
Sarah Gaggl
Maria Vanina Martinez
Magdalena Ortiz (Eds.)

 123

LN
AI

 1
42

81

18th European Conference, JELIA 2023
Dresden, Germany, September 20–22, 2023
Proceedings

Logics in
Artificial Intelligence

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14281
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Sarah Gaggl · Maria Vanina Martinez ·
Magdalena Ortiz
Editors

Logics in
Artificial Intelligence
18th European Conference, JELIA 2023
Dresden, Germany, September 20–22, 2023
Proceedings

Editors
Sarah Gaggl
TU Dresden
Dresden, Germany

Magdalena Ortiz
Umeå University
Umeå, Sweden

TU Wien
Vienna, Austria

Maria Vanina Martinez
Artificial Intelligence Research Institute -
IIIA CSIC
Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-43618-5 ISBN 978-3-031-43619-2 (eBook)
https://doi.org/10.1007/978-3-031-43619-2

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapters “Short Boolean Formulas as Explanations in Practice” and “Reasoning in Assumption-Based Argu-
mentation Using Tree-Decompositions” are licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information
in the chapters.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-2425-6089
https://orcid.org/0000-0002-2344-9658
https://orcid.org/0000-0003-2819-4735
https://doi.org/10.1007/978-3-031-43619-2
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of the 18th European Conference on Logics in
Artificial Intelligence, which took place at TU Dresden, Germany, during September
20–22, 2023.

The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle–JELIA) began back in 1988, as
a workshop, in response to the need for a European forum for the discussion of emerging
work in this field. Since then, JELIA has been organized biennially, with proceedings
published in the Springer series Lecture Notes in Artificial Intelligence. Previous meet-
ings took place in Roscoff, France (1988), Amsterdam, The Netherlands (1990), Berlin,
Germany (1992), York, UK (1994), Évora, Portugal (1996), Dagstuhl, Germany (1998),
Málaga, Spain (2000), Cosenza, Italy (2002), Lisbon, Portugal (2004), Liverpool, UK
(2006), Dresden, Germany (2008), Helsinki, Finland (2010), Toulouse, France (2012),
Madeira, Portugal (2014), Larnaca, Cyprus (2016), and Rende, Italy (2019). Due to the
COVID-19 pandemic, the 2021 edition was held online, instead of the University of
Klagenfurt, Austria. But in 2023, the conference could return to its traditional in-person
format, as an engaging and inspiring meeting in the beautiful city of Dresden.

The aim of JELIA is to bring together active researchers interested in all aspects
concerning the use of logics in artificial intelligence to discuss current research, results,
problems, and applications of either a theoretical and practical nature. JELIA strives
to foster links and facilitate cross-fertilization of ideas among researchers from various
disciplines, among researchers from academia and industry, and between theoreticians
and practitioners. The scientific community has been increasingly showing interest in
JELIA, which during the years featured the growing participation of researchers from
outside Europe and a very high overall technical quality of contributions; hence, the
conference turned into a major biennial forum and a reference for the discussion of
logic-based approaches to artificial intelligence.

JELIA2023 received112 submissions in twodifferent formats: long and short papers.
Each submission was reviewed by three Program Committee members. Out of the 112
submissions, 41 were accepted as long papers and 11 as short papers. Of the 55 submis-
sions which were declared to have a student as a leading author, 26 were included in the
program. All of the accepted submissions were given a slot for oral presentation at the
conference.

This year’s conference included a Special Track on Logics for Explainable and
Trustworthy AI, focusing on logic-based approaches to making AI more transparent,
safer, and more trustable. Of the 112 submissions, 14 were submitted to this special
track. They went through the same reviewing process, and 7 papers were accepted and
presented in a dedicated session at the conference.

The conference programalso featured fourwonderful invited talks byMarioAlviano,
Katie Atkinson, Franz Baader, and Vaishak Belle. The abstracts of these talks—and in
most cases also an accompanying paper—can be found in these proceedings.

vi Preface

JELIA 2023 recognized and awarded two prizes to contributions that the Program
Committee deemed to be of exceptional quality. The Best Paper Award was given to
Stéphane Demri and Karin Quaas for their work entitled First Steps Towards Taming
Description Logics with Strings, while the Best Student Paper Award was given to
Bartosz Bednarczyk for his paper Beyond ALCreg : Exploring Non-Regular Extensions
of Propositional Dynamic Logic with Description-Logics Features. Each award was
accompanied by a prize of 500 e, kindly offered by Springer.

We would like to thank the members of the Program Committee and the additional
reviewers for their efforts to produce fair and thorough evaluations of the submitted
papers, which is essential for a successful scientific conference. Thank you also to
the authors of the scientific papers, including those not accepted for publication. The
number of high-quality submissions on relevant and exciting topics was substantial,
and unfortunately, not all could be included in the program. We want to extend our
gratitude to the local organization committee for their hard work in making JELIA 2023
a wonderful event.

We are very grateful to all the sponsors for their generous support of JELIA 2023:
School of Embedded Composite Artificial Intelligence (SECAI), Center for Perspicu-
ous Computing (CPEC), Center for Scalable Data Analytics and Artificial Intelligence
(ScaDS.AI), compl3te, Springer, and Potassco Solutions. Last, but not least, we thank
the people behind EasyChair for the useful conference management system.

August 2023 Magdalena Ortiz
Sarah Gaggl

Maria Vanina Martinez

Organization

General Chair

Sarah Gaggl TU Dresden, Germany

Program Committee Chairs

Maria Vanina Martinez Artificial Intelligence Research Institute, IIIA -
CSIC, Spain

Magdalena Ortiz Umeå University, Sweden and TU Wien, Austria

Program Committee

Sergio Abriola Universidad de Buenos Aires, Argentina
Shqiponja Ahmetaj TU Wien, Austria
Gianvincenzo Alfano University of Calabria, Italy
Jose Julio Alferes Universidade NOVA de Lisboa, Portugal
Mario Alviano University of Calabria, Italy
Grigoris Antoniou University of Huddersfield, UK
Carlos Areces Universidad Nacional de Córdoba, Argentina
Peter Baumgartner CSIRO, Australia
Bartosz Bednarczyk TU Dresden, Germany & University of Wrocław,

Poland
Leopoldo Bertossi SKEMA Business School Canada inc., Canada
Alexander Bochman Holon Institute of Technology, Israel
Gerhard Brewka Leipzig University, Germany
Pedro Cabalar University of A Coruña, Spain
Marco Calautti University of Milano, Italy
Francesco Calimeri University of Calabria, Italy
Giovanni Casini ISTI - CNR, Italy
Lukáš Chrpa Czech Technical University in Prague, Czechia
Gianluca Cima Sapienza University of Rome, Italy
Mehdi Dastani Utrecht University, The Netherlands
Thomas Eiter TU Wien, Austria
Esra Erdem Sabanci University, Turkey
Wolfgang Faber Alpen-Adria-Universität Klagenfurt, Austria
Eduardo Fermé Universidade da Madeira, Portugal

viii Organization

Johannes K. Fichte Linköping University, Sweden
Michael Fisher University of Manchester, UK
Tommaso Flaminio Artificial Intelligence Research Institute, IIIA -

CSIC, Spain
Gerhard Friedrich Alpen-Adria-Universitaet Klagenfurt, Austria
Maurice Funk Universität Leipzig, Germany
Marco Garapa Universidade da Madeira, Portugal
Martin Gebser University of Klagenfurt, Austria
Tobias Geibinger TU Wien, Austria
Laura Giordano Università del Piemonte Orientale, Italy
Lluis Godo Artificial Intelligence Research Institute, IIIA -

CSIC, Spain
Markus Hecher MIT, USA
Tomi Janhunen Tampere University, Finland
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Sébastien Konieczny CRIL - CNRS, France
Roman Kontchakov Birkbeck, University of London, UK
Davide Lanti Free University of Bozen-Bolzano, Italy
Joao Leite Universidade NOVA de Lisboa, Portugal
Vladimir Lifschitz University of Texas at Austin, USA
Anela Lolic TU Wien, Austria
Emiliano Lorini IRIT, France
Thomas Lukasiewicz TU Wien, Austria
Sanja Lukumbuzya TU Wien, Austria
Quentin Manière Universität Leipzig, Germany
Marco Maratea University of Calabria, Italy
Pierre Marquis CRIL, U. Artois & CNRS - Institut Universitaire

de France, France
Andrea Mazzullo University of Trento, Italy
Loizos Michael Open University of Cyprus, Cyprus
Angelo Montanari University of Udine, Italy
Michael Morak University of Klagenfurt, Austria
Manuel Ojeda-Aciego University of Malaga, Spain
Cem Okulmus Umeå University, Sweden
Nina Pardal University of Sheffield, UK
Xavier Parent TU Wien, Austria
Francesco Parisi University of Calabria, Italy
David Pearce Universidad Politécnica de Madrid, Spain
Rafael Peñaloza University of Milano-Bicocca, Italy
Andreas Pieris University of Edinburgh, UK and University of

Cyprus, Cyprus
Nico Potyka Cardiff University, UK

Organization ix

Antonio Rago Imperial College London, UK
Anna Rapberger TU Wien, Austria
Maurício Reis Universidade da Madeira, Portugal
Francesco Ricca University of Calabria, Italy
Ricardo Oscar Rodriguez University of Buenos Aires, Argentina
Sebastian Rudolph TU Dresden, Germany
Chiaki Sakama Wakayama University, Japan
Zeynep Saribatur TU Wien, Austria
Kai Sauerwald FernUniversität in Hagen, Germany
Torsten Schaub University of Potsdam, Germany
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Paulo Shakarian Arizona State University, USA
Gerardo Simari Universidad Nacional del Sur (UNS) and

CONICET, Argentina
Mantas Simkus TU Wien, Austria
Michael Thielscher University of New South Wales, Australia
Matthias Thimm FernUniversität in Hagen, Germany
Mirek Truszczynski University of Kentucky, USA
Sara Ugolini Artificial Intelligence Research Institute, IIIA -

CSIC, Spain
Mauro Vallati University of Huddersfield, UK
Leon van der Torre University of Luxembourg, Luxembourg
Ivan Varzinczak Université Paris 8, France
Joost Vennekens KU Leuven, Belgium
Amanda Vidal Wandelmer Artificial Intelligence Research Institute, IIIA -

CSIC, Spain
Carlos Viegas Damásio Universidade NOVA de Lisboa, Portugal
Johannes P. Wallner Graz University of Technology, Austria
Toby Walsh University of New South Wales, Australia
Frank Wolter University of Liverpool, UK
Stefan Woltran TU Wien, Austria
Jessica Zangari University of Calabria, Italy

Additional Reviewers

Alrabbaa, Christian
Arndt, Doerthe
Belardinelli, Francesco
Bengel, Lars
Bernreiter, Michael
Blümel, Lydia
Chafik, Anasse

Collenette, Joe
Cruchten, Mike
De Rose, Edoardo
Diéguez, Martín
Dvořák, Wolfgang
Fernandes, Renan L.
Feyzbakhsh Rankooh, Masood

x Organization

Friedrich, Gerhard
Gabelaia, David
Gladyshev, Maksim
Gonçalves, Ricardo
Hahn, Susana
He, Yifan
Herrmann, Luisa
Higuera, Nelson
Hunther, Anthony
Ielo, Antonio
Jaakkola, Reijo
Knorr, Matthias
Kohlhase, Michael
König, Matthias
Laferriere, François
Mastria, Elena
Mazzotta, Giuseppe

Meier, Arne
Morak, Michael
Motamed, Nima
Oetsch, Johannes
Opitz, Juri
Pan, Wei
Petrova, Iliana M.
Ribeiro, Jandson S.
Ricioppo, Aldo
Rühling, Nicolas
Schaerf, Andrea
Strauch, Klaus
Tarzariol, Alice
Turhan, Anni-Yasmin
Vilander, Miikka
Yilmaz, Baturay

Organizing Committee

Marcos Cramer TU Dresden, Germany
Martin Diller TU Dresden, Germany
Stefan Borgwardt TU Dresden, Germany
Stefan Ellmauthaler TU Dresden, Germany
Lucía Gómez Alvarez TU Dresden, Germany
Dominik Rusovac TU Dresden, Germany
Hannes Straß TU Dresden, Germany
Piotr Gorczyca TU Dresden, Germany

Combining Symbolic and Machine Learning Approaches
for Automating Legal Reasoning (Abstract of Invited Talk)

Katie Atkinson

University of Liverpool
katie@liverpool.ac.uk

Abstract. The need for AI applications to be explainable and trustworthy
is eminently clear in domains where AI-supported decisions can have sig-
nificant real-world consequences. The field of law is one such characteris-
tic domain. In this talk I will present an overview of recent research inves-
tigating how different AI techniques can be combined to provide support
for automating reasoning about legal cases in an efficient and explainable
manner. Symbolic, logic-based techniques are used to represent the legal
knowledge of a domain in a structuredmanner andmachine learning tech-
niques are used to identify the inputs to the symbolic model. The hybrid
approach enables the different techniques to be targeted towards the par-
ticular tasks where they are most effective, within the overall automation
pipeline. I will provide an overview of the hybrid system along with
the first sets of results of experiments evaluating the performance of the
hybrid system where the domain used is legal cases from the European
Court of Human Rights.

References

1. Collenette, J., Atkinson, K., Bench-Capon, T.J.M.: Explainable AI tools for legal reasoning
about cases: a study on the European Court of Human Rights. Artif. Intell. 317, 103861 (2023).
https://doi.org/10.1016/j.artint.2023.103861

2. Mumford, J., Atkinson, K., Bench-Capon, T.J.M.: Combining a legal knowledge model
with machine learning for reasoning with legal cases. In: Proceedings of 19th International
Conference on Artificial Intelligence and Law (ICAIL 2023). pp. 167–176 (2023)

mailto:katie@liverpool.ac.uk
https://doi.org/10.1016/j.artint.2023.103861

Contents

Invited Papers

Generative Datalog and Answer Set Programming – Extended Abstract 3
Mario Alviano

Optimal Repairs in the Description Logic EL Revisited . 11
Franz Baader, Patrick Koopmann, and Francesco Kriegel

Excursions in First-Order Logic and Probability: Infinitely Many Random
Variables, Continuous Distributions, Recursive Programs and Beyond 35

Vaishak Belle

Special Track: Logics for Explainable and Trustworthy AI

Efficient Computation of Shap Explanation Scores for Neural Network
Classifiers via Knowledge Compilation . 49

Leopoldo Bertossi and Jorge E. León

Logic, Accountability and Design: Extended Abstract . 65
Pedro Cabalar and David Pearce

Contrastive Explanations for Answer-Set Programs . 73
Thomas Eiter, Tobias Geibinger, and Johannes Oetsch

Short Boolean Formulas as Explanations in Practice . 90
Reijo Jaakkola, Tomi Janhunen, Antti Kuusisto,
Masood Feyzbakhsh Rankooh, and Miikka Vilander

A New Class of Explanations for Classifiers with Non-binary Features 106
Chunxi Ji and Adnan Darwiche

Stable Normative Explanations: From Argumentation to Deontic Logic 123
Cecilia Di Florio, Antonino Rotolo, Guido Governatori,
and Giovanni Sartor

Declarative Reasoning on Explanations Using Constraint Logic
Programming . 132

Laura State, Salvatore Ruggieri, and Franco Turini

xiv Contents

Argumentation

On the Expressive Power of Assumption-Based Argumentation 145
Matti Berthold, Anna Rapberger, and Markus Ulbricht

Weak Argumentation Semantics and Unsafe Odd Cycles: Results
and a Conjecture . 161

Sjur K Dyrkolbotn

Computing Stable Extensions of Argumentation Frameworks using
Formal Concept Analysis . 176

Sergei Obiedkov and Barış Sertkaya

Reasoning in Assumption-Based Argumentation Using
Tree-Decompositions . 192

Andrei Popescu and Johannes P. Wallner

A Principle-Based Analysis of Bipolar Argumentation Semantics 209
Liuwen Yu, Caren Al Anaissy, Srdjan Vesic, Xu Li,
and Leendert van der Torre

Answer Set Programming

Comparing Planning Domain Models Using Answer Set Programming 227
Lukáš Chrpa, Carmine Dodaro, Marco Maratea, Marco Mochi,
and Mauro Vallati

Hybrid ASP-Based Multi-objective Scheduling of Semiconductor
Manufacturing Processes . 243

Mohammed M. S. El-Kholany, Ramsha Ali, and Martin Gebser

On Heuer’s Procedure for Verifying Strong Equivalence . 253
Jorge Fandinno and Vladimir Lifschitz

Hamiltonian Cycle Reconfiguration with Answer Set Programming 262
Takahiro Hirate, Mutsunori Banbara, Katsumi Inoue,
Xiao-Nan Lu, Hidetomo Nabeshima, Torsten Schaub, Takehide Soh,
and Naoyuki Tamura

Recongo: Bounded Combinatorial Reconfiguration with Answer Set
Programming . 278

Yuya Yamada, Mutsunori Banbara, Katsumi Inoue, and Torsten Schaub

Contents xv

Description Logics and Ontological Reasoning

Beyond ALCreg: Exploring Non-Regular Extensions of PDL
with Description Logics Features . 289

Bartosz Bednarczyk

Non-Normal Modal Description Logics . 306
Tiziano Dalmonte, Andrea Mazzullo, Ana Ozaki, and Nicolas Troquard

First Steps Towards Taming Description Logics with Strings 322
Stéphane Demri and Karin Quaas

Merge, Explain, Iterate: A Combination of MHS and MXP in an ABox
Abduction Solver . 338

Martin Homola, Júlia Pukancová, Janka Boborová, and Iveta Balintová

Tractable Closure-Based Possibilistic Repair for Partially Ordered DL-Lite
Ontologies . 353

Ahmed Laouar, Sihem Belabbes, and Salem Benferhat

Derivation-Graph-Based Characterizations of Decidable Existential Rule
Sets . 369

Tim S. Lyon and Sebastian Rudolph

Concept Combination in Weighted DL . 385
Guendalina Righetti, Pietro Galliani, and Claudio Masolo

Logics of Knowledge and Belief

How Easy it is to Know How: An Upper Bound for the Satisfiability Problem . . 405
Carlos Areces, Valentin Cassano, Pablo F. Castro, Raul Fervari,
and Andrés R. Saravia

Non-standard Modalities in Paraconsistent Gödel Logic . 420
Marta Bílková, Sabine Frittella, and Daniil Kozhemiachenko

Base-Based Model Checking for Multi-agent only Believing 437
Tiago de Lima, Emiliano Lorini, and François Schwarzentruber

Belief Reconfiguration . 446
Sébastien Konieczny, Elise Perrotin, and Ramón Pino Pérez

xvi Contents

Splitting Techniques for Conditional Belief Bases in the Context
of c-Representations . 462

Marco Wilhelm, Meliha Sezgin, Gabriele Kern-Isberner,
Jonas Haldimann, Christoph Beierle, and Jesse Heyninck

Non-monotonic Reasoning

Complexity and Scalability of Defeasible Reasoning with Typicality
in Many-Valued Weighted Knowledge Bases . 481

Mario Alviano, Laura Giordano, and Daniele Theseider Dupré

Deontic Equilibrium Logic with eXplicit Negation . 498
Pedro Cabalar, Agata Ciabattoni, and Leendert van der Torre

Categorical Approximation Fixpoint Theory . 515
Angelos Charalambidis and Panos Rondogiannis

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 531
Igor de Camargo e Souza Câmara and Anni-Yasmin Turhan

Truth and Preferences - A Game Approach for Qualitative Choice Logic 547
Robert Freiman and Michael Bernreiter

Rational Closure Extension in SPO-Representable Inductive Inference
Operators . 561

Jonas Haldimann, Thomas Meyer, Gabriele Kern-Isberner,
and Christoph Beierle

Planning

delphic: Practical DEL Planning via Possibilities . 579
Alessandro Burigana, Paolo Felli, and Marco Montali

Enhancing Temporal Planning by Sequential Macro-Actions 595
Marco De Bortoli, Lukáš Chrpa, Martin Gebser,
and Gerald Steinbauer-Wagner

Planning with Partial Observability by SAT . 605
Saurabh Fadnis and Jussi Rintanen

Optimal Planning with Expressive Action Languages as Constraint
Optimization . 621

Enrico Giunchiglia and Armando Tacchella

Contents xvii

Plan Selection Framework for Policy-Aware Autonomous Agents 638
Charles Harders and Daniela Inclezan

Reasoning About Causes and Dependencies

Strongly Complete Axiomatization for a Logic with Probabilistic
Interventionist Counterfactuals . 649

Fausto Barbero and Jonni Virtema

Logics with Probabilistic Team Semantics and the Boolean Negation 665
Miika Hannula, Minna Hirvonen, Juha Kontinen, Yasir Mahmood,
Arne Meier, and Jonni Virtema

Formalizing Statistical Causality via Modal Logic . 681
Yusuke Kawamoto, Tetsuya Sato, and Kohei Suenaga

Boosting Definability Bipartition Computation Using SAT Witnesses 697
Jean-Marie Lagniez and Pierre Marquis

Hybrid Modal Operators for Definite Descriptions . 712
Przemysław Andrzej Wałȩga and Michał Zawidzki

Reasoning About Quantities and Functions

Data Graphs with Incomplete Information (and a Way to Complete Them) 729
Carlos Areces, Valentin Cassano, Danae Dutto, and Raul Fervari

Computing MUS-Based Inconsistency Measures . 745
Isabelle Kuhlmann, Andreas Niskanen, and Matti Järvisalo

Towards Systematic Treatment of Partial Functions in Knowledge
Representation . 756

Djordje Markovic, Maurice Bruynooghe, and Marc Denecker

Deterministic Weighted Automata Under Partial Observability 771
Jakub Michaliszyn and Jan Otop

Temporal and Spatial Reasoning

Past-Present Temporal Programs over Finite Traces . 787
Pedro Cabalar, Martín Diéguez, François Laferrière, and Torsten Schaub

Robust Alternating-Time Temporal Logic . 796
Aniello Murano, Daniel Neider, and Martin Zimmermann

xviii Contents

The Universal Tangle for Spatial Reasoning . 814
David Fernández-Duque and Konstantinos Papafilippou

Author Index . 829

Invited Papers

Generative Datalog and Answer Set
Programming – Extended Abstract

Mario Alviano(B)

DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende, CS, Italy

mario.alviano@unical.it

Abstract. Generative Datalog is an extension of Datalog that incorpo-
rates constructs for referencing parameterized probability distributions.
This augmentation transforms the evaluation of a Generative Datalog
program into a stochastic process, resulting in a declarative formal-
ism suitable for modeling and analyzing other stochastic processes. This
work provides an introduction to Generative Datalog through the lens of
Answer Set Programming (ASP), demonstrating how Generative Data-
log can explain the output of ASP systems that include @-terms referenc-
ing probability distributions. From a theoretical point of view, extend-
ing the semantics of Generative Datalog to stable negation proved to be
challenging due to the richness of ASP relative to Datalog in terms of lin-
guistic constructs. On a more pragmatic side, the connection between the
two formalisms lays the foundation for implementing Generative Datalog
atop efficient ASP systems, making it a practical solution for real-world
applications.

Keywords: Answer Set Programming · Datalog · probabilistic
reasoning · non-measurable sets · stable model semantics

Extended Abstract

Generative Datalog [4,5] extends Datalog with Δ-terms, which are primitive con-
structs representing probability distributions [13,17]. Δ-terms can occur in rule
heads to represent that specific conditions encoded by rule bodies trigger random
phenomena. The conventional bottom-up evaluation of Datalog programs is then
naturally extended by sampling outcomes for Δ-terms when needed, with the
probability given by the associated probability distributions. If all the events of
such probability distributions are independent, as it is commonly assumed, the
probability that a model is produced by the bottom-up evaluation of a Genera-
tive Datalog program is the product of the probabilities of the sampled Δ-term
outcomes. It turns out that models of a Generative Datalog program define a
probabilistic space, and lay the foundation of a declarative specification language
for stochastic processes.

Recall that a probability space is a triple (Ω,F , P) satisfying the following
conditions:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 3–10, 2023.
https://doi.org/10.1007/978-3-031-43619-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_1&domain=pdf
http://orcid.org/0000-0002-2052-2063
https://doi.org/10.1007/978-3-031-43619-2_1

4 M. Alviano

– Ω is the sample space, a nonempty set comprising all possible outcomes (of
the modeled stochastic process).

– F ⊆ 2Ω is the event space, a collection of all the events to consider, where an
event is a set of possible outcomes. F must be a σ-algebra, i.e.,

• F contains the sample space: Ω ∈ F ;
• F is closed under complement: if E ∈ F , then (Ω \ E) ∈ F ;
• F is closed under countable unions: if Ei ∈ F for i ∈ N, then(⋃

i∈N
Ei

) ∈ F .
– P : F → [0, 1] is the probability measure, a function on events such that

• P is countably additive: if Ei ∈ F (for all i ∈ N) are pairwise disjoint
sets, then P (

⋃
i∈N

Ei) =
∑

i∈N
P (Ei);

• the measure of the sample space is equal to one: P (Ω) = 1.

A discrete probability distribution over a countable sample space Ω is a function
P : Ω → [0, 1] such that

∑
o∈Ω P (o) = 1; it is essentially a probability space

whose event space includes all elementary events (i.e., singletons of Ω).
One strength of Generative Datalog is the fact that random phenomena are

not necessarily fixed a priori, but materialized when some conditions are met. To
clarify this aspect of Generative Datalog, let us consider the stochastic process
resulting from flipping an unbiased coin multiple times. Let s = s1 · · · sn (n ≥ 1)
be a string with each si ∈ {h, t}, so that os := {Flip(i) = si | i = 1, . . . , n}
denotes one possible outcome of flipping the coin n times. As a first example,
the stochastic process of flipping the coin two times is associated with the prob-
abilistic space having four possible outcomes, namely ohh , oht , oth and ott . On
the other hand, if the coin is flipped a second time only when the first flipping
resulted tails, then the probabilistic space only has three possible outcomes,
namely oh , oth and ott . If random phenomena are necessarily fixed a priori, the
second stochastic process must be associated with a probabilistic space with
four possible outcomes, two of which (ohh and oht) associated with the event
{ohh , oht} and no singletons are in the event space; intuitively, such a modeling
of the stochastic process ignores the outcome of the second flip, rather than
not flipping the coin a second time. While this is reasonable when the number
of random phenomena is bounded by a small constant, it practically fails in
general, for example, if the coin is flipped until heads is obtained. In this case,
the number of random phenomena is unbounded, still there are several possible
outcomes otnh of finite size, for n ≥ 0 and with probability 0.5n+1.

In order to materialize the sampled outcomes of the random phenomena
involved in computing a minimal model of a Generative Datalog program, rules
with Δ-terms are rewritten by introducing fresh predicates that collect the sam-
pled values from probability distributions. For example, the program

� → side(1,Flip(1)) (1)
side(I, tails) → side(I + 1,Flip(I + 1)) (2)

Generative Datalog and Answer Set Programming – Extended Abstract 5

is rewritten as

� → ∃Y ResultFlip(1, Y) (3)

ResultFlip(1, Y) → side(1, Y) (4)

side(I, tails) → ∃Y ResultFlip(I + 1, Y) (5)

side(I, tails) ∧ ResultFlip(I + 1, Y) → side(I + 1, Y) (6)

where the existential variable Y takes values from the probability distribution
Flip, i.e., Y is replaced by either heads or tails with probability 1

2 whenever the
bodies of (3) and (5) are true. It turns out that minimal models of the rewrit-
ten program have the form {ResultFlip(i, tails), side(i, tails) | i = 1, . . . , n} ∪
{ResultFlip(n+1, heads), side(n+1, heads)}, for all n ≥ 0 with probability 0.5n+1

(beside an additional infinite model {ResultFlip(i, tails), side(i, tails) | i ≥ 1}). It
can be observed that the probability of an outcome can be computed by multi-
plying the probabilities of the atoms in the extension of predicate ResultFlip.

Interestingly, the semantics of Generative Datalog can be used to measure
the probability of the possible outcomes of Answer Set Programming (ASP)
engines [1,11] processing programs of a specific form. In fact, the language of ASP
extends Datalog with several constructs, among them @-terms in clingo [10]
to represent interpreted function symbols; the interpretation of @-terms is given
by functions implemented in Python or Lua, and can easily refer probability
distributions. It turns out that the evaluation of a Datalog program using such
@-terms in rule heads is essentially a stochastic process analogous to the one
associated with Generative Datalog programs. For example, the repeated flipping
of a coin can be encoded as follows in clingo:

1 #script(python)

2 import functools

3 import random

4 @functools.lru_cache(maxsize=None)

5 def flip(signature):

6 return "tails" if random.uniform(0, 1) <= 0.5 else "heads"

7 #end.

8 side(1, @flip(1)).

9 side(I+1, @flip(I+1)) :- side(I, "tails").

Note that function flip is decorated by a caching mechanism so that multi-
ple calls with the same argument returns the same value, which is randomly
determined on the first call (at line 8).

Given the many linguistic extensions of ASP supported by mainstream
engines, a natural question arises: What is the probability space associated with
the possible outcomes of ASP engines processing programs using @-terms that
refer probability distributions? One important step in answering such a ques-
tion is to extend Generative Datalog with nonmonotonic negation under stable
model semantics [12]; some other common constructs, among them constraints
and choice rules, can be seen as shortcuts for rules with nonmonotonic negation.

6 M. Alviano

Intuitively, stable models are minimal models under the assumption they pro-
vide for false literals. An important point here is that a program is associated
with zero or several stable models. While this is very convenient for representing
combinatorial search and optimization problems, whose instances are typically
associated with several solutions, it also makes the understanding of the under-
lying stochastic process, in case @-terms refer to probability distributions, more
challenging.

First of all, in general a possible outcome of the stochastic process cannot be
simply a model anymore, as asking an ASP engine to search for a single stable
model normally results in one stable model of the program in input (if any),
which is non-deterministically selected; here the adjective non-deterministically
is slightly abused, as ASP engines in fact implement repeatable computation, but
the exact stable model produced in output depends on many internals that are
almost impossible to track, among them the branching heuristic and its parame-
ters, the order of atoms in memory, and so on. Such non-determinism essentially
disappears when the ASP engine is asked to compute all stable models of a
program, and the order in which they are enumerated is ignored. On the other
hand, even sets of stable models may have insufficient information regarding the
stochastic process that produced them; in the extreme case in which the pro-
gram has no stable models, the (empty) set of stable models carries indeed no
information at all. The lack of information is an insight that a previous compu-
tational step of the stochastic process should be considered, where all required
information is still present. In mainstream ASP engines, stable model enumer-
ation is preceded by intelligent grounding, a form of bottom-up computation
similar to the one implemented by Datalog engines and that produces a portion
of the Herbrand expansion sufficient to compute all stable models of the input
program. It is actually at grounding time that @-terms are processed, and this
is particularly important when they refer to probability distributions, as indeed
the stochastic part of the process is precisely the intelligent grounding: once
all @-terms are processed, the subsequent stable model enumeration does not
involve any other random phenomena.

For example, let us consider a simple game, which can be played or not,
consisting in flipping a coin; a played game is won if the coin shows heads. Such
a scenario is captured by

10 {play}. % equivalent to play :- not play'. play' :- not play.

11 side(@flip(1)) :- play.

12 :- play, not side("heads").

where the @-term flip is defined in lines 4–6. The choice rule in line 10 gives the
possibility to take play as true, without enforcing it; when play is true, line 11
can support the truth of one instance of side/1 obtained by sampling a value
between heads and tails, each one with probability 1

2 . Finally, the constraint
in line 12 checks that the game is won if played. All in all, there are two pos-
sible outcomes: when @flip(1)= "heads", there are two stable models, namely
{ResultFlip(heads)} (i.e., the game is not played) and W := {ResultFlip(heads),
play, side("heads")} (i.e., the game is played and won); when @flip(1)= "tails

Generative Datalog and Answer Set Programming – Extended Abstract 7

", the only stable model is {ResultFlip(tails)} (i.e., the game is not played), as
indeed adding play would raise an inconsistency with line 12. Note that, in both
cases, the set of stable models must be considered as a whole when measuring
probabilities. Moreover, if line 10 is replaced by the fact play., then the only sta-
ble model is W ; for @flip(1)= "tails" the program has no stable models, and
the empty set carries no information about its 1

2 probability of being computed.
Based on the above observations, in order to preserve the information about

the sampled Δ-terms, a possible outcome of the evaluation of a Generative Data-
log program with nonmonotonic negation by an ASP engine must be the program
produced by the intelligent grounder, with the probability given by multiplying
the probabilities of all sampled Δ-terms. However, ground programs are just
intermediate artifacts that mainstream ASP engines use to compute stable mod-
els, and the interest of ASP programmers is usually on stable models rather than
ground programs. Such an interest can be represented in the probability space
by means of the event space: all finite ground programs in the sample space that
are associated with the same set of stable models are part of the same indivisible
event, whose probability is given by the sum of the probabilities of the ground
programs. Note that we considered finite ground programs so far, but in fact
there is also the possibility that the intelligent grounder does not terminate,
which pragmatically implies that the subsequent stable model enumeration does
not even start. All such infinite ground programs are collected in an error event,
whose probability is obtained as the complement of the event comprising all
finite ground programs.

For a broader example, let us consider a network of routers, possible failures,
and zero budget for replacements and reconfiguration. A router is expected to
have one failure every ten years on average. We are interested in understanding
the probability that the network is still connected after five years; hence, every
router has 1

2 failure probability. Using again the flip @-term from lines 4–6,
such a scenario can be encoded as follows:

13 side(X, @flip(X)) :- router(X).

14 fail(X) :- side(X, "heads").

15 reach(X) :- X = #min{Y : router(Y), not fail(Y)}.

16 reach(Y) :- reach(X), connection(X,Y), not fail(Y).

17 disconnected :- router(X), not fail(X), not reach(X).

18 :- not disconnected.

Note that the atom disconnected must be true in any stable model of the above
program because of the constraint in line 18. Therefore, the no stable models
event is associated with possible outcomes representing a network that is still
connected after removing failing routers.

While by now the tiles of the puzzle have been identified, there is still one
big obstacle in defining the probability space of a Generative Datalog program
with nonmonotonic negation evaluated by an ASP engine: possible outcomes are
ground programs obtained by the intelligent grounder of the ASP engine. The
obstacle lies in the fact that intelligent grounders implement many sophisticated
algorithms to simplify the program in input in order to reduce the number

8 M. Alviano

of iterations, and to reduce the size of the join operations. An abstraction of
the process is thus crucial to obtain something understandable. The idea is to
parameterize the probability space by the adopted intelligent grounder in order
to obtain an underestimate of the probabilities of the events associated with
sets of stable models. Intuitively, a more sophisticated grounder is expected to
produce less ground rules in output, and therefore reduce the size (and the
probability) of the error event; the probability subtracted from the error event
is distributed among the events associated with stable models.

A perfect grounder, intended as one that always returns a minimal set of
ground rules sufficient to compute the stable models of the program in input,
does not exist in general. However, there are fragments of the language for which
such perfect grounders actually do exist. A prominent example is Datalog: if the
program in input is a Datalog program, then the intelligent grounder essentially
mimics the bottom-up evaluation of Datalog engines; nothing more than the
rules sufficient to derive the minimal model of the input program is actually
produced in this case, and every atom in the model is in the head of exactly one
of such rules. There is another important fragment for which a perfect grounder
does exist: if the program in input is stratified with respect to negation, then it
can be evaluated one stratum at time, starting from facts and concluding falsity
of all atoms belonging to already processed strata and that have not been derived
as true. In this case, the ground program produced in output is associated with
a unique stable model, which comprises all rule heads. The program shown in
lines 13–17 (hence, excluding the constraint) is indeed stratified with respect to
negation. Predicates router and connection are given by facts, the other predi-
cates can be processed one by one in the order side, fail, reach, disconnected.
When predicate reach is processed in line 16, the extension of predicate fail is
already known and can be used to obtain a two-valued evaluation of the rule
body: ground atoms with predicate fail occurring in rule heads are true, and
any other ground atom with predicate fail is false.

The reader is referred to our recent PODS’23 paper on Generative Datalog
with Stable Negation [2] for a more detailed description of the language and the
formalization of its semantics, as well as for some of its properties. For the sake of
completeness, we mention here that there are other probabilistic logic languages
in the literature. Some of them attach probabilities to database facts [7,18,26,27,
29] or to rules [8,19,21,22] whereas other provide constructs similar to Δ-terms
[3,6,16,20,23,28]. The reader is referred to [5] for a detailed comparison between
these languages and Generative Datalog. Other frameworks related to our work
are (Hybrid) ProbLog [9,15,24], probabilistic extensions of Prolog where rules
can be annotated with probability values and distributions; Probabilistic Answer
Set Programming [7], adding probabilistic facts to ASP in order to obtain upper
and lower probability bounds for true atoms; (Hybrid) Markov Logic Networks
(MLNs) [19,25,30], adding weights and probability distributions to first-order
constraints and ASP rules. As a final note, there are extensions of Generative
Datalog to deal with continuous distributions [14].

Generative Datalog and Answer Set Programming – Extended Abstract 9

Acknowledgments. This work is about some ongoing research with Matthias
Lanzinger, Michael Morak, and Andreas Pieris [2]. This work was partially sup-
ported by Italian Ministry of Research (MUR) under PNRR project FAIR “Future AI
Research”, CUP H23C22000860006, under PNRR project Tech4You “Technologies for
climate change adaptation and quality of life improvement”, CUP H23C22000370006,
and under PNRR project SERICS “SEcurity and RIghts in the CyberSpace”, CUP
H73C22000880001; by the LAIA lab (part of the SILA labs) and by GNCS-INdAM.

References

1. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

2. Alviano, M., Lanzinger, M., Morak, M., Pieris, A.: Generative datalog with stable
negation. In: PODS. ACM (2023). https://arxiv.org/abs/2206.12247

3. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets.
Theory Pract. Log. Program. 9(1), 57–144 (2009)

4. Bárány, V., ten Cate, B., Kimelfeld, B., Olteanu, D., Vagena, Z.: Declarative prob-
abilistic programming with datalog. In: ICDT. LIPIcs, vol. 48, pp. 7:1–7:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016)

5. Bárány, V., ten Cate, B., Kimelfeld, B., Olteanu, D., Vagena, Z.: Declarative prob-
abilistic programming with datalog. ACM Trans. Database Syst. 42(4), 22:1–22:35
(2017)

6. Santos Costa, V., Page, D., Cussens, J.: CLP(BN): constraint logic programming
for probabilistic knowledge. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton,
S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp.
156–188. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-
8 6

7. Cozman, F.G., Mauá, D.D.: The joy of probabilistic answer set programming:
semantics, complexity, expressivity, inference. Int. J. Approx. Reason. 125, 218–
239 (2020)

8. Domingos, P.M., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers (2009)

9. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted Boolean formulas. Theory Pract. Log. Program. 15(3), 358–401 (2015)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/10.1017/
S1471068418000054

11. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–
124 (2011)

12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

13. Goodman, N.D.: The principles and practice of probabilistic programming. In:
POPL, pp. 399–402. ACM (2013)

14. Grohe, M., Kaminski, B.L., Katoen, J., Lindner, P.: Generative datalog with con-
tinuous distributions. In: PODS, pp. 347–360. ACM (2020)

https://doi.org/10.1007/978-3-319-61660-5_19
https://arxiv.org/abs/2206.12247
https://doi.org/10.1007/978-3-540-78652-8_6
https://doi.org/10.1007/978-3-540-78652-8_6
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054

10 M. Alviano

15. Gutmann, B., Jaeger, M., De Raedt, L.: Extending ProbLog with continuous dis-
tributions. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489,
pp. 76–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21295-
6 12

16. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., Raedt, L.D.: The magic
of logical inference in probabilistic programming. Theory Pract. Log. Program.
11(4–5), 663–680 (2011)

17. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS,
pp. 186–195. IEEE Computer Society (1989)

18. Kimelfeld, B., Senellart, P.: Probabilistic XML: models and complexity. In: Ma, Z.,
Yan, L. (eds.) Advances in Probabilistic Databases for Uncertain Information Man-
agement. Studies in Fuzziness and Soft Computing, vol. 304, pp. 39–66. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37509-5 3

19. Lee, J., Talsania, S., Wang, Y.: Computing LPMLN using ASP and MLN solvers.
Theory Pract. Log. Program. 17(5–6), 942–960 (2017)

20. Nitti, D., Laet, T.D., Raedt, L.D.: Probabilistic logic programming for hybrid
relational domains. Mach. Learn. 103(3), 407–449 (2016)

21. Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: scaling up statistical inference
in Markov logic networks using an RDBMS. Proc. VLDB Endow. 4(6), 373–384
(2011)

22. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: DeepDive: web-scale knowledge-base
construction using statistical learning and inference. In: VLDS. CEUR Workshop
Proceedings, vol. 884, pp. 25–28. CEUR-WS.org (2012)

23. Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi,
P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming.
LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78652-8 8

24. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In: IJCAI, pp. 2462–2467 (2007)

25. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

26. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
IJCAI, pp. 1330–1339. Morgan Kaufmann (1997)

27. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers (2011)

28. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: a language of causal prob-
abilistic events and its relation to logic programming. Theory Pract. Log. Program.
9(3), 245–308 (2009)

29. Vieira, T., Francis-Landau, M., Filardo, N.W., Khorasani, F., Eisner, J.: Dyna:
toward a self-optimizing declarative language for machine learning applications.
In: MAPL@PLDI, pp. 8–17. ACM (2017)

30. Wang, J., Domingos, P.M.: Hybrid Markov logic networks. In: AAAI, pp. 1106–
1111. AAAI Press (2008)

https://doi.org/10.1007/978-3-642-21295-6_12
https://doi.org/10.1007/978-3-642-21295-6_12
https://doi.org/10.1007/978-3-642-37509-5_3
https://doi.org/10.1007/978-3-540-78652-8_8
https://doi.org/10.1007/978-3-540-78652-8_8

Optimal Repairs in the Description Logic
EL Revisited

Franz Baader1,2(B) , Patrick Koopmann1 , and Francesco Kriegel1

1 Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany
{patrick.koopmann,francesco.kriegel}@tu-dresden.de

2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)
Dresden/Leipzig, Dresden, Germany

franz.baader@tu-dresden.de

Abstract. Ontologies based on Description Logics may contain errors,
which are usually detected when reasoning produces consequences that
follow from the ontology, but do not hold in the modelled application
domain. In previous work, we have introduced repair approaches for EL
ontologies that are optimal in the sense that they preserve a maximal
amount of consequences. In this paper, we will, on the one hand, review
these approaches, but with an emphasis on motivation rather than on
technical details. On the other hand, we will describe new results that
address the problems that optimal repairs may become very large or need
not even exist unless strong restrictions on the terminological part of the
ontology apply. We will show how one can deal with these problems by
introducing concise representations of optimal repairs.

1 Introduction

Description Logics (DLs) [4,5] are a prominent family of logic-based knowledge
representation formalisms, which offer a good compromise between expressive-
ness and the complexity of reasoning and are the formal basis for the Web ontol-
ogy language OWL.1 In a DL ontology, the important notions of the application
domain are introduced as background knowledge in the terminology (TBox),
and then these notions are used to represent a specific application situation in
the ABox. The DLs of the EL family have drawn considerable attention since
their reasoning problems are tractable [3], but they are nevertheless expressive
enough to represent ontologies in many application domains, such as biology
and medicine.2 For instance, the medical ontology SNOMEDCT employs EL
and contains the following concept inclusion (CI) in its TBox:

Common_cold � Disease � ∃causative_agent.Virus
� ∃finding_site.Upper_respiratory_tract_structure
� ∃pathological_process.Infectious_process,

1 https://www.w3.org/TR/owl2-overview/.
2 see. e.g., https://bioportal.bioontology.org and https://www.snomed.org/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 11–34, 2023.
https://doi.org/10.1007/978-3-031-43619-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_2&domain=pdf
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0003-0219-0330
https://www.w3.org/TR/owl2-overview/
https://bioportal.bioontology.org
https://www.snomed.org/
https://doi.org/10.1007/978-3-031-43619-2_2

12 F. Baader et al.

which says that a common cold is a disease that is caused by a virus, can
be found in the upper respiratory tract, and has as pathological process an
infectious process. A GP can then employ this concept to store in the ABox
that patient Alice is diagnosed with common cold using the concept asser-
tion (∃has_diagnosis.Common_cold)(alice). The GP’s ABox may also con-
tain the information that Charles is Alice’s father, expressed as role assertion
has_father(alice, charles), which might be of interest in the context of heredi-
tary diseases.

Like all large human-made digital artefacts, the ontologies employed in such
applications may contain errors, and this problem gets even worse if parts of
the ontology (usually the ABox) are automatically generated by inexact meth-
ods based on information retrieval or machine learning. Errors in ontologies are
often detected when the reasoner generates a consequence that formally follows
from the knowledge base, but is incorrect in the sense that it does not hold
in the application domain that is supposed to be modelled. For example, in a
previous version of SNOMEDCT, the concept “Amputation of finger” was clas-
sified as a subconcept of “Amputation of hand,” which is fortunately wrong in
the real world. To correct such errors in large ontologies, the knowledge engineer
(KE) should be supported by an appropriate repair tool. Such a tool receives as
input one or more consequences of the given ontology that are unwanted, and it
should return one or more repaired ontologies that no longer have these conse-
quences (called repairs). The KE can then choose one of the computed repairs
and either use it as the new ontology, or continue the repair process from it if
other unwanted consequences are detected. Of course, it makes no sense to use
as a repair an arbitrary ontology that does not have the unwanted consequences.
The repaired ontology should (a) not introduce new information and (b) be as
close as possible to the original ontology. There are different possibilities for how
to formalize these conditions.

The classical approaches for ontology repair return maximal subsets of the
ontology that do not have the unwanted consequence, and employ methods
inspired by model-based diagnosis [33] to compute these sets [17,32,34]. Thus,
these approaches interpret the above conditions in a syntactic way: (a) is read
as “no new axioms” and (b) is realized by the maximality condition. In [15] we
called classical repairs that satisfy this maximality condition optimal classical
repairs. While these approaches preserve as many of the axioms in the ontology
as possible, they need not preserve a maximal amount of consequences, and they
are syntax-dependent. For example, consider the ABoxes A := {(A�B)(a)} and
B := {A(a), B(a)}, which both say that individual a belongs to the concepts A
and B, and are thus equivalent. However, with respect to the unwanted conse-
quence A(a), the ABox A has the empty ABox as only optimal classical repair,
whereas B has the optimal classical repair {B(a)}. Thus, the latter repair retains
the consequence B(a), whereas the former does not. To overcome this problem,
more gentle repair approaches have been introduced, e.g., in [15,21,23,26,35].
The basic idea underlying these approaches is to replace some axioms of the
ontology by weaker ones, rather than just removing them, as in the classical

Optimal Repairs in the Description Logic EL Revisited 13

approach. In our example, one can replace the axiom (A � B)(a) in the ABox A
with the weaker axiom B(a), and thus retain the consequence B(a) even if one
starts with A rather than B. However, these gentle repairs are still dependent on
the syntactic structure of the axioms in the ontology, and how well they realize
condition (b) depends on the employed weakening relation between axioms and
the strategy used to apply it.

Providing the KE with syntax-dependent repair tools is not in line with the
functional approach to knowledge representation [18,27] adopted by DLs. In this
approach, the syntactic structure of the axioms in the ontology is supposed to
be irrelevant. What counts is what queries are entailed by the ontology, which
in DLs are usually instance queries (IQ) or conjunctive queries (CQ). In this
functional setting, (a) should be read as “no new consequences” (expressed in
the adopted query formalism) and (b) as preserving a maximal set of such con-
sequences. This leads us to the definition of an optimal repair [7,15], which is
an ontology that does not have the unwanted consequences, is entailed by the
original ontology (thus realizing property (a)), and preserves a maximal amount
of consequences in the sense that there is no repair (i.e., no ontology satisfying
the first two properties) that strictly entails it (property (b)). Entailment can be
IQ-entailment or CQ-entailment, depending on whether we are interested only
in instance queries, or also in conjunctive queries [28]. Maximizing the retained
consequences is also motivated by the following observation. All the repair tool
knows is the original ontology and the consequences that should be removed,
which are specified in what we call a repair request. If it were to remove more
consequences than are strictly needed to satisfy the repair request, then the deci-
sion which additional consequences to remove would be a random choice by the
tool, not based on any application knowledge, which is held by the KE. In case
the optimal repair retains consequences that should be removed, the KE needs
to specify this in a subsequent repair request.

If a repair problem consisting of an ontology and a repair request does not
have a repair, then it cannot have an optimal one. In general, however, optimal
repairs of repair problems that have a repair need not exist either, even in the
simple setting of EL ABoxes without a TBox. This is illustrated in the following
example, where the ABox A = {V (n), �(n, n)} says that Narcissus is a vain
individual that loves itself, and the repair request R = {V (n)} wants us to
remove the consequence that Narcissus is vain. Intuitively, to obtain a repair, we
must remove V (n). However, since all assertions of the form ∃�.(V �(∃�.)k�)(n),
saying that Narcissus loves a vain individual that is the starting point of a
loves-chain of length k, are consequences of A and can be added to {�(n, n)}
without entailing V (n), it is easy to see that there is no finite EL ABox that
is an optimal repair. In fact, since Narcissus is no longer vain, the retained
cycle �(n, n) cannot be used to generate the loves-chains of arbitrary length
starting from a vain individual. Even if a given repair problem has optimal
repairs, they may not cover all repairs in the sense that every repair is entailed
by an optimal one. To see this, we can look at a modified version of the above
example. Consider the ABox B = {k(t, n), V (n), �(n, n)}, which contains the

14 F. Baader et al.

additional information that Tiresias knows Narcissus, and the repair request
Q = {(∃k.V)(t)}. Removing k(t, n) from B yields an optimal repair. However,
there are also repairs that retain this assertion, but there is no optimal one
among them for the same reason as in the previous example. Thus, if the KE
is only offered the optimal repair {V (n), �(n, n)} by the repair tool, the repair
options that retain the assertion k(t, n) are missed. This illustrates that the use
of optimal repairs in a repair tool requires a setting where the optimal repairs
always cover all repairs.

This can be achieved by using a more general notion of ABoxes, called quanti-
fied ABoxes (qABoxes) [16], where in addition to the usual named individuals we
also have anonymous objects, which are represented as (existentially quantified)
variables. In our Narcissus example, an optimal repair of A for R is obtained
by removing V (n) and introducing an anonymous vain and self-loving lover of
Narcissus, which yields the qABox ∃{x}.{�(n, n), �(n, x), �(x, n), �(x, x), V (x)}.
Note that we could not have used a named individual b instead of the variable
x since then the resulting ABox would have entailed instance relationships for
b, such as V (b), that are not entailed by A. One might think that retaining a
consequence like (∃�.V)(n) is not justified since one of the reasons for this being
a consequence of A, namely V (n), has been removed. However, with this argu-
ment, we would be back at the classical repair approach. As argued above, since
the repair request only specifies that V (n) should no longer be a consequence,
other consequences like (∃�.V)(n) should not be lost unless this is needed to
remove V (n).

In [16] we consider a setting where ontologies are qABoxes and the repair
requests consist of entailed EL instance relationships.3 Given such a repair prob-
lem, we show how to construct a finite set of repairs, called the canonical repairs,
which cover all repairs. The canonical repairs are of exponential size, and there
may be exponentially many of them. Not every canonical repair is optimal, but
due to the covering property, the set of them contains all optimal repairs up
to equivalence. The set of optimal repairs can thus be obtained by removing
non-optimal canonical repairs, i.e., ones that are strictly entailed by another
canonical repair, and this set covers all repairs. The construction of the canoni-
cal repairs is actually the same for the CQ and the IQ case. The only difference
is that, when removing non-optimal canonical repairs, the respective entailment
relation must be used. Since CQ-entailment implies IQ-entailment, but not vice
versa, more canonical repairs may be removed as non-optimal in the IQ setting.
In addition, since CQ-entailment is NP-complete and IQ-entailment is tractable,
the complexity of removing non-optimal repairs is higher in the CQ case.

The differences between the CQ and the IQ case get more pronounced if we
add an EL TBox. In [7], we assume that this TBox is correct, and thus should
not be changed in the repair process. In order to adapt the approach and the
results of [16] to this setting, the first step is to saturate the given qABox w.r.t.

3 The paper [16] actually calls repairs “compliant anonymisations” and repair requests
“privacy policies” since it considers a situation where consequences are to be removed
not because they are incorrect, but since this information should be hidden.

Optimal Repairs in the Description Logic EL Revisited 15

the TBox, to reduce entailment with TBox to entailment without TBox. For the
IQ case, such a saturation always exists and can be computed in polynomial
time. For the CQ case, a finite saturation need not exist in general. However,
for cycle-restricted TBoxes [2], it always exists, but may be of exponential size.
Continuing the repair process with the saturated qABox, we still need to take the
TBox into account when defining canonical repairs, to ensure that consequences
that have been removed from the qABox cannot be reintroduced by the TBox.
With this adapted notion of canonical repairs, we obtain the same results as
for the case without TBox. The canonical repairs cover all repairs and can be
computed in exponential time. From them the set of all optimal repairs can
be obtained by removing non-optimal ones using entailment test [7]. This works
both for the IQ and the CQ case, but in the latter only if we can compute a finite
saturation, which is always the case if the TBox is cycle-restricted. For TBoxes
that are not cycle-restricted, optimal repairs need not exist in the CQ case. For
example, with respect to the TBox {V � ∃�.V,∃�.V � V }, which says that vain
individuals are exactly the ones that love a vain individual, the qABox {V (n)}
does not have an optimal repair for the repair request R = {V (n)}. Intuitively,
the reason is that the qABox together with the TBox implies the existence of
arbitrarily long loves-chains starting from n, which are no longer entailed by the
TBox if V (n) is removed (see Example 9 in [11] for a more detailed argument).
One might think that the first GCI V � ∃�.V is enough to destroy existence of
an optimal repair. This is, however, not the case. Without the second GCI one
can introduce an anonymous vain individual x that is loved by n and loves itself
to obtain an optimal repair.

In the first part of the paper (Sect. 2 and Sect. 3), we will describe the repair
approaches developed in our previous work [7,16], but with an emphasis on
motivation rather than on technical details. The second part of the paper (Sect. 4
and Sect. 5) describes new result. We will consider more concise representations
of optimal repairs, to deal both with the exponential size of canonical repairs in
the IQ case and the non-existence problem w.r.t. cyclic TBoxes in the CQ case.

The former problem is due to the fact that the canonical repairs employed in
our approach are by construction of exponential size. To alleviate this problem,
we have, on the one hand, developed in [7] an optimized algorithm for computing
repairs, which yields optimized repairs that are equivalent to the canonical ones,
but in most cases considerably smaller, though in the worst case they may still
be exponential. On the other hand, each canonical repair is induced by a so-
called repair seed, whose size is polynomial in the size of the TBox and the repair
request. We have seen in [13] that, for the IQ case, one can compute consequences
of canonical repairs and check IQ-entailment between them by working only with
the seed functions inducing them. This way, the exponential blow-up due to
the construction of the canonical repair can be avoided. In Sect. 4, we report
on experimental results that compare the performance on answering instance
queries between the optimized repairs and the canonical ones represented by
seed functions.

16 F. Baader et al.

In Sect. 5, we show that, also in the CQ case, optimal repairs always exist
and cover all repairs if we allow for certain infinite, but finitely represented
qABoxes. To be more precise, we introduce the notion of a shell unfolding of a
given qABox, which basically unravels parts of the qABox into (possibly infinite)
trees. The shell unfoldings of IQ-saturations turn out to be CQ-saturations, and
this also works for cyclic TBoxes. If we then consider the canonical IQ-repairs
for a given repair problem, then we can prove that their shell unfoldings yields
a set of (possibly infinite) CQ-repairs that cover all CQ-repairs. In addition,
consequences from such shell unfolded repairs and entailment between them can
be decided based on their finite representation without an increase in complexity.
Thus, one can work with them as if they were finite.

2 Preliminaries

We recall the definition of the DL EL and then introduce quantified ABoxes as
well as the two entailment relations we employ for them.

The Description Logic EL. As usual in DL, knowledge about an application
domain is represented in EL using classes (called concepts), relationships (called
roles), and objects (called individuals), which are collected in the signature Σ,
consisting of pairwise disjoint sets of concept names ΣC, role names ΣR, and
individual names ΣI. Concept descriptions C of EL are then constructed using
the grammar rule C :: = � | A | C � C | ∃r.C, where A ranges over concept
names and r over role names. An atom is a concept name A or an existential
restriction ∃r.C. Each concept description C is a conjunction of atoms, with �
corresponding to the empty conjunction. We denote the set of these atoms as
Conj(C).

An EL TBox can be used to state subconcept-superconcept relationships
between such concept descriptions, i.e., it is a finite set of concept inclusions
(CIs) C �D, where C,D are EL concept descriptions. In the ABox one can then
relate individuals with concepts and with other individuals, i.e., it is a finite set
of concept assertions C(a) and role assertions r(a, b), where a, b are individual
names, r is a role name, and C is an EL concept description. An EL ontology is
a pair consisting of an EL ABox and an EL TBox.

The semantics of EL is defined as usual [5] based on the notion of an interpre-
tation I = (Dom(I), ·I), which assigns subsets AI of the non-empty set Dom(I)
to concept names A, binary relations rI on Dom(I) to role names r, and ele-
ments aI of Dom(I) to individual names a. This mapping is extended to concept
descriptions according to the semantics of the constructors. The interpretation I
is a model of the TBox T if it satisfies all its CIs, i.e., CI ⊆ DI holds for all CIs
C � D in T . Similarly, I is a model of the ABox A if it satisfies its assertions,
i.e., aI ∈ CI and (aI , bI) ∈ rI holds for all concept assertions C(a) and role
assertion r(a, b) in A. It is a model of the ontology (T ,A) if it is a model of both
T and A.

Reasoning makes implicit consequences of an ontology explicit. For instance,
we say that a concept assertion C(a) is entailed by an ABox A w.r.t. a TBox T

Optimal Repairs in the Description Logic EL Revisited 17

if C(a) is satisfied in all models of A and T ; this is abbreviated as A |=T C(a)
and we also say that a is an instance of C w.r.t. A and T . Similarly, a CI C �D
is entailed by T if C �D is satisfied in every model of T ; we then write C �T D
and also say that C is subsumed by D w.r.t. T . In case T = ∅, we may omit
the superscript ∅ and just write |= instead of |=∅. Both the instance and the
subsumption problem are decidable in polynomial time in EL [3].

Quantified ABoxes. Quantified ABoxes were first introduced in [16], but they
were also considered, as relational datasets with labelled nulls, in [20], and their
existentially quantified variables correspond to the “anonymous individuals” in
the OWL 2 standard [31]. Also, as explained in [16], quantified ABoxes are basi-
cally the same as Boolean conjunctive queries. Informally, a quantified ABox is
an EL ABox where concept assertions are restricted to concept names and in
addition to individuals one can use variables in assertions. To indicate that the
names of these variables are irrelevant, we quantify them existentially.

More formally, a quantified ABox (qABox) ∃X.A consists of a finite set X
of variables, which is disjoint with the signature Σ, and of a matrix A, which
is a finite set of assertions A(u) and r(u, v), where A is a concept name, r a
role name, and u, v individual names or variables. We call the individual names
and variables occurring in ∃X.A its objects, and denote the set of them by
Obj(∃X.A). Regarding the semantics of a qABox ∃X.A, we can translate it
in an obvious way into a first-order formula by taking the conjunction of the
assertions in A (viewed as atomic formulas) and prefacing it with an existential
quantifier prefix containing exactly the variables in X. The models of ∃X.A are
then the first-order models of this formula.

Based on this semantics, we can now define when a qABox entails another
qABox or a concept assertion in the usual way. If α is an EL concept assertion or
a qABox, then ∃X.A entails α w.r.t. the EL TBox T (written ∃X.A |=T α) if
every model of ∃X.A and T is a model of α. Again, we may omit the superscript
∅ if T is empty. If α is a concept assertion, then entailment |=T can be decided in
polynomial time whereas it is NP-complete if α is a qABox [7,16]. NP-hardness
already holds without a TBox.

From a syntactic point of view, EL ABoxes that use compound concept
descriptions in concept assertions are not qABoxes, but it is easy to see that
every EL ABox can be transformed into an equivalent qABox (i.e., one hav-
ing the same models) [16]. Conversely, not every qABox has an equivalent EL
ABox, the simplest example being ∃{y}.{r(y, y)}, which enforces an r-loop in
every model, but without naming the element that has this loop. In contrast,
EL ABoxes can only enforce loops for named individuals, i.e., elements of ΣI.
Also note that a qABox cannot entail C(x) for a variable x since this is not a
well-formed concept assertion. We can, however, view the matrix A as a normal
ABox (where the variables are treated as individuals), and then one can derive
concept assertions for elements of X from A. The following lemma, which gives
a recursive characterization of the instance relationship for the case of an empty
TBox is relevant for our construction of canonical repairs.

18 F. Baader et al.

Lemma 1 ([16]). Let ∃X.A be a qABox, D an EL concept description, and
u ∈ Obj(∃X.A). Then A |= D(u) iff the following statements are satisfied for
every C ∈ Conj(D):

1. if C = A is a concept name, then A contains A(u),
2. if C = ∃r.E is an existential restriction, then A contains a role assertion

r(u, v) such that A |= E(v).

Two Entailment Relations Between qABoxes. As motivated in the intro-
duction, it makes sense to compare qABoxes w.r.t. the queries they entail
rather than w.r.t. the models they have. Instance queries (IQ) are just concept
assertions whereas (Boolean) conjunctive queries (CQ) are just qABoxes. The
qABox ∃X.A IQ-entails the qABox ∃Y.B w.r.t. T (written ∃X.A |=T

IQ ∃Y.B)
if ∃Y.B |=T C(a) implies ∃X.A |=T C(a) for every EL concept assertion C(a).
The definition of CQ-entailment considers all qABoxes ∃Z.C in place of concept
assertions C(a). It is easy to see that the CQ-entailment relation |=T

CQ actually
coincides with the model-based entailment relation |=T introduced above [7,16].
Since every concept assertion can be translated into an equivalent qABox, CQ-
entailment is a stronger requirement that IQ-entailment.

With respect to the empty TBox, these query-based entailment relations have
structural characterizations by means of simulations and homomorphisms [16].
In the IQ case, ∃X.A |=IQ ∃Y.B iff there is a simulation from ∃Y.B to ∃X.A,
which is a relation S ⊆ Obj(∃Y.B) × Obj(∃X.A) satisfying the following:

(S1) If a is an individual name, then (a, a) ∈ S.
(S2) If (u, u′) ∈ S and A(u) ∈ B, then A(u′) ∈ A.
(S3) If (u, u′)∈S and r(u, v)∈ B, then (v, v′)∈S and r(u′, v′)∈ A for some v′.

A homomorphism from ∃Y.B to ∃X.A is a function h : Obj(∃Y.B) →
Obj(∃X.A) for which the relation { (u, h(u)) | u ∈ Obj(∃Y.B) } is a simula-
tion. In the CQ case, entailment is characterized as follows: ∃X.A |=CQ ∃Y.B
iff there is a homomorphism from ∃Y.B to ∃X.A.

To extend these characterizations of the entailment relations to the case of
non-empty TBoxes, we must first saturate the qABox on the left-hand side. We
defer describing saturation to the second part of the next section, where we
extend our repair approach from the setting without TBox to the one with a
TBox.

3 Canonical and Optimal Repairs

We start with introducing (optimal) repairs in the general setting, but then
concentrate first on the CQ case without a TBox for didactic reasons, before
considering the IQ case and explaining how non-empty TBoxes can be tackled.

As unwanted consequences we consider EL concept assertions. Whereas it
would be useful to be able to specify unwanted consequences via CQs, this may
cause non-existence of optimal repairs unless one considers a strongly restricted

Optimal Repairs in the Description Logic EL Revisited 19

class of CQs [11]. For this reason, a repair request will in the following be a finite
set of concept assertions, both in the IQ and in the CQ case.

Definition 2. Let T be an EL TBox, ∃X.A a qABox, R a repair request, and
QL ∈ {IQ,CQ}.

– The qABox ∃Y.B is a QL-repair of ∃X.A for R w.r.t. T if ∃X.A |=T
QL ∃Y.B

and ∃Y.B
|=T C(a) for each C(a) ∈ R.
– Such a repair ∃Y.B is optimal if there is no QL-repair ∃Z.C such that

∃Z.C |=T
QL ∃Y.B, but ∃Y.B
|=T

QL ∃Z.C.
– We say that a set R of QL-repairs of ∃X.A for R w.r.t. T covers all QL-

repairs if every QL-repair of ∃X.A for R w.r.t. T is QL-entailed by an element
of R.

Since CQ-entailment implies IQ-entailment, every CQ-repair is also an IQ-repair,
but the converse need not hold. The latter can be illustrated by the second
version of our Narcissus example from the introduction. Consider the TBox
T = {V � ∃�.V,∃�.V � V }, the qABox ∃∅.{V (n)} and the repair request
R = {V (n)}. Then ∃{x}.{�(n, x), �(x, x)} is an IQ-repair, but not a CQ-repair.
In fact, this qABox is not CQ-entailed w.r.t. T by ∃∅.{V (n)} since there are
models of ∃∅.{V (n)} and T that do not contain an individual with a loop. It is
IQ-entailed, basically since all EL concept assertions of the form (∃�.)k�(n) are
entailed by ∃∅.{V (n)} w.r.t. T .

The question is now how one can actually compute all optimal repairs of a
given repair problem, consisting of an EL TBox, a qABox, and a query language
QL ∈ {IQ,CQ}. We start with the case where the TBox is empty and QL = CQ.

Blind Search. A first idea could be to start with the input qABox and then
generate a chain of qABoxes with entailment relationships between them, until
a qABox that does not entail any element of R has been found. Such a chain can
be generated by applying the following rules successively to the current qABox
∃X.A:

Copy Rule. Choose an object u of ∃X.A as well as a fresh variable y
∈
Obj(∃X.A), and return the qABox ∃(X ∪ {y}).

(
A ∪ { A(y) | A(u) ∈ A } ∪

{ r(t, y) | r(t, u) ∈ A } ∪ { r(y, y) | r(u, u) ∈ A } ∪ { r(y, v) | r(u, v) ∈ A }
)
.

Delete Rule. Choose an assertion α in A and return the qABox ∃X.(A\{α}),
or choose a variable x ∈ X that does not occur in A and return the qABox
∃(X \ {x}).A.

It is easy to see that the qABox obtained from ∃X.A by application of ones of
these rules is CQ-entailed by ∃X.A. The following proposition shows that these
rules indeed cover the whole search space of entailed qABoxes.

Proposition 3. If ∃X.A |=CQ ∃Y.B, then there is a finite chain of applications
of the Copy and Delete Rules that starts with ∃X.A and ends with ∃Y.B.

20 F. Baader et al.

Proof sketch. If ∃X.A |=CQ ∃Y.B, then there is a homomorphism from ∃Y.B to
∃X.A. If this homomorphism is not injective, then we can make it injective by
adding copies of individuals that are images of several elements of Obj(∃Y.B)
to ∃X.A. After that, we can remove assertions that are in the image, but not
in the pre-image. Finally, we can rename variables and remove variables that do
not have a pre-image (see [6] for a more detailed proof). ��

If one starts with the input qABox ∃X.A and generates a search tree by
applying the above rules, this process need not terminate since one can generate
an arbitrary number of copies of objects. But now Proposition 11 in [11] comes
to the rescue: if ∃X.A contains m objects and R contains n atoms, then any
repair of ∃X.A for R is CQ-entailed by a repair that has at most m · 2n objects.
Thus, we can restrict the search to qABoxes that have at most this many objects,
which makes the search tree finite. We can be sure that the repairs found this
way cover all repairs. The optimal repair can be obtained from this covering set
by removing non-optimal elements, i.e., elements that are strictly entailed by
another element.

Canonical Repairs. Obviously, the blind search approach for computing opti-
mal repairs sketched above is very inefficient. However, it provides us with several
interesting ideas for how to construct, in a more direct way, a set of repairs that
covers all repairs. First, we notice that we must generate copies of objects, and
then may need to remove assertions for these copies. Second, the cited result
from [11] tells us that creating at most exponentially many copies of each object
is sufficient.

In our canonical repairs, each object u of the input qABox ∃X.A receives
copies of the form 〈〈u,K〉〉, where the second component specifies which assertions
C(u) that are entailed by A must not hold for this copy. More formally, K is a
repair type for u, i.e., a subset of the set of atoms occurring in R that satisfies
the following two properties:

(RT1) A |= C(u) for each atom C ∈ K,
(RT2) C
�∅ D for each pair of distinct atoms C, D in K.

The first condition is due to the fact that we only need to remove instance
relationships that hold in A. The second reduces the number of different repair
types. It is justified by the fact that requiring to remove D(u) ensures that also
C(u) must be removed if C �∅ D.

The canonical repairs have the same set of objects and the same matrix.
They have all tuples 〈〈u,K〉〉 as their objects, where u ∈ Obj(∃X.A) and K is
a repair type for u. Using these objects, the matrix B of the canonical repairs
consists of the following assertions:

(CR1) A(〈〈u,K〉〉) ∈ B if A(u) ∈ A and A
∈ K,
(CR2) r(〈〈u,K〉〉, 〈〈v,L〉〉) ∈ B if r(u, v) ∈ A and, for each ∃r.C ∈ K

with A |= C(v), there is an atom D ∈ L such that C �∅ D.

Optimal Repairs in the Description Logic EL Revisited 21

To understand this definition, one needs to consider Lemma 1. Regarding concept
names A ∈ K, not adding the concept assertion A(〈〈u,K〉〉) to B ensures that this
assertion is not entailed by B. For existential restrictions ∃r.C ∈ K, we can only
have the role assertion r(〈〈u,K〉〉, 〈〈v,L〉〉) in B if B does not entail C(〈〈v,L〉〉). This
non-entailment is ensured by having an atom D ∈ L that satisfies C �∅ D. In
fact, B |= C(〈〈v,L〉〉) would otherwise imply B |= D(〈〈v,L〉〉), which is forbidden
due to D ∈ L.

To determine a concrete canonical repair, we choose, for each individual a of
∃X.A, one of its copies as representative of a in B. Of course, this choice must
be made such that the obtained qABox really is a repair, i.e., does not entail any
of the unwanted consequences in R. Formally, this is realized by fixing a repair
seed S, which maps each individual name a to a repair type Sa for a such that
the following condition is satisfied:

(RS) If C(a) ∈ R and A |= C(a), then there is an atom D in Sa s.t. C �∅ D.

Given such a repair seed S, the canonical repair rep(∃X.A,S) induced by S is
the qABox ∃Y.B, where individual names a and their copies 〈〈a,Sa〉〉 are used
as synonyms, and Y consists of the other objects of B. This construction works
both in the CQ and in the IQ case, and yields a set of repairs that covers all
repairs.

Proposition 4 ([16]). Consider a qABox ∃X.A, an EL repair request R, and
a query language QL ∈ {IQ,CQ}. For each repair seed S, the induced canonical
repair rep(∃X.A,S) is a QL-repair of ∃X.A for R. Conversely, if ∃Z.C is a QL-
repair of ∃X.A for R, then there is a repair seed S such that rep(∃X.A,S) |=QL

∃Z.C.

The set of all canonical repairs can obviously be computed in exponential
time. To obtain the optimal repairs, one needs to employ entailment tests to
remove the non-optimal ones from it. Since IQ-entailment is in P and CQ-
entailment is NP-complete, this yields the complexity results stated in the fol-
lowing theorem. Obviously, after removing redundant elements, the obtained set
still covers all repairs.

Theorem 5 ([16]). The set of optimal QL-repairs of ∃X.A for R covers all
QL-repairs. There is a (deterministic) algorithm that computes this set and runs
in exponential time. If QL = CQ, then this algorithm needs access to an NP
oracle, whereas no such oracle is required for QL = IQ.

Let us come back to the first variant of the Narcissus example from the intro-
duction, where the input qABox is ∃∅.A for A = {V (n), �(n, n)} and the repair
request is R = {V (n)}. The only atom in R is V , and both ∅ and {V } is a repair
type for n. The only repair seed is S with Sn = {V }. If we denote 〈〈n,Sn〉〉 with n
and 〈〈n, ∅〉〉 with x, then the qABox ∃{x}.{�(n, n), �(n, x), �(x, n), �(x, x), V (x)}
is the only canonical repair, which thus is an optimal repair both in the CQ and
in the IQ case.

22 F. Baader et al.

Adding a Static TBox. As mentioned before, we restrict the attention to the
case where the TBox is assumed to be correct, and thus is static in the sense that
it must not be changed in the repair process. Our main idea for dealing with an
EL TBox T is to extend the given qABox ∃X.A with consequences entailed by
the CIs in T . We call this extension process saturation [7].

Intuitively, if C � D ∈ T , then saturation adds the assertion D(u) to the
matrix A if A |= C(u), but A
|= D(u). However, if D is a compound concept
description, then this does not generate a well-formed new qABox. For this
reason, one must express D(u) by atomic assertions. Obviously, for each concept
name A ∈ Conj(D), we must add the assertion A(u) to A. For each existential
restriction ∃r.E ∈ Conj(D), we add a new variable x to X and the assertions
r(u, x) and E(x) to A. In case E is still compound, we apply the process of
expressing such an assertion by atomic ones recursively. To be more precise, the
treatment of existential restrictions differs depending on whether we are in the
CQ or the IQ case. In the former, we always need to use a new variable x. In the
IQ case, for each concept description E occurring in an existential restriction
∃r.E in T , we introduce the variable xE , and reuse this variable whenever we
encounter an existential restriction with E in the second position. Let us call
this process of expressing a concept assertion D(u) for a compound concept
description D the QL-unfolding of D(u), for QL ∈ {IQ,CQ}. QL-saturation is
the process of applying the following saturation rule exhaustively:

QL-Saturation Rule. Choose an object u of ∃X.A as well as a CI C � D in T
with A |= C(u), but A
|= D(u), and add D(u) to A. Then apply QL-unfolding
to D(u).

Example 6. Consider again the TBox T = {V � ∃�.V,∃�.V � V } and the
qABox ∃∅.{V (n)}. The first application of the IQ-saturation rule to n adds
the assertion (∃�.V)(n) to the qABox. The IQ-unfolding of this assertion intro-
duces one new variable xV , adds the assertions �(n, xV) and V (xV), and removes
the compound assertion. The IQ-saturation rule now applies to xV , adding
(∃�.V)(xV). The IQ-unfolding of this assertion reuses the variable xV , and adds
the assertion �(xV , xV). This completes the IQ-saturation process with the IQ-
saturated qABox ∃{xV }.{V (n), �(n, xV), V (xV), �(xV , xV)}.

This qABox is IQ-entailed by ∃∅.{V (n)} w.r.t. T , but it is not CQ-entailed.
The reason for the latter non-entailment is that there are models of ∃∅.{V (n)}
and T where no element has a loop. To avoid introducing a loop or a cycle,
we must use a new variable in each CQ-unfolding of an assertion of the form
(∃�.V)(x). But this clearly leads to non-termination of the CQ-saturation pro-
cess. To ensure termination for the CQ case, we restrict the attention in [7]
to cycle-restricted TBoxes, where an EL TBox T is cycle-restricted if there
are no role names r1, . . . , rn and no EL concept description C such that
C �T ∃r1. · · · ∃rn.C.

Proposition 7 ([7]). Let QL ∈ {IQ,CQ}, ∃X.A a qABox, and T an EL TBox,
which is cycle-restricted if QL = CQ. Then QL-saturation always terminates

Optimal Repairs in the Description Logic EL Revisited 23

with a qABox satTQL(∃X.A) that satisfies ∃X.A |=T
QL ∃Y.B iff satTQL(∃X.A) |=QL

∃Y.B for all qABoxes ∃Y.B. The IQ-saturation satTIQ(∃X.A) can be computed
in polynomial time, whereas the computation of satTCQ(∃X.A) may require expo-
nential time in the worst case.

The idea is now to apply the repair process described above to the saturated
qABox rather than the original one. This ensures that, in RT1, the entailment is
then w.r.t. the TBox. However, without additional changes to our construction
of canonical repairs, the obtained qABox would not be a repair. In our example,
a canonical repair of ∃{xV }.{V (n), �(n, xV), V (xV), �(xV , xV)} for R = {V (n)}
could choose as synonym for n the copy 〈〈n, {V }〉〉 that does not belong to V ,
but still has an �-successor that belongs to V . Together with the CI ∃�.V � V ,
this qABox would then still entail V (n).

To avoid this problem, we amend the definition of repair types as follows.
First, we now consider subsets of the atoms occurring in R or T as possible
repair types. Second, we add an additional condition to the definition:

(RT3) If C is an atom in K and E �F is a CI in T with A |= E(u) and F �∅ C,
then there is an atom D in K such that E �∅ D.4

In our example, K = {V } does not satisfy RT3 since the saturated qABox entails
∃�.V (n), there is a CI that has ∃�.V as left-hand side and V ∈ K as right-hand
side, but K does not contain an atom that subsumes ∃�.V (n). In fact, with the
additional condition RT3, any repair type for n that contains V must also contain
∃�.V . The copy 〈〈n, {V,∃�.V }〉〉 of n does not belong to V in the canonical repair,
and also does not have an �-successor that belongs to V .

Overall, for T = {V � ∃�.V,∃�.V � V }, the qABox ∃X.A = ∃∅.{V (n)},
and the repair request R = {V (n)}, we obtain the following canonical IQ-repair
induced by the (unique) repair seed S with Sn = {V,∃�.V }:

repT
IQ(∃X.A,S) : n y2

y1

V

y3

V

�
�

�

�
�

�

where y1 stands for 〈〈n, ∅〉〉, y2 for 〈〈xN , {N,∃�.N}〉〉, and y3 for 〈〈xN , ∅〉〉.
In general, let repT

QL(∃X.A,S) be the canonical repairs obtained by first QL-
saturating ∃X.A w.r.t. T and then applying the amended repair approach that
takes RT3 into account. Then Proposition 4 and Theorem 5 hold accordingly in
the presence of a static TBox T if we replace rep(∃X.A,S) with repT

QL(∃X.A,S)
and in the CQ case add the assumption that T is cycle-restricted (see [7]).

4 This condition differs from the one given in [7]. However, this third condition is only
employed in Lemma XIII in [8] to show that the canonical repairs are saturated, for
which the simpler condition given here suffices.

24 F. Baader et al.

4 Concise Representations of Canonical IQ-Repairs

Canonical IQ-repairs are of exponential size, not only in the worst case, but also
in the best case. In this section, we consider two approaches for alleviating this
problem. One approach produces considerably smaller repairs in practice, which
may, however, still be exponential in the worst case. The second approach uses
the polynomial-sized repair seeds as representations for the exponentially large
canonical repairs.

Optimized IQ-Repairs. To avoid generating exponential-sized repairs also in
the best case, we have developed in [7] an optimized algorithm for computing
repairs induced by repair seeds. Intuitively, these optimized repairs do not con-
tain all the objects occurring in the canonical repair, but only those that are
really needed. We have shown that the optimized IQ-repair induced by a repair
seed S is IQ-equivalent to the canonical one induced by S, and thus the set
of optimized IQ-repairs can be used in place of the set of canonical ones when
computing the optimal repairs. The experiments described in [7] show that the
optimized repairs are in most cases considerably smaller than the canonical ones.
For example, in the canonical IQ-repair we have just computed for our Narcis-
sus example, the objects y1 and y3 are not needed since they are not reachable
from n. IQ-equivalence of the optimized repair ∃{y2}.{�(n, y2), �(y2, y2)} with
the canonical one can be seen by using the identity on the objects n and y2 as
simulation in both directions.

Note, however, that in general an exponential blow-up cannot be avoided,
as already shown in [12] for a restricted class of qABoxes without a TBox. This
blow-up is not only a problem when computing the repair, but also when using
it later on to answer queries. While answering IQs is polynomial for the original
(unrepaired) qABox, it may become exponential after the repair if we measure
the complexity in the size the repair problem, consisting of the original qABox,
the TBox, and the repair request.

Representing Canonical IQ-Repairs by Repair Seeds. The size of a repair
seed S is polynomial in the size of the repair problem, and it uniquely determines
the induced canonical repair repT

IQ(∃X.A,S). To take advantage of this more
concise representation of canonical repairs, we must be able to work directly
with this representation when comparing the repairs w.r.t. IQ-entailment and
when answering IQs w.r.t. them. The following proposition shows how this can
be realized.

Proposition 8 ([10,13]). Let T be an EL TBox, ∃X.A a qABox, R a repair
request, S,S ′ repair seeds, and E(b) an EL concept assertion. Then,

1. repT
IQ(∃X.A,S) |=T

IQ repT
IQ(∃X.A,S ′) iff for each individual name a and for

each atom C ∈ Sa, there is an atom D ∈ S ′
a with C �∅ D.

2. repT
IQ(∃X.A,S) |=T E(b) iff ∃X.A |=T E(b) and Sb does not contain any

atom D with E �T D.

Optimal Repairs in the Description Logic EL Revisited 25

The conditions formulated in this proposition are clearly decidable in time poly-
nomial in the size of the repair problem. Thus, from a theoretical point of view,
representing canonical repairs using repair seeds is preferable to using optimized
repairs since the worst-case complexity of the relevant inference problems is poly-
nomial for the former, whereas it is exponential for the latter. Comparing the
worst-case complexity of two algorithms does not always tell us which algorithm
will perform better in practice. To investigate the advantages and disadvantages
of our two concise representations of canonical IQ-repairs in practice, we per-
formed experiments on real-world ontologies.

Experimental Evaluation. The goal of the experiments was to evaluate the
performance of the two representations with respect to the time needed for
answering instance queries. To this end, we created a benchmark consisting
of EL ontologies, instance queries, and repair requests. As in the experiments
in [7], which mainly compared the sizes of the optimized repairs with that of
the canonical ones, we took the ontologies from the OWL EL Materialization
track of the OWL Ontology Reasoner Evaluation 2015 [30], filtering out axioms
that cannot be expressed in EL. To test the limits of both approaches, we this
time included all 109 ontologies from this corpus, instead of considering only
ontologies of up to 100,000 axioms as in [7]. Table 1 provides information on how
large the employed ontologies were.

For each ontology, we randomly generated 100 IQs. To generate repair
requests, we used the approach employed in [7], which generates requests where
the concept assertions involve only concept names. In addition, we this time also
generated repair requests containing assertions with compound concept descrip-
tions. The repair requests generated in these two ways are respectively denoted
RR1 and RR2 in the following. We attempted to compute 10 repair seeds per
ontology based on the generated repair requests, which was, however, not always
possible within a timeout of 10min. For each tuple of ontology, repair request,
and repair seed, we first computed the induced optimized IQ-repair, which was
possible in most, but not all, cases within a timeout of 1 h. Then we compared
the performance of answering IQs from the optimized repairs and from the repair
seeds. Any required EL reasoning was performed using Elk [24]. More informa-
tion on the experimental setup can be found in [6].

Figure 1 shows the results of this comparison, where each point corresponds
to a tuple of ontology, repair request, and seed function, the x-axis to the run-
time of evaluating all 100 IQs using the repair seed, and the y-axis of evaluating
all IQs using the optimized repair, where the red color denotes that we also
count the computation time of the optimized repair, and the blue color denotes
that we do not. For RR1 with the simple repair requests, using the repair seed
instead of the precomputed repair was faster in 98.7% of cases if we also count
the time for computing the repair, and otherwise in 17.9% of cases. As we can
see however in Fig. 1, using the optimized repair was almost never significantly
faster, and there were many cases in which using the repair seed instead of the
repair was significantly faster even if we do not count the time for computing the

26 F. Baader et al.

Table 1. Statistics of the used corpus of EL ontologies after filtering out non-EL axioms.

Size Ontology Size ABox Size TBox

min. max. med. avg. min. max. med. avg. min. max. med. avg.

154 891,452 6,751 77,761.5 103 747,998 2,089 46,625.7 61 473,254 2,706 31,135.8

1 s 1min 1 h

1 s

1min

using optimized repair

us
in
g
re
pa

ir
se
ed

1 s 1min 1 h

using optimized repair

Fig. 1. Run times of evaluating 100 instance queries on repairs using the seed function
(x-axis) vs. using the optimized repairs (y-axis). Color intensity corresponds to size of
the input ontology. Orange-red crosses include times for computing the repair, whereas
cyan-blue circles do not. Results of RR1 on the left, and for RR2 on the right. (Color
figure online)

repair. For RR2 with the complex repair requests, using the repair seed was faster
in 64.6% of cases if we count the time for computing the repair, and otherwise
almost never (0.13% of cases). The reason for this was that after obtaining
the query answers from Elk, we still have to do a subsumption check for each
individual in the answer when using the repair seed only (see the condition
in Proposition 8). In RR2, each of these tests was more expensive, since we were
comparing complex EL concepts. When using the precomputed optimized repair,
no additional subsumption tests are necessary.

The results show that computing the optimized repair explicitly rather than
using the repair seed is only advisable if this repair is considered to be the
final one, which is then used for many instance tests. This is not the case for
intermediate repairs in a setting where the KE iteratively repairs the ontology
by (a) choosing a repair seed, then (b) checking out the induced canonical repair
by looking at some of its consequences, and based on this inspection deciding
whether (c) to choose a different repair seed or (d) to use this repair seed, but
maybe repair the obtained ontology further by formulating a new repair request.
It then makes sense to compute the optimized repair only after the iterative
repair process is finished.

Optimal Repairs in the Description Logic EL Revisited 27

If the repair is assumed to be the final one, a good indicator for when com-
puting the optimized repair does not pay off is the size of the original ontology. If
we consider RR1 and do not count the time for computing the repair, for ontolo-
gies with at most 404,509 axioms (85% of the corpus), using the repair seed was
faster in only 6.8% of the cases, while for the larger ontologies, it was faster in
80.5% of the cases. The numbers are similar if we look at the size increase of the
repair: if the repair contained at most 132,622 axioms more than the original
ontology (85% of the corpus), then using the repair seed was faster in 5.5% of
the cases, and otherwise in 87.5% of the cases.

5 Finite Representations of Optimal CQ-Repairs

The results concerning optimal CQ-repairs of [7] recalled in Sect. 3 assume that
the TBox is cycle-restricted. We have seen an example (the version of our Nar-
cissus example with a TBox) that for TBoxes not satisfying this restriction,
optimal repairs need not exist. To overcome this problem, we allow for infinite
qABoxes as repairs, but require that they have an appropriate finite representa-
tion. In our construction of optimal CQ-repairs, cycle-restrictedness of the TBox
is needed to ensure that CQ-saturation terminates. For IQ-saturation, cycles in
the TBox do not lead to non-termination since the saturation process can reuse
variables. This is not possible for CQ-saturation since it may generate cycles in
the saturated qABox that are not CQ-entailed by the original qABox. Whereas
IQs cannot distinguish such cycles from their unfoldings, CQs obviously can.
The idea is now to use appropriate unfoldings of IQ-saturations and canonical
IQ-repairs in the CQ case.

Infinite qABoxes. An infinite qABox is still of the form ∃X.A, but now both
the variable set X and the matrix A may be infinite. The model-based semantics
can straightforwardly be extended from finite qABoxes to infinite ones, and the
correspondence between (model-based) entailment and the existence of a homo-
morphism is still easy to show. However, the equivalence between entailment
and CQ-entailment no longer holds. While the existence of a homomorphism is
still sufficient for CQ-entailment, it is no longer necessary, as illustrated by the
following example.

Example 9. As left-hand side of the entailment, we consider the qABox repre-
senting the natural numbers with their usual order relation: ∃X.A with variables
X := N and matrix A := { r(m,n) | m < n }. As right-hand side, we take the real
numbers: ∃Y.B with variables Y := R and matrix B := { r(x, y) | x < y }. Each
finite qABox entailed by ∃Y.B is also entailed by ∃X.A, i.e., ∃X.A |=CQ ∃Y.B.
However, there is no homomorphism from ∃Y.B to ∃X.A. In fact, no mapping
from R (the objects of ∃Y.B) to N (the objects of ∃X.A) can be injective. Thus,
if h was a homomorphism, then it would send two real numbers x < y to the
same natural number n, which would be a contradiction since B contains the
role assertion r(x, y), whereas A does not contain its image r(n, n).

28 F. Baader et al.

A slightly more complicated example can be used to show that this problem
persists even if we consider only countable qABoxes [6]. The intuitive reason
for the difference between entailment and CQ-entailment is that CQs (which are
finite) cannot capture differences of infinite qABoxes that manifest themselves
only “in the infinite.” Fortunately, the problem goes away if we restrict the atten-
tion to shell unfoldings of finite ABoxes. Shell unfolding are similar to what is
called unraveling in the DL literature [5], but it is applied to ABoxes rather than
to interpretations.

Shell Unfoldings and Homomorphisms. Consider a (finite) quantified ABox
∃X.A, the objects of which are divided into kernel objects and shell objects, such
that each individual name is a kernel object, each shell object is reachable from
some kernel object, but no kernel object is reachable from any shell object. Later
on, we will apply the shell unfolding operation to the IQ-saturation ∃X.A of a
given finite qABox ∃Y.B. In this setting, the kernel objects of ∃X.A are the
objects of ∃Y.B, and the shell objects are the additional objects introduced
during the saturation process. It is easy to see that this division into kernel and
shell objects satisfies the requirements we have just formulated.

A shell path is a sequence u0
r1−→u1

r2−→ · · · rn−→un that starts with a kernel object
u0 but otherwise only contains shell objects u1, . . . , un such that A contains
ri(ui−1, ui) for all i ∈ {1, . . . , n}. We call n ≥ 0 its length, u0 its source, and
un its target. Note that kernel objects, and thus also individuals, can be seen
as shell paths of length 0. The target of such a shell path representing a kernel
object is this object itself.

Definition 10. The shell unfolding of ∃X.A is defined as the qABox ∃X ′.A′

with the following components:

X ′ := { p | p is a shell path where p
∈ ΣI },

A′ := {A(p) | p is a shell path with target u and A(u) ∈ A } ∪
{ r(u, v) | u, v are kernel objects and r(u, v) ∈ A } ∪
{ r(p, q) | p, q are shell paths such that q = p r−→u for a shell object u }.

Note that a finite qABox can be seen as the shell unfolding of itself where all
objects are assumed to be kernel objects. If the matrix A contains cycles among
shell objects, then the shell unfolding ∃X ′.A′ of ∃X.A is infinite. However, since
∃X ′.A′ is uniquely determined by the finite qABox ∃X.A and the division of
its objects into kernel and shell objects, we can use this as a finite representation
of the infinite qABox ∃X ′.A′.

We can show [6] that, for shell unfoldings, CQ-entailment can again be char-
acterized by the existence of a homomorphism, and thus coincides with (model-
based) entailment.

Proposition 11 ([6]). If ∃X ′.A′ and ∃Y ′.B′ are shell unfoldings, then
∃X ′.A′ |=CQ ∃Y ′.B′ iff there is a homomorphism from ∃Y ′.B′ to ∃X ′.A′.

Optimal Repairs in the Description Logic EL Revisited 29

If we want to work with (finitely represented) shell unfoldings in the context
of CQ-repairs, we must be able to decide CQ-entailment, and thus the existence of
a homomorphism between shell unfoldings. This is possible in non-deterministic
polynomial time in the size of the finite representation.

Theorem 12 ([6]). Let ∃X.A and ∃Y.B be two finite qABoxes whose object
sets are partitioned into kernel objects and shell objects as introduced above, and
let ∃X ′.A′ and ∃Y ′.B′ be their shell unfoldings. Then the problem of deciding
whether there is a homomorphism from ∃X ′.A′ to ∃Y ′.B′ is NP-complete in
the size of the input ∃X.A and ∃Y.B.

Since a finite qABox can be seen as the shell unfolding of itself (with empty set
of shell objects), this theorem also shows that answering CQs for shell unfoldings
is NP-complete in the size of their finite representations.

Infinite CQ-Saturation and CQ-Repair. The idea is now to extend the notion
of a CQ-repair to a setting where qABoxes need not be finite, but must be finitely
representable as the shell unfoldings of finite qABoxes. We call such qABoxes
rational qABoxes since they consist of a finite part (the kernel) out of which
grow (possibly) infinite trees, which are however rational [19]. We start with
showing that, in this setting, finite qABoxes always have a CQ-saturation, even
if the TBox is not cycle-restricted.

Given a finite qABox ∃X.A and an EL TBox T , we consider the shell
unfolding of the IQ-saturation satTIQ(∃X.A), where all objects of the sub-qABox
∃X.A are kernel objects and all other objects (added by applications of the
IQ-Saturation Rule) are shell objects. We can show that this rational qABox
CQ-entails exactly those rational qABoxes that are CQ-entailed by ∃X.A and
T . It can thus replace the finite CQ-saturation from [7], but is not limited
to cycle-restricted TBoxes. For this reason, we denote this shell unfolding by
satTCQ(∃X.A) and call it the CQ-saturation of ∃X.A w.r.t. T .

Proposition 13 ([6]). Let ∃X.A be a finite qABox and T an EL TBox. Then
∃X.A |=T

CQ ∃Z.C iff satTCQ(∃X.A) |=CQ ∃Z.C for each rational qABox ∃Z.C.

Coming back to Example 6, where we constructed the IQ-saturation with
kernel object n and shell object xN , we now obtain as shell unfolding the
CQ-saturation satTCQ(∃X.A) = ∃{x1, x2, . . . }.{N(n), �(n, x1), N(x1), �(x1, x2),
N(x2), . . . }, where xk := n �−→ xN

�−→ · · · �−→xN︸ ︷︷ ︸
k times

.

satTCQ(∃X.A) : n

N

x1

N

x2

N

x3

N

. . .� � � �

Regarding repairs, we now allow them to be rational qABoxes, i.e., in Defi-
nition 2 the qABoxes ∃Y.B and ∃Z.C are allowed to be rational qABoxes rather
than just finite one. We call such repairs rational CQ-repairs. But note that the
input qABox is still assumed to be finite.

30 F. Baader et al.

In this setting, the rôle of canonical CQ-repairs is now taken on by shell
unfoldings of canonical IQ-repairs. In such an IQ-repair repT

IQ(∃X.A,S), an object
〈〈u,K〉〉 is a kernel object if u is a kernel object in the underlying IQ-saturation,
and otherwise it is a shell object. We denote the shell unfolding of repT

IQ(∃X.A,S)
as repT

CQ(∃X.A,S), and call it again the canonical CQ-repair induced by S. The
following proposition shows that using this notation is justified.

Proposition 14 ([6]). Consider a finite qABox ∃X.A, an EL TBox T , and
an EL repair request R. For each repair seed S, the induced canonical repair
repT

CQ(∃X.A,S) is a rational CQ-repair of ∃X.A for R. Conversely, if ∃Z.C
is a rational CQ-repair of ∃X.A for R, then there is a repair seed S such that
repT

CQ(∃X.A,S) |=CQ ∃Z.C.

Note that the canonical CQ-repair must be constructed as shell unfolding of the
full canonical IQ-repair, not from the optimized IQ-repair or any another qABox
that is IQ-equivalent to it. In our Narcissus example with TBox, the canonical
IQ-repair contains objects belonging to N , which are, however, not reachable
from n. The optimized IQ-repair no longer contains such objects. Thus, the shell
unfolding of the optimized repair does not entail ∃{x}.{N(x)}, but there are
CQ-repairs that do, such as the shell unfolding of the canonical IQ-repair.

As an immediate consequence of the previous proposition, we obtain the main
result of this section.

Theorem 15 ([6]). Let ∃X.A be a finite qABox, T an EL TBox, and R an
EL repair request. Then we can compute, in (deterministic) exponential time
using an NP-oracle, a finite set of repair seeds {S1, . . . ,Sm} such that the set
{repT

CQ(∃X.A,S1), . . . , repT
CQ(∃X.A,Sm)} consists of all optimal rational CQ-

repairs of ∃X.A for R w.r.t. T (up to CQ-equivalence). This set covers all
rational CQ-repairs of ∃X.A for R w.r.t. T .

Also note that the optimal repairs repT
CQ(∃X.A,Si) are saturated w.r.t. T in

the sense that they CQ-entail a rational qABox w.r.t. T if they already entail
it without T . By Theorem 12, this implies that conjunctive queries can be
answered for repT

CQ(∃X.A,Si) in non-deterministic polynomial time in the size
of repT

IQ(∃X.A,Si) and the query.

6 Conclusion

In the first part of this paper we have mainly recalled the approaches and results
from [7,16]. In other work, we have extended these results in several directions.
The paper [11] extends the expressivity of the underlying DL considerably, by
adding nominals, inverse roles, regular role inclusions and the bottom concept to
EL, which yields a fragment of the well-known DL Horn-SROIQ [29]. In [9], we
investigate whether and how one can obtain optimal repairs if one restricts the
output of the repair process to being ABoxes rather than qABoxes. In general,
such optimal ABox repairs need not exist. The main contribution of the paper is

Optimal Repairs in the Description Logic EL Revisited 31

an approach that can decide the existence of optimal ABox repairs in exponential
time, and can compute all such repairs in case they exist. The papers [13,14] con-
sider error-tolerant reasoning based on optimal repairs and [1] compares optimal
repairs with contractions from the area of belief change. Moreover, an approach
to computing optimal repairs of EL TBoxes is developed in [25].

In the second part of this paper we have presented new results on how to
represent exponentially large repairs in a polynomial way and infinite repairs in
a finite way. It would be interesting to see whether such approaches can also
be extended to other settings. We conjecture that non-cycle-restricted TBoxes
can still be tackled by using shell-unfoldings for the DLs considered in [11].
However, in [11] we also show that optimal repairs need not exist if the role
inclusions are not regular. It is unclear whether this problem can be overcome
by an appropriate finite representation of infinite repairs. Another interesting
topic for future research is to investigate whether finitely represented rational
repairs can be used in practice.

Acknowledgements. This work has been supported by Deutsche Forschungsgemein-
schaft (DFG) in projects 430150274 (Repairing Description Logic Ontologies) and
389792660 (TRR 248: Foundations of Perspicuous Software Systems).

Author contributions. FB and FK contributed equally to the paper. PK ran the
experiments and wrote the description of them. He also wrote a first version of the
proof of the last proposition in Sect. 5 of [6].

References

1. Baader, F.: Optimal repairs in ontology engineering as pseudo-contractions in belief
change. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Com-
puting (SAC 2023), Tallinn, Estonia, 27–31 March 2023, pp. 983–990. Association
for Computing Machinery (2023). https://doi.org/10.1145/3555776.3577719

2. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 30–44. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31365-3_5

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI 2005, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August
2005, pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/
05/Papers/0372.pdf

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017). https://doi.org/10.1017/9781139025355

6. Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic
EL revisited (extended version). LTCS-Report 23-03, Chair of Automata Theory,
Institute of Theoretical Computer Science, Technische Universität Dresden, Dres-
den, Germany (2023). https://doi.org/10.25368/2023.121

https://doi.org/10.1145/3555776.3577719
https://doi.org/10.1007/978-3-642-31365-3_5
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.25368/2023.121

32 F. Baader et al.

7. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5_18

8. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes (extended version). LTCS-
Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Sci-
ence, Technische Universität Dresden, Dresden, Germany (2021). https://doi.org/
10.25368/2022.64

9. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes. In: Groth, P.,
et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp. 130–146. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06981-9_8

10. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes (extended ver-
sion). LTCS-Report 22-01, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, Dresden, Germany (2022).
https://doi.org/10.25368/2022.65

11. Baader, F., Kriegel, F.: Pushing optimal ABox repair from EL towards more expres-
sive Horn-DLs. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings
of the 19th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2022, Haifa, Israel, 31 July–5 August 2022, pp. 22–32 (2022).
https://doi.org/10.24963/kr.2022/3

12. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing
for EL instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019.
LNCS (LNAI), vol. 11468, pp. 323–338. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-19570-0_21

13. Baader, F., Kriegel, F., Nuradiansyah, A.: Error-tolerant reasoning in the descrip-
tion logic EL based on optimal repairs. In: Governatori, G., Turhan, A. (eds.)
RuleML+RR 2022. LNCS, vol. 13752, pp. 227–243. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-21541-4_15

14. Baader, F., Kriegel, F., Nuradiansyah, A.: Treating role assertions as first-
class citizens in repair and error-tolerant reasoning. In: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing (SAC 2023), Tallinn, Estonia,
27–31 March 2023, pp. 974–982. Association for Computing Machinery (2023).
https://doi.org/10.1145/3555776.3577630

15. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth Interna-
tional Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp.
319–328. AAAI Press (2018). https://aaai.org/ocs/index.php/KR/KR18/paper/
view/18056

16. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant
anonymisations of quantified ABoxes w.r.t. EL policies. In: Pan, J.Z., et al. (eds.)
ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-62419-4_1

17. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Cornet, R., Spackman, K.A. (eds.) Proceedings
of the Third International Conference on Knowledge Representation in Medicine,

https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.25368/2022.64
https://doi.org/10.25368/2022.64
https://doi.org/10.1007/978-3-031-06981-9_8
https://doi.org/10.25368/2022.65
https://doi.org/10.24963/kr.2022/3
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-031-21541-4_15
https://doi.org/10.1145/3555776.3577630
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1007/978-3-030-62419-4_1
https://doi.org/10.1007/978-3-030-62419-4_1

Optimal Repairs in the Description Logic EL Revisited 33

Phoenix, Arizona, USA, 31st May–2nd June 2008. CEUR Workshop Proceedings,
vol. 410. CEUR-WS.org (2008). http://ceur-ws.org/Vol-410/Paper01.pdf

18. Brachman, R.J., Fikes, R., Levesque, H.J.: Krypton: a functional approach to
knowledge representation. Computer 16(10), 67–73 (1983). https://doi.org/10.
1109/MC.1983.1654200

19. Colmerauer, A.: Prolog and infinite trees. In: Clark, K., Tarnlund, S.A. (eds.) Logic
Programming, pp. 231–251. Academic Press, New York (1982)

20. Cuenca Grau, B., Kostylev, E.V.: Logical foundations of linked data anonymisa-
tion. J. Artif. Intell. Res. 64, 253–314 (2019). https://doi.org/10.1613/jair.1.11355

21. Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving incoherent
OWL 2 DL terminologies. In: Proceedings of the 23rd ACM International Con-
ference on Information and Knowledge Management (CIKM 2014), pp. 919–928
(2014). http://doi.acm.org/10.1145/2661829.2662046

22. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in
Reiter’s theory of diagnosis. Artif. Intell. 41(1), 79–88 (1989). https://doi.org/
10.1016/0004-3702(89)90079-9

23. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_21

24. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53(1),
1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

25. Kriegel, F.: Optimal fixed-premise repairs of EL TBoxes. In: Bergmann, R., Mal-
burg, L., Rodermund, S.C., Timm, I.J. (eds.) KI 2022. LNCS, vol. 13404, pp.
115–130. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15791-2_11

26. Lam, J.S.C., Sleeman, D.H., Pan, J.Z., Vasconcelos, W.W.: A fine-grained approach
to resolving unsatisfiable ontologies. J. Data Semant. 10, 62–95 (2008). https://
doi.org/10.1007/978-3-540-77688-8_3

27. Levesque, H.J.: Foundations of a functional approach to knowledge representation.
Artif. Intell. 23(2), 155–212 (1984). https://doi.org/10.1016/0004-3702(84)90009-
2

28. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. 45(2), 194–228 (2010). https://doi.org/
10.1016/j.jsc.2008.10.007

29. Ortiz, M., Rudolph, S., Šimkus, M.: Worst-case optimal reasoning for the Horn-DL
fragments of OWL 1 and 2. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010 (2010). http://aaai.org/ocs/index.php/KR/
KR2010/paper/view/1296

30. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59(4),
455–482 (2017). https://doi.org/10.1007/s10817-017-9406-8

31. Parsia, B., Rudolph, S., Hitzler, P., Krötzsch, M., Patel-Schneider, P.: OWL 2 web
ontology language primer (second edition). W3C recommendation (2012). http://
www.w3.org/TR/2012/REC-owl2-primer-20121211/

32. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A.,
Hagino, T. (eds.) Proceedings of the 14th International Conference on World Wide
Web, WWW 2005, Chiba, Japan, 10–14 May 2005, pp. 633–640. ACM (2005).
https://doi.org/10.1145/1060745.1060837

33. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987). https://doi.org/10.1016/0004-3702(87)90062-2. See the erratum [22]

http://ceur-ws.org/Vol-410/Paper01.pdf
https://doi.org/10.1109/MC.1983.1654200
https://doi.org/10.1109/MC.1983.1654200
https://doi.org/10.1613/jair.1.11355
http://doi.acm.org/10.1145/2661829.2662046
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/978-3-031-15791-2_11
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1016/0004-3702(84)90009-2
https://doi.org/10.1016/0004-3702(84)90009-2
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
https://doi.org/10.1007/s10817-017-9406-8
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1016/0004-3702(87)90062-2

34 F. Baader et al.

34. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reason. 39(3), 317–349 (2007). https://doi.org/10.1007/
s10817-007-9076-z

35. Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.:
Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI 2018), The 30th Innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI 2018), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 1981–1988.
AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/17189

https://doi.org/10.1007/s10817-007-9076-z
https://doi.org/10.1007/s10817-007-9076-z
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189

Excursions in First-Order Logic
and Probability: Infinitely Many Random

Variables, Continuous Distributions, Recursive
Programs and Beyond

Vaishak Belle1,2(B)

1 University of Edinburgh, Edinburgh, UK
vbelle@ed.ac.uk

2 Alan Turing Institute, London, UK

Abstract. The unification of the first-order logic and probability has been seen
as a long-standing concern in philosophy, AI and mathematics. In this talk, I will
briefly review our recent results on revisiting that unification. Although there are
plenty of approaches in communities such as statistical relational learning, auto-
mated planning, and neuro-symbolic AI that leverage and develop languages with
logical and probabilistic aspects, they almost always restrict the representation as
well as the semantic framework in various ways which do not fully explain how to
combine first-order logic and probability theory in a general way. In many cases,
this restriction is justified because it may be necessary to focus on practicality and
efficiency. However, the search for a restriction-free mathematical theory remains
ongoing. In this article, we discuss our recent results regarding the development
of languages that support arbitrary quantification, possibly infinitely many ran-
dom variables, both discrete and continuous distributions, as well as programming
languages built on top of such features to include recursion and branching control.

Keywords: First-order logic · Probabilistic logic · Programs

1 Introduction

The unification of the logic and probability has been seen as a long-standing concern
in philosophy and mathematical logic, going back to Carnap [14] and Gaifman [23], at
least in terms of early rigorous algebraic studies. In artificial intelligence, starting from
Nilsson [47], Bacchus [2] and Halpern [25], a wide range of formalisms encompassing
various first-order logical features have been proposed. A probabilistic underpinning
provides the gateway for incorporating probabilistic induction, and so areas such as sta-
tistical relational learning [50], inductive logic programming [45] and neuro-symbolic
AI [27] are promising candidates for unifying deduction, noisy sensory observations
and association-based pattern learning.

This material introduces the topic of my keynote at the 18th Edition of the European Conference
on Logics in Artificial Intelligence (JELIA), September 20–22, 2023. This research was partly
supported by a Royal Society University Research Fellowship, UK, and partly supported by a
grant from the UKRI Strategic Priorities Fund, UK to the UKRI Research Node on Trustworthy
Autonomous Systems Governance and Regulation (EP/V026607/1, 2020–2024).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 35–46, 2023.
https://doi.org/10.1007/978-3-031-43619-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_3&domain=pdf
http://orcid.org/0000-0001-5573-8465
https://doi.org/10.1007/978-3-031-43619-2_3

36 V. Belle

1.1 What’s Missing from a First-Order Viewpoint?

From a knowledge representation viewpoint, however, especially in the context of rea-
soning about first-order knowledge—which by design must resolve issues around quan-
tification, and an arbitrary (possibly infinite) domain of discourse—there is very little
work beyond the initial study by Halpern [25]. This is despite the fact that first-order
logic is widely acknowledged to be very important for capturing common sense and
reasoning about generalized assertions [37,38] in a way that humans intuitively seem
to be able to do.

There are many practical dimensions to this concern. For example, even though data
that automated systems would encounter is finite, we still want knowledge such as “the
father of a father is a grandfather” to be applicable to all humans in the universe. A robot
might encounter an object and it is reasonable to assume that there are objects that are
potentially occluded by the first object, and behind it. So the mental model of the robot
should allow for the possibility that an unknown number of objects are behind the first
object. More generally, a thinking system should have a model of the world that is not
purely restricted to direct sensory inputs.

This issue, of course, has not gone unnoticed by the community. There are plenty of
works that explore concepts such as open-world modeling—in contrast to the closed-
world assumption that assumes the set of objects is fixed and finite in advance [4,
42]. But most solutions in the literature make a number of assumptions in terms of the
modeling and the reasoning capabilities of the frameworks. This is justified from the
point of view of practicality, but it leaves open what a general mathematical theory
for first-order logic and probability looks like. Such a theory should allow, in the
least:

1. infinite domains and arbitrary quantification from a first-order viewpoint;
2. discrete, continuous and mixed discrete-continuous distributions from a probability

theory viewpoint.

The logical framework, understandably, should provide a calculus where we can
express sentences that mix logical and probabilistic assertions. Moreover, these may
be provided at any level of specificity by the modeler [3,9] such that the model theory
allows one to reason about entailments in a way that adheres to the axioms of first-order
logic as well as probability theory.

1.2 The Story Does Not Get Easier with Actions

The world is constantly in motion and objects, as well as their properties, are subject
to change. Therefore, a static representation of the world is insufficient, as it does not
allow for the possibility of changes occurring as a result of actions. Some of these
actions may be initiated by the agent by choice, for example, whereas others may be
caused by external factors that the agent cannot control but only perceive and react to.
We might then complement (1) and (2) above, with (3):

3 The theory should enable the modeling of actions, effects, and sensors, even those
that are error-prone, with a probabilistic model. It should also provide a mechanism

Excursions in First-Order Logic and Probability 37

for reasoning about how all of these entities impact the way knowledge about the
world is evolving.

The above desideratum is virtually ignored in probabilistic modelling languages, at
least in a general way that permits a comprehensive account of actions and sensing, and
its complications such as the frame and ramification problem [43]. Indeed, probabilistic
graphical models [49] and Kalman filters [56] are used for temporal phenomena, but
under strict assumptions about how distributions are affected to capture a changing
world. Although decision-theoretic [30] and probabilistic-planning languages allow the
modelling of actions and effects [59], they are neither logics (in allowing for arbitrary
connectives and quantifiers) nor general models of actions in terms of being able to
reason about past and future histories. Relational probabilistic models [57], including
dynamic ones [17], offer some logical features (such as clausal reasoning), but are not
usually embedded in a theory of action and so do not provide a framework to reason
about unbounded sequences of actions. This is not to say that such a framework could
not designed starting from one of the more practical options—and indeed, there are
many that come close [48]—but just that the search for a general and restriction-free
option is still ongoing.

It is also not the case that these problems are completely solved by the knowledge
representation community either. Consider, for example, that Reiter’s [52] reconsider-
ation of the situation calculus has proven enormously useful for the design of logical
agents, essentially paving the way for cognitive robotics [34]. Among other things, it
incorporates a simple monotonic solution to the frame problem, leading Reiter to define
the notion of regression for basic action theories. The situation calculus has enjoyed
numerous extensions for time, processes, concurrency, exogeneity, reactivity, sensing
and knowledge. Nevertheless, one criticism levelled at this line of work, and indeed
at much of the work in cognitive robotics and reasoning about actions, is that the the-
ory is far removed from the kind of probabilistic uncertainty and noise seen in typical
robotic applications [56] and machine learning [46]. In fact, for many years, this criti-
cism applied broadly to almost every knowledge representation language for reasoning
about actions including dynamic epistemic logic [58] and fluent calculus [55], among
others [5,53].

As discussed above, many recent attempts do come close to our desiderata, but
often fall short in addressing (1) and (3) fully. For example, [48] unifies probabilistic
relational languages, (not necessarily finite) discrete and continuous distributions, and
a model of time to capture change to object properties. But it does not support arbi-
trary first-order logic or a full model of actions and unbounded sequences of actions.
Analogously, [54] is a dynamic version of [42]—a probabilistic relational model with
open-world features—but it does not support all of first-order logic or even arbitrary
connectives. It also restricts how we can reason about sequences of past and future
histories.

1.3 The Case for Meta-Beliefs

A final ingredient ignored by almost all statistical relational learning and machine learn-
ing frameworks is the lack of a construct that can reason about meta-beliefs [22]. In

38 V. Belle

areas from game theory [1] to distributed systems [44] to computer science [26], epis-
temic notions play an important role because we can easily distinguish between what
is known versus what is true. For instance, we might be wanting to say that the box is
red, but the robot believes it is blue, until it comes close to it and senses the true color.
The notion of knowledge becomes even more important in a distributed and multi-agent
setting [7] where we need to reason about the beliefs of many agents at the same time.
Moreover, each agent may need to hold beliefs about other agents so that they can col-
laborate, communicate and/or compete in a systematic way. Epistemic notions may also
be useful for explaining automated systems [6,32].

1.4 Our Results

In this talk, I will briefly review our recent results on revisiting the unification of first-
order logic and probability theory. In particular, we discuss the development of lan-
guages that support arbitrary quantification, possibly infinitely many random variables,
both discrete and continuous distributions, as well as programming languages built on
top of such features to include recursion and branching control. All of these languages
are epistemic logics, and thus support reasoning about beliefs and meta-beliefs as a
bonus. In particular, we refer to the following results:

1. first-order logic for actions and continuous distributions [9], but with finitely many
random variables. (This model, however, is not a very convenient approach to reason
about meta-beliefs.)

2. Query rewriting results for that logic that reduce an action sequence to some formula
about the initial (static) knowledge base [10]. We may instead update the knowledge
base [11].

3. A programming model with recursion for that logic [13].
4. A reconstruction of the logic with infinitely many random variables but with discrete

distributions [8]. This model, in contrast, is an epistemic modal logic and permits
reasoning about meta-beliefs in the usual way.

5. A model of program abstraction based on this epistemic modal logic [28]. This
allows one to abstract the stochasticity away so that probabilistic programs can be
mapped onto ones that mention no probabilities at all.

6. A refinement of the modal logic with infinitely many random variables and both
discrete and continuous distributions [41].

2 A Brief Overview of Results

Although it would be impossible to provide all the details of these contributions, we
will give a quick overview of the key ideas behind these results here.

2.1 Language

We are interested in a first-order language. That is, it includes a set of predicates, func-
tion symbols, equality, first-order quantifiers (both universal quantification and existen-
tial quantification) and the usual connectives for conjunction, disjunction and negation.

Excursions in First-Order Logic and Probability 39

It will be simpler to often assume a fixed domain of discourse, say the set of natural
numbers: N, which serves as a domain of quantification.

Of course, if we want the language to also capture continuous distributions, we
will also need to allow the domain to include the set of reals. The idea is that when
we reason about objects (such as places, things and people), we will be quantifying
over the countable domain of discourse. And when we need to reason about real-valued
quantities, we will be using variable maps to go over the real numbers. The most general
introduction to this can be found in [41].

2.2 Beliefs

If we simply want to talk about probabilities and how they change, our language can
remain “objective”. That is, we would need to only write down probabilistic expressions
in our language and reason about them, as seen in [21]. However, since our aim here is
to capture the beliefs of the robot, we will need epistemic operators. In particular, we
will consider a “degrees of belief” modal operator that can be used as follows:

– B(mass < 20) > 0.9;
– B(mass � 0 ∧ mass � 1) > 0.8; and
– K(mass2 > 5 ∨ mass2 > 6), where Kα � (Bα = 1).

The first formula says that the agent believes the mass of an object being less than 20
units (say, kilograms) is greater than 0.9. We are dealing with normalized probabilities
here so probabilities range between 0 and 1 inclusive. The second formula is saying
that the agent believes the mass of the object not being 0 and not being 1 is greater
than 0.8. Finally, the third one is saying that the square of the mass of this object being
greater than 5 or being greater than 6 is believed with a degree of 1. The last formula
is interesting because although it provides a probability for the disjunction, it does not
quite say what exactly is a degree of belief for each of the disjuncts. This is the power
of providing a general way to combine logic and probability because it allows one to
express and quantify over arbitrary first-order formulas without specifying how exactly
the probabilities should be assigned to the (ground) atoms in those formulas. This then
raises the question: what does the semantics look like?

2.3 Semantics

The semantics for epistemic logics is usually given in terms of possible worlds [22].
The idea being that the agent considers some worlds possible and is said to know things
only when those things are true in all the worlds considered possible. Ordinarily, when
dealing with degrees of belief [20], we would say that the worlds are also assigned
weights. This allows us to then say that some formula is believed with a degree of
belief r if and only if the sum of the weights of the worlds that satisfy this formula
comes up to r.

How then do we generalize this idea to deal with first order formulas, as well as the
assigning of probabilities to complex formulas without providing the probabilities of
atoms, as seen in the example of the disjunction above? For starters, we would say that

40 V. Belle

each world is a first-order structure that interprets the predicates and the functions over
the constants and the domain of discourse in the usual way [19]. But because there are
uncountably many worlds, we need to ensure that distributions are defined so as to obey
the usual axioms of probability theory. There are a number of different ways to do this.
We could either provide an appropriate analogue to the classical concept of defining a
measure over an uncountable space [41]. Or, we could set up the probability of formulas
based on countable additivity and convergence of the weights of worlds [8].

Such a framework, however, only accounts for a single distribution over the formu-
las. But because we are permitting situations where there may not be a unique distribu-
tion for formulas, we define an epistemic state as a set of distributions.

Once the semantics is set up this way, we can reason about disjunctions with the
appropriate interpretation. For example: B(p∨q) = r for r � 0 does not imply B(p) = n
for any n. Note that, of course, in each of the distributions in the epistemic state, B(p)
will be equal to some n, but there is no single value agreed upon by all distributions in
an epistemic state where B(p ∨ q) � 0. In other words, the only obvious consequence
of B(p ∨ q) � 0 is B(¬p ∧ ¬q) � 1.

Moreover, with the same semantical setup, we will now be able to reason about
meta-beliefs and meta-knowledge very much in the spirit of introspective epistemic
logics [15]:

– (B(α) = r) ⊃ K(B(α) = r);
– (¬Kα) ⊃ K(¬Kα);
– (α ≡ β) ⊃ (Bα = Bβ);
– (B(α) = r) ∧ (B(β) = r′) ∧ (B(α ∧ β) = r′′) implies B(α ∨ β) = (r + r′ − r′′).

The first formula says that if the agent believes a formula with degree r, then it
knows (degree = 1) that it believes this. The second says that not knowing something
means that the agent knows what it does not know. The third formula says that if two
formulas are logically equivalent then the degree of belief for these formulas has to be
the same. Finally the last formula is about the additive rule of probability.

2.4 Actions

To extend the model to actions [8], we can consider a language where a subset of the
function symbols are reserved for actions. These function symbols could be things like
move(x) which might say that the agent should move to x, and pick(x) which says
that the agent should pick up the object x, and so on. To include these actions in the
language, we will introduce two modal operators: [a] and �, such that if φ is a formula,
then so are [a]φ and �φ. The first one says that φ is true after doing a. The second one
says that after every sequence of actions, φ is true.

To extend the semantics, now we have to think of every world as a tree of first-order
structures, because the world would be interpreting what is true initially as well as what
is true after sequences of actions. (We allow for arbitrary sequences of actions, so the
tree will also be infinite.) The agent language is actually based on the situation calculus
[52], but recast in a modal logic [33].

Excursions in First-Order Logic and Probability 41

2.5 Basic Action Theories

To capture an application domain, we define a set of axioms which describes how the
domain works: what actions are available, what sensors are available and what effects
these have on the world and on the agent’s knowledge. For example, consider [28]:

– Σ0 = at(near) ∨ at(midpos) ∨ at(f ar);
– �Poss(a) ≡ ∃l.a = goto(l) ∧ ¬at(l); and
– �[a]at(l) ≡ a = goto(l) ∨ at(l) ∧ ¬∃l′a = goto(l′).

This says that initially the robot might believe to be close to an object (say, a wall),
or at mid-distance from the object, or far away. The second one says that doing a go-to
action is only possible when the robot is not already at the location. And finally the
third sentence captures a monotonic solution to the frame problem [39] and basically
says that the robot is at a location either if it executed a go-to action previously to
that particular location, or it was already at this location and it did not go to some
other location. Notice the box operator for the second and the third sentence. These
conditions—the precondition and the effect of actions—is something that we want the
worlds to obey after every action. So these are axioms that hold for all possible action
histories.

A programming language can be defined on such axiomisations for high-level con-
trol [36]. For example, a program to get close to the wall and move away from the wall
could be:

if ¬At(near) then goto(near) endif; goto(f ar)
Classically, most action languages have made a number of serious assumptions:

noiseless sensors without measurement error and exact actions that always have the
desired effect. In practice, both assumptions are idealistic: The sonar sensor may mea-
sure with an error, e.g., ± 1, or even have a continuous noise profile [56]. The robot
may get stuck or fail with some probability. Most seriously, the robot may not be able
to observe those errors.

2.6 Revisiting the Axiomatisation

To address these assumptions, we need to revisit how we capture the domain. It may
be too simplistic to simply say we can go to some location as an atomic action. And to
say that we are either close or far from the wall might be too coarse to work with for
a probabilistic representation. So we might end up using the following symbols in our
language to capture the domain:

– loc(x) is true if the distance to the wall is x;
– An action move(x, y), where

– x is the distance the robot intends to move;
– y is the distance that the robot actually moves;
– but y may not be observed by the robot; and
– so, we will write move(x) for πy. move(x, y).

42 V. Belle

Here, πy is a nondeterministic pick operator for programs, the idea being that nature
nondeterministically chooses y. Analogously, if sonar(x) measures the distance to the
wall and returns x, we let sonar() be short for πx. sonar(x) (where nature chooses x). Let
us also assume that if a move by x units is intended, then the actual outcome is within
one unit of the intended value. Likewise, whenever the sensor reads x, the true value is
within one unit of that number. The probabilities accorded to these alternatives does not
really matter for our informal discussion below, but for the sake of concreteness, say
that each of {x − 1, x, x + 1} taken on a probability of 1/3. (That is, the possible values
are taken from a discrete uniform distribution.) Note that, by way of the language, we
do not have to commit to a single distribution for the outcomes, much like how we did
not need to commit to a single distribution for the robot’s initial knowledge.

2.7 A Revised Program

With all of this machinery, the simple program from above, understandably, gets a lot
more complicated and would look something like this:

sonar()
while ¬K(∃x.loc(x) ∧ x ≤ 2) do move(−1); sonar() end while
while ¬K(∃x.loc(x) ∧ x ≥ 5) do move(1); sonar() end while

So, while the robot does not know that it is close, move towards the wall (using
a negative argument). But because the move action is noisy, the robot needs to sense.
And the sense-act loop needs to repeat until the robot has full certainty that it is actually
close. It then exits the first while-loop and enters the second while-loop. Here, as long
as it does not believe that is far, it moves away from the wall and senses to counter the
noisy action. This repeats until it is actually away from the wall.

3 Abstraction at Play

Probabilistic belief programs seem to capture the intuitions perfectly, and they cor-
responding to cyclic policies [35], but they present several challenges, at least when
written down by hand. Firstly, correctly designing these programs is a complex task.
The incorporation of probabilities into the program structure requires a careful assess-
ment of how sensed values, which are not in the robot’s control, need to determine what
to do next. Secondly, reasoning about probabilities can be a difficult endeavor for the
modeler. It is challenging to accurately assess the likelihood of different outcomes or
events, especially over long histories. Lastly, comprehending how and why a proba-
bilistic belief program works is nontrivial.

So, ideally, we would like to write high-level programs without having to deal with
probabilities. And, by doing so, one can obtain models and execution traces that are
easy to understand. This is where abstraction comes in. The (low-level) action theory
includes stochastic actions as usual, but then a high-level action theory is defined that
abstracts away stochasticity [28]. For example, it is possible to show that there is a
mapping for predicates and actions for the numeric example above such that the above

Excursions in First-Order Logic and Probability 43

programming involving two while-loops has the same behavior as the one with if-then-
endif (the first program introduced above)! This is because the goto action in the if-then-
endif program maps to a sense-act while-loop for the low-level action theory, allowing
us to establish that formally the two programs are equivalent for a particular mapping.
Obviously, this has a huge advantage because it is very easy to design the first program.
It almost corresponds to how we might describe the instructions in natural language. In
contrast, the second program is much harder and requires an understanding of proba-
bility theory and dynamics.

3.1 A Note About Continuous Noise

The discussion above was largely based on a discrete model of probability theory
embedded in first-order logic. This is why we were able to consider the degree of belief
taking a value of exactly one. The sensor model, moreover, also introduced an error
within one unit of the actual value. In reality, in continuous models, this becomes far
more complex. Beliefs about the initial situation may take on uncountably many val-
ues. Both the sensor and effector can have, say, Gaussian error profiles [56]. What this
means is that we still require sense-act loops, but it is highly unlikely that the degree of
belief in a formula of interest would be exactly one. We might have to contend with a
degree of belief greater than, say, 0.9 as conditions in the programs. It would even make
sense to involve the expected values of the probabilistic variables, as discussed in [13].

4 Future Work

Much of this discussion has largely been on a theoretical front in terms of searching for
general-purpose languages where restrictions are not placed purely for computational
reasons. We are interested in developing the semantics and the mathematical theory that
allows us to reason about properties in languages that allow a full fragment of first-order
logic + all of probability. As argued, this is a much needed mathematical exercise, but in
reality we would want to work with robots and virtual agents. So the obvious question
here is how can we make any of this tractable, scalable or efficient?

To do that, we need to revisit areas such as statistical relation learning and neu-
rosymbolic AI, which have achieved considerable success in developing concise lan-
guages [51]. These languages not only capture interesting probability distributions
described over symbolic artifacts but also provide implementations and, in some cases,
tractability guarantees [16]. However, as we have argued, these areas do not offer a
complete understanding of how probability theory integrates with first-order logic over
a general theory of actions. Hence, our above exercise sets the stage. With that in hand,
we may now strive to find a middle ground, where we can explore fragments that are
slightly more expressive than existing proposals in statistical relation learning. These
fragments should retain certain features mentioned earlier, including the ability to define
recursive programs and reason about hypothetical events and future histories, much like
in temporal logic [18].

To some extent we have some early results that do exactly this. For example, in [12],
we showed how reasoning about actions can be reduced to a formula about the initial

44 V. Belle

situation, after which we can use any existing reasoning module for the initial situation,
including Bayesian networks and relational probabilistic models. Interestingly, this type
of reduction strategy was explored independently for the practical problem of robot
task and motion planning [31]. In [13], we showed that the kinds of belief-based pro-
grams discussed above, involving degrees of beliefs as conditions in the program, can
be implemented using a particle-filtering strategy provided the language was appropri-
ately restricted. By extension, it would be interesting to also develop fragments where it
is possible to combine discrete and continuous distributions in natural way, and reason
about things like abstraction. There is some recent work on verifying such programs
[40].

It might be also possible to connect these advances in knowledge representation to
exciting work in ML on probabilistic programming [24], where the topic of synthesis
and learning are also embraced. For example, there is already work on synthesizing
(recursion-free) probabilistic program abstractions [29] and perhaps it is possible to
leverage such ideas for the programs discussed above.

More broadly, despite the advances of deep learning, it is now becoming increas-
ingly clear that symbolic artifacts play an important role from the perspective of
explainability, domain adaptation, domain knowledge inclusion, as well as reasoning.
Neuro-symbolic AI is a representative example for the scientific need for this type of
unification [27]. However, ad-hoc or otherwise limited combinations of logic and prob-
ability are likely to only take us so far: we need to think more carefully about how
general-purpose open-ended agents might reason with quantifiers and how they might
reason about past histories and future outcomes. All of these latter features are precisely
what motivates many expressive knowledge representation languages. By embracing
probability theory, we are now in a position to draw concrete connections between
expressive KR languages and learning, and offer capabilities, including reasoning about
meta-beliefs and belief-based program verification, that are out of reach for standard
machine learning theory based on probability theory alone.

References

1. Aumann, R.J.: Interactive epistemology II: probability. Int. J. Game Theory 28(3), 301–314
(1999)

2. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press, Cam-
bridge (1990)

3. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and effectors in
the situation calculus. Artif. Intell. 111(1–2), 171–208 (1999)

4. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: IJCAI, vol. 7, pp. 2670–2676 (2007)

5. Baral, C., Gelfond, M.: Logic programming and reasoning about actions. In: Handbook of
Temporal Reasoning in Artificial Intelligence, pp. 389–426. Elsevier (2005)

6. Belle, V.: Counterfactual explanations as plans. In: The 39th International Conference on
Logic Programming. Open Publishing Association (2023)

7. Belle, V., Bolander, T., Herzig, A., Nebel, B.: Epistemic planning: perspectives on the special
issue (2022)

8. Belle, V., Lakemeyer, G.: Reasoning about probabilities in unbounded first-order dynamical
domains. In: IJCAI (2017)

Excursions in First-Order Logic and Probability 45

9. Belle, V., Levesque, H.J.: Reasoning about continuous uncertainty in the situation calculus.
In: Proceedings of the IJCAI (2013)

10. Belle, V., Levesque, H.J.: Reasoning about probabilities in dynamic systems using goal
regression. In: Proceedings of the UAI (2013)

11. Belle, V., Levesque, H.J.: How to progress beliefs in continuous domains. In: Proceedings of
the KR (2014)

12. Belle, V., Levesque, H.J.: PREGO: an action language for belief-based cognitive robotics in
continuous domains. In: Proceedings of the AAAI (2014)

13. Belle, V., Levesque, H.J.: Allegro: belief-based programming in stochastic dynamical
domains. In: IJCAI (2015)

14. Carnap, R.: Logical Foundations of Probability. Routledge and Kegan Paul London (1951)
15. Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)
16. Choi, A., Darwiche, A.: On relaxing determinism in arithmetic circuits. arXiv preprint

arXiv:1708.06846 (2017)
17. Choi, J., Guzman-Rivera, A., Amir, E.: Lifted relational Kalman filtering. In: Proceedings of

the IJCAI, pp. 2092–2099 (2011)
18. Dixon, C., Fisher, M., Konev, B.: Tractable temporal reasoning. In: IJCAI, vol. 7, pp. 318–

323 (2007)
19. Enderton, H.: A Mathematical Introduction to Logic. Academic Press, New York (1972)
20. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41(2), 340–

367 (1994)
21. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput.

87(1–2), 78–128 (1990)
22. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press,

Cambridge (1995)
23. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18 (1964)
24. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In:

Proceedings of the International Conference on Software Engineering (2014)
25. Halpern, J.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350

(1990)
26. Halpern, J.Y., Pass, R., Raman, V.: An epistemic characterization of zero knowledge. In:

TARK, pp. 156–165 (2009)
27. Hitzler, P.: Neuro-symbolic artificial intelligence: the state of the art (2022)
28. Hofmann, T., Belle, V.: Abstracting noisy robot programs. In: AAMAS (2023)
29. Holtzen, S., Broeck, G., Millstein, T.: Sound abstraction and decomposition of probabilistic

programs. In: International Conference on Machine Learning, pp. 1999–2008. PMLR (2018)
30. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable

stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)
31. Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief space. I. J.

Robot. Res. 32(9–10), 1194–1227 (2013)
32. Kambhampati, S.: Challenges of human-aware AI systems. AI Mag. 41(3) (2020)
33. Lakemeyer, G., Levesque, H.J.: Situations, Si! situation terms, No! In: Proceedings of the

KR, pp. 516–526 (2004)
34. Lakemeyer, G., Levesque, H.J.: Cognitive robotics. In: Handbook of Knowledge Represen-

tation, pp. 869–886. Elsevier (2007)
35. Lang, J., Zanuttini, B.: Knowledge-based programs as plans - the complexity of plan verifi-

cation. In: Proceedings of the ECAI, pp. 504–509 (2012)
36. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: a logic programming

language for dynamic domains. J. Log. Program. 31, 59–84 (1997)
37. Levesque, H.J.: Common Sense, the Turing Test, and the Quest for Real AI. MIT Press,

Cambridge (2017)

http://arxiv.org/abs/1708.06846

46 V. Belle

38. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press, Cambridge
(2001)

39. Levesque, H.J., Pirri, F., Reiter, R.: Foundations for the situation calculus. Electron. Trans.
Artif. Intell. 2, 159–178 (1998)

40. Liu, D.: Projection in a probabilistic epistemic logic and its application to belief-based pro-
gram verification. Ph.D. thesis, RWTH Aachen University (2023)

41. Liu, D., Feng, Q., Belle, V., Lakemeyer, G.: Concerning measures in a first-order logic with
actions and meta-beliefs. In: 20th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (2023)

42. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: probabilistic
models with unknown objects. In: Proceedings of the IJCAI, pp. 1352–1359 (2005)

43. Morgenstern, L., McIlraith, S.A.: John McCarthy’s legacy. Artif. Intell. 175(1), 1–24 (2011)
44. Moses, Y., Dolev, D., Halpern, J.Y.: Cheating husbands and other stories: a case study of

knowledge, action, and communication. Distrib. Comput. 1(3), 167–176 (1986)
45. Muggleton, S., et al.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2012)
46. Murphy, K.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge

(2012)
47. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
48. Nitti, D.: Hybrid probabilistic logic programming. Ph.D. thesis, KU Leuven (2016)
49. Pearl, J.: Graphical models for probabilistic and causal reasoning. In: Smets, P. (ed.) Quan-

tified Representation of Uncertainty and Imprecision. HDRUMS, vol. 1, pp. 367–389.
Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-1735-9 12

50. Poole, D.: Logic, probability and computation: foundations and issues of statistical relational
AI. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 1–9.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9 1

51. Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical relational artificial intelligence:
logic, probability, and computation. Synth. Lect. Artif. Intell. Mach. Learn. 10(2), 1–189
(2016)

52. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge (2001)

53. Scherl, R.B., Son, T.C., Baral, C.: State-based regression with sensing and knowledge. Int.
J. Softw. Inform. 3(1), 3–30 (2009)

54. Srivastava, S., Russell, S.J., Ruan, P., Cheng, X.: First-order open-universe POMDPs. In:
UAI, pp. 742–751 (2014)

55. Thielscher, M.: From situation calculus to fluent calculus: state update axioms as a solution
to the inferential frame problem. Artif. Intell. 111(1–2), 277–299 (1999)

56. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
57. Van den Broeck, G., Meert, W., Davis, J.: Lifted generative parameter learning. In: Statistical

Relational Artificial Intelligence, AAAI Workshop (2013)
58. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn. Springer,

Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5839-4
59. Yoon, S.W., Fern, A., Givan, R.: FF-Replan: a baseline for probabilistic planning. In: Boddy,

M.S. Fox, M., Thiébaux, S. (eds.) ICAPS, p. 352. AAAI (2007)

https://doi.org/10.1007/978-94-017-1735-9_12
https://doi.org/10.1007/978-3-642-20895-9_1
https://doi.org/10.1007/978-1-4020-5839-4

Special Track: Logics for Explainable
and Trustworthy AI

Efficient Computation of Shap Explanation
Scores for Neural Network Classifiers

via Knowledge Compilation

Leopoldo Bertossi1(B) and Jorge E. León2

1 SKEMA Business School, Montreal, Canada
leopoldo.bertossi@skema.edu

2 Universidad Adolfo Ibáñez (UAI), Santiago, Chile
jorgleon@alumnos.uai.cl

Abstract. The use of Shap scores has become widespread in Explainable AI.
However, their computation is in general intractable, in particular when done
with a black-box classifier, such as neural network. Recent research has unveiled
classes of open-box Boolean Circuit classifiers for which Shap can be computed
efficiently. We show how to transform binary neural networks into those circuits
for efficient Shap computation. We use logic-based knowledge compilation tech-
niques. The performance gain is huge, as we show in the light of our experiments.

1 Introduction

In recent years, there has been a growing demand for methods to explain and interpret
the results from machine learning (ML) models. Explanations come in different forms,
and can be obtained through different approaches. A common one assigns attribution
scores to the features values associated to an input that goes through an ML-based
model, to quantify their relevance for the obtained outcome. We concentrate on local
scores, i.e. associated to a particular input, as opposed to a global score that indicated
the overall relevance of a feature. We also concentrate on explanations for binary clas-
sification models that assign labels 0 or 1 to inputs.

A popular local score is Shap [18], which is based on the Shapley value that was
introduced in coalition game theory and practice [29,31]. Shap scores can be computed
with a black-box or an open-box model [30]. With the former, we do not know or use
its internal components, but only its input/output relation. This is the most common
approach. In the latter case, we can have access to its internal structure and components,
and we can use them for score computation. It is common to consider neural-network-
based models as black-box models, because their internal gates and structure may be
difficult to understand or process when it comes to explaining classification outputs.
However, a decision-tree model, due to its much simpler structure and use, is considered
to be open-box for the same purpose.

Even for binary classification models, the complexity of Shap computation is prov-
ably hard, actually#P -hard for several kinds of binary classification models, indepen-
dently from whether the internal components of the model are used when computing

L. Bertossi—Member of the Millennium Institute for Foundational Research on Data (IMFD,
Chile).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 49–64, 2023.
https://doi.org/10.1007/978-3-031-43619-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_4

50 L. Bertossi and J. E. León

Shap [1,2,4]. However, there are classes of classifiers for which, using the model com-
ponents and structure, the complexity of Shap computation can be brought down to
polynomial time [2,19,37].

A polynomial time algorithm for Shap computation with deterministic and decom-
posable Boolean circuits (dDBCs) was presented in [2]. From this result, the tractability
of Shap computation can be obtained for a variety of Boolean circuit-based classi-
fiers and classifiers that can be represented as (or compiled into) them. In particular,
this holds for Ordered Binary Decision Diagrams (OBDDs) [8], decision trees, and
other established classification models that can be compiled into (or treated as) OBDDs
[11,23,33]. This applies, in particular, to Sentential Decision Diagrams (SDDs) [14]
that form a convenient knowledge compilation target language [12,36].

In this work, we show how to use logic-based knowledge compilation techniques to
attack, and -to the best of our knowledge- for the first time, the important and timely
problem of efficiently computing explanations scores in ML, which, without these tech-
niques, would stay intractable.

More precisely, we concentrate on explicitly developing the compilation-based app-
roach to the computation of Shap for binary (or binarized) neural networks (BNNs)
[17,23,27,35]. For this, a BNN is transformed into a dDBC using techniques from
knowledge compilation [12], an area that investigates the transformation of (usually)
propositional theories into an equivalent one with a canonical syntactic form that has
some good computational properties, e.g. tractable model counting. The compilation
may incur in a relatively high computational cost [12,13], but it may still be worth the
effort when a particular property is checked often, as is the case of explanations for the
same BNN.

More specifically, we describe in detail how a BNN is first compiled into a propo-
sitional formula in Conjunctive Normal Form (CNF), which, in its turn, is compiled
into an SDD, which is finally compiled into a dDBC. Our method applies at some steps
established transformations that are not commonly illustrated or discussed in the context
of real applications, which we do here. The whole compilation path and the application
to Shap computation are new. We show how Shap is computed on the resulting circuit
via the efficient algorithm in [2]. This compilation is performed once, and is indepen-
dent from any input to the classifier. The final circuit can be used to compute Shap
scores for different input entities.

We also make experimental comparisons of computation times between this open-
box and circuit-based Shap computation, and that based directly on the BNN treated as
a black-box, i.e. using only its input/output relation. For our experiments, we consider
real estate as an application domain, where house prices depend on certain features,
which we appropriately binarize1. The problem consists in classifying property blocks,
represented as entity records of thirteen feature values, as high-value or low-value, a
binary classification problem for which a BNN is used.

To the best of our knowledge, our work is the first at using knowledge compila-
tion techniques for efficiently computing Shap scores, and the first at reporting exper-
iments with the polynomial time algorithms for Shap computation on binary circuits.
We confirm that Shap computation via the dDBC vastly outperforms the direct Shap

1 California Housing Prices dataset: https://www.kaggle.com/datasets/camnugent/california-
housing-prices.

https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices

Efficient Computation of Shap Explanation Scores 51

computation on the BNN. It is also the case that the scores obtained are fully aligned,
as expected since the dDBC represents the BNN. The same probability distribution
associated to the Shapley value is used with all the models.

Compilation of BNNs into OBDDs was done in [11,33] for other purposes, not for
Shap computation or any other kind of attribution score. In this work we concentrate
only on explanations based on Shap scores. There are several other explanations mech-
anisms for ML-based classification and decision systems in general, and also specific
for neural networks. See [16] and [28] for surveys.

This paper is structured as follows. Section 2 contains background on Shap and
Boolean circuits (BCs). Section 3 shows in detail, by means of a running example, the
kind of compilation of BNNs into dDBCs we use for the experiments. Section 4 presents
the experimental setup, and the results of our experiments with Shap computation. In
Sect. 5 we draw some conclusions.

2 Preliminaries

In coalition game theory and its applications, the Shapley value is a established measure
of the contribution of a player to a shared wealth that is modeled as a game function.
Given a set of players S, and a game function G : P(S) → R, mapping subsets of
players to real numbers, the Shapley value for a player p ∈ S quantifies its contribution
to G. It emerges as the only measure that enjoys certain desired properties [29]. In order
to apply the Shapley value, one has to define an appropriate game function.

Now, consider a fixed entity e = 〈F1(e), . . . , FN (e)〉 subject to classification. It
has values Fi(e) for features in F = {F1, . . . , FN}. These values are 0 or 1 for binary
features. In [18,19], the Shapley value is applied with F as the set of players, and with
the game function Ge(s) := E(L(e′) | e′

s = es), giving rise to the Shap score. Here,
s ⊆ F , and es is the projection (or restriction) of e on (to) the s. The label function
L of the classifier assigns values 0 or 1. The e′ inside the expected value is an entity
whose values coincide with those of e for the features in s. For feature F ∈ F :

Shap(F ,Ge, F) =
∑

s⊆F\{F}

|s|!(|F| − |s| − 1)!
|F|! [(1)

E(L(e′) | e′
s∪{F} = es∪{F}) − E(L(e′) | e′

s = es)].

The expected value assumes an underlying probability distribution on the entity popu-
lation. Shap quantifies the contribution of feature value F (e) to the outcome label.

In order to compute Shap, we only need function L, and none of the internal com-
ponents of the classifier. Given that all possible subsets of features appear in its defini-
tion, Shap is bound to be hard to compute. Actually, for some classifiers, its computa-
tion may become#P -hard [2]. However, in [2], it is shown that Shap can be computed
in polynomial time for every deterministic and decomposable Boolean circuit (dDBC)
used as a classifier. The circuit’s internal structure is used in the computation.

Figure 1 shows a Boolean circuit that can be used as a binary classifier, with binary
features x1, x2, x3, whose values are input at the bottom nodes, and then propagated
upwards through the Boolean gates. The binary label is read off from the top node.
This circuit is deterministic in that, for every ∨-gate, at most one of its inputs is 1 when

52 L. Bertossi and J. E. León

the output is 1. It is decomposable in that, for every ∧-gate, the inputs do not share
features. The dDBC in the Figure is also smooth, in that sub-circuits that feed a same
∨-gate share the same features. It has a fan-in at most two, in that every ∧-gate and
∨-gate have at most two inputs. We denote this subclass of dDBCs with dDBCSFi(2).

Fig. 1. A dDBC. Fig. 2. A BNN.

More specifically, in [2] it is established that Shap can be computed in polynomial
time for dDBCSFi(2)-classifiers, assuming that the underlying probability distribution
is the uniform, P u, or the product distribution, P×. They are as follows for binary
features: P u(e) := 1

2N
and P×(e) := ΠN

i=1pi(Fi(e)), where pi(v) is the probability
of value v ∈ {0, 1} for feature Fi.

3 Compiling BNNs into dDBCs

In order to compute Shap with a BNN, we convert the latter into a dDBC, on which
Shap scores will be computed with the polynomial time algorithm in [2]. The trans-
formation goes along the the following path that we describe in this section:

BNN �−→
(a)

CNF �−→
(b)

SDD �−→
(c)

dDBC
(2)

A BNN can be converted into a CNF formula [23,34], which, in its turn, can be con-
verted into an SDD [14,25]. It is also known that SDDs can be compiled into a formula
in d-DNNF (deterministic and decomposable negated normal form) [12], which forms
a subclass of dDBCs. More precisely, the resulting dDBC in (2) is finally compiled in
polynomial time into a dDBCSFi(2).

Some of the steps in (2) may not be polynomial-time transformations, which we
will discuss in more technical terms later in this section. However, we can claim at
this stage that: (a) Any exponential cost of a transformation is kept under control by a
usually small parameter. (b) The resulting dDBCSFi(2) is meant to be used multiple
times, to explain different and multiple outcomes; and then, it may be worth taking a
one-time, relatively high transformation cost. A good reason for our transformation
path is the availability of implementations we can take advantage of2.
2 The path in (2) is not the only way to obtain a dDBC. For example, [33] describe a conversion
of BNNs into OBDDs, which can also be used to obtain dDBCs. However, the asymptotic time
complexity is basically the same.

Efficient Computation of Shap Explanation Scores 53

We will describe, explain and illustrate the conversion path (2) by means of a run-
ning example with a simple BNN, which is not the BNN used for our experiments. For
them, we used a BNN with one hidden layer with 13 gates.

Example 1. The BNN in Fig. 2 has hidden neuron gates h1, h2, h3, an output gate
o, and three input gates, x1, x2, x3, that receive binary values. The latter represent,
together, an input entity x̄ = 〈x1, x2, x3〉 that is being classified by means of a label
returned by o. Each gate g is activated by means of a step function φg (̄i) of the form:

sp(w̄g • ī + bg) :=

⎧
⎨

⎩

1 if w̄g • ī + bg ≥ 0,
−1 otherwise and g is hidden,
0 otherwise and g is output,

(3)

which is parameterized by a vector of binary weights w̄g and a real-valued constant bias
bg

3. The • is the inner vector product. For technical, non-essential reasons, for a hidden
gate, g, we use 1 and−1, instead of 1 and 0, in w̄g and outputs. Similarly, x̄ ∈ {−1, 1}3.
Furthermore, we assume we have a single output gate, for which the activation function
does return 1 or 0, for true or false, respectively.

For example, h1 is true, i.e. outputs 1, for an input x̄ = (x1, x2, x3) iff w̄h1 • x̄ +
bh1 = (−1) × x1 + (−1) × x2 + 1 × x3 + 0.16 ≥ 0. Otherwise, h1 is false, i.e.
it returns −1. Similarly, output gate o is true, i.e. returns label 1 for a binary input
h̄ = (h1, h3, h3) iff w̄o • h̄ = 1 × h1 + 1 × h2 + (−1) × h3 − 0.01 ≥ 0, and 0
otherwise. �

The first step, (a) in (2), represents the BNN as a CNF formula, i.e. as a conjunction
of disjunctions of literals, i.e. atomic formulas or their negations.

Each gate of the BNN is represented by a propositional formula, initially not neces-
sarily in CNF, which, in its turn, is used as one of the inputs to gates next to the right.
In this way, we eventually obtain a defining formula for the output gate. The formula
is converted into CNF. The participating propositional variables are logically treated as
true or false, even if they take numerical values 1 or −1, resp.

3.1 Representing BNNs as Formulas in CNF

Our conversion of the BNN into a CNF formula is inspired by a technique introduced in
[23], in their case, to verify properties of BNNs. In our case, the NN is fully binarized
in that inputs, parameters (other than bias), and outputs are always binary, whereas they
may have real values as parameters and outputs. Accordingly, they have to binarize
values along the transformation process. They also start producing logical constraints
that are later transformed into CNF formulas. Furthermore, [23] introduces auxiliary
variables during and at the end of the transformation. With them, in our case, such a
BC could not be used for Shap computation. Furthermore, the elimination of auxiliary
variables, say via variable forgetting [26], could harm the determinism of the final cir-
cuit. In the following we describe a transformation that avoids introducing auxiliary
variables4. However, before describing the method in general, we give an example, to
convey the main ideas and intuitions.
3 We could also used binarized sigmoid and softmax functions.
4 At this point is where using 1,−1 in the BNN instead of 1, 0 becomes useful.

54 L. Bertossi and J. E. León

Example 2. (Example 1 cont.) Consider gate h1, with parameters w̄ = 〈−1,−1, 1〉 and
b = 0.16, and input ī = 〈x1, x2, x3〉. An input xj is said to be conveniently instantiated
if it has the same sign as wj , and then, contributing to having a larger number on the
LHS of the comparison in (3). E.g., this is the case of x1 = −1. In order to represent as
a propositional formula its output variable, also denoted with h1, we first compute the
number, d, of conveniently instantiated inputs that are necessary and sufficient to make
the LHS of the comparison in (3) greater than or equal to 0. This is the (only) case
when h1 becomes true; otherwise, it is false. This number can be computed in general
by [23]:

d =

⎡

⎢⎢⎢
(−b +

|̄i|∑

j=1

wj)/2

⎤

⎥⎥⎥
+# of negative weights in w̄. (4)

For h1, with 2 negative weights: d(h1) =
(−0.16 + (−1 − 1 + 1))/2� + 2 = 2.
With this, we can impose conditions on two input variables with the right sign at a time,
considering all possible convenient pairs. For h1 we obtain its condition to be true:

h1 ←→ (−x1 ∧ −x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (5)

This DNF formula is directly obtained -and just to convey the intuition- from con-
sidering all possible convenient pairs (which is already better that trying all cases of
three variables at a time). However, the general iterative method presented later in this
subsection, is more expedite and compact than simply listing all possible cases; and still
uses the number of convenient inputs. Using this general algorithm, we obtain, instead
of (5), this equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1). (6)

Similarly, we obtain defining formulas for h2, h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o ←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (7)

Replacing the definitions of h1, h2, h3 into (7), we finally obtain:

o ←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧ ([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]
∨[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)])) ∨ ([(−x3 ∧ (−x2 ∨ −x1)) ∨
(−x2 ∧ −x1)] ∧ [(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]). (8)

The final part of step (a) in path (2), requires transforming this formula into CNF.
In this example, it can be taken straightforwardly into CNF. For our experiments, we
implemented and used the general algorithm presented right after this example. It guar-
antees that the generated CNF formula does not grow unnecessarily by eliminating
some redundancies along the process. The resulting CNF formula is, in its turn, simpli-
fied into a shorter and simpler new CNF formula by means of the Confer SAT solver
[20]. For this example, the simplified CNF formula is as follows:

o ←→ (−x1 ∨ −x2) ∧ (−x1 ∨ −x3) ∧ (−x2 ∨ −x3). (9)

Efficient Computation of Shap Explanation Scores 55

Having a CNF formula will be convenient for the next steps along path (2). �

In more general terms, consider a BNN with L layers, numbered with Z ∈ [L] :=
{1, . . . , L}. W.l.o.g., we may assume all layers have M neurons (a.k.a. gates), except
for the last layer that has a single, output neuron. We also assume that every neuron
receives an input from every neuron at the preceding layer. Accordingly, each neuron at
the first layer receives the same binary input ī1 = 〈x1, . . . , xN 〉 containing the values
for the propositional input variables for the BNN. Every neuron at a layer Z to the right
receives the same binary input īZ = 〈i1, . . . , iM 〉 formed by the output values from the
M neurons at layer Z − 1. Variables x1, . . . , xN are the only variables that will appear
in the final CNF representing the BNN5.

To convert the BNN into a representing CNF, we iteratively convert every neuron
into a CNF, layerwise and from input to output (left to right). The CNFs representing
neurons at a given layer Z are used to build all the CNFs representing the neurons at
layer Z + 1.

Now, for each neuron g, at a layer Z, the representing CNF, ϕg , is constructed using
a matrix-like structure Mg with dimension M × dg , where M is the number of inputs
to g (and N for the first layer), and dg is computed as in (4), i.e. the number of inputs to
conveniently instantiate to get output 1. Formula ϕg represents g’s activation function
sp(w̄g • ī+ bg). The entries cij of Mg contain terms of the form wk · ik, which are not
interpreted as numbers, but as propositions, namely ik if wk = 1, and ¬ik if wk = −1
(we recall that ik is the k-th binary input to g, and wk is the associated weight).

Each Mg is iteratively constructed in a row-wise manner starting from the top, and
then column-wise from left to right, as follows: (in it, the cik are entries already created
in the same matrix)

Mg =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 · i1 false false . . . false

w2 · i2∨c11
w2 · i2∧c11

false . . . false

w3 · i3∨c21

(w3 · i3∧c21)∨c22

w3 · i3∧c22
. . . false

.

wM · iM∨
c(M−1)1

(wM · iM∧c(M−1)1)∨c(M−1)2

(wM · iM∧c(M−1)2)∨c(M−1)3

. . .

(wM · iM∧
c(M−1)(dg−1))

∨c(M−1)dg

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The k-th row represents the first k ∈ [M] inputs considered for the encodings, and
each column, the threshold t ∈ [dg] to surpass, meaning that at least t inputs should be
instantiated conveniently. For every component ck,twith k < t, the threshold cannot be
reached, which makes every component in the upper-right triangle false.

The propositional formula of interest, namely the one that represents neuron g and
will be passed over as an “input” to the next layer to the right, is the bottom-right most,
cMdg

(underlined). Notice that it is not necessarily a CNF; nor does the construction of
Mg requires using CNFs. It is also clear that, as we construct the components of matrix
Mg, they become formulas that keep growing in size. Accordingly, before passing over
this formula, it is converted into a CNF ϕg that has also been simplified by means of
a SAT solver (this, at least experimentally, considerably reduces the size of the CNF).

5 We say “a CNF” meaning “a formula in CNF”. Similarly in plural.

56 L. Bertossi and J. E. León

The vector 〈ϕg1 , . . . , ϕgM 〉 becomes the input for the construction of the matrices Mg′,
for neurons g′ in layer Z+1. Reducing the sizes of these formulas is important because
the construction of Mg′ will make the the formula sizes grow further.

Example 3. (Example 2 cont.) Let us encode neuron h1 using the matrix-based con-
struction. Since dh1 = 2, and it has 3 inputs, matrix Mh1 will have dimension 3 × 2.
Here, w̄h1 = 〈−1,−1, 1〉 and īh1 = 〈x1, x2, x3〉. Accordingly, Mh1 has the following
structure:

⎡

⎣
w1 · i1 false

w2 · i2 ∨ c11 w2 · i2 ∧ c11
w3 · i3 ∨ c21 (w3 · i3 ∧ c21) ∨ c22

⎤

⎦

Replacing in its components the corresponding values, we obtain:
⎡

⎣
−x1 false

−x2 ∨ −x1 −x2 ∧ −x1

x3 ∨ −x2 ∨ −x1 (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)

⎤

⎦

The highlighted formula coincides with that in (6). �

In our implementation, and this is a matter of choice and convenience, it turns out
that each component of Mg is transformed right away into a simplified CNF before
being used to build the new components. This is not essential, in that we could, in
principle, use (simplified) propositional formulas of any format all long the process, but
making sure that the final formula representing the whole BNN is in CNF. Notice that
all the Mg matrices for a same layer Z ∈ L can be generated in parallel and without
interaction. Their encodings do not influence each other. With this construction, no
auxiliary propositional variables other that those for the initial inputs are created.

Departing from [23], our use of the Mg arrays helps us directly build (and work
with) CNF formulas without auxiliary variables all along the computation. The final
CNF formula, which then contains only the input variables for the BNN, is eventually
transformed into a dDBC. The use of a SAT solver for simplification of formulas is less
of a problem in [23] due to the use of auxiliary variables. Clearly, our simplification
steps make us incur in an extra computational cost. However, it helps us mitigate the
exponential growth of the CNFs generated during the transformation of the BNN into
the representing CNF.

Overall, and in the worst case that no formula simplifications are achieved, having
still used the SAT solver, the time complexity of building the final CNF is exponential in
the initial input. This is due to the growth of the formulas along the process. The number
of operations in which they are involved in the matrices construction is quadratic.

3.2 Building an SDD Along the Way

Following with step (b) along path (2), the resulting CNF formula is transformed into
a Sentential Decision Diagram (SDD) [14,36], which, as a particular kind of decision
diagram [6], is a directed acyclic graph. So as the popular OBDDs [8], that SDDs gen-
eralize, they can be used to represent general Boolean formulas, in particular, proposi-
tional formulas (but without necessarily being per se propositional formulas).

Efficient Computation of Shap Explanation Scores 57

Example 4. (Example 2 cont.) Figure 3(a) shows an SDD, S, representing our CNF
formula on the RHS of (9). An SDD has different kinds of nodes. Those represented
with encircled numbers are decision nodes [36], e.g. 1© and 3©, that consider alter-
natives for the inputs (in essence, disjunctions). There are also nodes called elements.
They are labeled with constructs of the form [�1|�2], where �1, �2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, including � and ⊥, for 1 or 0, resp.
E.g. [¬x2|�] is one of them. The sub can also be a pointer, •, with an edge to a deci-
sion node. [�1|�2] represents two conditions that have to be satisfied simultaneously (in
essence, a conjunction). An element without • is a terminal. (See [7,22] for a precise
definition of SDD.)

Fig. 3. An SDD (a) and a vtree (b).

An SDD represents (or defines) a total Boolean function FS: 〈x1, x2, x3〉 ∈ {0, 1}3 �→
{0, 1}. For example, FS(0, 1, 1) is evaluated by following the graph downwards. Since
x1 = 0, we descent to the right; next via node 3© underneath, with x2 = 1, we reach the
instantiated leaf node labeled with [1|0], a “conjunction”, with the second component
due to x3 = 1. We obtain FS(0, 1, 1) = 0. �

In SDDs, the orders of occurrence of variables in the diagram must be compliant
with a so-called vtree (for “variable tree”)6. The connection between a vtree and an SDD
refers to the compatibility between the partitions [prime|sub] and the tree structure (see
Example 5 below). Depending on the chosen vtree, substructures of an SDD can be
better reused when representing a Boolean function, e.g. a propositional formula, which
becomes important to obtain a compact representation. SDDs can easily be combined
via propositional operations, resulting in a new SDD [14].

A vtree for a set of variables V is binary tree that is full, i.e. every node has 0 or
2 children, and ordered, i.e. the children of a node are totally ordered, and there is a
bijection between the set of leaves and V [7].

Example 5. (Example 4 cont.) Figure 3(b) shows a vtree, T , for V = {x1, x2, x3}.
Its leaves, 0, 2, 4, show their associated variables in V . The SDD S in Fig. 3(a) is

6 Extending OBDDs, whose vtrees make variables in a path always appear in the same order.
This generalization makes SDDs much more succinct than OBDDs [6,7,36].

58 L. Bertossi and J. E. León

compatible with T . Intuitively, the variables at S’s terminals, when they go upwards
through decision nodes n©, also go upwards through the corresponding nodes n in T .
(See [6,7,22] for a precise, recursive definition.)

