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Abstract. In answer set programming, two groups of rules are consid-
ered strongly equivalent if replacing one group by the other within any
program does not affect the set of stable models. Jan Heuer has designed
and implemented a system that verifies strong equivalence of programs
in the ASP language mini-gringo. The design is based on the syntactic
transformation τ∗ that converts mini-gringo programs into first-order
formulas. Heuer’s assertion about τ∗ that was supposed to justify this
procedure turned out to be incorrect, and in this paper we propose an
alternative justification for his algorithm. We show also that if τ∗ is
replaced by the simpler and more natural translation ν then the algo-
rithm will still produce correct results.

1 Introduction

In answer set programming (ASP), two groups of rules are considered strongly
equivalent if replacing one group by the other within any program does not affect
the set of stable models [21]. This equivalence relation has been extensively
studied in the literature because of its interesting theoretical properties and
its usefulness for the practice of answer set programming [1–6,8,10,11,15,16,
19,20,22–24,27]. Jan Heuer designed and implemented a system that verifies
strong equivalence of programs in the ASP language mini-gringo. The system
is described in his Bachelor Thesis [12], presented to the University of Potsdam.

The design of the system is based on the syntactic transformation τ∗ [20],
which converts mini-gringo rules and programs into first-order formulas. Mini-
gringo programs Π1, Π2 are strongly equivalent whenever the formulas τ∗Π1

and τ∗Π2 can be derived from each other in the deductive system HTA (“here-
and-there with arithmetic”) [17].

To use a resolution theorem prover as a proof engine for HTA, Heuer needed
an additional translation that would relate HTA to a classical first-order theory.
The translation that he implemented is a straightforward generalization of the
process proposed by Pearce et al. [25] for propositional formulas.

Unfortunately, the claim that is supposed to justify this additional transla-
tion [12, Theorem 3] is incorrect as stated, because it disregards the existence
of interpretations that treat arithmetical symbols in nonstandard ways.1 For
1 Lifschitz et al. [20] made the same mistake in their Proposition 6.
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example, the facts p(2 + 3) and p(5) are strongly equivalent, but we cannot
assert that they get the same truth value under any interpretation. Indeed, the
expressions 2 + 3 and 5 can have different values if the symbols 2, 3, 5 and +
are not interpreted as usual in arithmetic.

In this paper we show that, in spite of this difficulty, Heuer’s procedure is in
fact correct. Second, we show that the procedure will produce correct results if
we modify it by replacing τ∗R with the simpler translation νR when the rule R
is regular [18]. The paper begins with a review of the mini-gringo language and
of the target language of the translations τ∗ and ν (Sects. 2 and 3). The main
results of this paper are stated in Sect. 4. In Sect. 5 we give examples of their
use. In Sect. 6 we describe an extension HTAω of the deductive system HTA,
which plays an important role in our proofs of the main results.

2 Review: Programs

We assume that three countably infinite sets of symbols are selected: numerals,
symbolic constants, and variables. We assume that a 1–1 correspondence between
numerals and integers is chosen; the numeral corresponding to an integer n is
denoted by n. Precomputed terms are numerals and symbolic constants. We
assume that a total order on precomputed terms is chosen such that for all
integers m and n, m < n iff m < n.

Terms allowed in a mini-gringo program are formed from precomputed
terms and variables using the six operation names

+ − × / \ ..

(the last three serve to represent integer division, remainder and intervals). An
atom is a symbolic constant optionally followed by a tuple of terms in parenthe-
ses. A literal is an atom possibly preceded by one or two occurrences of not. A
comparison is an expression of the form t1 ≺ t2, where t1, t2 are terms and ≺ is
= or one of the comparison symbols

�= < > ≤ ≥ (1)

A rule is an expression of the form Head ← Body, where

– Body is a conjunction (possibly empty) of literals and comparisons, and
– Head is either an atom (then the rule is basic), or an atom in braces (then

this is a choice rule), or empty (then this is a constraint).

A (mini-gringo) program is a finite set of rules.
The semantics of ground terms is defined by assigning to every ground term t

the finite set [t] of its values [20, Section 3]. Values of a ground term are precom-
puted terms. For instance,

[2/3] = {0}, [2/0] = ∅, [0 .. 2] = {0, 1, 2}.



On Heuer’s Procedure for Verifying Strong Equivalence 255

A predicate symbol is a pair p/n, where p is a symbolic constant, and n is a
nonnegative integer. About a predicate symbol p/n we say that it occurs in a
program Π if a rule of Π contains an atom of the form p(t1, . . . , tn).

Stable models of a program are defined as stable models of the set of proposi-
tional formulas obtained from it by the syntactic transformation τ [20, Section 3].
Atomic parts of these formulas are precomputed atoms—atoms p(t) such that
the members of t are precomputed terms. For example, τ transforms the rule

{q(X)} ← p(X) (2)

into the set of formulas p(t) → (q(t) ∨ ¬q(t)) for all precomputed terms t.
The rule

q(0 .. 2) ← p (3)

is transformed into p → (q(0) ∧ q(1) ∧ q(2)). Thus stable models of mini-
gringo programs are sets of precomputed atoms.

