
Weak Argumentation Semantics
and Unsafe Odd Cycles: Results

and a Conjecture

Sjur K Dyrkolbotn(B)

Department of Civil Engineering, Western Norway University of Applied Sciences,
Bergen, Norway

sdy@hvl.no

Abstract. Some semantics for argumentation, including the newly
introduced weakly admissible semantics, allow us to ignore attacks from
arguments that are perceived as problematic. A key intuition motivating
such semantics is that arguments that indirectly attack themselves may
be problematic in such a way that this is justified. In this paper, we
formalise this intuition and provide a class of semantics that are weakly
admissible, coincide with the stable semantics on a large class of argu-
mentation frameworks that admit stable sets, and only ignore attacks
from arguments on unsafe cycles of odd length. We also show that no
member of our class of semantics coincide with the semantics that takes
all ⊆-maximal weakly admissible sets as extensions. However, we show
that this semantics satisfies an even stronger property, if the following
conjecture is true: if an argumentation framework has no non-empty
weakly admissible sets, then every argument lies on an unsafe odd cycle.

1 Introduction

Abstract argumentation based on argumentation frameworks in the style of [8]
‘has become a popular modelling paradigm in knowledge representation and
artificial intelligence. Several different semantics for argumentation have been
proposed in this tradition, catering to various intuitions, applications and mod-
elling requirements. One key issue that arises concerns the semantic status of
arguments that directly or indirectly attack themselves: when should such possi-
bly problematic arguments be regarded as capable of defeating other arguments?
The traditional semantics for argumentation arguably fail to provide satisfactory
answers to this question, but in [4], the authors provide a new class of seman-
tics that looks very promising on examples. It is explicitly motivated by the idea
that we should be able to ignore attacks from self-defeating arguments. But what
exactly does this mean? The authors provide an informal answer, writing that
“self-defeat occurs if an argument attacks itself either directly or indirectly via
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an odd attack loop, unless the loop is broken up by some argument attacking
the loop from outside.” In this paper, we propose a formal definition based on
the same intuition. We clarify what we mean by an argument attacking itself
directly or indirectly and note that loops/cycles may also be broken up from
the “inside”, when there are additional attacks between arguments on the cycle.
We then investigate what semantics for argumentation are justified by the key
intuition at work, when formalised as a requirement that a semantics may or
may not satisfy. We show that while the most permissive semantics based on
weak admissibility is not justified, it is possible to define, for any well-behaved
admissible semantics, a corresponding weakly admissible semantics that is justi-
fied. We show that these semantics extend the stable semantics in a reasonable
way, returning only stable sets as extensions for a large class of argumentation
frameworks that have no problematic odd cycles. However, we also show that no
semantics in the class we define is equivalent to the weakly preferred semantics,
obtained by taking all ⊆-maximal weakly admissible sets as extensions. Despite
this negative result, we conjecture that the weakly preferred semantics is also
justified. We show that if this is true, then the weakly preferred semantics satis-
fies an even stronger property, whereby for every extension, every argument not
included or attacked by it lies on an unbroken odd cycle.

2 Background

The basic notion is that of an argumentation framework, which mathematically
speaking is nothing but a directed graph, usually assumed to be finite.

Definition 1. An argumentation framework (AF) is a directed graph AF =
(A,R) where R ⊆ A × A is referred to as an attack relation over a finite set of
arguments A.

For any AF = (A,R) and S ⊆ A, the subframework of AF induced by S is
AF

⏐
�
S

= (S,R∩(S×S)). Moreover, for any a ∈ A we denote by R(a) = {b ∈ A |
(a, b) ∈ R} the set of arguments attacked by a and by R−(a) = {b ∈ A | (b, a) ∈
R} the set of arguments that attack a. We extend the notation to sets S ⊆ A,
so that R(S) =

⋃

a∈S R(a) and R−(S) =
⋃

a∈S R−(a). If S,Q ⊆ A, we say that
S attacks Q just in case S ∩ R−(Q) �= ∅. For any AF = (A,R) and S ⊆ A we
let [S]AF = S ∪ R(S). We omit the subscript when it is clear from the context.
Furthermore, we denote by AFS the subframework of AF induced by A\[S]AF ,
called the reduct of AF by S. Given S, an odd cycle in AFS can be regarded as
an odd cycle that is not broken up from the outside by S.

