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Abstract. The expressiveness of any given formalism lays the theoreti-
cal foundation for more specialized topics such as investigating dynamic
reasoning environments. The modeling capabilities of the formalism
under investigation yield immediate (im)possibility results in such con-
texts. In this paper we investigate the expressiveness of assumption-based
argumentation (ABA), one of the major structured argumentation for-
malisms. In particular, we examine so-called signatures, i.e., sets of exten-
sions that can be realized under a given semantics. We characterize the
signatures of common ABA semantics for flat, finite frameworks with and
without preferences. We also give several results regarding conclusion-
based semantics for ABA.

1 Introduction

Within the last decades, AI research has witnessed an increasing demand for
knowledge representation systems that are capable of handling inconsistent
beliefs. Research in computational argumentation has addressed this issue by
developing numerous sophisticated methods to representing and analyzing con-
flicting information [22]. A key player in this field are abstract argumentation
frameworks (AFs) as proposed by Dung in 1995 [15]. In AFs, arguments are
interpreted as atomic entities and conflicts as a binary relation; consequently, an
AF represents a given debate as a directed graph F . Research on AFs is driven
by various semantics which strive to formalize what reasonable viewpoints F
entails. That is, if E ∈ σ(F ) for a semantics σ, then E is interpreted as a jointly
acceptable set of arguments. These sets E are called σ-extensions of F .

In the research area of structured argumentation, an AF is constructed from
a given knowledge base in order to explicate arising conflicts in a comprehensible
graph. One highly influential approach in this area is assumption-based argumen-
tation (ABA) [8,12]. Assumptions provide the foundation for arguments and
determine their conflicts. ABA frameworks (ABAFs) are also evaluated under
so-called semantics; in contrast to many other argumentation formalisms, the
native ABA semantics output sets of assumptions rather than arguments.
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Within the last years, researchers have studied the modeling capabilities of
different AF semantics extensively [6,16,33]. To this end the notion of the sig-
nature Σσ of a semantics σ has been coined. This concept formalizes what can
be the set of σ-extensions of an AF, i.e., Σσ = {σ(F ) | F is a finite AF}. Some
properties of important semantics are folklore within the AF community. For
example, the empty set is always admissible and the stable extensions of an AF
are incomparable1. However, establishing the precise characterizations for the
common AF semantics is a challenging endeavor [16].

The signatures of argumentation semantics are an important formal tool
underlying several applications as well as theoretical results building upon them.
Recent years witnessed significant developments in the construction of explana-
tions based on formal argumentation [13,34]. Key to obtain argumentative expla-
nations are translations of the given (rule-based) knowledge base into a suitable
abstract argumentation formalism [21]. Such formalisms differ in their expres-
sive power and thus in their ability to provide semantics-preserving translations.
Signature characterizations for different abstract and structured formalisms thus
pave the way for developing suitable translations, facilitating the extraction of
argumentative explanations. Precise characterizations of the modeling capacities
of semantics furthermore play a central role in the context of dynamic reasoning
environments, i.e., knowledge bases that evolve over time [22]. Many research
questions on dynamics heavily rely on insights as to how the models of a given
AF can be manipulated in order to reach a certain goal. A noteworthy example is
the current hot topic of forgetting [2,5,7,25] where the goal is oftentimes to cut
arguments out of or remove extensions entirely. Whether the target modification
is attainable can be decided by studying the signatures of the semantics.

While signatures have been investigated for various abstract argumentation
formalisms [16,17,20], this line of research has mostly been neglected in the
realm of structured argumentation. In this paper, we tackle this issue and present
various results regarding the expressive power of ABA. We first consider the most
common ABA fragment and fully characterize the signatures of all standard
semantics commonly studied in the literature. We achieve this by building upon
previous results from abstract argumentation research. We then study various
aspects, adding to our investigation by shifting the focus to the conclusions of
the extensions or incorporating preferences.

2 Background

We recall assumption-based argumentation (ABA) [12], argumentation frame-
works with collective attacks (SETAFs) [27], and their relation [24].

Assumption-Based Argumentation. We consider a deductive system, i.e., a tuple
(L,R), where L is a set of atoms and R is a set of inference rules over L. A rule
r ∈ R has the form a0 ← a1, . . . , an, s.t. ai ∈ L for all 0 ≤ i ≤ n; head(r) = a0

is the head and body(r) = {a1, . . . , an} is the (possibly empty) body of r.
1 We refer to Sect. 2 for a formal introduction of the semantics we consider.
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Definition 1. An ABA framework (ABAF) is a tuple (L,R,A, ), where (L,R)
is a deductive system, A ⊆ L a set of assumptions, and : A → L a contrary
function.

