to test the
performance of Machine Learning models, and three standard performance mea-
sures were used: accuracy, F-Measure, and Area Under ROC (Receiver Operating
Characteristics).



10 J. P. dos Reis et al.

The results show that the experienced algorithms obtained high perfor-
mances, regardless of the type of code smell. On the other hand, the SVM
algorithms tend to perform worse than the other algorithms, with the J48 and
Random Forest classifiers obtaining the highest accuracy (>96 %).

4.2 Replication Using the Framework

With our framework, it is easy and accessible for everyone to replicate this type
of study because the use of scientific workflows avoids repetitive work and having
to understand the application used in the training and evaluation of different
machine learning algorithms, Weka, in this case.

The replication facility is essentially in the fact that we use the workflow
shown in Fig. 2, having as input parameters the desired algorithm and the train-
ing dataset and as output parameters the model with its performance measures.
Thus, to obtain the results for the different algorithms, just change the two
input parameters. For example, to test the performance of the J48 algorithm in
detecting the code smell Data Class, it is only necessary to invoke the workflow,
passing as inputs the algorithm identifier - in this case, “J48” - and the train-
ing dataset previously prepared for this code smell in ARFF format. An ARFF
(Attribute-Relation File Format) file is an ASCII text file that describes a list of
instances sharing a set of attributes. ARFF files were developed by the Machine
Learning Project at the Department of Computer Science of The University of
Waikato for use with the Weka machine learning software7.

Some of the possible values for the first workflow parameter, i.e., the
algorithm identification, are RandomForest, J48, J48/adaboost, NaiveBayes,
NaiveBayes/adaboost, NaiveBayes/bagging, libsvm, libsvm/adaboost, libsvm/
bagging, SMO.

Note that the JRip algorithm is not implemented in our version of JGU
WEKA REST Service, so it is impossible to compare this algorithm’s results.

Regarding the second workflow parameter, i.e., the dataset, the four datasets
provided by the paper authors were used, one for each code smell. The dataset
is at the class level for Data Class and Large Class code smells, and for Feature
Envy and Long Method code smells, the datasets are at the method level.

Each dataset contains the identification of the Java project used, the package,
class, and method (the method for code smell only at this level), the code metrics
- of class or method - and the value of whether or not it is a code smell.

The results presented in Fontana’s paper [10] show that J48, Random Forest,
JRip, and SMO have accuracy values greater than 90% for all datasets, and
on average, they have the best performances. Naive Bayes has slightly lower
performances on Data Class and Feature Envy than on the other two smells.
LibSVM performances are lower than the others (far lower in three cases out of
four).

7 https://www.cs.waikato.ac.nz/ml/weka/arff.html.

https://www.cs.waikato.ac.nz/ml/weka/arff.html


Scientific Workflow Management for Software Quality Assessment 11

Table 1. Performance results for Data Class code smell.

Classifier Accuracy F-measure ROC Area

J48 0.981 0.981 0.975

Random Forest 0.974 0.974 0.999

Naive Bayes 0.786 0.792 0.935

SMO 0.952 0.952 0.945

LibSVM 0.738 0.677 0.609

Table 2. Performance results for God Class code smell.

Classifier Accuracy F-measure ROC Area

J48 0.969 0.969 0.961

Random Forest 0.979 0.979 0.990

Naive Bayes 0.931 0.932 0.976

SMO 0.955 0.954 0.943

LibSVM 0.667 0.533 0.500

Table 3. Performance results for Feature Envy code smell.

Classifier Accuracy F-measure ROC Area

J48 0.938 0.938 0.943

Random Forest 0.919 0.919 0.983

Naive Bayes 0.850 0.850 0.912

SMO 0.900 0.898 0.870

LibSVM 0.676 0.566 0.520

Tables 1, 2, 3, 4 present our results for the different machine learning algo-
rithms for each of the 4 code smells. We do not configure any of its parameters in
these algorithms, having used the default settings. To evaluate the performance
of each model, we used 10-fold cross-validation as the study authors.

We can see slight differences in values when comparing our results with those
of the original study. But when we compare the original study’s findings, we can
confirm them.

