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Abstract. The use of Shap scores has become widespread in Explainable AI.
However, their computation is in general intractable, in particular when done
with a black-box classifier, such as neural network. Recent research has unveiled
classes of open-box Boolean Circuit classifiers for which Shap can be computed
efficiently. We show how to transform binary neural networks into those circuits
for efficient Shap computation. We use logic-based knowledge compilation tech-
niques. The performance gain is huge, as we show in the light of our experiments.

1 Introduction

In recent years, there has been a growing demand for methods to explain and interpret
the results from machine learning (ML) models. Explanations come in different forms,
and can be obtained through different approaches. A common one assigns attribution
scores to the features values associated to an input that goes through an ML-based
model, to quantify their relevance for the obtained outcome. We concentrate on local
scores, i.e. associated to a particular input, as opposed to a global score that indicated
the overall relevance of a feature. We also concentrate on explanations for binary clas-
sification models that assign labels 0 or 1 to inputs.

A popular local score is Shap [18], which is based on the Shapley value that was
introduced in coalition game theory and practice [29,31]. Shap scores can be computed
with a black-box or an open-box model [30]. With the former, we do not know or use
its internal components, but only its input/output relation. This is the most common
approach. In the latter case, we can have access to its internal structure and components,
and we can use them for score computation. It is common to consider neural-network-
based models as black-box models, because their internal gates and structure may be
difficult to understand or process when it comes to explaining classification outputs.
However, a decision-tree model, due to its much simpler structure and use, is considered
to be open-box for the same purpose.

Even for binary classification models, the complexity of Shap computation is prov-
ably hard, actually#P -hard for several kinds of binary classification models, indepen-
dently from whether the internal components of the model are used when computing
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Shap [1,2,4]. However, there are classes of classifiers for which, using the model com-
ponents and structure, the complexity of Shap computation can be brought down to
polynomial time [2,19,37].

A polynomial time algorithm for Shap computation with deterministic and decom-
posable Boolean circuits (dDBCs) was presented in [2]. From this result, the tractability
of Shap computation can be obtained for a variety of Boolean circuit-based classi-
fiers and classifiers that can be represented as (or compiled into) them. In particular,
this holds for Ordered Binary Decision Diagrams (OBDDs) [8], decision trees, and
other established classification models that can be compiled into (or treated as) OBDDs
[11,23,33]. This applies, in particular, to Sentential Decision Diagrams (SDDs) [14]
that form a convenient knowledge compilation target language [12,36].

In this work, we show how to use logic-based knowledge compilation techniques to
attack, and -to the best of our knowledge- for the first time, the important and timely
problem of efficiently computing explanations scores in ML, which, without these tech-
niques, would stay intractable.

More precisely, we concentrate on explicitly developing the compilation-based app-
roach to the computation of Shap for binary (or binarized) neural networks (BNNs)
[17,23,27,35]. For this, a BNN is transformed into a dDBC using techniques from
knowledge compilation [12], an area that investigates the transformation of (usually)
propositional theories into an equivalent one with a canonical syntactic form that has
some good computational properties, e.g. tractable model counting. The compilation
may incur in a relatively high computational cost [12,13], but it may still be worth the
effort when a particular property is checked often, as is the case of explanations for the
same BNN.

More specifically, we describe in detail how a BNN is first compiled into a propo-
sitional formula in Conjunctive Normal Form (CNF), which, in its turn, is compiled
into an SDD, which is finally compiled into a dDBC. Our method applies at some steps
established transformations that are not commonly illustrated or discussed in the context
of real applications, which we do here. The whole compilation path and the application
to Shap computation are new. We show how Shap is computed on the resulting circuit
via the efficient algorithm in [2]. This compilation is performed once, and is indepen-
dent from any input to the classifier. The final circuit can be used to compute Shap
scores for different input entities.

We also make experimental comparisons of computation times between this open-
box and circuit-based Shap computation, and that based directly on the BNN treated as
a black-box, i.e. using only its input/output relation. For our experiments, we consider
real estate as an application domain, where house prices depend on certain features,
which we appropriately binarize1. The problem consists in classifying property blocks,
represented as entity records of thirteen feature values, as high-value or low-value, a
binary classification problem for which a BNN is used.

To the best of our knowledge, our work is the first at using knowledge compila-
tion techniques for efficiently computing Shap scores, and the first at reporting exper-
iments with the polynomial time algorithms for Shap computation on binary circuits.
We confirm that Shap computation via the dDBC vastly outperforms the direct Shap

1 California Housing Prices dataset: https://www.kaggle.com/datasets/camnugent/california-
housing-prices.

https://www.kaggle.com/datasets/camnugent/california-housing-prices
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computation on the BNN. It is also the case that the scores obtained are fully aligned,
as expected since the dDBC represents the BNN. The same probability distribution
associated to the Shapley value is used with all the models.

