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Abstract. In this paper, we introduce game-theoretic semantics (GTS)
for Qualitative Choice Logic (QCL), which, in order to express prefer-
ences, extends classical propositional logic with an additional connective
called ordered disjunction. In particular, we present a new semantics that
makes use of GTS negation and, by doing so, avoids contentious behavior
of negation in existing QCL-semantics.

1 Introduction

Preferences are a key research area in artificial intelligence, and thus a multitude
of preference formalisms have been described in the literature [12]. An interesting
example is Qualitative Choice Logic (QCL) [6], which extends classical propo-
sitional logic by the connective #»× called ordered disjunction. F

#»×G states that
F or G should be satisfied, but satisfying F is more preferable than satisfying
only G. This allows to express soft constraints (preferences) and hard constraints
(truth) in a single language.

For example, say we want to formalize our choice of pizza toppings: we defi-
nitely want tomato-sauce (t); Moreover, we want either mushrooms (m) or arti-
chokes (a), but preferably mushrooms. This can easily be expressed in QCL via
the formula t∧ (m #»×a). This formula has three models in QCL, namely M1 = {t,
m, a}, M2 = {t,m}, and M3 = {t, a}. QCL-semantics then ranks these models
via so-called satisfaction degrees. The lower this degree, the more preferable the
model. In this case, M1 and M2 would be assigned a degree of 1 and M3 would be
assigned a degree of 2, i.e., M1 and M2 are the preferred models of this formula.

In the literature, QCL has been studied with regards to possible applica-
tions [13], computational properties [4], and proof systems [3]. However, not
all aspects of QCL-semantics are uncontroversial. For example, a QCL-formula
F is not logically equivalent to its double negation ¬¬F , as all information
about preferences is erased by ¬. This issue has been addressed by Prioritized
QCL (PQCL) [1], which defines ordered disjunction in the same way as QCL
but changes the meaning of the classical connectives, including negation. While
PQCL solves QCL’s problem with double negation, it in turn introduces other
controversial behavior, e.g., a formula F and its negation ¬F can be satisfied by
the same interpretation. No alternative semantics for QCL is known to us that
addresses both of these issues at the same time.

In order to tackle these issues, we develop game-theoretic semantics (GTS)
for QCL, embedding choice logics in the rich intersection of the fields of
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game-theory and logics [2,11,15]. Building on the concepts of rational behav-
ior and strategic thinking, GTS offer a natural dynamic viewpoint of dealing
with truth and preferences. Originally, GTS go back to Jaakko Hintikka [10],
who designed a win/lose game for two players, called Me (or I ) and You, both
of which can act in the role of Proponent or Opponent of a formula F over an
interpretation I. The game proceeds by rules for step-wise reducing F to an
atomic formula. It turns out that I have a winning strategy for this game if
and only if F is classically true over I. Most importantly, negation in GTS is
interpreted as dual negation, [14]: at formulas ¬G, the game continues with G
and a role switch.

To capture not only truth but also preferences, we extend the two-valued
game of Hintikka with more fine-grained outcomes and introduce a game-
theoretic interpretation of ordered disjunction. Moreover, we reinterpret negation
in QCL using game-theoretic methods. From our GTS we extract a new logic we
call Game-induced Choice Logics (GCL), where negation behaves as in classical
logic.

2 Qualitative Choice Logic (QCL)

We now recall QCL [6]. U denotes an infinite set of propositional variables. An
interpretation I ⊆ U is a set of variables, with a ∈ U true under I iff a ∈ I.

Definition 1 (QCL-formula). The set F of QCL-formulas is built induc-
tively: if a ∈ U , then a ∈ F ; if F ∈ F , then (¬F ) ∈ F ; if F,G ∈ F , then
(F ◦ G) ∈ F for ◦ ∈ {∧,∨,

#»×}.
The semantics of QCL is based on two functions: optionality and satisfaction

degree. The satisfaction degree of a formula can be a natural number or ∞
and is used to rank interpretations (lower degrees are better). The optionality
of a formula represents the maximum finite satisfaction degree the formula can
obtain and is used to penalize interpretations that do not satisfy F in F

#»×G.

Definition 2 (Optionality in QCL). The optionality of QCL-formulas is
defined inductively as follows: (i) opt(a) = 1 for a ∈ U , (ii) opt(¬F ) = 1,
(iii) opt(F ∧ G) = opt(F ∨ G) = max(opt(F ), opt(G)), and (iv) opt(F #»×G) =
opt(F ) + opt(G).

Definition 3 (Satisfaction Degree in QCL). The satisfaction degree of
QCL-formulas under an interpretation I is defined inductively as follows:

degI(a) = 1 if a ∈ I,∞ otherwise
degI(¬F ) = 1 if degI(F ) = ∞,∞ otherwise

degI(F ∧ G) = max(degI(F ),degI(G))
degI(F ∨ G) = min(degI(F ),degI(G))

degI(F
#»×G) =

⎧
⎪⎨

⎪⎩

degI(F ) if degI(F ) < ∞
opt(F ) + degI(G) if degI(F ) = ∞,degI(G) < ∞
∞ otherwise
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If degI(F ) = k we say that I satisfies F to a degree of k. If degI(F ) < ∞ we
say that I (classically) satisfies F , or that I is a model of F . A crucial notion
in QCL is that of preferred models, i.e., models with minimal degree.