In this work, we focus on frameworks which are flat, i.e., head(r) /∈ A for each
rule r ∈ R, and finite, i.e., L, R, A are finite. By A(D) and L(D) we denote the
assumptions and atoms occurring in D, respectively.

An atom p ∈ L is tree-derivable from assumptions S ⊆ A and rules R ⊆ R,
denoted by S �R p, if there is a finite rooted labeled tree t s.t. i) the root of t
is labeled with p, ii) the set of labels for the leaves of t is equal to S or S ∪ {	},
and iii) for each node v that is not a leaf of t there is a rule r ∈ R such that v
is labeled with head(r) and labels of the children correspond to body(r) or 	 if
body(r) = ∅. We write S � p iff there exists R ⊆ R such that S �R p. Moreover,
we let ThD(S) = {p ∈ L | S � p}.

A set of assumptions S attacks a set of assumptions T if there are S′ ⊆ S
and a ∈ T s.t. S′ � a; The set S is conflict-free (S ∈ cf (D)) if it does not attack
itself; S defends a ∈ A if for each attacker T of {a}, we have S attacks T . A
conflict-free set S is admissible (S ∈ ad(D)) iff S defends each a ∈ S. We recall
grounded, complete, preferred, and stable ABA semantics (abbr. gr , co, pr , stb).

Definition 2. Let D be an ABAF and let S ∈ ad(D). Then

– S ∈ co(D) iff S contains every assumption it defends;
– S ∈ gr(D) iff S is ⊆-minimal in co(D);
– S ∈ pr(D) iff S is ⊆-maximal in ad(D);
– S ∈ stb(D) iff S attacks each {x} ⊆ A(D)\S.

Example 1. We consider an ABAF D = (L,R,A, ) with L = {a, b, c, ac, bc, cc},
assumptions A = {a, b, c}, their contraries ac, bc, and cc, respectively, and rules

ac ← b, c bc ← a cc ← a, b

Then the set {a} is admissible: it defends itself against its only attacker {b, c},
by attacking b. The set {a} is not complete, however, since it also defends the
assumption c. The sets {a, c} and {b, c} are complete, preferred and stable. More-
over, ∅ is complete and the unique grounded extension of D. ♦

SETAFs. We recall argumentation frameworks with collective attacks [27].

Definition 3. A SETAF is a pair F = (A,R) where A is a finite set of argu-
ments and R ⊆ (2A\{∅}) × A encodes attacks.

SETAFs generalize Dung’s abstract argumentation frameworks (AFs) [15]. In
AFs, each attacking set is a singleton, i.e., |T | = 1 for each (T, h) ∈ R. The
SETAF semantics are defined in a way that they naturally generalize Dung’s
AF semantics. They are, however, even closer in spirit to ABA semantics.

A set of arguments S attacks an argument a ∈ A if there is some S′ ⊆ S such
that (S′, a) ∈ R; S attacks a set of arguments T if there are S′ ⊆ S and t ∈ T
such that (S′, t) ∈ R; S is conflict-free (S ∈ cf (F )) if it does not attack itself.



148 M. Berthold et al.

A set S defends an argument a ∈ A if for each attacker T of a, it holds that S
attacks T ; S defends T ⊆ A iff it defends each t ∈ T . A conflict-free set S is
admissible (S ∈ ad(F )) iff S defends each a ∈ S. We recall grounded, complete,
preferred, and stable SETAF semantics (abbr. gr , co, pr , and stb).

Definition 4. Let F be a SETAF and let S ∈ ad(F ). Then,

– S ∈ co(F ) iff S contains each argument it defends;
– S ∈ gr(F ) iff S is ⊆-minimal in co(F );
– S ∈ pr(F ) iff S is ⊆-maximal in ad(F );
– S ∈ stb(F ) iff S attacks all a ∈ A(F )\S.

Relating ABAFs and SETAFs. For our first main result we exploit the close
connection of ABAFs and SETAFs. The key idea is to identify assumptions in
ABAFs with arguments in SETAFs; moreover, attacks between assumption-sets
can be viewed as collective attacks between arguments in SETAFs and vice versa.
The following translations are due to [24].

Definition 5. For an ABAF D = (L,R,A, ), the corresponding SETAF FD =
(AD, RD) is defined by AD = A\{a | a ∈ ThD(∅)} and for S ∪ {a} ⊆ AD we
let (S, a) ∈ RD iff S � a.2 For a SETAF F = (A,R), the corresponding ABAF
DF = (LF ,RF ,AF , ) is defined by LF = A ∪ {px | x ∈ A}, AF = A, x = px

for all x ∈ A, and for each (T, h) ∈ R, we add a rule ph ← T to RF .

