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Abstract. This paper reconstructs in the context of formal argumentation the
notion of stable explanation developed elsewhere in Defeasible Logic. With this
done, we discuss the deontic meaning of this notion and show how to build from
argumentation neighborhood structures for deontic logic where a stable explana-
tion can be characterised.

1 Introduction

Developing explainable AI systems is important in the law since ‘transparency’ and
‘justification’ of legal decision-making require formalising normative explanations [1,4,
6,15]. A normative explanation is an explanation where norms are crucial: in the context
of legal decision-making, this means to explain why a legal conclusion ought to be the
case on the basis of certain norms and facts [2,10,13,14,18,19].

Legal proceedings are adversarial in nature: if a judge or a litigant aim at predicting
possible outcomes, this fact must be taken into account, and formal tools to make such
predictions understandable should allow for checking if a certain legal outcome is stable
[9,10,16]. In such a perspective, given some facts, the proceeding aims at determining
what legal requirements hold, and whether such legal requirements have been fulfilled.
(In)Stability means that, if more/new facts were presented, the outcome of a case might
be quite different or can even be modified. How to ensure a specific outcome for a case?
How to ensure that the facts presented by a party are ‘resilient’ to the attacks from the
opponent? In this paper we adopt [9,10]’s definition of stability and elaborate it in the
argumentation setting of Defeasible Logic [3].

What is the deontic meaning of stable normative explanation as developed in an
argumentation setting? In legal argumentation, a typical outcome of judicial decisions
are obligations and permissions. In moving to the deontic domain, we notice that deon-
tic argumentation can be developed in various ways [12,21]. We assume that legal
norms are rules having the form φ1, . . . ,φn ⇒ ψ and we follow the intuition that, if
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AF is an argumentation framework where arguments are built using rules, then OBLψ
holds in AF iff ψ is justified w.r.t. AF [20]. Once this is done and we have defined the
notion of normative explanation, we adapt [11]’s method and show how this machinery
can be reconstructed in neighborhood semantics for classical deontic logics [7] and
how the notion of explanation can be semantically characterised.

The layout of article is as follows1. Section 2 offers a variant of the idea of argumen-
tation framework based on Defeadible Logic. Section 3 presents the definition of stable
normative explanation. Section 4 illustrates how to move from argumentation structures
to neighbourhood semantics for deontic logic. Section 5 applies the ideas of Sects. 3
and 4 to semantically reconstruct the concept of stable normative explanation.

2 Background: Logic and Argumentation

Our framework is Defeasible Logic (DL) [3]. The basic language consists of a set Lit of
literals. The complementary of a literal φ is denoted by ∼φ : if φ is positive then ∼φ is
¬φ , if φ is negative then ∼φ is φ . Let Lab be a set of labels to represent names of rules.
A rule r has the form r : A(r) ⇒C(r), where: (i) r ∈ Lab is the unique name of the rule,
(ii) A(r) ⊆ Lit is r’s (set of) antecedents, (iii) C(r) = φ ∈ Lit is its conclusion. Unlike
standard DL, we only use defeasible rules, in which, if the premises are the case, then
typically the conclusion holds unless we have contrary evidence.

We also use a special type of logical theory in DL:

Definition 1 (Argumentation theory). An argumentation theory D is a tuple (F,R,>)
where (a) F ⊆ Lit is a finite and consistent set of facts (indisputable statements), (b) R
is a finite rule set, and (c) a binary superiority relation over R (which is used to solve
rule conflicts). We state that ∀φ ∈ F, R[φ ]∪R[∼φ ] = /0.

As a convention, R[φ ] denotes the set of all rules in R whose conclusion is φ .
A conclusion of D is a tagged literal with the following form: +∂φ (resp. −∂φ )

means that φ is defeasibly proved (resp. defeasibly refuted) in D, i.e., there is a defeasi-
ble proof for φ in D (resp. a proof does not exist). A proof P of length n in D is a finite
sequence P(1),P(2), . . . ,P(n) of tagged literals for which specific proof conditions are
defined [3]. P(1..n) denotes the first n steps of P. We present only the positive one for
defeasible conclusions.