The first result obtained by the authors of the original study was that the J48,
Random Forest, and SMO algorithms have accuracy values greater than 90% for
all datasets, and on average, they have the best performances. We confirm this
first result. The second result is that the Naive Bayes algorithm has slightly
lower performances for all four code smells. We also confirm this result. The
final result is that LibSVM’s performance is lower than the other algorithms
(much lower in three cases out of four). As we can see in Tables 1, 2, 3 and 4,
the worst performing algorithm is LibSVM, and for God Class, Feature Envy



12 J. P. dos Reis et al.

Table 4. Performance results for Long Method code smell.

Classifier Accuracy F-measure ROC Area

J48 0.995 0.995 0.999

Random Forest 0.993 0.993 1.000

Naive Bayes 0.936 0.937 0.964

SMO 0.976 0.976 0.971

LibSVM 0.686 0.576 0.529

and Long Method code smell, results are much lower than the other algorithms.
Thus, we also confirm this last result.

5 Conclusions

This study presents a framework that allows the replication/reproduction of
studies based on scientific workflows.

Unlike in other areas, e.g., bioinformatics and biomedical sciences, where the
use of Scientific workflows management systems has been long used [3,29], in
Software Engineering is not yet a common practice. With this framework, we
aim to present a simple and scalable way to create and reuse scientific workflows.

This framework is based on two open source software systems: Taverna
Server/Taverna Workbench [28] and JGU WEKA REST Service. This archi-
tecture allows workflows to be performed on the local computer that does not
require large computational resources. Remote execution on the cloud-based
architecture allows the processing of large datasets. Workflows are created in
the Taverna Workbench, where they can also be run, and loaded into the Tav-
erna Server, so they are available to be run by multiple users.

To exemplify the feasibility of the proposed framework, we have replicated
the study named “Code Smell Detection: Towards a Machine Learning-based
Approach” published in [10], which compares six machine learning algorithms to
determine the best one for detecting 4 code smell types, i.e., Data Class, Large
Class, Feature Envy and Long Method. Comparing our results with the study’s,
we confirm its findings.

With this framework, we think we have contributed to facilitating the appli-
cation/reproduction of studies, thus contributing to Software Engineering devel-
opment.

Acknowledgement. This research was partially funded by ISTAR’s projects FCT
UIDB/04466/2020 and UIDP/04466/2020.

References

1. Abbuhl, R.: Why, when, and how to replicate research. In: Research Methods in
Second Language Acquisition: A Practical Guide, pp. 296–312 (2012). https://doi.
org/10.1002/9781444347340.ch15

https://doi.org/10.1002/9781444347340.ch15
https://doi.org/10.1002/9781444347340.ch15


Scientific Workflow Management for Software Quality Assessment 13

2. Bryton, S., Brito e Abreu, F., Monteiro, M.: Reducing subjectivity in code smells
detection: experimenting with the Long Method. In: Proceedings of the 7th Interna-
tional Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 337–342. IEEE (2010). https://doi.org/10.1109/QUATIC.2010.60

3. Cohen-Boulakia, S., Chen, J., Missier, P., Goble, C., Williams, A.R., Froidevaux,
C.: Distilling structure in taverna scientific workflows: a refactoring approach. BMC
Bioinformatics 15(Suppl 1), 1–14 (2014). https://doi.org/10.1186/1471-2105-15-
S1-S12

4. De Magalhães, C.V., Da Silva, F.Q., Santos, R.E., Suassuna, M.: Investigations
about replication of empirical studies in software engineering: a systematic map-
ping study. Inf. Softw. Technol. 64, 76–101 (2015). https://doi.org/10.1016/j.infsof.
2015.02.001

5. De Roure, D., Goble, C., Stevens, R.: The design and realisation of the Experi-
mentmy virtual research environment for social sharing of workflows. Futur. Gener.
Comput. Syst. 25(5), 561–567 (2009). https://doi.org/10.1016/j.future.2008.06.
010