Mini-gringo programs Π1 and Π2 are strongly equivalent to each other if,
for every set Ω of propositional combinations of precomputed atoms, τΠ1 ∪ Ω
has the same stable models as τΠ2 ∪ Ω.

3 Review: Two-Sorted Formulas

The target language of the translations τ∗ [20, Section 6] and ν [18, Sections 4, 5]
is a first-order language with the sort general and its subsort integer.2 Variables
of the first sort are meant to range over arbitrary precomputed terms, and we
identify them with variables used in mini-gringo rules. Variables of the second
sort are meant to range over numerals (or, equivalently, integers). This is made
precise in the definition of a standard interpretation at the end of this section.

The signature σ0 of the language includes

– all precomputed terms as object constants; an object constant is assigned the
sort integer iff it is a numeral;

– the symbols +, − and × as binary function constants; their arguments and
values have the sort integer ;3

– predicate symbols p/n as n-ary predicate constants; their arguments have the
sort general ;

– comparison symbols (1) as binary predicate constants; their arguments have
the sort general.

2 The need to use a language with two sorts is explained by the fact that function
symbols in a first-order language are supposed to represent total functions, and
arithmetic operations are not defined on symbolic constants.

3 The symbols / and \ are not included because the corresponding functions are not
total on the set of integers. The symbol .. is not included because intervals do not
belong to the domain of precomputed terms.



256 J. Fandinno and V. Lifschitz

An atomic formula (p/n)(t1, . . . , tn) can be abbreviated as p(t1, . . . , tn). An
atomic formula of the form ≺ (t1, t2), where ≺ is a comparison symbol, can
be written as t1 ≺ t2. A conjunction of the form t1 ≤ t2 ∧ t2 ≤ t3 can be written
as t1 ≤ t2 ≤ t3, and similarly for other chains of inequalities.

For example, the translation ν converts rule (2) into

∀X(p(X) → (q(X) ∨ ¬q(X))). (4)

Rule (3) is transformed into

p → ∀N(0 ≤ N ≤ 2 → q(N)),

where N is an integer variable. The result of applying ν to the rule

q(X,Y + 1) ← p(X,Y ) (5)

is
∀XN(p(X,N) → q(X,N + 1)). (6)

An interpretation of the signature σ0 is standard if

– its domain of the sort general is the set of all precomputed terms;
– its domain of the sort integer is the set of all numerals;
– it interprets every precomputed term t as t;
– it interprets m+n as m + n, and similarly for subtraction and multiplication;
– it interprets every atomic sentence t1 ≺ t2, where t1 and t2 are precomputed

terms, as true iff the relation ≺ holds for the pair (t1, t2).

4 Translation γ and Its Properties

By σ′
0 we denote the extension of the signature σ0 obtained by adding, for every

predicate symbol p/n, a new n-ary predicate constant (p/n)′. An atomic formula
(p/n)′(t) can be abbreviated as p′(t). For the signature σ′

0, the definition of a
standard interpretation is the same as for the signature σ0 above.

For any formula F over the signature σ0, by F ′ we denote the formula over σ′
0

obtained from F by replacing every occurrence of every predicate symbol p/n
by (p/n)′.

The translation γ, which relates logic of here-and-there with arithmetic to
classical logic, maps formulas over σ0 to formulas over σ′

0.
4 It is defined recur-

sively:

– γF = F if F is atomic,
– γ(¬F ) = ¬F ′,
– γ(F ∧ G) = γF ∧ γG,
– γ(F ∨ G) = γF ∨ γG,

4 Heuer [12, Sections 2.2.3 and 3.3] denotes this translation by σ∗. We switched to γ
to avoid confusion with the symbols denoting signatures.
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– γ(F → G) = (γF → γG) ∧ (F ′ → G′),
– γ(∀X F ) = ∀X γF ,
– γ(∃X F ) = ∃X γF .

Our justification of Heuer’s procedure is given by Theorem 1 below. In the
statement of the theorem, A(p/n) stands for the formula ∀X(p(X) → p′(X)),
where X is an n-tuple of distinct general variables.

Theorem 1. Mini-gringo programs Π1, Π2 are strongly equivalent iff all stan-
dard interpretations of σ′

0 satisfy the formula
⎛
⎝∧

p/n

A(p/n)

⎞
⎠ → (γτ∗Π1 ↔ γτ∗Π2), (7)

where the conjunction extends over all predicate symbols p/n that occur in Π1

or in Π2.

This theorem differs from the incorrect assertion mentioned in the introduc-
tion [12, Theorem 3] by requiring the interpretations to be standard. It shows
that strong equivalence between Π1 and Π2 can be established by proving for-
mula (7) in a first-order theory such that its axioms are satisfied by all standard
interpretations. This is how Heuer’s procedure operates. It translates formula (7)
into the TPTP language [26] using the algorithm implemented earlier as part
of the proof assistant anthem [7]. Then the theorem prover vampire [14] is
invoked to find a proof.