Compilation of BNNs into OBDDs was done in [11,33] for other purposes, not for
Shap computation or any other kind of attribution score. In this work we concentrate
only on explanations based on Shap scores. There are several other explanations mech-
anisms for ML-based classification and decision systems in general, and also specific
for neural networks. See [16] and [28] for surveys.

This paper is structured as follows. Section 2 contains background on Shap and
Boolean circuits (BCs). Section 3 shows in detail, by means of a running example, the
kind of compilation of BNNs into dDBCs we use for the experiments. Section 4 presents
the experimental setup, and the results of our experiments with Shap computation. In
Sect. 5 we draw some conclusions.

2 Preliminaries

In coalition game theory and its applications, the Shapley value is a established measure
of the contribution of a player to a shared wealth that is modeled as a game function.
Given a set of players S, and a game function G : P(S) → R, mapping subsets of
players to real numbers, the Shapley value for a player p ∈ S quantifies its contribution
to G. It emerges as the only measure that enjoys certain desired properties [29]. In order
to apply the Shapley value, one has to define an appropriate game function.

Now, consider a fixed entity e = 〈F1(e), . . . , FN (e)〉 subject to classification. It
has values Fi(e) for features in F = {F1, . . . , FN}. These values are 0 or 1 for binary
features. In [18,19], the Shapley value is applied with F as the set of players, and with
the game function Ge(s) := E(L(e′) | e′

s = es), giving rise to the Shap score. Here,
s ⊆ F , and es is the projection (or restriction) of e on (to) the s. The label function
L of the classifier assigns values 0 or 1. The e′ inside the expected value is an entity
whose values coincide with those of e for the features in s. For feature F ∈ F :

Shap(F ,Ge, F ) =
∑

s⊆F\{F}

|s|!(|F| − |s| − 1)!
|F|! [ (1)

E(L(e′) | e′
s∪{F} = es∪{F}) − E(L(e′) | e′

s = es) ].

The expected value assumes an underlying probability distribution on the entity popu-
lation. Shap quantifies the contribution of feature value F (e) to the outcome label.

In order to compute Shap, we only need function L, and none of the internal com-
ponents of the classifier. Given that all possible subsets of features appear in its defini-
tion, Shap is bound to be hard to compute. Actually, for some classifiers, its computa-
tion may become#P -hard [2]. However, in [2], it is shown that Shap can be computed
in polynomial time for every deterministic and decomposable Boolean circuit (dDBC)
used as a classifier. The circuit’s internal structure is used in the computation.

Figure 1 shows a Boolean circuit that can be used as a binary classifier, with binary
features x1, x2, x3, whose values are input at the bottom nodes, and then propagated
upwards through the Boolean gates. The binary label is read off from the top node.
This circuit is deterministic in that, for every ∨-gate, at most one of its inputs is 1 when
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the output is 1. It is decomposable in that, for every ∧-gate, the inputs do not share
features. The dDBC in the Figure is also smooth, in that sub-circuits that feed a same
∨-gate share the same features. It has a fan-in at most two, in that every ∧-gate and
∨-gate have at most two inputs. We denote this subclass of dDBCs with dDBCSFi(2).

Fig. 1. A dDBC. Fig. 2. A BNN.

More specifically, in [2] it is established that Shap can be computed in polynomial
time for dDBCSFi(2)-classifiers, assuming that the underlying probability distribution
is the uniform, P u, or the product distribution, P×. They are as follows for binary
features: P u(e) := 1

2N
and P×(e) := ΠN

i=1pi(Fi(e)), where pi(v) is the probability
of value v ∈ {0, 1} for feature Fi.

3 Compiling BNNs into dDBCs

In order to compute Shap with a BNN, we convert the latter into a dDBC, on which
Shap scores will be computed with the polynomial time algorithm in [2]. The trans-
formation goes along the the following path that we describe in this section:

BNN �−→
(a)

CNF �−→
(b)

SDD �−→
(c)

dDBC
(2)

A BNN can be converted into a CNF formula [23,34], which, in its turn, can be con-
verted into an SDD [14,25]. It is also known that SDDs can be compiled into a formula
in d-DNNF (deterministic and decomposable negated normal form) [12], which forms
a subclass of dDBCs. More precisely, the resulting dDBC in (2) is finally compiled in
polynomial time into a dDBCSFi(2).

