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Abstract. Automated planning is a prominent area of Artificial Intelligence, and
an important component for intelligent autonomous agents. A critical aspect of
domain-independent planning is the domain model, that encodes a formal repre-
sentation of domain knowledge needed to reason upon a given problem. Despite
the crucial role of domain models in automated planning, there is lack of tools
supporting knowledge engineering process by comparing different versions of the
models, in particular, determining and highlighting differences the models have.

In this paper, we build on the notion of strong equivalence of domain mod-
els and formalise a novel concept of similarity of domain models. To measure
the similarity of two models, we introduce a directed graph representation of
lifted domain models that allows to formulate the domain model similarity prob-
lem as a variant of the graph edit distance problem. We propose an Answer Set
Programming approach to optimally solve the domain model similarity problem,
that identifies the minimum number of modifications the models need to become
strongly equivalent, and we demonstrate the capabilities of the approach on a
range of benchmark models.
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1 Introduction

Automated planning is a research discipline that addresses the problem of generating a
totally- or partially-ordered sequence of actions that transforms the environment from
an initial state to a desired goal state. It has matured to such a degree that there exists a
wide range of applications utilising planning, including UAV manoeuvring [21], space
exploration [1], and train dispatching [7].

A critical aspect of domain-independent planning is the domain knowledge that
must be fed into a planning engine that comes under the form of a domain model,
a symbolic representation of the environment and actions, that has to be engineered
prior its use [16]. The importance of good quality domain models in planning, and of
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the corresponding knowledge engineering process, has been well-argued [17,27,28].
However, there is a lack of approaches to support the knowledge engineering process.
In particular, there is no “diff” tool that compares different versions of a domain model
and highlights differences among them. Tools such as D-VAL [25] or a recent work of
Coulter et al. [10] provide some limited support to compare domain models focusing
on the state space they can generate, and the model reconciliation problem focuses on
explaining why two models cannot create the same optimal plans [8].

To address the highlighted research gap, we propose a novel concept of domain
model similarity and present a theoretical framework underlying the concept, which
employs an extension of the notion of strong equivalence informally introduced by
Shoeeb and McCluskey [24], which determines whether domain models are the same
except naming. We propose a directed graph representation of lifted domain models
and we show that domain models are strongly equivalent if and only if the graphs rep-
resenting them are isomorphic. Then, we define distance between domain models as the
minimum number of modifications that have to be made to both models to make them
strongly equivalent. It corresponds to the notion of edit distance between two graphs
(representing the domain models). The introduced theoretical framework gives us the
notion of similarity by measuring the distance between domain models and enumerat-
ing the modifications that need to be done to make the models (strongly) equivalent.
Then, we present an approach based on Answer Set Programming (ASP) [3,5,14,20]
that allows to compare planning domain models to assess their similarity. This is not the
first time that declarative programming, in particular ASP, is employed in this context,
but considering either different problems in the planning domain (the already men-
tioned [25]), or not focused on planning [26]. Our solution relies on a directed graph
representation of the lifted domain models, and is capable of providing optimally min-
imal sets of changes to transform one model into the other. Beside providing the first
concrete approach to assess if two domain models are strongly equivalent, the proposed
notion of similarity, and the ASP-based approach to measure it, have several practical
implications: (i) it can be incorporated into a “diff” tool for highlighting differences
between two versions of a domain model, to help knowledge engineers in understand-
ing modifications; (ii) it can support the evaluation of tools for automated domain model
acquisition (e.g., LOCM [11]) by comparing acquired domain models to the reference
domain models; (iii) it can be exploited as an advanced plagiarism checker, where it can
provide a “similarity” score to flag potential cases of plagiarism, and (iv) it can support
the evaluation of models in competitions on domain modelling such as ICKEPS [9] and
provide useful insights into how groups of experts differ in developing models.

We evaluate the approach on well-known benchmark domains from international
competitions, of different size with regards to the number of models’ predicates and
operators. We present a fully declarative approach, which is able to compare a num-
ber of planning domains, except the largest, and an improved solution, that exploits a
preprocessor via imperative programming that acts as a sort of “problem-aware pre-
grounder”, which complements the declarative encoding. The related empirical evalua-
tion shows that, by employing the improved solution, the comparison can be performed
in less than a CPU-time second for all evaluated models, hence suggesting that it can
be fruitfully exploited to support the knowledge engineering process of domain models
in real time.
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2 Background

In this section we present, in two separate subsections, needed preliminaries about auto-
mated planning and graph similarity, respectively.

Automated Planning. In the STRIPS representation, the environment is represented by
propositions. States are defined as sets of these propositions (or atoms). An action is a
quadruple a “ (name(a), pre(a), del(a), add(a)), where name(a) represents a unique
action name, pre(a), del(a) and add(a) are sets of atoms representing the precondition
of a, the delete and add effects of a, respectively. We assume a is always well defined,
i.e., add(a) �“ H (as an action without any add effect would be useless). We say that
an action a is applicable in a state s if and only if pre(a) ⊆ s. Application of a in s (if
possible) results in a state (s \ del(a)) Y add(a).