The SDD S can be straightforwardly represented as a propositional formula by
interpreting decision points as disjunctions, and elements as conjunctions, obtaining
[x1 ∧ ((−x2 ∧ −x3) ∨ (x2 ∧ ⊥))] ∨ [−x1 ∧ ((x2 ∧ −x3) ∨ (−x2 ∧ �))], which is
logically equivalent to the formula on the RHS of (9) that represents our BNN. �

For the running example and experiments, we used the PySDD system [21]: Given a
CNF formula ψ, it computes an associated vtree and a compliant SDD, both optimized
in size [9,10]. This compilation step, the theoretically most expensive along path (2),
takes exponential space and time only in TW (ψ), the tree-width of the primal graph
G associated to ψ [14,25]. G contains the variables as nodes, and undirected edges
between any of them when they appear in a same clause. The tree-width measures
how close the graph is to being a tree. This is a positive fixed-parameter tractability
result [15], in that TW (ψ) is in general smaller than |ψ|. For example, the graph G
for the formula ψ on the RHS of (9) has x1, x2, x3 as nodes, and edges between any
pair of variables, which makes G a complete graph. Since every complete graph has a
tree-width equal to the number of nodes minus one, we have TW (ψ) = 2. Overall,
this step in the transformation process has a time complexity that, in the worst case, is
exponential in the size of the tree-width of the input CNF.

3.3 The Final dDBC

Our final dDBC is obtained from the resulting SDD: An SDD corresponds to a d-DNNF
Boolean circuit, for which decomposability and determinism hold, and has only vari-
ables as inputs to negation gates [14]. And d-DNNFs are also dDBCs. Accordingly,
this step of the whole transformation is basically for free, or better, linear in the size
of the SDD if we locally convert decision nodes into disjunctions, and elements into
conjunctions (see Example 5).

The algorithm in [1] for efficient Shap computation needs the dDBC to be a
dDBCSFi(2). To obtain the latter, we use the transformation Algorithm 1 below, which
is based on [1, sec. 3.1.2]. In a bottom-up fashion, fan-in 2 is achieved by rewriting
every ∧-gate (resp., and ∨-gate) of fan-in m > 2 with a chain of m − 1 ∧-gates (resp.,
∨-gates) of fan-in 2. After that, to enforce smoothness, for every disjunction gate (now
with a fan-in 2) of subcircuits C1 and C2, find the set of variables in C1, but not in C2

(denoted V1−2), along with those in C2, but not in C1 (denoted V2−1). For every vari-
able v ∈ V2−1, redefine C1 as C1 ∧ (v ∨ −v). Similarly, for every variable v ∈ V1−2,
redefine C2 as C2 ∧ (v ∨ −v). For example, for (x1 ∧ x2 ∧ x3)∨ (x2 ∧ −x3), becomes
((x1 ∧ x2)∧ x3)∨ ((x2 ∧ −x3)∧ (x1 ∨ −x1)). This algorithm takes quadratic time in
the size of the dDBC, which is its number of edges [1, sec. 3.1.2], [32].

Example 6. (Example 4 cont.) By interpreting decision points and elements as dis-
junctions and conjunctions, resp., the SDD in Fig. 3(a) can be easily converted into
d-DNNF circuit. Only variables are affected by negations. Due to the children of node
3©, that do not have the same variables, the resulting dBBC is not smooth (but it has
fan-in 2). Algorithm 1 transforms it into the dDBCSFi(2) in Fig. 1. �

Efficient Computation of Shap Explanation Scores 59

Algorithm 1: From dDBC to dDBCSFi(2)
Input : Original dDBC (starting from root node).
Output: A dDBCSFi(2) equivalent to the given dDBC .

1 function FIX NODE(dDBC node)
2 if dDBC node is a disjunction then
3 cnew = false
4 for each subcircuit sc in dDBC node
5 scfixed = FIX NODE(sc)
6 if scfixed is a true value or is equal to ¬cnew then
7 return true
8 else if scfixed is not a false value then
9 for each variable v in cnew and not in scfixed

10 scfixed = scfixed ∧ (v ∨ ¬v)
11 for each variable v in scfixed and not in cnew
12 cnew = cnew ∧ (v ∨ ¬v)
13 cnew = cnew ∨ scfixed
14 return cnew
15 else if dDBC node is a conjunction then
16 cnew = true
17 for each subcircuit sc in dDBC node
18 scfixed = FIX NODE(sc)
19 if scfixed is a false value or is equal to ¬cnew then
20 return false
21 else if scfixed is not a true value then
22 cnew = cnew ∧ scfixed
23 return cnew
24 else if dDBC node is a negation then
25 return ¬FIX NODE(¬dDBC node)
26 else
27 return dDBC node

28 dDBCSFi(2) = FIX NODE(root node)

4 Shap Computation: Experiments

The “California Housing Prices” dataset was used for our experiments (it can be down-
loaded from Kaggle [24]). It consists of 20,640 observations for 10 features with infor-
mation on the block groups of houses in California, from the 1990 Census. Table 1 lists
and describes the features, and the way they are binarized, actually by considering if
the value is above the average or not7 to better The categorical feature #1 is one-hot
encoded, giving rise to 5 binary features: #1a, ..., #1e. Accordingly, we end up with
13 binary input features, plus the binary output feature, #10, representing whether the
median price at each block is high or low, i.e. above or below the average of the original
#10. We used the “Tensorflow” and “Larq” Python libraries to train a BNN with one

7 Binarization could be achieved in other ways, depending on the feature, for better interaction
with the feature independence assumption.

https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.tensorflow.org/
https://github.com/larq/larq

60 L. Bertossi and J. E. León

hidden layer, with as many neurons as predictors, i.e. 13, and one neuron for the output.
For the hidden neurons, the activation functions are step function, as in (3).

Table 1. Features of the “California Housing Prices” dataset.

Id # Feature Name Description Original Values Binarization

#1 ocean proximity A label of the location of the
house w.r.t sea/ocean

Labels 1h ocean, inland,
island, near bay and
near ocean

Five features (one
representing each label), for
which 1 means a match with
the value of ocean proximity,
and −1 otherwise

#2 households The total number of
households (a group of
people residing within a
home unit) for a block

Integer numbers from 1

to 6,082
1 (above average of the
feature) or −1 (below
average)

#3 housing median age The median age of a house
within a block (lower
numbers means newer
buildings)

Integer numbers from 1

to 52
1 (above average of the
feature) or −1 (below
average)

#4 latitude The angular measure of how
far north a block is (the
higher value, the farther
north)

Real numbers from
32.54 to 41.95

1 (above average of the
feature) or −1 (below
average)

#5 longitude The angular measure of how
far west a block is (the higher
value, the farther west)

Real numbers from
−124.35 to −114.31

1 (above average of the
feature) or −1 (below
average)

#6 median income The median income for
households within a block
(measured in tens of
thousands of US dollars)

Real numbers from 0.50

to 15.00
1 (above average of the
feature) or −1 (below
average)

#7 population The total number of people
residing within a block

Integer numbers from 3

to 35,682
1 (above average of the
feature) or −1 (below
average)

#8 total bedrooms The total number of
bedrooms within a block

Integer numbers from 1

to 6,445
1 (above average of the
feature) or −1 (below
average)

#9 total rooms The total number of rooms
within a block

Integer numbers from 2

to 39,320
1 (above average of the
feature) or −1 (below
average)

#10 median house value The median house value for
households within a block
(measured in US dollars)

Integer numbers from
14,999 to 500,001

1 (above average of the
feature) or 0 (below average)

According to the transformation path (2), the constructed BNNwas first represented
as a CNF formula with 2,391 clauses. It has a tree-width of 12, which makes sense
having a middle layer of 13 gates, each with all features as inputs. The CNF was trans-
formed, via the SDD conversion, into a dDBCSFi(2), C, which ended up having 18,671
nodes (without counting the negations affecting only input gates). Both transformations
were programmed in Python. For the intermediate simplification of the CNF, the Riss
SAT solver was used [20]. The initial transformation into CNF took 1.3 hrs. This is the
practicallymost expensive step, as was explained at the end of Sect. 3.1. The conversion
of the simplified CNF into the dDBCSFi(2) took 0.8276 s.

With the resulting BC, we computed Shap, for each input entity, in three ways:

Efficient Computation of Shap Explanation Scores 61

Fig. 4. Seconds taken to compute all Shap scores on 20, 40, 60, 80 and 100 input entities; using
the BNN as a black-box (blue bar), the dDBC as a black-box (red bar), and the dDBC as an
open-box (orange bar). Notice the logarithmic scale on the vertical axis. (Color figure online)

(a) Directly on the BNN as a black-box model, using formula (1) and its input/output
relation for multiple calls;

(b) Similarly, using the circuit C as a black-box model; and
(c) Using the efficient algorithm in [1, page 18] treating circuit C as an open-box

model.

These three computations of Shap scores were performed for sets of 20, 40, 60, 80,
and 100 input entities, for all 13 features, and all input entities in the set. In all cases,
using the uniform distribution over population of size 213. Since the dDBC faithfully
represents the BNN, we obtained exactly the same Shap scores under the modes of
computation (a)–(c) above. The total computation times were compared. The results
are shown in Fig. 4. Notice that these times are represented in logarithmic scale. For
example, with the BNN, the computation time of all Shap scores for 100 input entities
was 7.7 hrs, whereas with the open-box dDBC it was 4.2min. We observe a huge gain
in performance with the use of the efficient algorithm on the open-box dDBC. Those
times do not show the one-time computation for the transformation of the BNN into the
dDBC. If the latter was added, each red and orange bar would have an increase of 1.3
hrs. For reference, even considering this extra one-time computation, with the open-box
approach on the dDBCwe can still compute all of the Shap scores for 100 input entities
in less time than with the BNN with just 20 input entities8.

For the cases (a) and (b) above, i.e. computations with black-box models, the classi-
fication labels were first computed for all input entities in the population E . Accordingly,
when computing the Shap scores for a particular input entity e, the labels for all the
other entities related to it via a subset of features S as specified by the game function

8 The experiments were run on Google Colab (with an NVIDIA Tesla T4 enabled). Algo-
rithm 1 was programmed in Python. The complete code for Google Colab can be found at:
https://github.com/Jorvan758/dDBCSFi2.

https://github.com/Jorvan758/dDBCSFi2

62 L. Bertossi and J. E. León

were already precomputed. This allows to compute formula (1) much more efficiently9.
The specialized algorithm for (c) does not require this precomputation. The difference
in time between the BNN and the black-box dDBC, cases (a) and (b), is due the fact
that BNNs allow some batch processing for the label precomputation; with the dDBC
it has to be done one by one.

5 Conclusions

We have showed in detail the practical use of logic-based knowledge compilation tech-
niques in a real application scenario. Furthermore, we have applied them to the new and
important problem of efficiently computing attribution scores for explainable ML. We
have demonstrated the huge computational gain, by comparing Shap computation with
a BNN classifier treated as an open-box vs. treating it as a black-box. The performance
gain in Shap computation with the circuit exceeds by far both the compilation time and
the Shap computation time for the BNN as a black-box classifier.

We emphasize that the effort invested in transforming the BNN into a dDBC is
something we incur once. The resulting circuit can be used to obtain Shap scores mul-
tiple times, and for multiple input entities. Furthermore, the circuit can be used for
other purposes, such as verification of general properties of the classifier [11,23], and
answering explanation queries about a classifier [3]. Despite the intrinsic complexity
involved, there is much room for improving the algorithmic and implementation aspects
of the BNN compilation. The same applies to the implementation of the efficient Shap
computation algorithm.

We computed Shap scores using the uniform distribution on the entity population.
There are a few issues to discuss in this regard. First, it is computationally costly to
use it with a large number of features. One could use instead the empirical distribution
associated to the dataset, as in [4] for black-box Shap computation. This would require
appropriately modifying the applied algorithm, which is left for future work. Secondly,
and more generally, the uniform distribution does not capture possible dependencies
among features. The algorithm is still efficient with the product distribution, which also
suffers from imposing feature independence (see [4] for a discussion of its empirical
version and related issues). It would be interesting to explore to what extent other dis-
tributions could be used in combination with our efficient algorithm.

Independently from the algorithmic and implementation aspects of Shap compu-
tation, an important research problem is that of bringing domain knowledge or domain
semantics into attribution scores and their computations, to obtain more meaningful and
interpretable results. This additional knowledge could come, for example, in declarative
terms, expressed as logical constraints. They could be used to appropriately modify the
algorithm or the underlying distribution [5]. It is likely that domain knowledge can be
more easily be brought into a score computation when it is done on a BC classifier.

In this work we have considered only binary NNs. It remains to be investigated to
what extent our methods can be suitably modified for dealing with non-binary NNs.

9 As done in [4], but with only the entity sample.

Efficient Computation of Shap Explanation Scores 63

Acknowledgments. Special thanks to Arthur Choi, Andy Shih, Norbert Manthey, Maximilian
Schleich and Adnan Darwiche, for their valuable help. Work was funded by ANID - Millennium
Science Initiative Program - Code ICN17002; CENIA, FB210017 (Financiamiento Basal para
Centros Cientı́ficos y Tecnológicos de Excelencia de ANID), Chile; SKEMA Business School,
and NSERC-DG 2023-04650. L. Bertossi is a Professor Emeritus at Carleton University, Canada.

References

1. Arenas, M., Barceló, P., Bertossi, L., Monet, M.: On the complexity of SHAP-score-based
explanations: tractability via knowledge compilation and non-approximability results. J.
Mach. Learn. Res. 24(63), 1–58 (2023). Extended version of [2]

2. Arenas, M., Barceló, P., Bertossi, L., Monet, M.: The tractability of SHAP-score-based
explanations for classification over deterministic and decomposable Boolean circuits. In:
Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp. 6670–6678 (2021)

3. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on compiled repre-
sentations. In: Proceedings KR 2020, pp. 838–849 (2020)

4. Bertossi, L., Li, J., Schleich, M., Suciu, D., Vagena, Z.: Causality-based explanation of classi-
fication outcomes. In: Proceedings of the 4th International Workshop on “Data Management
for End-to-End Machine Learning” (DEEM) at ACM SIGMOD/PODS, pp. 1–10 (2020).
Posted as Corr arXiv Paper arXiv:2003.06868

5. Bertossi, L.: Declarative approaches to counterfactual explanations for classification. Theory
Pract. Logic Program. 23(3), 559–593 (2023)

6. Bollig, B., Buttkus, M.: On the relative succinctness of sentential decision diagrams. Theory
Comput. Syst. 63(6), 1250–1277 (2019)

7. Bova, S.: SDDs are exponentially more succinct than OBDDs. In: Proceedings of the 30th
AAAI Conference on Artificial Intelligence, pp. 929–935 (2016)

8. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
put. C-35(8), 677–691 (1986)

9. Choi, A., Darwiche, A.: Dynamic minimization of sentential decision diagrams. In: Proceed-
ings of the 27th AAAI Conference on Artificial Intelligence, pp. 187–194 (2013)

10. Choi, A., Darwiche, A.: SDD Advanced-User Manual Version 2.0. Automated Reasoning
Group, UCLA (2018)

11. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: Proceedings of the 24th Euro-
pean Conference on Artificial Intelligence, pp. 712–720 (2020)

12. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17(1), 229–
264 (2002)

13. Darwiche, A.: On the tractable counting of theory models and its application to truth main-
tenance and belief revision. J. Appl. Non-Classical Logics 11(1–2), 11–34 (2011)

14. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In:
Proceedings of the 22th International Joint Conference on Artificial Intelligence (IJCAI
2011), pp. 819–826 (2011)

15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://
doi.org/10.1007/3-540-29953-X

16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of
methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

17. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: Proceedings of the NIPS 2016, pp. 4107–4115 (2016)

18. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Pro-
ceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 4768–4777 (2017). arXiv Paper arXiv:1705.07874

http://arxiv.org/abs/2003.06868
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
http://arxiv.org/abs/1705.07874

64 L. Bertossi and J. E. León

19. Lundberg, S., et al.: From local explanations to global understanding with explainable AI for
trees. Nat. Mach. Intell. 2(1), 56–67 (2020). arXiv Paper arXiv:1905.04610

20. Manthey, N.: RISS tool collection (2017). https://github.com/nmanthey/riss-solver
21. Meert, W., Choi, A.: Python Wrapper Package to Interactively Use Sentential Decision Dia-

grams (SDD) (2018). https://github.com/wannesm/PySDD
22. Nakamura, K., Denzumi, S., Nishino, M.: Variable shift SDD: a more succinct sentential

decision diagram. In: Proceedings of the 18th International Symposium on Experimental
Algorithms (SEA 2020). Leibniz International Proceedings in Informatics, vol. 160, pp.
22:1–22:13 (2020)

23. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying proper-
ties of binarized deep neural networks. In: Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, pp. 6615–6624 (2018)

24. Nugent, C.: California Housing Prices (2018). https://www.kaggle.com/datasets/camnugent/
california-housing-prices

25. Oztok, U., Darwiche, A.: On compiling CNF into decision-DNNF. In: O’Sullivan, B. (ed.)
CP 2014. LNCS, vol. 8656, pp. 42–57. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10428-7 7

26. Oztok, U., Darwiche, A.: On compiling DNNFs without determinism (2017).
arXiv:1709.07092

27. Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: a survey.
Pattern Recogn. 105, 107281 (2020)

28. Ras, G., Xie, N., van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the
uninitiated. J. Artif. Intell. Res. 73, 329–396 (2022)

29. Roth, A.: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University
Press (1988)

30. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019). arXiv Paper
arXiv:1811.10154

31. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of Games (AM-
28), vol. 2, pp. 307–318 (1953)

32. Shih, A., Van den Broeck, G., Beame, P., Amarilli, A.: Smoothing structured decomposable
circuits. In: Proceedings of the NeurIPS (2019)

33. Shi, W., Shih, A., Darwiche, A., Choi, A.: On tractable representations of binary neural
networks. In: Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, pp. 882–892 (2020)

34. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by Angluin-Style
learning. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 354–370.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 25

35. Simons, T., Lee, D.-J.: A review of binarized neural networks. Electronics 8(6), 661 (2019)
36. Van den Broeck, G., Darwiche, A.: On the role of canonicity in knowledge compilation. In:

Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 1641–1648 (2015)
37. Van den Broeck, G., Lykov, A., Schleich, M., Suciu, D.: On the tractability of SHAP explana-

tions. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp. 6505–6513
(2021)

http://arxiv.org/abs/1905.04610
https://github.com/nmanthey/riss-solver
https://github.com/wannesm/PySDD
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://doi.org/10.1007/978-3-319-10428-7_7
https://doi.org/10.1007/978-3-319-10428-7_7
http://arxiv.org/abs/1709.07092
http://arxiv.org/abs/1811.10154
https://doi.org/10.1007/978-3-030-24258-9_25

Logic, Accountability and Design:
Extended Abstract

Pedro Cabalar1 and David Pearce2(B)

1 University of Corunna, A Coruña, Spain
cabalar@udc.es

2 Universidad Politécnica de Madrid, Madrid, Spain

david.pearce@upm.es

1 Introduction

This note is a contribution to the methodology of applied, computational logics in
light of their potential role in securing the accountability of Artificial Intelligence
(AI) systems. A key feature of the idea of accountability is that solutions, actions
and decisions made by intelligent systems should ultimately be explainable to the
end user in a comprehensible manner. In view of this, explainable AI has recently
become a hot topic of research. Much of symbolic AI is supported by logic-
based system whose reasoning mechanisms are, or should be, transparent and
comprehensible. But is it really the case that a logic-based system can provide
convincing explanations accessible to the non-expert? In practice this is doubtful
as such systems may contain many lines of code and numerous computational
reasoning steps. Even the expert user or developer may not be able to survey
and assimilate the entire reasoning process for a given outcome.

This point has been recognised for quite some time. Already [5] contains an
extensive survey of approaches to adding explanations or justifications to answer
set programs. Recently the XLoKR workshop series on Explainable Logic-Based
Knowledge Representation has featured systems such as ASP, description logics,
default logics, argumentation theory and more. However until now attention
has mainly focused on how to add human-understandable explanations to the
reasoning steps computed by a primary logic-based systems. While these works
are valuable, for the most part they implicitly take for granted the adequacy of
the primary reasoning formalism that they aim to extend.

If logic is to play a significant role in making AI systems explainable, then
logic itself needs to be accountable. Many logics applied in AI systems are in
competition with one another. Since logics are an integral part of our approaches
to knowledge representation and reasoning, they can no longer be considered as
a kind of ‘theory-neutral’ component, as logic was often treated by philosophers

Supported by project LIANDA - BBVA Foundation Grants for Scientific Research
Projects; additional support from the Spanish Ministry of Science and Innovation,
Spain, MCIN/AEI/10.13039/501100011033 (grant PID2020-116201GB-I00), and by
Xunta de Galicia, Spain and the European Union (grant GPC ED431B 2022/33).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 65–72, 2023.
https://doi.org/10.1007/978-3-031-43619-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_5

66 P. Cabalar and D. Pearce

of science in the past. In light of this we should ask ourselves, what kinds of
adequacy conditions should applied logics fulfil in order to be candidates to
support accountable and ultimately trustworthy AI. In doing so we hope to
dispel the idea that anything goes, ie that the engineer has a free hand just to
pick off the shelf any reasoning mechanism that appeals to her. Instead we argue
for a principled approach to designing applied logics and formal reasoning tools
for uptake in AI; an approach that complies with suitable adequacy conditions
and respects a sound methodology. One consequence will be to attempt to rule
out ad hoc solutions to formal reasoning problems.1

2 Conceptual Analysis and Explication

The formal analysis of concepts was a major component of the work of logical
empiricist philosophers in the 20th Century, and Rudolf Carnap was perhaps in
this respect its most illustrious representative. Carnap’s method of explication is
probably the clearest account of how logic and formal methods should be applied
to the rational reconstruction of scientific concepts. Carnap’s method is most
clearly articulated in the introduction to his Logical Foundations of Probability
[2]. As he explains, the method

consists in transforming a more or less inexact concept into an exact one
or, rather, in replacing the first by the second. We call the given concept
the explicandum, and the exact concept proposed to take the place of
the first the explicatum. The explicandum may belong to everyday lan-
guage or to a previous stage in the development of scientific language. The
explicatum must be given by explicit rules for its use, for example, by a
definition which incorporates it into a well-constructed system of scientific
either logico-mathematical or empirical concepts [2].

Part of the task consists in specifying adequacy conditions that the explicatum
should satisfy: a pre-formal analysis of the explicandum may suggest a series of
properties desirable for the explicatum.

If a concept is given as explicandum, the task consists in finding another
concept as its explicatum which fulfils the following requirements to a
sufficient degree.
1. The explicatum is to be similar to the explicandum in such a way

that, in most cases in which the explicandum has so far been used, the
explicatum can be used; however, close similarity is not required, and
considerable differences are permitted.

2. The characterization of the explicatum, that is, the rules of its use
(for instance in the form of a definition), is to be given in an exact
form, so as to introduce the explicatum into a well-connected system
of scientific concepts.

1 The full version of the paper elaborates more on this issue and includes a case study
of the adequacy of logics underlying ASP. In this abridged version, we focus just on
adequacy conditions for logics in KR.

Logic, Accountability and Design: Extended Abstract 67

3. The explicatum is to be a fruitful concept, that is, useful for the for-
mulation of many universal statements (empirical laws in the case of a
nonlogical concept, logical theorems in the case of a logical concept).

4. The explicatum should be as simple as possible; this means as simple
as the more important requirements (1), (2), and (3) permit [2].

Ultimately the question whether the explicatum is or is not correct is not a
factual one, but a question of methodological adequacy [2].

Although logic has formed a prominent part of the design of intelligent sys-
tems, most developers of logic-based systems have shied away from specifying a
clear methodology of the type that Carnap has proposed. One exception is the
programme proposed by Michael Gelfond, a founder of answer set programming
and a leading contributor to logic-based AI. The aim of his programme is to
reconstruct some of the most basic forms of human knowledge and to exploit
this knowledge for practical problem solving. It combines scientific and engi-
neering knowledge of real systems with practical human skills and abilities and
commonsense reasoning. It deals with both static and dynamic domains. Gel-
fond’s programme combines the physicalist language of engineering and physical
systems with epistemic notions such as belief, agency and action. The new pro-
gramme of rational reconstruction is much less self-conscious than its predecessor
and is less well known. Nevertheless it has clear goals and methodology, even if
they are sometimes buried in technical articles and lectures.

Gelfond’s programme for KR has two main objectives [6]. First, achieving an
understanding of “basic commonsense notions we use to think about the world:
beliefs, knowledge, defaults, causality, intentions, probability, etc., and to learn
how one ought to reason about them.” Secondly it aims “to understand how to
build software components of agents – entities which observe and act upon an
environment and direct its activity towards achieving goals” ([6]).

These goals shape the criteria used to evaluate and select languages for KR.
In particular, Gelfond [6] endorses four main adequacy criteria: clarity, elegance,
expressiveness and relevance. These are further elaborated in [7]:

– Naturalesness: Constructs of a formal language L should be close to for-
mal constructs used in the parts of natural language that L is designed
to formalize. The language should come with a methodology of using
these constructs for knowledge representation and programming.

– Clarity: The language should have simple syntax and clear intuitive
semantics based on understandable informal principles.

– Mathematical Elegance: Formal description of syntax and semantics
of the language should be mathematically elegant. Moreover, the lan-
guage should come with mathematical theory facilitating its use for
knowledge representation and programming.

– Stability: Informally equivalent transformations of a text should corre-
spond to formally equivalent ones.

– Elaboration Tolerance: It should be possible to expand a language by
new relevant constructs without substantial changes in its syntax and
semantics.

68 P. Cabalar and D. Pearce

Gelfond’s first criterion is close to Carnap’s first condition of similarity, while
his second criterion echoes Carnaps’s fourth condition of simplicity. Gelfond’s
third criterion is close to Carnap’s second requirement of exactness, while elab-
oration tolerance and Gelfond’s other criterion of relevance (from [6]) clearly
relate to Carnap’s requirements 2 and 3.

One condition that Gelfond does not entertain is the requirement of efficiency
understood in a computational sense. Efficiency is evidently an aim in designing
computational systems and a requirement of any KR language is that it can
eventually be processed by a computer. But Gelfond’s methodology suggests that
conceptual adequacy should initially at least take preference over computational
efficiency.

A similar point has been recently made by Jones, Artikis and Pitt in their
proposed methodology for the design of socio-technical systems [11]. They are
concerned with the way in which social concepts are reconstructed and repre-
sented in computational, socio-technical systems. [11] deals mainly with social
concepts such as trust, role and normative power. But their reconstruction in
computational systems will typically involve a strongly logical component. [11]
proposes a multi-stage process of representing and implementing these concepts.
The first stage involves theory construction, passing from some observed social
phenomena S to pre-formal representations. Then, Step2-Phase1 representations
provide an analysis of conceptual structure “constrained primarily by considera-
tions of expressive capacity, not those of computational tractability” [11]. Later
we come to the stage of implementation where simplifications may have to be
made to achieve comptational tractability. For [11], a primary requirement for
assessing the adequacy of a conceptual characterisation is expressive capacity.
As criteria, they list the capacity to (i) identify the principle elements; (ii) test
for consistency; (iii) articulate specific, characteristic aspects of the concept; (iv)
‘place’ the concept in relation to its near relatives. (iv) is clearly related to Car-
nap’s second and third requirements, and also to Gelfond’s criteria of naturalness
and relevance.

These three approaches to the formal analysis of concepts come from very
different backgrounds and yet display important commonalities. They each urge
a principled approach to formal reconstructions, based on a clear methodology.
They propose a preliminary, informal analysis of concepts, preferably informed
by scientific or philosophical reflection, suggesting that this may lead to speci-
fying criteria of adequacy that the formal concepts should satisfy. Then there is
the shared idea that the formal characterisations fit into the broader scheme of
scientific concepts covering related domains. Lastly, there is the idea of fruitful-
ness or relevance for problem solving, as well as the aim of expressive capacity.
These are all considerations that we may bring to bear on the study of possible
conditions for the adequacy of logical systems in AI. We will focus on applied
logics for KR, trying to extract some formal adequacy conditions.

Logic, Accountability and Design: Extended Abstract 69

3 Nonmonotonic Reasoning and Strong Equivalence

Logic-based systems for KR in AI are typically nonmonotonic in character, to
allow for the representation of defaults and to be able to express exceptions to
general rules. Since these systems depart considerably from ordinary, bread and
butter logics, classical or otherwise, it is not immediately obvious that they fulfil
the needs of explainability and accountability for AI in practical cases. Can all
such systems really be considered logics? Do they lend themselves to support
explainable AI? How can we choose between rival solutions to specific kinds of
reasoning?

One way to approach these questions is by way of some concepts that were
studied already in the early years of nonmonotonic reasoning (NMR). In particu-
lar, to ask what constitutes a (monotonic) logical basis for an NMR system. If our
logic for KR, despite nonmonotonicity, is clearly anchored to a standard, mono-
tonic logic, this may help to clarify and even legitimate its reasoning mechanism.
This suggests that we might focus initially on how an NMR system extends and
relates to a given, underlying monotonic logic. To consider what it means saying
that a logic L forms a well-behaved monotonic basis for a given nonmonotonic
consequence relation, three main conditions come to light.2

Definition 1. Let C be a (possibly nonmonotonic) consequence relation and let
CL be the consequence relation for a monotonic logic L. We say that L forms a
deductive base for C if the following conditions hold:

Sublogic : CL ≤ C (ie CL(Γ) ⊆ C(Γ) forall Γ) (1)
Left absorption : CLC = C (2)
right absorption : CCL = C (3)

Absorption guarantees that if theories are equivalent in L they remain equiva-
lent at the nonmonotonic level (i.e. under C). Moreover closing the nonmono-
tonic consequences of a theory under L-consequence does not produce anything
new. One characteristic of standard, monotonic logics is the presence of replace-
ment theorems that guarantee when equivalent formulas or theories are inter-
changeable salva veritate in any context. In nonmonotonic logics, replacement
properties are more complex, since equivalence may also be derived from the
absence of information. For instance, two theories Π1 and Π2 may yield the
same C-consequences but these may differ after adding new information Γ. This
motivates:

Definition 2. In the context of a nonmomontonic consequence relation C, two
theories Π1 and Π2 are said to be strongly equivalent if for all Γ, C(Π1 ∪ Γ) =
C(Π2 ∪ Γ).

In other words, Π1 and Π2 remain equivalent in whatever context Γ they are
embedded. One property of deductive bases is immediate but very powerful: if L
2 The term deductive base defined below is taken from [3,4]; however similar ideas can
be found in [12] and elsewhere.

70 P. Cabalar and D. Pearce

is a deductive base for C, then L-equivalence of Π1 and Π2 is a sufficient condi-
tion for strong equivalence. A given nonmonotonic relation C may have several
monotonic deductive bases and equivalence in any of them is a sufficient condi-
tion for strong equivalence, but not always a necessary condition. To guarantee
a suitable replacement property one can add a further refinement and say that
a deductive base is strong if it satisfies:

CL(Π1) �= CL(Π2) ⇒ there exists Γ such that C(Π1 ∪ Γ) �= C(Π2 ∪ Γ).

If a deductive base is strong we obtain what is known as a strong equivalence
theorem, namely that two theories are interchangeable in any context under
the nonmonotonic inference if an only if they are equivalent in the monotonic
base.3 This has important consequences for simplifying nonmonotonic theories
and programs and studying their properties. For example if the base logic has a
suitable proof theory we can use it to test for program equivalences.

4 Methodologies for Applied Logics

Given the discussion above, let us try to compile some guidelines for the design
and development of logic-based systems for KR and AI. We propose an initial
list of criteria that we group in the following three kinds of conditions.

Type I. General Requirements for Good Design and Sound Method-
ology

1. Is it logic?
2. Is the reasoning based on a known underlying logic?
3. Is it a combination of known logics?

The first condition may at first sight appear to be circular. But if understood cor-
rectly, it does make sense. In KR there are formal reasoning methods that appear
to be logic-based yet fail some natural properties that one would expect to hold.
Computational logics have vastly extended the boundaries of what the reper-
toire of logic, in its mathematical paradigm, was formerly supposed to include.
Nevertheless, some properties seem to be constitutive and basic to logic, espe-
cially if we consider the KR context. We sometimes find formalisms defined only
for syntactic fragments or under syntax restrictions and with ad hoc semantic
definitions that do not rely on any standard method for defining a logic. So we
keep Condition 1 as an imprecise but useful first test of adequacy.

Condition 2 is inspired by the discussion of the previous section. If our system
is based on a known logic whose reasoning mechanisms are well understood and
appropriate for the domain, we have advanced on the path to verifying its ade-
quacy. Condition 3 is related to Carnap’s third and Gelfond’s fifth requirements.
Much work has been done on combining logics, and in KR many opportunities

3 Equivalence usually means same intended models; but if consequence is defined in
terms of intended models, then this will imply equivalence wrt C.

Logic, Accountability and Design: Extended Abstract 71

arise for their application. One may think of combinations such as knowledge
with belief, tense and modality, space and time, nonmonotonicity combined with
epistemic reasoning, and others. A primary logic that can be combined with
other logics to gain new functionalities can be a very fruitful conceptual tool.
Criteria for combining logics are also important. For instance, a combined for-
malism should have a clear connection to its constituent logics – for instance, a
modal extension of ASP should collapse to ASP when no modal operators are
used. Also, the combined formalism should inherit and generalise recognisable
properties from its constituent logics.

Type II. Specific Adequacy Conditions for the Logical Concepts to
be Formalised. These include adequacy conditions that pertain to a specific
concept and context, perhaps based on a pre-formal analysis of the concept.

1. Does it adequately reconstruct/formalise the intended concepts?
2. Does it offer suitable reasoning mechanisms for those concepts?
3. Does it accommodate new cases in a clear and natural manner?
4. Does it possess desirable metatheoretic properties?

The first of these may include for instance the expressive capacity of the formal
language and be based on prior analysis of the concept. The second condition
relates to semantics and inference. The third requirement relates to Carnap’s
and Gelfond’s ideas of simplicity and clarity. A successful formalisation should
yield a general approach that goes beyond just a few isolated cases of reasoning.
Moreover, it should handle new examples in a natural manner without needing ad
hoc adjustments and revisions. 4 may include matters of tractability of reasoning,
properties that are generally regarded as ‘good’ for a logic, or properties that
are desirable in a given KR context. These will tend to change from domain to
domain and so can best be made precise given a specific context.

Type III. Methods of Reasoning that May Lead to Explainable AI
and Support the Rational Acceptability of Conclusions. Lastly we may
consider requirements that will allow for reasoning steps to be displayed in a way
that can explain the outcome of a logic-based, computational system in practical
cases.

1. Can it be combined with methods of explanation?
2. Can explanations be broken down into simple steps for human comprehension

and rational acceptance?

This is currently an very active field of inquiry. It may involve the ability to
apply a secondary type of logic that can add justification steps, or perhaps
argumentation trees, to computations carried out in the primary logical system.
Such methods should be convincing to a rational agent and, if possible, graspable
by a human user.

5 Related and Future Work and Conclusions

We have argued that for logic to play a key role in making AI systems more
accountable, we also have to analyse and question the adequacy of the primary

72 P. Cabalar and D. Pearce

reasoning system itself. Here there is much territory still to be explored. As
examples of works that have initiated a critical analysis and discussion of the
adequacy of logical systems in AI, we can mention [8–10], focused on epistemic
reasoning and multi-agent systems in particular.

We have tried to raise awareness of the need to take a principled approach to
the design of logical systems, to reject the assumption that anything goes when
proposing a new reasoning formalism, and to avoid ad hoc solutions designed to
‘save the phenomena’. We have also looked at some general requirements for the
formal reconstruction of concepts and proposed some preliminary desiderata for
logics to be applied in AI systems.

There is much more to be done. This is the first of a three-part work in
progress. The second part will treat extensions of logic programming, such as
those dealing with aggregates, temporal logic or epistemic reasoning. The third
part will extend work already started on explanatory ASP [1].

References

1. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set pro-
gramming. In: Ricca, F., et al. (eds.) Proceedings 36th International Conference
on Logic Programming (Technical Communications), ICLP Technical Communi-
cations 2020, UNICAL, Rende (CS), Italy, 18–24th September 2020. EPTCS, vol.
325, pp. 124–136 (2020)

2. Carnap, R.: Logical Foundations of Probability. University of Chicago Press (1950)
3. Dietrich, J.: Deductive bases of nonmonotonic inference operations. NTZ report,

University of Leipzig (1994)
4. Dietrich, J.: Inferenzframes, University of Leipzig. Ph.D. thesis (1995)
5. Fandinno, J., Schulz, C.: Answering the “why” in answer set programming - a

survey of explanation approaches. Theory Pract. Log. Program. 19(2), 114–203
(2019). https://doi.org/10.1017/S1471068418000534

6. Gelfond, M.: Personal perspective on the development of logic programming
based KR languages (2011). http://www.depts.ttu.edu/cs/research/krlab/papers.
php. unpublished draft, available online at

7. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates.
Theory Pract. Log. Program. 14(4–5), 587–601 (2014)

8. Herzig, A.: Logics of knowledge and action: critical analysis and challenges. Auton.
Agent Multi-Agent Syst. 29(5), 719–753 (2014). https://doi.org/10.1007/s10458-
014-9267-z

9. Herzig, A.: Dynamic epistemic logics: promises, problems, shortcomings, and per-
spectives. J. Appl. Non-Classical Log. 27, 1–14 (2018)

10. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: Bdi logics for bdi architectures: old
problems, new perspectives. KI - Künstliche Intelligenz 31(1), 73–83 (2017)

11. Jones, A.J.I., Artikis, A., Pitt, J.: The design of intelligent socio-technical systems.
Artif. Intell. Rev. 39(1), 5–20 (2013)

12. Makinson, D.: General patterns in nonmonotonic reasoning. In: Handbook of Logic
in Artificial Intelligence and Logic Programming (Vol. 3): Nonmonotonic Reasoning
and Uncertain Reasoning, vol. III, pp. 35–110. Clarendon Press, Oxford (1994)

https://doi.org/10.1017/S1471068418000534
http://www.depts.ttu.edu/cs/research/krlab/papers.php
http://www.depts.ttu.edu/cs/research/krlab/papers.php
https://doi.org/10.1007/s10458-014-9267-z
https://doi.org/10.1007/s10458-014-9267-z

Contrastive Explanations for Answer-Set
Programs

Thomas Eiter , Tobias Geibinger(B) , and Johannes Oetsch

Knowledge-based Systems Group, Institute for Logic and Computation, TU Wien, Vienna,
Austria

{thomas.eiter,tobias.geibinger,johannes.oetsch}@tuwien.ac.at

Abstract. Answer-Set Programming (ASP) is a popular declarative reasoning
and problem solving formalism. Due to the increasing interest in explainability,
several explanation approaches have been developed for ASP. However, while
those formalisms are correct and interesting on their own, most are more technical
and less oriented towards philosophical or social concepts of explanation. In this
work, we study the notion of contrastive explanation, i.e., answering questions
of the form “Why P instead of Q?”, in the context of ASP. In particular, we are
interested in answering why atoms are included in an answer set, whereas others
are not. Contrastive explainability has recently become popular due to its strong
support from the philosophical, cognitive, and social sciences and its apparent
ability to provide explanations that are concise and intuitive for humans. We for-
mally define contrastive explanations for ASP based on counterfactual reasoning
about programs. Furthermore, we demonstrate the usefulness of the concept on
example applications and give some complexity results. The latter also provide a
guideline as to how the explanations can be computed in practice.

1 Introduction

Historically, symbolic artificial intelligence (AI) systems have had integrated explana-
tion components, but over time the interest in those features has had died down. The
growing need and usage of AI has lead to a demand of transparency and explainability.
This has rejoiced the interest in explanation components in symbolic systems again.

Answer-Set Programming (ASP) is a symbolic, rule-based reasoning formalism that
has been employed for various AI applications in numerous domains [13,15], among
them planning [29], scheduling [1,2,46], product configuration [8], life sciences [14],
health insurance [3], and psychology [23], to mention a few. ASP allows for a declar-
ative encoding of problems in a succinct manner. Solutions to a problem instance are
obtained from answer sets, which result from the evaluation of the encoding using an
ASP solver.

While ASP is a declarative AI approach, there is still a need for providing concise
and understandable explanations as to why certain facts are, or are not, in a computed
answer set. For this reason, a number of explanation approaches for ASP have been
developed; we refer to the comprehensive survey by Fandinno and Schulz [17] for fur-
ther reading. Recently, Miller [32] has questioned the practicability of common formal

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 73–89, 2023.
https://doi.org/10.1007/978-3-031-43619-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_6&domain=pdf
http://orcid.org/0000-0001-6003-6345
http://orcid.org/0000-0002-0856-7162
http://orcid.org/0000-0002-9902-7662
https://doi.org/10.1007/978-3-031-43619-2_6

74 T. Eiter et al.

approaches and the understanding of what constitutes an explanation from the view of
theoretical computer science. One of his criticisms is that simply providing static justi-
fications, which are a common theme in explanation approaches for ASP, are not well-
aligned with research from the philosophical, cognitive, and social sciences on what
humans really request from an explanation. In his analysis, he argues that contrastive
explanation, which is due to Lipton [30], is a suited approach for explainable AI. Sim-
ply put, contrastive explanation seeks to answer questions of the form “Why P instead
of Q?” by providing ameaningful difference as to why P happened instead of Q. This is
notably different from providing individual explanations for “Why P ?” and “Why not
Q?”. In fact, Miller argues that research has shown that humans seeking explanation
might ask “Why P ?” but actually have some implicit contrast Q in mind. For example,
suppose a system classifies an animal as a crow but the user expected it to be a magpie.
Here, we refer to “crow” as the fact, while “magpie” is the foil; we shall expound on
this example later. The argument is that people are surprised by the occurrence of the
fact and actually expected something different, namely the foil or contrast.

In this work, we provide a formal notion of contrastive explanation for ASP pro-
grams which, to the best of our knowledge, is still lacking. Intuitively, contrastive expla-
nations include rules which allow to derive the fact and highlight the difference to the
contrastive case by identifying rules which would have derived the foil in some alter-
native scenario, where some hypothetical additional assumptions may be adopted. Fur-
thermore, contrastive explanations also include rules from the program which would
need to be removed to enable this scenario. Notably, such explanations may be given in
an interactive setting, allowing the user to ask multiple questions which take previously
given answers into account.

Our main contributions can be summarised as follows.

• We provide a formalisation of contrastive explanation for ASP programs based on
counterfactual reasoning, where the counterfactual is essentially an alternative pro-
gram producing the desired answer set. Additionally, certain assumptions can be
made or rules may be dropped. Our contrastive explanations are concise and per
design do not necessarily include full length derivations, which existing explanation
approaches often amount to, and which may be hard to parse for the user.

• We show that contrastive explanations are adequate by giving several examples as
well as example applications, like rule-based classifiers and AI planning.

• We analyse the computational complexity of problems related to the novel notions
of contrastive explanation for ASP. Deciding the existence of such explanations is
Σp

2 -complete in general and NP-complete for normal programs, while recognising
them is Dp

2-complete, resp., DP-complete. Computing contrastive explanations is
feasible in polynomial time with a witness oracle for Σp

2 , resp., NP, and in fact
complete under polynomial-time reductions when logarithmically many oracle calls
are allowed.

As research suggests, our notion of contrastive explanation is closer to what humans
expect from an explanation than just presenting rules that allow to derive facts. It serves
building advanced explanation components of AI systems, which will in particular be
important for combinations of ASP with sub-symbolic AI systems such as (deep) neural
networks.

Contrastive Explanations for Answer-Set Programs 75

2 Preliminaries

2.1 Answer-Set Programming

We consider Answer-Set Programming (ASP) with (disjunctive) logic programs, which
are finite sets of rules of the following form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

where l ≤ m ≤ n, a1, . . . , an are from a denumberable set A of atoms, and not
denotes default negation. We call a rule normal if l = 1; a fact if l = 1 and m = n = 0,
a constraint if l = 0; and positive if m = n. We call a program normal, resp., positive,
if all of its rules are normal, resp., positive. Note that in practice rules generally con-
tain variables, which are removed during a process called grounding. Hence, rules with
variables can be seen as shorthands for propositional rules, which we tacitly consider.

For a rule r of the form (1), H(r) := {a1, . . . , al} is the head of the rule, whereas
B+(r) := {al+1, . . . , am} and B−(r) := {am+1, . . . , an} is the positive and, resp.,
negative body. Furthermore, B(r) := B+(r) ∪ not B−(r), where not S := {not a |
a ∈ S} for any set of atoms S ⊆ A. The set of all propositional atoms appearing
in program P is denoted by AP . Furthermore, a literal is either an atom or a default
negated atom. We will also prefix rules with labels, i.e., write l : r where l is the label
and r is a rule as defined above, to give names to rules.

The semantics of logic programs is based on interpretations, which are sets of atoms.
An atom a is satisfied by interpretation I ⊆ A, denoted by I |= a, if a ∈ I . Analogously,
for a default negated atom not a, I |= not a if I �|= a. Furthermore, for a set of literals
L, I |= L if I |= l for every l ∈ L.

A rule r is satisfied by an interpretation I , denoted by I |= r, if I |= H(r)whenever
I |= B(r). For a program P , I |= P if each r ∈ P is satisfied by I . The formalisation
of answer-set semantics is generally achieved via program reducts [18]. Here, we will
use the reduct due to Wang et al. [45], which for a program P and an interpretation I is
defined as P I := {H(r)∩ I ← B+(r) | r ∈ P, I |= B(r)}. An interpretation I is an
answer set of a program P if I is the subset-least model of P I . Notably, for each atom
a ∈ I , P I |= a if I is an answer set of P . For any disjunctive program, this reduct leads
to the same answer sets as the original Gelfond-Lifschitz reduct [18]. With AS (P) we
denote the set of all answer sets of P .

2.2 Contrastive Explanations

Contrastive explanations [30] answer why a decision has been reached in contrast to a
different one, i.e., they answer questions of the form “Why P rather than Q?”. It has
been argued that contrastive explanations are intuitive for humans to understand and
to produce and also that standard why questions contain a hidden contrast case, e.g.,
“Why P ?” represents “Why P rather than not P ?” [32]. Lipton [30] define an answer
to a question of the form “Why P rather than Q?” as the difference condition, which
states that the answer should contain a cause for P that is missing in the causal history
of not Q. More formally, an answer consists of a cause c of P and a cause c′ of Q such

76 T. Eiter et al.

that c �= c′ and c did occur whereas c′ did not. One of the benefits of contrastive expla-
nation is that the question includes partial information about the explainee. Namely, the
contrast case reveals which parts of the causal history are clear to them. To illustrate, let
us look at the following example by Miller.

Example 1 ([33]). Consider a classifier of animals in pictures. Given a picture of a
bird, the answer of the classifier is “crow”. A user might now ask why the result was
“crow” and one could list all of the features of a crow, like “beak”, “feathers”, “dark
wings”, and so forth. However, another way to ask would be why is it classified a “crow”
instead of a “magpie”, which implicitly suggests that the user agrees that the animal in
the image is a bird, and thus this part of the classification needs no explanation. Now, a
contrastive explanation simply highlights why the bird is a crow instead of a magpie by,
for example, noting that a crow has dark wings, whereas a magpie has white ones.

3 Contrastive Explanations for ASP

We start by introducing a formal object encompassing the setting of our intended expla-
nation process, which might be interactive.

Definition 1. An explanation frame is a tuple (P, S,A), where (i) P is a program, (ii)
S ⊆ P is a set of fixed rules, and (iii) A ⊆ AP is a set of assumable atoms.

Intuitively, an explanation frame describes the setting of an explanation process, where
P is the program in question, S is the common knowledge of the explainee and the
explanation system, i.e., S is the set of rules the explainee is sure on and considers
fixed, and A is the set of assumables. The latter can be seen as hypothetical facts the
explainee is willing to consider.

The overall setting we are considering is that the user obtained an answer set from
a program and now seeks explanation. As stated, we are interested in questions of the
form “Why P instead of Q?”, where P and Q amount to sets of atoms, the former being
the facts or the explanandum, contained in the given answer set, and the latter is the foil,
which are atoms not in the answer.

Definition 2. A contrastive explanation (CE) problem for an explanation frame F =
(P, S,A) is a tuple 〈I, E, F 〉, where I ∈ AS (P), E ⊆ I is the explanandum and
F ∩ I = ∅ is the foil.

While the explanation frame and the CE problem are static objects, one can imagine
an explanation system were the explainee is essentially in a dialogue with the explainer
and the system uses evolving frames and the explainee presents different CE problems.

Our solutions for such CE problems will be based on counterfactuals, which contain
alternative programs that adhere to the common knowledge of the explainee and what
they accept as hypothetical facts.

Definition 3. Let F = (P, S,A) be an explanation frame and P = 〈I, E, F 〉 be a CE
problem for F . Then, a program P ′ ⊆ P , an interpretation I ′, and a set A′ ⊆ A of
assumptions are a counterfactual account (CA) for P if

Contrastive Explanations for Answer-Set Programs 77

(i) S ⊆ P ′,
(ii) F ∩ A′ = I ∩ A′ = ∅,
(iii) I ′ ∈ AS (P ′ ∪ A′),
(iv) F ⊆ I ′ and E �⊆ I ′ , and
(v) P ′ is ⊆-maximal, i.e., there is no CA P ′′, I ′′, A′′ for P where P ′′ ⊃ P ′.

Program P ′ constitutes an assumption of the explainer regarding the epistemic state of
the explainee, (i) assures that this state contains the common knowledge, (ii) ensures
that A′ are counterfactual assumptions (not true in the current answer set) and they do
not contain any part of the foil, (iii) expresses that I ′ represents an answer set that is
obtained from P ′ and A′ and contains the foil while some fact is no longer satisfied
(iv). The program P ′ is maximal in order to ensure that the divergence from the original
program is minimal. This reflects that the explainee wants to diverge from the original
program as little as possible. Note that maximality of P ′ entails that P ∩ A′ = ∅, i.e.,
no atom can be assumed in A′ that is already present as a fact in P .

Example 2. Suppose we have the following program P1 = {r1 : a ← not b, r2 : b ←
c} with the only answer set I1 = {a}. Furthermore, suppose we have the explanation
frame F1 = (P1, ∅, {c}) and a CE problem P1 = 〈I1, {a}, {b}〉. Then, a CA for P1

is P ′
1 = P1, I ′

2 = {b}, and A′ = {c}. Intuitively, in the CA, the original rules are
preserved, but we additionally have to assume c to derive b.

Example 3. Consider the program P2 = {r3 : a ∨ b, r4 : b ← a} with the only
answer set I2 = {b} and the explanation frame F2 = (P2, ∅, ∅). The only CA for
P2 = 〈I2, {b}, {a}〉 under F2 is P ′

2 = P2 \ {r4}, I ′
2 = {a}, and A′ = ∅, since as long

as r4 is there, it is not possible to have a in an answer set.

The following example illustrates that a CA does not always exist.

Example 4 (Ex. 2 cont.). The explanation frameF1 and CE problem 〈I1, {a}, {c}〉 have
no CA, since having c in some answer set would require c ∈ A′ which is prohibited by
condition (ii) of Definition 3.

Counterfactual accounts play an important role in our definition of contrastive expla-
nation, but first we introduce the concept of a counterfactual explanation.

Definition 4. Let F = (P, S,A) be an explanation frame and P = 〈I, E, F 〉 a CE
problem for F . A counterfactual explanation for P is any tuple 〈Q1, Q2, QΔ〉 such that
(i) there is some CA P ′, I ′, A′ for 〈I, E, F 〉 under F ,
(ii) Q1 ⊆ P and QI

1 |= a for every a ∈ E,
(iii) Q2 ⊆ P ′ ∪ A′ and QI′

2 |= a for every a ∈ F ,
(iv) QΔ = P \ P ′,
(v) Q1 is lexicographic ⊆-minimal w.r.t. (P ′, QΔ) satisfying (ii), and
(vi) Q2 is ⊆-minimal satisfying (iii).

78 T. Eiter et al.

Here, Q1 is lexicographic ⊆-smaller than Q′
1 if either (Q1 ∩ P ′) ⊂ (Q′

1 ∩ P ′) or
(Q1 ∩ P ′) = (Q′

1 ∩ P ′) and (Q1 ∩ QΔ) ⊆ (Q′
1 ∩ QΔ). The intuition behind this

definition is as follows: Q1 are rules that allow to derive the explanandum concisely,
where we give preference to derivations that use few rules from the program P ′ that
the explanation system assumes is known to the explainee, and thus involve rather rules
that have to change for establishing the foil. Similarly, Q2 are rules that can derive the
foil in the counterfactual account. Both Q1 and Q2 are required to be subset-minimal
to ensure the the focus is on rules which are relevant. The set QΔ simply contains all
rules that have to change for the counterfactual account, and it allows to assess which
rules have to be discarded in order to achieve the contrast. Note that we do not explicitly
provide the set A′, as the set of used assumptions can always be extracted from Q2.

Example 5 (Ex. 2 cont.). Recall explanation frame F1 = (P1, ∅, {c, d}), CE problem
P1 = 〈I1, {a}, {b}〉, and CA P ′

1 = P1, I ′
1 = {b}, A′

1 = {c}.
A counterfactual explanation is thus 〈{r1}, {r2, c}, ∅〉, since r1 can derive a under

P1 and I1, whereas rules r2 and c derive b under P ′ and I ′
1.

Definition 5. Given an explanation frame F = (P, S,A) and a CE problem P =
〈I, E, F 〉 for F , a tuple 〈C1, C2, CΔ〉 is a contrastive explanation (CE) for P if there
is a counterfactual explanation 〈Q1, Q2, QΔ〉 for P such that (i) C1 = Q1 \ (Q2 ∪ S),
(ii) C2 = Q2 \ (Q1 ∪ S), and (iii) CΔ = QΔ \ S.

The idea is that in accordance with Lipton’s difference condition (cf. Sect. 2.2), a con-
trastive explanation cites a difference between the casual derivation of the explanandum
and the counterfactual casual derivation of the foil, i.e., rules which derive the explanan-
dum under P and I and rules which derive the foil under the counterfactual without the
rules shared by Q1 and Q2. Furthermore, the explanation also includes which rules dif-
fer in the original program and the counterfactual account (CΔ). The set of fixed rules
S further projects away information which should not be presented to the explainee.

Example 6 (Ex. 3 cont.). For the explanation frame F2 = (P2, ∅, ∅) and answer set
I2 = {b}, the only CA for P2 = 〈I2, {b}, {a}〉 is P ′

2 = P2 \ {r4}, I ′
2 = {a}, and

A′
2 = ∅. The single CE for P2 under F2 is 〈∅, ∅, {r4}〉. Intuitively, this explanation

says that a is true instead of b since we have r4 in the program P2.

Example 7. Consider the program P3 = {r5 : a ← c, r6 : a ← d, r7 : b ←
e, r8 : c, r9 : d} with answer set I3 = {a, c, d}, and suppose we have F3 =
(P3, ∅,AP3). For the CE problem 〈I3, {a}, {b}〉, we have four potential CAs, as there
are two ways to derive a where each requires two rules. This results in the following
CEs: 〈{r6, r9}, {r7, e}, {r9}〉, 〈{r5, r8}, {r7, e}, {c}〉, 〈{r6, r9}, {r7, e}, {r6}〉, and
〈{r5, r8}, {r7, e}, {r5}〉.
Even though removing one of four rules is enough to hinder the derivation of a, requir-
ing Q1 to be minimal forces the explanations to include both rules needed for the deriva-
tion.

Those examples nicely demonstrate some basic properties of our notion. However,
its adequacy is better illustrated by the following example.

Contrastive Explanations for Answer-Set Programs 79

Example 8. Let us revisit the crow/magpie example from the preliminaries. Encoding
the classifier and the instance as an ASP program, we obtain

P4 = { r10 : bird ← feathers, beak , shape, r11 : crow ← bird , darkwings,
r12 : magpie ← bird ,whitewings, r13 : feathers, r14 : beak ,
r15 : shape, r16 : darkwings }

with the single answer set I = {crow , feathers, beak , shape, darkwings} indicating
that the bird is a crow.

Suppose now our current explanation frame is F0 = (P4, S0, A0) where S0 = ∅,
A0 = {whitewings}, i.e., the common knowledge is empty, and the potential alternative
fact is that the bird in the scene has white wings. Furthermore, the question “Why crow
instead of magpie?” can be encoded as the CE problem 〈I, {crow}, {magpie}〉. For
example, we could obtain the following contrastive explanation:

〈{r10, r16}, {r11,whitewings}, {r16}〉
Intuitively, this can be read as “The animal was classified as a crow instead of a magpie,
since it is a crow if it is a bird and has dark wings, and there are dark wings, whereas
it would have been a magpie if it is a bird and has white wings, but there were dark
wings”.

Let us consider F1 = (P4, S1, A0), where S1 is P4 without all facts. The intuition is
that the explainee is sure the classifier works correctly and wants an explanation based
on the feature instances alone. This yields the contrastive explanation

〈{r16}, {whitewings}, {r16}〉
which can be read as “The animal was classified as a crow instead of a magpie, since
there are dark wings, whereas it would have been a magpie, if there were white wings”.

As can be seen from the above example, there is some intuitive reading of the pro-
vided explanations. It is also worth studying how our contrastive explanations could be
automatically translated into natural language to make them readable to non-experts.
Controlled natural language [41] or large-language models might be useful in this
regard. Furthermore, incorporating domain-specific knowledge or rule labeling, like it
is done in xclingo [6], could be of use.

The existence of CEs depends on the existence of counterfactual accounts.

Theorem 1. A CE problem P = 〈I, E, F 〉 for an explanation frame F = (P, S,A)
has some contrastive explanation iff there is a CA for P .

Proof. Clearly, by Definition 5, if a contrastive explanation exists then some counterfac-
tual account exists. So assume we have some CA P ′, I ′, A′. By definition of the reduct,
it follows that P I |= a for every a ∈ E and (P ′ ∪ A′)I

′ |= b for every b ∈ F . Hence,
there are Q1, Q2, QΔ satisfying Definition 4, and thus they form a counterfactual expla-
nation which means that a contrastive explanation exists. ��

We have mentioned earlier that we image the explanation process to be a potential
dialogue, where the explanation frame, i.e., the set of fixed rules S and assumptions

80 T. Eiter et al.

A, is evolving. This can mean that the explainee discards assumables after seeing an
explanation utilising them or it can refer to an update in S. The latter for example being
the inclusion of rules which were already presented in a CE. The relationship between
the possible CEs and the set S is described by the following property.

Proposition 1. Let F1 = (P, S1, A) and F2 = (P, S2, A) be explanation frames such
that S1 ⊆ S2, and P be a CE problem for F1 and F2. If X is a CE for P w.r.t. F2, then
X is a CE for P w.r.t. F1.

4 Applications

We next describe how CEs can be utilised in example applications. In particular, we
cover CEs for ASP-based classifiers and planning.

4.1 Decision Sets

Decision sets [28] are rule-based classifiers, which given an instance of certain features
assign a class. We only consider discrete classifiers which can be expressed using ASP.

We assume a denumerable set of features F = {1, . . . , n} and a denumerable set
(called domain) Df for each feature f ∈ F . Now, an instance I is an assignment of
features to a value in their domain. Formally, I ⊆ {(f, v) | f ∈ F, v ∈ Df} such that
for any feature f ∈ F , |{(f, v) | v ∈ Df}| = 1. The set of all possible instances is
denoted by I. A discrete classifier is a function c : I → C, where C is a denumerable
set of classes. A rule-based classifier implements such an abstract classifier as follows.
An instance I is expressed as a set MI of facts, where for each (f, v) ∈ I there is
a corresponding fact feat(f, v) in MI . Furthermore, the function c is represented as a
stratified ASP program R which, in conjunction with MI , yields the single answer set
A, i.e., AS (R ∪ MI) = A, where class(c) ∈ A for exactly one c ∈ C representing
the result of the classification. A common question arising in this setting is “Why was
instance I classified as c1 instead of c2?”. A potential answer is to provide alternative
feature assignments such that the set of features taking on a different value is minimal.
The question can be expressed as the CE problem 〈A, {c1}, {c2}〉 for the explanation
frame (R∪MI , R, {feature(f, v) | (f, v) ∈ J, J ∈ I}). The assumables are simply all
possible instances of the features, and the common knowledge includes all the rules of
the classifier. Any contrastive explanation will now be of the form 〈F e, F a, F d〉, where
F d are facts corresponding to the features instances responsible for c1, and F a are the
hypothetical instances which would need to be assumed to flip the classification.

We have already seen the crow/magpie example which is a particular instantiation
of the pattern described above. As another use case, consider the following rule used to
decide which trauma patients do not require cervical spine imaging. A trauma patient
does not require imaging, if the patient is alert and stable, there is no focal neurological
deficit, there is no altered level of consciousness, the patient is not intoxicated, there
is no midline spinal tenderness, and there is no distracting injury. To compose this
rule into a classifier, we extract the following Boolean features: (1) alert and stable,
(2) focal neurological deficit, (3) altered level of consciousness, (4) intoxication, (5)
midline spinal tenderness, and (6) distracting injury.

Contrastive Explanations for Answer-Set Programs 81

An ASP-based classifier (data integrity constraints omitted) is given by

R =
{

r17 : class(req) ← not class(nreq)
r18 : class(nreq) ← feat(1, 1), feat(2, 0), . . . , feat(6, 0)

}
,

where the classes req and nreq represent whether imaging is, resp., is not, required.
Furthermore, consider the instance I = {(1, 1), (2, 0), (3, 0), (4, 1), (5, 0), (6, 0)}

describing an alert and stable but intoxicated trauma patient. The corresponding ASP
representation is given byMI ={feat(1, 1), feat(2, 0), feat(3, 0), feat(4, 1), feat(5, 0),
feat(6, 0)} and AS (R ∪ MI) = {A} where class(req) ∈ A indicating that spinal
imaging is required.

Naturally, one might ask why this is the case. This task can be formalised using
the schema from above resulting in the CE 〈C1, C2, CΔ〉, where C1 = ∅, CΔ =
{feat(4, 0)} and C2 = {feat(4, 1)}. The explanation can be read as saying that the
imaging would not be required if the patient was not intoxicated.

4.2 Planning

Another application we are going to show case is AI planning. For this purpose, con-
sider the following ASP encoding of a simplistic STRIPS planning problem with time
horizon t = 2, fluents p, q, and actions a, b, c. Furthermore, the actions have the follow-
ing pre- and postconditions: action a has precondition p and postconditions q and ¬p,
b has precondition q and postconditions ¬q and r, and c has preconditions p and q and
postcondition r. The planning goal is r, i.e., we need a plan ending in a state in which
r holds. The planning problem can be encoded as an ASP program P consisting of the
following rules:

– occ(a, i) ∨ occ(b, i) ∨ occ(c, i) ← for 0 < i ≤ t stating that at each point in time i
some action (a,b or c) has to occur,

– ← occ(x, i), pre(y, i),not holds(y, i − 1) for 0 < i ≤ t and x, y ∈ {a, b, c} which
says that an action can only occur after its preconditions hold,

– holds(x, i) ← holds(x, i − 1),not occdel(x, i) for 0 < i ≤ t and x ∈ {a, b, c}
encoding that fluents have inertia unless they have been removed,

– holds(x, i) ← occ(x, i), add(x, y) for 0 < i ≤ t, x ∈ {a, b, c} and y ∈ {p, q}
enforcing that positive postconditions are upheld,

– occdel(x, i) ← occ(x, i), del(x, y) for 0 < i ≤ t, x ∈ {a, b, c} and y ∈ {p, q}
enforcing that negative postconditions are upheld,

– ← holds(r, t) formalising the goal, and
– facts encoding the pre- and postconditions pre(a, p), pre(b, q), pre(c, p), pre(c, q),

add(a, q), del(a, p), add(b, r), del(b, q), and add(c, r).

The program has exactly one answer set I containing occ(a, 1) and occ(b, 2). The
user might now ask the planner why b was chosen as the second action instead of c?
This can be formalised as the CE problem 〈I, {occ(b, 2)}, {occ(c, 2)}〉. Suppose we
have the explanation frame (P, S0, ∅) where S0 = ∅, and the user does not consider
any potential assumptions. Then, a possible contrastive explanation is 〈C1

1 , C1
2 , C1

Δ〉
where C1

1 = C1
2 = ∅, and C1

Δ = {← occ(c, 2), pre(c, p),not holds(p, 1)}, which

82 T. Eiter et al.

intuitively states that c cannot occur at time point 2 as its precondition p does not hold at
1. There is more than one contrastive explanation, another one is 〈C2

1 , C2
2 , C2

Δ〉, where
C2

1 = C2
2 = ∅, and C2

Δ = {occdel(p, 1) ← occ(a, 1), del(a, p)}, stating that b occurs
instead of c, since p gets removed by a after time point 1.

For these explanations, we have assumed that the explainee has to interpret the
presented rules. In practice, an explanation system could also use a translation of ASP
into the already mentioned controlled natural language [41], potentially enhanced with
domain specific preprocessing, to produce more readable contrastive explanations.

It is also possible to fix the rules of the planning problem leaving only the facts.
We thus consider a new explanation frame (P, S1, ∅), where S1 are the non-facts of P .
Any contrastive explanation consists of facts only now which potentially makes them
easier to parse for the explainee. In our case, the explanations are 〈{∅, ∅, {pre(c, p)}〉
and 〈∅, ∅, {del(a, p)}〉. The former is saying that b occurs instead of c since c has pre-
condition p, and the latter states that the reason is that ¬p is a postcondition of a.

5 Computational Complexity

We assume basic familiarity with complexity theory [37] and start by investigating the
complexity of deciding whether a contrastive explanation exists.

Theorem 2. Given an explanation frame F = (P, S,A) and a CE problem P =
〈I, E, F 〉 for F , deciding whether there is some contrastive explanation for P under F
is (i) Σp

2 -complete in general and (ii) NP-complete for normal programs.

Proof. (Sketch) By Theorem 1, the problem amounts to checking whether some CA
P ′, I ′, A′ for P exists. We start by showing membership, which is obtained by the
following procedure. First guess P ′, I ′, and A′, and then check whether conditions (i)–
(iv) of Definition 3 are satisfied. Note that verifying condition (iii) needs an NP-oracle
in general but can be done in polynomial time if P is normal. Furthermore, we do not
need to check condition (v), since even if it were violated, there would exist some CA
P ′′, I ′′, A′′ such that P ′′ ⊃ P ′.

The hardness parts can be shown by a simple reduction from brave reasoning on
logic programs, where we want to know whether an atom p occurs in some answer
set of a given program P0, which is Σp

2 -hard (resp., NP-hard) to decide for general
(resp., normal) programs. We construct P = {H(r) ← B(r), q′ | r ∈ P0}∪ {q ←
not q′, q′ ← not q}, where q, q′ are fresh atoms, and let I = {q}, S = P , A = ∅.
Furthermore, we let E = {q} and F = {q′}. Clearly, I ∈ AS (P) and some CA exists
for P iff some I ′ ∈ AS (P) exists such that q′ ∈ I ′, which by construction is equivalent
to q′ ∈ I ′′ for some I ′′ ∈ AS (P0). ��

For recognising a counterfactual account, we have the following result which will
be helpful for showing the corresponding result for CEs.

Theorem 3. Given an explanation frame F = (P, S,A) and a CE problem P =
〈I, E, F 〉 for F , deciding whether P ′, A′, I ′ is a CA for P is (i) Πp

2 -complete in general
and (ii) coNP-complete for normal programs.

Contrastive Explanations for Answer-Set Programs 83

Proof. (Sketch) For membership, consider the following procedure. Since we have
P ′, A′, and I ′ checking conditions (i), (ii), and (iv) of Definition 3 can be done in
polynomial time. Checking (iii) requires a call to a coNP oracle. Assuming all of those
conditions hold, it remains to check condition (v). The complementary problem can be
solved by guessing a larger program and checking the conditions (i)–(iv). Hence, this
is in Πp

2 and so is the overall problem. For normal programs, condition (iii) can be
checked in polynomial time and thus the problem is in coNP.

For hardness, suppose we are given a program P1 and want to check whether it
has some answer set, which is Πp

2 -hard (resp., coNP-hard) to decide for general (resp.,
normal) programs. To this end, we construct a program P with rules

– q ← not q′,
– q′ ← not q,
– q′′, and
– H(r) ← B(r), q′, q′′, for each r ∈ P0,

where q′′ is a fresh atom. We then let I = {q, q′′}, S = P \ {q′′}, A = ∅. By construc-
tion, I ∈ AS (P). Now, let E = {q} and F = {q′}. Then, P ′ = P \ {q′′}, I ′ = {q′},
and A′ = ∅ are a CA iff P1 has no answer set. ��

Now for recognising a contrastive explanation, we have the following result, where
DP denotes the class of problems decidable using single calls to anNP and coNP-oracle
respectively, and the class Dp

2 is defined—mutatis mutandis—using oracles one level
higher on the polynomial hierarchy.

Theorem 4. Given an explanation frame F = (P, S,A) and a CE problem P =
〈I, E, F 〉, deciding whether 〈C1, C2, CΔ〉 is a contrastive explanation for P is (i) Dp

2-
complete in general and (ii) DP-complete for normal programs.

Proof. (Sketch) We start with membership. Note that P ′ = P \ CΔ and A′ = C2 \ P .
Checking whether both are part of some CA amounts to testing conditions (i)–(v) of
Definition 3, where (iii) requires a call to a Σp

2 oracle (resp., NP oracle) and (iv) a call
to a Πp

2 oracle (resp., coNP oracle). Checking whether a counterfactual explanation
exists from which C1 and C2 can be obtained can also be included in the first oracle call.
Hence, we have Dp

2-membership in general and DP-membership for normal programs.
We recall the instances of deciding CE existence constructed from P0 and P1 in

Theorem 2 and 3. We merge those constructions to check whether it holds for given P0

and P1 that P0 has some answer set containing p, whereas P1 has no answer set. To this
end, we simply take P to be the union of both. We then let I = {q, q′′}, S = P \ {q′′},
and A = ∅. Furthermore, we define E = {q} and F = {p}. Then, 〈∅, ∅, {q′′}〉 is
a contrastive explanation iff P0 has some answer set that contains p and P1 has no
answer set. ��

Finally, we consider the problem of computing some contrastive explanation. For
our complexity characterisations, we are going to rely on the notion of witness ora-
cles [5,24] and their generalisation to the polynomial hierarchy [42]. We recall that
FPΣp

k [log, wit] is the class of search problems for which some solution can be com-
puted with logarithmically many calls to an Σp

k oracle, k ≥ 1, in polynomial time; here

84 T. Eiter et al.

a witness oracle returns, on input of an instance of a problem in Σp
k , in case it is a

yes-instance also a “witness”, i.e., a polynomial size proof (or certificate) that can be
checked with an Σp

k−1 oracle in polynomial time. In particular, for k = 1 the class is

FPNP[log, wit] and a witness oracle for SAT would return a satisfying assignment.

Theorem 5. Given an explanation frame F = (P, S,A) and a CE problem P =
〈I, E, F 〉, computing a CE for P is (i) FPΣp

2 [log, wit]-complete for general programs
and (ii) FPNP[log, wit]-complete for normal programs.

Proof. (Sketch) For membership, we can compute some CA P ′, A′, I ′ using a Σp
2 wit-

ness oracle for the conditions (i)–(iii) of Definition 3 with binary search on the size |P ′|
of a largest P ′ over the range |S|, . . . , |P |. (To test whether a CE exists, we can make
an initial oracle call whether some P ′ of size greater or equal to |S| exists.) Similarly,
a counterfactual explanation X = 〈Q1, Q2, QΔ〉 can be computed with the oracle and
binary search on the sizes |Q1 ∩P ′|, |Q1 ∩QΔ|, |Q2| over 0, . . . , |P ′|, resp., |QΔ|, |P |.
From X , a CE is then easily obtained, which shows membership in FPΣp

2 [log, wit]. In
case of normal programs, an NP witness oracle is sufficient, and we obtain membership
in FPNP[log, wit].

The hardness proof is is by reduction of the following FPΣp
2 [log, wit]-complete

variant of QBF Solving [5,42]. Given a QBFΦ = ∃X∀Y E(X,Y)whereX = X1∪X2,
compute some assignment σ toX1 such that (i)Φσ = ∃X2∀Y E(X1σ,X2, Y) evaluates
to true, and (ii) σ is minimal, i.e., no σ′ �= σ satisfies (i) such that σ′(xi) = 1 implies
σ(xi) = 1, for each xi ∈ X1; seen as a Boolean vector, σ is pointwise minimal. For the
reduction, we may look at the saturation encoding of Eiter and Gottlob [10] that proved
the Σp

2 -hardness of brave reasoning via an encoding of a QBF. Briefly, in that encoding,
for each assignment σ to X the model Mσ = {xi ∈ X | σ(xi) = 1} ∪ {x′

i ∈ X |
σ(xi) = 0} ∪ Y ∪ Y ′ ∪ {w} is a minimal model of the logic program P0 constructed
containing w iff ∀Y E(Xσ, Y) evaluates to true; furthermore, every minimal model
containing w is of this form. The program P0 contains a guessing rule xi ∨ x′

i for each
variable xi ∈ X , while the rest are rules defining atoms in Y ∪ Y ′ ∪ {w}. If we set the
foil to F = Y ∪ Y ′ ∪ {w}, then none of these atoms can be in A′. So only atoms in
X ∪ X ′ can be assumed. To avoid that both xi and x′

i are assumed, we then add to the
program P that we constructed above from P0 the rule ← xi, x

′
i for all xi ∈ X . Then,

for S consisting of the latter rules, I = {q}, A = AP , E = {q}, F = Y ∪ Y ′ ∪ {w},
some contrastive explanation exists iff Φ evaluates to true. Furthermore, we can add the
constraint rxi

: ← xi for each xi ∈ X1 to P . Its effect is that whenever the answer set
I ′ of P ′ ∪ A′ encodes that xi is assigned true, then the rule rxi

must not be in P ′, and
hence is in CΔ. Thus, a contrastive explanation encodes a minimal assignment σ.

For normal programs, FPNP[log, wit]-hardness can be shown by a reduction from
the QBF problem above where ∀Y is void and E is a conjunction of clauses γi, i =
1, . . . ,m on X; this is known as computing some X1-minimal model, which is well-
known to be FPNP[log, wit]-complete [5,7,24]. Let P contain the following rules:

– q ← not s,
– cj ← x,not q, for each x ∈ γj , cj ← x′,not q, for each ¬x ∈ γj ,
– x′

i ← not xi, for each xi ∈ X ,

Contrastive Explanations for Answer-Set Programs 85

– rsat : s ← c1, . . . , cm,
– rxi

: fxi
← xi,not fxi

, for each xi ∈ X1 (recall that X = X1 ∪ X2) where fxi
is

a fresh atom.

Then I = {q, x′
1, . . . , x

′
n} is an answer set of P . Let S = P \ {rxi

| xi ∈ X1} and
A = X , and set E = {q} and F = {s}. Any CA for 〈I, E, F 〉 assumes some subset
X ′ ⊆ X such that in P ′ some rule with head cj fires (clause γj is satisfied) and also the
rule rsat fires. Furthermore, by construction, rxi

/∈ P ′ must hold for each xi ∈ X ′. As
P ′ is maximal, the part X ′ ∩ X1 must be minimal. In any counterfactual explanation
〈Q1, Q2, QΔ〉, QΔ must contain all rxi

for xi ∈ X1; then in any CE 〈C1, C2, CΔ〉
induced by it, CΔ encodes the minimal assignment σ to X1. ��

6 Related Work

To the best of our knowledge, the first explicit formalisations of contrastive explanation
in a logical setting were given by Kean [26] and Ignatiev et al. [22,31]. The former
considered propositional knowledge bases under classical semantics which are obvi-
ously monotonic and thus quite different from ASP. An explanation there is first defined
through finding sentences that entail the fact and the foil, respectively. A partial model
of each sentence is then extracted, which is a smallest set of literals describing the entail-
ment. Kean’s contrastive explanation is then the symmetric difference of a partial model
for the entailment of the fact and foil, respectively.

On the other hand, Ignatiev et al. [22] considered contrastive explanation in the set-
ting of machine learning like, for example, decision trees and other discrete classifiers.
In their definition, a contrastive explanation is a minimal set of feature instances which,
if having taken another value, would have changed the prediction outcome. This differs
from our explanations in Sect. 4.1, as they do not support specifying a particular foil.

Recently, Eiter et al. [11] presented a use-case of contrastive explanation for visual
question answering using ASP. Their approach uses counterfactual scenes to answer
why an answer was provided instead of a foil. While similar, their work is not problem
independent but engineered for this single application.

Another formalisation of contrastive explanation was given by Miller [33] for
Halpern and Pearl’s structural causal models [19,21]. This formalism is not as expres-
sive as ASP but already has well established notions of what constitutes an explana-
tion [20]. The main difference between the approach of Miller and ours is that for Miller,
the internals of the model are never part of any explanation.

Contrastive explanation also has been studied for planning [27]. However, there
the questions are answered by contrasting the current plan with one where the foil is
necessarily included. This differs from our notion where we highlight which parts of
the model would need to be changed.

Other related work is on model-based diagnosis which, in one incarnation, also
employs abductive reasoning to find out which components of a system might be mal-
functioning [9]. The underlying idea of “deactivating” some components in a counter-
factual setting and then checking the outcome in this setting is quite similar to our usage

86 T. Eiter et al.

of counterfactual accounts. However, the result of diagnosis is generally just the assump-
tions which have to be made to “fix” the system, whereas our contrastive explanations
also include relevant rules needed for the derivation of fact and foil, respectively.

In logic programming and specifically the ASP community, we would like to men-
tion related work on explainability [16,38,40,44] and also debugging [4,35,36], cf.
Fandinno and Schulz [17] for a survey. As mentioned in the introduction, those ASP
explanation approaches generally try to answer non-contrastive questions by provid-
ing justifications, whereas debugging aims to give answers to the question of why a
program has no answer set at all or not the one the programmer intended. Some debug-
ging approaches are even interactive [36]. However, the salient differences between con-
trastive explanation and debugging are that explanation is not necessarily aimed at an
engineer and that the program in question is mostly likely working as it is supposed to.
The goal is more to “convince” and provide further insights for the explainee regarding
the program’s reasoning and less to point out potential flaws in the program.

At first glance, model reconciliation [34,43] in ASP seems quite similar to the prob-
lem we consider here, but there are several differences. Informally, in model reconcilia-
tion, one is given two programs P1, P2 and a formula that is (bravely) entailed by P1 but
not by P2. The goal is then to find a minimal way to adapt P2 such that it also entails the
formula. The motivating use case here is that P1 is the model of some system, whereas
P2 is the—potentially incomplete or flawed—model of a human. The main difference
between model reconciliation and our contrastive explanation is that the former only
considers a single formula and not a pair of fact and foil. Furthermore, as P1 already
entails the formula, rules deriving it can be extracted and added to the second program,
making computation somewhat easier.

Further related work in the area of logic programming are view updates [39] and
belief revision [47]. The former tries to update a logic program through abduction, incor-
porating new information that is needed to entail (or not entail) a given literal. Belief
revision in the context of ASP is even more general and aimed at updating a program
with new rules in such a way that the program is still consistent.

7 Conclusion and Future Work

In this work, we have provided a formalisation of contrastive explanation for ASP which
aims to highlight why an explanandum (or fact) P is in a given answer set instead of
a particular contrast or foil Q based on counterfactual reasoning over the underlying
program. Our explanations are sets of rules which aim at emphasising which rules were
required for the fact and foil, respectively. Inspired by Lipton’s difference condition
[30], the respective rule sets are disjoint thus hiding any shared causes and providing
concise explanations. We illustrated the usefulness of or notions on example applica-
tions, and we characterised their computational complexity.

For future work, we intend to provide a prototypical implementation of an explana-
tion system based on our definitions and see whether they can be made user-friendly
using translations to controlled natural language and/or connecting them with large
language models. Ideally, those implementations will be achieved using ASP itself.
Investigating abductive logic programming [12,25] in this regard also seems promis-
ing. Another worthwhile direction is to generalise our definitions for more fine-tuned

Contrastive Explanations for Answer-Set Programs 87

selections of counterfactuals to consider and which sets of rules to return by imposing
suitable preferences. Finally, it would be interesting to develop stateful notions of con-
trastive explanations in which a history of CE problems over an evolving explanation
frame may be considered to provide more useful explanations, which might also be
presented in an interactive setting.

Acknowledgments. This work was supported by funding from the Bosch Center for Artificial
Intelligence. Furthermore, Tobias Geibinger is a recipient of a DOC Fellowship of the Austrian
Academy of Sciences at the Institute of Logic and Computation at the TU Wien.

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with
hybrid ASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR. LNCS, vol. 11481,
pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7 1

2. Ali, R., El-Kholany, M.M.S., Gebser, M.: Flexible job-shop scheduling for semiconduc-
tor manufacturing with hybrid answer set programming (application paper). In: Hanus, M.,
Inclezan, D. (eds.) PADL 2023. LNCS, pp. 85–95. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-24841-2 6

3. Beierle, C., Dusso, O., Kern-Isberner, G.: Using answer set programming for a decision
support system. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005.
LNCS (LNAI), vol. 3662, pp. 374–378. Springer, Heidelberg (2005). https://doi.org/10.1007/
11546207 30

4. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72200-7 5

5. Buss, S.R., Krajıcek, J., Takeuti, G.: On provably total functions in bounded arithmetic theo-
ries. In: Clote, P., Krajıcek, J. (eds.) Arithmetic, Proof Theory and Computational Complex-
ity, pp. 116–161. Oxford University Press (1993)

6. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set programming.
In: Technical Communications of the 36th International Conference on Logic Programming
(ICLP 2020). EPTCS, vol. 325, pp. 124–136 (2020). https://doi.org/10.4204/EPTCS.325.19

7. Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput. 119(2),
231–239 (1995). https://doi.org/10.1006/inco.1995.1087

8. Comploi-Taupe, R., Francescutto, G., Schenner, G.: Applying incremental answer set solv-
ing to product configuration. In: Proceedings o the 26th ACM International Systems and
Software Product Line Conference (SPLC 2022), pp. 150–155. ACM (2022). https://doi.org/
10.1145/3503229.3547069

9. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Comput.
Intell. 7, 133–141 (1991). https://doi.org/10.1111/j.1467-8640.1991.tb00388.x

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Comput. Surv. 33(3), 374–425 (2001). https://doi.org/10.1145/502807.
502810

11. Eiter, T., Geibinger, T., Ruiz, N.H., Oetsch, J.: A logic-based approach to contrastive explain-
ability for neurosymbolic visual question answering. In: Proceedings of the 32rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2023) (2023). https://www.ijcai.org/
proceedings/2023/408

https://doi.org/10.1007/978-3-030-20528-7_1
https://doi.org/10.1007/978-3-031-24841-2_6
https://doi.org/10.1007/978-3-031-24841-2_6
https://doi.org/10.1007/11546207_30
https://doi.org/10.1007/11546207_30
https://doi.org/10.1007/978-3-540-72200-7_5
https://doi.org/10.1007/978-3-540-72200-7_5
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.1006/inco.1995.1087
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1145/3503229.3547069
https://doi.org/10.1111/j.1467-8640.1991.tb00388.x
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/502807.502810
https://www.ijcai.org/proceedings/2023/408
https://www.ijcai.org/proceedings/2023/408

88 T. Eiter et al.

12. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: semantics and com-
plexity. Theor. Comput. Sci. 189(1), 129–177 (1997). https://doi.org/10.1016/S0304-
3975(96)00179-X

13. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3),
53–68 (2016). https://doi.org/10.1609/aimag.v37i3.2678

14. Erdem, E., Oztok, U.: Generating explanations for biomedical queries. Theory Pract. Logic
Program. 15(1), 35–78 (2015). https://doi.org/10.1017/S1471068413000598

15. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial applications
of answer set programming. KI - Künstliche Intell. 32(2), 165–176 (2018). https://doi.org/
10.1007/s13218-018-0548-6

16. Fandinno, J.: Deriving conclusions from non-monotonic cause-effect relations. Theory Pract.
Logic Program. 16(5–6), 670–687 (2016). https://doi.org/10.1017/S1471068416000466

17. Fandinno, J., Schulz, C.: Answering the “why” in answer set programming - A survey of
explanation approaches. Theory Pract. Logic Program. 19(2), 114–203 (2019). https://doi.
org/10.1017/S1471068418000534

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Gener. Comput. 9, 365–385 (1991)

19. Halpern, J.Y.: A modification of the Halpern-pearl definition of causality. In: Yang, Q.,
Wooldridge, M.J. (eds.) Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015), pp. 3022–3033. AAAI Press (2015). https://ijcai.org/Abstract/15/
427

20. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach - part II: expla-
nations. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI 2001), pp. 27–34. Morgan Kaufmann (2001)

21. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach: Part 1: causes.
In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001),
pp. 194–202. Morgan Kaufmann (2001)

22. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to abductive
explanations and back again. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI),
vol. 12414, pp. 335–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-
4 21

23. Inclezan, D.: An application of answer set programming to the field of second language
acquisition. Theory Pract. Logic Program. 15(1), 1–17 (2015). https://doi.org/10.1017/
S1471068413000653

24. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for mono-
tone predicates. Artif. Intell. 233, 73–83 (2016). https://doi.org/10.1016/j.artint.2016.01.002

25. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Logic Comput. 2(6),
719–770 (1992). https://doi.org/10.1093/logcom/2.6.719

26. Kean, A.: A characterization of contrastive explanations computation. In: Lee, H.-Y., Motoda,
H. (eds.) PRICAI 1998. LNCS, vol. 1531, pp. 599–610. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0095304

27. Krarup, B., Krivic, S., Magazzeni, D., Long, D., Cashmore, M., Smith, D.E.: Contrastive
explanations of plans through model restrictions. J. Artif. Intell. Res. 72, 533–612 (2021).
https://doi.org/10.1613/jair.1.12813

28. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for
description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on (KDD 2016), pp. 1675–1684. ACM (2016). https://doi.org/10.1145/2939672.
2939874

29. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2), 39–54
(2002). https://doi.org/10.1016/S0004-3702(02)00186-8

https://doi.org/10.1016/S0304-3975(96)00179-X
https://doi.org/10.1016/S0304-3975(96)00179-X
https://doi.org/10.1609/aimag.v37i3.2678
https://doi.org/10.1017/S1471068413000598
https://doi.org/10.1007/s13218-018-0548-6
https://doi.org/10.1007/s13218-018-0548-6
https://doi.org/10.1017/S1471068416000466
https://doi.org/10.1017/S1471068418000534
https://doi.org/10.1017/S1471068418000534
https://ijcai.org/Abstract/15/427
https://ijcai.org/Abstract/15/427
https://doi.org/10.1007/978-3-030-77091-4_21
https://doi.org/10.1007/978-3-030-77091-4_21
https://doi.org/10.1017/S1471068413000653
https://doi.org/10.1017/S1471068413000653
https://doi.org/10.1016/j.artint.2016.01.002
https://doi.org/10.1093/logcom/2.6.719
https://doi.org/10.1007/BFb0095304
https://doi.org/10.1007/BFb0095304
https://doi.org/10.1613/jair.1.12813
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1016/S0004-3702(02)00186-8

Contrastive Explanations for Answer-Set Programs 89

30. Lipton, P.: Contrastive explanation. R. Inst. Philos. Suppl. 27, 247–266 (1990). https://doi.
org/10.1017/S1358246100005130

31. Marques-Silva, J.: Logic-based explainability in machine learning. In: Bertossi, L., Xiao,
G. (eds.) Reasoning Web. Causality, Explanations and Declarative Knowledge. LNCS, pp.
24–104. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31414-8 2

32. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell.
267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

33. Miller, T.: Contrastive explanation: a structural-model approach. Knowl. Eng. Rev. 36, e14
(2021). https://doi.org/10.1017/S0269888921000102

34. Nguyen, V., Stylianos, V.L., Son, T.C., Yeoh, W.: Explainable planning using answer set pro-
gramming. In: Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2020). pp. 662–666 (2020). https://doi.org/10.24963/kr.
2020/66

35. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-ground answer-
set programs. Theory Pract. Log. Program. 10(4–6), 513–529 (2010). https://doi.org/10.
1017/S1471068410000256

36. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set programs. Theory Pract.
Logic Program. 18(1), 30–80 (2018). https://doi.org/10.1017/S1471068417000217

37. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
38. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer

set semantics. Theory Pract. Logic Program. 9(1), 1–56 (2009). https://doi.org/10.1017/
S1471068408003633

39. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In: Gelfond,
M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 147–161.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46767-X 11

40. Schulz, C., Toni, F.: Justifying answer sets using argumentation. Theory Pract. Logic Pro-
gram. 16(1), 59–110 (2016). https://doi.org/10.1017/S1471068414000702

41. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural lan-
guage. Theory Pract. Logic Program. 18(3–4), 691–705 (2018). https://doi.org/10.1017/
S1471068418000327

42. Shen, Y., Eiter, T.: Determining inference semantics for disjunctive logic programs. Artif.
Intell. 277, 103165 (2019). https://doi.org/10.1016/j.artint.2019.103165

43. Son, T.C., Nguyen, V., Vasileiou, S.L., Yeoh, W.: Model reconciliation in logic programs.
In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol.
12678, pp. 393–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5 26

44. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic programming. In:
Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 530–542. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8 53

45. Wang, Y., Eiter, T., Zhang, Y., Lin, F.: Witnesses for answer sets of logic programs. ACM
Trans. Comput. Logic (2022). https://doi.org/10.1145/3568955

46. Yli-Jyrä, A., Rankooh, M.F., Janhunen, T.: Pruning redundancy in answer set optimization
applied to preventive maintenance scheduling. In: Hanus, M., Inclezan, D. (eds.) PADL 2023.
LNCS, pp. 279–294. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24841-2 18

47. Zhuang, Z., Delgrande, J.P., Nayak, A.C., Sattar, A.: Reconsidering AGM-style belief revi-
sion in the context of logic programs. In: Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol.
285, pp. 671–679. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-671

https://doi.org/10.1017/S1358246100005130
https://doi.org/10.1017/S1358246100005130
https://doi.org/10.1007/978-3-031-31414-8_2
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1017/S0269888921000102
https://doi.org/10.24963/kr.2020/66
https://doi.org/10.24963/kr.2020/66
https://doi.org/10.1017/S1471068410000256
https://doi.org/10.1017/S1471068410000256
https://doi.org/10.1017/S1471068417000217
https://doi.org/10.1017/S1471068408003633
https://doi.org/10.1017/S1471068408003633
https://doi.org/10.1007/3-540-46767-X_11
https://doi.org/10.1017/S1471068414000702
https://doi.org/10.1017/S1471068418000327
https://doi.org/10.1017/S1471068418000327
https://doi.org/10.1016/j.artint.2019.103165
https://doi.org/10.1007/978-3-030-75775-5_26
https://doi.org/10.1007/978-3-642-40564-8_53
https://doi.org/10.1145/3568955
https://doi.org/10.1007/978-3-031-24841-2_18
https://doi.org/10.3233/978-1-61499-672-9-671

Short Boolean Formulas as Explanations
in Practice

Reijo Jaakkola1 , Tomi Janhunen1 , Antti Kuusisto1,2(B) ,
Masood Feyzbakhsh Rankooh1 , and Miikka Vilander1

1 Tampere University, Tampere, Finland
antti.kuusisto@tuni.fi

2 University of Helsinki, Helsinki, Finland

Abstract. We investigate explainability via short Boolean formulas in
the data model based on unary relations. As an explanation of length
k, we take a Boolean formula of length k that minimizes the error with
respect to the target attribute to be explained. We first provide novel
quantitative bounds for the expected error in this scenario. We then
also demonstrate how the setting works in practice by studying three
concrete data sets. In each case, we calculate explanation formulas of
different lengths using an encoding in Answer Set Programming. The
most accurate formulas we obtain achieve errors similar to other meth-
ods on the same data sets. However, due to overfitting, these formulas
are not necessarily ideal explanations, so we use cross validation to iden-
tify a suitable length for explanations. By limiting to shorter formulas,
we obtain explanations that avoid overfitting but are still reasonably
accurate and also, importantly, human interpretable.

Keywords: Boolean formula size · Explainability · Interpretable AI ·
Overfitting error · Answer Set Programming · Boolean optimization

1 Introduction

In this article we investigate explainability and classification via short Boolean
formulas. As the data model, we use multisets of propositional assignments. This
is one of the simplest data representations available—consisting simply of data
points and properties—and corresponds precisely to relational models with unary
relations. The data is given as a model M with unary relations p1, . . . , pk over its
domain W , and furthermore, there is an additional target predicate q ⊆ W . As
classifiers for recognizing q, we produce Boolean formulas ϕ over p1, . . . , pk, and
the corresponding error is then the percentage of points in W that disagree on
ϕ and q over W . For each formula length �, a formula producing the minimum
error is chosen as a candidate classifier. Longer formulas produce smaller errors,
and ultimately the process is halted based on cross validation which shows that
the classifier formulas ϕ begin performing significantly better on training data
in comparison to test data, suggesting overfitting.
c© The Author(s) 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 90–105, 2023.
https://doi.org/10.1007/978-3-031-43619-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_7&domain=pdf
http://orcid.org/0000-0003-4714-4637
http://orcid.org/0000-0002-2029-7708
http://orcid.org/0000-0003-1356-8749
http://orcid.org/0000-0001-5660-3052
http://orcid.org/0000-0002-7301-939X
https://doi.org/10.1007/978-3-031-43619-2_7

Short Boolean Formulas as Explanations in Practice 91

Importantly, the final classifier formulas ϕ tend to be short and therefore
explicate the global behavior of the classifier ϕ itself in a transparent way. This
leads to inherent interpretability of our approach. Furthermore, the formulas ϕ
can also be viewed as explanations of the target predicate q. By limiting to short
formulas, we obtain explanations (or classifiers) that avoid overfitting but are
still reasonably accurate and also—importantly—human interpretable.

Our contributions include theory, implementation and empirical results. We
begin with some theory on the errors of Boolean formulas as explanations. We
first investigate general reasons behind overfitting when using Boolean formu-
las. We also observe, for example, that if all distributions are equally likely, the
expected ideal theoretical error of a distribution is 25%. The ideal theoretical
error is the error of an ideal Boolean classifier for the entire distribution. We pro-
ceed by proving novel, quantitative upper and lower bounds on the expected ideal
empirical error on a data set sampled from a distribution. The ideal empirical
error is the smallest error achievable on the data set. Our bounds give concrete
information on sample sizes required to avoid overfitting.

We also compute explanation formulas in practice. We use three data sets
from the UCI machine learning repository: Statlog (German Credit Data), Breast
Cancer Wisconsin (Original) and Ionosphere. We obtain results comparable to
other experiments in the literature. In one set of our experiments, the empirical
errors for the obtained classifiers for the credit, breast cancer and ionosphere
data are 0.27, 0.047 and 0.14. The corresponding formulas are surprisingly short,
with lengths 6, 8 and 7, respectively. This makes them highly interpretable. The
length 6 formula for the credit data (predicting if a loan will be granted) is

¬(a[1, 1] ∧ a[2]) ∨ a[17, 4],

where a[1, 1] means negative account balance; a[2] means above median loan
duration; and a[17, 4] means employment on managerial level. Our errors are
comparable to those obtained for the same data sets in the literature. For exam-
ple, [25] obtains an error 0.25 for the credit data where our error is 0.27. Also,
all our formulas are immediately interpretable. See Sect. 5 for further discussion.

On the computational side, we deploy answer set programming (ASP; see,
e.g., [6,14]) where the solutions of a search problem are described declaratively in
terms of rules such that the answer sets of the resulting logic program correspond
to the solutions of the problem. Consequently, dedicated search engines, known
as answer-set solvers, provide means to solve the problem via the computation of
answer sets. The Clasp [8] and Wasp [1] solvers represent the state-of-the art of
native answer set solvers, providing a comparable performance in practice. These
solvers offer various reasoning modes—including prioritized optimization—which
are deployed in the sequel, e.g., for the minimization of error and formula length.
Besides these features, we count on the flexibility of rules offered by ASP when
describing explanation tasks. More information on the technical side of ASP can
be found from the de-facto reference manual [9] of the Clingo system.

The efficiency of explanation is governed by the number of hypotheses consid-
ered basically in two ways. Firstly, the search for a plausible explanation requires
the exploration of the hypothesis space and, secondly, the exclusion of better expla-
nations becomes a further computational burden, e.g., when the error with respect

92 R. Jaakkola et al.

to data is being minimized. In computational learning approaches (cf. [17]), such
as current-best-hypothesis search and version space learning, a hypothesis in a nor-
mal form is maintained while minimizing the numbers of false positive/negative
examples. However, in this work, we tackle the hypothesis space somewhat differ-
ently: we rather specify the form of hypotheses and delegate their exploration to an
(optimizing) logic solver. In favor of interpretability, we consider formulas based
on negations, conjunctions, and disjunctions, not necessarily in a particular nor-
mal form. By changing the form of hypotheses, also other kinds of explanations
such as decision trees [19] or lists could alternatively be sought.

Concerning further related work, our bounds on the difference between theo-
retical and expected empirical error are technically related to results in statistical
learning theory [24] and PAC learning [15,23]. In PAC learning, the goal is to use
a sample of labeled points drawn from an unknown distribution to find a hypoth-
esis that gives a small true error with high probability. The use of hypotheses
with small descriptions has also been considered in the PAC learning in relation
to the Occam’s razor principle [3–5]. One major difference between our setting
and PAC learning is that in the latter, the target concept is a (usually Boolean)
function of the attribute values, while in our setting we only assume that there
is a probability distribution on the propositional types over the attributes.

Explanations relating to minimality notions in relation to different Boolean
classifiers have been studied widely, see for example [20] for minimum-cardinality
and prime implicant explanations, also in line with Occam’s razor [3]. Our study
relates especially to global (or general [11]) explainability, where the full behav-
ior of a classifier is explained instead of a decision concerning a particular input
instance. Boolean complexity—the length of the shortest equivalent formula—is
promoted in the prominent article [7] as an empirically tested measure of the
subjective difficulty of a concept. On a conceptually related note, intelligibility of
various Boolean classifiers are studied in [2]. While that study places, e.g., DNF-
formulas to the less intelligible category based on the complexity of explainability
queries performed on classifiers, we note that with genuinely small bounds for
classifier length, asymptotic complexity can sometimes be a somewhat problem-
atic measure for intelligibility. In our study, the bounds arise already from the
overfitting thresholds in real-life data. In the scenarios we studied, overfitting
indeed sets natural, small bounds for classifier length. In inherently Boolean
data, such bounds can be fundamental and cannot be always ignored via using
different classes of classifiers. The good news is that while a length bound may
be necessary to avoid overfitting, shorter length increases interpretability. This
is important from the point of theory as well as applications.

We proceed as follows. After the preliminaries in Sect. 2, we present theoret-
ical results on errors in Sect. 3. Then, Sect. 4 explains our ASP implementation.
Next, we present and interpret empirical results in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

The syntax of propositional logic PL[σ] over the vocabulary σ = {p1, . . . , pm} is
given by ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ where p ∈ σ. We also define the exclusive

Short Boolean Formulas as Explanations in Practice 93

or ϕ ⊕ ψ := (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ) as an abbreviation. A σ-model is a structure
M = (W,V) where W is a finite, non-empty set referred to as the domain of
M and V : σ → P(W) is a valuation function that assigns each p ∈ σ the set
V (p) (also denoted by pM) of points w ∈ W where p is considered to be true.

A σ-valuation V can be extended in the standard way to a valuation V :
PL[σ] → P(W) for all PL[σ]-formulas. We write w |= ϕ if w ∈ V (ϕ) and say
that w satisfies ϕ. We denote by |ϕ|M the number of points w ∈ W where
ϕ ∈ PL[σ] is true. For σ-formulas ϕ and ψ, we write ϕ |= ψ iff for all σ-models
M = (W,V) we have V (ψ) ⊆ V (ϕ). Let lit(σ) denote the set of σ-literals,
i.e., formulas p and ¬p for p ∈ σ. A σ-type base is a set S ⊆ lit(σ) such
that for each p ∈ σ, precisely one of the literals p and ¬p is in S. A σ-type is a
conjunction

∧
S. We assume some fixed bracketing and ordering of literals in

∧
S

so there is a one-to-one correspondence between type bases and types. The set
of σ-types is denoted by Tσ. Note that in a σ-model M = (W,V), each element
w satisfies precisely one σ-type, so the domain W is partitioned by some subset
of Tσ. The size size(ϕ) of a formula ϕ ∈ PL[σ] is defined such that size(p) = 1,
size(¬ψ) = size(ψ) + 1, and size(ψ ∧ ϑ) = size(ψ ∨ ϑ) = size(ψ) + size(ϑ) + 1.

We will use short propositional formulas as explanations of target attributes
in data. Throughout the paper, we shall use the vocabulary τ = {p1, . . . , pk} for
the language of explanations, while q �∈ τ will be the target attribute (or target
proposition) to be explained. While the set of τ -types will be denoted by Tτ , we
let Tτ,q denote the set of (τ ∪ {q})-types in the extended language PL[τ ∪ {q}].

By a probability distribution over a vocabulary σ, or simply a σ-distribution,
we mean a function μσ : Tσ → [0, 1] that gives a probability to each type in Tσ.
We are mainly interested in such distributions over τ and τ ∪{q}. For notational
convenience, we may write μτ,q or simply μ instead of μτ∪{q}. In the theoretical
part of the paper, we assume that the studied data (i.e., (τ ∪ {q})-models) are
sampled using such a distribution μ.

We then define some notions of error for explanations. Let τ = {p1, . . . , pk}.
Fix a probability distribution μ : Tτ,q → [0, 1]. Let ϕ and ψ be (τ ∪{q})-formulas.
The probability of ϕ over μ is defined as

Prμ(ϕ) :=
∑

t∈Tτ,q , t|=ϕ

μ(t).

The probability of ψ given ϕ over μ is defined as Prμ(ψ |ϕ) := Prμ(ψ∧ϕ)
Prμ(ϕ)

(and 0 if Prμ(ϕ) = 0). For simplicity, we may write μ(ϕ) for Prμ(ϕ) and μ(ψ |ϕ)
for Prμ(ψ |ϕ). Let M = (W,V) be a (τ ∪ {q})-model. The probability of ϕ
over M is PrM (ϕ) := 1

|W | |ϕ|M , and the probability of ψ given ϕ over M

is defined as PrM (ψ |ϕ) := |ψ∧ϕ|M
|ϕ|M (and 0 if PrM (ϕ) = 0). The disjunction

ϕM
id :=

∨{ t ∈ Tτ | PrM (q | t) ≤ 1
2} is the ideal classifier w.r.t. M , and the

disjunction ϕμ
id :=

∨{ t ∈ Tτ |μ(q | t) ≤ 1
2} is the ideal classifier w.r.t. μ.

94 R. Jaakkola et al.

Now, let ψ ∈ PL[τ]. The theoretical error (or true error) of ψ with respect
to μ is errμ(ψ) := Prμ(ψ ⊕ q). The ideal theoretical error of μ is

err(μ) := min
ψ∈PL[τ]

errμ(ψ) = Prμ(ϕ
μ
id) =

∑

t∈Tτ

min{μ(t ∧ q), μ(t ∧ ¬q)}.

Let M be a (τ ∪ {q})-model. The empirical error of ψ with respect to M is
errM (ψ) := PrM (ψ ⊕ q). The ideal empirical error of M is

err(M) := min
ψ∈PL[τ]

errM (ψ) = PrM (ϕM
id) =

1
|W |

∑

t ∈ Tτ

min{|t ∧ q|M , |t ∧ ¬q|M}.

For a τ -type t, the ideal error over t w.r.t. μ is min{μ(q | t), μ(¬q | t)}. The
ideal error over t w.r.t. M is min{PrM (q | t),PrM (¬q | t)}.

The main problem studied in this paper is the following: over a (τ ∪ {q})-
model M , given a bound � on formula length, find ψ with size(ψ) ≤ � and
with minimal empirical error w.r.t. M . This can be formulated as a general
explanation problem (GEP) in the sense of [11]; see in particular the extended
problems in [12]. The goal in GEP is to explain the global behavior of a classifier
rather than a reason why a particular instance was accepted or rejected.

Finally, we define cut : [0, 1] → [0, 1
2] to be the function such that cut(x) = x

if x ≤ 1
2 and otherwise cut(x) = 1 − x.

3 Expected Errors

In this section we consider the errors given by Boolean classifiers, including the
phenomena that give rise to the errors. With no information on the distribution
μ : Tτ,q → [0, 1], it is difficult to predict the error of a classifier ϕ in PL[τ].
However, some observations can be made. Consider the scenario where all dis-
tributions μ are equally likely, meaning that we consider the flat Dirichlet dis-
tribution Dir(α1, . . . , α|Tτ,q|) with each αi equal to 1, i.e., the distribution that
is uniform over its support which, in turn, is the (|Tτ,q| − 1)-simplex. For more
on Dirichlet distributions, see [16]. We begin with the following observation.

Proposition 1. Assuming all distributions over τ ∪ {q} are equally likely, the
expected value of the ideal theoretical error is 0.25. Also, for any type t ∈ Tτ and
any μτ with μτ (t) > 0, if all extensions μ of μτ to a (τ ∪ {q})-distribution are
equally likely, the expectation of the ideal error over t w.r.t. μ is likewise 0.25.

Proof. We prove the second claim first. Fix a μ and t. If x = μ(q | t), then
the ideal error over t w.r.t. μ is given by cut(x). Therefore the corresponding
expected value is given by 1

1−0

∫ 1

0
cut(x) dx =

∫ 1
2
0

x dx +
∫ 1

1
2
(1 − x) dx = 1

4 .

This proves the second claim. Based on this, it is not difficult to show that the
also the first claim holds; the full details are given in the full version [13]. ��

Short Boolean Formulas as Explanations in Practice 95

One of the main problems with Boolean classifiers is that the number of types
is exponential in the vocabulary size, i.e., the curse of dimensionality. This leads
to overfitting via overparameterization; even if the model M is faithful to an
underlying distribution μ, classifiers ϕM

id tend to give empirical errors that are
significantly smaller than the theoretical ones for μ. To see why, notice that in
the extreme case where |t|M = 1 for each t ∈ Tτ,q, the ideal empirical error of M
is zero. In general, when the sets |t|M are small, ideal classifiers ϕM

id benefit from
that. Let us consider this issue quantitatively. Fix μ and t ∈ Tτ . For a model M ,
let err(M, t) refer to the ideal error over t w.r.t. M . Consider models M sampled
according to μ, and let m ∈ N and μ(q | t) = p. Now, the expected value E(m, p)
of err(M, t) over those models M where |t|M = m is given by

(∑

0< k ≤ m/2

(
m

k

)

pk(1−p)m−k · k

m

)
+

(∑

m/2< k < m

(
m

k

)

pk(1−p)m−k · (m − k)
m

)
.

Now for example E(4, 0.7) = 0.2541 and E(2, 0.7) = 0.21, both significantly
lower than cut(p) = cut(0.7) = 0.3 which is the expected value of err(M, t) when
the size restriction |t|M = m is lifted and models of increasing size are sampled
according to μ. Similarly, we have E(4, 0.5) = 0.3125 and E(2, 0.5) = 0.25,
significantly lower than cut(p) = cut(0.5) = 0.5. A natural way to avoid this
phenomenon is to limit formula size, the strategy adopted in this paper. This
also naturally leads to shorter and thus more interpretable formulas.

We next estimate empirical errors for general Boolean classifiers (as opposed
to single types). The expected ideal empirical error of μ is simply the expec-
tation E(err(M)) of err(M), where M is a model of size n sampled according to μ.
One can show that E(err(M)) ≤ err(μ) and that E(err(M)) → err(μ) as n → ∞.
Thus it is natural to ask how the size of the difference err(μ)−E(err(M)), which
we call the bias of empirical error, depends on n.

In the remaining part of this section we establish bounds on the expected
ideal empirical error, which in turn can be used to give bounds on the bias of
empirical error. Since expectation is linear, it suffices to give bounds on

1
n

∑

t∈Tτ

Emin{|t ∧ q|M , |t ∧ ¬q|M}, (1)

where M is a model of size n which is sampled according to μ. Here, for each
type t ∈ Tτ , |t ∧ q|M and |t ∧ ¬q|M are random variables that are distributed
according to Binom(n, μ(t ∧ q)) and Binom(n, μ(t ∧ ¬q)) respectively. Since |t ∧
q|M + |t ∧ ¬q|M = |t|M , we can replace |t ∧ ¬q|M with |t|M − |t ∧ q|M .

To simplify (1), we will first use the law of total expectation to write it as

1
n

∑

t∈Tτ

n∑

m=0

E(min{|t ∧ q|M ,m − |t ∧ q|M} | |t|M = m) · Pr(|t|M = m). (2)

For each 0 ≤ m ≤ n and t ∈ Tτ we fix a random variable Xm,t,q distributed
according to Binom(m,μ(q|t)), where μ(q|t) := μ(t ∧ q)/μ(t). In the full version

96 R. Jaakkola et al.

[13] we show that (2) equals

1
n

∑

t∈Tτ

n∑

m=0

Emin{Xm,t,q, m − Xm,t,q} · Pr(|t|M = m). (3)

To avoid dealing directly with the expectation of a minimum of two Binomial
random variables, we simplify it via the identity min{a, b} = 1

2 (a + b − |a − b|).
In the full version [13] we show that using this identity on (3) gives the form

1
2

− 1
n

∑

t∈Tτ

n∑

m=0

E

∣
∣
∣
∣Xm,t,q − m

2

∣
∣
∣
∣ · Pr(|t|M = m). (4)

In the above formula the quantity E|Xm,t,q− m
2 | is convenient since we can bound

it from above using the standard deviation of Xm,t,q. Some further estimates and
algebraic manipulations suffice to prove the following result.

Theorem 1. Expected ideal empirical error is bounded from below by

err(μ) − 1√
n

∑

t∈Tτ

√
μ(q|t)(1 − μ(q|t))μ(t).

We note that Theorem 1 implies immediately that the bias of the empirical

error is bounded from above by 1√
n

∑
t∈Tτ

√
μ(q|t)(1 − μ(q|t))μ(t) ≤ 1

2

√
|Tτ |
n .

This estimate yields quite concrete sample bounds. For instance, if we are using
three attributes to explain the target attribute (so |Tτ | = 8) and we want the
bias of the empirical error to be at most 0.045, then a sample of size at least
1000 suffices. For the credit data set with 1000 data points, this means that if
three attributes are selected, then the (easily computable) ideal empirical error
gives a good idea of the ideal theoretical error for those three attributes.

Obtaining an upper bound on the expected ideal empirical error is much
more challenging, since in general it is not easy to give good lower bounds on
E|X − λ|, where X is a binomial random variable and λ > 0 is a real number.
Nevertheless we were able to obtain the following result.

Theorem 2. Expected ideal empirical error is bounded from above by

1
2

− 1√
8n

∑

nμ(t)≥1

√
μ(t) +

1
2
√
8n

∑

nμ(t)≥1

1 − μ(t)
√

nμ(t)
− 1√

8

∑

nμ(t)<1

μ(t)(1 − μ(t))n.

The proof of Theorem 2 — which can be found in the full version [13] —
can be divided into three main steps. First, we observe that the expected ideal
empirical error is maximized when μ(q|t) = 1/2, for every t ∈ Tτ , in which
case E(Xm,t,q) = m

2 . Then, we use a very recent result of [18] to obtain a good
lower bound on the value E|Xm,t,q − E(Xm,t,q)|. Finally, after some algebraic
manipulations, we are left with the task of bounding E(

√|t|M) from below,

Short Boolean Formulas as Explanations in Practice 97

which we achieve by using an estimate that can be obtained from the Taylor
expansion of

√
x around 1.

To get a concrete feel for the lower bound of Theorem 2, consider the case
where μ(q|t) = 1/2, for every t ∈ Tτ . In this case a rough use of Theorem 2
implies that the bias of the empirical error is bounded from below by

1√
8

∑

nμ(t)<1

μ(t)(1 − μ(t))n ≥ 1√
8e

· (n − 1)
n

·
∑

nμ(t)<1

μ(t),

where we used the fact that (1−1/n)n−1 ≥ 1/e, which holds provided that n > 1.
This lower bound very much depends on the properties of the distribution μ,
but one can nevertheless make general remarks about it. For instance, if |Tτ | is
much larger than n and μ is not concentrated on a small number of types (i.e.,
its Shannon entropy is not small), then we except

∑
nμ(t)<1 μ(t) to be close to

one. Thus the above bound would imply that in this scenario the generalization
gap is roughly 1/(

√
8 · e) ≈ 0.13, which is a significant deviation from zero.

4 An Overview of the Implementation in ASP

In this section, we describe our proof-of-concept implementation of the search
for short formulas explaining data sets. Our implementation presumes Boolean
attributes only and complete data sets having no missing values. In the following,
we highlight the main ideas behind our ASP encoding in terms of code snippets
in the Gringo syntax [9]. The complete encoding will be published under the
ASPTOOLS collection1 along with some preformatted data sets for testing pur-
poses. Each data set is represented in terms of a predicate val(D,A,V) with
three arguments: D for a data point identifier, A for the name of an attribute,
and V for the value of the attribute A at D, i.e., either 0 or 1 for Boolean data.

Given a data set based on attributes a0 , . . . , an where an is the target of
explanation, the hypothesis space is essentially the propositional language PL[τ]
with the vocabulary τ = {a0 , . . . , an−1}. Thus, the goal is to find a definition
an ↔ ϕ where ϕ ∈ PL[τ] with the least error. To avoid obviously redundant
hypotheses, we use only propositional connectives from the set C = {¬,∧,∨} and
represent formulas in the so-called reversed Polish notation. This notation omits
parentheses altogether and each formula ϕ is encoded as a sequence s1 , . . . , sk of
symbols where si ∈ τ ∪C for each si. Such a sequence can be transformed into a
formula by processing the symbols in the given order and by pushing formulas on
a stack that is empty initially. If si ∈ τ , it is pushed on the stack, and if si ∈ C,
the arguments of si are popped from the stack and the resulting formula is pushed
on the stack using si as the connective. Eventually, the result appears as the only
formula on top of stack. For illustration, consider the sequence a2, a1,∧,¬, a0,∨
referring to attributes a0, a1, and a2. The stack evolves as follows: a2 �→ a2, a1

�→ (a1∧a2) �→ ¬(a1∧a2) �→ ¬(a1∧a2), a0 �→ a0∨¬(a1∧a2). Thus, the formula is

1 https://github.com/asptools/benchmarks.

https://github.com/asptools/benchmarks

98 R. Jaakkola et al.

Listing 1. Encoding the syntactic structure of hypotheses

1 % Domains
2 #const l=10.
3 node (1..l). root(l). op(neg;and;or).
4 data(D) :- val(D,A,B).
5 attr(A) :- val(D,A,B).
6
7 % Choose the actual length
8 {used(N)} :- node(N).
9 used(N+1) :- used(N), node(N+1).

10 used(N) :- root(N).
11
12 % Choose leaf nodes and inner nodes , and label them
13 {leaf(N)} :- used(N).
14 inner(N) :- used(N), not leaf(N).
15 { op(N,O): op(O) } = 1 :- inner(N).
16 { lat(N,A): attr(A) } = 1 :- leaf(N).

Listing 2. Checking the syntax using a stack
1 % Check the size of the stack
2 count(N,0) :- used(N), not used(N-1).
3 count(N+1,K+1) :- leaf(N), count(N,K), node(N), K>=0, K<=2.
4 count(N+1,K) :- count(N,K), node(N), op(N,neg).
5 count(N+1,K-1) :- count(N,K), node(N), op(N,O), O!=neg.
6 :- not count(l+1 ,1).
7
8 % The step -by -step evolution of the stack
9 stack(N+1,K+1,N) :- leaf(N), count(N,K), K>=0, K<=2.

10 stack(N+1,K, N) :- op(N,neg), count(N,K), K>0, K<=3.
11 stack(N+1,K-1,N) :- op(N,O), O!=neg , count(N,K), K>=2, K<=3.
12
13 stack(N+1,I, M) :- leaf(N), count(N,K), I>=0, I<=K, stack(N,I,M).
14 stack(N+1,I, M) :- op(N,neg), count(N,K), I>0, I<K, stack(N,I,M).
15 stack(N+1,1, M) :- op(N,O), O!=neg , count(N,3), stack(N,1,M).

a0∨¬(a1∧a2). For a formula ϕ, the respective sequence of symbols can be found
by traversing the syntax tree of ϕ in the post order. There are also malformed
sequences not corresponding to any formula.

Based on the reverse Polish representation, the first part of our encoding con-
centrates on the generation of hypotheses whose syntactic elements are defined
in Listing 1. In Line 2, the maximum length of the formula is set, as a global
parameter l of the encoding, to a default value 10. Other values can be issued by
the command-line option -cl=<number>. Based on the value chosen, the respec-
tive number of nodes for a syntax tree is defined in Line 3, out of which the last
one is dedicated for the root. The three Boolean operators are introduced using
the predicate op/1. The data points and attributes are extracted from data in
Lines 4 and 5, respectively. To allow explanations shorter than l, the choice rule
in Line 8 may take any node into use (or not). The rule in Line 9 ensures that
all nodes with higher index values up to l are in use. The root node is always in

Short Boolean Formulas as Explanations in Practice 99

Listing 3. Evaluating the hypothesis at data points

1 true(D,N) :- data(D), leaf(N), lat(N,A), val(D,A,1).
2 {true(D,N)} :- data(D), used(N), inner(N).
3
4 % Constraints for disjunctions
5 :- data(D), op(N,or), count(N,I), stack(N,I-1,N3),
6 true(D,N), not true(D,N-1), not true(D,N3).
7 :- data(D), op(N,or), not true(D,N), true(D,N-1).
8 :- data(D), op(N,or), count(N,I), stack(N,I-1,N2),
9 not true(D,N), true(D,N2).

Listing 4. Encoding the objective function

1 % Compute error
2 error(D) :- data(D), val(D,A,0), expl(A), true(D,N), root(N).
3 error(D) :- data(D), val(D,A,1), expl(A), not true(D,N), root(N).
4
5 #minimize { 1@1 ,D: error(D); 1@0 ,N: used(N), node(N) }.

use by Line 10. The net effect is that the nodes i..l taken into use determine
the actual length of the hypothesis. Thus the length may vary between 1 and
l. In a valid syntax tree, the nodes are either leaf or inner nodes, see Lines 13
and 14, respectively. Each inner node is assigned an operator in Line 15 whereas
each leaf node is assigned an attribute in Line 16, to be justified later on.

The second part of our encoding checks the syntax of the hypothesis using
a stack, see Listing 2. Line 2 resets the size of the stack in the first used node.
The following rules in Lines 3–5 take the respective effects of attributes, unary
operators, and binary operators into account. The constraint in Line 6 ensures
that the count reaches 1 after the root node. Similar constraints limit the size of
the stack: at most two for leaf nodes and at least one/two for inner nodes with a
unary/binary connective. The predicate stack/3 propagates information about
arguments to operators, i.e., the locations N where they can be found. Depending
on node type, the rules in Lines 9–11 create a new reference that appears on top
of the stack at the next step N+1 (cf. the second argument K+1, K, or K-1). The
rules in Lines 13–15 copy the items under the top item to the next step N+1.

The third part of our encoding evaluates the chosen hypothesis at data points
D present in the data set given as input. For a leaf node N, the value is simply
set based on the value of the chosen attribute A at D, see Line 1. For inner nodes
N, we indicate a choice of the truth value in Line 2, but the choice is made
deterministic in practice by the constraints in Lines 5–9, illustrating the case of
the or operator. The constraints for the operators neg and and are analogous.

Finally, Listing 4 encodes the objective function. Lines 2 and 3 spot data
points D that are incorrect with respect to the attribute A being explained and
the selected hypothesis rooted at N. For a false positive D, the hypothesis is true
at D while the value of A is 0. In the opposite case, the hypothesis is false while the
value of A at D is 1. The criteria for minimization are given in Line 5. The number
of errors is the first priority (at level 1) whereas the length of the hypothesis
is the secondary objective (at level 0). Also, recall that the maximum length

100 R. Jaakkola et al.

has been set as a parameter earlier. The optimization proceeds lexicographically
as follows: a formula that minimizes the number of errors is sought first and,
once such an explanation has been found, the length of the formula is minimized
additionally. So, it is not that crucial to set the (maximum) length parameter l to
a particular value: the smaller values are feasible, too, based on the nodes in use.
The performance of our basic encoding can be improved by adding constraints
to prune redundant hypotheses, sub-optimal answer sets, and candidates.

5 Results from Data and Interpretation

To empirically analyze short Boolean formulas as explanations and classifiers, we
utilize three data sets from the UCI machine learning repository: Statlog (Ger-
man Credit Data), Breast Cancer Wisconsin (Original) and Ionosphere. The
target attributes are given as acceptance of a loan application, benignity of a
tumor and “good” radar readings, respectively. The breast cancer data contains
a small number of instances with missing attribute values (16 out of 699), which
are excluded from the analysis. The original data sets contain categorical and
numerical attributes, as well as Boolean ones. To convert a categorical attribute
into Boolean format, we treat the inclusion of instances in each corresponding
category as a separate Boolean attribute. For numerical attributes, we use the
median across all instances as the threshold. Thus the Booleanized credit, breast
cancer and ionosphere data sets consist of 1000, 683 and 351 instances, respec-
tively, with 68, 9 and 34 Boolean attributes each, plus the target attribute. To
evaluate the obtained formulas as classifiers, we randomly divide each data set
into two equal parts: one serving as the training data and the other as the test
data. For the training data M , target predicate q and increasing formula length
bounds �, we produce formulas ψ not involving q with size(ψ) ≤ � that minimize
the empirical error errM (ψ). We also record the error on the test data (i.e., the
complement of the training data). We repeated this process 10 times. For each
data set, Figs. 1, 2 and 3 record both the first experiment as an example and the
average over 10 experiments on separately randomized training and test data
sets. We employed Clingo (v. 5.4.0) as the answer-set solver in all experiments.

For the ionosphere data, the Booleanization via median is rough for the real-
valued radar readings. Thus we expect larger errors compared to methods using
real numbers. This indeed happens, but the errors are still surprisingly low.

Overfitting and Choice of Explanations. The six plots show how the error
rates develop with formula length. In all plots, the error of the test data eventu-
ally stays roughly the same while the error of the training data keeps decreasing.
This illustrates how the overfitting phenomenon ultimately arises. We can use
these results to find a cut-off point for the length of the formulas to be used as
explanations. Note that this should be done on a case-by-case basis and we show
the average plots only to demonstrate trends. For the single tests given on the
left in Figs. 1, 2 and 3, we might choose the lengths 6, 8 and 7 for the credit,
breast cancer and ionosphere data sets, respectively. The errors of the chosen

Short Boolean Formulas as Explanations in Practice 101

2 4 6 8

0.2

0.25

0.3

0.35

length

error

Test
Train

2 4 6 8

0.2

0.25

0.3

0.35

length

error

Test
Train

Fig. 1. Credit data set – first test (left) and average (right)

1 3 5 7 9 11 13 15 17

0.02

0.04

0.06

0.08

0.10

0.12

length

error

Test
Train

1 3 5 7 9 11 13 15 17 19

0.02

0.04

0.06

0.08

0.10

0.12

length

error

Test
Train

Fig. 2. Breast cancer data set – first test (left) and average (right)

1 3 5 7 9 11

0.1

0.15

0.2

0.25

0.3

length

error

Test
Train

1 3 5 7 9 11 13 15

0.1

0.15

0.2

0.25

0.3

length

error

Test
Train

Fig. 3. Ionosphere data set – first test (left) and average (right)

102 R. Jaakkola et al.

formulas are 0.27, 0.047 and 0.14, respectively. We conclude that by sticking to
short Boolean formulas, we can avoid overfitting in a simple way.

Interpretability. A nice feature of short Boolean formulas is their interpretabil-
ity. Suppose we stop at the formula lengths 6, 8 and 7 suggested above. The
related formulas are simple and indeed readable. Consider the formula

¬(a[1, 1] ∧ a[2]) ∨ a[17, 4]

of length 6 and a test error of 0.27 obtained from the credit data. The meanings
of the attributes are as follows: a[1, 1] means the applicant has a checking account
with negative balance, a[2] means that the duration of the applied loan is above
median, and a[17, 4] means the applicant is employed at a management or similar
level. (The second number in some attributes refers to original categories in the
data.) Therefore the formula states that if an applicant is looking for a short
term loan, has money on their account or has a management level job, then they
should get the loan. For the breast cancer data set, we choose the formula

¬(((a[1] ∧ a[6]) ∨ a[5]) ∧ a[3])

of length 8 with test error 0.047. The meanings of the attributes in the order
of appearance in the formula are given as clump thickness, bare nuclei, single
epithelial cell size and uniformity of cell shape. The full power of Boolean logic is
utilized here, in the form of both negation and alternation between conjunction
and disjunction. Finally, for the ionosphere data set, the formula

((a[8] ∧ a[12]) ∨ a[15]) ∧ a[1]

of length 7 and test error 0.14 is likewise human readable as a formula. However,
it must be mentioned again that the data was used here for technical reasons,
and the Booleanized attributes related to radar readings are difficult to explicate.

Using the power of Boolean logic (i.e., including all the connectives ¬, ∧, ∨)
tends to compress the explanations suitably in addition to giving flexibility in
explanations. We observe that our experiments gave short, readable formulas.

Comparing Error Rates on Test Data. In [25], all three data sets we consider
are treated with naive Bayesian classifiers and error rates 0.25, 0.026 and 0.10
are achieved on the test data for the credit, breast cancer and ionosphere data
sets, respectively. In [10], the credit data is investigated using neural networks
and even there, the best reported error rate is 0.24. In [22], many different
methods are compared on the breast cancer data, and the best error achieved
is 0.032. For the ionosphere data, the original paper [21] uses neural networks
to obtain an error of 0.04. We can see from the plots that very short Boolean
formulas can achieve error rates of a similar magnitude on the credit and breast
cancer data sets. For the ionosphere data, neural networks achieve a better error
rate, but as explained earlier, this is unsurprising as we use a roughly Booleanized
version of the underlying data. We conclude that very short Boolean formulas
give surprisingly good error rates compared to other methods. Furthermore, this
approach seems inherently interpretable for many different purposes.

Short Boolean Formulas as Explanations in Practice 103

2 4 6 8 10 12 14 16 18 20

10−2

100

102

104

length

se
co
n
d
s

Credit
Ionosphere

Breast cancer

Fig. 4. Average runtimes for data sets

Runtime Behavior. When com-
puting explanations, no strict
timeout was set and the runs
were finished only when the opti-
mum was found. Figure 4 depicts
the average runtime (over the 10
runs) as a function of formula
length. The number of attributes
(i.e., 68, 34 and 9 in the order of
the curves) appears to be a key
factor affecting the performance.
Maximum runtimes (approx. 10
hours) indicate the feasibility of
our approach, as demonstrated
here for realistic data sets previ-
ously explored in the literature. Besides minimal explanations, intermediate ones
may also be useful.

6 Conclusion

We have studied short Boolean formulas as a platform for producing explanations
and interpretable classifiers. We have investigated the theoretical reasons behind
overfitting and provided related quantitative bounds. Also, we have tested the
approach with three different data sets, where the resulting formulas are indeed
interpretable—all being genuinely short—and relatively accurate. In general,
short formulas may sometimes be necessary to avoid overfitting, and moreover,
shorter length leads to increased interpretability.

Our approach need not limit to Boolean formulas only, as we can naturally
extend our work to general relational data. We can use, e.g., description log-
ics and compute concepts C1, . . . , Ck and then perform our procedure using
C1, . . . , Ck, finding short Boolean combinations of concepts. This of course dif-
fers from the approach of computing minimal length formulas in the original
description logic, but can nevertheless be fruitful and interesting. We leave this
for future work. Further future directions include, e.g., knowledge discovery via
computing all formulas up to some short length � with errors smaller than a
given threshold.

Acknowledgments. T. Janhunen, A. Kuusisto, M. F. Rankooh and M. Vilander were
supported by the Academy of Finland consortium project Explaining AI via Logic
(XAILOG), grant numbers 345633 (Janhunen) and 345612 (Kuusisto). A. Kuusisto
was also supported by the Academy of Finland project Theory of computational logics,
grant numbers 352419, 352420, 353027, 324435, 328987. The author names have been
ordered on the basis of alphabetical order.

104 R. Jaakkola et al.

References

1. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR
2015, pp. 40–54 (2015)

2. Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., Marquis, P.: On the
computational intelligibility of Boolean classifiers. In: Bienvenu, M., Lakemeyer, G.,
Erdem, E. (eds.) Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, Online event, 3–12 November
2021, pp. 74–86 (2021)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf.
Process. Lett. 24(6), 377–380 (1987)

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

5. Board, R.A., Pitt, L.: On the necessity of Occam algorithms. Theor. Comput. Sci.
100(1), 157–184 (1992)

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Feldman, J.: Minimization of Boolean complexity in human learning. Nature
407(6804), 630–633 (2022)

8. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
series 3. In: LPNMR 2015, pp. 368–383 (2015)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, Williston (2012)

10. Griffith, J., O’Dea, P., O’Riordan, C.: A neural net approach to data mining: clas-
sification of users to aid information management. In: Szczepaniak, P.S., Segovia,
J., Kacprzyk, J., Zadeh, L.A. (eds.) Intelligent Exploration of the Web. Studies in
Fuzziness and Soft Computing, vol. 111, pp. 389–401. Physica, Heidelberg (2003).
https://doi.org/10.1007/978-3-7908-1772-0_23

11. Jaakkola, R., Janhunen, T., Kuusisto, A., Rankooh, M.F., Vilander, M.: Explain-
ability via short formulas: the case of propositional logic with implementation. In:
RCRA 2022. CEUR Workshop Proceedings, vol. 3281, pp. 64–77. CEUR-WS.org
(2022)

12. Jaakkola, R., Janhunen, T., Kuusisto, A., Rankooh, M.F., Vilander, M.: Explain-
ability via short formulas: the case of propositional logic with implementation.
CoRR abs/2209.01403 (2022)

13. Jaakkola, R., Janhunen, T., Kuusisto, A., Rankooh, M.F., Vilander, M.: Short
boolean formulas as explanations in practice. CoRR abs/2307.06971 (2023)

14. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag. 37(3),
13–24 (2016)

15. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
The MIT Press, Cambridge (1994)

16. Kotz, S., Balakrishnan, N., Johnson, N.: Continuous Multivariate Distributions,
Volume 1: Models and Applications. Continuous Multivariate Distributions, Wiley,
Hoboken (2004)

17. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
18. Pelekis, C., Ramon, J.: A lower bound on the probability that a binomial random

variable is exceeding its mean. Stat. Probab. Lett. 119, 305–309 (2016)
19. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

https://doi.org/10.1007/978-3-7908-1772-0_23

Short Boolean Formulas as Explanations in Practice 105

20. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian
network classifiers. In: Lang, J. (ed.) IJCAI, pp. 5103–5111 (2018)

21. Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar
returns from the ionosphere using neural networks. J. Hopkins APL Tech. Dig.
10, 262–266 (1989)

22. Šter, B., Dobnikar, A.: Neural networks in medical diagnosis: comparison with
other methods. In: Proceedings of the International Conference on Engineering
Applications of Neural Networks (1996)

23. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
24. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013).

https://doi.org/10.1007/978-1-4757-3264-1
25. Yang, Y., Webb, G.I.: Proportional k-interval discretization for Naive-Bayes clas-

sifiers. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp.
564–575. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_48

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/3-540-44795-4_48
http://creativecommons.org/licenses/by/4.0/

A New Class of Explanations
for Classifiers with Non-binary Features

Chunxi Ji(B) and Adnan Darwiche

University of California, Los Angeles, Los Angeles, CA 90095, USA
{jich,darwiche}@cs.ucla.edu

Abstract. Two types of explanations have been receiving increased
attention in the literature when analyzing the decisions made by classi-
fiers. The first type explains why a decision was made and is known as
a sufficient reason for the decision, also an abductive explanation or a
PI-explanation. The second type explains why some other decision was
not made and is known as a necessary reason for the decision, also a con-
trastive or counterfactual explanation. These explanations were defined
for classifiers with binary, discrete and, in some cases, continuous fea-
tures. We show that these explanations can be significantly improved in
the presence of non-binary features, leading to a new class of explana-
tions that relay more information about decisions and the underlying
classifiers. Necessary and sufficient reasons were also shown to be the
prime implicates and implicants of the complete reason for a decision,
which can be obtained using a quantification operator. We show that
our improved notions of necessary and sufficient reasons are also prime
implicates and implicants but for an improved notion of complete reason
obtained by a new quantification operator that we also define and study.

Keywords: Explainable AI · Decision Graphs · Prime
Implicants/Implicates

1 Introduction

Explaining the decisions of classifiers has been receiving significant attention
in the AI literature recently. Some explanation methods operate directly on
classifiers, e.g., [43,44], while some other methods operate on symbolic encodings
of their input-output behavior, e.g., [8,25,37,40], which may be compiled into
tractable circuits [5,11,21,45–47]. When explaining the decisions of classifiers,
two particular notions have been receiving increased attention in the literature:
The sufficient and necessary reasons for a decision on an instance.

A sufficient reason for a decision [17] is a minimal subset of the instance which
is guaranteed to trigger the decision. It was first introduced under the name PI-
explanation in [46] and later called an abductive explanation [25].1 Consider
the classifier in Fig. 1a and a patient, Susan, with the following characteristics:
Age≥55,Btype=A and Weight=over. Susan is judged as susceptible to disease

1 We will use sufficient reasons and PI/abductive explanations interchangeably.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 106–122, 2023.
https://doi.org/10.1007/978-3-031-43619-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_8&domain=pdf
http://orcid.org/0000-0002-4475-1987
http://orcid.org/0000-0003-3976-6735
https://doi.org/10.1007/978-3-031-43619-2_8

A New Class of Explanations for Classifiers with Non-binary Features 107

Age

Weight no

yes Btype Btype

yes no yes no

≥ 55 < 55

over under norm

A, B, AB O A, B AB, O

(a)

Age

Weight Btype

yes no

B A, AB, O

yes Btype yes

yes no

≥ 55 < 55

over under norm

A, O B, AB

(b)

Fig. 1. Two classifiers of patients susceptible to a certain disease. The classifier in (b)
will be discussed later in the paper.

by this classifier, and a sufficient reason for this decision is {Age≥55,Btype=A}.
Hence, the classifier will judge Susan as susceptible to disease as long as she has
these two characteristics, regardless of how the feature Weight is set.2

A necessary reason for a decision [18] is a minimal subset of the instance that
will flip the decision if changed appropriately. It was formalized earlier in [24]
under the name contrastive explanation which is discussed initially in [33,39].3

Consider again the patient Susan and the classifier in Fig. 1a. A necessary reason
for the decision on Susan is {Age≥55}, which means that she would not be
judged as susceptible to disease if she were younger than 55. The other necessary
reason is {Weight=over,Btype=A} so the decision on Susan can be flipped by
changing these two characteristics (and this cannot be achieved by changing
only one of them). Indeed, if Susan had Weight=norm and Btype=AB, she will
not be judged as susceptible. However, since Weight and Btype are discrete
variables, there are multiple ways for changing them and some changes may not
flip the decision (e.g., Weight=under and Btype=B).

The notion of a complete reason behind a decision was introduced in [17]
and its prime implicants were shown to be the sufficient reasons for the decision.
Intuitively, the complete reason is a particular condition on the instance that
is both necessary and sufficient for the decision on that instance; see [16]. A
declarative semantics for complete reasons was given in [19] which showed how
to compute them using universal literal quantification. Furthermore, the prime
implicates of a complete reason where shown to be the necessary reasons for
the decision in [18]. Given these results, one would first use universal literal
quantification to obtain the complete reason for a decision and then compute its
prime implicates and implicants to obtain necessary and sufficient explanations.

2 See, e.g., [13,44,49] for some approaches that can be viewed as approximating suffi-
cient reasons and [26] for a study of the quality of some of these approximations.

3 We will use necessary reasons and contrastive explanations interchangeably in this
paper. Counterfactual explanations are related but have alternate definitions in the
literature. For example, as defined in [5], they correspond to length-minimal nec-
essary reasons; see [18]. But according to some other definitions, they include con-
trastive explanations (necessary reasons) as a special case; see Sect. 5.2 in [34]. See
also [1] for counterfactual explanations that are directed towards Bayesian network
classifiers and [2] for a relevant recent study and survey.

108 C. Ji and A. Darwiche

Necessary and sufficient reasons are subsets of the instance being explained
so each reason corresponds to a set of variable settings (Feature=Value), like
Weight=under and Btype=B, which we shall call simple literals. Since nec-
essary and sufficient reasons correspond to sets of simple literals, we will refer
to them as simple or classical explanations. We will show next that these sim-
ple explanations can be significantly improved if the classifier has non-binary
features, leading to more general notions of necessary, sufficient and complete
reasons that provide more informative explanations of decisions.

Consider again the decision on Susan discussed above which had the sufficient
reason {Age≥55,Btype=A}. Such an explanation can be viewed as a property
of the instance which guarantees the decision. The property has a specific form:
a conjunction of feature settings (i.e., instance characteristics) which leaves out
characteristics of the instance that are irrelevant to the decision (Weight=over).
However, the following is a weaker property of the instance which will also trig-
ger the decision: {Age≥55,Btype∈{A,B}}. This property tells us that not only
is Weight=over irrelevant to the decision, but also that Btype=A is not par-
ticularly relevant since Btype could have been B and the decision would have
still been triggered. In other words, what is really relevant is that Btype∈{A,B}
or, alternatively, Btype �∈{AB,O}. Clearly, this kind of explanation reveals more
information about why the classifier made its decision. We will later formalize
and study a new class of explanations for this purpose, called general sufficient
reasons, which arise only when the classifier has non-binary features.

A necessary reason for a decision can also be understood as a property of the
instance, but one that will flip the decision if violated in a certain manner [18].
As mentioned earlier, {Weight=over,Btype=A} is a necessary reason for the
decision on Susan. This reason corresponds to the property (Weight=over or
Btype=A). We can flip the decision by violating this property through changing
the values of Weight and Btype in the instance. Since these variables are non-
binary, there are multiple changes (six total) that will violate the property. Some
violations will flip the decision, others will not (we are only guaranteed that at
least one violation will flip the decision). For example, Weight=norm,Btype=O

and Weight=under,Btype=AB will both violate the property but only the
first one will flip the decision. However, the following weaker property is guar-
anteed to flip the decision regardless of how it is violated: (Weight=over or
Btype∈{A,B,AB}). We can violate this property using two different settings
of Weight and Btype, both of which will flip the decision. This property cor-
responds to the general necessary reason {Weight=over,Btype∈{A,B,AB}},
a new notion that we introduce and study later. Similar to general sufficient
reasons, general necessary reasons provide more information about the behavior
of a classifier and arise only when the classifier has non-binary features.

We stress here that using simple explanations in the presence of non-binary
features is quite prevalent in the literature; see, e.g., [4,6,8,18,23,28,36]. Two
notable exceptions are [12,27] which we discuss in more detail later.4

4 Interestingly, the axiomatic study of explanations in [3] allows non-binary features,
yet Axiom 4 (feasibility) implies that explanations must be simple.

A New Class of Explanations for Classifiers with Non-binary Features 109

Our study of general necessary and sufficient reasons follows a similar struc-
ture to recent developments on classical necessary and sufficient reasons. In par-
ticular, we define a new quantification operator like the one defined in [19] and
show how it can be used to compute the general reason of a decision, and that
its prime implicates and implicants contain the general necessary and sufficient
reasons. Complete reasons are known to be monotone formulas. We show that
general reasons are fixated formulas which include monotone ones. We introduce
the fixation property and discuss some of its (computational) implications.

This paper is structured as follows. We start in Sect. 2 by discussing the
syntax and semantics of formulas with discrete variables which are needed to
capture the input-output behavior of classifiers with non-binary features. We
then introduce the new quantification operator in Sect. 3 where we study its
properties and show how it can be used to formulate the new notion of general
reason. The study of general necessary and sufficient reasons is conducted in
Sect. 4 where we also relate them to their classical counterparts and argue fur-
ther for their utility. Section 5 provides closed-form general reasons for a broad
class of classifiers and Sect. 6 discusses the computation of general necessary and
sufficient reasons based on general reasons. We finally close with some remarks
in Sect. 7. Proofs of all results are in Appendix A of [30].

2 Representing Classifiers Using Class Formulas

We now discuss the syntax and semantics of discrete formulas, which we use to
represent the input-output behavior of classifiers. Such symbolic formulas can be
automatically compiled from certain classifiers, like Bayesian networks, random
forests and some types of neural networks; see [16] for a summary.

We assume a finite set of variables Σ which represent classifier features. Each
variable X ∈ Σ has a finite number of states x1, . . . , xn, n > 1. A literal � for
variable X, called X-literal, is a set of states such that ∅ ⊂ � ⊂ {x1, . . . , xn}. We
will often denote a literal such as {x1, x3, x4} by x134 which reads: the state of
variable X is either x1 or x3 or x4. A literal is simple iff it contains a single state.
Hence, x3 is a simple literal but x134 is not. Since a simple literal corresponds
to a state, these two notions are interchangeable.

A formula is either a constant �, ⊥, literal �, negation α, conjunction α · β
or disjunction α+β where α, β are formulas. The set of variables appearing in a
formula Δ are denoted by vars(Δ). A term is a conjunction of literals for distinct
variables. A clause is a disjunction of literals for distinct variables. A DNF is a
disjunction of terms. A CNF is a conjunction of clauses. An NNF is a formula
without negations. These definitions imply that terms cannot be inconsistent,
clauses cannot be valid, and negations are not allowed in DNFs, CNFs, or NNFs.
Finally, we say a term/clause is simple iff it contains only simple literals.

A world maps each variable in Σ to one of its states and is typically denoted
by ω. A world ω is called a model of formula α, written ω |= α, iff α is satisfied
by ω (that is, α is true at ω). The constant � denotes a valid formula (satisfied
by every world) and the constant ⊥ denotes an unsatisfiable formula (has no

110 C. Ji and A. Darwiche

models). Formula α implies formula β, written α |= β, iff every model of α is
also a model of β. A term τ1 subsumes another term τ2 iff τ2 |= τ1. A clause σ1

subsumes another clause σ2 iff σ1 |= σ2. Formula α is weaker than formula β iff
β |= α (hence β is stronger than α).

The conditioning of formula Δ on simple term τ is denoted Δ|τ and obtained
as follows. For each state x of variable X that appears in term τ , replace each
X-literal � in Δ with � if x ∈ � and with ⊥ otherwise. Note that Δ|τ does not
mention any variable that appears in term τ . A prime implicant for a formula
Δ is a term α such that α |= Δ, and there does not exist a distinct term β such
that α |= β |= Δ. A prime implicate for a formula Δ is a clause α such that
Δ |= α, and there does not exist a distinct clause β such that Δ |= β |= α.

An instance of a classifier will be represented by a simple term which contains
exactly one literal for each variable in Σ. A classifier with n classes will be
represented by a set of mutually exclusive and exhaustive formulas Δ1, . . . ,Δn,
where the models of formula Δi capture the instances in the ith class. That is,
instance I is in the ith class iff I |= Δi. We refer to each Δi as a class formula,
or simply a class, and say that instance I is in class Δi when I |= Δi.

X

c1 Y

Z Z

c1 c2 c3

x1x2 x3

y1 y2y3

z1z3 z2 z2 z1z3

Consider the decision diagram on the right which rep-
resents a classifier with three ternary features (X,Y,Z) and
three classes c1, c2, and c3. This classifier can be represented
by the class formulas Δ1 = x12 + x3 · y1 · z13, Δ2 = x3 · z2
and Δ3 = x3 · y23 · z13. This classifier has 27 instances, par-
titioned as follows: 20 instances in class c1, 3 in class c2 and
4 in class c3. For example, instance I = x3 · y2 · z2 belongs
to class c2 since I |= Δ2.

3 The General Reason for a Decision

An operator ∀x which eliminates the state x of a Boolean variable X from a
formula was introduced and studied in [19]. This operator, called universal literal
quantification, was also generalized in [19] to the states of discrete variables but
without further study. Later, [18] studied this discrete generalization, given next.

Definition 1. For variable X with states x1, . . . , xn, the universal literal quan-
tification of state xi from formula Δ is defined as ∀xi ·Δ = Δ|xi ·

∏
j �=i(xi+Δ|xj).

The operator ∀ is commutative so we can equivalently write ∀x · (∀y · Δ),
∀y · (∀x ·Δ), ∀x, y ·Δ or ∀{x, y} ·Δ. It is meaningful then to quantify an instance
I from its class formula Δ since I is a set of states. As shown in [19], the
quantified formula ∀I ·Δ corresponds to the complete reason for the decision on
instance I. Hence, the prime implicants of ∀I · Δ are the sufficient reasons for
the decision [17] and its prime implicates are the necessary reasons [18].

We next define a new operator ∀ that we call a selection operator for rea-
sons that will become apparent later. This operator will lead to the notion of
a general reason for a decision which subsumes the decision’s complete reason,
and provides the basis for defining general necessary and sufficient reasons.

A New Class of Explanations for Classifiers with Non-binary Features 111

Definition 2. For variable X with states x1, . . . , xn and formula Δ, we define
∀xi · Δ to be Δ|xi · Δ.

The selection operator ∀ is also commutative, like ∀.

Proposition 1. ∀x · (∀ y · Δ) = ∀ y · (∀x · Δ) for states x, y.

Since a term τ corresponds to a set of states, the expression ∀ τ ·Δ is well-defined
just like ∀τ · Δ. We can now define our first major notion.

Definition 3. Let I be an instance in class Δ. The general reason for the deci-
sion on instance I is defined as ∀ I · Δ.

The complete reason ∀I · Δ can be thought of as a property/abstraction of
instance I that justifies (i.e., can trigger) the decision. In fact, it is equivalent
to the weakest NNF Γ whose literals appear in the instance and that satisfies
I |= Γ |= Δ [18,19]. The next result shows that the general reason is a weaker
property and, hence, a further abstraction that triggers the decision.

Proposition 2. For instance I and formula Δ where I |= Δ, we have I |=
∀I · Δ |= ∀ I · Δ |= Δ. (I �|= Δ only if ∀I · Δ = ∀ I · Δ = ⊥)

The next result provides further semantics for the general reason and high-
lights the key difference with the complete reason.

Proposition 3. The general reason ∀ I · Δ is equivalent to the weakest NNF Γ
whose literals are implied by instance I and that satisfies I |= Γ |= Δ.

The complete and general reasons are abstractions of the instance that
explain why it belongs to its class. The former can only reference simple lit-
erals in the instance but the latter can reference any literal that is implied by
the instance. The complete reason can be recovered from the general reason and
the underlying instance. Moreover, the two types of reasons are equivalent when
all variables are binary since ∀x · Δ = ∀x · Δ when x is the state of a binary
variable.

We next provide a number of results that further our understanding of general
reasons, particularly their semantics and how to compute them. We start with
the following alternative definition of the operator ∀xi.

Proposition 4. For formula Δ and variable X with states x1, . . . , xn, ∀xi ·Δ is
equivalent to (Δ|xi)·

∏
j �=i(�j +(Δ|xj)), where �j is the literal {x1, . . . , xn}\{xj}.

According to this definition, we can always express ∀ xi · Δ as an NNF in which
every X-literal includes state xi (recall that Δ|xi and Δ|xj do not mention vari-
able X). This property is used in the proofs and has a number of implications.5

5 For example, we can use it to provide forgetting semantics for the dual operator

∃ xi ·Δ = ∀ xi · Δ. Using Definition 2, we get ∃ xi ·Δ = Δ+Δ|xi. Using Proposition 4,
we get ∃ xi ·Δ = Δ|xi+

∑
j �=i(xj ·Δ|xj). We can now easily show that (1) Δ |= ∃ xi ·Δ

and (2) ∃ xi · Δ is equivalent to an NNF whose X-literals do not mention state xi.
That is, ∃ xi can be understood as forgetting the information about state xi from Δ.

This is similar to the dual operator ∃xi · Δ = ∀xi · Δ studied in [19,32] except that
∃ xi erases less information from Δ since one can show that Δ |= ∃ xi · Δ |= ∃xi · Δ.

112 C. Ji and A. Darwiche

When Δ is a class formula, [19] showed that the application of ∀x to Δ can
be understood as selecting a specific set of instances from the corresponding
class. This was shown for states x of Boolean variables. We next generalize this
to discrete variables and provide a selection semantics for the new operator ∀ .

Proposition 5. Let τ be a simple term, Δ be a formula and ω be a world. Then
ω |= ∀τ ·Δ iff ω |= Δ and ω′ |= Δ for any world ω′ obtained from ω by changing
the states of some variables that are set differently in τ . Moreover, ω |= ∀ τ ·Δ iff
ω |= Δ and ω′ |= Δ for any world ω′ obtained from ω by setting some variables
in ω to their states in τ .

That is, ∀τ ·Δ selects all instances in class Δ whose membership in the class
does not depend on characteristics that are inconsistent with τ . These instances
are also selected by ∀ τ · Δ which further selects instances that remain in class
Δ when any of their characteristics are changed to agree with τ .

The complete reason is monotone which has key computational implications
as shown in [17–19]. The general reason satisfies a weaker property called fixation
which has also key computational implications as we show in Sect. 6.

Definition 4. An NNF is locally fixated on instance I iff its literals are con-
sistent with I. A formula is fixated on instance I iff it is equivalent to an NNF
that is locally fixated on I.

We also say in this case that the formula is I-fixated. For example, if I = x1·y1·z2
then the formula x12 · y1 + z2 is (locally) I-fixated but x12 · z1 is not. By the
selection semantic we discussed earlier, a formula Δ is I-fixated only if for every
model ω of Δ, changing the states of some variables in ω to their states in I
guarantees that the result remains a model of Δ. Moreover, if Δ is I-fixated,
then I |= Δ but the opposite does not hold (e.g., Δ = x1 + y1 and I = x1 · y2).
We now have the following corollary of Proposition 3.

Corollary 1. The general reason ∀ I · Δ is I-fixated.

The next propositions show that the new operator ∀ has similar computa-
tional properties to ∀ which we use in Sect. 5 to compute general reasons.

Proposition 6. For state x and literal � of variable X, ∀x · � = � if x ∈ �
(x |= �); else ∀ x · � = ⊥. Moreover, ∀ x · Δ = Δ if X does not appear in Δ.

Proposition 7. For formulas α, β and state xi of variable X, we have ∀xi ·
(α · β) = (∀ xi · α) · (∀ xi · β). Moreover, if variable X does not occur in both α
and β, then ∀ xi · (α + β) = (∀ xi · α) + (∀ xi · β).

An NNF is ∨-decomposable if its disjuncts do not share variables. According to
these propositions, we can apply ∀ I to an ∨-decomposable NNF in linear time,
by simply applying ∀ I to each literal in the NNF (the result is ∨-decomposable).

A New Class of Explanations for Classifiers with Non-binary Features 113

4 General Necessary and Sufficient Reasons

We next introduce generalizations of necessary and sufficient reasons and show
that they are prime implicates and implicants of the general reason for a decision.
These new notions have more explanatory power and subsume their classical
counterparts, particularly when explaining the behavior of a classifier beyond a
specific instance/decision. For example, when considering the classifier in Fig. 1b,
which is a variant of the one in Fig. 1a, we will see that the two classifiers will
make identical decisions on some instances, leading to identical simple neces-
sary and sufficient reasons for these decisions but distinct general necessary and
sufficient reasons. Moreover, we will see that general necessary and sufficient
reasons are particularly critical when explaining the behavior of classifiers with
(discretized) numeric features.

4.1 General Sufficient Reasons (GSRs)

We start by defining the classical notion of a (simple) sufficient reason but using
a different formulation than [46] which was the first to introduce this notion
under the name of a PI-explanation. Our formulation is meant to highlight a
symmetry with the proposed generalization.

Definition 5 (SR). A sufficient reason for the decision on instance I in class
Δ is a weakest simple term τ s.t. I |= τ |= Δ.

This definition implies that each literal in τ is a variable setting (i.e., character-
istic) that appears in instance I. That is, the (simple) literals of sufficient reason
τ are a subset of the literals in instance I. We now define our generalization.

Definition 6 (GSR). A general sufficient reason for the decision on instance
I in class Δ is a term τ which satisfies (1) τ is a weakest term s.t. I |= τ |= Δ
and (2) no term τ ′ satisfies the previous condition if vars(τ ′) ⊂ vars(τ).

This definition does not require the GSR τ to be a simple term, but it requires
that it has a minimal set of variables. Without this minimality condition, a GSR
will be redundant in the sense of the upcoming Proposition 8. For a term τ and
instance I s.t. I |= τ , we will use I ∩̇ τ to denote the smallest subterm in I that
implies τ . For example, if I = x2 · y1 · z3 and τ = x12 · y13, then I ∩̇ τ = x2 · y1.
Proposition 8. Let I be an instance in class Δ and τ be a weakest term s.t.
I |= τ |= Δ. If τ ′ is a weakest term s.t. I |= τ ′ |= Δ and vars(τ ′) ⊂ vars(τ),
then I ∩̇ τ |= I ∩̇ τ ′ |= Δ. Also, I ∩̇ τ is a SR iff such a term τ ′ does not exist.

According to this proposition, the term τ is redundant as an explanation in that
the subset of instance I which it identifies as being a culprit for the decision
(I ∩̇τ) is dominated by a smaller subset that is identified by the term τ ′ (I ∩̇τ ′).

Consider the classifiers in Figs. 1a and 1b and the patient Susan: Age≥55,
Btype=A and Weight=over. Both classifiers will make the same decision yes on

114 C. Ji and A. Darwiche

Susan with the same SRs: (Age≥55 ·Btype=A) and (Age≥55 ·Weight=over).
The GSRs are different for these two (equal) decisions. For the first classifier, they
are (Age≥55 · Btype∈{A,B}) and (Age≥55 · Weight=over). For the second,
they are (Age≥55 · Btype∈{A,O}) and (Age≥55 · Weight∈{over, norm}).
GSRs encode all SRs and contain more information.6

Proposition 9. Let τ be a simple term. Then τ is a SR for the decision on
instance I iff τ = I ∩̇ τ ′ for some GSR τ ′.

Consider the instance Susan again, I = (Age≥55)·(Btype=A)·(Weight=over)
and the classifier in Fig. 1b. As mentioned, the GSRs for the decision on Susan are
τ ′
1 = (Age≥55 ·Btype∈{A,O}) and τ ′

2 = (Age≥55 ·Weight∈{over, norm}) so
τ1 = I ∩̇τ ′

1 = (Age≥55·Btype=A) and τ2 = I ∩̇τ ′
2 = (Age≥55·Weight=over),

which are the two SRs for the decision on Susan.
The use of general terms to explain the decision on an instance I in class

Δ was first suggested in [12]. This work proposed the notion of a general PI-
explanation as a prime implicant of Δ that is consistent with instance I. This
definition is equivalent to Condition (1) in our Definition 6 which has a second
condition relating to variable minimality. Hence, the definition proposed by [12]
does not satisfy the desirable properties stated in Propositions 8 and 9 which
require this minimality condition. The merits of using general terms were also
discussed when explaining decision trees in [27], which introduced the notion of
an abductive path explanation (APXp). In a nutshell, each path in a decision
tree corresponds to a general term τ that implies the formula Δ of the path’s
class. Such a term is usually used to explain the decisions made on instances that
follow that path. As observed in [27], such a term can often be shortened, leading
to an APXp that still implies the class formula Δ and hence provides a better
explanation. An APXp is an implicant of the class formula Δ but not necessarily
a prime implicant (or a variable-minimal prime implicant). Moreover, an APXp is
a property of the specific decision tree (syntax) instead of its underlying classifier
(semantics). See Appendix B in [30] for further discussion of these limitations.7

4.2 General Necessary Reasons (GNRs)

We now turn to simple necessary reasons and their generalizations. A necessary
reason is a property of the instance that will flip the decision if violated in a cer-
tain way (by changing the instance). As mentioned earlier, the difference between
the classical necessary reason and the generalized one is that the latter comes
with stronger guarantees. Again, we start with a definition of classical necessary
reasons using a different phrasing than [24] which formalized them under the
name of contrastive explanations [33]. Our phrasing, based on [18], highlights a
symmetry with the generalization and requires the following notation.
6 Unlike SRs, two GSRs may mention the same set of variables. Consider the class

formula Δ = (x1 · y12) + (x12 · y1) and instance I = x1 · y1. There are two GSRs for
the decision on I, x1 · y12 and x12 · y1, and both mention the same variables X, Y .

7 A dual notion, contrastive path explanation (CPXp), was also proposed in [27].

A New Class of Explanations for Classifiers with Non-binary Features 115

For a clause σ and instance I s.t. I |= σ, we will use I\\σ to denote the
largest subterm of I that does not imply σ. For example, if I = x2 · y1 · z3 and
σ = x12 + y13 then I\\σ = z3. We will also write I ˙|= σ to mean that instance I
implies every literal in clause σ. For instance I = x2 ·y1 ·z3, we have I ˙|=x12+y13
but I � ˙|= x12 + y23 even though I |= x12 + y23.

Definition 7 (NR). A necessary reason for the decision on instance I in class
Δ is a strongest simple clause σ s.t. I ˙|= σ and (I\\σ) · σ �|= Δ (if we minimally
change the instance to violate σ, it is no longer guaranteed to stay in class Δ).

A necessary reason guarantees that some minimal change to the instance
which violates the reason will flip the decision. But it does not guarantee that all
such changes will. A general necessary reason comes with a stronger guarantee.

Definition 8 (GNR). A general necessary reason for the decision on instance
I in class Δ is a strongest clause σ s.t. I ˙|= σ, (I\\σ) · σ |= Δ, and no clause σ′

satisfies the previous conditions if vars(σ′) ⊂ vars(σ).

The key difference between Definitions 7 and 8 are the conditions (I\\σ) ·σ �|= Δ
and (I\\σ) · σ |= Δ. The first condition guarantees that some violation of a NR
will flip the decision (by placing the modified instance outside class Δ) while the
second condition guarantees that all violations of a GNR will flip the decision.

The next proposition explains why we require GNRs to be variable-minimal.
Without this condition, the changes identified by a GNR to flip the decision may
not be minimal (we can flip the decision by changing a strict subset of variables).

For instance I and clause σ s.t. I |= σ, we will use I ∩̇ σ to denote the
disjunction of states that appear in both I and σ (hence, I ∩̇ σ |= σ). For
example, if I = x1 · y1 · z1 and σ = x12 + y23 + z1, then I ∩̇ σ = x1 + z1.