Definition 4 (Preferred Model under QCL-semantics). Let F be a QCL-
formula. An interpretation I is a preferred model of F iff degI(F ) < ∞ and,
for all interpretations J , degI(F ) ≤ degJ (F ).

Satisfaction degrees are bounded by optionality, i.e., either degI(F ) ≤ opt(F )
or degI(F ) = ∞ must hold. As stated earlier, optionality is used to penalize
non-satisfaction: given F

#»×G, if degI(F ) < ∞ we get degI(F
#»×G) = degI(F ) ≤

opt(F ); if degI(F ) = ∞ we get degI(F
#»×G) = opt(F ) + degI(G) > opt(F ).

Moreover, ordered disjunction is associative under QCL-semantics, which
means that we can simply write A1

#»×A2
#»× . . .

#»×An to express that we must satisfy
at least one of A1, . . . , An, and that we prefer Ai to Aj for i < j.

Example 1. Consider F = (a ∧ b) #»×a
#»×b. Then opt(F ) = 3, deg∅(F ) = ∞,

deg{b}(F ) = 3, deg{a}(F ) = 2, and deg{a,b}(F ) = 1. Thus, {a}, {b}, {a, b} are
models of F while {a, b} is also a preferred model of F .

Now consider F ′ = F ∧ ¬(a ∧ b). Again, deg∅(F ′) = ∞, deg{b}(F ′) = 3, and
deg{a}(F ′) = 2. However, deg{a,b}(F ′) = ∞. Since it is not possible to satisfy
F ′ to a degree of 1, {a} is a preferred model of F ′.

An alternative semantics for QCL has been proposed in the form of PQCL [1].
Specifically, PQCL changes the semantics for the classical connectives (¬,∨,∧),
but defines ordered disjunction ( #»×) in the same way as QCL. For our purposes
it suffices to note that negation in PQCL propagates to the atom level, meaning
that ¬(F ∧G) is assigned the satisfaction degree of ¬F ∨¬G, ¬(F ∨G) is assigned
the degree of ¬F ∧ ¬G, and ¬(F #»×G) is assigned the degree of ¬F

#»×¬G.

3 Comments on Negation

While choice logics are a useful formalism to express both soft constraints (pref-
erences) and hard constraints (truth) in a single language, existing semantics
(such as QCL and PQCL) are not entirely uncontroversial. Table 1 shows how
negation acts on ordered disjunction in both systems: negation in QCL erases
preferences, while in PQCL it is possible to satisfy a formula and its negation at
the same time ({a} and {b} classically satisfy both a

#»×b and ¬a
#»×¬b). Moreover,

in PQCL, the satisfaction degree of ¬F does not only depend on the degree and
optionality of F ({a} and {a, b} satisfy a

#»×b to degree 1, but {a} satisfies ¬a
#»×¬b

to degree 2 while {a, b} does not satisfy ¬a
#»×¬b at all).

We will make use of game-theoretic negation to define an alternative seman-
tics for the language of QCL. Our main goal is to define a negation that acts both
on hard constraints as in QCL and soft constraints as in PQCL. Specifically, we
will ensure that (i) the satisfaction degree of ¬F depends only on the degree of
F , (ii) formulas and their negation can not be classically satisfied by the same
interpretation, (iii) formulas are equivalent to their double negation.
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Table 1. Truth table showing the satisfaction degrees of ¬(a #»×b) in QCL (equivalent
to ¬a ∧ ¬b) and PQCL (equivalent to ¬a #»×¬b).

I a
#»×b ¬a ∧ ¬b ¬a #»×¬b

∅ ∞ 1 1

{b} 2 ∞ 1

{a} 1 ∞ 2

{a, b} 1 ∞ ∞

4 A Game for Ordered Disjunction

In this section, we introduce GTS for the language of QCL. As a first step, let us
briefly recall Hintikka’s game [10] over a classical propositional formula F and
an interpretation I. There are two players, Me and You, both of which can act
in the role of Proponent (P) or Opponent (O). The game starts with Me as P
of the formula F and You as O. At formulas of the form G1 ∨ G2, P chooses a
formula Gi that the game continues with. At formulas of the form G1 ∧ G2 it is
O’s choice. At negations ¬G, the game continues with G and a role switch. The
outcome of the game is a propositional variable a. The player currently in the
role of P wins the game (and O loses) iff a ∈ I. Otherwise, P wins and O loses.
It turns out that I have a winning strategy for the game iff I |= F .