In the lifted STRIPS representation, the environment is represented by first-order
logic predicates. A planning operator o “ (name(o), pre(o), del(o), add(o)) is speci-
fied such that name(o) “ op name(x1, . . . , xk) (op name represents a unique opera-
tor name and x1, . . . xk are variable symbols (parameters) appearing in the operator),
pre(o) is a set of predicates representing the operator’s preconditions, del(o) and add(o)
are sets of predicates representing the operator’s delete and add effects, respectively.
Again, we assume o is always well defined, i.e., add(o) �“ H. A (lifted) domain model
D “ (P,O) is specified via a set of predicates P and a set of operators O. A problem
instance P “ (Obj, I,G) for a lifted domain model D is specified via a set of objects
Obj , the initial state I and a set of atoms representing the goal G. Atoms are obtained
by grounding of the predicates from P , i.e., by substituting objects for predicates’ vari-
ables. Actions are grounded instances of planning operators.

A planning task (D,P) consists of a domain model D and a problem instance P . A
solution plan for a planning task is a sequence of actions such that consecutive appli-
cation of the actions in the plan (starting in the initial state) results in a state in which
all the goal atoms are true. We say that predicates are equal if they have the same name
and their parameters including their order are identical. We define a function pars(·)
that returns the set of variable symbols of a predicate or an operator. We also define a
function arity(·) that returns the number of variable symbols of a predicate or an oper-
ator. With regards to substitution mappings that map free variables into terms (variables
or constants in our case), we use a specific notation in order to disambiguate with other
types of mappings. In particular, for a substitution mapping χ and a predicate (or an
operator) p(x1, . . . , xn), (p|χ) refers to substituting x1, . . . , xn for terms according to
χ, i.e., (p|χ) ≡ p(χ(x1), . . . , χ(xn)).

Graph Similarity. Comparing graphs, in terms of how similar they are, belongs under
of the umbrella of graph matching [4]. For our purpose, we will consider (labelled)
directed graphs with different types of edges. Let G1 “ (V1, E

1
1 , E2

1 , . . . , Ek
1 ) and G2 “

(V2, E
1
2 , E2

2 , . . . , Ek
2 ) be directed graphs with k different types of edges, and L1 and

L2 be the sets of their edge labels. We say that G1 and G2 are isomorphic if and only
if there exist bijective mappings ξ : V1 Ñ V2 and ν : L1 Ñ L2 such that for each
1 ď i ď k : (x, l, y) P Ei

1 ô (ξ(x), ν(l), ξ(y)) P Ei
2. Note that for unlabelled directed

graphs it is the case that G1 and G2 are isomorphic if and only if there exist a bijective
mapping ξ : V1 Ñ V2 such that for each 1 ď i ď k : (x, y) P Ei

1 ô (ξ(x), ξ(y)) P Ei
2.
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Let G′
1 and G′

2 be subgraphs of G1 and G2, respectively. We say that G′
1 and G′

2 are
common isomorphic subgraphs of G1 and G2 if and only if G′

1 and G′
2 are isomorphic.

Let elem denote the number of elements in a graph (with k different types of edges),
i.e., for G “ (V,E1, . . . , Ek), elem(G) “ |V | ` ∑k

i“1 |Ei|. We say that G′
1 and G′

2 are
maximum common isomorphic subgraphs of G1 and G2 if and only if (i) G′

1 and G′
2 are

common isomorphic subgraphs of G1 and G2 and (ii) for every pair G′′
1 and G′′

2 being also
common isomorphic subgraphs of G1 and G2 it is the case that elem(G′

1) ě elem(G′′
1 )

(and elem(G′
2) ě elem(G′′

2 )). Then, we define a function dist representing a distance
between graphs G1 and G2 as dist(G1,G2) “ elem(G1)`elem(G2)´2˚elem(G′

1) with
G′
1 and G′

2 being maximum common isomorphic subgraphs of G1 and G2. Note that our
notion of distance is a variant of Graph Edit Distance [22] in which vertex and edge
substitutions are not explicitly counted.

3 Strong Equivalence of Domain Models

Equivalence of domain models can be understood in a similar fashion as equivalence
of grammars, i.e., two domain models are equivalent if a planning task specified in one
model can be also specified in the other model and both models generate same plans for
the corresponding planning tasks [24]. An alternative understanding of domain model
equivalence, “functional equivalence”, compares corresponding state-transition systems
such that two domain models are (functionally) equivalent if and only if for correspond-
ing planning tasks the sets of reachable states are equivalent [25]. In this paper, we
focus on strong equivalence of domain models that has been informally defined in [24]
as models being logically identical up to naming. It assumes that there exist bijective
mappings between particular elements (e.g., atoms, action names).

To formally define strong equivalence for lifted domain models, we have to make
sure that for each corresponding grounded instance of two strongly equivalent lifted
domain models it is the case that those instances are strongly equivalent too. Whereas
the (bijective) mapping between predicates needs to consider only naming and arity
(without loss of generality we assume that free variables in each predicate are distinct),
the (bijective) mapping between planning operators has to take into account ordering of
their parameters (free variables). We formally define strong equivalence for two lifted
domain models as follows.

Definition 1. Let D “ (P,O) and D′ “ (P ′, O′) be lifted domain models. If there exist
bijective mappings P : P Ñ P ′ and O : {name(o) | o P O} Ñ {name(o′) | o′ P O′}
such that

– for each p P P , arity(p) “ arity(P(p))
– for each o P O, arity(name(o)) “ arity(O(name(o))) and there exists o′ P O′ and
a bijective substitution mapping χo : pars(o) Ñ pars(o′), where

• name(o′) “ O(name(o))
• pre(o′) “ {(P(p)|χo) | p P pre(o)}
• del(o′) “ {(P(p)|χo) | p P del(o)}
• add(o′) “ {(P(p)|χo) | p P add(o)}

then D and D′ are strongly equivalent.