+∂φ : If P(n+1) = +∂φ then either
(1) φ ∈ F , or
(2.1) ∃r ∈ R[φ ] s.t. ∀ψ ∈ A(r). +∂ψ ∈ P(1..n) and
(2.2) ∀s ∈ R[∼φ ] either

(2.2.1) ∃ψ ∈ A(s). −∂ψ , or
(2.2.2) ∃t ∈ R[φ ] s.t. ∀ψ ∈ A(t). +∂ψ ∈ P(1..n) and t > s.

Argumentation frameworks for DL have been studied in [8]. Here, we present a
variant of it, which is based on the above fragment of DL [9,10].

1 A full version of this paper with some proofs is here: http://arxiv.org/abs/2307.05156.

http://arxiv.org/abs/2307.05156
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Definition 2 (Argument). Let D= (F,R,>) be an argumentation theory. An argument
A constructed from D has either the the form ⇒F φ (factual argument), where φ ∈ F,
or the form A1, . . . ,An ⇒r φ (plain argument), where 1 ≤ k ≤ n, and

– Ak is an argument constructed from D, and
– r : Conc(A1), . . . ,Conc(An) ⇒ φ is a rule in R.

For a given argument A, Conc returns its conclusion, Sub returns all its sub-
arguments, and TopRule returns the last rule in the argument.

Any argument A is a tree whose root is labelled by Conc(A), and for every node x
labelled by any φ , its children x1, . . . ,xn are labelled by φ1, . . . ,φn (except its leaves,
which can be also labelled by /0) and the arcs are labeled by a rule r : φ1, . . . ,φn ⇒ φ .
Arguments of height 1 are called atomic arguments; for any argument A, the set of its
atomic sub-arguments is denoted by ASub(A).

The notions of attack, support, and undercut are the standard ones for DL (see [8]).
We can now define the argumentation framework.

Definition 3 (Argumentation Framework). Let D be an argumentation theory. The
argumentation framework AF(D) determined by D is (A ,
) where A is the set of all
arguments constructed from D, and 
 is the attack relation.

The core of argumentation semantics are the notions of acceptable and rejected
argument. An argument is acceptable with respect to a set of arguments that undercut
any attacks. Then, we can define recursively the extension of an argumentation theory D
and of the corresponding framework AF(D), which is the set of justified arguments w.r.t.
AF(D). The definitions of the set JArgsD of justified arguments and of the set RArgsD

of rejected arguments are a fix-point construction. For the details see [8].

Theorem 1. Let D be an argumentation theory and A be an argument in AF(D) such
that Conc(A) = φ . Then, (a) A ∈ JArgsD iff D � +∂φ ; (b) A ∈ RArgsD iff D � −∂φ .

3 Stable Normative Explanations

We define the idea of normative explanation for φ , which is a normative decision or any
piece of normative knowledge that justifies φ and that is minimal [9,10,14].

Definition 4 (Normative explanation). Let D= (F,R,>) be an argumentation theory
and AF(D) = (A ,
) be the argumentation framework determined by D. The set arg ⊆
A is a normative explanation Expl(φ ,AF(D)) in AF(D) for φ iff

– A ∈ arg is an argument for φ and A is justified w.r.t. AF(D);
– arg is a minimal set in AF(D) such that A is acceptable w.r.t to arg.

Example 1. Consider the following fragment of an argumentation theory:

R= {s1 : ⇒ ¬α, s2 : λ ⇒ α, s3 : β ,π ⇒ α, s4 : δ ⇒ ¬α, s5 : ι ⇒ δ}
>= {〈s2,> s1〉,〈s3 > s1〉,〈s4 > s3〉,〈s4 > s2〉}.
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Assume an argumentation theory D = (F,R,>) where F = {ι ,λ}. Then, AF(D) =
(A ,
) is as follows:

A = {A1 : ⇒F ι , A2 : ⇒F λ , A3 : A1 ⇒s5 δ , A4 : A3 ⇒s4 ¬α, A5 : A2 ⇒s2 α}

= {〈A4,A5〉〉}.