Example 2. Consider the ABAF D from Example 1. The corresponding SETAF
FD has the arguments AD = {a, b, c}; moreover, the arguments determine the
collective attacks. For instance, from {b, c} � ac we obtain that {b, c} collectively
attacks a. Below, we depict all attacks between the assumption-sets as usually
done in the literature (left) and the corresponding SETAF (right). Left, we omit
the (irrelevant) ∅ and (self-attacking) A.

{a} {b} {c}

{a, b} {a, c}
{b, c} a b

c

Attacks obtained from {a} � bc are in cyan, from {b, c} � ac in violet, and
attacks obtained from {a, b} � cc are depicted in red. Overall, we observe that
the SETAF representation is significantly smaller: in contrast to the traditional
ABA set representation, it requires only a single node for each assumption. ♦

We recall the close relation between ABAFs and SETAFs.

Proposition 1. Given a semantics σ ∈ {ad , gr , co, pr , stb}. For an ABAF D
and its associated SETAF FD, it holds that σ(D) = σ(FD). For a SETAF F and
its associated ABAF DF , it holds that σ(F ) = σ(DF ).
2 We note that the original translation slightly deviates from this version.
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In [24], the result has only been stated for gr , co, pr , stb semantics; however,
the adaption to admissible semantics can be easily obtained.

3 Signatures of ABA Frameworks

The investigation of the signature of a semantics is driven by properties of a
given set S of sets, in order to assess whether it is conceivable that there is some
knowledge base (in our case: some ABAF) D s.t. σ(D) = S. Let us familiarize
with this setting by considering the following example.

Example 3. Let S = {{a}, {a, b}, {a, c}}. We can actually already infer a lot
about this set.

– It is impossible that S corresponds to the ad sets of an ABA knowledge base,
i.e., ad(D) = S; the reason is that ∅ ∈ ad(D) for any ABAF D, but ∅ /∈ S;

– S cannot correspond to gr since |gr(D)| = 1 for any ABAF D;
– it is also impossible that stb(D) = S or pr(D) = S, because stable and

preferred sets are always incomparable; however, in S we have {a} � {a, b};
– it is however possible to construct D with co(D) = S. The set {a} could be

the grounded extension and b and c in a mutual attack, yielding the complete
extensions co(D) = {{a}, {a, b}, {a, c}}. ♦

We now formally define ABA signatures.

Definition 6. Given a semantics σ, the signature of σ is

ΣABA
σ = {σ(D) | D is a flat, finite ABAF}.

Signatures are sets of sets of assumptions, i.e., ΣABA
σ ⊆ 22

U
where U denotes the

set of all possible (countably infinitely many) assumptions. We call a set S ⊆ 2U

an extension-set. An extension-set S is realizable under the given semantics σ, if
there exists a ABAF D that realizes it, i.e., σ(D) = S.

We will infer ΣABA
σ by exploiting the close relation to SETAFs. To this end

we recall the concept of their signatures, given as

ΣSF
σ = {σ(F ) | F is a SETAF}.

Analogously, signatures for SETAFs are sets of sets of arguments. The concepts
of extension-sets and realizations naturally transfer to this setting.

We are now ready to study the ABA signatures. Before we can delve into our
results, however, we need to introduce some theoretical machinery (cf. [16,17]).

Definition 7. Let S be a set of sets. We let

AS =
⋃

S, PS = {S ⊆
⋃

S | �S′ ∈ S : S ⊆ S′}, dcl(T) = {S′ ⊆ S | S ∈ T}.

Thereby, PS is the set of potential conflicts in S and dcl(T) the downward closure
of T. The completion-sets of a set of assumptions T in S are given by

CS(T ) = {S ∈ S | T ⊆ S, �S′ ∈ S : T ⊆ S′ ⊆ S}.
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Let us illustrate these concepts in the following example.

Example 4. Let S = {{a}, {a, b}, {a, c}}. We have the following sets:

– AS = {a, b, c} intuitively corresponding to credulously accepted assumptions;
– PS = {{b, c}, {a, b, c}} since b and c never occur in the same extension;
– CS({a}) is only {a} itself; on the other hand, CS({b}) = {{a, b}} since {a, b}

is a (the only) minimal set containing {b}.
– The downward closure of S is the set dcl(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}}.

Intuitively, if S are the extensions of some ABA D, we can be certain that
each set in dcl(S) if conflict-free. ♦

Having established the sets we require, let us now consider relevant properties.

Definition 8. Given an ABAF D = (L,R,A, ). A set S ⊆ 2A is

– incomparable if for S, S′ ∈ S, S ⊆ S′ implies S = S′;
– set-conflict-sensitive if for all S, S′ ∈ S with S ∪ S′ /∈ S it holds that there is

some p ∈ S such that S′ ∪ {p} ∈ PS;
– set-com-closed if for all T, U ⊆ S, the following holds: if their elements T =⋃

T and U =
⋃

U are both contained in the downward closure of S and satisfy
|CS(T ∪ U)| �= 1 then there is an assumption u ∈ U such that T ∪ {u} ∈ PS.