Comparing Planning Domain Models Using Answer Set Programming 231

Next, we will construct a Lifted Domain Model Graph (LDMG) which is a labelled
directed graph connecting operators with predicates in a given lifted domain model.
LDMG has vertices standing for both predicates and operator names, and three types
of edges referring to preconditions, delete, and add effects, respectively. Edge labels
represent matchings between operators’ and predicates’ variables. To show that two
domain models are strongly equivalent their respective LDMGs have to be isomorphic.

Definition 2. Let D “ (P,O) be a lifted domain model. We assume, without loss
of generality, that all variable symbols defined in D are distinct. We say that G “
(V,Epre, Edel, Eadd) is a Lifted DomainModel Graph (LDMG) ofD, where V “ P Y
{name(o) | o P O} is a set of vertices, Epre “ {(name(o), Θo, p) | p P (pre(o|Θo)), o P
O, p P P}, Edel “ {(name(o), Θo, p) | p P (del(o|Θo)), o P O, p P P} and
Eadd “ {(name(o), Θo, p) | p P ((add(o|Θo)), o P O, p P P} are sets of labelled
directed edges, where Θo is the substitution mapping from pars(o) to

⋃
pPP pars(p)

for each operator o.

Theorem 1. Let D “ (P,O) and D′ “ (P ′, O′) be lifted domain models. We assume,
without loss of generality, that all variable symbols defined in both D and D′ are dis-
tinct. Let G “ (V,Epre, Edel, Eadd) and G′ “ (V ′, E′

pre, E
′
del, E

′
add) be LDMGs of D and

D′, respectively. D and D′ are strongly equivalent if and only if G and G′ are isomor-
phic with a bijective mapping ξ : V Ñ V ′ such that for each x P V : arity(x) “
arity(ξ(x)).

Proof. The “if” part: If D and D′ are strongly equivalent, then there exist bijective
mappings P and O between atoms and operator names of both domain models as in
Definition 1. We can combine P and O into ξ such that for each f P P : ξ(f) “
P(f) and for each o P O : ξ(name(o)) “ O(name(o)). Hence, ξ is a bijective
mapping from V to V ′. Then, we can observe that for each o P O there exists
o′ P O′ such that ξ(name(o)) “ name(o′), arity(ξ(name(o))) “ arity(name(o′)).
There also exist substitution mappings χo for each o P O as in Definition 1 and
Θo : pars(o) Ñ ⋃

pPP pars(p) and Θo′
: pars(o′) Ñ ⋃

p′PP ′ pars(p′) for each
o P O and o′ P O′ as in Definition 2. Now we can define a bijective substitution
mapping ν :

⋃
oPO pars(o) ˆ ⋃

pPP pars(p) Ñ ⋃
o′PO′ pars(o′) ˆ ⋃

p′PP ′ pars(p′)
(since variable symbols are distinct) such that for all o P O and x P pars(o),
((x, (x|Θo))|ν) “ ((x|χo), ((x|χo)|Θo′

). Then, if for o P O and p P P it is the case
that p P (pre(o|Θo)), then there exists o′ P O′ such that (ξ(p)|χo) P (pre(o′|Θo′

)).
Hence, if (name(o), Θo, p) P Epre, then (ξ(name(o)), (Θo|ν), ξ(p)) P E′

pre. For Edel

and Eadd, it can be proven analogously.
The “only if” part: From Definition 2 and the fact that every operator is well defined,

we can derive that X “ {x | (x, y) P Eadd} “ {name(o) | o P O}. If G and G′ are iso-
morphic, then there exist a bijective mapping ξ : V Ñ V ′ and a bijective substitution
mapping ν :

⋃
oPO pars(o) ˆ ⋃

pPP pars(p) Ñ ⋃
o′PO′ pars(o′) ˆ ⋃

p′PP ′ pars(p′).
Hence, we can “split” ξ into two bijective mappings P and O such that for each
x P X : O(x) “ ξ(x) and for each y P (V \ X) : P(y) “ ξ(y). Also, with
∀x P V : arity(x) “ arity(ξ(x)) we can derive arity(p) “ arity(P(p)) and
arity(name(o)) “ arity(O(name(o))). We can also observe (from the isomorphism
of G and G′) that for each o P O and x P pars(o), ((x, (x|Θo)|ν) “ (y, (y|Θo′

)) for
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some o′ P O′ and y P pars(o′). Since Θo and Θo′
are substitution mappings, then

we can define a substitution mapping χo : pars(o) Ñ pars(o′) such that (x|χo) “ y
(with ((x, (x|Θo))|ν) “ (y, (y|Θo′

))) and χo is bijective. Hence, we can derive for
each o P O and p P pre(o) that there exists o′ P O′ such that (P(p)|χo) P pre(o′). For
del(o′) and add(o′), it can be proven analogously. ��
Example 1 (Running example). We consider as running example a simplified version
of the well-known Logistics domain, originally introduced in the IPC 2000. In the sim-
plified version, a number of trucks are used to deliver packages from a location of
origin to a destination location. The domain model includes 4 predicates: (at-truck
?Loc ?Truck), (at-package ?Loc ?Pkg), (in-package ?Pkg ?Truck), (in-city ?Cty
?Loc) and 3 operators: load(?Loc ?Pkg ?Truck), unload(?Loc ?Pkg ?Truck), and
move(?Cty ?Loc1 ?Loc2 ?Truck).