6. Deelman, E., et al.: The future of scientific workflows. Int. J. High-Perform. Com-
put. Appl. 32(1), 159–175 (2018). https://doi.org/10.1177/1094342017704893

7. Deelman, E., et al.: Pegasus, a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17–35 (2015). https://doi.org/10.1016/J.
FUTURE.2014.10.008

8. Fokaefs, M., Tsantalis, N., Stroulia, E.: JDeodorant: identification and application
of extract class refactorings. In: Proceedings of the 33rd International Conference
on Software Engineering, (ICSE). ACM/IEEE (2011). https://doi.org/10.1145/
1985793.1985989

9. Fontana, F.A., Mangiacavalli, M., Pochiero, D., Zanoni, M.: On experimenting
refactoring tools to remove code smells. In: Proceedings of the XP’15 Workshops,
pp. 1–8. ACM Press, New York (2015). https://doi.org/10.1145/2764979.2764986

10. Fontana, F.A., Zanoni, M., Marino, A., Mäntylä, M.V.: Code smell detection:
towards a machine learning-based approach. In: Proceedings of the International
Conference on Software Maintenance (ICSM). IEEE (2013). https://doi.org/10.
1109/ICSM.2013.56

11. Gómez, O.S., Juristo, N., Vegas, S.: Understanding replication of experiments in
software engineering: a classification. Inf. Softw. Technol. 56(8), 1033–1048 (2014).
https://doi.org/10.1016/j.infsof.2014.04.004

12. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008-2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

13. Ivie, P., Thain, D.: Reproducibility in scientific computing. ACM Comput. Surv.
51(3), 1–36 (2018). https://doi.org/10.1145/3186266

14. Juristo, N., Gómez, O.S.: Replication of software engineering experiments. In:
Meyer, B., Nordio, M. (eds.) Empirical Software Engineering and Verification. Lec-
ture Notes in Computer Science, vol. 7007, pp. 60–88. Springer, Berlin (2012)

15. Kitchenham, B.: The role of replications in empirical software engineering-a word
of warning. Empir. Softw. Eng. 13(2), 219–221 (2008). https://doi.org/10.1007/
s10664-008-9061-0

16. La Sorte, M.A.: Replication as a verification technique in survey research: a
paradigm. Sociol. Q. 13(2), 218–227 (1972). https://doi.org/10.1111/j.1533-8525.
1972.tb00805.x

https://doi.org/10.1109/QUATIC.2010.60
https://doi.org/10.1186/1471-2105-15-S1-S12
https://doi.org/10.1186/1471-2105-15-S1-S12
https://doi.org/10.1016/j.infsof.2015.02.001
https://doi.org/10.1016/j.infsof.2015.02.001
https://doi.org/10.1016/j.future.2008.06.010
https://doi.org/10.1016/j.future.2008.06.010
https://doi.org/10.1177/1094342017704893
https://doi.org/10.1016/J.FUTURE.2014.10.008
https://doi.org/10.1016/J.FUTURE.2014.10.008
https://doi.org/10.1145/1985793.1985989
https://doi.org/10.1145/1985793.1985989
https://doi.org/10.1145/2764979.2764986
https://doi.org/10.1109/ICSM.2013.56
https://doi.org/10.1109/ICSM.2013.56
https://doi.org/10.1016/j.infsof.2014.04.004
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1145/3186266
https://doi.org/10.1007/s10664-008-9061-0
https://doi.org/10.1007/s10664-008-9061-0
https://doi.org/10.1111/j.1533-8525.1972.tb00805.x
https://doi.org/10.1111/j.1533-8525.1972.tb00805.x


14 J. P. dos Reis et al.

17. Liu, H., Ma, Z., Shao, W., Niu, Z.: Schedule of bad smell detection and resolution:
a new way to save effort. IEEE Trans. Softw. Eng. 38(1), 220–235 (2012). https://
doi.org/10.1109/TSE.2011.9

18. Mantyla, M., Lassenius, C.: Subjective evaluation of software evolvability using
code smells: an empirical study. Empir. Softw. Eng. 11(3), 395–431 (2006). https://
doi.org/10.1007/s10664-006-9002-8