The first question we must answer in order to introduce our GTS for QCL
is how ordered disjunction should be handled in a game-theoretic setting. We
propose the following solution: at G1

#»×G2 it is P’s choice whether to continue
with G1 or with G2, but this player prefers G1. My aim in the game is now not
only to win the game but to do so with as little compromise to My preferences
as possible. Thus, it is natural to express My preference of G1-outcomes O1 over
G2-outcomes O2 via the relation O2 	 O1.

The second question to answer is how the classical connectives should interact
with the newly introduced preferences 	 between outcomes. For G1 ∧ G2 and
G1 ∨ G2 it suffices to simply combine the preferences of G1 and G2, as we will
see. For ¬G, the preferences associated with G will be inverted in order to ensure
that negation not only acts on hard constraints but also on soft constraints.

Formally, game states will be either of the form P : F or O : F , where F
is a QCL-formula and “P” and “O” signify that I currently act in the role of
Proponent and Opponent respectively. Each game state appears in the game
tree defined below. Every node is labeled with either “I” (when it is My turn) or
“Y ” (when it is Your turn). If the game reaches a game state g, then the player
whose turn it is chooses a child of g in the game tree where the game continues.
The relation 	 captures My preferences on outcomes, as motivated above.

Definition 5 (Game Tree). We inductively define the game tree T (P : F ) =
(V,E, l) with (game) states V and edges E. Leafs of T are called outcomes and
are denoted O(T ). The labeling function l maps nodes of T to the set {I, Y }.
Moreover, we define a partial order 	 over outcomes.
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P : ((a×b)×c) ∧ ¬(a×d) Y

[
P : (a×b)×c

]I

[
P : a×b

]I

[P : a] [P : b]

[P : c]

[
P : ¬(a×d)

]I

[
O : a×d

]Y

[O : a] [O : d]

Fig. 1. The game tree from Example 2

(Ra) T (P : a) consists of the single leaf and 	P:a= ∅.
(R¬) T (P : ¬G) consists of a root labeled “I”, the immediate subtree T (O : G),

and 	P:¬G equal to 	O:G.
(R∧) T (P : G1 ∧ G2) consists of a root labeled “Y” and immediate subtrees

T (P : G1), T (P : G2). The preference is given by 	P:G1∧G2=	P:G1 ∪	P:G2 .
(R∨) T (P : G1 ∨ G2) consists of a root labeled “I” and immediate subtrees

T (P : G1), T (P : G2). The preference is given by 	P:G1∧G2=	P:G1 ∪	P:G2 .
(R #»×) T (P : G1

#»×G2) consists of a root labeled “I” and the immediate subtrees
T (P : G1), T (P : G2). Moreover, O2 	P:G1

#»×G2
O1 iff O1 ∈ O(T (P : G1))

and O2 ∈ O(T (P : G2)), or O2 	P:Gj
O1 for j ∈ {1, 2}.

The tree T (O : F ) is defined analogously to T (P : F ), except that labels are
swapped and preferences are switched, i.e., O1 	O:F O2 iff O2 	P:F O1.

Example 2. Figure 1 depicts the game tree for F = ((a #»×b) #»×c) ∧ ¬(a #»×d). Note
that O : a

#»×d is labeled “Y” since roles are switched in P : ¬(a #»×d). The order
on outcomes is given by P : c 	 P : b 	 P : a and O : a 	 O : d.

An outcome P : a is true in I iff a ∈ I. Conversely, O : a is true iff a �∈ I.
An outcome O is a winning outcome w.r.t an interpretation I iff O is true in I.

To evaluate an interpretation via a game tree, we introduce the payoff func-
tion δI which will respect My preferences 	 on My winning outcomes. Given
outcome O, let π�(O) = O1, ..., On be the longest 	-chain starting in O, i.e.
O1 = O, all Oi are pairwise different, and Oi 	 Oi+1 for 1 ≤ i < n. The length
of π�(O) is |π�(O)| = n.

Definition 6 (Payoff). δI maps outcomes of a game tree T into Z := (Z \
{0},�). The ordering � is the inverse of the natural ordering on Z

− and on Z
+

and for k ∈ Z
−, � ∈ Z

+ we set k � �, i.e. −1 � −2 � . . . � 2 � 1. For an outcome
O ∈ O(T ), we set1

δI(O) =

{
|π�(O)|, if O is true,
−|π�(O)|, if O is false.

We write δ instead of δI if I is clear from context.
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Fig. 2. Preferences and winning payoffs of the two players in the game NG.

Winning outcomes are ascribed a payoff in Z
+ and losing outcomes have

a payoff in Z
−. Intuitively, it is better for Me to have a higher payoff with

respect to �. If both O1 and O2 are winning outcomes (or if they both are
losing outcomes), then δI(O1) � δI(O2) iff O1 	 O2. If O1 is a losing outcome
and O2 is a winning outcome, then δI(O1) � δI(O2). See Fig. 2 for a graphical
representation of winning ranges and preferences.

Example 3 (Example 2 cont.). The winning outcomes for I = {a} are P : a,
O : d with δ(P : a)= 1, δ(P : b)= −2, δ(P : c)= −1, δ(O : a)= −1, δ(O : d)= 1.