Example 5. We continue the above example with S = {{a}, {a, b}, {a, c}}:

– S is not incomparable since {a} � {a, b};
– S is set-conflict-sensitive. The only sets with S, S′ ∈ S with S ∪ S′ /∈ S are

{a, b} and {a, c}. Now consider b ∈ S. Indeed, S′ ∪ {b} = {a, b, c} ∈ PS.
Intuitively, this formalizes that the union S ∪ S′ is not an extension, i.e., not
contained in S, since b and c cause a conflict.

– S is set-com-closed. Take for example T = {{a}, {a, b}} and U = {{a, c}}. We
thus have T = {a, b} and U = {a, c}. Both T and U are contained in the
downward closure dcl(S) we calculated before. For the union T ∪U = {a, b, c}
we have CS(T ∪U) = ∅ since no superset of T ∪U occurs in S. Therefore, the
condition |CS(T ∪ U)| �= 1 fires and we need to find u ∈ U s.t. T ∪ {u} ∈ PS.
Indeed, c occurs in U and T ∪ {c} = {a, b, c} is a potential conflict.
The rationale behind this property is the following: Suppose we consider
complete semantics. Then, CS(∅) is the grounded extension and we thus have
|CS(∅)| = 1. This does not only apply to the empty set; given some admissible
extension E, there is also always a unique minimal complete extension con-
taining E. The set-com-closed property extracts situations where |CS(·)| = 1
must hold; if not, then we need to find a corresponding “reason”, i.e., some
u ∈ U causing the conflict, i.e., T ∪ {u} ∈ PS. ♦

We are ready to state the main result of this section.
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Theorem 1. It holds that

ΣABA
gr = {S | |S| = 1},

ΣABA
ad = {S �= ∅ | S is set-conflict-sensitive and ∅ ∈ S},

ΣABA
co = {S �= ∅ | S is set-com-closed and

⋂
S ∈ S},

ΣABA
stb = {S | S is incomparable}, and

ΣABA
pr = ΣABA

stb \{∅}.

We obtain the result by (1) exploiting the connection between SETAFs and
ABAFs [24] (cf. Definition 5 and Proposition 1) in order to (2) transfer signature
results for SETAF semantics [17] to the associated ABAF semantics.

4 Compact Realizability in ABA

In the previous section we could establish the plain ABA signatures by exploit-
ing the close relation to SETAFs. In the remainder of this paper we will study
further aspects which require more specialized techniques. In the context of AF
signatures it was observed that there are extension-sets that can only be realized
by the use of auxiliary arguments that are never accepted. An AF F is compact
w.r.t. a semantics σ iff each argument in F is credulously accepted [4]. This
notion can be translated to ABA and be employed to prove certain unsatisfia-
bility results.

Definition 9. Given σ, an ABAF D is compact w.r.t. σ iff A(D) =
⋃

σ(D).

We term a semantics σ to be compactly realizable, iff for any D there exists a
D′ that is equivalent to D under σ such that D′ is compact. In the remainder of
this section, we prove the following theorem.

Theorem 2. For ABA, the semantics gr and pr are compactly realizable,
whereas ad and co are not. The semantics stb is compactly realizable if we limit
ourselves to non-empty extension-sets.

The empty extension-set S = ∅ is not compactly realizable under stable
semantics since an ABAF with no assumption has the unique stable extension
∅. To prove the compact realizability of gr and pr , and stb (for non-empty
extension-sets) we employ canonical constructions for ABAFs3 that are similar
in spirit to SETAF constructions for these semantics [17]. We first show com-
pactness of gr semantics. For this, we construct a canonical ABA D with no rule
at all.

Definition 10. Given an extension-set S with |S| = 1, i.e., S = {S}, we let
Dgr

S
= (L,R,A, ), where L = A ∪ {ac | a ∈ A}, R = ∅, A = S, and a = ac for

each a ∈ A.
3 Implementation of the canonical constructions for all semantics considered in this

paper are available at https://pyarg.npai.science.uu.nl/ [28].

https://pyarg.npai.science.uu.nl/
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It is easy to see that gr(Dgr
S
) = {S} if {S} = S; thus, this construction realizes

S under gr semantics. For pr and stb semantics, we proceed as follows.

Definition 11. Given an incomparable, non-empty extension-set S, we define
Dinc

S
= (L,R,A, ), where L = A ∪ {ac | a ∈ A}, R = {ac ← S | a /∈ S, S ∈ S},

A =
⋃

S, and a = ac for each a ∈ A.