Proposition 10. Let I be an instance in class Δ and let σ be a strongest clause
s.t. I ˙|= σ and (I\\σ) · σ |= Δ. If σ′ is another strongest clause satisfying these
conditions and vars(σ′) ⊂ vars(σ), then I\\σ′ |= I\\σ. Moreover, I ∩̇ σ is a NR
iff such a clause σ′ does not exist.

That is, if violating σ requires changing some characteristics C of instance I,
then σ′ can be violated by changing a strict subset of these characteristics C.

Consider the classifiers in Figs. 1a and 1b which make the same decision,
yes, on Susan (Age≥55, Btype=A, Weight=over). The NRs for these equal
decisions are the same: (Age≥55) and (Weight=over+Btype=A). The GNRs
for the classifier in Fig. 1a are (Age≥55), (Btype∈{A,B,AB}+ Weight=over})
and (Btype∈{A,B} + Weight∈{under,over}). If the instance is changed to
violate any of them, the decision will change. For example, if we set Btype to
AB and Weight to norm, the third GNR will be violated and the decision on
Susan becomes no. For the classifier in Fig. 1b, the GNRs for the decision are
different: (Age≥55) and (Btype∈{A,O} + Weight∈{norm,over}). However,
both sets of GNRs contain more information than the NRs since the minimal
changes they identify to flip the decision include those identified by the NRs.

116 C. Ji and A. Darwiche

Proposition 11. Let σ be a simple clause. Then σ is a NR for the decision on
instance I iff σ = I ∩̇ σ′ for some GNR σ′.

Consider the instance Susan again, I = (Age≥55)·(Btype=A)·(Weight=over)
and the classifier in Fig. 1b. As mentioned earlier, the GNRs for the decision on
Susan are σ′

1 = (Age≥55) and σ′
2 = (Btype∈{A,O}+Weight∈{norm,over}).

Then σ1 = I ∩̇σ′
1 = (Age≥55) and σ2 = I ∩̇σ′

2 = (Weight=over+Btype=A),
which are the two NRs for the decision on Susan.

GSRs and GNRs are particularly significant when explaining the decisions of
classifiers with numeric features, a topic which we discuss in Appendix C of [30].

We next present a fundamental result which allows us to compute GSRs and
GNRs using the general reason for a decision (we use this result in Sect. 6).

Definition 9. A prime implicant/implicate c of formula Δ is variable-minimal
iff there is no prime implicant/implicate c′ of Δ s.t. vars(c′) ⊂ vars(c).

Proposition 12. Let I by an instance in class Δ. The GSRs/GNRs for the
decision on instance I are the variable-minimal prime implicants/implicates of
the general reason ∀ I · Δ.

The disjunction of SRs is equivalent to the complete reason which is equiv-
alent to the conjunction of NRs. However, the disjunction of GSRs implies the
general reason but is not equivalent to it, and the conjunction of GNRs is implied
by the general reason but is not equivalent to it; see Appendix D in [30]. This
suggests that more information can potentially be extracted from the general
reason beyond the information provided by GSRs and GNRs.

5 The General Reasons of Decision Graphs

Decision graphs are DAGs which include decision trees [7,9], OBDDs [10], and
can have discrete or numeric features. They received significant attention in
the work on explainable AI since they can be compiled from other types of
classifiers such as Bayesian networks [47], random forests [12] and some types of
neural networks [45]. Hence, the ability to explain decision graphs has a direct
application to explaining the decisions of a broad class of classifiers. Moreover,
the decisions undertaken by decision graphs have closed-form complete reasons
as shown in [18]. We provide similar closed forms for the general reasons in this
section. We first review decision graphs to formally state our results.

Each leaf node in a decision graph is labeled with some class c. An internal
node T that tests variable X has outgoing edges

X, S1−−−→T1, . . . ,
X, Sn−−−−→Tn, n ≥ 2.

The children of node T are T1, . . . , Tn and S1, . . . , Sn is a partition of some states
of variable X. A decision graph will be represented by its root node. Hence, each
node in the graph represents a smaller decision graph. Variables can be tested
more than once on a path if they satisfy the weak test-once property discussed

next [18,22]. Consider a path . . . , T
X, Sj−−−→Tj , . . . , T

′ X, Rk−−−−→Tk, . . . from the root
to a leaf (nodes T and T ′ test X). If no nodes between T and T ′ on the path test

A New Class of Explanations for Classifiers with Non-binary Features 117

variable X, then {Rk}k must be a partition of states Sj . Moreover, if T is the
first node that tests X on the path, then {Sj}j must be a partition of all states
for X. Discretized numeric variables are normally tested more than once while
satisfying the weak test-once property; see Appendix C in [30] for an illustration.

Proposition 13. Let T be a decision graph, I be an instance in class c, and
I[X] be the state of variable X in instance I. Suppose Δc[T] is the class formula
of T and class c. The general reason ∀ I · Δc[T] is given by the NNF circuit:8

Γ c[T] =

⎧
⎪⎨

⎪⎩

� if T is a leaf with class c

⊥ if T is a leaf with class c′ �= c
∏

j(Γ
c[Tj] + �) if T has outgoing edges

X,Sj−−−→ Tj

Here, � is the X-literal {xi | xi �∈ Sj} if I[X] �∈ Sj, else � = ⊥.

The following proposition identifies some properties of the above closed form,
which have key computational implications that we exploit in the next section.

Proposition 14. The NNF circuit in Proposition 13 is locally fixated on
instance I. Moreover, every disjunction in this circuit has the form �+Δ where
� is an X-literal, and for every X-literal �′ in Δ we have �′ �= � and � |= �′.

6 Computing Prime Implicants and Implicates

Computing the prime implicants/implicates of Boolean formulas was studied
extensively for decades; see, e.g., [29,31,48]. The classical methods are based
on resolution when computing the prime implicates of CNFs, and consensus
when computing the prime implicants of DNFs; see, e.g., [15,20]. More modern
approaches are based on passing encodings to SAT-solvers; see, e.g., [28,35,41].
In contrast, the computation of prime implicants/implicates of discrete formulas
has received very little attention in the literature. One recent exception is [12]
which showed how an algorithm for computing prime implicants of Boolean for-
mulas can be used to compute simple prime implicants of discrete formulas given
an appropriate encoding. Computing prime implicants/implicates of NNFs also
received relatively little attention; see [14,18,42] for some exceptions. We next
provide methods for computing variable-minimal prime implicants/implicates of
some classes of discrete formulas that are relevant to GSRs and GNRs.

A set of terms S will be interpreted as a DNF
∑

τ∈S τ and a set of clauses S
will be interpreted as a CNF

∏
σ∈S σ. If S1 and S2 are two sets of terms, then

S1 × S2 = {τ1 · τ2 | τ1 ∈ S1, τ2 ∈ S2}. For a set of terms/clauses S, (S) denotes
the result of removing subsumed terms/clauses from S.

8 An NNF circuit is a DAG whose leaves are labeled with ⊥, �, or literals; and whose
internal nodes are labelled with · or +.

118 C. Ji and A. Darwiche

Algorithm 1. GSR(Δ) — without Line 10, this is Algorithm 2 PI(Δ)
Input: NNF circuit Δ which satisfies the properties in Proposition 14
1: if CACHE(Δ) �= NIL then return CACHE(Δ)
2: else if Δ = � then return {�}
3: else if Δ = ⊥ then return ∅
4: else if Δ is a literal then return {Δ}
5: else if Δ = α · β then
6: S ← 	(GSR(α) × GSR(β))
7: else if Δ = α + β then
8: S ← 	(GSR(α) ∪ GSR(β))
9: end if

10: S ← �(S, ivars(Δ))
11: CACHE(Δ) ← S
12: return S

6.1 Computing General Sufficient Reasons

Our first result is Algorithm 1 which computes the variable-minimal prime impli-
cants of an NNF circuit that satisfies the properties in Proposition 14 and, hence,
is applicable to the general reasons of Proposition 13. If we remove Line 10
from Algorithm 1, it becomes Algorithm 2 which computes all prime implicants
instead of only the variable-minimal ones. Algorithm 2 is the same algorithm
used to convert an NNF into a DNF (i.e., no consensus is invoked), yet the
resulting DNF is guaranteed to be in prime-implicant form. Algorithm 2 is justi-
fied by the following two results, where the first result generalizes Proposition 40
in [38].

In the next propositions, pi(Δ) denotes the prime implicants of formula Δ.

Proposition 15. pi(α · β) = (pi(α) × pi(β)).

Proposition 16. For any disjunction α+β that satisfies the property of Propo-
sition 14, pi(α + β) = (pi(α) ∪ pi(β)).

We will next explain Line 10 of Algorithm 1, S ← �(S, ivars(Δ)), which is
responsible for pruning prime implicants that are not variable-minimal (hence,
computing GSRs). Here, Δ is a node in the NNF circuit passed in the first call
to Algorithm 1, and ivars(Δ) denotes variables that appear only in the sub-
circuit rooted at node Δ. Moreover, �(S, V) is the set of terms obtained from
terms S by removing every term τ ∈ S that satisfies vars(τ) ⊃ vars(τ ′) and
V ∩ (vars(τ) \ vars(τ ′)) �= ∅ for some other term τ ′ ∈ S.9 That is, term τ will
be removed only if some variable X in vars(τ) \ vars(τ ′) appears only in the
sub-circuit rooted at node Δ (this ensures that term τ will not participate in
constructing any variable-minimal prime implicant). This incremental pruning
technique is enabled by the local fixation property (Definition 4).

9 The condition V ∩ (vars(τ) \ vars(τ ′)) �= ∅ is trivially satisfied when Δ is the root
of the NNF circuit since V will include all circuit variables in this case.

A New Class of Explanations for Classifiers with Non-binary Features 119

Proposition 17. Algorithm 1, GSR(Δ), returns the variable-minimal prime
implicants of NNF circuit Δ.

6.2 Computing General Necessary Reasons

We can convert an NNF circuit into a CNF using a dual of Algorithm 2 but the
result will not be in prime-implicate form, even for ciruits that satisfy the prop-
erties Proposition 14.10 Hence, we next propose a generalization of the Boolean
resolution inference rule to discrete variables, which can be used to convert a
CNF into its prime-implicate form. Recall first that Boolean resolution derives
the clause α+β from the clauses x+α and x+β where X is a Boolean variable.

Definition 10. Let α = �1 + σ1, β = �2 + σ2 be two clauses where �1 and �2
are X-literals s.t. �1 �|= �2 and �2 �|= �1. If σ = (�1 · �2) + σ1 + σ2 �= �, then the
X-resolvent of clauses α and β is defined as the clause equivalent to σ.

We exclude the cases �1 |= �2 and �2 |= �1 to ensure that the resolvent is not
subsumed by clauses α and β. If σ = �, it cannot be represented by clause since
a clause is a disjunction of literals over distinct variables so it cannot be trivial.

Proposition 18. Closing a (discrete) CNF under resolution and removing sub-
sumed clauses yields the CNF’s prime implicates.

The following proposition shows that we can incrementally prune clauses that
are not variable-minimal after each resolution step. This is significant computa-
tionally and is enabled by the property of local fixation (Definition 4) which is
satisfied by the general reasons in Proposition 13 and their CNFs.

Proposition 19. Let S be a set of clauses (i.e., CNF) that is locally fixated.
For any clauses σ and σ′ in S, if vars(σ′) ⊂ vars(σ), then the variable-minimal
prime implicates of S are the variable-minimal prime implicates of S \ {σ}.

In summary, to compute GNRs, we first convert the general reason in Propo-
sition 13 into a CNF, then close the CNF under resolution while removing sub-
sumed clauses and ones that are not variable-minimal after each resolution step.

7 Conclusion

We considered the notions of sufficient, necessary and complete reasons which
have been playing a fundamental role in explainable AI recently. We provided
generalizations of these notions for classifiers with non-binary features (discrete
or discretized). We argued that these generalized notions have more explanatory
power and reveal more information about the underlying classifier. We further
provided results on the properties and computation of these new notions.

Acknowledgments. This work has been partially supported by NSF grant ISS-
1910317.

10 The number of clauses in this CNF will be no more than the number of NNF nodes if
the NNF is the general reason of a decision tree (i.e., the NNF has a tree structure).

120 C. Ji and A. Darwiche

References

1. Albini, E., Rago, A., Baroni, P., Toni, F.: Relation-based counterfactual explana-
tions for Bayesian network classifiers. In: IJCAI, pp. 451–457 (2020). https://www.
ijcai.org/

2. Amgoud, L.: Explaining black-box classifiers: properties and functions. Int. J.
Approx. Reason. 155, 40–65 (2023)

3. Amgoud, L., Ben-Naim, J.: Axiomatic foundations of explainability. In: IJCAI, pp.
636–642 (2022). https://www.ijcai.org/

4. Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., Marquis, P.: On
the explanatory power of Boolean decision trees. Data Knowl. Eng. 142, 102088
(2022)

5. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on com-
piled representations. In: KR, pp. 838–849 (2020)

6. Audemard, G., Lagniez, J., Marquis, P., Szczepanski, N.: Computing abductive
explanations for boosted trees. CoRR abs/2209.07740 (2022)

7. Belson, W.A.: Matching and prediction on the principle of biological classification.
J. R. Stat. Soc. Ser. C (Appl. Stat.) 8(2), 65–75 (1959). https://www.jstor.org/
stable/2985543

8. Boumazouza, R., Alili, F.C., Mazure, B., Tabia, K.: ASTERYX: a model-agnostic
sat-based approach for symbolic and score-based explanations. In: CIKM, pp. 120–
129. ACM (2021)

9. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

11. Chan, H., Darwiche, A.: Reasoning about Bayesian network classifiers. In: UAI,
pp. 107–115. Morgan Kaufmann (2003)

12. Choi, A., Shih, A., Goyanka, A., Darwiche, A.: On symbolically encoding the
behavior of random forests. CoRR abs/2007.01493 (2020)

13. Choi, A., Xue, Y., Darwiche, A.: Same-decision probability: a confidence measure
for threshold-based decisions. Int. J. Approx. Reason. 53(9), 1415–1428 (2012)

14. de Colnet, A., Marquis, P.: On the complexity of enumerating prime implicants
from decision-DNNF circuits. In: IJCAI, pp. 2583–2590 (2022). https://www.ijcai.
org/

15. Crama, Y., Hammer, P.L.: Boolean functions - theory, algorithms, and applications.
In: Encyclopedia of Mathematics and Its Applications (2011)

16. Darwiche, A.: Logic for explainable AI. In: 38th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS, pp. 1–11. IEEE (2023). CoRR abs/2305.05172

17. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: ECAI. Frontiers in
Artificial Intelligence and Applications, vol. 325, pp. 712–720. IOS Press (2020)

18. Darwiche, A., Ji, C.: On the computation of necessary and sufficient explanations.
In: AAAI, pp. 5582–5591. AAAI Press (2022)

19. Darwiche, A., Marquis, P.: On quantifying literals in Boolean logic and its appli-
cations to explainable AI. J. Artif. Intell. Res. 72, 285–328 (2021)

20. Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and dis-
junctive normal forms of monotone Boolean functions. Discrete Appl. Math. 96,
363–373 (1999)

21. Huang, X., Izza, Y., Ignatiev, A., Cooper, M.C., Asher, N., Marques-Silva, J.:
Efficient explanations for knowledge compilation languages. CoRR abs/2107.01654
(2021)

https://www.ijcai.org/
https://www.ijcai.org/
https://www.ijcai.org/
https://www.jstor.org/stable/2985543
https://www.jstor.org/stable/2985543
https://www.ijcai.org/
https://www.ijcai.org/

A New Class of Explanations for Classifiers with Non-binary Features 121

22. Huang, X., Izza, Y., Ignatiev, A., Marques-Silva, J.: On efficiently explaining graph-
based classifiers. In: KR, pp. 356–367 (2021)

23. Ignatiev, A., Izza, Y., Stuckey, P.J., Marques-Silva, J.: Using MaxSAT for efficient
explanations of tree ensembles. In: AAAI, pp. 3776–3785. AAAI Press (2022)

24. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to
abductive explanations and back again. In: Baldoni, M., Bandini, S. (eds.) AIxIA
2020. LNCS (LNAI), vol. 12414, pp. 335–355. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77091-4 21

25. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for
machine learning models. In: Proceedings of the Thirty-Third Conference on Arti-
ficial Intelligence (AAAI), pp. 1511–1519 (2019)

26. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and refin-
ing heuristic ML explanations. CoRR abs/1907.02509 (2019)

27. Izza, Y., Ignatiev, A., Marques-Silva, J.: On tackling explanation redundancy in
decision trees. J. Artif. Intell. Res. 75, 261–321 (2022)

28. Izza, Y., Marques-Silva, J.: On explaining random forests with SAT. In: IJCAI,
pp. 2584–2591 (2021). https://www.ijcai.org/

29. Jackson, P.: Computing prime implicates. In: Proceedings of the 1992 ACM Annual
Conference on Communications, CSC 1992, pp. 65–72. Association for Computing
Machinery, New York, NY, USA (1992). https://doi.org/10.1145/131214.131223

30. Ji, C., Darwiche, A.: A new class of explanations for classifiers with non-binary
features. CoRR abs/2304.14760 (2023)

31. Kean, A., Tsiknis, G.: An incremental method for generating prime impli-
cants/implicates. J. Symbolic Comput. 9(2), 185–206 (1990)

32. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable
independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

33. Lipton, P.: Contrastive explanation. Roy. Inst. Philos. Suppl. 27, 247–266 (1990).
https://doi.org/10.1017/S1358246100005130

34. Liu, X., Lorini, E.: A unified logical framework for explanations in classifier sys-
tems. J. Log. Comput. 33(2), 485–515 (2023)

35. Luo, W., Want, H., Zhong, H., Wei, O., Fang, B., Song, X.: An efficient two-
phase method for prime compilation of non-clausal Boolean formulae. In: 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp.
1–9 (2021). https://doi.org/10.1109/ICCAD51958.2021.9643520

36. Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.:
Explanations for monotonic classifiers. In: ICML. Proceedings of Machine Learning
Research, vol. 139, pp. 7469–7479. PMLR (2021)

37. Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In:
AAAI, pp. 12342–12350. AAAI Press (2022)

38. Marquis, P.: Consequence finding algorithms. In: Kohlas, J., Moral, S. (eds.) Hand-
book of defeasible reasoning and uncertainty management systems, pp. 41–145.
Springer, Cham (2000). https://doi.org/10.1007/978-94-017-1737-3 3

39. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

40. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: Proceedings of AAAI 2018, pp.
6615–6624 (2018)

41. Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime compilation of
non-clausal formulae. In: IJCAI, pp. 1980–1988. AAAI Press (2015)

42. Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for
computing prime implicants/implicates. J. Autom. Reason. 18(3), 337–356 (1997)

https://doi.org/10.1007/978-3-030-77091-4_21
https://doi.org/10.1007/978-3-030-77091-4_21
https://www.ijcai.org/
https://doi.org/10.1145/131214.131223
https://doi.org/10.1017/S1358246100005130
https://doi.org/10.1109/ICCAD51958.2021.9643520
https://doi.org/10.1007/978-94-017-1737-3_3

122 C. Ji and A. Darwiche

43. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: KDD, pp. 1135–1144. ACM (2016)

44. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: AAAI, pp. 1527–1535. AAAI Press (2018)

45. Shi, W., Shih, A., Darwiche, A., Choi, A.: On tractable representations of binary
neural networks. In: KR, pp. 882–892 (2020)

46. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian
network classifiers. In: IJCAI, pp. 5103–5111 (2018). https://www.ijcai.org/

47. Shih, A., Choi, A., Darwiche, A.: Compiling Bayesian network classifiers into deci-
sion graphs. In: AAAI, pp. 7966–7974. AAAI Press (2019)

48. Slagle, J., Chang, C.L., Lee, R.: A new algorithm for generating prime implicants.
IEEE Trans. Comput. C- 19(4), 304–310 (1970). https://doi.org/10.1109/T-C.
1970.222917

49. Wang, E., Khosravi, P., den Broeck, G.V.: Probabilistic sufficient explanations. In:
IJCAI, pp. 3082–3088 (2021). https://www.ijcai.org/

https://www.ijcai.org/
https://doi.org/10.1109/T-C.1970.222917
https://doi.org/10.1109/T-C.1970.222917
https://www.ijcai.org/

Stable Normative Explanations: From
Argumentation to Deontic Logic

Cecilia Di Florio1 , Antonino Rotolo1(B) , Guido Governatori2 ,
and Giovanni Sartor1,3

1 ALMA AI and Department of Legal Studies, University of Bologna, Bologna, Italy
{cecilia.diflorio2,antonino.rotolo,giovanni.sartor}@unibo.it

2 Cooroibah QLD 4565, Australia
guido@governatori.net

3 EUI, Fiesole, Italy

Abstract. This paper reconstructs in the context of formal argumentation the
notion of stable explanation developed elsewhere in Defeasible Logic. With this
done, we discuss the deontic meaning of this notion and show how to build from
argumentation neighborhood structures for deontic logic where a stable explana-
tion can be characterised.

1 Introduction

Developing explainable AI systems is important in the law since ‘transparency’ and
‘justification’ of legal decision-making require formalising normative explanations [1,4,
6,15]. A normative explanation is an explanation where norms are crucial: in the context
of legal decision-making, this means to explain why a legal conclusion ought to be the
case on the basis of certain norms and facts [2,10,13,14,18,19].

Legal proceedings are adversarial in nature: if a judge or a litigant aim at predicting
possible outcomes, this fact must be taken into account, and formal tools to make such
predictions understandable should allow for checking if a certain legal outcome is stable
[9,10,16]. In such a perspective, given some facts, the proceeding aims at determining
what legal requirements hold, and whether such legal requirements have been fulfilled.
(In)Stability means that, if more/new facts were presented, the outcome of a case might
be quite different or can even be modified. How to ensure a specific outcome for a case?
How to ensure that the facts presented by a party are ‘resilient’ to the attacks from the
opponent? In this paper we adopt [9,10]’s definition of stability and elaborate it in the
argumentation setting of Defeasible Logic [3].

What is the deontic meaning of stable normative explanation as developed in an
argumentation setting? In legal argumentation, a typical outcome of judicial decisions
are obligations and permissions. In moving to the deontic domain, we notice that deon-
tic argumentation can be developed in various ways [12,21]. We assume that legal
norms are rules having the form φ1, . . . ,φn ⇒ ψ and we follow the intuition that, if

Antonino Rotolo and Giovanni Sartor were partially supported by the Project PE01 “Future AI
Research” (FAIR, PNRR, CUP: J33C22002830006).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 123–131, 2023.
https://doi.org/10.1007/978-3-031-43619-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_9&domain=pdf
http://orcid.org/0000-0002-8927-7414
http://orcid.org/0000-0001-5265-0660
http://orcid.org/0000-0002-9878-2762
http://orcid.org/0000-0003-2210-0398
https://doi.org/10.1007/978-3-031-43619-2_9

124 C. Di Florio et al.

AF is an argumentation framework where arguments are built using rules, then OBLψ
holds in AF iff ψ is justified w.r.t. AF [20]. Once this is done and we have defined the
notion of normative explanation, we adapt [11]’s method and show how this machinery
can be reconstructed in neighborhood semantics for classical deontic logics [7] and
how the notion of explanation can be semantically characterised.

The layout of article is as follows1. Section 2 offers a variant of the idea of argumen-
tation framework based on Defeadible Logic. Section 3 presents the definition of stable
normative explanation. Section 4 illustrates how to move from argumentation structures
to neighbourhood semantics for deontic logic. Section 5 applies the ideas of Sects. 3
and 4 to semantically reconstruct the concept of stable normative explanation.

2 Background: Logic and Argumentation

Our framework is Defeasible Logic (DL) [3]. The basic language consists of a set Lit of
literals. The complementary of a literal φ is denoted by ∼φ : if φ is positive then ∼φ is
¬φ , if φ is negative then ∼φ is φ . Let Lab be a set of labels to represent names of rules.
A rule r has the form r : A(r) ⇒C(r), where: (i) r ∈ Lab is the unique name of the rule,
(ii) A(r) ⊆ Lit is r’s (set of) antecedents, (iii) C(r) = φ ∈ Lit is its conclusion. Unlike
standard DL, we only use defeasible rules, in which, if the premises are the case, then
typically the conclusion holds unless we have contrary evidence.

We also use a special type of logical theory in DL:

Definition 1 (Argumentation theory). An argumentation theory D is a tuple (F,R,>)
where (a) F ⊆ Lit is a finite and consistent set of facts (indisputable statements), (b) R
is a finite rule set, and (c) a binary superiority relation over R (which is used to solve
rule conflicts). We state that ∀φ ∈ F, R[φ]∪R[∼φ] = /0.

As a convention, R[φ] denotes the set of all rules in R whose conclusion is φ .
A conclusion of D is a tagged literal with the following form: +∂φ (resp. −∂φ)

means that φ is defeasibly proved (resp. defeasibly refuted) in D, i.e., there is a defeasi-
ble proof for φ in D (resp. a proof does not exist). A proof P of length n in D is a finite
sequence P(1),P(2), . . . ,P(n) of tagged literals for which specific proof conditions are
defined [3]. P(1..n) denotes the first n steps of P. We present only the positive one for
defeasible conclusions.

+∂φ : If P(n+1) = +∂φ then either
(1) φ ∈ F , or
(2.1) ∃r ∈ R[φ] s.t. ∀ψ ∈ A(r). +∂ψ ∈ P(1..n) and
(2.2) ∀s ∈ R[∼φ] either

(2.2.1) ∃ψ ∈ A(s). −∂ψ , or
(2.2.2) ∃t ∈ R[φ] s.t. ∀ψ ∈ A(t). +∂ψ ∈ P(1..n) and t > s.

Argumentation frameworks for DL have been studied in [8]. Here, we present a
variant of it, which is based on the above fragment of DL [9,10].

1 A full version of this paper with some proofs is here: http://arxiv.org/abs/2307.05156.

http://arxiv.org/abs/2307.05156

Stable Normative Explanations 125

Definition 2 (Argument). Let D= (F,R,>) be an argumentation theory. An argument
A constructed from D has either the the form ⇒F φ (factual argument), where φ ∈ F,
or the form A1, . . . ,An ⇒r φ (plain argument), where 1 ≤ k ≤ n, and

– Ak is an argument constructed from D, and
– r : Conc(A1), . . . ,Conc(An) ⇒ φ is a rule in R.

For a given argument A, Conc returns its conclusion, Sub returns all its sub-
arguments, and TopRule returns the last rule in the argument.

Any argument A is a tree whose root is labelled by Conc(A), and for every node x
labelled by any φ , its children x1, . . . ,xn are labelled by φ1, . . . ,φn (except its leaves,
which can be also labelled by /0) and the arcs are labeled by a rule r : φ1, . . . ,φn ⇒ φ .
Arguments of height 1 are called atomic arguments; for any argument A, the set of its
atomic sub-arguments is denoted by ASub(A).

The notions of attack, support, and undercut are the standard ones for DL (see [8]).
We can now define the argumentation framework.

Definition 3 (Argumentation Framework). Let D be an argumentation theory. The
argumentation framework AF(D) determined by D is (A ,
) where A is the set of all
arguments constructed from D, and
 is the attack relation.

The core of argumentation semantics are the notions of acceptable and rejected
argument. An argument is acceptable with respect to a set of arguments that undercut
any attacks. Then, we can define recursively the extension of an argumentation theory D
and of the corresponding framework AF(D), which is the set of justified arguments w.r.t.
AF(D). The definitions of the set JArgsD of justified arguments and of the set RArgsD

of rejected arguments are a fix-point construction. For the details see [8].

Theorem 1. Let D be an argumentation theory and A be an argument in AF(D) such
that Conc(A) = φ . Then, (a) A ∈ JArgsD iff D � +∂φ ; (b) A ∈ RArgsD iff D � −∂φ .

3 Stable Normative Explanations

We define the idea of normative explanation for φ , which is a normative decision or any
piece of normative knowledge that justifies φ and that is minimal [9,10,14].

Definition 4 (Normative explanation). Let D= (F,R,>) be an argumentation theory
and AF(D) = (A ,
) be the argumentation framework determined by D. The set arg ⊆
A is a normative explanation Expl(φ ,AF(D)) in AF(D) for φ iff

– A ∈ arg is an argument for φ and A is justified w.r.t. AF(D);
– arg is a minimal set in AF(D) such that A is acceptable w.r.t to arg.

Example 1. Consider the following fragment of an argumentation theory:

R= {s1 : ⇒ ¬α, s2 : λ ⇒ α, s3 : β ,π ⇒ α, s4 : δ ⇒ ¬α, s5 : ι ⇒ δ}
>= {〈s2,> s1〉,〈s3 > s1〉,〈s4 > s3〉,〈s4 > s2〉}.

126 C. Di Florio et al.

Assume an argumentation theory D = (F,R,>) where F = {ι ,λ}. Then, AF(D) =
(A ,
) is as follows:

A = {A1 : ⇒F ι , A2 : ⇒F λ , A3 : A1 ⇒s5 δ , A4 : A3 ⇒s4 ¬α, A5 : A2 ⇒s2 α}

= {〈A4,A5〉〉}.

It is easy to see that {A1,A4} = Expl(¬α,AF(D)).

An explanation for a normative conclusion φ is stable when adding new elements
to that explanation does not affect its power to explain φ [9,10].

Definition 5. Let R a finite set of rules. We define the set of literals Lit(R) as
{φ ,∼φ |∀r ∈ R : φ ∈ A(r) or ∼φ ∈ A(r),R[φ]∪R[∼φ] = /0}.
Definition 6 (Stable Normative Explanation). Let AF(D) = (A ,
) be an argu-
mentation framework determined by the argumentation theory D = (F,R,>). We say
that arg = Expl(φ ,AF(D)) is a stable normative explanation for φ in AF(D) iff for
all AF(D′) = (A ′,
′) where D′ = (F ′,R,>) s.t. F ⊆ F ′ ⊆ Lit(R), we have that
arg = Expl(φ ,AF(D′)).

Example 2. Let us consider Example 1. Then, {A1,A4} is stable normative explanation
for ¬α in AF(D), whereas, e.g., {A2,A5} is not a stable normative explanation for α .

4 From Argumentation to Deontic Logic

To move to deontic logic we follow [11] by stating that defeasible provability (and
justification) of any φ corresponds to the obligatoriness of φ , and—if PERM is the dual
of OBL—the non-provability (and non-justification) of φ means that ∼φ is permitted.

Definition 7 (Modal language and logic). Let Lit be the set of literals of our language
L . The language L (Lit) of EL is defined as follows:

p:: = l | ¬p | OBLφ | PERMφ ,

where l ranges over PROP and φ ranges over Lit.
The logical system EL is based onL (Lit) and is closed under logical equivalence.

Proposition 1. The system EL is a fragment of system E [7].

To introduce an appropriate semantics for our fragment, the following is needed.

Definition 8. Let D= (F,R,>) be any argumentation theory, AF(D) = (A ,
) be the
argumentation framework determined by D, and Lit(D) be the set of literals occurring
in D. The D-extension E(D) of a theory D is the smallest set of literals such that, for
all φ ∈ Lit(D): (a) φ ∈ E(D) iff φ is justified w.r.t. AF(D), (b) ∼φ ∈ E(D) iff φ is not
justified w.r.t. AF(D).

Definition 9. Let L be a consistent set of literals. A defeasible rule theory is a structure
D= (R,>). The D-extension of L is the extension of the argumentation theory (L,R,>);
we denote it with EL(D).

Stable Normative Explanations 127

Definition 10 (Dependency graph). Let D be any argumentation theory and Lit(D) be
literals occurring in D. The dependency graph of D is the directed graph (V,A) where:

– V = {p | p ∈ PROP,{p,¬p}∩Lit(D) �= /0};
– A is the set such that (n,m) ∈ A iff

• n= φ and ∃r ∈ R[φ]∪R[∼φ];
• m= ψ and ∃r ∈ R[ψ]∪R[∼ψ] such that {n,∼n}∩A(r) �= /0.

Proposition 2. Let L be a set of literals, D = (R,>) be a defeasible rule theory such
that the transitive closure of > is acyclic and D′ = (L,R,>) be the corresponding argu-
mentation theory such that the dependency graph of D′ is acyclic. Then, the D-extension
of L is consistent iff L is consistent.

Definition 11. (Neighbourhood D-frame, neighbourhood D-model, and truth). Let
D= (F,R,>) be an argumentation theory such that the transitive closure of> is acyclic
and the dependency graph of D is acyclic. Let R′ = R∪{r :⇒ φ |φ ∈ F}. A neighbour-
hood D-frame is a structure 〈W,N 〉 where
– W = {w |w ∈ (2E(D) −{ /0})};
– N is a function with signature W �→ 22W defined as follows:

• xS jy iff ∃r j ∈ R′ such that A(r j) ⊆ x and C(r j) ∈ y
• ∀s ∈ R′[∼C(r j)] either

1. ∃a ∈ A(s),a /∈ x; or
2. ∃t ∈ R′[C(r j)] such that t > s, A(t) ⊆ x

• S j(w) = {x ∈W : wSjx}
• S j(w) =

⋃
C(rk)=C(r j) Sk(w)

• N (w) = {S j(w)}r j∈R′ .

A neighbourhood D-model M is obtained by adding an evaluation function v : PROP �→
2W to a neighbourhood D-frame such that, for any p ∈ PROP, v(p) = {w | p ∈ w}.

To build canonical structures, we consider all possible defeasible rule theories and,
for each of them, all possible maximal consistent sets of facts that can be generated.

Lemma 1 (Lindenbaum’s Lemma). Let D any defeasible rule theory. Any consistent
set wEL(D) of formulae in the languageL (Lit) consisting of a D-extension of any L can
be extended to a consistent L (Lit)-maximal set w+

EL(D)
.

Definition 12. (Canonical neighbourhood D-model). Given the language L , let D
be the set of all defeasible rule theories that can be obtained from L . For all Di =
(Ri,>i) ∈ D , define R′

i = Ri ∪ {r :⇒ φ |φ ∈ L} for each (L,Ri,>i), L ∈ 2Lit(Di). The
canonical neighbourhood model is the structure MD = (W,N ,v) where

– W =
⋃

∀Di∈DWi where Wi = {wL |∀L ∈ 2Lit(Di),wL = w+
EL(Di)

}.
– N is a function with signature W �→ 22W defined as follows:

• xSijy where OBLφ ∈ x iff ∃r j ∈ R′
i such that C(r j) = φ , A(r j) ⊆ x and C(r j) ∈ y

where x,y ∈Wi;
• ∀s ∈ R′

i[∼C(r j)] either

128 C. Di Florio et al.

1. ∃a ∈ A(s),a /∈ x; or
2. ∃t ∈ R′

i[C(r j)] such that t > s, A(t) ⊆ x
• Sij(w) = {x ∈Wi : wSijx},
• S i

j (w) =
⋃
C(rk)=C(r j) S

i
k(w),

• N (w) = {S i
j (w)}r j∈R′

i
;

– for each φ ∈ Lit and any w ∈W, v is an evaluation function such that w ∈ v(φ) iff
φ ∈ w, and w �∈ v(φ) iff ∼φ ∈ w.

Lemma 2 (Truth Lemma). IfM = (W,N ,v) is canonical for S, where S⊇ EL , then
for any w ∈W and for any formula φ , φ ∈ w iffM ,w |= φ .

Corollary 1. (Completeness of EL). The system EL is sound and complete with
respect to the class of neighbourhood D-frames.

Corollary 2. Let M be any neighbourhood D-model. Then (a) M |= OBLφ iff there
exists an argumentation theory D = (F,R,>) such that φ is justified w.r.t. AF(D); (b)
(b) M |= PERMφ iff there exists an argumentation theory D= (F,R,>) such that ¬φ
is not justified w.r.t. AF(D).

5 Stable Explanations in Neighbourhood Semantics

The definition of normative explanation of Sect. 3 can be appropriately captured in our
deontic logic setting. First of all, we have to formulate the modal version of an argument.

Proposition 3 (Neighbourhood D-model for an argument). Let D= (F,R,>) be an
argumentation theory, AF(D) = (A ,
) be the argumentation framework determined
by D, and MD = (W,N ,v) be the corresponding neighbourhood D-model. An argu-
ment A ∈A , where Conc(A) = φ0, is justified w.r.t. AF(D) iff, if h is the height of A and
A = {Ax |Ax ∈ ASub(A),∀x ∈ {(h− 1)1, . . . ,(h− 1)m, . . . ,11, . . . ,1p,0},Conc(Ax) =
φx}, then the following condition holds in MD: if y ∈ {h1, . . . ,hm,(h− 1)1, . . . ,(h−
1)m, . . . ,11, . . . ,1p,0}

∃wy ∈W

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀(h−1)z ∈ {(h−1)1, . . . ,(h−1)m},(. . .(||φ(h−1)z || ∈ N (whz))
&
∀(h−2)z ∈ {(h−2)1, . . . ,(h−2) j},(w(h−1)z ∈ ||φ(h−1)z || ⇒
⇒ ||φ(h−2)z || ∈ N (w(h−1)z))
&
...
&
∀2z ∈ {21, . . .2k},(w2z ∈ ||φ2z || ⇒ ||φ1z || ∈ N (w2z))
&
∀1z ∈ {11, . . .1 j},(w1z ∈ ||φ1z || ⇒ ||φ0|| ∈ N (w1z)) . . .)

The model MD is called a neighbourhood D-model for A.

The concept of normative explanation directly follows from Proposition 3.

Stable Normative Explanations 129

Proposition 4 (Neighbourhood D-model for a normative explanation). Let D =
(F,R,>) be an argumentation theory, AF(D) = (A ,
) be the argumentation frame-
work determined by D, and MD = (W,N ,v) be the corresponding neighbourhood D-
model.

If Expl(ψ,AF(D)) = {A1, . . . ,An} then MD is neighbourhood D-model for each
argument Ak, 1 ≤ k ≤ n.

The model MD is called a neighbourhood D-model for Expl(ψ,AF(D)).

We can semantically isolate the arguments in a normative explanation by using
Proposition 3 as well as by resorting to the notion of generated sub-model [5,17].

Definition 13 (Generated submodel [5,17]). Let M = (W,N ,v) be any neighbour-
hood model. A generated submodel MX = (X ,NX ,vX) of M is neighbourhood model
where X ⊆W, ∀Y ⊆W,∀w ∈ X ,Y ∈ N (w) ⇔ Y ∩X ∈ NX (w).

Proposition 5 (Generated D-submodel for a normative explanation). Let D =
(F,R,>) be an argumentation theory, AF(D) = (A ,
) be the argumentation frame-
work determined by D, X = Expl(ψ,AF(D)), MD = (W,N ,v) be a neighbourhood
D-model forX , and MDX

= (WX ,NX ,vX) be a generated submodel of MD.
X = {A1, . . . ,An} iff WX =W −X where

X = {w |w ∈W, ∀φ ∈ w : φ ∈ F &Ax ∈ A , Ax �∈ X and Ax :⇒F φ}
The model MDX

is called the generated D-submodel forX .

Corollary 3 (Stable normative explanation in neighbourhood D-models). Let D =
(F,R,>) be an argumentation theory and AF(D) = (A ,
) be the argumentation
framework determined by D.

If X = Expl(ψ,AF(D)) = {A1, . . . ,An} is a stable normative explanation for ψ
in AF(D) and D+ = (F+,R,>) is the argumentation theory where F+ = {φ |∀r ∈
R : φ ∈ A(r) and R[φ]∪R[∼φ] = /0}, then Expl(ψ,AF(D+)), and MDX

=MD+
X

such

that MDX
and MD+

X
are, respectively, the generated D-submodel and generated D+-

submodel for X .

A stable explanation considers a neighbourhood model where all possibile facts of a
theory D are the case and requires that in such a model the conclusion ψ is still justified.

6 Summary

In this paper we investigated the concept of stable normative explanation in argumenta-
tion. Then we have devised in a deontic logic setting a new method to construct appro-
priate neighborhood models from argumentation frameworks and we have characterised
accordingly the notion of stable normative explanation. The problem of determining a
stable normative explanation for a certain legal conclusion means to identify a set of
facts, obligations, permissions, and other normative inputs able to ensure that such a
conclusion continues to hold when new facts are added to a case. This notion is interest-
ing from a logical point of view—think about the classical idea of inference to the best
explanation—and we believe it can also pave the way to develop symbolic models for
XAI when applied to the law.

130 C. Di Florio et al.

References

1. Akata, Z., et al.: A research agenda for hybrid intelligence: augmenting human intellect with
collaborative, adaptive, responsible, and explainable artificial intelligence. Computer 53(8),
18–28 (2020). https://doi.org/10.1109/MC.2020.2996587

2. Alexy, R.: A Theory of Legal Argumentation: The Theory of Rational Discourse as Theory
of Legal Justification. Clarendon (1989)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.: Representation results for defeasi-
ble logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001). https://doi.org/10.1145/371316.
371517

4. Atkinson, K., Bench-Capon, T., Bollegala, D.: Explanation in AI and law: past, present and
future. Artif. Intell. 289, 103387 (2020) https://doi.org/10.1016/j.artint.2020.103387, https://
www.sciencedirect.com/science/article/pii/S0004370220301375

5. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica: Int. J.
Symbol. Logic 99(1/3), 61–92 (2011). https://www.jstor.org/stable/41475196

6. Bex, F., Prakken, H.: On the relevance of algorithmic decision predictors for judicial decision
making. In: Maranhão, J., Wyner, A.Z. (eds.) Eighteenth International Conference for Arti-
ficial Intelligence and Law, ICAIL 2021, São Paulo Brazil, 21–25 June 2021, pp. 175–179.
ACM (2021). https://doi.org/10.1145/3462757.3466069

7. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge
(1980)

8. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation semantics for
defeasible logic. J. Log. Comput. 14(5), 675–702 (2004)

9. Governatori, G., Olivieri, F., Rotolo, A., Cristani, M.: Inference to the stable explanations. In:
Gottlob, G., Inclezan, D., Maratea, M. (eds.) LPNMR 2022. LNCS, pp. 245–258. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15707-3 19

10. Governatori, G., Olivieri, F., Rotolo, A., Cristani, M.: Stable normative explanations. In:
Francesconi, E., Borges, G., Sorge, C. (eds.) Legal Knowledge and Information Systems -
JURIX 2022: The Thirty-fifth Annual Conference, Saarbrücken, Germany, 14–16 December
2022. Frontiers in Artificial Intelligence and Applications, vol. 362, pp. 43–52. IOS Press
(2022). https://doi.org/10.3233/FAIA220447

11. Governatori, G., Rotolo, A., Calardo, E.: Possible world semantics for defeasible deontic
logic. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012. LNCS (LNAI), vol.
7393, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31570-1 4

12. Governatori, G., Rotolo, A., Riveret, R.: A deontic argumentation framework based on deon-
tic defeasible logic. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao
Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 484–492. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03098-8 33

13. Liao, B., van der Torre, L.: Explanation semantics for abstract argumentation. In: Prakken,
H., Bistarelli, S., Santini, F., Taticchi, C. (eds.) Computational Models of Argument - Pro-
ceedings of COMMA 2020, Perugia, Italy, 4–11 September 2020. Frontiers in Artificial Intel-
ligence and Applications, vol. 326, pp. 271–282. IOS Press (2020). https://doi.org/10.3233/
FAIA200511

14. Liu, X., Lorini, E., Rotolo, A., Sartor, G.: Modelling and explaining legal case-based reason-
ers through classifiers. In: Francesconi, E., Borges, G., Sorge, C. (eds.) Legal Knowledge
and Information Systems - JURIX 2022: The Thirty-fifth Annual Conference, Saarbrücken,
Germany, 14–16 December 2022. Frontiers in Artificial Intelligence and Applications, vol.
362, pp. 83–92. IOS Press (2022). https://doi.org/10.3233/FAIA220451

15. Medvedeva, M., Vols, M., Wieling, M.: Using machine learning to predict decisions of the
European court of human rights. Artif. Intell. Law 28(2), 237–266 (2020). https://doi.org/10.
1007/s10506-019-09255-y

https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1145/371316.371517
https://doi.org/10.1145/371316.371517
https://doi.org/10.1016/j.artint.2020.103387
https://www.sciencedirect.com/science/article/pii/S0004370220301375
https://www.sciencedirect.com/science/article/pii/S0004370220301375
https://www.jstor.org/stable/41475196
https://doi.org/10.1145/3462757.3466069
https://doi.org/10.1007/978-3-031-15707-3_19
https://doi.org/10.3233/FAIA220447
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1007/978-3-030-03098-8_33
https://doi.org/10.3233/FAIA200511
https://doi.org/10.3233/FAIA200511
https://doi.org/10.3233/FAIA220451
https://doi.org/10.1007/s10506-019-09255-y
https://doi.org/10.1007/s10506-019-09255-y

Stable Normative Explanations 131

16. Odekerken, D., Bex, F., Borg, A., Testerink, B.: Approximating stability for applied
argument-based inquiry. Intell. Syst. Appl. 16, 200110 (2022). https://doi.org/10.1016/j.iswa.
2022.200110

17. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham, Switzerland (2017)
18. Peczenik, A.: On Law and Reason. Kluwer, Dordrecht (1989)
19. Prakken, H., Ratsma, R.: A top-level model of case-based argumentation for explanation:

formalisation and experiments. Argument Comput. 13(2), 159–194 (2022). https://doi.org/
10.3233/AAC-210009

20. Prakken, H., Sartor, G.: Law and logic: a review from an argumentation perspective. Artif.
Intell. 227, 214–245 (2015). https://doi.org/10.1016/j.artint.2015.06.005

21. Riveret, R., Rotolo, A., Sartor, G.: A deontic argumentation framework towards doctrine
reification. FLAP 6(5), 903–940 (2019). https://collegepublications.co.uk/ifcolog/?00034

https://doi.org/10.1016/j.iswa.2022.200110
https://doi.org/10.1016/j.iswa.2022.200110
https://doi.org/10.3233/AAC-210009
https://doi.org/10.3233/AAC-210009
https://doi.org/10.1016/j.artint.2015.06.005
https://collegepublications.co.uk/ifcolog/?00034

Declarative Reasoning on Explanations
Using Constraint Logic Programming

Laura State1,2(B) , Salvatore Ruggieri1 , and Franco Turini1

1 University of Pisa, Pisa, Italy
laura.state@di.unipi.it

2 Scuola Normale Superiore, Pisa, Italy

Abstract. Explaining opaque Machine Learning (ML) models is an
increasingly relevant problem. Current explanation in AI (XAI) methods
suffer several shortcomings, among others an insufficient incorporation
of background knowledge, and a lack of abstraction and interactivity
with the user. We propose reasonx, an explanation method based on
Constraint Logic Programming (CLP). reasonx can provide declara-
tive, interactive explanations for decision trees, which can be the ML
models under analysis or global/local surrogate models of any black-box
model. Users can express background or common sense knowledge using
linear constraints and MILP optimization over features of factual and
contrastive instances, and interact with the answer constraints at differ-
ent levels of abstraction through constraint projection. We present here
the architecture of reasonx, which consists of a Python layer, closer to
the user, and a CLP layer. reasonx’s core execution engine is a Prolog
meta-program with declarative semantics in terms of logic theories.

1 Introduction

Artificial Intelligence (AI) systems are increasingly being adopted for taking crit-
ical decisions impacting society, such as loan concession in bank systems. The
acceptance and trust of applications based on AI is hampered by the opaque-
ness and complexity of the Machine Learning (ML) models adopted, possibly
resulting in biased or socially discriminatory decision-making [33].

For these reasons, there has recently been a flourishing of proposals for
explaining the decision rationale of ML models [18,27,29,31], coined eXplanation
in AI (XAI) methods. These approaches lack sufficient abstraction for reasoning
over the decision rationale of the ML model. By reasoning, we mean the possibil-
ity for the user to define any number of conditions over factual and contrastive
instances, which would codify both background knowledge and what-if analyses,
and then looking at answers at the symbolic and intensional level.

To close this gap, we present reasonx (reason to explain), an explanation
tool built in two layers. The first is in Python, closer to users, where decision
tree (DT) models and user queries are parsed and translated. The DT can be the
ML model itself, or a surrogate of other ML models at global/local level. The

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 132–141, 2023.
https://doi.org/10.1007/978-3-031-43619-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_10&domain=pdf
http://orcid.org/0000-0001-8084-5297
http://orcid.org/0000-0002-1917-6087
http://orcid.org/0000-0001-6789-5476
https://doi.org/10.1007/978-3-031-43619-2_10

Declarative Reasoning on Explanations Using CLP 133

second is in Constraint Logic Programming (CLP), where embedding of DTs
and background knowledge are reasoned about, using a Prolog meta-program.

We display an exemplary dialogue between a fictional user and reasonx
below. It is situated in the context of a credit application scenario, i.e. the user
is a person whose credit application has been rejected by an automated decision-
making system. Please note that while the information content is exactly what
reasonx can provide, we enhanced the dialogue by translating the interaction
into natural language, to mimic better a realistic interaction.

USER: Can I see the rule that led to the denial of my credit application?
REASONX: Your credit application was rejected, because your income is lower than
60,000 EUR/year, and you still have to pay back the lease of your car.
USER: Ok. Can you present me two options that will lead to a change of the
decision outcome? Please take into consideration that I need a credit of at least
10,000 EUR. I would like to see options that require as little change as necessary.
REASONX: You have the following two options: You pay back the lease on the car,
or you increase your age by 10 years (from 35 to 45 years).
USER: The second option presented is a bit strange. I am wondering whether this is
salient in the model. Can I please see the options to obtain credit for an individual
with the same properties as me, for a credit of at least 10,000 EUR, but with the
feature age at 35 years or less (i.e. young applicant), instead of fixed?
REASONX: For the given profile, the credit is always rejected.
USER: Given this profile, how can the decision reversed, under as little changes as
possible?
REASONX: Credit can be obtained, if the feature age is set to higher than 35 years.
USER: This interesting and worth investigating further. There could be bias w.r.t.
the age of the person that applies for credit.

Adding background knowledge to explanations has the potential to significantly
improve their quality [2,46]. Ignoring it can lead to explanations that disregard
the needs of the user, or do not fit the reality of our world - depending on
its purpose. An example is the minimum credit amount (“a credit of at least
10,000 EUR”). Further, interactivity arises naturally in reasonx: the user can
flexibly query it, choosing queries that best fit to her questions, e.g., by adding
constraints, and thereby building an own, personalized explanation.

Here, we focus on the CLP layer of reasonx. The Python layer and case
studies at the user level are thoroughly presented in a companion paper [47].

The paper is structured as follows. In Sect. 2, we discuss background and
related work. Section 3 describes the syntax, semantics, and meta-programming
features of CLP that reasonx builds on. The architecture of reasonx is
described in Sect. 4. We summarize contributions and future work in Sect. 5.

2 Background and Related Work

Logic and Knowledge in XAI. Several XAI approaches have used (proposi-
tional) logic rules as forms of model-agnostic explanations both locally [17,28,36]

134 L. State et al.

and globally [41]. Such approaches, however, do not allow for reasoning over pro-
duced explanations. Surveys on work at the intersection between symbolic and
sub-symbolic methods (incl. argumentation and abduction) are [10,14,20].

Contrastive Explanations. Contrastive explanations1 (CEs), i.e., instances
similar to those to explain but with different labels assigned by the black-box
(BB) classifier, are a key element in causal approaches to interpretability [11,
48]. [49] introduces contrastive explanations to the field of XAI, with several
extensions [21,39]. Moreover, while [9] argues in favor of CEs from a psychological
point of view, [27,30] make clear that explanations in a contrastive form are
highly desirable for (lay) end-users.

Interactivity. Interactivity aligns closely with our working definition of an
explanation: “[...] an interaction, or an exchange of information”, where it cru-
cially matters to whom the explanation is given, and for what purpose [46]. [45]
convincingly arguments for interactivity by presenting the glass-box tool [43].
[25] confirms the relevance of interactivity via an interview study with practi-
tioners.

Explanations and Decision Trees. Closely linked work is presented by a
series of papers of Sokol et al., introducing explanations for DTs [42], generalizing
it to local surrogate models [44], and exploiting interactivity [43]. Again, the main
difference to our work is our reliance on CLP, and thus reasoning capabilities.
Another related work is [4], providing CEs via (actual) causality.

Embedding Decision Trees into Constraints. In this paper, we assume
that the DT is already available. We reason over the DT by encoding it as a set
of linear constraints. This problem, known as embedding [6], requires to satisfy
c(x, y) ⇔ f(x) = y, where f(x) is the class as predicted by the DT, x the input
vector consisting of discrete and/or continuous variables, and c is a constraint
of some type. We adopt a rule-based encoding, which takes space in O(N log N)
where N is the number of nodes in the DT. Other encodings, such as Table and
MDD [6], require discretization of continuous features, thus losing the power of
reasoning over linear constraints over reals.

3 Preliminaries: Constraint Logic Programming

Logic programming (LP) is a declarative approach to problem-solving based on
logic rules in the form of Horn clauses [1]. It supports reasoning under vari-
ous settings, e.g., deductive, inductive, abductive, and meta-reasoning [13,40].
Starting with Prolog [12], LP has been extended in several directions, as per
expressivity and efficiency [24]. Constraint logic programming (CLP) augments
logic programming with the ability to solve constrained problems [19]. The CLP

1 To avoid confusion with the concept of counterfactuals as understood in the statisti-
cal causality literature, and following [27], we use the term contrastive explanations.

Declarative Reasoning on Explanations Using CLP 135

scheme defines a family of languages, CLP(C), that is parametric in the con-
straint domain C. We are interested in CLP(R), namely the constraint domain
over the reals. We use the SWI Prolog system [50] implementation.

We rely on meta-programming, a powerful technique that allows a LP to
manipulate programs encoded as terms. This is extended in CLP by encoding
constraints as terms.

Further, CLP(R) offers mixed integer linear programming (MILP) optimiza-
tion functionalities [26]. Common predicates include the calculation of the supre-
mum and the infimum of an expression w.r.t. the solutions of the constraint store.
Complex constraint meta-reasoning procedures are based on such predicates,
some examples are [3,38].

4 Explaining via Reasoning: reasonx

reasonx consists of two layers. The top layer in Python is designed for inte-
gration with the pandas and scikit-learn standard libraries for data storage
and model construction. Meta-data, models, and user constraints specified at
this level are parsed and transformed into Prolog facts. The bottom layer is in
CLP(R) and it is written in SWI Prolog [50].

reasonx relies on a DT, the base model. Such a tree can be: (a) the model to
be explained/reasoned about2; (b) a global surrogate of an opaque ML model; (c)
a local surrogate trained to mimic a BB model in the neighborhood of the (local)
instance to explain. In cases (b) and (c), the surrogate model is assumed to have
good fidelity in reproducing the decisions of the black-box. This is reasonable for
local models, i.e., in case (c). Learning the tree over a local neighborhood has
been a common strategy in perturbation-based XAI methods such as LIME [35].
Following, we present an excerpt of the initialization code:

> r = reasonx.ReasonX(. . .)
> r.model(clf)

where the meta-data about the features are passed to the object r during its cre-
ation, and the DT clf is passed over. There can be more than one base model to
account for different ML models, e.g., Neural Networks vs ensembles. The user
can declare and reason about one or more instances, factual or contrastive, by
specifying their class value. Each instance refers to a specific base model. The
instance does not need to be fully specified, as in existing XAI methods. For
example, an instance F can be declared with only the following characteristics:

> r.instance(‘F’, label=1)

> r.constraint(‘F.age = 30, F.capitalloss >= 1000’)

to intensionally denote a persons with age of 30 and capital loss of at least 1, 000.
Background knowledge can be expressed through linear constraints over features
of instances. E.g., by declaring another instance CE classified differently by the

2 While DTs are generally thought interpretable, it depends on their size/depth. Large
DTs are hard to reason about, especially in a contrastive explanation scenario.

136 L. State et al.

base model (the contrastive instance), the following constraints require that the
contrastive instance must not be younger, and has a larger capital loss:

> r.instance(‘CE’, label=0)

> r.constraint(‘F.age <= CE.age, CE.capitalloss >= F.capitalloss + 500’)

The output of reasonx consists of constraints for which the declared instances
are classified as expected by the DT(s) and such that user and implicit con-
straints on feature data types are satisfied. The output can be projected on only
some of the instances or of the features:

> r.solveopt(project=[‘CE’])

> ---

> Answer: 30 <= CE.age, F.capitalloss >= 1500, CE.hoursperweek >= 40.0

where 30 <= CE.age, F.capitalloss >= 1500 are entailed by the constraints
and CE.hoursperweek >= 40.0 is due to conditions in the DT. Moreover, the
user can specify a distance function for the minimization problem to derive the
closest contrastive example, e.g., as in solveopt(minimize=‘l1norm(F, CE)’).

4.1 Embeddings into CLP

We are agnostic about the learning algorithm that produces the base model(s).
Features can be nominal, ordinal, or continuous. Ordinal features are coded as
consecutive integer values (some preprocessing is offered in reasonx). Nominal
features can be one-hot encoded or not. When embedding the DT into CLP,
we force one-hot encoding of nominal features anyway, and silently decode back
when returning the answer constraints to the user. A nominal feature xi is one-
hot encoded into xv1

i , . . . , xvk
i with v1, . . . , vk being the distinct values in the

domain of xi. We assume that the split conditions from a parent node to a child
node are of the form aTx � b, where x is the vector of features xi’s. The following
common split conditions are covered by such an assumption:

– axis-parallel splits for continuous and ordinal features, i.e., xi ≤ b or xi > b;
– linear splits for continuous features: aTx ≤ b or aTx > b;
– (in)equality splits for nominal features: xi = v or xi �= v; in terms of one-hot

encoding, they respectively translate into xv
i = 1 or xv

i = 0.

Axis parallel and equality splits are used in CART [7] and C4.5 [34]. Linear
splits are used in oblique [32] and optimal decision trees [5]. Linear model trees
combine axis parallel splits at nodes and linear splits at leaves [16].

Embedding Base Model(s) into Prolog Facts. Each path (root to the leaf
in the DT), is translated into a fact, a conjunction of linear split conditions:

path(m, [x], [aT1x �b1, . . . ,aTkx �bk],c,p).

where m is an id of the decision tree, [x] a list of (Prolog) variables representing
the features, c the class predicted at the leaf, p the confidence of the prediction,
and [aT

1 x � b1, . . ., aT
k x � bk] the list of the k split conditions.

Declarative Reasoning on Explanations Using CLP 137

Encoding Instances. Each instance is represented by a list of Prolog variables.
The mapping between names and variables is positional, and decoding is stored
in a predicate feature(i, varname) where i is a natural number and varname
a constant symbol, e.g., vAge. All instances are collectively represented by a
list of lists of variables vars. Further, reasonx is defining a utility predicate
data instance with instance’s meta-data.

Encoding Implicit Constraints (Ψ). Constraints on the features x of each
instance derive from their data types. We call them “implicit” because the system
can generate them from meta-data:

– for continuous features: xi ∈ R;
– for ordinal features: xi ∈ Z and mi ≤ xi ≤ Mi where dom(xi) =

{mi, . . . ,Mi};
– for one-hot encoded nominal features: xv1

i , . . . , xvk
i ∈ Z and ∧k

j=10 ≤ x
vj

i ≤ 1
and

∑k
j=1 x

vj

i = 1;

Constraints for ordinal and nominal features are computed by the Prolog predi-
cates ord constraints(vars, COrd) and cat constraints(vars, CCat) respec-
tively. We denote by Ψ the conjunction of all implicit constraints.

Encoding User Constraints (Φ). The following background knowledge,
loosely categorized as in [23], can be readily expressed in reasonx:

Feasibility. Constraints concerning the possibility of feature changes, and how
these depend on previous values or (changes of) other features:

– Immutability : a feature cannot/must not change.
– Mutable but not actionable: the change is only a result of changes in

features it depends upon.
– Actionable but constrained : the feature can be changed only under some

condition.
Consistency. Constraints aiming at specific domain values a feature can take.

Constraints specified in Python are parsed and transformed into a list of CLP
constraints. An interpreter of expressions is provided which returns a list of linear
constraints over variables. The only non-linear constraint is equality of nominal
values and is translated exploiting one-hot-encoding of nominal features.

Encoding Distance Functions. We simplify the optimization proposed in
[49] by the assumption that declared instances have a class label3. The distance
function is defined as a linear combination of L1 and L∞ norms for ordinal and
continuous features and of a simple matching distance for nominal features:

min
∑

i nominal

1(xcf,i �= xf,i) + β
∑

i ord., cont.

|xcf,i − xf,i| + γ max
i ord., cont.

|xcf,i − xf,i| (1)

3 The split conditions from root to leaf do not necessarily lead to the same class
label with 100% probability. reasonx includes a parameter in the declaration of an
instance to require a minimum confidence value of the required class.

138 L. State et al.

where β and γ denote parameters. L1 and L∞ norms are calculated over max-
min normalized values to account for different units of measures. See [22,49] for
a discussion. To solve the MILP problem, we need to linearize the minimization.
This leads to additional constraints and slack variables.

4.2 The Core Meta-Interpreter of reasonx

We reason on constraints as theories and design operators for composing
such theories. The core engine of reasonx is implemented as a Prolog meta-
interpreter of expressions over those operators.

A (logic) theory is a set of formulas, from which one is interested to derive
implied formulas, and a logic program is itself a theory [8]. In our context,
a theory consists of a set of linear constraints {ci}i to be interpreted as the
disjunction ∨i ci. Theories are coded in LP by exploiting its non-deterministic
computational model, i.e., each ci’s is returned by a clause in the program.
The language of expressions over theories is closed: operators map one or more
theories into a theory. The following theories are included:

typec the theory with only the conjunction ∧c∈Ψ c of the implicit constraints;
userc the theory with only the conjunction ∧c∈Φ c of the user constraints;
inst(I) the theory of constraints ∧i aT

i x � bi where x are features of the
instance I, and primitive constraints aT

i x � bi are those in the path of the
decision tree M the instance refers to.

We provide the following operators on theories: the cross-product of con-
straints of theories, the subset of constraints in a theory that are satisfiable, the
projection of constraints in a theory over a set of variables, and the subset of
constraints in a theory that minimize a certain (distance) function.

The queries to the CLP layer of reasonx can be answered by a Prolog
query over the predicates instvar (building vars), proj vars (computing which
of those variables are to be projected in the output), and solve (evaluating
expressions over the cross-product of typec, userc, and the theories inst(I)
for all instances I).

5 Conclusion

We presented REASONX, a declarative XAI tool that relies on linear constraint
reasoning, solving for background knowledge, and for interaction with the user
at a high abstraction and intensional level. These features make it a unique tool
when compared to instance-level approaches commonly adopted for explain-
ing ML models. We aim at extending reasonx along three directions: i) the
implementation of additional constraints, possibly with non-linear solvers, ii)
an extensive evaluation based on some theoretical measures, as well as through
user-studies [37] and real-world data, and iii) extension to non-structured data,
such as images and text, e.g., through the integration of concepts [15].

Software. reasonx is released open source at https://github.com/lstate/REASONX.

https://github.com/lstate/REASONX

Declarative Reasoning on Explanations Using CLP 139

Acknowledgments. Work supported by the European Union’s Horizon 2020 research
and innovation programme under Marie Sklodowska-Curie Actions for the project
NoBIAS (g.a. No. 860630), and by the NextGenerationEU program within the PNRR-
PE-AI scheme (M4C2, investment 1.3, line on Artificial Intelligence) for the project
FAIR (Future Artificial Intelligence Research). This work reflects only the authors’
views and the European Research Executive Agency (REA) is not responsible for any
use that may be made of the information it contains.

References

1. Apt, K.: From Logic Programming to Prolog. Prentice Hall, London New York
(1997)

2. Beckh, K., et al.: Explainable machine learning with prior knowledge: An overview.
CoRR abs/2105.10172 (2021)

3. Benoy, F., King, A., Mesnard, F.: Computing convex hulls with a linear solver.
Theory Pract. Log. Program. 5(1–2), 259–271 (2005)

4. Bertossi, L.E.: Declarative approaches to counterfactual explanations for classifi-
cation. CoRR abs/2011.07423 (2020)

5. Bertsimas, D., Dunn, J.: Optimal classification trees. Mach. Learn. 106(7), 1039–
1082 (2017). https://doi.org/10.1007/s10994-017-5633-9

6. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random
forests in constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS,
vol. 9075, pp. 74–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18008-3 6

7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

8. Brogi, A., Mancarella, P., Pedreschi, D., Turini, F.: Theory construction in com-
putational logic. In: Jacquet, J. (ed.) Constructing Logic Programs, pp. 241–250.
Wiley (1993)

9. Byrne, R.M.J.: Counterfactuals in explainable artificial intelligence (XAI): evidence
from human reasoning. In: IJCAI, pp. 6276–6282. ijcai.org (2019)

10. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-
symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7–32 (2020)

11. Chou, Y., Moreira, C., Bruza, P., Ouyang, C., Jorge, J.A.: Counterfactuals and
causability in explainable artificial intelligence: theory, algorithms, and applica-
tions. Inf. Fusion 81, 59–83 (2022)

12. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Using the ISO Standard.
Springer, Heidelberg (2003)

13. Cropper, A., Dumancic, S.: Inductive logic programming at 30: a new introduction.
J. Artif. Intell. Res. 74, 765–850 (2022)

14. Dietz, E., Kakas, A.C., Michael, L.: Argumentation: a calculus for human-centric
AI. Front. Artif. Intell. 5, 955579 (2022)

15. Donadello, I., Dragoni, M.: SeXAI: introducing concepts into black boxes for
explainable Artificial Intelligence. In: XAI.it@AI*IA. CEUR Workshop Proceed-
ings, vol. 2742, pp. 41–54. CEUR-WS.org (2020)

16. Frank, E., Wang, Y., Inglis, S., Holmes, G., Witten, I.H.: Using model trees for
classification. Mach. Learn. 32(1), 63–76 (1998)

17. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini,
F.: Factual and counterfactual explanations for black box decision making. IEEE
Intell. Syst. 34(6), 14–23 (2019)

https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/978-3-319-18008-3_6
https://doi.org/10.1007/978-3-319-18008-3_6

140 L. State et al.

18. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93:1–93:42 (2019)

19. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and
system. ACM Trans. Program. Lang. Syst. 14(3), 339–395 (1992)

20. Kakas, A.C., Michael, L.: Abduction and argumentation for explainable machine
learning: a position survey. CoRR abs/2010.12896 (2020)

21. Kanamori, K., Takagi, T., Kobayashi, K., Arimura, H.: DACE: distribution-aware
counterfactual explanation by mixed-integer linear optimization. In: IJCAI, pp.
2855–2862. ijcai.org (2020)

22. Karimi, A., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual expla-
nations for consequential decisions. In: AISTATS. Proceedings of Machine Learning
Research, vol. 108, pp. 895–905. PMLR (2020)

23. Karimi, A., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse:
definitions, formulations, solutions, and prospects. CoRR abs/2010.04050 (2020)

24. Körner, P., et al.: Fifty years of Prolog and beyond. Theory Pract. Log. Program.
22(6), 776–858 (2022)

25. Lakkaraju, H., Slack, D., Chen, Y., Tan, C., Singh, S.: Rethinking explainability
as a dialogue: a practitioner’s perspective. CoRR abs/2202.01875 (2022)

26. Magatão, L.: Mixed integer linear programming and constraint logic programming:
towards a unified modeling framework. Ph.D. thesis, Federal University of Tech-
nology - Paraná, Brazil (2010)

27. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

28. Ming, Y., Qu, H., Bertini, E.: Rulematrix: Visualizing and understanding classifiers
with rules. IEEE Trans. Vis. Comput. Graph. 25(1), 342–352 (2019)

29. Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N.: Explainable artificial intelligence:
a comprehensive review. Artif. Intell. Rev. 55(5), 3503–3568 (2022)

30. Mittelstadt, B.D., Russell, C., Wachter, S.: Explaining explanations in AI. In: FAT,
pp. 279–288. ACM (2019)

31. Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models
Explainable (2019). https://christophm.github.io/interpretable-ml-book

32. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trees. J. Artif. Intell. Res. 2, 1–32 (1994)

33. Ntoutsi, E., et al.: Bias in data-driven artificial intelligence systems - an introduc-
tory survey. WIREs Data Min. Knowl. Discov. 10(3), e1356 (2020)

34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Burling-
ton (1993)

35. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the
predictions of any classifier. In: KDD, pp. 1135–1144. ACM (2016)

36. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: AAAI, pp. 1527–1535. AAAI Press (2018)

37. Rong, Y., Leemann, T., Nguyen, T., Fiedler, L., Seidel, T., Kasneci, G., Kasneci,
E.: Towards human-centered explainable AI: user studies for model explanations.
CoRR abs/2210.11584 (2022)

38. Ruggieri, S.: Deciding membership in a class of polyhedra. In: ECAI. Frontiers in
Artificial Intelligence and Applications, vol. 242, pp. 702–707. IOS Press (2012)

39. Russell, C.: Efficient search for diverse coherent explanations. In: FAT, pp. 20–28.
ACM (2019)

40. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Pearson Education, London (2003)

https://christophm.github.io/interpretable-ml-book

Declarative Reasoning on Explanations Using CLP 141

41. Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F.:
Glocalx - from local to global explanations of black box AI models. Artif. Intell.
294, 103457 (2021)

42. Sokol, K.: Towards Intelligible and Robust Surrogate Explainers: A Decision Tree
Perspective. Ph.D. thesis, School of Computer Science, Electrical and Electronic
Engineering, and Engineering Maths, University of Bristol (2021)

43. Sokol, K., Flach, P.A.: Glass-box: explaining AI decisions with counterfactual state-
ments through conversation with a voice-enabled virtual assistant. In: IJCAI, pp.
5868–5870. ijcai.org (2018)

44. Sokol, K., Flach, P.A.: LIMEtree: interactively customisable explanations based on
local surrogate multi-output regression trees. CoRR abs/2005.01427 (2020)

45. Sokol, K., Flach, P.A.: One explanation does not fit all. Künstliche Intell. 34(2),
235–250 (2020)

46. State, L.: Logic programming for XAI: a technical perspective. In: ICLP Work-
shops. CEUR Workshop Proceedings, vol. 2970. CEUR-WS.org (2021)

47. State, L., Ruggieri, S., Turini, F.: Reason to explain: interactive contrastive expla-
nations (reasonx). CoRR abs/2305.18143 (2023)

48. Stepin, I., Alonso, J.M., Catalá, A., Pereira-Fariña, M.: A survey of contrastive
and counterfactual explanation generation methods for explainable artificial intel-
ligence. IEEE Access 9, 11974–12001 (2021)

49. Wachter, S., et al.: Counterfactual explanations without opening the black box.
Harv. JL Tech. 31, 841 (2017)

50. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract.
Log. Program 12(1–2), 67–96 (2012)

Argumentation

On the Expressive Power
of Assumption-Based Argumentation

Matti Berthold1(B), Anna Rapberger2(B), and Markus Ulbricht1(B)

1 ScaDS.AI Dresden/Leipzig, Universität Leipzig, Leipzig, Germany
{berthold,ulbricht}@informatik.uni-leipzig.de

2 TU Wien, Vienna, Austria
anna.rapberger@tuwien.ac.at

Abstract. The expressiveness of any given formalism lays the theoreti-
cal foundation for more specialized topics such as investigating dynamic
reasoning environments. The modeling capabilities of the formalism
under investigation yield immediate (im)possibility results in such con-
texts. In this paper we investigate the expressiveness of assumption-based
argumentation (ABA), one of the major structured argumentation for-
malisms. In particular, we examine so-called signatures, i.e., sets of exten-
sions that can be realized under a given semantics. We characterize the
signatures of common ABA semantics for flat, finite frameworks with and
without preferences. We also give several results regarding conclusion-
based semantics for ABA.

1 Introduction

Within the last decades, AI research has witnessed an increasing demand for
knowledge representation systems that are capable of handling inconsistent
beliefs. Research in computational argumentation has addressed this issue by
developing numerous sophisticated methods to representing and analyzing con-
flicting information [22]. A key player in this field are abstract argumentation
frameworks (AFs) as proposed by Dung in 1995 [15]. In AFs, arguments are
interpreted as atomic entities and conflicts as a binary relation; consequently, an
AF represents a given debate as a directed graph F . Research on AFs is driven
by various semantics which strive to formalize what reasonable viewpoints F
entails. That is, if E ∈ σ(F) for a semantics σ, then E is interpreted as a jointly
acceptable set of arguments. These sets E are called σ-extensions of F .

In the research area of structured argumentation, an AF is constructed from
a given knowledge base in order to explicate arising conflicts in a comprehensible
graph. One highly influential approach in this area is assumption-based argumen-
tation (ABA) [8,12]. Assumptions provide the foundation for arguments and
determine their conflicts. ABA frameworks (ABAFs) are also evaluated under
so-called semantics; in contrast to many other argumentation formalisms, the
native ABA semantics output sets of assumptions rather than arguments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 145–160, 2023.
https://doi.org/10.1007/978-3-031-43619-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_11

146 M. Berthold et al.

Within the last years, researchers have studied the modeling capabilities of
different AF semantics extensively [6,16,33]. To this end the notion of the sig-
nature Σσ of a semantics σ has been coined. This concept formalizes what can
be the set of σ-extensions of an AF, i.e., Σσ = {σ(F) | F is a finite AF}. Some
properties of important semantics are folklore within the AF community. For
example, the empty set is always admissible and the stable extensions of an AF
are incomparable1. However, establishing the precise characterizations for the
common AF semantics is a challenging endeavor [16].

The signatures of argumentation semantics are an important formal tool
underlying several applications as well as theoretical results building upon them.
Recent years witnessed significant developments in the construction of explana-
tions based on formal argumentation [13,34]. Key to obtain argumentative expla-
nations are translations of the given (rule-based) knowledge base into a suitable
abstract argumentation formalism [21]. Such formalisms differ in their expres-
sive power and thus in their ability to provide semantics-preserving translations.
Signature characterizations for different abstract and structured formalisms thus
pave the way for developing suitable translations, facilitating the extraction of
argumentative explanations. Precise characterizations of the modeling capacities
of semantics furthermore play a central role in the context of dynamic reasoning
environments, i.e., knowledge bases that evolve over time [22]. Many research
questions on dynamics heavily rely on insights as to how the models of a given
AF can be manipulated in order to reach a certain goal. A noteworthy example is
the current hot topic of forgetting [2,5,7,25] where the goal is oftentimes to cut
arguments out of or remove extensions entirely. Whether the target modification
is attainable can be decided by studying the signatures of the semantics.

While signatures have been investigated for various abstract argumentation
formalisms [16,17,20], this line of research has mostly been neglected in the
realm of structured argumentation. In this paper, we tackle this issue and present
various results regarding the expressive power of ABA. We first consider the most
common ABA fragment and fully characterize the signatures of all standard
semantics commonly studied in the literature. We achieve this by building upon
previous results from abstract argumentation research. We then study various
aspects, adding to our investigation by shifting the focus to the conclusions of
the extensions or incorporating preferences.

2 Background

We recall assumption-based argumentation (ABA) [12], argumentation frame-
works with collective attacks (SETAFs) [27], and their relation [24].

Assumption-Based Argumentation. We consider a deductive system, i.e., a tuple
(L,R), where L is a set of atoms and R is a set of inference rules over L. A rule
r ∈ R has the form a0 ← a1, . . . , an, s.t. ai ∈ L for all 0 ≤ i ≤ n; head(r) = a0

is the head and body(r) = {a1, . . . , an} is the (possibly empty) body of r.
1 We refer to Sect. 2 for a formal introduction of the semantics we consider.

On the Expressive Power of Assumption-Based Argumentation 147

Definition 1. An ABA framework (ABAF) is a tuple (L,R,A,), where (L,R)
is a deductive system, A ⊆ L a set of assumptions, and : A → L a contrary
function.

In this work, we focus on frameworks which are flat, i.e., head(r) /∈ A for each
rule r ∈ R, and finite, i.e., L, R, A are finite. By A(D) and L(D) we denote the
assumptions and atoms occurring in D, respectively.

An atom p ∈ L is tree-derivable from assumptions S ⊆ A and rules R ⊆ R,
denoted by S �R p, if there is a finite rooted labeled tree t s.t. i) the root of t
is labeled with p, ii) the set of labels for the leaves of t is equal to S or S ∪ {	},
and iii) for each node v that is not a leaf of t there is a rule r ∈ R such that v
is labeled with head(r) and labels of the children correspond to body(r) or 	 if
body(r) = ∅. We write S � p iff there exists R ⊆ R such that S �R p. Moreover,
we let ThD(S) = {p ∈ L | S � p}.

A set of assumptions S attacks a set of assumptions T if there are S′ ⊆ S
and a ∈ T s.t. S′ � a; The set S is conflict-free (S ∈ cf (D)) if it does not attack
itself; S defends a ∈ A if for each attacker T of {a}, we have S attacks T . A
conflict-free set S is admissible (S ∈ ad(D)) iff S defends each a ∈ S. We recall
grounded, complete, preferred, and stable ABA semantics (abbr. gr , co, pr , stb).

Definition 2. Let D be an ABAF and let S ∈ ad(D). Then

– S ∈ co(D) iff S contains every assumption it defends;
– S ∈ gr(D) iff S is ⊆-minimal in co(D);
– S ∈ pr(D) iff S is ⊆-maximal in ad(D);
– S ∈ stb(D) iff S attacks each {x} ⊆ A(D)\S.

Example 1. We consider an ABAF D = (L,R,A,) with L = {a, b, c, ac, bc, cc},
assumptions A = {a, b, c}, their contraries ac, bc, and cc, respectively, and rules

ac ← b, c bc ← a cc ← a, b

Then the set {a} is admissible: it defends itself against its only attacker {b, c},
by attacking b. The set {a} is not complete, however, since it also defends the
assumption c. The sets {a, c} and {b, c} are complete, preferred and stable. More-
over, ∅ is complete and the unique grounded extension of D. ♦

SETAFs. We recall argumentation frameworks with collective attacks [27].

Definition 3. A SETAF is a pair F = (A,R) where A is a finite set of argu-
ments and R ⊆ (2A\{∅}) × A encodes attacks.

SETAFs generalize Dung’s abstract argumentation frameworks (AFs) [15]. In
AFs, each attacking set is a singleton, i.e., |T | = 1 for each (T, h) ∈ R. The
SETAF semantics are defined in a way that they naturally generalize Dung’s
AF semantics. They are, however, even closer in spirit to ABA semantics.

A set of arguments S attacks an argument a ∈ A if there is some S′ ⊆ S such
that (S′, a) ∈ R; S attacks a set of arguments T if there are S′ ⊆ S and t ∈ T
such that (S′, t) ∈ R; S is conflict-free (S ∈ cf (F)) if it does not attack itself.

148 M. Berthold et al.

A set S defends an argument a ∈ A if for each attacker T of a, it holds that S
attacks T ; S defends T ⊆ A iff it defends each t ∈ T . A conflict-free set S is
admissible (S ∈ ad(F)) iff S defends each a ∈ S. We recall grounded, complete,
preferred, and stable SETAF semantics (abbr. gr , co, pr , and stb).

Definition 4. Let F be a SETAF and let S ∈ ad(F). Then,

– S ∈ co(F) iff S contains each argument it defends;
– S ∈ gr(F) iff S is ⊆-minimal in co(F);
– S ∈ pr(F) iff S is ⊆-maximal in ad(F);
– S ∈ stb(F) iff S attacks all a ∈ A(F)\S.

Relating ABAFs and SETAFs. For our first main result we exploit the close
connection of ABAFs and SETAFs. The key idea is to identify assumptions in
ABAFs with arguments in SETAFs; moreover, attacks between assumption-sets
can be viewed as collective attacks between arguments in SETAFs and vice versa.
The following translations are due to [24].

Definition 5. For an ABAF D = (L,R,A,), the corresponding SETAF FD =
(AD, RD) is defined by AD = A\{a | a ∈ ThD(∅)} and for S ∪ {a} ⊆ AD we
let (S, a) ∈ RD iff S � a.2 For a SETAF F = (A,R), the corresponding ABAF
DF = (LF ,RF ,AF ,) is defined by LF = A ∪ {px | x ∈ A}, AF = A, x = px

for all x ∈ A, and for each (T, h) ∈ R, we add a rule ph ← T to RF .

Example 2. Consider the ABAF D from Example 1. The corresponding SETAF
FD has the arguments AD = {a, b, c}; moreover, the arguments determine the
collective attacks. For instance, from {b, c} � ac we obtain that {b, c} collectively
attacks a. Below, we depict all attacks between the assumption-sets as usually
done in the literature (left) and the corresponding SETAF (right). Left, we omit
the (irrelevant) ∅ and (self-attacking) A.

{a} {b} {c}

{a, b} {a, c}
{b, c} a b

c

Attacks obtained from {a} � bc are in cyan, from {b, c} � ac in violet, and
attacks obtained from {a, b} � cc are depicted in red. Overall, we observe that
the SETAF representation is significantly smaller: in contrast to the traditional
ABA set representation, it requires only a single node for each assumption. ♦

We recall the close relation between ABAFs and SETAFs.

Proposition 1. Given a semantics σ ∈ {ad , gr , co, pr , stb}. For an ABAF D
and its associated SETAF FD, it holds that σ(D) = σ(FD). For a SETAF F and
its associated ABAF DF , it holds that σ(F) = σ(DF).
2 We note that the original translation slightly deviates from this version.

On the Expressive Power of Assumption-Based Argumentation 149

In [24], the result has only been stated for gr , co, pr , stb semantics; however,
the adaption to admissible semantics can be easily obtained.

3 Signatures of ABA Frameworks

The investigation of the signature of a semantics is driven by properties of a
given set S of sets, in order to assess whether it is conceivable that there is some
knowledge base (in our case: some ABAF) D s.t. σ(D) = S. Let us familiarize
with this setting by considering the following example.

Example 3. Let S = {{a}, {a, b}, {a, c}}. We can actually already infer a lot
about this set.

– It is impossible that S corresponds to the ad sets of an ABA knowledge base,
i.e., ad(D) = S; the reason is that ∅ ∈ ad(D) for any ABAF D, but ∅ /∈ S;

– S cannot correspond to gr since |gr(D)| = 1 for any ABAF D;
– it is also impossible that stb(D) = S or pr(D) = S, because stable and

preferred sets are always incomparable; however, in S we have {a} � {a, b};
– it is however possible to construct D with co(D) = S. The set {a} could be

the grounded extension and b and c in a mutual attack, yielding the complete
extensions co(D) = {{a}, {a, b}, {a, c}}. ♦

We now formally define ABA signatures.

Definition 6. Given a semantics σ, the signature of σ is

ΣABA
σ = {σ(D) | D is a flat, finite ABAF}.

Signatures are sets of sets of assumptions, i.e., ΣABA
σ ⊆ 22

U
where U denotes the

set of all possible (countably infinitely many) assumptions. We call a set S ⊆ 2U

an extension-set. An extension-set S is realizable under the given semantics σ, if
there exists a ABAF D that realizes it, i.e., σ(D) = S.

We will infer ΣABA
σ by exploiting the close relation to SETAFs. To this end

we recall the concept of their signatures, given as

ΣSF
σ = {σ(F) | F is a SETAF}.

Analogously, signatures for SETAFs are sets of sets of arguments. The concepts
of extension-sets and realizations naturally transfer to this setting.

We are now ready to study the ABA signatures. Before we can delve into our
results, however, we need to introduce some theoretical machinery (cf. [16,17]).

Definition 7. Let S be a set of sets. We let

AS =
⋃

S, PS = {S ⊆
⋃

S | �S′ ∈ S : S ⊆ S′}, dcl(T) = {S′ ⊆ S | S ∈ T}.

Thereby, PS is the set of potential conflicts in S and dcl(T) the downward closure
of T. The completion-sets of a set of assumptions T in S are given by

CS(T) = {S ∈ S | T ⊆ S, �S′ ∈ S : T ⊆ S′ ⊆ S}.

150 M. Berthold et al.

Let us illustrate these concepts in the following example.

Example 4. Let S = {{a}, {a, b}, {a, c}}. We have the following sets:

– AS = {a, b, c} intuitively corresponding to credulously accepted assumptions;
– PS = {{b, c}, {a, b, c}} since b and c never occur in the same extension;
– CS({a}) is only {a} itself; on the other hand, CS({b}) = {{a, b}} since {a, b}

is a (the only) minimal set containing {b}.
– The downward closure of S is the set dcl(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}}.

Intuitively, if S are the extensions of some ABA D, we can be certain that
each set in dcl(S) if conflict-free. ♦

Having established the sets we require, let us now consider relevant properties.

Definition 8. Given an ABAF D = (L,R,A,). A set S ⊆ 2A is

– incomparable if for S, S′ ∈ S, S ⊆ S′ implies S = S′;
– set-conflict-sensitive if for all S, S′ ∈ S with S ∪ S′ /∈ S it holds that there is

some p ∈ S such that S′ ∪ {p} ∈ PS;
– set-com-closed if for all T, U ⊆ S, the following holds: if their elements T =⋃

T and U =
⋃

U are both contained in the downward closure of S and satisfy
|CS(T ∪ U)| �= 1 then there is an assumption u ∈ U such that T ∪ {u} ∈ PS.

Example 5. We continue the above example with S = {{a}, {a, b}, {a, c}}:

– S is not incomparable since {a} � {a, b};
– S is set-conflict-sensitive. The only sets with S, S′ ∈ S with S ∪ S′ /∈ S are

{a, b} and {a, c}. Now consider b ∈ S. Indeed, S′ ∪ {b} = {a, b, c} ∈ PS.
Intuitively, this formalizes that the union S ∪ S′ is not an extension, i.e., not
contained in S, since b and c cause a conflict.

– S is set-com-closed. Take for example T = {{a}, {a, b}} and U = {{a, c}}. We
thus have T = {a, b} and U = {a, c}. Both T and U are contained in the
downward closure dcl(S) we calculated before. For the union T ∪U = {a, b, c}
we have CS(T ∪U) = ∅ since no superset of T ∪U occurs in S. Therefore, the
condition |CS(T ∪ U)| �= 1 fires and we need to find u ∈ U s.t. T ∪ {u} ∈ PS.
Indeed, c occurs in U and T ∪ {c} = {a, b, c} is a potential conflict.
The rationale behind this property is the following: Suppose we consider
complete semantics. Then, CS(∅) is the grounded extension and we thus have
|CS(∅)| = 1. This does not only apply to the empty set; given some admissible
extension E, there is also always a unique minimal complete extension con-
taining E. The set-com-closed property extracts situations where |CS(·)| = 1
must hold; if not, then we need to find a corresponding “reason”, i.e., some
u ∈ U causing the conflict, i.e., T ∪ {u} ∈ PS. ♦

We are ready to state the main result of this section.

On the Expressive Power of Assumption-Based Argumentation 151

Theorem 1. It holds that

ΣABA
gr = {S | |S| = 1},

ΣABA
ad = {S �= ∅ | S is set-conflict-sensitive and ∅ ∈ S},

ΣABA
co = {S �= ∅ | S is set-com-closed and

⋂
S ∈ S},

ΣABA
stb = {S | S is incomparable}, and

ΣABA
pr = ΣABA

stb \{∅}.

We obtain the result by (1) exploiting the connection between SETAFs and
ABAFs [24] (cf. Definition 5 and Proposition 1) in order to (2) transfer signature
results for SETAF semantics [17] to the associated ABAF semantics.

4 Compact Realizability in ABA

In the previous section we could establish the plain ABA signatures by exploit-
ing the close relation to SETAFs. In the remainder of this paper we will study
further aspects which require more specialized techniques. In the context of AF
signatures it was observed that there are extension-sets that can only be realized
by the use of auxiliary arguments that are never accepted. An AF F is compact
w.r.t. a semantics σ iff each argument in F is credulously accepted [4]. This
notion can be translated to ABA and be employed to prove certain unsatisfia-
bility results.

Definition 9. Given σ, an ABAF D is compact w.r.t. σ iff A(D) =
⋃

σ(D).

We term a semantics σ to be compactly realizable, iff for any D there exists a
D′ that is equivalent to D under σ such that D′ is compact. In the remainder of
this section, we prove the following theorem.

Theorem 2. For ABA, the semantics gr and pr are compactly realizable,
whereas ad and co are not. The semantics stb is compactly realizable if we limit
ourselves to non-empty extension-sets.

The empty extension-set S = ∅ is not compactly realizable under stable
semantics since an ABAF with no assumption has the unique stable extension
∅. To prove the compact realizability of gr and pr , and stb (for non-empty
extension-sets) we employ canonical constructions for ABAFs3 that are similar
in spirit to SETAF constructions for these semantics [17]. We first show com-
pactness of gr semantics. For this, we construct a canonical ABA D with no rule
at all.

Definition 10. Given an extension-set S with |S| = 1, i.e., S = {S}, we let
Dgr

S
= (L,R,A,), where L = A ∪ {ac | a ∈ A}, R = ∅, A = S, and a = ac for

each a ∈ A.
3 Implementation of the canonical constructions for all semantics considered in this

paper are available at https://pyarg.npai.science.uu.nl/ [28].

https://pyarg.npai.science.uu.nl/

152 M. Berthold et al.

It is easy to see that gr(Dgr
S
) = {S} if {S} = S; thus, this construction realizes

S under gr semantics. For pr and stb semantics, we proceed as follows.

Definition 11. Given an incomparable, non-empty extension-set S, we define
Dinc

S
= (L,R,A,), where L = A ∪ {ac | a ∈ A}, R = {ac ← S | a /∈ S, S ∈ S},

A =
⋃

S, and a = ac for each a ∈ A.

Example 6. Let S = {{a, b}, {a, c}, {b, c}}. We construct the ABAF D with
assumptions A = {a, b, c} and rules R = {ac ← b, c; bc ← a, c; cc ← a, b}. Note
that L and are now also determined. Indeed, D realizes our desired assumption-
set under stable and preferred semantics, e.g., σ(D) = {{a, b}, {a, c}, {b, c}}. ♦

The compact realizability of gr , pr and stb holds due to the constructions in
Definitions 10 and 11 not employing unaccepted assumptions.

Proposition 2. The semantics gr and pr are compact realizable. The semantics
stb is compactly realizable if we limit ourselves to non-empty extension-sets.

In contrast, admissible and complete semantics are not compact realizable.
We give corresponding counter-examples.

Example 7. (admissible) Consider D = (L,R,A,) with

L = {a, b, c, ac, bc, cc} R = {ac ← b; bc ← c}
A = {a, b, c} = {(a, ac) , (b, bc) , (c, cc)}

Then ad(D) = {∅, {c}, {a, c}}, but there is no ABAF D′ with A(D′) = {a, c},
s.t. ad(D′) = {∅, {c}, {a, c}}. It is impossible to express c supporting a without
the presence of a third assumption.

(complete). Consider D = (L,R,A,), with

L = {a, b, ac, bc} R = {bc ← a; ac ← b; ac ← a}
A = {a, b} = {(a, ac) , (b, bc)}

Then co(D) = {∅, {b}}, but there is no ABAF D′ with A(D′) = {b}, s.t. co(D′) =
{∅, {b}}, because if b is the only assumption, then there is only one complete
extension as there is nothing against b could defend itself. ♦

From these observations, Theorem 2 follows.

5 Claims, Preferences and Beyond

So far, we put our focus on the most common ABA fragment. In particular,
we considered semantics in terms of assumption-sets only. There are, however,
several other aspects of ABA that can also be taken into account. In this section,
we present several results for realizing extension sets in ABA+ which extends
the basic setting by allowing for preferences between assumptions. Moreover, we
outline some insights regarding signatures for conclusion sets, i.e., we evaluate
D in terms of accepted conclusions, not just the underlying assumptions.

On the Expressive Power of Assumption-Based Argumentation 153

Signatures for Conclusion Extensions

Let us now also consider the set of all atoms derivable from an assumption-set.
Recall that by

ThD(S) = {p | ∃S′ ⊆ S : S′ � p}
we denote the set of all conclusions derivable from an assumption-set S in an
ABAF D. Observe that S ⊆ ThD(S) since per definition, each assumption a ∈ A
is derivable from {a} �∅ a. We define the conclusion-based semantics for ABA
by considering the derivable conclusions of acceptable assumption sets.

Definition 12. Let D = (L,R,A,) be an ABAF and let σ be a semantics. We
define its conclusion-based variant as σc(D) = {ThD(E) | E ∈ σ(D)}.
We write ΣABA

σc to denote the conclusion-based signatures. In this section, we
compare the conclusion-based signatures with the standard ABA signatures from
above. Since deriving the conclusions as well gives more fine-grained exten-
sions, the attentive reader might expect that this setting is more expressive,
i.e., ΣABA

σ ⊆ ΣABA
σc . It turns out, however, that in general the opposite is the

case. Let us start with the simple case of gr , where both notions indeed coincide
(due to the simplicity of gr).

Proposition 3. ΣABA
gr = ΣABA

grc .

Proof. Each extension-set of size 1 can be realized for gr semantics in ABA. Our
above construction does not require any rules, thus σ(D) = σc(D) �

Now, in general it is the case that assumption-extensions are more flexible
in their modeling capabilities in the sense that ΣABA

σc ⊆ ΣABA
σ . To achieve

this result we require a detour to so-called claim-augmented AFs [19] and their
relation to SETAFs [18] and ABAFs [24]. We omit the proof details.

Proposition 4. For all semantics σ in this paper, ΣABA
σc ⊆ ΣABA

σ .

Interestingly, the other direction fails. For all semantics except gr , there
are sets which are realizable as assumption-extensions, but not as conclusion
extensions.

Proposition 5. For all semantics σ �= gr in this paper, ΣABA
σc � ΣABA

σ .

Proof. (stb and pr) Let S = {{a}, {b}, {c}}. We remark that {a}, {b}, {c} can
of course be realized by means of the usual assumption-extensions σ(D) for
pr and stb semantics, as our signatures results show. Now suppose σc(D) =
{{a}, {b}, {c}}.

We first argue that each of the three elements a, b, and c has to be an
assumption: Supposing, e.g., that a /∈ A holds yields that a ∈ ThD(∅), because
otherwise {a} could not be a conclusion-extension. However, in this case a would
occur in each extension, but it does not. By symmetry, {a, b, c} ⊆ A must hold.

Thus ThD({a}) = {a}, ThD({b}) = {b}, and ThD({c}) = {c} for otherwise
the conclusion-extensions would be larger. Since {a, b}, {a, c} and {b, c} are

154 M. Berthold et al.

no extension, we deduce that these sets are not conflict-free or not capable
of defending themselves. However, the latter can be excluded since each single
assumption a, b, c defends itself. So they have to be conflicting.

We distinguish several cases. (1) Suppose a = b. But then a can only defend
itself if b = a holds as well. Since {a, c} is conflicting, it must also be the case
that (a) c = a or (b) a = c. Supposing (a), then {c} can only defend itself if
a = c, i.e., this case yields (b). Supposing (b) implies b = c since is a function.
But b = c implies the extensions are actually {{a}, {b}}, a contradiction.

Other cases like, e.g., b = a yield analogous contradictions.
(ad and co) Now consider S = {∅, {a}, {b}, {c}}. Now, S can be realized

by assumption-extensions w.r.t. ad and co semantics. Regarding σc, the same
reasoning as above applies: ThD({a}) = {a}, ThD({b}) = {b}, and ThD({c}) =
{c} can be inferred analogously and consequently, we find again that, e.g., {a}
cannot defend itself, yielding the same contradiction. �

Signatures for ABA with Preferences

Let us now head back to assumption-extensions. ABA+ has been introduced
in [14]; it generalizes ABA by incorporating preferences between the assump-
tions. We recall the necessary background.

Definition 13. An ABA+ framework is a tuple (L,R,A, ,≤), where
(L,R,A,) is an ABAF and ≤ is a transitive binary relation on A.

As usual, we write a < b if a ≤ b and b �≤ a. Attacks are generalized as follows.

Definition 14. Given an ABA+ framework (L,R,A, ,≤). A set of assump-
tions S ⊆ A attacks a set of assumptions T ⊆ A iff

– there is S′ ⊆ S, t ∈ T s.t. S′ � t, and there is no s ∈ S′ with s < t; or
– there is T ′ ⊆ T , s ∈ S s.t. T ′ � s, and there is t ∈ T ′ with t < s.

For ABA without preferences, only the first item matters: a set of assumptions
S attacks another set of assumptions T iff (a subset of) S derives a contrary of
some assumption in T . Taking preferences into account might cause an attack
reversal, as formalized in item two. The semantics are defined as in Definition 2,
but with the generalized attack notion as stated above. That is, S is admissible
iff i) S does not attack itself and ii) if T attacks S, then S attacks T as well; S
is complete iff it also contains each a it defends; S is grounded iff it is minimal
complete and S preferred iff it is maximal admissible; S is stable iff S attacks
each singleton {a} ⊆ A\S.

We let ΣABA+

σ denote the signature of semantics σ for ABA+, i.e.,

ΣABA+

σ = {σ(D) | D is a flat, finite ABA+ framework}.

In this section, we establish the following main theorem.

On the Expressive Power of Assumption-Based Argumentation 155

Theorem 3. It holds that

ΣABA+

gr = {S | |S| ≤ 1},

ΣABA+

ad = {S | ∅ ∈ S},

ΣABA+

stb = {S | S is incomparable}, and

ΣABA+

pr = ΣABA
stb \{∅}.

We first note that each extension-set S which is contained in ΣABA
σ is also

contained in ΣABA+

σ ; it suffices to consider the empty preference relation.

Proposition 6. For all semantics considered in this paper ΣABA+

σ ⊇ ΣABA
σ .

For preferred and stable semantics, we even have a stronger result. Below,
we show that the signatures for ABA+ corresponds to the signatures for ABA
without preferences. For preferred semantics, we obtain this result because the
semantics operate on maximizing the assumption-sets. For stable semantics, we
additionally rely on the monotonicity of the range function.

Proposition 7. For σ ∈ {stb, pr} we have ΣABA+

σ = ΣABA
σ .

Proof. Let σ ∈ {stb, pr}. According to Proposition 6, ΣABA+

σ ⊇ ΣABA
σ holds. On

the other hand, ΣABA+

pr ⊆ ΣABA
pr since preferred extensions are incomparable by

definition. For ΣABA+

stb ⊆ ΣABA
stb suppose D is an ABA+ framework with stable

extensions S � S′. Even with preferences, the range is monotonic, i.e., we have
that ThD(S) ⊆ ThD(S′). Consequently, if S is stable, then S′ is not conflict-free;
contradiction. �
In contrast, admissible semantics in ABA+ are significantly more powerful than
their counterpart in ABA without preferences. We observe that each extension
set that contains the empty set can be realized.

Proposition 8. ΣABA+

ad = {S | ∅ ∈ S}.
Proof. Let S �= ∅ with ∅ ∈ S. Moreover, let AS =

⋃
S∈S

S and let NS = 2AS\S.
We construct the corresponding ABAF D = (L,A,R, ,≤) with

L = A ∪ {ac | a ∈ A}, A = AS ∪ {vN | N ∈ NS}, a = ac for each a ∈ A,

R = {vN
c ← N ; vN

c ← vN | N ∈ NS} ∪ {vN
c ← S\N | S ∈ S, N ∈ NS, N ⊆ S},

and preference relation as follows: for each N ∈ NS, we let vN > n for some n ∈
N . An example of the construction is given in Fig. 1.

We observe that the set AS itself is conflict-free(no assumption is a contrary).
Each set N that is not contained in S receives an attack from vN : The attack
from the rule vN

c ← N is reversed because N contains some n ∈ N with n < vN .
However, each set S ∈ S that is attacked by some vN defends itself: vN is counter-
attacked by S\N (and there is no s < vN for any s ∈ S\N since (S\N)∩N = ∅).
Based on these observations, we can show that ad(D) = S.

156 M. Berthold et al.

L = A ∪ {ac | a ∈ A}
A = {a, b, c, v{b}, v{c}, v{a,b,c}}
R = {v{b}c ← b; v{c}

c ← c;

v{a,b,c}
c ← a, b, c;

v{b}
c ← a; v{b}

c ← c;

v{c}
c ← a; v{c}

c ← b;

v{b}
c ← v{b}; v{c}

c ← v{c};

v{a,b,c}
c ← v{a,b,c}},

v{b} > b, v{c} > c, v{a,b,c} > a

(a) Resulting ABA+.

{a}

{b} {c}

{a, b} {a, c}{b, c}

{v{b}} {v{c}}

{a, b, c} {v{a,b,c}}

(b) Attacks between assumption-sets.

Fig. 1. Example of the construction from the proof of Proposition 8 for S =
{∅, {a, b}, {a, c}, {b, c}, {a}}. We get AS = {a, b, c} and NS = {{b}, {c}, {a, b, c}}. The
corresponding ABA+ is depicted left (1a), sets between assumption-sets are depicted
right (1b) (supersets of {vN} are omitted since they are self-attacking).

First, we show that ad(D) ⊆ S. We note that ∅ ∈ ad(D) by definition. Now
let S ∈ S with S �= ∅. As observed above, S ∈ cf (D). We show that S defends
itself: let X ⊆ A be an assumption-set that attacks S. That is, either (a) there
is X ′ ⊆ X, s ∈ S such that X ′ � s and none of the elements in X ′ is strictly
weaker than s, or (b) there is S′ ⊆ S, x ∈ X such that S′ � x and there is s ∈ S′

such that s < x. By construction, no contrary of an assumption a ∈ AS can be
derived. Hence, case (a) cannot occur. Now, suppose (b) is the case. Then there
are S′ ⊆ S and x ∈ X such that S′ � x and there is s ∈ S′ such that s < x. By
construction, this can only be the case if S′ is not contained in S (i.e., S′ ∈ NS),
S′ derives the contrary of vS′ , and the direction of the attack is reversed by the
preference relation vS′ > n for some n ∈ S′. It is clear that S′ is a proper subset
of S. Otherwise we obtain S ∈ NS, contradicting our assumption. Hence, the set
S\S′ is not empty. By construction, the assumption vS′ is attacked by S\S′ (via
the rule vS′ ← S\S′). Hence, we obtain that S defends itself against the attack
from X, as desired.

It remains to show that no other set is admissible, i.e., ad(D) ⊇ S. This is
ensured by construction since each N ∈ NS is attacked by vN and is not defended
against this assumption. We obtain ad(D) = S, as desired. �
Regarding grounded semantics, we require some auxiliary observations. We
define the characteristic function for an ABA+ framework D = (L,R,A, ,≤)
as usual, i.e., we let ΓD(S) = {a ∈ A | S defends a}. The more involved attack
notion does not alter the fact that Γ is monotonic.

Proposition 9. Let D = (L,R,A, ,≤) be an ABA+ framework. If S ⊆ S′ ⊆
A, then ΓD(S) ⊆ ΓD(S′).

Monotonicity of the characteristic function is one of the key ingredients for show-
ing that the grounded extension is unique (for the most common argumentation

On the Expressive Power of Assumption-Based Argumentation 157

formalisms). Consequently, we can infer a similar result: The only candidate for
the grounded extension is

⋃
i≥1 Γ i

D(∅), i.e., iterating the characteristic function.
Perhaps somewhat surprising we can only derive |gr(D)| ≤ 1, since complete
extensions do not necessarily exist.

Proposition 10. For any ABA+ framework D = (L,R,A, ,≤), |gr(D)| ≤ 1.

As the following example shows, the case co(D) = ∅ (and thus gr(D) = ∅) is
indeed possible. Consider the following simple ABA+ framework.

Example 8. Let D be the ABA+ framework with A = {a, b, c}, the rule c ← a, b,
and let c > a. Then {c} attacks {a, b} since {a, b} � c and a < c.

In D, all assumptions a, b, and c are unattacked; however, the set {a, b, c} is
conflicting. Hence, no grounded extension exist in D. Therefore, also complete
semantics return the empty set. ♦

Consequently, the grounded ABA+ signature is given as follows.

Proposition 11. ΣABA+

gr = {S | |S| ≤ 1}
Thereby, the above examples shows how to realize S = ∅, and if |S| = 1,

then the construction given for usual ABAFs suffices. From the propositions we
inferred within this section, the desired Theorem 3 follows.

6 Conclusion

In this paper, we investigated several aspects of ABA expressiveness. We charac-
terized the signatures of ABA semantics by connecting two recent developments
in the field of formal argumentation: we used the close relation to SETAFs pre-
sented in [24] in order to benefit from the established SETAF signatures [17].
We amplified our investigation with several aspects which are central for under-
standing the expressiveness of ABA. In particular, we discussed the relation to
conclusion-based ABA semantics and signatures for ABA with preferences.

Our notion of signatures is inspired by research on expressiveness in abstract
argumentation formalisms [16,17,20]. We are not aware of any comprehensive
investigation of signatures in structured argumentation in the literature.

Searching for Suitable Translations. Semantics-preserving translations between
non-monotonic reasoning formalisms are well-studied [10,11,24,29]. They are
useful for several reasons. First, they enable access to solvers and other tools that
have been developed for the target formalism (see e.g., [32]). Second, translations
from structured to abstract argumentation formalisms have gained increasing
attention in the context of explainability. Abstract graph-based representations
are intuitive and easy-to-understand by design; moreover, they are central for
extracting argumentative explanations. Since AFs are particularly well-studied,
they are oftentimes considered as the default target formalism. However, many
translations to AFs often require auxiliary arguments which may cause an expo-
nential blowup; moreover, they often preserve semantics only under projection.

158 M. Berthold et al.

The underlying issue becomes clear when looking at the signatures in the
different formalisms: it turns out that many argumentation formalisms are more
expressive than AFs [17,20]. In particular, our results show that flat ABAFs
are closer in their nature to SETAFs than to Dung’s AFs. Moreover, we show
that the more advanced ABA fragments that we consider admit a higher expres-
siveness than flat ABA for most of the semantics. Building upon our insights,
we identify the search for suitable abstract formalisms with matching expres-
siveness that capture ABA with preferences, conclusion-semantics of ABA, or
even more general fragments like non-flat ABA as a challenging future work
direction. Generally speaking, it would be interesting to put more emphasis on
abstract formalisms with higher expressiveness, e.g., in order to obtain compet-
itive instantiation-based ABA solvers or to extract argumentative explanations.

The Role of Signatures in Dynamics in Argumentation. In particular in order
to push forward dynamics research in structured argumentation, understanding
the modeling capabilities of a formalism is crucial: oftentimes dynamics research
is driven by a certain goal like, e.g., enforcing a target set of conclusions or
forgetting given elements of a knowledge base [1,2,5,7,9,25].

Example 9. Suppose we want to develop a forgetting operator that removes from
each extension the element that should be forgotten. This notion is known as
persistence. Our signature results indicate whether it is possible so satisfy such
constraints. For instance, it becomes clear that we cannot construct a forgetting
operator that satisfies persistence for stable semantics: for an ABAF D with
stb(D) = {{a, b}, {b, c}}, we run into an issue if we aim to forget the assumption
a. The set {{b}, {b, c}} is not incomparable and hence it cannot be realized, as
we have shown.4 ♦

Recent studies on dynamics in structured argumentation show that we cannot
rely on the corresponding results for AFs [30,31]. Hence, our results provide a
solid theoretical foundation in order to understand what can be attained and
what not. Moreover, understanding expressiveness is indispensable in order to
extend this line of research to further dynamic tasks like belief revision [3].

Open Problems. The present work characterizes the expressiveness of ABA
semantics in several aspects. Nonetheless, certain questions in this context
remain open: i) precise signature characterizations for admissible, complete, pre-
ferred, and stable semantics for conclusion-based ABA semantics; ii) precise
signature characterizations of complete semantics for ABA+; and iii) signature
characterizations for semantics in non-flat ABAFs. We view closing these gaps
as a natural future work directions. Moreover, our research was focusing on
ABAFs, but there a several other structured argumentation formalisms worth
investigating, for instance defeasible logic programming [23] or ASPIC+ [26].

4 We refer the interested reader to [7] for an in-depth study on forgetting in flat ABA.

On the Expressive Power of Assumption-Based Argumentation 159

Acknowledgements. This research has been supported by the Federal Ministry of
Education and Research of Germany and by Sächsische Staatsministerium für Wis-
senschaft, Kultur und Tourismus in the programme Center of Excellence for AI-research
“Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig”,
project identification number: ScaDS.AI. Anna Rapberger was partially funded by the
Vienna Science and Technology Fund (WWTF) through project ICT19-065, by the
Austrian Science Fund (FWF) through project P32830, and by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101020934).

References

1. Baumann, R.: What does it take to enforce an argument? Minimal change in
abstract argumentation. In: Proceeding of (ECAI-12), pp. 127–132 (2012)

2. Baumann, R., Berthold, M.: Limits and possibilities of forgetting in abstract argu-
mentation. In: Proceedings of (IJCAI-22), pp. 2539–2545. ijcai.org (2022)

3. Baumann, R., Brewka, G.: AGM meets abstract argumentation: Expansion and
revision for dung frameworks. In: Proceedings of (IJCAI-15), pp. 2734–2740 (2015)

4. Baumann, R., Dvorák, W., Linsbichler, T., Strass, H., Woltran, S.: Compact argu-
mentation frameworks. In: Proceedings of (ECAI-14). FAIA, vol. 263, pp. 69–74.
IOS Press (2014)

5. Baumann, R., Gabbay, D.M., Rodrigues, O.: Forgetting an argument. In: Proceed-
ings of (AAAI-20), pp. 2750–2757. AAAI Press (2020)

6. Baumann, R., Strass, H.: On the maximal and average numbers of stable exten-
sions. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS (LNAI), vol.
8306, pp. 111–126. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54373-9_8

7. Berthold, M., Rapberger, A., Ulbricht, M.: Forgetting aspects in assumption-based
argumentation. In: Proceedings of (KR-23) (2023)

8. Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for
non-monotonic reasoning. In: Proceedings of (LPNMR-93), pp. 171–189. MIT Press
(1993)

9. Borg, A., Bex, F.: Enforcing sets of formulas in structured argumentation. In:
Proceedings of (KR-21), pp. 130–140 (2021)

10. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the difference between
assumption-based argumentation and abstract argumentation. IFCoLog J. Logic
Appl. 2(1), 15–34 (2015)

11. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the equivalence between
logic programming semantics and argumentation semantics. Int. J. Approximate
Reasoning 58, 87–111 (2015)

12. Čyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: dis-
putes, explanations, preferences. In: Handbook of Formal Argumentation, vol. 1,
chap. 7, pp. 365–408. College Publications (2018)

13. Cyras, K., Rago, A., Albini, E., Baroni, P., Toni, F.: Argumentative XAI: a survey.
In: Proceedings of (IJCAI-21), pp. 4392–4399. ijcai.org (2021)

14. Cyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences.
CoRR abs/1610.03024 (2016)

15. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

https://doi.org/10.1007/978-3-642-54373-9_8
https://doi.org/10.1007/978-3-642-54373-9_8

160 M. Berthold et al.

16. Dunne, P.E., Dvořák, W., Linsbichler, T., Woltran, S.: Characteristics of multiple
viewpoints in abstract argumentation. Artif. Intell. 228, 153–178 (2015)

17. Dvorák, W., Fandinno, J., Woltran, S.: On the expressive power of collective
attacks. Argument Comput. 10(2), 191–230 (2019)

18. Dvorák, W., Rapberger, A., Woltran, S.: On the relation between claim-augmented
argumentation frameworks and collective attacks. In: Proceedings of (ECAI-20).
FAIA, vol. 325, pp. 721–728. IOS Press (2020)

19. Dvorák, W., Woltran, S.: Complexity of abstract argumentation under a claim-
centric view. Artif. Intell. 285, 103290 (2020)

20. Dvořák, W., Rapberger, A., Woltran, S.: Argumentation semantics under a claim-
centric view: Properties, expressiveness and relation to SETAFs. In: Proceedings
of (KR-20), pp. 341–350 (2020)

21. Fan, X., Toni, F.: On computing explanations in argumentation. In: Proceedings
of (AAAI-15), pp. 1496–1502. AAAI Press (2015)

22. Gabbay, D., Giacomin, M., Simari, G.R., Thimm, M. (eds.): Handbook of Formal
Argumentation, vol. 2. College Publications (2021)

23. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. Theory Pract. Logic Program. 4(1–2), 95–138 (2004)

24. König, M., Rapberger, A., Ulbricht, M.: Just a matter of perspective. In: Proceed-
ings of (COMMA-22). FAIA, vol. 353, pp. 212–223. IOS Press (2022)

25. Lin, F., Reiter, R.: Forget it. In: Working Notes of AAAI Fall Symposium on
Relevance, pp. 154–159 (1994)

26. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a
tutorial. Argument Comput. 5(1), 31–62 (2014)

27. Nielsen, S.H., Parsons, S.: A generalization of dung’s abstract framework for argu-
mentation: arguing with sets of attacking arguments. In: Maudet, N., Parsons, S.,
Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75526-5_4

28. Odekerken, D., Borg, A., Berthold, M.: Accessible algorithms for applied argumen-
tation. In: Proceedings of (Arg&App@KR-23) (2023)

29. Polberg, S.: Developing the Abstract Dialectical Framework. Phd thesis, Vienna
University of Technology, Institute of Information Systems (2017)

30. Prakken, H.: Formalising an aspect of argument strength: Degrees of attackability.
In: Proceedings of (COMMA-22), vol. 353, pp. 296–307. IOS Press (2022)

31. Rapberger, A., Ulbricht, M.: On dynamics in structured argumentation formalisms.
J. Artif. Intell. Res. 77, 563–643 (2023)

32. Tuomo, L., Rapberger, A., Ulbricht, M., Wallner, J.P.: Argumentation frameworks
induced by assumption-based argumentation: relating size and complexity. In: Pro-
ceedings of (KR-23) (2023)

33. Ulbricht, M.: On the maximal number of complete extensions in abstract argu-
mentation frameworks. In: Proceedings of (KR-21), pp. 707–711 (2021)

34. Vassiliades, A., Bassiliades, N., Patkos, T.: Argumentation and explainable artifi-
cial intelligence: a survey. Knowl. Eng. Rev. 36, e5 (2021)

https://doi.org/10.1007/978-3-540-75526-5_4

Weak Argumentation Semantics
and Unsafe Odd Cycles: Results

and a Conjecture

Sjur K Dyrkolbotn(B)

Department of Civil Engineering, Western Norway University of Applied Sciences,
Bergen, Norway

sdy@hvl.no

Abstract. Some semantics for argumentation, including the newly
introduced weakly admissible semantics, allow us to ignore attacks from
arguments that are perceived as problematic. A key intuition motivating
such semantics is that arguments that indirectly attack themselves may
be problematic in such a way that this is justified. In this paper, we
formalise this intuition and provide a class of semantics that are weakly
admissible, coincide with the stable semantics on a large class of argu-
mentation frameworks that admit stable sets, and only ignore attacks
from arguments on unsafe cycles of odd length. We also show that no
member of our class of semantics coincide with the semantics that takes
all ⊆-maximal weakly admissible sets as extensions. However, we show
that this semantics satisfies an even stronger property, if the following
conjecture is true: if an argumentation framework has no non-empty
weakly admissible sets, then every argument lies on an unsafe odd cycle.

1 Introduction

Abstract argumentation based on argumentation frameworks in the style of [8]
‘has become a popular modelling paradigm in knowledge representation and
artificial intelligence. Several different semantics for argumentation have been
proposed in this tradition, catering to various intuitions, applications and mod-
elling requirements. One key issue that arises concerns the semantic status of
arguments that directly or indirectly attack themselves: when should such possi-
bly problematic arguments be regarded as capable of defeating other arguments?
The traditional semantics for argumentation arguably fail to provide satisfactory
answers to this question, but in [4], the authors provide a new class of seman-
tics that looks very promising on examples. It is explicitly motivated by the idea
that we should be able to ignore attacks from self-defeating arguments. But what
exactly does this mean? The authors provide an informal answer, writing that
“self-defeat occurs if an argument attacks itself either directly or indirectly via

Thanks to the anonymous reviewers for pointing out some relevant references and
making suggestions that greatly improved the presentation of the paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 161–175, 2023.
https://doi.org/10.1007/978-3-031-43619-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_12

162 S. K. Dyrkolbotn

an odd attack loop, unless the loop is broken up by some argument attacking
the loop from outside.” In this paper, we propose a formal definition based on
the same intuition. We clarify what we mean by an argument attacking itself
directly or indirectly and note that loops/cycles may also be broken up from
the “inside”, when there are additional attacks between arguments on the cycle.
We then investigate what semantics for argumentation are justified by the key
intuition at work, when formalised as a requirement that a semantics may or
may not satisfy. We show that while the most permissive semantics based on
weak admissibility is not justified, it is possible to define, for any well-behaved
admissible semantics, a corresponding weakly admissible semantics that is justi-
fied. We show that these semantics extend the stable semantics in a reasonable
way, returning only stable sets as extensions for a large class of argumentation
frameworks that have no problematic odd cycles. However, we also show that no
semantics in the class we define is equivalent to the weakly preferred semantics,
obtained by taking all ⊆-maximal weakly admissible sets as extensions. Despite
this negative result, we conjecture that the weakly preferred semantics is also
justified. We show that if this is true, then the weakly preferred semantics satis-
fies an even stronger property, whereby for every extension, every argument not
included or attacked by it lies on an unbroken odd cycle.

2 Background

The basic notion is that of an argumentation framework, which mathematically
speaking is nothing but a directed graph, usually assumed to be finite.

Definition 1. An argumentation framework (AF) is a directed graph AF =
(A,R) where R ⊆ A × A is referred to as an attack relation over a finite set of
arguments A.

For any AF = (A,R) and S ⊆ A, the subframework of AF induced by S is
AF

⏐
�
S

= (S,R∩(S×S)). Moreover, for any a ∈ A we denote by R(a) = {b ∈ A |
(a, b) ∈ R} the set of arguments attacked by a and by R−(a) = {b ∈ A | (b, a) ∈
R} the set of arguments that attack a. We extend the notation to sets S ⊆ A,
so that R(S) =

⋃

a∈S R(a) and R−(S) =
⋃

a∈S R−(a). If S,Q ⊆ A, we say that
S attacks Q just in case S ∩ R−(Q) �= ∅. For any AF = (A,R) and S ⊆ A we
let [S]AF = S ∪ R(S). We omit the subscript when it is clear from the context.
Furthermore, we denote by AFS the subframework of AF induced by A\[S]AF ,
called the reduct of AF by S. Given S, an odd cycle in AFS can be regarded as
an odd cycle that is not broken up from the outside by S.

An (attack) walk of length n in AF is a sequence of arguments Wa0,an
=

(a0, a1, . . . , an) such that ai ∈ R(ai−1) for all 1 ≤ i ≤ n. If i �= j ⇒ ai �= aj for
all 0 ≤ i ≤ n, the walk is an (attack) path. If a0 = an and i �= j ⇒ ai �= aj

for all 1 ≤ i ≤ n, the walk is an (attack) cycle of length n. When n is even, the
cycle is even, and when n is odd, the cycle is odd. Notice that (a, a) is an odd
cycle consisting of a single argument attacking itself.

Weak Argumentation Semantics and Unsafe Odd Cycles 163

If Wa0,an
= (a0, a1, . . . , an) is a walk and Wan,am

= (an, an+1, . . . , am) is a
walk of length m−n, then Wa0,an

+Wan,am
= (a0, a1, . . . , an, an+1, . . . , am) is a

walk of length n+(m−n) = m. Beware that if Pa,b is a path ending at b and Pb,c

is a path beginning at b, then Pa,b + Pb,c is a walk, but not necessarily a path,
since Pa,b and Pb,c might intersect internally. Given a set B ⊆ A and a walk
W = (a0, a1, . . . , an) we say that W is B-alternating if ai ∈ B ⇔ ai+1 �∈ B for
all 0 ≤ i < n. That is, W is B-alternating just in case every other argument on
W is in B. So, for instance, if B = {a, c}, then the paths (a, b, c) and (a, b, c, d)
are B-alternating, while (a, b, d) is not. Notice that a B-alternating path from
B to B always has even length.

If P = (a0, a1, . . . , an) is a path, then Pai,ai+j
= (ai, ai+1, . . . , ai+j) is a sub-

path of P for all 0 ≤ i < n and j ≤ n − i. Moreover, an attack (ai, aj) ∈ R with
0 ≤ i, j ≤ n and j �= i+1 is called a chord on P . We say that a chord (ai, aj) on
P = (a0, a1, . . . , an) breaks P if i and j are both even. If C = (a0, . . . , an = a0)
is an odd cycle and (ai, aj) is a chord that breaks P = (a0, . . . , an−1), then we
say that C is safe at a0. It is unsafe at a0 otherwise.

An argumentation semantics ς assigns, to any AF = (A,R), a set of subsets
of the arguments, also called ς-extensions, ς : A → 22

A

. A semantics is typically
defined in terms of requirements on the sets of arguments it returns as exten-
sions. Many different semantics have been defined using various combinations
of different requirements. Hence, different requirements and how they may be
understood, motivated and justified in different contexts, as well as how they
relate to one another mathematically, has become an important research topic
in argumentation theory. Following [1], requirements are also often used to clas-
sify and compare different argumentation semantics. In this context, underlying
mathematical requirements are lifted from sets of arguments to semantics and
referred to as semantic principles. A principle corresponds to a whole class of
different semantics, consisting of all semantics that only return extensions that
satisfy the underlying requirement.

The most widely endorsed argumentation principle is that a semantics for
argumentation should only return conflict free sets of arguments as extensions.
Given AF = (A,R) and S ⊆ A, we say that S is conflict free if (S × S) ∩ R = ∅.
That is, S is conflict free if there are no attacks between any two elements of S.
Lifting the requirement to define a class of semantics, we say that a semantics
ς for argumentation is conflict free – meaning that it satisfies the principle of
conflict-freeness – if for all AF = (A,R) and all S ∈ ς(AF), S is conflict free.

Many semantics for argumentation, including the original ones presented in
[8], satisfy another principle, namely that they only return extensions that defend
themselves. Formally, a set S ⊆ A defends itself just in case it attacks everything
that attacks it, R−(S) ⊆ R(S). Lifting this notion from sets to semantics, we
say that a semantics ς is defensive if for all AF = (A,R) and S ∈ ς(AF), S
defends itself. A set that is conflict free and defends itself is admissible. Lifting
this notion to semantics ς, if ς is conflict free and defensive, it is an admissible
semantics. Hence, notice that with this terminology there are several admissible

164 S. K. Dyrkolbotn

semantics, not just the most permissive one that always returns all admissible
sets as extensions (often called the admissible semantics in the literature).

Notice that if S is admissible, a ∈ S, and Pa,b is broken by a chord, then
since S is conflict free, Pa,b is not S-alternating. Intuitively, an S-alternating path
starting at S is an unbroken path of semantic dependencies that arise when we
regard S as an extension, so such paths can have no chords that break them. This
also explains why an odd cycle can be broken from the inside and why we say
that C = (a0, a1 . . . , an) is safe at a when the path P = (a0, . . . , an−1) is broken:
attempting to include a in some extension S could not produce a sequence of
semantic dependencies along C that would end up defeating a. Hence, C does
not indicate that a is actually self-defeating, regardless of S and whether or not
C is broken by it from the outside.

The most permissive admissible semantics is not very reasonable, most
notably because it always returns ∅ as a possible extension of any AF. How-
ever, the notion of admissibility is still fundamental, since it forms the basis for
a range of other semantics, often arrived at by stipulating additional principles.

Semantics that are conflict free but not defensive, allowing us to sometimes
ignore attacks, are weaker than admissible semantics. Such semantics are not
new. In fact, a whole class of semantics weaker than the admissible semantics
has been introduced based on computing (maximal) conflict free sets [2]. These
semantics generally do not quite match the desiderata explored in this paper,
however, as they typically allow us to ignore attacks also from arguments that
do not indirectly attack themselves. This is shown with examples and discussed
at length in [4], so we do not go into detail. Instead, we will focus on a new class
of semantics which is explicitly motivated by the intuition we formalise in this
paper. The key notion is that of weak admissibility, defined as follows.

Definition 2. Given any AF = (A,R), a set of arguments S ⊆ A is weakly
admissible when it is conflict free and there is no set Q ⊆ A\[S] that attacks S
in AF and is weakly admissible in AFS.

We will also lift this notion from sets to semantics and regard it as a principle,
by saying that a semantics ς is weakly admissible if for all AF = (A,R), if
S ∈ ς(AF), then S is weakly admissible. So a semantics is said to be weakly
admissible if it only returns weakly admissible sets as extensions. Notice that
if S defends itself, then there is no set attacking S in AF that is also present
in AFS . Hence, every admissible S is also weakly admissible. At the level of
semantics, adopting our terminology, it follows that all admissible semantics are
weakly admissible.

3 Perfect Extensions of the Stable Semantics

If a semantics ς seems too permissive, for instance because ∅ is always a ς-
extension, one may impose additional principles to arrive at a more restricted
semantics. The most straightforward approach is to restrict ς by taking as exten-
sions only those S ∈ ς(AF) that are ⊆-maximal. This scheme yields what we

Weak Argumentation Semantics and Unsafe Odd Cycles 165

call ς-preferred semantics, which is referred to simply as the preferred semantics
when ς is the most permissive admissible semantics. When ς is the most permis-
sive weakly admissible semantics, then the ς-preferred semantics is referred to
as the weakly preferred semantics.

A stronger principle than ⊆-maximality is to demand that S must attack
every argument not in S. Formally, for any AF = (A,R) we say that S ⊆ A is
dominating if S ∪ R(S) = A. As before, a semantics ς such that for all AF =
(A,R), any S ∈ ς(AF) is dominating, is called a dominating semantics.

A set that is conflict free and dominating is called a stable set in the litera-
ture, and the semantics that returns all stable sets in AF as extensions is called
the stable semantics. A stable set unambiguously determines the semantic sta-
tus of every argument in the AF, partitioning them into those arguments we
accept and those we reject, which are all attacked by some argument we accept.
Unfortunately, stable sets may not exist, as illustrated by the AF consisting of
a single self-attacking argument.

The fact that stable sets may not exist is a key motivation for introducing
weaker semantics that tolerate partial semantic verdicts. Hence, it may seem
natural to require that weaker semantics are conservative extensions of the stable
semantics, in the sense that whenever stable sets exist, the weaker semantics only
returns stable sets as extensions. One way of ensuring this is to define some class
of sets that include all stable sets and then choose as extensions all sets from the
class that have minimal reducts. Then the stable sets are the only extensions
whenever they exist, because their reducts are always empty. Following this
approach starting with admissible sets yields a trivially equivalent formulation of
the so-called semi-stable semantics [5], which returns as extensions all admissible
sets S for which [S] = S ∪ R(S) is ⊆-maximal.

It is not clear, however, that conservative extensions of the stable semantics
yield reasonable results. Consider, for instance, the following AF :

a �� b
�� �� ��

c �� d

The only stable set is {b}, which is also the only semi-stable set, having an
empty reduct. It is also a preferred set, of course, but it is not the only one.
The set {a, d} is also preferred, being ⊆-maximal among the admissible sets.
Is it reasonable to say that d (and a) must be rejected because a prevents b
from defeating the self-defeating c? This is far from obvious and will depend on
what the AF is intended to model (or how it is instantiated by less abstract
arguments).

Clearly, the preferred semantics is not a conservative extension, so how does
it relate to the stable semantics? This can be answered formally using a concept
from graph theory [11] that appears to have been largely neglected by the argu-
mentation community. Adapting the terminology to the present setting, we say
that AF = (A,R) is perfectly stable if for all S ⊆ A, the subframework induced
by S, AF

⏐
�
S
, has a stable set. Then we define a new argumentation principle as

follows.

166 S. K. Dyrkolbotn

Definition 3. A semantics ς is a perfect extension of the stable semantics if
for all AF = (A,R) such that AF is perfectly stable, we have

∀S ∈ ς(AF) : R(S) = A\S

That is, a semantics is a perfect extension of the stable semantics if it only
returns stable sets as extensions for perfectly stable AFs.1 Several sufficient
conditions for the existence of stable sets in AF are known, most notably that
a (finite) AF has a stable set if it has no odd cycles (a result that originally
appeared in [13], published in 1953). This and most other sufficient conditions
for the existence of stable sets ensure that AF is perfectly stable, so they also
ensure that any perfect extension of the stable semantics only returns stable sets
as extensions on AF . Moreover, it follows from [11] that a minimal AF that is
not perfectly stable satisfies a property that is particularly interesting in the
present context: all arguments a on AF lie on odd cycles. This suggests that it
should be possible to define a semantics that satisfies the desiderata explored
in the present paper, although how exactly to do it remains a non-trivial open
question.

Before we move on, we note that the definition of a perfect extension is well
matched to the concept of modularity, explored in [4] and defined as follows.

Definition 4. An argumentation semantics ς is modular if for every AF =
(A,R) and S ⊆ A, if S ∈ ς(AF) and S′ ∈ ς(AFS), then S ∪ S′ ∈ ς(AF).

Admissible sets are modular, so if S is preferred, then AFS has no admissible
set [4]. In the terminology from [4], it has a “meaningless reduct”. From this it
follows that the preferred semantics is a perfect extension of the stable semantics,
as we now prove.

Theorem 5. Given any AF = (A,R), if AF is perfectly stable, then every
preferred set in AF is a stable set. Hence, the preferred semantics is a perfect
extension of the stable semantics.

Proof. Assume AF is perfectly stable and let S be a preferred set in AF . We
must show that S is stable. Assume towards contradiction that it is not. Since
S is conflict free, it follows that S is not dominating, so that AFS is non-empty.
Since S is perfectly stable, AFS must then have a non-empty stable set S′.
Since stable sets are admissible, S′ is admissible in AFS . Hence, by the fact that
preferred sets are admissible and admissible sets are modular, it follows that
S ∪ S′ is admissible in AF , contradicting ⊆-maximality of S.

1 The notion of a perfect extension could be made more general by explicitly taking the
principle that is perfectly extended as a parameter, defining an AF to be perfectly X
if all induced subdigraphs of the AF has an extension satisfying X. Then we could
say that a semantics perfectly extends X, or that it satisfies the perfect extension
principle for X, whenever it satisfies X for all AFs that are perfectly X. However, we
only consider perfect extensions of the stable semantics in this paper, so we prefer
to avoid the additional notation and terminology that the generalisation entails.

Weak Argumentation Semantics and Unsafe Odd Cycles 167

Since weakly admissible sets are modular, as shown in [4], it follows from
essentially the same argument used to establish Theorem 5 that the weakly
preferred semantics is also a perfect extension of the stable semantics. We regard
this as a desirable property for an argumentation semantics to satisfy, and record
it as a theorem.

Theorem 6. The weakly preferred semantics is a perfect extension of the stable
semantics.

4 A Formal Justification for Ignoring Attacks

The informal motivation for weak admissibility presented in [3] is to provide a
class of semantics that allow us to sometimes ignore attacks from arguments that
attack themselves, directly or indirectly, on cycles that are not broken from the
outside. On simple examples, it is verified that weakly admissible sets do indeed
allow us to do this, as in the two AFs on the left below:

a
��

�� d c �� a

����
��
��
��

�� d

b

		 c

 a
��

����
��
��
��

�� d

b

		

In the two leftmost AFs, it is easy to see that {d} is weakly admissible, since
there is no weakly admissible set from AF {d} that attacks it. Hence, we can
disregard the attack from the self-defeating a, which lies on an unbroken odd
cycle. By telling us to look for weakly admissible sets in the reduct AFS , the
definition of weak admissibility also seems to capture roughly the idea that we
only ignore attacks from odd cycles that are not broken from the “outside” by S.
However, in the rightmost AF above, {d} is not weakly admissible, even though
the odd cycle in AF {d} is not broken from the outside. It is broken from the
inside, however, since it is safe at a, so we might no longer feel entitled to ignore
the attack on d. Indeed, {a} is the only non-empty weakly admissible set of
this AF, despite being on an odd cycle that is not broken from the outside. It
is also stable, so by Theorem 13, the weakly preferred semantics still behaves
reasonably on examples like these, but not in a way that is fully explained by
the informal explanation provided in [3].

Examples like these illustrate that it is hardly intended that we should always
ignore attacks from odd cycles that are unbroken by the outside. On the other
hand, it seems quite reasonable to interpret the authors of [3] as intending that
we should only disregard attacks from such arguments. This, at any rate, would
be a very interesting descriptive property for a weak semantics to satisfy, as it
would indicate that we have weakened the notion of admissibility only as much
as our informal intuition warrants us to do. Based on this idea, we propose the
following two semantic principles, corresponding to two possible justifications
for ignoring attacks.

168 S. K. Dyrkolbotn

Definition 7. An argumentation semantics ς is said to be

– justified (by unsafe odd cycles) if it is conflict free and for all AF = (A,R)
and all S ∈ ς(AF), every argument a ∈ A\[S] that attacks S in AF lies on
an odd cycle in AFS that is unsafe at a.

– strongly justified (by unsafe odd cycles) if it is conflict free and for all AF =
(A,R) and all S ∈ ς(AF), every argument a ∈ A\[S] lies on an odd cycle in
AFS that is unsafe at a.

Notice that a semantics is justified whenever it is strongly justified, while
the converse does not hold in general. In particular, notice that if ς is strongly
justified and AF has only the empty extension under ς, then every argument
in AF lies on an odd cycle. So if ς is strongly justified, then whenever there is
some argument not indirectly attacking itself, there is a non-empty extension.
Also notice that if ς is strongly justified and a does not lie on an odd cycle in
AF , then if S ∈ ς(AF) and R−(a) ∩ S = ∅, we must have a ∈ S, since otherwise
a ∈ A\[S] without being on an odd cycle in AFS . In view of this, being strongly
justified is a stronger property than being strongly complete outside odd cycles,
as defined in [6], whereby a ∈ S is only required when there is also no argument
in R−(a) that lies on an odd cycle.

While being (strongly) justified is a strong property that seems desirable, it is
not clear whether weakly admissible and (strongly) justified semantics exist. In
the next section, we provide a class of weakly admissible semantics that are jus-
tified, before showing that they are not strongly justified. First we note that the
most permissive weakly admissible semantics, taking all weakly admissible sets
as extensions, is not justified. This can be shown, for instance, by the following
example:

x
��

�� y �� z �� w

In this AF , it is clear that {w} is weakly admissible. This follows since there
is no weakly admissible set containing z, which in turn follows from the fact that
there is a weakly admissible set containing y, since x – its only attacker – attacks
itself. The fact that weakly admissible sets are not necessarily justified should
not come as a great surprise. A similar phenomenon is observed for admissibility,
whereby we quickly conclude that the most permissive admissible semantics is
not very reasonable, despite admissibility being a fundamental notion that forms
a basis for other semantics. The situation is similar, we believe, with respect to
weak admissibility.

5 A Class of Justified Semantics Based on Admissible
Sets

To arrive at a class of justified semantics, we will start by defining a class of
semantics that is more permissive than weakly admissible semantics. Then we
will define a restrictive class of weakly admissible semantics that ignore attacks

Weak Argumentation Semantics and Unsafe Odd Cycles 169

only from arguments that are not acceptable under the corresponding permissive
semantics. We will then prove that the more restrictive class of semantics is
weakly admissible and that taking its ⊆-maximal sets yields a justified semantics
that is also a perfect extension of the stable semantics. The first definition, giving
rise to the permissive class of semantics, is the following.

Definition 8. Given any AF = (A,R) and a semantics ς, we say that S ⊆ A
is ς-plausible if it is conflict free and there is no Q ∈ ς(AFS) that attacks S.

Notice that if S ⊆ A is admissible, then S is also ς-plausible. This is triv-
ial, since S is conflict free and is not attacked by any argument from AFS ,
since it defends itself. Also notice that if we take ς to be the most permissive
weakly admissible semantics, consisting of all weakly admissible sets, then S
is ς-plausible if, and only if, it is weakly admissible. So for the weakly admis-
sible semantics, there is no difference between being a ς-extension and being
ς-plausible. This is not true for semantics based on admissible sets. In fact, since
weakly admissible sets are admissible, it follows that if ς is admissible, then S is
ς-plausible whenever S is weakly admissible. So ς-plausibility behaves similarly
to the weakly admissible semantics on simple motivating examples. It also seems
to have independent interest as a natural dual of ς. However, ς-plausibility for
admissible ς is too permissive to be justified. This is illustrated by the fact that
both {b} and {c} is ς-plausible in the following AF , whenever ς is admissible:

a
��

�� b �� c

This example also demonstrates that ς-plausible sets are not modular, so
they will fail to provide justified and perfect extensions of the stable semantics.
However, as it turns out, the doubly dual notion obtained by demanding non-
existence of ς-plausible attackers does yield such semantics.

Definition 9. For any semantics ς and any AF = (A,R): if S ⊆ A is conflict
free and S is not attacked in AF by any ς-plausible set from AFS, we say that
S is ς-reasonable.

A ς-reasonable semantics is any semantics that only returns ς-reasonable sets
as extensions. As before, if S is admissible, then it is trivially ς-reasonable, for
any ς. We also note the following property.

Proposition 10. For any admissible ς and any AF = (A,R), if S ⊆ A is
ς-reasonable, then it is ς-plausible.

Proof. Let S ⊆ A be ς-reasonable and assume towards contradiction that it is
not ς-plausible. Then there is some admissible set S′ in AFS that attacks S in
AF . Since S′ is admissible, it is not attacked in AFS by any set from (AFS)S

′
.

Hence, S′ is trivially ς-plausible, contradicting the fact that S is ς-reasonable.

So for admissible ς, we have that every admissible set it ς-reasonable and
that every ς-reasonable set is ς-plausible. Moreover, it is easy to show that any
ς-reasonable set is weakly admissible.

170 S. K. Dyrkolbotn

Proposition 11. For any admissible semantics ς and any AF = (A,R), if
S ⊆ A is ς-reasonable, then S is weakly admissible.

Proof. Let S ⊆ A be ς-reasonable and assume towards contradiction that S is not
weakly admissible. Then there is some weakly admissible set S′ in AFS such that
S′ attacks AFS . However, since S is ς-reasonable, there is some admissible set
S′′ in (AFS)S

′
that attacks S′ in AFS . But then S′′ is also a weakly admissible

set in (AFS)S
′
that attacks S′ in AFS , contradicting the fact that S′ is weakly

admissible.

We now show the less obvious result that ς-reasonable sets are in fact modular
whenever ς is admissible and modular.

Proposition 12. For any admissible and modular ς and any AF = (A,R), if
S ⊆ A is ς-reasonable in AF and S′ is ς-reasonable in AFS, then S ∪ S′ is
ς-reasonable in AF .

Proof. Assume towards contradiction that S ∪ S′ is not conflict free. Since
S′ ⊆ (A\[S]) is not attacked by S, it follows that S′ attacks S in AF . Since S is
ς-reasonable, this means that S′ is not ς-plausible, but since S′ is ς-reasonable,
this contradicts Proposition 10. So S∪S′ is conflict free. Assume towards contra-
diction that there is some conflict free Q that is ς-plausible in AFS∪S′

= (AFS)S
′

and attacks S ∪ S′ in AF . If Q attacks S′, this contradicts the fact that S′ is
ς-reasonable in AFS . Hence, Q does not attack S′. It follows that Q ∪ S′ is a
conflict free set from AFS that attacks S in AF . Since S is ς-reasonable, there
is a ς-extension K in (AFS)Q∪S′

= (AFS∪S′
)Q that attacks Q ∪ S′ in AFS .

Since Q is ς-plausible in (AFS∪S′
), K does not attack Q. Hence, K ∪ Q is a

conflict free set from AFS∪S′
that attacks S′ in AFS . Assume towards contra-

diction that there is some ς-extension L in (AFS∪S′
)K∪Q = ((AFS∪S′

)Q)K that
attacks K ∪Q. Then since K is a ς-extension in (AFS∪S′

)Q and ς is modular, it
follows that K ∪ L is a ς-extension in (AFS∪S′

)Q that attacks Q, contradicting
the fact that Q is ς-plausible. Hence, K ∪Q is ς-plausible in AFS∪S′

= (AFS)S
′
,

contradicting the fact that S′ is ς-reasonable.

As with the preferred and weakly preferred semantics, modularity of ς implies
that the ς-reasonable preferred semantics is a perfect extension of the stable
semantics.

Theorem 13. When ς is admissible and modular, then the ς-reasonable pre-
ferred semantics is a perfect extension of the stable semantics.

Next, we will need a non-trivial graph-theoretic property of admissible sets,
namely that if Q is a minimal such set containing a, then all arguments in Q have
Q-alternating paths to a. To our knowledge, the following statement and proof
of this fact is new, but the result is a variation of theorems from [11], regarding
the closely related concepts of kernels and semi-kernels from graph theory (for
more on the link between argumentation and kernel theory, see [10]). We remark
that minimal non-empty admissible sets have also been studied independently

Weak Argumentation Semantics and Unsafe Odd Cycles 171

in argumentation theory [14,16], where such sets are referred to as initial sets.
Hence, the following graph-theoretic result may well be of broader interest to
the argumentation community.

Theorem 14. For any AF = (A,R) and any admissible set S ⊆ A with a ∈ S:
if Q is a ⊆-minimal admissible set such that Q ⊆ S and a ∈ Q, then for all
b ∈ Q there is a Q-alternating path Pb,a from b to a in AF .

Proof. Assume that Q is a ⊆-minimal admissible set satisfying Q ⊆ S and a ∈ Q.
Let K be the set of all b ∈ Q such that there is a Q-alternating path Pb,a from b
to a in AF . Clearly, we have a ∈ K, witnessed by the empty path. We are done
if we can show that K is admissible, since then K = Q by ⊆-minimality of Q.
Since Q is conflict free, K is conflict free. To show that K defends itself, assume
c attacks K in AF at d ∈ K ∩ R(c). We must show that K defends d against c.
Since d ∈ K, there is a Q-alternating path Pd,a from d to a. Since Q is admissible
and d ∈ Q, there must be some e ∈ Q attacking c. Then (e, c) + (c, d) + Pd,a is
a walk from e to a. There are three cases. Case i) e occurs on Pd,a. In this case,
the sub-path of Pd,a from e to a is a Q-alternating path from e to a, so e ∈ K as
desired. Case ii) e does not occur on Pd,a, but c occurs on Pd,a. In this case, let
Pc,a denote the sub-path of Pd,a from c to a. Then (e, c)+Pc,a is a Q-alternating
path from e to a, so e ∈ K as desired. Case iii) neither e nor c occurs on Pd,a.
Then (e, c) + (c, d) + Pd,a is a Q-alternating path from e to a, so e ∈ K in this
case as well.

Notice that all Q-alternating paths from Q to Q have even length, since
every other argument from such a path is from Q. It follows that we are now in
a position to prove that the ς-reasonable preferred semantics is in fact justified
by unsafe odd cycles.

Theorem 15. For any admissible and modular ς and any AF = (A,R): if
S ⊆ A is a ⊆-maximal ς-reasonable set and a ∈ A\[S] attacks S, then a lies on
an odd cycle that is unsafe at a.

Proof. Assume S ⊆ A is ς-reasonable and that a ∈ A\[S] attacks S. Since S is
ς-reasonable, {a} is not ς-plausible. If (a, a) ∈ R, the proof is done, so assume
this is not the case. Then since {a} is conflict free but not ς-plausible, there
is a ς-extension K ∈ (AFS){a} with some b ∈ K that attacks a. Since K is
ς-plausible and S is ς-reasonable, K does not attack S. Since ς is admissible, K
is an admissible set. Hence, we let Q be a ⊆-minimal admissible set in (AFS){a}

with Q ⊆ K and b ∈ Q. Note that Q does not attack S and that Q is trivially
ς-reasonable in (AFS){a}, since it is admissible there. Since S is a ⊆-maximal
ς-reasonable set, it then follows from Proposition 12 that Q is not admissible in
AFS . Hence, there is some c ∈ R(a) that attacks some d ∈ Q. By Theorem 14,
there is a Q-alternating path Pd,b from d to b in (AFS){a}. Let f be the first
occurrence of an argument from Q on Pd,b that attacks a. Then Pd,f is a path
from d to f that is also a Q-alternating path from (AFS){a}. Since a and c do
not occur on Pd,f , C = (a, c)+(c, d)+Pd,f +(f, a) is an odd cycle. If C is unsafe

172 S. K. Dyrkolbotn

at a we are done, so assume C is safe at a. Then let Pa,f be the sub-path of
C from a to f . Since C is safe at a, there is a chord (x, y) on Pa,f such that
the sub-paths from a to x and from a to y along Pa,b are both even. Assume
towards contradiction that x �= y. Since Q ⊆ A\[S ∪{a}] and x attacks y, x �= a.
Moreover, by our choice of f there is no argument from Q on Pd,f that attacks
a. Hence, y �= a. So both x and y are in Q, contradicting the fact that Q is
conflict free. So x = y = a. Then a attacks itself and we are done.

5.1 A Remark on Strongly Undisputed Sets

As pointed out by one of the reviewers, there is a close connection between
ς-plausible and ς-reasonable sets and so-called undisputed and strongly undis-
puted sets, as recently introduced in [15]. In fact, when ς is the most permissive
admissible semantics, then it is easy to see that the undisputed sets of AF
are its ς-plausible preferred sets while the strongly undisputed sets are its ς-
reasonable preferred sets. Hence, the present paper generalises the two notions,
while showing how to define them without having ⊆-maximality built in from
the start. Moreover, the results proven about strongly undisputed sets in [15],
including results on complexity which we have not addressed, carry over to pre-
ferred ς-reasonable preferred semantics when ς is the most permissive admissible
semantics. Conversely, it follows from Theorem 15 that the strongly undisputed
semantics is justified by unsafe odd cycles.

6 A Counterexample and a Conjecture

It is natural to ask about the relationship between ς-reasonable preferred sets and
weakly preferred sets for admissible and modular ς. On simple examples, they
behave the same way, so it is tempting to think that they might be equivalent
for some admissible and modular ς. If this was true, it would mean that the
recursive scheme of weak admissibility is redundant and that the nature of ⊆-
maximal weakly admissible sets could be described in a more succinct way in
terms of admissible sets. However, the following example shows that this is not
the case:

a1

�� ��
��
��
��
��
��
��
��
��
��
�

��

��
��

��
��

��
��

��
��

��
��

�
�� a2

����
��
��
��
��
��
��
��
��
�

�� ��
��
��
��
��
��
��
��
��
��
�

�� a3

����
��
��
��
��
��
��
��
��
��
��
�

����
��
��
��
��
��
��
��
��
�

��

��

c
��

���������

���������������

��																						

b1

��

�� b2

��������������������
�� b3

��������������������������
�� �� d

In this AF , we have two odd cycles of length 3, namely Ca = (a1, a2, a3, a1)
and Cb = (b1, b2, b3, b4), as well as a self-attacking c and a much more innocent-
looking d. All arguments on Ca attack all arguments on Cb, all arguments on

Weak Argumentation Semantics and Unsafe Odd Cycles 173

Cb attack c, and c attacks all arguments on Ca. The argument d, meanwhile,
is only attacked by b3 and attacks no argument. What is its semantic status?
It is only attacked by b3, which is on an odd cycle, so a justified semantics is
entitled to ignore the attack on d, making {d} a possible extension. However, no
ς-reasonable semantics allows us to accept d when ς is admissible.
To verify that d cannot be accepted, notice that b3 is not attacked by any
admissible set from the reduct, AF {b3}:

a1
��

��

 a2
��

��

a3
��

����
��
��
�

b2

Clearly, AF {b3} has no admissible set, so it has no admissible set attacking b3.
This means that {b3} is ς-plausible in AF {d} for all admissible ς, which in turn
implies that {d} is not ς-reasonable. In fact, AF has no non-empty ς-reasonable
extension for any admissible ς, as the reader can verify. The weakly preferred
semantics, by contrast, provides {d} as the unique weakly preferred extension
of the AF above. This is because b3 is attacked by a weakly admissible set
from AF {b3}, namely {b2}. Hence, we have proven the following result about the
weakly preferred semantics.

Proposition 16. The weakly preferred semantics is not equivalent to any ς-
reasonable semantics for which ς is admissible.

The counterexample also shows that while ς-reasonable semantics for admis-
sible ς are justified, they are not strongly justified: the counterexample has no
non-empty ς-reasonable set, yet it has an argument that is not on any (odd)
cycle. We believe the weakly preferred semantics is in fact strongly justified, but
we have been unable to prove it so far. Hence, we leave it as a conjecture.

Conjecture 17. The weakly preferred semantics is strongly justified.

The challenging part is to prove that the weakly preferred semantics is jus-
tified. If it is, then it is not hard to prove that it is also strongly justified, using
the following simple lemma.

Lemma 18. If the weakly preferred semantics is justified and AF has no non-
empty weakly preferred set, then every argument a in AF lies on an odd cycle
that is unsafe at a.

Proof. Assume AF = (A,R) has no non-empty weakly preferred set and let
a ∈ A be arbitrary. We must show that a lies on an odd cycle from AF that is
unsafe at a. So define the AF M = (A ∪ {b}, R ∪ {(a, b)}) for some fresh b �∈ A.
Clearly, {b} is weakly preferred since M{b} = AF has no non-empty weakly
admissible set. Hence, if the weakly preferred semantics is justified, then a is on
an odd cycle in AF that is unsafe at a.

174 S. K. Dyrkolbotn

The difficulty comes when we try to prove that an argument from the reduct
attacking a weakly preferred set must be on an odd cycle. This is made challeng-
ing by the fact that we need to keep track of the parity of paths, without having
Theorem 14 to help us. So we think the best proof strategy is to first try to
establish its analogue for weakly admissible sets, if possible. Note that we could
weaken the definition of a strongly justified semantics by saying that ς is weakly
justified when for all AF = (A,R), if ς(AF) = {∅}, then for all a ∈ A there is an
odd walk from a to a. Then it is relatively straightforward to prove by induction
on the size of AF that the weakly preferred semantics is weakly justified. We
omit the details for space reasons, but note that while this property goes some
way towards justifying the weakly preferred semantics in formal terms, it is a
much weaker property than being strongly justified.

7 Conclusion

We have provided a formal definition of the intuition that if we ignore an attack
from argument a then a should be part of an unbroken odd cycle. We provided a
class of semantics satisfying this requirement, showing that they are also weakly
admissible and agree with the stable semantics on a large class of AFs that have
stable sets. We also conjectured that the weakly preferred semantics satisfies an
even stronger property, namely that whenever S is weakly preferred and a �∈ [S],
then a is part of an unbroken odd cycle.

In future work, we would like to prove our conjecture, or find a counterex-
ample to it. We would also like to explore the new class of semantics introduced
here in further depth, as they seem to be of independent interest. It seems clear,
for instance, that our notion of ς-plausibility is closely related to the labelling-
based semantics explored in [9]. These labelling-based semantics should also be
investigated further, not just as argumentation semantics, but as systems of
three-valued logic and theories in such systems. They seem to arise from intro-
ducing an interesting conditional, whereby a → b is true just in case a is neither
true nor undecided when b is false, in which case (a → b) → (¬b → ¬a) is no
longer valid in the presence of undecidedness. It is also interesting to explore
applications of the new semantics we introduce, for instance in the context of
legal argumentation, by combining them with the work done on modelling shift-
ing proof burdens in [12]. Moreover, it would be natural to classify the new
semantics in a more comprehensive way with respect to the principles investi-
gated in [7]. Finally, we would like to generalise our results to infinite AFs, where
absence of odd cycles is no longer sufficient for the existence of stable sets.

References

1. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argu-
mentation semantics. Artif. Intell. 171(10–15), 675–700 (2007)

2. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artif. Intell. 168(1–2), 162–210 (2005)

Weak Argumentation Semantics and Unsafe Odd Cycles 175

3. Baumann, R., Brewka, G., Ulbricht, M.: Revisiting the foundations of abstract
argumentation - semantics based on weak admissibility and weak defense. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), pp. 2742–
2749. AAAI Press (2020)

4. Baumann, R., Brewka, G., Ulbricht, M.: Shedding new light on the foundations of
abstract argumentation: Modularization and weak admissibility. Artif. Intell. 310,
103742 (2022)

5. Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Log.
Comput. 22(5), 1207–1254 (2012)

6. Cramer, M., van der Torre, L.: SCF2 - an argumentation semantics for rational
human judgments on argument acceptability. In: Beierle, C., Ragni, M., Stolzen-
burg, F., Thimm, M. (eds.) Proceedings of the 8th Workshop on Dynamics of
Knowledge and Belief (DKB-2019) and the 7th Workshop KI & Kognition (KIK-
2019)co-located with 44nd German Conference on Artificial Intelligence (KI 2019),
Kassel, Germany, September 23, 2019. CEUR Workshop Proceedings, vol. 2445,
pp. 24–35. CEUR-WS.org (2019). https://ceur-ws.org/Vol-2445/paper 3.pdf

7. Dauphin, J., Rienstra, T., van der Torre, L.: A principle-based analysis of weakly
admissible semantics. In: Prakken, H., Bistarelli, S., Santini, F., Taticchi, C. (eds.)
Computational Models of Argument - Proceedings of COMMA 2020, Perugia, Italy,
September 4–11, 2020. Frontiers in Artificial Intelligence and Applications, vol. 326,
pp. 167–178. IOS Press (2020)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

9. Dvorák, W., Rienstra, T., van der Torre, L., Woltran, S.: Non-admissibility in
abstract argumentation. In: Toni, F., Polberg, S., Booth, R., Caminada, M., Kido,
H. (eds.) Computational Models of Argument - Proceedings of COMMA 2022,
Cardiff, Wales, UK, 14–16 September 2022. Frontiers in Artificial Intelligence and
Applications, vol. 353, pp. 128–139. IOS Press (2022)

10. Dyrkolbotn, S.K., Walicki, M.: Propositional discourse logic. Synthese 191(5), 863–
899 (2014)

11. Galeana-Sánchez, H., Neumann-Lara, V.: On kernels and semikernels of digraphs.
Discret. Math. 48(1), 67–76 (1984)

12. Kampik, T., Gabbay, D.M., Sartor, G.: A comprehensive account of the burden of
persuasion in abstract argumentation. J. Log. Comput. 33(2), 257–288 (2023)

13. Richardson, M.: Solutions of irreflexive relations. Ann. Math. 58(3), 573–590
(1953). http://www.jstor.org/stable/1969755

14. Thimm, M.: Revisiting initial sets in abstract argumentation. Argument Comput.
13(3), 325–360 (2022)

15. Thimm, M.: On undisputed sets in abstract argumentation. In: The Thirty-Seventh
AAAI Conference on Artificial Intelligence (AAAI-23), pp. 6550–6557. AAAI Press
(2023)

16. Xu, Y., Cayrol, C.: Initial sets in abstract argumentation frameworks. In: Ågotnes,
T., Liao, B., Wáng, Y.N. (eds.) Proceedings of the 1st Chinese Conference on
Logic and Argumentation (CLAR 2016), Hangzhou, China, April 2–3, 2016. CEUR
Workshop Proceedings, vol. 1811, pp. 72–85. CEUR-WS.org (2016). https://ceur-
ws.org/Vol-1811/paper6.pdf

https://ceur-ws.org/Vol-2445/paper
http://www.jstor.org/stable/1969755
https://ceur-ws.org/Vol-1811/paper6.pdf
https://ceur-ws.org/Vol-1811/paper6.pdf

Computing Stable Extensions
of Argumentation Frameworks using

Formal Concept Analysis

Sergei Obiedkov1(B) and Barış Sertkaya2

1 Knowledge-Based Systems Group, Faculty of Computer Science/cfaed/ScaDS.AI,
TU Dresden, Germany

sergei.obiedkov@tu-dresden.de
2 Frankfurt University of Applied Sciences, Frankfurt, Germany

sertkaya@fb2.fra-uas.de

Abstract. We propose an approach based on Formal Concept Analy-
sis (FCA) for computing stable extensions of Abstract Argumentation
Frameworks (AFs). To this purpose, we represent an AF as a formal
context in which stable extensions of the AF are closed sets called con-
cept intents. We make use of algorithms developed in FCA for computing
concept intents in order to compute stable extensions of AFs. Experimen-
tal results show that, on AFs with a high density of the attack relation,
our algorithms perform significantly better than the existing approaches.
The algorithms can be modified to compute other types of extensions,
in particular, preferred extensions.

1 Introduction

Abstract argumentation is a field of Artificial Intelligence (AI) dealing with for-
mal representation of arguments and relations between arguments. Its aim is,
among others, to provide methods for resolving conflicts collaboratively. The
most prominent approach in this field, Argumentation Frameworks (AFs), has
attracted increasing attention in the AI and particularly in the Knowledge Repre-
sentation communities since its introduction by Dung in [10]. In AFs, arguments
are abstracted away from their actual contents and conflicts are modelled in form
of attacks between arguments. This abstraction allows an intuitive formalization
using directed graphs. The semantics is defined through sets of arguments called
extensions. Several different types of extensions of AFs have been proposed in
the literature [3], which gave rise to interesting computational problems such as,
for instance, deciding whether a given argument appears in at least one exten-
sion of a certain type (credulous reasoning), or deciding whether it appears in all
extensions of a certain type (skeptical reasoning), or enumerating all extensions
of a certain type.

The computational complexity of these and related decision, enumeration,
and counting problems have by now been well investigated [11,21]. There are
also highly optimized solvers that can handle large problem instances. In the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 176–191, 2023.
https://doi.org/10.1007/978-3-031-43619-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_13&domain=pdf
http://orcid.org/0000-0003-1497-4001
http://orcid.org/0000-0002-4196-0150
https://doi.org/10.1007/978-3-031-43619-2_13

Computing Stable Extensions of Argumentation Frameworks 177

bi-annually organized International Competition on Computational Models of
Argumentation (ICCMA), these solvers compete in different tracks on several
different reasoning tasks. Typically, they encode these tasks as problems from
other formalisms such as, for instance, the constraint satisfaction problem or the
satisfiability problem of propositional logic, and benefit from existing highly opti-
mized solvers developed there. There are also algorithms specifically tailored for
computational problems in AFs that directly solve these problems without reduc-
ing them to another formalism. A detailed survey of both types of approaches
can be found in [8].

In the present work, we propose an approach for computing extensions of AFs
based on Formal Concept Analysis (FCA) [15]. To this purpose, we characterize
an AF as a formal context. Such a characterization was first noted in [2]. We
exploit the similarity between an AF and a formal context and employ algorithms
from FCA to compute stable extensions. Our algorithms can be modified to
compute extensions of other types, such as preferred extensions.

The paper is organized as follows. In Sect. 2, we introduce basic notions of
AFs and FCA. In Sect. 3, we present a translation from AF to FCA and show
that stable extensions are closed sets (called concept intents) in this translation
with some special properties. We then modify two well-known algorithms from
FCA to compute stable extensions. In Sect. 4, we present an evaluation of our
algorithms on randomly generated AFs and provide a comparison with existing
tools. In Sect. 5, we conclude with a summary and future work.

2 Preliminaries

2.1 Abstract Argumentation Frameworks

We recall some basic notions from abstract argumentation frameworks as intro-
duced in [10]. An AF is a directed graph F = (A,R), where A is a finite set of
arguments and R ⊆ A×A is the attack relation. An edge (a, b) ∈ R denotes that
the argument a attacks the argument b (in the AF F). A set of arguments S ⊆ A
attacks b if there is a ∈ S such that (a, b) ∈ R, and b attacks S if (b, a) ∈ R for
some a ∈ S. We say that S ⊆ A defends a ∈ A if every argument attacking a is
attacked by S.