It is easy to see that {A1,A4} = Expl(¬α,AF(D)).

An explanation for a normative conclusion φ is stable when adding new elements
to that explanation does not affect its power to explain φ [9,10].

Definition 5. Let R a finite set of rules. We define the set of literals Lit(R) as
{φ ,∼φ |∀r ∈ R : φ ∈ A(r) or ∼φ ∈ A(r),R[φ ]∪R[∼φ ] = /0}.
Definition 6 (Stable Normative Explanation). Let AF(D) = (A ,
) be an argu-
mentation framework determined by the argumentation theory D = (F,R,>). We say
that arg = Expl(φ ,AF(D)) is a stable normative explanation for φ in AF(D) iff for
all AF(D′) = (A ′,
′) where D′ = (F ′,R,>) s.t. F ⊆ F ′ ⊆ Lit(R), we have that
arg = Expl(φ ,AF(D′)).

Example 2. Let us consider Example 1. Then, {A1,A4} is stable normative explanation
for ¬α in AF(D), whereas, e.g., {A2,A5} is not a stable normative explanation for α .

4 From Argumentation to Deontic Logic

To move to deontic logic we follow [11] by stating that defeasible provability (and
justification) of any φ corresponds to the obligatoriness of φ , and—if PERM is the dual
of OBL—the non-provability (and non-justification) of φ means that ∼φ is permitted.

Definition 7 (Modal language and logic). Let Lit be the set of literals of our language
L . The language L (Lit) of EL is defined as follows:

p:: = l | ¬p | OBLφ | PERMφ ,

where l ranges over PROP and φ ranges over Lit.
The logical system EL is based onL (Lit) and is closed under logical equivalence.

Proposition 1. The system EL is a fragment of system E [7].

To introduce an appropriate semantics for our fragment, the following is needed.

Definition 8. Let D= (F,R,>) be any argumentation theory, AF(D) = (A ,
) be the
argumentation framework determined by D, and Lit(D) be the set of literals occurring
in D. The D-extension E(D) of a theory D is the smallest set of literals such that, for
all φ ∈ Lit(D): (a) φ ∈ E(D) iff φ is justified w.r.t. AF(D), (b) ∼φ ∈ E(D) iff φ is not
justified w.r.t. AF(D).

Definition 9. Let L be a consistent set of literals. A defeasible rule theory is a structure
D= (R,>). The D-extension of L is the extension of the argumentation theory (L,R,>);
we denote it with EL(D).
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Definition 10 (Dependency graph). Let D be any argumentation theory and Lit(D) be
literals occurring in D. The dependency graph of D is the directed graph (V,A) where:

– V = {p | p ∈ PROP,{p,¬p}∩Lit(D) �= /0};
– A is the set such that (n,m) ∈ A iff

• n= φ and ∃r ∈ R[φ ]∪R[∼φ ];
• m= ψ and ∃r ∈ R[ψ]∪R[∼ψ] such that {n,∼n}∩A(r) �= /0.

Proposition 2. Let L be a set of literals, D = (R,>) be a defeasible rule theory such
that the transitive closure of > is acyclic and D′ = (L,R,>) be the corresponding argu-
mentation theory such that the dependency graph of D′ is acyclic. Then, the D-extension
of L is consistent iff L is consistent.

Definition 11. (Neighbourhood D-frame, neighbourhood D-model, and truth). Let
D= (F,R,>) be an argumentation theory such that the transitive closure of> is acyclic
and the dependency graph of D is acyclic. Let R′ = R∪{r :⇒ φ |φ ∈ F}. A neighbour-
hood D-frame is a structure 〈W,N 〉 where
– W = {w |w ∈ (2E(D) −{ /0})};
– N is a function with signature W �→ 22W defined as follows:

• xS jy iff ∃r j ∈ R′ such that A(r j) ⊆ x and C(r j) ∈ y
• ∀s ∈ R′[∼C(r j)] either

1. ∃a ∈ A(s),a /∈ x; or
2. ∃t ∈ R′[C(r j)] such that t > s, A(t) ⊆ x

• S j(w) = {x ∈W : wSjx}
• S j(w) =

⋃
C(rk)=C(r j) Sk(w)

• N (w) = {S j(w)}r j∈R′ .