Some of the steps in (2) may not be polynomial-time transformations, which we
will discuss in more technical terms later in this section. However, we can claim at
this stage that: (a) Any exponential cost of a transformation is kept under control by a
usually small parameter. (b) The resulting dDBCSFi(2) is meant to be used multiple
times, to explain different and multiple outcomes; and then, it may be worth taking a
one-time, relatively high transformation cost. A good reason for our transformation
path is the availability of implementations we can take advantage of2.
2 The path in (2) is not the only way to obtain a dDBC. For example, [33] describe a conversion
of BNNs into OBDDs, which can also be used to obtain dDBCs. However, the asymptotic time
complexity is basically the same.
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We will describe, explain and illustrate the conversion path (2) by means of a run-
ning example with a simple BNN, which is not the BNN used for our experiments. For
them, we used a BNN with one hidden layer with 13 gates.

Example 1. The BNN in Fig. 2 has hidden neuron gates h1, h2, h3, an output gate
o, and three input gates, x1, x2, x3, that receive binary values. The latter represent,
together, an input entity x̄ = 〈x1, x2, x3〉 that is being classified by means of a label
returned by o. Each gate g is activated by means of a step function φg (̄i) of the form:

sp(w̄g • ī + bg) :=

⎧
⎨

⎩

1 if w̄g • ī + bg ≥ 0,
−1 otherwise and g is hidden,
0 otherwise and g is output,

(3)

which is parameterized by a vector of binary weights w̄g and a real-valued constant bias
bg

3. The • is the inner vector product. For technical, non-essential reasons, for a hidden
gate, g, we use 1 and−1, instead of 1 and 0, in w̄g and outputs. Similarly, x̄ ∈ {−1, 1}3.
Furthermore, we assume we have a single output gate, for which the activation function
does return 1 or 0, for true or false, respectively.

For example, h1 is true, i.e. outputs 1, for an input x̄ = (x1, x2, x3) iff w̄h1 • x̄ +
bh1 = (−1) × x1 + (−1) × x2 + 1 × x3 + 0.16 ≥ 0. Otherwise, h1 is false, i.e.
it returns −1. Similarly, output gate o is true, i.e. returns label 1 for a binary input
h̄ = (h1, h3, h3) iff w̄o • h̄ = 1 × h1 + 1 × h2 + (−1) × h3 − 0.01 ≥ 0, and 0
otherwise. �

The first step, (a) in (2), represents the BNN as a CNF formula, i.e. as a conjunction
of disjunctions of literals, i.e. atomic formulas or their negations.

Each gate of the BNN is represented by a propositional formula, initially not neces-
sarily in CNF, which, in its turn, is used as one of the inputs to gates next to the right.
In this way, we eventually obtain a defining formula for the output gate. The formula
is converted into CNF. The participating propositional variables are logically treated as
true or false, even if they take numerical values 1 or −1, resp.

3.1 Representing BNNs as Formulas in CNF

Our conversion of the BNN into a CNF formula is inspired by a technique introduced in
[23], in their case, to verify properties of BNNs. In our case, the NN is fully binarized
in that inputs, parameters (other than bias), and outputs are always binary, whereas they
may have real values as parameters and outputs. Accordingly, they have to binarize
values along the transformation process. They also start producing logical constraints
that are later transformed into CNF formulas. Furthermore, [23] introduces auxiliary
variables during and at the end of the transformation. With them, in our case, such a
BC could not be used for Shap computation. Furthermore, the elimination of auxiliary
variables, say via variable forgetting [26], could harm the determinism of the final cir-
cuit. In the following we describe a transformation that avoids introducing auxiliary
variables4. However, before describing the method in general, we give an example, to
convey the main ideas and intuitions.
3 We could also used binarized sigmoid and softmax functions.
4 At this point is where using 1,−1 in the BNN instead of 1, 0 becomes useful.
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Example 2. (Example 1 cont.) Consider gate h1, with parameters w̄ = 〈−1,−1, 1〉 and
b = 0.16, and input ī = 〈x1, x2, x3〉. An input xj is said to be conveniently instantiated
if it has the same sign as wj , and then, contributing to having a larger number on the
LHS of the comparison in (3). E.g., this is the case of x1 = −1. In order to represent as
a propositional formula its output variable, also denoted with h1, we first compute the
number, d, of conveniently instantiated inputs that are necessary and sufficient to make
the LHS of the comparison in (3) greater than or equal to 0. This is the (only) case
when h1 becomes true; otherwise, it is false. This number can be computed in general
by [23]:

d =

⎡

⎢⎢⎢
(−b +

|̄i|∑

j=1

wj)/2

⎤

⎥⎥⎥
+# of negative weights in w̄. (4)