Results similar to the theorem above are due to Lin [23] (his Theorem 1 is
about strong equivalence of propositional programs), to Pearce et al. [25] (their
Theorem 6(iii) is about strong equivalence of propositional formulas), and to
Ferraris et al. [9] (their Theorem 9 is about strong equivalence of first-order
formulas without arithmetic).

Theorem 2 below shows that the assertion of Theorem 1 will remain true if
we replace τ∗ by the simpler and more natural translation ν when a “regular”
rule [18, Section 2] is translated. (The two main distinctive features of regular
rules are that they do not use function symbols / and \, and do not apply
arithmetical operations to intervals, as in X × (Y .. Z).)

For any mini-gringo program Π, by μΠ we denote the set consisting of

– the formulas νR for all rules R of Π that are regular [18, Section 2], and
– the formulas τ∗R for all rules R of Π that are not regular.

The assertion of Theorem 1 will remain true if we replace τ∗ in its statement
by μ:

Theorem 2. Mini-gringo programs Π1, Π2 are strongly equivalent iff all stan-
dard interpretations of σ′

0 satisfy the formula
⎛
⎝∧

p/n

A(p/n)

⎞
⎠ → (γμΠ1 ↔ γμΠ2), (8)
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where the conjunction extends over all predicate symbols p/n that occur in Π1

or in Π2.

5 Examples

Example 1. Let Π1 be rule (2), and let Π2 be the rule

q(X) ← p(X) ∧ not not q(X). (9)

Both rules are regular, so that μΠ1 is (4), and μΠ2 is

∀X(p(X) ∧ ¬¬q(X) → q(X)).

Then γμΠ1 is

∀X((p(X) → (q(X) ∨ ¬q′(X))) ∧ (p′(X) → (q′(X) ∨ ¬q′(X)))),

which is (classically) equivalent to

∀X(p(X) → (q(X) ∨ ¬q′(X))); (10)

γμΠ2 is

∀X((p(X) ∧ ¬¬q′(X) → q(X)) ∧ (p′(X) ∧ ¬¬q′(X) → q′(X))),

which is equivalent to

∀X(p(X) ∧ q′(X) → q(X)))

and furthermore to (10). Thus the consequent of (8) is in this case logically valid,
and the programs are strongly equivalent by Theorem 2.

Example 2. Let Π1 be rule (5), and let Π2 be the rule

q(X,Y ) ← p(X,Y − 1). (11)

Both rules are regular, so that μΠ1 is (6), and μΠ2 is

∀XN(p(X,N − 1) → q(X,N)).

Then γμΠ1 is

∀XN((p(X,N) → q(X,N + 1)) ∧ (p′(X,N) → q′(X,N + 1))),

and γμΠ2 is

∀XN((p(X,N − 1) → q(X,N)) ∧ (p′(X,N − 1) → q′(X,N))).

The equivalence γμΠ1 ↔ γμΠ2 is a logical consequence of the formulas

∀N((N − 1) + 1 = N) and ∀N((N + 1) − 1 = N),
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which are satisfied by all standard interpretations. The programs are strongly
equivalent by Theorem 2.

In both examples above, we did not refer to the antecedent of implication (8);
in each case, all standard interpretations satisfy the consequent. Strong equiva-
lence between the program

q ← p,
← p ∧ ¬q

and its first rule is a case when the presence of the antecedents in implications (7)
and (8) is essential. This example is due to Lin [23, Section 2].

6 Logic of Here-and-there with Arithmetic

Proofs of Theorems 1 and 2 are derived from a lemma that refers to an exten-
sion of the deductive system HTA. This extension, denoted by HTAω, can be
described as the result of adding a few axiom schemas and inference rules to
intuitionistic logic with equality for the signature σ0.

The list of additional axioms includes the Hosoi axiom schema [13]

F ∨ (F → G) ∨ ¬G

and the schema SQHT [22]

∃X(F (X) → ∀X F (X)).

It includes also the formulas
t1 ≺ t2

where ≺ is one of comparison symbols (1), and t1, t2 are precomputed terms
that satisfy the condition t1 ≺ t2;

¬(t1 ≺ t2)

where ≺ is = or one of comparison symbols (1), and t1, t2 are precomputed
terms that do not satisfy the condition t1 ≺ t2; and

m + n = m + n, m − n = m − n, m · n = m × n

for all integers m, n.
The additional inference rules are “omega-rules” with infinitely many

premises:
F (t) for all precomputed terms t

∀X F (X)

where X is a general variable, and

F (n) for all integers n

∀N F (N)
(12)
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where N is an integer variable [6, Section 5.3].

Main Lemma. Let Π1, Π2 be mini-gringo programs, and let Fi (i = 1, 2) be
a sentence over σ0 that is equivalent to τ∗Πi in HTAω. Programs Π1, Π2 are
strongly equivalent iff every standard model of A satisfies γF1 ↔ γF2, where A
denotes the set of formulas A(p/n) for all predicate symbols p/n.

Conclusion

Theorem 2 shows that Heuer’s procedure can be modified by replacing τ∗R
with the simpler translation νR when the rule R is regular. We expect that
this modification will make the system easier to use, and we plan to verify this
conjecture in collaboration with researchers at the University of Potsdam.
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