We are now ready to formally define the notion of a game.

Definition 7 (Game). A game NG = (T (Q : F ), δI), also written NG(Q :
F, I), is a pair, where T (Q : F ) is a game tree and δI is a payoff-function with
respect to some interpretation I.

The goal of both players is to win the game with as little compromise as
possible, and thus force the opponent in as much compromise as possible. To
this end, we must consider the optimal strategies that both players have at their
disposal. A strategy σ for Me in a game can be understood as My complete
game plan. For every node of the game tree labeled “I”, σ tells Me to which node
I have to move.

Definition 8 (Strategy). A strategy σ for Me for the game NG is a subset
of the nodes of the underlying tree such that (i) the root of T is in σ and for all
v ∈ σ, (ii) if l(v) = I, then at least one successor of v is in σ and (iii) if l(v) = Y ,
then all successors of v are in σ. A strategy for You is defined symmetrically.
We denote by ΣI and ΣY the set of all strategies for Me and You, respectively.

Conditions (i) and (iii) make sure that all possible moves by the other player
are taken care of by the game plan. Note that each pair of strategies σI ∈ ΣI ,
σY ∈ ΣY defines a unique outcome of NG, which we will denote by O(σI , σY ).
We abbreviate δ(O(σI , σY )) by δ(σI , σY ). A strategy σ∗

I for Me is called win-
ning if, playing according to this strategy, I win the game, no matter how You
move, i.e. for all σY ∈ ΣY , δ(σ∗

I , σY ) ∈ Z
+. An outcome O that maximizes My

pay-off in light of Your best strategy is called maxmin-outcome. Formally, O
is a maxmin-outcome iff δ(O) = max�

σI
min�

σY
δ(σI , σY ) and δ(O) is called the

maxmin-value of the game. A strategy σ∗
I for Me is a maxmin-strategy for NG

if σ∗
I ∈ argmax�

σI
min�

σY
δ(σI , σY ), i.e. the maximum is reached at σ∗

I . Minmax
values and strategies for You are defined symmetrically.
1 Notice the flipped �-sign in the second case.
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The class of games that we have defined falls into the category of zero-sum
perfect information games in game theory. They are characterized by the fact
that the players have strictly opposing interests. In these games, the minmax
and maxmin value always coincide and is referred to as the value of the game.

Example 4 (Example 2 cont.). I have a winning strategy for I = {a, d}: if you
move to the left at the root, I will reach P : a with optimal payoff 1. If You go
to the right instead, You still cannot win the game but You can minimize My
payoff by reaching O : a with δ(O : a) = 2 instead of O : d with δ(O : d) = 1.
Thus, the value of the game is 2.

Now let I = {d} with payoffs δI(P : c) = −1, δ(P : b) = −2, δ(P : a) = −3,
δ(O : a) = 2, δ(O : d) = −2. In this game, I have no winning strategy: if You
move to the left at the root, it is best for Me to reach P : a with payoff −3. If
You move to the right, You can force O : d with payoff −2. Thus, it is better
for You to move to the right at the root note, giving us the game value −2.

5 Game-Induced Choice Logic (GCL)

To examine the properties of our GTS and compare it with QCL, we extract a
novel degree-based semantics for the language of QCL from our game NG. The
resulting logic will be called Game-induced Choice Logic (GCL). Syntactically,
GCL is defined in the same way as QCL (cf. Definition 1), i.e., F is a GCL-
formula iff F is a QCL-formula. The optionality function of GCL is denoted by
optG and defined in the same way as opt (cf. Definition 2), except for negation.

Definition 9 (Optionality in GCL). The optionality of GCL-formulas is
defined inductively as follows: (i) optG(a) = 1 for a ∈ U , (ii) optG(¬F ) =
optG(F ), (iii) optG(F ∧ G) = optG(F ∨ G) = max(optG(F ), optG(G)),
(iv) optG(F #»×G) = optG(F ) + optG(G).

The degree-function of GCL is denoted by degG
I , and maps pairs of formulas

and interpretations to values in the domain (Z,�) (cf. Definition 6).

Definition 10 (Satisfaction Degree in GCL). The satisfaction degree of
GCL-formulas under an interpretation I is defined inductively as follows:

degG
I (a) = 1 if a ∈ I,−1 otherwise

degG
I (¬F ) = −degG

I (F )

degG
I (F ∧ G) = min�(degG

I (F ),degG
I (G))

degG
I (F ∨ G) = max�(degG

I (F ),degG
I (G))

degG
I (F

#»×G) =

⎧
⎪⎨

⎪⎩

degG
I (F ) if degG

I (F ) ∈ Z
+

optG(F ) + degG
I (G) if degG

I (F ) ∈ Z
−,degG

I (G) ∈ Z
+

degG
I (F ) − optG(G) otherwise
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If degG
I (F ) ∈ Z

+, then I classically satisfies F (I is a model of F ). In con-
trast to QCL, those interpretations that result in a higher degree relative to the
ordering � are more preferable, which is why we take the maximum degree for
disjunction and the minimum degree for conjunction. However, since � inverts
the order on Z

+, a degree of 1 is considered to be higher than a degree of 2.
Preferred models are defined analogously to QCL (cf. Definition 4).