A neighbourhood D-model M is obtained by adding an evaluation function v : PROP �→
2W to a neighbourhood D-frame such that, for any p ∈ PROP, v(p) = {w | p ∈ w}.

To build canonical structures, we consider all possible defeasible rule theories and,
for each of them, all possible maximal consistent sets of facts that can be generated.

Lemma 1 (Lindenbaum’s Lemma). Let D any defeasible rule theory. Any consistent
set wEL(D) of formulae in the languageL (Lit) consisting of a D-extension of any L can
be extended to a consistent L (Lit)-maximal set w+

EL(D)
.

Definition 12. (Canonical neighbourhood D-model). Given the language L , let D
be the set of all defeasible rule theories that can be obtained from L . For all Di =
(Ri,>i) ∈ D , define R′

i = Ri ∪ {r :⇒ φ |φ ∈ L} for each (L,Ri,>i), L ∈ 2Lit(Di). The
canonical neighbourhood model is the structure MD = (W,N ,v) where

– W =
⋃

∀Di∈DWi where Wi = {wL |∀L ∈ 2Lit(Di),wL = w+
EL(Di)

}.
– N is a function with signature W �→ 22W defined as follows:

• xSijy where OBLφ ∈ x iff ∃r j ∈ R′
i such that C(r j) = φ , A(r j) ⊆ x and C(r j) ∈ y

where x,y ∈Wi;
• ∀s ∈ R′

i[∼C(r j)] either
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1. ∃a ∈ A(s),a /∈ x; or
2. ∃t ∈ R′

i[C(r j)] such that t > s, A(t) ⊆ x
• Sij(w) = {x ∈Wi : wSijx},
• S i

j (w) =
⋃
C(rk)=C(r j) S

i
k(w),

• N (w) = {S i
j (w)}r j∈R′

i
;

– for each φ ∈ Lit and any w ∈W, v is an evaluation function such that w ∈ v(φ) iff
φ ∈ w, and w �∈ v(φ) iff ∼φ ∈ w.

Lemma 2 (Truth Lemma). IfM = (W,N ,v) is canonical for S, where S⊇ EL , then
for any w ∈W and for any formula φ , φ ∈ w iffM ,w |= φ .

Corollary 1. (Completeness of EL ). The system EL is sound and complete with
respect to the class of neighbourhood D-frames.

Corollary 2. Let M be any neighbourhood D-model. Then (a) M |= OBLφ iff there
exists an argumentation theory D = (F,R,>) such that φ is justified w.r.t. AF(D); (b)
(b) M |= PERMφ iff there exists an argumentation theory D= (F,R,>) such that ¬φ
is not justified w.r.t. AF(D).

5 Stable Explanations in Neighbourhood Semantics

The definition of normative explanation of Sect. 3 can be appropriately captured in our
deontic logic setting. First of all, we have to formulate the modal version of an argument.

Proposition 3 (Neighbourhood D-model for an argument). Let D= (F,R,>) be an
argumentation theory, AF(D) = (A ,
) be the argumentation framework determined
by D, and MD = (W,N ,v) be the corresponding neighbourhood D-model. An argu-
ment A ∈A , where Conc(A) = φ0, is justified w.r.t. AF(D) iff, if h is the height of A and
A = {Ax |Ax ∈ ASub(A),∀x ∈ {(h− 1)1, . . . ,(h− 1)m, . . . ,11, . . . ,1p,0},Conc(Ax) =
φx}, then the following condition holds in MD: if y ∈ {h1, . . . ,hm,(h− 1)1, . . . ,(h−
1)m, . . . ,11, . . . ,1p,0}