Figure 1 gives an example of an argumentation framework over arguments
A = {a, b, c, d, e}. Here, for example, a attacks b and c; the set {b, c} attacks a
and d; the argument d attacks the set {a, e} and, in fact, every set containing c
or e; and {a, e} defends d, since it attacks both its attackers, c and e.

a b c d e

Fig. 1. Example of an argumentation framework.

178 S. Obiedkov and B. Sertkaya

Given an AF F = (A,R), a set S ⊆ A is said to be conflict-free (in F) if S
does not attack any of its elements. We denote the set of conflict-free subsets of
A as cf(F). That is, cf(F) = {S ⊆ A | ∀a, b ∈ S : (a, b) �∈ R}.

Several different types of semantics expressing different properties of sets of
arguments have been considered in the literature [3,10]. We introduce only those
of them that are relevant for our work.

Let F = (A,R) be an argumentation framework and S ∈ cf(F). Then S is
called

– an admissible extension if every a ∈ S is defended by S;
– a preferred extension if it is a maximal (w.r.t. set inclusion) admissible exten-

sion;
– a stable extension if S attacks every a ∈ A \ S.

Since a stable extension S attacks all other elements including all those that
attack S, every stable extension is also a preferred extension.

The preferred extensions of the AF from Fig. 1 are {a, d}, {b, c}, and {b, d},
and its stable extensions are {a, d} and {b, d}.

Several interesting decision, counting, and enumeration problems in abstract
argumentation have been considered in the literature [4,11,21]. Here we list only
two of them that are relevant for us. For an AF F = (A,R), an argument a ∈ A,
and a semantic σ:

– Find a σ-extension of F if there is one.
– Enumerate all σ-extensions of F .

It is known that these problems are intractable for many of the interesting
semantics [11,21]. Existing approaches typically solve these problems by reducing
them to other formalisms such as constraint-satisfaction problem (CSP), propo-
sitional logic, or answer-set programming, and benefit from highly optimized
solvers developed for these formalisms. To name a few, μ-toksia [27] encodes
these problems as the Boolean satisfiability problem and makes use of a SAT-
solver; pyglaf [1] reduces these problems to circumscription and employs an exist-
ing solver for circumscription; and ConArg [5] reduces them to constraints and
uses a CSP-solver.

2.2 Formal Concept Analysis

Formal Concept Analysis [15] is a field of mathematics used for identifying clus-
ters in data and for building a hierarchy of these clusters with tools originating
from lattice theory. It has found application in several domains including biol-
ogy [18], data mining [26], information retrieval [19], knowledge processing [31],
and machine learning [6,9,24,30].

We will introduce only those notions and results from FCA that are relevant
for our purposes. In FCA, one represents data using a formal context specifying
which objects have which attributes. A formal context is usually denoted by
K = (G,M, I), where G is a set of objects, M is a set of attributes, and I ⊆ G×M

Computing Stable Extensions of Argumentation Frameworks 179

is an incidence relation between the objects and the attributes. A finite context
can be visualized as a cross table, where the rows represent the objects and the
columns represent the attributes of the context. A cross in column m of row g
means that the object g has the attribute m, and the absence of a cross means
that g does not have the attribute m.

For a set of objects A ⊆ G, the derivation operator (·)↑ applied to A produces
the set of attributes that are common to all objects in A:

A↑ = {m ∈ M | ∀g ∈ A : (g,m) ∈ I}.

Similarly, for a set of attributes B ⊆ M , the derivation operator (·)↓ applied to
B yields the set of objects that have all attributes in B:

B↓ = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.

We sometimes abuse the notation and write x↑ (resp. x↓) instead of {x}↑ (resp.
{x}↓) for an object (resp. attribute) x.

Proposition 1. For A1 ⊆ A2 ⊆ G (resp. B1 ⊆ B2 ⊆ M), it holds that

– A↑
2 ⊆ A↑

1 (resp. B↓
2 ⊆ B↓

1);
– A1 ⊆ A↑↓

1 and A↑
1 = A↑↓↑

1 (resp. B1 ⊆ B↓↑
1 and B↓

1 = B↓↑↓
1).

As a consequence of this, the combined operator (·)↑↓ is a closure operator on
G and (·)↓↑ is a closure operator on M . Using these closure operators, one can
describe “natural clusters” in data, which are called formal concepts. A formal
concept of K = (G,M, I) is a pair (A,B), where A ⊆ G and B ⊆ M , such that
A↑ = B and B↓ = A. A is called the extent, and B is called the intent of the
formal concept (A,B).

When ordered w.r.t. subset inclusion of their extents (or, equivalently, w.r.t.
inverse inclusion of their intents), formal concepts yield a complete lattice called
the concept lattice of K. The concept lattice obtained from a dataset allows an
intuitive visualization of the data and enables domain experts to spot dependen-
cies between clusters in the data.

For A ⊆ G, the set A↑ is the intent of some formal concept, since (A↑↓, A↑) is
always a formal concept. A↑↓ is the smallest extent containing A. Consequently,
a set A ⊆ G is an extent if and only if A = A↑↓. The same applies to intents. The
intersection of any number of extents (respectively, intents) is always an extent
(intent). Hence, the set of all extents forms a closure system on G, and the set
of all intents forms a closure system on M [15].

It is well known that the set of all formal concepts of a context can be
exponential in the size of the context and determining the number of formal
concepts is #p-complete [23]. There are several algorithms for enumerating for-
mal concepts [7,12,13,17,22,28,29,32], some of which do this with a polynomial
delay [20]. For an analysis and evaluation of such algorithms, see [25].

180 S. Obiedkov and B. Sertkaya

3 An FCA Characterization of AF Semantics

We consider semantics of AFs from the viewpoint of FCA and make use of
algorithms developed there for solving the above mentioned problems. To this
purpose, we formulate argumentation frameworks as formal contexts, following
the connection first noted in [2].

Definition 1. Let (A,R) be an argumentation framework. The induced formal
context of (A,R) is K(A,R) = (A,A, (A × A) \ R).

Note that such induced contexts are special in that their sets of objects and
attributes coincide, which is not the case in general. Figure 2 shows the induced
formal context of the argumentation framework from Fig. 1.

K(A,R) a b c d e

a
b
c
d
e

Fig. 2. The induced formal context of the argumentation framework in Fig. 1. Its con-
cept intents are ∅, {e}, {d}, {d, e}, {b}, {b, d}, {b, c}, {b, c, e}, {b, c, d, e}, {a}, {a, e},
{a, d}, {a, d, e}, {a, b}, {a, b, d}, {a, b, c}, {a, b, c, e}, and {a, b, c, d, e}.

Following the definitions from Sect. 2.2, an application of the derivation oper-
ators of K(A,R) to S ⊆ A yields the following sets:

S↑ = {a ∈ A | ∀s ∈ S : (s, a) �∈ R}

and
S↓ = {a ∈ A | ∀s ∈ S : (a, s) �∈ R}.

Obviously, for a, b ∈ A, a attacks b if and only if b /∈ a↑ or, equivalently, a �∈ b↓.
More generally, for S ⊆ A, the set S↑ consists of arguments not attacked by S,
and S↓ is the set of arguments that do not attack S.

For example, in the context shown in Fig. 2, we have {a, b}↑ = {d, e} and
{a, b}↓ = {c, d, e}. Indeed, d and e are the only arguments attacked neither by
a nor by b in the AF from Fig. 1, while c, d, and e are the only arguments that
attack neither a nor b.

Proposition 2. Let (A,R) be an AF. A set S ⊆ A defends c ∈ A if and only if
S↑ ⊆ c↓ holds in K(A,R).

Proof. By definition, S↑ ⊆ c↓ reads as follows: every a ∈ A not attacked by S
does not attack c, which is equivalent to S defending c.

Computing Stable Extensions of Argumentation Frameworks 181

More formally, let b, c ∈ A and (b, c) ∈ R. Then, by definition, b �∈ c↓.
Assuming S↑ ⊆ c↓, we have b /∈ S↑ and S attacks b. Thus, S attacks all attackers
of c, or, in other words, S defends c.

Conversely, suppose that S defends c. Take b ∈ S↑, i.e., some b not attacked
by S. Since S defends c, we have (b, c) /∈ R, which is equivalent to b ∈ c↓.
Consequently, S↑ ⊆ c↓ holds in K(A,R). ��
Proposition 3. Given an AF (A,R), a set S ⊆ A is conflict-free if and only if
S ⊆ S↑ (or, equivalently, S ⊆ S↓) holds in K(A,R). S is a maximal conflict-free
set if and only if S = S↑ ∩ S↓ ∩ {a ∈ A | a ∈ a↓}.
Proof. The first statement holds by definition. To prove the second one, assume
that S is a conflict-free set and there is some b ∈ (S↑ ∩S↓ ∩{a ∈ A | a ∈ a↓})\S.
It holds that b ∈ S↑, b ∈ S↓, and b does not attack itself. Then S ∪ {b} is
also conflict-free, and S cannot be a maximal conflict-free set. Conversely, if
S = S↑ ∩ S↓ ∩ {a ∈ A | a ∈ a↓}, then, for every b �∈ S, either b �∈ S↑ and b is
attacked by S, or b �∈ S↓ and b attacks S, or b �∈ b↓ and b attacks itself. In none
of these case, S ∪ {b} is conflict-free. Hence, S is a maximal conflict-free set.

Proposition 4. Given an AF (A,R), a set S ⊆ A is an admissible extension if
and only if S ⊆ S↑ ⊆ S↓. A preferred (i.e., maximal admissible) extension S is
always a concept intent of K(A,R), i.e., S = S↓↑.

Proof. The first statement follows from Propositions 3 and 2. In particular, since
S↓ =

⋂{c↓ | c ∈ S}, Proposition 2 implies that S↑ ⊆ S↓ is equivalent to S
defending all its elements.

To prove the second statement, assume that S is admissible. Then it holds
that S ⊆ S↑ ⊆ S↓. Due to Proposition 1, this implies S↓↑ ⊆ S↑. Now, suppose
that S �= S↓↑, and take any b ∈ (S↓↑ \ S). It holds that b ∈ S↑ and thus b ∈ S↓,
i.e., S and b do not attack each other. Additionally, b ∈ S↓ = S↓↑↓ ⊆ b↓, the
last inclusion holding due to {b} ⊆ S↓↑ and Proposition 1. Therefore, b does not
attack itself and S ∪ {b} is conflict-free.

To see that S defends b, take an a ∈ A that attacks b, i.e., b �∈ a↑. If S
does not attack a, then a ∈ S↑ ⊆ S↓. Hence, S↓↑ ⊆ a↑ and b ∈ a↑, which is a
contradiction. Thus, S attacks a.

We have shown that S does not attack, is not attacked by, and defends every
element of S↓↑. No such element a can attack another such element b, since,
otherwise, a would have been attacked by S, which defends b. Therefore, if S
is an admissible set, then so is S↓↑. This means that preferred extensions are
concept intents (the reverse is not necessarily true). ��

Indeed, the three preferred extensions of the argumentation framework in
Fig. 1, {a, d}, {b, c}, and {b, d}, are among concept intents of the induced context
from Fig. 2. Since every stable extension S is also a preferred extension, from
Proposition 4, we have

Corollary 1. Given an AF (A,R), a stable extension S ⊆ A is always a concept
intent of K(A,R), i.e., S = S↓↑.

182 S. Obiedkov and B. Sertkaya

It turns out that we can give a compact and precise characterization of stable
extensions in terms of derivation operators of the induced formal context. Note
that S = S↑ reads as follows: “The set of elements not attacked by S is equal to
S,” which is the definition of a stable extension. Thus, we have

Proposition 5. Given an AF (A,R), a set S ⊆ A is a stable extension if and
only if S = S↑.

It is easy to see that no proper subset of a stable extension can be a stable
extension; therefore, stable extensions form an antichain (a subset of incompa-
rable elements) in the lattice of concept intents.

3.1 Enumerating Stable Extensions Using Next-Closure Algorithm

Proposition 5 suggests that we can enumerate stable extensions of an AF (A,R)
by computing concept intents of the induced context K(A,R) and outputting
only those intents S for which S = S↑. One well-known way of enumerating con-
cept intents in FCA is enumerating them in a so-called lectic order, which helps
avoiding multiple computation of the same intent. The lectic order is defined as
follows:

Definition 2. Let K = (G,M, I) be a formal context. Fix some some linear
order m1 < m2 < · · · < mn on the set of attributes M = {m1, . . . ,mn}. This
order induces a linear order on the power set of M , called the lectic order, which
we also denote by <. For mi ∈ M and A,B ⊆ M , we define:

A <i B iff mi ∈ B, mi �∈ A and ∀j < i (mj ∈ A ⇔ mj ∈ B).

The order < is the union of these orders <i, i.e.,

A < B iff A <i B for some i ∈ M.

Note this is the same order as the one obtained when we map sets to binary
numbers in a standard way, so that attribute mi adds 2i−1 to the number.
Obviously, < extends the strict subset order, and thus ∅ is the smallest and M
is the largest set w.r.t. <. The following proposition from [12,14] shows how to
compute the lectically next concept intent set for a given set.

Proposition 6. Given a formal context K = (G,M, I) and a set A � M , the
smallest concept intent greater than A w.r.t. the lectic order is

((A ∩ {m1, . . . ,mj−1}) ∪ {mj})↓↑,

where j is the maximal attribute satisfying A <j ((A∩{m1, . . . ,mj−1})∪{mj})↓↑.

In order to enumerate all concept intents of K, one starts with the lectically
smallest intent ∅

↓↑ and applies the proposition successively until the lectically
largest intent M is reached. This algorithm, known as the next-closure algorithm,
enumerates all concept intents of a given context with polynomial delay [12], and,

Computing Stable Extensions of Argumentation Frameworks 183

although the proposition may suggest otherwise, the algorithm is quite easy to
understand and implement.

Roughly speaking, the algorithm follows a computation tree, where a node
corresponds to an intent and a child is formed by adding an attribute to the
intent, computing the closure of the resulting set, and keeping it only if it does
not contain an attribute smaller than the one that was added. Along every branch
of the tree, attributes are added in the increasing order; that is, if an intent S
results from adding an attribute mi to its parent, its children are formed by
adding only attributes mj , where j > i, to S. For a more detailed explanation
and analysis of the algorithm, see [14].

To enumerate stable extensions of an argumentation framework, we can com-
pute the concept intents of the induced context with the next-closure algorithm,
cutting a computation branch as soon as we reach an intent that is not conflict-
free. Algorithm 1 enumerates all stable extensions of a given AF using this idea.

Algorithm 1 All Stable Extensions(A,R)
Input: Argumentation framework (A,R) with A = {a1, . . . an}.
Output: Stable extensions of (A,R) in the lectic order.
1: Construct the induced context K(A,R)
2: Fix a total order a1 < a2 < . . . < an on A
3: S = ∅

↓↑ {lectically smallest intent}
4: while S �= A do
5: if S = S↑ then {Check if S is a stable extension}
6: output S
7: S := Next-Conflict-Free-Intent(K(A,R), S)

Termination of Algorithm 1 is guaranteed since A is finite. It is correct due to
Proposition 5. Termination and correctness of Algorithm 2 is guaranteed due to
Proposition 6 [14]. The only modification we have done is checking for conflicts
in line 6 of Algorithm 2, which does not influence termination and correctness.

Algorithm 1 computes all conflict-free concept intents S ⊆ A of the induced
context K(A,R) with polynomial delay. However, only those that are stable
extensions are output. Between two stable extensions there can potentially be
exponentially many concept intents S that do not satisfy the criteria S = S↑ and,
hence, are not stable extensions. The runtime of our algorithm heavily depends
on the number of concept intents of K(A,R), which can be exponential in the
size of K(A,R). It is known that determining the number of concept intents is
#p-complete [23]. It was shown in [21] that enumerating stable extensions is not
output-polynomial unless p = np; thus we cannot expect to enumerate them
efficiently. On a positive side, it is easy to see that the memory requirements of
the algorithm depend only linearly on the number of arguments, since it needs
to store a constant number of sets and maintain a constant number of indices.

184 S. Obiedkov and B. Sertkaya

Algorithm 2 Next Conflict Free Intent(K(A,R), S)
Input: Induced context K(A,R) with a total order a1 < a2 < . . . < an on A and a set

S ⊆ A.
Output: Lectically next conflict-free intent of K coming after S.
1: for ai := an to ai := a1 do {iterate in reverse order}
2: if ai ∈ S then
3: remove ai from S
4: else
5: T := (S ∪ {ai})↓↑

6: if T ⊆ T ↓ then {check for conflict}
7: if aj �∈ (T \ S) holds for every aj < ai then {lectic-order check}
8: return T {lectically next conflict-free intent}

3.2 Norris-Based Algorithm for Stable Extensions

Next, we present an adaptation of an algorithm that was originally developed by
E.M. Norris for computing the maximal rectangles in a binary relation [28]. This
algorithm, being used in the FCA community for enumerating concept intents,
has proven to be fast for different types of formal contexts in practice [25].
Similar to the next-closure algorithm, it uses the lectic-order check to avoid
multiple generation of the same intent. Unlike next-closure, it keeps a list of
candidates from which intents are incrementally computed, which makes closure
computation more efficient.

Algorithm 3 is an adaptation of this approach. It iteratively processes sub-
contexts (A,B, (A × B) \ R), where B ⊆ A, of the context K(A,R), starting
with B = ∅ and adding one argument at a time in an arbitrary order. The
algorithm maintains a list of 4-tuples of the form (S↓, S, S↑, S↓ ∩S↑), where S is
potentially a subset of a stable extension and the derivation operators are taken
with respect to the current subcontext.

Algorithm 3 Incremental Stable Extensions(A,R)
Input: Argumentation framework (A,R).
Output: Stable extensions of (A,R) yielded by the Add subrprocedure.
1: B := ∅

2: C := {(A,∅, A,A)}
3: for all a ∈ A do
4: Add((A,R), B, a, C) {Add modifies C}
5: B := B ∪ {a}

When processing an argument a, the algorithm attempts to extend every set
S on the list with a if this does not cause a conflict (see line 1 of Algorithm 4).
Two cases are possible then. If arguments not attacking S do not attack a either,

Computing Stable Extensions of Argumentation Frameworks 185

then every stable extension containing S must contain a, and the algorithm
simply updates the components of the tuple corresponding to S (lines 2–11).
Otherwise (lines 12–22), the algorithm generates a new tuple corresponding to
S ∪ {a} and, unless it cannot be further extended without introducing conflicts,
the algorithm adds the new tuple to the list (lines 21–22). This new tuple is not
further processed in the current call to Algorithm 4. Note also the lectic-order
check in line 14. In both cases, if S ∪ {a} turns out to be a stable extension,
it is reported as such (lines 6 and 18) and the corresponding tuple is removed
from (or not added to) the list since, in this case, supersets of S ∪ {a} cannot
be stable extensions.

Algorithm 4 Add((A,R), B, a, C)
Input: Argumentation framework (A,R), B ⊆ A, a ∈ A \ B, and set C,

which, at the point of the call, must be equal to
{(S↓, S, S↑, S↓ ∩ S↑) | S↓↑ ∩ B = S ⊆ B and S � S↓ ∩ S↑}.

Output: Stable extensions S ⊆ B ∪ {a} of (A,R) containing a and updated C.
1: for all (X,S, Y, Z) ∈ C such that a ∈ Z do {S ∪ {a} is conflict-free}
2: if X ⊆ a↓ then {arguments not attacking S do not attack a}
3: S := S ∪ {a} {update the components of the existing tuple}
4: Y := Y ∩ a↑

5: if Y = S then {S attacks everything but itself}
6: output S
7: remove (X,S, Y, Z) from C
8: else
9: Z := Z ∩ a↑

10: if Z = S then
11: remove (X,S, Y, Z) from C
12: else
13: U := X ∩ a↓ {arguments not attacking S ∪ {a}}
14: if U ⊆ b↓ for no b ∈ B \ S then {(S ∪ {a})↓↑ ∩ B = S ∪ {a}}
15: T := S ∪ {a}
16: V := Y ∩ a↑ {arguments not attacked by T}
17: if T = V then {T attacks everything but itself}
18: output T
19: else
20: W := U ∩ V
21: if W �= T then {T can be extended}
22: add (U, T, V,W) to C

Termination of Algorithm 4 is guaranteed, since C is finite. Termination of
Algorithm 3 is guaranteed, since Algorithm 4 is invoked exactly once for every
a ∈ A.

Algorithm 4 differs from the original algorithm for computing concept intents
in several aspects. It stores additional information in the last two components of

186 S. Obiedkov and B. Sertkaya

tuples in list C; however, if memory is an issue, this information can be recom-
puted from the second component and the original framework. In line 1, it is
checked if adding a to S causes a conflict. In line 5, it is checked whether S is
a stable extension; in this case, it is removed from the list, since its supersets
cannot be stable extensions. Finally, a new tuple generated after line 12 is added
to the list only if the corresponding intent is not a stable extension (which is
checked in line 17) and there remain arguments that can be added to it without
causing conflicts (which is checked in line 21). Apart from these changes, the
algorithm acts as the original algorithm. Therefore, Algorithm 3 generates all
conflict-free intents, which guarantees its correctness.

3.3 Preferred Extensions

With some effort, the Algorithms 1 and 3 can be adapted to other semantics. In
this subsection, we outline a possible adaptation to preferred semantics.

As shown in Proposition 4, every preferred (i.e., maximal admissible) exten-
sion is a concept intent. Each of the two presented algorithms implicitly builds
a tree of intents, from small to large, cutting a branch as soon as it stumbles
upon a maximal conflict-free set, which may or may not be a stable extension.
While doing so, it necessarily generates all preferred extensions. To identify them
among generated intents, one can check admissibility for every generated intent
and keep track of the largest generated admissible extension on each branch. If
a branch terminates with a stable extension, it is the only preferred extension
on this branch. The other preferred extensions are among admissible extensions
that are either terminal nodes in the tree or intermediate nodes with no admis-
sible extensions among descendants. Let us call nodes satisfying this condition
preferred candidates. They have to be checked for subset-maximality (unless they
are stable).

If the goal is to compute a single preferred extension, the maximality check
can be avoided. Traversing the tree of intents in the left-to-right depth-first-
order, we can be sure that the first preferred candidate S is, in fact, a maximal
admissible extension. This is so, because all intents containing S as a subset
are either among its descendants in the tree or precede S in this order. Neither
of the two presented algorithms follows this left-to-right depth-first-order when
computing intents; so, some care should taken when implementing this trick with
them. Alternatively, it is possible to modify the algorithms so that they follow
this order (resulting in an algorithm similar to what is known as Close by One
in the FCA community [22]), and then the first preferred candidate as computed
by the algorithm will be a preferred extension.

If the goal is to enumerate all preferred extensions, we do need to check for
maximality. A simple way to do this is as follows: we start with an empty list
L of potentially preferred extensions and, as soon as we obtain a new preferred
candidate S, we check if it is a subset of any set from L (in which case we ignore
S; otherwise, we add S to L) or a superset of some sets from L (in which case,
these sets are removed from L). Upon the termination of the algorithm, L will
be the set of all preferred extensions.

Computing Stable Extensions of Argumentation Frameworks 187

4 Experimental Results

Most of the available tools for argumentation frameworks do no support enumer-
ating all stable extensions, but only allow finding a single extension. The latter
problem is called “SE-ST” at the ICCMA competitions, and, in this section, we
evaluate the performance of our algorithms on this problem. This means that
we terminate our algorithms as soon as they produce the first extension or allow
them to run to completion if the AF contains no stable extensions.

We have evaluated the runtime performance of Algorithms 1 and 3 from
Sect. 3 on randomly generated AFs with different sizes and densities. By the size
of an AF (A,R), we mean the number of arguments of the AF, i.e., |A|. By its
density, we mean the proportion |R|/|A|2. We have generated test frameworks
containing 200, 600, 800, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, and 10k arguments,
each with densities ranging from 0.1 to 0.9. Thus we have generated altogether
117 test files.1 While generating the test frameworks, we did not allow arguments
to attack themselves. Our implementation2 supports the new input format intro-
duced for ICCMA 2023. The tools used for the comparison accept input in the
apx-format. Therefore, the test data contains each framework in both formats.

The tests were performed under Ubuntu Linux on a hardware with a 32
core-CPU running at 2.9 GHz and 256 GB of main memory. For comparing
our approach with the existing ones, we have evaluated three other tools from
the ICCMA competitions with the same test frameworks. These are μ-toksia3,
pyglaf4, and a-folio-dpdb5. As time limit, we fixed five minutes for all the five
approaches. We did not put any constraints on their memory usage.

The results of the experiments on frameworks with densities from 0.2 to 0.9
are shown in Fig. 3, which refers to Algorithm 1 as affca-nc and to Algorithm 3
as affca-norris. For density 0.1, all approaches failed with a timeout on almost
all framework sizes. In the diagrams, discontinued lines are due to timeouts for
some framework sizes. For instance, for density 0.9, pyglaf terminated within
the time limit for frameworks of sizes 200, 600, 2k, 3k, 4k, and 5k but not for
frameworks of sizes 800, 1k, and greater than 5k. Therefore, there is a gap in
the corresponding line between the framework sizes 600 and 2k.

The results of the evaluation show that Algorithm 3 performs significantly
better than all other four approaches on test frameworks with density of 0.5
and above (the exceptions being the 4k-framework with density 0.6, and the
2k-framework with density 0.5, which only μ-toksia was able to process within
the time limit). The performance difference is most visible on frameworks with
large densities. For instance, for density 0.9 and size 9k, Algorithm 3 is almost
ten times faster than μ-toksia and two times faster than Algorithm 1; the other
tools get timeout. As the density of the frameworks decreases, the performance

1 The test frameworks are available via the GitHub Repository of the project.
2 https://github.com/sertkaya/afca.
3 https://bitbucket.org/andreasniskanen/mu-toksia/src/master/.
4 https://alviano.com/software/pyglaf.
5 https://github.com/gorczyca/dp on dbs.

https://github.com/sertkaya/afca
https://bitbucket.org/andreasniskanen/mu-toksia/src/master/
https://alviano.com/software/pyglaf
https://github.com/gorczyca/dp_on_dbs

188 S. Obiedkov and B. Sertkaya

Fig. 3. Experimental results

of our algorithms deteriorates. For density 0.3 and below, they terminate within
the time limit only for the framework with the smallest number of arguments,
namely, 200 arguments. For such test frameworks, μ-toksia is the only tool that
still terminates within the time limit.

The reason why our algorithms perform better on AFs with denser attack
relations is, in fact, clear: for such AFs, the induced context representing the
not-attack relation is sparser, and the number of concepts in a sparse context is
usually small.

Computing Stable Extensions of Argumentation Frameworks 189

5 Conclusion and Future Work

We have presented a characterization of AFs as formal contexts and adapted
two algorithms from FCA for computing stable extensions of AFs. Experimen-
tal results with randomly generated test data show that our approach performs
significantly better than the existing approaches for AFs with dense attack rela-
tions. Our Algorithm 1, based on the Next Closure algorithm, has the advantage
that its memory requirements depend linearly on the number of arguments and
do not depend on any other parameters of the argumentation framework. The
other one, Algorithm 3, can more efficiently prune the search tree and, therefore,
often has the best performance among all approaches we have evaluated. How-
ever, it has the disadvantage that it stores all stable-extension candidates and,
because of this, has a high memory requirement, in the worst case, exponential
in the number of arguments.

We plan to improve the algorithms so that they could skip larger number of
intents when searching for stable extensions and, in particular, prune larger parts
of the search tree that will not lead to stable extensions. Various heuristics could
be used to speed up the computation [16]. One heuristic that could work for both
algorithms when run on frameworks with self-attacking arguments would be to
fix the linear order on arguments so that such arguments (which cannot be part of
any stable extension) are easily skipped. Another option would be to fix an order
where arguments that are more likely to appear in stable extensions are used
first. These can be, for instance, arguments that are attacked by a small number
of arguments but attack a large number of other arguments. This heuristic can
especially be useful for the problem of finding a single stable extension.

Acknowledgements. This work is partly supported by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) in project 389792660 (TRR 248, Center
for Perspicuous Systems), by the Bundesministerium für Bildung und Forschung
(BMBF, Federal Ministry of Education and Research) in the Center for Scalable Data
Analytics and Artificial Intelligence (ScaDS.AI), and by BMBF and DAAD (German
Academic Exchange Service) in project 57616814 (SECAI, School of Embedded Com-
posite AI).

References

1. Alviano, M.: The PYGLAF argumentation reasoner (ICCMA2021). CoRR
abs/2109.03162 (2021). https://arxiv.org/abs/2109.03162

2. Amgoud, L., Prade, H.: A formal concept view of abstract argumentation. In: van
der Gaag, L.C. (ed.) ECSQARU 2013. LNCS (LNAI), vol. 7958, pp. 1–12. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39091-3 1

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/
S0269888911000166

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.scads.de
https://www.scads.de
https://arxiv.org/abs/2109.03162
https://doi.org/10.1007/978-3-642-39091-3_1
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166

190 S. Obiedkov and B. Sertkaya

4. Baroni, P., Dunne, P.E., Giacomin, M.: On extension counting problems in argu-
mentation frameworks. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R.
(eds.) Computational Models of Argument: Proceedings of COMMA 2010, Desen-
zano del Garda, Italy, 8–10, September 2010. Frontiers in Artificial Intelligence and
Applications, vol. 216, pp. 63–74. IOS Press (2010). https://doi.org/10.3233/978-
1-60750-619-5-63

5. Bistarelli, S., Santini, F.: ConArg: a constraint-based computational framework
for argumentation systems. In: IEEE 23rd International Conference on Tools with
Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, 7–9 November 2011, pp.
605–612. IEEE Computer Society (2011). https://doi.org/10.1109/ICTAI.2011.96

6. Borchman, D., Hanika, T., Obiedkov, S.: Probably approximately correct learning
of Horn envelopes from queries. Discret. Appl. Math. 273, 30–42 (2020). https://
doi.org/10.1016/j.dam.2019.02.036

7. Bordat, J.P.: Calcul pratique du treillis de Galois d’ une correspondance.
Mathématiques, Informatique et Sciences Humaines 96, 31–47 (1986)

8. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implemen-
tations for formal argumentation. FLAP 4(8), 2623–2705 (2017). http://www.
collegepublications.co.uk/downloads/ifcolog00017.pdf

9. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. J. Artif. Intell. Res. 24(1), 305–339 (2005)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X

11. Dunne, P.E., Wooldridge, M.J.: Complexity of abstract argumentation. In: Simari,
G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0 5

12. Ganter, B.: Two basic algorithms in concept analysis. Technical report Preprint-Nr.
831, Technische Hochschule Darmstadt, Darmstadt, Germany (1984)

13. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B.
(eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 312–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11928-6 22

14. Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49291-8

15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

16. Geilen, N., Thimm, M.: Heureka: a general heuristic backtracking solver for
abstract argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2017.
LNCS (LNAI), vol. 10757, pp. 143–149. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75553-3 10

17. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on Galois (concept) lattices. Comput. Intell. 11(2), 246–267 (1995)

18. Grissa, D., Comte, B., Pétéra, M., Pujos-Guillot, E., Napoli, A.: A hybrid and
exploratory approach to knowledge discovery in metabolomic data. Discrete Appl.
Math. 273, 103–116 (2020). https://doi.org/10.1016/j.dam.2018.11.025. Advances
in Formal Concept Analysis: Traces of CLA 2016

19. Ignatov, D.I.: Introduction to formal concept analysis and its applications in infor-
mation retrieval and related fields. CoRR abs/1703.02819 (2017). http://arxiv.org/
abs/1703.02819

20. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.3233/978-1-60750-619-5-63
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1016/j.dam.2019.02.036
https://doi.org/10.1016/j.dam.2019.02.036
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-0-387-98197-0_5
https://doi.org/10.1007/978-3-642-11928-6_22
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1016/j.dam.2018.11.025
http://arxiv.org/abs/1703.02819
http://arxiv.org/abs/1703.02819

Computing Stable Extensions of Argumentation Frameworks 191

21. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the exten-
sions of abstract argumentation frameworks. In: Sierra, C. (ed.) Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, 19–25 August 2017, pp. 1145–1152. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/159

22. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Autom. Documentation Math. Linguist. 27(5), 11–21 (1993)

23. Kuznetsov, S.O.: On computing the size of a lattice and related decision problems.
Order 18(4), 313–321 (2001). https://doi.org/10.1023/A:1013970520933

24. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.
(ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24651-0 25

25. Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generat-
ing concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)

26. Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal con-
cept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Anal-
ysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005). https://
doi.org/10.1007/11528784 10

27. Niskanen, A., Järvisalo, M.: µ-toksia: an efficient abstract argumentation reasoner.
In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
KR 2020, Rhodes, Greece, 12–18 September 2020, pp. 800–804 (2020). https://
doi.org/10.24963/kr.2020/82

28. Norris, E.M.: An algorithm for computing the maximal rectangles in a binary
relation. Rev. Roumaine Math. Pures Appl. 23(2), 243–250 (1978)

29. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett.
71(5–6), 199–204 (1999)

30. Obiedkov, S.: Learning implications from data and from queries. In: Cristea, D.,
Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 32–44.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3 3

31. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis
in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16),
6538–6560 (2013)

32. Valtchev, P., Missaoui, R.: Building concept (Galois) lattices from parts: gener-
alizing the incremental methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS-
ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44583-8 21

https://doi.org/10.24963/ijcai.2017/159
https://doi.org/10.1023/A:1013970520933
https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/11528784_10
https://doi.org/10.1007/11528784_10
https://doi.org/10.24963/kr.2020/82
https://doi.org/10.24963/kr.2020/82
https://doi.org/10.1007/978-3-030-21462-3_3
https://doi.org/10.1007/3-540-44583-8_21

Reasoning in Assumption-Based
Argumentation Using Tree-Decompositions

Andrei Popescu and Johannes P. Wallner(B)

Institute of Software Technology, Graz University of Technology, Graz, Austria
{andrei.popescu,wallner}@ist.tugraz.at

Abstract. We address complex reasoning tasks in assumption-based
argumentation (ABA) by developing dynamic programming algorithms
based on tree-decompositions. As one of the prominent approaches in
computational argumentation, our focus is on NP-hard reasoning in
ABA. We utilize tree-width, a structural measure describing closeness to
trees, for an approach to handle computationally complex tasks in ABA.
We contribute to the state of the art by first showing that many reason-
ing tasks in ABA are fixed-parameter tractable w.r.t. tree-width using
Courcelle’s theorem, informally signaling wide applicability of dynamic
programming algorithms for ABA. Secondly, we develop such algorithms
operating on tree-decompositions of given ABA frameworks. We instan-
tiate the algorithms in the recent D-FLAT framework allowing for declar-
ative and extensible specification of dynamic programming algorithms.
In an experimental evaluation on a resulting prototype, we show promise
of the approach in particular for complex counting tasks.

1 Introduction

Computational approaches to arguing in favour or against statements under
scrutiny are a main research theme in the field of computational argumenta-
tion [4,38], within Artificial Intelligence (AI). Placed in the area of knowledge
representation and reasoning and non-monotonic reasoning, computational argu-
mentation features a diverse set of application avenues, such as legal reasoning,
medical reasoning, and e-government [3].

Approaches to formalize argumentative reasoning are studied in the field
of structured argumentation [5]. Formalisms in structured argumentation usu-
ally follow the so-called argumentation workflow [14] to prescribe ways of find-
ing arguments and their relationships. A starting point are knowledge bases,
oftentimes assumed to be in a rule-based form. Arguments are then instan-
tiated as derivations applicable within the knowledge base. Reasoning based
on the arguments and their relations is carried out by using argumentation
semantics, through which one can specify acceptable sets of arguments. Several
approaches to structured argumentation have been studied, e.g., assumption-
based argumentation (ABA) [12,20], ASPIC+ [50,51], defeasible logic program-
ming (DeLP) [40,41], and deductive argumentation [6,7].

c© The Author(s) 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 192–208, 2023.
https://doi.org/10.1007/978-3-031-43619-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_14&domain=pdf
http://orcid.org/0000-0002-6601-5454
http://orcid.org/0000-0002-3051-1966
https://doi.org/10.1007/978-3-031-43619-2_14

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 193

Computationally speaking, argumentative reasoning in these approaches to
structured argumentation is hard: in almost all cases reasoning defined in
these formalisms is NP-hard, see, e.g., the survey by Dunne and Dvořák [32].
To address the complexity barrier, several algorithmic approaches were devel-
oped [15,16], and in a biannual International Competition on Computational
Models of Argumentation (ICCMA) [8,39,46,53], which this year is being held
for the fifth time, systems compete in terms of runtime performance.

An approach to tackle high complexity is the utilization of structural prop-
erties of instances, such as viewing instances in a graph-like manner and con-
sidering, e.g., acyclicity or other graph properties. A prominent such property is
tree-width [10], informally measuring closeness of instances to trees. The milder
complexity of many problems on trees oftentimes transfers to problems on graphs
of low tree-width. Algorithms following dynamic programming can then operate
on a tree-decomposition of the initial instance, with which one confines the com-
binatorial explosion of complex problems into subproblems, whose size can be
bounded by the tree-width of the original instance. Tree-based forms, or forms
close to trees, appear appealing to computational argumentation, since, e.g., dia-
logues might be represented in a tree-like structure. Indeed, tree-width has been
studied in several works in argumentation [27–31,34,47]. These studies focus
on the field of abstract argumentation, i.e., on formalisms where arguments are
given in an abstracted form such as the well-known argumentation framework
(AF) [26], and a form of deductive argumentation. To the best of our knowl-
edge, there is no current account of the utilization of tree-width for rule-based
structured argumentation formalisms such as ABA, ASPIC+, or DeLP.

Recent works show that lifting computational approaches in abstract argu-
mentation to structured argumentation is not immediate, and seems to involve
dedicated research on the structured formalisms [48,49]. We follow this line and
take up this opportunity to study algorithmic approaches utilizing tree-width
for ABA, as one of the prominent structured argumentation approaches with
applications in medical decision making [19,22] and in multi-agent contexts [33].

Our main contributions are as follows.

– We first show wide applicability of algorithms using tree-width by showing
fixed-parameter tractability of reasoning tasks in ABA, under the parameter
tree-width. We show these results by making use of Courcelle’s theorem [17]
and expressing reasoning in ABA in monadic second order logic (MSO).

– We develop tree-decomposition-based algorithms for ABA. Towards wider
extensibility, we first give a detailed account of a dynamic programming
algorithm for the stable semantics and instantiate algorithms for admissible,
complete, and stable semantics in the framework of D-FLAT [1,2,9], which
enables declarative specification of such algorithms in answer set program-
ming (ASP) [13,43,52]. Together with expressing ABA reasoning in MSO,
the declarative approach of D-FLAT leads to a system that has potential for
adaptation to other forms of structured argumentation, further semantics, or
other modes of reasoning.

194 A. Popescu and J. P. Wallner

– Finally, we present an experimental evaluation of a prototype using D-FLAT,
showing promise of our approach for complex counting tasks involving in
particular a high number of solutions.

Further material, including ASP encodings used within D-FLAT, can be
found at https://gitlab.tugraz.at/krr/astra.

2 Background

We recall assumption-based argumentation (ABA) [12,20], monadic second order
logic, and tree-width and tree-decompositions [10], next.

Assumption-Based Argumentation. We assume a deductive system (L,R), where
L is a set of atoms and R a set of inference rules over L. A rule r ∈ R has the form
a0 ← a1, . . . , an with each ai ∈ L. We denote the head of rule r by head(r) = a0

and the (possibly empty) body of r with body(r) = {a1, . . . , an}.

Definition 1. An ABA framework is a tuple F = (L,R,A,), where (L,R) is
a deductive system, A ⊆ L a non-empty set of assumptions, and a function
mapping assumptions A to atoms L.

In words, an ABA framework includes a deductive system, a distinction
between assumptions and non-assumptions, and a contrary function that assigns
contraries to assumptions. In this work, we focus on the commonly used logic
programming fragment of ABA [12]. We assume that all sets and rules in an ABA
framework are finite, and no assumption occurs in the head of a rule. The last
condition means that the ABA frameworks are flat. As a slight generalization,
we allow the contrary function to be partial.

Derivability in ABA can be defined in multiple ways, we recall the so-called
forward-derivations, here called simply derivations. An atom a ∈ L is derivable
from a set X ⊆ A using rules R, denoted by X �R a, if a ∈ X or there is a
sequence of rules (r1, . . . , rn) such that head(rn) = a and for each rule ri we
have ri ∈ R and each atom in the body of ri is derived from rules earlier in the
sequence or is in X, i.e., body(ri) ⊆ X ∪ ⋃

j<i{head(rj)}. The deductive closure
for an assumption set X w.r.t. rules R is defined as ThR(X) = {a ∈ L | X �R a}.

Example 1. Our running example ABA framework F = (L,R,A,) is given
with A = {a, b}, L = A ∪ {x, y, z}, the rules r1 = (x ← a), r2 = (y ← x),
r3 = (z ← b), and contraries a = z and b = y.

The contrary function is used to define attacks between assumption sets.

Definition 2. Let F = (L,R,A,) be an ABA framework, and A,B ⊆ A be
two sets of assumptions. Assumption set A attacks assumption set B in F if
A′ �R b for some A′ ⊆ A and b ∈ B.

Conflict-free assumption sets and defense are defined, as follows.

https://gitlab.tugraz.at/krr/astra

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 195

Definition 3. Let F = (L,R,A,) be an ABA framework. An assumption set
A ⊆ A is conflict-free in F iff A does not attack itself. Set A defends assumption
set B ⊆ A in F iff for all C ⊆ A that attack B it holds that A attacks C.

The ABA semantics we focus on in this work are then defined next.

Definition 4. Let F = (L,R,A,) be an ABA framework. Further, let A ⊆ A
be a conflict-free set of assumptions in F . In F , set A is

– admissible iff A defends itself,
– complete iff A is admissible and contains all assumption sets defended by A,
– preferred iff A is admissible and there is no admissible set of assumptions B

with A ⊂ B, and
– stable iff each {x} ⊆ A \ A is attacked by A.

Reasoning tasks on ABA include verifying whether a given set of assump-
tions is a σ-assumption set, and enumerating or counting σ-assumption sets.
In addition, often a relevant question is to find out whether a given atom is
acceptable under a semantics. To answer this question, two prominent reasoning
modes are credulous and skeptical acceptance of atoms in an ABA framework.
A given atom s ∈ L is credulously accepted in F under semantics σ iff there is a
σ-assumption set A such that s ∈ ThR(A), and skeptically accepted in F under
semantics σ iff s ∈ ThR(A) for all σ-assumption sets A. Credulous reasoning
under admissible, complete, stable, and preferred semantics is NP-complete and
skeptical acceptance under stable is coNP-complete, and ΠP

2 -complete under
preferred semantics [21,24].

Example 2. Continuing Example 1, there are two stable assumption sets {a}
and {b}, with deductive closures ThR({a}) = {a, x, y} and ThR({b}) = {b, z},
respectively. In this example, atoms x, y, and z are credulously accepted under
stable semantics, and no atom is skeptically accepted under stable semantics.

Monadic Second Order Logic and Tree-Decompositions. We recap monadic sec-
ond order logic and tree-decompositions, following Gottlob et al. [44].

Monadic second order logic (MSO) extends first order logic by allowing set
variables, which range over sets of domain variables, and quantification over these
set variables. We write individual variables as lowercase letters x and set variables
as uppercase letters X. For a set τ = {R1, . . . , Rk} of predicate symbols, a finite
structure I over τ , also called a τ -structure, has a finite domain D = dom(I)
and relations RI

i ⊆ Dri of arity ri for each predicate symbol Ri ∈ τ . Evaluation
of an MSO formula φ over a τ -structure I is defined, as usual. For our purposes,
it is sufficient to only consider unary and binary predicates.

A tree-decomposition of a τ -structure I is a pair (T, (Dt)t∈T), with T being
a rooted tree and each Dt ⊆ D = dom(I), satisfying the following properties.

1. Every domain element x ∈ D is part of some Dt, i.e., x ∈ Dt for some t ∈ T .
2. For every Ri ∈ τ and tuple (a1, . . . , ari

) ∈ RI
i it holds that there is some node

t ∈ T with {a1, . . . , ari
} ⊆ Dt.

3. The set {t | a ∈ Dt} induces a subtree of T , for each a ∈ D.

196 A. Popescu and J. P. Wallner

In brief terms, a tree-decomposition is a tree formed of so-called bags Dt consist-
ing of sets of domain elements. The second condition ensures that each relation
is fully part of at least one bag. The third condition, often referred to as the con-
nectedness condition, states that whenever two bags Dt and Dt′ both contain
an a, then on the path between those two bags, we encounter a in the bags.

The width of a tree-decomposition (T, (Dt)t∈T) is the maximum number of
domain elements in bags minus one, i.e., max{|Dt| | t ∈ T} − 1. The tree-width
of a τ -structure I is the minimum width of all tree-decompositions of I.

Complexity-wise, MSO and tree-width are connected, as stated by Courcelle’s
theorem.

Theorem 1 ([17]). Let φ be an MSO formula over a structure τ , and I be a
τ -structure of tree-width w. It holds that evaluating φ over I can be achieved in
O(f(|φ|, w) · |I|), for some function f .

In brief, a problem expressible in MSO is then said to be fixed-parameter
tractable (FPT) for the parameter tree-with of the underlying τ -structure. For an
overview on parametrized complexity (including FPT), see the book by Downey
and Fellows [25].

3 Complexity of ABA Under the Lens of Tree-Width

In this section, we show that a large range of problems in ABA can be addressed
algorithmically via utilizing tree-width, formally by stating that these problems
are FPT with the parameter tree-width.

Towards these results, we represent reasoning in ABA in MSO. We make
use of the following set of predicate symbols: τABA = {atom/1, asm/1, rule/1,
head/2, body/2, contrary/2, query/1}, together with the arities of the predicates.
The intention of the predicates is formalized next.

Definition 5. Let F = (L,R,A,) be an ABA framework. The associated τABA

structure, denoted by IF , is defined by atom(x) for each x ∈ L, asm(a) for
each a ∈ A, rule(r), head(r, h), and body(r, b1), . . . , body(r, bk) for each rule
r = h ← b1, . . . , bk, and contrary(a, x) for each a ∈ A and x ∈ L s.t. a = x.

The remaining query predicate is used to indicate what to query for credulous
or skeptical reasoning.

Example 3. Consider again the ABA framework from Example 1, which can be
written as a τABA structure containing atom(a), atom(b), atom(x), atom(y),
atom(z), asm(a), asm(b), rule(r1), rule(r2), and rule(r3) for the unary pred-
icates, and contrary(a, z), contrary(b, y), head(r1, x), head(r2, y), head(r3, z),
body(r1, a), body(r2, x), and body(r3, b) for the binary predicates. Part of a tree-
decomposition of this ABA framework is depicted in Fig. 1. This decomposition
is a so-called “nice” tree-decomposition, which has to satisfy further constraints
useful for algorithms operating on such a nice tree-decomposition. We recall the
formal definition of nice tree-decompositions in the next section. In this tree-
decomposition there are 22 nodes. For instance, r1 and a are together in the bag

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 197

∅

b

a, b

a, b, r1

b, r1

r2

∅

r1, b,

b

r3

∅

1

2

3

4

5

12

13

14

15

16

21

22

({b}, ∅, ∅, ∅)
(∅, ∅, ∅, {(∅, ∅)})
(∅, ∅, {b}, {(∅, ∅),
(∅, ∅)})
(∅, ∅, {b}, ∅)

1

2

3

4

τ2

({a}, ∅, ∅, ∅)
({b}, {r1}, {a}, ∅)
(∅, {r1}, ∅, ∅)
(∅, {r1}, {a}, {∅, {r1}})

1

2

3

4

τ15

(∅, ∅, ∅, ∅)1

τ21

({a, b}, ∅, ∅, ∅)
({a}, ∅, ∅, ∅)
({a}, ∅, {b}, {({a}, ∅)})
({a}, {r1}, {b}, {({a}, ∅),
({a}, ∅)})
({b}, {r1}, ∅, ∅)
(∅, {r1}, {b}, {(∅, {r1}),
(∅, {r1})})
(∅, {r1}, {b}, {(∅, {r1})})
(∅, {r1}, ∅, ∅)

1

2

3

4

5

6

7

8

τ5

(∅, {r2}, ∅, ∅)
({x}, ∅, ∅, {(∅, {r2})})

1

2

τ12

(∅, ∅, ∅, ∅)
({x}, ∅, ∅, {(∅, ∅)})

1

2

τ13

(∅, ∅, ∅, ∅)1

τ14

Fig. 1. Part of an example tree-decomposition of the ABA framework of Example 1.
(Color figure online)

of node 15, satisfying the condition that these two have to be together in one
bag because body(r1, a) holds.

We move on to expressing ABA semantics in terms of MSO. We make use
of several common shortcuts, as defined next, in addition to “x ∈ X” to denote
that a domain element is in the set.

x /∈ X := ¬(x ∈ X) X ⊆ Y := ∀x(x ∈ X → x ∈ Y)

X � Y := (X ⊆ Y) ∧ ¬(Y ⊆ X) X ⊆A Y := ∀x
(
(x ∈ X ∧ asm(x)) → x ∈ Y

)

X �A Y := (X ⊆A Y) ∧ ¬(Y ⊆A X) X =A Y := (X ⊆A Y) ∧ (Y ⊆A X)

First, we encode derivability. For a given ABA framework F and A ⊆ A, there
is a direct connection between ThR(A) and the unique ⊆-minimal classical model
of the propositional Horn formula

∧
a∈A a ∧ ∧

r∈R
(∧

b∈body(r) → head(r)
)
, that

is, the Horn theory consisting of each assumption in A as facts and rules in R
as implications. It holds that M ⊆ L is the ⊆-minimal model of this formula iff
M = ThR(A).

198 A. Popescu and J. P. Wallner

We can directly make use of this fact and represent derivability in ABA by
the following MSO formula, where we use quantification to express the same
reasoning as in the above Horn formula. First, we define satisfaction of rules by

∀r
(
rule(r) → ∃s

(
(head(r, s) ∧ s ∈ E

) ∨ (body(r, s) ∧ s /∈ E)
))

.

In this formula the set variable E is open. The formula states that whenever r is
a rule, then the rule has to be satisfied by E in the logical sense: either the head
is in E or some body element is missing from E. We call this formula φSat(E).

Derivability is then expressible by

φTh(E) = φSat(E) ∧ ∀E′((E′ � E ∧ E′ =A E) → ¬φSat(E′)
)
,

which states that E should satisfy the rules and no proper subset E′ � E that
shares the same assumptions satisfies the rules. Then E corresponds to the least
model of the above Horn formula (with assumptions stated as facts).

Attacks are expressible via φatt(E,S) = ∃x, a
(
x ∈ E∧a ∈ S∧contrary(a, x)

)
,

that is, set E attacks set S if there is a contrary in E of S. The contrary only
contains assumptions in the first position and atoms in the second.

The property of being conflict-free can be expressed as φcf (E) = φTh(E) ∧
¬φatt(E,E). The notion of defense can then be represented, as follows.

φdef (E,A) = ∀S
(
(S ⊆ L ∧ φTh(S) ∧ φatt(S,A)) → φatt(E,S))

In words, if E defends A if for each S attacking A we find E attacks S (for S
we also need to check derivability via φTh(S)).

Admissibility, the complete, and preferred semantics can then be represented,
as stated next.

φadm(E) = φcf (E) ∧ φdef (E,E)

φcom(E) = φadm(E) ∧ ∀S
(
(φdef (E,S) ∧ φTh(S)) → S ⊆ E

)

φprf (E) = φadm(E) ∧ ∀E′¬(
E′ ⊆ L ∧ E � E′ ∧ φadm(E′)

)

Finally, the stable semantics can be expressed by formula φstb(E), given as
φcf (E) ∧ ∀a(asm(a) → a ∈ E ∨ ∃x

(
x ∈ E ∧ contrary(a, x)

)
), capturing directly

the definition of stable semantics.
Credulous and skeptical reasoning can then be specified by stating

φCred
σ = ∃E

(
E ⊆ L ∧ φquery(E) ∧ φσ(E)

)
and

φSkept
σ = ∀E

((
E ⊆ L ∧ φσ(E)

) → (
φquery(E)

))
.

with φquery(E) = (∀x(query(x) → x ∈ E)). The formula φquery(E) directly
states that the atoms defined by query are in E. We tacitly assume that queries
defined by query refer only to atoms and not to rules.

By utilizing Courcelle’s results (Theorem 1), we can directly infer the fol-
lowing FPT result. The proof of this theorem directly follows from the previous
formulas, declaratively representing the definitions of ABA, and Theorem 1.

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 199

Theorem 2. Deciding credulous or skeptical acceptance of atoms in a given
ABA framework under admissible, complete, stable, or preferred semantics is
FPT w.r.t. tree-width.

4 Dynamic Programming Algorithms for ABA

In this section, we present our approach to compute reasoning tasks in ABA using
dynamic programming (DP) algorithms. Due to page limitations, we present a
DP algorithm using tree-decompositions for computing stable assumption sets,
and discuss changes needed for admissible and complete assumption sets. We
explain how to instantiate our algorithms in the D-FLAT [1,2,9] framework,
allowing for a declarative specification of the DP algorithms, and give full declar-
ative encodings in the online supplementary material.

On a high level, DP algorithms operating on tree-decompositions of a given
instance usually work bottom-up, by computing tables for each bag in post-order.
The tables computed for each bag represent current partial solution candidates
that can be inferred from the information encountered “so far”. In a final step,
partial solutions are then combined into full solutions. We delegate this step to
D-FLAT, which follows so called extension pointers in a top-down fashion, and
combines compatible partial solutions.

For the sake of clarity, we present our DP algorithm for stable semantics
by requiring that the tree-decomposition is nice and has empty bags as leaves
and as the root. Our implementation in D-FLAT does not require nice tree-
decompositions, however. In nice tree-decompositions each node has a type and
is either a leaf, the root, an introduction node, a removal node, or a join node.
Except for leaves and join nodes, the nodes have exactly one child, and join
nodes have exactly two children. Bags of introduction nodes have all objects of
the child bag and one additional object, while bags of removal nodes have exactly
one object less. Join nodes and their children have exactly the same bags. These
conditions allow for a more compact algorithm representation. One can efficiently
compute a nice tree-decomposition from a given tree decomposition [11].

Our algorithm is inspired by concepts for DP algorithms [35] for answer set
programming [43]. For a given ABA framework F = (L,R,A,), we define a
partial stable assumption set as a quadruple (I,R,D,CW), where I ⊆ L is
called a witness, R ⊆ R, D ⊆ A, and CW is a set of so-called counterwitnesses,
which are pairs (C,RC) with C ⊆ I and RC ⊆ R. We utilize the concepts of
witnesses counterwitnesses, as presented by Fichte et al. [35], in our DP algo-
rithms. Intuitively, each partial stable assumption set consists of a witness set I
of atoms that is a candidate for a stable assumption set and all atoms that can
be derived from the stable assumption set, while D contains the assumptions
attacked (“defeated”) by I. That is, I can be seen as atoms and assumptions
we “assume” to be part of a stable assumption set. Since we might encounter
components of rules in various places in the tree-decomposition, we view the
rules as Boolean Horn clauses and store in R all rules that are satisfied by I
(similar as in Sect. 3). Finally, a counterwitness represents pairs (C,RC) where

200 A. Popescu and J. P. Wallner

C shares the same assumptions as in I, i.e., I ∩A = C ∩A, but has strictly fewer
atoms (i.e., represents proper a subset) and RC the associated satisfied rules. A
counterwitness testifies that one can satisfy the rules RC with fewer atoms, and,
thus, is a counter to derivability of the atoms in I from the assumptions in I if
both I and C satisfy all rules in the root node. During bottom-up computation,
partial stable assumption sets and their counterwitnesses are modified, added,
or removed, depending on the objects encountered in the bags. A partial sta-
ble assumption set contains only components of the current bag (and may use
information from child bags).

Let us go over Algorithm 1 and Algorithm 2 for stable assumption sets. We
show here the case for enumerating stable assumption sets, but credulous and
skeptical reasoning can be achieved via small modifications: enumerating only
stable assumption sets containing or not containing a query.

In Algorithm 1 we call Algorithm 2 for each node in the tree-decomposition
of the given ABA instance and store the result in a table (Tab). Algorithm 2
computes these tables, given the tables of the children nodes. We store partial
stable assumption sets computed in Res (initially empty). In Line 3 we merge
the tables of the two children tables, by combining compatible partial stable
assumption sets. Two such sets are compatible if they coincide on their first
components I, i.e., for two sets τi and τj of partial stable assumptions sets,
the function merge returns {(I,Ri ∪ Rj ,Di ∪ Dj , Ci � Cj) | (I,Ri,Di, Ci) ∈
τi, (I,Rj ,Dj , Cj) ∈ τj}. For merging the counterwitnesses, we use Ci � Cj =
{(C,R ∪ R′) | (C,R) ∈ Ci, (C,R′) ∈ Cj}. If we are not in a join node, there is
only one child and we go over all previous partial stable assumption sets (loop
beginning with Line 5, after extracting the single table in the line before).

For the root node, there is a simple check: if there are no counterwitnesses
(C = ∅, Line 6), we have found an entry leading to stable assumption set.

Line 7 considers bags in which an atom a is introduced. In this case, the set
of partial stable assumption sets for this bag is obtained by utilizing each partial
stable assumption set in the child partial solution I , and creating two partial
stable assumption sets Iout and Iin , the former by not adding the introduced
atom a (Line 8), and the latter by adding it (Line 13). Note that the partial stable
assumption set with introduced atom a is only constructed if not conflicting
(Line 12). This can be seen in Fig. 1 at node 13 which introduces x, resulting in
two witnesses on lines 1 and 2 of τ13. In the figure, witnesses are shown in blue
and counterwitnesses are in red.

Algorithm 1. Compute partial stable assumption sets on T
Require: ABA framework F = (L, R, A,) and a nice tree-decomposition T of F .
Out: Function Tab(t) assigning each node T a set of partial solutions.
1: for t in post-order(T) do
2: childTables := {Tab(t′) | t′ child of t in T}
3: Tab(t) := ComputeTablestb(T, t, childTables)

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 201

The Sat function is used to compute satisfied rules, for a given node t, and set
I of atoms by defining Sat(t, I, R) = {r ∈ R | head(r) ∈ I or body(r) ∩ bag(t) �

I}, following a similar line of reasoning as in Sect. 3.
To construct new sets of counterwitnesses for each newly constructed partial

stable assumption set, an analogous process occurs (Line 10 and Line 15). In
the most trivial case, that of a new witness Iout constructed by not adding the

Algorithm 2. ComputeTablestb(t, childTables)
Require: node t, and set of sets of partial stable assumption sets childTables
Out: Return partial stable assumption sets
1: Res := ∅
2: if type(t) = leaf then return ∅
3: if type(t) = join then return mergeST (childTables)
4: Let τ ∈ childTables � childTables is a singleton
5: for (I, R, D, C) ∈ τ do
6: if type(t) = root ∧ C = ∅ then Res := Res ∪ {(I, R, D, C)}
7: if type(t) = intro ∧ a is the introduced atom
8: Iout := I, Rout := R ∪ Sat(t, Iout, Rules(t))
9: if a ∈ Iout then Dout := D ∪ {a} else Dout := D

10: Co = {(ICo, RCo ∪ Sat(t, ICo, Rules(t))) | (ICo, RCo) ∈ C}
11: Res := Res ∪ {(Iout, Rout, Dout, Co)}
12: if a /∈ I ∪ {a} � Conflict-free check
13: Iin := I ∪ {a}
14: Rin := Sat(t, Iin, Rules(t)) � New rules can become satisfied.
15: Cin := {(Ic ∪ {a}, Sat(t, Ic ∪ {a}, Rules(t))) | (Ic, Rc) ∈ C}
16: if a /∈ A then Cin := Cin ∪ C
17: Res := Res ∪ {(Iin, Rin, D, Cin)} ∪ {(I, Sat(t, I, Rules(t)))}
18: if type(t) = rem ∧ a is the removed atom
19: if a ∈ A
20: if a ∈ I ∨ a ∈ D � Stable check: only preserve if either In or Def.
21: R′ := Sat(t, I \ {a}, Rules(t))
22: C′ := {(Ic \ {a}, Sat(t, Ic \ {a}, Rules(t))) | (Ic, Rc) ∈ C}
23: Res := Res ∪ {(I \ {a}, R′, D \ {a}, C′)}
24: else
25: R′ := Sat(t, I \ {a}, Rules(t))
26: C′ := {(Ic \ {a}, Sat(t, Ic \ {a}, Rules(t))) | (Ic, Rc) ∈ C}
27: Res := Res ∪ {(I \ {a}, R′, D, C′)}
28: if type(t) = intro ∧ r is the introduced rule
29: R′ := R ∪ Sat(t, I, {r})
30: C′ := {(Ic, Rc ∪ Sat(t, Ic, {r})) | (Ic, Rc) ∈ C}
31: Res := Res ∪ {(I, R′, D, C′)}
32: if type(bag) = rem ∧ r is the removed rule
33: if r ∈ R � only keep an answer if r sat
34: R′ := R \ {r}
35: C′ := {(Ic, Rc \ {r}) | (Ic, Rc) ∈ C}
36: Res := Res ∪ {(I, R′, D, C′)}
37: return Res

202 A. Popescu and J. P. Wallner

introduced atom a, the set Co is given by preserving the counterwitnesses from
the child partial solution, with an updated set of satisfied bag rules (Line 10).

In the case of a witness constructed by the addition of a to a child witness,
if a is an introduced assumption, we require a to be part of the constructed
counterwitnesses, and thus we do not preserve all the child counterwitnesses C .
On the contrary, if the introduced atom is not an assumption (Line 16), we add
to our set of newly created counterwitnesses Cin the child counterwitnesses C .
In intuitive terms, for a witness constructed by the addition of an introduced
atom a /∈ A, there can be counterwitnesses, subsets of the witness, such that the
introduced atom has not been derived.

To enforce the return of stable assumption sets only, Algorithm 2 ensures
that when an atom is removed at node t , only those child assumption sets that
were stable are preserved as partial stable assumption sets in t . This is achieved
through the check for stable assumption sets in Line 20. In case an atom a /∈ A
is removed, this check is not required, and partial stable assumption sets are
preserved with updated sets I and R. With respect to Fig 1, node 2 removes
a, and row 2 in τ2 is the result of preserving a witness from τ3 (not shown) s.t.
a ∈ D, and b /∈ I, b /∈ D.

Finally, consider the two possibilities of a bag either introducing or removing
a rule r (Line 28 and Line 32 respectively). When a rule is introduced, witnesses
and counterwitnesses are preserved, both with an updated set of satisfied rules
accounting for the status of the introduced rule. On the contrary, when a rule is
removed, by the connectedness property we have visited all atoms in the rule,
hence the rule could not become satisfied elsewhere. Algorithm 2 enforces the
satisfiability of the removed rule by not preserving partial stable assumption sets
for which the removed rule has not been satisfied. Figure 1 depicts the case for
an introduced rule in table τ12, which introduces rule r2. In this case, counter-
witnesses that have been preserved, e.g., on line 2 of τ12, must have an updated
set of satisfied rules.

Admissibility and Complete Semantics. To verify whether an assumption set
defends itself against all attacks, one can ensure that all its attackers are attacked
by the set, or inversely, that there are no undefeated attackers. One can adapt
Algorithm 2 as follows: (i) we track derivability for undefeated atoms, (ii) we
check its correctness by ensuring that undefeated atoms are not attacked by the
set of supported assumptions, i.e. by the candidate admissible set I, (iii) we track
the set of atoms that are defeated, (iv) we require an assumption to be either
undefeated or defeated, and (v) we add the admissibility check by not preserving
those assumption sets that are attacked by some undefeated atom.

For complete semantics, one can ensure that the supported set of assump-
tions I includes all those assumptions that are undefeated and not attacked by
some undefeated set of assumptions, i.e., those assumptions that are defended.
In an algorithm for the complete semantics we can track an additional set AU
of assumptions that are attacked by undefeated. The algorithm then avoids pre-
serving assumption sets that do not include undefeated assumptions that are
not attacked by an undefeated assumption set.

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 203

Instantiating Our DP Algorithms. D-FLAT is a problem solving framework
based on the DP paradigm that was specifically developed to provide means for
declarative specification of algorithms operating on tree-decompositions of given
problem instances. The framework allows prototyping an algorithm to solve a
given problem by means of the ASP language.

We utilize D-FLAT to instantiate our algorithms for admissible, complete,
and stable assumption sets, and associated reasoning tasks, in the ASP language.
In the D-FLAT workflow, one can delegate the burden of computing a tree
decomposition of the problem instance, and of combining partial solutions to
D-FLAT itself. In this workflow, one specifies how partial solutions look like
(for stable semantics, our Algorithm 2), and how they can be validly combined,
also referred to as extended in D-FLAT terms. D-FLAT then takes care of the
storage and actual combination of partial solutions. More concretely, at each
node of the tree decomposition, D-FLAT performs a call to an ASP solver,
and computes a partial solution. Finally, D-FLAT combines partial solutions by
following external pointers, which intuitively specify which partial solutions can
be appropriately combined into a complete solution of the problem instance.

5 Experiments

In this section, we present an empirical evaluation of our prototype implemen-
tation using D-FLAT. The encodings, instances, and an instance generator used
in our evaluation are available with the online material.

Our prototype supports enumeration and counting of σ-assumption sets, for
σ ∈ {adm, com, stb}, and checking skeptical and credulous acceptance for these
semantics. Due to a potential high number of assumption sets, we considered
counting admissible, complete, and stable assumption sets in two modes, simi-
lar to previous works [18,48]. First, counting all σ-assumption sets and second
counting all σ-assumption sets with a given atom being derivable.

We observed that previous random generation methods for ABA instances
often result in instances with high tree-width. To explore the potential of our
tree decomposition-based approach, we generated ABA frameworks exhibiting
a (controlled) low tree-width. For general undirected graphs, k × n grids (with
vertices connected only to vertical and horizontal neighbours) have a controlled
tree-width of min(k, n). We adapted this behavior, by constructing k×n grids of
k ·n atoms. A third of these are randomly and uniformly chosen as assumptions.
For each non-assumption atom in the grid, this atom is used as a head in a
predefined number rph (rules per head) of rules. The rph number is randomly
picked in a restricted range (0–3). The number of body elements for each rule
is picked randomly between 0 and the number of cross neighbours of an atom.
The selected amount of body elements are then randomly picked from the cross
neighbourhood. This process is repeated an rph number of times, and during
the first iteration only assumptions are allowed as body elements. Contraries are
generated based on the flip of a coin from the two steps cross neighbourhood of
an assumption in the grid. While the contraries might lead to a higher tree-width,

204 A. Popescu and J. P. Wallner

we observed that the resulting tree-width is sufficiently bounded. A randomly
chosen query atom is generated for each instance (uniform probability).

Our experiments were conducted on a Linux machine with 64-bit architec-
ture, powered by an Intel i5 CPU with 8 cores and 8 GB of memory. We imposed
a timeout limit of 600 s per run, and a memory limit of 8192 MB.

We compared our approach against the current state-of-the-art ASP-based
approach [48,49] using Clingo [42] (version 5.4.1) as the ASP solver. Table 1
shows an overview of the results, computed over a total of 81 instances generated
by four instances for each k ∈ {2, 3, 5} and n ∈ {10, 20, 100, 200, 400, 500, 700},
excluding 3 instances that resulted in errors for D-FLAT.

The results indicate that for solving the counting tasks, the semantics plays
a major role: our prototype had fewer timeouts than when using clingo when
counting admissible assumption sets (the case with query denoted by appending
“-q”). For stable semantics, both approaches are somewhat on-par with Clingo
having an edge over the D-FLAT based approach. For complete semantics, Clingo
outperforms the D-FLAT approach.

We hypothesize that the number of solutions (assumption sets) plays a major
role, together with the fact that the D-FLAT encoding of stable semantics is
simpler, in explaining the runtime. There are more admissible and complete
assumption sets than for stable semantics, and in particular, the number of
admissible assumption sets might be high.

6 Discussions

In this work we looked at complex computational tasks arising in assumption-
based argumentation, and showed that many such reasoning tasks are fixed-
parameter tractable w.r.t. the parameter tree-width, of a given graph represen-
tation of ABA frameworks. We showed these results by using monadic second
order logic (MSO) and Courcelle’s theorem. We developed DP algorithms for
reasoning in ABA and implemented these in the D-FLAT framework, allowing
for declarative specification of such algorithms.

Table 1. Median running time and timeouts per task (in seconds)

Task Clingo D-FLAT
Median Timeouts Median Timeouts

count-adm 600.0 55 287.179 29
count-co 0.039 16 254.624 30
count-st 0.034 0 5.97 0
count-adm-q 600.0 46 98.24 27
count-co-q 0.039 11 98.39 28
count-st-q 0.034 0 5.30 2

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 205

Taken together, our MSO and D-FLAT encodings can be useful for the exten-
sion of our work to other structured argumentation formalisms: the MSO encod-
ings suggest wide applicability of FPT results, and our D-FLAT encodings have
the potential for direct adaptations to related computational problems arising
in structured argumentation, e.g., for the ASPIC+ formalism [51].

An interesting direction for future work is to utilize recent findings [36,47] of
developing theoretical upper and lower runtime bounds by encoding problems in
quantified Boolean logic, instead of using MSO, under certain constraints. These
allow for showing more tight bounds in terms of running time (e..g, include
also lower bounds). Moreover, decomposition-guided reductions were recently
shown to be viable for problems in abstract and logic-based argumentation [34].
These reductions are guided by tree-decompositions and result in (quantified)
Boolean formulas which linearly preserve tree-width. In contrast to these works,
our approach uses D-FLAT, enabling ASP encodings of the DP algorithms. Our
theoretical result (Theorem 2) complements existing results for abstract argu-
mentation [27–31,34,47] and logic-based argumentation [34].

Performance of our prototype relies on the performance of D-FLAT. Recent
works [23,37] show that one can specify DP algorithms using database man-
agement systems (DBMS), which give another interesting route for extending
our work with a different declarative framework for specifications of DP algo-
rithms. Developing systems for ABA based on DP algorithms using DBMS and
decomposition-guided reductions to quantified Boolean logic appear as a natural
next step for further evaluating strengths of these approaches, also comparing
them to D-FLAT.

Our empirical results indicate strength of our approach for complex counting
tasks. We believe this could also be interesting for computationally intensive
tasks in probabilistic argumentation [45], where counting or weighted summation
problems arise naturally. Investigating possibilities for applying our approach to
probabilistic argumentation appears to be a natural avenue for future work.

Acknowledgements. This work was supported by the Austrian Science Fund (FWF)
P35632.

References

1. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The
D-FLAT system for dynamic programming on tree decompositions. In: Fermé, E.,
Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 558–572. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11558-0_39

2. Abseher, M., Bliem, B., Hecher, M., Moldovan, M., Woltran, S.: Dynamic program-
ming on tree decompositions with D-FLAT. Künstliche Intell. 32(2–3), 191–192
(2018)

3. Atkinson, K., et al.: Towards artificial argumentation. AI Mag. 38(3), 25–36 (2017)
4. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.): Handbook of Formal

Argumentation. College Publications (2018)
5. Besnard, P., et al.: Introduction to structured argumentation. Argument Comput.

5(1), 1–4 (2014)

https://doi.org/10.1007/978-3-319-11558-0_39

206 A. Popescu and J. P. Wallner

6. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
7. Besnard, P., Hunter, A.: A review of argumentation based on deductive arguments.

In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of
Formal Argumentation, chap. 9, pp. 437–484. College Publications (2018)

8. Bistarelli, S., Kotthoff, L., Santini, F., Taticchi, C.: Summary report for the third
international competition on computational models of argumentation. AI Mag.
42(3), 70–73 (2021)

9. Bliem, B., Charwat, G., Hecher, M., Woltran, S.: D-FLAT2: Subset minimization
in dynamic programming on tree decompositions made easy. Fundam. Informaticae
147(1), 27–61 (2016)

10. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21
(1993)

11. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2007)

12. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101
(1997)

13. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

14. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5–6), 286–310 (2007)

15. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van
der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15, pp. 688–767.
College Publications (2018)

16. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation - a survey. Artif. Intell. 220,
28–63 (2015)

17. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, pp. 193–242. Elsevier and MIT Press (1990)

18. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation.
Artif. Intell. 233, 1–59 (2016)

19. Craven, R., Toni, F., Cadar, C., Hadad, A., Williams, M.: Efficient argumenta-
tion for medical decision-making. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.)
Proceedings of the KR, pp. 598–602. AAAI Press (2012)

20. Čyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: dis-
putes, explanations, preferences. In: Baroni, P., Gabbay, D., Giacomin, M., van
der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 7, pp. 365–408.
College Publications (2018)

21. Cyras, K., Heinrich, Q., Toni, F.: Computational complexity of flat and generic
assumption-based argumentation, with and without probabilities. Artif. Intell.
293, 103449 (2021)

22. Cyras, K., Oliveira, T., Karamlou, A., Toni, F.: Assumption-based argumentation
with preferences and goals for patient-centric reasoning with interacting clinical
guidelines. Argument Comput. 12(2), 149–189 (2021)

23. Dewoprabowo, R., Fichte, J.K., Gorczyca, P.J., Hecher, M.: A practical account
into counting Dung’s extensions by dynamic programming. In: Gottlob, G.,
Inclezan, D., Maratea, M. (eds.) LPNMR 2022. LNCS, vol. 13416, pp. 387–400.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15707-3_30

https://doi.org/10.1007/978-3-031-15707-3_30

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 207

24. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of
assumption-based argumentation for default reasoning. Artif. Intell. 141(1/2), 57–
78 (2002)

25. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

26. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

27. Dunne, P.E.: Computational properties of argument systems satisfying graph-
theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)

28. Dvořák, W., Hecher, M., König, M., Schidler, A., Szeider, S., Woltran, S.: Tractable
abstract argumentation via backdoor-treewidth. In: Proceedings of the AAAI, pp.
5608–5615. AAAI Press (2022)

29. Dvořák, W., Morak, M., Nopp, C., Woltran, S.: dynPARTIX - a dynamic program-
ming reasoner for abstract argumentation. In: Tompits, H., et al. (eds.) INAP/WLP
-2011. LNCS (LNAI), vol. 7773, pp. 259–268. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41524-1_14

30. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for abstract argumentation. Artif. Intell. 186, 1–37 (2012)

31. Dvořák, W., Szeider, S., Woltran, S.: Abstract argumentation via monadic second
order logic. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012.
LNCS (LNAI), vol. 7520, pp. 85–98. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33362-0_7

32. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, chap. 14. College Publications (2018)

33. Fan, X., Toni, F., Mocanu, A., Williams, M.: Dialogical two-agent decision making
with assumption-based argumentation. In: Bazzan, A.L.C., Huhns, M.N., Lomus-
cio, A., Scerri, P. (eds.) Proceedings of the AAMAS, pp. 533–540. IFAAMAS/ACM
(2014)

34. Fichte, J.K., Hecher, M., Mahmood, Y., Meier, A.: Decomposition-guided reduc-
tions for argumentation and treewidth. In: Zhou, Z. (ed.) Proceedings of the IJCAI,
pp. 1880–1886. ijcai.org (2021)

35. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 132–145. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5_13

36. Fichte, J.K., Hecher, M., Pfandler, A.: Lower bounds for QBFs of bounded
treewidth. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.) Proceed-
ings of the LICS, pp. 410–424. ACM (2020)

37. Fichte, J.K., Hecher, M., Thier, P., Woltran, S.: Exploiting database management
systems and treewidth for counting. Theory Pract. Log. Program. 22(1), 128–157
(2022)

38. Gabbay, D., Giacomin, M., Simari, G.R., Thimm, M. (eds.): Handbook of Formal
Argumentation, vol. 2. College Publications (2021)

39. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Summary report of the
second international competition on computational models of argumentation. AI
Mag. 39(4), 77–79 (2018)

40. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. Theory Pract. Log. Program. 4(1–2), 95–138 (2004)

https://doi.org/10.1007/978-3-642-41524-1_14
https://doi.org/10.1007/978-3-642-41524-1_14
https://doi.org/10.1007/978-3-642-33362-0_7
https://doi.org/10.1007/978-3-642-33362-0_7
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-61660-5_13

208 A. Popescu and J. P. Wallner

41. García, A.J., Simari, G.R.: Argumentation based on logic programming. In: Baroni,
P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argu-
mentation, chap. 8, pp. 409–435. College Publications (2018)

42. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

43. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the ICLP, pp. 1070–1080. MIT
Press (1988)

44. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

45. Hunter, A., Polberg, S., Potyka, N., Rienstra, T., Thimm, M.: Probabilistic argu-
mentation: a survey. In: Gabbay, D., Giacomin, M., Simari, G.R., Thimm, M. (eds.)
Handbook of Formal Argumentation, vol. 2, chap. 7. College Publications (2021)

46. Lagniez, J., Lonca, E., Mailly, J., Rossit, J.: Introducing the fourth international
competition on computational models of argumentation. In: Gaggl, S.A., Thimm,
M., Vallati, M. (eds.) Proceedings of the SAFA. CEUR Workshop Proceedings,
vol. 2672, pp. 80–85. CEUR-WS.org (2020)

47. Lampis, M., Mengel, S., Mitsou, V.: QBF as an alternative to Courcelle’s theorem.
In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp.
235–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_15

48. Lehtonen, T., Wallner, J.P., Järvisalo, M.: Declarative algorithms and complex-
ity results for assumption-based argumentation. J. Artif. Intell. Res. 71, 265–318
(2021)

49. Lehtonen, T., Wallner, J.P., Järvisalo, M.: An answer set programming approach
to argumentative reasoning in the ASPIC+ framework. In: Calvanese, D., Erdem,
E., Thielscher, M. (eds.) Proceedings of the KR, pp. 636–646 (2020)

50. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

51. Modgil, S., Prakken, H.: Abstract rule-based argumentation. In: Baroni, P., Gab-
bay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumenta-
tion, chap. 6, pp. 287–364. College Publications (2018)

52. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

53. Thimm, M., Villata, S.: The first international competition on computational mod-
els of argumentation: results and analysis. Artif. Intell. 252, 267–294 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-94144-8_15
http://creativecommons.org/licenses/by/4.0/

A Principle-Based Analysis of Bipolar
Argumentation Semantics

Liuwen Yu1(B) , Caren Al Anaissy2(B) , Srdjan Vesic3(B) , Xu Li1 ,
and Leendert van der Torre1

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
{liuwen.yu,xu.li,leendert.torre}@uni.lu

2 CRIL Université d’Artois & CNRS, Lens, France
alanaissy@cril.fr

3 CRIL CNRS Univ. Artois, Lens, France
vesic@cril.fr

Abstract. In this paper, we introduce and study seven types of semantics
for bipolar argumentation frameworks, each extending Dung’s interpretation of
attack with a distinct interpretation of support. First, we introduce three types of
defence-based semantics by adapting the notions of defence. Second, we exam-
ine two types of selection-based semantics that select extensions by counting the
number of supports. Third, we analyse two types of traditional reduction-based
semantics under deductive and necessary interpretations of support. We provide
full analysis of twenty-eight bipolar argumentation semantics and ten principles.

Keywords: Bipolar argumentation semantics · Support · Principle-based
approach · Knowledge representation and reasoning

1 Introduction

In this paper, we consider so-called bipolar argumentation frameworks [13–15] con-
taining not only attacks but also supports among arguments. While there is general
agreement in the formal argumentation literature on how to interpret attack, even when
different kinds of semantics have been defined, there is much less consensus on how to
interpret support [18]. There exist very few results and studies about the role of support
in abstract argumentation. Consequently, the principle-based approach is used to bring
structure to the field [16,42]. In this paper, we address the following research questions:
In which ways can support affect attack, defence and argumentation semantics? Which
principles can be introduced to distinguish between, and characterise, these semantics?

There exist different approaches to extending Dung’s abstract theory by taking into
consideration the support relation. The relation between support and attack has been
studied extensively in reduction-based approaches, in the sense that deductive and nec-
essary interpretations of support give rise to various notions of indirect attack [16], thus,
they typically give opposite results. Deductive support [8] captures the intuition that if

L. Yu and C. Al Anaissy—Contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 209–224, 2023.
https://doi.org/10.1007/978-3-031-43619-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_15&domain=pdf
http://orcid.org/0000-0002-7200-6001
http://orcid.org/0000-0002-8750-1849
http://orcid.org/0000-0002-4382-0928
http://orcid.org/0000-0002-7788-2414
http://orcid.org/0000-0003-4330-3717
https://doi.org/10.1007/978-3-031-43619-2_15

210 L. Yu et al.

a supports b, then the acceptance of a implies the acceptance of b. This intuition is
characterised by the so-called closure principle [16]. Necessary support [29] captures
the intuition that if a supports b, then the acceptance of a is necessary to obtain the
acceptance of b, or equivalently, the acceptance of b implies the acceptance of a. It has
been characterised by the inverse closure principle [33]. Another approach to handling
support is the evidence-based approach [31] where the notion of evidential support is
introduced. An argument cannot stand unless it is supported by evidential support. Sup-
port can also be seen as an inference relation between the premises and the conclusion
of the argument itself [35]. Moreover, in selection-based approaches [23], support is
used only to select some of the extensions provided in Dung’s semantics, and thus does
not change the definition of attack, or defence.

Despite the relevance and significance of all the mentioned approaches, we think
that there is still the need to explore other approaches that have not been yet consid-
ered for bipolar argumentation frameworks. The aim of our research is not to replace
other approaches but rather to point to the existence of other interesting ones that can
be applied depending on the chosen application. Note that our approach is novel in
its methodology. On one hand, reduction-based approaches can be seen as a kind of
pre-processing step for Dung’s theory of abstract argumentation (i.e. adding the com-
plex attacks and then applying Dung’s semantics). On the other hand, selection-based
approaches can be seen as a kind of post-processing step (i.e. applying Dung’s seman-
tics and then applying the approach to select some of the extensions). Differently from
those two groups of approaches, our approach (i.e. the defence-based approach) does
not affect the concept of attack and conflict-freeness, but rather changes the definition
of defence.

Most of the principles we introduce and use for analysing bipolar argumentation
are in the same spirit as the principles used in the principle-based analysis of Dung’s
semantics [40]. For example, the robustness of argumentation semantics when adding or
removing attacks plays a central role [39]. In this paper, we consider robustness when
adding or removing support relations. We also introduce some principles specifically
defined for support, such as to which extent an argument is accepted while receiving
support from others.

The layout of this paper is as follows. We first introduce three defence-based seman-
tics, then two selection-based ones, and we study two traditional reduction-based ones.
Then, we introduce ten principles, and we analyse which properties are satisfied by
which semantics, before concluding and introducing the ideas for future work.

2 Bipolar Argumentation Framework

Bipolar argumentation frameworks extend the argumentation frameworks introduced
by Dung (1995) with a binary support relation among the arguments.

Definition 1 (Bipolar Argumentation Framework [15]). A bipolar argumentation
framework (BAF) is a triple 〈Ar, att, sup〉 where Ar is a finite set called arguments,
and att, sup ⊆ Ar×Ar are binary relations over Ar called attack and support respec-
tively.

A Principle-Based Analysis of Bipolar Argumentation Semantics 211

Figure 1 illustrates three BAFs, where attack relations are depicted by solid arrows,
and support relations are depicted by dashed arrows. Given a, b in Ar, (a, b) ∈ att
standing for a attacks b, and (a, b) ∈ sup standing for a supports b, the definitions of
conflict-freeness and defence provided by Dung are called conflict-free0 and defended0.

Definition 2 (Conflict-free0 and Defended0 [21]). Let F = 〈Ar, att, sup〉 be a BAF.
A set of arguments E ⊆ Ar is conflict-free0, written as cf0(F, E), iff there are no
arguments a and b in E such that a attacks b. The set of arguments defended0 by E,
written as d0(F, E), is the set of a arguments such that for every argument b attacking
a, there is an argument c in E attacking b.

2.1 Defence-Based Semantics

We first define three new types of defence-based semantics, which are based on conflict-
free0 and the new definitions of defended1, defended2 and defended3. To have a generic
definition of defence-based semantics (Definition 5), we also define conflict-free1,
confli-ct-free2, and conflict-free3, for each of the new types of semantics. The three
notions of defended have stronger requirements than defended0. Defended1 requires
that the argument defending0 another argument also supports it. Defended2 requires
that a defender is supported. Moreover, defended3 requires not only that the attackers
are attacked, but also that all supporters of the attackers are attacked as well.

Definition 3 (Conflict-free1−3 and Defended1−3). Let F = 〈Ar, att, sup〉 be a BAF.
We use the same definition as Dung for conflict-free, i.e. cf1 ≡ cf2 ≡ cf3 ≡ cf0.
Moreover:

– the set of arguments defended1 by E, written as d1(F, E), is the set of arguments a
in Ar such that for each argument b in Ar attacking a, there exists an argument c in
E attacking b and supporting a (supporting-defence);

– the set of arguments defended2 by E, written as d2(F, E), is the set of arguments a
in Ar such that for all arguments b in Ar attacking a, there exists an argument c in
E attacking b, and there is an argument d in E supporting c (supported-defence);

– the set of arguments defended3 by E, written as d3(F, E), is the set of arguments a
in Ar such that for all arguments b in Ar attacking a, there exists an argument c in
E attacking b, and for all arguments d in Ar supporting b, there is an argument e in
E attacking d (attacking-defence).

a b

c

a b

dc

a b

dc e

Fig. 1. Three BAFs illustrating the three new defence notions, for the lefthand figure,
d1(F, {c}) = {a, c}; for the middle figure, d2(F, {c, d}) = {a, c, d}; for the righthand figure,
d3(F, {c, e}) = {a, c, e}

212 L. Yu et al.

Following Dung’s approach, we say the characteristic function di(F, E) of a bipolar
argumentation framework BAF is as follows:

– di(F, E) : 2Ar → 2Ar,
– di(F, E) = {A |A is defendedi by E}, for i ∈ {0, 1, 2, 3}.
Definition 4 (Admissibility0−3). A set of arguments E in BAF F = 〈Ar, att, sup〉,
is said to be admissiblei iff E is conflict-freei and E ⊆ di(F, E), for i ∈ {0, 1, 2, 3}.
To define the complete (abbreviated as c), preferred (p), and stable (s) semantics of
bipolar argumentation frameworks, the following definition is generic and can be used
with any kind of conflict-freeness and defence.

Definition 5 (Semantics0−3). An extension-based semantics σ is a function that maps
a BAF F = 〈Ar, att, sup〉 onto a set of subsets of Ar, written as σx

i (F), where i ∈
{0, 1, 2, 3}, x ∈ {c, p, s} as follows:

– σc
i (F) = {E ⊆ Ar | cfi(F, E) and di(F, E) = E};

– σp
i (F) = {E ⊆ Ar | E is admissiblei, and for all admissiblei set E′, E � E′};

– σs
i (F) = {E ⊆ Ar | E is admissiblei, and for all arguments a not in E, there is an

argument b in E attacking a}.

Most of the following propositions were introduced and proved for semantics0 by
Dung (1995). We prove that the above three new defence semantics are able to conserve
the relations among completei, preferredi, and groundedi for i ∈ {1, 2, 3} and stablei

for i = 3.

Lemma 1 (Fundamental Lemma). Let E be an admissiblei set of arguments, and A1

and A2 be two arguments which are defendedi by E. Then for i ∈ {0, 1, 2, 3}, we have
the following:

– E′ = E ∪ {A1} is admissiblei.
– A2 is defendedi by E′.

The following theorem follows directly from the Fundamental Lemma.

Theorem 1. Let F be a BAF , for i ∈ {0, 1, 2, 3}:
– The set of all admissiblei sets of F forms a complete partial order with respect to set
inclusion.

– For each admissiblei set S of F, there exists a preferredi extension E of F such that
S ⊆ E.

Note that the empty set is always admissiblei, we have the following Corollary for
i ∈ {0, 1, 2, 3}:
Corollary 1. There exists at least one preferredi extension in any bipolar argumenta-
tion framework for i ∈ {0, 1, 2, 3}.

Proposition 1. For i ∈ {0, 1, 2, 3}, we have the following: every completei extension is
also admissiblei; every preferredi extension is also completei; every stablei extension
is also preferredi.

A Principle-Based Analysis of Bipolar Argumentation Semantics 213

Proposition 2. The characteristic function di(F, E) is monotonic (with respect to set
inclusion) for i ∈ {0, 1, 2, 3}.
Proposition 3. Any BAF F induces a complete lattice which is the power set of all
the arguments in F. The characteristic function di(F, E), i ∈ {0, 1, 2, 3}, is monotonic
(with respect to set inclusion). Therefore, from Knaster-Tarski theorem:

– The set of fixed points of di(F, E) is a complete lattice.
– di(F, E) has a unique least fixed point which can be obtained either by doing the
intersection of all the fixed points of di(F, E), or by iteratively applying di(F, E),
to the empty set.

Definition 6 (Grounded0−3 semantics). The groundedi extension of a BAF F =
〈Ar, att, sup〉, is the least fixed point of the characteristic function di(F, E), for i ∈
{0, 1, 2, 3}.We denote the groundedi semantics by σg

i (F).

Proposition 4. The groundedi extension of F for i ∈ {0, 1, 2, 3} is the minimal (with
respect to set inclusion) complete extension of F.

We now give a real legal example to illustrate the intuition behind semantics1. This
example deals with a neighbor’s quarrel over a row of conifers and was used to explain
how the judge defends the claimant’s interest [32].

Example 1 (Neighbours’ quarrel over conifers). (...) The defendant argues that the
conifers have been planted to reduce draught in his house, but this argument is abso-
lutely unsound since most of the window posts are closed and the window that does
open is located on a point higher than the tops of the conifers and has not been fitted
with any anti-draught facilities. (...) Whereas the defendant has no considerable interest
in these conifers, removal is of significant concern to the claimant since they block his
view and take away the light. (...) (2981. Country court Enschede 6 October 1988)

The judge defends the standpoint that the claimant’s interest in the removal of the
conifers is greater than the defendant’s interest in leaving them untouched. In the judge’s
preceding remarks, he mentions the defendant’s argument: he does have a considerable
interest in the conifers since they reduce draught in his house, thus he wants to keep the
conifers. To support the standpoint of the claimant and against the defendant, the judge
argues that the conifers block the view and take away the light, most of the window posts
are closed and the opening window, which has no anti-draught facilities whatsoever, is
located higher than the tops of the conifers.

As stated by Plug: “the judge’s argumentation consists of a pro-argument and the
refutation of a counter-argument which, in conjunction, form sufficient support for his
standpoint.” This type of defence inspires semantics1.

We now give an example to illustrate the intuition behind semantics2.

Example 2 (Twelve Angry Men play using Semantics2). We consider an example
extracted from the NoDE benchmark [10], which consists of annotated datasets
extracted from a variety of sources (Debatepedia, Procon, Wikipedia web pages and
the script of “Twelve Angry Men” play), where the aim of this benchmark is to analyse
the support and attack relations between the arguments. We explore the Twelve Angry

214 L. Yu et al.

Men dataset, this play is about a jury consisting of twelve men who must decide whether
a young man is guilty or not for murdering his father. Consider the following arguments
extracted from this dataset.

– a1: I think we proved that the old man couldn’t have heard the boy say, “I’m going to
kill you” but supposing he really did hear it? This phrase: how many times has each
of you used it? Probably hundreds. “If you do that once more, Junior, I’m going to
murder you.” “Come on, Rocky, kill him!” We say it every day. This doesn’t mean
that we’re going to kill someone.

– e1: The phrase was “I’m going to kill you” and the kid screamed it out at the top of
his lungs. Anybody says a thing like that the way he said it-they mean it.

– g1: Do you really think the boy would shout out a [“I’m going to kill you”] so the
whole neighbourhood would hear it? I don’t think so. He’s much too bright for that.

The example above is shown in Fig. 2. In this example, argument g1 attacks argu-
ment e1 by raising some doubt about it. In the same manner, argument e1 attacks argu-
ment a1. We can see that the argument g1 defends argument a1 in Dung’s sense. Just
because argument g1 is not attacked, argument a1 is accepted.

In a legal case, any given argument must be evaluated based on the evidence pro-
vided to support it. In the absence of such evidence, the presence of at least a support,
even if it is challenged, seems necessary. Therefore, one can ask themselves whether
Dung’s notion of defence seems enough, in this case, to say that the argument g1 defends
the argument a1. Hence, for this kind of application, one might want to use a stronger
notion of defence. An example of such a notion is our semantics2, where an argument
must be supported in order to be able to defend another argument. The idea behind
this semantics is to provide a stronger and more restrictive defence notion than Dung’s
defence notion, by taking into account the support relation.

We consider now the following arguments extracted from the same dataset, to illus-
trate semantics2.

– f : Maybe he didn’t hear [the boy yelling “I’m going to kill you”]. I mean with the
el noise.

– g: [The old man cannot be a liar, he must have heard the boy yelling “I’m going to
kill you”].

– h: It stands to reason, [the old man can be a liar].
– i: Attention, maybe [the old man is a liar].

Contrary to the previous example, we see that argument i is supported by another
one, hence it might be seen as having a better capacity to defend f . Formally, the set of
arguments {h, i} defends2 the argument f .

Example 3 (Recruitment using semantics3). Consider the following arguments.

– a: Alice should be hired as a professor.
– b: Alice lacks many essential qualifications to become a professor.
– c: Alice has few publications.
– d: Alice has recently got her PhD, she does not have enough teaching experience.

A Principle-Based Analysis of Bipolar Argumentation Semantics 215

a b

c e f g h i j k l

d m n o p q r s t

u

v

w

x

y

z

a1

b1

c1

d1

e1

f1

g1

h1

Fig. 2. The BAF illustrating the Twelve Angry Men dataset - Act 2.

– e: All of Alice’s publications are in top conferences. When it comes to publications,
quality beats quantity.

– f : Alice has taught 64 h of practical works during every year of her PhD, which is
considered enough as teaching experience.

– g: Alice is good at team work, she also has an excellent academic carrier, these two
enable her to become a professor.

This example can be represented with the BAF depicted on the left-hand side of Fig. 3.
g fails to reinstate a because g does not attack b’s supporters c and d. The set of argu-
ments {e, g, f} reinstates a because it attacks all the supporters of b. σc,g,p,s

3 (F) =
{{a, e, g, f}}.

bc d

e g a f a b

dc

Fig. 3. A BAF illustrating recruitment case (on the left) and a BAF illustrating semantics4 and
semantics5 (on the right)

216 L. Yu et al.

2.2 Selection-Based Semantics

Support can be used in the post-processing step for Dung’s theory of abstract argu-
mentation [23]. Semantics4 and semantics5 are two selection-based approaches, i.e.
they select extensions from semantics0. Semantics4 selects the extensions that have the
largest number of internal supports, reflecting the idea that for a coalition, the more
internal supports they have, the more cohesive they are. Semantics5 selects the exten-
sions that receive the most support from outside, reflecting the idea that the more sup-
port a coalition receives, the stronger it is. It thus interprets support as a kind of voting.

We say that argument b in E is internally supported if b receives support from argu-
ments in E. Argument b in E is externally supported if b receives support from argu-
ments that are outside E.

Definition 7 (Number of Internal and External Supports). Let F = 〈Ar, att, sup〉
be a BAF . For an extension E ∈ σx

0 , the number of internal supports is written as
NSI , such that NSI(F, E) =| {(a, b) ∈ sup | a, b ∈ E} |, and the number of external
supports is written as NSO, such that NSO(F, E) =| {(a, b) ∈ sup | b ∈ E, a ∈
Ar \ E} |.
Definition 8 (Semantics4−5). For each F = 〈Ar, att, sup〉, for x ∈ {c, g, p, s}:
– σx

4 (F) = argmaxE∈σx
0 (F) {NSI(F, E)}; and

– σx
5 (F) = argmaxE∈σx

0 (F) {NSO(F, E)}.
We use Example 4 to illustrate the difference between semantics4 and semantics5.

Example 4 (Semantics4−5). Consider the bipolar argumentation framework on the
right-hand side of Fig. 3, σc

0(F) = {{a},{b}, {c}, {d},{a, d},{a, c},{b, d}, {b, c}},
σps
0 (F) = {{a, d}, {a, c}, {b, d}, {b, c}}. Then, σcps

4 (F) = {{a, c}}, because {a, c}
has the biggest number of internal supports. Then, σc

5(F) = {{d}, {a, d}}, and
σps
5 (F) = {{a, d}}, because they receive the biggest number of external supports.

2.3 Reduction-Based Semantics

Reduction-based approaches have been studied extensively in the literature [13–15].
Semantics6 and semantics7 are two reduction-based approaches where support is
used as pre-processing for Dung semantics. The corresponding abstract argumentation
frameworks are reduced by adding indirect attacks from the interaction of attack and
support with different interpretations, i.e. deductive support and necessary support. So-
called supported attack and mediated attack come from the interplay between attack and
deductive support, while secondary attack and extended attack come from the interplay
between attack and necessary support.

Definition 9 (Four Indirect Attacks [15]). Let F = 〈Ar, att, sup〉 be a BAF , and let
arguments a, b, c ∈ Ar. There is:

– a supported attack from a to b in F iff there exists an argument c such that there is a
sequence of supports from a to c and c attacks b, represented as (a, b) ∈ attsupp;

A Principle-Based Analysis of Bipolar Argumentation Semantics 217

– a mediated attack from a to b in F iff there exists an argument c such that there is a
sequence of supports from b to c and a attacks c, represented as (a, b) ∈ attmed;

– a super-mediated attack from a to b in F iff there exists an argument c such that
there is a sequence of supports from b to c and a directly or supported-attacks c,
represented as (a, b) ∈ attmed

attsupp ;
– a secondary attack from a to b in F iff there exists an argument c such that there is a
sequence of supports from c to b and a attacks c, so that (a, b) ∈ attsec;

– an extended attack from a to b in F iff there exists an argument c such that there is a
sequence of supports from c to a and c attacks b, so that (a, b) ∈ attext.

Definition 10 (Semantics6−7 [15]). Let F = 〈Ar, att, sup〉 be a BAF :

– let att′ = {attsupp, attmed
attsupp} be the collection of supported and super-mediated

attacks in F, and we have RD(F) = (Ar, att∪⋃
att′), and σx

6 (F) = σx
0 (RD(F));

– let att′ = {attsec, attext} be the collection of secondary and extended attacks in F,
and we have RN(F) = (Ar, att ∪ ⋃

att′), and σx
7 (F) = σx

0 (RN(F)).

We use Example 5 to illustrate semantics6 and semantics7.

Example 5 (Semantics6−7). Consider the bipolar argumentation framework in Fig. 4.1.
If the interpretation of support from a to d is deductive, a supported-attacks c,
c mediated-attacks a. We have RD(F) = 〈Ar, att ∪ {(a, c), (c, a)}〉 as visu-
alised in Fig. 4.2. σg

6 = {∅}, σc
6 = {{b}, {d}, {a, d}, {b, d}, {b, c}}, and

σp
6 = σs

6 = {{a, d}, {b, d}, {b, c}}. If the interpretation of support from a to
d is necessary, then b secondary-attacks d, and d extended-attacks b. We have
RN(F) = 〈Ar, att ∪ {{b, d}, {d, b}}〉 as visualised in Fig. 4.3. σg

7 = {∅}, σc
7 =

{{a}, {c}, {a, d}, {a, c}, {b, c}}, σp
7 = σs

7 = {{a, d}, {a, c}, {b,
c}}.

a b

dc

a b

dc

a b

dc

4.1 A BAF F 4.2 RD(F) 4.3 RN(F)

Fig. 4. Deductive and necessary interpretations give different corresponding AFs

3 Principles

In this section, we present ten principles. Due to the space limitation, we only present
some interesting proofs, others can be found in additional supplement. The first princi-
ple concerns the support relation alone. It expresses transitivity of support.

218 L. Yu et al.

Principle 1 (Transitivity). A semantics σx
i for BAFs satisfies the transitivity prin-

ciple iff for all BAFs F = 〈Ar, att, sup〉, if a supports b, and b supports c, then
σx

i 〈Ar, att, sup〉 = σx
i 〈Ar, att, sup ∪ {a, c}〉.

Principle 2 states that supports can be used to select extensions.

Principle 2 (Extension Selection). A semantics σx
i for BAFs satisfies the extension

selection principle iff for all BAFs where F = 〈Ar, att, sup〉, that σx
i (Ar, att, sup) ⊆

σx
i (Ar,

att, ∅).
Principle 3 and Principle 4 are robustness principles that distinguish between

semantics4 and semantics5. The set of robustness principles was proposed by Rien-
stra et al. [38]. Here, we adapt their idea to bipolar argumentation in order to investigate
the robustness of bipolar argumentation semantics when removing and adding support.
Principle 3 states that if two arguments a and b are in an extension E such that a sup-
ports b, then E is still an extension after we remove the support from a to b.

Principle 3 (Internal Support Removal Robustness). A semantics σx
i for BAFs

satisfies the internal support removal robustness principle iff for all BAFs F =
〈Ar, att, sup〉, for every extension E ∈ σx

i (F), if arguments a, b ∈ E and a supports b,
then E ∈ σx

i (Ar, att, sup \ {(a, b)}).
Principle 4 states that if argument a is not in an extension E and argument b is in

this extension E such that a supports b, then E is still an extension after we remove the
support from a to b.

Principle 4 (External Support Removal Robustness). A semantics σx
i for BAFs

satisfies the external support removal robustness principle iff for all BAFs F =
〈Ar, att, sup〉, for every extension E ∈ σx

i (F), if argument a ∈ Ar \ E supports
argument b ∈ E, then E ∈ σx

i (Ar, att, sup \ {(a, b)}).
Principle 5 and Principle 6 both concern the closure under the support relation.

Closure says that if an argument is in an extension, the arguments it supports are also
in the extension, while inverse closure says the opposite, i.e. if an argument is in an
extension, the arguments supporting it should also be in the extension [8,15,33].

Principle 5 (Closure). A semantics σx
i for BAFs satisfies the closure principle iff for

all BAFs F = 〈Ar, att, sup〉, for every extension E ∈ σx
i (F), if (a, b) ∈ sup and

a ∈ E, then b ∈ E.

Principle 6 (Inverse Closure). A semantics σx
i for BAFs satisfies the inverse closure

principle iff for all BAFs F = 〈Ar, att, sup〉, for every extension E ∈ σx
i (F), if

(a, b) ∈ sup and b ∈ E, then a ∈ E.

Principle 7 reflects the idea that if there is no support relation, the extensions under
semantics σx

i are equivalent to the ones in Dung semantics.

Principle 7 (Extension Equivalence). A semantics σx
i for BAFs satisfies the exten-

sion equivalence principle iff for all BAFs F = 〈Ar, att, sup〉, σx
i (Ar, att, ∅) =

σx
0 (Ar, att, ∅).

A Principle-Based Analysis of Bipolar Argumentation Semantics 219

Principle 8 and Principle 9 both state the positive effect of supports on the supported
arguments. We first present the definition of the status of arguments as introduced by
Baroni and Giacomin [3]. Extension-based semantics classifies arguments into three
statuses, namely sceptically accepted, credulously accepted, and rejected.

Definition 11 (Status of an Argument [3]). Let F = 〈Ar, att, sup〉 be a BAF. If the
set of extensions is empty, all the arguments are declared to be rejected. Otherwise,
we say that an argument is: (1) sceptically accepted if it belongs to all extensions;
(2) credulously accepted if it is not sceptically accepted and it belongs to at least one
extension; (3) rejected if it does not belong to any extension.

Gargouri et al. [23] write Status(a,F) = sk(resp. cr, rej), and they define the
order � on the set of statuses as expected: sk > cr > rej. We denote the set of
sceptically accepted (resp. credulously accepted, rejected) arguments of a BAF by
Sk(Ar, att, sup) (resp. Cr(Ar, att, sup), Rej(Ar, att, sup). Principle 8 states that
adding supports to arguments does not change their status into a lower order. Gargouri
et al. [23] call this monotony, but we prefer to use a more specific name (i.e. monotony
of status) to make it more precise and avoid ambiguity.

Principle 8 (Monotony of Status). A semantics σx
i for BAFs satisfies the monotony

of status principle iff for allBAFs F = 〈Ar, att, sup〉, for every extensionE ∈ σx
i (F),

for all a, b ∈ Ar, we have Status (a, 〈Ar, att, sup〉) � Status(a, 〈Ar, att, sup ∪
{(b, a)}〉).

Principle 9 shows a skeptically accepted argument stays skeptically accepted when
supports are added [25].

Principle 9 (Extension Growth). A semantics σx
i for BAFs satisfies the extension

growth principle iff for all BAFs F = 〈Ar, att, sup〉, for every extension E ∈ σx
i (F),

it holds that Sk(Ar, att, sup) ⊆ Sk(Ar, att, sup ∪ sup′).
Directionality is introduced by Baroni, Giacomin, and Guida [4]. It reflects the idea

that we can decompose an argumentation framework into sub-frameworks so that the
semantics can be defined locally. For the directionality principle, they first introduce the
definition of an unattacked and unsupported set.

Definition 12 (Unattacked and unsupported arguments in BAF). Given a
BAF F = 〈Ar, att, sup〉, a set U is unattacked and unsupported if and only if there
exists no a ∈ Ar\U such that a attacks U or a supports U . The set unattacked and
unsupported sets in F is denoted US(F) (U for short).

Principle 10 (BAFDirectionality). A semantics σx
i forBAFs satisfies the BAF direc-

tionality principle iff for everyBAF F = 〈Ar, att, sup〉, for everyU ∈ US(F), it holds
that σx

i (F↓U
) = {E ∩ U |E ∈ σx

i (F)}, where F↓U
= (U, att ∩ U × U, sup ∩ U × U)

is a projection, and σx
i (F↓U

) are the extensions of the projection.

Table 1 compares the semantics with respect to the principles. For the defence-based
semantics, semantics1 and semantics2 can be classified by the same principles, and
they can be distinguished from semantics3 by Principles 3, 7 and 9. Semantics4 and

220 L. Yu et al.

semantics5 are selected from semantics0, they can be distinguished by Principle 3 and
Principle 4. However, Table 1 indicates it is not the case that if semantics0 satisfies
a principle implies semantics4 and semantics5 also satisfy it, e.g. the results regarding
Principle 10. Reduction-based semantics can be distinguished from others by Principles
1, 5, 6 and 8. More precisely, they themselves can be further distinguished by Principle 5
and 6, and surprisingly, only semantics7 satisfies Principle 8. One thing worth noting is
that, in the literature, there are two other reductions based on necessary interpretation
of support, i.e. one introduces only secondary attacks and the other introduces only
extended attacks. Both of them do not satisfy directionality [42]. However, the result in
this paper shows when the necessary reduction induces both secondary and extended
attacks, semantics7 (except for stable7) satisfy directionality.

Table 1. Comparison of semantics and principles. We refer to the semantics as follows: complete
(C), grounded (G), preferred (P) and stable (S). When a principle is never satisfied by a certain
reduction for all semantics, we use the× symbol. P1 refers to Principle 1, and the same holds for
the others.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

σx
0 CGPS CGPS CGPS CGPS × × CGPS CGPS CGPS CGP

σx
1 × × × CGPS × × × CGPS CGPS CGP

σx
2 × × × CGPS × × × CGPS CGPS CGP

σx
3 × × CGPS CGPS × × CGPS CGPS × CGP

σx
4 × CGPS × CGPS × × CGPS CGPS CGPS ×

σx
5 × CGPS CGPS × × × CGPS CGPS CGPS ×

σx
6 CGPS × CGPS CGPS CGPS × CGPS CGPS × ×

σx
7 CGPS × CGPS CGPS × CGPS CGPS × × CGP

4 Related Work

The notion of support has drawn the attention of many scholars in argumentation the-
ory, including the role of support in argumentation, whether attack and support should
be treated as equals, the link between the abstract approaches and ASPIC+, and also
higher-order abstract bipolar argumentation frameworks [11,24,36,37]. We now review
and comment on the three approaches to define semantics studied in this paper. For the
defence-based approach, we adapted the core notions in Dung’s theory. There are other
variants of semantics that adapt these notions, such as weak defence for weak admissi-
bility semantics [7,20], but it is not related to the notion of support. For selection-based
approach, semantics4 and semantics5 select extensions based on the number of internal
(or external) supports received respectively. Such an approach has already been used
in some previous work, and most of them are based on preference [2,25] or weight of
arguments and relations [19,26]. More recently, Gargouri et al. proposed an approach
to select the best extensions to BAFs by comparing the number of received supports
with scores for each extension [23]. The reduction-based approach allows a BAF to be

A Principle-Based Analysis of Bipolar Argumentation Semantics 221

transformed into an argumentation graph that has been already discussed in the litera-
ture [11,16,30,36]. There is a striking similarity at the abstract level between support
in bipolar argumentation and preference-based argumentation, as both can be seen as
reductions, as well as both can be used to select extensions [25]. For other approaches
to bipolar argumentation semantics, Cayrol et al. proposed some properties of gradual
semantics for bipolar argumentation [12], after which Evripidou and Toni provided a
concrete definition of gradual semantics for bipolar argumentation [22] and introduced
the quantitative argumentation debate (QuAD) framework [6]. Concerning aggregat-
ing bipolar argumentation frameworks, Chen considered how to cope with different
opinions on support relations and analyse which properties can be preserved by desir-
able aggregation rules during aggregation of support relations [17]. Lauren et al. also
considered aggregating bipolar assumption-based argumentation frameworks under the
assumption that agents propose the same set of arguments, different sets of attacks and
different interpretations of supporting arguments [28].

Baroni and Giacomin are the first to adopt a principle-based approach for classi-
fying argumentation semantics [3], which was followed by other papers axiomatising
abstract argumentation [40], preference-based argumentation [25] and agent argumen-
tation [41]. There are papers that propose principles for bipolar ranking-based/gradual
semantics [1], and their generalisations [5]. However, there is a lack of such work for
extension-based semantics. Cayrol et al. compared bipolar argumentation semantics,
they discussed the semantics based on deductive and necessary interpretations, and pro-
vided a few properties, e.g. closure, coherence and safe [16]. Inspired by this work, Yu
and van der Torre analysed reduction-based semantics with more properties [42], how-
ever, they have only considered reduction-based semantics, without comparing them
with others.

5 Summary and Future Work

In this paper, we gave an axiomatic analysis of bipolar argumentation semantics. We
considered three approaches, namely defence-based, selection-based, and reduction-
based approaches. In total, we introduced seven different types of semantics and studied
them together with Dung semantics, which is the baseline and does not take into account
supports. Semantics1−3 are defence-based, i.e. they are defined by generalising the new
notions of defence. Such an approach allows us to treat attack and support at the same
level. Semantics4 and semantics5 are not only based on admissibility, but also borrow
the idea from another field, i.e. social voting, to use the number of supports as a way
of voting or selecting to derive extensions. Semantics6 and semantics7 are based on the
notions of necessary and deductive support respectively. We evaluated those semantics
against the set of ten principles. The results are shown in Table 1. Given the diversity
of interpretations of support, such axiomatic analysis can provide us an overview and
systematic assessment of different approaches. It can help us to choose a semantics for
a given task or a particular application in function of the desirable properties. One can
look at the table and see if there exists a semantics that satisfies the given desiderata.

An interesting question for future work is how to relate semantics defined by vari-
ous approaches, e.g. can we define a new defence with attacks and supports indicating

222 L. Yu et al.

the deductive, necessary or evidential interpretation of support? We have semantics2
stating that only a supported argument can defend others, which also reflects the idea of
evidential support [30,34]. In this paper, we use dynamic properties, e.g. the robustness
of semantics when adding and removing support. This could be further developed by
analyzing labelling-based semantics of bipolar argumentation. The distinction between
arguments labelled out and undecided makes the principles more precise. We also con-
sider that the approaches to the dynamics of argumentation can be used as a source for
principles [9,25]. Another possible direction is to study the relation between the prin-
ciples, for example, to verify whether one principle implies another one, or if there is a
set of principles such that no semantics satisfies all of them. Lastly, in the same spirit of
this paper, another future work is the principle-based analysis of higher-order bipolar
argumentation frameworks [27].

Acknowledgements. We extend our gratitude to all the anonymous reviewers for their insight-
ful comments. Caren Al Anaissy and Srdjan Vesic benefited from the support of the project
AGGREEY (ANR-22-CE23-0005) from the French National Research Agency (ANR). Xu Li
and Leendert van der Torre are financially supported by Luxembourg’s National Research Fund
(FNR) through the project Deontic Logic for Epistemic Rights (OPEN O20/14776480). Leen-
dert van der Torre is also financially supported by the (Horizon 2020 funded) CHIST-ERA grant
CHIST-ERA19-XAI (G.A.INTER/CHIST/19/14589586). Liuwen Yu received funding from the
European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-
Curie ITN EJD grant agreement. No 814177.

References

1. Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs. Int. J.
Approximate Reasoning 99, 39–55 (2018)

2. Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Int. J. Approxi-
mate Reasoning 55(2), 585–606 (2014)

3. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation
semantics. Artif. Intell. 171(10–15), 675–700 (2007)

4. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation
semantics. Artif. Intell. 168(1–2), 162–210 (2005)

5. Baroni, P., Rago, A., Toni, F.: How many properties do we need for gradual argumentation?
In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

6. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of
design alternatives with quantitative argumentation. Argument Comput. 6(1), 24–49 (2015)

7. Baumann, R., Brewka, G., Ulbricht, M.: Comparing weak admissibility semantics to their
Dung-style counterparts-reduct, modularization, and strong equivalence in abstract argumen-
tation. In: International Conference on Principles of Knowledge Representation and Reason-
ing, vol. 17, pp. 79–88 (2020)

8. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Support in abstract argumentation.
In: Proceedings of the Third International Conference on Computational Models of Argu-
ment (COMMA 2010), pp. 40–51. Frontiers in Artificial Intelligence and Applications, IOS
Press (2010)

9. Booth, R., Kaci, S., Rienstra, T., van der Torre, L.: A logical theory about dynamics in
abstract argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS
(LNAI), vol. 8078, pp. 148–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40381-1_12

https://doi.org/10.1007/978-3-642-40381-1_12
https://doi.org/10.1007/978-3-642-40381-1_12

A Principle-Based Analysis of Bipolar Argumentation Semantics 223

10. Cabrio, E., Villata, S.: Node: A benchmark of natural language arguments. In: Computational
Models of Argument, pp. 449–450. IOS Press (2014)

11. Cayrol, C., Cohen, A., Lagasquie-Schiex, M.C.: Higher-order interactions (bipolar or not)
in abstract argumentation: A state of the art. In: Gabbay, D., Giacomin, M., Simari, G.R.,
Thimm, M. (eds.) Handbook of Formal Argumentation, vol. 2, pp. 15–130. College Publica-
tions, Norcross (2021)

12. Cayrol, C., Lagasquie-Schiex, M.C.: Gradual valuation for bipolar argumentation frame-
works. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 366–377. Springer,
Heidelberg (2005). https://doi.org/10.1007/11518655_32

13. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumen-
tation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–
389. Springer, Heidelberg (2005). https://doi.org/10.1007/11518655_33

14. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolar abstract argumentation systems. In: Simari, G.,
Rahwan, I. (eds.) Argumentation in Artificial, pp. 65–84. Springer, Boston (2009). https://
doi.org/10.1007/978-0-387-98197-0_4

15. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: towards a better
understanding. Int. J. Approximate Reasoning 54(7), 876–899 (2013)

16. Cayrol, C., Lagasquie-Schiex, M.-C.: An axiomatic approach to support in argumentation.
In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS (LNAI), vol. 9524, pp. 74–91.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28460-6_5

17. Chen, W.: Aggregation of support-relations of bipolar argumentation frameworks. In: Pro-
ceedings of the 19th International Conference on Autonomous Agents and MultiAgent Sys-
tems, pp. 1804–1806 (2020)

18. Cohen, A., Gottifredi, S., García, A.J., Simari, G.R.: A survey of different approaches to
support in argumentation systems. Knowl. Eng. Rev. 29(5), 513–550 (2014)

19. Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Selecting extensions in weighted
argumentation frameworks. COMMA 12, 342–349 (2012)

20. Dauphin, J., Rienstra, T., van der Torre, L.: New weak admissibility semantics for abstract
argumentation. In: Baroni, P., Benzmüller, C., Wáng, Y.N. (eds.) CLAR 2021. LNCS
(LNAI), vol. 13040, pp. 112–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-89391-0_7

21. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person games. Artif. Intell. 77(2), 321–357 (1995)

22. Evripidou, V., Toni, F.: Quaestio-it.com: a social intelligent debating platform. J. Decis. Syst.
23(3), 333–349 (2014)

23. Gargouri, A., Konieczny, S., Marquis, P., Vesic, S.: On a notion of monotonic support
for bipolar argumentation frameworks. In: 20th International Conference on Autonomous
Agents and MultiAgent Systems (2020)

24. Gordon, T.F.: Towards requirements analysis for formal argumentation. In: Baroni, P., Gab-
bay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of formal argumentation, vol. 1,
pp. 145–156. College Publications, Norcross (2018)

25. Kaci, S., van der Torre, L., Vesic, S., Villata, S.: Preference in abstract argumentation. In:
Gabbay, D., Giacomin, M., Simari, G.R., Thimm, M. (eds.) Handbook of Formal Argumen-
tation, vol. 2, pp. 211–248. College Publications, Norcross (2021)

26. Konieczny, S., Marquis, P., Vesic, S.: On supported inference and extension selection in
abstract argumentation frameworks. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015.
LNCS (LNAI), vol. 9161, pp. 49–59. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-20807-7_5

27. Lagasquie-Schiex, M.C.: Handling support cycles and collective interactions in the logical
encoding of higher-order bipolar argumentation frameworks. J. Log. Comput. 33(2), 289–
318 (2023)

https://doi.org/10.1007/11518655_32
https://doi.org/10.1007/11518655_33
https://doi.org/10.1007/978-0-387-98197-0_4
https://doi.org/10.1007/978-0-387-98197-0_4
https://doi.org/10.1007/978-3-319-28460-6_5
https://doi.org/10.1007/978-3-030-89391-0_7
https://doi.org/10.1007/978-3-030-89391-0_7
https://doi.org/10.1007/978-3-319-20807-7_5
https://doi.org/10.1007/978-3-319-20807-7_5

224 L. Yu et al.

28. Lauren, S., Belardinelli, F., Toni, F.: Aggregating bipolar opinions. In: Proceedings of the
20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 746–
754 (2021)

29. Nouioua, F., Risch, V.: Bipolar argumentation frameworks with specialized supports. In:
2010 22nd IEEE International Conference on Tools with Artificial Intelligence, vol. 1, pp.
215–218. IEEE (2010)

30. Oren, N., Luck, M., Reed, C.: Moving between argumentation frameworks. In: Proceedings
of the 2010 International Conference on Computational Models of Argument. IOS Press
(2010)

31. Oren, N., Norman, T.J.: Semantics for evidence-based argumentation. In: Proceedings of the
2008 conference on Computational Models of Argument: Proceedings of COMMA 2008,
pp. 276–284 (2008)

32. Plug, J.: Complex argumentation in judicial decisions. Analysing conflicting arguments. In:
FAPR, pp. 464–479 (1996)

33. Polberg, S.: Intertranslatability of abstract argumentation frameworks. Technical report,
Technical Report DBAI-TR-2017-104, Institute for Information Systems (2017)

34. Polberg, S., Oren, N.: Revisiting support in abstract argumentation systems. In: Computa-
tional Models of Argument - Proceedings of COMMA. Frontiers in Artificial Intelligence
and Applications, vol. 266, pp. 369–376. IOS Press (2014)

35. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
Comput. 1(2), 93–124 (2010)

36. Prakken, H.: On support relations in abstract argumentation as abstractions of inferential
relations. In: ECAI 2014, pp. 735–740. IOS Press (2014)

37. Prakken, H.: Historical overview of formal argumentation. In: Baroni, P., Gabbay, D., Gia-
comin, M., van der Torre, L. (eds.) Handbook of formal argumentation, vol. 1, pp. 75–143.
College Publications, Norcross (2018)

38. Rienstra, T., Sakama, C., van der Torre, L.: Persistence and monotony properties of argu-
mentation semantics. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS (LNAI),
vol. 9524, pp. 211–225. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28460-
6_13

39. Rienstra, T., Sakama, C., van der Torre, L., Liao, B.: A principle-based robustness analysis
of admissibility-based argumentation semantics. Argument Comput. 11(3), 305–339 (2020)

40. van der Torre, L., Vesic, S.: The principle-based approach to abstract argumentation seman-
tics. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal
Argumentation, vol. 1, pp. 797–838. College Publications, Norcross (2018)

41. Yu, L., Chen, D., Qiao, L., Shen, Y., van der Torre, L.: A principle-based analysis of abstract
agent argumentation semantics. In: Proceedings of the International Conference on Princi-
ples of Knowledge Representation and Reasoning, vol. 18, pp. 629–639 (2021)

42. Yu, L., van der Torre, L.: A principle-based approach to bipolar argumentation. In: 18th
International Workshop on Non-monotinic Reasoning Notes, p. 227 (2020)

https://doi.org/10.1007/978-3-319-28460-6_13
https://doi.org/10.1007/978-3-319-28460-6_13

Answer Set Programming

Comparing Planning Domain Models Using
Answer Set Programming

Lukáš Chrpa1(B), Carmine Dodaro2, Marco Maratea2, Marco Mochi3,
and Mauro Vallati4

1 Czech Technical University in Prague, Prague, Czechia
chrpaluk@cvut.cz

2 University of Calabria, Arcavacata, Italy
{carmine.dodaro,marco.maratea}@unical.it

3 University of Genova, Genova, Italy
marco.mochi@edu.unige.it

4 University of Huddersfield, Huddersfield, UK
m.vallati@hud.ac.uk

Abstract. Automated planning is a prominent area of Artificial Intelligence, and
an important component for intelligent autonomous agents. A critical aspect of
domain-independent planning is the domain model, that encodes a formal repre-
sentation of domain knowledge needed to reason upon a given problem. Despite
the crucial role of domain models in automated planning, there is lack of tools
supporting knowledge engineering process by comparing different versions of the
models, in particular, determining and highlighting differences the models have.

In this paper, we build on the notion of strong equivalence of domain mod-
els and formalise a novel concept of similarity of domain models. To measure
the similarity of two models, we introduce a directed graph representation of
lifted domain models that allows to formulate the domain model similarity prob-
lem as a variant of the graph edit distance problem. We propose an Answer Set
Programming approach to optimally solve the domain model similarity problem,
that identifies the minimum number of modifications the models need to become
strongly equivalent, and we demonstrate the capabilities of the approach on a
range of benchmark models.

Keywords: Automated Planning · Answer Set Programming · Domain Model

1 Introduction

Automated planning is a research discipline that addresses the problem of generating a
totally- or partially-ordered sequence of actions that transforms the environment from
an initial state to a desired goal state. It has matured to such a degree that there exists a
wide range of applications utilising planning, including UAV manoeuvring [21], space
exploration [1], and train dispatching [7].

A critical aspect of domain-independent planning is the domain knowledge that
must be fed into a planning engine that comes under the form of a domain model,
a symbolic representation of the environment and actions, that has to be engineered
prior its use [16]. The importance of good quality domain models in planning, and of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 227–242, 2023.
https://doi.org/10.1007/978-3-031-43619-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_16

228 L. Chrpa et al.

the corresponding knowledge engineering process, has been well-argued [17,27,28].
However, there is a lack of approaches to support the knowledge engineering process.
In particular, there is no “diff” tool that compares different versions of a domain model
and highlights differences among them. Tools such as D-VAL [25] or a recent work of
Coulter et al. [10] provide some limited support to compare domain models focusing
on the state space they can generate, and the model reconciliation problem focuses on
explaining why two models cannot create the same optimal plans [8].

To address the highlighted research gap, we propose a novel concept of domain
model similarity and present a theoretical framework underlying the concept, which
employs an extension of the notion of strong equivalence informally introduced by
Shoeeb and McCluskey [24], which determines whether domain models are the same
except naming. We propose a directed graph representation of lifted domain models
and we show that domain models are strongly equivalent if and only if the graphs rep-
resenting them are isomorphic. Then, we define distance between domain models as the
minimum number of modifications that have to be made to both models to make them
strongly equivalent. It corresponds to the notion of edit distance between two graphs
(representing the domain models). The introduced theoretical framework gives us the
notion of similarity by measuring the distance between domain models and enumerat-
ing the modifications that need to be done to make the models (strongly) equivalent.
Then, we present an approach based on Answer Set Programming (ASP) [3,5,14,20]
that allows to compare planning domain models to assess their similarity. This is not the
first time that declarative programming, in particular ASP, is employed in this context,
but considering either different problems in the planning domain (the already men-
tioned [25]), or not focused on planning [26]. Our solution relies on a directed graph
representation of the lifted domain models, and is capable of providing optimally min-
imal sets of changes to transform one model into the other. Beside providing the first
concrete approach to assess if two domain models are strongly equivalent, the proposed
notion of similarity, and the ASP-based approach to measure it, have several practical
implications: (i) it can be incorporated into a “diff” tool for highlighting differences
between two versions of a domain model, to help knowledge engineers in understand-
ing modifications; (ii) it can support the evaluation of tools for automated domain model
acquisition (e.g., LOCM [11]) by comparing acquired domain models to the reference
domain models; (iii) it can be exploited as an advanced plagiarism checker, where it can
provide a “similarity” score to flag potential cases of plagiarism, and (iv) it can support
the evaluation of models in competitions on domain modelling such as ICKEPS [9] and
provide useful insights into how groups of experts differ in developing models.

We evaluate the approach on well-known benchmark domains from international
competitions, of different size with regards to the number of models’ predicates and
operators. We present a fully declarative approach, which is able to compare a num-
ber of planning domains, except the largest, and an improved solution, that exploits a
preprocessor via imperative programming that acts as a sort of “problem-aware pre-
grounder”, which complements the declarative encoding. The related empirical evalua-
tion shows that, by employing the improved solution, the comparison can be performed
in less than a CPU-time second for all evaluated models, hence suggesting that it can
be fruitfully exploited to support the knowledge engineering process of domain models
in real time.

Comparing Planning Domain Models Using Answer Set Programming 229

2 Background

In this section we present, in two separate subsections, needed preliminaries about auto-
mated planning and graph similarity, respectively.

Automated Planning. In the STRIPS representation, the environment is represented by
propositions. States are defined as sets of these propositions (or atoms). An action is a
quadruple a “ (name(a), pre(a), del(a), add(a)), where name(a) represents a unique
action name, pre(a), del(a) and add(a) are sets of atoms representing the precondition
of a, the delete and add effects of a, respectively. We assume a is always well defined,
i.e., add(a) �“ H (as an action without any add effect would be useless). We say that
an action a is applicable in a state s if and only if pre(a) ⊆ s. Application of a in s (if
possible) results in a state (s \ del(a)) Y add(a).

In the lifted STRIPS representation, the environment is represented by first-order
logic predicates. A planning operator o “ (name(o), pre(o), del(o), add(o)) is speci-
fied such that name(o) “ op name(x1, . . . , xk) (op name represents a unique opera-
tor name and x1, . . . xk are variable symbols (parameters) appearing in the operator),
pre(o) is a set of predicates representing the operator’s preconditions, del(o) and add(o)
are sets of predicates representing the operator’s delete and add effects, respectively.
Again, we assume o is always well defined, i.e., add(o) �“ H. A (lifted) domain model
D “ (P,O) is specified via a set of predicates P and a set of operators O. A problem
instance P “ (Obj, I,G) for a lifted domain model D is specified via a set of objects
Obj , the initial state I and a set of atoms representing the goal G. Atoms are obtained
by grounding of the predicates from P , i.e., by substituting objects for predicates’ vari-
ables. Actions are grounded instances of planning operators.

A planning task (D,P) consists of a domain model D and a problem instance P . A
solution plan for a planning task is a sequence of actions such that consecutive appli-
cation of the actions in the plan (starting in the initial state) results in a state in which
all the goal atoms are true. We say that predicates are equal if they have the same name
and their parameters including their order are identical. We define a function pars(·)
that returns the set of variable symbols of a predicate or an operator. We also define a
function arity(·) that returns the number of variable symbols of a predicate or an oper-
ator. With regards to substitution mappings that map free variables into terms (variables
or constants in our case), we use a specific notation in order to disambiguate with other
types of mappings. In particular, for a substitution mapping χ and a predicate (or an
operator) p(x1, . . . , xn), (p|χ) refers to substituting x1, . . . , xn for terms according to
χ, i.e., (p|χ) ≡ p(χ(x1), . . . , χ(xn)).

Graph Similarity. Comparing graphs, in terms of how similar they are, belongs under
of the umbrella of graph matching [4]. For our purpose, we will consider (labelled)
directed graphs with different types of edges. Let G1 “ (V1, E

1
1 , E2

1 , . . . , Ek
1) and G2 “

(V2, E
1
2 , E2

2 , . . . , Ek
2) be directed graphs with k different types of edges, and L1 and

L2 be the sets of their edge labels. We say that G1 and G2 are isomorphic if and only
if there exist bijective mappings ξ : V1 Ñ V2 and ν : L1 Ñ L2 such that for each
1 ď i ď k : (x, l, y) P Ei

1 ô (ξ(x), ν(l), ξ(y)) P Ei
2. Note that for unlabelled directed

graphs it is the case that G1 and G2 are isomorphic if and only if there exist a bijective
mapping ξ : V1 Ñ V2 such that for each 1 ď i ď k : (x, y) P Ei

1 ô (ξ(x), ξ(y)) P Ei
2.

230 L. Chrpa et al.

Let G′
1 and G′

2 be subgraphs of G1 and G2, respectively. We say that G′
1 and G′

2 are
common isomorphic subgraphs of G1 and G2 if and only if G′

1 and G′
2 are isomorphic.

Let elem denote the number of elements in a graph (with k different types of edges),
i.e., for G “ (V,E1, . . . , Ek), elem(G) “ |V | ` ∑k

i“1 |Ei|. We say that G′
1 and G′

2 are
maximum common isomorphic subgraphs of G1 and G2 if and only if (i) G′

1 and G′
2 are

common isomorphic subgraphs of G1 and G2 and (ii) for every pair G′′
1 and G′′

2 being also
common isomorphic subgraphs of G1 and G2 it is the case that elem(G′

1) ě elem(G′′
1)

(and elem(G′
2) ě elem(G′′

2)). Then, we define a function dist representing a distance
between graphs G1 and G2 as dist(G1,G2) “ elem(G1)`elem(G2)´2˚elem(G′

1) with
G′
1 and G′

2 being maximum common isomorphic subgraphs of G1 and G2. Note that our
notion of distance is a variant of Graph Edit Distance [22] in which vertex and edge
substitutions are not explicitly counted.

3 Strong Equivalence of Domain Models

Equivalence of domain models can be understood in a similar fashion as equivalence
of grammars, i.e., two domain models are equivalent if a planning task specified in one
model can be also specified in the other model and both models generate same plans for
the corresponding planning tasks [24]. An alternative understanding of domain model
equivalence, “functional equivalence”, compares corresponding state-transition systems
such that two domain models are (functionally) equivalent if and only if for correspond-
ing planning tasks the sets of reachable states are equivalent [25]. In this paper, we
focus on strong equivalence of domain models that has been informally defined in [24]
as models being logically identical up to naming. It assumes that there exist bijective
mappings between particular elements (e.g., atoms, action names).

To formally define strong equivalence for lifted domain models, we have to make
sure that for each corresponding grounded instance of two strongly equivalent lifted
domain models it is the case that those instances are strongly equivalent too. Whereas
the (bijective) mapping between predicates needs to consider only naming and arity
(without loss of generality we assume that free variables in each predicate are distinct),
the (bijective) mapping between planning operators has to take into account ordering of
their parameters (free variables). We formally define strong equivalence for two lifted
domain models as follows.

Definition 1. Let D “ (P,O) and D′ “ (P ′, O′) be lifted domain models. If there exist
bijective mappings P : P Ñ P ′ and O : {name(o) | o P O} Ñ {name(o′) | o′ P O′}
such that

– for each p P P , arity(p) “ arity(P(p))
– for each o P O, arity(name(o)) “ arity(O(name(o))) and there exists o′ P O′ and
a bijective substitution mapping χo : pars(o) Ñ pars(o′), where

• name(o′) “ O(name(o))
• pre(o′) “ {(P(p)|χo) | p P pre(o)}
• del(o′) “ {(P(p)|χo) | p P del(o)}
• add(o′) “ {(P(p)|χo) | p P add(o)}

then D and D′ are strongly equivalent.

Comparing Planning Domain Models Using Answer Set Programming 231

Next, we will construct a Lifted Domain Model Graph (LDMG) which is a labelled
directed graph connecting operators with predicates in a given lifted domain model.
LDMG has vertices standing for both predicates and operator names, and three types
of edges referring to preconditions, delete, and add effects, respectively. Edge labels
represent matchings between operators’ and predicates’ variables. To show that two
domain models are strongly equivalent their respective LDMGs have to be isomorphic.

Definition 2. Let D “ (P,O) be a lifted domain model. We assume, without loss
of generality, that all variable symbols defined in D are distinct. We say that G “
(V,Epre, Edel, Eadd) is a Lifted DomainModel Graph (LDMG) ofD, where V “ P Y
{name(o) | o P O} is a set of vertices, Epre “ {(name(o), Θo, p) | p P (pre(o|Θo)), o P
O, p P P}, Edel “ {(name(o), Θo, p) | p P (del(o|Θo)), o P O, p P P} and
Eadd “ {(name(o), Θo, p) | p P ((add(o|Θo)), o P O, p P P} are sets of labelled
directed edges, where Θo is the substitution mapping from pars(o) to

⋃
pPP pars(p)

for each operator o.

Theorem 1. Let D “ (P,O) and D′ “ (P ′, O′) be lifted domain models. We assume,
without loss of generality, that all variable symbols defined in both D and D′ are dis-
tinct. Let G “ (V,Epre, Edel, Eadd) and G′ “ (V ′, E′

pre, E
′
del, E

′
add) be LDMGs of D and

D′, respectively. D and D′ are strongly equivalent if and only if G and G′ are isomor-
phic with a bijective mapping ξ : V Ñ V ′ such that for each x P V : arity(x) “
arity(ξ(x)).

Proof. The “if” part: If D and D′ are strongly equivalent, then there exist bijective
mappings P and O between atoms and operator names of both domain models as in
Definition 1. We can combine P and O into ξ such that for each f P P : ξ(f) “
P(f) and for each o P O : ξ(name(o)) “ O(name(o)). Hence, ξ is a bijective
mapping from V to V ′. Then, we can observe that for each o P O there exists
o′ P O′ such that ξ(name(o)) “ name(o′), arity(ξ(name(o))) “ arity(name(o′)).
There also exist substitution mappings χo for each o P O as in Definition 1 and
Θo : pars(o) Ñ ⋃

pPP pars(p) and Θo′
: pars(o′) Ñ ⋃

p′PP ′ pars(p′) for each
o P O and o′ P O′ as in Definition 2. Now we can define a bijective substitution
mapping ν :

⋃
oPO pars(o) ˆ ⋃

pPP pars(p) Ñ ⋃
o′PO′ pars(o′) ˆ ⋃

p′PP ′ pars(p′)
(since variable symbols are distinct) such that for all o P O and x P pars(o),
((x, (x|Θo))|ν) “ ((x|χo), ((x|χo)|Θo′

). Then, if for o P O and p P P it is the case
that p P (pre(o|Θo)), then there exists o′ P O′ such that (ξ(p)|χo) P (pre(o′|Θo′

)).
Hence, if (name(o), Θo, p) P Epre, then (ξ(name(o)), (Θo|ν), ξ(p)) P E′

pre. For Edel

and Eadd, it can be proven analogously.
The “only if” part: From Definition 2 and the fact that every operator is well defined,

we can derive that X “ {x | (x, y) P Eadd} “ {name(o) | o P O}. If G and G′ are iso-
morphic, then there exist a bijective mapping ξ : V Ñ V ′ and a bijective substitution
mapping ν :

⋃
oPO pars(o) ˆ ⋃

pPP pars(p) Ñ ⋃
o′PO′ pars(o′) ˆ ⋃

p′PP ′ pars(p′).
Hence, we can “split” ξ into two bijective mappings P and O such that for each
x P X : O(x) “ ξ(x) and for each y P (V \ X) : P(y) “ ξ(y). Also, with
∀x P V : arity(x) “ arity(ξ(x)) we can derive arity(p) “ arity(P(p)) and
arity(name(o)) “ arity(O(name(o))). We can also observe (from the isomorphism
of G and G′) that for each o P O and x P pars(o), ((x, (x|Θo)|ν) “ (y, (y|Θo′

)) for

232 L. Chrpa et al.

some o′ P O′ and y P pars(o′). Since Θo and Θo′
are substitution mappings, then

we can define a substitution mapping χo : pars(o) Ñ pars(o′) such that (x|χo) “ y
(with ((x, (x|Θo))|ν) “ (y, (y|Θo′

))) and χo is bijective. Hence, we can derive for
each o P O and p P pre(o) that there exists o′ P O′ such that (P(p)|χo) P pre(o′). For
del(o′) and add(o′), it can be proven analogously. ��
Example 1 (Running example). We consider as running example a simplified version
of the well-known Logistics domain, originally introduced in the IPC 2000. In the sim-
plified version, a number of trucks are used to deliver packages from a location of
origin to a destination location. The domain model includes 4 predicates: (at-truck
?Loc ?Truck), (at-package ?Loc ?Pkg), (in-package ?Pkg ?Truck), (in-city ?Cty
?Loc) and 3 operators: load(?Loc ?Pkg ?Truck), unload(?Loc ?Pkg ?Truck), and
move(?Cty ?Loc1 ?Loc2 ?Truck).

We can define another domain model that concerns transporting passengers from
one location to another by shuttles. The domain model includes 4 predicates: (at-shuttle
?Loc ?Shtl), (at-passenger ?Loc ?Psg), (in-passenger ?Psg ?Shtl), (in-city ?Cty
?Loc) and 3 operators: embark(?Loc ?Psg ?Shtl), debark(?Loc ?Psg ?Shtl), and
move(?Cty ?Loc1 ?Loc2 ?Shtl). We can observe that the structure of the domain
model is identical to the Logistics model apart of naming of (most of) predicates and
operators. Hence, the domain models are strongly equivalent.

4 Domain Model Similarity

Informally speaking, domain model similarity stands for quantifying how close domain
models are to each other, in terms of how many manipulations (adding/modifying an
element in either of the models) are needed to make the models strongly equivalent.

Initially, we define the notion of submodel that describes the relation between
domain models based on the subgraph relation between their LDMGs.

Definition 3. Let D and D′ be domain models. We say that D′ is a submodel of D if
the LDMG of D′ is a subgraph of the LDMG of D. We say that a domain model D′′

is a strongly equivalent submodel of D if D′′ is strongly equivalent with D′ (being a
submodel of D).

In more general cases, domain models share the same structure only partially. In
other words, they share common (strongly equivalent) submodels.

Definition 4. Let D1 and D2 be domain models. We say that submodels D′
1 and D′

2 of
D1 and D2, respectively, are common strongly equivalent submodels of D1 and D2 if
and only if D′

1 and D′
2 are strongly equivalent. We say that D′

1 and D′
2 are maximum

common strongly equivalent submodels of D1 and D2 if and only if they are common
strongly equivalent submodels and the value of elem is maximum for their LDMGs
compared to other common strongly equivalent submodels of D1 and D2.

Proposition 1. Let D′
1 and D′

2 be submodels of domain models D1 and D2, respec-
tively. It holds that D′

1 and D′
2 are (maximum) common strongly equivalent submodels

of D1 and D2 if and only if the LDMG of D′
1 and the LDMG of D′

2 are (maximum)
common isomorphic subgraphs of the LDMGs of D1 and D2, respectively.

Comparing Planning Domain Models Using Answer Set Programming 233

Proof. The claim of the proposition is directly implied from the definition of (maxi-
mum) common isomorphic subgraphs (see the Background Section) and Theorem 1.
��

The above proposition connects our variant of edit distance of graphs and the dis-
tance of domain models. The definition below summarizes the concept.

Definition 5. Let D1 and D2 be domain models and G1 and G2 be their LDMGs,
respectively. We define a dist function representing the distance between D1 and D2

as dist(D1,D2) “ dist(G1,G2).

The notion of distance between two domain models determines a minimum number
of elementary operations to modify these two models to make them strongly equivalent.
That corresponds to adding vertices and edges to the LDMGs of these two models.
Let D “ (P,O) be a domain model and G “ (V,Epre, Edel, Eadd) its LDMG. The
elementary operations over D and G are defined as follows:

(1) Add p into pre(o) (resp. del(o), resp. add(o)) iff (o, p) is added into Epre (resp.
Edel, resp. Eadd).

(2) Add o into O iff o is added into V and (o, p) is added into Eadd for some p.
(3) Add p into P iff p is added into V and no edge from p is added to Eadd.

We would like to emphasise that we do not explicitly distinguish operator and pred-
icate nodes. We can observe that a well defined operator has to have at least one add
effect and hence the corresponding vertex in the underlying LDMG has to have at least
one outgoing “add” edge. Note, again, that we assume that all operators are well defined.
On the other hand, each predicate node has no outgoing edge.

It is known that the problem of graph edit distance is NP-hard [29]. Due to specific
structure of LDMGs, again, the question whether determining distance between domain
models is NP-hard is still open.

Example 2 (Example 1 cont’d). Let us simplify the model introduced in Example 1
by removing the (in-city ?Cty ?Loc) predicate. The simplified model is a submodel of
the original one. Now, let us add a macro-operator move-load(?Pkg ?Truck ?Loc1
?Loc2 ?Cty) encapsulating the sequence of move and load operators into the simpli-
fied model. The simplified model is a submodel of the “macro” model. Finally, we can
compare the “macro” Logistics model with the “passenger” model from Example 1.
The models are not strongly equivalent. We can, on the other hand, find their maxi-
mum common strongly equivalent submodels, i.e., the simplified Logistic model and
the “passenger” model which is simplified by removing (in-city ?Cty ?Loc).

5 Comparing Domain Models via ASP

In this section, we describe our approach based on Answer Set Programming (ASP),
and its results. Note that the ASP terminology may be not perfectly aligned to the one
of planning in the usage of some terms, e.g., atoms and predicates.

234 L. Chrpa et al.

Algorithm 1: Comparing Domain Models
Input : A graph G1 and graph G2.
Output: Differences between G1 and G2

1 Π :“ preprocessing(G1, G2);
2 Π :“ Π Y Π ′ ; // Π ′ reported in Figure 1
3 A :“ ASPSolver(Π);
4 for p P A do
5 if p is ver(,add , g ,name, . . .) then
6 Print(“Add vertex ” + name + “ in ” + g);

7 if p is edge(add , g ,n1 ,n2 , t , l) then
8 Print(“Add ” + t + “ edge with label ” + l + “ from vertex ” + n1 + “ to ” + n2 +

“ in ” + g);

9 if p is map(n1 ,n2 , e1 , e2) then
10 Print(“Map vertex ” + n1 + “ of g2 to vertex ” + n2 + “of g1”);
11 if e1 �“ e2 then
12 Print(“Remapping ” + e1 + “ to ” + e2);

r1 {map(ID1, ID2, N1, N2) : ver(ID2, _, gr1, _, T, P, N1), ver(ID1, _, gr2, _, T, P,
N2)} = 1 :- ver(ID2, _, gr2, _, T, _, _).

r2 :- ver(ID, _, gr1, _, _, _, _), #count{X: map(X, ID, _, _)} != 1.
r3 :- #sum{1,ID: ver(ID, _, gr2, _, _, _, _); -1,ID: ver(ID, _, gr1, _, _, _, _)} !=

0.
r4 edge(add, gr1, X2, X4, L, R) :- map(X1, X2, _, _), map(X3, X4, _, _), edge(orig,

gr2, X1, X3, L, R), not edge(orig, gr1, X2, X4, L, R).
r5 edge(add, gr2, X1, X3, L, R) :- map(X1, X2, _, _), map(X3, X4, _, _), edge(orig,

gr1, X2, X4, L, R), not edge(orig, gr2, X1, X3, L, R).
r6 : ver(ID, orig, G, _, _, _, N1), ver(ID, orig, G, _, _, _, N2), N1 != N2.

[1@1,ID]
r7 : ver(ID, add, G, _, _, _, _). [1@2, ID, G]
r8 : edge(add, G, N1, N2, L, R). [1@2, ID, G, N1, N2, L, R]

Fig. 1. ASP Program Π ′.

Answer Set Programming. ASP is a well-known declarative language. An ASP pro-
gram [6] is made of (a combination of): (1) facts of the form head.; (2) rules of the
form head :- body.; (3) choice rules of the form tomsatoms = 1 :- body.; (4)
constraints of the form :- body.; and (5) weak constraints of the form :∼ body.

[weight@level,terms]; where head is an atom, atoms is a set of atoms, and body

is a set of (possibly negated) atoms, also including aggregate functions, such as #sum,
and terms is a sequence of terms, i.e., variables (strings starting with uppercase letter)
or constants (non-negative integers or strings starting with lowercase letters). Atoms
can be made over terms. The semantics is given in terms of its answer sets, that is, sets
A of ground atoms, where atoms in A are said to be true (false, otherwise), such that:
(1) head is in A; (2) whenever the body is true (i.e., all positive atoms are in A and all
negated atoms are not in A), head is in A; (3) exactly one of the atoms in atoms is in
A whenever the body is true; or if = 1 is omitted then one of the atoms in atoms can
be in A whenever the body is true; (4) the body must be false. Moreover, weak con-
straints of the form (5) allow expressing preferences among answer sets, where level

Comparing Planning Domain Models Using Answer Set Programming 235

represents the priority and weight is a numerical cost that is paid whenever the body
of a weak constraint is true w.r.t. an answer set. Overall, the preferred weak constraints
are the ones with the lowest costs at the highest levels. For formal details about syntax
and semantics of ASP programs, the reader is referred to [5,6].

ASP-based Comparison. Following the theory presented in previous sections, we
implemented an ASP-based approach depicted in Algorithm 1. The algorithm receives
two LDMGs (referred to as G1 and G2) as input, and prints a minimal number of changes
to the graphs to make them isomorphic as output. In the following, we assume that the
number of vertices representing an operator (resp. a predicate) of G1 is less than or
equal to the number of vertices representing an operator (resp. a predicate) of G2. The
idea of the algorithm is as follows: Firstly, a processing step creates an ASP program
Π starting from the input graphs; then, Π is combined with the ASP encoding reported
in Fig. 1, and an ASP solver is invoked on the resulting program. Finally, the output of
the ASP solver is processed by a postprocessing part which produces human-readable
instructions to make the two graphs isomorphic. In more detail, the ASP program oper-
ates on atoms over the predicates ver , edge , and map, as follows. Atoms of the form
ver (id , status, graph, name, type, parameters, changes) denote the vertices of the
input graphs, where id is a unique identifier of the vertex, status denotes if the vertex
was in the input graph (orig) or if it must be added (add), graph indicates the graph
of the vertex (between G1 and G2), name is the name of the vertex, type indicates if
vertex is a predicate or an operator, parameters is a string representing the parame-
ters of the predicate, and changes indicates if (and how) the parameters of the vertex
must be changed for a correct match. Atoms of the form edge(status , graph , id ver1 ,
id ver2 , type , label) denote the edges of the input graphs, where status and graph are
as the ones of ver , id ver1 and id ver2 are the identifiers of the vertices connected
by the edges, type denotes if the edge is in Epre, Edel, or Eadd, respectively, and label
is the label of the edge. Atoms of the form map(id ver1 ,id ver2 ,params1 ,params2)
denote the mapping from vertices of the different graphs, where id ver1 and id ver2
belong to G2 and G1, respectively, params1 and params2 denote the parameters of the
two matched vertices, respectively. The preprocessing step creates the rules:

(1) ver (id , orig , gr i, name , t , “x1 , . . . , xk”,“x1 , . . . , xk”).
for each vertex name(x1, . . . , xk) in Gi(i P {1, 2}) representing a vertex of type
t , where t is predicate or operator , and id is an identifier of the vertex;

(2) edge(orig , gr i, v1 , v2 , x , label).
for each edge (v1, v2) in Ex (x P {pre, del , add}) of the graph Gi(i P {1, 2}),
where label is the label of the edge;

(3) {ver (id , add , gr1, name , t , “x1 , . . . , xk”,“x1 , . . . , xk”)}.
for each vertex name(x1, . . . , xk) in G2 of type t such that there is no vertex
name(x1, . . . , xk) of type t in G1, where t can be either predicate or operator ;

(4) {ver (id ,orig ,gr1,name,t ,“x1 , . . . , xk”,“y1 , . . . , yz ”)}.
for each vertex name(x1, . . . , xk) in G1 of type t and for each vertex
name(y1, . . . , yz) in G2 of type t , with the set of the parameters x1 , . . . , xk dif-
ferent from the set of the parameters y1 , . . . , yz , where t can be either predicate or
operator .

236 L. Chrpa et al.

The program Π produced by the preprocessing is combined with the ASP encoding
of Fig. 1, whose behaviour is described in the following. Rules r1 and r2 associate each
vertex of G2 to exactly one vertex of the same type of G1. Rule r3 ensures that the
number of vertices of the two graphs are the same. Rules r4 and r5 generate missing
edges between the vertices after the mapping. Finally, weak constraints r6, r7, and r8
minimise the number of vertices with different parameters, i.e., the number of added
vertices, and the number of added edges, respectively. Observe that weak constraints
r7, and r8 have a higher level than r6, that is, preserving the same number of vertices
and edges has a higher priority than changing the parameters of the vertices.

An ASP solver is then executed on the resulting program, and its output is processed
to produce human-readable instructions on how to make the two graphs isomorphic.

Example 3 (Example 2 cont’d). Let G1 and G2 be the LDMGs of the Logistics domains
considered in Example 1 and the “macro” variant with the incity predicate (see Exam-
ple 2), respectively. For the sake of compactness, we shorten the name of variables
of STRIPS predicates and operators to a single capital letter. Thus, G2 consists of the
vertices of G1 extended with a vertex of the form moveload(?P, ?T, ?L1, ?L2, ?C).
Moreover, E2

t “ E1
t Y E′

t (t P {pre, del , add}), where E′
pre is

{(moveload , ?T “?T, ?L1 “?L, attruck),
(moveload , ?L1 “?L, ?C “?C, incity),
(moveload , ?L2 “?L, ?C “?C, incity),
(moveload , ?P “?P, ?L1 “?L, atpackage)}

E′
add is {(moveload , ?T “?T ,?L1 “?L, atpackage), (moveload , ?P “?P , ?T “?T ,

inpackage)} and E′
del is {(moveload , ?T “?T , ?L1 “?L, attruck), (moveload ,

?P “?P , ?L1 “?L, atpackage)}. Note that rules (1) and (2) produced by the
preprocessing step of Algorithm 1 encode the vertices and the edge, for instance
ver(0, orig , gr1, load , operator , “L,P, T ′′, “L,P, T ′′) represents the vertex load of
G1, where 0 is a unique identifier of the vertex, and “L,P, T ” corresponds to the
(ordered) parameters. Moreover, there is only one rule of type (3), i.e., {ver (7, add ,
gr1, moveload , operator , “C,L,L, P, T ”, “C,L,L, P, T ”)}, since there is only one
vertex in G2 that is not in G1. Finally, an excerpt of the rules of type (4), are the follow-
ing (where or , o, and p stand for orig , operator , and predicate , respectively):

Comparing Planning Domain Models Using Answer Set Programming 237

{ver(0, or , gr1, load , o, “L,P, T ”, “C,L,L, T ”)}.
{ver(0, or , gr1, load , o, “L,P, T ”, “C,L,L, P, T ”)}.
{ver(1, or , gr1, unload , o, “L,P, T ”, “C,L,L, T ”)}.
{ver(1, or , gr1, unload , o, “L,P, T ”, “C,L,L, P, T ”)}.
{ver(2, or , gr1,move, o, “C,L,L, T ”, “L,P, T ”)}.
{ver(2, or , gr1,move, o, “C,L,L, T ”, “C,L,L, P, T ”)}.
{ver(3, or , gr1, attruck , p, “L, T ”, “L,P ”)}.
{ver(3, or , gr1, attruck , p, “L, T ”, “P, T ”)}.
{ver(3, or , gr1, attruck , p, “L, T ”, “C,L”)}.
{ver(4, or , gr1, atpackage, p, “L,P ”, “L, T ”)}.
{ver(4, or , gr1, atpackage, p, “L,P ”, “P, T ”)}.
{ver(4, or , gr1, atpackage, p, “L,P ”, “C,L”)}.
{ver(5, or , gr1, inpackage, p, “P, T ”, “L,P ”)}.
{ver(5, or , gr1, inpackage, p, “P, T ”, “L, T ”)}.
{ver(5, or , gr1, inpackage, p, “P, T ”, “C,L”)}.
{ver(6, or , gr1, incity , p, “C,L”, “L,P ”)}.
{ver(6, or , gr1, incity , p, “C,L”, “L, T ”)}.
{ver(6, or , gr1, incity , p, “C,L”, “P, T ”)}.

The preprocessing step allows generating only the meaningful combinations of ver-
tices and terms in a graph via imperative programming. These combinations are added
as choice rules, which can then be utilised by the solver as possible newly added ver-
tices. Without preprocessing, all choice rules for mapping all terms/operator combina-
tions are instead generated, and is left to the solver to derive new vertices by combining
original vertices with every choice to potentially change terms. After the preprocessing
(line 1 of Algorithm 1), the ASP solver is executed (line 3) on the resulting program
extended with Π ′ (line 2). Then, Algorithm 1 analyses its output (from line 4 on) and
produces the following instructions:

– Add vertex moveload in g1.
– Add pre edge with label T=T,L1=L from vertex moveload to vertex attruck in g1.
– Add pre edge with label L1=L,C=C from vertex moveload to vertex incity in g1.
– Add pre edge with label L2=L,C=C from vertex moveload to vertex incity in g1.
– Add pre edge with label P=P,L1=L from vertex moveload to vertex atpackage in

g1.
– Add add edge with label T=T,L1=L from vertex moveload to vertex attruck in g1.
– Add add edge with label P=P,T=T from vertex moveload to vertex inpackage in g1.
– Add del edge with label T=T,L1=L from vertex moveload to vertex attruck in g1.
– Add del edge with label P=P,L1=L from vertex moveload to vertex atpackage in

g1.
– Map vertex v of g2 to vertex v of g1, where v P {load , unload , move , attruck ,
atpackage , inpackage , incity , moveload}.

Finally, note how Algorithm 1 can be easily extended in order to deal with the
generation of multiple answer sets, corresponding to minimal sets of changes.

238 L. Chrpa et al.

Evaluation. We selected 7 different domain models from well-known international
competitions. In particular, we considered the domains of Barman, Blocksworld, (sim-
plified) Logistics, Rovers, Satellite, and Sokoban from various editions of the Interna-
tional Planning Competition (IPC), and the RPG domain from the 2016 International
Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS).1 The
number of operators ranges between 2 and 12, and the number of predicates between
4 and 25. To obtain a different model for each benchmark domain, but RPG, we refor-
mulated the original models by considering a mix of entanglements and macro-actions,
and by modifying preconditions and effects of original operators. For the RPG domain,
we compared two models crafted by two of the teams that took part in the competi-
tion: Such models present significant differences in terms of predicates and operators
as they embody very different interpretations of the domain at hand. Details of the
LDMGs corresponding to the models are shown in the left part of Table 1. Year indi-
cates when the model was introduced. Finally, to perform a stress test of the proposed
approach, we compared models designed for diverse domains too. Table is divided hor-
izontally in two parts: The top part considering cases where a model has been refor-
mulated, while the bottom part focuses on comparing very different models (RPG, Bar-
man vs Logistics, Rovers vs Satellite). We performed experiments on an Intel Core
i5-10210U machine with 1.6 GHz, 8 GB of RAM and Linux operating system. Each
system run was given an overall memory limit of 6 GB and 5 CPU-time minutes. As
ASP system we used the state-of-the-art tool CLINGO [13], configured with the option
--parallel-mode=4, which enables the use of multiple threads (with different
solving strategies). We used 4 threads and in our experiments this helps improve the
performance of Clingo compared to the default configuration. Moreover, we used the
open-source python library PYSPEL [2] which simplifies the implementation of Algo-
rithm 1. We tested two approaches: The first one is the implementation of Algorithm 1
as described in Sect. 5, and the second one is the same implementation where rules
(3) and (4) of the preprocessing (line 1 of Algorithm 1) are produced using plain ASP
rules. We preliminary tested, on Logistics and Rover domains, the ability of our solu-
tion to compare models that are exactly the same but for the names of the involved
operators and predicates, i.e., if they are strongly equivalent. The results indicate that
the ASP solution employing preprocessing always identifies the compared graphs as
isomorphic, and provides an appropriate mapping between the nodes of the compared
LDMGs, in less than 0.5 CPU-time seconds.

Then, we move to the general case and the results of the experimental analysis are
shown in the right part of Table 1 where, for each domain and tested approach, we report
the number of optimal models found, the CPU time, and the number of rules generated
by the grounding. Square brackets indicate that an optimal solution has been found in
the reported CPU time (checked manually), but has not been proved by CLINGO. As
a first observation, the approach employing preprocessing is extremely fast, since for
all the tested benchmarks we are able to find an optimal solution (through not proved)
in less than 1 CPU-time second. Instead, plain ASP encoding exceeds the memory
limits when executed on large domains (Barman and Rovers) or in the presence of
significant difference between the compared domains, showing that preprocessing is

1 Encoding and benchmarks are available at: https://github.com/MarcoMochi/jelia-planning.

https://github.com/MarcoMochi/jelia-planning

Comparing Planning Domain Models Using Answer Set Programming 239

Table 1. Size of the generated graphs for each benchmark domain model (Left) and performance
of the proposed ASP-based approach without/with preprocessing (Right). Vertices and Edges
give information of the size of the graphs to compare, G1 is the graph obtained by considering
the original domain model, G2 is obtained from the reformulated model for all the domains but
RPG, where two original models independently crafted are compared. RPG is the only domain
presented at ICKEPS, while other domains have been used as IPC benchmarks. Results are pre-
sented in terms of seconds needed to enumerate all the optimal solutions, and the number of
optimal models (Opt Mod.). Square brackets indicate that the optimal solution was not proved.
(# Rules) shows the size of the ASP program.