19. Mantyla, M., Vanhanen, J., Lassenius, C.: Bad smells - humans as code critics.
In: Proceedings of the 20th International Conference on Software Maintenance
(ICSM), pp. 399–408 (2004). https://doi.org/10.1109/ICSM.2004.1357825

20. Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., Poshyvanyk, D., Lucia, A.D.:
Mining version histories for detecting code smells. IEEE Trans. Software Eng.
41(5), 462–489 (2015). https://doi.org/10.1109/TSE.2014.2372760

21. Pessoa, T., Brito e Abreu, F., Monteiro, M.P., Bryton, S.: An eclipse plugin to
support code smells detection. In: Proceedings of INFORUM 2011 (Simpósio de
Informática). p. 12 (2011). https://arxiv.org/abs/1204.6492

22. Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., Anslow, C.:
Code smells detection and visualization: a systematic literature review. Arch.
Comput. Methods Eng. 29(1), 47–94 (2022). https://doi.org/10.1007/s11831-021-
09566-x

23. Shepperd, M.: Replication studies considered harmful. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp. 73–76. ACM/IEEE
(2018). https://doi.org/10.1145/3183399.3183423

24. Shull, F.J., Carver, J.C., Vegas, S., Juristo, N.: The role of replications in empirical
software engineering. Empir. Softw. Eng. 13(2), 211–218 (2008). https://doi.org/
10.1007/s10664-008-9060-1

25. Taylor, I.J., Deelman, E., Gannon, D., Shields, M.S.: Workflows for E-science:
Scientific Workflows for Grids. Springer, Cham (2007). https://doi.org/10.1007/
978-1-84628-757-2

26. Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A.: JDeodorant: identification and
removal of type-checking bad smells. In: Proceedings of the 12th European Con-
ference on Software Maintenance and Reengineering (CSMR), pp. 329–331 (2008).
https://doi.org/10.1109/CSMR.2008.4493342

27. Wang, C., Hirasawa, S., Takizawa, H., Kobayashi, H.: Identification and elimination
of platform-specific code smells in high performance computing applications. Int. J.
Networking Comput. 5(1), 180–199 (2015). https://doi.org/10.15803/ijnc.5.1 180

28. Wolstencroft, K., et al.: The taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucleic Acids Res.
41(Web Server issue), 557–561 (2013). https://doi.org/10.1093/nar/gkt328

29. Wolstencroft, K., Fisher, P., Goble, C.: Scientific workflows overview. Connexions
26, 1–6 (2009)

30. Yamashita, A., Moonen, L.: To what extent can maintenance problems be predicted
by code smell detection? - An empirical study. Inf. Softw. Technol. 55(12), 2223–
2242 (2013). https://doi.org/10.1016/j.infsof.2013.08.002

https://doi.org/10.1109/TSE.2011.9
https://doi.org/10.1109/TSE.2011.9
https://doi.org/10.1007/s10664-006-9002-8
https://doi.org/10.1007/s10664-006-9002-8
https://doi.org/10.1109/ICSM.2004.1357825
https://doi.org/10.1109/TSE.2014.2372760
https://arxiv.org/abs/1204.6492
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1145/3183399.3183423
https://doi.org/10.1007/s10664-008-9060-1
https://doi.org/10.1007/s10664-008-9060-1
https://doi.org/10.1007/978-1-84628-757-2
https://doi.org/10.1007/978-1-84628-757-2
https://doi.org/10.1109/CSMR.2008.4493342
https://doi.org/10.15803/ijnc.5.1_180
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1016/j.infsof.2013.08.002

	Scientific Workflow Management for Software Quality Assessment Replication: An Open Source Architecture
	1 Introduction
	1.1 Replication
	1.2 Software Quality Assessment
	1.3 Scientific Workflows
	1.4 Contribution

	2 Background
	3 Description of the Proposed Framework
	3.1 Introduction
	3.2 Architecture of the Framework

	4 Replication Example
	4.1 Study to Be Replicated
	4.2 Replication Using the Framework

	5 Conclusions
	References