For h1, with 2 negative weights: d(h1) = 
(−0.16 + (−1 − 1 + 1))/2� + 2 = 2.
With this, we can impose conditions on two input variables with the right sign at a time,
considering all possible convenient pairs. For h1 we obtain its condition to be true:

h1 ←→ (−x1 ∧ −x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (5)

This DNF formula is directly obtained -and just to convey the intuition- from con-
sidering all possible convenient pairs (which is already better that trying all cases of
three variables at a time). However, the general iterative method presented later in this
subsection, is more expedite and compact than simply listing all possible cases; and still
uses the number of convenient inputs. Using this general algorithm, we obtain, instead
of (5), this equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1). (6)

Similarly, we obtain defining formulas for h2, h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o ←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (7)

Replacing the definitions of h1, h2, h3 into (7), we finally obtain:

o ←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧ ([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]
∨[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)])) ∨ ([(−x3 ∧ (−x2 ∨ −x1)) ∨
(−x2 ∧ −x1)] ∧ [(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]). (8)

The final part of step (a) in path (2), requires transforming this formula into CNF.
In this example, it can be taken straightforwardly into CNF. For our experiments, we
implemented and used the general algorithm presented right after this example. It guar-
antees that the generated CNF formula does not grow unnecessarily by eliminating
some redundancies along the process. The resulting CNF formula is, in its turn, simpli-
fied into a shorter and simpler new CNF formula by means of the Confer SAT solver
[20]. For this example, the simplified CNF formula is as follows:

o ←→ (−x1 ∨ −x2) ∧ (−x1 ∨ −x3) ∧ (−x2 ∨ −x3). (9)
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Having a CNF formula will be convenient for the next steps along path (2). �

In more general terms, consider a BNN with L layers, numbered with Z ∈ [L] :=
{1, . . . , L}. W.l.o.g., we may assume all layers have M neurons (a.k.a. gates), except
for the last layer that has a single, output neuron. We also assume that every neuron
receives an input from every neuron at the preceding layer. Accordingly, each neuron at
the first layer receives the same binary input ī1 = 〈x1, . . . , xN 〉 containing the values
for the propositional input variables for the BNN. Every neuron at a layer Z to the right
receives the same binary input īZ = 〈i1, . . . , iM 〉 formed by the output values from the
M neurons at layer Z − 1. Variables x1, . . . , xN are the only variables that will appear
in the final CNF representing the BNN5.

To convert the BNN into a representing CNF, we iteratively convert every neuron
into a CNF, layerwise and from input to output (left to right). The CNFs representing
neurons at a given layer Z are used to build all the CNFs representing the neurons at
layer Z + 1.

Now, for each neuron g, at a layer Z, the representing CNF, ϕg , is constructed using
a matrix-like structure Mg with dimension M × dg , where M is the number of inputs
to g (and N for the first layer), and dg is computed as in (4), i.e. the number of inputs to
conveniently instantiate to get output 1. Formula ϕg represents g’s activation function
sp(w̄g • ī+ bg). The entries cij of Mg contain terms of the form wk · ik, which are not
interpreted as numbers, but as propositions, namely ik if wk = 1, and ¬ik if wk = −1
(we recall that ik is the k-th binary input to g, and wk is the associated weight).

Each Mg is iteratively constructed in a row-wise manner starting from the top, and
then column-wise from left to right, as follows: (in it, the cik are entries already created
in the same matrix)

Mg =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 · i1 false false . . . false

w2 · i2∨c11
w2 · i2∧c11

false . . . false

w3 · i3∨c21

(w3 · i3∧c21)∨c22

w3 · i3∧c22
. . . false

. . . . . . . . . . . . . . .

wM · iM∨
c(M−1)1

(wM · iM∧c(M−1)1)∨c(M−1)2

(wM · iM∧c(M−1)2)∨c(M−1)3

. . .

(wM · iM∧
c(M−1)(dg−1))

∨c(M−1)dg

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The k-th row represents the first k ∈ [M ] inputs considered for the encodings, and
each column, the threshold t ∈ [dg] to surpass, meaning that at least t inputs should be
instantiated conveniently. For every component ck,twith k < t, the threshold cannot be
reached, which makes every component in the upper-right triangle false.

The propositional formula of interest, namely the one that represents neuron g and
will be passed over as an “input” to the next layer to the right, is the bottom-right most,
cMdg

(underlined). Notice that it is not necessarily a CNF; nor does the construction of
Mg requires using CNFs. It is also clear that, as we construct the components of matrix
Mg, they become formulas that keep growing in size. Accordingly, before passing over
this formula, it is converted into a CNF ϕg that has also been simplified by means of
a SAT solver (this, at least experimentally, considerably reduces the size of the CNF).