Definition 11 (Preferred Model under GCL-semantics). Let F be a
GCL-formula. An interpretation I is a preferred model of F iff degG

I (F ) ∈ Z
+

and, for all interpretations J , degG
J (F ) � degG

I (F ).

We are now ready to show that NG and GCL are semantically equivalent,
which will allow us to examine properties of NG via GCL. As a first step,
we show that the the notion of optionality, which must be defined a-priori in
degree-based semantics, arises naturally in our game.

Proposition 1. The longest 	-chain in O(Q : F ) has length optG(F ), where
Q ∈ {P,O}.
Proof. By structural induction. For the base case F = a, where a ∈ U , this
clearly holds, as optG(a) = 1.

Induction step: for the inductive hypothesis we assume that for two GCL-
formulas A,B the longest 	-chain O1, . . . , Ok in O(Q : A) has length k =
optG(A) and the longest 	-chain O′

1, . . . , O
′
� in O(Q : B) has length � =

optG(B).
F = ¬A: since negation results in a role switch with inverted preferences, the

longest 	-chain in O(Q′ : ¬A), where Q′ ∈ {P,O} \ {Q}, is Ok, . . . , O1 with
length k = optG(A) = optG(¬A).

F = (A ∧ B): Note that 	Q:A∧B=	Q:A ∪ 	Q:B . Moreover, O(Q : A)
and O(Q : B) are disjoint, i.e., the longest 	-chain in O(Q : A ∧ B) has length
max(k, �) = max(optG(A), optG(B)) = optG(A ∧ B).

F = (A ∨ B) is analogous to F = (A ∧ B).
F = (A #»×B): by construction of 	Q:A

#»×B (cf. Definition 5), the longest
	-chain in O(Q : A

#»×B) is O1, . . . , Ok, O′
1, . . . , O

′
� with a length of k + � =

optG(A) + optG(B) = optG(A #»×B). �
The following results express semantic equivalence between NG and GCL.

The key is to show that the degree-based semantics captures My preferences in
the game as induced by the choice connective #»×.

Theorem 1. The value of NG(P : F, I) is degG
I (F ). The value of NG(O : F, I)

is −degG
I (F ).

Proof. We fix an interpretation I. For this proof, we introduce some handy
notation: for a game state Q : F , let d(Q : F ) denote the maxmin-value and
O(Q : F ) the maxmin-outcome of the game NG(Q : F, I), and W (Q : F )
and L(Q : F ) the set of its winning and losing outcomes, respectively. Let δQ:F

I
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denote the payoff function for the game NG(Q : F, I). We proceed by structural
induction on F , starting with the cases where Q = P.

F = a: This game consists of a single node v. The longest 	-chain starting at
v has length 1. Therefore, d(P : a) = 1 iff a ∈ I iff degG

I (a) = 1, and d(P : a) =
−1 iff a /∈ I iff degG

I (a) = −1.
F = G1 ∨ G2: In the first round, I choose between P : G1 and P : G2.

By the inductive hypothesis, the values of these games are degG
I (P : G1) and

degG
I (P : G2), respectively. Since I am looking to maximize My payoff, I move

to the subgame with maximal payoff:

d(P : G1 ∨ G2) = max�{d(P : G1), d(P : G2)}
= max�{degG

I (G1),degG
I (G2)} = degG

I (G1 ∧ G2)

F = G1 ∧ G2 is analogous to F = G1 ∨ G2.
F = G1

#»×G2: From the fact that δI respects 	 for the winning outcomes
of both players and the game rule of #»×, we observe the following facts: First, if
the G1-game is winning for Me, I go to G1 in the first round. Secondly, if G1 is
losing and G2 is winning, I go to G2. And thirdly, if both games are losing, I go
to G1. Since all outcomes of the G2-games are in 	-relation to all outcomes of
the G1-game, we have by Proposition 1 for all outcomes O:

δP:F
I (O) =

⎧
⎪⎨

⎪⎩

δP:G1
I (O), if O ∈ W (P : G1),

δP:G2
I (O) + opt(G1), if O ∈ W (P : G2),

δP:G1
I (O) − opt(G2), if O ∈ L(P : G1).