We can define another domain model that concerns transporting passengers from
one location to another by shuttles. The domain model includes 4 predicates: (at-shuttle
?Loc ?Shtl), (at-passenger ?Loc ?Psg), (in-passenger ?Psg ?Shtl), (in-city ?Cty
?Loc) and 3 operators: embark(?Loc ?Psg ?Shtl), debark(?Loc ?Psg ?Shtl), and
move(?Cty ?Loc1 ?Loc2 ?Shtl). We can observe that the structure of the domain
model is identical to the Logistics model apart of naming of (most of) predicates and
operators. Hence, the domain models are strongly equivalent.

4 Domain Model Similarity

Informally speaking, domain model similarity stands for quantifying how close domain
models are to each other, in terms of how many manipulations (adding/modifying an
element in either of the models) are needed to make the models strongly equivalent.

Initially, we define the notion of submodel that describes the relation between
domain models based on the subgraph relation between their LDMGs.

Definition 3. Let D and D′ be domain models. We say that D′ is a submodel of D if
the LDMG of D′ is a subgraph of the LDMG of D. We say that a domain model D′′

is a strongly equivalent submodel of D if D′′ is strongly equivalent with D′ (being a
submodel of D).

In more general cases, domain models share the same structure only partially. In
other words, they share common (strongly equivalent) submodels.

Definition 4. Let D1 and D2 be domain models. We say that submodels D′
1 and D′

2 of
D1 and D2, respectively, are common strongly equivalent submodels of D1 and D2 if
and only if D′

1 and D′
2 are strongly equivalent. We say that D′

1 and D′
2 are maximum

common strongly equivalent submodels of D1 and D2 if and only if they are common
strongly equivalent submodels and the value of elem is maximum for their LDMGs
compared to other common strongly equivalent submodels of D1 and D2.

Proposition 1. Let D′
1 and D′

2 be submodels of domain models D1 and D2, respec-
tively. It holds that D′

1 and D′
2 are (maximum) common strongly equivalent submodels

of D1 and D2 if and only if the LDMG of D′
1 and the LDMG of D′

2 are (maximum)
common isomorphic subgraphs of the LDMGs of D1 and D2, respectively.
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Proof. The claim of the proposition is directly implied from the definition of (maxi-
mum) common isomorphic subgraphs (see the Background Section) and Theorem 1.
��

The above proposition connects our variant of edit distance of graphs and the dis-
tance of domain models. The definition below summarizes the concept.

Definition 5. Let D1 and D2 be domain models and G1 and G2 be their LDMGs,
respectively. We define a dist function representing the distance between D1 and D2

as dist(D1,D2) “ dist(G1,G2).

The notion of distance between two domain models determines a minimum number
of elementary operations to modify these two models to make them strongly equivalent.
That corresponds to adding vertices and edges to the LDMGs of these two models.
Let D “ (P,O) be a domain model and G “ (V,Epre, Edel, Eadd) its LDMG. The
elementary operations over D and G are defined as follows:

(1) Add p into pre(o) (resp. del(o), resp. add(o)) iff (o, p) is added into Epre (resp.
Edel, resp. Eadd).

(2) Add o into O iff o is added into V and (o, p) is added into Eadd for some p.
(3) Add p into P iff p is added into V and no edge from p is added to Eadd.

We would like to emphasise that we do not explicitly distinguish operator and pred-
icate nodes. We can observe that a well defined operator has to have at least one add
effect and hence the corresponding vertex in the underlying LDMG has to have at least
one outgoing “add” edge. Note, again, that we assume that all operators are well defined.
On the other hand, each predicate node has no outgoing edge.

It is known that the problem of graph edit distance is NP-hard [29]. Due to specific
structure of LDMGs, again, the question whether determining distance between domain
models is NP-hard is still open.

Example 2 (Example 1 cont’d). Let us simplify the model introduced in Example 1
by removing the (in-city ?Cty ?Loc) predicate. The simplified model is a submodel of
the original one. Now, let us add a macro-operator move-load(?Pkg ?Truck ?Loc1
?Loc2 ?Cty) encapsulating the sequence of move and load operators into the simpli-
fied model. The simplified model is a submodel of the “macro” model. Finally, we can
compare the “macro” Logistics model with the “passenger” model from Example 1.
The models are not strongly equivalent. We can, on the other hand, find their maxi-
mum common strongly equivalent submodels, i.e., the simplified Logistic model and
the “passenger” model which is simplified by removing (in-city ?Cty ?Loc).

5 Comparing Domain Models via ASP

In this section, we describe our approach based on Answer Set Programming (ASP),
and its results. Note that the ASP terminology may be not perfectly aligned to the one
of planning in the usage of some terms, e.g., atoms and predicates.
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Algorithm 1: Comparing Domain Models
Input : A graph G1 and graph G2.
Output: Differences between G1 and G2

1 Π :“ preprocessing(G1, G2);
2 Π :“ Π Y Π ′ ; // Π ′ reported in Figure 1
3 A :“ ASPSolver(Π);
4 for p P A do
5 if p is ver(,add , g ,name, . . .) then
6 Print(“Add vertex ” + name + “ in ” + g);

7 if p is edge(add , g ,n1 ,n2 , t , l) then
8 Print(“Add ” + t + “ edge with label ” + l + “ from vertex ” + n1 + “ to ” + n2 +

“ in ” + g );