An (attack) walk of length n in AF is a sequence of arguments Wa0,an
=

(a0, a1, . . . , an) such that ai ∈ R(ai−1) for all 1 ≤ i ≤ n. If i �= j ⇒ ai �= aj for
all 0 ≤ i ≤ n, the walk is an (attack) path. If a0 = an and i �= j ⇒ ai �= aj

for all 1 ≤ i ≤ n, the walk is an (attack) cycle of length n. When n is even, the
cycle is even, and when n is odd, the cycle is odd. Notice that (a, a) is an odd
cycle consisting of a single argument attacking itself.
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If Wa0,an
= (a0, a1, . . . , an) is a walk and Wan,am

= (an, an+1, . . . , am) is a
walk of length m−n, then Wa0,an

+Wan,am
= (a0, a1, . . . , an, an+1, . . . , am) is a

walk of length n+(m−n) = m. Beware that if Pa,b is a path ending at b and Pb,c

is a path beginning at b, then Pa,b + Pb,c is a walk, but not necessarily a path,
since Pa,b and Pb,c might intersect internally. Given a set B ⊆ A and a walk
W = (a0, a1, . . . , an) we say that W is B-alternating if ai ∈ B ⇔ ai+1 �∈ B for
all 0 ≤ i < n. That is, W is B-alternating just in case every other argument on
W is in B. So, for instance, if B = {a, c}, then the paths (a, b, c) and (a, b, c, d)
are B-alternating, while (a, b, d) is not. Notice that a B-alternating path from
B to B always has even length.

If P = (a0, a1, . . . , an) is a path, then Pai,ai+j
= (ai, ai+1, . . . , ai+j) is a sub-

path of P for all 0 ≤ i < n and j ≤ n − i. Moreover, an attack (ai, aj) ∈ R with
0 ≤ i, j ≤ n and j �= i+1 is called a chord on P . We say that a chord (ai, aj) on
P = (a0, a1, . . . , an) breaks P if i and j are both even. If C = (a0, . . . , an = a0)
is an odd cycle and (ai, aj) is a chord that breaks P = (a0, . . . , an−1), then we
say that C is safe at a0. It is unsafe at a0 otherwise.

An argumentation semantics ς assigns, to any AF = (A,R), a set of subsets
of the arguments, also called ς-extensions, ς : A → 22

A

. A semantics is typically
defined in terms of requirements on the sets of arguments it returns as exten-
sions. Many different semantics have been defined using various combinations
of different requirements. Hence, different requirements and how they may be
understood, motivated and justified in different contexts, as well as how they
relate to one another mathematically, has become an important research topic
in argumentation theory. Following [1], requirements are also often used to clas-
sify and compare different argumentation semantics. In this context, underlying
mathematical requirements are lifted from sets of arguments to semantics and
referred to as semantic principles. A principle corresponds to a whole class of
different semantics, consisting of all semantics that only return extensions that
satisfy the underlying requirement.

The most widely endorsed argumentation principle is that a semantics for
argumentation should only return conflict free sets of arguments as extensions.
Given AF = (A,R) and S ⊆ A, we say that S is conflict free if (S × S) ∩ R = ∅.
That is, S is conflict free if there are no attacks between any two elements of S.
Lifting the requirement to define a class of semantics, we say that a semantics
ς for argumentation is conflict free – meaning that it satisfies the principle of
conflict-freeness – if for all AF = (A,R) and all S ∈ ς(AF ), S is conflict free.

Many semantics for argumentation, including the original ones presented in
[8], satisfy another principle, namely that they only return extensions that defend
themselves. Formally, a set S ⊆ A defends itself just in case it attacks everything
that attacks it, R−(S) ⊆ R(S). Lifting this notion from sets to semantics, we
say that a semantics ς is defensive if for all AF = (A,R) and S ∈ ς(AF ), S
defends itself. A set that is conflict free and defends itself is admissible. Lifting
this notion to semantics ς, if ς is conflict free and defensive, it is an admissible
semantics. Hence, notice that with this terminology there are several admissible
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semantics, not just the most permissive one that always returns all admissible
sets as extensions (often called the admissible semantics in the literature).

Notice that if S is admissible, a ∈ S, and Pa,b is broken by a chord, then
since S is conflict free, Pa,b is not S-alternating. Intuitively, an S-alternating path
starting at S is an unbroken path of semantic dependencies that arise when we
regard S as an extension, so such paths can have no chords that break them. This
also explains why an odd cycle can be broken from the inside and why we say
that C = (a0, a1 . . . , an) is safe at a when the path P = (a0, . . . , an−1) is broken:
attempting to include a in some extension S could not produce a sequence of
semantic dependencies along C that would end up defeating a. Hence, C does
not indicate that a is actually self-defeating, regardless of S and whether or not
C is broken by it from the outside.

The most permissive admissible semantics is not very reasonable, most
notably because it always returns ∅ as a possible extension of any AF. How-
ever, the notion of admissibility is still fundamental, since it forms the basis for
a range of other semantics, often arrived at by stipulating additional principles.