The last case comes from the fact that O � O′ for all O′ ∈ O(P : G2),
Proposition 1 and the definition of δI . We now use the inductive hypothesis:
in the first case from above, O(P : F ) ∈ W (P : G1) and therefore d(P : F ) =
d(P : G1) = degG

I (G1). In the second case, O(P : F ) ∈ W (P : G2) and therefore
d(P : F ) = d(P : G2) + opt(G1) = degG

I (G2) + opt(G1). Finally, in the third
case, O(P : F ) ∈ L(P : G1) and therefore d(P : F ) = d(P : G1) − opt(G2) =
degG

I (G2) − opt(G2).
F = ¬G: The game continues at O : G. Therefore, using the inductive

hypothesis, d(P : F ) = d(O : G) = −degG
I (G) = degG

I (F ).
Cases where I am in the role of Opponent are similar. For example, let us

consider O : G1 ∧ G2. In the first move I choose between the two subgames
O : G1 and O : G2. I seek to maximize My payoff, so I go to the subgame with
maximal value. Therefore, using the inductive hypothesis,

d(O : G1 ∧ G2) = max�{d(O : G1), d(O : G2)}
= max�{−degG

I (G1),−degG
I (G2)}

= −min�{degG
I (G1),degG

I (G2)} = −degG
I (G1 ∧ G2).

The argument can be adapted analogously for the other logical connectives. �
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Negation in our new semantics behaves as desired. To see this, compare the
discussion in Sect. 3 to statements (i–iii) in Proposition 2 below. Intuitively,
negation in GCL preserves information on preferences by allowing for degrees
of dissatisfaction. For example, the formula ¬(a #»×b) can only be satisfied by
∅. However, we must also inspect the interpretations that do not satisfy the
formula: {b} results in a degree of −2 while {a} and {a, b} result in a degree of
−1, meaning that {b} is more preferable than {a} and {a, b}.

Moreover, De Morgan’s laws still hold in GCL, and ordered disjunction is
still associative (see statements (iv–vi) in Proposition 2).

Definition 12 (Equivalence). Two GCL-formulas F and G are equivalent,
written F ≡ G, iff optG(F ) = optG(G) and degG

I (F ) = degG
I (G) for all I ⊆ U .

Proposition 2. The following holds:

(i) degG
I (F )=degG

J (F ) ⇐⇒ degG
I (¬F )=degG

J (¬F )
(ii) degG

I (F ) ∈ Z
+ ⇐⇒ degG

I (¬F ) ∈ Z
−

(iii) F ≡ ¬¬F
(iv) ¬(F ∧ G) ≡ ¬F ∨ ¬G
(v) ¬(F ∨ G) ≡ ¬F ∧ ¬G
(vi) ((F ◦ G) ◦ H) ≡ (F ◦ (G ◦ H)) for ◦ ∈ {∧,∨,

#»×}
Proof. Statements (i–iii) follow by definition of negation in GCL, i.e.,
degG

I (¬F ) = −degG
I (F ). Let us consider statements (iv–vi):

(iv) First, note that optG(¬(F ∧ G)) = optG(F ∧ G) = max{opt(F ), opt(G)} =
max{opt(¬F ), opt(¬G)} = optG(¬F ∨ ¬G). Moreover, for any I ⊆ U , we
have degI(¬(F ∧ G)) = −min�{degI(F ),degI(G)} = max�{−degI(F ),
−degI(G)} = degI(¬F ∨ ¬G).

(v) Analogous to (iv).
(vi) Associativity of ∧,∨ follows from associativity of min/max over any

total order like Z (cf. Definition 6). For example: min�{a,min�{b, c}} =
min�{a, b, c} = min�{min�{a, b},min�{c}}.
We now show associativity of #»×. Let F1 = ((A #»×B) #»×C), F2 = (A #»×(B #»×C)).
optG(F1) = optG(F2) is immediate. Let I be an arbitrary interpreta-
tion. We can show degG

I (F1) = degG
I (F2) by distinguishing all cases for

degG
I (A),degG

I (B),degG
I (C) ∈ {Z−,Z+}.

– degG
I (A) ∈ Z

+. Then degG
I (F2) = degG

I (A). Moreover, degG
I (A

#»×B) =
degG

I (A) and therefore degG
I (F1) = degG

I (A).
– degG

I (A) ∈ Z
− and degG

I (B) ∈ Z
+. Then degG

I (A
#»×B) = optG(A) +

degG
I (B) and degG

I (B
#»×C) = degG

I (B). Thus, degG
I (F1) = degG

I (F2) =
optG(A) + degG

I (B).
– degG

I (A) ∈ Z
−, degG

I (B) ∈ Z
−, and degG

I (C) ∈ Z
+. Then degG

I (A
#»×B) =

degG
I (A) − optG(B) and degG

I (B
#»×C) = optG(B) + degG

I (C). Observe
that degG

I (A
#»×B) ∈ Z

− and thus degG
I (F1) = optG(A #»×B) + degG

I (C) =
optG(A) + optG(B) + degG

I (C) = optG(A) + degG
I (B

#»×C) = degG
I (F2).
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– degG
I (A) ∈ Z

−, degG
I (B) ∈ Z

−, and degG
I (C) ∈ Z

−. Then degG
I (A

#»×B) =
degG

I (A) − optG(B) and degG
I (B

#»×C) = degG
I (B) − optG(C). Thus,

degG
I (F1) = degG

I (A
#»×B) − optG(C) = degG

I (A) − optG(B) − optG(C) =
degG

I (A) − optG(B #»×C) = degG
I (F2)q. �

While GCL deviates from QCL, the two logics agree when it comes to classical
satisfaction, as expressed by the following result.