9 if p is map(n1 ,n2 , e1 , e2 ) then
10 Print(“Map vertex ” + n1 + “ of g2 to vertex ” + n2 + “of g1”);
11 if e1 �“ e2 then
12 Print(“Remapping ” + e1 + “ to ” + e2 );

r1 {map(ID1, ID2, N1, N2) : ver(ID2, _, gr1, _, T, P, N1), ver(ID1, _, gr2, _, T, P,
N2)} = 1 :- ver(ID2, _, gr2, _, T, _, _).

r2 :- ver(ID, _, gr1, _, _, _, _), #count{X: map(X, ID, _, _)} != 1.
r3 :- #sum{1,ID: ver(ID, _, gr2, _, _, _, _); -1,ID: ver(ID, _, gr1, _, _, _, _)} !=

0.
r4 edge(add, gr1, X2, X4, L, R) :- map(X1, X2, _, _), map(X3, X4, _, _), edge(orig,

gr2, X1, X3, L, R), not edge(orig, gr1, X2, X4, L, R).
r5 edge(add, gr2, X1, X3, L, R) :- map(X1, X2, _, _), map(X3, X4, _, _), edge(orig,

gr1, X2, X4, L, R), not edge(orig, gr2, X1, X3, L, R).
r6 : ver(ID, orig, G, _, _, _, N1), ver(ID, orig, G, _, _, _, N2), N1 != N2.

[1@1,ID]
r7 : ver(ID, add, G, _, _, _, _). [1@2, ID, G]
r8 : edge(add, G, N1, N2, L, R). [1@2, ID, G, N1, N2, L, R]

Fig. 1. ASP Program Π ′.

Answer Set Programming. ASP is a well-known declarative language. An ASP pro-
gram [6] is made of (a combination of): (1) facts of the form head.; (2) rules of the
form head :- body.; (3) choice rules of the form tomsatoms = 1 :- body.; (4)
constraints of the form :- body.; and (5) weak constraints of the form :∼ body.

[weight@level,terms]; where head is an atom, atoms is a set of atoms, and body

is a set of (possibly negated) atoms, also including aggregate functions, such as #sum,
and terms is a sequence of terms, i.e., variables (strings starting with uppercase letter)
or constants (non-negative integers or strings starting with lowercase letters). Atoms
can be made over terms. The semantics is given in terms of its answer sets, that is, sets
A of ground atoms, where atoms in A are said to be true (false, otherwise), such that:
(1) head is in A; (2) whenever the body is true (i.e., all positive atoms are in A and all
negated atoms are not in A), head is in A; (3) exactly one of the atoms in atoms is in
A whenever the body is true; or if = 1 is omitted then one of the atoms in atoms can
be in A whenever the body is true; (4) the body must be false. Moreover, weak con-
straints of the form (5) allow expressing preferences among answer sets, where level
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represents the priority and weight is a numerical cost that is paid whenever the body
of a weak constraint is true w.r.t. an answer set. Overall, the preferred weak constraints
are the ones with the lowest costs at the highest levels. For formal details about syntax
and semantics of ASP programs, the reader is referred to [5,6].

ASP-based Comparison. Following the theory presented in previous sections, we
implemented an ASP-based approach depicted in Algorithm 1. The algorithm receives
two LDMGs (referred to as G1 and G2) as input, and prints a minimal number of changes
to the graphs to make them isomorphic as output. In the following, we assume that the
number of vertices representing an operator (resp. a predicate) of G1 is less than or
equal to the number of vertices representing an operator (resp. a predicate) of G2. The
idea of the algorithm is as follows: Firstly, a processing step creates an ASP program
Π starting from the input graphs; then, Π is combined with the ASP encoding reported
in Fig. 1, and an ASP solver is invoked on the resulting program. Finally, the output of
the ASP solver is processed by a postprocessing part which produces human-readable
instructions to make the two graphs isomorphic. In more detail, the ASP program oper-
ates on atoms over the predicates ver , edge , and map, as follows. Atoms of the form
ver (id , status, graph, name, type, parameters, changes) denote the vertices of the
input graphs, where id is a unique identifier of the vertex, status denotes if the vertex
was in the input graph (orig) or if it must be added (add ), graph indicates the graph
of the vertex (between G1 and G2), name is the name of the vertex, type indicates if
vertex is a predicate or an operator, parameters is a string representing the parame-
ters of the predicate, and changes indicates if (and how) the parameters of the vertex
must be changed for a correct match. Atoms of the form edge(status , graph , id ver1 ,
id ver2 , type , label ) denote the edges of the input graphs, where status and graph are
as the ones of ver , id ver1 and id ver2 are the identifiers of the vertices connected
by the edges, type denotes if the edge is in Epre, Edel, or Eadd, respectively, and label
is the label of the edge. Atoms of the form map(id ver1 ,id ver2 ,params1 ,params2 )
denote the mapping from vertices of the different graphs, where id ver1 and id ver2
belong to G2 and G1, respectively, params1 and params2 denote the parameters of the
two matched vertices, respectively. The preprocessing step creates the rules:

(1) ver (id , orig , gr i, name , t , “x1 , . . . , xk”,“x1 , . . . , xk”).
for each vertex name(x1, . . . , xk) in Gi(i P {1, 2}) representing a vertex of type
t , where t is predicate or operator , and id is an identifier of the vertex;

(2) edge(orig , gr i, v1 , v2 , x , label ).
for each edge (v1, v2) in Ex (x P {pre, del , add}) of the graph Gi(i P {1, 2}),
where label is the label of the edge;