5 We say “a CNF” meaning “a formula in CNF”. Similarly in plural.
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The vector 〈ϕg1 , . . . , ϕgM 〉 becomes the input for the construction of the matrices Mg′,
for neurons g′ in layer Z+1. Reducing the sizes of these formulas is important because
the construction of Mg′ will make the the formula sizes grow further.

Example 3. (Example 2 cont.) Let us encode neuron h1 using the matrix-based con-
struction. Since dh1 = 2, and it has 3 inputs, matrix Mh1 will have dimension 3 × 2.
Here, w̄h1 = 〈−1,−1, 1〉 and īh1 = 〈x1, x2, x3〉. Accordingly, Mh1 has the following
structure:

⎡

⎣
w1 · i1 false

w2 · i2 ∨ c11 w2 · i2 ∧ c11
w3 · i3 ∨ c21 (w3 · i3 ∧ c21) ∨ c22

⎤

⎦

Replacing in its components the corresponding values, we obtain:
⎡

⎣
−x1 false

−x2 ∨ −x1 −x2 ∧ −x1

x3 ∨ −x2 ∨ −x1 (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)

⎤

⎦

The highlighted formula coincides with that in (6). �

In our implementation, and this is a matter of choice and convenience, it turns out
that each component of Mg is transformed right away into a simplified CNF before
being used to build the new components. This is not essential, in that we could, in
principle, use (simplified) propositional formulas of any format all long the process, but
making sure that the final formula representing the whole BNN is in CNF. Notice that
all the Mg matrices for a same layer Z ∈ L can be generated in parallel and without
interaction. Their encodings do not influence each other. With this construction, no
auxiliary propositional variables other that those for the initial inputs are created.

Departing from [23], our use of the Mg arrays helps us directly build (and work
with) CNF formulas without auxiliary variables all along the computation. The final
CNF formula, which then contains only the input variables for the BNN, is eventually
transformed into a dDBC. The use of a SAT solver for simplification of formulas is less
of a problem in [23] due to the use of auxiliary variables. Clearly, our simplification
steps make us incur in an extra computational cost. However, it helps us mitigate the
exponential growth of the CNFs generated during the transformation of the BNN into
the representing CNF.

Overall, and in the worst case that no formula simplifications are achieved, having
still used the SAT solver, the time complexity of building the final CNF is exponential in
the initial input. This is due to the growth of the formulas along the process. The number
of operations in which they are involved in the matrices construction is quadratic.

3.2 Building an SDD Along the Way

Following with step (b) along path (2), the resulting CNF formula is transformed into
a Sentential Decision Diagram (SDD) [14,36], which, as a particular kind of decision
diagram [6], is a directed acyclic graph. So as the popular OBDDs [8], that SDDs gen-
eralize, they can be used to represent general Boolean formulas, in particular, proposi-
tional formulas (but without necessarily being per se propositional formulas).
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Example 4. (Example 2 cont.) Figure 3(a) shows an SDD, S, representing our CNF
formula on the RHS of (9). An SDD has different kinds of nodes. Those represented
with encircled numbers are decision nodes [36], e.g. 1© and 3©, that consider alter-
natives for the inputs (in essence, disjunctions). There are also nodes called elements.
They are labeled with constructs of the form [�1|�2], where �1, �2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, including � and ⊥, for 1 or 0, resp.
E.g. [¬x2|�] is one of them. The sub can also be a pointer, •, with an edge to a deci-
sion node. [�1|�2] represents two conditions that have to be satisfied simultaneously (in
essence, a conjunction). An element without • is a terminal. (See [7,22] for a precise
definition of SDD.)

Fig. 3. An SDD (a) and a vtree (b).

An SDD represents (or defines) a total Boolean function FS: 〈x1, x2, x3〉 ∈ {0, 1}3 �→
{0, 1}. For example, FS(0, 1, 1) is evaluated by following the graph downwards. Since
x1 = 0, we descent to the right; next via node 3© underneath, with x2 = 1, we reach the
instantiated leaf node labeled with [1|0], a “conjunction”, with the second component
due to x3 = 1. We obtain FS(0, 1, 1) = 0. �

In SDDs, the orders of occurrence of variables in the diagram must be compliant
with a so-called vtree (for “variable tree”)6. The connection between a vtree and an SDD
refers to the compatibility between the partitions [prime|sub] and the tree structure (see
Example 5 below). Depending on the chosen vtree, substructures of an SDD can be
better reused when representing a Boolean function, e.g. a propositional formula, which
becomes important to obtain a compact representation. SDDs can easily be combined
via propositional operations, resulting in a new SDD [14].