∃wy ∈W

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(h−1)z ∈ {(h−1)1, . . . ,(h−1)m},(. . .(||φ(h−1)z || ∈ N (whz))
&
∀(h−2)z ∈ {(h−2)1, . . . ,(h−2) j},(w(h−1)z ∈ ||φ(h−1)z || ⇒
⇒ ||φ(h−2)z || ∈ N (w(h−1)z))
&
...
&
∀2z ∈ {21, . . .2k},(w2z ∈ ||φ2z || ⇒ ||φ1z || ∈ N (w2z))
&
∀1z ∈ {11, . . .1 j},(w1z ∈ ||φ1z || ⇒ ||φ0|| ∈ N (w1z)) . . .)

The model MD is called a neighbourhood D-model for A.

The concept of normative explanation directly follows from Proposition 3.



Stable Normative Explanations 129

Proposition 4 (Neighbourhood D-model for a normative explanation). Let D =
(F,R,>) be an argumentation theory, AF(D) = (A ,
) be the argumentation frame-
work determined by D, and MD = (W,N ,v) be the corresponding neighbourhood D-
model.

If Expl(ψ,AF(D)) = {A1, . . . ,An} then MD is neighbourhood D-model for each
argument Ak, 1 ≤ k ≤ n.

The model MD is called a neighbourhood D-model for Expl(ψ,AF(D)).

We can semantically isolate the arguments in a normative explanation by using
Proposition 3 as well as by resorting to the notion of generated sub-model [5,17].

Definition 13 (Generated submodel [5,17]). Let M = (W,N ,v) be any neighbour-
hood model. A generated submodel MX = (X ,NX ,vX ) of M is neighbourhood model
where X ⊆W, ∀Y ⊆W,∀w ∈ X ,Y ∈ N (w) ⇔ Y ∩X ∈ NX (w).

Proposition 5 (Generated D-submodel for a normative explanation). Let D =
(F,R,>) be an argumentation theory, AF(D) = (A ,
) be the argumentation frame-
work determined by D, X = Expl(ψ,AF(D)), MD = (W,N ,v) be a neighbourhood
D-model forX , and MDX

= (WX ,NX ,vX ) be a generated submodel of MD.
X = {A1, . . . ,An} iff WX =W −X where

X = {w |w ∈W, ∀φ ∈ w : φ ∈ F &Ax ∈ A , Ax �∈ X and Ax :⇒F φ}
The model MDX

is called the generated D-submodel forX .

Corollary 3 (Stable normative explanation in neighbourhood D-models). Let D =
(F,R,>) be an argumentation theory and AF(D) = (A ,
) be the argumentation
framework determined by D.

If X = Expl(ψ,AF(D)) = {A1, . . . ,An} is a stable normative explanation for ψ
in AF(D) and D+ = (F+,R,>) is the argumentation theory where F+ = {φ |∀r ∈
R : φ ∈ A(r) and R[φ ]∪R[∼φ ] = /0}, then Expl(ψ,AF(D+)), and MDX

=MD+
X

such

that MDX
and MD+

X
are, respectively, the generated D-submodel and generated D+-

submodel for X .

A stable explanation considers a neighbourhood model where all possibile facts of a
theory D are the case and requires that in such a model the conclusion ψ is still justified.

6 Summary

In this paper we investigated the concept of stable normative explanation in argumenta-
tion. Then we have devised in a deontic logic setting a new method to construct appro-
priate neighborhood models from argumentation frameworks and we have characterised
accordingly the notion of stable normative explanation. The problem of determining a
stable normative explanation for a certain legal conclusion means to identify a set of
facts, obligations, permissions, and other normative inputs able to ensure that such a
conclusion continues to hold when new facts are added to a case. This notion is interest-
ing from a logical point of view—think about the classical idea of inference to the best
explanation—and we believe it can also pave the way to develop symbolic models for
XAI when applied to the law.
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