(3) {ver (id , add , gr1, name , t , “x1 , . . . , xk”,“x1 , . . . , xk”)}.
for each vertex name(x1, . . . , xk) in G2 of type t such that there is no vertex
name(x1, . . . , xk) of type t in G1, where t can be either predicate or operator ;

(4) {ver (id ,orig ,gr1,name,t ,“x1 , . . . , xk”,“y1 , . . . , yz ”)}.
for each vertex name(x1, . . . , xk) in G1 of type t and for each vertex
name(y1, . . . , yz) in G2 of type t , with the set of the parameters x1 , . . . , xk dif-
ferent from the set of the parameters y1 , . . . , yz , where t can be either predicate or
operator .
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The program Π produced by the preprocessing is combined with the ASP encoding
of Fig. 1, whose behaviour is described in the following. Rules r1 and r2 associate each
vertex of G2 to exactly one vertex of the same type of G1. Rule r3 ensures that the
number of vertices of the two graphs are the same. Rules r4 and r5 generate missing
edges between the vertices after the mapping. Finally, weak constraints r6, r7, and r8
minimise the number of vertices with different parameters, i.e., the number of added
vertices, and the number of added edges, respectively. Observe that weak constraints
r7, and r8 have a higher level than r6, that is, preserving the same number of vertices
and edges has a higher priority than changing the parameters of the vertices.

An ASP solver is then executed on the resulting program, and its output is processed
to produce human-readable instructions on how to make the two graphs isomorphic.

Example 3 (Example 2 cont’d). Let G1 and G2 be the LDMGs of the Logistics domains
considered in Example 1 and the “macro” variant with the incity predicate (see Exam-
ple 2), respectively. For the sake of compactness, we shorten the name of variables
of STRIPS predicates and operators to a single capital letter. Thus, G2 consists of the
vertices of G1 extended with a vertex of the form moveload(?P, ?T, ?L1, ?L2, ?C).
Moreover, E2

t “ E1
t Y E′

t (t P {pre, del , add}), where E′
pre is

{(moveload , ?T “?T, ?L1 “?L, attruck),
(moveload , ?L1 “?L, ?C “?C, incity),
(moveload , ?L2 “?L, ?C “?C, incity),
(moveload , ?P “?P, ?L1 “?L, atpackage)}

E′
add is {(moveload , ?T “?T ,?L1 “?L, atpackage), (moveload , ?P “?P , ?T “?T ,

inpackage)} and E′
del is {(moveload , ?T “?T , ?L1 “?L, attruck), (moveload ,

?P “?P , ?L1 “?L, atpackage)}. Note that rules (1) and (2) produced by the
preprocessing step of Algorithm 1 encode the vertices and the edge, for instance
ver(0, orig , gr1, load , operator , “L,P, T ′′, “L,P, T ′′) represents the vertex load of
G1, where 0 is a unique identifier of the vertex, and “L,P, T ” corresponds to the
(ordered) parameters. Moreover, there is only one rule of type (3), i.e., {ver (7, add ,
gr1, moveload , operator , “C,L,L, P, T ”, “C,L,L, P, T ”)}, since there is only one
vertex in G2 that is not in G1. Finally, an excerpt of the rules of type (4), are the follow-
ing (where or , o, and p stand for orig , operator , and predicate , respectively):
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{ver(0, or , gr1, load , o, “L,P, T ”, “C,L,L, T ”)}.
{ver(0, or , gr1, load , o, “L,P, T ”, “C,L,L, P, T ”)}.
{ver(1, or , gr1, unload , o, “L,P, T ”, “C,L,L, T ”)}.
{ver(1, or , gr1, unload , o, “L,P, T ”, “C,L,L, P, T ”)}.
{ver(2, or , gr1,move, o, “C,L,L, T ”, “L,P, T ”)}.
{ver(2, or , gr1,move, o, “C,L,L, T ”, “C,L,L, P, T ”)}.
{ver(3, or , gr1, attruck , p, “L, T ”, “L,P ”)}.
{ver(3, or , gr1, attruck , p, “L, T ”, “P, T ”)}.
{ver(3, or , gr1, attruck , p, “L, T ”, “C,L”)}.
{ver(4, or , gr1, atpackage, p, “L,P ”, “L, T ”)}.
{ver(4, or , gr1, atpackage, p, “L,P ”, “P, T ”)}.
{ver(4, or , gr1, atpackage, p, “L,P ”, “C,L”)}.
{ver(5, or , gr1, inpackage, p, “P, T ”, “L,P ”)}.
{ver(5, or , gr1, inpackage, p, “P, T ”, “L, T ”)}.
{ver(5, or , gr1, inpackage, p, “P, T ”, “C,L”)}.
{ver(6, or , gr1, incity , p, “C,L”, “L,P ”)}.
{ver(6, or , gr1, incity , p, “C,L”, “L, T ”)}.
{ver(6, or , gr1, incity , p, “C,L”, “P, T ”)}.