Example 6. Let S = {{a, b}, {a, c}, {b, c}}. We construct the ABAF D with
assumptions A = {a, b, c} and rules R = {ac ← b, c; bc ← a, c; cc ← a, b}. Note
that L and are now also determined. Indeed, D realizes our desired assumption-
set under stable and preferred semantics, e.g., σ(D) = {{a, b}, {a, c}, {b, c}}. ♦

The compact realizability of gr , pr and stb holds due to the constructions in
Definitions 10 and 11 not employing unaccepted assumptions.

Proposition 2. The semantics gr and pr are compact realizable. The semantics
stb is compactly realizable if we limit ourselves to non-empty extension-sets.

In contrast, admissible and complete semantics are not compact realizable.
We give corresponding counter-examples.

Example 7. (admissible) Consider D = (L,R,A, ) with

L = {a, b, c, ac, bc, cc} R = {ac ← b; bc ← c}
A = {a, b, c} = {(a, ac) , (b, bc) , (c, cc)}

Then ad(D) = {∅, {c}, {a, c}}, but there is no ABAF D′ with A(D′) = {a, c},
s.t. ad(D′) = {∅, {c}, {a, c}}. It is impossible to express c supporting a without
the presence of a third assumption.

(complete). Consider D = (L,R,A, ), with

L = {a, b, ac, bc} R = {bc ← a; ac ← b; ac ← a}
A = {a, b} = {(a, ac) , (b, bc)}

Then co(D) = {∅, {b}}, but there is no ABAF D′ with A(D′) = {b}, s.t. co(D′) =
{∅, {b}}, because if b is the only assumption, then there is only one complete
extension as there is nothing against b could defend itself. ♦

From these observations, Theorem 2 follows.

5 Claims, Preferences and Beyond

So far, we put our focus on the most common ABA fragment. In particular,
we considered semantics in terms of assumption-sets only. There are, however,
several other aspects of ABA that can also be taken into account. In this section,
we present several results for realizing extension sets in ABA+ which extends
the basic setting by allowing for preferences between assumptions. Moreover, we
outline some insights regarding signatures for conclusion sets, i.e., we evaluate
D in terms of accepted conclusions, not just the underlying assumptions.
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Signatures for Conclusion Extensions

Let us now also consider the set of all atoms derivable from an assumption-set.
Recall that by

ThD(S) = {p | ∃S′ ⊆ S : S′ � p}
we denote the set of all conclusions derivable from an assumption-set S in an
ABAF D. Observe that S ⊆ ThD(S) since per definition, each assumption a ∈ A
is derivable from {a} �∅ a. We define the conclusion-based semantics for ABA
by considering the derivable conclusions of acceptable assumption sets.

Definition 12. Let D = (L,R,A, ) be an ABAF and let σ be a semantics. We
define its conclusion-based variant as σc(D) = {ThD(E) | E ∈ σ(D)}.
We write ΣABA

σc to denote the conclusion-based signatures. In this section, we
compare the conclusion-based signatures with the standard ABA signatures from
above. Since deriving the conclusions as well gives more fine-grained exten-
sions, the attentive reader might expect that this setting is more expressive,
i.e., ΣABA

σ ⊆ ΣABA
σc . It turns out, however, that in general the opposite is the

case. Let us start with the simple case of gr , where both notions indeed coincide
(due to the simplicity of gr).

Proposition 3. ΣABA
gr = ΣABA

grc .

Proof. Each extension-set of size 1 can be realized for gr semantics in ABA. Our
above construction does not require any rules, thus σ(D) = σc(D) 
�

Now, in general it is the case that assumption-extensions are more flexible
in their modeling capabilities in the sense that ΣABA

σc ⊆ ΣABA
σ . To achieve

this result we require a detour to so-called claim-augmented AFs [19] and their
relation to SETAFs [18] and ABAFs [24]. We omit the proof details.

Proposition 4. For all semantics σ in this paper, ΣABA
σc ⊆ ΣABA

σ .

Interestingly, the other direction fails. For all semantics except gr , there
are sets which are realizable as assumption-extensions, but not as conclusion
extensions.

Proposition 5. For all semantics σ �= gr in this paper, ΣABA
σc � ΣABA

σ .

Proof. (stb and pr) Let S = {{a}, {b}, {c}}. We remark that {a}, {b}, {c} can
of course be realized by means of the usual assumption-extensions σ(D) for
pr and stb semantics, as our signatures results show. Now suppose σc(D) =
{{a}, {b}, {c}}.

We first argue that each of the three elements a, b, and c has to be an
assumption: Supposing, e.g., that a /∈ A holds yields that a ∈ ThD(∅), because
otherwise {a} could not be a conclusion-extension. However, in this case a would
occur in each extension, but it does not. By symmetry, {a, b, c} ⊆ A must hold.