Semantics that are conflict free but not defensive, allowing us to sometimes
ignore attacks, are weaker than admissible semantics. Such semantics are not
new. In fact, a whole class of semantics weaker than the admissible semantics
has been introduced based on computing (maximal) conflict free sets [2]. These
semantics generally do not quite match the desiderata explored in this paper,
however, as they typically allow us to ignore attacks also from arguments that
do not indirectly attack themselves. This is shown with examples and discussed
at length in [4], so we do not go into detail. Instead, we will focus on a new class
of semantics which is explicitly motivated by the intuition we formalise in this
paper. The key notion is that of weak admissibility, defined as follows.

Definition 2. Given any AF = (A,R), a set of arguments S ⊆ A is weakly
admissible when it is conflict free and there is no set Q ⊆ A\[S] that attacks S
in AF and is weakly admissible in AFS.

We will also lift this notion from sets to semantics and regard it as a principle,
by saying that a semantics ς is weakly admissible if for all AF = (A,R), if
S ∈ ς(AF ), then S is weakly admissible. So a semantics is said to be weakly
admissible if it only returns weakly admissible sets as extensions. Notice that
if S defends itself, then there is no set attacking S in AF that is also present
in AFS . Hence, every admissible S is also weakly admissible. At the level of
semantics, adopting our terminology, it follows that all admissible semantics are
weakly admissible.

3 Perfect Extensions of the Stable Semantics

If a semantics ς seems too permissive, for instance because ∅ is always a ς-
extension, one may impose additional principles to arrive at a more restricted
semantics. The most straightforward approach is to restrict ς by taking as exten-
sions only those S ∈ ς(AF ) that are ⊆-maximal. This scheme yields what we
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call ς-preferred semantics, which is referred to simply as the preferred semantics
when ς is the most permissive admissible semantics. When ς is the most permis-
sive weakly admissible semantics, then the ς-preferred semantics is referred to
as the weakly preferred semantics.

A stronger principle than ⊆-maximality is to demand that S must attack
every argument not in S. Formally, for any AF = (A,R) we say that S ⊆ A is
dominating if S ∪ R(S) = A. As before, a semantics ς such that for all AF =
(A,R), any S ∈ ς(AF ) is dominating, is called a dominating semantics.

A set that is conflict free and dominating is called a stable set in the litera-
ture, and the semantics that returns all stable sets in AF as extensions is called
the stable semantics. A stable set unambiguously determines the semantic sta-
tus of every argument in the AF, partitioning them into those arguments we
accept and those we reject, which are all attacked by some argument we accept.
Unfortunately, stable sets may not exist, as illustrated by the AF consisting of
a single self-attacking argument.

The fact that stable sets may not exist is a key motivation for introducing
weaker semantics that tolerate partial semantic verdicts. Hence, it may seem
natural to require that weaker semantics are conservative extensions of the stable
semantics, in the sense that whenever stable sets exist, the weaker semantics only
returns stable sets as extensions. One way of ensuring this is to define some class
of sets that include all stable sets and then choose as extensions all sets from the
class that have minimal reducts. Then the stable sets are the only extensions
whenever they exist, because their reducts are always empty. Following this
approach starting with admissible sets yields a trivially equivalent formulation of
the so-called semi-stable semantics [5], which returns as extensions all admissible
sets S for which [S] = S ∪ R(S) is ⊆-maximal.

It is not clear, however, that conservative extensions of the stable semantics
yield reasonable results. Consider, for instance, the following AF :

a �� b
�� �� ��

c �� d

The only stable set is {b}, which is also the only semi-stable set, having an
empty reduct. It is also a preferred set, of course, but it is not the only one.
The set {a, d} is also preferred, being ⊆-maximal among the admissible sets.
Is it reasonable to say that d (and a) must be rejected because a prevents b
from defeating the self-defeating c? This is far from obvious and will depend on
what the AF is intended to model (or how it is instantiated by less abstract
arguments).

Clearly, the preferred semantics is not a conservative extension, so how does
it relate to the stable semantics? This can be answered formally using a concept
from graph theory [11] that appears to have been largely neglected by the argu-
mentation community. Adapting the terminology to the present setting, we say
that AF = (A,R) is perfectly stable if for all S ⊆ A, the subframework induced
by S, AF

⏐
�
S
, has a stable set. Then we define a new argumentation principle as

follows.
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Definition 3. A semantics ς is a perfect extension of the stable semantics if
for all AF = (A,R) such that AF is perfectly stable, we have

∀S ∈ ς(AF ) : R(S) = A\S

That is, a semantics is a perfect extension of the stable semantics if it only
returns stable sets as extensions for perfectly stable AFs.1 Several sufficient
conditions for the existence of stable sets in AF are known, most notably that
a (finite) AF has a stable set if it has no odd cycles (a result that originally
appeared in [13], published in 1953). This and most other sufficient conditions
for the existence of stable sets ensure that AF is perfectly stable, so they also
ensure that any perfect extension of the stable semantics only returns stable sets
as extensions on AF . Moreover, it follows from [11] that a minimal AF that is
not perfectly stable satisfies a property that is particularly interesting in the
present context: all arguments a on AF lie on odd cycles. This suggests that it
should be possible to define a semantics that satisfies the desiderata explored
in the present paper, although how exactly to do it remains a non-trivial open
question.