The preprocessing step allows generating only the meaningful combinations of ver-
tices and terms in a graph via imperative programming. These combinations are added
as choice rules, which can then be utilised by the solver as possible newly added ver-
tices. Without preprocessing, all choice rules for mapping all terms/operator combina-
tions are instead generated, and is left to the solver to derive new vertices by combining
original vertices with every choice to potentially change terms. After the preprocessing
(line 1 of Algorithm 1), the ASP solver is executed (line 3) on the resulting program
extended with Π ′ (line 2). Then, Algorithm 1 analyses its output (from line 4 on) and
produces the following instructions:

– Add vertex moveload in g1.
– Add pre edge with label T=T,L1=L from vertex moveload to vertex attruck in g1.
– Add pre edge with label L1=L,C=C from vertex moveload to vertex incity in g1.
– Add pre edge with label L2=L,C=C from vertex moveload to vertex incity in g1.
– Add pre edge with label P=P,L1=L from vertex moveload to vertex atpackage in

g1.
– Add add edge with label T=T,L1=L from vertex moveload to vertex attruck in g1.
– Add add edge with label P=P,T=T from vertex moveload to vertex inpackage in g1.
– Add del edge with label T=T,L1=L from vertex moveload to vertex attruck in g1.
– Add del edge with label P=P,L1=L from vertex moveload to vertex atpackage in

g1.
– Map vertex v of g2 to vertex v of g1, where v P {load , unload , move , attruck ,
atpackage , inpackage , incity , moveload}.

Finally, note how Algorithm 1 can be easily extended in order to deal with the
generation of multiple answer sets, corresponding to minimal sets of changes.
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Evaluation. We selected 7 different domain models from well-known international
competitions. In particular, we considered the domains of Barman, Blocksworld, (sim-
plified) Logistics, Rovers, Satellite, and Sokoban from various editions of the Interna-
tional Planning Competition (IPC), and the RPG domain from the 2016 International
Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS).1 The
number of operators ranges between 2 and 12, and the number of predicates between
4 and 25. To obtain a different model for each benchmark domain, but RPG, we refor-
mulated the original models by considering a mix of entanglements and macro-actions,
and by modifying preconditions and effects of original operators. For the RPG domain,
we compared two models crafted by two of the teams that took part in the competi-
tion: Such models present significant differences in terms of predicates and operators
as they embody very different interpretations of the domain at hand. Details of the
LDMGs corresponding to the models are shown in the left part of Table 1. Year indi-
cates when the model was introduced. Finally, to perform a stress test of the proposed
approach, we compared models designed for diverse domains too. Table is divided hor-
izontally in two parts: The top part considering cases where a model has been refor-
mulated, while the bottom part focuses on comparing very different models (RPG, Bar-
man vs Logistics, Rovers vs Satellite). We performed experiments on an Intel Core
i5-10210U machine with 1.6 GHz, 8 GB of RAM and Linux operating system. Each
system run was given an overall memory limit of 6 GB and 5 CPU-time minutes. As
ASP system we used the state-of-the-art tool CLINGO [13], configured with the option
--parallel-mode=4, which enables the use of multiple threads (with different
solving strategies). We used 4 threads and in our experiments this helps improve the
performance of Clingo compared to the default configuration. Moreover, we used the
open-source python library PYSPEL [2] which simplifies the implementation of Algo-
rithm 1. We tested two approaches: The first one is the implementation of Algorithm 1
as described in Sect. 5, and the second one is the same implementation where rules
(3) and (4) of the preprocessing (line 1 of Algorithm 1) are produced using plain ASP
rules. We preliminary tested, on Logistics and Rover domains, the ability of our solu-
tion to compare models that are exactly the same but for the names of the involved
operators and predicates, i.e., if they are strongly equivalent. The results indicate that
the ASP solution employing preprocessing always identifies the compared graphs as
isomorphic, and provides an appropriate mapping between the nodes of the compared
LDMGs, in less than 0.5 CPU-time seconds.

Then, we move to the general case and the results of the experimental analysis are
shown in the right part of Table 1 where, for each domain and tested approach, we report
the number of optimal models found, the CPU time, and the number of rules generated
by the grounding. Square brackets indicate that an optimal solution has been found in
the reported CPU time (checked manually), but has not been proved by CLINGO. As
a first observation, the approach employing preprocessing is extremely fast, since for
all the tested benchmarks we are able to find an optimal solution (through not proved)
in less than 1 CPU-time second. Instead, plain ASP encoding exceeds the memory
limits when executed on large domains (Barman and Rovers) or in the presence of
significant difference between the compared domains, showing that preprocessing is

1 Encoding and benchmarks are available at: https://github.com/MarcoMochi/jelia-planning.

https://github.com/MarcoMochi/jelia-planning


Comparing Planning Domain Models Using Answer Set Programming 239

Table 1. Size of the generated graphs for each benchmark domain model (Left) and performance
of the proposed ASP-based approach without/with preprocessing (Right). Vertices and Edges
give information of the size of the graphs to compare, G1 is the graph obtained by considering
the original domain model, G2 is obtained from the reformulated model for all the domains but
RPG, where two original models independently crafted are compared. RPG is the only domain
presented at ICKEPS, while other domains have been used as IPC benchmarks. Results are pre-
sented in terms of seconds needed to enumerate all the optimal solutions, and the number of
optimal models (Opt Mod.). Square brackets indicate that the optimal solution was not proved.
(# Rules) shows the size of the ASP program.

Domain Year Vertices Edges Opt. Mod. No preprocessing Preprocessing

G1 G2 G1 G2 CPU Time # Rules CPU Time # Rules

Sokoban 2008 6 7 16 18 1 0.1 1,411 0.1 636

Logistics 1998 7 8 13 21 1 0.1 832 0.1 697

Blocksworld 2000 9 11 27 29 2 0.1 3,219 0.1 2,446

Satellite 2002 13 16 23 44 2 2.7 2,132,131 0.1 10,666

Barman 2011 27 29 97 123 1 – – 0.3 98,676

Rovers 2002 34 39 75 103 4 – – 0.4 146,857

RPG 2016 13 34 23 74 [1] [1.9] 849,732 [0.4] 44,601

Barman Log – – – – – [1] – – [0.1] 93,893

Rovers Sat – – – – – [1] – – [0.8] 37,251

indeed necessary in challenging cases. Note that even the mid-size Satellite leads to
more than 2 Million rules, whereas the approach using preprocessing produces only
around 10 thousands rules. In models where differences are limited, (i.e., modification
of 2-3 vertices and a few tens of edges), there is no substantial difference between
finding one optimal solution and finding all of them. This result can be explained by the
fact that the number of optimal solutions is rather small (maximum 4) and this paves the
way for the development of more comparison techniques, e.g., by proposing preferences
among the possible solutions.