Thus ThD({a}) = {a}, ThD({b}) = {b}, and ThD({c}) = {c} for otherwise
the conclusion-extensions would be larger. Since {a, b}, {a, c} and {b, c} are
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no extension, we deduce that these sets are not conflict-free or not capable
of defending themselves. However, the latter can be excluded since each single
assumption a, b, c defends itself. So they have to be conflicting.

We distinguish several cases. (1) Suppose a = b. But then a can only defend
itself if b = a holds as well. Since {a, c} is conflicting, it must also be the case
that (a) c = a or (b) a = c. Supposing (a), then {c} can only defend itself if
a = c, i.e., this case yields (b). Supposing (b) implies b = c since is a function.
But b = c implies the extensions are actually {{a}, {b}}, a contradiction.

Other cases like, e.g., b = a yield analogous contradictions.
(ad and co) Now consider S = {∅, {a}, {b}, {c}}. Now, S can be realized

by assumption-extensions w.r.t. ad and co semantics. Regarding σc, the same
reasoning as above applies: ThD({a}) = {a}, ThD({b}) = {b}, and ThD({c}) =
{c} can be inferred analogously and consequently, we find again that, e.g., {a}
cannot defend itself, yielding the same contradiction. 
�

Signatures for ABA with Preferences

Let us now head back to assumption-extensions. ABA+ has been introduced
in [14]; it generalizes ABA by incorporating preferences between the assump-
tions. We recall the necessary background.

Definition 13. An ABA+ framework is a tuple (L,R,A, ,≤), where
(L,R,A, ) is an ABAF and ≤ is a transitive binary relation on A.

As usual, we write a < b if a ≤ b and b �≤ a. Attacks are generalized as follows.

Definition 14. Given an ABA+ framework (L,R,A, ,≤). A set of assump-
tions S ⊆ A attacks a set of assumptions T ⊆ A iff

– there is S′ ⊆ S, t ∈ T s.t. S′ � t, and there is no s ∈ S′ with s < t; or
– there is T ′ ⊆ T , s ∈ S s.t. T ′ � s, and there is t ∈ T ′ with t < s.

For ABA without preferences, only the first item matters: a set of assumptions
S attacks another set of assumptions T iff (a subset of) S derives a contrary of
some assumption in T . Taking preferences into account might cause an attack
reversal, as formalized in item two. The semantics are defined as in Definition 2,
but with the generalized attack notion as stated above. That is, S is admissible
iff i) S does not attack itself and ii) if T attacks S, then S attacks T as well; S
is complete iff it also contains each a it defends; S is grounded iff it is minimal
complete and S preferred iff it is maximal admissible; S is stable iff S attacks
each singleton {a} ⊆ A\S.

We let ΣABA+

σ denote the signature of semantics σ for ABA+, i.e.,

ΣABA+

σ = {σ(D) | D is a flat, finite ABA+ framework}.

In this section, we establish the following main theorem.
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Theorem 3. It holds that

ΣABA+

gr = {S | |S| ≤ 1},

ΣABA+

ad = {S | ∅ ∈ S},

ΣABA+

stb = {S | S is incomparable}, and

ΣABA+

pr = ΣABA
stb \{∅}.

We first note that each extension-set S which is contained in ΣABA
σ is also

contained in ΣABA+

σ ; it suffices to consider the empty preference relation.

Proposition 6. For all semantics considered in this paper ΣABA+

σ ⊇ ΣABA
σ .

For preferred and stable semantics, we even have a stronger result. Below,
we show that the signatures for ABA+ corresponds to the signatures for ABA
without preferences. For preferred semantics, we obtain this result because the
semantics operate on maximizing the assumption-sets. For stable semantics, we
additionally rely on the monotonicity of the range function.

Proposition 7. For σ ∈ {stb, pr} we have ΣABA+

σ = ΣABA
σ .

Proof. Let σ ∈ {stb, pr}. According to Proposition 6, ΣABA+

σ ⊇ ΣABA
σ holds. On

the other hand, ΣABA+

pr ⊆ ΣABA
pr since preferred extensions are incomparable by

definition. For ΣABA+

stb ⊆ ΣABA
stb suppose D is an ABA+ framework with stable

extensions S � S′. Even with preferences, the range is monotonic, i.e., we have
that ThD(S) ⊆ ThD(S′). Consequently, if S is stable, then S′ is not conflict-free;
contradiction. 
�
In contrast, admissible semantics in ABA+ are significantly more powerful than
their counterpart in ABA without preferences. We observe that each extension
set that contains the empty set can be realized.