Before we move on, we note that the definition of a perfect extension is well
matched to the concept of modularity, explored in [4] and defined as follows.

Definition 4. An argumentation semantics ς is modular if for every AF =
(A,R) and S ⊆ A, if S ∈ ς(AF ) and S′ ∈ ς(AFS), then S ∪ S′ ∈ ς(AF ).

Admissible sets are modular, so if S is preferred, then AFS has no admissible
set [4]. In the terminology from [4], it has a “meaningless reduct”. From this it
follows that the preferred semantics is a perfect extension of the stable semantics,
as we now prove.

Theorem 5. Given any AF = (A,R), if AF is perfectly stable, then every
preferred set in AF is a stable set. Hence, the preferred semantics is a perfect
extension of the stable semantics.

Proof. Assume AF is perfectly stable and let S be a preferred set in AF . We
must show that S is stable. Assume towards contradiction that it is not. Since
S is conflict free, it follows that S is not dominating, so that AFS is non-empty.
Since S is perfectly stable, AFS must then have a non-empty stable set S′.
Since stable sets are admissible, S′ is admissible in AFS . Hence, by the fact that
preferred sets are admissible and admissible sets are modular, it follows that
S ∪ S′ is admissible in AF , contradicting ⊆-maximality of S.

1 The notion of a perfect extension could be made more general by explicitly taking the
principle that is perfectly extended as a parameter, defining an AF to be perfectly X
if all induced subdigraphs of the AF has an extension satisfying X. Then we could
say that a semantics perfectly extends X, or that it satisfies the perfect extension
principle for X, whenever it satisfies X for all AFs that are perfectly X. However, we
only consider perfect extensions of the stable semantics in this paper, so we prefer
to avoid the additional notation and terminology that the generalisation entails.
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Since weakly admissible sets are modular, as shown in [4], it follows from
essentially the same argument used to establish Theorem 5 that the weakly
preferred semantics is also a perfect extension of the stable semantics. We regard
this as a desirable property for an argumentation semantics to satisfy, and record
it as a theorem.

Theorem 6. The weakly preferred semantics is a perfect extension of the stable
semantics.

4 A Formal Justification for Ignoring Attacks

The informal motivation for weak admissibility presented in [3] is to provide a
class of semantics that allow us to sometimes ignore attacks from arguments that
attack themselves, directly or indirectly, on cycles that are not broken from the
outside. On simple examples, it is verified that weakly admissible sets do indeed
allow us to do this, as in the two AFs on the left below:

a
��

�� d c �� a

����
��
��
��

�� d

b

		 c 

 a
��

����
��
��
��

�� d

b

		

In the two leftmost AFs, it is easy to see that {d} is weakly admissible, since
there is no weakly admissible set from AF {d} that attacks it. Hence, we can
disregard the attack from the self-defeating a, which lies on an unbroken odd
cycle. By telling us to look for weakly admissible sets in the reduct AFS , the
definition of weak admissibility also seems to capture roughly the idea that we
only ignore attacks from odd cycles that are not broken from the “outside” by S.
However, in the rightmost AF above, {d} is not weakly admissible, even though
the odd cycle in AF {d} is not broken from the outside. It is broken from the
inside, however, since it is safe at a, so we might no longer feel entitled to ignore
the attack on d. Indeed, {a} is the only non-empty weakly admissible set of
this AF, despite being on an odd cycle that is not broken from the outside. It
is also stable, so by Theorem 13, the weakly preferred semantics still behaves
reasonably on examples like these, but not in a way that is fully explained by
the informal explanation provided in [3].

Examples like these illustrate that it is hardly intended that we should always
ignore attacks from odd cycles that are unbroken by the outside. On the other
hand, it seems quite reasonable to interpret the authors of [3] as intending that
we should only disregard attacks from such arguments. This, at any rate, would
be a very interesting descriptive property for a weak semantics to satisfy, as it
would indicate that we have weakened the notion of admissibility only as much
as our informal intuition warrants us to do. Based on this idea, we propose the
following two semantic principles, corresponding to two possible justifications
for ignoring attacks.
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Definition 7. An argumentation semantics ς is said to be

– justified (by unsafe odd cycles) if it is conflict free and for all AF = (A,R)
and all S ∈ ς(AF ), every argument a ∈ A\[S] that attacks S in AF lies on
an odd cycle in AFS that is unsafe at a.