Turning our attention more on the stress test, it is easy to notice that despite the
fact that the optimal solution for models of different domains required over 100 mod-
ifications/additional elements (nodes and edges) and for the RPG domain required 4
additional nodes and 78 edges, the proposed solution was able to generate an optimal
result in less than 1 CPU-time second. However, differently from the other tests, in these
cases the approach was able to generate a single optimal solution and not to enumerate
all the optimal ones. On the one hand, this result confirms that ASP is a viable tool to be
used; on the other hand, it may suggest that additional optimisation could be beneficial
for fully enumerate all optimal cases.

Summarising, the performed experimental analysis indicates that the presented ASP
system, enhanced with the preprocessing step, is very efficient in generating optimally
minimal sets of modifications that allows to transform a model into the compared one,
on the basis of the corresponding LDMGs. Considering that results are generated effi-
ciently, the proposed tool can also be exploited during the domain encoding step, for
comparing alternative representations of a domain’s dynamics.
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6 Related Work and Discussion

The notion of strong domain model equivalence has been informally introduced in [24].
On a similar note, [25] proposed an automated approach, D-VAL, to check the func-
tional equivalence of two domain models, i.e., their ability to parse the same set of
problems. D-VAL focuses on comparing models of the same domain that has been
reformulated, to ensure that the reformulation process did not undermine the domain
model capabilities. The approach proposed in this paper is more general, and allows
to compare even very different models in terms of their corresponding solution spaces,
and to obtain a measure of their similarity.

An application-specific investigation of the engineering of different models has been
proposed in [23], and ICKEPS introduced metrics to manually compare models [9].

Notably, an approach based on ASP has been proposed also for the MRP in planning
[19], while [26] deals with the MRP but specifically defined on two logic programs and
their answer sets. Some authors of [26] followed a similar direction in [18], but in the
context of (numerical) scheduling and employing CLINGO-DL language, which is an
extension of ASP enriched with a limited form of arithmetic [15].

7 Conclusion

This paper contributes to theory and practice of the problem of comparing planning
domain models: We defined the concept of similarity of domain models, which builds
on the notion of strong equivalence of domain models, also introduced in the paper. We
proposed an approach based on Answer Set Programming for specifying and solving the
problem – with particular attention given to the identification of optimal minimal sets of
modifications that allows to transform one model into the compared one. Experiments
on well-known planning benchmarks of different size show that the approach can find
a minimal set of corrections in very short time. Future work will focus on extending the
approach to more expressive planning representation languages, such as PDDL+ [12],
that can also consider hybrid discrete-continuous numeric changes, and to improve the
explanations provided as output.
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thesis, Ecole Nationale Supérieure des Télécommunications, Paris, France, December 2002

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

6. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Log. Program. 20(2),
294–309 (2020)

7. Cardellini, M., Maratea, M., Vallati, M., Boleto, G., Oneto, L.: In-station train dispatching:
a PDDL+ planning approach. In: Proceedings of ICAPS, pp. 450–458 (2021)

8. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations as model
reconciliation: moving beyond explanation as soliloquy. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI, pp. 156–163 (2017)

9. Chrpa, L., McCluskey, T.L., Vallati, M., Vaquero, T.: The fifth international competition on
knowledge engineering for planning and scheduling: summary and trends. AI Mag. 38(1),
104–106 (2017)

10. Coulter, A., Ilie, T., Tibando, R., Muise, C.: Theory alignment via a classical encoding of
regular bisimulation. In: Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS) (2022)

11. Cresswell, S., McCluskey, T.L., West, M.M.: Acquiring planning domain models using
LOCM. Knowl. Eng. Rev. 28(2), 195–213 (2013)

12. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif.
Intell. Res. 27, 235–297 (2006)

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with Clingo 5. In: ICLP (Technical Communications). OASICS, vol. 52,
pp. 2:1–2:15 (2016)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
N. Gener. Comput. 9(3/4), 365–386 (1991)

15. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo
goes linear constraints over reals and integers. Theory Pract. Log. Program. 17(5–6), 872–
888 (2017)

16. McCluskey, T.L., Porteous, J.M.: Engineering and compiling planning domain models to
promote validity and efficiency. Artif. Intell. 95(1), 1–65 (1997)

17. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning:
towards a notion of quality. In: Proceedings of K-CAP, pp. 14:1–14:8 (2017)

18. Nguyen, V., Son, T.C., Yeoh, W.: Explainable problem in clingo-dl programs. In: Ma, H.,
Serina, I. (eds.) Proceedings of the Fourteenth International Symposium on Combinatorial
Search (SOCS 2021), pp. 231–232. AAAI Press (2021)

19. Nguyen, V., Stylianos, V.L., Son, T.C., Yeoh, W.: Explainable planning using answer set pro-
gramming. In: Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR, pp. 662–666 (2020)
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