Domain Year Vertices Edges Opt. Mod. No preprocessing Preprocessing

G1 G2 G1 G2 CPU Time # Rules CPU Time # Rules

Sokoban 2008 6 7 16 18 1 0.1 1,411 0.1 636

Logistics 1998 7 8 13 21 1 0.1 832 0.1 697

Blocksworld 2000 9 11 27 29 2 0.1 3,219 0.1 2,446

Satellite 2002 13 16 23 44 2 2.7 2,132,131 0.1 10,666

Barman 2011 27 29 97 123 1 – – 0.3 98,676

Rovers 2002 34 39 75 103 4 – – 0.4 146,857

RPG 2016 13 34 23 74 [1] [1.9] 849,732 [0.4] 44,601

Barman Log – – – – – [1] – – [0.1] 93,893

Rovers Sat – – – – – [1] – – [0.8] 37,251

indeed necessary in challenging cases. Note that even the mid-size Satellite leads to
more than 2 Million rules, whereas the approach using preprocessing produces only
around 10 thousands rules. In models where differences are limited, (i.e., modification
of 2-3 vertices and a few tens of edges), there is no substantial difference between
finding one optimal solution and finding all of them. This result can be explained by the
fact that the number of optimal solutions is rather small (maximum 4) and this paves the
way for the development of more comparison techniques, e.g., by proposing preferences
among the possible solutions.

Turning our attention more on the stress test, it is easy to notice that despite the
fact that the optimal solution for models of different domains required over 100 mod-
ifications/additional elements (nodes and edges) and for the RPG domain required 4
additional nodes and 78 edges, the proposed solution was able to generate an optimal
result in less than 1 CPU-time second. However, differently from the other tests, in these
cases the approach was able to generate a single optimal solution and not to enumerate
all the optimal ones. On the one hand, this result confirms that ASP is a viable tool to be
used; on the other hand, it may suggest that additional optimisation could be beneficial
for fully enumerate all optimal cases.

Summarising, the performed experimental analysis indicates that the presented ASP
system, enhanced with the preprocessing step, is very efficient in generating optimally
minimal sets of modifications that allows to transform a model into the compared one,
on the basis of the corresponding LDMGs. Considering that results are generated effi-
ciently, the proposed tool can also be exploited during the domain encoding step, for
comparing alternative representations of a domain’s dynamics.

240 L. Chrpa et al.

6 Related Work and Discussion

The notion of strong domain model equivalence has been informally introduced in [24].
On a similar note, [25] proposed an automated approach, D-VAL, to check the func-
tional equivalence of two domain models, i.e., their ability to parse the same set of
problems. D-VAL focuses on comparing models of the same domain that has been
reformulated, to ensure that the reformulation process did not undermine the domain
model capabilities. The approach proposed in this paper is more general, and allows
to compare even very different models in terms of their corresponding solution spaces,
and to obtain a measure of their similarity.

An application-specific investigation of the engineering of different models has been
proposed in [23], and ICKEPS introduced metrics to manually compare models [9].

Notably, an approach based on ASP has been proposed also for the MRP in planning
[19], while [26] deals with the MRP but specifically defined on two logic programs and
their answer sets. Some authors of [26] followed a similar direction in [18], but in the
context of (numerical) scheduling and employing CLINGO-DL language, which is an
extension of ASP enriched with a limited form of arithmetic [15].

7 Conclusion

This paper contributes to theory and practice of the problem of comparing planning
domain models: We defined the concept of similarity of domain models, which builds
on the notion of strong equivalence of domain models, also introduced in the paper. We
proposed an approach based on Answer Set Programming for specifying and solving the
problem – with particular attention given to the identification of optimal minimal sets of
modifications that allows to transform one model into the compared one. Experiments
on well-known planning benchmarks of different size show that the approach can find
a minimal set of corrections in very short time. Future work will focus on extending the
approach to more expressive planning representation languages, such as PDDL+ [12],
that can also consider hybrid discrete-continuous numeric changes, and to improve the
explanations provided as output.

Acknowledgements. L. Chrpa was funded by the Czech Science Foundation (project no. 23-
05575S). M. Vallati was supported by the UKRI Future Leaders Fellowship [grant number
MR/T041196/1]. C. Dodaro was supported by Italian Ministry of Research (MUR) under PNRR
projects FAIR “Future AI Research”, CUP H23C22000860006, and Tech4You “Technologies for
climate change adaptation and quality of life improvement”, CUP H23C22000370006;

References

1. Ai-Chang, M., et al.: MAPGEN: mixed-initiative planning and scheduling for the mars
exploration rover mission. IEEE Intell. Syst. 19(1), 8–12 (2004)

2. Alviano, M., Dodaro, C., Previti, A.: Python Specification Language (2021). https://github.
com/dodaro/pyspel

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511543357

https://github.com/dodaro/pyspel
https://github.com/dodaro/pyspel
https://doi.org/10.1017/CBO9780511543357

Comparing Planning Domain Models Using Answer Set Programming 241

4. Bengoetxea, E.: Inexact Graph Matching Using Estimation of Distribution Algorithms. Ph.D.
thesis, Ecole Nationale Supérieure des Télécommunications, Paris, France, December 2002

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

6. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Log. Program. 20(2),
294–309 (2020)

7. Cardellini, M., Maratea, M., Vallati, M., Boleto, G., Oneto, L.: In-station train dispatching:
a PDDL+ planning approach. In: Proceedings of ICAPS, pp. 450–458 (2021)

8. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations as model
reconciliation: moving beyond explanation as soliloquy. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI, pp. 156–163 (2017)

9. Chrpa, L., McCluskey, T.L., Vallati, M., Vaquero, T.: The fifth international competition on
knowledge engineering for planning and scheduling: summary and trends. AI Mag. 38(1),
104–106 (2017)

10. Coulter, A., Ilie, T., Tibando, R., Muise, C.: Theory alignment via a classical encoding of
regular bisimulation. In: Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS) (2022)

11. Cresswell, S., McCluskey, T.L., West, M.M.: Acquiring planning domain models using
LOCM. Knowl. Eng. Rev. 28(2), 195–213 (2013)

12. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif.
Intell. Res. 27, 235–297 (2006)

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with Clingo 5. In: ICLP (Technical Communications). OASICS, vol. 52,
pp. 2:1–2:15 (2016)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
N. Gener. Comput. 9(3/4), 365–386 (1991)

15. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo
goes linear constraints over reals and integers. Theory Pract. Log. Program. 17(5–6), 872–
888 (2017)

16. McCluskey, T.L., Porteous, J.M.: Engineering and compiling planning domain models to
promote validity and efficiency. Artif. Intell. 95(1), 1–65 (1997)

17. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning:
towards a notion of quality. In: Proceedings of K-CAP, pp. 14:1–14:8 (2017)

18. Nguyen, V., Son, T.C., Yeoh, W.: Explainable problem in clingo-dl programs. In: Ma, H.,
Serina, I. (eds.) Proceedings of the Fourteenth International Symposium on Combinatorial
Search (SOCS 2021), pp. 231–232. AAAI Press (2021)

19. Nguyen, V., Stylianos, V.L., Son, T.C., Yeoh, W.: Explainable planning using answer set pro-
gramming. In: Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR, pp. 662–666 (2020)

20. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

21. Ramı́rez, M., et al.: Integrated hybrid planning and programmed control for real time UAV
maneuvering. In: Proceedings of the AAMAS, pp. 1318–1326 (2018)

22. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern
recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/
TSMC.1983.6313167

23. Shah, M.M.S., Chrpa, L., Kitchin, D.E., McCluskey, T.L., Vallati, M.: Exploring knowl-
edge engineering strategies in designing and modelling a road traffic accident management
domain. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
pp. 2373–2379 (2013)

https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167

242 L. Chrpa et al.

24. Shoeeb, S., McCluskey, T.: On comparing planning domain models. In: PlanSIG Workshop
(2011)

25. Shrinah, A., Long, D., Eder, K.: D-VAL: an automatic functional equivalence validation tool
for planning domain models. arXiv preprint arXiv:2104.14602 (2021)

26. Son, T.C., Nguyen, V., Vasileiou, S.L., Yeoh, W.: Model reconciliation in logic programs.
In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol.
12678, pp. 393–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5 26

27. Vallati, M., Chrpa, L.: On the robustness of domain-independent planning engines: the
impact of poorly-engineered knowledge. In: Proceedings of K-CAP, pp. 197–204 (2019)

28. Vallati, M., McCluskey, T.L.: A quality framework for automated planning knowledge mod-
els. In: Proceedings of the 13th International Conference on Agents and Artificial Intelli-
gence, ICAART, pp. 635–644 (2021)

29. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating
graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

http://arxiv.org/abs/2104.14602
https://doi.org/10.1007/978-3-030-75775-5_26

Hybrid ASP-Based Multi-objective Scheduling
of Semiconductor Manufacturing Processes

Mohammed M. S. El-Kholany1,2 , Ramsha Ali1 , and Martin Gebser1,3(B)

1 University of Klagenfurt, Klagenfurt am Wörthersee, Austria
{mohammed.el-kholany,ramsha.ali}@aau.at

2 Cairo University, Giza, Egypt
3 Graz University of Technology, Graz , Austria

martin.gebser@aau.at

Abstract. Modern semiconductor manufacturing involves intricate production
processes consisting of hundreds of operations, which can take several months
from lot release to completion. The high-tech machines used in these processes
are diverse, operate on individual wafers, lots, or batches in multiple stages, and
necessitate product-specific setups and specialized maintenance procedures. This
situation is different from traditional job-shop scheduling scenarios, which have
less complex production processes and machines, and mainly focus on solving
highly combinatorial but abstract scheduling problems. In this work, we address
the scheduling of realistic semiconductor manufacturing processes by modeling
their specific requirements using hybrid Answer Set Programming with differ-
ence logic, incorporating flexible machine processing, setup, batching and main-
tenance operations. Unlike existing methods that schedule semiconductor manu-
facturing processes locally with greedy heuristics or by independently optimiz-
ing specific machine group allocations, we examine the potentials of large-scale
scheduling subject to multiple optimization objectives.

Keywords: Hybrid Answer Set Programming · Semiconductor manufacturing
scheduling · Difference logic · Multi-objective optimization

1 Introduction

Scheduling semiconductor manufacturing processes imposes a complex challenge due
to the variety of products, operations, and high-tech machines with diverse capabilities
and characteristics. Effective scheduling aims at allocating jobs to machines in a manner
that satisfies production needs, optimizes factory throughput, and guarantees punctual
delivery [34]. In view of the steadily increasing demand [24], semiconductor manufac-
turers are forced to optimize their throughput, decrease cycle times, and enhance the
on-time delivery of products to customers [28]. To reduce the required investments into
costly machines [22], constant utilization and idleness prevention are important goals.

A typical wafer fabrication plant encompasses a variety of process flows, which are
designated production routes for wafer lots within the factory. Each route consists of
several hundred operations to be processed by machines belonging to about one hun-
dred separate tool groups with specific functionalities and characteristics. Sophisticated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 243–252, 2023.
https://doi.org/10.1007/978-3-031-43619-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_17&domain=pdf
http://orcid.org/0000-0002-1088-2081
http://orcid.org/0000-0002-4794-6560
http://orcid.org/0000-0002-8010-4752
https://doi.org/10.1007/978-3-031-43619-2_17

244 M. M. S. El-Kholany et al.

process steps are iterated in several stages, resulting in a re-entrant flow where lots
revisit machines in the same tool group multiple times. Hence, the manufacturing envi-
ronment is different from traditional flow-shop and job-shop scenarios [15]. A crucial
consequence of this re-entrant flow is that wafers at different stages in their manufac-
turing cycle can compete for the same machines, and dispatching strategies to resolve
such competing demands have a noticeable impact on the overall production efficiency.

While lacking specific features of the semiconductor manufacturing process such
as, e.g., re-entrant flow, batching, setup and maintenance operations, as well as vary-
ing processing times and sudden machine disruptions, the Flexible Job-Shop Schedul-
ing Problem (FJSP) [7,32] along with the optimization methods devised for it are
related approaches. Meta-heuristic algorithms for FJSP solving incorporate local search
methods, such as Genetic Programming [25,35], Tabu Search [25], Simulated Anneal-
ing [35], Harmony Search [31], Particle Swarm Optimization [20], and Ant Colony
Optimization [37]. Exact solving methods are based on FJSP models in Mixed Integer
Programming (MIP) [8,18,19], Constraint Programming (CP) [10,19], or Answer Set
Programming (ASP) with difference logic [13,17,21].

Beyond FJSP, ASP [26] has been successfully used to schedule printing devices [5],
specialist teams [30], work shifts [2], course timetables [6], medical treatments [11], and
aircraft routes [33]. The hybrid framework of ASP with difference logic [9] particularly
supports a compact representation and reasoning with quantitative resources like time,
which has also been exploited in domains such as lab resource [14], train connection [1],
and parallel machine [12] scheduling.

Unlike these scheduling domains, the semiconductor manufacturing process is typ-
ically controlled by handcrafted [29] or machine-learned [36] dispatching rules at the
execution level, or (re-)scheduling is localized to specific tool groups [27], e.g., for opti-
mizing the allocation of lots queuing in front of a group of batching machines. While
such local decision making approaches are tuned to specific fab settings, their scope is
generally too narrow to guarantee overall efficiency in terms of optimization objectives
such as the factory throughput or makespan as well as setup and batching criteria.

Our work goes beyond local decision making and constitutes a step towards large-
scale scheduling by modeling the production processes of a modern wafer fab, rep-
resented by the SMT2020 simulation scenario [22]. We extend our preliminary app-
roach [3] to semiconductor fab scheduling with support for batching machines, partially
flexible machine allocation strategies, and multi-objective optimization functionalities.
Section 2 introduces the scheduling problem including crucial features of the SMT2020
scenario, an experimental evaluation examining the potentials of large-scale scheduling
subject to multiple optimization objectives is performed in Sect. 3, and Sect. 4 concludes
with a brief summary and outlook on future work. The extended version [4] of this
paper in addition elaborates our hybrid ASP with difference logic encoding enabling
the large-scale scheduling of semiconductor manufacturing processes.

2 Semiconductor Manufacturing Scheduling

We consider a Semiconductor Manufacturing Scheduling Problem (SMSP) inspired by
the SMT2020 simulation scenario. Given a set P of available products (the producible

Hybrid ASP-Based Multi-objective Scheduling 245

types of wafers), the production route for each product p ∈ P is a finite sequence
p[1], . . . , p[np] of production operations, where np denotes the length of the production
route for p. Each operation p[i] needs to be performed by some machine belonging to
a tool group M(p[i]) and requires a setup s(p[i]) ∈ N, with s(p[i]) = 0 indicating
the special case that any (positive) setup can be in place when performing p[i]. Each
setup s ∈ N has an associated parameter min(s) ∈ N specifying a minimum number
of production operations that should be processed by a machine before changing from
s to another setup. Moreover, batching capacities for operations p[i] are expressed by
the parameters min(p[i]) ∈ N and max(p[i]) ∈ N, denoting a minimum and a maxi-
mum batch size in terms of wafer lots. While the maximum batch size is a hard limit on
the number of lots that can be processed simultaneously, the minima on batch size and
setup changes reflect desiderata for a regular process flow but are not strictly necessary
process limitations. Furthermore, each tool groupM has associated maintenance oper-
ations c(M) and d(M), which must be performed periodically based on the number of
processed lots or accumulated processing time, respectively. That is, for each c ∈ c(M)
(or d ∈ d(M)), the parameters min(c) ∈ N and max(c) ∈ N (or min(d) ∈ N and
max(d) ∈ N) denote the minimum and maximum number of lots (or processing time)
after which the maintenance operation has to be performed. Finally, for any production
operation p[i], setup s, and maintenance operation c or d, time(p[i]) ∈ N, time(s) ∈ N,
time(c) ∈ N or time(d) ∈ N provide the time required for performing the respective
operation or changing to the machine setup, respectively.

The general properties above describe production routes and features of machines,
and a set L of wafer lots represents the requested products, where each lot l ∈ L
belongs to some product p(l) ∈ P . A machine assignment m(l[1]) ∈ M(p(l)[1]), . . . ,
m(l[np(l)]) ∈ M(p(l)[np(l)]) determines a specific machine to perform each operation
l[i] in the production route for a lot l. The schedule for a machinem in the tool groupM
is a finite sequencem[1], . . . ,m[nm] of sets of operations, where for each 1 ≤ j ≤ nm:

m[j] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{l1[i], . . . , lk[i]} for lots {l1, . . . , lk} ⊆ L with p(l1) = . . . = p(lk) = p,

i ≤ np,m(l1[i]) = . . . = m(lk[i]) = m, k ≤ max(p[i]);
{s} for some setup s > 0;
{c} for some maintenance operation c ∈ c(M); or
{d} for some maintenance operation d ∈ d(M).

Starting from the initial machine setup s(m)[1] = 0, we define the successor setups for
1 < j ≤ nm by s(m)[j] = {s} if m[j − 1] = {s} indicates a change to the setup
s ∈ N, or s(m)[j] = s(m)[j − 1] otherwise. Moreover, let l(m[j]) = {l1[i], . . . , lk[i]}
if m[j] = {l1[i], . . . , lk[i]} for lots {l1, . . . , lk} ⊆ L whose i-th operation is processed
in batch, or l(m[j]) = ∅ otherwise. The schedule for m is feasible if each l[i] with
m(l[i]) = m belongs to exactly one set m[j] of operations, and for each 1 ≤ j ≤ nm:

– s(m)[j] = s(p(l)[i]) if s(p(l)[i]) > 0 for some lot l ∈ L with l[i] ∈ l(m[j]),
–

∑
max({0}∪{jc<j|m[jc]={c})<j′≤j |l(m[j′])| ≤ max(c) for each c ∈ c(M),

– min(c) ≤ ∑
max({0}∪{jc<j|m[jc]={c})<j′<j |l(m[j′])| ifm[j] = {c} for c ∈ c(M),

–
∑

max({0}∪{jd<j|m[jd]={d})<j′≤j,l[i]∈l(m[j′])(time(p(l)[i]) ÷ |l(m[j′])|) ≤ max(d)
for each d ∈ d(M), and

246 M. M. S. El-Kholany et al.

implant_128
lithotrack_fe_95
diffusion_fe_120

0 10 20 30 40 50 60 70 80 90

2,2
2,3

wk 1,4 2,4
2,5 mn 1,5

Fig. 1. The chart illustrates an optimal schedule for an example SMSP instance with two lots
of the same product, indicated by the labels 1 and 2 followed by respective production opera-
tion numbers from 1 to 5. The production operations are performed by machines in three tool
groups, called implant_128, lithotrack_fe_95, and diffusion_fe_120, with 1 machine in each.
The diffusion_fe_120 machine starts by processing the first operation for the batch of both lots,
while the remaining four operations per lot are performed sequentially by the lithotrack_fe_95
and implant_128 machines. The su450_3, su128_1, and su128_2 slots indicate the equipping of
machines with required setups, and the additional wk and mn slots denote maintenance opera-
tions.

– min(d) ≤ ∑
max({0}∪{jd<j|m[jd]={d})<j′<j,l[i]∈l(m[j′])(time(p(l)[i]) ÷ |l(m[j′])|)

ifm[j] = {d} for d ∈ d(M).

That is, the required (positive) setup must be in place when performing a production
operation, and the number of lots (or processing time) between maintenance operations
c ∈ c(M) (or d ∈ d(M)) must lie in the range [min(c),max(c)] (or [min(d),max(d)]).

Given a feasible schedule for each machine m, for each 1 ≤ j ≤ nm, we denote
the operation time of m[j] by o(m[j]) = time(p(l)[i]) if there is some l[i] ∈ l(m[j]),
or o(m[j]) = time(o) if m[j] \ l(m[j]) = {o}. Then, starting from o(m[0]) = 0 and
t(m[0]) = 0, the earliest start time of m[j] is

t(m[j]) = max
({t(m[j−1]) + o(m[j−1])} ∪

{t(m′[j′]) + o(m′[j′]) | l[i] ∈ l(m[j]), 1 < i, l[i−1] ∈ l(m′[j′])}
)

.

The start time t(m[j]) thus reflects the earliest time at which m[j−1] is completed by
machine m and the predecessor operations l[i−1] (if any) of all l[i] ∈ l(m[j]) have
been finished as well. Note that start times become infinite when the schedules for
machines induce circular waiting dependencies between the production operations for
lots, and we say that the (global) schedule of machine assignments for lots and feasible
schedules for machines is globally feasible if all start times are finite.

The makespan of a globally feasible schedule is the maximum completion time
t(m[nm]) + o(m[nm]) over all machines m. An operation m[js] = {s} constitutes
a setup violation for s ∈ N if m[j] ∈ N for some j > js indicates a setup change
such that |{js < j′ < j | l(m[j′]) �= ∅}| < min(s). Moreover, m[j] amounts to a
batch violation if we have that |l(m[j])| < min(p(l)[i]) for some l[i] ∈ l(m[j]). The
makespan, setup and batch violations provide optimization objectives to be minimized
for globally feasible schedules.

For example, an (optimal) schedule for an SMSP instance is displayed in Fig. 1.
The machine in the diffusion_fe_120 tool group is capable of batching and processes
the first operation in the route of two lots of the same product simultaneously. Mean-
while, the setups su450_3 and su128_1, required for sequential successor operations

Hybrid ASP-Based Multi-objective Scheduling 247

on machines in the tool groups lithotrack_fe_95 and implant_128, are brought in place
before processing the second and third production operations for each lot. The machine
in the lithotrack_fe_95 group undergoes a maintenance operation labeled wk and then
continues with the fourth operation in the production route for both lots. The fifth and
last operation per lot is processed by the machine in the tool group implant_128, where
a switch to setup su128_2 as well as a maintenance operation labeled mn need to be
performed in addition. The makespan 89 of this schedule is optimal, and likewise the
setup and batch operations, the machine assignment of operations is fixed for simplicity,
yet revisits of the lithotrack_fe_95 and implant_128 machines illustrate re-entrant flow.

3 Experiments

Experiments with our prototypical SMSP encoding [3] showed that fixing the machine
assignment of operations upfront sacrifices optimality, while a fully flexible assignment
leads to plenty ground rules slowing down the optimization when a tool group con-
tains many machines. To enable trade-offs between the fixed and fully flexible machine
allocation strategies, a novel encoding part, detailed in the extended version [4] of this
paper, introduces the constant sub_size that allows for limiting the number of assignable
machines per operation. That is, when sub_size is 0, the machine assignment remains
fully flexible, gets fixed if the value is 1, or is limited to some subgroup of a tool group
with at most sub_sizemany machines for values greater than one. Moreover, the alloca-
tion of operations to subgroups can be configured by the constant lot_step: if its value
is 0, all operations of a lot are mapped to the same subgroup, or to successive subgroups
in case of value 1. The rationale for these two strategies is that operations performed on
the same lot succeed one another and will thus never compete for a machine. On the
other hand, the operations may require different setups so that changes are needed when
reusing the same machine. In fact, the strategy with lot_step value 1 is likely to map
operations of a lot to separate subgroups, as they get allocated in a round robin fashion.

As subordinate machine allocation criterion within each subgroup, the setups of
operations are inspected when the constant by_setup is set to a value other than 0.
The idea is to order setups by the sum of processing times for their operations, where
setups requiring more processing time come first. Following this order, setups and the
respective operations are successively mapped to specific machines, always picking the
machine with the least load so far for the next setup to allocate. The rationale of this
approach is to reduce the problem size and combinatorics by fixing the machine assign-
ment of operations upfront, while grouping similar operations to make setup changes
less likely.

Our novel multi-objective optimization approach combines minimization at the
level of difference logic variable values, as already used in [3,13], with native ASP
optimization capacities, as applied in [1,12,14] w.r.t. the satisfaction of difference logic
constraints, by means of multi-shot solving functionalities [16]. To this end, we uti-
lize a custom control script on top of the Python interface of clingo[DL]. Its first stage
concerns makespan minimization, where the value of a difference logic variable repre-
senting the makespan is decremented and thus minimized over iterative solving rounds.

Once an unsatisfiable solving attempt yields that the makespan of the schedule
obtained last is optimal or a time limit is exceeded, we switch to the second stage using

248 M. M. S. El-Kholany et al.

weak constraints for minimizing setup and batch violations by native ASP optimiza-
tion. Here we take setup violations, where a setup gets changed before performing the
intended minimum number of production operations using it, as strictly more significant
than violations of the minimum batch size, considering that equipping a machine with
a setup takes extra time and effort. The second solving stage can also be restricted by
setting a (separate) time limit, and an optimal or best schedule found in time constitutes
the final result. Notably, our preliminary approach [3] incorporated neither setup viola-
tions nor batching (and its violations) and used only the --minimize-variable option of
clingo[DL] for makespan minimization, while our novel multi-objective optimization
functionalities take advantage of the multi-shot solving interface offered by clingo[DL].

We constructed a scalable set of benchmark instances, focusing on sub-routes of
10 production operations for two product types from the SMT2020 simulation sce-
nario [22]. The 10 operations in both sub-routes are processed by machines belonging to
three tool groups and do thus involve re-entrant flow, as a lot visits the same tool group
multiple times. Moreover, the operations incorporate batching and specific setups, and
machines undergo periodic maintenance operations. In the following, we concentrate
on instances with 9 machines, i.e., 3 per tool group, and gradually increasing number
of lots. Further smaller- and larger-scale instances along with our implementation are
available online.1

We ran our experiments with clingo[DL] (version 1.4.0) on an Intel R© CoreTMi7-
8650U CPU Dell Latitude 5590 machine under Windows 10, imposing two time limits
per run: the first stage for makespan minimization is aborted at 450 s, in which case the
best schedule found so far is taken as upper bound on the makespan for proceeding to
minimize setup and batch violations with another 150 s time limit.

Table 1 reports the quality of best schedules obtained within the time limits for both
optimization stages, split into ‘Makespan’ and ‘Setup/Batch’ values, while two runtimes
or ‘TO’ for a timeout, respectively, are given in the ‘1 st/2 nd Stage’ rows, only listing
a single ‘TO’ entry in case both stages timed out. The ‘Size’ column provides the value
taken for the constant sub_size, limiting the number of machines in subgroups to which
the operations are preallocated. For the latter, the ‘Lot’ columns include results with
value 0 for the constant lot_step, where a common subgroup takes all operations for a
lot, or for value 1 in the ‘Step’ columns, leading to their distribution among subgroups.

The ‘Size’ value 1 necessarily leads to a fixed machine assignment, for which the
quality indicators clearly show that the ‘Step’ strategy yields better schedules, although
it incurs more timeouts and thus fewer certain optima because operations on different
lots increase the flexibility of execution sequences and thus search complexity. While
flexibility within subgroups by setting their ‘Size’ to 2 or 3 in principle allows for
improved schedules, we observe a deterioration due to sharply increasing instantiation
size and search effort, as already observed in [3]. The setup strategy to differentiate
operations and machines within subgroups, activated by changing the constant by_setup,
aims to cut down the scheduling complexity in line with the optimization objectives by
reducing the need for setup changes. This leads to significantly improved schedules
with ‘Size’ 3, where the ‘Lot’ and ‘Step’ preallocation strategies are indifferent and

1 https://github.com/prosysscience/FJSP-SMT2020.

https://github.com/prosysscience/FJSP-SMT2020

Hybrid ASP-Based Multi-objective Scheduling 249

Table 1. Preallocation strategy results with 3 machines per tool group and 10 operations per lot

9 Machines 70 Operations 80 Operations 90 Operations 100 Operations

Size Lot Step Lot Step Lot Step Lot Step

Fixed 1 Makespan 483 428 489 440 486 531 592 553

Setup/Batch 6/12 2/12 5/14 0/13 5/14 3/12 3/12 0/16

1 st/2 nd Stage 2/1 TO/27 6/2 TO/13 11/13 TO TO/78 TO

Flexible 2 Makespan 483 475 592 592 592 539 745 698

Setup/Batch 2/8 0/9 1/8 1/8 1/10 0/11 0/12 0/15

1 st/2 nd Stage 5/1 TO TO/114 TO/1 TO/130 TO TO TO

3 Makespan 559 – 815 – 1357 – 1486 –

Setup/Batch 0/8 – 0/8 – 0/10 – 10/18 –

1 st/2 nd Stage TO – TO/140 – TO/79 – TO –

Setup 2 Makespan 483 475 592 592 592 536 745 683

Setup/Batch 2/8 0/9 1/8 1/8 1/10 0/12 0/13 0/16

1 st/2 nd Stage 2/1 TO TO/21 TO/25 TO/22 TO TO/76 TO

3 Makespan 334 – 345 – 434 – 555 –

Setup/Batch 0/8 – 0/8 – 0/11 – 0/12 –

1 st/2 nd Stage TO/20 – TO/123 – TO – TO/73 –

redundant results for the latter are omitted, up to a critical size reached with 100 opera-
tions.

With our preliminary approach [3], using a more naive and less feature-rich encod-
ing of either fixed or fully flexible machine assignments, the threshold at which problem
size and combinatorics get prohibitive was reached at less than 50 operations already.
Despite gearing up to double that size, our benchmark instances still represent small
excerpts of the large-scale semiconductor fabs with more than 100 tool groups and
from 242 to 543 production operations per lot modeled by [22]. The elevated complex-
ity in comparison to basic settings like the traditional FJSP is mainly due to sophis-
ticated setup and maintenance operations, requiring a detailed analysis of execution
sequences on machines for SMSP. We conjecture that similar scalability limits would
also be encountered with MIP or CP encodings, yet the first-order modeling language
of ASP with difference logic facilitates rapid prototyping and experimentation. In fact,
our performance evaluation aims to explore the feasibility of search and optimization,
in order to come up with strategies for breaking down large SMSP instances into more
manageable portions, e.g., focusing on some bottleneck tool groups or re-entrant flow
of operations.

4 Conclusion

This work extends our preliminary SMSP approach [3] with crucial features, namely,
scalable and informed preallocation strategies to reduce the instantiation size and search
complexity, as well as batch processing and multiple optimization objectives. While we
enhance the scheduling scalability and coverage of real-world features, our mid-term

250 M. M. S. El-Kholany et al.

goal is to incorporate scheduling into the real or simulated management of semiconduc-
tor manufacturing processes. As next step into this direction, we aim to use scheduling
for improving the decision making in the PySCFabSim simulator [23], where methods
available so far, i.e., handcrafted dispatching rules or black-box machine learning mod-
els, function locally and do not take the global impact of their decisions into account.

Acknowledgments. This work was funded by FFG project 894072 (SwarmIn) as well as KWF
project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed
IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Pri-
vatstiftung Kärntner Sparkasse. We are grateful to the anonymous reviewers for their helpful
comments.

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with
hybrid ASP. Theory Pract. Logic Program. 21(3), 317–347 (2021). https://doi.org/10.1017/
S1471068420000046

2. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with answer set
programming. Fund. Inform. 147(1), 1–25 (2016). https://doi.org/10.3233/FI-2016-1396

3. Ali, R., El-Kholany, M., Gebser, M.: Flexible job-shop scheduling for semiconductor manu-
facturing with hybrid answer set programming (application paper). In: Hanus, M., Inclezan,
D. (eds.) PADL. LNCS, vol. 13880, pp. 85–95. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-24841-2_6

4. Ali, R., El-Kholany, M., Gebser, M.: Hybrid ASP-based multi-objective scheduling of
semiconductor manufacturing processes (extended version) (2023). https://doi.org/10.48550/
arXiv.2307.14799

5. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 284–296. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20895-9_33

6. Banbara, M., et al.: teaspoon: Solving the curriculum-based course timetabling problems
with answer set programming. Ann. Oper. Res. 275(1), 3–37 (2019). https://doi.org/10.1007/
s10479-018-2757-7

7. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4),
369–375 (1990). https://doi.org/10.1007/BF02238804

8. Ceylan, Z., Tozan, H., Bulkan, S.: A coordinated scheduling problem for the supply chain
in a flexible job shop machine environment. Oper. Res. Int. Journal 21(2), 875–900 (2021).
https://doi.org/10.1007/s12351-020-00615-0

9. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg
(2006). https://doi.org/10.1007/11814948_19

10. Da Col, G., Teppan, E.C.: Industrial size job shop scheduling tackled by present day CP
solvers. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 144–160. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_9

11. Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An ASP-based solution
to the chemotherapy treatment scheduling problem. Theory Pract. Logic Program. 21(6),
835–851 (2021). https://doi.org/10.1017/S1471068421000363

12. Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skocovský, P., Stepanova, D.: Answer-set
programming for lexicographical makespan optimisation in parallel machine scheduling. In:

https://doi.org/10.1017/S1471068420000046
https://doi.org/10.1017/S1471068420000046
https://doi.org/10.3233/FI-2016-1396
https://doi.org/10.1007/978-3-031-24841-2_6
https://doi.org/10.1007/978-3-031-24841-2_6
https://doi.org/10.48550/arXiv.2307.14799
https://doi.org/10.48550/arXiv.2307.14799
https://doi.org/10.1007/978-3-642-20895-9_33
https://doi.org/10.1007/978-3-642-20895-9_33
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1007/BF02238804
https://doi.org/10.1007/s12351-020-00615-0
https://doi.org/10.1007/11814948_19
https://doi.org/10.1007/978-3-030-30048-7_9
https://doi.org/10.1017/S1471068421000363

Hybrid ASP-Based Multi-objective Scheduling 251

Proceedings of the Eighteenth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2021), pp. 280–290. AAAI Press (2021). https://doi.org/10.
24963/kr.2021/27

13. El-Kholany, M., Gebser, M., Schekotihin, K.: Problem decomposition and multi-shot ASP
solving for job-shop scheduling. Theory Pract. Logic Program. 22(4), 623–639 (2022).
https://doi.org/10.1017/S1471068422000217

14. Francescutto, G., Schekotihin, K., El-Kholany, M.M.S.: Solving a multi-resource partial-
ordering flexible variant of the job-shop scheduling problem with hybrid ASP. In: Faber, W.,
Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp.
313–328. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_21

15. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop scheduling.
Math. Oper. Res. 1(2), 117–129 (1976). https://doi.org/10.1287/moor.1.2.117

16. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.1017/
S1471068418000054

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with clingo 5. In: Technical Communications of the Thirty-second Inter-
national Conference on Logic Programming (ICLP 2016), pp. 2:1–2:15. Schloss Dagstuhl
(2016). https://doi.org/10.4230/OASIcs.ICLP.2016.2

18. Gran, S., Ismail, I., Ajol, T., Ibrahim, A.: Mixed integer programming model for flexible
job-shop scheduling problem (FJSP) to minimize makespan and total machining time. In:
Proceedings of the International Conference on Computer, Communications, and Control
Technology (I4CT), pp. 413–417. IEEE (2015). https://doi.org/10.1109/I4CT.2015.7219609

19. Ham, A., Park, M., Kim, K.: Energy-aware flexible job shop scheduling using mixed integer
programming and constraint programming. Math. Probl. Eng. 2021(Article ID 8035806),
1–12 (2021). https://doi.org/10.1155/2021/8035806

20. Hassanzadeh, A., Rasti-Barzoki, M., Khosroshahi, H.: Two new meta-heuristics for a bi-
objective supply chain scheduling problem in flow-shop environment. Appl. Soft Comput.
49, 335–351 (2016). https://doi.org/10.1016/j.asoc.2016.08.019

21. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo
goes linear constraints over reals and integers. Theory Pract. Logic Program. 17(5–6), 872–
888 (2017). https://doi.org/10.1017/S1471068417000242

22. Kopp, D., Hassoun, M., Kalir, A., Mönch, L.: SMT2020-A semiconductor manufacturing
testbed. IEEE Trans. Semicond. Manuf. 33(4), 522–531 (2020). https://doi.org/10.1109/
TSM.2020.3001933

23. Kovács, B., Tassel, P., Ali, R., El-Kholany, M., Gebser, M., Seidel, G.: A customizable sim-
ulator for artificial intelligence research to schedule semiconductor fabs. In: Proceedings of
the Thirty-third Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC
2022), pp. 106–111. IEEE (2022). https://doi.org/10.1109/ASMC54647.2022.9792520

24. Leslie, M.: Pandemic scrambles the semiconductor supply chain. Engineering 9, 10–12
(2022). https://doi.org/10.1016/j.eng.2021.12.006

25. Li, X., Gao, L.: An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem. Int. J. Prod. Econ. 174, 93–110 (2016). https://doi.org/10.1016/j.ijpe.
2016.01.016

26. Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-24658-7

27. Mönch, L., Fowler, J., Dauzère-Pérès, S., Mason, S., Rose, O.: A survey of problems, solu-
tion techniques, and future challenges in scheduling semiconductor manufacturing opera-
tions. J. Sched. 14(6), 583–599 (2011). https://doi.org/10.1007/s10951-010-0222-9

https://doi.org/10.24963/kr.2021/27
https://doi.org/10.24963/kr.2021/27
https://doi.org/10.1017/S1471068422000217
https://doi.org/10.1007/978-3-030-75775-5_21
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1109/I4CT.2015.7219609
https://doi.org/10.1155/2021/8035806
https://doi.org/10.1016/j.asoc.2016.08.019
https://doi.org/10.1017/S1471068417000242
https://doi.org/10.1109/TSM.2020.3001933
https://doi.org/10.1109/TSM.2020.3001933
https://doi.org/10.1109/ASMC54647.2022.9792520
https://doi.org/10.1016/j.eng.2021.12.006
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/s10951-010-0222-9

252 M. M. S. El-Kholany et al.

28. Pfund, M., Balasubramanian, H., Fowler, J., Mason, S., Rose, O.: A multi-criteria approach
for scheduling semiconductor wafer fabrication facilities. J. Sched. 11(1), 29–47 (2008).
https://doi.org/10.1007/s10951-007-0049-1

29. Pfund, M., Mason, S., Fowler, J.: Semiconductor manufacturing scheduling and dispatching.
In: Herrmann, J.W. (ed.) Handbook of Production Scheduling. International Series in Oper-
ations Research and Management Science, vol. 89, pp. 213–241. Springer, Boston (2006).
https://doi.org/10.1007/0-387-33117-4_9

30. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012). https://doi.org/10.1017/
S147106841100007X

31. Sahraeian, R., Rohaninejad, M., Fadavi, M.: A new model for integrated lot sizing and
scheduling in flexible job shop problem. J. Ind. Syst. Eng. 10(3), 72–91 (2017). https://www.
jise.ir/article_44919.html

32. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285
(1993). https://doi.org/10.1016/0377-2217(93)90182-M

33. Tassel, P., Rbaia, M.: A multi-shot ASP encoding for the aircraft routing and maintenance
planning problem. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021.
LNCS (LNAI), vol. 12678, pp. 442–457. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75775-5_30

34. Upasani, A., Uzsoy, R., Sourirajan, K.: A problem reduction approach for scheduling
semiconductor wafer fabrication facilities. IEEE Trans. Semicond. Manuf. 19(2), 216–225
(2006). https://doi.org/10.1109/TSM.2006.873510

35. Wang, L., Zheng, D.: An effective hybrid optimization strategy for job-shop schedul-
ing problems. Comput. Oper. Res. 28(6), 585–596 (2001). https://doi.org/10.1016/S0305-
0548(99)00137-9

36. Waschneck, B., et al.: Deep reinforcement learning for semiconductor production schedul-
ing. In: Proceedings of the Twenty-ninth Annual SEMI Advanced Semiconductor Manu-
facturing Conference (ASMC 2018), pp. 301–306. IEEE (2018). https://doi.org/10.1109/
ASMC.2018.8373191

37. Xing, L., Chen, Y., Wang, P., Zhao, Q., Xiong, J.: A knowledge-based ant colony optimiza-
tion for flexible job shop scheduling problems. Appl. Soft Comput. 10(3), 888–896 (2010).
https://doi.org/10.1016/j.asoc.2009.10.006

https://doi.org/10.1007/s10951-007-0049-1
https://doi.org/10.1007/0-387-33117-4_9
https://doi.org/10.1017/S147106841100007X
https://doi.org/10.1017/S147106841100007X
https://www.jise.ir/article_44919.html
https://www.jise.ir/article_44919.html
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1007/978-3-030-75775-5_30
https://doi.org/10.1007/978-3-030-75775-5_30
https://doi.org/10.1109/TSM.2006.873510
https://doi.org/10.1016/S0305-0548(99)00137-9
https://doi.org/10.1016/S0305-0548(99)00137-9
https://doi.org/10.1109/ASMC.2018.8373191
https://doi.org/10.1109/ASMC.2018.8373191
https://doi.org/10.1016/j.asoc.2009.10.006

On Heuer’s Procedure for Verifying
Strong Equivalence

Jorge Fandinno1(B) and Vladimir Lifschitz2

1 University of Nebraska at Omaha, Omaha, USA
jfandinno@unomaha.edu

2 University of Texas at Austin, Austin, USA

Abstract. In answer set programming, two groups of rules are consid-
ered strongly equivalent if replacing one group by the other within any
program does not affect the set of stable models. Jan Heuer has designed
and implemented a system that verifies strong equivalence of programs
in the ASP language mini-gringo. The design is based on the syntactic
transformation τ∗ that converts mini-gringo programs into first-order
formulas. Heuer’s assertion about τ∗ that was supposed to justify this
procedure turned out to be incorrect, and in this paper we propose an
alternative justification for his algorithm. We show also that if τ∗ is
replaced by the simpler and more natural translation ν then the algo-
rithm will still produce correct results.

1 Introduction

In answer set programming (ASP), two groups of rules are considered strongly
equivalent if replacing one group by the other within any program does not affect
the set of stable models [21]. This equivalence relation has been extensively
studied in the literature because of its interesting theoretical properties and
its usefulness for the practice of answer set programming [1–6,8,10,11,15,16,
19,20,22–24,27]. Jan Heuer designed and implemented a system that verifies
strong equivalence of programs in the ASP language mini-gringo. The system
is described in his Bachelor Thesis [12], presented to the University of Potsdam.

The design of the system is based on the syntactic transformation τ∗ [20],
which converts mini-gringo rules and programs into first-order formulas. Mini-
gringo programs Π1, Π2 are strongly equivalent whenever the formulas τ∗Π1

and τ∗Π2 can be derived from each other in the deductive system HTA (“here-
and-there with arithmetic”) [17].

To use a resolution theorem prover as a proof engine for HTA, Heuer needed
an additional translation that would relate HTA to a classical first-order theory.
The translation that he implemented is a straightforward generalization of the
process proposed by Pearce et al. [25] for propositional formulas.

Unfortunately, the claim that is supposed to justify this additional transla-
tion [12, Theorem 3] is incorrect as stated, because it disregards the existence
of interpretations that treat arithmetical symbols in nonstandard ways.1 For
1 Lifschitz et al. [20] made the same mistake in their Proposition 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 253–261, 2023.
https://doi.org/10.1007/978-3-031-43619-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_18

254 J. Fandinno and V. Lifschitz

example, the facts p(2 + 3) and p(5) are strongly equivalent, but we cannot
assert that they get the same truth value under any interpretation. Indeed, the
expressions 2 + 3 and 5 can have different values if the symbols 2, 3, 5 and +
are not interpreted as usual in arithmetic.

In this paper we show that, in spite of this difficulty, Heuer’s procedure is in
fact correct. Second, we show that the procedure will produce correct results if
we modify it by replacing τ∗R with the simpler translation νR when the rule R
is regular [18]. The paper begins with a review of the mini-gringo language and
of the target language of the translations τ∗ and ν (Sects. 2 and 3). The main
results of this paper are stated in Sect. 4. In Sect. 5 we give examples of their
use. In Sect. 6 we describe an extension HTAω of the deductive system HTA,
which plays an important role in our proofs of the main results.

2 Review: Programs

We assume that three countably infinite sets of symbols are selected: numerals,
symbolic constants, and variables. We assume that a 1–1 correspondence between
numerals and integers is chosen; the numeral corresponding to an integer n is
denoted by n. Precomputed terms are numerals and symbolic constants. We
assume that a total order on precomputed terms is chosen such that for all
integers m and n, m < n iff m < n.

Terms allowed in a mini-gringo program are formed from precomputed
terms and variables using the six operation names

+ − × / \ ..

(the last three serve to represent integer division, remainder and intervals). An
atom is a symbolic constant optionally followed by a tuple of terms in parenthe-
ses. A literal is an atom possibly preceded by one or two occurrences of not. A
comparison is an expression of the form t1 ≺ t2, where t1, t2 are terms and ≺ is
= or one of the comparison symbols

�= < > ≤ ≥ (1)

A rule is an expression of the form Head ← Body, where

– Body is a conjunction (possibly empty) of literals and comparisons, and
– Head is either an atom (then the rule is basic), or an atom in braces (then

this is a choice rule), or empty (then this is a constraint).

A (mini-gringo) program is a finite set of rules.
The semantics of ground terms is defined by assigning to every ground term t

the finite set [t] of its values [20, Section 3]. Values of a ground term are precom-
puted terms. For instance,

[2/3] = {0}, [2/0] = ∅, [0 .. 2] = {0, 1, 2}.

On Heuer’s Procedure for Verifying Strong Equivalence 255

A predicate symbol is a pair p/n, where p is a symbolic constant, and n is a
nonnegative integer. About a predicate symbol p/n we say that it occurs in a
program Π if a rule of Π contains an atom of the form p(t1, . . . , tn).

Stable models of a program are defined as stable models of the set of proposi-
tional formulas obtained from it by the syntactic transformation τ [20, Section 3].
Atomic parts of these formulas are precomputed atoms—atoms p(t) such that
the members of t are precomputed terms. For example, τ transforms the rule

{q(X)} ← p(X) (2)

into the set of formulas p(t) → (q(t) ∨ ¬q(t)) for all precomputed terms t.
The rule

q(0 .. 2) ← p (3)

is transformed into p → (q(0) ∧ q(1) ∧ q(2)). Thus stable models of mini-
gringo programs are sets of precomputed atoms.

Mini-gringo programs Π1 and Π2 are strongly equivalent to each other if,
for every set Ω of propositional combinations of precomputed atoms, τΠ1 ∪ Ω
has the same stable models as τΠ2 ∪ Ω.

3 Review: Two-Sorted Formulas

The target language of the translations τ∗ [20, Section 6] and ν [18, Sections 4, 5]
is a first-order language with the sort general and its subsort integer.2 Variables
of the first sort are meant to range over arbitrary precomputed terms, and we
identify them with variables used in mini-gringo rules. Variables of the second
sort are meant to range over numerals (or, equivalently, integers). This is made
precise in the definition of a standard interpretation at the end of this section.

The signature σ0 of the language includes

– all precomputed terms as object constants; an object constant is assigned the
sort integer iff it is a numeral;

– the symbols +, − and × as binary function constants; their arguments and
values have the sort integer ;3

– predicate symbols p/n as n-ary predicate constants; their arguments have the
sort general ;

– comparison symbols (1) as binary predicate constants; their arguments have
the sort general.

2 The need to use a language with two sorts is explained by the fact that function
symbols in a first-order language are supposed to represent total functions, and
arithmetic operations are not defined on symbolic constants.

3 The symbols / and \ are not included because the corresponding functions are not
total on the set of integers. The symbol .. is not included because intervals do not
belong to the domain of precomputed terms.

256 J. Fandinno and V. Lifschitz

An atomic formula (p/n)(t1, . . . , tn) can be abbreviated as p(t1, . . . , tn). An
atomic formula of the form ≺ (t1, t2), where ≺ is a comparison symbol, can
be written as t1 ≺ t2. A conjunction of the form t1 ≤ t2 ∧ t2 ≤ t3 can be written
as t1 ≤ t2 ≤ t3, and similarly for other chains of inequalities.

For example, the translation ν converts rule (2) into

∀X(p(X) → (q(X) ∨ ¬q(X))). (4)

Rule (3) is transformed into

p → ∀N(0 ≤ N ≤ 2 → q(N)),

where N is an integer variable. The result of applying ν to the rule

q(X,Y + 1) ← p(X,Y) (5)

is
∀XN(p(X,N) → q(X,N + 1)). (6)

An interpretation of the signature σ0 is standard if

– its domain of the sort general is the set of all precomputed terms;
– its domain of the sort integer is the set of all numerals;
– it interprets every precomputed term t as t;
– it interprets m+n as m + n, and similarly for subtraction and multiplication;
– it interprets every atomic sentence t1 ≺ t2, where t1 and t2 are precomputed

terms, as true iff the relation ≺ holds for the pair (t1, t2).

4 Translation γ and Its Properties

By σ′
0 we denote the extension of the signature σ0 obtained by adding, for every

predicate symbol p/n, a new n-ary predicate constant (p/n)′. An atomic formula
(p/n)′(t) can be abbreviated as p′(t). For the signature σ′

0, the definition of a
standard interpretation is the same as for the signature σ0 above.

For any formula F over the signature σ0, by F ′ we denote the formula over σ′
0

obtained from F by replacing every occurrence of every predicate symbol p/n
by (p/n)′.

The translation γ, which relates logic of here-and-there with arithmetic to
classical logic, maps formulas over σ0 to formulas over σ′

0.
4 It is defined recur-

sively:

– γF = F if F is atomic,
– γ(¬F) = ¬F ′,
– γ(F ∧ G) = γF ∧ γG,
– γ(F ∨ G) = γF ∨ γG,

4 Heuer [12, Sections 2.2.3 and 3.3] denotes this translation by σ∗. We switched to γ
to avoid confusion with the symbols denoting signatures.

On Heuer’s Procedure for Verifying Strong Equivalence 257

– γ(F → G) = (γF → γG) ∧ (F ′ → G′),
– γ(∀X F) = ∀X γF ,
– γ(∃X F) = ∃X γF .

Our justification of Heuer’s procedure is given by Theorem 1 below. In the
statement of the theorem, A(p/n) stands for the formula ∀X(p(X) → p′(X)),
where X is an n-tuple of distinct general variables.

Theorem 1. Mini-gringo programs Π1, Π2 are strongly equivalent iff all stan-
dard interpretations of σ′

0 satisfy the formula
⎛
⎝∧

p/n

A(p/n)

⎞
⎠ → (γτ∗Π1 ↔ γτ∗Π2), (7)

where the conjunction extends over all predicate symbols p/n that occur in Π1

or in Π2.

This theorem differs from the incorrect assertion mentioned in the introduc-
tion [12, Theorem 3] by requiring the interpretations to be standard. It shows
that strong equivalence between Π1 and Π2 can be established by proving for-
mula (7) in a first-order theory such that its axioms are satisfied by all standard
interpretations. This is how Heuer’s procedure operates. It translates formula (7)
into the TPTP language [26] using the algorithm implemented earlier as part
of the proof assistant anthem [7]. Then the theorem prover vampire [14] is
invoked to find a proof.

Results similar to the theorem above are due to Lin [23] (his Theorem 1 is
about strong equivalence of propositional programs), to Pearce et al. [25] (their
Theorem 6(iii) is about strong equivalence of propositional formulas), and to
Ferraris et al. [9] (their Theorem 9 is about strong equivalence of first-order
formulas without arithmetic).

Theorem 2 below shows that the assertion of Theorem 1 will remain true if
we replace τ∗ by the simpler and more natural translation ν when a “regular”
rule [18, Section 2] is translated. (The two main distinctive features of regular
rules are that they do not use function symbols / and \, and do not apply
arithmetical operations to intervals, as in X × (Y .. Z).)

For any mini-gringo program Π, by μΠ we denote the set consisting of

– the formulas νR for all rules R of Π that are regular [18, Section 2], and
– the formulas τ∗R for all rules R of Π that are not regular.

The assertion of Theorem 1 will remain true if we replace τ∗ in its statement
by μ:

Theorem 2. Mini-gringo programs Π1, Π2 are strongly equivalent iff all stan-
dard interpretations of σ′

0 satisfy the formula
⎛
⎝∧

p/n

A(p/n)

⎞
⎠ → (γμΠ1 ↔ γμΠ2), (8)

258 J. Fandinno and V. Lifschitz

where the conjunction extends over all predicate symbols p/n that occur in Π1

or in Π2.

5 Examples

Example 1. Let Π1 be rule (2), and let Π2 be the rule

q(X) ← p(X) ∧ not not q(X). (9)

Both rules are regular, so that μΠ1 is (4), and μΠ2 is

∀X(p(X) ∧ ¬¬q(X) → q(X)).

Then γμΠ1 is

∀X((p(X) → (q(X) ∨ ¬q′(X))) ∧ (p′(X) → (q′(X) ∨ ¬q′(X)))),

which is (classically) equivalent to

∀X(p(X) → (q(X) ∨ ¬q′(X))); (10)

γμΠ2 is

∀X((p(X) ∧ ¬¬q′(X) → q(X)) ∧ (p′(X) ∧ ¬¬q′(X) → q′(X))),

which is equivalent to

∀X(p(X) ∧ q′(X) → q(X)))

and furthermore to (10). Thus the consequent of (8) is in this case logically valid,
and the programs are strongly equivalent by Theorem 2.

Example 2. Let Π1 be rule (5), and let Π2 be the rule

q(X,Y) ← p(X,Y − 1). (11)

Both rules are regular, so that μΠ1 is (6), and μΠ2 is

∀XN(p(X,N − 1) → q(X,N)).

Then γμΠ1 is

∀XN((p(X,N) → q(X,N + 1)) ∧ (p′(X,N) → q′(X,N + 1))),

and γμΠ2 is

∀XN((p(X,N − 1) → q(X,N)) ∧ (p′(X,N − 1) → q′(X,N))).

The equivalence γμΠ1 ↔ γμΠ2 is a logical consequence of the formulas

∀N((N − 1) + 1 = N) and ∀N((N + 1) − 1 = N),

On Heuer’s Procedure for Verifying Strong Equivalence 259

which are satisfied by all standard interpretations. The programs are strongly
equivalent by Theorem 2.

In both examples above, we did not refer to the antecedent of implication (8);
in each case, all standard interpretations satisfy the consequent. Strong equiva-
lence between the program

q ← p,
← p ∧ ¬q

and its first rule is a case when the presence of the antecedents in implications (7)
and (8) is essential. This example is due to Lin [23, Section 2].

6 Logic of Here-and-there with Arithmetic

Proofs of Theorems 1 and 2 are derived from a lemma that refers to an exten-
sion of the deductive system HTA. This extension, denoted by HTAω, can be
described as the result of adding a few axiom schemas and inference rules to
intuitionistic logic with equality for the signature σ0.

The list of additional axioms includes the Hosoi axiom schema [13]

F ∨ (F → G) ∨ ¬G

and the schema SQHT [22]

∃X(F (X) → ∀X F (X)).

It includes also the formulas
t1 ≺ t2

where ≺ is one of comparison symbols (1), and t1, t2 are precomputed terms
that satisfy the condition t1 ≺ t2;

¬(t1 ≺ t2)

where ≺ is = or one of comparison symbols (1), and t1, t2 are precomputed
terms that do not satisfy the condition t1 ≺ t2; and

m + n = m + n, m − n = m − n, m · n = m × n

for all integers m, n.
The additional inference rules are “omega-rules” with infinitely many

premises:
F (t) for all precomputed terms t

∀X F (X)

where X is a general variable, and

F (n) for all integers n

∀N F (N)
(12)

260 J. Fandinno and V. Lifschitz

where N is an integer variable [6, Section 5.3].

Main Lemma. Let Π1, Π2 be mini-gringo programs, and let Fi (i = 1, 2) be
a sentence over σ0 that is equivalent to τ∗Πi in HTAω. Programs Π1, Π2 are
strongly equivalent iff every standard model of A satisfies γF1 ↔ γF2, where A
denotes the set of formulas A(p/n) for all predicate symbols p/n.

Conclusion

Theorem 2 shows that Heuer’s procedure can be modified by replacing τ∗R
with the simpler translation νR when the rule R is regular. We expect that
this modification will make the system easier to use, and we plan to verify this
conjecture in collaboration with researchers at the University of Potsdam.

References

1. Bochman, A., Lifschitz, V.: Yet another characterization of strong equivalence.
In: Technical Communications of the 27th International Conference on Logic Pro-
gramming (ICLP), pp. 11–15 (2011)

2. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory Pract. Logic Program. 7, 745–759 (2007)

3. Chen, Y., Lin, F., Li, L.: SELP – a system for studying strong equivalence between
logic programs. In: Proceedings of International Conference on Logic Programming
and Nonmonotonic Reasoning, pp. 442–446 (2005)

4. De Jongh, D., Hendriks, L.: Characterization of strongly equivalent logic programs
in intermediate logics. Theory Pract. Logic Program. 3, 259–270 (2003)

5. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence
in answer-set programming: characterizations and complexity results for the non-
ground case. In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI),
pp. 695–700 (2005)

6. Fandinno, J., Lifschitz, V.: Omega-completeness of the logic of here-and-there and
strong equivalence of logic programs. In: Proceedings of International Conference
on Principles of Knowledge Representation and Reasoning (to appear) (2023)

7. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight logic programs
with anthem and vampire. Theory Pract. Logic Program. 20, 735–750 (2020)

8. Ferraris, P.: On modular translations and strong equivalence. In: Proceedings of
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), pp. 79–91 (2005)

9. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell.
175, 236–263 (2011)

10. Harrison, A., Lifschitz, V., Pearce, D., Valverde, A.: Infinitary equilibrium logic
and strong equivalence. In: Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), pp. 398–410 (2015)

11. Harrison, A., Lifschitz, V., Pearce, D., Valverde, A.: Infinitary equilibrium logic
and strongly equivalent logic programs. Artif. Intell. 246, 22–33 (2017)

12. Heuer, J.: Automated verification of equivalence properties in advanced logic pro-
grams (2020). Bachelor Thesis, University of Potsdam

On Heuer’s Procedure for Verifying Strong Equivalence 261

13. Hosoi, T.: The axiomatization of the intermediate propositional systems Sn of
Gödel. J. Faculty Sci. Univ. Tokyo 13, 183–187 (1966)

14. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

15. Lee, J., Palla, R.: Yet another proof of the strong equivalence between propositional
theories and logic programs. In: Working Notes of the Workshop on Correspon-
dence and Equivalence for Nonmonotonic Theories (2007)

16. Lierler, Y., Lifschitz, V.: Termination of grounding is not preserved by strongly
equivalent transformations. In: Proceedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR) (2011)

17. Lifschitz, V.: Here and there with arithmetic. Theory Pract. Logic Program. 21,
735–749 (2021)

18. Lifschitz, V.: Transforming gringo rules into formulas in a natural way. In: Faber,
W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol.
12678, pp. 421–434. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75775-5 28

19. Lifschitz, V.: Strong equivalence of logic programs with counting. Theory Pract.
Logic Program. 22, 573–588 (2022)

20. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in the
input language of gringo. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR
2019. Lecture Notes in Computer Science, vol. 11481, pp. 270–283. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20528-7 20

21. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2, 526–541 (2001)

22. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72200-7 17

23. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In: Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR), pp. 170–176 (2002)

24. Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. In:
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)
(2005)

25. Pearce, D., Tompits, H., Woltran, S.: Characterising equilibrium logic and nested
logic programs: reductions and complexity. Theory Pract. Logic Program. 9, 565–
616 (2009)

26. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 59(4), 483–502 (2017)

27. Turner, H.: Strong equivalence made easy: nested expressions and weight con-
straints. Theory Pract. Logic Program. 3(4–5), 609–622 (2003)

https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-030-75775-5_28
https://doi.org/10.1007/978-3-030-75775-5_28
https://doi.org/10.1007/978-3-030-20528-7_20
https://doi.org/10.1007/978-3-540-72200-7_17
https://doi.org/10.1007/978-3-540-72200-7_17

Hamiltonian Cycle Reconfiguration
with Answer Set Programming

Takahiro Hirate1, Mutsunori Banbara1(B) , Katsumi Inoue2 ,
Xiao-Nan Lu3 , Hidetomo Nabeshima4 , Torsten Schaub5 ,

Takehide Soh6 , and Naoyuki Tamura6

1 Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
{hirate310,banbara}@nagoya-u.jp

2 National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
inoue@nii.ac.jp

3 Gifu University, Yanagido, Gifu 501-1193, Japan
xnlu@gifu-u.ac.jp

4 University of Ymanashi, Takeda, Kofu, Yamanashi 400-8511, Japan
nabesima@yamanashi.ac.jp

5 Universität Potsdam, An der Bahn 2, 14476 Potsdam, Germany
torsten@cs.uni-potsdam.de

6 Kobe University, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
soh@lion.kobe-u.ac.jp, tamura@kobe-u.ac.jp

Abstract. The Hamiltonian cycle reconfiguration problem is defined as
determining, for a given Hamiltonian cycle problem and two among its
feasible solutions, whether one is reachable from another via a sequence
of feasible solutions subject to certain transition constraints. We develop
an approach to solving the Hamiltonian cycle reconfiguration problem
based on Answer Set Programming (ASP). Our approach relies on a
high-level ASP encoding and delegates both the grounding and solving
tasks to an ASP-based solver. To show the effectiveness of our approach,
we conduct experiments on the benchmark set of Flinders Hamiltonian
Cycle Project.

Keywords: Answer Set Programming · Hamiltonian Cycle
Reconfiguration · Combinatorial Reconfiguration

1 Introduction

The motivation of combinatorial reconfiguration [13,15,27] is to understand the
solution spaces of combinatorial problems and to decide whether or not there
are sequences of feasible solutions that have special properties. Combinatorial
Reconfiguration Problems (CRPs) are defined in general as determining, for a
given combinatorial problem and two among its feasible solutions, whether one
is reachable from another via a reconfiguration sequence of feasible solutions
subject to certain transition constraints. The theoretical aspect of combinatorial

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 262–277, 2023.
https://doi.org/10.1007/978-3-031-43619-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_19&domain=pdf
http://orcid.org/0000-0002-5388-727X
http://orcid.org/0000-0002-2717-9122
http://orcid.org/0000-0001-7881-8505
http://orcid.org/0000-0003-3752-2518
http://orcid.org/0000-0002-7456-041X
http://orcid.org/0000-0001-5897-9192
http://orcid.org/0000-0002-5466-1010
https://doi.org/10.1007/978-3-031-43619-2_19

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 263

reconfiguration problems has rapidly grown in the field of theoretical computer
science over the last decade. For many NP-complete problems, their reconfig-
urations have been shown to be PSPACE-complete, such as SAT reconfigura-
tion [9,25], independent set reconfiguration [15,17,19], dominating set recon-
figuration [10,30], graph coloring reconfiguration [4–6,16], clique reconfigura-
tion [18], and many others.

The Hamiltonian Cycle Reconfiguration Problem (HCRP; [31]) is one of the
combinatorial reconfiguration problems based on the well-known Hamiltonian
Cycle Problem (HCP; [21]). Theoretically, this problem is known to be PSPACE-
complete when two edges are flipped in each transition [31]. On the other hand,
little attention has been paid so far to the practical aspect of Hamiltonian cycle
reconfiguration problem as well as many other combinatorial reconfiguration
problems. To overcome this situation and to provide the state-of-the-art of CRP
solving, the first combinatorial reconfiguration challenge (CoRe Challenge 2022;
[29]) has been held very recently.1

This paper describes an approach to solving the Hamiltonian cycle reconfig-
uration problem based on Answer Set Programming (ASP; [2,8,26]). We first
revisit traditional ASP encodings for HCP solving and develop two new encod-
ings. Then, we conduct experiments with the encodings on an HCP bench-
mark set. Based on these performance comparisons, we adapt the best perform-
ing encoding for efficient HCRP solving. The resulting solver reads an HCRP
instance and converts it into ASP facts. In turn, these facts are combined with
an ASP encoding for HCRP solving, which can subsequently be solved by an
ASP-based CRP solver recongo. In this paper, we focus on HCP and HCRP on
undirected graphs.

The declarative approach of ASP has obvious advantages. First, ASP pro-
vides a rich language and is well suited for modeling combinatorial problems.
Second, ASP allows for easy extensions of encodings to their reconfiguration
problems. And finally, combinatorial reconfiguration problems can be solved by
a general-purpose CRP solver, viz. recongo, rather than dedicated implemen-
tations. The recongo solver is an award-winning solver at the CoRe Challenge
2022; it is built upon an efficient ASP solver clingo [7].

The main contributions of this paper are as follows.

(1) We present two ASP encodings for undirected HCP solving. Especially, the
bidirectional encoding is based on the idea of a SAT encoding [28] that
transforms undirected graph problems into directed ones by mapping each
edge u – v to one of its directional edges u → v and v → u.

(2) We extend the bidirectional encoding to solving the Hamiltonian cycle recon-
figuration problem by utilizing clingo’s multi-shot ASP solving capabili-
ties [20].

(3) We create a new benchmark set of the Hamiltonian cycle reconfiguration
problem. In detail, the new benchmark set consists of 948 HCRP instances,
in which 431 are reachable and 517 are unreachable.

1 https://core-challenge.github.io/2022/.

https://core-challenge.github.io/2022/

264 T. Hirate et al.

etatslaogetatstrats

1

2 3

4 5

6 ⇒

1

2 3

4 5

6 ⇒

1

2 3

4 5

6

C0 C1 C2

Fig. 1. Example of 3-opt HCRP

For (1), our empirical analysis considers all 1,001 HCP instances, which are
publicly available from the Flinders Hamiltonian Cycle Project (FHCP [11]).
The bidirectional encoding performs better compared with traditional encod-
ings [7,22,24]. Furthermore, we establish the competitiveness of our declarative
approach by contrasting it to other approaches, including the award-winning
solvers of the FHCP challenge and XCSP competition [1], and a state-of-the-art
SAT encoding for HCP solving [12]. For (2) and (3), the proposed encoding for
HCRP solving managed to determine the reachability of 882 out of 948 instances.
Furthermore, it was able to find shortest reconfiguration sequences of length 28
in about 200 s in average.

All in all, the proposed declarative approach can represent a significant contri-
bution to the state-of-the-art for HCRP. In addition, our study also contributes
to HCP solving, since to the best of our knowledge there have not been any
research papers that have compared ASP encodings for HCP solving and have
contrasted them with other different approaches.

In this paper, we assume some familiarity with ASP, its semantics as well
as its language and multi-shot ASP solving capabilities [20]. Our encodings are
given in the language of clingo.

2 Background

2.1 Hamiltonian Cycle Reconfiguration Problem

The Hamiltonian cycle problem (HCP) is the task of deciding whether there
is a cycle that visits each node in a graph exactly once. The Hamiltonian
cycle reconfiguration problem (HCRP) is defined as determining, for a given
HCP instance and two of its feasible solutions Cs and Cg (viz., Hamiltonian
cycles), whether Cg is reachable from Cs via a sequence of feasible solutions
Cs = C0, C1, . . . , C� = Cg, subject to the transition constraint k-opt [31]. The
symbol � indicates the length of the reconfiguration sequence, and we refer to
Cs and Cg as start and goal states, respectively. The transition constraint k-opt
enforces that Ct and Ct+1 differ in exact k edges for each step 0 ≤ t < �. This
constraint corresponds to a well-know k-opt heuristic for the Traveling Salesman
Problem (TSP; [23]).

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 265

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,6). edge(2,4). edge(2,6).

edge(3,5). edge(3,6). edge(4,5). edge(4,6). edge(5,6).

Listing 1.1. ASP fact format of HCP in Fig. 1

1 { in(X,Y) } :- edge(X,Y).

2 :- not 2 { in(X,_) ; in(_,X) } 2, node(X).

3
4 reached(s).

5 reached(Y) :- reached(X), in(X,Y). reached(Y) :- reached(X), in(Y,X).

6 :- not reached(X), node(X).

Listing 1.2. ASP encoding for undirected HCP solving

Figure 1 shows an example of 3-opt HCRP. In each step 0 ≤ t ≤ 2, Hamilto-
nian cycles are highlighted in red. We can observe that the goal state is reached
from the start state with step length � = 2. For instance, in the transition from
C0 to C1, three edges 1–6, 2–6, and 4–5 are removed.

2.2 ASP Encoding for HCP Solving

Let us first consider solving undirected HCPs with ASP. Listing 1.1 shows an
ASP fact format of the undirected graph in Fig. 1. The nodes and edges are
represented by the predicates node/1 and edge/2 in a standard way, respectively.
A typical ASP encoding for undirected HCP solving is shown in Listing 1.2. This
encoding can be considered as an undirected version of a traditional encoding
for directed HCP solving shown below. The rule in Line 1 introduces the atom
in(X,Y) for each edge X–Y, which is intended to represent that the edge X–Y is in
a Hamiltonian cycle. The rule in Line 2 enforces that, for each node X, its degree is
equal to 2 (the degree constraints). The rules in Lines 4–5 introduce the auxiliary
atom reached(X), which represents that the node X can be reachable from the
start node s. The rule in Line 6 enforces that each node X is reachable from
the start node (the connectivity constraints). As can be seen, ASP can elegantly
represent the constraints of HCP. We refer to the encoding of Listing 1.2 as the
undirected encoding.

Second, directed HCPs can be solved in the same way. The fact format of
directed graphs is the same as in Listing 1.1 except that the atom edge(X,Y)
represents the directed edge X→Y. Listing 1.3 shows a traditional ASP encoding
for directed HCP solving, which is essentially equivalent to encodings in the lit-
erature [7,22,24]. The major difference from the undirected encoding is that the
degree constraint is split into in-degree and out-degree constraints represented
by exact-one constraints in Line 2. We refer to this encoding as the directed
encoding. And finally, we note that the directed encoding can be extended to

266 T. Hirate et al.

1 { in(X,Y) } :- edge(X,Y).

2 :- not 1 { in(X,_) } 1, node(X). :- not 1 { in(_,X) } 1, node(X).

3
4 reached(s). reached(Y) :- reached(X), in(X,Y).

5 :- not reached(X), node(X).

Listing 1.3. ASP encoding for directed HCP solving

1 { in(X,Y) ; in(Y,X) } 1 :- edge(X,Y).

2 :- not 1 { in(X,_) } 1, node(X). :- not 1 { in(_,X) } 1, node(X).

3
4 reached(s). reached(Y) :- reached(X), in(X,Y).

5 :- not reached(X), node(X).

6
7 :- not X < Y, in(s,X), in(Y,s).

Listing 1.4. Bidirectional encoding for undirected HCP solving

undirected HCP solving. The extension can be easily done by adding a sim-
ple preprocessing rule “edge(Y,X) :- edge(X,Y).” and a symmetry breaking
constraint like “:- not X < Y, in(s,X), in(Y,s).”.

3 New Encodings for HCP Solving

For the first step toward efficient HCRP solving, we present two ASP encodings
for undirected HCP solving: the bidirectional encoding and the acyclic encoding.
The bidirectional encoding is shown in Listing 1.4. The main difference from
directed encoding in Listing 1.3 is that the rule in Line 1 introduces two bidi-
rectional edges in(X,Y) and in(Y,X) for each edge X–Y and enforces that at
most one of them is included in a resulting Hamiltonian cycle. The rule in Line
7 removes symmetric solutions, since each Hamiltonian cycle in a undirected
graph has two corresponding directed cycles. The acyclic encoding is shown in
Listing 1.5. The only difference from bidirectional encoding is that the connec-
tivity constraint is replaced with acyclic constraints by utilizing clingo’s #edge
directive in Line 4 [3].

Both bidirectional and acyclic encodings are based on the idea of a SAT
encoding technique [28] that transforms undirected graph problems into directed
ones. The technique can be applied to a wide range of graph problems. The
effectiveness of the technique has been empirically confirmed in our preliminary
results on power distribution network problems [14] and circuit wiring problems.
In the case of HCP, the essential difference of the bidirectional encoding from
the directed encoding is enforcing at-most-one constraints in Line 1. Although
those are implied constraints, they gain some performance improvement for HCP
solving, as can be seen from Table 1 and Fig. 2 below.

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 267

1 { in(X,Y) ; in(Y,X) } 1 :- edge(X,Y).

2 :- not 1 { in(X,_) } 1, node(X). :- not 1 { in(_,X) } 1, node(X).

3
4 #edge (X,Y): in(X,Y), X != s, Y != s.

5
6 :- not X < Y, in(s,X), in(Y,s).

Listing 1.5. Acyclic encoding for undirected HCP solving

Table 1. The number of solved HCP instances

#Nodes #Instances Traditional Encoding Proposed Encoding

undirected directed bidirectional acyclic

0 ≤ |V | < 1000 171 155 171 171 157

1000 ≤ |V | < 2000 165 120 165 165 118

2000 ≤ |V | < 3000 177 124 176 176 78

3000 ≤ |V | < 4000 185 107 166 167 51

4000 ≤ |V | < 5000 128 94 112 113 28

5000 ≤ |V | < 6000 80 64 71 74 23

6000 ≤ |V | < 7000 55 40 45 46 22

7000 ≤ |V | < 8000 28 11 15 15 4

8000 ≤ |V | < 9000 10 2 5 5 1

9000 ≤ |V | < 10000 2 2 2 2 1

Total 1,001 719 928 934 483

Experiments. Our empirical analysis considers all 1,001 HCP instances from
the Flinders Hamiltonian Cycle Project (FHCP; [11]).2 The FHCP benchmark
set has been used in an international HCP competition named FHCP Challenge.
In the FHCP benchmark set, all of the instances are designed to be hard to solve
by using standard HCP heuristics [11]. Every instance is satisfiable (viz., Hamil-
tonian). The number of nodes ranges from 66 to 9,528. The number of nodes and
edges, in average, is 3,099 and 7,309 respectively. We compare the proposed bidi-
rectional (Listing 1.4) and acyclic (Listing 1.5) encodings with the traditional
undirected (Listing 1.2) and directed (Listing 1.3) encodings. We note that the
directed encoding implements the additional preprocessing and symmetry break-
ing mentioned in the previous section. For each instance, we select the node of
the minimum degree as the start node represented by the constant s. We ran
our experiments on a Mac OS with Intel Core i7 3.2 GHz processor and 64 GB
memory. We used clingo version 5.5.0 with the trendy option. We imposed a
time limit of 30 min for each instance.

First, Table 1 shows the number of solved instances. The columns display in
order the range of nodes, the number of instances, and the number of solved

2 https://sites.flinders.edu.au/flinders-hamiltonian-cycle-project/.

https://sites.flinders.edu.au/flinders-hamiltonian-cycle-project/

268 T. Hirate et al.

Fig. 2. Cactus plot of HCP solving

Table 2. The top-ranked solvers of the FHCP Challenge [11]

Rank Team #Solved Method

1 INRIA, France 985 CPLEX

2 IBM, United Kingdom 614 SAT

3 King Saud University, Saudi Arabia 488 unknown

4 TU Darmstadt, Germany 464 unknown

5 Independent Researcher 385 unknown

instances for each encoding. The best results in the last four columns are
highlighted in bold. The bidirectional encoding solved the most, namely 934
instances. It is followed by 928 of directed, 719 of undirected, and 483 of acyclic
encoding. The bidirectional encoding provides better results in every range of
nodes compared with the other encodings.

Figure 2 shows a cactus plot where the vertical axis indicates CPU times in
seconds, and the horizontal axis indicates the number of solved instances. We
can observe that the bidirectional encoding based on directed edges, as well as
the directed encoding, performs well compared with the undirected encoding. In
contrast, the acyclic encoding using the #edge directive can solve less instances,
and we will investigate this issue in future work.

Second, we compare our proposed encoding with the top-ranked solvers of
the FHCP Challenge held in 2015–2016. In the challenge, competitors compete
on the number of solved instances in the FHCP benchmark set. There are no
restrictions on solvers used, time limits, or execution environments.

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 269

Table 3. Comparison with other different approaches

Instances ASP (proposal) PicatSAT SAT encoding

graph48 0.752 68.718 62.920

graph162 7.500 45.849 44.440

graph171 10.383 15.809 10.390

graph197 0.342 78.241 12.970

graph223 125.580 201.394 22.600

graph237 0.306 121.177 16.580

graph249 0.956 75.776 1.380

graph252 266.701 95.879 9.950

graph254 2.717 73.901 2.660

graph255 83.760 87.443 6.110

Average ratio 1.00 83.33 18.54

Table 2 shows the results of the top-ranked solvers in the FHCP Chal-
lenge [11]. The first-place team solved 985 instances with the CPLEX solver;
the second-place team solved 614 with a SAT solver. The details of the other
are unknown except the number of solved instances. We note that the first-place
team analyzes each HCP instance and utilizes its structural properties.3 Our
declarative approach can be highly competitive in performance, since the bidi-
rectional encoding solved 934 instances that corresponds to the second place in
Table 2.

Finally, we contrast our proposed encoding to other approaches. Our com-
parison considers a state-of-the-art SAT encoding for HCP solving [12] and the
award-winning CSP solver PicatSAT [32] of XCSP competition [1]. The former
SAT encoding is based on the Chinese remainder theorem, and performs well
compared to existing SAT encodings [12].4 We use cadical version 1.5.25 as a
back-end SAT solver. For the latter CSP solver, we use PicatSAT version 2.8
(xcsp picat6). We ran them on the same environment as before.

Table 3 shows the CPU times in seconds on all HCP instances used in the
XCSP 2019 competition. This benchmark set consists of 10 instances in total; it is
a subset of the FHCP benchmark set. The columns display in order the instance
name and the CPU time of finding a Hamiltonian cycle for each. The better
time of the last three columns are highlighted in bold. As can be seen in Table 3,
our bidirectional encoding is 83 times faster in average than PicatSAT and 18
times faster than the SAT encoding. On the other hand, Heule’s SAT encoding
performs well for graph223, graph252, and graph255 that have relatively small
average degrees.

3 https://interstices.info/le-defi-des-1001-graphes/.
4 https://github.com/marijnheule/ChineseRemainderEncoding.
5 https://github.com/arminbiere/cadical.
6 https://github.com/nfzhou/xcsp.

https://interstices.info/le-defi-des-1001-graphes/
https://github.com/marijnheule/ChineseRemainderEncoding
https://github.com/arminbiere/cadical
https://github.com/nfzhou/xcsp

270 T. Hirate et al.

start(1,3). start(1,6). start(2,4). start(2,6). start(3,5). start(4,5).

goal(1,2). goal(1,6). goal(2,4). goal(3,5). goal(3,6). goal(4,5).

Listing 1.6. ASP fact format of the start and goal states in Fig. 1

1 #program base.

2 :- not 1 { in(X,Y,0) ; in(Y,X,0) } 1, start(X,Y).

3
4 #program step(t).

5 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).

6 :- not 1 { in(X,_,t) } 1, node(X). :- not 1 { in(_,X,t) } 1, node(X).

7

8 reached(s,t). reached(Y,t) :- reached(X,t), in(X,Y,t).

9 :- not reached(X,t), node(X).

10
11 :- not X < Y, in(s,X,t), in(Y,s,t).

12

13 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.

14 :- not k { removed(_,_,t) } k, t>0.

15

16 #program check(t).

17 :- not 1 { in(X,Y,t) ; in(Y,X,t) } 1, goal(X,Y), query(t).

Listing 1.7. hcrp-bidirectional encoding for k-opt HCRP solving

4 Hamiltonian Cycle Reconfiguration Problem

We now extend our best bidirectional encoding in Listing 1.4 to the Hamiltonian
cycle reconfiguration problem. The extension can be easily done by utilizing
clingo’s multi-shot solving capabilities [20].

Fact Format. The input of HCRP are an HCP instance, a start state, and a goal
state. The fact format of HCP instances is the same as before (cf. Listing 1.1).
Listing 1.6 shows an ASP fact format of the start and goal states in Fig. 1. The
predicates start/2 and goal/2 represent the edges of the start and goal states,
respectively. For instance, start(1,3) represents that the edge 1–3 is included
in the Hamiltonian cycle of the start state.

ASP Encoding. Listing 1.7 shows an ASP encoding for HCRP solving. The
encoding consists of three sub-programs base, step(t), and check(t). The
argument t is a constant parameter representing each step in a reconfigura-
tion sequence. The main difference from the bidirectional encoding is that the
constant t is added to the predicate in/2. The extended atom in(X,Y,t) is
intended to represent that the directed edge X→Y is in a Hamiltonian cycle at
step t. We refer to the encoding of Listing 1.7 as the hcrp-bidirectional encoding.

The subprogram base specifies the constraints that must be satisfied at the
start state. The rule in Line 2 enforces that either in(X,Y,0) or in(Y,X,0)
holds for each edge X–Y in the start state. The subprogram step(t) specifies the

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 271

#program step(t).

:- not #sum { 1,X,Y: start(X,Y), not in(X,Y,t), not in(Y,X,t) } k*t.

Listing 1.8. Distance constraints (d1)

#program step(t).

:- not { not in(X,Y,T) : goal(X,Y), not in(Y,X,T) } k*(t-T), T = 0..t-1,

query(t).

Listing 1.9. Distance constraints (d2)

constraints that must be satisfied at each step t. The rules in Line 4–11 represent
the constraints of HCP. The rules in Line 13–14 represent the k-opt transition
constraints. The auxiliary atom removed(X,Y,t) in Line 13 represents that the
directed edge X→Y is removed from a Hamiltonian cycle in the transition from
step t-1 to t. The rule in Line 14 enforces that exactly k edges in a Hamil-
tonian cycle are removed at each step t by using cardinality constraints. The
subprogram check(t) specifies the termination condition that must be satisfied
at the goal state. The query rule in Line 17 enforces that either in(X,Y,t) or
in(Y,X,t) holds for each X–Y in the goal state. We note that switching between
activation and deactivation of the query is realized by making it subject to the
truth assignment to the external atom query(t).

Reachability Checking. We here explain how the reachability checking is real-
ized by the hcrp-directed encoding and the clingo solver. For a given HCRP
instance I of ASP fact format and length �, we consider a logic program
ϕ� = I ∪ base ∪ ⋃�

t=0 step(t) ∪ check(�) where base, step(t), and
check(�) are the subprograms of the hcrp-directed encoding. We can check the
reachability of I by solving ϕ� with clingo. If ϕ� is satisfiable, then we obtain
a reconfiguration sequence of length �. Otherwise, we reconstruct a logic pro-
gram ϕ�+1 and repeat the execution by clingo. Indeed, this procedure is incom-
plete and can not prove unreachability, but it can decide both reachability and
unreachability when there exists an upper bound of length (e.g., the diameter
of solution space). The recongo solver incrementally constructs ϕ� rather than
the full reconstruction of it. More precisely, recongo incrementally constructs ϕ�

not only by adding step(�) and check(�) to the previous logic program ϕ�−1,
but also by deactivating check(�-1) by setting the external atom query(� − 1)
to false. Therefore, recongo can reduce the cost of expensive grounding and can
efficiently check the reachability.

Hint Constraints. We present three hint constraints for the hcrp-directed
encoding to accelerate HCRP solving.
– The distance constraint (d1) is shown in Listing 1.8. It enforces that, for each

step t, there are at most k×t edges that are in the start state but not in
step t.

272 T. Hirate et al.

#program step(t).

:- in(X,Y,t): removed(X,Y,t-1); t>1.

Listing 1.10. No restoring constraints (n)

Table 4. The number of solved HCRP instances

Reachability #Instance hcrp-bidirectional encoding

no hint d1 d2 n d1+d2 d1+n d2+n d1+d2+n

Reachable 431 376 414 422 373 422 403 408 423

Unreachable 517 431 456 460 430 458 435 441 457

Total 948 807 870 882 803 880 838 849 880

– The distance constraint (d2) is shown in Listing 1.9. It enforces that, for each
step t and T∈ {0. . .t-1}, there are at most k*(t-T) edges that are in the
goal state but not in step T.

– The no restoring constraint (n) is shown in Listing 1.10. It forbids that the
edges removed in step t-1 are all restored in step t.

The hint constraints are independent of each other and can be used in any
combination.

Generating HCRP Instances. There has been no benchmark set for the
Hamiltonian cycle reconfiguration problem so far. We therefore generated a new
benchmark set for HCRP. The benchmark set consists of 948 instances in total,
of which 431 are reachable and 517 are unreachable. Regarding the transition
constraint, 867 instances are designed for 3-opt and 81 for 4-opt.

The procedure of generating HCRP instances is as follows:

(1) We conducted experiments on the FHCP benchmark instances (1001
instances in total) for enumerating all solutions. The time limit is 5 min for
each. As a result, clingo was able to enumerate all solutions of 309 instances.
Among them, 101 instances have more than two solutions.

(2) For each of the 101 instances, we attempted to construct its solution space by
breadth-first search. A solution space is a graph in which a node corresponds
to a feasible solution, and the adjacency relation on nodes corresponds to the
k-opt constraint. As a result, we obtained the solution spaces of 56 instances,
of which 49 instances are 3-opt and 7 instances are 4-opt.

(3) For each solution space of the 56 HCP instances, we attempted to generate
both at most 10 reachable HCRP instances and at most 10 unreachable ones.
As a result, we succeeded in generating 948 instances in total, of which 431
are reachable and 517 are unreachable.

For reachable instances in (3), we selected the start and goal states such that the
length of the shortest sequence between them is maximum. The resulting lengths

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 273

Fig. 3. Cactus plot of HCRP solving

range from 1 to 28. For unreachable instances, we selected the start and goal
states respectively from different connected components of the solution space.

Experiments. We conducted experiments on the newly generated HCRP
instances for evaluating the effectiveness of our proposed encoding. Our eval-
uation considers the hcrp-bidirectional encoding (Listing 1.7) with the combina-
tion of hint constraints (Listing 1.8–1.10). We use recongo version 0.3 and clingo
version 5.5.0 as its back-end. The time limit is 5 min for each. The experimental
environment is the same as before.

Table 4 shows the number of solved instances. The columns display in order
reachability (reachable or unreachable), and the number of solved instances
for each encoding. The best results in the last eight columns are highlighted
in bold. For reachable instances, the hcrp-bidirectional encoding with all hints
(d1+d2+n) solved the most 423 instances. For unreachable instances, the encod-
ing with (d2) solved the most 460 instances. In total, the encoding with (d2)
solved the most, namely 882 instances out of 948. Regarding single hint con-
straint, as can be seen in Table 4, the distance constraint (d2) is the most effec-
tive in performance. In contrast, the no restoring constraint (n) is less effective,
and we will investigate this issue in future work. Figure 3 shows a cactus plot of
solved instances. We can observe that the hcrp-bidirectional encoding with (d2)
performs well with respect to not only the number of solved instances but also
CPU time. Table 5 shows a more detailed analysis of the solved instances. The
columns display in order the length, the number of instances, and the number
of solved instances for each. The best results in the last eight columns are high-

274 T. Hirate et al.

Table 5. More detailed analysis of solved HCRP instances

Length #Instance hcrp-bidirectional encoding

no hint d1 d2 n d1+d2 d1+n d2+n d1+d2+n

28 4 4 4 4 4 4 4 4 4

14 10 10 10 10 10 10 10 8 10

8 18 11 11 10 10 9 10 8 10

7 10 10 10 10 10 10 10 10 10

6 44 24 38 43 24 44 34 33 44

4 110 83 106 110 82 110 100 110 110

3 64 63 64 64 62 64 64 64 64

2 124 124 124 124 124 124 124 124 124

1 47 47 47 47 47 47 47 47 47

Total 431 376 414 422 373 422 403 408 423

Table 6. CPU time(s) of finding shortest reconfiguration sequences

Length #Instance CPU time(s)

average maximum minimum

28 4 200.725 290.375 130.622

14 10 148.754 209.782 119.712

8 10 141.659 293.491 74.568

7 10 2.304 2.652 1.994

6 44 26.723 67.564 8.663

4 110 14.200 83.747 0.889

3 64 6.048 25.496 1.100

2 124 1.343 2.207 0.274

1 47 0.669 2.036 0.434

lighted in bold. We can see that there is a significant gap between the encodings
in the sequence lengths 4 and 6.

Finally, Table 6 shows the CPU times in seconds of finding shortest recon-
figuration sequences. The columns display in order the step length, the number
of instances, and the average, the maximum, and the minimum CPU times. Our
encoding succeeded in finding the solutions of step length 28 in about 200 s in
average. Basically, the longer the length, the more time is required. We noticed
that the 10 instances of length 7 required relatively less CPU time than the oth-
ers. This is because those instances were generated from the same small HCP
instance of 546 nodes.

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 275

5 Conclusion

We presented an ASP-based approach to solving the Hamiltonian cycle reconfig-
uration problem. The problem is a combinatorial reconfiguration problem based
on the well-known Hamiltonian cycle problem. Our approach relies on high-level
ASP encodings presented in Sect. 4 and delegates both the grounding and solving
tasks to an ASP-based CRP solver recongo. All source code including recongo is
available from https://github.com/banbaralab/hcr.

Combinatorial reconfiguration [13,15,27] aims at analyzing properties of the
solution space of source combinatorial problem, which can be exponential size
with respect to the input size. A great deal of theoretical research has been done
in recent years. However, little attention has been paid so far to its practical
aspects. On the other hand, recent advances in ASP, especially the incremental
ASP solving open up a successful direction to apply ASP to bounded model
checking and automated planning. Those research fields are strongly related
to combinatorial reconfiguration in the sense of transforming a given state to
another state. Our declarative approach therefore can be applied to a wide
range of combinatorial reconfiguration problems, such as independent set recon-
figuration, dominating set reconfiguration, graph coloring reconfiguration, and
clique reconfiguration. We will investigate the possibilities, and the results will
be applied to realizing more practical combinatorial reconfiguration.

Acknowledgements. The research was supported by JSPS KAKENHI Grant Num-
ber JP20H05964, ROIS NII Open Collaborative Research 2023 (23FP04), JST CREST
Grant Number JPMJCR22D3.

References

1. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C., Roussel, O.: XCSP3 and
its ecosystem. Constraints 25(1–2), 47–69 (2020)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., Schaub, T.: Answer set
programming modulo acyclicity. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 143–150. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23264-5 13

4. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50),
5215–5226 (2009)

5. Brewster, R.C., McGuinness, S., Moore, B.R., Noel, J.A.: A dichotomy theorem
for circular colouring reconfiguration. Theoret. Comput. Sci. 639, 1–13 (2016)

6. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.
J. Graph Theory 67(1), 69–82 (2011)

7. Gebser, M., et al.: Potassco User Guide, 2nd edn. University of Potsdam (2015).
http://potassco.org

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference

https://github.com/banbaralab/hcr
https://doi.org/10.1007/978-3-319-23264-5_13
http://potassco.org

276 T. Hirate et al.

and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press
(1988)

9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 38(6), 2330–2355 (2009)

10. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theoret.
Comput. Sci. 651, 37–49 (2016)

11. Haythorpe, M.: FHCP challenge set: the first set of structurally difficult instances
of the Hamiltonian cycle problem. Bulletin ICA 83, 98–107 (2018)

12. Heule, M.J.H.: Chinese remainder encoding for Hamiltonian cycles. In: Li, C.-M.,
Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 216–224. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-80223-3 15

13. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society
Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

14. Inoue, T., et al.: Distribution loss minimization with guaranteed error bound. IEEE
Trans. Smart Grid 5(1), 102–111 (2014)

15. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412(12–14), 1054–1065 (2011)

16. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discret. Appl. Math. 160(15), 2199–2207 (2012)

17. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the
parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal,
M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7 24

18. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R.,
Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17142-5 19

19. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set recon-
figurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

20. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own asp-based
system?! Theory Pract. Logic Program. 23(1), 299–361 (2023)

21. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

22. Lifschitz, V.: Answer Set Programming. Springer, Heidelberg (2019)
23. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-

salesman problem. Oper. Res. 21(2), 498–516 (1973)
24. Liu, L., Truszczynski, M.: Encoding selection for solving Hamiltonian cycle prob-

lems with ASP. In: Proceedings of the 35th International Conference on Logic Pro-
gramming (ICLP 2019), Technical Communications. EPTCS, vol. 306, pp. 302–308
(2019)

25. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration
paths in the solution space of Boolean formulas. SIAM J. Discret. Math. 31(3),
2185–2200 (2017)

26. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

27. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
28. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-

based method with native Boolean cardinality handling for the Hamiltonian cycle

https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.1007/978-3-319-06089-7_24
https://doi.org/10.1007/978-3-319-17142-5_19

Solving Hamiltonian Cycle Reconfiguration Problem with ASP 277

problem. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp.
684–693. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 52

29. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions.
CoRR abs/2208.02495 (2022)

30. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J.
Comb. Optim. 32(4), 1182–1195 (2016)

31. Takaoka, A.: Complexity of Hamiltonian cycle reconfiguration. Algorithms 11(9),
140 (2018)

32. Zhou, N.-F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. SIS, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25883-6

https://doi.org/10.1007/978-3-319-11558-0_52
https://doi.org/10.1007/978-3-319-25883-6

Recongo: Bounded Combinatorial
Reconfiguration with Answer Set

Programming

Yuya Yamada1, Mutsunori Banbara1(B) , Katsumi Inoue2 ,
and Torsten Schaub3

1 Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
{yuya.yamada,banbara}@nagoya-u.jp

2 National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
inoue@nii.ac.jp

3 Universität Potsdam, An der Bahn 2, 14476 Potsdam, Germany
torsten@cs.uni-potsdam.de

Abstract. We develop an approach called bounded combinatorial recon-
figuration for solving combinatorial reconfiguration problems based on
Answer Set Programming. The general task is to study the solution
spaces of source combinatorial problems and to decide whether or not
there are sequences of feasible solutions that have special properties.
The resulting recongo solver covers all metrics of the solver track in the
most recent international competition on combinatorial reconfiguration
(CoRe Challenge 2022). recongo ranked first in the shortest metric of the
single-engine solvers track.

Keywords: Answer Set Programming · Multi-shot ASP solving ·
Combinatorial Reconfiguration · Independent Set Reconfiguration

1 Introduction

Combinatorial reconfiguration [11,12,22] aims at analyzing the structure and
properties (e.g., connectivity and reachability) of the solution spaces of source
combinatorial problems. Each solution space has a graph structure in which each
node represents an individual feasible solution, and the edges are defined by a
certain adjacency relation. Combinatorial Reconfiguration Problems (CRPs) are
defined in general as the task of deciding, for a given source problem and two
among its feasible solutions, whether or not one is reachable from another via a
sequence of adjacent feasible solutions in the solution space. A CRP is reachable
if there exists such a sequence, otherwise it is unreachable. CRP solvers are
programs solving combinatorial reconfiguration problems. The solvers output a
reconfiguration sequence as a solution if reachable.

A great effort has been made to investigate the theoretical aspects of CRPs
in the field of theoretical computer science over the last decade. For many
NP-complete source problems, their reconfigurations have been shown to be
PSPACE-complete, including SAT reconfiguration [9,20], independent set recon-
figuration [12,14,16], dominating set reconfiguration [10,24], graph coloring
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 278–286, 2023.
https://doi.org/10.1007/978-3-031-43619-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_20&domain=pdf
http://orcid.org/0000-0002-5388-727X
http://orcid.org/0000-0002-2717-9122
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-031-43619-2_20

Recongo: Bounded Combinatorial Reconfiguration with ASP 279

reconfiguration [3–5,13], clique reconfiguration [15], Hamiltonian cycle reconfigu-
ration [25,27], and set covering reconfiguration [12]. However, little attention has
been paid so far to its practical aspects. To stimulate research and development
on practical CRP solving, the first international combinatorial reconfiguration
competition (CoRe Challenge 2022; [23]) has been held last year.

In this paper, we present an approach for solving combinatorial reconfigura-
tion problems based on Answer Set Programming (ASP; [1,8,21]). Our declara-
tive approach is inspired by bounded model checking (BMC; [2]), which is widely
used in formal verification of finite state transition systems. We develop an ASP-
based CRP solver recongo using multi-shot ASP solving [17]. recongo ranked first
at the shortest metric of the single-engine solvers track in the CoRe Challenge
2022, and ranked second or third in the other four metrics. We present an ASP
encoding for solving the independent set reconfiguration problem. This problem
is one of the most studied combinatorial reconfiguration problems that has been
shown to be PSPACE-complete [12]. Finally, we discuss the competitiveness of
our approach by empirically contrasting it to the top-ranked solvers of the CoRe
Challenge 2022 [23].

In the sequel, we assume some familiarity with ASP’s basic language con-
structs and its extension to multi-shot ASP solving. A comprehensive introduc-
tion to ASP can be found in [7]. Our encodings are given in the language of
clingo [6].

2 Background

The combinatorial reconfiguration problem (CRP) is defined as the task of decid-
ing, for a given source combinatorial problem and two of its feasible solutions
Xs and Xg, whether or not there are sequences of transitions:

Xs = X0 → X1 → X2 → · · · → X� = Xg, (1)

where Xs and Xg are optional. Each state Xi represents a feasible solution
of the source problem. We refer to Xs and Xg as the start and the goal states,
respectively. We write X → X ′ if state X at step t can be followed by state X ′ at
step t+1 subject to a certain adjacency relation. We refer to the sequence (1) as
a reconfiguration sequence. The length of the reconfiguration sequence, denoted
by �, is the number of transitions. Regarding the reconfiguration sequences,
CRPs can be classified into three categories: existent, shortest, and longest. The
existent-CRP is to decide whether or not there are reconfiguration sequences.
The shortest-CRP is to find the shortest reconfiguration sequences. The longest-
CRP is to find the longest reconfiguration sequences that cannot include any
loop.

Let us consider the independent set reconfiguration problem (ISRP). Its
source is the independent set problem, that is, to decide whether or not there
are independent sets in G of size k, for a given graph G = (V,E) and an inte-
ger k. A subset V ′ ⊆ V is called an independent set in G of size k if (u, v) /∈ E
for all u, v ∈ V ′ and |V ′| = k. In the ISRP, each state X in (1) represents an

280 Y. Yamada et al.

X0 X1 X2 X3

1 2

3 4 5

6 7 8

⇒

1 2

3 4 5

6 7 8

⇒

1 2

3 4 5

6 7 8

⇒

1 2

3 4 5

6 7 8

etatslaogetatstrats

Fig. 1. An ISRP example

independent set. Regarding adjacency relations, we focus on one of the most
studied relations called token jumping [12]. Suppose that a token is placed on
each node in an independent set. The token jumping meaning of X → X ′ is that
a single token “jumps” from one node in X to any other node in X ′.

Figure 1 shows an example of ISRP. The example consists of a graph having
8 nodes and 8 edges, and the size of independent sets is k = 3. The independent
sets (tokens) are highlighted in yellow. We can observe that the goal state can be
reachable from the start state with length � = 3. For instance, in the transition
from X0 to X1, a token jumps from node 2 in X0 to node 7 in X1.

3 The recongoApproach

Basic Design. Combinatorial reconfiguration problems can be readily expressed
as satisfiability problems. Let x = {x1, x2, . . . , xn} and C(x) be the variables and
the constraints of a source combinatorial problem, respectively. For its reconfig-
uration problem, each state X at step t can be represented by a set of variables
xt = {xt

1, x
t
2, . . . , x

t
n}. Each adjacent relation can be represented by a set of

constraints T (xt−1,xt) that must be satisfied. Optionally, additional constraints
S(x0) and G(x�) can be added to specify conditions on the start state Xs and/or
the goal state Xg, respectively, as well as any other constraints that we want to
enforce. Then, the existence of a reconfiguration sequence (1) of bounded length
� is equivalent to the following satisfiability problem

ϕ� = S(x0) ∧
�∧

t=0

C(xt) ∧
�∧

t=1

T (xt−1,xt) ∧ G(x�). (2)

We use ϕ� to check properties of a reconfiguration relation (a transition relation)
between the possible feasible solutions of the source combinatorial problem. We
call this general framework “bounded combinatorial reconfiguration”, because we
consider only reconfiguration sequences that have a bounded length �.

For reachability checking, if ϕ� is satisfiable, there is a reconfiguration
sequence of length �. Otherwise, we keep on reconstructing a successor (e.g.,
ϕ�+1) and checking its satisfiability until a reconfiguration sequence is found.

Recongo: Bounded Combinatorial Reconfiguration with ASP 281

CRP instance converter ASP facts

logic program

clingo

BCR
algorithm

CRP solution� � � �
� �

Fig. 2. The architecture of recongo

Bounded combinatorial reconfiguration is an incomplete method, because it can
find reconfiguration sequences if they exist, but cannot prove unreachability in
general. However, it can be a complete method if the diameters of solution spaces
are given. Any off-the-shelf satisfiability solvers, such as SAT solvers and CSP
solvers, can be used as back-end. In this paper, we make use of ASP solvers, in
our case clingo.

Implementation. Bounded combinatorial reconfiguration (BCR) can be eas-
ily implemented using clingo’s Python API.1 The resulting recongo solver is a
general-purpose CRP solver. recongo covers all metrics of the solver track in the
most recent international competition on combinatorial reconfiguration (CoRe
Challenge 2022): existent, shortest, and longest. The architecture of recongo is
shown in Fig. 2. recongo reads an CRP instance and converts it into ASP facts.
In turn, these facts are combined with an ASP encoding for CRP solving, which
are afterward solved by the BCR algorithm powered by clingo. Further details
of recongo can be found in [26].

4 ASP Encoding for Independent Set Reconfiguration

We present an ASP encoding for solving the independent set reconfiguration
problem (ISRP).

Fact Format. The input of ISRP is an independent set problem, a start state,
and a goal state. Listing 1.1 shows an ASP fact format of the ISRP instance in
Fig. 1. The predicate k/1 represents the size of independent sets. The predicates
node/1 and edge/2 represent the nodes and edges, respectively. The predicates
start/1 and goal/1 represent the independent sets of the start and goal states,
respectively. For instance, the atom start(4) means that node 4 is in an inde-
pendent set at the start state.

First Order Encoding. Listing 1.2 shows an ASP encoding for ISRP solving.
The encoding consists of three parts: base, step(t), and check(t). The param-
eter t represents each step in a reconfiguration sequence. The atom in(X,t) is
intended to represent that the node X is in an independent set at step t. The
base part specifies the constraints on the start state S(x0). The rule in Line
3 enforces that in(X,0) holds for each node X in the start state. The step(t)

1 https://potassco.org/clingo/python-api/current/.

https://potassco.org/clingo/python-api/current/

282 Y. Yamada et al.

k(3).
node(1). node(2). node(3). node(4).
node(5). node(6). node(7). node(8).
edge(1,3). edge(2,5). edge(3,4). edge(3,6).
edge(4,5). edge(5,8). edge(6,7). edge(7,8).
start(1). start(2). start(4).
goal(3). goal(5). goal(7).

Listing 1.1. ASP fact format of ISRP instance in Fig. 1

1 #program base.
2 % start state
3 :- not in(X,0), start(X).
4
5 #program step(t).
6 % independent set constraints
7 K { in(X,t): node(X) } K :- k(K).
8 :- in(X,t), in(Y,t), edge(X,Y).
9

10 % adjacency relation: token jumping
11 moved_from(X,t) :- in(X,t-1), not in(X,t), t > 0.
12 :- not 1 { moved_from(X,t) } 1, t > 0.
13
14 #program check(t).
15 % goal state
16 :- not in(X,t), goal(X), query(t).

Listing 1.2. ASP encoding for ISRP solving

part specifies the constraints that must be satisfied at each step t. The rules in
Lines 7–8 represent the constraints of independent set C(xt). The rule in Line
7 generates a candidate independent set with size K. The rule in Line 8 enforces
that no two nodes connected by an edge are in an independent set. The rules
in Lines 11–12 represent the adjacency relation T (xt-1,xt). The auxiliary atom
moved_from(X,t) in Line 11 represents that a token jumps from node X to any
other node, from step t-1 to t. The rule in Line 12 enforces that exactly one
token jumps at each step t. The check(t) part specifies the termination condi-
tion that must be satisfied at the goal state G(xt). The rule in Line 16 enforces
that in(X,t) holds for each node X in the goal state. The volatility of this rule is
handled by a truth assignment to the external atom query(t) via clingo’s API.

5 CoRe Challenge 2022

We discuss the competitiveness of our approach by empirically contrasting it to
the top-ranked solvers of the CoRe Challenge 2022 [23]. The competition consists

Recongo: Bounded Combinatorial Reconfiguration with ASP 283

Table 1. The result of the single-engine solver track in CoRe Challenge 2022

metric 1st 2nd 3rd

existent solver name PARIS single recongo @toda5603
method planning ASP greedy search/BMC
score 299 (275/24) 244 (238/6) 207 (207/0)

shortest solver name recongo @tigrisg PARIS single
method ASP brute force/SARSA planning
score 238 232 213

longest solver name PARIS single recongo ReconfAIGERation
method planning ASP SAT/BMC
score 144 115 54

of two tracks: solver track and graph track. The solver track is divided into the
following three metrics.

(1) existent : This metric is to decide the reachability of ISRP. Its evaluation
index is the number of instances that contestants can solve.

(2) shortest : This metric is to find reconfiguration sequences as short as possible
of ISRP. Its evaluation index is the number of instances that contestants can
find the shortest sequence among all contestants.

(3) longest : This metric is to find reconfiguration sequences of as long as possible
of ISRP. Its evaluation index is the number of instances that contestants can
find the longest sequence among all contestants.

Each metric is evaluated by two indices: single-engine solvers and overall solvers.
The former index can be applied only to sequential solvers. The latter index
can be applied to all solvers, including portfolio solvers as well as sequential
solvers. The benchmark instances (369 in a total) are publicly available.2 The
ISRP instances are classified into seven families. The benchmark family color04
consists of 202 instances, grid of 49 instances, handcraft of 6 instances, power
of 17 instances, queen of 48 instances, sp of 30 instances, and square of 17
instances. The number of nodes ranges from 7 to 40,000. There are no restrictions
on solvers used, time limits, or execution environments. Eight solvers (from seven
groups) participated in the solver track of CoRe Challenge 2022.

Table 1 shows the results of the top-ranked solvers of single-engine solvers
track. The columns display in order the metric, the solver name, the implemen-
tation method, and the score for each solver. Our proposed solver recongo ranked
first in the shortest metric, ranked second both in the existent and longest met-
rics of single-engine solvers track. In addition, it also ranked second in the longest
metric and ranked third in the shortest metric of overall solvers track. Overall,
our declarative approach can be highly competitive in performance.

2 https://core-challenge.github.io/2022/.

https://core-challenge.github.io/2022/

284 Y. Yamada et al.

Discussion. We discuss some more details of the results from a practical point
of view. recongo showed good performance for the color04 and queen families
for all metrics. In particular, recongo was able to find the shortest reconfig-
uration sequences for all instances of color04. The color04 family contains
many instances that have relatively short reconfiguration sequences. In contrast,
recongo is less effective to the power, sp, and square families. They contain
many instances for which the shortest sequences are relatively long. The current
implementation of recongo relied on simple linear search, and this issue can be
improved by utilize different search strategies such as exponential search. recongo
is also less effective for the grid family since most instances are unreachable. To
resolve this issue, we will investigate the possibility of incorporating the numeric
abstraction used in the PARIS solver to our declarative approach.

6 Conclusion

We presented an ASP-based approach called bounded combinatorial reconfigu-
ration to solving combinatorial reconfiguration problems. We also presented an
ASP encoding of the independent set reconfiguration problem. We discussed the
competitiveness of our approach by empirically contrasting it to other approaches
based on the results of CoRe Challenge 2022. The resulting recongo system is an
ASP-based CRP solver, which is available from https://github.com/banbaralab/
recongo.

Perhaps the most relevant related fields are bounded model checking [2] and
classical planning [18,19], in the sense of transforming a given state to another
state. Bounded model checking in general is to study properties (e.g., safety
and liveness) of finite state transition systems and to decide whether there is
no sequence Xs = X0 → X1 → X2 → · · · → X� = Xg, for which Xs is a
start state and Xg is an error state expressed by rich temporal logic. Classical
planning in general is to develop action plans for more practical applications and
to decide whether there are sequences of actions for which Xs is a start state
and Xg is a goal state. In contrast, combinatorial reconfiguration is to study
the structure and properties of solution spaces (e.g., connectivity, reachability,
and diameters) of source combinatorial problems and to decide whether there
are reconfiguration sequences, but Xs and Xg are optional. From a broader
perspective, combinatorial reconfiguration can involve the task of constructing
problem instances that have the maximum length of shortest reconfiguration
sequences. Such a distinctive task has been used at the graph track of CoRe
Challenge 2022. On the other hand, combinatorial reconfiguration is a relatively
new research field. Therefore, the relationship between those fields has not been
well investigated, both from theoretical and practical points of view. We will
investigate the relationship and will explore the possibility of synergy between
techniques independently developed in those closely related research fields.

Acknowledgements. The research was supported by JSPS KAKENHI Grant Num-
ber JP20H05964, ROIS NII Open Collaborative Research 2023 (23FP04), JST CREST
Grant Number JPMJCR22D3.

https://github.com/banbaralab/recongo
https://github.com/banbaralab/recongo

Recongo: Bounded Combinatorial Reconfiguration with ASP 285

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Biere, A.: Bounded model checking. In: Handbook of Satisfiability, pp. 457–481.
IOS Press, Amsterdam (2009)

3. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–
5226 (2009)

4. Brewster, R.C., McGuinness, S., Moore, B.R., Noel, J.A.: A dichotomy theorem
for circular colouring reconfiguration. Theor. Comput. Sci. 639, 1–13 (2016)

5. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.
J. Graph Theory 67(1), 69–82 (2011)

6. Gebser, M., et al.: Potassco User Guide. 2 edn. University of Potsdam (2015).
http://potassco.org

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan and Claypool Publishers, San Rafael (2012)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press
(1988)

9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: Computational and structural dichotomies. SIAM J.
Comput. 38(6), 2330–2355 (2009)

10. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theor.
Comput. Sci. 651, 37–49 (2016)

11. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society
Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

12. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

13. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Appl. Math. 160(15), 2199–2207 (2012)

14. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the
parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal,
M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7_24

15. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R.,
Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_19

16. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

17. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own ASP-
based system?! Theory Pract. Logic Program. 23(1), 299–361 (2023)

18. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

19. Kautz, H.A., Selman, B.: Pushing the envelope: planning, propositional logic and
stochastic search. In: Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI 1996), pp. 1194–1201 (1996)

http://potassco.org
https://doi.org/10.1007/978-3-319-06089-7_24
https://doi.org/10.1007/978-3-319-17142-5_19

286 Y. Yamada et al.

20. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration
paths in the solution space of Boolean formulas. SIAM J. Discrete Math. 31(3),
2185–2200 (2017)

21. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

22. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
23. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions.

CoRR abs/2208.02495 (2022)
24. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J.

Comb. Optim. 32(4), 1182–1195 (2016)
25. Takaoka, A.: Complexity of Hamiltonian cycle reconfiguration. Algorithms 11(9),

140 (2018)
26. Yamada, Y., Banbara, M., Inoue, K., Schaub, T.: Bounded combinatorial recon-

figuration with answer set programming. CoRR abs/2307.10688 (2023)
27. Hirate T., et al.: Hamiltonian cycle reconfiguration with answer set programming.

JELIA 2023. to appear

Description Logics and Ontological
Reasoning

Beyond ALCreg: Exploring Non-Regular
Extensions of PDL with Description

Logics Features

Bartosz Bednarczyk1,2(B)

1 Computational Logic Group, Technische Universität Dresden, Dresden, Germany
bartosz.bednarczyk@cs.uni.wroc.pl

2 Institute of Computer Science, University of Wrocław, Wrocław, Poland

Abstract. We investigate the impact of non-regular path expressions
on the decidability of satisfiability checking and querying in description
logics. Our primary object of interest is ALCvpl, an extension of ALC with
path expressions using visibly-pushdown languages, which was shown to
be decidable by Löding et al. in 2007. The paper present a series of
undecidability results. We prove undecidability of ALCvpl with the seem-
ingly innocent Self operator. Then, we consider the simplest non-regular
(visibly-pushdown) language r#s# := {rnsn | n ∈ N}. We establish
undecidability of the concept satisfiability problem for ALCreg extended
with nominals and r#s#, as well as of the query entailment problem for
ALC-TBoxes, where such non-regular atoms are present in queries.

1 Introduction

Formal ontologies play a crucial role in artificial intelligence, serving as the back-
bone of various applications such as the Semantic Web, ontology-based informa-
tion integration, and peer-to-peer data management. In reasoning about graph-
structured data, a significant role is played by description logics (DLs) [2], a
robust family of logical formalisms serving as the logical foundation of contem-
porary standardised ontology languages, including OWL 2 by the W3C [16,23].
Among many features present in extensions of the basic description logic ALC,
an especially useful one is ·reg, supported by popular Z-family of description log-
ics [10]. With ·reg one can specify regular path constraints, allowing the user to
navigate graph-structured data. In recent years many extensions of ALCreg for
ontology-engineering were proposed, see e.g. [6,11,30], and the complexity land-
scape of their reasoning problems is now mostly well-understood [4,5,10]. In fact,
the logic ALCreg was already studied in 1979 by the formal-verification commu-
nity [13], under the name of Propositional Dynamic Logic (PDL). Consult [12]
for a discussion on relationship between (extensions of) PDL and ALCreg.

Due to wideness of the spectrum of recognizable word languages, the question
of whether regularity constraints in path expressions of ALCreg can be lifted to
more expressive classes of languages received a lot of attention from researchers.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 289–305, 2023.
https://doi.org/10.1007/978-3-031-43619-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_21&domain=pdf
http://orcid.org/0000-0002-8267-7554
https://doi.org/10.1007/978-3-031-43619-2_21

290 B. Bednarczyk

We call such extensions non-regular. After the first undecidability proof of satis-
fiability of ALCreg with context-free languages [20], several decidable cases were
identified. For instance, Koren and Pnueli [25] proved that ALCreg extended with
the simplest non-regular language r#s# := {rnsn | n ∈ N} for fixed roles r , s
is decidable; while combining it with s#r# leads to undecidability [19]. This
surprises at first glance, but as it was shown later [29], PDL extended with a
broad class of input-driven context-free languages, called visibly pushdown lan-
guages [1], remain decidable. This generalises all previously known decidabil-
ity results, and partially explains the reason behind known failures (e.g. the
languages r#s# and s#r# cannot be both visibly-pushdown under the same
partition of the alphabet).

Our motivation and contribution. Despite the presence of a plethora of vari-
ous results concerning non-regular extensions of PDL [8,18,21,22,25], no one
considered their extensions with popular features supported by W3C ontology
languages. Such extensions are, e.g. nominals (constants), inverse roles (inverse
programs), functionality (deterministic programs), and Self operator (self-loops).
The honourable exception is the unpublished undecidability result for ALCreg
extended with the language r#s(r−)# (with r− denoting the converse of r) from
Göller’s thesis [15]. The lack of results on entailment of non-regular queries over
ontologies is also intriguing, taking into account positive results for conjunctive
visibly-pushdown queries in the setting of relational-databases [28].
In this paper we contribute to a further understanding of the aforemen-
tioned questions. Our results are negative. For the first part of the paper, we
investigate ALCreg extended with r#s#. In Sect. 3 we prove that its extension
with nominals has an undecidable satisfiability problem. In Sect. 4 we show that,
already for ALC, the query entailment problem of queries involving r#s#, is also
undecidable. For the second part of the paper, we study ALCvpl, the extension
of ALCreg with visibly pushdown languages (that generalise r#s#). We show
that adding the seemingly innocent Self renders the logic undecidable.

Because of lack of space, the journal version of this paper contains
all missing proofs, extra pictures and expanded definitions.

2 Preliminaries

We assume familiarity with basics on description logic ALC [2, Sec. 2.1–2.3], regu-
lar and context-free languages, Turing machines and computability [33, Sec. 1–5].
As usual, N denotes non-negative integers, and Zn denotes the set {0, 1, . . . , n−1}.

Basics on ALC. We fix countably infinite pairwise disjoint sets of individual
names NI, concept names NC, and role names NR and introduce the description
logic ALC. Starting from NC and NR, the set CALC of ALC-concepts is built
using the following concept constructors: negation (¬C), conjunction (C � D),
existential restriction (∃r .C), and the top concept � with the grammar:

C, D ::= � | A | ¬C | C � D | ∃r .C,

A Note on Non-Regular Extensions of ALCreg 291

where C, D ∈ CALC , A ∈ NC and r ∈ NR. We employ the following abbrevia-
tions: C � D := ¬(¬C � ¬D), ∀r .C := ¬∃r .¬C, ⊥ := ¬�, and C → D := ¬C � D.
The semantics of ALC is defined via interpretations I := (ΔI , ·I) composed of a
non-empty set ΔI called the domain of I and an interpretation function ·I map-
ping individual names to elements of ΔI , concept names to subsets of ΔI , and
role names to subsets of ΔI × ΔI . This mapping is then extended to concepts.

Name Syntax Semantics
top concept � ΔI

concept negation ¬C ΔI \ CI

concept intersection C � D CI ∩ DI

existential restriction ∃r .C {d | ∃e ∈ CI (d, e) ∈ rI}

An interpretation I satisfies a concept C (or I is a model of C, written: I |= C)
if CI
= ∅. A concept is satisfiable if it has a model. In the satisfiability problem we
ask, whether an input concept has a model. We consider three popular description-
logics features: nominals (O), functionality (F), and the Self operator (·Self). Their
semantics is recalled in the table below, assuming that r , s ∈ NR, and a ∈ NI.

Name Syntax Semantics
functionality func(r) I |= func(r) if ∀d∀e1∀e2

(
(d, e1) ∈ rI ∧ (d, e2) ∈ rI ⇒ e1 = e2

)

nominal {a} {aI}
self-operator ∃r .Self {d | (d,d) ∈ rI}

A path ρ in an interpretation I is a finite word in (ΔI)∗. We usually enumerate
its components with ρ1, . . . , ρ|ρ|, where the number |ρ|−1 is called the length of ρ.
We say that ρ starts from (resp. ends in) d if ρ1 = d holds (resp. ρ|ρ| = d). If N ⊆
NI is given, we call an element d ∈ ΔI N-named if d = aI holds for some a ∈ N.

ALC with Path Expressions. We treat Σall := NR ∪{A? | A ∈ NC} as an infinite
alphabet. Let ALL and REG denote classes of all recognizable (resp. regular)
finite-word languages over finite subsets of Σall. For a language L and a path
ρ := ρ1ρ2 . . . ρnρn+1 in an interpretation I, we say that ρ is an L-path, if there
exists a word w := w1w2 . . . wn ∈ L such that for all i ≤ n we have either (i)
wi ∈ NR and (ρi, ρi+1) ∈ (wi)I , or (ii) wi has the form A?, ρi = ρi+1 and
ρi ∈ AI . Intuitively w either traverses roles or loops at an element to check
the satisfaction of concepts. We say that e ∈ ΔI is L-reachable from d ∈ ΔI

(or that d L-reaches e) if there is an L-path ρ that starts from d and ends in e.
The logic ALCall extends ALC with concept constructors of the form ∃L.C, where
L ∈ ALL and C is an ALCall-concept. Their semantics is as follows: (∃L.C)I is
the set of all d ∈ ΔI that canL-reach some e ∈ CI , and ∀L.C stands for ¬∃L.¬C.
The logic ALCreg (a.k.a. PDL [13]) is a restriction of ALCall to regular languages.

292 B. Bednarczyk

VPLs. The class of Visibly-pushdown languages (VPLs) [1] is a well-behaved
family of context-free languages, in which the usage of the stack in the under-
lying pushdown automata model is input-driven. A pushdown alphabet Σ is an
alphabet equipped with a partition (Σc, Σi, Σr). The elements of Σc, Σi, and Σr

are called, respectively, call letters, internal letters, and return letters. A visibly-
pushdown automaton (VPA) A over a pushdown alphabet Σ is a deterministic
pushdown automaton that can push (resp. pop) a letter from its stack only
after reading a call (resp. return) symbol. A visibly one-counter automaton [3]
(VOCA) is a VPA that can use only a single stack letter. Given a VPA A, we
speak about words accepted by A, and the language L(A) of A defined in the
usual way. As an example, suppose that r ∈ Σc and s ∈ Σr. Then the language
r#s# := {rnsn | n ∈ N} is visibly-pushdown, but the language s#r# over the
same alphabet is not. What is more, every regular language is visibly-pushdown.

We present Σall as a pushdown alphabet ((NR)c, (NR)i ∪ {A? | A ∈ NC},
(NR)r). The logic ALCvpl is defined as the restriction of ALCall to visibly-
pushdown languages over finite subsets of Σall (note that the letters are equally
partitioned for all the languages). It is known that ALCvpl has 2ExpTime-
complete [29] satisfiability problem. Finally, ALCr#s#

reg denotes the restriction
of ALCvpl in which the only allowed non-regular language is r#s# for fixed call
r and return s.

3 Nominals Lead to Undecidability

We first establish undecidability of the satisfiability problem for ALCOr#s#
reg .

A domino tiling system is a triple D := (Col, T,), where Col is a finite set
of colours, T ⊆ Col4 is a finite set of 4-sided tiles, and ∈ Col is a distinguished
colour called white. For brevity, we call a tile (cl, cd, cr, cu) ∈ T (i) left-border
if cl = , (ii) down-border if cd = , (iii) right-border if cr = , and (iii) up-
border if cu = . We say that t := (cl, cd, cr, cu) and t′ := (c′

l, c′
d, c′

r, c′
u) from

T are (i) H-compatible if cr = c′
l, and (ii) V-compatible if cu = c′

d. We say
that D covers Zn × Zm (where n, m are positive integers) if there is a mapping
ξ : Zn × Zm → T such that for all pairs (x, y) ∈ Zn × Zm with ξ(x, y) :=
(cl, cd, cr, cu) we have:

(TBor) x = 0 iff cl = ; x = n−1 iff cr = ; y = 0 iff cd = ; y = m−1 iff cu=
(THori) If (x+1, y) ∈ Zn × Zm then ξ(x, y) and ξ(x+1, y) are H-compatible.
(TVerti) If (x, y+1) ∈ Zn × Zm then ξ(x, y) and ξ(x, y+1) are V-compatible.

A Note on Non-Regular Extensions of ALCreg 293

0 1 2 3

0

1

2

(a) Visualization of .

r r r

r

r r r

r

r r r

ld rd

rulu

(b) The encoding of as a -snake .

Fig. 1. If Col = { , , , } and T = Col4, the map ξ := {(0, 0) �→ , (1, 0) �→
, (2, 0) �→ , (3, 0) �→ , (0, 1) �→ , (1, 1) �→ , (2, 1) �→ , (3, 1) �→ , (0, 2) �→
, (1, 2) �→ , (2, 2) �→ , (3, 2) �→ } covers Z4 × Z3.

Intuitively, ξ : Zn ×Zm can be seen as a rectangle of size n × m coloured by unit
4-sided tiles (with coordinates corresponding to the left, down, right, and upper
colour) from T, where sides of tiles of consecutive squares have matching colours,
and borders of the rectangle are white. Consult Fig. 1a for more intuitions.

W.l.o.g. we will always assume that T does not contain tiles having more
than two white sides. A system D is solvable if there exist positive n, m ∈ N

for which D covers Zn × Zm. The problem of deciding if an input domino tiling
system is solvable is undecidable, which can be shown by a minor modification
of classical undecidability proofs for tilling problems, see e.g. [32, Lemma 3.9].

For a tiling system D := (Col, T,) we encode mappings ξ from some Zn×Zm

to T in interpretations I as certain r+-paths ρ from ldI to ruI passing through
rdI and luI (using fresh names from) composed of elements
labelled with fresh concepts names from , see Fig. 1b.

Definition 1. An interpretation I is a D-snake for a tiling system D if:

(SPath) There is an r+-path ρ that starts in ldI , then passes through rdI , then
passes through luI and finishes in ruI .

(SNoLoop) No -named element can r+-reach itself.
(SUniqTil) For every d r∗-reachable from ldI there is precisely one tile t ∈ T

such that d ∈ CI
t (we say that d is labelled by a tile t or that it carries t).

(SSpecTil) The -named elements are unique elements r∗-reachable from
ldI that are labelled by tiles with two white sides. Moreover, we have that (a)
ldI carries a tile that is left-border and down-border, (b) rdI carries a tile
that is right-border and down-border, (c) luI carries a tile that is left-border
and up-border, (d) ruI carries a tile that is right-border and up-border.

(SHori) For all elements d different from ruI that are r∗-reachable from
ldI and labelled by some tile t := (cl, cd, cr, cu), there exists a tile t′ :=
(c′

l, c′
d, c′

r, c′
u) for which all r-successors e of d carry the tile t′ and: (i) t, t′are

294 B. Bednarczyk

H-compatible, (ii) if cd = then (cl
= iff c′
d =), and (iii) if cu =

then c′
u = .

(SLen) There is a unique N such that all r+-paths between ldI and rdI are of
length N−1. Moreover, rdI is the only element rN−1-reachable from ldI .

(SVerti) For all elements d that are r∗-reachable from ldI and labelled by some
t ∈ T that is not up-border, we have that (a) there exists a tile t′ ∈ T such
that all elements e rN-reachable (for N guaranteed by (SLen)) from d carry t′,
(b) t and t′ are V-compatible, (c) t is left-border (resp. right-border) iff t′ is.

If I satisfy all but the last two conditions, we call it a D-pseudosnake. The
key property of our encoding is summarised in the following lemma.

Lemma 2. A domino tiling system D is solvable iff there exists a D-snake.

While D-snakes are not directly axiomatizable in ALCOr#s#
reg , we at least see

how to express D-pseudosnakes. See full version of the paper for the proof.

Lemma 3. For every tiling system D := (Col, T,), there is an ALCOr#s#
reg -

concept , that employs the role r, individual names from and concept names
from , such that for all I we have that I is a D-pseudosnake iff .

Note that the property that pseudosnakes are missing in order to be proper
snakes, is the ability to measure. We tackle this issue by introducing “yardsticks”.

Definition 4. Let T be a finite and non-empty
set, and let be composed of (pairwise different)
individual names. A T-yardstick is any interpretation I that satisfies all the
conditions listed below.

(YDifNom) -named elem. are pairwise-diffr. and (r + s)∗-reach. from stI .
(YNoLoop) No -named element can (r + s)+-reach itself.
(YMid) mdI is the unique elem. with an s-successor that is r∗-reachable

from stI .
(YSuccOfMid) s-successors of mdI are precisely {mdt | t ∈ T}-named elems.
(YReachMidT) For every t ∈ T we have that mdI

t can s∗-reach endI
t but it

cannot s∗-reach endI
t′ for all t′
= t.

(YEqDst) The {endt | t ∈ T}-named elements are precisely the elements r#s#-
reachable from stI .

(YNoEqDst) No {endt | t ∈ T}-named element is r#s#-reachable from an
element (s + r)+-reachable from stI .

A Note on Non-Regular Extensions of ALCreg 295

stI mdI

mdI endI

mdI endI
r
r

r
r

r

r

r

r

r
r

r

r

r s
s s s

s
s
s

s

s

s
s

An example , -yardstick is depicted above. A “minimal” yardstick would
contain the grey nodes only. Lemma 5 justifies the name “yardstick”. Intuitively
it says that in any T-yardstick I, all s∗-paths from mdI to all endI

t have equal
length, to which we refer as the length of I.

Lemma 5. Let I be a T-yardstick. Then there exists a unique positive integer N
such that: (i) for all t ∈ T we have that endI

t is sN-reachable from mdI , and (ii)
for all t ∈ T we have that endI

t is sN−1-reachable from mdI
t .

Proof. Fix t� ∈ T. By (YEqDst) we know that stI r#s#-reaches endI
t�

, and
let ρ := ρ1 . . . ρ2N+1 be a path witnessing it. We claim that N is the desired
length of I. First, note that N is greater than 0 by (YDifNom). Second, by the
semantics of r#s#, for all i ≤ N we have (ρi, ρi+1) ∈ rI and (ρN+i, ρN+i+1) ∈ sI .
Thus ρN+1 is r∗-reachable from stI and has an s-successor. These two facts
imply (by (YMid)) that ρN+1 is equal to mdI . It remains to show that all the
paths leading from mdI to some endt are of length N. Towards a contradiction,
assume that there is t′ ∈ T and an integer M
= N such that mdI sM-reaches endI

t′

via a path ρ′ := ρ′
1 . . . ρ′

M. We stress that ρ′
1 = mdI and ρ′

M = endI
t′ (by design

of ρ′), and ρ′
2 = mdI

t′ (by a conjunction of (YSuccOfMid) and (YReachMidT)).
To conclude the proof, it suffices to resolve the following two cases.

– Suppose that M < N. Then ρN+1−M (rMsM)-reaches (thus r#s#-
reaches) endI

t′ , as witnessed by the path ρN+1−M . . . ρNρ′. Moreover ρN+1−M
is r+-reachable from stI , witnessed by the path ρ1 . . . ρN+1−M (note that its
length is positive by the inequality M < N). This contradicts (YNoEqDst).

– Suppose that M > N. Consider the path ρ1 . . . ρNρ′
1 . . . ρ′

N. By design, such a
path witnesses that stI (rNsN)-reaches (and thus also r#s#-reaches) ρ′

N. By
(YEqDst) we infer that ρ′

N is then {endt | t ∈ T}-named. As ρ′
2 = mdI

t′ s+-
reaches ρ′

N, we infer that ρ′
N = endI

t′ (otherwise we would have a contradiction
with (YReachMidT)). But then endI

t′ s+-reaches itself via a path ρ′
N . . . ρM,

which is of positive length due to M > N. A contradiction with (YNoLoop).

This establishes Property (i). The satisfaction of Property (ii) is now immediate.

As the next step of our construction, we establish existence of arbitrary long
yardsticks, and axiomatise them with an ALCOr#s#

reg -concept. Indeed:

Lemma 6. For every finite non-empty set T and a positive integer N, there exists
a T-yardstick of length N. Moreover, there exists an ALCOr#s#

reg -concept , that

296 B. Bednarczyk

employs only role names r , s and individual names from , such that for all
interpretations I we have that I is a T-yardstick if and only if .

We next put pseudosnakes and yardsticks together, obtaining metricobras.
The intuition behind their construction is fairly simple: (i) we take a disjoint
union of a pseudosnake and a yardstick, (ii) we then connect (via the role s) every
element carrying a tile t with the interpretation of the corresponding nominal
mdt, and finally (iii) we synchronise the length of the underlying yardstick, say N,
with the length of the path between the interpretations of ld and rd. After such
“merging”, retrieving (SHori) is relatively easy: rather than testing if every N-
reachable element from some d carries a suitable tile t (for an a priori unknown N)
we can check instead whether d can r#s#-reach the interpretation of endt.

r r r

r

r r r r r r r

ld rd

rulu

cbra

r

st
s

r r rr
md

r

md

s

s s

end

s

s

md
s

s s

end

sssss

s

Fig. 2. A fragment of an example D-metricobra representing ξ from Fig. 1. The upper
part corresponds to a D-snake, and the lower part corresponds to a T-yardstick. The
distances between named elements are important.

Definition 7. Let D := (Col, T,) be a domino tiling system and cbra be an
individual name. An interpretation I is a D-metricobra if it satisfies:

(MInit) I is a D-pseudosnake and a T-yardstick, and cbraI has precisely two
successors: one r-successor, namely ldI , and one s-successor, namely stI .

(MTile) For every tile t ∈ T and every element d ∈ ΔI that is r∗-reachable
from ldI we have that d carries a tile t ∈ T if and only if d has a unique
s-successor and such a successor is equal to mdI

t .
(MSync) Let t be the tile of rdI . Then (a) cbraI r#s#-reaches endI

t and cannot
r#s#-reach any of endI

t′ for t′
= t, (b) cbraI cannot r#s#-reach an elem.
that s+-reaches endI

t , (c) no elem. r∗-reachable from ldI r#s#-reaches endI
t .

(MVerti) For all elements d that are r∗-reachable from ldI and carry a tile t ∈
T that is not up-border, we have that there exists a tile t′ ∈ T such that

A Note on Non-Regular Extensions of ALCreg 297

(a) t and t′ are V-compatible, (b) t is left-border (resp. right-border) iff t′

is, and (c) d can r#s#-reach endt′ but cannot reach r#s#-reach endt′′ for
all t′′
= t′.

We first provide an ALCOr#s#
reg -axiomatization of D-metricobras.

Lemma 8. There exists an ALCOr#s#
reg -concept such that for all interpre-

tations I we have that I is a D-metricobra if and only if .

Second, we relate D-snakes and D-metricobras as follows.

Lemma 9. Every D-metricobra is also a D-snake. Moreover, if a D-snake
exists then so does a D-metricobra.

By collecting all previous lemmas we infer the main theorem of the paper:

Theorem 10. A tiling system D is solvable iff the ALCOr#s#
reg -concept is

satisfiable. Thus, the concept satisfiability problem of ALCOr#s#
reg is undecidable.

4 Querying in ALCvpl

We next address the problem of query entailment under logical constraints.
The C-enriched Positive Existential Queries (abbreviated as C-PEQs) are
defined with:

q, q′::= ⊥ | A(x) | r(x, y) | L(x, y) | q ∨ q′ | q ∧ q′,

where A ∈ NC, r ∈ NR, L ∈ C, and x, y are variables from a countably
infinite set NV. The semantics is defined as expected, e.g.L(x, y) evaluates to
true under a variable assignment η if and only if η(x) can L-reach η(y) in I.
The ∅-PEQs (or Positive Existential Queries) are well-known generalizations of
(unions of) conjunctive queries, e.g. PEQs in which disjunction is allowed only
at the outermost level. The REG-PEQs (or Positive Regular Path Queries) are
among the most popular query languages nowadays [14,31]. Finally, VPL-PEQs
recently received some attention in [28]. An interpretation I satisfies a query q
(written I |= q), if there exists an assignment η of variables (a match) from q
to ΔI under which q evaluates to true. A concept C entails a query q (written
C |= q) if all models of C satisfy q. In the C-PEQ entailment problem for a DL
L we ask, given an L-concept C and a C-PEQ q, whether C |= q holds.

By existing results on querying ALC [17, Lemma 8] and by the tree model
property of ALCvpl [29, Sec. 4.1], we obtain:

Corollary 11. The entailment problem of REG-PEQs over ALCvpl-concepts is
complete for 2ExpTime.

Unfortunately, the relatively positive results of Corollary 11 do not transfer
beyond the class of REG-PEQs, especially if atoms of the form r#s#(x, y) are
present in the query. To justify this claim, we are going to provide a reduction

298 B. Bednarczyk

r r r r
s s

s

s

s

s

s

s

s

s

Fig. 3. Visualisation of an octant-based interpretation.

from the Octant Tiling Problem [7, Sec 3.1]. Roughly speaking, the ontology in
our reduction will define a grid labelled with tiles, while the query counterpart
will serve as a tool to detect mismatches in its lower triangle (a.k.a. octant) part.
Let D := (Col, T,) be a domino tiling system (defined as in Sect. 3), and let
us call the set O := {(x, y) | x, y ∈ N, 0 ≤ y ≤ x} the octant. It is convenient for
our reduction to assume that T contains an all-border white tile , and all other
tiles from T are not right-border and not down-border. We say that D covers O

if there exists a mapping ξ : O → T such that for all pairs (x, y) ∈ O satisfy:

(OBord) ξ(0, 0) = , and ξ(1, 0)
= .
(OHori) The tiles ξ(x, y) and ξ(x+1, y) are H-compatible. In addition, whenever

ξ(x, y) = holds, the tile ξ(x+1, y) is left- and up-border.
(OVerti) If (x, y+1) ∈ O then ξ(x, y) and ξ(x, y+1) are V-compatible.

Note that D covers O if and only if it covers N × N, which is a consequence
of (OBord) and the specific use of white colour by tiles in T. The octant tiling
problem asks to decide, for an input domino tiling system D, whether D covers
the octant. This problem can easily be shown undecidable, as discussed in [7].

We again employ concepts from , and the non-regular language r#s#.
We call a pointed interpretation (I, (0, 0)) octant-based if (i) ΔI = O, (ii) rI =
{((n, 0), (n+1, 0)) | n ∈ N}, (iii) sI = {((n, m), (n, m+1)) | n, m ∈ N, m < n},
and (iv) for every e ∈ ΔI there is a unique t ∈ T for which e ∈ CI

t . Con-
sult Fig. 3 for a visualization. An octant-based I naturally encodes a mapping
ξ : O → T defined as (n, m) �→ t for the unique tile carried by (n, m). For conve-
nience, we say that I D-semicovers (resp. D-covers) the octant if such a map ξ
satisfies (OBord) and (OVerti) (resp. all (OBord), (OVerti), and (OHori)). We
analogously speak about grid-based pointed interpretations, which are defined
similarly to octant-based interpretations above, with the exception that their
domains are N × N and the condition m < n is removed from Item (iii).

A Note on Non-Regular Extensions of ALCreg 299

Violations of the condition (OHori) by an octant-based interpretation will be
detected with a VPL-PEQ qD

� (to be defined next), which we visualise as follows.

. . .

.

r r r r
s

s

s

s

s

s

x1 x2 y1 y2

z1 z2

n

n

nn

mismatch!

Fig. 4. Visualisation of the query qD� (x1, x2, y1, y2, z1, z2). The variables z1, z2 are
mapped to elements that carry tiles violating (OHori); the fact that x1 and x2 lie
in consecutive columns is handled by means of r-connectedness of y1, y2; finally, equi-
height of z1 and z2 is ensured with non-regular atoms r#s#(xi, zi).

After the informal explanation, we provide the formal definition of qD
� .

qD
� :=

∨

t,t′ violating (OHori)

[
r(x1, x2) ∧ r∗(x2, y1) ∧ r(y1, y2) ∧ s∗(y1, z1) ∧ s∗(y2, z2)

∧r#s#(x1, z1) ∧ r#s#(x2, z2) ∧ Ct(z1) ∧ Ct′(z2)
]

By routine case analysis with a bit of calculations, we can show that:

Lemma 12. Let D := (Col, T,) be a domino tilling system. If D covers the
octant, then there exist octant-based and grid-based interpretations D-covering
the octant. Moreover, for all octant-based or grid-based I that D-semicover the
octant, I
|= qD

� if and only if I actually D-covers the octant.

It is routine to define a ALCreg-concept CT
semicov stating that the starting

element carries , that every element carries exactly one tile, and that the tiles
of s-connected elements are V-compatible. Expanding CT

semicov with an ALCreg-
concept expressing that any element has an r-successor and an s-successor, leads
to a concept CD

�. This concept is especially useful as it defines grids that D-
semicovers the octant. (We note that the use of grids is crucial here, as ALCreg
cannot define octant-based structures but our queries look only at octants.)

The main property of our reduction is established below.

Lemma 13. Let D := (Col, T,) be a domino tilling system. Then CD
�
|= qD

� if
and only if there is a grid-based interpretation I such that I |= CD

� and I
|= qD
� .

Thus CD
�
|= qD

� if and only if D covers the octant.

300 B. Bednarczyk

The concept CD
� can be equivalently expressed as an ALC-TBox (cf. [2, Sec.

2.2.1]). By a combination of previously presented lemmas we thus infer:

Theorem 14. The VPL-PEQs entailment problem for ALCreg is undecidable.
This holds already for {r , r∗, s, s∗, r#s#}-PEQ entailment over ALC-TBoxes.

5 Seemingly Innocent Self Operator

We conclude the paper by showing yet another negative result. This time we
tackle the Self operator, a modelling feature supported by two profiles of the
OWL 2 Web Ontology Language [24,26] and SROIQ. Recall that the Self oper-
ator allows us to specify the situation when an element is related to itself by
a binary relationship, e.g. we interpret the concept ∃r .Self in an interpretation
I as the set of all those elements d for which (d, d) belongs to rI . In what
follows, we provide a reduction from an undecidable problem of non-emptiness
of the intersection of deterministic one-counter automata (DOCA) [34, p. 75].
Such an automata model is similar to pushdown automata, but its stack alpha-
bet is single-letter only. The Self operator will be especially useful to introduce
“disjunction” to paths.

Let Σ be an alphabet and w := (a1, �1) . . . (an, �n) be a word over Σ×{c, r, i}.
We call the word π1(w) := a1 . . . an the projection of w. An important property
of DOCA is that they can be made visibly one-counter in the following sense.

Lemma 15. For any DOCA A over Σ, we can construct a VOCA Ã over
Σ̃ := (Σ×{c}, (Σ×{i})∪{x}, Σ×{r}) where x is a fresh internal letter, such that
all words in L(Ã) have the form ã1xã2x . . . xãn for ã1, . . . , ãn ∈ Σ×{c, i, r}, and
L(A) = {π1(w̃) | w̃ := ã1 . . . ãn, ã1x . . . xãn ∈ L(Ã)} holds.

We fix a finite alphabet Σ ⊆ NR. Moreover, fix two deterministic one-counter
automata A1 and A2 over Σ, as well as deterministic one-counter automata C1
and C2 recognizing the complement of their languages (they can be constructed
as DOCA are closed under complement). Finally, we construct their visibly-one-
counter counterparts Ã1, Ã2, C̃1, C̃2 over the pushdown alphabet Σ̃, as provided
by Lemma 15. We stress that the letter x, playing the role of a “separator”, is
identical for all of the aforementioned visibly-one-counter automata. We also
point out that the non-emptiness of L(Ã1) ∩ L(Ã2) is not equivalent to the
non-emptiness of L(A1) ∩ L(A1), as the projection of a letter a ∈ Σ̃ may be
used by A1 and A2 in different contexts (e.g. both as a call or as a return).

We are going to encode words accepted by one-counter automata by means
of word-like interpretations. A pointed interpretation (I, d) is Σ-friendly if for
every element e ∈ ΔI that is x∗-reachable from d in I there exists a unique
letter a ∈ Σ so that e carries ã-self-loops for all ã ∈ Σ̃ with π1(ã) = a, and no
self-loops for all other letters in Σ̃ (also including the “separator letter” x).
Σ-friendly interpretations can easily be axiomatised with an ALCSelf-concept CΣ

fr :

CΣ
fr := ∀x∗.

⊔

a∈Σ

⊔

b �=a,b∈Σ,π1(ã)=a,π1(b̃)=b

(
[∃ã.Self] � ¬[∃b̃.Self] � ¬[∃x.Self]

)
.

A Note on Non-Regular Extensions of ALCreg 301

d

(a, c), (a, r)

(a, i)

(b, c), (b, r)

(b, i)

(b, c), (b, r)

(b, i)

(a, c), (a, r)

(a, i)

(c, c), (c, r)

(c, i)

x x x x

Fig. 5. An example Σ-friendly pointed (I, d) encoding the word abbac.

Moreover, every x∗-path ρ in a Σ-friendly I represents a word in Σ∗ in the
following sense: the i-th letter of such a word is a if and only if the i-th element
of the path carries an (a, c)-self-loop. This is well-defined, as every element in
Σ-friendly I carries a (a, c)-self-loop for a unique letter a ∈ Σ. Consult Fig. 5.

As a special class of Σ-friendly interpretations we consider Σ-metawords.
We say that (I, d) is a Σ-metaword if it is a Σ-friendly interpretation of the
domain Zn for some positive n ∈ N, the role name x is interpreted as the set
{(i, i+1) | 0 ≤ i ≤ n−2}, and all other role names are either interpreted as ∅ or
are subsets of the diagonal {(i, i) | i ∈ Zn} (or, put differently, they appear only
as self-loops). The example Σ-friendly I from Fig. 5 is actually a Σ-metaword.
It is not too hard to see that for every word w ∈ Σ+ there is a Σ-metaword
representing w. A crucial observation regarding Σ-metawords is as follows. If an
element starting a Σ-metaword can {w̃}-reach some element (for some w̃ in the
language of Ã1), then the path ρ witnessing this fact satisfies ρi = ρi+1 for all
odd indices i and ρi + 1 = ρi+1 for all even indices i. Similar remarks apply to
Σ-friendly interpretations but the correspondence is not as elegant anymore.

As the next step of the construction, we are going to decorate Σ-friendly
interpretations with extra information on whether or not words represented by
paths are accepted by A1. This is achieved by means of the following concept

CA1 := CΣ
fr � ∀L(Ã1).AccA1 � ∀L(C̃1).¬AccA1 ,

for a fresh concept name AccA1 . We define CA2 analogously. We have that:

Lemma 16. If CA1 is satisfied by a Σ-friendly pointed interpretation (I, d), then
for every element e ∈ ΔI that is x∗-reachable from d via a path ρ we have that
e ∈ (AccA1)I iff the Σ-word represented by ρ belongs to L(A1). Moreover, after
reinterpreting the concept AccA1 , every Σ-metaword becomes a model of CA1 .

Lemma 17. CA1 � CA2 � ∃x∗. (AccA1�AccA2) is satisfiable iff L(A1) ∩
L(A2)
=∅.

By the undecidability of the non-emptiness problem for intersection of one-
counter languages [34, p. 75], we conclude the last theorem of the paper.

Theorem 18. The concept satisfiability problem for ALCSelf
vpl is undecidable,

even if only visibly-one-counter languages are allowed in concepts.

We stress that there is nothing special about DOCA used in the proof. In
fact, any automata model would satisfy our needs as long as it would (i) have

302 B. Bednarczyk

undecidable non-emptiness problem for the intersection of languages, (ii) enjoy
the analogue of Lemma 15, and (iii) be closed under complement. We leave it as
an open problem to see if there exists a single visibly-pushdown language L that
makes the concept satisfiability of ALCSelf

reg+L undecidable. Note that our proof
heavily relied on the availability of multiple visibly-one-counter languages.

6 Conclusions

We investigated the decidability status of extensions of ALCvpl (also known as
Propositional Dynamic Logic with Visibly Pushdown Programs) with popular
features supported by W3C ontology languages. Our results are negative: we
established undecidability of (fragments of) ALCvpl with nominals or self-loops,
and of the query entailment of non-regular queries even in the case of ALC-
TBoxes. We conclude with a list of open problems.

– Our undecidability proof for ALCvpl with Self relied on the availability of
multiple visibly-one-counter languages. Can this undecidability result be
improved? Is satisfiability of ALCr#s#

reg with Self already undecidable?
– Positive results regarding ALCvpl concern the concept satisfiability problem,

rather than the knowledge-base satisfiability problem. Is the later decidable
for ALCvpl? Classical techniques [12, p. 210] for incorporating ABoxes inside
concepts do not work, as the class of visibly-pushdown languages is not com-
positional (of “infinite memory”). The problem already occurs for ALCr#s#

reg .
– Is the extension of ALCvpl (or even ALCr#s#

reg) with functionality or counting
decidable? Once more, classical techniques [12, p. 210] do not seem to be appli-
cable due to the lack of “compositionality” in visibly-pushdown languages.
A good idea would be to investigate a model of graded visibly pushdown
tree automata, obtained by marrying graded alternating tree automata [27,
Sec. 3.1] and visibly pushdown tree automata [29, p. 55].

– Existing positive results on non-regular extensions of ALCreg, especially these
of Löding et al [29, Thm. 18], rely on the use of (potentially infinite) tree-like
models. Is the finite satisfiability problem for ALCvpl decidable? We stress
that already the case of ALCr#s#

reg is open.

Acknowledgements. This work was supported by the ERC Consolidator Grant No.
771779 (DeciGUT). Snake and cobra icons were downloaded from Icons8 and Flaticon.

The author would like to thank Reijo Jaakkola for many inspiring discussions;
Sebastian Rudolph for pinpointing [9] and suggesting many improvements, especially
related to the previous versions of Sect. 4; Witold Charatonik for very careful proof-
reading and his pedantic approach to writing; as well as Alessio Mansutti and Emanuel
Kieroński for their help polishing the introduction.

https://iccl.inf.tu-dresden.de/web/DeciGUT/en
https://icons8.com/icon/9cOrIHyR3rRE/snake
https://www.flaticon.com/free-icons/cobra

A Note on Non-Regular Extensions of ALCreg 303

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description

Logic. Cambridge University Press, Cambridge (2017)
3. Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown lan-

guages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
420–431. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_34

4. Bednarczyk, B., Kieronski, E.: Finite entailment of local queries in the Z fam-
ily of description logics. In: Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22–1 March 2022,
pp. 5487–5494. AAAI Press (2022)

5. Bednarczyk, B., Rudolph, S.: Worst-case optimal querying of very expressive
description logics with path expressions and succinct counting. In: Kraus, S.
(ed.) Proceedings of the Twenty-Eighth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 1530–1536.
ijcai.org (2019)

6. Bienvenu, M., Calvanese, D., Ortiz, M., Simkus, M.: Nested regular path queries
in description logics. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Principles of
Knowledge Representation and Reasoning: Proceedings of the Fourteenth Interna-
tional Conference, KR 2014, Vienna, Austria, 20–24 July 2014. AAAI Press (2014)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Unde-
cidability of the logic of overlap relation over discrete linear orderings. Electron.
Notes Theor. Comput. Sci. 262, 65–81 (2010). proceedings of the 6th Workshop
on Methods for Modalities (M4M–6 2009)

8. Bruse, F., Lange, M.: A decidable non-regular modal fixpoint logic. In: Haddad, S.,
Varacca, D. (eds.) 32nd International Conference on Concurrency Theory, CON-
CUR 2021, 24–27 August 2021, Virtual Conference. LIPIcs, vol. 203, pp. 23:1–
23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

9. Calvanese, D., De Giacomo, G., Rosati, R.: A note on encoding inverse roles and
functional restrictions in ALC knowledge bases. In: Franconi, E., De Giacomo, G.,
MacGregor, R.M., Nutt, W., Welty, C.A. (eds.) Proceedings of the 1998 Interna-
tional Workshop on Description Logics (DL’98), IRST, Povo - Trento, Italy, 6–8
June 1998. CEUR Workshop Proceedings, vol. 11. CEUR-WS.org (1998)

10. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive descrip-
tion logics with nominals. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, 11–17 July 2009, pp. 714–720 (2009)

11. Calvanese, D., Ortiz, M., Simkus, M.: Verification of evolving graph-structured
data under expressive path constraints. In: Martens, W., Zeume, T. (eds.) 19th
International Conference on Database Theory, ICDT 2016, Bordeaux, France, 15–
18 March 2016. LIPIcs, vol. 48, pp. 15:1–15:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2016)

12. De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description
logics and propositional dynamic logics. In: Hayes-Roth, B., Korf, R.E. (eds.) Pro-
ceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA,
USA, July 31–4 August 1994, vol. 1, pp. 205–212. AAAI Press/The MIT Press
(1994)

https://doi.org/10.1007/11672142_34

304 B. Bednarczyk

13. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

14. Florescu, D., Levy, A.Y., Suciu, D.: Query containment for conjunctive queries
with regular expressions. In: Mendelzon, A.O., Paredaens, J. (eds.) Proceedings of
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1–3 June 1998, Seattle, Washington, USA, pp. 139–148. ACM
Press (1998)

15. Göller, S.: Computational Complexity of Propositional Dynamic Logics. Ph.D.
thesis, University of Leipzig (2008). https://d-nb.info/99245168X

16. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

17. Gutiérrez-Basulto, V., Ibáñez-García, Y., Jung, J.C., Murlak, F.: Answering regu-
lar path queries mediated by unrestricted SQ ontologies. Artif. Intell. 314, 103808
(2023)

18. Harel, D., Paterson, M.: Undecidability of PDL with L = {a2i | i ≥ 0}. J. Comput.
Syst. Sci. 29(3), 359–365 (1984)

19. Harel, D., Pnueli, A., Stavi, J.: Further results on propositional dynamic logic of
nonregular programs. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 124–136. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0025779

20. Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of context-free pro-
grams. In: 22nd Annual Symposium on Foundations of Computer Science (SFCS
1981), pp. 310–321. IEEE (1981)

21. Harel, D., Raz, D.: Deciding properties of nonregular programs. SIAM J. Comput.
22(4), 857–874 (1993)

22. Harel, D., Singerman, E.: More on nonregular PDL: finite models and Fibonacci-
like programs. Inf. Comput. 128(2), 109–118 (1996)

23. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2
Web Ontology Language Primer (Second Edition). World Wide Web Consortium
(W3C), December 2012

24. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference
on Principles of Knowledge Representation and Reasoning, Lake District of the
United Kingdom, 2–5 June 2006, pp. 57–67. AAAI Press (2006)

25. Koren, T., Pnueli, A.: There exist decidable context free propositonal dynamic
logics. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164,
pp. 290–312. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-12896-
4_369

26. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: tractable rules for OWL 2. In: Sheth,
A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88564-1_41

27. Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded µ-calculus.
In: Voronkov, A. (eds.) Automated Deduction—CADE-18. CADE 2002. LNCS,
vol. 2392, pp. 423–437. Springer, Berlin, Heidelberg (2002). https://doi.org/10.
1007/3-540-45620-1_34

28. Lange, M., Lozes, E.: Conjunctive visibly-pushdown path queries. In: Kosowski, A.,
Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 327–338. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22177-9_25

29. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Log. Algebraic Methods Program. 73(1–2), 51–69 (2007)

https://d-nb.info/99245168X
https://doi.org/10.1007/BFb0025779
https://doi.org/10.1007/3-540-12896-4_369
https://doi.org/10.1007/3-540-12896-4_369
https://doi.org/10.1007/978-3-540-88564-1_41
https://doi.org/10.1007/3-540-45620-1_34
https://doi.org/10.1007/3-540-45620-1_34
https://doi.org/10.1007/978-3-319-22177-9_25

A Note on Non-Regular Extensions of ALCreg 305

30. Ortiz, M.: Query Answering in Expressive Description Logics: Techniques and
Complexity Results. Ph.D. thesis, Technische Universität Wien (2010)

31. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In:
Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9_1

32. Pratt-Hartmann, I.: Fragments of First-Order Logic. Oxford University Press,
Oxford (2023)

33. Sipser, M.: Introduction to the Theory of Computation, third edn. Course Tech-
nology, Boston, MA (2013)

34. Valiant, L.: Decision Procedures for Families of Deterministic Pushdown Automata.
Ph.D. thesis, University of Warwick (1973)

https://doi.org/10.1007/978-3-642-33158-9_1

Non-Normal Modal Description Logics

Tiziano Dalmonte1, Andrea Mazzullo2(B), Ana Ozaki3,4,
and Nicolas Troquard1

1 Free University of Bozen-Bolzano, Bolzano, Italy
{tiziano.dalmonte,nicolas.troquard}@unibz.it

2 University of Trento, Trento, Italy
andrea.mazzullo@unitn.it

3 University of Oslo, Oslo, Norway
anaoz@ifi.uio.no

4 University of Bergen, Bergen, Norway

Abstract. Modal logics are widely used in multi-agent systems to rea-
son about actions, abilities, norms, or epistemic states. Combined with
description logic languages, they are also a powerful tool to formalise
modal aspects of ontology-based reasoning over an object domain. How-
ever, the standard relational semantics for modalities is known to validate
principles deemed problematic in agency, deontic, or epistemic applica-
tions. To overcome these difficulties, weaker systems of so-called non-
normal modal logics, equipped with neighbourhood semantics that gen-
eralise the relational one, have been investigated both at the proposi-
tional and at the description logic level. We present here a family of
non-normal modal description logics, obtained by extending ALC-based
languages with non-normal modal operators. For formulas interpreted
on neighbourhood models over varying domains, we provide a modular
framework of terminating, correct, and complete tableau-based satisfi-
ability checking algorithms in NExpTime. For a subset of these sys-
tems, we also consider a reduction to satisfiability on constant domain
relational models. Moreover, we investigate the satisfiability problem in
fragments obtained by disallowing the application of modal operators to
description logic concepts, providing tight ExpTime complexity results.

1 Introduction

Modal logics are powerful tools used to represent and reason about actions and
abilities [10,16], coalitions [31,39], knowledge and beliefs [1,8,26,40], obligations
and permissions [2,20,42], etc. In combination with description logics, they give
rise to modal description logics [18,43], knowledge representation formalisms
used for modal reasoning over an object domain and with a good trade-off
between expressive power and decidability.

The standard relational semantics for modal operators is given in terms of
frames consisting of a set of possible worlds equipped with binary accessibility
relations. The foundations of modal description logics, so far, have also mostly

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 306–321, 2023.
https://doi.org/10.1007/978-3-031-43619-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_22&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_22

Non-Normal Modal Description Logics 307

been studied with relational semantics. However, all the modal systems inter-
preted with respect to this semantics, known as normal, validate principles that
have been considered problematic or debatable for agency-based, coalitional,
epistemic, or deontic applications, in that they lead to unacceptable conclusions,
e.g., logical omniscience in epistemic settings [40], as well as agency or deontic
paradoxes in the representation of agents’ abilities [16] and obligations [3,17,32].

To overcome these problems, a generalisation of relational semantics, known
as neighbourhood semantics, was introduced by Scott [34] and Montague [27].
Since it avoids in general the problematic principles validated by relational
semantics, it has been used to interpret a number of non-normal modal logics,
first studied by C.I. Lewis [25], Lemmon [24], Kripke [23], Segerberg [35], and
Chellas [11], among others. A neighbourhood frame consists of a set of worlds,
each one associated with a “neighbourhood”, i.e., a set of subsets of worlds. Intu-
itively, a subset of worlds can be thought of as representing a fact in a model,
namely, those worlds where that fact holds. Hence, the idea is that every world is
assigned to a collection of facts, those that are brought about, known, obligatory,
etc., in that world of the model.

These are the neighbourhood semantics ingredients for propositional non-
normal modal logics. A further line of research focuses on the behaviour of
modal operators interpreted on neighbourhood frames in combination with first-
order logic. In this direction, completeness results for first-order non-normal
modal logics have been provided [4,5]. In addition, non-normal modal description
logics, extending standard description logics, with modal operators interpreted
on neighbourhood frames, have been considered for knowledge representation
applications [13,14,36], also in multi-agent coalitional settings [37,38].

To illustrate the expressivity of non-normal modal description logic lan-
guages, as well some of the limitations of relational frames behind adoption of
neighbourhood semantics, we provide an example based on a classic multi-agent
purchase choreography scenario [28] (see [15] for a detailed version). Our multi-
agent setting involves a customer c and a seller s, as well as agency operators Di

and Ci, for i ∈ {c, s}, read as ‘agent i does/makes’ and ‘agent i can do/make’,
respectively [16,21]. The formula Ord ≡ Dc∃req.(Prod� InCatal) defines an order
Ord as a request made by customer c of an in-catalogue product.

By stating ∃req.(Prod � InCatal) � Confirm � ¬Confirm, we can also enforce
that any request of an in-catalogue product is either confirmed or not confirmed.
However, relational semantics validates the so-called M-principle (often called
monotonicity) as well, according to which C � D always entails DiC � DiD,
for any concepts C,D and any agent i. Thus, from the M-principle and Ord
definition, we obtain Ord � Dc(Confirm � ¬Confirm), meaning that any order is
made confirmed or not confirmed by c. This is an unwanted conclusion in our
agency-based scenario, since customers’ actions should be unrelated to order
confirmation aspects.1

1 Other approaches (out of the scope of this paper) to avoid such consequences
would involve rejecting the principle of excluded middle, as done e.g. in intuitionistic
description logics [9,30,33].

308 T. Dalmonte et al.

Moreover, the formula SubmitOrd � CsConfirm�CsPartConf�CsReject states
that a submitted order can be confirmed, can be partially confirmed, and can be
rejected by the seller s. On relational frames, CiC �CiD � Ci(C � D) is a valid
formula, for any concepts C,D, known as the C-principle (or agglomeration).
Therefore, by the C-principle, under relational semantics we would be forced to
conclude that SubmitOrd � Cs(Confirm � PartConf � Reject), meaning that any
submitted order is such that the seller s has the ability to make it confirmed,
partially confirmed, and rejected, all at once, which is unreasonable.