– strongly justified (by unsafe odd cycles) if it is conflict free and for all AF =
(A,R) and all S ∈ ς(AF ), every argument a ∈ A\[S] lies on an odd cycle in
AFS that is unsafe at a.

Notice that a semantics is justified whenever it is strongly justified, while
the converse does not hold in general. In particular, notice that if ς is strongly
justified and AF has only the empty extension under ς, then every argument
in AF lies on an odd cycle. So if ς is strongly justified, then whenever there is
some argument not indirectly attacking itself, there is a non-empty extension.
Also notice that if ς is strongly justified and a does not lie on an odd cycle in
AF , then if S ∈ ς(AF ) and R−(a) ∩ S = ∅, we must have a ∈ S, since otherwise
a ∈ A\[S] without being on an odd cycle in AFS . In view of this, being strongly
justified is a stronger property than being strongly complete outside odd cycles,
as defined in [6], whereby a ∈ S is only required when there is also no argument
in R−(a) that lies on an odd cycle.

While being (strongly) justified is a strong property that seems desirable, it is
not clear whether weakly admissible and (strongly) justified semantics exist. In
the next section, we provide a class of weakly admissible semantics that are jus-
tified, before showing that they are not strongly justified. First we note that the
most permissive weakly admissible semantics, taking all weakly admissible sets
as extensions, is not justified. This can be shown, for instance, by the following
example:

x
��

�� y �� z �� w

In this AF , it is clear that {w} is weakly admissible. This follows since there
is no weakly admissible set containing z, which in turn follows from the fact that
there is a weakly admissible set containing y, since x – its only attacker – attacks
itself. The fact that weakly admissible sets are not necessarily justified should
not come as a great surprise. A similar phenomenon is observed for admissibility,
whereby we quickly conclude that the most permissive admissible semantics is
not very reasonable, despite admissibility being a fundamental notion that forms
a basis for other semantics. The situation is similar, we believe, with respect to
weak admissibility.

5 A Class of Justified Semantics Based on Admissible
Sets

To arrive at a class of justified semantics, we will start by defining a class of
semantics that is more permissive than weakly admissible semantics. Then we
will define a restrictive class of weakly admissible semantics that ignore attacks
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only from arguments that are not acceptable under the corresponding permissive
semantics. We will then prove that the more restrictive class of semantics is
weakly admissible and that taking its ⊆-maximal sets yields a justified semantics
that is also a perfect extension of the stable semantics. The first definition, giving
rise to the permissive class of semantics, is the following.

Definition 8. Given any AF = (A,R) and a semantics ς, we say that S ⊆ A
is ς-plausible if it is conflict free and there is no Q ∈ ς(AFS) that attacks S.

Notice that if S ⊆ A is admissible, then S is also ς-plausible. This is triv-
ial, since S is conflict free and is not attacked by any argument from AFS ,
since it defends itself. Also notice that if we take ς to be the most permissive
weakly admissible semantics, consisting of all weakly admissible sets, then S
is ς-plausible if, and only if, it is weakly admissible. So for the weakly admis-
sible semantics, there is no difference between being a ς-extension and being
ς-plausible. This is not true for semantics based on admissible sets. In fact, since
weakly admissible sets are admissible, it follows that if ς is admissible, then S is
ς-plausible whenever S is weakly admissible. So ς-plausibility behaves similarly
to the weakly admissible semantics on simple motivating examples. It also seems
to have independent interest as a natural dual of ς. However, ς-plausibility for
admissible ς is too permissive to be justified. This is illustrated by the fact that
both {b} and {c} is ς-plausible in the following AF , whenever ς is admissible:

a
��

�� b �� c

This example also demonstrates that ς-plausible sets are not modular, so
they will fail to provide justified and perfect extensions of the stable semantics.
However, as it turns out, the doubly dual notion obtained by demanding non-
existence of ς-plausible attackers does yield such semantics.

Definition 9. For any semantics ς and any AF = (A,R): if S ⊆ A is conflict
free and S is not attacked in AF by any ς-plausible set from AFS, we say that
S is ς-reasonable.

A ς-reasonable semantics is any semantics that only returns ς-reasonable sets
as extensions. As before, if S is admissible, then it is trivially ς-reasonable, for
any ς. We also note the following property.

Proposition 10. For any admissible ς and any AF = (A,R), if S ⊆ A is
ς-reasonable, then it is ς-plausible.