A vtree for a set of variables V is binary tree that is full, i.e. every node has 0 or
2 children, and ordered, i.e. the children of a node are totally ordered, and there is a
bijection between the set of leaves and V [7].

Example 5. (Example 4 cont.) Figure 3(b) shows a vtree, T , for V = {x1, x2, x3}.
Its leaves, 0, 2, 4, show their associated variables in V . The SDD S in Fig. 3(a) is

6 Extending OBDDs, whose vtrees make variables in a path always appear in the same order.
This generalization makes SDDs much more succinct than OBDDs [6,7,36].
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compatible with T . Intuitively, the variables at S’s terminals, when they go upwards
through decision nodes n©, also go upwards through the corresponding nodes n in T .
(See [6,7,22] for a precise, recursive definition.)

The SDD S can be straightforwardly represented as a propositional formula by
interpreting decision points as disjunctions, and elements as conjunctions, obtaining
[x1 ∧ ((−x2 ∧ −x3) ∨ (x2 ∧ ⊥))] ∨ [−x1 ∧ ((x2 ∧ −x3) ∨ (−x2 ∧ �))], which is
logically equivalent to the formula on the RHS of (9) that represents our BNN. �

For the running example and experiments, we used the PySDD system [21]: Given a
CNF formula ψ, it computes an associated vtree and a compliant SDD, both optimized
in size [9,10]. This compilation step, the theoretically most expensive along path (2),
takes exponential space and time only in TW (ψ), the tree-width of the primal graph
G associated to ψ [14,25]. G contains the variables as nodes, and undirected edges
between any of them when they appear in a same clause. The tree-width measures
how close the graph is to being a tree. This is a positive fixed-parameter tractability
result [15], in that TW (ψ) is in general smaller than |ψ|. For example, the graph G
for the formula ψ on the RHS of (9) has x1, x2, x3 as nodes, and edges between any
pair of variables, which makes G a complete graph. Since every complete graph has a
tree-width equal to the number of nodes minus one, we have TW (ψ) = 2. Overall,
this step in the transformation process has a time complexity that, in the worst case, is
exponential in the size of the tree-width of the input CNF.

3.3 The Final dDBC

Our final dDBC is obtained from the resulting SDD: An SDD corresponds to a d-DNNF
Boolean circuit, for which decomposability and determinism hold, and has only vari-
ables as inputs to negation gates [14]. And d-DNNFs are also dDBCs. Accordingly,
this step of the whole transformation is basically for free, or better, linear in the size
of the SDD if we locally convert decision nodes into disjunctions, and elements into
conjunctions (see Example 5).

The algorithm in [1] for efficient Shap computation needs the dDBC to be a
dDBCSFi(2). To obtain the latter, we use the transformation Algorithm 1 below, which
is based on [1, sec. 3.1.2]. In a bottom-up fashion, fan-in 2 is achieved by rewriting
every ∧-gate (resp., and ∨-gate) of fan-in m > 2 with a chain of m − 1 ∧-gates (resp.,
∨-gates) of fan-in 2. After that, to enforce smoothness, for every disjunction gate (now
with a fan-in 2) of subcircuits C1 and C2, find the set of variables in C1, but not in C2

(denoted V1−2), along with those in C2, but not in C1 (denoted V2−1). For every vari-
able v ∈ V2−1, redefine C1 as C1 ∧ (v ∨ −v). Similarly, for every variable v ∈ V1−2,
redefine C2 as C2 ∧ (v ∨ −v). For example, for (x1 ∧ x2 ∧ x3)∨ (x2 ∧ −x3), becomes
((x1 ∧ x2)∧ x3)∨ ((x2 ∧ −x3)∧ (x1 ∨ −x1)). This algorithm takes quadratic time in
the size of the dDBC, which is its number of edges [1, sec. 3.1.2], [32].

Example 6. (Example 4 cont.) By interpreting decision points and elements as dis-
junctions and conjunctions, resp., the SDD in Fig. 3(a) can be easily converted into
d-DNNF circuit. Only variables are affected by negations. Due to the children of node
3©, that do not have the same variables, the resulting dBBC is not smooth (but it has
fan-in 2). Algorithm 1 transforms it into the dDBCSFi(2) in Fig. 1. �
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Algorithm 1: From dDBC to dDBCSFi(2)
Input : Original dDBC (starting from root node).
Output: A dDBCSFi(2 ) equivalent to the given dDBC .