Finally, consider the formula � � Confirm�¬Confirm, i.e., the truism stating
that anything is either confirmed or not confirmed. By the so called N-principle
(or necessitation) of relational semantics, we have that if � � C is valid on
relational frames, then � � DiC holds as well, for any concept C. Thus, from
the N-principle it would follow on relational semantics that � � Dc(Confirm �
¬Confirm), thereby forcing us to the consequence that every object is made by
customer c to be either confirmed or not confirmed, hence leading again to an
unreasonable connection between customer’s actions and confirmation of orders.

In fact, since customer c plays no role in confirmation actions, it is sen-
sible to assume that, for any object of the domain, it is not the case that
c makes it confirmed or not confirmed. This can be achieved by the formula
� � ¬Dc(Confirm � ¬Confirm), which is equivalent to what is sometimes known
as the Q-principle (� � ¬Di�), asserting a form of irrelevance of actions with
respect to tautologies, in accordance with the idea that agents cannot be respon-
sible of something that holds independently from their action. This principle is
unsatisfiable in relational frames, while admissible over neighbourhood ones.

The Di and Ci modalities are axiomatised similarly to [16], by means of
additional principles as well. The operator Di obeys the C- (seen above) and
the T-principle (DiC � C, for any concept C), the latter stating a factivity of
actions principle, which is well-known also in epistemic logic. In turn, the T-
principle entails the D-principle (DiC � ¬Di¬C, for any concept C), asserting a
form of compatibility of actions: this principle plays a role also in doxastic logic,
where beliefs are typically considered to be compatible with each other (despite
not necessarily entailing the truth of what is believed, as in epistemic logic under
the T-principle). Moreover, both Di and Ci satisfy the Q- (seen above) and the
E-principle (or congruence: C ≡ D entails DiC ≡ DiD and CiC ≡ CiD, for any
concepts C,D), where the latter is valid both on relational and neighbourhood
frames.

In this paper, which is an extension of [13,14], we investigate reasoning in a
family of non-normal modal description logics, providing terminating, sound, and
complete tableau algorithms for checking formula satisfiability on neighbourhood
models based on varying domains of objects. Moreover, we study the complexity
of reasoning in a restricted fragment that disallows modalities on description
logic concepts. For instance, such fragment allows us to state, in addition to
the non-modal axiom Confirm � ¬Reject expressing that anything confirmed is
not rejected, that the seller has no power in transforming confirmed objects into
rejected ones, by means of the formula ¬Cs(Confirm � Reject). Finally, for two
modal description logics interpreted on constant domain neighbourhood models,

Non-Normal Modal Description Logics 309

we adjust a reduction (known from the propositional case) to satisfiability with
respect to standard relational semantics.

The paper is structured as follows. Section 2 provides the necessary definitions
and the preliminary results on non-normal modal description logics. In Sect. 3
we present the tableau algorithms for the family of logics here considered. The
case of fragments without modalised concepts is then studied in Sect. 4. Section 5
contains the results for the constant domain case. Finally, Sect. 6 concludes the
paper, discussing related work and possible future research directions. Additional
details and full proofs are available in an extended version of this paper [15].

2 Preliminaries

Here we introduce modal description logics, first presenting their syntax, and
then their semantics based on neighbourhood and relational models, respectively.
Finally, we introduce the family of frame conditions here considered.

2.1 Syntax

Let NC, NR and NI be countably infinite and pairwise disjoint sets of concept,
role, and individual names, respectively. An MLn

ALC concept is an expression of
the form C ::= A | ¬C | C � C | ∃r.C | �iC, where A ∈ NC, r ∈ NR, and �i such
that i ∈ J = {1, . . . , n}. An MLn

ALC atom is a concept inclusion (CI) of the form
(C � D), or an assertion of the form C(a) or r(a, b), with C,D MLn

ALC concepts,
r ∈ NR, and a, b ∈ NI. An MLn

ALC formula has the form ϕ ::= π | ¬ϕ | ϕ∧ϕ | �iϕ,
where π is an MLn

ALC atom and i ∈ J . We use the following standard definitions
for concepts: ∀r.C := ¬∃r.¬C; (C�D) := ¬(¬C�¬D); ⊥ := A�¬A, � := A�¬A
(for an arbitrarily fixed A ∈ NC); �iC := ¬�i¬C. Concepts of the form �iC,�iC are modalised concepts. Analogous conventions hold for formulas, writing
C ≡ D for (C � D) ∧ (D � C) and setting false := (� � ⊥), true := (⊥ � �).

2.2 Semantics

We now define neighbourhood semantics, which (as already mentioned) can be
seen as a generalisation of the relational semantics, introduced immediately after.

Neighbourhood Semantics. A neighbourhood frame, or simply frame, is a pair
F = (W, {Ni}i∈J), where W is a non-empty set of worlds and Ni : W → 22

W

is a neighbourhood function, for each agent i ∈ J = {1, . . . , n}. An MLn
ALC

varying domain neighbourhood model, or simply model, based on a neighbourhood
frame F is a pair M = (F , I), where F = (W, {Ni}i∈J) is a neighbourhood
frame and I is a function associating with every w ∈ W an ALC interpretation
Iw = (Δw, ·Iw), with non-empty domain Δw, and where ·Iw is a function such
that: for all A ∈ NC, AIw ⊆ Δw; for all r ∈ NR, rIw ⊆ Δw×Δw; for all a ∈ NI,
aIw ∈ Δw. An MLn

ALC constant domain neighbourhood model is defined in the
same way, except that, for all w,w′ ∈ W, we have that Δw = Δw′ and, for all

310 T. Dalmonte et al.

u, v ∈ W, we require aIu = aIv (denoted by aI), that is, individual names are
rigid designators. We often write M = (F ,Δ, I) to denote a constant domain
neighbourhood model M = (F , I) with domain Δ = Δw, for every w ∈ W.
Given a model M = (F , I) and a world w ∈ W of F (or simply w in F),
the interpretation CIw of a concept C in w is defined as: (¬D)Iw = Δw \
DIw , (D � E)Iw = DIw ∩ EIw , (∃r.D)Iw = {d ∈ Δw | ∃e ∈ DIw :(d, e) ∈ rIw},
(�iD)Iw = {d ∈ Δw | �D�M

d ∈ Ni(w)}, where, for all d ∈
⋃

w∈W Δw, the set
�D�M

d = {v ∈ W | d ∈ DIv} is called the truth set of D with respect to M
and d. We say that a concept C is satisfied in M if there is w in F such that
CIw �= ∅, and that C is satisfiable (over varying or constant neighbourhood
models, respectively) if there is a (varying or constant domain, respectively)
neighbourhood model in which it is satisfied. The satisfaction of an MLn

ALC
formula ϕ in w of M, written M, w |= ϕ, is defined as follows:

M, w |= C � D iff CIw ⊆ DIw , M, w |= C(a) iff aIw ∈ CIw ,

M, w |= r(a, b) iff (aIw , bIw) ∈ rIw , M, w |= ¬ψ iff M, w �|= ψ,

M, w |= ψ ∧ χ iff M, w |= ψ and M, w |= χ, M, w |= �iψ iff �ψ�M ∈ Ni(w),

where �ψ�M = {v ∈ W | M, v |= ψ} is the truth set of ψ. As a consequence of the
above definition, we obtain the following condition for �i formulas: M, w |= �iψ
iff �¬ψ�M /∈ Ni(w). Given a neighbourhood frame F = (W, {Ni}i∈J) and a
neighbourhood model M = (F , I), we say that ϕ is satisfied in M if there is
w ∈ W such that M, w |= ϕ, and that ϕ is satisfiable (over varying or constant
domain neighbourhood models, respectively) if it is satisfied in some (varying
or constant domain, respectively) neighbourhood model. Also, ϕ is valid in M,
M |= ϕ, if it is satisfied in all w of M, and it is valid on F if, for all M based
on F , ϕ is valid in M, writing F |= ϕ.

Relational Semantics. A relational frame is a pair F = (W, {Ri}i∈J), with
W non-empty set and Ri binary relation on W , for i ∈ J = {1, . . . , n}. An
MLn

ALC (constant domain) relational model based on a relational frame F =
(W, {Ri}i∈J) is a pair M = (F, I), where I is a function associating with every
w ∈ W an ALC interpretation Iw = (Δ, ·Iw), having non-empty constant domain
Δ, and where ·Iw is a function such that: for all A ∈ NC, AIw ⊆ Δ; for all r ∈ NR,
rIw ⊆ Δ×Δ; for all a ∈ NI, aIw ∈ Δ, and for all u, v ∈ W , aIu = aIv (denoted by
aI). Given a relational model M = (F, I) and a world w ∈ W of F (or simply
w in F), the interpretation of a concept C in w, written CIw , is defined by
taking: (¬C)Iw = Δ \ CIw , (C � D)Iw = CIw ∩ DIw , (∃r.C)Iw = {d ∈ Δ | ∃e ∈
CIw :(d, e) ∈ rIw}, (�iC)Iw = {d ∈ Δ | ∀v ∈ W : wRiv ⇒ d ∈ CIv}.

A concept C is satisfied in M if there is w in F such that CIw �= ∅, and that
C is satisfiable on relational models if there is a relational model in which it is
satisfied. The satisfaction of a MLALC formula ϕ in w of M , written M,w |= ϕ,
is defined, for atoms, negation and conjunction, similarly to the previous case,
and as follows for the �i case: M,w |= �iϕ iff ∀v ∈ W : wRiv ⇒ M,v |= ϕ.
Given a relational frame F = (W, {Ri}i∈J) and a relational model M = (F,Δ, I),
we say that ϕ is satisfied in M if there is w ∈ W such that M,w |= ϕ, and that

Non-Normal Modal Description Logics 311

ϕ is satisfiable on relational models if it is satisfied in some relational model.
Also, ϕ is said to be valid in M , M |= ϕ, if it is satisfied in all w of M , and it
is valid on F if, for all M based on F , ϕ is valid in M , writing F |= ϕ.

2.3 Frame Conditions and Formula Satisfiability

We consider the following conditions on neighbourhood frames F =
(W, {Ni}i∈J). We say that F satisfies the:

E-condition iff Ni is a neighbourhood function;
M-condition iff α ∈ Ni(w) and α ⊆ β implies β ∈ Ni(w);
C-condition iff α ∈ Ni(w) and β ∈ Ni(w) implies α ∩ β ∈ Ni(w);
N-condition iff W ∈ Ni(w);
T-condition iff α ∈ Ni(w) implies w ∈ α;
D-condition iff α ∈ Ni(w) implies W \ α �∈ Ni(w);
P-condition iff ∅ �∈ Ni(w);
Q-condition iff W �∈ Ni(w);

for every w ∈ W, α, β ⊆ W. Combinations of conditions, such as the EMCN-
condition, are obtained by suitably joining the ones above. Moreover, since the E-
condition is always satisfied by any neighbourhood frame, we often omit the letter
E from this naming scheme, writing for instance ‘MCN’ in place of ‘EMCN’.

On the relationships among (combinations of) neighbourhood frame condi-
tions, we make the following observations.

Theorem 1. Given a neighbourhood frame F = (W, {Ni}i∈J), the following
statements hold, for i ∈ J .

1. If Ni satisfies the MQ-condition then, for every w ∈ W, Ni(w) = ∅. Hence,
Ni satisfies all but the N-condition.

2. Ni satisfies the P-condition, if Ni satisfies one of the following:
(i) MD-condition; (ii) ND-condition; or (iii) T-condition.

3. Ni satisfies the D-condition, if Ni satisfies one of the following:
(i) CP-condition; or (ii) T-condition.

4. Ni does not satisfy the NQ-condition.

Based on these results, Fig. 1 depicts the relations between combinations of
frame conditions: nodes are (groups of equivalent) conditions (with the canon-
ical representative underlined), and arrows represent logical implications. Any
combination containing the NQ-condition has been omitted, as it leads to incon-
sistency (Theorem 1, Point 4). Moreover, due to Theorem 1, Point 1, any com-
bination that includes the MQ-condition is not considered, since for any neigh-
bourhood frame F satisfying such condition and any MLn

ALC concept C, we have
F |= �iC ≡ ⊥, and similarly for formulas, hence trivialising the modal opera-
tors. Thus, we consider in the remainder the set Pantheon of 39 non-equivalent
combinations shown (as nodes or canonical representatives) in Fig. 1.

312 T. Dalmonte et al.

EMCNT
EMCNTD
EMCNTP
EMCTDP

EMCND
EMCNP
EMCNDP

EMCN

EMCT
EMCTD
EMCTP
EMCTDP

EMCD
EMCP
EMCDP

EMNT
EMNTD
EMNTP
EMNTDP

EMND
EMNDP

EMNP

ECNT
ECNTD
ECNTP
ECNTDP

ECND
ECNP
ECNDP

ECTQ
ECTPQ
ECTDQ
ECTDPQ

ECDQ ECPQ
ECDPQ

EDPQ

EMC EMN

EMT
EMTD
EMTP
EMTDP

EMD
EMDP

EMP ECN

ECT
ECTD
ECTP
ECTDP

ECD ECP ECQ

ENT
ENTD
ENTP

EMTDP

END ENP

ETQ
ETDQ
ETDQ
ETDPQ

EDQ EDP EPQ

EM EC EN

ET
ETD
ETP
ETDP

ED EP EQ

E

Fig. 1. Implications among L-conditions in Pantheon (equivalent ones are listed in the
same nodes, with underlined representatives).

For L ∈ Pantheon, we say that a neighbourhood frame F = (W, {Ni}i∈J),
with J = {1, . . . , n}, is an Ln frame iff its neighbourhood functions Ni, for
i ∈ J , satisfy the L-condition, obtained by combining the conditions associated
with letters in L. For a class of neighbourhood frames C, the satisfiability in
MLn

ALC on (varying or constant domain, resp.) neighbourhood models based
on a frame in C is the problem of deciding whether an MLn

ALC formula is
satisfied in a (varying or constant domain, resp.) neighbourhood model based on
a frame in C. Satisfiability in Ln

ALC on (varying or constant domain, respectively)
neighbourhood models is satisfiability in MLn

ALC on (varying or constant domain,
resp.) neighbourhood models based on a frame in the class of Ln frames. Finally,
satisfiability in Kn

ALC on (constant domain) relational models is satisfiability in
MLn

ALC on relational models based on any relational frame.

Table 1. Principles over neighbourhood or relational frames and models S.

E-principle
S |= C ≡ D implies S |= �iC ≡ �iD.

S |= ϕ ↔ ψ implies S |= �iϕ ↔ �iψ.

M-principle
S |= C � D implies S |= �iC � �iD.

S |= ϕ → ψ implies S |= �iϕ → �iψ.

C-principle
S |= �iC � �iD � �i(C � D).

S |= �iϕ ∧ �iψ → �i(ϕ ∧ ψ).

N-principle
S |= � � C implies S |= � � �iC.

S |= ϕ implies S |= �iϕ.

T-principle
S |= �iC � C.

S |= �iϕ → ϕ.

D-principle
S |= �iC � �iC.

S |= �iϕ → �iϕ.

P-principle
S |= � � ¬�i⊥.

S |= ¬�ifalse.

Q-principle
S |= � � ¬�i�.

S |= ¬�itrue.

Non-Normal Modal Description Logics 313

We now study the correspondence between conditions presented in Sect. 2.2
and the principles in Table 1, where S is either a (neighbourhood or relational)
frame or a (neighbourhood or relational) model and the L-principle is obtained
by suitably combining the basic principles. We say that the L-principle holds in S
if the corresponding expressions in Table 1 are satisfied. On the correspondence
between the principles in Table 1 and conditions over frames and models, we
have the following results (see e.g. [29] for the propositional case).

Proposition 1. Given a neighbourhood frame F , the L-principle holds in F iff
F satisfies the L-condition.

Proposition 2. The following statements hold.

1. For a (varying or constant domain) neighbourhood model M, we have that
if M satisfies the L-condition, then the L-principle holds in M. However, in
general, the converse is not true.

2. For a relational frame F and a relational model M based on F , the EMCN-
principle holds in M , hence in F . Moreover, in M , hence in F , the D-
principle holds iff the P-principle holds, and the Q-principle does not hold.

3 Tableaux for Formula Satisfiability

We provide terminating, sound, and complete tableau algorithms to check sat-
isfiability of formulas in varying domain neighbourhood models. The notation
partly adheres to that of [18], while the model construction in the soundness
proof is based on the strategy of [12]. In this section, we use concepts and for-
mulas in negation normal form (NNF) and, for this reason, we consider all the
logical connectives �,∨,∀,� as primitive, rather than defined. For a concept or
formula γ, we denote by ¬̇γ the negation of γ put in NNF, defined as follows:
a concept is in NNF if negation occurs in it only in front of concept names; a
formula is in NNF if all concepts in it are in NNF and negation occurs in the
formula only in front of CIs or assertions of the form r(a, b) (regarding assertions
of the form A(a), we recall that a formula ¬ψ, with ψ = C(a), is equivalent to
the assertion D(a), with D = ¬C). Given an MLn

ALC formula ϕ, we assume
without loss of generality that ϕ is in NNF (using De Morgan laws) and it con-
tains CIs only of the form � � C, since C � D is equivalent to � � ¬C � D).
We denote by con(ϕ) and for(ϕ) the set of subconcepts and subformulas of ϕ,
respectively, and then we set con¬̇(ϕ) = con(ϕ) ∪ {¬̇C | C ∈ con(ϕ)} ∪ {�}
and for¬̇(ϕ) = for(ϕ) ∪ {¬̇ψ | ψ ∈ for(ϕ)}. The sets rol(ϕ) and ind(ϕ) are,
respectively, the sets of role names and of individual names occurring in ϕ. Let
Fg(ϕ) = for¬̇(ϕ) ∪ con¬̇(ϕ) ∪ rol(ϕ) ∪ ind(ϕ) be the fragment induced by ϕ.

Moreover, let NV be a countable set of variables, denoted by the letters u, v.
The terms for ϕ, denoted by the letters x, y, are either individual names in
ind(ϕ) or variables in NV. We assume that the set of terms for ϕ is strictly well-
ordered by the relation <. In addition, let NL be a countable set of labels. Given
an MLn

ALC formula ϕ and a label n ∈ NL, an n-labelled constraint for ϕ takes

314 T. Dalmonte et al.

the form n : ψ, or n : C(x), or n : r(x, y), where ψ ∈ for¬̇(ϕ), x, y are terms
for ϕ, C ∈ con¬̇(ϕ), and r ∈ rol(ϕ). For every n ∈ NL, an n-labelled constraint
system for ϕ is a set Sn of n-labelled constraints for ϕ. A labelled constraint
for ϕ is an n-labelled constraint for ϕ, for some n ∈ NL, and similarly for a
labelled constraint system for ϕ. A completion set T for ϕ is a non-empty union
of labelled constraint systems for ϕ, and we set LT = {n ∈ NL | Sn ⊆ T }.

About terms, we adopt the following terminology. A term x occurs in Sn if Sn

contains n-labelled constraints of the form n : C(x) or n : r(τ, τ ′), where τ = x, or
τ ′ = x, and n ∈ NL. In addition, a variable u is said to be fresh for Sn if u does not
occur in Sn. (These notions can be used with respect to T , whenever Sn ⊆ T).
Finally, given variables u, v in an n-labelled constraint system Sn, we say that
u is blocked by v in Sn if u > v and {C | n : C(u) ∈ Sn} ⊆ {C | n : C(v) ∈ Sn}.

A completion set T contains a clash if, for some m ∈ NL, concept C, role r,
and terms x, y, one of the following holds: {m : (� � C),m : ¬(� � C)} ⊆ T ;
or {m : A(x),m : ¬A(x)} ⊆ T ; or {m : r(x, y),m : ¬r(x, y)} ⊆ T . A completion
set that does not contain a clash is clash-free.

For every L ∈ Pantheon, we associate to L the set of Ln
ALC-rules from Fig. 2

(bottom part) containing R∧, R�, R∨, R�, R∃, R∀, R�, R��, RL, and RLX, for every
X ∈ {N,T,P,Q,D} such that X ∈ L. Given L ∈ Pantheon, a completion set T is
Ln

ALC-complete if no Ln
ALC-rule is applicable to T , where γj is either ψj ∈ for¬̇(ϕ)

or Cj(xj), with Cj ∈ con¬̇(ϕ), for j = 1, . . . , k, and δ is either χ ∈ for¬̇(ϕ) or
D(y), with D ∈ con¬̇(ϕ), with respect to the application conditions associated
to each Ln

ALC-rule from Fig. 2 (top part). The Ln
ALC-rules essentially state how to

extend a completion set on the basis of the information contained in it. Branching
rules entail a non-deterministic choice in the completion set expansion.

For each L ∈ Pantheon, we now present a tableau-based non-deterministic
decision procedure for the Ln

ALC formula satisfiability problem on varying domain
neighbourhood models, based on Algorithm 1 (simply referred to as Ln

ALC tableau
algorithm). We have that a formula ϕ is Ln

ALC satisfiable if and only if there exists
at least one execution of the Ln

ALC tableau algorithm that constructs an Ln
ALC-

complete and clash-free completion set for ϕ. This non-deterministic algorithm
gives priority to non-generating Ln

ALC-rules, i.e., those that do not introduce new
variables or labels, with respect to generating ones, so to minimise the size of
the completion set constructed by its application, and terminates in exponential
time for every formula ϕ. Thus, we obtain the following.

Theorem 2. Satisfiability in Ln
ALC on varying domain neighbourhood models is

decidable in NExpTime.

As an immediate consequence of the correctness of the tableau we also obtain
a (constructive) proof of the following kind of exponential model property.

Corollary 1. Every Ln
ALC satisfiable formula ϕ has a model with at most

p(|Fg(ϕ)|) worlds, if C /∈ L, and at most 2q(|Fg(ϕ)|)) worlds, if C ∈ L, each of
them having a domain with at most 2r(|Fg(ϕ)|) elements, with p, q, r polynomial
functions.

Non-Normal Modal Description Logics 315

Application conditions

(R∧)
(R�)
(R∨)
(R�)
(R∃)

(R∀)
(R�)

(R	�)
(RL)

(RLN)
(RLT)
(RLP)
(RLQ)
(RLD)

Rules

n : ψ ∧ χ
(R∧)

n : ψ , n : χ

n : ψ ∨ χ
(R∨)

n : ψ n : χ

n : C � D(x)
(R�)

n : C(x), n : D(x)

n : C � D(x)
(R�)

n : C(x) n : D(x)

n : ∃r.C(x)
(R∃)

n : r(x, v), n : C(v)

n : ∀r.C(x), n : r(x, y)
(R∀)

n : C(y)

n : � 	 C
(R�)

n : C(x)

n : ¬(� 	 C)
(R	�)

n : ¬̇C(v)

(RL) (RLN)

(RLT) (RLP) (RLQ)

(RLD)

if M 	∈L

Fig. 2. Ln
ALC-rules, where k, h ≥ 1 if C ∈ L and k = h = 1 if C �∈ L. In the rules RL

and RLD, the number of possible expansions depend on whether M ∈ L: if M ∈ L only
the first expansion is possible, if M /∈ L all other expansions are also possible.

316 T. Dalmonte et al.

Algorithm 1: Ln
ALC tableau algorithm on varying domain neighbourhood

models for ϕ

Input: the initial completion set T := {0 : ϕ} of an MLn
ALC formula ϕ in NNF.

Output: a completion set for ϕ, extending the initial one, that either contains
a clash, or is complete and clash-free.

1 while T is clash-free and not Ln
ALC-complete do

2 if a rule R ∈ {R∧,R∨,R�,R�,R∀,R�,RLT} is applicable to T then
3 apply R to T ;
4 else if a rule R ∈ {R∃,RL,RLN,RLP,RLQ,RLD} is applicable to T then
5 apply R to T ;

6 end

4 Fragments Without Modalised Concepts

Here we study fragments of MLn
ALC without modalised concepts. An ALC-MLn

formula is defined similarly to the MLn
ALC case, by disallowing modalised con-

cepts. Given L ∈ Pantheon, satisfiability in ALC-Ln on varying domain neigh-
bourhood models is ALC-MLn satisfiability on varying domain neighbourhood
models based on neighbourhood frames in the respective class for L. An MLn

formula, instead, is defined analogously to ALC-MLn, except that we build it
from the standard propositional (rather than ALC) language over a countable
set of propositional letters NP, disjoint from NC, NR, and NI. The semantics of
MLn formulas is given in terms of propositional neighbourhood models (or simply
models) MP = (W, {Ni}i∈J ,V), where (W, {Ni}i∈J) is a neighbourhood frame,
with J = {1, . . . , n} in the following, and V : NP → 2W is a function mapping
propositional letters to sets of worlds (see [11,41]). Satisfiability in Ln is satisfia-
bility in MLn on propositional neighbourhood models based on neighbourhood
frames in the respective class for L. A propositional neighbourhood model based
on a neighbourhood frame in the respective class for L is called Ln model.

We prove tight complexity results for ALC-Ln satisfiability on varying
domain neighbourhood models, where L ∈ Pantheon, using the notion of a
propositional abstraction of a formula (as in, e.g., [6]). Here, one can sepa-
rate the satisfiability test into two parts, one for the description logic dimen-
sion and one for the neighbourhood frame dimension. For an ALC-MLn for-
mula ϕ, the propositional abstraction ϕprop is the result of replacing each
ALC atom π in ϕ by a propositional variable pπ ∈ NP. Define the set
Σϕ = {pπ ∈ NP | π is an ALC atom in ϕ}. A (propositional neighbourhood)
Ln model MP = (W, {Ni}i∈J ,V) is Σϕ-consistent if, for all w ∈ W, the
following ALC formula is satisfiable: ϕ̂V,w =

∧
pπ∈f V,w

ϕ
π ∧

∧
pπ∈Σϕ\f V,w

ϕ
¬π,

where fV,w
ϕ = {pπ ∈ Σϕ | w ∈ V(pπ)}. We formalise the connection between

ALC-Ln satisfiable formulas and their propositional abstractions with the fol-
lowing lemma.

Lemma 1. A formula ϕ is ALC-Ln satisfiable on varying domain neighbourhood
models iff ϕprop is satisfied in a Σϕ-consistent Ln model.

Non-Normal Modal Description Logics 317

We now introduce definitions and notation used to prove our complex-
ity result on fragments without modalised concepts. Let Σ = {pπ ∈ NP |
π is an ALC atom in ϕ}, for a fixed but arbitrary ALC-MLn formula ϕ, and
let φ be an MLn formula built from symbols in Σ. We denote by sub(φ) the set
of subformulas of φ closed under single negation. A valuation for φ is a func-
tion ν : sub(φ) → {0, 1} that satisfies the conditions: (1) for all ¬ψ ∈ sub(φ),
ν(ψ) = 1 iff ν(¬ψ) = 0; (2) for all ψ1 ∧ψ2 ∈ sub(φ), ν(ψ1 ∧ψ2) = 1 iff ν(ψ1) = 1
and ν(ψ2) = 1; and (3) ν(φ) = 1. A valuation ν for φ is Σ-consistent if the
following ALC formula is satisfiable:

∧
ν(pπ)=1 π ∧

∧
ν(pπ)=0 ¬π, where pπ ∈ Σ.

Lemma 2 establishes that satisfiability of φ in a Σ-consistent model is charac-
terised by the existence of a Σ-consistent valuation satisfying suitable properties.
In the following, we use ff as an abbreviation for p∧¬p, for a fixed but arbitrary
p ∈ NP.

Lemma 2. Given L and an MLn formula φ built from symbols in Σ (defined
as above), let:

κ =

{
|sub(φ)|, if C ∈ L
1, if C �∈ L

.

A formula φ is satisfied in a Σ-consistent Ln model iff there is a Σ-consistent
valuation ν for φ such that, for every 1 ≤ k ≤ κ, if �iψ1, . . . ,�iψk,�iχ ∈
sub(φ), ν(�iψj) = 1 for all 1 ≤ j ≤ k, and ν(�iχ) = 0, then

1. (
∧k

j=1 ψj ∧ ¬χ) ∨ ϑ is satisfied in a Σ-consistent Ln model, where:

ϑ =

{
ff, if M ∈ L
∨k

j=1(¬ψj ∧ χ), if M �∈ L
;

and
2. for X ∈ {N,T,P,Q,D}, if X ∈ L, then ν satisfies the condition (X) below,

for every 1 ≤ k, h ≤ κ:
(N) if �iψ ∈ sub(φ) and ν(�iψ) = 0, then ¬ψ is satisfied in a Σ-consistent

Ln model;
(T) if �iψ ∈ sub(φ) and ν(�iψ) = 1 then ν(ψ) = 1;
(P) if �iψ1, . . . ,�iψk ∈ sub(φ) and ν(�iψj) = 1 for all 1 ≤ j ≤ k, then

∧k
j=1 ψj is satisfied in a Σ-consistent Ln model;

(Q) if �iψ1, . . . ,�iψk ∈ sub(φ) and ν(�iψj) = 1 for all 1 ≤ j ≤ k, then
∨k

j=1 ¬ψj is satisfied in a Σ-consistent Ln model;
(D) if �iψ1, . . . ,�iψk,�iχ1, . . . ,�iχh ∈ sub(φ), ν(�iψj) = 1 for all 1 ≤ j ≤

k, and ν(�iχ�) = 1 for all 1 ≤ � ≤ h, then (
∧k

j=1 ψj ∧
∧h

�=1 χ�) ∨ η is
satisfied in a Σ-consistent Ln model, where:

η =

{
ff, if M ∈ L
¬(

∧k
j=1 ψj) ∧ ¬(

∧h
�=1 χ�), if M �∈ L

.

318 T. Dalmonte et al.

By using Lemmas 1–2, the following theorem provides a procedure that runs
in exponential time to check ALC-Ln satisfiability on varying domains. Since
ALC formula satisfiability is already ExpTime-hard, our upper bound is tight.

Theorem 3. Satisfiability in ALC-Ln on varying domain neighbourhood models
is ExpTime-complete.

5 Reasoning on Constant Domain

We now study the complexity of the formula satisfiability problem in En
ALC and

EMn
ALC on constant domain neighbourhood models. We provide a NExpTime

upper bound for satisfiability in En
ALC and EMn

ALC by using a reduction,
lifted from the propositional case, to multi-modal Km

ALC . The translation ·†
from MLn

ALC to ML3n
ALC is defined as [19,22]: A† = A, (¬C)† = ¬C†,

(C�D)† = C†�D†, (∃r.C)† = ∃r.C†; (C(a))† = C†(a), (r(a, b))† = r(a, b), (C �
D)† = C† � D†, (¬ψ)† = ¬ψ†, (ψ∧χ)† = ψ†∧χ†; (�iγ)† = �i1(�i2γ

†◦�i3¬γ†);
where A ∈ NC, r ∈ NR, γ is either an MLn

ALC concept or formula, and ◦ ∈ {�,∧}
accordingly. Using this translation, one can show that satisfiability on neigh-
bourhood models is reducible to satisfiability on the relational models [19,22].
Since satisfiability in K3n

ALC constant domain relational models is NExpTime-
complete [18, Theorem 15.15], we obtain the following complexity result.

Theorem 4. Satisfiability in En
ALC on constant domain neighbourhood models

is decidable in NExpTime.

The translation ·‡ from MLn
ALC to ML2n

ALC is defined as ·† on all con-
cepts and formulas, except for the modalised concepts or formulas γ: (�iγ)‡ =�i1�i2γ

‡. We obtain an upper bound analogous to the one for En
ALC by a reduc-

tion of the formula satisfiability problem for EMn
ALC to the K2n

ALC one [18,19,22].

Theorem 5. Satisfiability in EMn
ALC on constant domain neighbourhood mod-

els is decidable in NExpTime.

6 Discussion

We investigated reasoning in non-normal modal description logics, focussing on:
(i) tableaux algorithms to check satisfiability of multi-modal description logics
formulas in varying domain neighbourhood models based on classes of frames
for 39 different non-normal systems; (ii) complexity of satisfiability restricted
to fragments with modal operators applied only over formulas, and interpreted
on varying domain models; (iii) preliminary reduction of formula satisfiability
for two non-normal modal description logics to satisfiability in the standard
relational semantics on a constant domain. We now discuss possible future work.

First, we intend to devise tableaux for formula satisfiability on neighbour-
hood models with constant domain, by solving the problem of newly introduced
variables that do not occur in other previously expanded labelled constraints

Non-Normal Modal Description Logics 319

systems. For instance, by applying the Mn
ALC-rules to the n-labelled constraint

system Sn = {n : �i∃r.A(x),�i¬A(x)}, we get the m-labelled constraint sys-
tem Sm = {m : ∃r.A(x),m : ¬A(x),m : r(x, y),m : A(y)}. The fresh variable
y in Sm does not allow for the direct extraction of a constant domain model,
as no object in the domain of the world associated with Sn would be capable
of representing y correctly. An alternative approach involves quasimodels [18],
to characterise satisfiability on constant domain models in terms of structures
representing “abstractions” of the actual models of a formula. Objects across
worlds can be represented by means of runs, i.e., functions to guarantee their
modal properties and the constant domain assumption. A similar strategy is
presented in [36–38], where the definition of runs (which is not carried out in
detail) involves the introduction of suitable world “copies”. We conjecture that
a quasimodel-based approach with marked variables, as illustrated in [18], can
also be adopted to solve the constant domain model extraction issue.

Moreover, we aim at tight complexities for Ln
ALC satisfiability, both in varying

and in constant domain models. While ALC formula satisfiability is ExpTime-
complete, it is unclear whether the upper bound for Ln

ALC on varying or constant
domain neighbourhood models can be improved to ExpTime-membership, for
any L ∈ Pantheon. At the propositional level, the formula satisfiability problem
for the systems based on the L-condition, with C �∈ L, is NP-complete, rising to
PSpace if the C-condition is included [41]. For normal modal description logics,
instead, the (tight) NExpTime-hardness results are based on complexity proofs
of product logics over relational product frames [18], and cannot be immediately
adapted to neighbourhood semantics, where an analogous notion of product
is not yet well understood. Nonetheless, we conjecture that the NExpTime-
hardness known for, e.g., KALC on constant domain relational models, also holds
in the neighbourhood case, at least in presence of the C-condition.

Finally, we plan to study: non-normal modal description logics in coalitional
and strategic settings [31,38,39], with an interplay between abilities and powers
of groups of agents, rather than single ones; additional description logics con-
structs (e.g. nominals, inverse roles, or number restrictions [7]); and interactions
between modalities, with axioms expressing e.g. that an agent can do anything
they actually do, by means of formulas of the form DiC � CiC or Diϕ → Ciϕ.

Acknowledgements. This research has been partially supported by the Province
of Bolzano and DFG through the project D2G2 (DFG grant n. 500249124). Andrea
Mazzullo acknowledges the support of the MUR PNRR project FAIR - Future AI
Research (PE00000013) funded by the NextGenerationEU. Ana Ozaki is supported by
the Research Council of Norway, project number 316022.

References

1. Ågotnes, T., Wáng, Y.N.: Somebody knows. In: KR, pp. 2–11 (2021)
2. Anglberger, A.J., Gratzl, N., Roy, O.: Obligation, free choice, and the logic of

weakest permissions. Rev. Symb. Log. 8(4), 807–827 (2015)

320 T. Dalmonte et al.

3. Åqvist, L.: Good samaritans, contrary-to-duty imperatives, and epistemic obliga-
tions. Noûs 1(4), 361–379 (1967)

4. Arló-Costa, H.L.: First order extensions of classical systems of modal logic; the
role of the Barcan schemas. Stud. Log. 71(1), 87–118 (2002)

5. Arló-Costa, H.L., Pacuit, E.: First-order classical modal logic. Stud. Log. 84(2),
171–210 (2006)

6. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans.
Comput. Log. 13(3), 21:1–21:32 (2012)

7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

8. Balbiani, P., Fernández-Duque, D., Lorini, E.: The dynamics of epistemic attitudes
in resource-bounded agents. Stud. Log. 107(3), 457–488 (2019)

9. Bozzato, L., Ferrari, M., Fiorentini, C., Fiorino, G.: A constructive semantics for
ALC. In: DL, vol. 250. CEUR-WS.org (2007)

10. Brown, M.A.: On the logic of ability. J. Philos. Log. 1–26 (1988)
11. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-

bridge (1980)
12. Dalmonte, T., Lellmann, B., Olivetti, N., Pimentel, E.: Hypersequent calculi for

non-normal modal and deontic logics: countermodels and optimal complexity. J.
Log. Comput. 31(1), 67–111 (2021)

13. Dalmonte, T., Mazzullo, A., Ozaki, A.: On non-normal modal description logics.
In: DL, vol. 2373. CEUR-WS.org (2019)

14. Dalmonte, T., Mazzullo, A., Ozaki, A.: Reasoning in non-normal modal description
logics. In: ARQNL@IJCAR, vol. 2095, pp. 28–45 (2022)

15. Dalmonte, T., Mazzullo, A., Ozaki, A., Troquard, N.: Non-normal modal descrip-
tion logics (extended version). CoRR abs/2307.12265 (2023). https://arxiv.org/
abs/2307.12265

16. Elgesem, D.: The modal logic of agency. Nord. J. Philos. Log. 2, 1–46 (1997)
17. Forrester, J.W.: Gentle murder, or the adverbial Samaritan. J. Philos. 81(4), 193–

197 (1984)
18. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional

Modal Logics: Theory and Applications. Elsevier, Amsterdam (2003)
19. Gasquet, O., Herzig, A.: From classical to normal modal logics. In: Wansing, H.

(eds.) Proof Theory of Modal Logic. Applied Logic Series, vol. 2, pp. 293–311.
Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-017-2798-3 15

20. Goble, L.: Prima facie norms, normative conflicts, and dilemmas. In: Handbook of
Deontic Logic and Normative Systems, vol. 1, pp. 241–351. College Publications,
London (2013)

21. Governatori, G., Rotolo, A.: On the axiomatisation of elgesem’s logic of agency and
ability. J. Philos. Log. 34(4), 403–431 (2005). https://doi.org/10.1007/s10992-004-
6368-1

22. Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb.
Log. 64(1), 99–138 (1999)

23. Kripke, S.A.: Semantical analysis of modal logic II: non-normal modal propositional
calculi. In: The Theory of Models, pp. 206–220. Elsevier (2014)

24. Lemmon, E.J., Scott, D.: An Introduction to Modal Logic. Blackwell, Hoboken
(1977)

25. Lewis, C.I., Langford, C.H., Lamprecht, P.: Symbolic Logic, vol. 170. Dover Pub-
lications, New York (1959)

https://arxiv.org/abs/2307.12265
https://arxiv.org/abs/2307.12265
https://doi.org/10.1007/978-94-017-2798-3_15
https://doi.org/10.1007/s10992-004-6368-1
https://doi.org/10.1007/s10992-004-6368-1

Non-Normal Modal Description Logics 321

26. Lismont, L., Mongin, P.: A non-minimal but very weak axiomatization of com-
mon belief. Artif. Intell. 70(1–2), 363–374 (1994). https://doi.org/10.1016/0004-
3702(94)90111-2

27. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)
28. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:

Declarative specification and verification of service choreographiess. ACM Trans.
Web 4(1), 3:1–3:62 (2010)

29. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67149-9

30. de Paiva, V.: Constructive description logics: what, why and how. In: Context
Representation and Reasoning, Riva del Garda (2006)

31. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1),
149–166 (2002)

32. Ross, A.: Imperatives and logic. Philos. Sci. 11(1), 30–46 (1944)
33. Scheele, S.: Model and proof theory of constructive ALC: constructive description

logics. Ph.D. thesis, University of Bamberg (2015)
34. Scott, D.: Advice on modal logic. In: Lambert, K. (eds.) Philosophical Problems in

Logic. Synthese Library, vol. 29, pp. 143–173. Springer, Dordrecht (1970). https://
doi.org/10.1007/978-94-010-3272-8 7

35. Segerberg, K.: An essay in classical modal logic. Ph.D. thesis, Stanford University
(1971)

36. Seylan, I., Erdur, R.C.: A tableau decision procedure for ALC with monotonic
modal operators and constant domains. ENTCS 231, 113–130 (2009)

37. Seylan, I., Jamroga, W.: Coalition description logic with individuals. ENTCS 262,
231–248 (2010)

38. Seylan, I., Jamroga, W.: Description logic for coalitions. In: AAMAS, pp. 425–432
(2009)

39. Troquard, N.: Reasoning about coalitional agency and ability in the logics of
“bringing-it-about”. Auton. Agents Multi-Agent Syst. 28(3), 381–407 (2014)

40. Vardi, M.Y.: On epistemic logic and logical omniscience. In: TARK, pp. 293–305
(1986)

41. Vardi, M.Y.: On the complexity of epistemic reasoning. In: LICS, pp. 243–252
(1989)

42. Von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)
43. Wolter, F., Zakharyaschev, M.: On the decidability of description logics with modal

operators. In: KR, pp. 512–523 (1998)

https://doi.org/10.1016/0004-3702(94)90111-2
https://doi.org/10.1016/0004-3702(94)90111-2
https://doi.org/10.1007/978-3-319-67149-9
https://doi.org/10.1007/978-94-010-3272-8_7
https://doi.org/10.1007/978-94-010-3272-8_7

First Steps Towards Taming Description
Logics with Strings

Stéphane Demri1(B) and Karin Quaas2(B)

1 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-Sur-Yvette, France
demri@lsv.ens-cachan.fr

2 Fakultät für Mathematik und Informatik, Universität Leipzig, Leipzig, Germany
quaas@informatik.uni-leipzig.de

Abstract. We consider the description logic ALCFP(DΣ) over the con-
crete domain DΣ “ (Σ∗, ă, “, (“w)wPΣ∗), where ă is the strict prefix
order over finite strings in Σ∗. Using an automata-based approach, we
show that the concept satisfiability problem w.r.t. general TBoxes for
ALCFP(DΣ) is ExpTime-complete for all finite alphabets Σ. As far as
we know, this is the first complexity result for an expressive description
logic with a nontrivial concrete domain on strings.

1 Introduction

Description Logics with Concrete Domains. A concrete domain is a relational
structure with a fixed nonempty domain and a family of relations. In this paper,
we are most and for all interested in the concrete domain (Σ∗, ă, “, (“w)wPΣ∗),
where Σ is a finite alphabet, ă is the strict prefix relation over Σ∗, “ is the usual
equality relation, and “w stands for equality with w. Other typical examples of
concrete domains (also playing a role herein) are (N, ă, “, (“z)zPN) and (Z, ă, “
, (“z)zPZ), that are the (nonnegative) integers with the usual order relation ă,
equality, and equality with z.

We aim to reason about concrete domains using description logics. A standard
way to do so is to enrich the semantical structures with values from a concrete
domain (see e.g. [5,14,22]); then, specific atomic concepts are used to express
constraints between these values. In description logics with concrete domains,
the domain elements are enriched with tuples of values coming from the con-
crete domain, see e.g. [5,7,30–33]. Constraints on concrete domains embedded
in concepts from description logics may quickly be expressive enough to encode
counting mechanisms, leading to the undecidability of the main reasoning tasks,
see e.g. [30]. However, nontrivial properties of concrete domains have been iden-
tified to get decidability, see e.g. [9,11,33] and also [14].

The second author is supported by the Deutsche Forschungsgemeinschaft (DFG),
project 504343613.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 322–337, 2023.
https://doi.org/10.1007/978-3-031-43619-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_23

First Steps Towards Taming Description Logics with Strings 323

String Theories. Description logics with concrete domains on strings are often
evoked in the literature, see e.g. [4,5,10,24], but such logics are seldom stud-
ied. There are a few exceptions, see e.g. [23] handling strings with equality and
inequality relations (only). In a way, string domains remain only a potentiality
for description logics with concrete domains, although it is believed that con-
crete domains on strings could be useful in ontologies. Reasoning about strings
is often required in program verification, and much effort has been dedicated
towards designing solvers that handle string theories, see e.g. [1,2,28]. An expla-
nation for the lack of works on description logics may be the complexity inherent
to string theories. For instance, first-order theory on strings with concatena-
tion is undecidable [37]. On the other hand, satisfiability of word equations is
in PSpace [20,34,36]. Herein, we are interested in the challenging question of
deciding reasoning tasks for description logics with a non-trivial string domain.

Our Motivations. What is particularly interesting about concrete domains on
strings is to observe that these domains are absolutely not captured by the recent
and sophisticated methods for determining decidability of description logics with
concrete domains, see e.g. [8,9,33,39]. Moreover, the string domain (Σ∗, ă, “
, (“w)wPΣ∗), in the following denoted by DΣ , is known to be difficult to handle,
see e.g. [13, Theorem 1]. This applies also to the concrete domain N (which
can be understood as the string domain DΣ with a singleton alphabet), but for
this one, the remarkable works [15,26,27] lead to the ExpTime-completeness
of reasoning tasks for the description logic ALCFP(Z). The concrete domain
N still requires complex developments, but at least it is known today how to
manage it, see e.g. [14,18,40]. Our motivation in this work is to investigate the
decidability/complexity status of ALCFP(DΣ), that is, for the nontrivial string
domain with the prefix order. To do so, we take advantage of recent results on
tree constraint automata on Z from [19] combined with an encoding of string
constraints by numerical constraints from [17]. These are only some first steps to
tame reasoning tasks for description logics with string domains, and of course,
other string domains are possibly interesting, see e.g. [35].

Our Contributions. In Sect. 2, we introduce the description logic ALCFP(DΣ),
similarly to the definition of ALCFP(Z) in [26,27]. In Sect. 3, we introduce the
class of tree constraint automata (TCA) accepting infinite finite-branching trees
with nodes labelled by letters from a finite alphabet and finite tuples of val-
ues in Σ∗. Our definition for TCA naturally extends the constraint automata
for words (see e.g. [16,21,25,38,40,43]) as well as a similar one for trees on
(Z, ă, “) from [19, Section 3.1]. In Sect. 4, the nonemptiness problem for TCA is
shown ExpTime-complete. Though ExpTime-hardness is a consequence of [19,
Section 3.1], the ExpTime-membership is by reduction to the nonemptiness
problem for TCA on N by lifting arguments from [17, Section 3] to the automata-
based setting.

In Sect. 5, we show how to reduce the concept satisfiability problem w.r.t. gen-
eral TBoxes for ALCFP(DΣ) (written TSAT(ALCFP(DΣ))) to the nonempti-
ness problem for TCA, following the automata-based approach developed in [42]
(see also [3,44]). To do so, in Sect. 2, we establish a simple form for ALCFP(DΣ)

324 S. Demri and K. Quaas

concepts from which TCA are defined, adapting the developments from [15,
Lemma 15] and [27, Lemma 5]. Though we use a standard approach in Sect. 5,
we need to carefully handle the constraints in the TCA in order to provide a
complexity analysis that leads to the optimal upper bound. The complexity of
ALCFP(DΣ) concepts requires sophisticated TCA constructions and involved
developments. As a result, we establish that TSAT(ALCFP(DΣ)) is ExpTime-
complete for all finite alphabets Σ. As far as we know, this is the first complexity
characterisation for a reasoning task related to a description logic with a non-
trivial string domain. As explained above, we reuse or adapt several results from
the literature (not always related to description logics), and we provide several
new insights to combine them adequately.

2 Description Logics with String Domains

Given a finite alphabet Σ, we consider the concrete domain DΣ
def“ (Σ∗, ă, “

, (“w)wPΣ∗), where ă is the strict prefix relation on Σ∗, “ is the equality on
Σ∗, and “w is a unary predicate stating the equality with the string w. In the
following, we use card(Σ) to denote the cardinality of Σ.

Let VAR “ {x, y, . . .} be a countably infinite set of variables (also called
registers in [27] and concrete features in the description logic literature). A term
t over VAR is an expression of the form Six, where x P VAR and Si is a (possibly
empty) sequence of i symbols ‘S’. A term Six should be understood as a variable
(that needs to be interpreted) but, later on, we will see that the prefix Si will
have a relational interpretation. We write TVAR to denote the set of all terms
over VAR. For all i P N, we write T�i

VAR to denote the subset of terms of the
form Sjx, where j � i. For instance, T�0

VAR “ VAR. An atomic constraint θ over
TVAR is an expression of one of the forms below:

t ă t′ t “ t′ “w (t) (also written t “ w),

where w P Σ∗ and t, t′ P TVAR. A constraint Θ is defined as a Boolean
combination of atomic constraints. Constraints are interpreted on valuations
v : TVAR → Σ∗ that assign elements from Σ∗ to the terms in TVAR, so that v
satisfies θ, written v |“ θ iff the interpretation of the terms in θ makes θ true in
Σ∗ in the usual way. Boolean connectives are interpreted as usual. A constraint
Θ is satisfiable def⇔ there is a valuation v : TVAR → Σ∗ such that v |“ Θ.

Below, we define the description logic ALCFP(DΣ) (over the concrete
domain DΣ) defined exactly as the description logic ALCFP(Zc) from [27] except
that Zc is replaced by DΣ . We deliberately use the notations from [27] whenever
possible and we provide a formal definition for ALCFP(DΣ) to be self-contained.
Let NC “ {A,B, . . .} and NR “ {r, s, . . .}, respectively, be countably infinite sets
of concept names and role names. We further assume that NR contains a sub-
family NF Ď NR of functional role names (a.k.a abstract features). A role path
P “ r1 · · · rn is a (possibly empty) word in N∗

R. We use |P | to denote the length
of P (possibly zero). The set of ALCFP(DΣ)-concepts is defined as follows.

C ::“ J |K| A | ¬C | C [C | C \ C | Dr.C | @r.C | DP.�Θ� | @P.�Θ�,

First Steps Towards Taming Description Logics with Strings 325

where A P NC, r P NR, P is a role path, Θ is a Boolean constraint in Σ∗ built
over terms of the form Sjx. Moreover, if Sjx occurs in Θ, then we require j � |P |.
An axiom is an expression of the form C Ď D, where C, D are ALCFP(DΣ)
concepts. A terminological box T (TBox, for short) is a finite set of axioms.

An interpretation is a tuple I “ (ΔI , ·I , v), where ΔI is a nonempty set (the
domain), v : ΔIˆVAR → Σ∗ (the valuation function), and ·I is an interpretation
function that assigns AI Ď ΔI to every concept name A P NC, and rI Ď ΔIˆΔI

to every role name r P NR. For all f P NF, we require {(a, a′), (a, a′′)} Ď fI

implies a′ “ a′′, that is, fI is a partial function. Given a role path P “ r1r2 . . . rn,
we define P I to be the set of all tuples (a0, . . . , an) P Δn`1 such that (ai´1, ai) P
rI
i for all i P [1, n]. Given an interpretation I and a tuple π “ (a0, a1, . . . , an) of

elements in ΔI , constraints Θ1, Θ2, and w P Σ∗, we define

– I, π |“ Six ă Sjy
def⇔ v(ai, x) ă v(aj , y),

– I, π |“ Six “ Sjy
def⇔ v(ai, x) “ v(aj , y); I, π |“ Six “ w

def⇔ v(ai, x) “ w,
– I, π |“ ¬Θ1

def⇔ not I, π |“ Θ1; I, π |“ Θ1 ∧Θ2
def⇔ I, π |“ Θ1 and I, π |“ Θ2,

– I, π |“ Θ1 ∨ Θ2
def⇔ I, π |“ Θ1 or I, π |“ Θ2.

We extend the interpretation function ·I to complex concepts as follows:

– JI def“ ΔI , KI def“ H, (¬C)I def“ ΔIzCI ,
– (C [D)I def“ CI ∩ DI ; (C \ D)I def“ CI ∪ DI ,
– (Dr.C)I def“ {a P ΔI | there is a′ P ΔI such that a′ P CI and (a, a′) P rI},
– (@r.C)I def“ {a P ΔI | for all a′ P ΔI , (a, a′) P rI implies a′ P CI},
– (DP.�Θ�)I def“ {a0 P ΔI | there exist a1, . . . , an P ΔI s.t. π “ (a0, a1, . . . , an) P

P I and I, π |“ Θ},
– (@P.�Θ�)I def“ {a0 P ΔI | for all a1, . . . , an P ΔI , π “ (a0, a1, . . . , an) P

P I implies I, π |“ Θ}.

An interpretation I is a model of a TBox T , written I |“ T , if CI Ď DI for all
axioms C Ď D in T . The concept satisfiability problem with respect to general
TBoxes, written TSAT(ALCFP(DΣ)), is defined as follows:

Input: An ALCFP(DΣ) concept C0, and a TBox T .
Question: Is there an interpretation I of T such that I |“ T and CI

0 �“ H?

For instance, Drr′.�S2x ă x�, {J Ď Drr′.�S2y ă x�, J Ď Drr′.�x ă S2x�, J Ď
Dr.J, J Ď Dr′.J} is a positive instance of TSAT(ALCFP(DΣ)).

Given an ALCFP(DΣ) concept C0 and a TBox T , we write sub(C0, T) to
denote the set of subconcepts obtained from the concepts in C0 and T . A concept
C is in simple form iff it is in negation normal form (negation occurs only in
constraints) and terms are only from T�1

VAR. For instance, Drr′.�S2y ă x� is not
in simple form but all the concepts in Dr.Dr′.Dε.�y ă x††�, J Ď @r.�x “ Sx†�
and J Ď @r′.�x† “ Sx††� are. Negation normal form is easy to get by standard
means as each concept constructor has its dual and the constraints Θ are closed
under negations. In Sect. 5, we reduce TSAT(ALCFP(DΣ)) to the nonemptiness
problem for tree constraint automata (defined in Sect. 3). For this, we assume

326 S. Demri and K. Quaas

that the input concept and the concepts occurring in the TBox are in simple
form. In Proposition 1 we state that this assumption is without loss of generality
and does not cause any computational harm.

Proposition 1. Let C0 be an ALCFP(DΣ) concept and T be a TBox. One can
construct in polynomial-time in the size of C0, T a concept C ′

0 and a finite TBox
T ′ in simple form such that C0, T is a positive instance of TSAT(ALCFP(DΣ))
iff C ′

0, T ′ is a positive instance of TSAT(ALCFP(DΣ)).

Proposition 1 is analogous to [15, Lemma 15] and [27, Lemma 5]. Though based
on similar principles, our proof is slightly simpler than the ones cited above,
because we demand less from concepts in simple form, as the forthcoming tree
constraint automata can handle such concepts (see Sect. 5).

Before defining tree constraint automata, we give a formal definition of trees.
Given d � 1, a labeled tree of degree d is a map t : dom(t) → Σ where Σ is some
(potentially infinite) alphabet and dom(t) is an infinite subset of [0, d´1]∗, that
is, if n · j P dom(t) for some n P [0, d´1]∗ and j P [0, d´1], then n P dom(t) and
n · i P dom(t) for all 0 � i ă j, too. The elements of dom(t) are called nodes.
The empty word ε is the root node of t. For every n P dom(t), the elements n · i
(with i P [0, d ´ 1]) are called the children nodes of n, and n is called the parent
node of n · i. We say that the tree t is a full d-ary tree if every node n has
exactly d children n ·0, . . . ,n · (d´1). Given a tree t and a node n in dom(t), an
infinite path in t starting from n is an infinite sequence n · j1 · j2 · j3 . . . , where
ji P [0, d ´ 1] and n · j1 . . . ji P dom(t) for all i � 1.

3 Tree Constraint Automata Manipulating Strings

In this section, we introduce the class of tree constraint automata that accept
sets of trees of the form t : [0, d ´ 1]∗ → (Σ ˆ (Σ∗)β) for some finite alphabet
Σ and some β � 1. Note that two alphabets are involved here: Σ is a finite
alphabet as usually in automata, Σ is inherited from DΣ and used to interpret
β variables at each position of the trees. The transition relation of such automata
states constraints between the β string values at a node and the string values
at its children nodes. To do so, we write TreeCons(β) to denote the Boolean
constraints built over the terms x1, . . . , xβ , Sx1, . . . , Sxβ . These constraints are
used to define the transition relation of such automata. We also write x′

i to denote
the term Sxi, and we shall use valuations v with profile {xi, x′

i | i P [1, β]} → Σ∗.
In the forthcoming definition, the acceptance condition on infinite branches is
a Büchi condition, but this can be easily extended to more general conditions.
Moreover, the definition is specific to the concrete domain Σ∗ but it can be easily
adapted to other concrete domains. A tree constraint automaton (TCA) on DΣ

is a tuple A “ (Q,Σ, d, β,Qin, δ, F), where

– Q is a finite set of locations; Σ is a finite alphabet,
– d � 1 is the (branching) degree of (the trees accepted by) A,
– β � 1 is the number of variables (a.k.a. registers) interpreted in Σ∗,
– Qin Ď Q is the set of initial locations,

First Steps Towards Taming Description Logics with Strings 327

...
...

...

a

b

b b

a

x1 aaba
x2 aa

x1 a
x2 aa

x1 aab
x2 aaa

x1 ε
x2 aa

x1 ε
x2 aa

...

q

qb

qb qb

qa

Θ0 Θ1

Θ0 Θ0

Θ0

Θ1

Fig. 1. On the left, the prefix of an infinite tree t with two string variables x1 and x2.
In the middle, the beginning of a run of A from Example 1 on t.

– δ is a finite subset of Q ˆ Σ ˆ (TreeCons(β) ˆ Q)d, the transition rela-
tion. That is, δ consists of tuples of the form (q, a, (Θ0, q0), . . . , (Θd´1, qd´1)),
where q, q0, . . . , qd´1 P Q, a P Σ, and Θ0, . . . , Θd´1 are constraints built over
x1, . . . , xβ , x′

1, . . . , x
′
β for the concrete domain DΣ .

– F Ď Q encodes the Büchi acceptance condition.

Let t : [0, d´1]∗ → (Σˆ(Σ∗)β) be an infinite full d-ary tree over Σˆ(Σ∗)β . A
run of A on t is a mapping ρ : [0, d´1]∗ → Q satisfying the following conditions:

– ρ(ε) P Qin;
– for every n P [0, d´1]∗ with t(n) “ (a,v) and ρ(n) “ q, t(n · i) “ (ai,vi) and

ρ(n · i) “ qi for all 0 � i ă d, there exists (q, a, (Θ0, q0), . . . , (Θd´1, qd´1)) P δ
and Σ∗ |“ Θi(v,vi) for all 0 � i ă d. Here, Σ∗ |“ Θi(v,vi) is short for
[x ← v, x′ ← vi] |“ Θi, where [x ← v, x′ ← vi] is a valuation v on {xj , x′

j |
j P [1, β]} with v(xj) “ v(j) and v(x′

j) “ vi(j) for all j P [1, β].

Note that string expressions labelling the transitions may state constraints
between string values at a node and its children nodes.

Suppose ρ is a run of A on t. Given an infinite path π “ j1 · j2 · j3 . . . in
ρ starting from the root, we define inf(ρ, π) to be the set of control states that
appear infinitely often in ρ(ε)ρ(j1)ρ(j1 · j2)ρ(j1 · j2 · j3) A run ρ is accepting
if for all paths π in ρ starting from ε, we have inf(ρ, π)∩ F �“ H. We write L(A)
to denote the set of trees t that admit an accepting run.

Example 1. Let A “ ({q, qa, qb}, {a, b}, 2, 2, {q}, δ, {qa, qb}), and δ containing
precisely (q, a, (Θ0, qb), (Θ1, qa)), (qa, a, (J, qa), (J, qa)), and (qb, b, (Θ0, qb), (Θ0,
qb)), where Θ0 “ (x′

1 ă x1) ∧ (x′
1 ă x2) ∧ (x′

2 “ x2) and Θ1 “ (x2 ă x′
2) ∧ (x2 ă

x′
1). In Fig. 1, we show the beginning of a run on the tree t on the left. Note that

this run cannot be extended to an infinite run of A on t: on the leftmost branch,
there is no value for x′

1 that satisfies the constraint x′
1 ă x1 for the value of x1

being ε, hence no transition from A can be taken. In fact, there cannot be any
infinite tree for which there exists some accepting run, and hence L(A) “ H.

As usual, the nonemptiness problem for TCA, written NE(TCA), takes as
input a TCA A “ (Q,Σ, d, β,Qin, δ, F) and asks whether L(A) is nonempty. We
aim to prove that this problem is ExpTime-complete. Unlike (plain) Büchi tree

328 S. Demri and K. Quaas

automata [42], the number of transitions in a tree constraint automaton is a
priori unbounded (TreeCons(β) is infinite) and the maximal size of a constraint
occurring in transitions is unbounded too. In particular, this means that the
number of transitions in δ, denoted by card(δ), is a priori unbounded, even if
Q and Σ are fixed. We write MCS(A) to denote the maximal size of a constraint
occurring in A. The complexity of the nonemptiness problem must therefore also
take into account these parameters.

Below, we use TCA on the concrete domain (N, ă, “, (“n)nPN). These are
defined as for DΣ , but with Σ being a singleton alphabet. Moreover, we assume
that the natural numbers are encoded in binary. As a consequence of [19,
Section 4], the nonemptiness problem for TCA on N is ExpTime-complete and
the purpose of the next section is to show how to generalise this result for any
concrete domain DΣ (with a non-singleton alphabet Σ).

Our tree constraint automata differ from Presburger Büchi tree automata
defined in [12,41] for which, in the runs, arithmetical expressions are constraints
between the numbers of children labelled by different locations. Herein, the string
expressions state constraints between string values (possibly at different nodes).

4 Nonemptiness Problem for TCA on DΣ

To reduce the nonemptiness problem for TCA on DΣ to the nonemptiness prob-
lem for TCA on the concrete domain (N, ă, “, (“n)nPN), we show how to take
advantage of [17, Lemma 6] dedicated to the transformation of prefix constraints
into Boolean combinations of atomic constraints on N. For the sake of being self-
contained, we recall below a few definitions useful in Sect. 4.2.

4.1 From String Constraints to Natural Number Constraints

Given a string w P Σ∗, we write |w| to denote its length. Given w,w′ P Σ∗,
we write clen(w,w′) to denote the length of the longest common prefix between
w and w′. We view the arguments of clen(·) as a set, so that clen(w,w′) and
clen(w′,w) are identical. More precisely, there are w0, w1, and w′

1 such that
w “ w0 · w1, w′ “ w0 · w′

1 and, w1 and w′
1 cannot start by the same first

letter, if any. We set clen(w,w′) def“ |w0|. For example, clen(aba, abbbab) “ 2. So,
clen(w,w) “ |w|, and w is a strict prefix of w′ iff clen(w,w) “ clen(w,w′) and
clen(w,w) ă clen(w′,w′). Here are simple properties, see e.g. [17, Proposition
2], that play a special role in the sequel (assuming card(Σ) “ k).

(I) For all w,w′ P Σ∗, |w| � clen(w,w′).
(II) For all w0,w1, . . . ,wk P Σ∗ such that clen(w0,w1) “ · · · “ clen(w0,wk)

and for all i P [0, k], clen(w0,w1) ă |wi|, there are i �“ j P [1, k] such that
clen(w0,w1) ă clen(wi,wj).

(III) For all w0,w1,w2 P Σ∗, clen(w0,w1) ă clen(w1,w2) implies
clen(w0,w1) “ clen(w0,w2).

First Steps Towards Taming Description Logics with Strings 329

Let VAR′ be a finite subset of VAR. A string valuation s with respect to VAR′

is a map s : VAR′ → Σ∗. A counter valuation c with respect to VAR′ is defined
as a map c : {clen(x, x′) : x, x′ P VAR′} → N, where expressions of the form
clen(x, x′) are understood as “variables” interpreted on N (we also adopt a set-
theoretical reading: clen(x, x′) and clen(x′, x) are considered as identical). In
forthcoming Sect. 4.2, we adopt a similar notation. We say that a counter valu-
ation c is string-compatible (with respect to VAR′) if c satisfies the conjunction
of the three constraints below in the concrete domain (N, ă, “, (“n)nPN).

– Formula ψI(VAR′) is related to (I):
∧

x,x′PVAR′(clen(x, x) � clen(x, x′)).
– Formula ψII(VAR′) is related to (II):

∧

x0,...,xkPVAR′((
∧

iP[0,k]
(clen(x0, x1) ă clen(xi, xi))) ∧ clen(x0, x1) “

· · · “ clen(x0, xk)) ⇒ (
∨

i�“jP[1,k]
(clen(x0, x1) ă clen(xi, xj))).

– Formula ψIII(VAR′) is related to (III):
∧

x,x′,x′′PVAR′(clen(x, x
′) ă clen(x′, x′′)) ⇒ (clen(x, x′) “ clen(x, x′′)).

The size of the above conjunction is in O(card(VAR′)k`2), i.e. polynomial in
card(VAR′), assuming Σ is fixed. If X Ď VAR′ and c is string-compatible w.r.t.
VAR′, the restriction of c to X is also string-compatible with respect to X.

Let X be a nonempty subset of VAR′, s be a string valuation and c be a
counter valuation, both with respect to VAR′. We say that c agrees with s on
X (written c ≈X s) def⇔ c(clen(x, x′)) “ clen(s(x), s(x′)) for all x, x′ P X (‘clen’
is overloaded here, used to define natural number variables and a function on
pairs of strings but we hope this does not lead to confusions). So, if X ′ Ď X
and c ≈X s, then c ≈X′ s too. Given a string valuation s, there is a counter
valuation c such that c ≈X s [17, Lemma 5] and c can be defined obviously by:
c(clen(x, x′)) def“ clen(s(x), s(x′)) for all x, x′ P X.

However, there are counter valuations c for which there exists no string val-
uation s with c ≈X s (cf. Example 2 below). We state below the main property
relating string constraints on DΣ and constraints on (N, ă, “, (“n)nPN). Namely,
for every string-compatible counter valuation c for which the restriction to a sub-
set of variables agrees with some string valuation s, it is possible to extend s to
all the variables so that c agrees with it.

Proposition 2 [17, Lemma 6]. Let X �“ H and Y be finite and disjoint sets of
string variables, c be a string-compatible counter valuation with respect to X �Y
and s : Y → Σ∗ be such that c ≈Y s. Then, there is a string valuation s′ that is
a conservative extension of s, such that c ≈X�Y s′.

Example 2. Let VAR′ “ {x1, x2, x′
1, x

′
2} and let s(x1) “ aaba, s(x2) “ aa, s(x′

1) “
aab, and s(x′

2) “ aaa. This string valuation satisfies the constraint x2 ă x′
2 ∧ x2 ă

330 S. Demri and K. Quaas

clen x1 x2 x1 x2

x1 4 2 3 2
x2 2 2 2
x1 3 2
x2 3

clen x1 x2 x1 x2

x1 4 2 3 4
x2 2 2 2
x1 3 2
x2 3

clen x1 x2 x1 x2

x1 4 2 2 2
x2 2 2 2
x1 3 2
x2 3

clen x1 x2 x1 x2

x1 4 1 3 2
x2 2 2 2
x1 3 2
x2 3

c cI cII cIII

Fig. 2. Counter valuations. (Color figure online)

x′
1. In Fig. 2, we show the counter valuation c with respect to VAR′ induced by

s; for instance, c(clen(x1, x′
2)) “ 2. Note that c satisfies the constraint over

N corresponding to the above string constraint; for instance, clen(x2, x2) ă
clen(x′

2, x
′
2) ∧ clen(x2, x2) “ clen(x2, x′

2) holds true (the yellow cells). The
other three tables show three counter valuations that are not string-compatible:

– ă cI(clen(x
′
2, x

′
2)) ă cI(clen(x1, x

′
2)) violates constraint ψI(VAR′);

– cII(clen(x
′
2, x

′
1)) “ cII(clen(x

′
2, x1)) “ 2, cII(clen(x′

2, x
′
2)) ą 2,

cII(clen(x1, x1)) ą 2, cII(clen(x
′
1, x

′
1)) ą 2, cII(clen(x

′
1, x

′
2)) “ cII(clen(x1, x

′
1))

violate the constraint ψII(VAR′), assuming card(Σ) “ 2.
– cIII(clen(x1, x2)) ă cIII(clen(x2, x

′
2)) and cIII(clen(x1, x2)) ă cIII(clen(x1, x

′
2)) vio-

late constraint ψIII(VAR′).

Even though each of these counter valuations satisfies the constraint correspond-
ing to the string constraint Θ1, there does not exist any agreeing string valua-
tion. Proposition 2 shows that if a counter valuation is string-compatible, then
an agreeing string valuation exists.

4.2 Reducing TCA on Strings to TCA on Natural Numbers

Let A “ (Q,Σ, d, β,Qin, δ, F) be a TCA on the concrete domain DΣ for
which we wish to check the nonemptiness of L(A). Below, we define a TCA
A

′ “ (Q,Σ, d, β′, Qin, δ
′, F) on the concrete domain (N, ă, “, (“n)nPN) such that

L(A) is nonempty iff L(A′) is nonempty. It is worth noting that A and A
′ share

the same set of locations, initial locations and the same acceptance condition.
Moreover, the finite alphabet Σ and the degree d are identical too. The differ-
ences are related to the number of variables β′ as well as the definition of the
transition relation δ′. Since the two TCA are built over distinct concrete domains
(DΣ versus N), the transition relations necessarily differ. As far as the number
of variables is concerned, we lift what is done in Sect. 4.1 to all the string values
occurring in trees accepted by the input TCA A.

– Assume that the constant strings occurring in constraints in δ are w1, . . . ,wα

for some α � 0. We write VARA′ to denote the expressions in {xi | i P
[1, β ` α]} ∪ {S´1xi | i P [1, β ` α]} (not yet variables in A

′). Here, S´1x
refers to a value for the parent node, if any. The variables in A

′ are of the
form clen(t1, t2) where t1, t2 P VARA′ (ad-hoc notation). Consequently,

First Steps Towards Taming Description Logics with Strings 331

β′ “ 4(β `α)2 (polynomial in the size of A). Each string wi from A is implic-
itly associated to an expression xβ`i in VARA′ . The variables clen(t1, t2)’s
with {t1, t2} ∩ {xβ`i} �“ H are intended to specify the length of the longest
common prefix between wi and another value.

– The definition of δ′ reflects that string-compatible counter valuations satisfy
(I)–(III) above, as well as the way we manage the values between the parent
node and its children nodes. Given (q, a, (Θ0, q0), . . . , (Θd´1, qd´1)) in δ, there
is a corresponding transition (q, a, (Θ′

0, q0), . . . , (Θ
′
d´1, qd´1)) in δ′ (leading to

card(δ′) “ card(δ) by construction). What remains to be done is to define
each Θ′

� from Θ�. Θ′
� is a conjunction made of three conjuncts:

• The 1st conjunct (independent of Θ�) stating that the counter valuations
are string-compatible is equal to ψI(VARA′)∧ψII(VARA′)∧ψIII(VARA′),
see Sect. 4.1. Its size is in O(β ` α)k`2) with card(Σ) “ k.

• The 2nd conjunct has a double purpose: to define constraints between a
node and its parent node (if any), and to guarantee that the expressions
of the form S´1xβ`i and xβ`i can be interpreted as the string wi. Here is
the 2nd conjunct (also independent of Θ�):

(∧

i,jP[1,β`α]

clen(S´1xi, S
´1xj)′ “ clen(xi, xj)

)
∧

(∧

i,jP[1,α]

clen(xβ`i, xβ`j) “ clen(wi,wj)
)
.

Observe that in the equalities in the second conjunct above, the left-hand
side is a variable in A

′ (using our ad-hoc notation) whereas the right-hand
side is a value in N (clearly bounded by the length of the longest string
in A). The size of this conjunct is in O((β ` α)2 ` α2 ˆ max |wi|).

• The 3rd conjunct is equal to t(Θ�) where t is a translation map that
is homomorphic for Boolean connectives. The translation of the atomic
constraints is defined in Fig. 3, and it takes into account how the values
are constrained between a parent node and its child node. For instance,
if in some accepted tree t of A, t(n) “ (a,z) and t(n ·) “ (a�,z�), the
variable clen(xi, S

´1xj)′ occuring in Θ′
� refers to the length of the longest

common prefix between the value of xi at n · (i.e. z�(i)) and the value
of xj at the parent node of n · (i.e. z(j)). The size of the 3rd conjunct
t(Θ�) is linear in the size of Θ�.

Example 3. Consider A from Example 1. The automaton A
′ obtained from the

above construction is of the form ({q, qa, qb}, {a, b}, 2, 16, {q}, δ′, {qa, qb}), where
δ′ contains the transitions (q, a, (Θ′

0, qb), (Θ
′
1, qa)), (qa, a, (Θ′, qa), (Θ′, qa)), and

(qb, b, (Θ′
0, qb), (Θ

′
0, qb)), with Θ′

0, Θ
′
1, and Θ′ obtained from the corresponding

string constraints in A as described above. Θ′
1 consists (amongst others) of the

constraints clen(S´1x2, S´1x2)′ “ clen(S´1x2, x1)′ ∧ clen(S´1x2, S´1x2)′ ă
clen(x1, x1)′ (the translation of the string constraint x2 ă x′

1). By the 2nd
conjunct in the definition of δ′, we have clen(x2, x2) “ clen(S´1x2, S´1x2)′.

332 S. Demri and K. Quaas

Atomic Translation
clen clen clen clen

clen clen clen
clen clen clen

clen clen
clen clen

clen clen clen
clen clen clen

clen clen
clen clen

clen clen clen clen
clen clen clen

Fig. 3. Translation of atomic constraints.

The correctness of the construction of A′ is best illustrated by the statement
below, which can be viewed as an automata-based counterpart of [17, Lemma 10]
and requires a lengthy proof. It relies on Proposition 2 when new string values
need to be considered.

Lemma 1. L(A) �“ H iff L(A′) �“ H.

We are ready to present our main result about the complexity of NE(TCA(DΣ)).

Theorem 1. For every finite alphabet Σ, NE(TCA(DΣ)) is ExpTime-
complete.

ExpTime-hardness of NE(TCA(DΣ)) is due to ExpTime-hardness of the prob-
lem NE(TCA(N)) established in [19, Section 4.1]. To prove ExpTime-member-
ship, given A

′ (on the concrete domain N) built from A (on the concrete domain
DΣ), we know from [19, Lemma 10] that, the nonemptiness of L(A′) can be
solved in time

O
(
R1

(
card(Q) ˆ card(δ′) ˆ MCS(A′) ˆ card(Σ) ˆ R2(β′)

)R2(β
′)ˆR3(d)

)

for some polynomials R1, R2 and R3, where MCS(A′) denotes the maximal size
of a constraint occurring in A

′. Note that the result is stated for the concrete
domain Z in [19, Lemma 10], but it applies to N too (there is a simple way to
enforce xi � 0 everywhere). We adopt a similar notation for A and from the
above developments, MCS(A′) is in O((β `MCS(A)ˆ card(δ)ˆ d)k`3) as α can be
shown to be bounded above by MCS(A) ˆ card(δ) ˆ d. Since card(δ′) “ card(δ),
β′ “ 4(β ` α)2, nonemptiness of L(A) can be solved in time O

(
R1

(
card(Q) ˆ

card(δ) ˆ (β ` MCS(A) ˆ card(δ) ˆ d)k`3 ˆ card(Σ) ˆ R2(β†)
)R2(β

†)ˆR3(d)
)

with

β† “ 4(β ` MCS(A) ˆ card(δ) ˆ d)2. Hence, NE(TCA(DΣ)) is in ExpTime; this
holds even if Σ is part of the input.

First Steps Towards Taming Description Logics with Strings 333

5 Automata-Based Approach for ALCFP(DΣ)

Below, we reduce TSAT(ALCFP(DΣ)) to NE(TCA): given an ALCFP(DΣ)
concept C0 and a TBox T , we construct a TCA A on DΣ such that C0, T is
a positive instance of TSAT(ALCFP(DΣ)) iff L(A) �“ H. The material below
follows the arguments from [19, Section 5.2] but for DΣ . Obviously, the tree
interpretation property of ALCFP(DΣ) (cf. the proof of Proposition 1) is of use
in the reduction. Thanks to Proposition 1, we can assume that all input concepts
are in negation normal form and terms are restricted to those in T�1

VAR, that is,
the role paths are restricted to single role names r and to ε. This simplifies the
reduction; for instance, @ε.�Θ� is logically equivalent to Dε.�Θ�, and Θ contains
solely variables that state constraints only for the current individual. At this
point, it is worth noting that atomic concepts of the form DP.�Θ� or @P.�Θ� can
be expressed by constraints in TCA, unlike the automata-based approach used
in [18,26,27] that involves abstractions and finite alphabets only.

Since interpretations for ALCFP(DΣ) concepts provide a semantics for sev-
eral role names, we use a standard trick and reserve directions in [0, d´1] for each
role name r occurring in the instance of TSAT(ALCFP(DΣ)). This is needed
because in the trees t : [0, d ´ 1]∗ → Σ ˆ (Σ∗)β , the (implicit) edges are not
labelled. Another way to proceed would be to add a role name to each location
of the TCA in order to remember how the node in the tree [0, d ´ 1]∗ is accessed
to, which is a technique used in [3, Section 3.2]. We also have to handle the
determinism of the binary relations rI with r P NF.

So let C0 be an ALCFP(DΣ) concept and let T be {C1 Ď D1, . . . , C� Ď D�},
with the above-mentioned syntactic restrictions. Given X Ď sub(C0, T), we say
that X is propositionally T -consistent iff the conditions below hold.

– There is no concept name A such that {A,¬A} Ď X.
– X does not contain K and if J P sub(C0, T), then J P X.
– If E1 \ E2 P X, then {E1, E2} ∩ X �“ H. if E1 [E2 P X, then {E1, E2} Ď X.
– For all k P [1,], if Ck P X, then Dk P X.

Propositionally T -consistent sets correspond to Hintikka sets from [3, Section 3.2]
and their introduction is common for developing an automata-based approach
for (description) logics. There is no clause for the concept constructor negation
because the concepts are in simple form and negation occurs only in front of
concept names or within constraints Θ.

Given r P NR, we define subDr(C0, T) def“ {Dr.D | Dr.D P sub(C0, T)}
and subDcstr(C0, T) def“ {Dr.�Θ� | Dr.�Θ� P sub(C0, T)}. The superscript ‘cst’
in Dcst is intended to remind us that the respective sets are made of atomic
concepts involving constraints in the string domain (a.k.a. predicate restric-
tions). We similarly define sub@r(C0, T) and sub@cstr(C0, T). We further define
NF(C0, T) def“ {r P NF | subDr(C0, T) ∪ subDcstr(C0, T) �“ H} and DF(C0, T) def“
{Dr.�Θ� P sub(C0, T) | r �P NF(C0, T)} ∪ {Dr.D P sub(C0, T) | r �P NF(C0, T)}.
So NF(C0, T) contains functional role names r related to predicate or existential
restrictions from sub(C0, T) involving r, DF(C0, T) contains predicate or exis-
tential restrictions from sub(C0, T) involving non-functional role names. This

First Steps Towards Taming Description Logics with Strings 335

Unlike the previous cases, if r P NF, then @r.�Θ′� and Dr.�Θ′� are
logically equivalent, assuming that there is one rI-successor.

We can show that our construction is correct.

Lemma 2. C0, T is a positive instance of TSAT(ALCFP(DΣ)) iff L(A) �“ H.

Despite the involved construction of A due to the expressiveness of the logic
ALCFP(DΣ), the proof follows a standard pattern. If C0, T is a positive instance,
then we can extract a tree interpretation that can be associated to a tree accepted
by A. Conversely, any tree accepted by A can be turned into a tree interpretation
witnessing the satisfaction of C0, T . The result below is the main technical result
in this paper, whose proof combines the previous key lemmas.

Theorem 2. For every finite Σ, TSAT(ALCFP(DΣ)) is ExpTime-complete.

Due to our complexity analysis, the ExpTime-membership is preserved if the
alphabet Σ is part of the input (and not a parameter as in TSAT(ALCFP(DΣ))).

Concluding Remarks. We have shown that the nonemptiness problem for
tree constraint automata on DΣ is ExpTime-complete (Theorem 1) and the
concept satisfiability problem w.r.t. general TBoxes for ALCFP(DΣ) is Exp-
Time-complete too (Theorem 2). The suite of key steps is schematised below.

TSAT(ALCFP(DΣ)) TSAT(ALCFP(DΣ))
in simple form

NE(TCA(DΣ)) NE(TCA(N))
Prop. 1 Lemma 2 Lemma 1

These are only first steps to handle more concrete domains based on strings and
on richer description logics. Typically, though we believe we could generalise the
developments herein to mix numerical constraints and prefix constraints or to
admit an infinite alphabet (based on developments in [17]), it is unclear how
to handle DΣ within logics from [29] (see also [27, Section 4.1]). Similarly, it is
open how to handle the string domain DΣ with regularity constraints, to name
another possibility for future work.

References

1. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_10

2. Abdulla, P., et al.: Efficient handling of string-number conversion. In: PLDI 2020,
pp. 943–957. ACM (2020)

3. Baader, F.: Description logics. In: Tessaris, S., et al. (eds.) Reasoning Web 2009.
LNCS, vol. 5689, pp. 1–39. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03754-2_1

4. Baader, F., Calvanese, D., Guinness, D.M., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-642-03754-2_1
https://doi.org/10.1007/978-3-642-03754-2_1

336 S. Demri and K. Quaas

5. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: IJCAI 1991, pp. 452–457 (1991)

6. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for descrip-
tion logics. Fund. Inform. 57(2–4), 247–279 (2003)

7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

8. Baader, F., Rydval, J.: An algebraic view on p-admissible concrete domains for
lightweight description logics. In: Faber, W., Friedrich, G., Gebser, M., Morak, M.
(eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 194–209. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75775-5_14

9. Baader, F., Rydval, J.: Using model theory to find decidable and tractable descrip-
tion logics with concrete domains. JAR 66(3), 357–407 (2022)

10. Baader, F., Sattler, U.: Description logics with concrete domains and aggregation.
In: ECAI 1998, pp. 336–340. Wiley (1998)

11. Balbiani, P., Jean-François, C.: Computational complexity of propositional linear
temporal logics based on qualitative spatial or temporal reasoning. In: Armando,
A. (ed.) FroCoS 2002. LNCS (LNAI), vol. 2309, pp. 162–176. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45988-X_13

12. Bednarczyk, B., Fiuk, O.: Presburger Büchi tree automata with applications to log-
ics with expressive counting. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B.
(eds.) WoLLIC 2022. LNCS, vol. 13468, pp. 295–308. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15298-6_19

13. Carapelle, C., Feng, S., Kartzow, A., Lohrey, M.: Satisfiability of ECTL∗ with local
tree constraints. Theory Comput. Syst. 61(2), 689–720 (2017)

14. Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of ECTL∗ with constraints.
J. Comput. Syst. Sci. 82(5), 826–855 (2016)

15. Carapelle, C., Turhan, A.: Description logics reasoning w.r.t. general TBoxes is
decidable for concrete domains with the EHD-property. In: ECAI 2016, vol. 285,
pp. 1440–1448. IOS Press (2016)

16. Čerāns, K.: Deciding properties of integral relational automata. In: Abiteboul, S.,
Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58201-0_56

17. Demri, S., Deters, M.: Temporal logics on strings with prefix relation. JLC 26,
989–1017 (2016)

18. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. I &
C 205(3), 380–415 (2007)

19. Demri, S., Quaas, K.: Constraint automata on infinite data trees: from
CTL(Z)/CTL*(Z) to decision procedures. CoRR, abs/2302.05327 (2023)

20. Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. I & C 202, 105–140 (2005)

21. Gascon, R.: An automata-based approach for CTL* with constraints. Electron.
Notes Theor. Comput. Sci. 239, 193–211 (2009)

22. Geatti, L., Gianola, A., Gigante, N.: Linear temporal logic modulo theories over
finite traces. In: IJCAI 2022, pp. 2641–2647. ijcai.org (2022)

23. Haarslev, V., Möller, R.: Description logic systems with concrete domains: appli-
cations for the semantic web. In: KRDB 2003. CEUR Workshop Proceedings, vol.
79. CEUR-WS.org (2003)

24. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete
domain in the framework of resolution. In: ECAI 2004, pp. 353–357. IOS Press
(2004)

https://doi.org/10.1007/978-3-030-75775-5_14
https://doi.org/10.1007/3-540-45988-X_13
https://doi.org/10.1007/978-3-031-15298-6_19
https://doi.org/10.1007/3-540-58201-0_56

First Steps Towards Taming Description Logics with Strings 337

25. Kartzow, A., Weidner, T.: Model checking constraint LTL over trees. CoRR,
abs/1504.06105 (2015)

26. Labai, N.: Automata-based reasoning for decidable logics with data values. Ph.D.
thesis, TU Wien (2021)

27. Labai, N., Ortiz, M., Simkus, M.: An Exptime Upper Bound for ALC with integers.
In: KR 2020, pp. 425–436. Morgan Kaufman (2020)

28. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9_43

29. Lutz, C.: NExpTime-complete description logics with concrete domains. In: Goré,
R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 45–60.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_5

30. Lutz, C.: The complexity of description logics with concrete domains. Ph.D. thesis,
RWTH, Aachen (2002)

31. Lutz, C.: Description logics with concrete domains–a survey. In: Advances in Modal
Logics, vol. 4, pp. 265–296. King’s College Publications (2003)

32. Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM
ToCL 5(4), 669–705 (2004)

33. Lutz, C., Milicić, M.: A tableau algorithm for description logics with concrete
domains and general Tboxes. JAR 38(1–3), 227–259 (2007)

34. Makanin, G.: The problem of solvability of equations in a free semigroup (English
translation). Math. USSR-Sbornik 32(2), 129–198 (1977)

35. Peteler, D., Quaas, K.: Deciding emptiness for constraint automata on strings with
the prefix and suffix order. In: MFCS 2022. LIPIcs, vol. 241, pp. 76:1–76:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2022)

36. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
Assoc. Comput. Mach. 51(3), 483–496 (2004)

37. Quine, W.: Concatenation as a basis for arithmetic. J. Symb. Log. 11(4), 105–114
(1946)

38. Revesz, P.: Introduction to Constraint Databases. Springer, New York (2002).
https://doi.org/10.1007/b97430

39. Rydval, J.: Using model theory to find decidable and tractable description logics
with concrete domains. Ph.D. thesis, Dresden University (2022)

40. Segoufin, L., Toruńczyk, S.: Automata based verification over linearly ordered data
domains. In: STACS 2011, pp. 81–92 (2011)

41. Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Logic and Automata:
History and Perspectives. Texts in Logic and Games, vol. 2, pp. 575–612. Amster-
dam University Press (2008)

42. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs.
J. Comput. Syst. Sci. 32, 183–221 (1986)

43. Weidner, T.: Probabilistic logic, probabilistic regular expressions, and constraint
temporal logic. Ph.D. thesis, University of Leipzig (2016)

44. Wolper, P.: On the relation of programs and computations to models of temporal
logic. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specifi-
cation. LNCS, vol. 398, pp. 75–123. Springer, Heidelberg (1989). https://doi.org/
10.1007/3-540-51803-7_23

https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/3-540-45744-5_5
https://doi.org/10.1007/b97430
https://doi.org/10.1007/3-540-51803-7_23
https://doi.org/10.1007/3-540-51803-7_23

Merge, Explain, Iterate: A Combination
of MHS and MXP in an ABox Abduction

Solver

Martin Homola(B) , Júlia Pukancová, Janka Boborová, and Iveta Balintová

Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia
{homola,pukancova}@fmph.uniba.sk, boborova3@uniba.sk

Abstract. Minimal Hitting Set (MHS) is a well-known and complete
method to compute all minimal explanations of an ABox abduction
problem in Description Logics (DL). MHS is NP-complete and gener-
ally recognized as inefficient. We leverage on MergeXplain (MXP) which
is fast but incomplete – by combining it with MHS in a hybrid algorithm
MHS-MXP to regain completeness. In this paper, we describe: (a) the
underlying theory to establish the completeness of MHS-MXP and show
its relevant properties; (b) a class of inputs on which MHS-MXP has the
greatest advantage; (c) an experimental implementation; (d) an empirical
evaluation on both favourable and unfavourable inputs.

Keywords: Abduction · Description logics · Ontologies

1 Introduction

ABox abduction [7] assumes a DL knowledge base (KB) K and an extensional
observation O (in form of an ABox assertion). Explanations (also extensional)
are sets of ABox assertions E such that K together with E entails O.

The MHS algorithm [15] is the classic method to find all minimal explana-
tions of an ABox abduction problem. MHS systematically searches through all
possible explanations, from the smallest (in terms of cardinality) towards the
largest – thus it ensures completeness. It has a good chance to discover smaller
explanations quite quickly, however if explanations of interest are larger, it is
rather inefficient. Notably, the MHS problem itself is NP-complete [11] and con-
sistency checking of DL KBs repeatedly called by MHS depends on the particular
DL, but for many DLs it may be exponential or worse.

Alternatively QuickXplain (QXP) [10] and more recently its extension Merge-
Xplain [17] employ a divide and conquer strategy to find one (QXP) or even
multiple explanations (MXP) efficiently. But they are incomplete, i.e., there is
no warranty that all explanations will be found. However, when MXP is run
repeatedly, on slightly modified inputs, it divides the search space differently
and it may return a different set of explanations. In fact, it is possible to regain
completeness by using MHS on the background to track the search space explo-
ration. We formally develop such a combined algorithm, that we call MHS-MXP.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 338–352, 2023.
https://doi.org/10.1007/978-3-031-43619-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_24&domain=pdf
http://orcid.org/0000-0001-6384-9771
https://doi.org/10.1007/978-3-031-43619-2_24

Merge, Explain, Iterate 339

We study its relevant properties that allow us not only to establish its correct-
ness but also to characterize inputs on which it may have an advantage over
MHS: inputs with smaller explanations or with smaller number of explanations.

Our experimental implementation allows to switch between both algorithms.
It integrates the JFact reasoner as a black box. MHS (and thus also MHS-MXP)
requires not only to verify KB consistency but also to extract relevant informa-
tion about the model. Not all DL reasoners can be used for this, but tableau
reasoners such as JFact internally construct a sufficient part of the model –
albeit it is not usual to output it. We were able to employ experimental features
of OWL API to extract relevant model information from JFact. We then con-
ducted an empirical evaluation on a favourable but also on an unfavourable class
of inputs. MHS-MXP did not perform as well as MHS on the unfavourable class,
however on the favourable class it outperformed MHS to a much larger extent.

Compared to other promising approaches in ABox abduction [4–6,13], the
main advantage of our work is that as a black-box approach and thus it may be
paired with any DL reasoner (if it allows for model extraction). Tableau-based
reasoners such as Pellet and JFact can handle DL expressivity up to SROIQ [9],
i.e. up to OWL 2 [3]. Indeed, the other approaches may be more tractable, but
they are limited in DL expressivity. Du et al. [5] rely on a translation to Prolog
and is complete up to Horn-SHIQ; Du et al. [6] focus on strong tractability
for very large ABoxes with a limitation to first-order rewritable TBoxes. Both
Del-Pinto and Schmidt [4] and Koopmann et al. [13] support DL expressivity up
to ALC. In theory, MHS-MXP is not limited to the DL setting. It can be applied
in any case in which MHS is applicable.

2 Preliminaries

We assume familiarity with the basics of DL [1,2], including vocabulary consist-
ing of individuals NI = {a, b, . . .}, roles NR = {P,Q,R, . . .}, and atomic concepts
NC = {A,B, . . .}; complex concepts C,D, . . . built by constructors (e.g. ¬, �, �,
∃, ∀, in case of ALC [16]); a KB K = T ∪ A composed of a TBox T (with sub-
sumption axioms of the form C � D) and an ABox A (with concept assertions
of the form C(a) and (possibly negated [9]) role assertions of the form R(a, b)
and ¬R(a, b)). We also remind about the semantics that relies on models M of a
KB K, that satisfy all axioms or assertions φ in K (M |= φ); and the reasoning
tasks of checking the consistency of K (if it has a model) and entailment (K |= φ
if M |= φ for all its models M).

In ABox abduction [7], we are given a KB K and an observation O consisting
of an ABox assertion. The task is to find an explanation E , again, consisting of
ABox assertions, such that K ∪ E |= O. Explanations are drawn from some set
of abducibles Abd.

Definition 1 (ABox Abduction Problem). Let Abd be a finite set of ABox
assertions. An ABox abduction problem is a pair P = (K, O) such that K is a
knowledge base in DL and O is an ABox assertion. An explanation of P (on
Abd) is any finite set of ABox assertions E ⊆ Abd such that K ∪ E |= O.

340 M. Homola et al.

We limit the explanations to atomic and negated atomic concept and role
assertions; hence Abd ⊆ {A(a),¬A(a) | A ∈ NC, a ∈ NI} ∪ {R(a, b),¬R(a, b) |
R ∈ NR, a, b ∈ NI}. Note that we do not limit the observations, apart from
allowing only one (possibly complex) ABox assertion.

According to Elsenbroich et al. [7] it is reasonable to require from each expla-
nation E of P = (K, O) to be: (a) consistent (K ∪ E is consistent); (b) relevant
(E
|= O); and (c) explanatory (K
|= O). Explanations that satisfy these three
conditions will be called desired. In addition, in order to avoid excess hypothe-
sizing, minimality is required.

Definition 2 (Minimality). Assume an ABox abduction problem P = (K, O).
Given explanations E and E ′ of P, E is (syntactically) smaller than E ′ if
E ⊆ E ′.An explanation E of P is (syntactically) minimal if there is no other
explanation E ′ of P that is smaller than E.

3 Computing Explanations

We first review the complete MHS algorithm and then the faster but approxi-
mative MXP algorithm. The hybrid approach that tries to combine “the best of
both worlds” is then introduced in Sect. 4.

3.1 Minimal Hitting Set

Adopting the well-known result of Reiter [15], computing all minimal explana-
tions of (K, O) reduces to finding all minimal hitting sets of the set of models of
K∪{¬O} in the following sense. Also, if some of the models contain no abducibles
then there are no explanations.

Observation 1. The minimal explanations of (K, O) on Abd directly corre-
spond to the minimal hitting sets of {Abd(M) | M |= K ∪ {¬O}} where
Abd(M) = {φ ∈ Abd | M
|= φ}.

Observation 2. If Abd(M) = ∅ for some M |= K ∪ {¬O}, then (K, O) has no
explanations on Abd.

In a labelled tree T = (V,E,L) with root r ∈ V , let H(n) denote the union
of edge-labels on the path from r to n, for any node n ∈ V . If a node n1 ∈ V
has a successor n2 ∈ V such that L(〈n1, n2〉) = σ then n2 is a σ-successor of n1.

MHS (Algorithm 1) works by constructing an HS-tree. An HS-tree for P =
(K, O) is a labelled tree T = (V,E,L) where (a) each node n ∈ V is labelled by
L(n) = Abd(M) for a model M of K∪{¬O} s.t. L(n)∩H(n) = ∅ or by L(n) = ∅
if such a model does not exist; (b) and for any n ∈ V there is a σ-successor of n
for every σ ∈ L(n).

Each label L(n) can be found as Abd(M) of some model of K∪{¬O}∪H(n),
by one call to an external DL reasoner. If no such model M exists then H(n)
corresponds to a hitting set. Note that if M exists but Abd(M) = ∅, then in
accord with Observation 2 H(n) cannot be extended to a hitting set.

Merge, Explain, Iterate 341

Algorithm 1. MHS(K,O,Abd)

Input: Knowledge base K, observation O,
abducibles Abd
Output: SE all explanations of P = (K, O)
w.r.t. Abd

1: M ← a model M of K ∪ {¬O}
2: if M = null then
3: return "nothing to explain"
4: end if
5: T ← (V = {r}, E = ∅, L = {r �→ Abd(M)})

6: for each σ ∈ L(r) create new σ-successor nσ

of r
7: SE ← {}

8: while exists next node n in T w.r.t. BFS do

9: if n can be pruned then
10: prune n
11: else if exists model M of K ∪ {¬O} ∪

H(n) then
12: label n by L(n) ← Abd(M)
13: else if H(n) is desired then
14: SE ← SE ∪ {H(n)}
15: end if
16: for each σ∈L(n) create new σ-successor

nσ of n
17: end while
18: return SE

We apply first two of Reiter’s pruning conditions: (1) subset pruning elim-
inates non-minimal hitting sets: given a hitting set H(n), nodes n′ with
H(n) ⊆ H(n′) are pruned; (2) equal-paths pruning prunes also nodes n′ with
H(n) = H(n′), even if H(n) is not a hitting set. Once completed, a pruned HS-
tree contains all minimal hitting sets [15]. MHS is sound and complete [14,15].

Theorem 1. The MHS algorithm is sound and complete (i.e., it returns the set
SE of all minimal desired explanations of K and O on Abd).

The fact that MHS explores the search space using breadth-first search (BFS)
allows to limit the search for explanations by maximum size. The algorithm is
still complete w.r.t. any given target size [14].

3.2 MergeXplain

Both QXP [10] and MXP [17] were originally designed to find minimal inconsis-
tent subsets (dubbed conflicts) of an over-constrained knowledge base K = B∪C,
where B is the consistent background theory and C is the “suspicious” part from
which the conflicts are drawn. The algorithm is listed in Algorithm 2.

The essence of QXP is captured in the function GetConflict(B,D, C),
where the inputs B and C are as explained above, and D is an auxiliary control
parameter. GetConflict cleverly decomposes C by splitting it into smaller and
smaller subsets such that it is always able to reconstruct one minimal conflict,
if it only exists. The auxiliary function isConsistent(K) encapsulates calls to
an external reasoner; it returns true if K is consistent and false otherwise. Thus,
if we just need to find one minimal explanation of an ABox abduction problem,
adopting a result of Junker [10] we may use GetConflict in the following way.

Theorem 2. Assume an ABox abduction problem P = (K, O) and a set of
abducibles Abd. If there is at least one explanation γ ⊆ Abd of P then calling
GetConflict(K ∪ {¬O},K ∪ {¬O},Abd) returns some minimal explanation
δ ⊆ Abd of P.

342 M. Homola et al.

Algorithm 2. MXP(B,C)

Input: background theory B, set of possibly
faulty constraints C
Output: a set of minimal conflicts Γ

1: if ¬isConsistent(B) then
2: return "no explanation"
3: else if isConsistent(B ∪ C) then
4: return ∅
5: end if
6: 〈 , Γ 〉 ← FindConflicts(B, C)
7: return Γ

8: function FindConflicts(B, C)
9: if isConsistent(B ∪ C) then
10: return 〈C, ∅〉
11: else if |C| = 1 then
12: return 〈∅, {C}〉
13: end if
14: Split C into disjoint, non-empty sets C1

and C2
15: 〈C′

1, Γ1〉 ← FindConflicts(B, C1)
16: 〈C′

2, Γ2〉 ← FindConflicts(B, C2)
17: Γ ← Γ1 ∪ Γ2

18: while ¬isConsistent(C′
1 ∪ C′

2 ∪ B) do
19: X ← GetConflict(B ∪ C′

2, C′
2, C′

1)
20: γ ← X ∪ GetConflict(B∪X, X, C′

2)

21: C′
1 ← C′

1\{σ} where σ ∈ X
22: Γ ← Γ ∪ {γ}
23: end while
24: return 〈C′

1 ∪ C′
2, Γ 〉

25: end function

26: function GetConflict(B, D, C)
27: if D �= ∅ ∧ ¬isConsistent(B) then
28: return ∅
29: else if |C| = 1 then
30: return C
31: end if
32: Split C into disjoint, non-empty sets C1

and C2
33: D2 ← GetConflict(B ∪ C1, C1, C2)
34: D1 ← GetConflict(B ∪ D2, D2, C1)
35: return D1 ∪ D2
36: end function

The MXP algorithm is captured in the function FindConflicts(B, C), where
again B is the consistent background theory and C is the set of conflicts inconsis-
tent with it. It returns a pair 〈C′, Γ 〉, where Γ contains as many conflicts γ ⊆ C
as it is possible to reconstruct from one way in which C can be split, and C′ ⊆ C
is maximal set consistent with B that can be reconstructed from this split. MXP
relies on GetConflict to recover some of the conflicts that would be lost due
to splitting. This ensures that it keeps the important property of QXP that at
least one minimal is found in each run, if it exists.

This approach can be immediately adopted for ABox abduction: in order to
find explanations for an abduction problem P = (K, O) on Abd one needs to
call MXP(K ∪ {¬O},Abd). This observation allows us to adopt the following
result from Shchekotykhin et al. [17]:

Theorem 3. Assume an ABox abduction problem P = (K, O) and a set of
abducibles Abd. If there is at least one explanation γ ⊆ Abd of P then calling
MXP(K ∪ {¬O},Abd) returns a nonempty set Γ of minimal explanations of P.

In fact, MXP is thorough in its decomposition of C, which is broken to smaller
and smaller subsets until they are consistent with B or until only sets of size 1
remain. This directly implies that all conflicts of size 1 will always be found and
returned by a single run of MXP. This observation will prove to be useful for
our hybrid algorithm.

Observation 3. Given an ABox abduction problem P = (K, O), a set of
abducibles Abd, and any γ ⊆ Abd s.t. |γ| = 1, if K ∪ γ |= O then γ ∈
MXP(K ∪ {¬O},Abd).

Thus MXP is sound and it always finds at least one minimal explanation
(Theorem 3), and it finds all explanations of size one (Observation 3). Still,

Merge, Explain, Iterate 343

MXP is not complete. Some explanations may be lost, especially in cases with
multiple partially overlapping explanations.

Example 1. Let K = {A � B � D,A � C � D} and let O = D(a). Let us ignore
negated ABox expressions and start with Abd = {A(a), B(a), C(a)}. There
are two minimal explanations of P = (K, O): {A(a), B(a)}, and {A(a), C(a)}.
Calling MXP(K ∪ {¬O},Abd), it passes the initial tests and calls FindCon-
flicts(K ∪ {¬O},Abd).

FindConflicts needs to decide how to split C = Abd into C1 and C2. Let us
assume the split was C1 = {A(a)} and C2 = {B(a), C(a)}. Since both C1 and C2

are now conflict-free w.r.t. K ∪ {¬O}, the two consecutive recursive calls return
〈C′

1, ∅〉 and 〈C′
2, ∅〉 where C′

1 = {A(a)} and C′
2 = {B(a), C(a)}.

In the while loop, GetConflict(K ∪ {¬O} ∪ {B(a), C(a)}, {B(a), C(a)},
{A(a)}) returns X = {A(a)} while GetConflict(K ∪ {¬O} ∪ {A(a)},
{A(a)}, {B(a), C(a)}) returns B(a), and hence the first conflict γ = {A(a), B(a)}
is found and added into Γ .

However, consecutively A(a) is removed from C′
1 leaving it empty, and thus

the other conflict is not found and Γ = {{A(a), B(a)}} is returned.

Finally, not only MXP finds all explanations of size 1; it also has the prop-
erty that if no larger explanations are returned in a given run then in fact this
is because there are none. In such a case we are sure that we have found all
explanations in a single run and we do not have to search any further.

Lemma 1. Given an ABox abduction problem P = (K, O), a set of abducibles
Abd, let Γ = MXP(K ∪ {¬O},Abd). If there is no γ ∈ Γ s.t. |γ| > 1, then for
all minimal δ ⊆ Abd s.t. K ∪ δ |= O we have that δ ∈ Γ .

4 Combined MHS-MXP Algorithm

The idea to use MXP to find all explanations is based on the observation that
running it multiple times in a row may result in a consecutive extension of the
overall set of conflicts found so far. A naïve, and possibly to a large extent
successful idea, would be to randomize the set splits MXP does in each recursive
call. We would likely find different conflicts each time, however it would not be
clear when to stop.

We will instead explore a hybrid approach, and we will show that by mod-
ifying MXP’s inputs in its consecutive iterations, the search space exploration
can be guided by the construction of an HS-tree from the obtained outputs, and
thus completeness will be achieved.

The combined MHS-MXP algorithm, listed as Algorithm 3, therefore con-
structs the HS-tree T as usual, but in each node n, instead of simply retrieving
one model of K ∪ {¬O} ∪ H(n), it launches MXP by calling FindConflicts.

It starts by checking the consistency of K∪{¬O}. We use a modified isCon-
sistent function which stores all previously found models in the model cache

344 M. Homola et al.

Algorithm 3. MHS-MXP(K,O,Abd)
Input: knowledge base K, observation O, set of abducibles Abd
Output: set SE of all explanations of P = (K, O) of the class Abd

1: Con ← {} � Set of conflicts
2: Mod ← {} � Set of cached models
3: if ¬isConsistent(K ∪ {¬O}) then
4: return "nothing to explain"
5: else if Abd(M) = ∅ where Mod = {M} then
6: return SE = ∅
7: end if
8: T ← (V = {r}, E = ∅, L = ∅) � Init. HS-Tree
9: while there is next node n in T w.r.t. BFS do
10: if n can be pruned then
11: prune n
12: else
13: 〈 , Γ 〉 ← FindConflicts(K ∪ {¬O} ∪ H(n),Abd \ H(n))
14: Con ← Con ∪ {H(n) ∪ γ | γ ∈ Γ}
15: if ∃γ ∈ Γ : |γ| > 1 then � Extend HS-tree under n
16: L(n) ← Abd(M) \ H(n) for some M ∈ Mod s.t. M |= H(n)
17: for each σ ∈ L(n) create new σ-successor nσ of n
18: end if
19: end if
20: end while
21: return SE ← {γ ∈ Con | γ is desired}
22: function isConsistent(K)
23: if there is M |= K then
24: Mod ← Mod ∪ {M}
25: return true
26: else
27: return false
28: end if
29: end function

Mod. The stored models are later used to construct the HS-tree and label its
nodes. Also FindConflicts will use this modified isConsistent function.

Then the main loop is initiated. For the root node r, pruning is never applied.
Then FindConflicts is simply called passing K ∪ {¬O} as the background
theory and Abd as the set of conflicts (as H(n) = ∅ at this point). The obtained
conflicts Γ are stored in Con. We then verify if all conflicts were already found
or if the search needs to go on (line 15). From Theorem 3 we know that if no
conflicts were returned in Γ , it means there are no conflicts whatsoever. Also
from Observation 3 we know that all conflicts of size 1 are always found and
returned in Γ . Finally, by Lemma 1 we have that if any larger conflicts remain,
at least one is also present in Γ . Hence, if there is no γ ∈ Γ with |γ| > 1 there
are no other explanations to be found and the search can be terminated.

If however at least one such γ was returned in Γ then the HS-tree is extended
under r using the model M that was previously found and stored in Mod.

When consecutively any other node n
= r is visited by the main loop, we first
check if it can be pruned (line 10): n is pruned (1) either if there is a previously
stored conflict γ ∈ Con s.t. γ ⊆ H(n), (2) or if there is another n′ ∈ V (that is
not pruned) with H(n′) = H(n). This corresponds to Reiter’s first two pruning
conditions with condition (1) being modified to make use of conflicts cached in
Con. If n is not pruned, we now want to use MXP with the goal to explore as
much as possible of that part of the space of explanations that extends H(n).

Merge, Explain, Iterate 345

Therefore we call FindConflicts passing K ∪ {¬O} ∪ H(n) as the background
theory and Abd\H(n) as the set of conflicts.

If we are lucky, we might cut off this branch completely in line 15, that is, if
no extension of H(n) of size greater than 1 is found (by Lemma 1). Otherwise
we extend the HS-tree below n.

To be able to do that, we need a model of K ∪{¬O}∪H(n). However, we do
not need to run another consistency check here, as by design of our algorithm
at this point such a model is already cached in Mod.

Lemma 2. For each node n of the HS-tree visited by the main loop of MHS-
MXP(K, O,Abd) either H(n) ∈ Con or K ∪ {¬O} ∪ H(n) is consistent and at
least for one M ∈ Mod, M |= K ∪ {¬O} ∪ H(n).

Finally, by the time a complete HS-tree is constructed, all explanations
are accumulated in Con. However, due to calls to FindConflicts where
(nonempty) H(n) was passed together with K as the consistent background
theory, some of these conflicts in Con may be non-minimal and they have to be
filtered out. At this point we also filter out any other undesired explanations.
Then the remaining minimal and desired explanations are returned as SE .

Theorem 4. The MHS-MXP algorithm is sound and complete (i.e., it returns
the set SE of all minimal desired explanations of K and O on Abd).

This follows from the fact that the algorithm correctly reconstructs the HS-
tree to a sufficient extent. The parts which are cut off in comparison to a complete
HS-tree (line 15) can be omitted thanks to Observation 3 and Lemma 1.

5 Advantages and Limitations

Apparently MHS-MXP absolutely crushes MHS in cases when all explanations
are of size one. By Observation 3 and Lemma 1, the search may immediately
stop after one call to MXP in the root node of the HS-tree. Without this “look
ahead” capability provided to the hybrid algorithm by MXP, pure MHS has no
way of knowing it could stop and has to generate the HS-tree completely. Let us
now consider some cases when bigger explanations come into play.

Example 2. Let K = {A�B � F,D�¬C(a), E(b)}, let O = F (a), and let Abd =
{A(a), B(a), C(a),D(a)}. There is exactly one explanation E1 = {A(a), B(a)}.

If we run MHS-MXP, it first checks K∪{¬F (a)} for consistency and it obtains
a model M thereof, say one with Abd(M) = {A(a), C(a)}.

The call to FindConflicts in the root does not allow to terminate the
search, since E1 was returned and |E1| > 1. Therefore n1 and n2 are added to
the HS-tree with H(n1) = {A(a)} and H(n2) = {C(a)}.

Calling FindConflicts n1 returns one conflict {B(a)} which together with
H(n1) makes up for the explanation E1. This branch is consecutively cut off, as no
greater conflicts were found. Notably, further exploration of branches extending
H(n1) with C(a) and D(a) is avoided (in comparison with MHS).

346 M. Homola et al.

Then FindConflicts is called in n2 returning one conflict {A(a), B(a)}, cor-
responding to the non-minimal explanation {C(a), A(a), B(a)}. However, since
there was a conflict extending H(n1) by a size greater than one, we may not
terminate yet and must explore this branch in the HS-tree further, until only
extensions of size one are returned by MXP in each path.

Cases similar to Example 2 with a small overall number of explanations can
be handled rather efficiently, compared to MHS, as significant part of the search
space is cut off. However consider the following modification of the inputs.

Example 3. Given K and O as in Example 2, let Abd = {A(a), B(a), C(a),D(a),
E(a),¬E(a)}. The abduction problem (K, O) has two explanations E1 = {A(a),
B(a)} and E2 = {E(a),¬E(a)}, the second undesired (inconsistent). FindCon-
flicts called in the root r now returns conflicts {{A(a), B(a)}, {E(a),¬E(a)}}.
W.l.o.g. we may assume that the same model M was used to label r and that
M
|= E(a). This time Abd(M) = {A(a), C(a), E(a)} and in addition to n1 and
n2 as above also n3 is generated with H(n3) = {E(a)}.

Now the search cannot be immediately cut off after MXP is called in
any of the three nodes n1, n2, or n3. E.g., in n1 FindConflicts returns
{{B(a)}, {E(a), ¬E(a)}}. Only branches where all but one element from each
explanation is already present can be cut off safely.

Example 3 shows that the larger the overall amount of explanations and the
greater their size, the less advantage MHS-MXP is likely to retain. While adding
complementary assertions to abducibles does not make a difference for MHS, it
does for MHS-MXP (for the worse), as it generates more explanations (even if
they are inconsistent and thus undesired). Similarly for mutually inconsistent
abducibles (due to the background ontology) yielding irrelevant explanations.

Thus while MHS-MXP provides an advantage on certain inputs we have no
reason to suppose it is substantially better in the worst case. It is difficult to
estimate to which extent the problem of conflicting abducibles demonstrated
in Example 3 would affect real world use, especially if users (knowledgeable
about the domain) would be able to specify abducibles suitable enough to con-
tain all explanations they are interested in. There are no known real-world use
cases to evaluate abductive reasoning with ontologies that would specify inputs
with observations and respective sets of abducibles. Even works that conducted
extensive empirical evaluations used artificially generated inputs [4,6,13].

To understand how MHS-MXP compares to MHS on unfavourable inputs
with large amounts of conflicting abducibles, and jointly to which extent it is
faster than MHS on favourable inputs without conflicting abducibles, we con-
ducted an evaluation on which we report in the following.

Merge, Explain, Iterate 347

6 Implementation

An implementation1 of MHS-MXP was developed in Java. The black box imple-
mentation calls an external DL reasoner for consistency checks and extracts
model information necessary to steer the HS-tree construction by both MHS
and MHS-MXP. The latter is nontrivial as it is fairly nonstandard for any DL
reasoner to make model data accessible to the user. In fact, some DL reasoners
(e.g. consequence-based [12]) may not even construct any model-related struc-
tures, but tableau-based reasoners do construct a completion graph which is a
finite representation of a model.

We are concerned with exploring all possible explanations that one can con-
struct as (sets of) atomic and negated atomic concept and role assertions involv-
ing the named individuals from the ABox and from the input observation. Note
that the corresponding part of the completion graph is always fully constructed
by tableau-based DL reasoners and is not affected by blocking [1,2,9].

We rely on the reasoner.knowledgeexploration package2 – an experimen-
tal package of OWL API – and its interface OWLKnowledgeExplorerReasoner.
The interface is not commonly implemented by reasoners, however it is imple-
mented by JFact3, which we were hence able to use in our implementation.

It allows to read out information about the completion graph: nodes are
accessed via the getRoot(e) method where e is the OWLClassExpression (nomi-
nal) corresponding to a given ABox individual. The getObjectLabel() method
is then used to extract all atomic and negated atomic concepts to which the
individual belongs (the latter is obtained as the complement of the former). The
neighbouring nodes and the respective role assertions are then obtained using
the getObjectNeighbors() method.

7 Evaluation

The experiments were executed on a virtual machine with 8 cores (16 threads) of
Intel Xeon CPU E5-2695 v4, 2.10 GHz, with 32 GB RAM, running Ubuntu 20.04
and Oracle Java SE Runtime Environment v1.8.0_201. Execution times were
measured using ThreadMXBean from the java.lang.management package. We
measured user time – the actual time without system overhead. The maximum
Java heap size to 4 GB.

Using the implementation, we ran tests in order to understand how MHS-
MXP compares to plain MHS (a) in the general case, and (b) in case of inputs
that we identified as favourable. We have used the LUBM ontology [8] and the
solver’s abducibles settings to generate suitable inputs to verify both cases.

1 The implementation and the evaluation datasets are available at https://github.
com/boborova3/MHS-MXP-algorithm.

2 http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/
knowledgeexploration/package-summary.html.

3 https://github.com/owlcs/jfact.

https://github.com/boborova3/MHS-MXP-algorithm
https://github.com/boborova3/MHS-MXP-algorithm
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/knowledgeexploration/package-summary.html
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/knowledgeexploration/package-summary.html
https://github.com/owlcs/jfact

348 M. Homola et al.

Table 1. Statistics for input groups: #: number of inputs; Cm, Ca, CM: min, average,
and max count of explanations; Sm, Sa, SM: min, average, and max size of the largest
explanation

Set # Cm Ca CM Sm Sa SM

S1 10 1 7 20 1 1 1
S2 10 8 69.5 159 2 2 2
S3 10 47 212.4 479 3 3 3
S4 10 251 417.8 839 4 4 4
S5 10 503 2627 6719 5 5 5

Set # Cm Ca CM Sm Sa SM

C1 9 1 4.8 9 1 1.11 2
C2 11 14 51 99 1 2 3
C3 13 111 212.92 299 2 3.15 4
C4 8 359 524.75 839 3 4 5
C5 9 1175 2863 6719 5 5 5

In order to generate inputs with explanations of size up to n, we used a
fresh individual a and composed observations in the form A1 �· · ·�An(a) where
A1, . . . , An were randomly drawn from LUBM concept names. If all A1, . . . , An

have mutually independent proper subconcepts then there is at least one expla-
nation of size n. If some of them have more subconcepts then the input will have
more explanations. If some Ai, Aj have shared subconcepts then (some of) the
explanations will be shorter.

Targeting explanations of size up to 5, we generated inputs for n ∈ [1..5] – 50
inputs altogether. We have aggregated the inputs into five groups S1–S5 based on
the size of the largest explanation. The inputs were generated randomly (however
LUBM concepts with subconcepts were drawn twice as often to ensure higher
number of explanations). The number of generated samples was consecutively
reduced in order to obtain balanced groups S1–S5, each with 10 inputs.

To verify the second part of our conjecture, i.e. that MHS-MXP may perform
better on inputs with smaller number of explanations, we also aggregated the
same 50 inputs differently, into groups C1–C5 accordingly. Basic characteristics
of groups S1–S5 and C1–C5 are given in Table 1.

Our implementation supports atomic and negated atomic concept assertions
as abducibles, where the latter may be suppressed by a switch. In accordance
with our observations from Sect. 5, we have used this feature to obtain an
unfavourable case for MHS-MXP (both atomic and negated atomic concepts
allowed) and a favourable case (negated atomic concepts suppressed). Notably,
all generated inputs only have explanations involving atomic concept assertions,
hence each input has exactly the same number of explanations in either case
(favourable and unfavourable) – only the search space in the unfavourable case
(and the inherent difficulty for MHS-MXP to handle it) is larger.

Each individual input was run five times and the results were averaged. The
timeout was set to 4 h (= 14,440 s).

The results for the unfavourable and favourable case are shown in Figs. 1
and 2, respectively. For each case the charts analogously plot the average time
per group (y-axis) in which all explanations of a given size (x-axis) are guaranteed
to be found. Input groups S1–S5 are shown on the left (a), and input groups
C1–C5 in the right (b). Note that for MHS this equates to the time by which
it fully explores the HS-tree down to depth x, however, by Observation 3, for

Merge, Explain, Iterate 349

1 2 3 4 5 6100

101

102

103

104

MHS

all

S5

S4

S3

S2

S1

1 2 3 4 5 6

MHS-MXP

1 2 3 4 5 6100

101

102

103

104

MHS

all

C5

C4

C3

C2

C1

1 2 3 4 5 6

MHS-MXP

(a) (b)

Fig. 1. Unfavourable inputs: Average time in seconds (y-axis) for fully exploring the
search space up to the particular explanation size (x-axis) for input groups (a) S1–S5,
(b) C1–C5

MHS-MXP this is the time by which it fully explores the HS-tree down to depth
x− 1. Also note that once the respective group terminated it has fully explored
the search space up to any size, hence the line is constantly extended towards
the right; in contrast, if more than one third of inputs in the group reached the
timeout before reaching the x-value, the y-value was omitted from the plot.

Looking first at the unfavourable inputs (Fig. 1) we observe that both algo-
rithms exhibit steep exponential growth. Both managed to compute all explana-
tions of size 3 within the timeout, but MHS reached this point faster. Notably,
there is little difference among the groups S1–S5 and C1–C5. This case is
strongly unfavourable for MSH-MXP, attacking its main weakness by swamp-
ing the search space with the highest possible amount of mutually inconsistent
abducibles. The observed result is consistent with this setting.

In the favourable case (Fig. 2) the advantage of MHS-MXP over MHS is
way more significant; e.g. while MHS again did only fully explore the search
space up to the size 3 within the 4 h timeout, MHS-MXP managed to reach this
point with the average time of 26 s. Also our conjecture of MHS-MXP having
the greatest advantage on inputs with smaller count and/or smaller maximal
size of explanations verified very clearly. We observe a clear correlation in the
increase of computation time and the greatest size of an explanation (groups S)
and likewise for the count of explanations (groups C). All groups except for S5
and C5 terminated within the timeout, while in S5 and C5 approx. half of the
inputs reached the timeout. (Note that even in such cases, MHS-MXP found
all explanations, the search continued and the timeout was reached due to the
presence of irrelevant explanations of size greater than 5).

350 M. Homola et al.

1 2 3 4 5 6100

101

102

103

104

MHS

all

S5

S4

S3

S2

S1

1 2 3 4 5 6

MHS-MXP

1 2 3 4 5 6100

101

102

103

104

MHS

all

C5

C4

C3

C2

C1

1 2 3 4 5 6

MHS-MXP

)b()a(

Fig. 2. Favourable inputs: Average time in seconds (y-axis) for fully exploring the
search space up to the particular explanation size (x-axis) for input groups (a) S1–S5,
(b) C1–C5

8 Conclusions

We have designed and implemented a hybrid combination of MHS and MXP
algorithms and formally proved its correctness. One of the main disadvantages
of MHS is that it always needs to tediously inspect each candidate solution in the
whole search space – even in cases when there is just small number of solutions,
and even after all of them have been already found. In such cases the advantage
of the combination with MXP shows to be the most promising.

The empirical evaluation supports this conjecture. While on favourable inputs
MHS-MXP significantly outperformed MHS, we have also found unfavourable
cases on which MHS-MXP performs somewhat worse than MHS. Improving
such cases is part of our ongoing work: for instance, we did not yet modify
the inner working of the MXP called in each HS-tree node. This offers space for
optimization, e.g. to exploit the cached conflicts Con from the previous runs when
MXP splits the set of conflicts C. We also want to characterize the performance
on a wider scale of input classes to better understand the trade-off.

While there are currently approaches in ABox abduction [4–6,13] which are
more tractable, they are also limited in supported DL expressivity, in our solver
we were able to achieve black-box integration with JFact which supports DL
expressivity up to SROIQ (i.e. OWL 2).

Even for tableau-based reasoners, model extraction is not a standard. So far,
we were able to plug-in JFact exploiting the OWLKnowledgeExplorerReasoner
extension of OWL API. In the future, we would like to integrate more tableau
reasoners into our solver and allow for modular switching.

In the future, we would also like to look into a possible upgrade of the MHS
part of the algorithm by some of its known more effective versions, e.g. by
Wotawa [18].

While in this work we have studies and applied the MHS-MXP algorithm on
the problem of ABox abduction in DL, it is worth noting that it is also applicable
in other cases, more precisely in any case in which MHS is applicable. It can be

Merge, Explain, Iterate 351

applied in other languages (e.g. in propositional abduction, in which models can
be extracted from a SAT solver) and even on other problems (e.g. computing
justifications and maximally consistent subsets).

Acknowledgments. We would like to express our thanks to anonymous reviewers
for their valuable feedback on this and also on the previous version of this report.
This research was sponsored by the Slovak Republic under the grant APVV-19-0220
(ORBIS) and by the EU under the H2020 grant no. 952215 (TAILOR) and under
Horizon Europe grant no. 101079338 (TERAIS).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,
U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

4. Del-Pinto, W., Schmidt, R.A.: ABox abduction via forgetting in ALC. In: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu,
Hawaii, USA, pp. 2768–2775. AAAI Press (2019)

5. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical ABox abduction in large
description logic ontologies. Int. J. Semant. Web Inf. Syst. 8(2), 1–33 (2012)

6. Du, J., Wang, K., Shen, Y.: A tractable approach to ABox abduction over descrip-
tion logic ontologies. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, Québec City, Québec, Canada, 27–31 July 2014, pp. 1034–
1040 (2014)

7. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontolo-
gies. In: Proceedings of the OWLED*2006 Workshop on OWL: Experiences and
Directions, Athens, GA, US, vol. 216. CEUR-WS (2006)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceed-
ings of Tenth International Conference on Principles of Knowledge Representation
and Reasoning, Lake District of the United Kingdom, pp. 57–67. AAAI (2006)

10. Junker, U.: QuickXplain: preferred explanations and relaxations for over-
constrained problems. In: Proceedings of the Nineteenth National Conference on
Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial
Intelligence, San Jose, California, US, pp. 167–172. AAAI Press (2004)

11. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Sym-
posium on the Complexity of Computer Computations, 20–22 March 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, pp. 85–103
(1972)

12. Kazakov, Y., Krötzsch, M., Simančík, F.: The incredible ELK. J. Autom. Reason.
53(1), 1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

13. Koopmann, P., Del-Pinto, W., Tourret, S., Schmidt, R.A.: Signature-based abduc-
tion for expressive description logics. In: Proceedings of the 17th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2020,
Rhodes, Greece, pp. 592–602 (2020)

https://doi.org/10.1007/s10817-013-9296-3

352 M. Homola et al.

14. Pukancová, J., Homola, M.: ABox abduction for description logics: the case of mul-
tiple observations. In: Proceedings of the 31st International Workshop on Descrip-
tion Logics, Tempe, Arizona, US, vol. 2211. CEUR-WS (2018)

15. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

16. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

17. Shchekotykhin, K.M., Jannach, D., Schmitz, T.: MergeXplain: fast computation of
multiple conflicts for diagnosis. In: Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina.
AAAI Press (2015)

18. Wotawa, F.: A variant of Reiter’s hitting-set algorithm. Inf. Process. Lett. 79(1),
45–51 (2001)

Tractable Closure-Based Possibilistic
Repair for Partially Ordered DL-Lite

Ontologies

Ahmed Laouar1(B), Sihem Belabbes2, and Salem Benferhat1

1 CRIL, Univ. Artois & CNRS, Lens, France
{laouar,benferhat}@cril.fr

2 LIASD, IUT de Montreuil, Univ. Paris 8, Saint-Denis, France
belabbes@iut.univ-paris8.fr

Abstract. Inconsistency in formal ontologies is usually addressed by
computing repairs for the dataset. There are several strategies for select-
ing the repairs used to evaluate queries, with various levels of cautious-
ness and classes of computational complexity. This paper deals with
inconsistent partially ordered lightweight ontologies. It introduces a new
method that goes beyond the cautious strategies and that is tractable in
the possibilistic setting, where uncertainty concerns only the data pieces.
The proposed method, called Cπ-repair, proceeds as follows. It first inter-
prets the partially ordered dataset as a family of totally ordered datasets.
Then, it computes a single data repair for every totally ordered possi-
bilistic ontology induced from the partially ordered possibilistic ontol-
ogy. Next, it deductively closes each of these repairs in order to increase
their productivity, without introducing conflicts or arbitrary data pieces.
Finally, it intersects the closed repairs to obtain a single data repair for
the initial ontology. The main contribution of this paper is an equiva-
lent characterization that does not enumerate all the total orders, but
also does not suffer from the additional computational cost naturally
incurred by the deductive closure. We establish the tractability of our
method by reformulating the problem using the notions of dominance and
support. Intuitively, the valid conclusions are supported against conflicts
by consistent inclusion-minimal subsets of the dataset that dominate all
the conflicts. We also study the rationality properties of our method in
terms of unconditional and conditional query-answering.

1 Introduction

The Ontology-Based Data Access (OBDA) paradigm relies on an ontology to
provide a unified conceptual representation of some domain of interest, in order
to improve access to data [27]. Lightweight fragments of description logics such
as the DL-Lite family [1,15] are commonly used to encode ontologies, since they
allow for efficient query-answering. The conceptual knowledge of an ontology
(i.e., the TBox) is usually assumed to be consistent. However, the dataset (i.e.,
the ABox) may potentially be inconsistent with respect to the TBox. In this case,
reasoning with an inconsistent ontology amounts to evaluating queries over one
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 353–368, 2023.
https://doi.org/10.1007/978-3-031-43619-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_25&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_25

354 A. Laouar et al.

or several of its data repairs (i.e., inclusion-maximal subsets of the ABox that
are consistent with respect to the TBox). A variety of inconsistency-tolerant
semantics have been proposed, with different levels of cautiousness and classes
of computational complexity. These strategies select one or several repairs of an
ABox in order to evaluate queries, with tractability achieved mostly for DL-Lite
ontologies (see [3,10] for a survey).

For instance, the well-known Intersection of ABox Repair (IAR) seman-
tics [25] is a cautious strategy. Indeed, it avoids a random selection of the repairs
since it evaluates queries over the intersection of all the repairs. It discards all the
elements of the ABox that are involved in conflicts (i.e., inclusion-minimal sub-
sets of the ABox that are inconsistent with respect to the TBox). Most notably,
it is tractable in DL-Lite.

The Intersection of Closed ABox Repair (ICAR) semantics [25] applies the
IAR semantics to the deductive closure of the ABox. This allows to derive
more facts from the ABox, so ICAR is more productive1 than IAR, while it
is likewise tractable in DL-Lite. However, ICAR may return undesirable con-
clusions. Consider a TBox with the concept inclusion axiom Whale � Mammal,
and the concept disjointness axiom Whale�¬Shark. Say the ABox contains two
facts Whale(Humphrey) and Shark(Humphrey), which are in conflict according to
the disjointness axiom. ICAR returns Mammal(Humphrey) as a valid conclusion,
although it follows from Whale(Humphrey), which is involved in a conflict.

For prioritized (or totally ordered) ontologies, computing repairs for the ABox
is a challenging task. For instance, the Preferred Repair semantics [12] (based on
the notion of preferred subtheories [13]) is coNP-complete in data complexity.
The grounded repair [11] obtained from a Dung-style argumentation framework
is tractable. However, the order relation only applies to the conflicts, so the
ABox is assumed to be locally stratified (a similar order defined in propositional
logic can be found in [8]). In contrast, three main tractable methods have been
identified in [7] for totally ordered ABoxes. The non-defeated repair iteratively
applies the IAR semantics to a cumulative sequence of strata of the ABox. The
linear-based repair iteratively accumulates a sequence of strata of the ABox, by
discarding any stratum that is inconsistent with respect to the TBox or that
contradicts the preceding sequence of strata. The possibilistic repair leverages
possibility theory, which supports inconsistent reasoning with incomplete, uncer-
tain, qualitative and prioritized information [20,23]. It infers all the facts that
are strictly more certain than some inconsistency degree of the ABox, computed
from the uncertainty degrees assigned to the elements of the ABox.

A few tractable methods have also been proposed for partially ordered ontolo-
gies. There is the Elect method [6] which generalizes both the IAR semantics and
the non-defeated repair. There is also the possibilistic repair method defined for
partially ordered ontologies [5]. Both Elect and the possibilistic repair method
extend the partial order over the ABox into a family of total orders. This yields
as many totally ordered ABoxes, for which repairs can be computed then inter-
sected to obtain a single repair for the initial ABox. Such methods are interesting

1 Given two inconsistency-tolerant semantics s1 and s2. Then s1 is more productive
than s2 if any conclusion derived with s2 can also be derived with s1.

Tractable Possibilistic Repair for Partially Ordered Ontologies 355

since they derive the conclusions that follow from all the totally ordered repairs.
However, their productivity is hampered by their cautiousness.

A natural way for increasing productivity is to compute the deductive closure
of the totally ordered repairs before intersecting them, in the spirit of the Inter-
section of Closed Repairs (ICR) semantics [9].2 However, it is well-known that
closing the repairs increases time complexity. For instance, for flat ontologies,
inference with the IAR semantics and the ICAR semantics is tractable, but it is
coNP-complete with the ICR semantics in data complexity [3,9].

In this work, we undertake the difficult task of proposing a more productive,
yet efficient method, in the case of partially ordered ontologies. We call the
new method Cπ-repair and establish its tractability in the DL-LiteR fragment,
using an interpretation of possibility theory as a strategy for computing the
repair. We characterize Cπ-repair equivalently based on the notions of dominance
and support. Intuitively, the valid conclusions are supported against conflicts by
consistent inclusion-minimal subsets of the ABox that dominate all the conflicts.

We also study the rationality properties of Cπ-repair in terms of uncondi-
tional and conditional query-answering mechanisms. In particular, we show that
the deductive closure preserves the satisfied properties of possibilistic query-
answering from the intersection of the (unclosed) possibilistic repairs.

This paper is organised as follows. Section 2 recalls the basics of DL-LiteR
and the possibilistic repair method. Section 3 defines the closure-based repair
method Cπ-repair. Section 4 gives its tractable characterization. Section 5 studies
its rationality properties, before concluding.

2 Preliminaries

We recall the underpinnings of the possibilistic repair for partially preordered
ontologies [5] that are specified in the DL-LiteR fragment [15].

Flat (or Non-prioritized) Ontology: A DL-LiteR ontology is a knowledge base
(KB) K = 〈T ,A〉, where T is a TBox composed of axioms encoding domain
knowledge, and A is an ABox composed of assertions (i.e., ground facts or data
pieces). The axioms may be positive inclusions of concepts (e.g. B1 �B2) or of
roles (e.g. R1�R2), and they allow to derive new assertions from the ABox. The
axioms may also be negative inclusions of concepts (e.g. B1 � ¬B2) or of roles
(e.g. R1�¬R2), and they serve to exhibit the conflicts in the ABox.

Definition 1. (Conflict) Let K = 〈T ,A〉 be a KB. A conflict is a subset C ⊆ A
such that 〈T , C〉 is inconsistent, and for all ϕ ∈ C, 〈T , C \ {ϕ}〉 is consistent. We
denote by Cf(A) the set of all the conflicts of A, a.k.a. the conflict set.

Here, inconsistency means the absence of a model for the KB (we omit the seman-
tics for space reasons). The conflict set Cf(A) can be computed in polynomial
time in the size of the ABox in DL-LiteR ontologies [15].
2 Note the difference between the ICR semantics which deductively closes the repairs

of an ABox, and the ICAR semantics which computes the repairs for a closed ABox.

356 A. Laouar et al.

Totally Preordered Possibilistic Ontology: Possibilistic logic and possibility the-
ory [4,18,19] are long-standing approaches for reasoning with uncertain informa-
tion, and are closely related to ordinal conditional functions [29] and consonant
belief functions [17,22,28]. Uncertainty can be represented either in extension
using possibility distributions, or in a compact way using weighted logics or
graphical models. Here, we opt for a qualitative representation of the preference
relation induced over the ABox, where only the plausibility ordering between
the assertions matters (see [5] for details and an overview of possibility theory).

Let K = 〈T ,A〉 be a KB, where the axioms in T are fully certain and free
of conflicts, while the elements of A may be uncertain and conflicting w.r.t. the
axioms of T . Consider a total preorder ≥ over A3, and let > be the associated
strict order, and let ≡ denote the associated equivalence relation. We denote
the resulting ABox by A≥, and it can be represented as a well-ordered partition
(S1, . . . ,Sn) such that:

• S1 ∪ . . . ∪ Sn = A.
• S1 = {ϕj ∈ A : for all ϕk ∈ A, ϕj ≥ ϕk}.
• Si = {ϕj ∈ A\ (S1 ∪ · · · ∪ Si−1) : for all ϕk ∈ A\ (S1 ∪ · · · ∪ Si−1), ϕj ≥ ϕk},

for i = 2, . . . , n.

The assertions in S1 (resp. Sn) are the most (resp. least) certain. Those in any Si

(i = 1, . . . , n) are equally certain.
The totally preordered possibilistic repair [7], denoted R(A≥), can be com-

puted tractably like so:

• If K is consistent, then R(A≥) = A.
• Otherwise, if 〈T ,S1〉 is inconsistent, then R(A≥) = ∅.
• Otherwise, if for some i, 1 ≤ i < n, 〈T ,S1 ∪ . . . ∪ Si〉 is consistent, and

〈T ,S1 ∪ . . . ∪ Si+1〉 is inconsistent, then R(A≥) = S1 ∪ . . . ∪ Si.

Partially Preordered Possibilistic Ontology: Consider a partial preorder �
over A4. Let � be the associated strict order, and let ��5 denote incompara-
bility. We denote the resulting ABox by A�.

The partially preordered possibilistic repair [5], denoted π(A�), relies on the
notion of compatible bases. These are all the totally preordered ABoxes induced
from A� that preserve the ordering between its assertions. A totally preordered
ABox A≥ is compatible with A� means that for all ϕj ∈ A�, for all ϕk ∈ A�,
if ϕj � ϕk, then ϕj ≥ ϕk. This entails that ϕj �� ϕk extends to three distinct
cases: (i) ϕj > ϕk, (ii) ϕk > ϕj or (iii) ϕj ≡ ϕk. Thus, π(A�) is obtained like so:

1. First, extend the partial preorder � into a family of total preorders, each of
which is denoted by ≥i, with 1 ≤ i ≤ m and m is the number of extensions
of �. Each extension ≥i defines an ABox A≥i

that is compatible with A�.
3 A binary relation ≥ over A is a total preorder if it is reflexive and transitive, and

for all ϕj ∈ A, for all ϕk ∈ A, either ϕj ≥ ϕk or ϕk ≥ ϕj .
4 A binary relation � over A is a partial preorder if it is reflexive and transitive. Thus

somes elements of A may be incomparable according to �.
5 Consider ϕj and ϕk in A. ϕj �� ϕk means that neither ϕj � ϕk nor ϕk � ϕj holds.

Tractable Possibilistic Repair for Partially Ordered Ontologies 357

2. Then for each compatible base A≥i
, compute its totally preordered possibilis-

tic repair R(A≥i
) as defined above.

3. Finally, intersect all the repairs R(A≥i
) to obtain π(A�) =

⋂m
i=1 R(A≥i

).

The repair π(A�) has been characterized tractably [5], without exhibiting all
the extensions ≥i of �, using the notion of π-accepted assertions.

Definition 2. (π-accepted assertion) Let K� = 〈T ,A�〉 be a partially preordered
KB, and Cf(A�) its conflict set. An assertion ϕj ∈ A� is π-accepted if for all
C ∈ Cf(A�), there is ϕk ∈ C, ϕj �= ϕk, s.t. ϕj � ϕk.

The repair π(A�) is the set of all the π-accepted assertions, and it can be com-
puted in polynomial time in the size of A� in DL-LiteR ontologies [5].

We introduce a toy example of a sales company’s information security policy.

Example 1. We build a KB from the following mutually disjoint sets NC, NR

and NI, containing respectively concept names, role names and individuals:

• NC = {Reports, HRfiles, Manager, Sales, Staff, HR}, where Reports, HRfiles are
file categories and Manager, Sales, Staff and HR are employee positions.

• NR = {Edit, Sign, Read}, represent the privileges of an employee on a file.
• NI = {Bob, Alice, F17, F78}, where Bob, Alice are employees and F17,F78

represent shared files.

Consider a partially preodered KB K� =〈T ,A�〉 depicted in Fig. 1.

=

Manager Staff

Sales Staff

Manager Edit

Sales Sign

A� =

Manager(Bob),
Sales(Bob),
Reports(F78),
Edit(Bob, F78),
Sign(Bob, F78)

Reports(F78)

Manager(Bob)

Sign(Bob, F78)

Sales(Bob)

Edit(Bob, F78)

Fig. 1. Left: The TBox T (∃ indicates the existential restriction on roles). Middle: The
ABox A�. Right: The conflicts of A� (dashed lines) and the relation � (solid arrows
represent the strict preference �, the other elements are incomparable).

According to T , a manager and a sales person are staff members. A manager
(resp. a sales person) does not have editing (resp. signing) rights on files.

Applying Definition 2 to Fig. 1 (right), since Reports(F78) is strictly preferred
to at least one member of each conflict, we get π(A�) = {Reports(F78)}.

�

3 The Cπ-Repair Method

In the literature, the notion of positive deductive closure is a natural way for
obtaining more productive repairs. The idea is to apply the positive inclusion
axioms of the TBox to the ABox in order to derive new assertions. However,
this typically increases the computational cost. In this section, we propose a

358 A. Laouar et al.

new method, called Cπ-repair, which produces a larger partially preordered pos-
sibilistic repair, while maintaining tractability in DL-LiteR and the satisfiability
of the rationality properties. Moreover, the tractability of the proposed method
is also applicable in fragments that are more expressive than DL-LiteR.

Let us first recall the definition of the closure operator in the case of a flat
KB [7,15], which can be applied in the partially preordered case (we assume
that the individuals included in the closure are limited to those present in the
ABox):
Definition 3. (Closed ABox) Let K = 〈T ,A〉 be a DL-LiteR KB. Let Tp denote
the set of all the positive inclusion axioms of T. The deductive closure of A
w.r.t. T is defined as:
cl(A) = {B(a)|〈Tp,A〉 � B(a) s.t. B is a concept name in T, a is an individual
in A}

⋃
{R(a, b)|〈Tp,A〉 � R(a, b) s.t. R is a role name in T, a and b are

individuals in A}, where � is the standard DL-LiteR inference relation.
For partially preordered ABoxes, the deductive closure can be applied at two dif-
ferent levels to obtain a larger repair. The first option closes the initial ABox A�
(in the spirit of the ICAR semantics for flat ABoxes [25]). The second option
closes each one of the possibilistic repairs R(A≥i

) associated with the compatible
ABoxes A≥i

(in the spirit of the ICR semantics for flat ABoxes [9]).
In the first option, closing the ABox A� before computing the repair may

lead to undesirable conclusions. For instance, assume a DL-LiteR KB where T =
{B � E,A � ¬B} and A� = {A(a), B(a)}. Then cl(A�) = {A(a), B(a), E(a)}
and Cf(cl(A�)) = {{A(a), B(a)}}. Assume that E(a)�A(a)�B(a). Using Defi-
nition 2, both E(a) and A(a) are π-accepted in cl(A�). However, including E(a)
in the repair is questionable, since it is supported by B(a) which conflicts with
the π-accepted assertion A(a). Another issue with this approach concerns the
reliability of the assertions that are inferred from incomparable elements. For
instance, assume a DL-LiteR KB where T = {A � E,B � E} and A� = {A(b),
B(b)}, where A(b) �� B(b). Then cl(A�) = {A(b), B(b), E(b)} and all the asser-
tions are π-accepted (since the KB is consistent). The question is which certainty
level should be assigned to E(b). The intuition is to consider E(b) to be at least
as certain as A(b) and B(b), but this cannot be easily defined in a general way.

In the second option, closing the possibilistic repairs R(A≥i
) of the compati-

ble ABoxes A≥i
is more appropriate, such that a more productive repair for A�

can be computed from the intersection of cl(R(A≥i
)).

Definition 4. (Cπ-repair) Let A� be a partially preordered ABox. Let A≥i
, with

1 ≤ i ≤ m, denote all its compatible bases and let R(A≥i
) be the associated pos-

sibilistic repair. The closure-based partially preordered possibilistic repair of A�,
denoted cπ(A�), is obtained as follows:

cπ(A�) =
m⋂

i=1

{cl(R(A≥i
)) | A≥i

is compatible with A�}.

The closure-based repair cπ(A�) computed with this method is more pro-
ductive than both the repair π(A�) and its closure cl(π(A�)). Namely:

π(A�) ⊆ cl(π(A�)) ⊆ cπ(A�).

Tractable Possibilistic Repair for Partially Ordered Ontologies 359

A�

A≥iA≥1 A≥m

Ex
ten

d

E
xtend

Extend

R(A≥1) R(A≥i) R(A≥m)

R
epair

R
epair

R
epair

cl(R(A≥1)) cl(R(A≥i)) cl(R(A≥m))

C
lose

C
lose

C
lose

cπ(�) = m
i=1 cl((

i
))

Intersect

Intersect

Int
ers

ect

Fig. 2. The Cπ-repair process

Figure 2 shows the Cπ-repair process of Def-
inition 4.

– First, extend the partially preordered ABox A�
into a family of totally preordered ABoxes,
denoted A≥1 , . . . , A≥m

(“Extend” arc).
– Then, compute the repair R(A≥i

) of each
compatible base (“Repair” arc), and its
deductive closure (“Close” arc).

– Finally, intersect all the closed repairs
cl(R(A≥i

)) (“Intersect” arc) to obtain a sin-
gle closure-based repair for the initial ABox
cπ(A�).

Obviously, this method is naive and compu-
tationally expensive since enumerating all the
compatible ABoxes may be exponential in the worst case.

Example 2. From Example 1, we have: π(A�) = cl(π(A�)) = {Reports(F78)}.
Figure 1 illustrates A�, its two conflicts and the relation �. Recall that any
compatible base A≥i

preserves the ordering between the assertions of A�. Since
Reports(F78) is the most certain assertion in A�, it belongs to every R(A≥i

).
Moreover, it is easy to check that each R(A≥i

) contains either Manager(Bob)
or Sales(Bob). Using the axioms Manager � Staff and Sales � Staff of T , one
can infer Staff(Bob) from each closed repair cl(R(A≥i

)). Therefore, cπ(A�) =
{Reports(F78),Staff(Bob)}. So, cπ(A�) is larger than both π(A�) and cl(π(A�)). �

4 Characterization of Cπ-Repair

In this section, we propose an equivalent characterization of the closure-based
repair introduced in Definition 4 without enumerating all the compatible bases.
We first introduce two notions called support and dominance. The support (or
an argument) of an assertion is an inclusion-minimal consistent subset of the
ABox that allows to derive it. Formally:

Definition 5. (Support) Let K = 〈T ,A〉 be a DL-LiteR KB. Let B be a concept
name and R be a role name in T. Let a and b be individuals in A. The subset B ⊆
A is a support for B(a) (resp. R(a, b)) in A if:

• 〈T ,B〉 is consistent, and
• 〈T ,B〉 � B(a), (resp. 〈T ,B〉 � R(a, b)), and
• for all B′ � B, 〈T ,B′〉 � B(a), (resp. 〈T ,B′〉 � R(a, b)).

Where � is the standard DL-LiteR inference relation.

Example 3. We continue Example 1. We have {Manager(Bob)} sup-
ports Staff(Bob) since 〈T , {Manager(Bob)}〉 � Staff(Bob), and it is minimal and
consistent. �

360 A. Laouar et al.

The dominance relation is a way for extending the partial preorder defined over
an ABox into a partial preorder defined over the subsets of the ABox. Such
extension allows to compare supports and conflicts. Intuitively, the dominance
of a partially preordered subset over another requires that each element of the
former be strictly more certain than at least one element of the latter. Formally:

Definition 6. (Dominance) Let K� = 〈T ,A�〉 be a partially preordered KB
equipped with �. Let B1 ⊆ A� and B2 ⊆ A�. We say that B1 dominates B2,
denoted B1 �dom B2, if: for all ϕj ∈ B1, there is ϕk ∈ B2 s.t. ϕj � ϕk.

Example 4. Let B1, B2 and B3 be three subsets of A� of Example 1,
as illustrated by Fig. 3. B1 �dom B2 holds because Reports(F78) � Sales(Bob)
and Manager(Bob) � Sign(Bob,F78). B1 �dom B3 does not hold because
Manager(Bob) � Sales(Bob) and Manager(Bob) � Edit(Bob,F78).

Reports(F78) Manager(Bob)

Sales(Bob) Sign(Bob, F78)

B1

B2

(a) 1 �dom
2 holds.

Reports(F78) Manager(Bob)

Sales(Bob) Edit(Bob, F78)

B1

B3

(b) 1 �dom
3 does not hold.

Fig. 3. Solid arrows represent the strict preference.
�

Before characterizing Cπ-repair in general, we first discuss the special case where
the ABox is consistent w.r.t. the TBox, i.e., the conflict set is empty. Hence,
Cπ-repair simply amounts to applying standard DL-LiteR inference. Formally:

Lemma 1. Let K� = 〈T ,A�〉 be a consistent, partially preordered KB, i.e.,
Cf(A�) = ∅. Consider cl(·) given by Definition 3. Let ϕ be an assertion. Then:
cπ(A�) = cl(A�). Equivalently: ϕ ∈ cπ(A�) iff there is B ⊆ A� s.t. 〈T ,B〉 � ϕ.

In the rest of this paper, we focus on the case where the ABox is inconsistent
w.r.t. the TBox. Our goal is to use the notions of dominance and support (see
Definitions 5 and 6) to characterize equivalently the assertions in the Cπ-repair.
This allows to avoid enumerating all the totally preordered extensions of A�.
The idea is that an assertion ϕ belongs to Cπ-repair if and only if for every
conflict C in the ABox, there is a support B of ϕ that dominates C. We provide
two propositions to confirm this intuitive characterization.

Proposition 1. Let K� = 〈T ,A�〉 be an inconsistent, partially preordered KB.
Let Cf(A�) be its conflict set and let ϕ be an assertion. If for all C ∈ Cf(A�),
there is B ⊆ A� s.t.:

1. B supports ϕ (as per Definition 5), and
2. B �dom C (as per Definition 6),

then ϕ ∈ cπ(A�).

Tractable Possibilistic Repair for Partially Ordered Ontologies 361

We illustrate this result with our running example.

Example 5. Consider again Example 2. Let us use Proposition 1 to check
that the assertion Staff(Bob) is indeed in cπ(A�). For each conflict in
Cf(A�) = {{Manager(Bob),Edit(Bob,F78)}, {Sales(Bob),Sign(Bob,F78)}}, it
suffices to exhibit a dominating support for Staff(Bob), like so:

– For the conflict C1 = {Manager(Bob),Edit(Bob,F78)}, B1 = {Sales(Bob)}
supports Staff(Bob) and B1 �dom C1 (since Sales(Bob) � Edit(Bob,F78)).

– For the conflict C2 = {Sales(Bob),Sign(Bob,F78)}, B2 = {Manager(Bob)}
supports Staff(Bob) and B2 �dom C2 (since Manager(Bob) � Sign(Bob,F78)).

�
The other direction of Proposition 1, given in Proposition 2, is also true. In
particular, if the characterization “for every conflict C in Cf(A�), there is a
support B of ϕ in A� that dominates C” is not true, then ϕ cannot belong to
Cπ-repair. The proposition also covers the particular case of an assertion without
a support, which cannot belong to Cπ-repair.

Proposition 2. Let K� = 〈T ,A�〉 be an inconsistent, partially preordered KB.
Let Cf(A�) be its conflict set and ϕ be an assertion.
If ϕ ∈ cπ(A�), then for all C ∈ Cf(A�), there is B ⊆ A� s.t.:

1. B supports ϕ (as per Definition 5), and
2. B �dom C (as per Definition 6).

We illustrate this result with our running example.

Example 6. Let K′
� = 〈T ′,A�〉, where the TBox T ′ is:

T ′ = {Manager�¬ ∃Edit,Sales�¬ ∃Sign,Sales�Staff,∃Edit�Staff}.

Thus, a manager (resp. a sales person) does not have editing (resp. signing)
rights, and a sales person and a person with editing rights are staff members.
The ABox A� is the one of Example 1.
Consider A≥1 and A≥2 two ABoxes compatible with A�, and their well-ordered
partitions, A≥1 = (S1 ∪ S2 ∪ S3 ∪ S4) and A≥2 = (S1 ∪ S2 ∪ S ′

3 ∪ S ′
4) such that:

S1 = {Reports(F78)}, S2 = {Manager(Bob)}, S3 = {Sales(Bob)}, S ′
3 =

{Sales(Bob), Sign(Bob,F78)}, S4 = {Sign(Bob,F78), Edit(Bob,F78)}, and S ′
4 =

{Edit(Bob,F78)}.
Figure 4 illustrates A�, A≥1 and A≥2 (recall that ≡ denotes equal certainty). It
is easy to check that A≥1 and A≥2 are compatible with A�. Their associated
repairs are: R(A≥1) = {Reports(F78), Manager(Bob), Sales(Bob)} and R(A≥2) =
{Reports(F78), Manager(Bob)}.
Consider the assertion Staff(Bob) and its two supports, B1 = {Sales(Bob)}
and B2 = {Edit(Bob,F78)}. Notice that R(A≥1) � Staff(Bob) but R(A≥2) ��
Staff(Bob). Hence, Staff(Bob) /∈ cπ(A�). Proposition 2 confirms this result, since
neither B1 nor B2 dominates the conflict {Sales(Bob), Sign(Bob,F78)}.

�

362 A. Laouar et al.

Reports(F78)

Manager(Bob)

Sign(Bob, F78)

Sales(Bob)

Edit(Bob, F78)

(a) �

Reports(F78)

Manager(Bob)

Sales(Bob)

Sign(Bob, F78) ≡ Edit(Bob, F78)

(b) 1

Reports(F78)

Manager(Bob)

Sales(Bob) ≡ Sign(Bob, F78)

Edit(Bob, F78)

(c) 2

Fig. 4. Solid arrows depict strict preference. Dashed lines show the conflicts.

Propositions 1 and 2 provide a full characterization for membership in cπ(A�)
based on the notions of support and dominance. The next proposition states (as
expected) that cπ(A�) is consistent and more productive than π(A�). Formally:

Proposition 3.

1. 〈T , cπ(A�)〉 is consistent.
2. π(A�) ⊆ cπ(A�). The converse is false (i.e., cπ(A�) �⊂ π(A�)).

Example 2 confirms that cπ(A�) �⊂ π(A�).

The next proposition establishes the tractability of cπ(A�). This follows from
the characterization given in Propositions 1 and 2, i.e., using the notions of
dominance and support. Indeed, computing the conflicts and the supports can
be achieved in polynomial time [10]. Besides, it can be shown that the number
of conflicts and supports is bounded by |cln(T)| ∗ |A�| (where cln(T) denotes
the negative closure of the TBox T , i.e., all the negative axioms that can be
inferred from it). Moreover, in the context of OBDA, the size of the TBox is
often considered negligible compared to the size of the ABox, thus the main
focus is on data complexity. Lastly, it is important to note that retrieving all
the conflicts beforehand is not required. Instead, checking whether an assertion
is in Cπ-repair can be performed by progressively examining the conflicts (an
implementation is available at https://github.com/ahmedlaouar/py reasoner).
This incremental feature is particularly beneficial for evolving ABoxes.

Proposition 4. Let K� = 〈T ,A�〉 be a partially preordered KB and ϕ be an
assertion. Checking if ϕ ∈ cπ(A�) is done in polynomial time in DL-LiteR.

5 Rationality Properties of π-Acceptance and Cπ-Repair

In this section, we study the rationality properties of query-answering using the
possibilistic repair method and its closure-based version.

Let K� = 〈T ,A�〉 be a partially preordered KB which may be inconsistent
and let q be a query. Consider the KB’s possibilistic repairs π(A�) (Definition 2)
and cπ(A�) (Definition 4).

https://github.com/ahmedlaouar/py_reasoner

Tractable Possibilistic Repair for Partially Ordered Ontologies 363

Let us start with unconditional query-answering, which amounts to checking
whether the query q follows from the repair π(A�) (resp. cπ(A�)), denoted with
the symbol �π (resp. �cπ), and � denotes standard DL-LiteR inference. Formally:

K� �π q (resp. K� �cπ q) iff 〈T , π(A�)〉 � q (resp. 〈T , cπ(A�)〉 � q) (1)

The following result states that the unconditional inferences �π and �cπ

meet the rationality properties of unconditional inconsistency-tolerant semantics
defined in [2]. Namely:

Proposition 5. The unconditional possibilistic inference relation �s (with s ∈
{π, cπ}) satisfies the following properties:

– QCE (Query Conjunction Elimination) If K� �s q1 ∧q2 then K� �s q1 and
K� �s q2.

– QCI (Query Conjunction Introduction) If K� �s q1 and K� �s q2 then K� �s

q1∧q2.
– Cons (Consistency) For any set of assertions B, if K� �s B then 〈T ,B〉 is

consistent.
– ConsC (Consistency of Conjunction) For any set of assertions B, if for all

ϕ ∈ B, K� �s ϕ, then 〈T ,B〉 is consistent.
– ConsS (Consistency of Support) For any set of assertions B, if K� �s B then

there is a maximally consistent subset A′ of A� s.t. 〈T ,A′〉 � B.

The proof of Proposition 5 is immediate since it is based on a direct application
of standard DL-Lite entailment to the repairs π(A�) (resp. cπ(A�)).

We now focus on conditional query-answering, which amounts to querying a
partially preordered KB under a given set of assertions considered fully reliable
and consistent with respect to the TBox, called an observation or a fully observ-
able set and denoted by O. We write O |∼s

K�
q to indicate that q follows from the

KB K�, under the observation O, using the inconsistency-tolerant semantics s
(here s = π for the possibilistic repair and s = cπ for its closure-based version).
A standard way to proceed is to first add O to the ABox with the highest pri-
ority, then apply the possibilistic repair method (and its closure-based version)
using Eq. 1 to unconditionally answer queries from the augmented KB.

Let us denote by KO = 〈T ,A�O 〉 the augmented KB where A�O = (A� ∪O)
results from adding O to A� with the highest priority. Moreover, the partial
preorder �O over (A� ∪ O) is obtained from � as follows:

(i) For all ϕ1 ∈ O, for all ϕ2 ∈ O: ϕ1 �O ϕ2 and ϕ2 �O ϕ1 (i.e., ϕ1 and ϕ2 are
equally reliable).

(ii) For all ϕ1 ∈ O, for all ϕ2 ∈ A� \ O: ϕ1 �O ϕ2 (i.e., every ϕ1 ∈ O is strictly
more preferred than any ϕ2 ∈ A� \ O. This serves to give priority to O).

(iii) For all ϕ1 ∈ A�\O, for all ϕ2 ∈ A�\O: ϕ1�Oϕ2 iff ϕ1�ϕ2 (i.e., the relative
ordering between the elements of A� that are not in O is preserved).

Next, we define the partially preordered conditional query-answering relation.

364 A. Laouar et al.

Definition 7. (Conditional inference) Let K� = 〈T ,A�〉 be a partially pre-
ordered KB, O an observation and q a query. Then q follows from K� and O,
denoted O |∼s

K�
q, if KO �s q (with s ∈ {π, cπ}), where KO = 〈T ,A�O 〉 is the

augmented KB and �O its associated partial preorder (described in (i), (ii),
(iii)), and �s is the unconditional query-answering relation given by Eq. 1.

One can check that O |∼s
K�

q is non-monotonic for both semantics (the possibilis-
tic repair and its closure-based version). The well-known System P [24], originally
defined in the context of propositional logic, has been adapted to DL-LiteR in [3]
(see also [14,21] for an adaptation to richer description logics).

The adaptation of System P’s rules is given below, where K� = 〈T ,A�〉 is a
KB, O1, O2, O3 are observations, s is an inconsistency-tolerant semantics with
s ∈ {π, cπ}, � and ≡ denote standard DL-LiteR inference and equivalence:

– R (Reflexivity) O1 |∼s
K�

O1.
– LLE (Left Logical Equivalence) If 〈T ,O1〉 ≡ 〈T ,O2〉 and O1|∼s

K�
O3 then

O2|∼s
K�

O3.
– RW (Right Weakening) If 〈T ,O1〉 � 〈T ,O2〉 and O3 |∼s

K�
O1, then

O3 |∼s
K�

O2.
– Cut If O1 |∼s

K�
O2 and O1 ∪ O2 |∼s

K�
O3, then O1 |∼s

K�
O3.

– CM (Cautious Monotony) If O1|∼s
K�

O2 and O1|∼s
K�

O3, then O1∪O2|∼s
K�

O3.
– And If O1 |∼s

K�
O2 and O1 |∼s

K�
O3, then O1 |∼s

K�
O2 ∪ O3.

In this paper, we propose to also consider two additional properties, originally
defined in propositional logic, and which go beyond cautious monotony:

– RM (Rational Monotony) If O1 |∼s
K�

O3, then O1 ∪ O2 |∼s
K�

O3 or 〈T , (O1 ∪
O2 ∪ A�)〉 is inconsistent.

– Comp (Completeness) If O1 |∼s
K�

O3, then either O1∪O2 |∼s
K�

O3 or 〈T , (O1∪
O2 ∪ O3 ∪ A�)〉 is inconsistent.

Note that the adaptation of the last two properties that we propose uses the
notion of inconsistency instead of negation in the original definition of rational
monotony, and uses a disjunctive interpretation of RM6. Here, RM states that
given a new observation, we can continue to believe in the previous plausible con-
sequences of the KB, or the new observation conflicts with the KB. The Comp
rule7 is stronger than RM, and states that given a new observation O2, then
either O3 continues to be derived from both O1 and O2, or O2 contradicts the
whole KB (plus itself). Intuitively, this means that either we continue to believe
in O3, or we should believe in its negation (there is no room for ignoring O3).