Proof. Let S ⊆ A be ς-reasonable and assume towards contradiction that it is
not ς-plausible. Then there is some admissible set S′ in AFS that attacks S in
AF . Since S′ is admissible, it is not attacked in AFS by any set from (AFS)S

′
.

Hence, S′ is trivially ς-plausible, contradicting the fact that S is ς-reasonable.

So for admissible ς, we have that every admissible set it ς-reasonable and
that every ς-reasonable set is ς-plausible. Moreover, it is easy to show that any
ς-reasonable set is weakly admissible.
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Proposition 11. For any admissible semantics ς and any AF = (A,R), if
S ⊆ A is ς-reasonable, then S is weakly admissible.

Proof. Let S ⊆ A be ς-reasonable and assume towards contradiction that S is not
weakly admissible. Then there is some weakly admissible set S′ in AFS such that
S′ attacks AFS . However, since S is ς-reasonable, there is some admissible set
S′′ in (AFS)S

′
that attacks S′ in AFS . But then S′′ is also a weakly admissible

set in (AFS)S
′
that attacks S′ in AFS , contradicting the fact that S′ is weakly

admissible.

We now show the less obvious result that ς-reasonable sets are in fact modular
whenever ς is admissible and modular.

Proposition 12. For any admissible and modular ς and any AF = (A,R), if
S ⊆ A is ς-reasonable in AF and S′ is ς-reasonable in AFS, then S ∪ S′ is
ς-reasonable in AF .

Proof. Assume towards contradiction that S ∪ S′ is not conflict free. Since
S′ ⊆ (A\[S]) is not attacked by S, it follows that S′ attacks S in AF . Since S is
ς-reasonable, this means that S′ is not ς-plausible, but since S′ is ς-reasonable,
this contradicts Proposition 10. So S∪S′ is conflict free. Assume towards contra-
diction that there is some conflict free Q that is ς-plausible in AFS∪S′

= (AFS)S
′

and attacks S ∪ S′ in AF . If Q attacks S′, this contradicts the fact that S′ is
ς-reasonable in AFS . Hence, Q does not attack S′. It follows that Q ∪ S′ is a
conflict free set from AFS that attacks S in AF . Since S is ς-reasonable, there
is a ς-extension K in (AFS)Q∪S′

= (AFS∪S′
)Q that attacks Q ∪ S′ in AFS .

Since Q is ς-plausible in (AFS∪S′
), K does not attack Q. Hence, K ∪ Q is a

conflict free set from AFS∪S′
that attacks S′ in AFS . Assume towards contra-

diction that there is some ς-extension L in (AFS∪S′
)K∪Q = ((AFS∪S′

)Q)K that
attacks K ∪Q. Then since K is a ς-extension in (AFS∪S′

)Q and ς is modular, it
follows that K ∪ L is a ς-extension in (AFS∪S′

)Q that attacks Q, contradicting
the fact that Q is ς-plausible. Hence, K ∪Q is ς-plausible in AFS∪S′

= (AFS)S
′
,

contradicting the fact that S′ is ς-reasonable.

As with the preferred and weakly preferred semantics, modularity of ς implies
that the ς-reasonable preferred semantics is a perfect extension of the stable
semantics.

Theorem 13. When ς is admissible and modular, then the ς-reasonable pre-
ferred semantics is a perfect extension of the stable semantics.

Next, we will need a non-trivial graph-theoretic property of admissible sets,
namely that if Q is a minimal such set containing a, then all arguments in Q have
Q-alternating paths to a. To our knowledge, the following statement and proof
of this fact is new, but the result is a variation of theorems from [11], regarding
the closely related concepts of kernels and semi-kernels from graph theory (for
more on the link between argumentation and kernel theory, see [10]). We remark
that minimal non-empty admissible sets have also been studied independently
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in argumentation theory [14,16], where such sets are referred to as initial sets.
Hence, the following graph-theoretic result may well be of broader interest to
the argumentation community.

Theorem 14. For any AF = (A,R) and any admissible set S ⊆ A with a ∈ S:
if Q is a ⊆-minimal admissible set such that Q ⊆ S and a ∈ Q, then for all
b ∈ Q there is a Q-alternating path Pb,a from b to a in AF .