1 function FIX NODE(dDBC node)
2 if dDBC node is a disjunction then
3 cnew = false
4 for each subcircuit sc in dDBC node
5 scfixed = FIX NODE(sc)
6 if scfixed is a true value or is equal to ¬cnew then
7 return true
8 else if scfixed is not a false value then
9 for each variable v in cnew and not in scfixed

10 scfixed = scfixed ∧ (v ∨ ¬v)
11 for each variable v in scfixed and not in cnew
12 cnew = cnew ∧ (v ∨ ¬v)
13 cnew = cnew ∨ scfixed
14 return cnew
15 else if dDBC node is a conjunction then
16 cnew = true
17 for each subcircuit sc in dDBC node
18 scfixed = FIX NODE(sc)
19 if scfixed is a false value or is equal to ¬cnew then
20 return false
21 else if scfixed is not a true value then
22 cnew = cnew ∧ scfixed
23 return cnew
24 else if dDBC node is a negation then
25 return ¬FIX NODE(¬dDBC node)
26 else
27 return dDBC node

28 dDBCSFi(2 ) = FIX NODE(root node)

4 Shap Computation: Experiments

The “California Housing Prices” dataset was used for our experiments (it can be down-
loaded from Kaggle [24]). It consists of 20,640 observations for 10 features with infor-
mation on the block groups of houses in California, from the 1990 Census. Table 1 lists
and describes the features, and the way they are binarized, actually by considering if
the value is above the average or not7 to better The categorical feature #1 is one-hot
encoded, giving rise to 5 binary features: #1a, ..., #1e. Accordingly, we end up with
13 binary input features, plus the binary output feature, #10, representing whether the
median price at each block is high or low, i.e. above or below the average of the original
#10. We used the “Tensorflow” and “Larq” Python libraries to train a BNN with one

7 Binarization could be achieved in other ways, depending on the feature, for better interaction
with the feature independence assumption.

https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.tensorflow.org/
https://github.com/larq/larq
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hidden layer, with as many neurons as predictors, i.e. 13, and one neuron for the output.
For the hidden neurons, the activation functions are step function, as in (3).

Table 1. Features of the “California Housing Prices” dataset.

Id # Feature Name Description Original Values Binarization

#1 ocean proximity A label of the location of the
house w.r.t sea/ocean

Labels 1h ocean, inland,
island, near bay and
near ocean

Five features (one
representing each label), for
which 1 means a match with
the value of ocean proximity,
and −1 otherwise

#2 households The total number of
households (a group of
people residing within a
home unit) for a block

Integer numbers from 1

to 6,082
1 (above average of the
feature) or −1 (below
average)

#3 housing median age The median age of a house
within a block (lower
numbers means newer
buildings)

Integer numbers from 1

to 52
1 (above average of the
feature) or −1 (below
average)

#4 latitude The angular measure of how
far north a block is (the
higher value, the farther
north)

Real numbers from
32.54 to 41.95

1 (above average of the
feature) or −1 (below
average)

#5 longitude The angular measure of how
far west a block is (the higher
value, the farther west)

Real numbers from
−124.35 to −114.31

1 (above average of the
feature) or −1 (below
average)

#6 median income The median income for
households within a block
(measured in tens of
thousands of US dollars)

Real numbers from 0.50

to 15.00
1 (above average of the
feature) or −1 (below
average)

#7 population The total number of people
residing within a block

Integer numbers from 3

to 35,682
1 (above average of the
feature) or −1 (below
average)

#8 total bedrooms The total number of
bedrooms within a block

Integer numbers from 1

to 6,445
1 (above average of the
feature) or −1 (below
average)

#9 total rooms The total number of rooms
within a block

Integer numbers from 2

to 39,320
1 (above average of the
feature) or −1 (below
average)

#10 median house value The median house value for
households within a block
(measured in US dollars)

Integer numbers from
14,999 to 500,001

1 (above average of the
feature) or 0 (below average)

According to the transformation path (2), the constructed BNNwas first represented
as a CNF formula with 2,391 clauses. It has a tree-width of 12, which makes sense
having a middle layer of 13 gates, each with all features as inputs. The CNF was trans-
formed, via the SDD conversion, into a dDBCSFi(2), C, which ended up having 18,671
nodes (without counting the negations affecting only input gates). Both transformations
were programmed in Python. For the intermediate simplification of the CNF, the Riss
SAT solver was used [20]. The initial transformation into CNF took 1.3 hrs. This is the
practicallymost expensive step, as was explained at the end of Sect. 3.1. The conversion
of the simplified CNF into the dDBCSFi(2) took 0.8276 s.