Proposition 8. ΣABA+

ad = {S | ∅ ∈ S}.
Proof. Let S �= ∅ with ∅ ∈ S. Moreover, let AS =

⋃
S∈S

S and let NS = 2AS\S.
We construct the corresponding ABAF D = (L,A,R, ,≤) with

L = A ∪ {ac | a ∈ A}, A = AS ∪ {vN | N ∈ NS}, a = ac for each a ∈ A,

R = {vN
c ← N ; vN

c ← vN | N ∈ NS} ∪ {vN
c ← S\N | S ∈ S, N ∈ NS, N ⊆ S},

and preference relation as follows: for each N ∈ NS, we let vN > n for some n ∈
N . An example of the construction is given in Fig. 1.

We observe that the set AS itself is conflict-free(no assumption is a contrary).
Each set N that is not contained in S receives an attack from vN : The attack
from the rule vN

c ← N is reversed because N contains some n ∈ N with n < vN .
However, each set S ∈ S that is attacked by some vN defends itself: vN is counter-
attacked by S\N (and there is no s < vN for any s ∈ S\N since (S\N)∩N = ∅).
Based on these observations, we can show that ad(D) = S.
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L = A ∪ {ac | a ∈ A}
A = {a, b, c, v{b}, v{c}, v{a,b,c}}
R = {v{b}c ← b; v{c}

c ← c;

v{a,b,c}
c ← a, b, c;

v{b}
c ← a; v{b}

c ← c;

v{c}
c ← a; v{c}

c ← b;

v{b}
c ← v{b}; v{c}

c ← v{c};

v{a,b,c}
c ← v{a,b,c}},

v{b} > b, v{c} > c, v{a,b,c} > a

(a) Resulting ABA+.

{a}

{b} {c}

{a, b} {a, c}{b, c}

{v{b}} {v{c}}

{a, b, c} {v{a,b,c}}

(b) Attacks between assumption-sets.

Fig. 1. Example of the construction from the proof of Proposition 8 for S =
{∅, {a, b}, {a, c}, {b, c}, {a}}. We get AS = {a, b, c} and NS = {{b}, {c}, {a, b, c}}. The
corresponding ABA+ is depicted left (1a), sets between assumption-sets are depicted
right (1b) (supersets of {vN} are omitted since they are self-attacking).

First, we show that ad(D) ⊆ S. We note that ∅ ∈ ad(D) by definition. Now
let S ∈ S with S �= ∅. As observed above, S ∈ cf (D). We show that S defends
itself: let X ⊆ A be an assumption-set that attacks S. That is, either (a) there
is X ′ ⊆ X, s ∈ S such that X ′ � s and none of the elements in X ′ is strictly
weaker than s, or (b) there is S′ ⊆ S, x ∈ X such that S′ � x and there is s ∈ S′

such that s < x. By construction, no contrary of an assumption a ∈ AS can be
derived. Hence, case (a) cannot occur. Now, suppose (b) is the case. Then there
are S′ ⊆ S and x ∈ X such that S′ � x and there is s ∈ S′ such that s < x. By
construction, this can only be the case if S′ is not contained in S (i.e., S′ ∈ NS),
S′ derives the contrary of vS′ , and the direction of the attack is reversed by the
preference relation vS′ > n for some n ∈ S′. It is clear that S′ is a proper subset
of S. Otherwise we obtain S ∈ NS, contradicting our assumption. Hence, the set
S\S′ is not empty. By construction, the assumption vS′ is attacked by S\S′ (via
the rule vS′ ← S\S′). Hence, we obtain that S defends itself against the attack
from X, as desired.

It remains to show that no other set is admissible, i.e., ad(D) ⊇ S. This is
ensured by construction since each N ∈ NS is attacked by vN and is not defended
against this assumption. We obtain ad(D) = S, as desired. 
�
Regarding grounded semantics, we require some auxiliary observations. We
define the characteristic function for an ABA+ framework D = (L,R,A, ,≤)
as usual, i.e., we let ΓD(S) = {a ∈ A | S defends a}. The more involved attack
notion does not alter the fact that Γ is monotonic.

Proposition 9. Let D = (L,R,A, ,≤) be an ABA+ framework. If S ⊆ S′ ⊆
A, then ΓD(S) ⊆ ΓD(S′).

Monotonicity of the characteristic function is one of the key ingredients for show-
ing that the grounded extension is unique (for the most common argumentation
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formalisms). Consequently, we can infer a similar result: The only candidate for
the grounded extension is

⋃
i≥1 Γ i

D(∅), i.e., iterating the characteristic function.
Perhaps somewhat surprising we can only derive |gr(D)| ≤ 1, since complete
extensions do not necessarily exist.

Proposition 10. For any ABA+ framework D = (L,R,A, ,≤), |gr(D)| ≤ 1.