The next proposition summarizes the results of the conditional properties:
6 In propositional logic (PL), RM is defined as: if α |∼K γ and α |�∼K ¬β, then α ∧

β |∼K γ, where α, β and γ are PL formulas. Our adaptation consists first in rewriting
RM equivalently in a disjunctive way: if α |∼K γ, then α∧β |∼K γ or α |∼K ¬β. Lastly,
we replace α |∼K ¬β with α ∧ β is inconsistent with the KB.

7 In PL, Comp is defined as: if α |∼K γ, then either α ∧ β |∼K γ or α ∧ β |∼K ¬γ. Here,
we simply replace α ∧ β |∼K ¬γ with α ∧ β ∧ γ is inconsistent with the KB.

Tractable Possibilistic Repair for Partially Ordered Ontologies 365

Proposition 6. Let K� = 〈T ,A�〉 be a partially preordered KB, O be an obser-
vation and q be a query. The query-answering relations |∼π

K�
and |∼cπ

K�
satisfy

the properties R, LLE, RW, Cut, CM and And. However, they fail to satisfy
RM and Comp.

6 Concluding Discussions

Developing tractable and safe methods for inconsistency management is a chal-
lenge and is crucial for dealing with inconsistent large-scale knowledge bases.
This paper follows this research line where we tackled the issue of computing a
productive repair for possibilistic partially preordered ontologies. We defined the
Cπ-repair method which interprets a partial preorder into a family of compatible
ABoxes, computes their possibilistic repairs, closes those repairs and intersects
them to yield a more productive repair.

An important result of this paper is that we characterized this method equiv-
alently using the notions of dominance and support, which ensures the tractable
calculation of the repair. This characterization can be generalized easily to more
expressive description languages (it suffices to replace the DL-LiteR inference
relation in the support definition by that of a more expressive language). How-
ever, tractability is guaranteed only if the computation of the conflicts and sup-
ports is performed in polynomial time and their size remains polynomial in the
ABoxe’s size (a detailed discussion is given below). A future work is to char-
acterize the linear repair [26] and the Elect [6] methods to partially preordered
ABoxes.

We conclude this paper with a few discussion points on the rational properties
as well as on the possibility of generalizing our method to richer languages or
other inconsistency-tolerant semantics.

On the Rational Properties: The two possibilistic semantics studied in this
paper satisfy the unconditional properties (Proposition 5) and the rules of Sys-
tem P (Proposition 6). If these propositions seem natural, even minimal, they are
not always satisfied by some inconsistency-tolerant semantics. For example, the
so-called majority semantics (a query is valid if it is obtained from the majority
of the repairs of an inconsistent ABox) does not satisfy these minimal properties.
More precisely, in [3] it has been shown that majority-based inference does not
satisfy Cut, Cautious Monotony, and And properties, even in DL-LiteR. Another
example where System P is not satisfied is existential inference, where a query
is valid if it follows from one repair.

On the non-satisfaction of the rational monotony (RM) property, the result
is expected if we draw a parallel with standard possibilistic propositional logic
(LP) and with the properties of non-monotonic relations. Indeed, there is a
representation theorem (KLM [24]) which shows that any non-monotonic relation
which satisfies System P and RM is necessarily representable by a total order
on the set of interpretations of propositional logic.

On the Extension to Richer Languages: From a semantic point of view,
the definitions of Cπ-repair given in Sect. 3, that have been established within

366 A. Laouar et al.

the framework of DL-LiteR, remain valid for richer languages (provided that
the notion of deductive closure of an ABox with respect to a TBox can be
defined). Indeed, the general process given in Fig. 2 is not proper to DL-LiteR
and easily applies to richer languages (e.g. Existential Rules). The challenge
here is at the computational level, since we need first to find an equivalent
characterization (like we did in this paper using support/dominance) and then
show that it is tractable. For instance, in many description logics where conflicts
may be composed of any number of assertions (unlike DL-Lite where conflicts
consist of at most two assertions [16]), the extension of the support/dominance
characterization is possible. However, even if the conflict set is computed in
polynomial time, the size of this set itself can be exponential w.r.t. the size of
the ABox. In this case, tractability cannot be preserved.

Furthermore, the main idea behind query-answering from inconsistent par-
tially ordered knowledge bases is to extend the partial order into the set of its
compatible total orders, then to apply a repair semantics to each one of them.
The strategy we used in our approach (based on the possibilistic version of DL-
LiteR) yields a single repair for each total order. However, in the general case,
using a different strategy, each total order may return multiple repairs. Hence,
a query needs to follow from all the repairs for all the compatible total orders.

On the Extension to Non-repair Based Semantics: We end this paper
with a brief discussion on the applicability of inconsistency-tolerant seman-
tics that are not directly based on repairs, such as paraconsistent multi-valued
description logics, on partially ordered ABoxes. Let us first specify that an advan-
tage of our approach is that once the possibilistic repair Cπ-repair is calcu-
lated, query-answering is done in a standard way. Within multi-valued seman-
tics, the ABox remains unchanged, but the query-answering mechanisms need
to be adapted and this can potentially generate an additional computational
cost. Besides, from a semantic point of view, it is possible to redefine this work
with multi-valued semantics. This can be done by first selecting a multi-valued
semantics of DL-LiteR (for example the 4-valued semantics given in [30]). The
next step consists in extending it to the possibilistic framework with a totally
ordered ABox. This requires an adaptation of the existing work (for flat ABox)
to define preferred 4-valued canonical models. The last step consists in taking all
the extensions of the total orders and defining the 4-valued canonical models of
the partial ABox as the union of the preferred 4-valued canonical model of each
total ABox extension. However, having an equivalent characterization (without
generating all the extensions of the partial order) to the one given in this paper
(Propositions 1 and 2), is not obvious to achieve.

Acknowledgements. This research has received support from the European Union’s
Horizon research and innovation programme under the MSCA-SE (Marie Sk�lodowska-
Curie Actions Staff Exchange) grant agreement 101086252; Call: HORIZON-MSCA-
2021-SE-01; Project title: STARWARS (STormwAteR and WastewAteR networkS het-
erogeneous data AI-driven management).

This research has also received support from the French national project ANR
(Agence Nationale de la Recherche) EXPIDA (EXplainable and parsimonious Prefer-

Tractable Possibilistic Repair for Partially Ordered Ontologies 367

ence models to get the most out of Inconsistent DAtabases), grant number ANR-22-
CE23-0017 and from the ANR project Vivah (Vers une intelligence artificielle à visage
humain), grant number ANR-20-THIA-0004.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009). https://doi.org/10.
1613/jair.2820

2. Baget, J., et al.: A general modifier-based framework for inconsistency-tolerant
query answering. In: Principles of Knowledge Representation and Reasoning (KR),
Cape Town, South Africa, pp. 513–516 (2016)

3. Baget, J.F., et al.: Inconsistency-tolerant query answering: rationality properties
and computational complexity analysis. In: Michael, L., Kakas, A. (eds.) JELIA
2016. LNCS (LNAI), vol. 10021, pp. 64–80. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48758-8 5

4. Banerjee, M., Dubois, D., Godo, L., Prade, H.: On the relation between possibilistic
logic and modal logics of belief and knowledge. J. Appl. Non-Classical Logics 27(3–
4), 206–224 (2017)

5. Belabbes, S., Benferhat, S.: Computing a possibility theory repair for partially
preordered inconsistent ontologies. IEEE Trans. Fuzzy Syst. 30, 3237–3246 (2021)

6. Belabbes, S., Benferhat, S., Chomicki, J.: Handling inconsistency in partially pre-
ordered ontologies: the Elect method. J. Log. Comput. 31(5), 1356–1388 (2021)

7. Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-based
repair from inconsistent and prioritized DL-Lite knowledge bases? In: International
Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, pp.
1450–1456 (2015)

8. Benferhat, S., Garcia, L.: Handling locally stratified inconsistent knowledge bases.
Stud. Logica. 70(1), 77–104 (2002)

9. Bienvenu, M.: On the complexity of consistent query answering in the presence
of simple ontologies. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, Toronto, Ontario, Canada (2012)

10. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885,
pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7 5

11. Bienvenu, M., Bourgaux, C.: Querying and repairing inconsistent prioritized knowl-
edge bases: complexity analysis and links with abstract argumentation. In: Princi-
ples of Knowledge Representation and Reasoning (KR), Virtual Event, pp. 141–151
(2020)

12. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: AAAI, pp. 996–1002 (2014)

13. Brewka, G.: Preferred subtheories: an extended logical framework for default rea-
soning. In: IJCAI, Detroit, USA, pp. 1043–1048 (1989)

14. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles
of KLM-style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1:1–
1:46 (2021)

15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

https://doi.org/10.1613/jair.2820
https://doi.org/10.1613/jair.2820
https://doi.org/10.1007/978-3-319-48758-8_5
https://doi.org/10.1007/978-3-319-48758-8_5
https://doi.org/10.1007/978-3-319-49493-7_5

368 A. Laouar et al.

16. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite
knowledge bases. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol.
6496, pp. 112–128. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17746-0 8

17. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 38, 325–339 (1967)

18. Dubois, D., Prade, H.: Possibilistic logic - an overview. Comput. Logic 9, 197–255
(2014)

19. Dubois, D., Prade, H.: A crash course on generalized possibilistic logic. In: Ciucci,
D., Pasi, G., Vantaggi, B. (eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 3–17.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00461-3 1

20. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations
and applications to qualitative reasoning about uncertainty. Artif. Intell. J. 252,
139–174 (2017)

21. Everett, L., Morris, E., Meyer, T.: Explanation for KLM-style defeasible reasoning.
In: Jembere, E., Gerber, A.J., Viriri, S., Pillay, A. (eds.) SACAIR 2021. CCIS,
vol. 1551, pp. 192–207. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
95070-5 13

22. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (2003)

23. Finger, M., Godo, L., Prade, H., Qi, G.: Advances in weighted logics for artificial
intelligence. Int. J. Approximate Reasoning 88, 385–386 (2017)

24. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. J. 44(1–2), 167–207 (1990)

25. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15918-3 9

26. Nebel, B.: Base revision operations and schemes: semantics, representation and
complexity. In: European Conference on Artificial Intelligence, pp. 341–345 (1994)

27. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

28. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

29. Spohn, W.: The Laws of Belief - Ranking Theory and Its Philosophical Applica-
tions. Oxford University Press, Oxford (2014)

30. Zhou, L., Huang, H., Qi, G., Ma, Y., Huang, Z., Qu, Y.: Paraconsistent query
answering over DL-Lite ontologies. Web Intell. Agent Syst. Int. J. 10(1), 19–31
(2012)

https://doi.org/10.1007/978-3-642-17746-0_8
https://doi.org/10.1007/978-3-642-17746-0_8
https://doi.org/10.1007/978-3-030-00461-3_1
https://doi.org/10.1007/978-3-030-95070-5_13
https://doi.org/10.1007/978-3-030-95070-5_13
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9

Derivation-Graph-Based Characterizations of
Decidable Existential Rule Sets�

Tim S. Lyon(B) and Sebastian Rudolph

Computational Logic Group, TU Dresden, Dresden, Germany
{timothy stephen.lyon,sebastian.rudolph}@tu-dresden.de

Abstract. This paper establishes alternative characterizations of very
expressive classes of existential rule sets with decidable query entailment.
We consider the notable class of greedy bounded-treewidth sets (gbts)
and a new, generalized variant, called weakly gbts (wgbts). Revisit-
ing and building on the notion of derivation graphs, we define (weakly)
cycle-free derivation graph sets ((w)cdgs) and employ elaborate proof-
theoretic arguments to obtain that gbts and cdgs coincide, as do wgbts
and wcdgs. These novel characterizations advance our analytic proof-
theoretic understanding of existential rules and will likely be instrumen-
tal in practice.

Keywords: TGDs · query entailment · bounded treewidth · proof-theory

1 Introduction

The formalism of existential rules has come to prominence as an effective app-
roach for both specifying and querying knowledge. Within this context, a knowl-
edge base takes the form K = (D,R), where D is a finite collection of atomic facts
(called a database) and R is a finite set of existential rules (called a rule set),
which are first-order formulae of the form ∀xy(ϕ(x,y) → ∃zψ(y, z)). Although
existential rules are written in a relatively simple language, they are expressive
enough to generalize many important languages used in knowledge representa-
tion, including rule-based formalisms as well as such based on description logics.
Moreover, existential rules have meaningful applications within the domain of
ontology-based query answering [2], data exchange and integration [9], and have
proven beneficial in the study of general decidability criteria [10].

The Boolean conjunctive query entailment problem consists of taking a knowl-
edge base K, a Boolean conjunctive query (BCQ) q, and determining if K |= q.
As this problem is known to be undecidable for arbitrary rule sets [7], much
work has gone into identifying existential rule fragments for which decidability
can be reclaimed. Typically, such classes of rule sets are described in one of two
ways: either, a rule set’s membership in said class can be established through
easily verifiable syntactic properties (such classes are called concrete classes), or
the property is more abstract (which is often defined on the basis of semantic

� Work supported by the ERC through Consolidator Grant 771779 (DeciGUT).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 369–384, 2023.
https://doi.org/10.1007/978-3-031-43619-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_26&domain=pdf
http://orcid.org/0000-0003-3214-0828
http://orcid.org/0000-0002-1609-2080
https://doi.org/10.1007/978-3-031-43619-2_26

370 T. S. Lyon, S. Rudolph

notions) and may be hard or even impossible to algorithmically determine (such
classes are called abstract classes). Examples of concrete classes include func-
tional/inclusion dependencies [11], datalog, and guarded rules [6]. Examples of
abstract classes include finite expansion sets [4], finite unification sets [3], and
bounded-treewidth sets (bts) [6].

Yet, there is another means of establishing the decidability of query entail-
ment: only limited work has gone into identifying classes of rule sets with decid-
able query entailment based on their proof-theoretic characteristics, in particular,
based on specifics of the derivations such rules produce. To the best of our knowl-
edge, only the class of greedy bounded treewidth sets (gbts) has been identified
in such a manner (see [14]). A rule set qualifies as gbts when every derivation
it produces is greedy, in a sense that it is possible to construct a tree decom-
position of finite width in a “greedy” fashion alongside the derivation, ensuring
the existence of a model with finite treewidth for the knowledge base under
consideration, thus warranting the decidability of query entailment [6].

In this paper, we investigate the gbts class and three new classes of rule sets
where decidability is determined proof-theoretically. First, we define a weakened
version of gbts, dubbed wgbts, where the rule set need only produce at least one
greedy derivation relative to any given database. Second, we investigate two new
classes of rule sets, dubbed cycle-free derivation graph sets (cdgs) and weakly
cycle-free derivation graph sets (wcdgs), which are defined relative to the notion
of a derivation graph. Derivation graphs were introduced by Baget et al. [5] and
are directed acyclic graphs encoding how certain facts are derived in the course
of a derivation. Notably, via the application of reduction operations, a derivation
graph may be reduced to a tree, which serves as a tree decomposition of a model
of the considered knowledge base. Such objects helped establish that (weakly)
frontier-guarded rule sets are bts [5]. In short, our key contributions are (Fig. 1):

1. We investigate how proof-theoretic structures gives rise to decidable query
entailment and propose three new classes of rule sets.

2. We show that gbts = cdgs and wgbts = wcdgs, establishing a correspon-
dence between greedy derivations and reducible derivation graphs.

3. We show that wgbts properly subsumes gbts via a novel proof transfor-
mation argument. Therefore, by the former point, we also find that wcdgs
properly subsumes cdgs.

bts

wgbts = wcdgs

gbts = cdgs

Fig. 1. A graphic depicting the containment relations between the classes of rule sets
considered. The solid edges represent strict containment relations.

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 371

The paper is organized accordingly: In Section 2, we define preliminary no-
tions. We study gbts and wgbts in Section 3, and show that the latter class
properly subsumes the former via an intricate proof transformation argument.
In Section 4, we define cdgs and wcdgs as well as show that gbts = cdgs and
wgbts = wcdgs. In Section 5, we conclude and discuss future work. Last, we
note that full proofs can be found in the appended version [12].

2 Preliminaries

Syntax and formulae. We let Ter be a set of terms, which is the the union of
three countably infinite, pairwise disjoint sets, namely, the set of constants Con,
the set of variables Var, and the set of nulls Nul. We use a, b, c, . . . (occasionally
annotated) to denote constants, and x, y, z, . . . (occasionally annotated) to
denote both variables and nulls. A signature Σ is a set of predicates p, q, r, . . .
(which may be annotated) such that for each p ∈ Σ, ar(p) ∈ N is the arity of p.
For simplicity, we assume a fixed signature Σ throughout the paper.

An atom over Σ is defined to be a formula of the form p(t1, . . . , tn), where
p ∈ Σ, ar(p) = n, and ti ∈ Ter for each i ∈ {1, . . . , n}. A ground atom over Σ is
an atom p(a1, . . . , an) such that ai ∈ Con for each i ∈ {1, . . . , n}. We will often
use t to denote a tuple (t1, . . . , tn) of terms and p(t) to denote a (ground) atom
p(t1, . . . , tn). An instance over Σ is defined to be a (potentially infinite) set I of
atoms over constants and nulls, and a database D is a finite set of ground atoms.
We let X , Y, . . . (occasionally annotated) denote (potentially infinite) sets of
atoms with Ter(X), Con(X), Var(X), and Nul(X) denoting the set of terms,
constants, variables, and nulls occurring in the atoms of X , respectively.

Substitutions and homomorphisms. A substitution is a partial function over
the set of terms Ter. A homomorphism h from a set X of atoms to a set Y of
atoms, is a substitution h : Ter(X) → Ter(Y) such that (i) p(h(t1), . . . , h(tn)) ∈
Y, if p(t1, . . . , tn) ∈ X , and (ii) h(a) = a for each a ∈ Con. If h is a homomor-
phism from X to Y, we say that h homomorphically maps X to Y. Atom sets
X ,Y are homomorphically equivalent, written X ≡ Y, iff X homomorphically
maps to Y, and vice versa. An isomorphism is a bijective homomorphism h
where h−1 is a homomorphism.

Existential rules. Whereas databases encode assertional knowledge, ontologies
consist in the current setting of existential rules, which we will frequently refer
to as rules more simply. An existential rule is a first-order sentence of the form:

ρ = ∀xy(ϕ(x,y) → ∃zψ(y, z))

where x, y, and z are pairwise disjoint collections of variables, ϕ(x,y) is a
conjunction of atoms over constants and the variables x,y, and ψ(y, z) is a
conjunction of atoms over constants and the variables y, z. We define body(ρ) =
ϕ(x,y) to be the body of ρ, and head(ρ) = ψ(y, z) to be the head of ρ. For
convenience, we will often interpret a conjunction p1(t1) ∧ · · · ∧ pn(tn) of atoms

372 T. S. Lyon, S. Rudolph

(such as the body or head of a rule) as a set {p1(t1), · · · , pn(tn)} of atoms; if h
is a homomorphism, then h(p1(t1) ∧ · · · ∧ pn(tn)) := {p1(h(t1)), · · · , pn(h(tn))}
with h applied componentwise to each tuple ti of terms. The frontier of ρ, written
fr(ρ), is the set of variables y that the body and head of ρ have in common, that
is, fr(ρ) = Var(body(ρ)) ∩ Var(head(ρ)). We define a frontier atom in a rule ρ
to be an atom containing at least one frontier variable. We use ρ and annotated
versions thereof to denote rules, as well as R and annotated versions thereof to
denote finite sets of rules (simply called rule sets).

Models. We note that sets of atoms (which include instances and databases)
may be seen as first-order interpretations, and so, we may use |= to represent
the satisfaction of formulae on such structures. A set of atoms X satisfies a set
of atoms Y (or, equivalently, X is a model of Y), written X |= Y, iff there exists
a homomorphic mapping from Y to X . A set of atoms X satisfies a rule ρ (or,
equivalently, X is a model of ρ), written X |= ρ, iff for any homomorphism
h, if h is a homomorphism from body(ρ) to X , then it can be extended to a
homomorphism h that also maps head(ρ) to X . A set of atoms X satisfies a rule
set R (or, equivalently, X is a model of R), written X |= R, iff X |= ρ for every
rule ρ ∈ R. If a model X of a set of atoms, a rule, or a rule set homomorphically
maps into every model of that very set of atoms, rule, or rule set, then we refer
to X as a universal model of that set of atoms, rule, or rule set [8].

Knowledge bases and querying. A knowledge base (KB) K is defined to be
a pair (D,R), where D is a database and R is a rule set. An instance I is a
model of K = (D,R) iff D ⊆ I and I |= R. We consider querying knowledge
bases with conjunctive queries (CQs), that is, with formulae of the form q(y) =
∃xϕ(x,y), where ϕ(x,y) is a non-empty conjunction of atoms over the variables
x,y and constants. We refer to the variables y in q(y) as free and define a
Boolean conjunctive query (BCQ) to be a CQ without free variables, i.e. a BCQ
is a CQ of the form q = ∃xϕ(x). A knowledge base K = (D,R) entails a CQ
q(y) = ∃xϕ(x,y), written K |= q(y), iff ϕ(x,y) homomorphically maps into
every model I of K; we note that this is equivalent to ϕ(x,y) homomorphically
mapping into a universal model of D and R.

As we are interested in extracting implicit knowledge from the explicit knowl-
edge presented in a knowledge base K = (D,R), we are interested in deciding
the BCQ entailment problem:1

(BCQ Entailment) Given a KB K and a BCQ q, is it the case that K |= q?

While it is well-known that the BCQ entailment problem is undecidable in gen-
eral [7], restricting oneself to certain classes of rule sets (e.g. datalog or finite
unification sets [5]) may recover decidability. We refer to classes of rule sets for
which BCQ entailment is decidable as query-decidable classes.

Derivations. One means by which we can extract implicit knowledge from
a given KB is through the use of derivations, that is, sequences of instances
1 We recall that entailment of non-Boolean CQs or even query answering can all be
reduced to BCQ entailment in logarithmic space.

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 373

obtained by sequentially applying rules to given data. We say that a rule ρ =
∀xy(ϕ(x,y) → ∃zψ(y, z)) is triggered in an instance I via a homomorphism h,
written succinctly as τ(ρ, I, h), iff h homomorphically maps ϕ(x,y) to I. In this
case, we define

Ch(I, ρ, h) = I ∪ h(ψ(y, z)),

where h is an extension of h mapping every variable z in z to a fresh null. Conse-
quently,wedefine anR-derivation to be a sequenceI0, (ρ1, h1, I1), . . . , (ρn, hn, In)
such that (i) ρi ∈ R for each i ∈ {1, . . . , n}, (ii) τ(ρi, Ii−1, hi) holds for i ∈
{1, . . . , n}, and (iii) Ii = Ch(Ii−1, ρ, hi) for i ∈ {1, . . . , n}. We will use δ and
annotations thereof to denote R-derivations, and we define the length of an
R-derivation δ = I0, (ρ1, h1, I1), . . . , (ρn, hn, In), denoted |δ|, to be n. Further-
more, for instances I and I ′, we write I δ−→R I ′ to mean that there exists an
R-derivation δ of I ′ from I. Also, if I ′′ can be derived from I ′ by means of a rule
ρ ∈ R and homomorphism h, we abuse notation and write I δ−→R I ′, (ρ, h, I ′′)
to indicate that I δ−→R I ′ and I ′ δ′−→R I ′′ with δ′ = I ′, (ρ, h, I ′′). Derivations
play a fundamental role in this paper as we aim to identify (and analyze the
relationships between) query-decidable classes of rule sets based on how such
rule sets derive information, i.e. we are interested in classes of rule sets that may
be proof-theoretically characterized.

Chase. A tool that will prove useful in the current work is the chase, which
in our setting is a procedure that (in essence) simultaneously constructs all
K-derivations in a breadth-first manner. Although many variants of the chase
exist [5,9,13], we utilize the chase procedure (also called the k-Saturation) from
Baget et al. [5]. We use the chase in the current work as a purely technical tool
for obtaining universal models of knowledge bases, proving useful in separating
certain query-decidable classes of rule sets.

We define the one-step application of all triggered rules from some R in I by

Ch1(I,R) =
⋃

ρ∈R,τ(ρ,I,h)
Ch(I, ρ, h),

assuming all nulls introduced in the “parallel” applications of Ch to I are dis-
tinct. We let Ch0(I,R) = I, as well as let Chi+1(I,R) = Ch1(Chi(I,R),R),
and define the chase to be

Ch∞(I,R) =
⋃

i∈N
Chi(I,R).

For any KB K = (D,R), the chase Ch∞(D,R) is a universal model of K, that
is, D ⊆ Ch∞(D,R), Ch∞(D,R) |= R, and Ch∞(D,R) homomorphically maps
into every model of D and R.

Rule dependence. Let ρ and ρ′ be rules. We say that ρ′ depends on ρ iff there
exists an instance I such that (i) ρ′ is not triggered in I via any homomor-
phism, (ii) ρ is triggered in I via a homomorphism h, and (iii) ρ′ is triggered in
Ch(I, ρ, h) via a homomorphism h′. We define the graph of rule dependencies [1]
of a set R of rules to be G(R) = (V,E) such that (i) V = R and (ii) (ρ, ρ′) ∈ E
iff ρ′ depends on ρ.

374 T. S. Lyon, S. Rudolph

Treewidth. A tree decomposition of an instance I is defined to be a tree T =
(V,E) such that V ⊆ 2Ter(I) (where each element of V is called a bag) and
E ⊆ V × V , satisfying the following three conditions: (i)

⋃
X∈V X = Ter(I),

(ii) for each p(t1, . . . , tn) ∈ I, there is an X ∈ V such that {t1, . . . , tn} ⊆ X, and
(iii) for each t ∈ Ter(I), the subgraph of T induced by the bags X ∈ V with
t ∈ X is connected (this condition is referred to as the connectedness condition).
We define the width of a tree decomposition T = (V,E) of an instance I as
follows:

w(T) := max{|X| : X ∈ V } − 1

i.e. the width is equal to the cardinality of the largest node in T minus 1. We
let w(T) = ∞ iff for all n ∈ N, n ≤ max{|X| : X ∈ V }. We define the treewidth
of an instance I, written tw(I), as follows:

tw(I) := min{w(T) : T is a tree decomposition of I}

i.e. the treewidth of an instance equals the minimal width among all its tree de-
compositions. If no tree decomposition of I has finite width, we set tw(I) = ∞.

3 Greediness

We now discuss a property of derivations referred to as greediness. In essence,
a derivation is greedy when the image of the frontier of any applied rule con-
sists solely of constants from a given KB and/or nulls introduced by a single
previous rule application. Such derivations were defined by Thomazo et al. [14]
and were used to identify the (query-decidable) class of greedy bounded-treewidth
sets (gbts), that is, the class of rule sets that produce only greedy derivations
(defined below) when applied to a database.

In this section, we also identify a new query-decidable class of rule sets,
referred to as weakly greedy bounded-treewidth sets (wgbts). The wgbts class
serves as a more liberal version of gbts, and contains rule sets that admit at least
one greedy derivation of any derivable instance. It is straightforward to confirm
that wgbts generalizes gbts since if a rule set is gbts, then every derivation
of a derivable instance is greedy, implying that every derivable instance has
some greedy derivation. Yet, what is non-trivial to show is that wgbts properly
subsumes gbts. We are going to prove this fact by means of a proof-theoretic
argument and counter-example along the following lines: first, we show under
what conditions we can permute rule applications in a given derivation (see
Lemma 1 below), and second, we provide a rule set which exhibits non-greedy
derivations (witnessing that the rule set is not gbts), but for which every deriva-
tion can be transformed into a greedy derivation by means of rule permutations
and replacements (witnessing wgbts membership).

Let us now formally define greedy derivations and provide examples to demon-
strate the concept of (non-)greediness. Based on this, we then proceed to define
the gbts and wgbts classes.

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 375

Definition 1 (Greedy Derivation [14]). We define an R-derivation

δ = I0, (ρ1, h1, I1), . . . , (ρn, hn, In)

to be greedy iff for each i such that 0 < i ≤ n, there exists a j < i such that
hi(fr(ρi)) ⊆ Nul(hj(head(ρj))) ∪ Con(I0,R) ∪ Nul(I0).

To give examples of non-greedy and greedy derivations, let us define the
database D† := {p(a), r(b)} and the rule set R2 := {ρ1, ρ2, ρ3, ρ4}, with

ρ1 = p(x) → ∃yz.q(x, y, z) ρ3 = p(x) ∧ r(y) → ∃zwuv.q(x, z, w) ∧ s(y, u, v)
ρ2 = r(x) → ∃yz.s(x, y, z) ρ4 = q(x, y, z) ∧ s(w, u, v) → ∃o.t(x, y, w, u, o)

An example of a non-greedy derivation is the following:

δ1 = D†, (ρ1, h1, I1), (ρ1, h2, I2), (ρ2, h3, I3), (ρ4, h4, I4), with

I4 = {p(a), r(b)︸ ︷︷ ︸
D†

, q(a, y0, z0)︸ ︷︷ ︸
I1\D†

, q(a, y1, z1)︸ ︷︷ ︸
I2\I1

, s(b, y2, z2)︸ ︷︷ ︸
I3\I2

, t(a, y0, b, y2, o)︸ ︷︷ ︸
I4\I3

} and

h1 = h2 = {x→a}, h3 = {x→b}, h4 = {x→a, y →y0, z →z0, w →b, u →y2, v →z2}.
Note that this derivation is not greedy because

h4(fr(ρ4)) = h4({x, y, w, u}) = {a,

∈Nul(h1(head(ρ1)))︷︸︸︷
y0 , b, y2︸︷︷︸

∈Nul(h3(head(ρ2)))

}

That is to say, the image of the frontier from the last rule application (i.e. the
application of ρ4) contains nulls introduced by two previous rule applications (as
opposed to containing nulls from just a single previous rule application), namely,
the first application of ρ1 and the application of ρ2. In contrast, the following is
an example of a greedy derivation

δ2 = D†, (ρ3, h′
1, I ′

1), (ρ1, h
′
2, I ′

2), (ρ4, h
′
3, I ′

3), with

I ′
3 = {p(a), r(b)︸ ︷︷ ︸

D†

, q(a, y0, z0), s(b, y2, z2)︸ ︷︷ ︸
I′
1\D†

, q(a, y1, z1)︸ ︷︷ ︸
I′
2\I′

1

, t(a, y0, b, y2, o)︸ ︷︷ ︸
I′
3\I′

2

} and

h′
1 = {x→a, y →b}, h′

2 = {x→a}, h′
3 = {x→a, y →y0, z →z0, w →b, u →y2, v →z2}.

Greediness of δ2 follows from the frontier of any applied rule being mapped to
nothing but constants and/or nulls introduced by a sole previous rule application.

Definition 2 ((Weakly) Greedy Bounded-Treewidth Set). A rule set R
is a greedy bounded-treewidth set (gbts) iff if D δ−→R I, then δ is greedy. R
is a weakly greedy bounded-treewidth set (wgbts) iff if D δ−→R I, then there
exists some greedy R-derivation δ′ such that D δ′−→R I.

376 T. S. Lyon, S. Rudolph

Remark 1. Observe that gbts and wgbts are characterized on the basis of
derivations starting from given databases only, that is, derivations of the form
I0, (ρ1, h1, I1), . . . , (ρn, hn, In) where I0 = D is a database. In such a case, a
derivation of the above form is greedy iff for each i with 0 < i ≤ n, there exists
a j < i such that hi(fr(ρi)) ⊆ Nul(hj(head(ρj)))∪Con(D,R) as databases only
contain constants (and not nulls) by definition.

As noted above, it is straightforward to show that wgbts subsumes gbts.
Still, establishing that wgbts strictly subsumes gbts, i.e. there are rule sets
within wgbts that are outside gbts, requires more effort. As it so happens,
the rule set R2 (defined above) serves as such a rule set, admitting non-greedy
R2-derivations, but where it can be shown that every instance derivable using
the rule set admits a greedy R2-derivation. As a case in point, observe that the
R2-derivations δ1 and δ2 both derive the same instance I4 = I ′

3, however, δ1 is
a non-greedy R2-derivation of the instance and δ2 is a greedy R2-derivation of
the instance. Clearly, the existence of the non-greedy R2-derivation δ1 witnesses
that R2 is not gbts. To establish that R2 still falls within the wgbts class, we
show that every non-greedy R2-derivation can be transformed into a greedy R2-
derivation using two operations: (i) rule permutations and (ii) rule replacements.

Regarding rule permutations, we consider under what conditions we may
swap consecutive applications of rules in a derivation to yield a new derivation
of the same instance. For example, in the R2-derivation δ1 above, we may swap
the consecutive applications of ρ1 and ρ2 to obtain the following derivation:

δ′
1 = D†, (ρ1, h1, I1), (ρ2, h3, I1 ∪ (I3 \ I2)), (ρ1, h2, I3), (ρ4, h4, I4).

I1 ∪ (I3 \ I2) = {p(a), r(b), q(a, y0, z0), s(b, y2, z2)} is derived by applying ρ2
and the subsequent application of ρ1 reclaims the instance I3. Therefore, the
same instance I4 remains the conclusion. Although one can confirm that δ′

1 is
indeed an R2-derivation, thus serving as a successful example of a rule permuta-
tion (meaning, the rule permutation yields another R2-derivation), the following
question still remains: for a rule set R, under what conditions will permuting
rules within a given R-derivation always yield another R-derivation?

We pose an answer to this question, formulated as the permutation lemma
below, which states that an application of a rule ρ may be permuted before an
application of a rule ρ′ so long as the former rule does not depend on the latter
(in the sense formally defined in Section 2 based on the work of Baget [1]). Fur-
thermore, it should be noted that such rule permutations preserve the greediness
of derivations. In the context of the above example, ρ2 may be permuted before
ρ1 in δ1 because the former does not depend on the latter.

Lemma 1 (Permutation Lemma). Let R be a rule set with I0 an instance.
Suppose we have a (greedy) R-derivation of the following form:

I0, . . . , (ρi, hi, Ii), (ρi+1, hi+1, Ii+1), . . . , (ρn, hn, In)

If ρi+1 does not depend on ρi, then the following is a (greedy) R-derivation too:

I0, . . . , (ρi+1, hi+1, Ii−1 ∪ (Ii+1 \ Ii)), (ρi, hi, Ii+1), . . . , (ρn, hn, In).

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 377

As a consequence of the above lemma, rules may always be permuted in a
given R-derivation so that its structure mirrors the graph of rule dependencies
G(R) (defined in Section 2). That is, given a rule set R and an R-derivation δ, we
may permute all applications of rules serving as sources in G(R) (which do not
depend on any rules in R) to the beginning of δ, followed by all rule applications
that depend only on sources, and so forth, with any applications of rules serving
as sinks in G(R) concluding the derivation. For example, in the graph of rule
dependencies of R2, the rules ρ1, ρ2, and ρ3 serve as source nodes (they do not
depend on any rules in R2) and the rule ρ4 is a sink node depending on each of
the aforementioned three rules, i.e. G(R2) = (V,E) with V = {ρ1, ρ2, ρ3, ρ4} and
E = {(ρi, ρ4) | 1 ≤ i ≤ 3}. Hence, in any given R2-derivation δ, any application
of ρ1, ρ2, or ρ3 can be permuted backward (toward the beginning of δ) and any
application of ρ4 can be permuted forward (toward the end of δ).

Beyond the use of rule permutations, we also transform R2-derivations by
making use of rule replacements. In particular, observe that head(ρ3) and body(ρ3)
correspond to conjunctions of head(ρ1) and head(ρ2), and body(ρ1) and body(ρ2),
respectively. Thus, we can replace the first application of ρ1 and the succeeding
application of ρ2 in δ′

1 above by a single application of ρ3, thus yielding the R2-
derivation δ′′

1 = D†, (ρ3, h, I1 ∪ (I3 \ I2)), (ρ1, h2, I3), (ρ4, h4, I4), where h(x) = a
and h(y) = b. Interestingly, inspecting the above R2-derivation, one will find
that it is identical to the greedy R2-derivation δ2 defined earlier in the section,
and so, we have shown how to take a non-greedy R2-derivation (viz. δ1) and
transform it into a greedy R2-derivation (viz. δ2) by means of rule permutations
and replacements. In the same way, one can prove in general that any non-greedy
R2-derivation can be transformed into a greedy R2-derivation, thus giving rise
to the following theorem, and demonstrating that R2 is indeed wgbts.

Theorem 1. R2 is wgbts, but not gbts. Thus, wgbts properly subsumes gbts.

4 Derivation Graphs

We now discuss derivation graphs – a concept introduced by Baget et al. [5] and
used to establish that certain classes of rule sets (e.g. weakly frontier guarded
rule sets [6]) exhibit universal models of bounded treewidth. A derivation graph
has the structure of a directed acyclic graph and encodes how atoms are derived
throughout the course of an R-derivation. By applying so-called reduction oper-
ations, a derivation graph may (under certain conditions) be transformed into a
treelike graph that serves as a tree decomposition of an R-derivable instance.

Below, we define derivation graphs and discuss how such graphs are trans-
formed into tree decompositions by means of reduction operations. To increase
comprehensibility, we provide an example of a derivation graph (shown in Fig-
ure 2) and give an example of applying each reduction operation (shown in
Figure 3). After, we identify two (query-decidable) classes of rule sets on the
basis of derivation graphs, namely, cycle-free derivation graph sets (cdgs) and
weakly cycle-free derivation graph sets (wcdgs). Despite their prima facie dis-
tinctness, the cdgs and wcdgs classes coincide with gbts and wgbts classes,

378 T. S. Lyon, S. Rudolph

respectively, thus showing how the latter classes can be characterized in terms
of derivation graphs. Let us now formally define derivation graphs, and after, we
will demonstrate the concept by means of an example.

Definition 3 (Derivation Graph). Let D be a database, R be a rule set, C =
Con(D,R), and δ be some R-derivation D, (ρ1, h1, I1), . . . , (ρn, hn, In). The
derivation graph of δ is the tuple Gδ := (V,E,At,L), where V := {X0, . . . , Xn} is
a finite set of nodes, E ⊆ V×V is a set of arcs, and the functions At : V → 2In

and L : E → 2Ter(In) decorate nodes and arcs, respectively, such that:

1. At(X0) := D and At(Xi) = Ii \ Ii−1;
2. (Xi,Xj) ∈ E iff there is a p(t) ∈ At(Xi) and a frontier atom p(t′) in ρj such

that hj(p(t′)) = p(t). We then set L(Xi,Xj) =
(
hj

(
Var(p(t′))∩ fr(ρj)

))\C.

We refer to X0 as the initial node and define the set of non-constant terms asso-
ciated with a node to be C(X) = Ter(X)\C where Ter(Xi) := Ter(At(Xi))∪C.

Toward an example, assume D‡ = {p(a, b)} and R3 = {ρ1, ρ2, ρ3, ρ4} where

ρ1 = p(x, y) → ∃z.q(y, z) ρ3 = r(x, y) ∧ q(z, x) → s(x, y)
ρ2 = q(x, y) → ∃z.(r(x, y) ∧ r(y, z)) ρ4 = r(x, y) ∧ s(z, w) → t(y, w)

Let us consider the following derivation:

δ = D‡, (ρ1, h1, I1), (ρ2, h2, I2), (ρ3, h3, I3), (ρ4, h4, I4) with

I4 = {p(a, b)︸ ︷︷ ︸
D‡

, q(b, z0)︸ ︷︷ ︸
I1\D‡

, r(b, z0), r(z0, z1)︸ ︷︷ ︸
I2\I1

, s(z0, z1)︸ ︷︷ ︸
I3\I2

, t(z0, z1)︸ ︷︷ ︸
I4\I3

} and

h1 = {x→a, y →b}, h2 = {x→b, y →z0}, h3 = {x→z0, y →z1, z →b}, as well as
h4 = {x→b, y →z0, z →z0, w →z1}. The derivation graph Gδ = (V,E,At,L) corre-
sponding to δ is shown in Figure 2 and has fives nodes, V = {X0,X1,X2,X3,X4}.
Each node Xi ∈ V is associated with a set At(Xi) of atoms depicted in the associ-
ated circle (e.g. At(X2) = {r(b, z0), r(z0, z1)}), and each arc (Xi,Xj) ∈ E is rep-
resented as a directed arrow with L(Xi,Xj) shown as the associated set of terms
(e.g. L(X3,X4) = {z1}). For each node Xi ∈ V, the set Ter(Xi) of terms associ-
ated with the node is equal to Ter(At(Xi))∪{a, b} (e.g. Ter(X3) = {z0, z1, a, b})
since C = Con(D‡,R3) = {a, b}.

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0}
{z0, z1} t(z0, z1) X4

{z0}

{z1}

Fig. 2. The derivation graph Gδ.

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 379

As can be witnessed via the above example, derivation graphs satisfy a set of
properties akin to those characterizing tree decompositions [5, Proposition 12].

Lemma 2 (Decomposition Properties). Let D be a database, R be a rule
set, and C = Con(D,R). If D δ−→R I, then Gδ satisfies the following properties:

1.
⋃

Xn∈V Ter(Xn) = Ter(I);
2. For each p(t) ∈ I, there is an Xn ∈ V such that p(t) ∈ At(Xn);
3. For each term x ∈ C(I), the subgraph of Gδ induced by the nodes Xn such

that x ∈ C(Xn) is connected;
4. For each Xn ∈ V the size of Ter(Xn) is bounded by an integer that only

depends on the size of (D,R), viz. max{|Ter(D)|, |Ter(head(ρi))|ρi∈R}+ |C|.
Let us now introduce our set of reduction operations. As remarked above,

in certain circumstances such operations can be used to transform derivation
graphs into tree decompositions of an instance.

We make use of three reduction operations, namely, (i) arc removal, denoted
(ar)[i,j], (ii) term removal, denoted (tr)[i,j,k,t], and (iii) cycle removal, denoted
(cr)[i,j,k,�]. The first two reduction operations were already proposed by Baget
et al. [5] (they presented (tr) and (ar) as a single operation called redundant arc
removal), whereas cycle removal is introduced by us as a new operation that will
assist us in characterizing gbts and wgbts in terms of derivation graphs.2

Definition 4 (Reduction Operations). Let D be a database, R be a rule
set, D δ−→R In, and Gδ be the derivation graph of δ. We define the set RO of
reduction operations as {(ar)[i,j], (tr)[i,j,k,t], (cr)[i,j,k,�] | i, j, k, �≤ n, t ∈Ter(In)},
whose effect is further specified below. We let (r)Σ(Gδ) denote the output of
applying the operation (r) to the (potentially reduced) derivation graph Σ(Gδ) =
(V,E,At,L), where Σ ∈ RO∗ is a reduction sequence, that is, Σ is a (potentially
empty) sequence of reduction operations.

1. Arc Removal (ar)[i,j]: Whenever (Xi,Xj) ∈ E and L(Xi,Xj) = ∅, then
(ar)[i,j]Σ(Gδ) := (V,E′,At,L′) where E′ := E \ {(Xi,Xj)} and L′ = L � E′.

2. Term Removal (tr)[i,j,k,t]: If (Xi,Xk), (Xj ,Xk) ∈ E with Xi �= Xj and t ∈
L(Xi,Xk) ∩ L(Xj ,Xk), then (tr)[i,j,k,t]Σ(Gδ) := (V,E,At,L′) where L′ is
obtained from L by removing t from L(Xj ,Xk).

3. Cycle Removal (cr)[i,j,k,�]: If (Xi,Xk), (Xj ,Xk) ∈ E and there exists a node
X� ∈ V with � < k such that L(Xi,Xk) ∪ L(Xj ,Xk) ⊆ Ter(X�) then,
(cr)[i,j,k,�]Σ(Gδ) := (V,E′,At,L′) where

E′ :=
(
E \ {(Xi,Xk), (Xj ,Xk)}) ∪ {(X�,Xk)}

and L′ is obtained from L � E′ by setting L(X�,Xk) to L(Xi,Xk)∪L(Xj ,Xk).

2 Beyond (tr) and (ar), we note that Baget et al. [5] introduced an additional reduction
operation, referred to as arc contraction. We do not consider this rule here however
as it is unnecessary to characterize gbts and wgbts in terms of derivation graphs
and prima facie obstructs the proof of Theorem 2.

380 T. S. Lyon, S. Rudolph

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

∅
{z0, z1} t(z0, z1)

X4

{z0}

{z1}

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0, z1} t(z0, z1)

X4

{z0}

{z1}

p(a, b)

X0

q(b, z0)

X1

∅

r(b, z0)
r(z0, z1)

X2

{z0}

s(z0, z1)

X3

{z0, z1} t(z0, z1)

X4

{z0, z1}

Fig. 3. Left to right: reduced derivation graphs (tr)(Gδ), (ar)(tr)(Gδ), and (cr)(ar)(tr)(Gδ).

Last, we say that a reduction sequence Σ ∈ RO∗ is a complete reduction sequence
relative to a derivation graph Gδ iff Σ(Gδ) is cycle-free.

Remark 2. When there is no danger of confusion, we will take the liberty to write
(tr), (ar), and (cr) without superscript parameters. That is, given a derivation
graph Gδ, the (reduced) derivation graph (cr)(tr)(Gδ) is obtained by applying an
instance of (tr) followed by an instance of (cr) to Gδ. When applying a reduction
operation we always explain how it is applied, so the exact operation is known.

We now describe the functionality of each reduction operation and illustrate
each by means of an example. We will apply each to transform the derivation
graph Gδ (shown in Figure 2) into a tree decomposition of I4 (which was defined
above). The (tr) operation deletes a term t within the intersection of the sets
labeling two converging arcs. For example, we may apply (tr) to the derivation
graph Gδ from Figure 2, deleting the term z0 from the label of the arc (X1,X3),
and yielding the reduced derivation graph (tr)(Gδ), which is shown first in Fig-
ure 3. We may then apply (ar) to (tr)(Gδ), deleting the arc (X1,X3), which is
labeled with the empty set, to obtain the reduced derivation graph (ar)(tr)(Gδ)
shown middle in Figure 3.

The (cr) operation is more complex and works by considering two converging
arcs (Xi,Xk) and (Xj ,Xk) in a (reduced) derivation graph. If there exists a node
X� whose index � is less than the index k of the child node Xk and L(Xi,Xk) ∪
L(Xj ,Xk) ⊆ Ter(X�), then the converging arcs (Xi,Xk) and (Xj ,Xk) may be
deleted and the arc (X�,Xk) introduced and labeled with L(Xi,Xk)∪L(Xj ,Xk).
As an example, the reduced derivation graph (cr)(ar)(tr)(Gδ) (shown third in
Figure 3) is obtained from (ar)(tr)(Gδ) (shown middle in Figure 3) by applying
(cr) in the following manner to the convergent arcs (X2,X4) and (X3,X4): since
for X2 (whose index 2 is less than the index 4 of X4) L(X2,X4) ∪ L(X3,X4) ⊆
Ter(X2), we may delete the arcs (X2,X4) and (X3,X4) and introduce the arc
(X2,X4) labeled with L(X2,X4) ∪ L(X3,X4) = {z0} ∪ {z1} = {z0, z1}. Observe
that the reduced derivation graph (cr)(ar)(tr)(Gδ) is free of cycles, witnessing
that Σ = (cr)(ar)(tr) is a complete reduction sequence relative to Gδ. Moreover,
if we replace each node by the set of its terms and disregard the labels on arcs,
then Σ(Gδ) can be read as a tree decomposition of I4. In fact, one can show that
every reduced derivation graph satisfies the decomposition properties mentioned
in Lemma 2 above.

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 381

Lemma 3. Let D be a database and R be a rule set. If D R−→δ I, then for any re-
duction sequence Σ, Σ(Gδ) = (V,E,At,L) satisfies the decomposition properties
1-4 in Lemma 2.

As illustrated above, derivation graphs can be used to derive tree decom-
positions of R-derivable instances. By the fourth decomposition property (see
Lemma 2 above), the width of such a tree decomposition is bounded by a con-
stant that depends only on the given knowledge base. Thus, if a rule set R
always yields derivation graphs that are reducible to cycle-free graphs – mean-
ing that (un)directed cycles do not occur within the graph – then all R-derivable
instances have tree decompositions that are uniformly bounded by a constant.
This establishes that the rule set R falls within the bts class, confirming that
query entailment is decidable with R. We define two classes of rule sets by means
of reducible derivation graphs:

Definition 5 ((Weakly) Cycle-free Derivation Graph Set). A rule set
R is a cycle-free derivation graph set (cdgs) iff if D δ−→RI, then Gδ can be re-
duced to a cycle-free graph by the reduction operations. R is a weakly cycle-free
derivation graph set (wcdgs) iff if D δ−→RI, then there is a derivation δ′ where
D δ′−→RI and Gδ′ can be reduced to a cycle-free graph by the reduction operations.

It is straightforward to confirm that wcdgs subsumes cdgs, and that both
classes are subsumed by bts.

Proposition 1. Every cdgs rule set is wcdgs and every wcdgs rule set is bts.

Furthermore, as mentioned above, gbts and wgbts coincide with cdgs and
wcdgs, respectively. By making use of the (cr) operation, one can show that
the derivation graph of any greedy derivation is reducible to a cycle-free graph,
thus establishing that gbts ⊆ cdgs and wgbts ⊆ wcdgs. To show the converse
(i.e. that cdgs ⊆ gbts and wcdgs ⊆ wgbts) however, requires more work. In
essence, one shows that for every (non-source) node Xi in a cycle-free (reduced)
derivation graph there exists another node Xj such that j < i and the frontier
of the atoms in At(Xi) only consist of constants and/or nulls introduced by
the atoms in At(Xj). This property is preserved under reverse applications of
the reduction operations, and thus, one can show that if a derivation graph is
reducible to a cycle-free graph, then the above property holds for the original
derivation graph, implying that the derivation graph encodes a greedy derivation.
Based on such arguments, one can prove the following:

Theorem 2. gbts coincides with cdgs and wgbts coincides with wcdgs. Mem-
bership in cdgs, gbts, wcdgs, or wgbts warrants decidable BCQ entailment.

Note that by Theorem 1, this also implies that wcdgs properly contains cdgs.
An interesting consequence of the above theorem concerns the redundancy

of (ar) and (tr) in the presence of (cr). In particular, since we know that (i)
if a derivation graph can be reduced to a cycle-free graph, then the derivation
graph encodes a greedy derivation, and (ii) the derivation graph of any greedy

382 T. S. Lyon, S. Rudolph

derivation can be reduced to an cycle-free graph by means of applying the (cr)
operation only, it follows that if a derivation graph can be reduced to a cycle-free
graph, then it can be reduced by only applying the (cr) operation. We refer to
this phenomenon as reduction-admissibility, which is defined below.

Definition 6 (Reduction-admissible). Suppose S1 = {(ri) | 1 ≤ i ≤ n} and
S2 = {(rj) | n + 1 ≤ j ≤ k} are two sets of reduction operations. We say that
S1 is reduction-admissible relative to S2 iff for any rule set R and R-derivation
δ, if Gδ is reducible to a cycle-free graph with S1 ∪ S2, then Gδ is reducible to a
cycle-free graph with just S2.

Corollary 1. {(tr), (ar)} is reduction-admissible relative to (cr).

5 Conclusion

In this paper, we revisited the concept of a greedy derivation, which immediately
gives rise to a bounded-width tree decomposition of the constructed instance.
This well-established notion allows us to categorize rule sets as being (weakly)
greedy bounded treewidth sets ((w)gbts), if all (some) derivations of a derivable
instance are guaranteed to be greedy, irrespective of the underlying database.
By virtue of being subsumed by bts, these classes warrant decidability of BCQ
entailment, while at the same time subsuming various popular rule languages,
in particular from the guarded family.

By means of an example together with a proof-theoretic argument, we ex-
posed that wgbts strictly generalizes gbts. In pursuit of a better understanding
and more workable methods to detect and analyze (w)gbts rule sets, we resorted
to the previously proposed notion of derivation graphs. Through a refinement
of the set of reduction methods for derivation graphs, we were able to make
more advanced use of this tool, leading to the definition of (weakly) cycle-free
derivation graph sets ((w)cdgs) of rules, of which we were then able to show
the respective coincidences with (w)gbts. This way, we were able to establish
alternative characterizations of gbts and wgbts by means of derivation graphs.
En passant, we found that the newly introduced cycle removal reduction opera-
tion over derivation graphs is sufficient by itself and makes the other operations
redundant.

For future work, we plan to put our newly found characterizations to use. In
particular, we aim to investigate if a rule set’s membership in gbts or wgbts is
decidable. For gbts, this has been widely conjectured, but never formally estab-
lished. In the positive case, derivation graphs might also be leveraged to pinpoint
the precise complexity of the membership problem. We are also confident that
the tools and insights in this paper – partially revived, partially upgraded, par-
tially newly developed – will prove useful in the greater area of static analysis
of existential rule sets. On a general note, we feel that the field of proof theory
has a lot to offer for knowledge representation, whereas the cross-fertilization
between these disciplines still appears to be underdeveloped.

Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets 383

References

1. Baget, J.F.: Improving the forward chaining algorithm for conceptual graphs rules.
In: Proceedings of the Ninth International Conference on Principles of Knowledge
Representation and Reasoning. p. 407–414. KR’04, AAAI Press (2004)

2. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for
rules with existential variables. In: Proceedings of the 21st International Jont Con-
ference on Artifical Intelligence. p. 677–682. IJCAI’09, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (2009)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases
for rules with existential variables. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence. p. 677–682. IJCAI’09, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2009)

4. Baget, J.F., Mugnier, M.L.: Extensions of simple conceptual graphs: the complexity
of rules and constraints. Journal of Artificial Intelligence Research 16, 425–465
(2002)

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential
variables: Walking the decidability line. Artificial Intelligence 175(9), 1620–1654
(2011). https://doi.org/10.1016/j.artint.2011.03.002

6. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. Journal of Artificial Intelligence Research 48,
115–174 (2013). https://doi.org/10.1613/jair.3873

7. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependen-
cies and their inference problem. In: Proceedings of the 13th Annual ACM Sym-
posium on Theory of Computing (STOC’81). pp. 342–354. ACM (1981). https://
doi.org/10.1145/800076.802488

8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo,
D. (eds.) Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS’08). pp. 149–158. ACM (2008). https://
doi.org/10.1145/1376916.1376938

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoretical Computer Science 336(1), 89–124 (2005). https://
doi.org/10.1016/j.tcs.2004.10.033, database Theory

10. Feller, T., Lyon, T.S., Ostropolski-Nalewaja, P., Rudolph, S.: Finite-Cliquewidth
Sets of Existential Rules: Toward a General Criterion for Decidable yet Highly
Expressive Querying. In: Geerts, F., Vandevoort, B. (eds.) 26th International Con-
ference on Database Theory (ICDT 2023). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 255, pp. 18:1–18:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2023). https://doi.org/10.4230/LIPIcs.ICDT.
2023.18

11. Johnson, D.S., Klug, A.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. In: Proceedings of the 1st ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems. p. 164–169. PODS ’82,
Association for Computing Machinery, New York, NY, USA (1982). https://doi.
org/10.1145/588111.588138

12. Lyon, T.S., Rudolph, S.: Derivation-graph-based characterizations of decidable
existential rule sets. CoRR (2023). https://doi.org/10.48550/arXiv.2307.08481

13. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (December 1979). https://doi.org/10.
1145/320107.320115

https://doi.org/10.1016/j.artint.2011.03.002
https://doi.org/10.1613/jair.3873
https://doi.org/10.1145/800076.802488
https://doi.org/10.1145/800076.802488
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.4230/LIPIcs.ICDT.2023.18
https://doi.org/10.4230/LIPIcs.ICDT.2023.18
https://doi.org/10.1145/588111.588138
https://doi.org/10.1145/588111.588138
https://doi.org/10.48550/arXiv.2307.08481
https://doi.org/10.1145/320107.320115
https://doi.org/10.1145/320107.320115

384 T. S. Lyon, S. Rudolph

14. Thomazo, M., Baget, J.F., Mugnier, M.L., Rudolph, S.: A generic querying algo-
rithm for greedy sets of existential rules. In: Brewka, G., Eiter, T., McIlraith, S.A.
(eds.) Proceedings of the 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR’12). AAAI (2012), http://www.aaai.org/ocs/
index.php/KR/KR12/paper/view/4542

http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4542
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4542

Concept Combination in Weighted DL

Guendalina Righetti1 , Pietro Galliani2(B) , and Claudio Masolo3

1 Free University of Bozen-Bolzano, Bolzano, Italy
guendalina.righetti@unibz.it

2 Università degli studi dell’Insubria, Varese, Italy
pietro.galliani@uninsubria.it

3 Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy

masolo@loa.istc.cnr.it

Abstract. Building on previous work on Weighted Description Logic
(WDL), we present and assess an algorithm for concept combination
grounded in the experimental research in cognitive psychology. Start-
ing from two WDL formulas representing concepts in a way similar to
Prototype Theory and a knowledge base (KB) modelling background
knowledge, the algorithm outputs a new WDL formula which represent
the combination of the input concepts. First, we study the logical prop-
erties of the operator defined by our algorithm. Second, we collect data
on the prototypical representation of concepts and their combinations
and learn WDL formulas from them. Third, we evaluate our algorithm
and the role of the KB by comparing the algorithm’s outputs with the
learned WDL formulas.

Keywords: Weighted DL · Concept Combination · Prototype Theory

1 Introduction

In knowledge representation, concepts are often assumed as purely extensional,
and their combination is reduced to set-theoretic operations. This view has
the undoubted advantage of offering formal compositional semantics where the
meaning of the composed concept is a function of the one of the combining
concepts. Experimental psychology has, however, shown that concept combina-
tion has more subtle (intensional) semantics than what is expressible through
Boolean operations such as classical logical conjunction [23]. First, human con-
cept combination is not commutative: an Apartment Dog is substantially differ-
ent from a Dog Apartment [31]. In these cases, the role of the combining concepts
in the composition seems to impact the resulting combination. Namely, the Head
concept provides the category of the combination while the Modifier modifies
some aspects of the Head. Second, and maybe more importantly, concept com-
bination is subject to typicality effects: some instances of a concept are more
representative (and then easier to be categorised) than others, which hardly
reconcile with a purely set-theoretical view on concepts.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 385–401, 2023.
https://doi.org/10.1007/978-3-031-43619-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_27&domain=pdf
http://orcid.org/0000-0002-4027-5434
http://orcid.org/0000-0003-2544-5332
http://orcid.org/0000-0002-0764-8630
https://doi.org/10.1007/978-3-031-43619-2_27

386 G. Righetti et al.

Different cognitive theories of concepts have been proposed to account for
these phenomena. Among them, Prototype Theory is one of the most formally
developed [20,40]. In this theory, concepts are represented through prototypes,
i.e., lists of features (or attributes) associated with weights representing their
importance (in terms of cognitive salience or frequency distribution) for the
concepts. Typicality is considered as a function of the weights of the features
in the prototype matched by an individual: the most typical members, the best
exemplars, are the individuals with the highest score.

The capability of Prototype Theory to capture concept combination has been
however sharply objected, see e.g. [12,33]. As advocated in a famous counterex-
ample, a goldfish is an atypical example of both Fish and Pet but a very typical
example of PetFish. Two phenomena are particularly challenging here: (i) fea-
ture inheritance failure, e.g., prototypical Pets are furry, prototypical Fishes are
grey, but prototypical PetFishes are neither furry nor grey; and (ii) emergence
of new features, e.g., prototypical PetFishes are small and colourful but both
features are hardly associated with prototypical Fishes or Pets.

To resist this criticism several attempts to model the composition of proto-
types have been considered in experimental cognitive psychology. The attribute
inheritance model proposed by Hampton [20] is arguably one of the most clearly
developed, able to account for inheritance failure and attribute emergence in the
case of conjunctive noun-noun combinations with form X which are also Y.

This paper has three main goals: (i) to provide a formal account of Hamp-
ton’s attribute inheritance model; (ii) to study the formal properties of concept
combination; and (iii) to systematically test the attribute inheritance model on
empirical data. To this end, we exploit previous work on Weighted Description
Logic (WDL) [14,34,35,37], an extension of standard Description Logic (DL) lan-
guages [2] with prototype-inspired concept constructors, namely the Weighted
Threshold Operators (called also Tooth operators and noted ∇∇). Section 2 intro-
duces the Tooth operators, i.e., m-ary connectives that compute a weighted sum of
their constituent concepts (playing the role of the features or attributes considered
in a prototype) and verify whether a given instance reaches a certain threshold.
Starting from two ∇∇-expressions and a knowledge base modelling background
knowledge, the algorithm presented in Sect. 3 computes a new ∇∇-expression rep-
resenting the combination of the input concepts.1 Sect. 4 analyses several formal
properties of concept combination wrt logical conjunction. The algorithm is tested
in Sect. 5 on different kinds of empirical data. Section 6 concludes the paper.

2 Weighted Description Logic

WDL extends standard DL languages with a class of m-ary tooth-operators
denoted by the symbol ∇∇.2 Each ∇∇ operator works as follows: (i) it takes a
list of concepts, (ii) it associates a weight to each of them, and (iii) it returns a
complex concept that applies to those instances for which, by summing up the
weights of the satisfied concepts, a certain threshold is met.
1 This algorithm revises the original one [35].
2 Similar weighted accounts can be introduced in languages other than DL [29].

Concept Combination in Weighted DL 387

More precisely, the new logic extends ALC and is denoted by ALC∇∇: given
weights wi ∈ R

m, a threshold value t ∈ R, and concepts C1, . . . ,Cm ∈ ALC, then
∇∇t(C1:w1, . . . ,Cm:wm) ∈ ALC∇∇, i.e., for Ci ∈ ALC, the set of ALC∇∇ concepts
is described by the grammar:

C ::= A |¬C |C � C |C � C |∀R.C |∃R.C |∇∇t(C1:w1, . . . ,Cm:wm)

A knowledge base is a finite set of concept inclusions of the form C � D, for
C, D concept expressions. We write C ≡ D to signify that C � D and D � C.

Given finite, disjoint sets NC and NR of concept and role names, respectively,
an interpretation I consists of a non-empty set ΔI and a mapping ·I that maps
every concept name C to a subset CI ⊆ ΔI and every role name R ∈ NR to a
binary relation RI ⊆ ΔI × ΔI . The semantics of the operators is obtained by
extending the standard semantics of ALC as follows. Let I be an interpretation
of ALC. The interpretation of a ∇∇-concept C = ∇∇t(C1:w1, . . . ,Cm:wm) is:

CI = {d ∈ ΔI | vI
C(d) ≥ t} (1)

where vI
C(d) =

∑
i∈{1,...,m}{wi | d ∈ CI

i } is the value of d ∈ ΔI under C.
Consider, e.g., C=∇∇8(C1:4,C2:3,C3:2,C4:1). If d ∈ CI

1 ∩CI
3 but d /∈ CI

2, then
d /∈ CI because even when d ∈ CI

4 we have that vI
C(d) = 4 + 2 + 1 = 7 < 8.

The notion of model of a knowledge base K as well as entailment and sat-
isfiability are as usual. Adding tooth-expressions in ALC is thus done without
modifying the standard notion of interpretation in DL.

The representation of concepts in WDL is inspired by Prototype Theory [40].
By exploiting the function vI

C , individuals can be ordered in terms of typical-
ity wrt to a concept C. WDL can thus be used to capture variations in terms of
instances typicalities - and more generally effects [37]. Moreover, Tooth-operators
do not increase the expressive power of any language that contains the standard
Boolean operators [34], but offer a more interpretable representation of con-
cepts [36]. Adding tooth-operators to such DL languages does not increase the
complexity of the corresponding inference problem [15]. Tooth-operators behave
like perceptrons [13,15]: a (non-nested) tooth expression is a linear classification
model, which enables to learn weights and thresholds from real data exploiting
standard linear classification algorithms (see Sect. 5.2).

3 An Algorithm to Combine ∇∇-Concepts

In this section we present an algorithm for concept combination which is
grounded on the work of Hampton [20]. It focuses on conjunctive noun-noun
combinations with form X which are also Y . Hampton represents concepts as
sets of features weighted by their importance for defining the concept. Starting
from two concepts X and Y , Hampton determines the representation of X which
are also Y as follows: (i) the union of the features of X and Y is collected; (ii)
the importance of the features of the combination is a rising monotonic function
of the constituent importance values, where for the features in both X and Y the

388 G. Righetti et al.

average is considered; (iii) the features that are necessary for either constituent
are also necessary for the combination; (iv) the features that are impossible for
either constituent are impossible also for the combination.

This model predicts forms of inheritance failure, which occur when, because
of (iv), one of the features of the combining concepts is not inherited by the com-
bination. The dual effect is the emergence of new features. Hampton explains the
effect by considering additional background knowledge entering into the combi-
nation [30,32] or by extensional feedbacks, i.e., the influence of specific exemplars
experienced by the subject on the features of the combination.

In the following we will embed the proposal of Hampton into the WDL frame-
work where concepts are defined by ∇∇-expression and where the background
knowledge is explicitly represented by a knowledge base.

To conform with Prototype Theory some restrictions on the ∇∇-expressions
provided as input to the algorithm are in place:3 (i) features have positive
weights, i.e., they positively impact the categorisation of exemplars [43]; (ii)
features are atomic (e.g., conjunctions or negations of concepts are discarded),
i.e., features within a prototype are independent [22]; (iii) input ∇∇-expressions
are uniformly determined allowing the comparison of the weights of the features
they share (this is crucial for the averaging process considered by Hampton).

Given a knowledge base K representing background knowledge, we consider
only ∇∇-concepts satisfiable in K, i.e. no concept is necessarily empty. Given
C = ∇∇t(F1:w1,...,Fm:wm), a concept D, and a knowledge base K, we define:

– ft(C) = {F1, . . . ,Fm} (features of C)
– snc(C) = {Fi ∈ ft(C) | ∑

j �=i wj < t} (strongly necessary features of C)
– nc(C,K) = {Fi ∈ ft(C) | K � C � Fi} (necessary features of C wrt K)
– im(C,D,K) = {Fi ∈ ft(C) | K � D � ¬Fi} (impossible feat. of C wrt D, K)

Individuals lacking a feature in snc(C) cannot reach the threshold; snc(C) is
defined in a purely syntactic way while nc(C,K) extends snc(C) by exploiting
K and logical inference. We have that snc(C) ⊆ nc(C, ∅); indeed when � Fi � Fj

(with i �= j) we have that snc(C) ⊂ nc(C,K) independently of the assumed K.
im(C,D,K) individuates the features of C that are inconsistent, in K, with D.

The Algorithm. The algorithm considers as input a (possibly empty) K and
the ∇∇-definitions of two concepts, one (H) playing the role of Head and one (M)
playing the role of Modifier. This distinction is based on linguistic evidences on
noun-noun compounds [26], here is considered as given. Under certain conditions,
see Phase 3, the algorithm outputs the ∇∇-definition of the combined concept
noted K:M◦H (∅:M◦H is simply noted M◦H), i.e., it encodes a partial function.

The algorithm consists of three phases: phase 1 selects the features of K:M◦H
by assuming that H dominates M; phase 2 assigns the weights to the features in
K:M◦H; and phase 3 determines the threshold for K:M◦H when certain conditions
are met. Logical inference is exploited (when K �= ∅) only in phase 1 to determine
incompatibilities between the features of H and M. Phases 2 and 3 use only the
information made available by the (intensional) ∇∇-definitions.
3 The algorithm can however accept more general inputs.

Concept Combination in Weighted DL 389

Phase 1 : features. ft(K:M◦H) is built in two steps (where �S� is the conjunction
of all the concepts in a given set S):

1. f̄t(K:M◦H) = nc(H,K) ∪ (nc(M,K)\im(M,H,K))
2. ft(K:M◦H) = ft(H)\im(H,H � �f̄t(K:M◦H)�,K)∪

ft(M)\im(M,M � �f̄t(K:M◦H)�,K)

Step 1 collects all the necessary features of H together with the ones of
M which are not impossible for H. This shows how H dominates M: in case
of incompatibilities we discard necessary features of M, not of H. It follows
that ft(K:M◦H) and ft(K:H◦M) can differ. Step 2 builds on the previous step,
examining all the non-necessary features of both H and M. Specifically, it aims
at excluding all the features of H (resp. M), which are impossible for H (resp.
M) itself, once all the necessary features of M (resp. H) in f̄t(K:H◦M) are added.

Example PetFish. Consider the following ∇∇-definitions:
Fish = ∇∇6(LivesInWater :3,BreathesThroughGill :3,Grey :1,HasFin :1)
Pet = ∇∇6(Pretty :3, LivesInHouse :3,Furry :0.9);
and the knowledge base K = {(2a), (2b), (2c)}

LivesInWater � LivesInHouse � LivesInAquarium (2a)
Furry � ¬BreathesThroughGill (2b)

Pretty � BreathesThroughGill � ¬Grey (2c)

We have that f̄t(K:Pet◦Fish) = {LivesInWater,BreathesThroughGill, LivesInHouse,

Pretty}. Given that BreathesThroughGill,Pretty ∈ f̄t(K:Pet◦Fish), by (2b), we
have that Furry /∈ ft(K:Pet◦Fish) and, by (2c), that Grey /∈ ft(K:Pet◦Fish), i.e.,
ft(K:Pet◦Fish)={LivesInWater,BreathesThroughGill,LivesInHouse,Pretty,HasFin}.
Since LivesInWater, LivesInHouse ∈ f̄t(K:Pet◦Fish), by (2a), LivesInAcquarium can
be seen as an emergent feature of K:Pet◦Fish even if it is not in ft(K:Pet◦Fish).
Phase 2 : weights. The weights of the features in ft(K:M◦H) are assigned in the
following way:

1. for all the features in s̄ft(K:M◦H) = f̄t(K:M◦H) ∩ (snc(M) ∪ snc(H)) we con-
sider the original weights except for the ones in s̄ft(K:M◦H) ∩ ft(H) ∩ ft(M)
for which we consider the maximal weight;

2. for all the features in ft(K:M◦H)\s̄ft(K:M◦H) we consider the original weights
except for the ones in (ft(K:M◦H)\s̄ft(K:M◦H)) ∩ ft(H) ∩ ft(M) for which we
consider the average weight (of the original weights).

Phase 2 preserves as much as possible the original weights. Exceptions are
the features shared by the two concepts, i.e., features in ft(H) ∩ ft(M). In these
cases, following Hampton [20], we consider the maximal weight for the strongly
necessary features of H and M, i.e., the features in s̄ft(K:M◦H),4 and the average
weight for the other features. The assumption about the comparability of weights
across different tooth-expressions is crucial here.
4 The algorithm guarantees that s̄ft(K:M◦H) = snc(K:M◦H), see Phase 3.

390 G. Righetti et al.

Example PetFish (cont.). We have that f̄t(K:Pet◦Fish) = s̄ft(K:Pet◦Fish), and
ft(Fish) ∩ ft(Pet) = ∅. Therefore we simply obtain:
K:P◦F = ∇∇t(LivesInWater :3,Pretty :3,BreathesThroughGill :3, LivesInHouse :3,
HasFin :1).
Phase 3 : threshold. Our main requirement to set the threshold for K:M◦H is to
assure that s̄ft(K:M◦H) = snc(K:M◦H), i.e., the strongly necessary features of
both H and M (that are compatible with the necessary features of H) are also
strongly necessary features of K:M◦H. Assume that

– w is the sum of the weights of the features in ft(K:M◦H);
– if s̄ft(K:M◦H) �= ∅, w− is the minimal weight of the features in s̄ft(K:M◦H)

otherwise w− = w;
– if s̄ft(K:M◦H) ⊂ ft(K:M◦H), w+ is the maximal weight of the features in
ft(K:M◦H)\s̄ft(K:M◦H) otherwise w+ = 0.

When w−w− < w−w+, the algorithm sets the threshold in the open inter-
val (w−w−, w−w+) otherwise it returns no tooth-expression. For instance,
if K = ∅, C = ∇∇1(A :1), D = ∇∇1(B :1,C :1) then w−w− = w−w+ = 2 and no
tooth expression for C◦D is returned. Exploring if the condition w−w− < w−w+

is a good index of the uniformity of the input ∇∇-expressions is left for future
work.

In general, a threshold towards w−w− tends to widen the extension of K:M◦H
while a threshold towards w−w+ tends to narrow it. Hampton talks, respectively,
of under-extension and over-extension phenomena [21]. A neutral strategy would
set the threshold at [(w−w+)−(w−w−)]/2. Here, we aim at a general evalua-
tion of our algorithm abstracting from the strategy chosen to exactly set the
threshold, our analysis just assumes that the threshold is in (w−w−, w−w+).

Notice that, the features in ft(K:M◦H)\s̄ft(K:M◦H) (eventually) implied by
�s̄ft(K:M◦H)� become necessary without being strongly necessary. Moreover, it
is possible that some features in f̄t(K:M◦H)\s̄ft(K:M◦H) are not necessary for
K:M◦H, i.e., the algorithm preserves the strong necessity but not the necessity.

Example PetFish (cont.). We have that w = 13, w− = 3, w+ = 1, i.e.,
t ∈ (10, 12).

4 Logical Properties of Concept Combination

The combination ‘◦’ does not define a logical connective as the usual Boolean
connectives or as the ∇∇-operators. The algorithm is defined only for specific
kinds of ∇∇-expressions (see Sect. 3) and its output is not always guaranteed.
Still, when the algorithm sets a threshold range, one may examine the logical
properties of K:M◦H (regardless of an exact threshold) and compare them with
those of ordinary connectives. In particular, one may verify whether our formal-
isation matches Hampton’s insight that concept combination is not reducible to
logical conjunction.

Concept Combination in Weighted DL 391

1. Concept combination is not idempotent.
Consider K = ∅ and X = ∇∇1(A :1,B :1,C :1,D :1). We obtain that X◦X =
∇∇t(A :1,B :1,C :1,D :1) with t ∈ (0, 3). X◦X is not necessarily equivalent to
X: e.g., when t > 1, A is sufficient to reach the threshold of X but not of X◦X.

2. Concept combination is not entailed by conjunction.
For X as before, we also have that X � X ≡ X is satisfied by individuals that
satisfy only A but none of B, C and D, whereas X◦X may not be.

3. Concept combination does not entail conjunction.
Let K = ∅, X = ∇∇1(A :1,B :1), and Y = ∇∇1(C :1,D :1). Then X ≡ A � B and
Y≡C � D; but since nc(X,K) = nc(Y,K) = ∅, X◦Y=∇∇t(A :1,B :1,C :1,D :1)
with t ∈ (0, 3). When t = 2, we obtain an expression that is satisfied if at least
two of {A,B,C,D} are satisfied; and of course this does not entail (A � B) �
(C � D).

4. For non-empty knowledge bases, concept combination is not associative.
Let X = ∇∇1(A :1), Y = ∇∇1(B :1), Z = ∇∇1(C :1), and K = {(1) A � B � ⊥,
(2) B � C � ⊥}. Then (i) K:(K:X◦Y)◦Z = ∇∇t(C :1) with t ∈ (0, 1): because
of (1), A is removed from K:X◦Y, and because of (2), B is removed from
K:(K:X◦Y)◦Z; but (ii) K:X◦(K:Y◦Z) = ∇∇t(A :1,C :1) with t ∈ (1, 2) since K

does not remove A from K:X◦(K:Y◦Z) because B /∈ ft(K:Y◦Z).
5. Concept combination is not truth-functional: it is not necessarily true that

if X ≡ X′ then X◦Y ≡ X′◦Y.
Let K = ∅, X′ = ∇∇3(A :2,B :1,C :1,D :0.02,E :0.02), X = ∇∇3(A :2,B :1,C :1),
Y = ∇∇3(A :2,D :1,E :1). Then X ≡ X′ ≡ (A � B) � (A � C), X◦Y = ∇∇t(A :2,
B :1,C :1,D :1,E :1) with t ∈ (4, 5), and X′◦Y = ∇∇t(A :2,B :1,C :1,D :0.51,
E :0.51) with t ∈ (3.02, 4.02) and these two sets of expressions are not equiv-
alent: for example, no matter the choice of t ∈ (4, 5), X◦Y cannot be satisfied
by A, B, and C alone, whereas these suffice to satisfy X′◦Y whenever t ≤ 4.

The failure of truth-functionality shows that concept combinations are not
determined merely by the extensions of the input concepts. In the example,
even though X and X′ are extensionally equivalent, i.e. they apply to the same
individuals, the presence of D and E in X′ (but not in X) affects the combination
even though such features are irrelevant to determine the extension of X′. This
shows how ∇∇-expressions may capture some intensional aspects of concepts.

5 Empirical Evaluation of the Algorithm

In what follows, we test our algorithm on PetBird, a classical example of noun-
noun combination analysed by Hampton [20]. Different variations of the Proto-
type Theory interpret the nature of the features’ weights dissimilarly. Intensional
accounts (e.g., Hampton’one [20]), assess the weight of the features in terms of
their relevance or salience in the definition of a concept. Extensional approaches
(e.g., Rosch’s one [40]), establish them in terms of their frequency distribution
across the exemplars of the concepts. To study how these variations impact our
algorithm, we conduct two kinds of tests: the first based on the data gathered

392 G. Righetti et al.

by Hampton [20], where weights have an intensional meaning; the second based
on data we collected, meant to explore an extensional view on the weights.

Our tests have the following design. First, we extract the ∇∇-expressions
for Pet, Bird and PetBird from both Hampton’s (intensional) data and our
(extensional) data, for a total of 6 tooth-expressions. Second, we run our algo-
rithm (with and without a K) on the ∇∇-expressions for Pet (M) and Bird (H)
extracted from uniform data. Third, we compare the ∇∇-expressions for PetBird
returned by our algorithm with the corresponding ones extracted from the data.

5.1 Evaluation on Intensional Data

Hampton [20] represents concepts as sets of intensionally weighted features. The
features of a concept are individuated through a standard feature generation task
where subjects are asked to list as many features as possible of a given concept
[9]. Subjects are then asked to rate the importance of the features for the concept
on a scale ranging from −2 to +4 (0 excluded): −2 stands for “necessarily false
of all possible examples of the concept”, and +4 for “necessarily true of all
possible examples of the concept” (see [20, p.59]). The weights of the features
are determined by averaging these ratings. The results for the concepts Pet , Bird ,
and PetBird (Birds which are also Pets) are reported in [20, Table 3, p.69].

To test his model, Hampton asked to evaluate the importance of a given fea-
ture across different concepts, e.g., to rate the importance of Is cuddly for Bird
even though such feature was generated for Pet. Assuming this information in
the context of our combination algorithm sounds artificial and ad hoc. The set
of features for, e.g., Bird would depend on the features generated for the other
concepts involved in the combination (Pet and PetBird) making their prototypes
(and the tooth-expressions) task-dependent. To maximise the applicability of our
approach, for Pet and Bird , we select only the features explicitly generated for
these concepts, i.e., the ones with non-null production frequency (PF).5 How-
ever, according to Hampton’s model, all the features of the combining concepts
may contribute to the combined concept.6 Following Hampton, for PetBird we
consider the union of the features produced for Pet , Bird , and PetBird .

Columns Bird/H, Pet/H, and PetBird/H of Table 1 report the mean rating
MR of the importance of the features found by Hampton. In Bird/H and Pet/H,
an “-” indicates a PF = 0. We include in the ∇∇-definitions of the concepts BirdH
and PetH all the features not marked with “-” in Bird/H and Pet/H, respectively,
which are weighted with the corresponding MRs.

Hampton discusses the idea of having a threshold, but he does not set one.
However, the MRs offers an index of the features’ necessity (the value +4 means
“necessarily true of all possible examples of the concept”). We assumed as
strongly necessary the features with MR>3 (underlined in Table 1). This makes

5 We also dropped the feature Are of different sizes that applies to the whole concept
and would have been tricky in the extensional evaluation of the weights, see below.

6 “The model first proposes that the intension of a conjunction is formed as the union
of the constituent attribute sets” [20, p.56].

Concept Combination in Weighted DL 393

Table 1. Comparison of attribute weights. H = Hampton, NB = Naive Bayes. The
columns for “Bird”, “Pet” and “Pet Bird” report the weights found in Hampton and
extracted by our data via our modified Naive Bayes algorithm. Negative weights are also
shown, even though they are removed before applying the concept combination algo-
rithm. The columns for “Pet◦Bird” report the result of our concept combination algo-
rithm under various scenarios: using Hampton’s weights or using the weights extracted
via the Naive Bayes algorithm, using no knowledge base (−KB) or using a knowl-
edge base (+KB). Underlined features are necessary for the threshold expression to be
satisfied (that is, are in s̄ft).

Feature Bird Pet PetBird Pet◦Bird

-KB +KB

H NB H NB H NB H NB H NB

sings 1.62 0.52 - - 1.12 0.79 1.62 0.52 1.62 0.52

flies 2.62 2.9 - - 2.25 3.62 2.62 2.9 2.62 2.9

has feathers 3.62 4.03 - - 3.25 3.62 3.62 4.03 3.62 4.03

has a beak 3.12 4.03 - - 3.25 3.62 3.12 4.03 3.12 4.03

has wings 3.5 4.03 - - 3.37 3.62 3.5 4.03 3.5 4.03

chirps 2.62 -0.02 - - 2.12 -0.62 2.62 - 2.62 -

is small 0.87 0.55 - - 2.12 0.34 0.87 0.55 0.87 0.55

is pretty 1.25 1.82 0.75 2.47 1.5 2.02 1 2.14 1 2.14

is colourful 1.62 0.12 - - 1.37 1.9 1.62 0.12 1.62 0.12

is cared for, dependent - - 2.5 2.47 2.62 3.21 2.5 2.47 2.5 2.47

lives in a domestic home - - 2.75 2.59 1.87 2.47 2.75 2.59 2.75 2.59

is enjoyed 0.75 2.06 1.75 1.9 1.87 2.47 1.25 1.98 1.25 1.98

is kept by an owner - - 3.12 2.74 3.25 3.21 3.12 2.74 3.12 2.74

is playful - - 1.87 1.33 0.87 0.56 1.87 1.33 1.87 1.33

has claws 1 0.95 - - 1.25 2.02 1 0.95 1 0.95

eats birdseed 1.62 0.48 - - 1.62 3.62 1.62 0.48 1.62 0.48

is tame - - 2.12 1 1.87 0.62 2.12 1 2.12 1

is trained - - 1.75 0.12 1.62 0.34 1.75 0.12 1.75 0.12

is kept in a cage - - - - 2 1.26 - - - -

talks - - - - -0.5 -0.5 - - - -

lays eggs 3.12 3.32 - - 1.12 4.33 3.12 3.32 3.12 3.32

is an animal 3 4.03 3.25 4.74 2.5 4.33 3.25 4.74 3.25 4.74

builds nests 3.75 1.9 - - 0 0.79 3.75 1.9 3.75 1.9

is carnivorous 0 -0.16 - - -0.5 -0.56 - - - -

eats worms 2.25 0.23 - - 0.87 -0.67 2.25 0.23 2.25 0.23

has two legs 2.87 4.03 - - 3.25 3.62 2.87 4.03 2.87 4.03

lives in trees 2.75 0.55 - - 0.25 -1.69 2.75 0.55 2.75 0.55

migrates 2.25 -1.13 - - -1.12 -2.67 2.25 - 2.25 -

is lightweight 1.62 0.44 - - 2.25 1.69 1.62 0.44 1.62 0.44

is free 1.75 2.74 - - -0.62 -1.79 1.75 2.74 - -

is common 1.87 0.02 - - 0.5 -0.62 1.87 0.02 1.87 0.02

provides companionship - - 2.75 1.75 1.75 1.42 2.75 1.75 2.75 1.75

is friendly - - 1.87 1.68 1.12 1.05 1.87 1.68 1.87 1.68

provides security - - 1.75 -0.75 -0.87 -4.33 1.75 - 1.75 -

is loved - - 2 2.06 1.5 2.67 2 2.06 2 2.06

is cuddly - - 1 1.5 -0.5 -0.45 1 1.5 1 1.5

is alive - - 2.87 4.74 3.37 4.33 2.87 4.74 2.87 4.74

Threshold: > 46.32 35.09 28.98 27.69 54.42 60.15 73.17 57.66 71.42 54.92

Threshold: < 46.44 35.45 29.23 28.34 55.05 60.35 73.42 58.37 71.67 55.63

394 G. Righetti et al.

the choice of a precise threshold irrelevant for the output of our algorithm (which
uses the threshold only to determine the strongly necessary features). Still, to
assure that Hampton’s data can be represented via ∇∇-expressions, one needs to
check if a threshold can be set. To this end we follow Phase 3 of our algorithm
with s̄ft containing the features with MR>3. As reported in the last two rows
of Table 1, BirdH, PetH and PetBirdH have a non empty range of thresholds.

Columns Pet◦Bird/-KB/H and Pet◦Bird/+KB/H of Table 1 report the
weights and the features of PetH◦BirdH and K:PetH◦BirdH calculated by our
algorithm. The weights of the features in s̄ft are underlined and the last two
rows report the threshold ranges. Here and after, K is the following knowledge
base which, as we will see, is enough to show feature inheritance failure and
emergence:

Animal � KeptInCage � ¬Free (3a)
Animal � KeptByOwner � HasWings � KeptInCage (3b)
Animal � CaredFor � LivesInDomesticHome � KeptByOwner (3c)

Although the axioms in K represent plausible common-sense knowledge, one
may wonder about their experimental validity. How the data provided by Hamp-
ton can be used to evaluate K is not straightforward, but Sect. 5.2 sketches a
strategy to do this evaluation using the data we collected. The K is used here to
introduce constraints between the features of the tooth expressions.

We evaluated the linear correlation ([41], §2.6) between the original weights
of the features of PetBird as observed by Hampton [21] (column PetBird/H of
Table 1) and, respectively, the ones computed by the algorithm with (column
Pet◦Bird/+KB/H) and without (column Pet◦Bird/-KB/H) the knowledge base
K (calculated by assuming a 0 weight for the features marked with “-”). We can
observe a moderate but effective correlation: 0.45 without K, 0.50 in the presence
of the K. Adding K slightly improves the correlation, however notice that in our
example, K rules out only Is free which has a 1.75 weight in column Pet◦Bird/
-KB/H (quite different from the original −0.62 weight in column PetBird/H).
The reason is that Is an animal, Has wings, and Is kept by an owner are all
necessary features of K:PetH◦BirdH. By axiom (3b), Is kept in cage becomes
necessary and, by (3a), Is free is ruled out. This shows the role of K to capture
inheritance failure, (Is free is discarded), and emergence (Is kept in cage becomes
necessary for K:PetH◦BirdH). Note, however, that the necessity of Is kept in cage
is only implicitly represented by the tooth-expression together with K.

5.2 Evaluation on Extensional Data

We tested our algorithm on the weights’ extensional interpretation as follows.
First, for Pet, Bird and PetBird we considered the features discussed in

Sect. 5.1. Second, we collected 341 images of different exemplars (113 for Bird,
120 for Pet, and 108 for PetBird) with a simple Google search, where the images
with the highest scores were considered representative for the concept at hand.
We distributed the three sets of images to 8 judges (ranging between willing stu-
dents and colleagues), asking them to (i) confirm, for each exemplar in an image,

Concept Combination in Weighted DL 395

the categorisation under the concept under study; and (ii) select the features,
among the ones of the category of the exemplar, exhibited by the exemplars in
the images (only yes/no answers). Judges confirmed 113/113 exemplars of Bird,
113/120 exemplars of Pet, and only 75/108 exemplars of PetBird. The results of
this process are three exemplar by feature applicability matrices [9].

Third, we calculated the weights of the features via the Naive Bayes model,
a simple probabilistic classifier ([3], §8.2.2.) which we adapted to extract addi-
tive weights from positive examples of a concept only. Given a collection X of
exemplars and features Fj for j ∈ 1 . . . n, we write Count+j and Count−

j for the
numbers of exemplars in which Fj respectively does and does not occurs. We set
then the weight wj of Fj as7

wj = log
Count+j (X) + 1

Count−
j (X) + 1

. (4)

According to this rule, weights can be zero or negative if Count+j ≤ Count−
j .

Following Sect. 3, for Pet and Bird only features with wj > 0 are considered.
Fourth, following Hampton, we set as strongly necessary the features of a

concept that apply to the totality of the exemplars of such concept, with the
tolerance of a single exception (to take into account potentially noisy data).
Again, exact thresholds are irrelevant for the combination algorithm. Fifth, we
considered the K introduced in Sect. 5.1.

Columns Bird/NB, Pet/NB, and PetBird/NB of Table 1 report the weights
calculated from our data via the adapted Naive Bayes algorithm. Columns
Pet◦Bird/-KB/NB and Pet◦Bird/+KB/NB report the weights of the features
of, respectively, PetNB◦BirdNB and K:PetNB◦BirdNB calculated by our algorithm.
Table 1 also shows that all these concepts have a non-empty threshold range.

Before evaluating our algorithm, we can study the correlation between the
intensional vs. extensional views about the weights of features (between, e.g.,
the weights of Bird/H and Bird/NB in Table 1). The correlation between the
weights is 0.58 in the case of Bird, 0.55 in the case of Pet and 0.81 in the case
of PetBird, which suggests that the two views are relatively close, especially in
the case of PetBird. The correlation is higher for PetBird : this may plausibly be
due to the greater number of involved features (23 for Bird, 15 for Pet, 37 for
PetBird), as a smaller number naturally makes the corresponding comparisons
more noise-sensitive. It is worth noticing that Flies, Eats birdseeds, Lays eggs,
and Is an animal are all necessary features of PetBirdNB but not of PetBirdH.
Moreover, Flies and Eats birdseeds are necessary features of PetBirdNB which are
not necessary for either BirdNB or PetNB: the combination’s necessary features do
not simply correspond to the union of the two constituents’ necessary features.
This mismatch could be explained by the set of exemplars we obtained from
the google search (e.g., almost all the exemplars of PetBirds the subjects had to
evaluate were flying birds, etc.). Interestingly, Hampton explains the emergence
or strengthening of features also in terms of extensional feedbacks, i.e., feedbacks

7 We add 1 to both counts to avoid potential infinities.

396 G. Righetti et al.

from the known exemplars of a given concept. The emergence observed here may
thus have been strengthened by the way we collected our data, namely by the our
extensional evaluation. The necessary features of PetH◦BirdH and PetNB◦BirdNB
are much closer. This reflects the similarity between BirdH and BirdNB (resp. Pet)
in terms of necessary features (which are preserved by our algorithm).

We also studied the linear correlation between the weights of the features
we extracted from the data and the ones produced by our algorithm (with
and without K). The correlation between the weights of columns PetBird/NB
and Pet◦Bird/-KB/NB of Table 1 is 0.73, and it reaches 0.79 in the case of
Pet◦Bird/+KB/NB. This is significantly higher than the correlation found in
the case of Hampton data. This is an intriguing phenomenon that we wish to
verify via further experiments, and which, if confirmed, might highlight a cru-
cial difference between how concept combination operates over intensional and
extensional data. Again, in K:PetNB◦BirdNB, Is free is discarded and Is kept in
cage is an (implicitly) emergent necessary feature. However, note that now Is
kept by an owner is not strongly necessary, it becomes necessary by (3c).

As anticipated, we can use our data to empirically assess the adequacy of
an axiom with the collected data. For instance, we can evaluate axiom (3a) on
the exemplar of PetBird, by checking if every time subjects selected both the
features Is an animal and Is kept in cage, they did not select the feature Is
free. A simple measure of the plausibility of an axiom is the percentage of the
exceptions present in the data. All the axioms can be tested on the 75 exemplars
of PetBird while (3c) can also be tested on the 113 exemplars of Pet. We found
3/75 exceptions for (3a), 14/75 for (3b), and 0/75-0/113 for (3c).

6 Related Work

Several systems have been proposed in the literature to introduce and model
typicality in DL [1,4,6,7,18,44], however, fewer approaches have analysed the
case of noun-noun combination in the same settings. Noticeable exceptions are
the works proposed by Britz et al. [5] and Lieto and Pozzato [28].

Britz et al. build over their preferential semantics [6] to address the problem
of derived typicality in combined concepts [5]. They distinguish between defining
features, providing necessary and sufficient conditions for class membership, and
characteristic features, inducing typicality within that class. However, strongly
differing from our approach, the authors suggest that the selection of the fea-
tures of the compound concept depends on a modelling choice, instead of on an
algorithmic and automatic process.

Lieto and Pozzato exploit a non-monotonic preferential semantics [17] to dis-
tinguish between rigid properties, which define the concepts, and typical, defea-
sible, properties, associated with a number representing the degree of belief of
some agent. They propose a combination algorithm which distinguishes between
Head H and Modifier M concepts, and which outputs the typical properties of
the combination subject to three constraint. The output must: (i) be consistent;
(ii) not include all the typical properties of H; (iii) always favour H in case of

Concept Combination in Weighted DL 397

couples of (jointly) inconsistent typical properties. Nevertheless, first, condition
(ii) is established a priori. Our algorithm ensures this property only when some
non-necessary features of H are inconsistent with the necessary features of M.
Always discard some feature of H sounds, in contrast, quite artificial. Second,
in our case, condition (iii) holds only in the case of necessary features , thus
the effect is more conservative in our case. Third, in [28] the possibility to rule
out a feature depends not only on the degree of belief about that feature, but
also on the number of other typical properties with a lower degree of belief. Our
approach is more robust. Finally, the authors do not provide any applications of
the algorithm in the case of empirical data.

Related is also the work presented by Righetti et al. [38,39], which pro-
poses a dialogic approach to combine concepts that are represented as small
domain ontologies. The algorithm consists of a turn-based procedure, where two
agents/ontologies try to iteratively build a combined ontology by adding their
favourite axiom to the procedure, and where the procedure of axiom weakening
[8] is used to solve possible inconsistencies. The algorithm distinguishes between
Head and Modifier, but the technical apparatus is substantially different, in
primis because here we rely on a representation of concepts motivated by Pro-
totype Theory.

In a formal context, noun-noun combinations have also been analysed by
Lewis and Lawry [27]. By exploiting the idea of a hierarchy of conceptual spaces
[16], Lewis and Lawry’s approach can combine different spaces (namely, con-
cepts) to account for some of the phenomena observed in [20]. However, by
building on the conceptual spaces framework, any appeal to a logical inference
mechanism is lacking in their model. It is thus unclear how the model may apply
to more complex scenarios, e.g., the modelling of real data proposed here.

Conceptual combination is also analysed in the literature on Computational
Conceptual Blending [10,19,24,25,42,45] which is however motivated by a com-
pletely different literature [11]. The focus is then on the formal strategies to
model creative blends, not on noun-noun combinations or typicality effects .

7 Conclusions

This paper builds on previous work on WDL and addresses the problem of the
combination of tooth expressions from a cognitive perspective. We proposed an
algorithm for combining tooth expressions designed upon Hampton’s model of
attribute inheritance [21], studied the logical properties of the operator it gives
rise to, and offered a first empirical evaluation of the algorithm.

Studying the logical properties of combination sheds light on the existing
disparity between concept combination and concept conjunction. This, in turn,
raises the question of when and how concept combination should be favoured
over simple conjunction. The distinction between conjunctive concepts and log-
ical conjunctions has been extensively explored in cognitive literature, particu-
larly regarding typicality and vagueness effects in the representation of natural
concepts [20,23]. There exist contexts where these effects are limited or absent

398 G. Righetti et al.

(e.g. in Biological domains) and conjunction is enough; and contexts (e.g. for
common-sense concepts) where it is not. The different use of noun-noun combi-
nation and conjunction is thus a matter of context and user choice.

The primary focus of this paper lies in the attribute inheritance model intro-
duced by Hampton, restricting the analysis to conjunctive combinations. How-
ever, we aspire to extend our research beyond Hampton’s framework in the
future: a possible line of work is to analyse conceptual combinations of different
types [46].

Wrt the algorithm design, while Hampton does not discuss the choice of the
threshold for prototypes, we need a threshold for the combined tooth, and phase
3 of the algorithm is guided only by the need of preserving necessary features.
Additional, cognitively relevant criteria and further experiments are required to
set a precise threshold.

Our evaluation sheds light on the complexity of extracting tooth-expressions
from real data. On the one hand, the way data are collected can impact the
tooth-definitions (see, e.g., the contrast between BirdH with BirdNB). On the
other hand, the chosen methodology can impact the uniformity of the weight
assignment for the tooth-definitions extracted from a single dataset, complicating
the comparison of the weights of the Head and Modifier. A more flexible approach
would require a normalisation strategy for weights and thresholds, which is left
for future work. Relatedly, and quite unexpectedly, the algorithm is slightly
less performing, in terms of linear correlation, with Hampton’s data than with
the extensional ones. A possible explanation is that Hampton [20], unlike us,
collects the totality of features produced for both the combining concepts and
the combined concept: thus the number of features shared by the combining
concepts increases, as well as the possibilities of weights averagings.

As argued in Sect. 5.1, we prefer to model feature incompatibilities at the
level of K, which can be seen as a step towards the Knowledge View on concepts
[32]. We showed that even a simple K brings out the phenomena of inheritance
failure and attribute emergence and contextually increases linear correlations.
One may easily imagine more complex Ks, which would further improve such
correlations. However, as discussed in Sect. 5.1, a K can impact the correlations
only by ruling out some features. A direction for future work is to study how a K

may be used to decrease (or increase) the weight of a feature without necessarily
discarding it. A strategy might be to examine the (in-)compatibility with the K

of combinations of features that satisfy the tooth-expression and update weights
accordingly, rewarding the compatible ones and penalising the others. This is,
however, a matter for future work.

References

1. Baader, F., Ecke, A.: Reasoning with prototypes in the description logic ALC using
weighted tree automata. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe,
B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 63–75. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30000-9 5

https://doi.org/10.1007/978-3-319-30000-9_5
https://doi.org/10.1007/978-3-319-30000-9_5

Concept Combination in Weighted DL 399

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781139025355

3. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol.
4. Springer, New York (2006)

4. Bonatti, P.A., Sauro, L.: On the logical properties of the nonmonotonic description
logic DLN. Artif. Intell. 248, 85–111 (2017)

5. Britz, K., Heidema, J., Meyer, T.A.: Modelling object typicality in description log-
ics. In: Description Logics. CEUR Workshop Proceedings, vol. 477. CEUR-WS.org
(2009)

6. Britz, K., Heidema, J., Meyer, T.A.: Semantic preferential subsumption. In:
Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reason-
ing: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Aus-
tralia, September 16–19, 2008, pp. 476–484. AAAI Press (2008), http://www.aaai.
org/Library/KR/2008/kr08-046.php

7. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5 9

8. Confalonieri, R., Galliani, P., Kutz, O., Porello, D., Righetti, G., Troquard, N.:
Almost certain termination for ALC weakening. In: Marreiros, G., Martins, B.,
Paiva, A., Ribeiro, B., Sardinha, A. (eds.) EPIA 2022. LNCS, vol. 13566, pp. 663–
675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16474-3 54

9. De Deyne, S., et al.: Exemplar by feature applicability matrices and other Dutch
normative data for semantic concepts. Behav. Res. Methods 40(4), 1030–1048
(2008)

10. Eppe, M., et al.: A computational framework for conceptual blending. Artif. Intell.
256, 105–129 (2018)

11. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books, New York (2003)

12. Fodor, J., Lepore, E.: The red herring and the pet fish: why concepts still can’t be
prototypes. Cognition 58(2), 253–270 (1996)

13. Galliani, P., Kutz, O., Porello, D., Righetti, G., Troquard, N.: On knowledge depen-
dence in weighted description logic. In: Calvanese, D., Iocchi, L. (eds.) GCAI 2019.
Proceedings of the 5th Global Conference on Artificial Intelligence, Bozen/Bolzano,
Italy, 17–19 September 2019. EPiC Series in Computing, vol. 65, pp. 68–80. Easy-
Chair (2019). https://doi.org/10.29007/hjt1, https://doi.org/10.29007/hjt1

14. Galliani, P., Kutz, O., Troquard, N.: Succinctness and complexity of ALC with
counting perceptrons. In: Principles of Knowledge Representation and Reason-
ing: Proceedings of the 20th International Conference (KR 2023). Rhodes, Greece,
September 2–8, 2023 (2023)

15. Galliani, P., Righetti, G., Kutz, O., Porello, D., Troquard, N.: Perceptron connec-
tives in knowledge representation. In: Keet, C.M., Dumontier, M. (eds.) EKAW
2020. LNCS (LNAI), vol. 12387, pp. 183–193. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61244-3 13

16. Gärdenfors, P.: Conceptual Spaces - The Geometry of Thought. MIT Press, Cam-
bridge (2000)

17. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description
logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol.
4790, pp. 257–272. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75560-9 20

https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
http://www.aaai.org/Library/KR/2008/kr08-046.php
http://www.aaai.org/Library/KR/2008/kr08-046.php
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-031-16474-3_54
https://doi.org/10.29007/hjt1
https://doi.org/10.29007/hjt1
https://doi.org/10.1007/978-3-030-61244-3_13
https://doi.org/10.1007/978-3-030-61244-3_13
https://doi.org/10.1007/978-3-540-75560-9_20
https://doi.org/10.1007/978-3-540-75560-9_20

400 G. Righetti et al.

18. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

19. Goguen, J.A., Harrell, D.F.: Style: a computational and conceptual blending-based
approach. In: Argamon, S., Burns, K., Dubnov, S. (eds.) The structure of style, pp.
291–316. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12337-
5 12

20. Hampton, J.A.: Inheritance of attributes in natural concept conjunctions. Memory
Cogn. 15(1), 55–71 (1987)

21. Hampton, J.A.: Overextension of conjunctive concepts: evidence for a unitary
model of concept typicality and class inclusion. J. Exp. Psychol. Learn. Mem.
Cogn. 14(1), 12–32 (1988)

22. Hampton, J.A.: Testing the prototype theory of concepts. J. Mem. Lang. 34(5),
686–708 (1995)

23. Hampton, J.A.: Compositionality and concepts. In: Hampton, J.A., Winter, Y.
(eds.) Compositionality and Concepts in Linguistics and Psychology, pp. 95–121.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45977-6

24. Hedblom, M.M., Kutz, O., Neuhaus, F.: Image schemas in computational concep-
tual blending. Cogn. Syst. Res. 39, 42–57 (2016)

25. Hedblom, M.M., Righetti, G., Kutz, O.: Deciphering the cookie monster: a case
study in impossible combinations. In: ICCC, pp. 222–225 (2021)

26. Jackendoff, R.: English Noun-noun Compounds in Conceptual Semantics. The
Semantics of Compounding, pp. 15–37 (2016)

27. Lewis, M., Lawry, J.: Hierarchical conceptual spaces for concept combination. Artif.
Intell. 237, 204–227 (2016). https://doi.org/10.1016/j.artint.2016.04.008

28. Lieto, A., Pozzato, G.L.: A description logic framework for commonsense con-
ceptual combination integrating typicality, probabilities and cognitive heuris-
tics. J. Exp. Theor. Artif. Intell. 32(5), 769–804 (2020). https://doi.org/10.1080/
0952813X.2019.1672799

29. Masolo, C., Porello, D.: Representing concepts by weighted formulas. In: Formal
Ontology in Information Systems - Proceedings of the 10th International Con-
ference, FOIS 2018, Cape Town, South Africa, 19–21 September 2018, pp. 55–68
(2018)

30. Murphy, G.L.: Noun phrase interpretation and conceptual combination. J. Mem.
Lang. 29(3), 259–288 (1990)

31. Murphy, G.L.: The Big Book of Concepts. MIT press, Cambridge (2002)
32. Murphy, G.L., Medin, D.: The role of theories in conceptual coherence. Psychol.

Rev. 92, 289–316 (1985)
33. Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of

concepts. Cognition 9(1), 35–58 (1981)
34. Porello, D., Kutz, O., Righetti, G., Troquard, N., Galliani, P., Masolo, C.: A tooth-

ful of concepts: Towards a theory of weighted concept combination. In: Proceedings
of DL Workshop, vol. 2373. CEUR-WS.org (2019)

35. Righetti, G., Masolo, C., Troquard, N., Kutz, O., Porello, D.: Concept combination
in weighted description logics. In: JOWO 2021. Proceedings of the Joint Ontology
Workshops, Bozen/Bolzano, Italy, 13–17 September 2021. CEUR Workshop Pro-
ceedings (2021)

36. Righetti, G., Porello, D., Confalonieri, R.: Evaluating the interpretability of thresh-
old operators. In: Corcho, Ó., Hollink, L., Kutz, O., Troquard, N., Ekaputra,
F.J. (eds.) EKAW 2022. LNCS, vol. 13514, pp. 136–151. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17105-5 10

https://doi.org/10.1007/978-3-642-12337-5_12
https://doi.org/10.1007/978-3-642-12337-5_12
https://doi.org/10.1007/978-3-319-45977-6
https://doi.org/10.1016/j.artint.2016.04.008
https://doi.org/10.1080/0952813X.2019.1672799
https://doi.org/10.1080/0952813X.2019.1672799
https://doi.org/10.1007/978-3-031-17105-5_10

Concept Combination in Weighted DL 401

37. Righetti, G., Porello, D., Kutz, O., Troquard, N., Masolo, C.: Pink panthers and
toothless tigers: three problems in classification. In: Proceedings of the 7th Inter-
national Workshop on Artificial Intelligence and Cognition (AIC 2019), pp. 39–53
(2019)

38. Righetti, G., Porello, D., Troquard, N., Kutz, O., Hedblom, M., Galliani, P.:
Asymmetric hybrids: dialogues for computational concept combination. In: Formal
Ontology in Information Systems: Proceedings of the 12th International Confer-
ence (FOIS 2021). IOS Press (2021)

39. Righetti, G., Porello, D., Troquard, N., Kutz, O., Hedblom, M.M., Galliani, P.:
Asymmetric hybrids: dialogues for computational concept combination (extended
abstract). In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23–29 July 2022,
pp. 5329–5333. ijcai.org (2022). https://doi.org/10.24963/ijcai.2022/745

40. Rosch, E.: Cognitive representations of semantic categories. J. Exp. Psychol. Gen.
104, 192–233 (1975)

41. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists.
Academic press, Cambridge (2020)

42. Schorlemmer, M., Plaza, E.: A uniform model of computational conceptual blend-
ing. Cogn. Syst. Res. 65, 118–137 (2021)

43. Smith, E.E., Medin, D.L.: Categories and concepts, vol. 9. Harvard University
Press, Cambridge (1981)

44. Varzinczak, I.: A note on a description logic of concept and role typicality for
defeasible reasoning over ontologies. Log. Univers. 12, 297–325 (2018)

45. Veale, T.: From conceptual mash-ups to badass blends: a robust computational
model of conceptual blending. In: Veale, T., Cardoso, F. (eds.) Computational
Creativity. CSCS, pp. 71–89. Springer, Cham (2019). https://doi.org/10.1007/978-
3-319-43610-4 4

46. Wisniewski, E.J.: When concepts combine. Psychon. Bull. Rev. 4(2), 167–183
(1997)

https://doi.org/10.24963/ijcai.2022/745
https://doi.org/10.1007/978-3-319-43610-4_4
https://doi.org/10.1007/978-3-319-43610-4_4

Logics of Knowledge and Belief

How Easy it is to Know How: An Upper
Bound for the Satisfiability Problem

Carlos Areces1,2, Valentin Cassano1,2,3, Pablo F. Castro1,3,
Raul Fervari1,2,4(B), and Andrés R. Saravia1,2

1 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Buenos Aires, Argentina
rfervari@unc.edu.ar

2 Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
3 Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina

4 Guangdong Technion - Israel Institute of Technology (GTIIT), Shantou, China

Abstract. We investigate the complexity of the satisfiability problem
for a modal logic expressing ‘knowing how’ assertions, related to an
agent’s abilities to achieve a certain goal. We take one of the most stan-
dard semantics for this kind of logics based on linear plans. Our main
result is a proof that checking satisfiability of a ‘knowing how’ formula
can be done in ΣP

2 . The algorithm we present relies on eliminating nested
modalities in a formula, and then performing multiple calls to a satisfi-
ability checking oracle for propositional logic.

Keywords: Knowing How · Complexity · Satisfiability

1 Introduction

The term ‘Epistemic Logic’ [15] encompasses a family of logical formalisms aimed
at reasoning about the knowledge of autonomous agents about a given scenario.
Originally, epistemic logics restricted their attention to so-called knowing that,
i.e., the capability of agents to know about certain facts. More recently, sev-
eral logics have been proposed to reason about alternative forms of knowledge
(see [32] for a discussion). For instance, knowing whether is looked into in [7];
knowing why in [34]; and knowing the value in [3,12], just to mention a few.
Finally, a novel approach focuses on knowing how –related to an agent’s abil-
ity to achieve a goal [8]. This concept is particularly interesting, as it has been
argued to provide a fresh way to reason about scenarios involving strategies in
AI, such as those found in automated planning (see, e.g., [6]).

The first attempts to capture knowing how were through a combination of
‘knowing that’ and actions (see, e.g., [14,18,25,26]). However, it has been dis-
cussed, e.g., in [13,16], that this idea does not lead to an accurate representation
of knowing how. In response, a new logic is presented in [31,33] featuring an
original modality specifically tailored to model the concept of ‘knowing how’.
In a nutshell, an agent knows how to a achieve a goal ϕ under some initial
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 405–419, 2023.
https://doi.org/10.1007/978-3-031-43619-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_28&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_28

406 C. Areces et al.

condition ψ, written Kh(ψ,ϕ), if and only if there exists a ‘proper’ plan π, i.e.,
a finite sequence of actions, that unerringly leads the agent from situations in
which ψ holds only to situations in which ϕ holds. A ‘proper’ plan is taken
as one whose execution never aborts, an idea that takes inspiration from the
notion of strong executability from contingent planning [29]. As discussed in,
e.g., [13,17], the quantification pattern we just described cannot be captured
using logics with ‘knowing that’ modalities and actions. For this reason, the
new Kh modality from [31,33] has reached a certain consensus in the community
as an accurate way of modelling ‘knowing how’. Moreover, it has paved the way
to a deep study of knowing how, and to a rich family of logics capturing vari-
ants of the initial reading. Some examples of which are a ternary modality of
knowing how with intermediate constraints [21]; a knowing how modality with
weak plans [19]; a local modality for strategically knowing how [9] (and some
relatives, see [27,28]); and, finally, a knowing how modality which considers an
epistemic indistinguishability relation among plans [1].

As witnessed by all the ideas it triggered, the foundational work in [31,33]
greatly improved the understanding of ‘knowing how’ from a logical standpoint.
The literature on logics of ‘knowing how’ explores a wide variety of results, such
as axiom systems (in most of the works cited above), proof methods [20,23],
and expressivity [10], just to name a few. Yet, if we consider ‘knowing how’
logics as suitable candidates for modelling problems in strategic reasoning, it is
important to consider how difficult (or how easy) it is to use these logics for
reasoning tasks. There have been some recent developments on the complexity
of logics with ‘knowing how’ modalities. For instance, model-checking for the Kh
modality above, and some of its variants, is investigated in [5]. The complex-
ity of model-checking and the decidability status of satisfiability for the local
‘knowing how’ modality from [9], and some of its generalizations, is explored
in [24]. These two problems are also explored for ‘knowing how’ with epistemic
indistinguishability in [1]. Notwithstanding, the complexity of the satisfiability
problem for the original Kh modality from [31,33] is still unknown ([22] presents
only a decidability statement). In this work, we shed some light into this matter.

Our contribution is to provide an upper for the satisfiability problem of the
knowing how logic from [31,33], called here LKh. More precisely, we introduce
an algorithm for deciding satisfiability that is in ΣP

2 , the second level of the
polynomial hierarchy (PH) [30]. In short, this complexity class can be though as
those problems invoking an NP oracle a polynomial number of times, and whose
underlying problem is also in NP (see e.g. [2]). Currently, it is unknown whether
PH collapses, or it is strictly contained in PSpace. This being said, having an
algorithm in a lower level of PH is generally understood as a good indication that
the problem is close to, e.g., NP or Co-NP. It is easy to see that NP is a lower
bound for checking satisfiability in LKh, as it extends propositional logic. For an
upper bound, a natural candidate is PSpace, as for instance the model-checking
problem for LKh is PSpace-complete [5], a potentially higher complexity of what is
proved here for satisfiability. We argue that this is due to the fact that in model-
checking the full expressivity of the semantics is exploited (specially related to

How Easy it is to Know How 407

properties of regular languages), whereas for satisfiability, all this expressivity is
completely hidden. Although our procedure does not lead to a tight complexity
characterization, it gives us an interesting upper bound towards filling this gap.

We put forth that our result is not obvious. To obtain it, we combine tech-
niques such as defining a normal form to eliminate nested modalities, calling
an NP oracle to guess propositional valuations and computing a closure over a
matrix of formulas to combine them, adapting the Floyd-Warshall algorithm [4].

The article is organized as follows. In Sect. 2 we introduce some notation
and the basic definitions of the logic LKh. Section 3 is devoted to incrementally
show our result. Finally, in Sect. 4 we provide some remarks and future lines of
research.

2 Knowing How Logic

From here onwards, we assume Prop is a denumerable set of proposition symbols,
and Act is a denumerable set of action symbols. We refer to π ∈ Act∗ as a plan.

Definition 1. The language LKh is determined by the grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | Kh(ϕ,ψ),

where p ∈ Prop. We use ⊥, �, ϕ ∧ ψ, ϕ → ψ, and ϕ ↔ ψ as the usual abbrevia-
tions; Aϕ is defined as Kh(¬ϕ,⊥) (see e.g. [31,33]), while Eϕ abbreviates ¬A¬ϕ.
The elements of LKh are formulas.

We read Kh(ϕ,ψ) as: “the agent knows how to achieve ψ given ϕ”. We call ϕ
and ψ, the precondition and the postcondition of Kh(ϕ,ψ), respectively. We read
Aϕ as: “ϕ holds anywhere”; and its dual Eϕ as: “ϕ holds somewhere”. As it is
usually done, we refer to A and E as the universal and existential modalities [11].

Formulas of LKh are interpreted with respect to labelled transition systems
over so-called strongly executable plans. Sometimes, we refer to LTS as models.
We introduce their definitions below.

Definition 2. A labelled transition system (LTS) is a tuple M = 〈S,R,V〉 s.t.:

(1) S is a non-empty set of states;
(2) R = {Ra | a ∈ Act} is a collection of binary relations on S; and
(3) V : Prop → 2S is a valuation function.

Definition 3. Let {Ra | a ∈ Act} be a collection of binary relations on S. Let ε ∈
Act∗ be the empty plan. We define: Rε = {(s, s) | s ∈ S}, and for every π ∈ Act∗,
and a ∈ Act, Rπa = Rπ Ra (i.e., their composition). For every relation Rπ, and
T ⊆ S, define Rπ(T) = {(s, t) | s ∈ T and (s, t) ∈ Rπ}, and Rπ(t) = Rπ({t}).

The notion of strong executability determines the “adequacy” of a plan. Strong
executability takes inspiration from conformant planning [29], and its jusification
is discussed at length in [31].

408 C. Areces et al.

Definition 4. Let π = a1 . . . an ∈ Act∗, and 1 ≤ i ≤ j ≤ n, we denote: πi = ai;
π[i, j] = ai . . . aj; and |π| = n. Moreover, let M = 〈S,R,V〉 be an LTS; we say
that π is strongly executable (SE) at s ∈ S, iff for all i ∈ [1, |π| − 1] and all
t ∈ R(π[1,i])(s), it follows that Rπ(i+1)(t) = ∅. The set of all states at which π is
strongly executable is defined as SE(π) = {s | π is SE at s}. Note: SE(ε) = S.

We illustrate the notions we just introduced with a simple example.

Example 1. Let M = 〈S,R,V〉 be the LTS depicted below and π = ab. We have,
Rπ(s) = {u}, and Rπ[1,1](s) = Ra(s) = {t, v}. It can be seen that s ∈ SE(a);
while s /∈ SE(π) –since v ∈ Rπ[1,1](s) and Rπ(2)(v) = Rb(v) = ∅. Finally, we have
that SE(ε) = S, SE(a) = {s} and SE(ab) = ∅.

p

s

r

t

r

v

q

u
a b

a

We are now ready to introduce the semantics of LKh, based on [31,33].

Definition 5. Let M = 〈S,R,V〉 be an LTS, we define �ϕ�M inductively as:

�p�M = V(p) �¬ϕ�M = S \�ϕ�M �ϕ ∨ ψ�M = �ϕ�M ∪ �ϕ�M

�Kh(ϕ,ψ)�M =

{
S if exists π∈Act∗s.t. �ϕ�M ⊆ SE(π) and Rπ(�ϕ�M) ⊆ �ψ�M

∅ otherwise.

We say that a plan π ∈ Act∗ is a witness for Kh(ϕ,ψ) iff �ϕ�M ⊆ SE(π) and
Rπ(�ϕ�M) ⊆ �ψ�M. We use (�ϕ�M)� instead of S \�ϕ�M. We write M � ϕ as an
alternative to �ϕ�M = S; and M, s � ϕ as an alternative to s ∈ �ϕ�M.

Example 2. Let M be the LTS from Example 1. From Definition 5, we have
�Kh(p, r)�M = S (using a as a witness), while �Kh(p, q)�M = ∅ (there is no witness
for the formula).

We included the universal modality A as abbreviation since formulas of the
form Aϕ play a special role in our treatment of the complexity of the satisfiability
problem for LKh. It is proven in, e.g., [31,33], that Aϕ and Eϕ behave as the
universal and existential modalities ([11]), respectively. Recall that Aϕ is defined
as Kh(¬ϕ,⊥), which semantically states that ϕ holds everywhere in a model iff
¬ϕ leads always to impossible situations. Formulas of this kind are called here
‘global’. Below, we formally restate the results just discussed.

Proposition 1. Let M = 〈S,R,V〉 and ψ and χ be formulas s.t. �χ�M = ∅;
then �Kh(ψ, χ)�M = S iff �¬ψ�M = S.

Corollary 1. Let M = 〈S,R,V〉 and a formula ϕ, M, s � Aϕ iff �ϕ�M = S.

We introduce now Proposition 2, which is of use in the rest of the paper.

How Easy it is to Know How 409

Proposition 2. Let ψ,ψ′, χ, χ′ and ϕ be formulas, and M an LTS; then:

(1) �ψ′�M ⊆ �ψ�M and �χ�M ⊆ �χ′�M implies �Kh(ψ, χ)�M ⊆ �Kh(ψ′, χ′)�M;
(2) �ψ�M ⊆ �ψ′�M implies (�Kh(ϕ,ψ)�M ∩ �Kh(ψ′, χ)�M) ⊆ �Kh(ϕ, χ)�M.

We conclude this section with some useful definitions.

Definition 6. A formula ϕ is satisfiable, written Sat(ϕ), iff there is M s.t.
�ϕ�M = ∅. A finite set Φ = {ϕ1, . . . , ϕn} of formulas is satisfiable, written
Sat(Φ), iff Sat(ϕ1 ∧ · · · ∧ ϕn). For convenience, we define Sat(∅) as true. We
use Unsat(ϕ) iff Sat(ϕ) is false; similarly, Unsat(Φ) iff Sat(Φ) is false. Finally,
whenever Sat(ϕ) iff Sat(ϕ′), we call ϕ and ϕ′ equisatisfiable, and write ϕ ≡Sat ϕ′.

Definition 7. The modal depth of a formula ϕ, written md(ϕ), is defined as:

md(ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if ϕ ∈ Prop

md(ψ) if ϕ = ¬ψ

max(md(ψ),md(χ)) if ϕ = ψ ∨ χ

1 + max(md(ψ),md(χ)) if ϕ = Kh(ψ, χ).

We use sf(ϕ) to indicate the set of subformulas of ϕ. We say that Kh(ψ, χ) is a
leaf of ϕ iff Kh(ψ, χ) ∈ sf(ϕ) and md(ψ) = md(χ) = 0 (i.e., md(Kh(ψ, χ) = 1)).

In words, the modal depth of a formula is the length of the longest sequence
of nested modalities in the formula; whereas a leaf is a subformula of depth one.
Notice that, since Aϕ is a shortcut for Kh(¬ϕ,⊥), we have md(Aϕ) = 1+md(ϕ).

Example 3. Let ϕ = Kh(p,Kh(¬q, p → q)) ∨ Kh(r, t); it can easily be checked
that md(ϕ) = 2 and that Kh(¬q, p → q) and Kh(r, t) are its modal leaves.

3 An Upper Bound for the Satisfiability Problem of LKh

In this section we establish an upper bound on the complexity of the satisfiability
problem for LKh, which is the main result of our paper. We start with some
preliminary definitions and results.

Proposition 3. Let ϕ′ be the result of replacing all occurrences of a leaf θ in ϕ
by a proposition symbol k /∈ sf(ϕ); it follows that ϕ ≡Sat (ϕ′ ∧ (Ak ↔ θ)).

We say that ϕ is in leaf normal form iff md(ϕ) ≤ 1. Proposition 4 tells us that
we can put any formula into an equisatisfiable formula in leaf normal form. The
function Flatten in Algorithm 1 tells us how to do this in polynomial time.

Proposition 4. Algorithm 1 is in P; on input ϕ, it outputs ϕ0 and ϕ1 such that
md(ϕ0) = 0, md(ϕ1) = 1, and ϕ ≡Sat (ϕ0 ∧ ϕ1).

410 C. Areces et al.

The result in Proposition 4 allows us to think of the complexity of the satis-
fiability problem for LKh by restricting our attention to formulas in leaf normal
form. In turn, this enables us to work towards a solution in terms of subprob-
lems. More precisely, given ϕ0 and ϕ1 in the leaf normal form that results from
Flatten, the subproblems are (i) determining the satisfiability of ϕ0; and (ii)
determining the satisfiability of ϕ1 based on a solution to (i). The solution to
(i) is well-known, ϕ0 is a propositional formula. We split the solution of (ii)
into (a) determining when formulas of the form Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn)
are satisfiable, see Proposition 5; (b) determining when formulas of the form
¬Kh(ψ′

1, χ
′
1)∧ · · · ∧¬Kh(ψ′

m, χ′
m) are satisfiable, see Proposition 7; and (c) com-

bining (a) and (b), see Proposition 11. We present (a), (b), and (c), in a way
such that they incrementally lead to a solution to the satisfiability problem for
LKh. Finally, in Proposition 12, we show how to combine (i) and (ii) to obtain
an upper bound on the complexity of this problem.

Let us start by solving the first problem: checking whether a conjunction ϕ of
positive formulas in leaf normal form are satisfiable altogether. In a nutshell, we
show that solving this problem boils down to building a set I of the preconditions
of those subformulas whose postconditions are falsified in the context of ϕ, and
checking whether the formulas in I are satisfiable or not. Intuitively, the formulas
in I correspond to ‘global’ formulas. We made precise these ideas in Proposition
5.

Proposition 5. Let ϕ = Kh(ψ1, χ1) ∧ · · · ∧Kh(ψn, χn) be such that md(ϕ) = 1;
and let the sets I0, . . . , In be defined as follows:

Ii =

{
{k ∈ [1, n] | Unsat(χk)} if i = 0,

I(i−1) ∪ {k ∈ [1, n] | Unsat({¬ψk′ | k′ ∈ I(i−1)} ∪ {χk})} if i > 0,

where i ∈ [0, n]; further, let I = In. Then: (1) Sat(ϕ) iff (2) Sat(
∧

i∈I ¬ψi).

Proof. (⇒) Suppose that Sat(ϕ) holds, i.e., exists M s.t. �ϕ�M = S. From this
assumption, we know that, for every j ∈ [1, n], �Kh(ψi, χi)�M = S. The proof is
concluded if �

∧
i∈I ¬ψi�

M = ∅. We obtain this last result with the help of the
following auxiliary lemma:

(∗) for all k ∈ Ii, �χk�M = ∅ and �¬ψk�M = S

The lemma is obtained by induction on the construction of Ii. The base case
is direct. Let k ∈ I0; from the definition of I0, we get Unsat(χk); this implies
�χk�M = ∅; which implies S = �Kh(ψk, χk)�M = �A¬ψk�M = �¬ψk�M. For
the inductive step, let k ∈ I(i+1) \ Ii. From the Inductive Hypothesis, for all
k′ ∈ Ii, �χk′�M = ∅ and �¬ψk′�M = S. This implies (†) �

∧
k′∈Ii

¬ψk′�M = S.
From the definition of I(i+1), Unsat({¬ψk′ | k′ ∈ Ii} ∪ {χk}). This is equivalent
to �

∧
k′∈Ii

¬ψk′�M ⊆ �¬χk�M. From (†), S ⊆ �¬χk�M = S. Thus, �χk�M = ∅
and �¬ψk�M = S. Since I = In; using (∗) we get �

∧
i∈I ¬ψi�

M = S = ∅. This
proves (2).

How Easy it is to Know How 411

(⇐) The proof is by contradiction. Suppose (2) and Unsat(ϕ). Then, for all M,
(†) �ϕ�M = ∅. Let J = {j ∈ [1, n] | Unsat({(

∧
i∈I ¬ψi), ψj})}. Moreover, let

M = 〈S,R,V〉 be s.t. S is the smallest set containing all valuations that make
(
∧

i∈I ¬ψi) true. From (2), we know that S = ∅ and �¬ψk�M = S for all k ∈ I.
By induction on the construction of I = In, we get that �χk�M = ∅ for all
k ∈ I =

⋃n
i=0 Ii. The case for k ∈ I0 is direct since Unsat(χk), thus �χk�M = ∅.

For the inductive case, let k ∈ Ii \ Ii−1, then Unsat({¬ψk′ | k′ ∈ I(i−1)} ∪ {χk}).
This is equivalent to say that the implication ((

∧
k′∈I(i−1)

¬ψk′) → ¬χk) is valid.
Thus, �

∧
k′∈I(i−1)

¬ψk′�M ⊆ �¬χk�M. By hypothesis, �
∧

k′∈I ¬ψk′�M = S. Thus,
�
∧

k′∈I(i−1)
¬ψk′�M = S, and we get �¬χk�M = S and �χk�M = ∅. In turn, for

all k ∈ J , since Unsat({(
∧

i∈I ¬ψi), ψk}) and �
∧

i∈I ¬ψi�
M = S we can conclude

that �ψk�M = ∅. Thus, we have that �Kh(ψk, χk)�M = �A¬ψk�M = S, for all
k ∈ I ∪ J . Then, from (†), exists K = {k | �Kh(ψk, χk)�M = ∅} s.t. ∅ ⊂ K ⊆
[1, n] \ (I ∪ J). For all k ∈ K, �ψk�M = ∅ since Sat({(

∧
i∈I ¬ψi), ψk}); and

�χk�M = ∅ since Sat({¬ψk′ | k′ ∈ I(i−1)} ∪ {χk}) for all i ≥ 0, even I(i−1) =
In = I. Without loss of generality, let K = [1,m] and M′ = 〈S,R′,V〉 be s.t.
R′ = {R′

aj
| aj ∈ Act}, where:

R′
aj

=

{
�ψj�

M′ × �χj�
M′

if j ∈ K

Ra(j−m) if j /∈ K.

In the definition of R′, it is worth noticing that since j /∈ K, Ra(j−m) is defined,
i.e., Ra(j−m) ∈ R. Then clearly, for all k ∈ K, �Kh(ψk, χk)�M

′
= S. The claim

is that for all k′ ∈ I ∪ J , �Kh(ψk′ , χk′)�M
′
= S. To prove this claim, consider a

function σ : Act∗ → Act∗ s.t. σ(ε) = ε, and σ(akα) = a(k+m)σ(α). For all π ∈
Act∗, if �ψk′�M ⊆ SE(π) and Rπ(�ψk′�M) ⊆ �χk′�M, then �ψk′�M

′ ⊆ SE(σ(π))
and Rσ(π)(�ψk′�M

′
) ⊆ �χk′�M

′
–since the valuation functions for M and M′

coincide, the truth sets in M and M′ coincide for formulas with no modalities.
Then, �Kh(ψk′ , χk′)�M

′
= S. But we had assumed Unsat(ϕ). Thus, (1) follows.

The following example illustrates the result in Proposition 5.

Example 4. Let ϕ = Kh(p,⊥)∧Kh(q, p), i.e., ψ1 = p, ψ2 = q, χ1 = ⊥ and χ2 = p.
It is clear that Sat(ϕ). Let us build the sets I0, I1 and I2:

– I0 = {1}, as Unsat(χ1) and Sat(χ2) hold;
– I1 = {1, 2}, since it holds Unsat({¬ψ1, χ2});
– I2 = {1, 2} = I, as I1 already contains all the indices in [1, 2].

Thus (as it can be easily checked) we get Sat({¬ψ1,¬ψ2}) (i.e., Sat({¬p,¬q})).

Interestingly, the result in Proposition 5 tells us that the satisfiability of a
formula Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) depends solely on the joint satisfiability
of its ‘global’ subformulas (cf. Proposition 1); i.e., subformulas Kh(ψi, χi) whose
postconditions χi are falsified in the context of ϕ. The satisfiability of the ‘global’

412 C. Areces et al.

subformulas provides us with the universe, i.e., set of states, on which to build
the plans that witness those formulas that are not in I, and that are not ‘trivially’
true as a result of their preconditions being falsified in this universe.

Building on Proposition 5, the function Sat+
Kh in Algorithm 2 gives us a way

of checking whether a formula ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) is satisfiable.
The algorithm behind this function makes use of a (propositional) Sat oracle,
and the function Global. The Sat oracle tests for pre and postconditions of Kh
formulas, as these are propositional formulas. Intuitively, Global iteratively
computes the indices in the sets Ii in Proposition 5, each of them corresponding
to the ‘global’ subformulas of the input. Once this is done, Sat+

Kh checks the
joint satisfiability of the negation of the preconditions of ‘global’ subformulas.

Proposition 6. Let ϕ be as in Proposition 5; Algorithm 2 solves Sat(ϕ).

Let us now move to determining the satisfiability conditions of a formula
¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) in leaf normal form. Proposition 7 establishes
that, for any such a formula, it is enough to check whether each conjunct ψi∧¬χi

is individually satisfiable. Note that this satisfiability check is purely proposi-
tional.

Proposition 7. Let ϕ = ¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) be s.t. md(ϕ) = 1; it
follows that Sat(ϕ) iff for all i ∈ [1, n], Sat(ψi ∧ ¬χi).

Proof. (⇒) The proof is by contradiction. Suppose that (†) Sat(ϕ) and for some
i ∈ [1, n] we have (‡) Unsat(ψi ∧ ¬χi). Let M be a model such that �ϕ�M = ∅,
which exists by (†). Then, �Kh(ψi, χi)�M = ∅. From this, we get �ψi�

M = ∅;
otherwise �Kh(ψi, χi)�M = S. From (‡), we know that �ψi�

M ⊆ �χi�
M. Since

ε ∈ Act∗, we have �ψi�
M ⊆ SE(ε) = S and �ψi�

M = Rε(�ψi�
M) ⊆ �χi�

M. But
this means �Kh(ψi, χi)�M = S; which is a contradiction. Thus, Rε�ψi�

M � �χi�
M;

i.e., �ψi�
M � �χi�

M. This means �ψi∧¬χi�
M = ∅. This establishes Sat(ψi∧¬χi).

(⇐) Suppose that (†) for all i ∈ [1, n], Sat(ψi ∧ ¬χi). Let M = 〈S,R,V〉 where:
(‡) S is s.t. for all i, �ψi ∧ ¬χi�

M = ∅; and (§) for all Ra ∈ R, Ra = ∅. From
(†), we know that at least one S exists, as every ψi and χi are propositional;
thus, each satisfiable conjunction can be sent to a different s ∈ S. From (§),
we know for all π ∈ Act∗, SE(π) = ∅ iff π = ε. From (‡) and (§), we know
that �ψi�

M = Rε�ψi�
M � �χi�

M. This means that �Kh(ψi, χi)�M = ∅, for all
i ∈ [1, n]. Hence �ϕ�M = S which implies Sat(ϕ).

The key idea behind Proposition 7 is to build a discrete universe to force the
only possible witness of a formula of the form Kh(ψi, χi) to be the empty plan. If
in this discrete universe we always have at hand a state which satisfies ψi ∧¬χi,
then, the empty plan cannot be a witness for Kh(ψi, χi). If the latter is the
case, then the satisfiability of ¬Kh(ψi, χi) is ensured. Building on this result, we
define, in Algorithm 3, a function Sat−

Kh to check the satisfiability of a formula
¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) in leaf normal form. The function proceeds by
traversing each subformula Kh(ψi, χi) and checking the satisfiability of ψi ∧¬χi.

How Easy it is to Know How 413

Proposition 8. Let ϕ be as in Proposition 7; Algorithm 3 solves Sat(ϕ).

We are now ready to extend the results in Propositions 5 and 7 to work
out the joint satisfiability of a formula of the form ϕ+ = Kh(ψ1, χ1) ∧ · · · ∧
Kh(ψn, χn), and a formula of the form ϕ− = ¬Kh(ψ′

1, χ
′
1) ∧ · · · ∧ ¬Kh(ψ′

m, χ′
m),

both in leaf normal form. The main difficulty is how to “build” witnesses for the
subformulas Kh(ψi, χi) of ϕ+ in a way such that they do not yield witnesses for
the subformulas ¬Kh(ψ′

j , χ
′
j) of ϕ−. We show that the key to the solution hinges

on “composition”. We start with a preliminary definition.

Definition 8. Let ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) and ψ be a formula; we
define Π(ϕ,ψ) =

⋃
i≥0 Πi where:

Π0 = {(x, x) | x ∈ [1, n]}
Π(i+1) = Πi ∪{(x, z) | (x, y) ∈ Πi , z ∈ [1, n], and Unsat({ψ, χy,¬ψz})}.

In words, Π(ϕ,ψ) captures the notion of composition of formulas Kh(ψ, χ)
and Kh(ψ′, χ′) into a formula Kh(ψ, χ′). This composition is best explained by
recalling the validity of (Kh(ψ, χ) ∧ A(χ → ψ′) ∧ Kh(ψ′, χ′)) → Kh(ψ, χ′) (see,
e.g. [31,33]). The definition of Π(ϕ,ψ) records the conjuncts of ϕ which can be
composed in this sense. Below, we list some properties of Π(ϕ,ψ).

Proposition 9. Let ϕ and ψ be as in Definition 8; if (x, y) ∈ Π(ϕ,ψ), then, for
any model M, it holds �ϕ ∧ Aψ�M ⊆ �Kh(ψx, χy)�M.

Proof. We start by stating and proving an auxiliary lemma: (∗) (x, y) ∈ Πi iff
there is a non-empty sequence π of indices in [1, n] s.t.:

(†) x = π1 and y = π|π|; and
(‡) for all j ∈ [1, |π| − 1], Unsat({ψ, χπj

,¬ψπ(j+1)}).

The proof of this lemma is by induction on i. The base case for (∗) is i = 0.
We know that (x, x) ∈ Π0, the sequence containing just x satisfies (†) and
(‡). Conversely, we know that any sequence π of indices in [1, n] s.t. |π| = 1
satisfies (†) and (‡); it is immediate that (π1, π1) ∈ Π0. This proves the base
case. For the inductive step, let (x, z) ∈ Π(i+1), (x, y) ∈ Πi, z ∈ [1, n], and
Unsat({ψ, χy,¬ψz}). From the Inductive Hypothesis, there is π that satisfies (†)
and (‡). Immediately, π′ = πz also satisfies (†) and (‡).
It is easy to see that, if there is π satisfying (†) and (‡), then, (§) for every model
M and j ∈ [1, |π| − 1], �Aψ�M = S implies �χπj

�M ⊆ �ψπ(j+1)�
M.

Let us now resume with the main proof. Let (x, y) ∈ Π(ϕ,ψ) and M be any
model. The result is direct if �ϕ ∧ Aψ�M = ∅. Thus, consider �ϕ ∧ Aψ�M = ∅;
i.e., s.t. �ϕ∧Aψ�M = S. From (∗), we know that exists a sequence π of indices in
[1, n] that satisfies (†) and (‡). Then, for all j ∈ [1, |π|−1], �χπj

�M ⊆ �ψπ(j+1)�
M.

Using Proposition 3, �ϕ ∧ Aψ�M ⊆ ⋂|π|
j=1�Kh(ψπj

, χπj
)�M ⊆ �Kh(ψx, χy)�M.

414 C. Areces et al.

Proposition 10. Let ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) and ψ be a formula;
Π(ϕ,ψ) is the smallest set s.t.: (1) for all x ∈ [1, n], (x, x) ∈ Π(ϕ,ψ); and (2) if
{(x, y0), (y1, z)} ⊆ Π(ϕ,ψ) and Unsat({ψ, χy0 ,¬ψy1}), then, (x, z) ∈ Π(ϕ,ψ).

The function Plans in Algorithm 4 can be used to compute the set Π(ϕ,ψ)
in Definition 8. This function looks into whether a pair of indices belongs to this
set using the result in Proposition 10.

χ1 χ2 χ3

ψ1 � ⊥ ⊥
ψ2 ⊥ � ⊥
ψ3 ⊥ ⊥ �
initial step

χ1 χ2 χ3

ψ1 � � ⊥
ψ2 ⊥ � ⊥
ψ3 ⊥ ⊥ �
x = 1, y0 = 1
z = 2, y1 = 2

χ1 χ2 χ3

ψ1 � � �
ψ2 ⊥ � ⊥
ψ3 ⊥ ⊥ �
x = 1, y0 = 2
z = 3, y1 = 3

χ1 χ2 χ3

ψ1 � � �
ψ2 ⊥ � �
ψ3 ⊥ ⊥ �
x = 2, y0 = 2
z = 3, y1 = 3

Fig. 1. A Run of Plans for ϕ = Kh(p, p ∧ q) ∧ Kh(q, r) ∧ Kh(r ∨ s, t) and ψ = �.

Example 5. Let ϕ = Kh(p, p∧q)∧Kh(q, r)∧Kh(r∨s, t) and ψ = �; in this case we
have: ψ1 = p, χ1 = p ∧ q, ψ2 = q, χ2 = r, ψ3 = r ∨ s, and χ3 = t. We can easily
verify that Π(ϕ,ψ) = {(1, 1)(1, 2)(1, 3)(2, 2)(2, 3)(3, 3)}. Indeed, in the initial
step we get Π0 = {(1, 1)(2, 2)(3, 3)}. The pairs of indices correspond to those
of the pre/post conditions of the subformulas Kh(ψi, χi) ∈ sf(ϕ). Then, since
we have {(1, 1)(2, 2)} ⊆ Π0, Unsat({χ1,¬ψ2}), and Unsat({χ2,¬ψ3}), it follows
that Π1 = Π0 ∪{(1, 2)(2, 3)}. The new pairs of indices can intuitively be taken
as the formulas Kh(ψ1, χ2) and Kh(ψ2, χ3). In this case, note the connection
between Kh(ψ1, χ2) and (Kh(ψ1, χ1) ∧ A(χ1 → ψ2) ∧ Kh(ψ2, χ2)) → Kh(ψ1, χ2),
and Kh(ψ2, χ3) and (Kh(ψ2, χ2) ∧ A(χ2 → ψ3) ∧ Kh(ψ3, χ3)) → Kh(ψ2, χ3).
Finally, since we have (1, 2) ∈ Π2 and Unsat({χ2,¬ψ3}), then Π2 = Π1 ∪{(1, 3)}.
The justification for the pair (1, 3) is similar to the one just offered. In Fig. 1 we
illustrate a run of Plans which computes this set (only the steps in which the
matrix is updated are shown).

The composition of formulas Kh(ψ, χ) and Kh(ψ′, χ′) has an impact if we
wish to add a formula ¬Kh(ψ′′, χ′′) into the mix. The reason for this is that
witness plans π and π′ for Kh(ψ, χ) and Kh(ψ′, χ′), respectively, yield a witness
plan π′′ = ππ′ for Kh(ψ, χ′). In adding ¬Kh(ψ′′, χ′′) we need to ensure π′′ is not
a witness for Kh(ψ′′, χ′′), as such a plan renders ¬Kh(ψ′′, χ′′) unsatisfiable. We
make these ideas precise in the definition of compatible below.

Definition 9. Let ϕ+ and ϕ− be formulas s.t.: md(ϕ+) = 1 and md(ϕ−) = 1;
ϕ+ = Kh(ψ1, χ1)∧· · ·∧Kh(ψn, χn); and ϕ− = ¬Kh(ψ′

1, χ
′
1)∧· · ·∧¬Kh(ψ′

m, χ′
m).

Moreover, let I, J ⊆ [1, n] be as in Proposition 5 and ψ =
∧

i∈I ¬ψi. We say that
ϕ+ and ϕ− are compatible iff the following conditions are met:

(1) Sat(ψ);

How Easy it is to Know How 415

(2) for all Kh(ψ′
k′ , χ′

k′) ∈ sf(ϕ−),
(a) Sat({ψ,ψ′

k′ ,¬χ′
k′}); and

(b) for all (x, y) ∈ Π(ϕ+, ψ),
if x /∈ J and Unsat({ψ,ψ′

k′ ,¬ψx}), then, Sat({ψ, χy,¬χ′
k′}).

Definition 9 aims to single out the conditions under which the formulas ϕ+

and ϕ− can be jointly satisfied. Intuitively, (1) tells us ϕ+ must be individually
satisfied (cf. Proposition 5). In turn, (2.a) tells us ϕ− must be individually satis-
fied (cf. Proposition 7), while (2.b) tells us ϕ+ and ϕ− can be satisfied together
if no composition of subformulas in ϕ+ contradicts a subformula in ϕ−. Such a
contradiction would originate only as a result of strengthening the precondition
and/or weakening the postcondition of a composition of subformulas in ϕ+, in a
way such that they would result in the opposite of a subformula in ϕ−. Propo-
sition 11 states that the conditions in Definition 9 guarantee the satisfiability of
a combination of ϕ+ and ϕ−.

Proposition 11. It follows that ϕ+ and ϕ− are compatible iff Sat(ϕ+ ∧ ϕ−).

Proof. (⇒) Suppose that ϕ+ and ϕ− are compatible. Let M = 〈S,R,V〉 be s.t.
S contains all valuations that make ψ true; and R = {Rak

| ak ∈ Act} where

Rak
=

{
�ψk�M × �χk�M if k ∈ K

∅ otherwise,

for K = [1, n] \ (I ∪ J). From (1), we know S = ∅. It is not difficult to see
that �ϕ+�M = S (cf. Proposition 5). The proof is concluded if �ϕ−�M = S. We
proceed by contradiction. Let k′ ∈ [1,m] be s.t. �Kh(ψ′

k′ , χ′
k′)�M = S; i.e., (∗)

exists π ∈ Act∗ s.t. �ψ′
j�

M ⊆ SE(π) and Rπ(�ψ′
j�

M) ⊆ �χ′
j�

M. We consider the
following cases.

(π = ε) From (2.a), we know �ψ′
k′ ∧ ¬χ′

k′�M = ∅; i.e., �ψ′
k′�M � �χ′

k′�M. This
implies �ψ′

k′�M = Rε(�ψ′
k′�M) � �χ′

k′�M.
(π = ε and π = ak1 , . . . , ak|π| with kj ∈ K and j ∈ [1, |π|]) In this case we have:

(a) ∅ = �ψ′
k′�M ⊆ SE(π) ⊆ SE(ak1) = �ψk1�

M;
(b) �χkj

�M = Rakj
(�ψkj

�M) ⊆ �ψk(j+1)�
M; and

(c) �χk|π|�
M = Rπ(�ψ′

k′�M) ⊆ �χ′
k′�M.

Since S contains all valuations that make ψ true; from (a)–(d) we get:
(d) Unsat({ψ,ψ′

k′ ,¬ψk1}) –from (a);
(e) Unsat({ψ, χkj

,¬ψk(j+1)}) –from (b);
(f) Unsat({ψ, χk|π| ,¬χ′

k}) –from (c).
From (e) and π, we obtain a sequence k1 . . . k|π| that satisfies the conditions
(†) and (‡) in the proof of Proposition 9. Then, (k1, k|π|) ∈ Π(ϕ+, ψ). From
(a) and (2.a), k1 /∈ J . We are in an impossible situation: (k1, k|π|) ∈ Π(ϕ+, ψ);
k1 /∈ J ; and Unsat({ψ, χk|π| ,¬χ′

k}). This contradicts (2.b); meaning that ϕ+

and ϕ− are not compatible.
(π is none of the above) It is clear that �ψ′

k′�M � SE(π).

416 C. Areces et al.

In all the cases above we have: �ψ′
k′�M � SE(π) or Rπ(�ψ′

k′�M) � �χ′
k′�M; i.e.,

�Kh(ψ′
k′ , χ′

k′)�M = ∅, a contradiction. Then, �ϕ−�M = S; and so Sat(ϕ+ ∧ ϕ−).

(⇐) Suppose Sat(ϕ+∧ϕ−); i.e., exists (†) M s.t. �ϕ+∧ϕ−�M = S. From (†) we get
�ϕ+�M = S. Using Cor. 1, we get �Aψ�M = S. This establishes (1). The proof of
(2.a) is by contradiction. Let Kh(ψ′

k′ , χ′
k′) ∈ sf(ϕ−) be s.t. Unsat({ψ,ψ′

k′ ,¬χ′
k′}).

Then, �ψ′
k′�M ⊆ �χ′

k′�M. Choosing π = ε, we obtain �Kh(ψ′
k′ , χ′

k′)�M = S.
This contradicts �ϕ−�M = S. The proof of (2.b) is also by contradiction. Let
Kh(ψ′

k′ , χ′
k′) ∈ sf(ϕ−), (∗) (x, y) ∈ Π(ϕ+, ψ), (†) Unsat({ψ,ψ′

k′ ,¬ψx}), and (‡)
Unsat({ψ, χy,¬χ′

k′}). From (†) and (‡), �ψ′
k′�M ⊆ �ψx�M and �χy�M ⊆ �χ′

k′�M.
At the same time, from (∗) and Proposition 9, S = �ϕ+�M ⊆ �Kh(ψx, χy)�M.
Then, using Proposition 3, �Kh(ψ′

j , χ
′
j)�

M = S. This also contradicts �ϕ−�M = S.
Thus, ϕ+ and ϕ− are compatible.

Having at hand the result in Proposition 11, we proceed to define an algo-
rithm for checking the satisfiability of compatible formulas ϕ+ and ϕ−. This is
done in two stages. In the first stage, we build the set Π(ϕ+, ψ), where ψ is
the conjunction of the negation of the precondition of the ‘global’ subformulas
in ϕ+. This task is encapsulated in the function Plans in Algorithm 4. Notice
that the set Π(ϕ+, ψ) corresponds to a matrix which is computed using the result
in Proposition 10. The second stage is encapsulated in the function Compatible
in Algorithm 5. In this function, lines 2 and 3 check condition (1) in Definition
9, i.e., whether ϕ+ is individually satisfiable, by verifying the joint satisfiabil-
ity of the ‘global’ subformulas in ϕ+ (cf. Algorithm 2). In turn, lines 4 to 6 in
Compatible check condition (2.a) of Definition 9, i.e., whether ϕ− is individ-
ually satisfiable, by verifying the individual satisfiability of the subformulas in
ϕ+ (cf. Algorithm 3). Lastly, in lines 7 to 18 in Compatible, we check whether
the result of composing subformulas in ϕ+ contradicts any of the subformulas
in ϕ−. We carry out this task by making use of the result of the function Plans
which computes such compositions.

Notice that the function Compatible in Algorithm 5 makes a polynomial
number of calls to a propositional Sat solver. From this fact, we get the following
result.

Proposition 12. Let ϕ+, ϕ− be as in Definition 9; it follows that Algorithm 5
solves Sat(ϕ+ ∧ ϕ−) and is in PNP (i.e., ΔP

2 in PH).

Proof. By Proposition 11 we get that the function Compatible in Algorithm
5 solves Sat(ϕ+ ∧ ϕ−). Moreover, it makes a polynomial number of calls to a
Sat solver for formulas of modal depth 0. Thus, it runs in polynomial time with
access to a Sat oracle. Therefore, Sat(ϕ+ ∧ ϕ−) is in PNP, i.e., in ΔP

2 .

Proposition 12 is the final step we need to reach the main result of our work.

Theorem 1. The satisfiability problem for LKh is in NPNP (i.e., ΣP
2 in PH).

Proof. Let ϕ be a LKh-formula. By Algorithm 1, we can obtain, in polynomial
time, a formula ϕ′ = ϕ0 ∧ (Ap1 ↔ Kh(ψ1, χ1))∧ · · ·∧ (Apn ↔ Kh(ψn, χn)) in leaf

How Easy it is to Know How 417

normal form such that ϕ ≡Sat ϕ′. We know md(ϕ0) = 0 and md(Kh(ψi, χi)) = 1.
Let Q = {q1 . . . qm} ⊆ Prop be the set of proposition symbols in ϕ′. To check
Sat(ϕ′), we start by guessing a propositional assignment v : Q → {0, 1} that
makes ϕ0 true. Then, we define sets P+ = {i | v(pi) = 1} and P− = {i |
v(pi) = 0}, from which we build formulas

ϕ+ =
∧

i∈P+ Kh(ψi, χi) ϕ− =
(∧

i∈P − ¬Kh(ψi, χi)
) ∧ ¬Kh(ϕ0,⊥)

(recall that ¬Kh(ϕ0,⊥) = ¬A¬ϕ0 = Eϕ0.) Finally, we use Algorithm 5 to check
Sat(ϕ+ ∧ ϕ−). Since Algorithm 5 is in PNP (Proposition 12), the whole process
is in NPNP.

We conclude this section with an example of how to check the satisfiability
of a formula using the procedure in the proof of Theorem 1.

Example 6. Let ψ = Kh(p ∧ q, r ∧ t) ∨Kh(p, r). By applying Algorithm 1, we get
(k1 ∨ k2) ∧ (Ak1 ↔ Kh(p ∧ q, r ∧ t)) ∧ (Ak2 ↔ Kh(p, r)). Suppose that we set
k1 to true and k2 to false. Based on this assignment, we build formulas ϕ+ =
Kh(p∧q, r∧t) and ϕ− = ¬Kh(p, r)∧¬Kh(k1∧¬k2,⊥). Using Algorithm 5, we can
check that they are not compatible (and hence not satisfiable; we have Sat(p∧q)
and Unsat({(p ∧ q),¬p}) but not Sat({r ∧ t,¬r})). However, if we set both k1
and k2 to true, then, ϕ+ = Kh(p ∧ q, r ∧ t) ∧Kh(p, r) and ϕ− = ¬Kh(k1 ∧ k2,⊥).
In this case, Algorithm 5 returns they are compatible, and thus satisfiable.

4 Final Remarks

We provided a satisfiability-checking procedure for LKh, the ‘knowing how’ logic
with linear plans from [31,33], obtaining a ΣP

2 upper bound. Although not a
tight bound (as the best lower bound known is NP), we argue this is an inter-
esting result, as our bound is (unless PH collapses) below the PSpace-complete
complexity of model-checking [5]. We argue that, this unusual situation is a con-
sequence of that in model-checking the full expressive power is exploited, while
here we showed that plans are almost irrelevant for the satisfiability of a formula.

Interestingly also, our procedure uses a polynomial transformation into a
normal form without nested modalities, and calls to an NP oracle (i.e., to a
propositional Sat solver). It is well-known that modern Sat solvers are able to
efficiently deal with large formulas (having millions of variables), and usually
support the exploration of the solution state space. Thus, the ideas presented
in this paper can be used to implement a Sat solver for knowing-how logics
relying on modern propositional Sat solving tools. We consider this as part of
the future work to undertake. Also, we would like to obtain a tight bound for the
satisfiability problem. In this regard, we will explore the possibility of providing a
reduction from the problem of checking the truth of Quantified Boolean Formula
(TQBF) with a single ∃∀ quantification pattern (called Σ2Sat in [2]), which is
known to be ΣP

2 -complete.

418 C. Areces et al.

Acknowledgments. We thank the reviewers for their valuable comments. Our
work is supported by the Laboratoire International Associé SINFIN, the EU Grant
Agreement 101008233 (MISSION), the ANPCyT projects PICT-2019-03134, PICT-
2020-3780, PICT-2021-00400, PICT-2021-00675, and PICTO-2022-CBA-00088, and
the CONICET projects PIBAA-28720210100428CO, PIBAA-28720210100165CO, and
PIP-11220200100812CO.

References

1. Areces, C., Fervari, R., Saravia, A.R., Velázquez-Quesada, F.R.: Uncertainty-based
semantics for multi-agent knowing how logics. In: 18th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK 2021). EPTCS, vol. 335, pp. 23–37.
Open Publishing Association (2021)

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, Cambridge (2009)

3. Baltag, A.: To know is to know the value of a variable. In: Advances in Modal
Logic (AiML 2016), vol. 11, pp. 135–155. College Publications (2016)

4. Cormen, T., Leiserson, C., Rivest, R.L., Stein, C.: Introduction to Algorithms, 4th
edn. MIT Press, Cambridge (2022)

5. Demri, S., Fervari, R.: Model-checking for ability-based logics with constrained
plans. In: 37th AAAI Conference on Artificial Intelligence (AAAI 2023), pp. 6305–
6312. AAAI Press (2023)

6. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook
of Epistemic Logic. College Publications, Georgia (2015)

7. Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev.
Symbolic Logic 8, 75–107 (2015)

8. Fantl, J.: Knowledge how. In: The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, spring 2021 edn. (2021)

9. Fervari, R., Herzig, A., Li, Y., Wang, Y.: Strategically knowing how. In: 26th
International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1031–
1038. International Joint Conferences on Artificial Intelligence (2017)

10. Fervari, R., Velázquez-Quesada, F.R., Wang, Y.: Bisimulations for knowing how
logics. Rev. Symbolic Logic 15(2), 450–486 (2022)

11. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log.
Comput. 2(1), 5–30 (1992)

12. Gu, T., Wang, Y.: “Knowing value” logic as a normal modal logic. In: Advances in
Modal Logic (AiML 2016), vol. 11, pp. 362–381. College Publications (2016)

13. Herzig, A.: Logics of knowledge and action: critical analysis and challenges. Auton.
Agent. Multi-Agent Syst. 29(5), 719–753 (2015)

14. Herzig, A., Troquard, N.: Knowing how to play: uniform choices in logics of agency.
In: 5th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pp. 209–216. ACM (2006)

15. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
16. van der Hoek, W., Lomuscio, A.: Ignore at your peril - towards a logic for ignorance.

In: 2nd International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2003), pp. 1148–1149. ACM (2003)

17. Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can achieve under
imperfect information. J. Appl. Non Class. Logics 17(4), 423–475 (2007)

18. Lespérance, Y., Levesque, H.J., Lin, F., Scherl, R.B.: Ability and knowing how in
the situation calculus. Stud. Logica. 66(1), 165–186 (2000)

How Easy it is to Know How 419

19. Li, Y.: Stopping means achieving: a weaker logic of knowing how. Stud. Logic 9(4),
34–54 (2017)

20. Li, Y.: Tableaux for the logic of strategically knowing how. In: 19th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK 2023). EPTCS, vol.
379, pp. 379–391. Open Publishing Association (2023)

21. Li, Y., Wang, Y.: Achieving while maintaining. In: Ghosh, S., Prasad, S. (eds.)
ICLA 2017. LNCS, vol. 10119, pp. 154–167. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54069-5_12

22. Li, Y.: Knowing what to do: a logical approach to planning and knowing how.
Ph.D. thesis, University of Groningen (2017)

23. Li, Y.: Tableau-based decision procedure for logic of knowing-how via simple plans.
In: Baroni, P., Benzmüller, C., Wáng, Y.N. (eds.) CLAR 2021. LNCS (LNAI), vol.
13040, pp. 266–283. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89391-0_15

24. Li, Y., Wang, Y.: Planning-based knowing how: a unified approach. Artif. Intell.
296, 103487 (2021)

25. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence, pp. 463–502. Edinburgh University
Press (1969)

26. Moore, R.: A formal theory of knowledge and action. In: Formal Theories of the
Commonsense World. Ablex Publishing Corporation (1985)

27. Naumov, P., Tao, J.: Second-order know-how strategies. In: 17th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2018), pp.
390–398. ACM (2018)

28. Naumov, P., Tao, J.: Together we know how to achieve: an epistemic logic of know-
how. Artif. Intell. 262, 279–300 (2018)

29. Smith, D.E., Weld, D.S.: Conformant Graphplan. In: 15th National Conference
on Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence
Conference (AAAI/IAAI 1998), pp. 889–896. AAAI Press/The MIT Press (1998)

30. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3(1), 1–22
(1976)

31. Wang, Y.: A logic of knowing how. In: van der Hoek, W., Holliday, W.H., Wang,
W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 392–405. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48561-3_32

32. Wang, Y.: Beyond knowing that: a new generation of epistemic logics. In: van Dit-
marsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game-Theoretical
Semantics. OCL, vol. 12, pp. 499–533. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-62864-6_21

33. Wang, Y.: A logic of goal-directed knowing how. Synthese 195(10), 4419–4439
(2018)

34. Xu, C., Wang, Y., Studer, T.: A logic of knowing why. Synthese 198(2), 1259–1285
(2021)

https://doi.org/10.1007/978-3-662-54069-5_12
https://doi.org/10.1007/978-3-662-54069-5_12
https://doi.org/10.1007/978-3-030-89391-0_15
https://doi.org/10.1007/978-3-030-89391-0_15
https://doi.org/10.1007/978-3-662-48561-3_32
https://doi.org/10.1007/978-3-319-62864-6_21
https://doi.org/10.1007/978-3-319-62864-6_21

Non-standard Modalities
in Paraconsistent Gödel Logic

Marta B́ılková1 , Sabine Frittella2 , and Daniil Kozhemiachenko2(B)

1 The Czech Academy of Sciences, Institute of Philosophy, Prague, Czech Republic
bilkova@cs.cas.cz

2 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Bourges, France
{sabine.frittella,daniil.kozhemiachenko}@insa-cvl.fr

Abstract. We introduce a paraconsistent expansion of the Gödel logic
with a De Morgan negation ¬ and modalities � and �. We dub the logic
G2±

�,� and equip it with Kripke semantics on frames with two (possibly

fuzzy) relations: R+ and R− (interpreted as the degree of trust in affir-
mations and denials by a given source) and valuations v1 and v2 (positive
and negative support) ranging over [0, 1] and connected via ¬.

We motivate the semantics of �φ (resp., �φ) as infima (suprema) of
both positive and negative supports of φ in R+- and R−-accessible states,
respectively. We then prove several instructive semantical properties of
G2±

�,�. Finally, we devise a tableaux system for G2±
�,� over finitely branch-

ing frames and establish the complexity of satisfiability and validity.

Keywords: Gödel logic · modal logic · non-standard modalities ·
constraint tableaux

1 Introduction

When aggregating information from different sources, two of the simplest strate-
gies are as follows: either one is sceptical regarding the information they provide
thus requiring that they agree, or one is credulous and trusts their sources. In
the classical setting, these two strategies could be modelled with � and ♦ modal-
ities defined on Kripke frames where states are sources, the accessibility relation
represents references between them, and w � φ is construed as ‘w says that φ
is true’. However, the sources could contradict themselves or be silent regarding
a given question (as opposed to providing a clear denial). Furthermore, a source
could be able to provide a degree to their confirmation or denial. In all of these
cases, classical logic struggles to formalise reasoning with such information.