With the resulting BC, we computed Shap, for each input entity, in three ways:
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Fig. 4. Seconds taken to compute all Shap scores on 20, 40, 60, 80 and 100 input entities; using
the BNN as a black-box (blue bar), the dDBC as a black-box (red bar), and the dDBC as an
open-box (orange bar). Notice the logarithmic scale on the vertical axis. (Color figure online)

(a) Directly on the BNN as a black-box model, using formula (1) and its input/output
relation for multiple calls;

(b) Similarly, using the circuit C as a black-box model; and
(c) Using the efficient algorithm in [1, page 18] treating circuit C as an open-box

model.

These three computations of Shap scores were performed for sets of 20, 40, 60, 80,
and 100 input entities, for all 13 features, and all input entities in the set. In all cases,
using the uniform distribution over population of size 213. Since the dDBC faithfully
represents the BNN, we obtained exactly the same Shap scores under the modes of
computation (a)–(c) above. The total computation times were compared. The results
are shown in Fig. 4. Notice that these times are represented in logarithmic scale. For
example, with the BNN, the computation time of all Shap scores for 100 input entities
was 7.7 hrs, whereas with the open-box dDBC it was 4.2min. We observe a huge gain
in performance with the use of the efficient algorithm on the open-box dDBC. Those
times do not show the one-time computation for the transformation of the BNN into the
dDBC. If the latter was added, each red and orange bar would have an increase of 1.3
hrs. For reference, even considering this extra one-time computation, with the open-box
approach on the dDBCwe can still compute all of the Shap scores for 100 input entities
in less time than with the BNN with just 20 input entities8.

For the cases (a) and (b) above, i.e. computations with black-box models, the classi-
fication labels were first computed for all input entities in the population E . Accordingly,
when computing the Shap scores for a particular input entity e, the labels for all the
other entities related to it via a subset of features S as specified by the game function

8 The experiments were run on Google Colab (with an NVIDIA Tesla T4 enabled). Algo-
rithm 1 was programmed in Python. The complete code for Google Colab can be found at:
https://github.com/Jorvan758/dDBCSFi2.

https://github.com/Jorvan758/dDBCSFi2
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were already precomputed. This allows to compute formula (1) much more efficiently9.
The specialized algorithm for (c) does not require this precomputation. The difference
in time between the BNN and the black-box dDBC, cases (a) and (b), is due the fact
that BNNs allow some batch processing for the label precomputation; with the dDBC
it has to be done one by one.

5 Conclusions

We have showed in detail the practical use of logic-based knowledge compilation tech-
niques in a real application scenario. Furthermore, we have applied them to the new and
important problem of efficiently computing attribution scores for explainable ML. We
have demonstrated the huge computational gain, by comparing Shap computation with
a BNN classifier treated as an open-box vs. treating it as a black-box. The performance
gain in Shap computation with the circuit exceeds by far both the compilation time and
the Shap computation time for the BNN as a black-box classifier.

We emphasize that the effort invested in transforming the BNN into a dDBC is
something we incur once. The resulting circuit can be used to obtain Shap scores mul-
tiple times, and for multiple input entities. Furthermore, the circuit can be used for
other purposes, such as verification of general properties of the classifier [11,23], and
answering explanation queries about a classifier [3]. Despite the intrinsic complexity
involved, there is much room for improving the algorithmic and implementation aspects
of the BNN compilation. The same applies to the implementation of the efficient Shap
computation algorithm.

We computed Shap scores using the uniform distribution on the entity population.
There are a few issues to discuss in this regard. First, it is computationally costly to
use it with a large number of features. One could use instead the empirical distribution
associated to the dataset, as in [4] for black-box Shap computation. This would require
appropriately modifying the applied algorithm, which is left for future work. Secondly,
and more generally, the uniform distribution does not capture possible dependencies
among features. The algorithm is still efficient with the product distribution, which also
suffers from imposing feature independence (see [4] for a discussion of its empirical
version and related issues). It would be interesting to explore to what extent other dis-
tributions could be used in combination with our efficient algorithm.

Independently from the algorithmic and implementation aspects of Shap compu-
tation, an important research problem is that of bringing domain knowledge or domain
semantics into attribution scores and their computations, to obtain more meaningful and
interpretable results. This additional knowledge could come, for example, in declarative
terms, expressed as logical constraints. They could be used to appropriately modify the
algorithm or the underlying distribution [5]. It is likely that domain knowledge can be
more easily be brought into a score computation when it is done on a BC classifier.

In this work we have considered only binary NNs. It remains to be investigated to
what extent our methods can be suitably modified for dealing with non-binary NNs.

9 As done in [4], but with only the entity sample.
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