As the following example shows, the case co(D) = ∅ (and thus gr(D) = ∅) is
indeed possible. Consider the following simple ABA+ framework.

Example 8. Let D be the ABA+ framework with A = {a, b, c}, the rule c ← a, b,
and let c > a. Then {c} attacks {a, b} since {a, b} � c and a < c.

In D, all assumptions a, b, and c are unattacked; however, the set {a, b, c} is
conflicting. Hence, no grounded extension exist in D. Therefore, also complete
semantics return the empty set. ♦

Consequently, the grounded ABA+ signature is given as follows.

Proposition 11. ΣABA+

gr = {S | |S| ≤ 1}
Thereby, the above examples shows how to realize S = ∅, and if |S| = 1,

then the construction given for usual ABAFs suffices. From the propositions we
inferred within this section, the desired Theorem 3 follows.

6 Conclusion

In this paper, we investigated several aspects of ABA expressiveness. We charac-
terized the signatures of ABA semantics by connecting two recent developments
in the field of formal argumentation: we used the close relation to SETAFs pre-
sented in [24] in order to benefit from the established SETAF signatures [17].
We amplified our investigation with several aspects which are central for under-
standing the expressiveness of ABA. In particular, we discussed the relation to
conclusion-based ABA semantics and signatures for ABA with preferences.

Our notion of signatures is inspired by research on expressiveness in abstract
argumentation formalisms [16,17,20]. We are not aware of any comprehensive
investigation of signatures in structured argumentation in the literature.

Searching for Suitable Translations. Semantics-preserving translations between
non-monotonic reasoning formalisms are well-studied [10,11,24,29]. They are
useful for several reasons. First, they enable access to solvers and other tools that
have been developed for the target formalism (see e.g., [32]). Second, translations
from structured to abstract argumentation formalisms have gained increasing
attention in the context of explainability. Abstract graph-based representations
are intuitive and easy-to-understand by design; moreover, they are central for
extracting argumentative explanations. Since AFs are particularly well-studied,
they are oftentimes considered as the default target formalism. However, many
translations to AFs often require auxiliary arguments which may cause an expo-
nential blowup; moreover, they often preserve semantics only under projection.
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The underlying issue becomes clear when looking at the signatures in the
different formalisms: it turns out that many argumentation formalisms are more
expressive than AFs [17,20]. In particular, our results show that flat ABAFs
are closer in their nature to SETAFs than to Dung’s AFs. Moreover, we show
that the more advanced ABA fragments that we consider admit a higher expres-
siveness than flat ABA for most of the semantics. Building upon our insights,
we identify the search for suitable abstract formalisms with matching expres-
siveness that capture ABA with preferences, conclusion-semantics of ABA, or
even more general fragments like non-flat ABA as a challenging future work
direction. Generally speaking, it would be interesting to put more emphasis on
abstract formalisms with higher expressiveness, e.g., in order to obtain compet-
itive instantiation-based ABA solvers or to extract argumentative explanations.

The Role of Signatures in Dynamics in Argumentation. In particular in order
to push forward dynamics research in structured argumentation, understanding
the modeling capabilities of a formalism is crucial: oftentimes dynamics research
is driven by a certain goal like, e.g., enforcing a target set of conclusions or
forgetting given elements of a knowledge base [1,2,5,7,9,25].

Example 9. Suppose we want to develop a forgetting operator that removes from
each extension the element that should be forgotten. This notion is known as
persistence. Our signature results indicate whether it is possible so satisfy such
constraints. For instance, it becomes clear that we cannot construct a forgetting
operator that satisfies persistence for stable semantics: for an ABAF D with
stb(D) = {{a, b}, {b, c}}, we run into an issue if we aim to forget the assumption
a. The set {{b}, {b, c}} is not incomparable and hence it cannot be realized, as
we have shown.4 ♦

Recent studies on dynamics in structured argumentation show that we cannot
rely on the corresponding results for AFs [30,31]. Hence, our results provide a
solid theoretical foundation in order to understand what can be attained and
what not. Moreover, understanding expressiveness is indispensable in order to
extend this line of research to further dynamic tasks like belief revision [3].

Open Problems. The present work characterizes the expressiveness of ABA
semantics in several aspects. Nonetheless, certain questions in this context
remain open: i) precise signature characterizations for admissible, complete, pre-
ferred, and stable semantics for conclusion-based ABA semantics; ii) precise
signature characterizations of complete semantics for ABA+; and iii) signature
characterizations for semantics in non-flat ABAFs. We view closing these gaps
as a natural future work directions. Moreover, our research was focusing on
ABAFs, but there a several other structured argumentation formalisms worth
investigating, for instance defeasible logic programming [23] or ASPIC+ [26].

4 We refer the interested reader to [7] for an in-depth study on forgetting in flat ABA.
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