Proposition 3. degG
I (F ) ∈ Z

+ iff degI(F ) < ∞.

Proof. By structural induction. Let I ⊆ U . For the base case F = a, where
a ∈ U , we distinguish two cases: If a ∈ I, then degI(a) = degG

I (a) = 1. If a �∈ I,
then degI(a) = ∞ and degG

I (a) = −1.
Induction step: the I.H. is that degG

I (A) ∈ Z
+ iff degI(A) < ∞, and that

degG
I (B) ∈ Z

+ iff degI(B) < ∞.
F = ¬A: degG

I (¬A)∈Z
+ iff degG

I (A)∈Z
− iff degI(A)=∞ iff degI(¬A)<∞.

F = (A ∧ B): degG
I (A ∧ B) ∈ Z

+ iff degG
I (A) ∈ Z

+ and degG
I (B) ∈ Z

+ iff
degI(A) < ∞ and degI(B) < ∞ iff degI(A ∧ B) < ∞.

F = (A ∨ B): degG
I (A ∨ B) ∈ Z

+ iff degG
I (A) ∈ Z

+ or degG
I (B) ∈ Z

+ iff
degI(A) < ∞ or degI(B) < ∞ iff degI(A ∨ B) < ∞.

F = (A #»×B): analogous to F = (A ∨ B). �
Moreover, if we allow negation only in front of classical formulas, QCL and

GCL agree even when it comes to (positive) satisfaction degrees.

Proposition 4. If F is a QCL-formula in which negation is only applied to
classical formulas, degG

I (F ) ∈ Z
+ implies degG

I (F ) = degI(F ).

Proof. By structural induction. Let I ⊆ U . In this proof, min� and max� are
relative to � (cf. Definition 6) while min≤ and max≤ are relative to the regular
order on integers.

Base case: let F be a classical formula. Assume degG
I (a) ∈ Z

+. By Proposi-
tion 3 this implies degG

I (F ) < ∞. Thus, degI(F ) = degG
I (F ) = 1.

Induction step: let A and B be formulas such that negation only appears
in front of classical formulas, i.e., if ¬G is a subformula of A or B then G is a
classical formula. The I.H. is that degG

I (A) ∈ Z
+ implies degG

I (A) = degI(A)
and degG

I (B) ∈ Z
+ implies degG

I (B) = degI(B).
F = (A ∧ B): assume degG

I (A ∧ B) ∈ Z
+. Then we have degG

I (A) ∈ Z
+ and

degG
I (B) ∈ Z

+. This means that, degG
I (A ∧ B) = min�(degG

I (A),degG
I (B)) =

max≤(degG
I (A),degG

I (B)) = max≤(degI(A),degI(B)) = degI(A ∧ B).
F = (A ∨ B): assume degG

I (A ∨ B) ∈ Z
+. Then either degG

I (A) ∈ Z
+ or

degG
I (B) ∈ Z

+. If both degG
I (A) ∈ Z

+ and degG
I (B) ∈ Z

+ the proof is analo-
gous to F = (A ∧ B). Suppose degG

I (A) ∈ Z
+ and degG

I (B) ∈ Z
− (the other

case is symmetric). By Proposition 3, degI(B) = ∞. Thus, degG
I (A ∨ B) =

max�(degG
I (A),degG

I (B)) = degG
I (A) = degI(A) = min≤(degI(A),degI(B)) =

degI(A ∨ B).
F = (A #»×B): assume degG

I (A
#»×B) ∈ Z

+. If degG
I (A) ∈ Z

+, then
degG

I (A
#»×B) = degG

I (A) = degI(A) = degI(A
#»×B). If degG

I (A) ∈ Z
−, then
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degG
I (B) ∈ Z

+. By Proposition 3, degI(A) = ∞. Then degG
I (A

#»×B) = optG(A)+
degG

I (B) = opt(A)+degI(B) = degI(A
#»×B). Note that optG(A) = opt(A) holds

because negation is only applied to classical formulas in A, and, except for nega-
tion, optionality is defined equivalently in QCL and GCL. �

Note that Propositions 3 and 4 do not hold if we substitute QCL for PQCL.
Regarding Proposition 3, recall that, in PQCL, an interpretation may classically
satisfy a formula F and its negation ¬F (see Sect. 3), which is not possible in
GCL. As for Proposition 4, classical conjunction and disjunction are defined
differently in PQCL compared to QCL and GCL.

Lastly, we investigate the computational complexity of GCL (and therefore
our game NG). Familiarity with complexity classes P, NP, and coNP is assumed.
Moreover, the complexity class ΘP

2 contains the problems solvable in polynomial
time with access to O(log(n))-many NP-oracle calls [16]. We consider decision
problems pertaining to the preferred models of a formula.