Proof. Assume that Q is a ⊆-minimal admissible set satisfying Q ⊆ S and a ∈ Q.
Let K be the set of all b ∈ Q such that there is a Q-alternating path Pb,a from b
to a in AF . Clearly, we have a ∈ K, witnessed by the empty path. We are done
if we can show that K is admissible, since then K = Q by ⊆-minimality of Q.
Since Q is conflict free, K is conflict free. To show that K defends itself, assume
c attacks K in AF at d ∈ K ∩ R(c). We must show that K defends d against c.
Since d ∈ K, there is a Q-alternating path Pd,a from d to a. Since Q is admissible
and d ∈ Q, there must be some e ∈ Q attacking c. Then (e, c) + (c, d) + Pd,a is
a walk from e to a. There are three cases. Case i) e occurs on Pd,a. In this case,
the sub-path of Pd,a from e to a is a Q-alternating path from e to a, so e ∈ K as
desired. Case ii) e does not occur on Pd,a, but c occurs on Pd,a. In this case, let
Pc,a denote the sub-path of Pd,a from c to a. Then (e, c)+Pc,a is a Q-alternating
path from e to a, so e ∈ K as desired. Case iii) neither e nor c occurs on Pd,a.
Then (e, c) + (c, d) + Pd,a is a Q-alternating path from e to a, so e ∈ K in this
case as well.

Notice that all Q-alternating paths from Q to Q have even length, since
every other argument from such a path is from Q. It follows that we are now in
a position to prove that the ς-reasonable preferred semantics is in fact justified
by unsafe odd cycles.

Theorem 15. For any admissible and modular ς and any AF = (A,R): if
S ⊆ A is a ⊆-maximal ς-reasonable set and a ∈ A\[S] attacks S, then a lies on
an odd cycle that is unsafe at a.

Proof. Assume S ⊆ A is ς-reasonable and that a ∈ A\[S] attacks S. Since S is
ς-reasonable, {a} is not ς-plausible. If (a, a) ∈ R, the proof is done, so assume
this is not the case. Then since {a} is conflict free but not ς-plausible, there
is a ς-extension K ∈ (AFS){a} with some b ∈ K that attacks a. Since K is
ς-plausible and S is ς-reasonable, K does not attack S. Since ς is admissible, K
is an admissible set. Hence, we let Q be a ⊆-minimal admissible set in (AFS){a}

with Q ⊆ K and b ∈ Q. Note that Q does not attack S and that Q is trivially
ς-reasonable in (AFS){a}, since it is admissible there. Since S is a ⊆-maximal
ς-reasonable set, it then follows from Proposition 12 that Q is not admissible in
AFS . Hence, there is some c ∈ R(a) that attacks some d ∈ Q. By Theorem 14,
there is a Q-alternating path Pd,b from d to b in (AFS){a}. Let f be the first
occurrence of an argument from Q on Pd,b that attacks a. Then Pd,f is a path
from d to f that is also a Q-alternating path from (AFS){a}. Since a and c do
not occur on Pd,f , C = (a, c)+(c, d)+Pd,f +(f, a) is an odd cycle. If C is unsafe
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at a we are done, so assume C is safe at a. Then let Pa,f be the sub-path of
C from a to f . Since C is safe at a, there is a chord (x, y) on Pa,f such that
the sub-paths from a to x and from a to y along Pa,b are both even. Assume
towards contradiction that x �= y. Since Q ⊆ A\[S ∪{a}] and x attacks y, x �= a.
Moreover, by our choice of f there is no argument from Q on Pd,f that attacks
a. Hence, y �= a. So both x and y are in Q, contradicting the fact that Q is
conflict free. So x = y = a. Then a attacks itself and we are done.

5.1 A Remark on Strongly Undisputed Sets

As pointed out by one of the reviewers, there is a close connection between
ς-plausible and ς-reasonable sets and so-called undisputed and strongly undis-
puted sets, as recently introduced in [15]. In fact, when ς is the most permissive
admissible semantics, then it is easy to see that the undisputed sets of AF
are its ς-plausible preferred sets while the strongly undisputed sets are its ς-
reasonable preferred sets. Hence, the present paper generalises the two notions,
while showing how to define them without having ⊆-maximality built in from
the start. Moreover, the results proven about strongly undisputed sets in [15],
including results on complexity which we have not addressed, carry over to pre-
ferred ς-reasonable preferred semantics when ς is the most permissive admissible
semantics. Conversely, it follows from Theorem 15 that the strongly undisputed
semantics is justified by unsafe odd cycles.

6 A Counterexample and a Conjecture

It is natural to ask about the relationship between ς-reasonable preferred sets and
weakly preferred sets for admissible and modular ς. On simple examples, they
behave the same way, so it is tempting to think that they might be equivalent
for some admissible and modular ς. If this was true, it would mean that the
recursive scheme of weak admissibility is redundant and that the nature of ⊆-
maximal weakly admissible sets could be described in a more succinct way in
terms of admissible sets. However, the following example shows that this is not
the case:
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In this AF , we have two odd cycles of length 3, namely Ca = (a1, a2, a3, a1)
and Cb = (b1, b2, b3, b4), as well as a self-attacking c and a much more innocent-
looking d. All arguments on Ca attack all arguments on Cb, all arguments on
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Cb attack c, and c attacks all arguments on Ca. The argument d, meanwhile,
is only attacked by b3 and attacks no argument. What is its semantic status?
It is only attacked by b3, which is on an odd cycle, so a justified semantics is
entitled to ignore the attack on d, making {d} a possible extension. However, no
ς-reasonable semantics allows us to accept d when ς is admissible.
To verify that d cannot be accepted, notice that b3 is not attacked by any
admissible set from the reduct, AF {b3}:

a1
��

��





 a2
��

��

a3
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����
��
��
�

b2

Clearly, AF {b3} has no admissible set, so it has no admissible set attacking b3.
This means that {b3} is ς-plausible in AF {d} for all admissible ς, which in turn
implies that {d} is not ς-reasonable. In fact, AF has no non-empty ς-reasonable
extension for any admissible ς, as the reader can verify. The weakly preferred
semantics, by contrast, provides {d} as the unique weakly preferred extension
of the AF above. This is because b3 is attacked by a weakly admissible set
from AF {b3}, namely {b2}. Hence, we have proven the following result about the
weakly preferred semantics.

Proposition 16. The weakly preferred semantics is not equivalent to any ς-
reasonable semantics for which ς is admissible.

The counterexample also shows that while ς-reasonable semantics for admis-
sible ς are justified, they are not strongly justified: the counterexample has no
non-empty ς-reasonable set, yet it has an argument that is not on any (odd)
cycle. We believe the weakly preferred semantics is in fact strongly justified, but
we have been unable to prove it so far. Hence, we leave it as a conjecture.

Conjecture 17. The weakly preferred semantics is strongly justified.

The challenging part is to prove that the weakly preferred semantics is jus-
tified. If it is, then it is not hard to prove that it is also strongly justified, using
the following simple lemma.

Lemma 18. If the weakly preferred semantics is justified and AF has no non-
empty weakly preferred set, then every argument a in AF lies on an odd cycle
that is unsafe at a.

Proof. Assume AF = (A,R) has no non-empty weakly preferred set and let
a ∈ A be arbitrary. We must show that a lies on an odd cycle from AF that is
unsafe at a. So define the AF M = (A ∪ {b}, R ∪ {(a, b)}) for some fresh b �∈ A.
Clearly, {b} is weakly preferred since M{b} = AF has no non-empty weakly
admissible set. Hence, if the weakly preferred semantics is justified, then a is on
an odd cycle in AF that is unsafe at a.
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The difficulty comes when we try to prove that an argument from the reduct
attacking a weakly preferred set must be on an odd cycle. This is made challeng-
ing by the fact that we need to keep track of the parity of paths, without having
Theorem 14 to help us. So we think the best proof strategy is to first try to
establish its analogue for weakly admissible sets, if possible. Note that we could
weaken the definition of a strongly justified semantics by saying that ς is weakly
justified when for all AF = (A,R), if ς(AF ) = {∅}, then for all a ∈ A there is an
odd walk from a to a. Then it is relatively straightforward to prove by induction
on the size of AF that the weakly preferred semantics is weakly justified. We
omit the details for space reasons, but note that while this property goes some
way towards justifying the weakly preferred semantics in formal terms, it is a
much weaker property than being strongly justified.

7 Conclusion

We have provided a formal definition of the intuition that if we ignore an attack
from argument a then a should be part of an unbroken odd cycle. We provided a
class of semantics satisfying this requirement, showing that they are also weakly
admissible and agree with the stable semantics on a large class of AFs that have
stable sets. We also conjectured that the weakly preferred semantics satisfies an
even stronger property, namely that whenever S is weakly preferred and a �∈ [S],
then a is part of an unbroken odd cycle.

In future work, we would like to prove our conjecture, or find a counterex-
ample to it. We would also like to explore the new class of semantics introduced
here in further depth, as they seem to be of independent interest. It seems clear,
for instance, that our notion of ς-plausibility is closely related to the labelling-
based semantics explored in [9]. These labelling-based semantics should also be
investigated further, not just as argumentation semantics, but as systems of
three-valued logic and theories in such systems. They seem to arise from intro-
ducing an interesting conditional, whereby a → b is true just in case a is neither
true nor undecided when b is false, in which case (a → b) → (¬b → ¬a) is no
longer valid in the presence of undecidedness. It is also interesting to explore
applications of the new semantics we introduce, for instance in the context of
legal argumentation, by combining them with the work done on modelling shift-
ing proof burdens in [12]. Moreover, it would be natural to classify the new
semantics in a more comprehensive way with respect to the principles investi-
gated in [7]. Finally, we would like to generalise our results to infinite AFs, where
absence of odd cycles is no longer sufficient for the existence of stable sets.
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