Definition 13. We define the following two decision problems:

– PMChecking: given a GCL-formula F and an interpretation I, is I a pre-
ferred model of F?

– PMContainment: given a GCL-formula F and a variable x ∈ U , is there a
preferred model I of F such that x ∈ I?

For QCL, PMChecking is coNP-complete while PMContainment is ΘP
2 -

complete [4]. Intuitively, PMChecking is coNP-complete for QCL since we must
go through all other interpretations to check that our given interpretation I
results in an optimal degree. The same is true in the case of GCL.

Proposition 5. PMChecking is coNP-complete for GCL.

Proof. NP-membership of the complementary problem: given a GCL-formula F
and an interpretation I, compute k = degG

I (F ) (this can be done in polynomial
time) and check whether k ∈ Z

+. If no, then I is not a preferred model and
we are done. If yes, non-deterministically guess an interpretation J and check
whether k � degG

J (F ). If yes, then I is not a preferred model, i.e. (F, I) is a
yes-instance for the complementary problem of PMChecking.

coNP-hardness by reduction from Unsat2: given a classical formula F , we
construct the GCL-formula

F ′ = (F ∨ ((a ∧ ¬a) #»×a) ∧ ¬(F ∧ a)

where a is a fresh variable that does not occur in F . It holds that F is unsatis-
fiable iff {a} is a preferred model of F ′:

Assume F is unsatisfiable. Note that {a} satisfies F ′ to a degree of 2. More-
over, ((a∧¬a) #»×a) can not be satisfied to a degree more preferable than 2. Thus,
to satisfy F ′ to a degree of 1 we must satisfy F , which is not possible.
2 In the coNP-complete Unsat problem we are given a classical formula F and ask

whether I �|= F for all interpretations I.
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Assume F is satisfiable, i.e., there is some interpretation I that satisfies F .
Note that we can assume a �∈ I, since a is a fresh variable. Then I satisfies F ′

to a degree of 1. But {a} satisfies F ′ to a degree of 2. �
As for PMContainment, ΘP

2 -completeness in the case of QCL can intu-
itively be explained by the fact that we must first find the optimal degree m for
the given formula F . This can be done via binary search, using O(log(opt(F )))
NP-oracle calls. Then, a last oracle call suffices to guess an interpretation I and
check whether degI(F ) = m and a ∈ I. This algorithm can be adapted for GCL.

Proposition 6. PMContainment is ΘP
2 -complete for GCL.

Proof. ΘP
2 -membership: let F be a GCL-formula and a ∈ U . First, using an NP-

oracle call, check whether there is some interpretation I such that degG
I (F ) ∈

Z
+. If no, then F has no preferred models and we have a no-instance. If yes,

we continue. We conduct a binary search over (1, . . . , optG(F )). At each step
of the binary search we use an NP-oracle call to check whether there is some
interpretation I such that k � degG

I (F ), where k is the current mid-point of the
binary search. If yes, we continue the binary search over (1, . . . , k−1), otherwise
we continue with (k+1, . . . , optG(F )). In this way, we find the optimal degree m
with which F can be satisfied, i.e., every preferred model of F must satisfy F to
a degree of m. The binary search requires O(log(optG(F ))) NP-oracle calls. Note
that optG(F ) is linear in the size of F , since optG(A #»×B) = optG(A) + optG(B).
Finally, we make one last NP-oracle call to guess an interpretation I and check
whether degG

I (F ) = m and a ∈ I.
ΘP

2 -hardness: in the ΘP
2 -hardness proof of PMContainment for QCL (see

Proposition 19 in [4]), a formula F ′ is constructed in which negation is only
applied to atoms, i.e., if ¬G is a subformula of F ′ then G is a propositional
variable. By our Proposition 4, this means that an interpretation I is a preferred
model of F ′ in QCL if and only if I is a preferred model of F ′ in GCL. Thus,
the same construction used in the hardness proof of QCL works for GCL. �

We have shown that the complexity of GCL with respect to preferred models
is the same as that of QCL. Note that the complexity of PQCL has not been
formally investigated yet (to the best of our knowledge).

6 Conclusion

We propose a game-theoretic semantics (GTS) for the language of Qualitative
Choice Logic (QCL), and thereby show that GTS are well-suited for languages
in which soft and hard constraints are expressed in a single language.

We extract the degree-based Game-induced Choice Logic (GCL) from our
GTS and show equivalence between the two formalisms. By leveraging game-
theoretic negation, our new semantics avoids the contentious behavior of nega-
tion in QCL and Prioritized QCL (PQCL) while retaining desirable properties
such as associativity of ordered disjunction. Moreover, we show that the com-
plexity of GCL is the same as that of QCL when it comes to preferred models.
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Regarding future work, our game semantics can be lifted to a provability
game [8,9] by which a cut-free sequent calculus can be obtained. We also plan to
investigate how our approach can be adapted to formalisms related to QCL such
as other choice logics [4,5] or the recently introduced lexicographic logic [7].
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