The research of Marta B́ılková was supported by the project Logical Structure of
Information Channels, no. 21-23610M of the Czech Science Foundation. The research of
Sabine Frittella and Daniil Kozhemiachenko was funded by the grant ANR JCJC 2019,
project PRELAP (ANR-19-CE48-0006). This research is part of the MOSAIC project
financed by the European Union’s Marie Sk�lodowska-Curie grant No. 101007627.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 420–436, 2023.
https://doi.org/10.1007/978-3-031-43619-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_29&domain=pdf
http://orcid.org/0000-0002-3490-2083
http://orcid.org/0000-0003-4736-8614
http://orcid.org/0000-0002-1533-8034
https://doi.org/10.1007/978-3-031-43619-2_29

Paraconsistent Non-standard Modalities 421

Paraconsistent Reasoning about Imperfect Data. In the setting described
above, one can use the following setting. A source w gives a statement φ two
valuations over [0, 1]: v1 standing for the degree with which w asserts φ (positive
support or support of truth) and v2 for the degree of denial (negative support
or support of falsity). Classically, v1(φ,w) + v2(φ,w) = 1; if a source provides
contradictory information, then v1(φ,w) + v2(φ,w) > 1; if the source provides
insufficient information, then v1(φ,w) + v2(φ,w) < 1.

Now, if we account for the nonclassical information provided by the sources,
the two aggregations described above can be formalised as follows. For the scep-
tical case, the agent considers infima of positive and negative supports. For the
credulous aggregation, one takes suprema of positive and negative supports.

These two aggregation strategies were initially proposed and analysed in [8].
There, however, they were described in a two-layered framework1 which pro-
hibits the nesting of modalities. Furthermore, the Belnap–Dunn logic [4] (BD)
that lacks implication was chosen as the propositional fragment. In this paper,
we extend that approach to the Kripke semantics to incorporate possible refer-
ences between the sources and the sources’ ability to give modalised statements.
Furthermore, we use a paraconsistent expansion G2 from [5] of Gödel logic G as
the propositional fragment.

Formalising Beliefs in Modal Expansions of G. When information is aggre-
gated, the agent can further reason with it. For example, if the degrees of cer-
tainty of two given statements are represented as real numbers and one knows
them, one can add them up, subtract them from one another, or compare them.
In many contexts, however, an ordinary person does not represent their certainty
in a given statement numerically and thus cannot conduct arithmetical opera-
tions with them. What they can do instead, is to compare their certainty in one
statement vs the other.

Thus, since Gödel logic expresses order and comparisons but not arithmetic
operations, it can be used as a propositional fragment of a modal logic formalising
beliefs. For example, K45 and KD45 Gödel logics can be used to formalise
possibilistic reasoning since they are complete w.r.t. normalised and, respectively,
non-normalised possibilistic frames [35].

Furthermore, adding coimplication � or, equivalently, Baaz’ Delta operator
� (cf. [2] for details), results in bi-Gödel (‘symmetric Gödel’ in the terminology
of [20]) logic that can additionally express strict order.

Modal expansions of G are well-studied. In particular, the Hilbert [15] and
Gentzen [27,28] formalisations of both � and ♦ fragments of the modal logic
GK2 are known. There are also complete axiomatisations for both fuzzy [16]
and crisp [36] bi-modal Gödel logics. It is known that they and some of their
extensions are both decidable and PSpace complete [13,14,17] even though they
lack finite model property.

Furthermore, it is known that the addition of � or � as well as of a paracon-
sistent negation ¬ that swaps the supports of truth and falsity does not increase

1 We refer our readers to [3] and [7] for an exposition of two-layered modal logics.
2 � and ♦ are not interdefinable in GK.

422 M. B́ılková et al.

the complexity. Namely, satisfiability of KbiG and GTL (modal and temporal
bi-Gödel logics, respectively) (cf. [6,9] for the former and [1] for the latter) as
well as that of KG2 (expansion of crisp GK with ¬3) are in PSpace.

This paper. In this paper, we consider an expansion of G2 with modalities �
and � that stand for the cautious and credulous aggregation strategies. We equip
it with Kripke semantics, construct a sound and complete tableaux calculus, and
explore its semantical and computational properties. Our inspiration comes from
two sources: modal expansions of Gödel logics that we discussed above and modal
expansions of Belnap–Dunn logic with Kripke semantics on bi-valued frames as
studied by Priest [33,34], Odintsov and Wansing [31,32], and others (cf. [18] and
references therein to related work in the field). In a sense, G2±

�,� can be thought
of as a hybrid between modal logics over BD.

The remaining text is organised as follows. In Sect. 2, we define the language
and semantics of G2±

�,�. Then, in Sect. 3 we show how to define several important
frame classes, in particular, finitely branching frames. We also argue for the use
of G2±

�,�fb
(G2±

�,� over finitely branching frames) for the representation of agents’
beliefs. In Sect. 4 we present a sound and complete tableaux calculus for G2±

�,�fb

and in Sect. 5, we use it to show that G2±
�,�fb

validity and satisfiability are PSpace

complete. Finally, in Sect. 6, we wrap up the paper and provide a roadmap to
future work.

2 Logical Preliminaries

Throughout the paper, we will be comparing G2±
�,� and KbiG. Hence, to make the

text self-contained, we recall the language and semantics of the latter from [9].

Definition 1 (Frames).

– A fuzzy frame is a tuple F = 〈W,R〉 with W �= ∅ and R : W × W → [0, 1]
(i.e., R is a fuzzy relation).

– A crisp frame is a tuple F = 〈W,R〉 with W �= ∅ and R : W × W → {0, 1}
(i.e., R is a crisp relation).

Definition 2 (KbiG). We fix a countable set Prop and define the language
biL�,♦ as follows.

biL�,♦ � φ := p ∈ Prop | (φ∧φ) | (φ ∨ φ) | (φ→φ) | (φ � φ) | �φ | ♦φ

A KbiG model is a tuple M = 〈W,R, v〉 with 〈W,R〉 being a (crisp or fuzzy)
frame, and v : Prop × W → [0, 1]. v (a KbiG valuation) is extended on biL�,♦-
formulas as follows.

3 Note that in the presence of ¬, φ � φ′ is definable as ¬(¬φ′ → ¬φ).

Paraconsistent Non-standard Modalities 423

v(φ∧χ,w) = min(v(φ,w), v(χ,w)) v(φ∨χ,w) = max(v(φ,w), v(χ,w))

v(φ→χ,w) =

{
1 if v(φ,w)≤v(χ,w)
v(χ,w) else

v(φ�χ,w) =

{
0 if v(φ,w)≤v(χ,w)
v(φ,w) else

v(�φ,w) = inf
w′∈W

{wRw′→v(φ,w′)} v(♦φ,w) = sup
w′∈W

{wRw′∧v(φ,w′)}

We say that φ ∈ biL�,♦ is KbiG valid on frame F (denote, F |=KbiG φ) iff for
any w ∈ F, it holds that v(φ,w) = 1 for any model M on F.

Definition 3 (G2±
�,�). We define the language L¬

�,� via the following grammar.

L¬
�,� � φ := p ∈ Prop | ¬φ | (φ∧φ) | (φ→φ) | �φ | �φ

Constants 0 and 1, disjunction ∨, and coimplication � as well as Gödel negation
∼ and Baaz’ Delta � can be defined as expected:

1 := p→p 0 := ¬1 ∼φ := φ→0

�φ := 1 � (1 � φ) φ∨φ′ := ¬(¬φ∧¬φ′) φ�φ′ := ¬(¬φ′→¬φ)

A bi-relational frame is a tuple F = 〈W,R+, R−〉 with W �= ∅ and R+, R−

being fuzzy or crisp relations. A model is a tuple M = 〈W,R+, R−, v1, v2〉 with
〈W,R+, R−〉 being a frame and v1, v2 : Prop → [0, 1] that are extended to the
complex formulas as follows.

v1(¬φ,w) = v2(φ,w) v2(¬φ,w) = v1(φ,w)

v1(φ ∧ χ,w) = min(v1(φ,w), v1(χ,w)) v2(φ ∧ χ,w) = max(v2(φ,w), v2(χ,w))

v1(φ→χ, w)=

{
1 if v1(φ, w)≤v1(χ, w)

v1(χ, w) else
v2(φ→χ, w)=

{
0 if v2(χ, w)≤v2(φ, w)

v2(χ, w) else

v1(�φ,w) = inf
w′∈W

{wR+w′→v1(φ,w′)} v2(�φ,w) = inf
w′∈W

{wR−w′→v2(φ,w′)}
v1(�φ,w) = sup

w′∈W
{wR+w′∧v1(φ,w′)} v2(�φ,w) = sup

w′∈W
{wR−w′∧v2(φ,w′)}

We will further write v(φ,w) = (x, y) to designate that v1(φ,w) = x and
v2(φ,w) = y. Moreover, we set S(w) = {w′ : wSw′ > 0}.

We say that φ is v1-valid on F (F |=+ φ) iff for every model M on F and
every w ∈ M, it holds that v1(φ,w) = 1. φ is v2-valid on F (F |=− φ) iff for
every model M on F and every w ∈ M, it holds that v2(φ,w) = 0. φ is strongly
valid on F (F |= φ) iff it is v1 and v2-valid.

φ is v1 (resp., v2, strongly) G2±
�,� valid iff it is v1 (resp., v2, strongly) valid on

every frame. We will further use G2±
�,� to designate the set of all L¬

�,� formulas
strongly valid on every frame.

424 M. B́ılková et al.

Observe in the definitions above that the semantical conditions governing the
support of the truth of G2±

�,� connectives (except for ¬) coincide with the seman-
tics of KbiG and thus Gödel modal logic GK. Note, however, that the semantics
of G2±

�,� does not generalise that of KbiG. Indeed, in the paraconsistent setting,
if one is sceptical (or credulous) w.r.t. their sources, then they are unlikely to
trust both confirmations and denials (or, respectively, likely to trust both confir-
mations and denials) since they can be considered independently. On the other
hand, if we generalised the semantics of modalities to the paraconsistent case
in a usual way, � would stand for a pessimistic aggregation (when the infimum
of the positive and the supremum of the negative support are taken), not the
sceptical one; and ♦ would stand for an optimistic aggregation4 (dually), not
the credulous one. Note, moreover, that without separating the support of truth
from the support of falsity via ¬, pessimistic (optimistic) aggregation is the same
as sceptical (credulous).

The following example illustrates the semantics of � and �.

Example 1. A tourist (t) wants to go to a restaurant and asks their two friends
(f1 and f2) to describe their impressions regarding the politeness of the staff
(s) and the quality of the desserts (d). Of course, the friends’ opinions are not
always internally consistent, nor is it always the case that one or the other even
noticed whether the staff was polite or was eating desserts. Furthermore, t trusts
their friends to different degrees when it comes to their positive and negative
opinions. The situation is depicted in Fig. 1.

The first friend says that half of the staff was really nice but the other half
is unwelcoming and rude and that the desserts (except for the tiramisu and
soufflé) are tasty. The second friend, unfortunately, did not have the desserts
at all. Furthermore, even though, they praised the staff, they also said that the
manager was quite obnoxious.

The tourist now makes up their mind. If they are sceptical w.r.t. s and d, they
look for trusted rejections5 of both positive and negative supports of s and d.
Thus t uses the values of R+ and R− as thresholds above which the information
provided by the source does not count as a trusted enough rejection. I.e., to
accept rejection from a friend, it should be stronger than the degree of trust the
tourist gives to the friend. E.g., tR+f1 > v1(s, f1) but tR+f2 ≤ v(s, f2) (Fig. 1).
Thus, only the account of the first friend counts as a rejection. In our case, we
have v(�s, t) = (0.5, 0.5) and v(�d, t) = (0, 0).

On the other hand, if t is credulous, they look for trusted confirmations of
both positive and negative supports and use R+ and R− as thresholds up to
which they accept the information provided by the source. In particular Thus,
we have v(�s, t) = (0.7, 0.4) and v(�d, t) = (0.7, 0.3).
4 We refer readers to [9] for a detailed discussion of pessimistic and optimistic aggre-

gations.
5 We differentiate between a rejection which we treat as lack of support and a denial,
disproof, refutation, counterexample, etc. which we interpret as the negative support.
Note that there may be a lack of both positive and negative support if there is not
enough information.

Paraconsistent Non-standard Modalities 425

f1 : s = (0.5, 0.5)
d = (0.7, 0.3)

t (0.7,0.2)(0.8,0.9) f2 : s = (1, 0.4)
d = (0, 0)

Fig. 1. (x, y) stands for wR+w′ = x, wR−w′ = y. R+ (resp., R−) is interpreted as the
tourist’s threshold of trust in positive (negative) statements by the friends.

More formally, note that we can combine v1 and v2 into
a single valuation (denoted with •) on the following bi-lattice
on the right. Now, if we let and � be meet and join w.r.t.
the rightward (informational) order, it is clear that � can
be interpreted as an infinitary and � as an infinitary �
across the accessible states, respectively. (0, 1)

(0, 0) (1, 1)

(1, 0)

•(x, y)

From here, it is expected that � and � do not distribute over ∧ and ∨:
�(p ∧ q) ↔ (�p ∧ �q), �1, �(p ∨ q) ↔ (�p ∨ �q), and �0 ↔ 0 are not valid.

Finally, we have called G2±
�,� ‘paraconsistent’. In this paper, we consider the

logic to be a set of valid formulas. It is clear that the explosion principle for
→—(p ∧ ¬p) → q—is not valid. Furthermore, in contrast to K, it is possible to
believe in a contradiction without believing in every statement : �(p ∧ ¬p) → �q
and �(p ∧ ¬p) → �q are not valid.

We end the section by proving that � and � are not interdefinable.

Theorem 1. � and � are not interdefinable.

Proof. Denote with L� and L� the �- and �-free fragments of L¬
�,�. We build

a pointed model 〈M, w0〉 s.t. there is no �-free formula that has the same value
at w0 as �p (and vice versa). Consider Fig. 2.

w1 : p = 2
3 ,

1
2 w0 : p = (1,0) w2 : p = 1

3 ,
1
4

Fig. 2. All variables have the same values in all states exemplified by p. R+ = R− is
crisp, v(�p, w0) =

(
1
3
, 1
4

)
, v(�p, w0) =

(
2
3
, 1
2

)
.

One can check by induction that if φ ∈ L¬
�,�, then

v(φ,w1) ∈
{

(0; 1),
(

1
2
;
2
3

)
,

(
2
3
;
1
2

)
, (0; 0), (1; 1), (1; 0)

}

v(φ,w2) ∈
{

(0; 1),
(

1
4
;
1
3

)
,

(
1
3
;
1
4

)
, (0; 0), (1; 1), (1; 0)

}

Moreover, on the single-point irreflexive frame whose only state is u, it holds for
every φ(p) ∈ L¬

�,�, v(φ, u) ∈ {v(p, u), v(¬p, u), (1, 0), (1, 1), (0, 0), (0, 1)}.

426 M. B́ılková et al.

Thus, for every �-free χ and every �-free ψ it holds that

v(�χ,w0) ∈
{

(0; 1),
(

1
3
;
1
4

)
,

(
1
4
;
1
3

)
, (0; 0), (1; 1), (1; 0)

}
= X

v(�ψ,w0) ∈
{

(0; 1),
(

1
2
;
2
3

)
,

(
2
3
;
1
2

)
, (0; 0), (1; 1), (1; 0)

}
= Y

Since X and Y are closed w.r.t. propositional operations, it is now easy to
check by induction that for every χ′ ∈ L� and ψ′ ∈ L�, v(χ′, w0) ∈ X and
v(ψ′, w0) ∈ Y .

3 Frame Definability

In this section, we explore some classes of frames that can be defined in L¬
�,�.

However, since � and � are non-normal and since we have two independent
relations on frames, we expand the traditional notion of modal definability.

Definition 4.

1. φ positively defines a class of frames F iff for every F, it holds that F |=+ φ
iff F ∈ F.

2. φ negatively defines a class of frames F iff for every F, it holds that F |=− φ
iff F ∈ F.

3. φ (strongly) defines a class of frames F iff for every F, it holds that F ∈ F iff
F |= φ.

With the help of the above definition, we can show that every class of frames
definable in KbiG is positively definable in G2±

�,�.

Definition 5. Let F = 〈W,S〉 be a (fuzzy or crisp) frame.

1. An R+-counterpart of F is any bi-relational frame F+ = 〈W,S,R−〉.
2. An R−-counterpart of F is any bi-relational frame F+ = 〈W,R+, S〉.

Convention 1 Let φ ∈ biL�,♦.

1. We denote with φ+• the L¬
�,�-formula obtained from φ by replacing all �’s

and ♦’s with �’s and �’s.
2. We denote with φ−• the L¬

�,�-formula obtained from φ by replacing all �’s
and ♦’s with ¬�¬’s and ¬�¬’s.

Theorem 2. Let F = 〈W,S〉 and let F+ and F− be its R+ and R− counterparts.
Then, for any φ ∈ biL�,♦, it holds that

F |=KbiG φ iff F+ |=+ φ+• iff F− |=+ φ−•

Paraconsistent Non-standard Modalities 427

Proof. Since the semantics of KbiG connectives is identical to v1 conditions of
Definition 3, we only prove that F |= φ iff F− |=+ φ−•. It suffices to prove by
induction the following statement.

Let v be a KbiG valuation on F, v(p,w) = v1(p,w) for every w ∈ F, and v2 be
arbitrary. Then v(φ,w) = v1(φ−•, w) for every φ.

The case of φ = p holds by Convention 1, the cases of propositional connectives
are straightforward. Consider φ = �χ. We have that φ−• = ¬�¬(χ−•) and thus

v1(¬�¬(χ−•), w) = v2(�¬(χ−•), w)

= inf
w′∈W

{wSw′ → v2(¬(χ−•))}

= inf
w′∈W

{wSw′ → v1(χ−•)}

= inf
w′∈W

{wSw′ → v(χ)} (by IH)

= v(�χ,w)

The above theorem allows us to positively define in G2±
�,� all classes of frames

that are definable in KbiG. In particular, all K-definable frames are positively
definable. Moreover, it follows that G2±

�,� (as GK and KbiG) lacks the finite model
property: ∼�(p∨∼p) is false on every finite frame, and thus, ∼�(p∨∼p) is too.
On the other hand, there are infinite models satisfying this formula as shown
below (R+ and R− are crisp).

w1 : p =
(
1
2 , 0

)
. . . wn : p =

(
1

n+1 , 0
)

. . .

w0 : p = (0, 0)

+

���������������

+
��������������

+

������������������������������

−
��

Furthermore, Theorem 2 gives us a degree of flexibility. For example, one
can check that ¬�¬(p ∨ q) → (¬�¬p ∨ ¬�¬q) positively defines frames with
crisp R− but not necessarily crisp R+. This models a situation when an agent
completely (dis)believes in denials given by their sources while may have some
degree of trust between 0 and 1 when the sources assert something. Let us return
to Example 1.

Example 2. Assume that the tourist completely trusts the negative (but not
positive) opinions of their friends. Thus, instead of Fig. 1, we have the following
model.

f1 : s = (0.5, 0.5)
d = (0.7, 0.3)

t
(0.7,1) ��(0.8,1)�� f2 : s = (1, 0.4)

d = (0, 0)

428 M. B́ılková et al.

The new values for the cautious and credulous aggregation are as follows:
v(�s, t) = (0.5, 0.4), v(�d, t) = (0, 0), v(�s, t) = (0.7, 0.5), and v(�d, t) =
(0.7, 0.3).

Furthermore, the agent can trust the sources to the same degree no matter
whether they confirm or deny statements. This can be modelled with mono-
relational frames where R+ = R−. We show that they are strongly definable.

Theorem 3. F is mono-relational iff F |= �¬p ↔ ¬�p and F |= �¬p ↔ ¬�p.

Proof. Let F be mono-relational and R+ = R− = R. Now observe that

vi(�¬p,w) = inf
w′∈W

{wRw′ → vi(¬p,w′)} (i ∈ {1, 2})

= inf
w′∈W

{wRw′ → vj(p,w′)} (i �= j)

= vj(�p,w)
= vi(¬�p,w)

For the converse, let R+ �=R− and, in particular, wR+w′ =x and wR−w′ =y.
Assume w.l.o.g. that x > y. We set the valuation of p: v(p,w′) = (x, y) and for
every w′′ �= w′, we have v(p,w′′) = (1, 1). It is clear that v(¬�p,w) = (1, 1). On
the other hand, v(¬p,w′) = (y, x), whence v1(�¬p) �= 1.

The case of � can be tackled in a dual manner.

In the remainder of the paper, we will be concerned with G2±
�,�fb

— G2±
�,�

over finitely branching (both fuzzy and crisp) frames. This is for several reasons.
First, in the context of formalising beliefs and reasoning with data acquired from
sources, it is reasonable to assume that every source refers to only a finite number
of other sources and that agents have access to a finite number of sources as
well. This assumption is implicit in many classical epistemic and doxastic logics
since they are often complete w.r.t. finitely branching models [19], although
cannot define them. Second, in the finitely branching models, the values of modal
formulas are witnessed : if vi(�φ,w) = x < 1, then, vi(φ,w′) = x for some w′, and
if vi(�φ,w) = x, then wRw′ = x or vi(φ,w′) = x for some w′. Intuitively, this
means that the degree of w’s certainty in φ is purely based on the information
acquired from sources and from its degree of trust in those. Finally, the restriction
to finitely branching frames allows for the construction of a simple constraint
tableaux calculus that can be used in establishing the complexity valuation.

Note, finally, that both fuzzy and crisp finitely branching frames can be
defined in GK with ∼∼�(p ∨ ∼p) (cf. [9, Remark 3] and [6, Proposition 4.3]).
Thus, by Theorem 2, frames with finitely R+ are positively definable via
∼∼�(p ∨ ∼p) and those with finitely branching R− via ∼∼¬�¬(p ∨ ∼p).

Paraconsistent Non-standard Modalities 429

4 Tableaux Calculus

In this section, we construct a sound and complete constraint tableaux system
T

(
G2±

�,�fb

)
for G2±

�,�fb
. The first constraint tableaux were proposed in [21–23]

as a decision procedure for the �Lukasiewicz logic �L. A similar approach for the
Rational Pawe�lka logic was proposed in [24]. In [5], we constructed constraint
tableaux for �L2 and G2 — the paraconsistent expansions of �L and G, and in [9]
for modal expansions of the bi-Gödel logic and G2.

Constraint tableaux are analytic in the sense that their rules have the sub-
formula property. Moreover, they provide an easy way to extract a countermodel
from complete open branches. Furthermore, while the propositional connectives
of G2 allow for the construction of an analytic proof system, e.g., a display calcu-
lus extending that of I4C4

6 [38], the modal ones are not dual to one another w.r.t.
¬ nor the Gödel negation ∼. Thus, it is unlikely that an elegant (hyper-)sequent
or display calculus for G2±

�,� or G2±
�,�fb

can be constructed.
The next definitions are adapted from [9].

Definition 6. We fix a set of state-labels W and let �∈{<,�} and �∈{>,	}.
Let further w ∈ W, x ∈ {1, 2}, φ ∈ L¬

�,�, and c ∈ {0, 1}. A structure is either
w :x :φ, c, wR+w′, or wR+w′. We denote the set of structures with Str. Structures
of the form w :x :p, wR+w′, and wR−w′ are called atomic (denoted AStr).

We define a constraint tableau as a downward branching tree whose branches
are sets containing constraints X � X′ (X,X′ ∈ Str). Each branch can be extended
by an application of a rule7 below (bars denote branching, i, j ∈ {1, 2}, i �= j).

¬i � w : i :¬φ�X

w :j :φ�X
¬i � w : i :¬φ�X

w :j :φ�X
→1�

w :1 :φ→φ′ �X

X�1

∣
∣
∣
∣

w :1 :φ′ �X
w :1 :φ>w :1 :φ′

→2�
w :2 :φ → φ′ �X

X�0

∣
∣
∣
∣

w :2 :φ′ �X
w :2 :φ′ >w :2 :φ

∧1 � w :1 :φ∧φ′ �X

w :1 :φ�X
w :1 :φ′ �X

∧2 � w :2 :φ∧φ′ �X

w :2 :φ�X
w :2 :φ′ �X

→1<
w :1 :φ → φ′ <X

w :1 :φ′ <X
w :1 :φ>w :1 :φ′

→2>
w :2 :φ → φ′ >X

w :2 :φ′ >X
w :2 :φ′ >w :2 :φ

∧1 � w :1 :φ ∧ φ′ �X

w :1 :φ�X | w :1 :φ′ �X
∧2 � w :2 :φ ∧ φ′ �X

w :2 :φ�X | w :2 :φ′ �X

→1�
w :1 :φ→φ′ �X

w :1 :φ�w :1 :φ′

1 � X

∣
∣
∣
∣
w :1 :φ′ �X

→2�
w :2 :φ → φ′ �X

w :2 :φ′ �w :2 :φ
0 � X

∣
∣
∣
∣
w :2 :φ′ �X

�i�
w : i :�φ�X

w′ : i :φ � X | wSw′ �w′ : i :φ
�i�

w : i :�φ�X

X � 1

∣
∣
∣
∣

wSw′′ >w′′ : i :φ
w′′ : i :φ � X

�i<
w : i :�φ<X

wSw′′ >w′′ : i :φ
w′′ : i :φ<X

6 This logic was introduced several times: in [38], then in [25], and further studied
in [30]. It is, in fact, the propositional fragment of Moisil’s modal logic [29]. We are
grateful to Heinrich Wansing who pointed this out to us.

7 If X<1,X<X′ ∈B or 0<X′,X<X′ ∈B, the rules are applied only to X<X′.

430 M. B́ılková et al.

�i�
w : i :�φ�X

wSw′′ �X
w′′ : i :φ�X

�i�
w : i :�φ�X

w′ : i :φ � X | wSw′ �X

⎡

⎢
⎢
⎣

w′′ is fresh on the branch

if i=1, then S=R+

if i=2, then S=R−

in �i �, �i � wSw′ occurs on the branch

⎤

⎥
⎥
⎦

A tableau’s branch B is closed iff one of the following conditions applies:

– the transitive closure of B under � contains X < X;
– 0 	 1 ∈ B, or X > 1 ∈ B, or X < 0 ∈ B.

A tableau is closed iff all its branches are closed. We say that there is a tableau
proof of φ iff there are closed tableaux starting from w :1 :φ < 1 and w :2 :φ > 0.

An open branch B is complete iff the following condition is met.

∗ If all premises of a rule occur on B, then one of its conclusions8 occurs on B.

As one can see, the propositional rules remain the same but we have to account
for the fuzzy relation. Thus, we introduce not only constraints that compare
the values of the formulas but also constraints comparing the values of relations
between two states.

Convention 2. The table below summarises the interpretations of entries.

entry interpretation
w : 1 :φ � w′ : 2 :φ′ v1(φ,w) ≤ v2(φ′, w′)

w :2 :φ � c v2(φ,w) ≤ c with c ∈ {0, 1}
wR−w′ � w′ : 2 :φ wR−w′ ≤ v2(φ,w′)

Definition 7 (Branch realisation). A model M = 〈W,R+, R−, v1, v2〉 with
W = {w : w occurs on B} realises a branch B of a tableau iff there is a function
rl : Str → [0, 1] s.t. for every X,Y,Y′,Z,Z′ ∈ Str with X = w : x : φ, Y =
wiR

+wj, and Y′ = w′
iR

−w′
j the following holds (x ∈ {1, 2}, c ∈ {0, 1}).

– If Z � Z′ ∈ B, then rl(Z) � rl(Z′).
– rl(X) = vx(φ,w), rl(c) = c, rl(Y) = wiR

+wj, rl(Y′) = w′
iR

−w′
j

To facilitate the understanding of the rules, we give an example of a failed
tableau proof and extract a counter-model. The proof goes as follows: first, we
apply all the possible propositional rules, then the modal rules that introduce
new states, and then those that use the states already on the branch. We repeat
the process until all structures are decomposed into atomic ones.

w0 :2 :¬�p→�¬p>0
w0 :2 :¬�p<w0 :2 :�¬p

0<w0 :2 :�¬p
w0 :1 :�p<w0 :2 :�¬p

w0R
+w1 >w1 :1 :p

w1 :1 :p<w0 :2 :�¬p

w1 :2 :¬p>w1 :1 :p
w1 :1 :p>w1 :1 :p

w0R
−w1 � w1 :2 :¬p

w0R
−w1 � w1 :1 :p�×

w0

R+=1 ��

R−= 1
2

��
w1 : p =

(
1
2 , 0

)

8 Note that branching rules have two conclusions.

Paraconsistent Non-standard Modalities 431

We can now extract a model from the complete open branch marked with �
s.t. v2(¬�p → �¬p,w0) > 0. We use w’s that occur thereon as the carrier and
assign the values of variables and relations so that they correspond to �.

Theorem 4 (T
(
G2±

�,�fb

)
completeness). φ is v1-valid (v2-valid) in G2±

�,� iff
there is a closed tableau beginning with w :1 :φ < 1 (w :2 :φ > 0).

Proof. The proof is an easy adaptation of [9, Theorem 3], whence we provide
only a sketch. To prove soundness, we need to show that if the premise of the
rule is realised, then so is at least one of its conclusions. This can be done by
a routine check of the rules. Note that since we work with finitely branching
frames, infima and suprema from Definition 3 become maxima and minima. We
consider the case of �1� and show that, if M = 〈W,R+, R−, v1, v2〉 realises the
premise of the rule, it also realises one of its conclusions.

Assume w.l.o.g. that X = w′′ : 2 : ψ, and let M realise w : 1 : �φ 	 w′′ : 2 : ψ.
Now, since R+ and R− are finitely branching, we have that min

w′∈W
{wR+w′ →

v1(φ,w′)} ≥ v2(ψ,w), i.e., at each w′ ∈ W s.t. wR+w′ > 09, either v1(φ,w′) ≥
v2(ψ,w′′) or wR+w′ ≥ v2(ψ,w′′). Thus, at least one conclusion of the rule is
satisfied. Since closed branches are not realisable, the result follows.

To prove completeness, we show that every complete open branch B is real-
isable. We show how to construct a realising model from the branch. First, we
set W = {w : w occurs in B}. Denote the set of atomic structures appearing
on B with AStr(B) and let B+ be the transitive closure of B under �. Now, we
assign values to them. For i ∈ {1, 2}, if w : i : p 	 1 ∈ B, we set vi(p,w) = 1. If
w : i : p � 0 ∈ B, we set vi(p,w) = 0. If wSw′ < X /∈ B+, we set wSw′ = 1. If
w : i :p or wSw′ with S ∈ {R+,R−} does not occur on B, we set vi(p,w) = 0 and
wSw′ = 0.

For each str ∈ AStr, we now set

[str]=

⎧⎨
⎩str′

∣∣∣∣∣∣
str � str′ ∈ B+ and str < str /∈ B+

or
str 	 str′ ∈ B+ and str > str′ /∈ B+

⎫⎬
⎭

Denote the number of [str]’s with #str. Since the only possible loop in B+

is str � str′ � . . . � str where all elements belong to [str], it is clear that
#str ≤ 2 · |AStr(B)| · |W |. Put [str] ≺ [str′] iff there are stri ∈ [str] and strj ∈ [str′]
s.t. stri < strj ∈ B+. We now set the valuation of these structures as follows:

str =
|{[str′] | [str′] ≺ [str]}|

#str

It is clear that constraints containing only atomic structures and constants are
now satisfied. To show that all other constraints are satisfied, we prove that if
at least one conclusion of the rule is satisfied, then so is the premise. Again, the
proof is a slight modification of [9, Theorem 3] and can be done by considering
the cases of rules.
9 Recall that if uSu′ /∈ B, we set uSu′ = 0.

432 M. B́ılková et al.

5 Complexity

In this section, we use the tableaux to provide the upper bound on the size of
falsifying (satisfying) models and prove that satisfiability and validity10 of G2±

�,�fb
are PSpace complete.

The following statement follows immediately from Theorem 4.

Corollary 1. Let φ ∈ L¬
�,� be not G2±

�,�fb
valid, and let k be the number of

modalities in it. Then there is a model M of the size ≤ kk+1 and depth ≤ k and
w ∈ M s.t. v1(φ,w) �= 1 or v2(φ,w) �= 0.

To tackle the PSpace-hardness of strong validity, we introduce an additional
constant B to L¬

�,�. The semantics is as expected: v(B, w) = (1, 1). Note that
the dual constant N s.t. v(N, w) = (0, 0) is definable via B as N := ∼B.

Let us now use G2±
�,�(B) to denote the expansion of G2±

�,� with B. The fol-
lowing statement is immediate.

Proposition 1.

1. φ ∈ L¬
�,� is v1-valid on F iff B → φ is strongly valid on F.

2. φ ∈ L¬
�,� is v2-valid on F iff N → φ is strongly valid on F.

It is also clear that adding the following rules to the tableaux calculus in
Definition 6 will make it complete w.r.t. G2±

�,�fb
(B).

w : i :B�X

w : i :1�X

w : i :B�X

w : i :1�X
(i ∈ {1, 2})

The proof of PSpace membership adapts the method from [9] and is inspired
by the proof of the PSpace membership of K from [10]. For the hardness, we prove
separately that v1- and v2-validities are PSpace-hard and that strong validity is
PSpace-hard as well. The main difference between this proof and the one in [9]
is that now we have to account for relational terms of the form wSw′ having
different values.

Theorem 5.

1. G2±
�,�fb

(B) validity and satisfiability are PSpace complete.
2. v1- and v2-validities in G2±

�,�fb
are PSpace-complete

Proof. We provide a sketch of the proof. For the membership, we tackle
both parts at once since if G2±

�,�fb
(B) is in PSpace, then so is G2±

�,�fb
. Now

observe from the proof of Theorem 4 that φ is satisfiable (falsifiable) on
M = 〈W,R+, R−, v1, v2〉 iff all variables, wR+w′’s, and wR−w′’s have values
from V =

{
0, 1

#str , . . . ,
#str−1
#str , 1

}
under which φ is satisfied (falsified).

10 Satisfiability and falsifiability (non-validity) are reducible to each other: φ is satisfi-
able iff ∼∼(φ � 0) is falsifiable; φ is falsifiable iff ∼∼(1 � φ) is satisfiable.

Paraconsistent Non-standard Modalities 433

Since #str is bounded from above, we can now replace constraints with
labelled formulas and relational structures of the form w : i : φ = v or wSw′ = v
(v ∈ V) avoiding comparisons of values of formulas in different states. We close
the branch if it contains w : i :ψ = v and w : i :ψ = v′ or wSw′ = v and wSw′ = v′

for v �=v′.
Now we replace the rules from Definition 6 with new ones that work with

labelled structures. Below, we give as an example the rules11 that replace �i�.

w : i :�φ= r
#str

wSw′ =1
w : i :φ= r

#str

∣
∣
∣
∣

wSw′ = r
#str

w : i :φ=1

∣
∣
∣
∣
. . .

∣
∣
∣
∣
∣

wSw′ = r
#str

w : i :φ= r
#str

w : i :�φ= r
#str ;

(
wSw′ =v for v≥ r

#str

is on the branch

)

w′ : i :φ= r
#str | . . . | w′ : i :φ=0

Observe that once all rules are rewritten in this manner, we will not need to
compare values of formulas in different states.

We then proceed as follows: first, we apply the propositional rules, then one
modal rule requiring a new state (e.g., w0 : i :�φ= r

#str), then the rules that use
that state guessing the tableau branch when needed. By repeating this process,
we are building the model branch by branch. The model has the depth bounded
by the length of φ and we work with modal formulas one by one, whence we
need to store subformulas of φ and wSw′’s with their values O(|φ|) times, so,
we need only O(|φ|2) space. Once the branch is constructed, we can delete the
entries of the tableau and repeat the process with the next formula at w0 that
would introduce a new state.

For hardness, we reduce the GK validity of {0,∧,∨,→,♦} formulas to strong
validity as well as to v1- and v2-validities. Recall that the ♦ fragment of GK
has the finite model property [15, Theorem 7.1] and is PSpace-complete [28,
Theorem 5.9].

Since the semantics of GK is the same as KbiG (cf. Definition 2) and coincides
with the v1-conditions of G2±

�,� (recall Definition 3), it is immediate by Theorem 2
that φ over {0,∧,∨,→,♦} GK-valid iff φ+• is v1-valid. This also gives us the
reduction to G2±

�,�fb
(B) strong validity using Proposition 1: φ is GK-valid iff

B → φ+• is strongly G2±
�,�fb

-valid.
For v2-validity, we proceed as follows. We let φ be over {0,∧,∨,→,♦} and

inductively define φ∂ :

0∂ = 1 p∂ = p (χ ∧ ψ)∂ = χ∂ ∨ ψ∂

(χ ∨ ψ)∂ = χ∂ ∧ ψ∂ (χ → ψ)∂ = ψ∂
� χ∂ (♦χ)∂ = �(χ∂)

It is clear that φ is GK-valid on a given frame F = 〈W,S〉 iff v2(φ∂ , w) = 1 for
every valuation v2 and every state w in the R−-counterpart F− of F. Hence, φ is
GK-valid iff 1 � φ∂ is v2-valid.
11 For a value v > 0 of �φ at w, we add a new state that witnesses v, and for a state on

the branch, we guess a value not greater than v. Other modal rules can be rewritten
similarly.

434 M. B́ılková et al.

6 Conclusions and Future Work

We presented a modal expansion G2±
�,� of G2 with non-standard modalities and

provided it with Kripke semantics on bi-relational frames with two valuations.
We established its connection with the bi-Gödel modal logic KbiG presented
in [6,9] and obtained decidability and complexity results considering G2±

�,� over
finitely branching frames.

The next steps are as follows. First of all, we plan to explore the decidability
of the full G2±

�,� logic. We conjecture that it is also PSpace complete. However, the
standard way of proving PSpace completeness of Gödel modal logics described
in [13,14] and used in [6] to establish PSpace completeness of KbiG may not be
straightforwardly applicable here as the reduction from G2±

�,� validity to KbiG
validity can be hard to obtain for it follows immediately from Theorem 3 that
G2±

�,� lacks negation normal forms.
Second, it is interesting to design a complete Hilbert-style axiomatisation

of G2±
�,� and study its correspondence theory w.r.t. strong validity. This can be

non-trivial since �(p → q) → (�p → �q) and �(p ∨ q) → �p ∨ �q are not G2±
�,�

valid, even though, it is easy to check that the following rules are sound.

φ → χ

�φ → �χ

φ → χ

�φ → �χ

The other direction of future research is to study global versions of � and �
as well as description logics based on them. Description Gödel logics are well-
known and studied [11,12] and allow for the representation of uncertain data
that cannot be represented in the classical ontologies. Furthermore, they are the
only decidable family of fuzzy description logics which contrasts them to e.g.,
�Lukasiewicz description (and global) logics which are not even axiomatisable [37].
On the other hand, there are known description logics over BD (cf., e.g. [26]),
and thus it makes sense to combine the two approaches.

References

1. Aguilera, J., Diéguez, M., Fernández-Duque, D., McLean, B.: Time and Gödel:
fuzzy temporal reasoning in PSPACE. In: Ciabattoni, A., Pimentel, E., de Queiroz,
R.J.G.B. (eds.) Logic, Language, Information, and Computation. LNCS, vol.
13368, pp. 18–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15298-6 2

2. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In:
Logical foundations of mathematics, computer science and physics–Kurt Gödel’s
legacy, Gödel 1996, Brno, Czech Republic, Proceedings, pp. 23–33. Association for
Symbolic Logic (1996)

3. Baldi, P., Cintula, P., Noguera, C.: Classical and fuzzy two-layered modal logics
for uncertainty: translations and proof-theory. Int. J. Comput. Intell. Syst. 13,
988–1001 (2020). https://doi.org/10.2991/ijcis.d.200703.001

4. Belnap, N.D.: How a computer should think. In: New Essays on Belnap-Dunn
Logic. SL, vol. 418, pp. 35–53. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31136-0 4

https://doi.org/10.1007/978-3-031-15298-6_2
https://doi.org/10.1007/978-3-031-15298-6_2
https://doi.org/10.2991/ijcis.d.200703.001
https://doi.org/10.1007/978-3-030-31136-0_4
https://doi.org/10.1007/978-3-030-31136-0_4

Paraconsistent Non-standard Modalities 435

5. B́ılková, M., Frittella, S., Kozhemiachenko, D.: Constraint tableaux for two-
dimensional fuzzy logics. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS
(LNAI), vol. 12842, pp. 20–37. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86059-2 2

6. B́ılková, M., Frittella, S., Kozhemiachenko, D.: Crisp bi-Gödel modal logic and its
paraconsistent expansion. https://arxiv.org/abs/2211.01882 (2022)

7. B́ılková, M., Frittella, S., Kozhemiachenko, D., Majer, O.: Qualitative reasoning
in a two-layered framework. Int. J. Approximate Reason. 154, 84–108 (2023)

8. B́ılková, M., Frittella, S., Majer, O., Nazari, S.: Belief based on inconsistent infor-
mation. In: Martins, M.A., Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp.
68–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3 5

9. B́ılková, M., Frittella, S., Kozhemiachenko, D.: Paraconsistent Gödel modal logic.
In: Blanchette, J., Kovacs, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385,
pp. 429–448. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-031-10769-6 26

10. Blackburn, P., Rijke, M.D., Venema, Y.: Modal logic. Cambridge tracts in theo-
retical computer science, vol. 53, Cambridge University Press (2010)

11. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics
under gödel semantics. Int. J. Approximate Reason. 50(3), 494–514 (2009)

12. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Joining Gödel and Zadeh
fuzzy logics in fuzzy description logics. Int. J. Uncertainty Fuzziness Knowl.-Based
Syst. 20(04), 475–508 (2012)

13. Caicedo, X., Metcalfe, G., Rodŕıguez, R., Rogger, J.: A finite model property for
Gödel modal logics. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC
2013. LNCS, vol. 8071, pp. 226–237. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39992-3 20

14. Caicedo, X., Metcalfe, G., Rodŕıguez, R., Rogger, J.: Decidability of order-based
modal logics. J. Comput. Syst. Sci. 88, 53–74 (2017)

15. Caicedo, X., Rodriguez, R.: Standard Gödel modal logics. Stud. Logica. 94(2),
189–214 (2010)

16. Caicedo, X., Rodŕıguez, R.: Bi-modal Gödel logic over [0,1]-valued Kripke frames.
J. Logic and Comput. 25(1), 37–55 (2015)

17. Diéguez, M., Fernández-Duque, D.: Decidability for S4 Gödel modal logics. In:
Cornejo, M.E., Harmati, I.A., Koczy, L.T., Medina-Moreno, J. (eds.) Computa-
tional Intelligence and Mathematics for Tackling Complex Problems, Studies in
computational intelligence, vol. 4, pp. 1–7. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-07707-4 1

18. Drobyshevich, S.: A general framework for FDE-based modal logics. Stud. Logica.
108(6), 1281–1306 (2020)

19. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge, MA, USA (2003)

20. Grigolia, R., Kiseliova, T., Odisharia, V.: Free and projective bimodal symmetric
Gödel algebras. Stud. Logica. 104(1), 115–143 (2016)

21. Hähnle, R.: A new translation from deduction into integer programming. In: Cal-
met, J., Campbell, J.A. (eds.) AISMC 1992. LNCS, vol. 737, pp. 262–275. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57322-4 18

22. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif.
Intell. 12(3–4), 231–263 (1994)

23. Hähnle, R.: Tableaux for many-valued logics. In: D’Agostino, M., Gabbay, D.,
Hähnle, R., Posegga, J. (eds.) Handbook of Tableaux Methods, pp. 529–580.
Springer, Dordrecht (1999)

https://doi.org/10.1007/978-3-030-86059-2_2
https://doi.org/10.1007/978-3-030-86059-2_2
https://arxiv.org/abs/2211.01882
https://doi.org/10.1007/978-3-030-65840-3_5
https://doi.org/10.1007/978-3-031-10769-6_26
https://doi.org/10.1007/978-3-031-10769-6_26
https://doi.org/10.1007/978-3-642-39992-3_20
https://doi.org/10.1007/978-3-642-39992-3_20
https://doi.org/10.1007/978-3-031-07707-4_1
https://doi.org/10.1007/978-3-031-07707-4_1
https://doi.org/10.1007/3-540-57322-4_18

436 M. B́ılková et al.

24. Lascio, L.D., Gisolfi, A.: Graded tableaux for rational Pavelka logic. Int. J. Intell.
Syst. 20(12), 1273–1285 (2005)

25. Leitgeb, H.: Hype: a system of hyperintensional logic (with an application to seman-
tic paradoxes). J. Philos. Logic 48(2), 305–405 (2019)

26. Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with OWL. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8 29

27. Metcalfe, G., Olivetti, N.: Proof systems for a Gödel modal logic. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 265–279.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1 20

28. Metcalfe, G., Olivetti, N.: Towards a Proof Theory of Gödel Modal Logics. Logical
Methods Comput. Sci. 7 (2011)

29. Moisil, G.: Logique modale. Disquisitiones mathematicae physicae 2, 3–98 (1942)
30. Odintsov, S., Wansing, H.: Routley star and hyperintensionality. J. Philos. Logic

50, 33–56 (2021)
31. Odintsov, S., Wansing, H.: Modal logics with Belnapian truth values. J. Appl. Non-

Class. Logics 20(3), 279–301 (2010). https://doi.org/10.3166/jancl.20.279-301
32. Odintsov, S.P., Wansing, H.: Disentangling FDE-based paraconsistent modal log-

ics. Stud. Logica. 105(6), 1221–1254 (2017). https://doi.org/10.1007/s11225-017-
9753-9

33. Priest, G.: An Introduction to Non-Classical Logic: From If to Is, 2nd edn. Cam-
bridge University Press, Cambridge (2008)

34. Priest, G.: Many-valued modal logics: a simple approach. Rev. Symbol. Logic 1(2),
190–203 (2008)

35. Rodriguez, R., Tuyt, O., Esteva, F., Godo, L.: Simplified Kripke semantics for
K45-like Gödel modal logics and its axiomatic extensions. Stud. Logica. 110(4),
1081–1114 (2022)

36. Rodriguez, R., Vidal, A.: Axiomatization of crisp Gödel modal logic. Stud. Logica.
109, 367–395 (2021)

37. Vidal, A.: Undecidability and non-axiomatizability of modal many-valued logics.
J. Symbol. Logic 87(4), 1576–1605 (2022)

38. Wansing, H.: Constructive negation, implication, and co-implication. J. Appl. Non-
Class. Logics 18(2–3), 341–364 (2008). https://doi.org/10.3166/jancl.18.341-364

https://doi.org/10.1007/978-3-540-72667-8_29
https://doi.org/10.1007/978-3-642-02716-1_20
https://doi.org/10.3166/jancl.20.279-301
https://doi.org/10.1007/s11225-017-9753-9
https://doi.org/10.1007/s11225-017-9753-9
https://doi.org/10.3166/jancl.18.341-364

Base-Based Model Checking
for Multi-agent only Believing

Tiago de Lima1(B), Emiliano Lorini2, and François Schwarzentruber3

1 CRIL, Univ Artois and CNRS, Lens, France
delima@cril.fr

2 IRIT, CNRS, Toulouse University, Toulouse, France
lorini@irit.fr

3 ENS Rennes, Bruz, France

francois.schwarzentruber@ens-rennes.fr

Abstract. We present a novel semantics for the language of multi-agent
only believing exploiting belief bases, and show how to use it for auto-
matically checking formulas of this language. We provide a PSPACE
algorithm for model checking relying on a reduction to QBF, an imple-
mentation and some experimental results on computation time in a con-
crete example.

1 Introduction

Using belief bases for building a semantics for epistemic logic was initially pro-
posed by Lorini [17,19]. In [18] it was shown that such a semantics allows to rep-
resent the concept of universal epistemic model which is tightly connected with
the concept of universal type space studied by game theorists [20]. A qualitative
version of the universal type space with no probabilities involved is defined by
Fagin et al. [6] (see also [7]). Broadly speaking, a universal epistemic model for a
given situation is the most general model which is compatible with that situation.
It is the model which only contains information about the situation and makes
no further assumption. From an epistemic point view, it can be seen as the model
with maximal ignorance with respect to the description of the situation at stake.

Such a universal epistemic model has been shown to be crucial for defin-
ing a proper semantics for the concept of multi-agent only knowing (or
believing) [12,14], as a generalization of the concept of single-agent only know-
ing (or believing) [15].1 However, the construction of this semantics is far from

1 As usual, the difference between knowledge and belief lies in the fact that the former
is always correct while the latter can be incorrect.

This work is partially supported by the project epiRL (“Epistemic Reinforcement
Learning”) ANR-22-CE23-0029, the project CoPains (“Cognitive Planning in Per-
suasive Multimodal Communication”) ANR-18-CE33-0012 and the AI Chair project
Responsible AI (ANR-19-CHIA-0008) both from the French National Agency of
Research. Support from the Natural Intelligence Toulouse Institute (ANITI) is also
gratefully acknowledged.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 437–445, 2023.
https://doi.org/10.1007/978-3-031-43619-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_30&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_30

438 T. Lima et al.

being straightforward. Halpern & Lakemeyer [13] use the proof-theoretic notion
of canonical model for defining it. The limitation of the canonical model is its
being infinite thereby not being exploitable in practice. In a more recent work,
Belle & Lakemeyer [2] provided an inductive proof-independent definition of the
semantics for multi-agent only knowing which departs from the standard seman-
tics of multi-agent epistemic logic based on multi-relational Kripke structures.
Finally, Aucher & Belle [1] have shown how to interpret the language of multi-
agent only knowing on standard Kripke structures. Although being independent
from the proof theory, these last two accounts are fairly non-standard or quite
involved. They rely either on an inductive definition (Belle & Lakemeyer) or on
a complex syntactic representation up to certain modal depth (Aucher & Belle)
of the multi-agent epistemic structure used for interpreting the multi-agent only
knowing language.

In this paper, we concentrate on the logic of multi-agent only believing based
on the logic K for beliefs. We show how to use the belief base semantics and
its construction of the universal model to automatically check formulas of the
corresponding language. The novel contribution of the paper is twofold:

– Although the idea of using belief bases as a semantics for epistemic logic has
been proposed in previous work, this is the first attempt to use them in the
context of the logic of multi-agent only believing.

– Moreover, we are the first to provide a model checking algorithm for the logic
of multi-agent only believing, to implement it and to test it experimentally
on a concrete example. The belief base semantics helped us to accomplish
this task given its compactness and manageability.

Outline. In Sect. 2, we first recall the belief base semantics introduced in our
previous work [17,19]. We show how to interpret the language of multi-agent
only believing and how to define the universal model in it. In Sect. 3, we move
to model checking formulated in the belief base semantics. In Sect. 4, we present
an implementation of the QBF-based algorithm and some experimental results
on computation time in the example. Section 5 concludes.2

2 Language and Semantics

The multi-agent epistemic language introduced in [19] has two basic epistemic
modalities: one for explicit belief, and another one for implicit belief. An agent’s
explicit belief corresponds to a piece of information in the agent’s belief base.
An agent’s implicit belief corresponds to a piece of information that is derivable
from the agent’s explicit beliefs. In other words, if an agent can derive ϕ from
its explicit beliefs, it implicitly believes at least that ϕ is true. We consider the
extension of this epistemic language by complementary modalities for implicitly
believing at most. The at least and at most modalities can be combined to
represent the concept of only believing.
2 The extended version of this paper, including proofs and examples, is available at

ArXiv: https://arxiv.org/abs/2307.14893.

https://arxiv.org/abs/2307.14893

Base-Based Model Checking for Multi-agent only Believing 439

The semantics over which the language is interpreted exploits belief bases.
Unlike the standard multi-relational Kripke semantics for epistemic logic in
which the agents’ epistemic accessibility relations over possible worlds are given
as primitive, in this semantics they are computed from the agents’ belief bases.
Specifically, in this semantics it is assumed that at state S an agent considers
a state S′ possible (or state S′ is epistemically accessible to the agent at state
S) if and only if S′ satisfies all formulas included in the agent’s belief base at S.
This idea of computing the agents’ accessibility relations from the state descrip-
tion is shared with the semantics of epistemic logic based on interpreted systems
[8,16]. However, there is an important difference. While the interpreted system
semantics relies on the abstract notion of an agent’s local state, in the belief
base semantics an agent’s local state is identified with its concrete belief base.

2.1 Semantics

Assume a countably infinite set of atomic propositions Atm = {p, q, . . .} and a
finite set of agents Agt = {1, . . . , n}. We define the language L0 for explicit belief
by the following grammar in Backus-Naur Form (BNF):

L0
def= α ::= p | ¬α | α ∧ α | �iα,

where p ranges over Atm and i ranges over Agt. L0 is the language used to
represent explicit beliefs. The formula �iα reads “agent i has the explicit belief
that α”. In our semantics, a state is not a primitive notion but it is decom-
posed into different elements: one belief base per agent and an interpretation of
propositional atoms.

Definition 1 (State). A state is a tuple S =
(
(Bi)i∈Agt,V

)
where Bi ⊆ L0

is agent i’s belief base, and V ⊆ Atm is the actual environment. The set of all
states is noted S.

The following definition specifies truth conditions for formulas in L0.

Definition 2 (Satisfaction relation). Let S =
(
(Bi)i∈Agt ,V

) ∈ S. Then,

S |= p ⇐⇒ p ∈ V ,

S |= ¬α ⇐⇒ S �|= α,

S |= α1 ∧ α2 ⇐⇒ S |= α1 and S |= α2,

S |= �iα ⇐⇒ α ∈ Bi.

Observe in particular the set-theoretic interpretation of the explicit belief
operator in the previous definition: agent i has the explicit belief that α if and
only if α is included in its belief base.

The following definition introduces the agents’ epistemic relations. They are
computed from the agents’ belief bases.

Definition 3 (Epistemic relation). Let i ∈ Agt. Then, Ri is the binary
relation on S such that, for all S =

(
(Bi)i∈Agt ,V

)
, S′ =

(
(B ′

i)i∈Agt ,V ′) ∈ S, we
have SRiS

′ if and only if ∀α ∈ Bi : S′ |= α.

440 T. Lima et al.

SRiS
′ means that S′ is an epistemic alternative for agent i at S, that is to

say, S′ is a state that at S agent i considers possible. The idea of the previous
definition is that S′ is an epistemic alternative for agent i at S if and only if, S′

satisfies all facts that agent i explicitly believes at S.
The following definition introduces the concept of model, namely a state sup-

plemented with a set of states, called context. The latter includes all states that
are compatible with the agents’ common ground, i.e., the body of information
that the agents commonly believe to be the case [21].

Definition 4 (Model). A model is a pair (S,Cxt) with S ∈ S and Cxt ⊆ S.
The class of models is noted M.

Note that in a model (S,Cxt), the state S is not necessarily an element of the
context Cxt due to the fact that we model belief instead of knowledge. Therefore,
the agents’ common ground represented by the context Cxt may be incorrect and
not include the actual state. If we modeled knowledge instead of belief, we would
have to suppose that S ∈ Cxt .

Let Γ = (Γi)i∈Agt where, for every i ∈ Agt , Γi represents agent i’s vocabulary.
A Γ -universal model is a model containing all states at which an agent i’s explicit
beliefs are built from its vocabulary Γi. In other words, an agent’s vocabulary
plays a role analogous to that of the notion of awareness in the formal semantics
of awareness [9]. The notion of Γ -universal model is defined as follows.

Definition 5 (Universal model). The model (S,Cxt) in M is said to be Γ -
universal if S ∈ Cxt = SΓ , with SΓ =

{(
(B ′

i)i∈Agt,V ′) ∈ S | ∀i ∈ Agt,B ′
i ⊆ Γi

}
.

The class of Γ -universal models is noted Muniv (Γ).

Γ = (Γi)i∈Agt is also called agent vocabulary profile. Clearly, when Γ =
Ln
0 , we have SΓ = S. A model (S,S) in Muniv (Ln

0) is a model with maximal
ignorance: it only contains the information provided by the actual state S. For
simplicity, we write Muniv instead of Muniv (Ln

0).

2.2 Language

In this section, we introduce a language for implicitly believing at most and
implicitly believing at least on the top of the language L0 defined above. It is
noted L and defined by:

L def= φ ::= α | ¬φ | φ ∧ φ | �iφ | ��
i φ,

where α ranges over L0 and i ranges over Agt . The other Boolean constructions

, ⊥, ∨, →, ⊕, and ↔ are defined from α, ¬ and ∧ in the standard way.

The formula �iφ is read “agent i at least implicitly believes that ϕ”, while
��

i φ is read “agent i at most implicitly believes that ¬ϕ”. Alternative readings
of formulas �iφ and ��

i φ are, respectively, “φ is true at all states that agent i
considers possible” and “φ is true at all states that agent i does not consider

Base-Based Model Checking for Multi-agent only Believing 441

possible”. The latter is in line with the reading of the normal modality and the
corresponding “window” modality in the context of Boolean modal logics [10].
The duals of the operators �i and ��

i are defined in the usual way, as follows:
♦iφ

def= ¬�i¬φ and ♦�
i φ

def= ¬��
i ¬φ. Formulas in the language L are interpreted

relative to a model (S,Cxt). (Boolean cases are omitted since they are defined
as usual.)

Definition 6 (Satisfaction relation (cont.)). Let (S,Cxt) ∈ M. Then:

(S,Cxt) |= α ⇐⇒ S |= α,

(S,Cxt) |= �iφ ⇐⇒ ∀S′ ∈ Cxt : if SRiS
′then (S′,Cxt) |= φ,

(S,Cxt) |= ��
i φ ⇐⇒ ∀S′ ∈ Cxt : if SR�

i S
′then (S′,Cxt) |= φ,

with R�
i = (S × S) \ Ri.

Note that SR�
i S

′ just means that at state S agent i does not consider state S′

possible. Moreover, interpretations of the two modalities �i and ��
i are restricted

to the actual context Cxt . The only believing modality (�o
i) is defined as follows:

�o
i ϕ

def= �iφ ∧ ��
i ¬φ.

Notions of satisfiability and validity of L-formulas for the class of models M
are defined in the usual way: φ is satisfiable if there exists (S,Cxt) ∈ M such
that (S,Cxt) |= φ, and ϕ is valid if ¬φ is not satisfiable.

3 Model Checking

The model checking problem is defined in our framework as follows:

input: an agent vocabulary profile Γ = (Γi)i∈Agt with Γi finite for every i ∈ Agt ,
a finite state S0 in SΓ , and a formula φ0 ∈ L;

output: yes if (S0,SΓ) |= φ0; no otherwise.

Remark 1. We suppose w.l.o.g. that outer most subformulas of ϕ0 of the form
�iα are such that α ∈ Γi. If this is not the case for some subformulas �iα, then
the subformula �iα will be false anyway and can be replaced by ⊥.

We propose a reduction to TQBF (true quantified binary formulas). We
introduce TQBF propositional variables xα,k for all α ∈ L0 and for all integers
k. The variables indexed by k are said to be of level k. For instance, xα,k is true
if α is true at some state at depth k. Let Xk be the set of formulas of level k.
More precisely, Xk contains exactly formulas x�iα,k with α ∈ Γi for any agent
i, and xp,k with p appearing in Γ or ϕ0.

Definition 7. We define the function tr that maps any formula of L to a QBF-
formula by tr(ϕ0) := tr0(ϕ0) with:

442 T. Lima et al.

– trk(p) = xp,k

– trk(¬φ) = ¬trk(φ)
– trk(φ ∧ ψ) = trk(φ) ∧ trk(ψ)
– trk(�iα) = x�iα,k

– trk(�iφ) = ∀Xk+1(Ri,k → trk+1(φ))
– trk(��

i φ) = ∀Xk+1(¬Ri,k → trk+1(φ))

where:
Ri,k :=

∧

α∈Γi

x�iα,k → trk+1(α).

State S (resp. S′) is represented by the truth values of variables in Xk (resp.
Xk+1). Formula Ri,k reformulates SRiS

′.

Proposition 1. Let ϕ0 ∈ L and S0 = ((Bi)i∈Agt , V). The following two state-
ments are equivalent:

– (S0,SΓ) |= φ0

– ∃X0(descS0(X0) ∧ tr0(φ0)) is QBF-true,

where:

descS0(X0) :=
∧

i∈Agt

⎛

⎝
∧

α∈Bi

x�iα,0 ∧
∧

α∈Γi\Bi

¬x�iα,0

⎞

⎠ ∧
∧

p∈V

xp,0 ∧
∧

p�∈V

¬xp,0.

Theorem 1. Model checking L-formulas is PSPACE-complete.

4 Implementation and Experimental Results

We implemented a symbolic model checker,3 which uses the translation to
TQBF. The resulting TQBF is then translated into a binary decision diagram
(BDD), in the same way as done in [3]. The program is implemented in Haskell
and the BDD library used is HasCacBDD [11]. It was compiled with GHC 9.2.7
in a MacBook Air with a 1.6 GHz Dual-Core Intel Core i5 processor and 16 GB
of RAM, running macOS Ventura 13.3.1.

Table 1 shows the performance of the model checker on the two variants of
the example. It shows execution times for different instances. For both examples,
the size of the model (states) is given by the number of possible valuations
times the number of possible multi-agent belief bases: 2|Atm| × (2ratoms)|Agt|.
The value of ratoms is the number of “relevant atoms”. There is one such atom
for each formula in Γ , each propositional variable appearing in Γ and in the
input formula, each formula α that is a sub-formula of the input formula, plus
one atom for each formula �iα such that α ∈ Γ . The number of states gives an
idea of the size of the search space for modal formulas. In principle, to check a
formula of the form �oφ, one must check φ in every state of the model. Because
3 Available at https://src.koda.cnrs.fr/tiago.de.lima/lda/.

https://src.koda.cnrs.fr/tiago.de.lima/lda/

Base-Based Model Checking for Multi-agent only Believing 443

Table 1. Symbolic model checker performance on two examples.

cands = voters = |Agt | 3 4 5 6 7 8 9 10

|Atm| 9 16 25 36 49 64 81 100

ratoms 100 164 244 340 452 580 724 884

states 2309 2672 21245 22076 23213 24704 26597 28940

Execution time (sec.) 0.076 0.015 0.026 0.047 0.066 0.101 0.157 0.248

cands = voters = |Agt | 3 4 5 6 7 8 9 10

|Atm| 9 16 25 36 49 64 81 100

ratoms 133 210 305 418 549 698 865 1050

states 2408 2856 21550 22544 23892 25648 27866 210600

Execution time (sec.) 0.081 0.063 0.334 3.066 17.588 90.809 KO KO

of that, a naive implementation cannot be used. Indeed, in our tests with such
a solution, no instance could be solved under the timeout of 10 min.

One can notice that the model checker is slower in the case of 3 candidates
than in the case of 4 candidates (and in the first example the latter is true even
up to 7 candidates). The reason is that the input formula is true for 3 candidates,
whereas it is false on all the other cases. Checking that a box formula is false
is easier, because the checker needs to find only one state where the formula
in the scope of the box operator is false. Also note that instances of the first
example are solved much faster than those of the second. This is due to two
factors. First, the second example has larger belief bases, which imply a larger
number of states. Second, the input formula of the second example has a larger
modal depth, which obliges the checker to generate a larger search tree.

5 Conclusion

This paper describes optimal procedures for model checking multi-agent only
believing formulas. As far as we know, we are the first to tackle the problem of
automating model checking for the logic of multi-agent only believing or know-
ing. We implemented these procedures and presented some experimental results
on computation time. We intend to apply our semantics for multi-agent only
believing and model checking approach to epistemic planning. We believe that
the compactness of our semantics can offer an advantage in terms of ease of
implementation compared to the multi-relational Kripke semantics traditionally
used in the context of epistemic planning [4,5].

444 T. Lima et al.

References

1. Aucher, G., Belle, V.: Multi-agent only knowing on planet kripke. In: Yang, Q.,
Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25-31 July
2015, pp. 2713–2719. AAAI Press (2015). http://ijcai.org/Abstract/15/384

2. Belle, V., Lakemeyer, G.: Multi-agent only-knowing revisited. In: Lin, F., Sattler,
U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, 9-13 May 2010. AAAI Press (2010). http://aaai.org/ocs/index.php/KR/
KR2010/paper/view/1361

3. van Benthem, J., van Eijck, J., Gattinger, M., Su, K.: Symbolic model checking for
dynamic epistemic logic - S5 and beyond. J. Log. Comput. 28(2), 367–402 (2018)

4. Bolander, T., Andersen, M.B.: Epistemic planning for single- and multi-agent sys-
tems. J. Appl. Non-Classical Logics 21(1), 656–680 (2011)

5. Bolander, T., Jensen, M.H., Schwarzentruber, F.: Complexity results in epistemic
planning. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, 25-31 July 2015, pp. 2791–2797. AAAI Press (2015). http://ijcai.org/
Abstract/15/395

6. Fagin, R., Halpern, J.Y., Vardi, M.Y.: A model-theoretic analysis of knowledge. J.
ACM 38(2), 382–428 (1991). https://doi.org/10.1145/103516.128680

7. Fagin, R., Geanakoplos, J., Halpern, J.Y., Vardi, M.Y.: The hierarchical approach
to modeling knowledge and common knowledge. Internat. J. Game Theory 28(3),
331–365 (1999)

8. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

9. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell.
34(1), 39–76 (1987)

10. Gargov, G., Passy, S.: A note on Boolean modal logic. In: Petkov, P.P. (ed.) Mathe-
matical Logic, pp. 299–309. Springer, Boston (1990). https://doi.org/10.1007/978-
1-4613-0609-2 21

11. Gattinger, M.: HasCacBDD (2023). https://github.com/m4lvin/HasCacBDD. ver-
sion 0.1.0.4

12. Halpern, J.Y.: Reasoning about only knowing with many agents. In: Fikes, R.,
Lehnert, W.G. (eds.) Proceedings of the 11th National Conference on Artificial
Intelligence. Washington, DC, USA, 11-15 July 1993, pp. 655–661. AAAI Press /
The MIT Press (1993). http://www.aaai.org/Library/AAAI/1993/aaai93-098.php

13. Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. J. Log. Comput. 11(1),
41–70 (2001). https://doi.org/10.1093/logcom/11.1.41

14. Lakemeyer, G.: All they know: a study in multi-agent autoepistemic reasoning.
In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on
Artificial Intelligence. Chambéry, France, August 28 - September 3, 1993, pp. 376–
381. Morgan Kaufmann (1993). http://ijcai.org/Proceedings/93-1/Papers/053.pdf

15. Levesque, H.J.: All I know: a study in autoepistemic logic. Artif. Intell. 42(2–3),
263–309 (1990). https://doi.org/10.1016/0004-3702(90)90056-6

16. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19,
9–30 (2017)

http://ijcai.org/Abstract/15/384
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1361
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1361
http://ijcai.org/Abstract/15/395
http://ijcai.org/Abstract/15/395
https://doi.org/10.1145/103516.128680
https://doi.org/10.1007/978-1-4613-0609-2_21
https://doi.org/10.1007/978-1-4613-0609-2_21
https://github.com/m4lvin/HasCacBDD
http://www.aaai.org/Library/AAAI/1993/aaai93-098.php
https://doi.org/10.1093/logcom/11.1.41
http://ijcai.org/Proceedings/93-1/Papers/053.pdf
https://doi.org/10.1016/0004-3702(90)90056-6

Base-Based Model Checking for Multi-agent only Believing 445

17. Lorini, E.: In praise of belief bases: Doing epistemic logic without possible worlds.
In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI 2018), pp. 1915–1922. AAAI Press (2018)

18. Lorini, E.: Exploiting belief bases for building rich epistemic structures. In: Moss,
L.S. (ed.) Proceedings of the Seventeenth Conference on Theoretical Aspects of
Rationality and Knowledge (TARK 2019). EPTCS, vol. 297, pp. 332–353 (2019)

19. Lorini, E.: Rethinking epistemic logic with belief bases. Arti. Intell. 282, 103233
(2020). https://doi.org/10.1016/j.artint.2020.103233

20. Mertens, J.F., Zamir, S.: Formulation of Bayesian analysis for games with incom-
plete information. Internat. J. Game Theory 14, 1–29 (1985). https://doi.org/10.
1007/BF01770224

21. Stalnaker, R.: Common ground. Linguist. Philos. 25(5–6), 701–721 (2002)

https://doi.org/10.1016/j.artint.2020.103233
https://doi.org/10.1007/BF01770224
https://doi.org/10.1007/BF01770224

Belief Reconfiguration

Sébastien Konieczny(B) , Elise Perrotin , and Ramón Pino Pérez

CRIL, CNRS, Université d’Artois, Arras, France

konieczny@cril.fr

Abstract. We study a generalisation of iterated belief revision in a set-
ting where we keep track not only of the received information (in the
form of messages) but also of the source of each message. We suppose
that we have a special source, the oracle, which never fails. That is, all
of the information provided by the oracle is assumed to be correct. We
then evaluate the reliability of each source by confronting its messages
with the facts given by the oracle. In this case it is natural to give higher
priority to messages coming from more reliable sources. We therefore
re-order (reconfigurate) the messages with respect to the reliability of
the sources before performing iterated belief revision. We study how to
compute this reliability, and the properties of the corresponding recon-
figuration operators.

1 Introduction

In this work our aim is to provide a more realistic account of iterated belief
revision [2,5,13]. A requirement in standard iterated belief revision is that every
new evidence acquired by the agent is more plausible than the previous one. This
assumption is usually not explicitly stated, but it is enforced by the postulates
characterizing these operators. This is usually called “Primacy of Update”.

However, if this assumption is plausible in some scenarios, for instance when
one wants to model the evolution of scientific theories, it makes relatively lit-
tle sense in everyday-life scenarios: we usually obtain pieces of information at
different points in time, which we consider sufficiently reliable to be taken into
account, but they are not magically ordered from least to most plausible over the
course of our life. We therefore need to adapt this “ideal” framework of iterated
belief revision so that we can represent real, practical applications.

One way of doing this is to weaken the postulates in order to remove primacy
of update altogether. This leads for instance to improvement operators [14,15],
which make ‘softer’ changes than revision operators. With improvement opera-
tors it is possible to completely get rid of primacy of update [19]. Another way
to do this is by considering credibility limited revision operators [3,4,8,9,11].

Rather than weakening all of the revision steps, in this work we wish to base
priority given to the information on the reliability of the source behind it, while
remaining as close as possible to the standard iterated revision framework. To
this end, we need to explicitly introduce a way of measuring reliability of these

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 446–461, 2023.
https://doi.org/10.1007/978-3-031-43619-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_31&domain=pdf
http://orcid.org/0000-0002-2590-1222
http://orcid.org/0000-0003-4188-3789
http://orcid.org/0000-0002-2912-263X
https://doi.org/10.1007/978-3-031-43619-2_31

Belief Reconfiguration 447

sources of information. In order to do this, we define a more general framework in
which we attach to each received piece of evidence the source that provides this
information. We suppose that we have a special source, the oracle, which never
fails (i.e. it only provides truthful information). Then, by comparing the claims
of the different sources with the truth that we obtain from the oracle, we can
have an estimation of their reliability. Once we have this reliability estimation, in
order to work with the iterated revision operators, we reconsider the sequence of
received information with respect to this reliability by reordering the messages,
putting the messages of the more reliable sources after those of the less reliable
ones. Hence the name of “reconfiguration” for these operators.

This reordering does not affect the relative order of messages of individual
sources (or of sources of the same reliability). This is also expected, as we can
expect more recent messages of a given source to be more reliable: this source
may learn new things, and correct some of her initial mistakes.

The proposed setting is very natural in numerous scenarios. Suppose for
instance that you receive information from different friends, whom you consider
reliable enough to be listened to. Here the oracle is directly observed evidence,
i.e. what you can experiment about the world. Your direct observations of the
world will sometimes contradict previous information you have received from
friends; in this case you can reevaluate the reliability of those friends.

In the next section we give the definitions of our reconfiguration operators,
as well as their associated iterated belief revision operators and reliability func-
tions. In Sect. 3 we focus on the reliability functions, propose expected properties
for these functions, enumerate several possible instantiations, and check which
properties they satisfy. Then in Sect. 4 we study the properties of the correspond-
ing reconfiguration operators. In Sect. 5 we provide an example illustrating the
behavior of these operators. We then conclude in Sect. 6 with a discussion of
related and future work.

2 Reconfiguration

In this section we formally describe the reconfiguration process. We consider
a propositional language LP built from a finite set of propositional variables
P and the usual connectives. Lowercase letters of the Greek alphabet denote
formulas. An interpretation ω is a total function from P to {0, 1}. The set of all
interpretations is denoted by W. An interpretation ω is a model of a formula
ϕ ∈ LP if and only if it makes it true in the usual truth functional way. The set
of models of a formula ϕ is denoted by [[ϕ]]. The set of consistent formulae is
denoted by Lc

P . ⊥ (resp. �) is the Boolean constant always false (resp. true).

2.1 The Ingredients

We consider an epistemic space E = 〈E,B〉, where E is a set of epistemic states
and B is a mapping B : E → LP characterizing beliefs in each epistemic state.
We suppose the existence of an epistemic state Ψ� such that B(Ψ�) = � (for a

448 S. Konieczny et al.

systematic treatment of these structures and revision operators defined on them
see [20]).

We also consider a DP revision operator (i.e. an operator satisfying all pos-
tulates of [5]) ◦ : E × Lc

P → E. If ϕ1 . . . ϕk is a sequence of formulas we define
�(ϕ1 . . . ϕk) as �(ϕ1 . . . ϕk) = (· · · ((Ψ� ◦ ϕ1) ◦ ϕ2) · · ·) ◦ ϕn.

In our framework we consider sequences of messages sent by a variety of
sources. To formalize this, let S be a finite set of sources of information, and o
be an additional special source, called the oracle, which only provides correct
information. We define S∗ = S ∪ {o}.

A message m is a couple (s, ϕ) where s ∈ S∗ is the source of the message
and ϕ ∈ LP is the information given by the message. We denote by M the set
of messages. For a message mi = (si, ϕi), we denote by ms

i the source of the
message, that is si, and we denote by mϕ

i the information of m, that is ϕi. We
consider that individual messages are always consistent, i.e. for any message m,
mϕ

� ⊥.
Given a finite sequence of messages σ = m1 . . . mn, we define src(σ), the

set of sources of σ, as src(σ) = {mk
s : k = 1, . . . , n}. For any source s ∈ S∗,

we denote by σs the sequence of formulas in the messages from source s in σ.
For example, if σ = (s1, p)(s2, q)(s1, r) then σs1 = 〈p, r〉. We furthermore define
ϕσ

s =
∧

ϕ∈σs
ϕ the conjunction of all information given by s in σ. In particular,

if σs is the empty sequence (i.e. there are no messages from s in the sequence
σ) then ϕσ

s = �. As the messages of s in σ may be inconsistent with each other,
resulting in ϕσ

s ≡ ⊥, we also define the opinion of s as Oσ
s = B(�σs).

As the oracle never fails, we suppose that ϕσ
o �� ⊥ in all considered sequences

σ. We call Seq the set of finite sequences σ of messages such that ϕσ
o �� ⊥. We

use · as a concatenation symbol: if σ = m1 . . .mn then σ · m = m1 . . . mnm.
We assume that we have a function δ assigning a degree of reliability to a

source in S appearing in a finite sequence of messages as well as to the oracle.
The mapping δ is a partial function having domain Seq × S∗ and co-domain
R+. If (σ, s) ∈ Seq × S and s ∈ src(σ) then δ(σ, s) is defined. The value δ(σ, s)
represents the reliability degree of the source s given the sequence σ. δ(σ, o) is
always defined, and required to be maximal, that is, δ(σ, o) > δ(σ, s) for any
source s ∈ S. We adopt the notation δσ(s) instead of δ(σ, s).

2.2 The Framework

In order to reorganize messages of a sequence σ = m1 . . . mn from least to most
reliable, we define a permutation function r which is a bijection from {1, . . . , n}
to {1, . . . , n} as follows:

r(i) < r(j) iff

{
δσ(ms

i) < δσ(ms
j), or

δσ(ms
i) = δσ(ms

j) and i < j

Intuitively, r(i) is the relative reliability of the message mi in σ. That is, a
message mi is considered less reliable than a message mj if either the source

Belief Reconfiguration 449

of mi is less reliable than that of mj , or the sources of both messages have the
same reliability and mi was announced before mj .

Finally, a sequence of messages σ ∈ Seq induces an epistemic state Ψσ ∈ E
in which all messages have been taken into account relative to their respective
reliability. Let σ = m1 . . . mn be a sequence of messages. We define ri = r−1(i)
for i � n. Because we assume the oracle to be the (strictly) most reliable source,
we know that if at least one message in σ is not from the oracle then there is a
k � n such that ms

rk
�= o and ms

rj
= o for all j > k. We define Ψσ as follows:

Ψσ = (�(mϕ
r1

. . . mϕ
rk

)) ◦ ϕσ
o .

In order to study the mechanisms of this revision process when receiving new
messages, we define a new epistemic space as follows.

Definition 1. The epistemic space of sequences ESeq associated to a DP oper-
ator ◦ and a reliability function δ is defined by putting ESeq = 〈Seq,BSeq〉,
where the epistemic states are sequences of messages and BSeq is the mapping
BSeq : Seq → LP defined by BSeq(σ) = B(Ψσ).

3 Reliability Functions

A key element of the reconfiguration framework is the function δ, which evaluates
the reliability of sources by comparing their messages with those of the oracle.
There are many possible definitions for this function. In this section we give a
few general properties that such a function should satisfy. We then give some
natural examples of δ functions, and check these functions against the stated
properties.

3.1 Desirable Properties

We give some natural properties which we expect any “good” reliability function
δ to satisfy. We call these properties “general properties”. We then provide some
additional optional properties which make sense in some contexts, and can be
satisfied depending on the desired behavior of δ.

General Properties

1. (Source independence) If σs = σ′
s′ and σo = σ′

o then δσ(s) = δσ′(s′).
i.e.: A source’s evaluation is independent of other sources. It depends solely
on what the source and the oracle have announced.

2. (Syntax independence) If σ = m1 . . . mn and mϕ
i ≡ ψ for some i then

δσ[(ms
i ,ψ)/mi] = δσ, where σ[(ms

i , ψ)/mi] is the sequence σ in which mi has
been replaced by the message (ms

i , ψ).
i.e.: Two logically equivalent messages have exactly the same effect.

3. (Oracle) For any s ∈ src(σ) \ {o}, we have δσ(s) < δσ(o).
i.e.: The oracle is the (strictly) most reliable source.

450 S. Konieczny et al.

4. (Maximality) For any s, s′ ∈ src(σ) \ {o}, if ϕσ
s ∧ ϕσ

o �� ⊥ then δσ(s′) �
δσ(s).
i.e.: All consistent sources which have never contradicted the oracle have the
same reliability, which is the maximal reliability among sources other than
the oracle.

5. (Non-maximality) For any s, s′ ∈ src(σ) \ {o} if ϕσ
s ∧ ϕσ

o �� ⊥, ϕσ
s′ �� ⊥

and ϕσ
s′ ∧ ϕσ

o � ⊥ then δσ(s′) < δσ(s).
i.e.: A source who has contradicted the oracle will always be strictly less
reliable than one who has made no mistakes.

Optional Properties

6. If ϕσ
s ≡ ϕσ′

s and ϕσ
s �� ⊥ then δσ(s) = δσ′(s).

i.e.: The reliability function does not depend on the exact messages provided
by the agent, but only on their conjunction. In other words, providing any
number of messages or just one message with their conjunction leads to the
same reliability.

7. If s ∈ src(σ) \ {o} and ψ ∧ ϕσ
o �� ⊥ then δσ·(s,ψ)(s) � δσ(s).

i.e.: Not contradicting the oracle cannot decrease reliability of a source.
8. If s ∈ src(σ) \ {o} and ψ ∧ ϕσ

o � ⊥ then δσ·(s,ψ)(s) � δσ(s).
i.e.: Contradicting the oracle cannot increase reliability of a source.

9. If s, s′ ∈ src(σ) \ {o}, δσ(s) � δσ(s′), ψ ∧ ϕσ
o � ⊥ and ψ′ ∧ ϕσ

o �� ⊥ then
δσ·(s,ψ)(s) < δσ·(s′,ψ′)(s′).
i.e.: A message directly contradicting the oracle is strictly worse (for relia-
bility) than a message that does not contradict it.

10. If δσ(s) � δσ(s′) then δσ·(s,ψ)·(s′,ψ)(s) � δσ·(s,ψ)·(s′,ψ)(s′).
i.e.: If two sources give the same information then their relative reliability
remains unchanged.

11. If σ = m1 . . . mn and m is a message, call σ+i,m the sequence σ in which m
is inserted after mi: σ+i,m = m1 . . . mimmi+1 . . . mn. Consider ψ such that
ψ ∧ ϕσ

o � ⊥, and suppose that ψ ∧ ϕσ
s �� ⊥ and for any α in σs, α ∧ ϕσ

o � ⊥.
Then δσ+i,(s,ψ)(s) � δσ+j,(s,ψ)(s) if i � j.
i.e.: This is a temporality property. Contradicting the oracle is more prob-
lematic the more recently it has been done. This implies that we consider
as more reliable a source has made a mistake a long time ago (and has had
the time to correct it) than one that has made a mistake more recently.

12. if ψ ∧ ϕσ
s � ⊥, ψ′ ∧ ϕσ

s �� ⊥, ψ ∧ ϕσ
o �� ⊥ and ψ′ ∧ ϕσ

o �� ⊥ then δσ·(s,ψ)(s) <
δσ·(s,ψ′)(s).
i.e.: All the other properties focus on comparing messages from a given
source to the messages of the oracle. Here we add a more local estimation of
reliability, only confronting messages from a same source, and “punishing”
sources that contradict themselves.

3.2 Some Options for δ

We now give some examples of definitions for the reliability function δ. For all
the considered functions we put δσ(o) = ∞, and only give definitions of δσ(s)
for s �= o.

Belief Reconfiguration 451

We wish to assess sources’ reliability based on the consistency of their mes-
sages with the information from the oracle. We do this by using some incon-
sistency measure, that is, a function d : Lc

P × Lc
P → R+ which is intended to

measure the disagreement between two consistent formulas [1,10,12,23,24]. We
suppose that d is congruent with respect to logical equivalence and symmetric.
We also suppose that for any formulas ϕ and ψ, if ϕ ∧ ψ �� ⊥ then d(ϕ,ψ) = 0,
and if ϕ ∧ ψ � ⊥ then d(ϕ,ψ) > 0. One example of such a function is the
drastic measure dD, defined by dD(ϕ,ψ) = 0 if ϕ ∧ ψ is consistent, otherwise
dD(ϕ,ψ) = 1.

We define Md = max{d(ϕ,ψ) : ϕ,ψ ∈ Lc
P }. We extend d to LP × LP by

putting d(ϕ,ψ) = Md + 1 if ϕ or ψ is inconsistent.
A first naive definition for a reliability function is as follows:

δ1σ(s) = Md − d(ϕσ
s , ϕσ

o).

Note that if a source s is contradictory, that is, if ϕσ
s ≡ ⊥, then δ1σ(s) = −1.

More generally, the messages from one source may become inconsistent with
each other over time, and we wish to give sources the opportunity to correct
past mistakes. We consider that when a source contradicts its past messages,
its current opinion is that conveyed by its later messages, and that is what its
reliability should be assessed from. There are several ways to implement this.
The first is to consider the source’s opinion as defined in Sect. 2.1:

δ2σ(s) = Md − d(Oσ
s , ϕσ

o).

However, as the properties of a source’s opinion Oσ
s are difficult to charac-

terize, we might want a simpler way to take into account the combination of
its messages even when it contradicts itself. One way to achieve this is, when
σs = α1 . . . αk, to define cσ

s = αjcons(σs) ∧ · · · ∧ αk, where jcons(σs) = min{j |
αj ∧ · · · ∧ αk � ⊥}. For example, if σs = 〈p, q, r,¬q〉 then jcons(σs) = 3 and
cσ
s = r ∧ ¬q. We then define

δ3σ(s) = Md − d(cσ
s , ϕσ

o).

Rather than considering a ‘global opinion’ for each source, we might want to
take into account separately each individual message. This allows us, in partic-
ular to put weights on the evaluation of messages, so that older messages ‘count
less’ when assessing a source’s reliability. We may then also consider not only
how much the source contradicts the oracle, but also how much the source con-
tradicts itself from message to message. A general formula for computing the
reliability of a source s �= o after a sequence σ in which σs = α1 . . . αk could be:

δ∗
σ(s) =

1
Wk

∑k

i=1
wi,k(A · OC(αi, ϕ

σ
o) + B · SC(αi, α1 . . . αi−1))

where Wk is a normalization factor, wi,k is a weight function favoring more
recent messages, OC(αi, ϕ

σ
o) is a measure of how much the oracle is contradicted

452 S. Konieczny et al.

by αi, SC(αi, α1 . . . αi−1) is a measure of how much αi contradicts its own pre-
vious messages, and A and B are weights representing the importance given to
consistency with the oracle and with own previous messages respectively.

We put the following constraints on the elements of this definition: first,
A > 0 and B � 0. For weights, we require for all k and i:

Wk, wi,k > 0; wk,k = 1; wi,k � wi+1,k; wi,k � wi,k+1; Wk � Wk+1.
As for the contradiction factors OC(αi, ϕ

σ
o) and SC(αi, α1 . . . αi−1), we sup-

pose that both OC(αi, ϕ
σ
o) and SC(αi, α1 . . . αi−1) have a maximum and a min-

imum possible value, denoted maxOC, minOC, maxSC and minSC respectively.
We then require minOC,minSC � 0 � maxOC,maxSC and:

OC(αi, ϕ
σ
o) = maxOC iff αi ∧ ϕσ

o �� ⊥;
if α1 ∧ · · · ∧ αi �� ⊥ then SC(αi, α1 . . . αi−1) = maxSC;

if αi−1 ∧ αi � ⊥ then SC(αi, α1 . . . αi−1) < maxSC;
if α1 ∧ · · · ∧ αi−1 � ⊥ and α1 ∧ · · · ∧ αi � ⊥ then SC(αi, α1 . . . αi−1) < maxSC.

Here are some examples of instantiations of these elements:

– Wk = 1 (no normalization) or Wk =
∑k

i=1 wi,k;
– wi,k = 1 (no weighting) or wi,k = (1 − ε)k−i for some ε < 1;
– OC(αi, ϕ

σ
o) = Md−d(αi, ϕ

σ
o) (here maxOC = Md) or OC(αi, ϕ

σ
o) = −d(αi, ϕ

σ
o)

(here maxOC = 0);
– for i > 1, SC(αi, α1 . . . αi−1) = − jcons(α1...αi)−1

i−1 .

We now give a few instantiations of this definition:

δ4σ(s) = 1
k

∑k
i=1 (Md − d(αi, ϕ

σ
o));

δ5σ(s) = 1
Wk

∑k
i=1 wi,k (Md − d(αi, ϕ

σ
o));

δ6σ(s) =
∑k

i=1 wi,k (Md − d(αi, ϕ
σ
o));

δ7σ(s) = 1
Wk

∑k
i=1 wi,k(−d(αi, ϕ

σ
o) + ctr(αi));

δ8σ(s) = −∑k
i=1 wi,kd(αi, ϕ

σ
o);

where wi,k follow the non-trivial definition given above, Wk =
∑k

i=1 wi,k, and
ctr(αi) follows the definition for SC(αi, α1 . . . αi−1) given above. The function
δ4 is normalized, but all messages have the same weight. It is a special case of δ5

(for ε = 0), which features normalization and increasing weights for each mes-
sage. The function δ6 has increasing weights, but no normalization. Finally, the
functions δ7 and δ8 consider negative reliability evaluations, with δ7 also taking
into account whether the source contradicts itself, and δ8 not being normalized.

Here we have proposed two approaches to computing a source’s reliability:
either aggregating its messages into a ‘global opinion’ to compare to the oracle’s
announcements, or considering each of its messages separately. A core difference
in these two approaches can be seen as follows: suppose that the oracle has
announced ¬(p ∧ q), and that a source announces p, then q. With the first
approach we consider this to be equivalent to the source announcing p ∧ q, and
being completely incorrect. With the second approach, we allow an interpretation
in which the announcement of q is a correction of previous statements, that is,
the source might have updated its opinion from p ∧ ¬q to q ∧ ¬p.

Belief Reconfiguration 453

3.3 Discussion of the Proposed Functions and Properties

We now evaluate the properties and δ functions proposed above against each
other, to confirm whether they indeed make sense1.

General Properties. We first check whether the proposed functions satisfy
the required general properties.

Proposition 1. The functions δ1, δ2, δ3, and δ∗ satisfy properties 1, 2, and 3,
that is, source and syntax independence and oracle maximality.

Proof. This follows from the definition of the functions and the fact that the
inconsistency measure d is syntax-independent.

Proposition 2. The function δ1 satisfies properties 4 (Maximality) and 5 (Non-
maximality). The functions δ2 and δ3 satisfy property 4 but not property 5. The

function δ∗ satisfies properties 4 and 5 if either
∑k

i=1 wi,k

Wk
is constant or maxOC =

BmaxSC = 0; otherwise it satisfies neither property.

The function δ1 therefore satisfies all general properties, whereas δ2 and δ3

fail to satisfy property 5, so they should not be considered as satisfying reliability
functions. For the general δ∗ function, properties 1, 2 and 3 are always satisfied,
and we need some mild additional condition to satisfy also properties 4 and 5.

Optional Properties. We now turn to the optional properties and check which
of them are satisfied by the different proposed reliability functions.

Following Proposition 2, from now on we consider for δ∗ only the cases where
either

∑k
i=1 wi,k

Wk
is constant in k (we can consider w.l.o.g. that this constant is

1), or maxOC = BmaxSC = 0. This, in particular, rules out the function δ6.

Proposition 3. The functions δ1, δ2 and δ3 satisfy property 6; the function δ∗

does not.

The intuition here is that with δ∗ a source can increase its reliability by
repeating tautologies. We now study properties 7, 8 and 9.

Proposition 4. The functions δ1, δ2 and δ3 do not satisfy property 7 or prop-
erty 9; they satisfy property 8 when the inconsistency measure d is the drastic
measure dD.

Intuitively, these functions compute ‘how wrong’ the combination of a
source’s messages is; a message might be correct but result in a mistake when
combined with previous messages, or it might be incorrect but result in a lesser

1 Because of space constraints we do not put the proofs in the paper and only give
some intuitions behind the results. The full proofs can be found in the supplementary
material.

454 S. Konieczny et al.

mistake when combined with previous messages. In particular, even if a source
only makes mistakes, their evaluation can evolve from being ‘very wrong in
general’ to being ‘almost correct in general’. Requiring d to be a 0/1 function
removes this possibility of being ‘almost correct’.

The interplay between the different elements of δ∗ are more complex, and we
give some cases in which δ∗ satisfies the different properties rather than giving a
general criteria. We consider three additional properties in particular. The first
is B = 0, so that not contradicting oneself cannot compensate for contradicting
the oracle, or the other way around. The second is for there to be an ε < 1 such
that wi,k+1 = (1 − ε)wi,k for all k and i � k, so that we can better characterize
the evolution of a source’s reliability when it provides a new message. The third
is for OC to be a 0/1 function. This means that for all formulas ϕ and ψ either
OC(ψ,ϕ) = minOC or OC(ψ,ϕ) = maxOC. As noted above, this prevents sources’
reliability from increasing when making a mistake by removing the possibility of
being ‘almost correct’.

We start by considering the case where
∑k

i=1 wi,k = Wk.

Proposition 5. δ∗ satisfies property 7 when
∑k

i=1 wi,k

Wk
= 1, B = 0 and there

exists some ε � 1 such that wi,k+1 = (1 − ε)wi,k for all i and k. In this case we
have δ∗

σ·(s,ψ)(s) = δ∗
σ(s) iff δ∗

σ(s) = AmaxOC and ψ ∧ ϕσ
o �� ⊥.

Proposition 6. When
∑k

i=1 wi,k

Wk
= 1 for all k, B = 0, the function δ∗ satisfies

property 8 iff OC is a 0/1 function. In this case we have δ∗
σ·(s,ψ)(s) = δ∗

σ(s) iff
δ∗
σ(s) = AminOC and ψ ∧ ϕσ

o � ⊥.

Proposition 7. The function δ∗ satisfies property 9 when
∑k

i=1 wi,k

Wk
= 1 for all

k, there exists some ε � 1 such that wi,k+1 = (1 − ε)wi,k for all i and k, B = 0,
and OC is a 0/1 function.

In particular the functions δ4 and δ5 satisfy property 7, and they satisfy
properties 8 and 9 when d is the drastic measure dD.

We now consider the case where
∑k

i=1 wi,k

Wk
is not constant in k. Then in

particular maxOC = BmaxSC = 0.
Recall that Wk is a normalization factor. There are essentially two meaningful

options in terms of normalization: either having
∑k

i=1 wi,k

Wk
be constant, or having

no normalization. We now focus on the latter case and require Wk to be constant
in k. We once again consider the particular case where wi,k+1

wi,k
is constant in i

and k.

Proposition 8. Suppose that maxOC = BmaxSC = 0 and that there exist some
W and ε such that Wk = W and wi,k+1 = (1 − ε)wi,k for all k and i � k. Then
the function δ∗ satisfies property 7 iff B = 0; it satisfies property 8 iff either
ε = 0 or B = 0 and OC is a 0/1 function; it satisfies property 9 iff for all ψ and
ϕ such that ψ ∧ ϕ � ⊥ we have OC(ψ,ϕ) � B

AminSC.

Belief Reconfiguration 455

Table 1. Properties satisfied by the proposed reliability functions. Conditions that are
both necessary and sufficient are in dark blue; merely sufficient conditions are in cyan.

1 2 3 4 5 6 7 8 9 10 11 12

δ1 � � � � � � × 0/1 × × � �
δ2 � � � � × � × 0/1 × × × ×
δ3 � � � � × � × 0/1 × × × ×
δ4 � � � � � × � 0/1 0/1 × � ×
δ5 � � � � � × � 0/1 0/1 × � ×
δ6 � � � × ×
δ7 � � � � � × × ε=0 and

0/1
ψ∧ϕ�⊥⇒

OC(ψ,ϕ)�−1 × � �
δ8 � � � � � × � 0/1 � � � ×

In particular δ7 does not satisfy property 7; it satisfies property 8 iff ε = 0
and d is the drastic measure dD; and it satisfies 9 iff d(ψ,ϕ) � 1 for any ϕ and
ψ such that ϕ ∧ ψ � ⊥. On the other hand, δ8 satisfies properties 7 and 9, and
it satisfies property 8 when d is the drastic measure dD.

Proposition 9. The functions δ1, δ2 and δ3 do not satisfy property 10. The
function δ∗ does not satisfy it if Wk is not constant in k for k > 1 or B �= 0.
The function δ∗ does satisfy property 10 when Wk is constant in k, B = 0 and
wi,k+1
wi,k

is constant in i and k.

Intuitively, property 10 requires the impact of announcing a formula on a
source’s reliability not to depend on the rest of the source’s messages. In partic-
ular, the function δ8 satisfies this property, while the functions δ4, δ5 and δ7 do
not.

Proposition 10. The functions δ1 and δ∗ satisfy property 11; δ2 and δ3 do not.

Proposition 11. The function δ1 satisfies property 12; the functions δ2 and δ3

do not. The function δ∗ satisfies it iff B �= 0.

Table 1 sums up the properties satisfied by the reliability functions δ1–δ8.
The 0/1 symbol represents the condition that d is the drastic measure dD.

4 Reconfiguration Operators

Let us now study the properties of the corresponding reconfiguration operators,
i.e. the operators that we obtain when we use the reliability function to re-order
(reconfigurate) the sequence of messages.

Recall that using a DP operator ◦ defined on an epistemic space E = 〈E,B〉
and a reliability function δ, we build a new epistemic space ESeq = 〈Seq,BSeq〉
where the elements of Seq (the new epistemic states) are sequences of messages
and BSeq is as in Definition 1. In this epistemic space we define a new operator
• as follows:

456 S. Konieczny et al.

Definition 2. The function • : Seq×M → Seq, called a reconfiguration opera-
tor, is defined in the following way: if σ = m1 . . . mn, then σ •m = m1 . . . mnm.

Let us give the translation2 of the standard DP postulates [5] in this frame-
work:

(r-R*1) BSeq(σ • m) � mϕ

(r-R*2) If BSeq(σ) ∧ mϕ �� ⊥ then BSeq(σ • m) ≡ BSeq(σ) ∧ mϕ

(r-R*3) BSeq(σ • m) �� ⊥
(r-R*4) If mϕ ≡ m′ϕ and ms = m′s then BSeq(σ • m) ≡ BSeq(σ • m′)
(r-R*5) Let μ be a formula and m1, m2 messages such that ms

1 = ms
2 and

mϕ
2 = mϕ

1 ∧ μ; then BSeq(σ • m1) ∧ μ � BSeq(σ • m2)
(r-R*6) Let μ be a formula and m1, m2 messages such that ms

1 = ms
2 and

mϕ
2 = mϕ

1 ∧μ; then, if BSeq(σ•m1)∧μ �� ⊥ then � BSeq(σ•m2) � BSeq(σ•m1)∧μ
(r-C1) If mϕ

2 � mϕ
1 then BSeq((σ • m1) • m2) ≡ BSeq(σ • m2)

(r-C2) If mϕ
2 � ¬mϕ

1 then BSeq((σ • m1) • m2) ≡ BSeq(σ • m2)
(r-C3) If BSeq(σ • m2) � mϕ

1 then BSeq((σ • m1) • m2) � mϕ
1

(r-C4) If BSeq(σ • m2) � ¬mϕ
1 then BSeq((σ • m1) • m2) � ¬mϕ

1

Please see [5] for a more complete description of these postulates. Briefly,
(r-R*1) means that the last information of the sequence should be believed
after the change. (r-R*2) means that when the new piece of information is
consistent with the current beliefs of the agent, then the result should be the
conjunction. (r-R*3) is a bit stronger than the original DP postulate, requiring
coherence unconditionally (since we suppose that each message is consistent).
(r-R*4) is the Independence of syntax postulate. (r-R*5) and (r-R*6) relates
the change by a conjunction with the change by an element of the conjunction.
(r-C1) says that if a message mϕ

2 is logically stronger than mϕ
1 (and provided

by the same source), then we obtain the same result if we make the change my
mϕ

1 and then by mϕ
2 and if we make the change directly by mϕ

2 . (r-C2) says
that if mϕ

2 contradicts mϕ
1 (and if they are provided by the same source), then

we obtain the same result if we make the change my mϕ
1 and then by mϕ

2 and if
we make the change directly by mϕ

2 . (r-C3) says that if a change by mϕ
2 implies

mϕ
1 , then making the change by mϕ

1 before the one by mϕ
2 should not hurt mϕ

1

(so the result still implies mϕ
1). (r-C4) says that if a change by mϕ

2 does not
implies ¬mϕ

1 , then making the change by mϕ
1 before the one by mϕ

2 should not
helps ¬mϕ

1 (so the result still not implies ¬mϕ
1).

It is easy to see that these postulates do not hold in general for reconfigu-
ration, due to the reordering during the process, but they hold under certain
restrictions on the reliability of the new information, showing that we keep the
DP behavior when possible:

Definition 3. We say that the operator • has a DP behavior with respect to the
triple σ, m1, m2 (a sequence of messages and two messages respectively) if the
postulates (r-R*1–r-R*6) and (r-C1–r-C4) are satisfied.

2 We put the prefix r- (for reconfiguration) before the translated postulate.

Belief Reconfiguration 457

Proposition 12. Let σ, m1, m2 be a sequence of messages and two messages
respectively. Then

1. If ms
1 and ms

2 are two sources with highest reliability in the sequences σ · m1

and σ · m2, then • has a DP behavior with respect to the triple σ, m1, m2.
2. If ms

1,m
s
2 �= o and ms

1 (resp. ms
2) is the source with highest reliability among

the sources different from the oracle in the sequence σ · m1 (resp. σ · m2) and
ϕσ

o ≡ �, then • has a DP behavior with respect to the triple σ, m1, m2.

Despite the fact that reconfiguration operators are not designed to be DP
iterated belief revision operators, as the reconfiguration (re-ordering) has an
important impact on how the last message is treated, these results illustrate
the fact that we keep the DP iteration flavor, and maintain the DP iteration
behavior in particular when receiving messages from a most reliable source.

5 Example

We now provide an example illustrating the impact of recomputing reliabil-
ity following announcements from the oracle. For simplicity we use the epis-
temic space of total preorders over interpretations, where for a total preorder
�, [[B(�)]] = min(�) and the underlying belief revision operator is Nayak’s
lexicographic revision operator ◦N [18] defined as follows: � ◦Nα =�′ where
ω �′ ω′ iff ω ∈ [[α]] or ω′ �∈ [[α]]. We consider the reliability function δ4dD , which
uses the drastic measure dD and computes the proportion of messages from a
given source which contradicts the oracle. We denote by •dD

N the reconfiguration
operator defined from ◦N and the reliability function δ4dD .

Example 1. We consider three sources, and the following sequence of mes-
sages: (s1, a ∧ ¬c) •dD

N (s2, a ∧ c) •dD

N (s1, b) •dD

N (s3,¬a ∧ ¬c) •dD

N (o,a) •dD

N

(s3, a ∧ b) •dD

N (s2, c ∧ ¬b) •dD

N (o,¬c). Let us see and comment what happens
at each iteration. In order to simplify the notations, we will write Ψ ≡ α instead
of BSeq(Ψ) ≡ α.

1. (s1, a ∧ ¬c) ≡ a ∧ ¬c. There is only one message for the moment, so there is
no reason to reject it.

2. (s1, a ∧ ¬c) •dD

N (s2, a ∧ c) ≡ a ∧ c. Source s2 contradicts source s1, but as
the oracle has not yet given any information we keep the messages in order
of reception, and accept the message from s2. Taking this temporal order into
account (instead of finding some kind of consensus or compromise with operators
such as belief merging [16]) can be justified by the fact that s2 has potentially
benefited from more time than s1 to check this piece of information.

3. (s1, a ∧ ¬c) •dD

N (s2, a ∧ c) •dD

N (s1, b) ≡ a ∧ b ∧ c. Source s1 sends a new
message about b. As b had not been mentioned up to this point we can accept
it in addition to the previous message of s2.

458 S. Konieczny et al.

4. (s1, a ∧ ¬c) •dD

N (s2, a ∧ c) •dD

N (s1, b) •dD

N (s3,¬a ∧ ¬c) ≡ ¬a ∧ b ∧ ¬c. Source
s3 sends a message that contradicts both s1 and s2, but as it is the most recent
message we accept it.

5. (s1, a ∧ ¬c) •dD

N (s2, a ∧ c) •dD

N (s1, b) •dD

N (s3,¬a ∧ ¬c) •dD

N (o,a) ≡ a ∧ b ∧ c.
We receive our first message from the oracle, which makes us realize that s3
is the least reliable source; we still cannot distinguish between s1 and s2. The
reconfiguration gives the following sequence: (Ψ�◦N ¬a ∧ ¬c◦N a ∧ ¬c◦N a ∧ c◦N

b ◦N a).

6. (s1, a ∧ ¬c)•dD

N (s2, a ∧ c)•dD

N (s1, b)•dD

N (s3,¬a ∧ ¬c)•dD

N (o,a)•dD

N (s3, a ∧ b) ≡
a ∧ b ∧ c. We receive a new message from s3, which does not contradict the ora-
cle, but contradicts the previous message from s3. This can mean that source
s3 has realized that it was wrong, revised its beliefs, and now sends a mes-
sage it believes to be correct. Depending on the reliability function used, this
can increase or decrease its reliability (since on the one hand this last mes-
sage was consistent with the oracle, but on the other hand s3 has contradicted
itself). With the reliability function we have chosen, s3 remains less reliable
than the other sources. The corresponding reconfiguration gives the sequence
(� ◦N ¬a ∧ ¬c ◦N a ∧ b ◦N a ∧ ¬c ◦N a ∧ c ◦N b ◦N a).

7. (s1, a ∧ ¬c)•dD

N (s2, a ∧ c)•dD

N (s1, b)•dD

N (s3,¬a ∧ ¬c)•dD

N (o,a)•dD

N (s3, a ∧ b)•dD

N

(s2, c ∧ ¬b) ≡ a ∧ ¬b ∧ c. We receive a new message from s2, which is one of the
most trustworthy sources. We therefore accept this message. The corresponding
reconfiguration sequence is (� ◦N ¬a ∧ ¬c ◦N a ∧ b ◦N a ∧ ¬c ◦N a ∧ c ◦N b ◦N

c ∧ ¬b ◦N a).

8. (s1, a ∧ ¬c)•dD

N (s2, a ∧ c)•dD

N (s1, b)•dD

N (s3,¬a ∧ ¬c)•dD

N (o,a)•dD

N (s3, a ∧ b)•dD

N

(s2, c ∧ ¬b) •dD

N (o,¬c) ≡ a ∧ b ∧ ¬c. We receive a new message from the oracle,
which contradicts the two messages of s2. Hence s2 become less reliable than
s3, as only half of s3’s two messages contradict the oracle. The source s1 which
has never contradicted the oracle is now the single most reliable source. The
corresponding reconfiguration sequence is (Ψ� ◦N a ∧ c ◦N c ∧ ¬b ◦N ¬a ∧ ¬c ◦N

a ∧ b ◦N a ∧ ¬c ◦N b ◦N a ∧ ¬c).

6 Discussion and Conclusion

Reconfiguration operators are a very large family of operators as they have
many parameters. It could be interesting to focus on particular subclasses, or to
consider variations in the definitions we have given in this paper.

For instance, we have defined the epitemic state Ψσ as (�(mϕ
r1

. . . mϕ
rk

))◦ϕσ
o ,

i.e. we place the conjunction of all the messages of the oracle at the end of
the sequence. Some interesting variations could be for instance Ψ1

σ = (�(mϕ
r1

. . .
mϕ

rk
))◦(�σo), in which the sequence of the oracle’s messages is considered rather

than merely their conjunction; or Ψ2
σ = �((mϕ

r1
∧ ϕσ

o) . . . (mϕ
rk

∧ ϕσ
o)), in which

every message from the sources is filtered by the information from the oracle. The
latter approach would lead to ignoring all messages that contradict the oracle,

Belief Reconfiguration 459

as we know those messages to be incorrect. It could however be argued that this
is too strong: for instance, if the message of a source is a ∧ b ∧ c ∧ . . . ∧ z and the
message of the oracle is ¬a, should the entire conjunction be ignored because
of the conflict on a? Studying the properties of these (and other) alternative
definitions seems interesting.

With most of the reliability functions we have given, a source is more reliable
the more correct messages it provides. This can be justified, since this evaluates
how many “proofs” of reliability have been provided. However all of these cor-
rect messages can be of very little use if they are not very informative (if a
source sends the message “the sky is blue” 50 times, does this make it a reliable
source?). Moreover, this feature makes the evaluation weak to certain strategies:
a manipulative source could provide many correct, but not very informative,
messages, in order to raise its reliability, before sending a deliberately false (but
not yet proven incorrect by oracle’s messages) piece of information which it wants
you to believe. Note that the importance of this issue must be balanced by the
fact that such a strategy could be very difficult to carry out, as the malicious
agent cannot predict the messages of the oracle, which could, at any moment
before or after the planned false message of the source, provide a message that
contradicts it. Nevertheless, taking into account the quantity of information a
message carries could help avoid this problem.

Another choice we have made, once the reliability function is computed,
is to use a standard iterated revision operator. One could instead use some
weighted merging operator [6,7,17] to aggregate all messages. We claim that,
even if reliability should be the most important point, between equally reliable
agents, it still makes sense to take recency into account: agents can evolve and
correct their beliefs, so we can still expect that, for a single agent or for several
agents of the same reliability, more recent information is more correct: sources
may learn new things, and correct some of their initial mistakes. Note that
this recency could be encoded by adding a second step, after the reliability
computation, in order to modify the obtained weights to add information about
recency, and then use a weighted merging operator. But this is more naturally
taken into account by iterated belief revision operators. Another advantage of
iterated revision over merging is that, even though the reliability of the sources
is computed numerically, what matters when it comes to the revision process in
our framework is only the order between the sources, in contrast with the more
arbitrary numerical weights used in weighted merging.

There are two other closely related works. The first one is [22], which starts
from a very similar motivation to ours, but presents several important differences:
in [22] the credibility relation is a partial pre-order that is given as input, while
we compute our (total) relation from the sequences of messages in a dynamic
way. Moreover, in [22] they use the framework of multiple (belief base) revision to
take into account messages of same credibility, whereas, as explained previously,
iterated revision allows us to also take into account recency of the messages.
Similarly to our framework, in [21] reliability of different sources is evaluated
based on their announcements and on a special source which is known to be

460 S. Konieczny et al.

reliable. However their setting is different from ours: they consider a 0/1 notion
of expertise of agents on formulas (e.g. “having disease X”), which is evaluated
through the agents’ reports across different cases (e.g. patients).

In the future we plan to extend this work in two directions. The first is to
consider that the oracle is not perfect, but almost perfect (it makes mistakes
much less often that standard sources), and/or that we have several oracles,
which may contradict each other. The second direction is to consider this recon-
figuration framework, but with no oracle at all. The reliability of each source
will then be computed by confronting its messages not with those of the oracle,
but with those of the other sources.

Acknowledgements. This work has benefited from the support of the AI Chair
BE4musIA of the French National Research Agency (ANR-20-CHIA-0028).

References

1. Besnard, P.: Revisiting postulates for inconsistency measures. In: Fermé, E., Leite,
J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 383–396. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11558-0 27

2. Booth, R., Meyer, T.A.: Admissible and restrained revision. J. Artif. Intell. Res.
26, 127–151 (2006)

3. Booth, R., Fermé, E., Konieczny, S., Pino Pérez, R.: Credibility-limited revision
operators in propositional logic. In: Proceedings of the 13th International Confer-
ence on the Principles of Knowledge Representation and Reasoning (2012)

4. Booth, R., Fermé, E.L., Konieczny, S., Pino Pérez, R.: Credibility-limited improve-
ment operators. In: Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI 2014), vol. 263, pp. 123–128 (2014)

5. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1–
2), 1–29 (1997)

6. Delgrande, J.P., Dubois, D., Lang, J.: Iterated revision as prioritized merging.
In: Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006), pp. 210–220 (2006)

7. Everaere, P., Fellah, C., Konieczny, S., Pérez, R.P.: Weighted merging of proposi-
tional belief bases. In: Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR 2023) (2023)

8. Fermé, E.L., Mikalef, J., Taboada, J.: Credibility-limited functions for belief bases.
J. Log. Comput. 13(1), 99–110 (2003)

9. Garapa, M., Fermé, E., Reis, M.D.L.: Credibility-limited base revision: new classes
and their characterizations. J. Artif. Intell. Res. 69, 1023–1075 (2020)

10. Grant, J., Martinez, M.V.: Measuring Inconsistency in Information. College Pub-
lications, London (2018)

11. Hansson, S.O., Fermé, E.L., Cantwell, J., Falappa, M.A.: Credibility limited revi-
sion. J. Symb. Log. 66(4), 1581–1596 (2001)

12. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In:
Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol.
3300, pp. 191–236. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30597-2 7

13. Jin, Y., Thielscher, M.: Iterated belief revision, revised. Artif. Intell. 171(1), 1–18
(2007)

https://doi.org/10.1007/978-3-319-11558-0_27
https://doi.org/10.1007/978-3-540-30597-2_7
https://doi.org/10.1007/978-3-540-30597-2_7

Belief Reconfiguration 461

14. Konieczny, S., Medina Grespan, M., Pino Pérez, R.: Taxonomy of improvement
operators and the problem of minimal change. In: Proceedings of the 12th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR
2010), pp. 161–170 (2010)

15. Konieczny, S., Pino Pérez, R.: Improvement operators. In: Proceedings of the 11th
International Conference on Principles of Knowledge Representation and Reason-
ing (KR 2008), pp. 177–187 (2008)

16. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical
framework. J. Log. Comput. 12(5), 773–808 (2002)

17. Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83(2), 363–378
(1996)

18. Nayak, A.: Iterated belief change based on epistemic entrenchment. Erkenntnis 41,
353–390 (1994)

19. Schwind, N., Konieczny, S.: Non-prioritized iterated revision: improvement via
incremental belief merging. In: Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2020), pp. 738–747
(2020)

20. Schwind, N., Konieczny, S., Pino Pérez, R.: On the representation of Darwiche
and Pearl’s epistemic states for iterated belief revision. In: Proceedings of the 19th
International Conference on Principles of Knowledge Representation and Reason-
ing (KR 2022) (2022)

21. Singleton, J., Booth, R.: Who’s the expert? On multi-source belief change. In:
Proceedings of the 19th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2022) (2022)

22. Tamargo, L.H., Deagustini, C.A., Garćıa, A.J., Falappa, M.A., Simari, G.R.: Multi-
source multiple change on belief bases. Int. J. Approx. Reason. 110, 145–163 (2019)

23. Thimm, M.: Inconsistency measurement. In: Ben Amor, N., Quost, B., Theobald,
M. (eds.) SUM 2019. LNCS (LNAI), vol. 11940, pp. 9–23. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35514-2 2

24. Thimm, M., Wallner, J.P.: On the complexity of inconsistency measurement. Artif.
Intell. 275, 411–456 (2019)

https://doi.org/10.1007/978-3-030-35514-2_2

Splitting Techniques for Conditional Belief
Bases in the Context of c-Representations

Marco Wilhelm1(B) , Meliha Sezgin1 , Gabriele Kern-Isberner1 ,
Jonas Haldimann2 , Christoph Beierle2 , and Jesse Heyninck3

1 Department of Computer Science, TU Dortmund University, Dortmund, Germany
{marco.wilhelm,meliha.sezgin}@tu-dortmund.de,

gabriele.kern-isberner@cs.tu-dortmund.de
2 Department of Mathematics and Computer Science, FernUniversität in Hagen,

Hagen, Germany
{jonas.haldimann,christoph.beierle}@fernuni-hagen.de

3 Open Universiteit, Heerlen, The Netherlands
jesse.heyninck@ou.nl

Abstract. Splitting belief bases is fundamental for efficient reasoning
and for better understanding interrelationships among the knowledge
entities. In this paper, we survey the most important splitting techniques
for conditional belief bases in the context of c-representations which con-
stitute a specific class of ranking models with outstanding behavior not
only with respect to belief base splitting, as shown in recent papers. We
provide a splitting hierarchy, in particular by proving that safe condi-
tional syntax splittings and case splittings are so-called CSP-constraint
splittings. We advance the level of knowledge about CSP-constraint split-
tings and present an algorithm for computing CSP-constraint splittings.

1 Introduction

In logic-based knowledge representation, conditionals (B|A) are used to express
defeasible statements of the form “if A holds, then usually B holds, too” [16]. In
qualitative settings, the formal semantics of such conditionals is usually given
by preference relations over possible worlds [14]. Here, we express preferences
by ranking functions κ [20] which assign a degree of implausibility to possi-
ble worlds and accept a conditional if its verification is more plausible than
its falsification, i.e., iff κ(A ∧ B) < κ(A ∧ ¬B). Such semantic approaches are
typically computationally expensive because the number of possible worlds is
exponential in the size of the underlying signature. Further, the influences of
the conditionals in a belief base on the ranking functions usually interfere in an
unapparent manner. Resolving spurious dependencies between the conditionals
can lead to a splitting of the belief base with a beneficial influence on the per-
formance of reasoning methods thanks to decomposition as local computations
on the sub-bases reduce complexity in a natural way by restricting calculations
to the relevant sub-signature. Consequently, investigating splitting techniques

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 462–477, 2023.
https://doi.org/10.1007/978-3-031-43619-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_32&domain=pdf
http://orcid.org/0000-0003-0266-2334
http://orcid.org/0000-0002-7418-0644
http://orcid.org/0000-0001-8689-5391
http://orcid.org/0000-0002-2618-8721
http://orcid.org/0000-0002-0736-8516
http://orcid.org/0000-0002-3825-4052
https://doi.org/10.1007/978-3-031-43619-2_32

Splitting Techniques for Conditional Belief Bases 463

for conditional belief bases both has a long tradition [17,18] and is still highly
relevant [2,7,9,12,13].

In this paper, we survey the most important splitting techniques for condi-
tional belief bases and provide a splitting hierarchy that helps unifying different
approaches. In general, we say that a belief base Δ splits into a set of sub-bases
D = {Δ1, . . . ,Δm} iff D is a partition of Δ which satisfies additional proper-
ties specified by the respective splitting formalism. The most popular splitting
formalism is syntax splitting [12,17] which forces the sub-bases Δi to be defined
over disjoint sub-languages. Beyond syntax splitting there are further meaningful
splitting techniques like (safe) conditional syntax splitting [9], case splitting [19],
and semantic splitting [1]. (Safe) conditional syntax splitting generalizes syntax
splitting by allowing the sub-bases to share parts of their syntax. Conditional
syntax splitting is particularly interesting because it provides a general formal-
ization of and solution to the well-known drowning problem [6,9] in nonmono-
tonic reasoning. Case splitting is somehow orthogonal to syntax splitting and
splits belief bases into sub-bases that make statements about exclusive cases.
The common goal of these splittings is to localize computations such that the
ranking models of the sub-bases Δi can be assembled to a ranking model of the
whole belief base Δ and, ideally, every model of Δ can be achieved in this way.

Here, we analyze and show relations between splitting techniques for condi-
tional belief bases in the context of c-representations [10,11]. c-Representations
constitute a specific class of ranking models which penalize possible worlds ω
if they falsify a conditional (B|A) from Δ, i.e., iff ω |= A ∧ ¬B. The κ-rank of
a possible world then is the sum of its penalty points. While c-representations
have proved to provide most advanced methods for reasoning with conditionals,
their basically semantic definition seems to necessarily imply a high computa-
tional complexity. Fortunately, c-representations are particularly amicable with
regard to belief base splitting because they are given as solutions of a constraint
satisfaction problem CSPΣ(Δ) which exploits the conditional-logical structure
of the belief base. In [1], the concept of constraint splitting of a belief base Δ is
introduced, along with rewriting rules for simplifying CSPΣ(Δ). When the con-
straints in CSPΣ(Δ) split, this transfers to a splitting of Δ. Constraint splittings
bring together syntactic and semantic aspects of splitting.

The main contributions of this paper are:

(a) We propose additional rewriting rules to further simplify the constraint
satisfaction problem CSPΣ(Δ). This leads to more fine-grained CSP-
constraint splittings. In addition, we provide an algorithm for computing
CSP-constraint splittings.

(b) We provide a hierarchy of splitting techniques where CSP-constraint split-
tings have a central position. In particular, we prove that case splittings and
safe conditional syntax splittings form a sub-class of CSP-constraint split-
tings. This allows for applying different splitting techniques to a belief base
in a coherent setting.

The rest of the paper is organized as follows. First, we recall some foundations
on conditional belief bases and c-representations. After that, we give a brief

464 M. Wilhelm et al.

overview of basic splitting techniques (syntax splitting, CSP-solution splitting,
and c-semantic splitting) before we discuss CSP-constraint splittings in detail.
Eventually, we show that case splittings and safe conditional syntax splittings
constitute sub-classes of (strong) CSP-constraint splittings and conclude.

2 Preliminaries

Let L(Σ) be a propositional language which is defined over a finite signature Σ
by using the connectives ¬, ∧, and ∨ as usual. We call elements in Σ atoms and
use the abbreviations A for ¬A, AB for A ∧ B, � for A ∨ A, and ⊥ for A ∧ A.

We extend L(Σ) by conditionals (B|A) where A,B ∈ L(Σ), stating that “if
A holds, then usually B holds, too.” With CL(Σ) we denote the set of all condi-
tionals over Σ. A finite set of conditionals Δ is called belief base. Throughout the
paper, we enumerate the conditionals in belief bases and write Δ = {δ1, . . . , δn}.
We refer to the premise and the conclusion of δi = (Bi|Ai) with Ai resp. Bi.
With Σ(Δ) we denote the signature of Δ, i.e., the set of atoms which occur in Δ.

A common way of giving conditionals a formal semantics is by introduc-
ing ranking functions over possible worlds [5]. We represent possible worlds as
complete conjunctions of literals, i.e., conjunctions in which every atom from Σ
occurs once, either negated or positive. We denote the set of all possible worlds
with Ω(Σ). If Σ′ is a sub-signature of Σ, then ω ∈ Ω(Σ) can be marginalized on
Σ′ via ω|Σ′ =

∧
a∈Σ′ σω(a) where σω(a) = a if ω |= a and σω(a) = a otherwise.

Ranking functions κ : Ω(Σ) → N
∞
0 introduced by Spohn [20] map possible

worlds to a degree of implausibility such that κ−1(0) �= ∅. The lower the rank
of a possible world, the more plausible it is. Ranking functions are extended to
formulas A ∈ L(Σ) by κ(A) = min{κ(ω) | ω |= A} and model a conditional
(B|A) if κ(AB) < κ(AB). A ranking function κ is a ranking model of a belief
base Δ iff κ models every conditional in Δ. If a belief base has a ranking model,
then it is called consistent.

c-Representations constitute a specific class of ranking models [11]. Let

vΔ(ω) = {i | δi ∈ Δ, ω |= AiBi} and fΔ(ω) = {i | δi ∈ Δ, ω |= AiBi}

record the conditionals from the belief base Δ which are verified resp. falsified
in the possible world ω. Then, a ranking function is a c-representation of Δ if it
is a ranking model of Δ and of the form

κη (ω) =
∑

i∈fΔ(ω)
ηi, η = (η1, . . . , ηn) ∈ N

n
0 ,

where ηi is a penalty point for falsifying the i-th conditional in Δ and η satisfies

ηi > min{
∑

j �=i : j∈fΔ(ω)

ηj | ω ∈ Ω(Σ) : i ∈ vΔ(ω)}

−min{
∑

j �=i : j∈fΔ(ω)

ηj | ω ∈ Ω(Σ) : i ∈ fΔ(ω)}. (1)

Splitting Techniques for Conditional Belief Bases 465

With Modc
Σ(Δ) we denote the set of all c-representations of Δ over Σ. For

a more in-depth discussion of c-representations, we refer to [11]. Here, we focus
on c-representations particularly because of their outstanding compatibility with
splitting techniques [12,13].

3 Syntax Splitting, CSP-Solution Splitting,
and c-Semantic Splitting

We propose to split consistent belief bases Δ into partitions {Δ1, . . . ,Δm} with
the goal to localize computations and, therewith, reduce the complexity of rea-
soning with c-representations and gain insights into (non-)dependencies between
the conditionals in Δ. In terms of ranking models this means that the (local)
ranking models of the sub-bases Δi can be assembled to a (global) ranking model
of Δ and that, ideally, each model of Δ can be achieved in this way. The follow-
ing definition transfers the concept of semantic splittings [1] to the context of
c-representations.

Definition 1 (c-Semantic Splitting [1]). Let Δ be a consistent belief base. A
partition {Δ1, . . . ,Δm} of Δ is a c-semantic splitting if, for i = 1, . . . ,m, there
is Σi ⊆ Σ with Σ(Δi) ⊆ Σi such that Modc

Σ(Δ) =
⊕m

i=1 Modc
Σi
(Δi), where

m⊕

i=1

Modc
Σi
(Δi) = {κ | κ(ω) =

m∑

i=1

κi(ω|Σi
), ω ∈ Ω(Σ), κi ∈ Modc

Σi
(Δi)}.

Because the c-representations of a consistent belief base Δ are calculated by
solving the constraint satisfaction problem CSPΣ(Δ) given by (1), c-semantic
splittings can be equivalently formulated on the basis of the solutions of
CSPΣ(Δ). For this, we exploit that a vector η ∈ N

n
0 is a solution of CSPΣ(Δ) iff

κη is a c-representation of Δ [11]. We denote the solution set of CSPΣ(Δ) with
Sol(CSPΣ(Δ)).

Definition 2 (CSP-Solution Splitting [1]). Let Δ be a consistent belief base.
A partition {Δ1, . . . ,Δm} of Δ is a CSP-solution splitting if, for i = 1, . . . , m,
there is Σi ⊆ Σ with Σ(Δi) ⊆ Σi such that

Sol(CSPΣ(Δ)) =
m⊗

i=1

Sol(CSPΣi
(Δi)),

where
⊗

is the concatenation of each combination of the solution vectors.1

One of the most intensively studied classes of splittings in the context of
conditional belief bases is syntax splitting [2,7,9,12,13,17]. A belief base syntac-
tically splits into sub-bases if the sub-bases have pairwise disjoint signatures.
1 The entries of the concatenated solution vectors have to be reordered such that they

fit the ordering of the conditionals in Δ.

466 M. Wilhelm et al.

Definition 3 (Syntax Splitting [12]). Let Δ be a consistent belief base. A
partition {Δ1, . . . ,Δm} of Δ is a syntax splitting if, for i = 1, . . . ,m, there is
Σi ⊆ Σ with Σ(Δi) ⊆ Σi such that

Σi ∩ Σj = ∅ for i, j ∈ {1, . . . , m} with i �= j.

Syntax splittings constitute a proper sub-class of c-semantic splittings [1] and
are easy to compute based on a syntactic comparison of the conditionals in Δ.
However, only few belief bases syntactically split into fine-grained partitions as
conditional statements about the same topic naturally share syntax elements.

In order to find further meaningful classes of c-semantic splittings, in [1] the
constraint satisfaction problem CSPΣ(Δ) is investigated more closely following
the idea that if sets of the constraints in CSPΣ(Δ) can be solved independently,
then this leads to a CSP-solution splitting. In the following, we continue this line
of research, identify CSP-constraint splittings as the central class of conditional
belief base splittings in the context of c-representations, propose an algorithm
for computing CSP-constraint splittings, and discuss important sub-classes of
CSP-constraint splittings.

4 (Strong) CSP-Constraint Splitting

The constraint satisfaction problem CSPΣ(Δ) mentions for each conditional δi ∈
Δ a distinct penalty point ηi and, likewise, a distinct constraint of the form
(1). We denote the constraint that is associated with δi with Ci and the set
of the conditionals whose associated penalty points are mentioned in Ci with
scope(Ci). We say that a sub-base Δ′ ⊆ Δ is constraint-wise independent if the
corresponding set of constraints, C(Δ′) = {Ci | δi ∈ Δ′}, mentions penalty points
that are associated with conditionals in Δ′ only, i.e., if

⋃
δi∈Δ′ scope(Ci) ⊆ Δ′.

Definition 4 (Strong CSP-Constraint Splitting). Let Δ be a consistent
belief base. A partition {Δ1, . . . ,Δm} of Δ is a strong CSP-constraint splitting
if, for i = 1, . . . ,m, the sub-base Δi is constraint-wise independent.

Because the constraint sets C(Δ1), . . . , C(Δm) of strong CSP-constraint split-
tings {Δ1, . . . ,Δm} can be solved independently, strong CSP-constraint split-
tings are CSP-solution splittings.

Example 1. Let Σe1 = {a, b, c} and Δe1 = {δ1, δ2, δ3} with

δ1 = (b|a), δ2 = (b|a), δ3 = (b|ac).

The constraint satisfaction problem CSPΣe1(Δe1) consists of the constraints
(cf. (1) and Table 1)

C1 : η1 > min{0} − min{0},

C2 : η2 > min{0, η3} − min{0},

C3 : η3 > min{η2} − min{0}.

Splitting Techniques for Conditional Belief Bases 467

Table 1. For each possible world ω ∈ Ω(Σe1), the verified and falsified conditionals
from Δe1 are shown (cf. Example 1).

ω vΔe1(ω) fΔe1(ω) ω vΔe1(ω) fΔe1(ω)

abc {1} ∅ abc {3} {2}
abc {1} ∅ abc ∅ {2}
abc ∅ {1} abc {2} {3}
abc ∅ {1} abc {2} ∅

The constraint C1 does not mention a penalty point other than η1 and the
two remaining constraints, C2 and C3, do not mention η1. Hence, we have
scope(C1) = {δ1} and scope(C2) ∪ scope(C3) = {δ2, δ3} so that {{δ1}, {δ2, δ3}}
is a strong CSP-constraint splitting of Δe1.

Note that in the example above no syntax splitting is applicable to Δ because
δ3 mentions all three atoms. Nevertheless, on the level of CSP-constraint split-
tings, a semantic decomposition along conditional dependencies is possible.

It can happen that in constraints Ci ∈ CSPΣ(Δ) penalty points ηj with j �= i
occur which do not affect the satisfaction of Ci. This particularly happens when
the sums in the min-terms in (1) which mention ηj cannot change the minimum
(like η3 in C2 in Example 1). In this case, the penalty point ηj may prevent
the constraints in CSPΣ(Δ) from splitting “for no good reason.” To counteract
this, in [1] some generic strategies for simplifying the constraints in CSPΣ(Δ)
are proposed which lead to more fine-grained splittings of the constraints by
removing unnecessary dependencies between the penalty points. We continue
this line of research and suggest further strategies for removing expressions from
the min-terms in (1) which are redundant for the minima. Beforehand, CSPΣ(Δ)
is transformed into a set representation first proposed in [3,4] that is a more
convenient form for applying these simplifications.

Characterization 1 (Constraint Satisfaction Problem in Set Nota-
tion). Let Δ be a consistent belief base. For i = 1, . . . , n, let

f̌ i
Δ(ω) = {j | δj ∈ Δ : j �= i, ω |= AjBj} = fΔ(ω) \ {i}

be the index set of the conditionals in Δ \ {δi} which are falsified in ω ∈ Ω(Σ).
Then, the limits of the sums in (1) can be rewritten from

∑
j �=i : j∈fΔ(ω) to

∑
j∈f̌i

Δ(ω) and we define

Vi = Vi(Δ) = {f̌ i
Δ(ω) | ω ∈ Ω(Σ) : i ∈ vΔ(ω)},

Fi = Fi(Δ) = {f̌ i
Δ(ω) | ω ∈ Ω(Σ) : i ∈ fΔ(ω)}.

(2)

We obtain, for i = 1, . . . , n, the following equivalent reformulation of (1):

ηi > min{
∑

j∈S

ηj | S ∈ Vi} − min{
∑

j∈S

ηj | S ∈ Fi}. (3)

468 M. Wilhelm et al.

The only difference between the constraints (1) and (3) is that the conditions
which restrict the sums in the min-terms are transferred to the definitions of the
sets Vi and Fi. The benefit of this set-based representation of CSPΣ(Δ) is that
we can modify CSPΣ(Δ) easily by set manipulation now. The goal of such a
modification is to find representations of CSPΣ(Δ) which preserve the solutions
in Sol(CSPΣ(Δ)) while yielding more fine-grained splittings of the constraints.
We formalize the modifications by mappings called constraint reductions.

Definition 5 ((Solution Preserving) Constraint Reduction). Let Δ be a
consistent belief base. We call φ : (Vi, Fi)i=1,...,n → (φ(Vi), φ(Fi))i=1,...,n a con-
straint reduction if, for i = 1, . . . , n, it holds that φ(Vi) � Vi and φ(Fi) � Fi,
where X ′ � X means that (a) for all x′ ∈ X ′, there is x ∈ X such that x′ ⊆ x,
and (b) for all x ∈ X, there is x′ ∈ X ′ such that x′ ⊆ x.

A constraint reduction φ is solution preserving if, for all consistent belief
bases Δ, it holds that Sol(CSPφ

Σ(Δ)) = Sol(CSPΣ(Δ)), where CSPφ
Σ(Δ) is the

constraint satisfaction problem CSPΣ(Δ) after applying φ, i.e., CSPφ
Σ(Δ) is given

by, for i = 1, . . . , n,

Cφ
i : ηi > min{

∑

j∈S

ηj | S ∈ φ(Vi)} − min{
∑

j∈S

ηj | S ∈ φ(Fi)}. (4)

We abbreviate “solution preserving constraint reduction” with spcr.

Constraint reductions remove sets from Vi resp. Fi or elements from sets
in Vi resp. Fi. The most radical constraint reduction maps both Vi and Fi to {∅}
which satisfies the conditions (a) and (b) in Definition 5 but perhaps affects the
solutions of the constraint satisfaction problem and, hence, is not always solution
preserving. In [1], it is shown that a constraint reduction φ is solution preserving
if it is specified by the (repeated) application of the following rewriting rules.

R1 If S, S′ ∈ Vi with S ⊂ S′, then Vi ← Vi \ {S′}.
R2 If S, S′ ∈ Fi with S ⊂ S′, then Fi ← Fi \ {S′}.
R3 If Vi �= {∅} �= Fi and j ∈ S for all S ∈ Vi ∪ Fi, then

Vi ← {S \ {j} | S ∈ Vi} and Fi ← {S \ {j} | S ∈ Fi}.

Here we propose three further rewriting rules, R4-R6.

R4 If Vi = Fi, then Vi ← {∅} and Fi ← {∅}.
R5 If there are D ⊆ 2{1,...,n} and T, T ′ ⊆ {1, . . . , n} such that

Vi = {S ∪̇ T | S ∈ D} and Fi = {S ∪̇ T ′ | S ∈ D},

then Vi ← {T} and Fi ← {T ′}.
R6 If Fi = Fj = {∅} for i �= j and there is D ⊆ 2{1,...,n} such that Vi = D∪{{j}}

and Vj = D ∪ {{i}}, then Vi ← D and Vj ← D.

Beyond R1-R6, further rewriting rules are imaginable. Nevertheless, R1-R6
implement major and straightforward ideas for eliminating structural redundan-
cies in (1). We give examples for the application of R1-R6 below.

Splitting Techniques for Conditional Belief Bases 469

Proposition 1. Let Δ be a consistent belief base. If a constraint reduction φ
is specified by exhaustively applying any subset of the rewriting rules R1-R6,
then φ is solution preserving. CSPφ

Σ(Δ) is independent of the order in which the
rules are applied if φ is specified by any superset of R1+R2.

Proof. We show that the application of R6 is solution preserving. The rest of
the proof is omitted due to space restrictions.

For i, j ∈ {1, . . . , n} with i �= j, let Fi = Fj = {∅}, and let D ⊆ 2{1,...,n} such
that Vi = D ∪ {{j}} and Vj = D ∪ {{i}}. Then, for i and j, (3) becomes

ηi > min({
∑

k∈S

ηk | S ∈ D} ∪ {ηj}) =: minHi,

ηj > min({
∑

k∈S

ηk | S ∈ D} ∪ {ηi}) =: minHj .

Assume that ηj = minHi and ηi = minHj . Then, for i and j, (3) reduces
to ηi > ηj resp. ηj > ηi which is obviously contradictory. Now, assume that
ηj = minHi and H = minHj for some H ∈ {∑k∈S ηk | S ∈ D} with H < ηi.
Then, (3) becomes ηj > H which contradicts the assumption that ηj minimizes
Hi (note that H ∈ Hi).

Putting both cases together, we have that ηj cannot be minimal in Hi. Anal-
ogously, we can show that ηi is not minimal in Hj , and (3) simplifies to

ηi > min{
∑

k∈S

ηk | S ∈ D}, ηj > min{
∑

k∈S

ηk | S ∈ D},

which proves the statement. ��
Based on solution preserving constraint reductions, we have the following

advanced notion of CSP-constraint splitting.

Definition 6 (CSP-constraint splitting (cf. [1])). Let Δ be a consistent belief
base. A partition {Δ1, . . . ,Δm} of Δ is a CSP-constraint splitting if there is a
solution preserving constraint reduction φ such that, for i = 1, . . . , m, it holds
that

⋃
δj∈Δi

scope(Cφ
j) ⊆ Δi.

The essence of CSP-constraint splittings is that the sub-bases Δi are
constraint-wise independent after applying an spcr to the constraints in CSPΣ(Δ)
and, therewith, generalize strong CSP-constraint splittings.

Example 2. Let Σe2 = {a, b, c, d} and Δe2 = {δ1, . . . , δ4} with

δ1 = (b|a), δ2 = (c|a), δ3 = (d|a), δ4 = (c|b).

Table 2 shows for each possible world ω ∈ Ω(Σe2) the verified and falsified con-
ditionals. Based on that, we compute the sets Vi and Fi for i = 1, . . . , 4 (Table 3)
and apply the spcr φ specified by the rewriting rules R1-R3 (Table 4). Now,
φ(V3) = φ(F3) holds such that rule R4 applies. In addition, φ(F1) = φ(F2) = {∅}

470 M. Wilhelm et al.

Table 2. For each possible world ω ∈ Ω(Σe2), the verified and falsified conditionals
from Δe2 are shown (cf. Example 2).

ω vΔe2(ω) fΔe2(ω) ω vΔe2(ω) fΔe2(ω)

abcd {1, 2, 3} {4} abcd ∅ {4}
abcd {1, 2} {3, 4} abcd ∅ {4}
abcd {1, 3, 4} {2} abcd {4} ∅
abcd {1, 4} {2, 3} abcd {4} ∅
abcd {2, 3} {1} abcd ∅ ∅
abcd {2} {1, 3} abcd ∅ ∅
abcd {3} {1, 2} abcd ∅ ∅
abcd ∅ {1, 2, 3} abcd ∅ ∅

Table 3. For each conditional δi ∈ Δe2, the sets Vi and Fi are shown (cf. Example 2).

δi Vi Fi

(b|a) {{2}, {2, 3}, {3, 4}, {4}} {∅, {2}, {2, 3}, {3}}
(c|a) {{1}, {1, 3}, {3, 4}, {4}} {∅, {1}, {1, 3}, {3}}
(d|a) {{1}, {2}, {1, 2}, {4}} {{1}, {1, 2}, {2}, {4}}
(c|b) {∅, {2}, {2, 3}} {∅, {3}}

and there is D = {{4}} such that φ(V1) = D ∪ {{2}} and φ(V2) = D ∪ {{1}},
i.e., rule R6 applies, too. Thus, we consider a second spcr φ′ which is speci-
fied by R1-R6. The results of applying φ′ are also shown in Table 4. We real-
ize that {{δ1, δ2, δ4}, {δ3}} is a constraint splitting of Δe2: In the simplified
constraint Cφ′

1 , the penalty points η1 and η4 are mentioned (cf. Table 3), i.e.,
scope(Cφ′

1) = {δ1, δ4}. In addition, scope(Cφ′
2) = {δ2, δ4} and scope(Cφ′

4) = {δ4}
and, consequently, δ1, δ2 and δ4 have to be in the same partitioning set. In con-
trast, the simplified constraint Cφ′

3 mentions η3 only, i.e., scope(Cφ′
3) = {δ3}, and

δ3 builds its own partitioning set. Note that this is not reachable on the basis
of φ. In the end, the constraint satisfaction problem of Δe2 has been simplified
to

CSPφ′
Σ (Δe2) = { η1 > η4, η2 > η4, η3 > 0, η4 > 0 },

and a (minimal) c-representation κη of Δe2 is given by η = (2, 2, 1, 1). Note that
this example illustrates the quality of c-representations well because κη does not
suffer from the drowning problem (cf. [9]) as it still accepts both conditionals
(d|ab) and (d|ac), which cannot be ensured by System Z [6], for instance.

Example 3. Let Σe3 = {a, b, c, d} and Δe3 = {δ1, . . . , δ5} with

δ1 = (c|a), δ2 = (c|b), δ3 = (c|ab), δ4 = (d|a), δ5 = (d|b).

Splitting Techniques for Conditional Belief Bases 471

Table 4. For each conditional δi ∈ Δe2, the sets Vi and Fi are shown after applying
one of the spcrs φ and φ′ (cf. Example 2).

δi φ(Vi) φ(Fi) φ′(Vi) φ′(Fi)

(b|a) {{2}, {4}} {∅} {{4}} {∅}
(c|a) {{1}, {4}} {∅} {{4}} {∅}
(d|a) {{1}, {2}, {4}} {{1}, {2}, {4}} {∅} {∅}
(c|b) {∅} {∅} {∅} {∅}

Algorithm 1. (Computation of CSP-Constraint Splittings)
Input: Consistent belief base Δ, solution preserving constraint reduction φ
Output: CSP-Constraint splitting {Δ1, . . . , Δm} of Δ

1 for i = 1, . . . , n:
2 calculate Vi and Fi and reduce to Vi ← φ(Vi) and Fi ← φ(Fi)
3 Ii = {i} ∪ ⋃

S∈Vi
S ∪ ⋃

S∈Fi
S

4 I = {I1, . . . , In}
5 while I, J ∈ I with I �= J and I ∩ J �= ∅:
6 I ← (I ∪ {I ∪ J}) \ {I, J}
7 m = 1
8 while I �= ∅:
9 select I from I and set Δm = {δj | j ∈ I}

10 I ← I \ {I} and m ← m + 1
11 return {Δ1, . . . , Δm}

One has V3 = {{2, 4}, {2, 5}} and F3 = {{1, 4}, {1, 5}}. From this, we deduce
that the only strong CSP-constraint splitting of Δe3 is the trivial splitting {Δe3}.
Applying the rewriting rules R1-R3 do not change V3 and F3. Applying an
spcr φ which uses rule R5, in addition, yields φ(V3) = {{2}} and φ(F3) = {{1}},
however, because {{4}, {5}} takes the role of D in R5. Further, one can show
that φ(Vi) = φ(Fi) = {∅} holds for i = 1, 2, 4, 5 such that {{δ1, δ2, δ3}, {δ4, δ5}}
is a CSP-constraint splitting of Δe3.

Of course, each strong CSP-constraint splitting is also a CSP-constraint
splitting as the identity mapping is solution preserving. In [1], it is shown
that syntax splittings are CSP-constraint splittings and CSP-constraint split-
tings are CSP-solution splittings. But, typically, syntax splittings are not strong
CSP-constraint splittings. For example, {(b|a), (d|c)} syntactically splits into
D = {{(b|a)}, {(d|c)}} but the possible world ω = abcd falsifies both condi-
tionals which already shows that D is not a strong CSP-constraint splitting.

Next, we discuss how to algorithmically compute CSP-constraint splittings.
The definition of CSP-constraint splittings is constructive in the sense that a
CSP-constraint splitting of a consistent belief base Δ can be obtained just by
comparing the sets Vi(Δ) and Fi(Δ) for i = 1, . . . , n which, if desired, were sim-
plified by a solution preserving constrained transformation (spcr) beforehand.
The general procedure is shown in Algorithm 1. First, for all conditionals δi ∈ Δ,

472 M. Wilhelm et al.

syntax splitting∗

trivial splitting∗ {Δ}

case splitting∗

safe conditional syntax splitting∗ strong CSP-constraint splitting

conditional syntax splitting∗ CSP-constraint splitting

CSP-solution splitting
=

c-semantic splitting

Fig. 1. Hierarchy of splitting techniques for conditional belief bases Δ in the context of
c-representations. Splitting techniques marked with ∗ are independent of the semantics
of c-representations. Implications are to be read from top to bottom along the lines.

the sets Vi and Fi are calculated and reduced by an spcr φ (lines 1+2). Then,
the indices of the involved conditionals are extracted (lines 3+4). As long as
these sets of indices are not pairwise disjoint, intersecting sets are consolidated
(lines 5+6). This procedure results in a partition I of {1, . . . , n}. Each partition-
ing set Ii ∈ I corresponds to a set of conditionals Δi which is calculated and
returned as part of the CSP-constraint splitting of Δ (lines 7–11).

Example 4. We illustrate how Algorithm 1 works for the input (Δe2, φ
′) from

Example 2. The sets calculated in lines 1+2 of Algorithm 1 are already shown
in the Tables 3 and 4. From these, we calculate the sets of indices Ii for
i = 1, . . . , 4 and obtain I = {{1, 4}, {2, 4}, {3}, {4}} (lines 3+4). Because
the first two sets in I are not disjoint, we update I according to lines 7–
10: I ← {{1, 2, 4}, {3}, {4}}. Now, joining the first and the last set from I
yields I ← {{1, 2, 4}, {3}} which corresponds to the CSP-constraint splitting
{{δ1, δ2, δ4}, {δ3}} that we already calculated in Example 2.

Syntax splittings do not constitute the only important sub-class of CSP-
constraint splittings. In the next two sections, we consider two kinds of splittings
where the sub-signatures of the belief bases are not disjoint but can nevertheless
be captured by CSP-constraint splitting. More precisely, we show that so-called
case splittings are strong CSP-constraint splittings and safe conditional syntax
splittings are CSP-constraint splittings. Figure 1 shows interrelationships among
these splittings, identifying CSP-constraint splitting as a central splitting tech-
nique which combines ideas from both syntax and case splittings.

Splitting Techniques for Conditional Belief Bases 473

5 Case Splitting

Case splittings are splittings of belief bases which were initially discussed in the
context of belief change (cf. [19], here named as premise splittings). The idea of
case splittings is to split a consistent belief base Δ into sub-bases that deal with
different, exclusive cases.

Definition 7 (Case Splitting [19]). Let Δ be a consistent belief base. A par-
tition {Δ1, . . . ,Δm} of Δ is a case splitting if there is a set of exhaustive and
exclusive formulas {E1, . . . , Em} ⊆ L(Σ), i.e., Ei ∧ Ej ≡ ⊥ for i �= j and∨m

i=1 Ei ≡ �, such that, for i = 1, . . . ,m and for all conditionals (B|A) ∈ Δi, it
holds that A |= Ei.

In plain words, the sub-base Δi of a case splitting {Δ1, . . . ,Δm} deals with
beliefs about what happens in case of Ei.

Example 5. Let Σe4 = {a, b, c, d} and Δe4 = {δ1, δ2, δ3} with δ1 = (b|a), δ2 =
(b|ac), and δ3 = (d|a∨c). Then, {{δ1, δ3}, {δ2}} is a case splitting of Δe4 because
the set {a ∨ c, ac} is a set of exhaustive and exclusive formulas with a |= a ∨ c
and a ∨ c |= a ∨ c as well as ac |= ac.

Note that the strong CSP-constraint splitting from Example 1 is also a case
splitting.

Proposition 2. Let Δ be a consistent belief base. Every case splitting of Δ is a
strong CSP-constraint splitting of Δ.

Proof. Let D = {Δ1, . . . ,Δm} be a case splitting of Δ wrt. the set of exhaustive
and exclusive formulas {E1, . . . , Em}, let i ∈ {1, . . . , m}, and let δj ∈ Δi. We
have to show that there is no δk ∈ Δ \ Δi such that there is S ∈ Vj ∪ Fj with
k ∈ S. That is, because Vj ∪ Fj = {f jΔ(ω) | ω ∈ Ω(Σ) : ω |= Aj}, we have to
show that there is no ω ∈ Ω(Σ) with ω |= Aj and ω |= AkBk. This, however,
cannot happen as ω |= Aj implies ω |= Ei (because δj ∈ Δi) and ω |= AkBk

implies ω |= El for some l ∈ {1, . . . , m} \ {i} (because δk ∈ Δ \ Δi). This would
imply that ω |= Ei ∧ El ≡ ⊥ which is a contradiction. ��

While syntax splittings split belief bases on a syntactic level, case split-
tings take on a semantic perspective. Actually, the exclusiveness of the cases
E1, . . . , Em leads to an inherent syntactic linkage between the conditionals in Δ.
Thus, both splitting mechanisms can be seen as orthogonal counterparts. In par-
ticular, case splittings form a distinct sub-class of CSP-constraint splittings and
both case splittings and syntax splittings constitute strict sub-classes of CSP-
constraints splittings. Note that the two splitting techniques can be applied
consecutively to obtain even more fine-grained splittings.

474 M. Wilhelm et al.

6 (Safe) Conditional Syntax Splitting

In [8] a conditional version of syntax splitting is introduced.

Definition 8 (Conditional Syntax Splitting [8]). Let Δ be a consistent
belief base. A partition {Δ1, . . . ,Δm} of Δ is a conditional syntax splitting if
there are Σ0, Σ1, . . . , Σm ⊆ Σ such that Σ(Δi) ⊆ Σi ∪ Σ0 for i = 1, . . . , m, and
Σi ∩ Σj = ∅ for i, j = 0, 1, . . . ,m with i �= j.

The sub-bases of a conditional syntax splitting syntactically split except for
some atoms from Σ0. With Σ0 = ∅, every syntax splitting is also a conditional
syntax splitting. But, in general, not all conditional syntax splittings are CSP-
constraint splittings as the following example shows.

Example 6. We consider Σe2 and Δe2 from Example 2. The partition

D = { {(b|a), (c|b)}, {(c|a), (d|a)} }

of Δe2 is a conditional syntax splitting. To see this, let Σ0 = {a, c}, Σ1 = {b},
and Σ2 = {d}. Then, (b|a), (c|b) ∈ CL(Σ1 ∪ Σ0) and (c|a), (d|a) ∈ CL(Σ2 ∪ Σ0).
However, D is not a CSP-constraint splitting of Δe2. Table 3 shows that the
penalty point η4 is mentioned in the constraint Cφ′

2 , and there is no solution
preserving constraint reduction which can remove η4 from Cφ′

2 (obviously, there
cannot be a more effective reduction than φ′ from Example 2 because η4 is
relevant for the minimum of the first min-term in Cφ′

2).

Under specific conditions, however, it can be guaranteed that conditional
syntax splittings are CSP-constraint splittings (cf. [8]).

Definition 9 (Safe Conditional Syntax Splitting [8]). Let Δ be a consistent
belief base. A partition {Δ1, . . . ,Δm} of Δ is a safe conditional syntax splitting
if it is a conditional syntax splitting wrt. the sub-signatures Σ0, Σ1, . . . , Σm and,
in addition, for i = 1, . . . ,m and every ω ∈ Ω(Σi ∪ Σ0), there is ω′ ∈ Ω(Σ \
(Σi ∪ Σ0)) such that ω ∧ ω′ ∈ Ω(Σ) falsifies no conditional from Δ \ Δi.

Safe conditional syntax splitting ensures locality for falsification which is also
the basic idea of constraint-wise independence.

Proposition 3. Let Δ be a consistent belief base. Every safe conditional syntax
splitting of Δ is a CSP-constraint splitting of Δ.

Proof. Let D = {Δ1, . . . ,Δm} be a safe conditional syntax splitting of Δ, let
i ∈ {1, . . . ,m}, and let δj ∈ Δi. We have to show that there is an spcr φ such
that no δk ∈ Δ \ Δi exists such that there is S ∈ φ(Vj) ∪ φ(Fj) with k ∈ S.
By assumption, Δi ⊆ CL(Σi ∪ Σ0) and, hence, δj ∈ CL(Σi ∪ Σ0). Thus, for all
ω ∈ Ω(Σ) with ω |= AjBj it holds that ω|(Σi∪Σ0) |= AjBj . Each of these (partial)
possible worlds ω|(Σi∪Σ0) can be completed to a possible world ω̂ ∈ Ω(Σ) such
that ω̂ does not falsify any conditional from Δ \ Δi (because D is safe). As a

Splitting Techniques for Conditional Belief Bases 475

consequence, for each set S ∈ Vj , there is a set S′ ∈ Vj with S′ ⊆ S and S′ ⊆ Ti

where Ti = {l | δl ∈ Δi}. Eventually, let φ be an spcr which applies R1. Then,
φ(Vj) ⊆ 2Ti . Analogously, one can show that φ(Fj) ⊆ 2Ti if φ also applies R2.
Together, one has φ(Vj) ∪ φ(Fj) ⊆ 2Ti and it is impossible to find a conditional
δk ∈ Δ \ Δi such that k is an element of any set S ∈ φ(Vj) ∪ φ(Fj) (because
k /∈ Ti). ��

We eventually give an example which illustrates the concept of safeness for
conditional syntax splittings.

Example 7. We consider Σe2 and Δe2 from Example 2 but now split Δe2 into

D′ = { {(b|a), (c|a), (c|b)}, {(d|a)} }.

D′ is a conditional syntax splitting of Δe2 with Σ0 = {a}, Σ1 = {b, c}, and
Σ2 = {d}. In contrast to D from Example 6, D′ is safe:

D is not safe because the possible world abc ∈ Ω({a, b, c}) (cf. Example 6 for
the sub-signatures used for the splitting D) can not be completed to a possible
world ω ∈ Ω({a, b, c, d}) such that both ω |= abc and there is no conditional
from {(c|a), (d|a)} which is falsified because (c|a) is already falsified by abc. D′,
however, is safe as every possible world ω1 ∈ Ω({a, b, c}) can be completed to
ω1 ∧ d which does not falsify (d|a), independent of the specification of ω1. In
addition, every possible world ω2 ∈ Ω({a, d}) can be completed to ω2 ∧ bc which
does not falsify any conditional from {(b|a), (c|a), (c|b)}. Note that D′ is the
CSP-constraint splitting of Δe2 calculated in Example 2.

7 Conclusions and Future Work

Splitting techniques are fundamental for organizing conditional belief bases both
in order to better understand interdependencies between the conditionals and
to reduce computational costs when performing model-based reasoning like rea-
soning with c-representations. In this paper, we gave an overview of the most
common splitting techniques for conditional belief bases in the context of c-
representations and provided a hierarchy of these splitting techniques. In par-
ticular, we identified CSP-constraint splittings as a central class of splittings
that combines ideas from both syntax and case splitting by proving that every
case splitting is a strong CSP-constraint splitting and that every safe condi-
tional syntax splitting is a CSP-constraint splitting. The impact of our findings
goes beyond c-representations. For example, it has been shown in [9] that lexi-
cographic inference [15] can be represented as a c-representation, and thus, all
splitting techniques studied in this paper also apply to lexicographic inference.

In future work, we want to elaborate further rewriting rules in order to mini-
mize the gap between CSP-constraint splittings and CSP-solution splittings and
study how the splitting techniques can be applied to other inductive inference
formalisms. Our main focus, however, will be on the extension of CSP-constraint
splittings to a notion of CSP-constraint networks in the case where the belief
bases do not split satisfactorily.

476 M. Wilhelm et al.

Acknowledgments. This work was supported by grants of the German Research
Foundation (DFG) awarded to Gabriele Kern-Isberner (KE 1413/14-1) and to
Christoph Beierle (BE 1700/10-1).

References

1. Beierle, C., Haldimann, J., Kern-Isberner, G.: Semantic splitting of conditional
belief bases. In: Raschke, A., Riccobene, E., Schewe, K.-D. (eds.) Logic, Computa-
tion and Rigorous Methods. LNCS, vol. 12750, pp. 82–95. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76020-5_5

2. Beierle, C., Kern-Isberner, G.: Selection strategies for inductive reasoning from
conditional belief bases and for belief change respecting the principle of conditional
preservation. In: Bell, E., Keshtkar, F. (eds.) Proceedings of the Thirty-Fourth
International Florida Artificial Intelligence Research Society Conference, North
Miami Beach, Florida, USA, 17–19 May 2021 (2021)

3. Beierle, C., Kutsch, S., Sauerwald, K.: Compilation of conditional knowledge bases
for computing C-inference relations. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS
2018. LNCS, vol. 10833, pp. 34–54. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90050-6_3

4. Beierle, C., Kutsch, S., Sauerwald, K.: Compilation of static and evolving condi-
tional knowledge bases for computing induced nonmonotonic inference relations.
Ann. Math. Artif. Intell. 87(1–2), 5–41 (2019)

5. Carnap, R.: Meaning and Necessity: A Study in Semantics and Modal Logic. Uni-
versity of Chicago Press, Chicago (1947)

6. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

7. Haldimann, J., Beierle, C.: Inference with system W satisfies syntax splitting. In:
Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
KR 2022, Haifa, Israel, 31 July–5 August 2022 (2022)

8. Heyninck, J., Kern-Isberner, G., Meyer, T., Haldimann, J.P., Beierle, C.: Condi-
tional syntax splitting for non-monotonic inference operators. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 37, pp. 6416–6424 (2023)

9. Heyninck, J., Kern-Isberner, G., Meyer, T.A.: Lexicographic entailment, syntax
splitting and the drowning problem. In: Raedt, L.D. (ed.) Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23–29 July 2022, pp. 2662–2668. ijcai.org (2022)

10. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision,
vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1

11. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Ann. Math. Artif. Intell. 40(1–2), 127–164 (2004)

12. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting = relevance + indepen-
dence: new postulates for nonmonotonic reasoning from conditional belief bases.
In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
KR 2020, Rhodes, Greece, 12–18 September 2020, pp. 560–571 (2020)

13. Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision.
In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017,
pp. 1131–1137. ijcai.org (2017)

https://doi.org/10.1007/978-3-030-76020-5_5
https://doi.org/10.1007/978-3-319-90050-6_3
https://doi.org/10.1007/978-3-319-90050-6_3
https://doi.org/10.1007/3-540-44600-1

Splitting Techniques for Conditional Belief Bases 477

14. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

15. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

16. Nute, D.: Conditional Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of
Philosophical Logic, pp. 387–439. Springer, Dordrecht (1984). https://doi.org/10.
1007/978-94-009-6259-0_8

17. Parikh, R.: Beliefs, belief revision, and splitting languages, pp. 266–278. Center for
the Study of Language and Information (1999)

18. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference
on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA, USA,
March 1990, pp. 121–135. Morgan Kaufmann (1990)

19. Sezgin, M., Kern-Isberner, G., Beierle, C.: Ranking kinematics for revising by con-
textual information. Ann. Math. Artif. Intell. 89(10–11), 1101–1131 (2021)

20. Spohn, W.: The Laws of Belief - Ranking Theory and Its Philosophical Applica-
tions. Oxford University Press, Oxford (2014)

https://doi.org/10.1007/978-94-009-6259-0_8
https://doi.org/10.1007/978-94-009-6259-0_8

Non-monotonic Reasoning

Complexity and Scalability of Defeasible
Reasoning with Typicality in Many-Valued

Weighted Knowledge Bases

Mario Alviano1 , Laura Giordano2 , and Daniele Theseider Dupré2(B)

1 DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende, CS, Italy
mario.alviano@unical.it

2 DISIT, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
{laura.giordano,dtd}@uniupo.it

Abstract. Weighted knowledge bases for description logics with typical-
ity under a “concept-wise” multi-preferential semantics provide a logical
interpretation of MultiLayer Perceptrons. In this context, Answer Set
Programming (ASP) has been shown to be suitable for addressing defea-
sible reasoning in the finitely many-valued case, providing a Πp

2 upper
bound on the complexity of the problem, nonetheless leaving unknown
the exact complexity and only providing a proof-of-concept implemen-
tation. This paper fulfils the lack by providing a PNP [log]-completeness
result and new ASP encodings that deal with weighted knowledge bases
with large search spaces.

Keywords: Typicality Logics · Multi-valued Logics · Answer Set
Programming

1 Introduction

Description logics (DLs) are widely used for knowledge representation (KR),
often to verify and discover properties of individuals in a concept by means of DLs
inference services [5,33]. Many properties of real world concepts, however, are
defeasible, that is, they are not universally true, but have exceptions, and actually
hold only for some typical individuals in the concept. For example, horses are
usually tall, but atypical horses not being tall exist. This has led to a line of
research which deals with defeasible DLs [14,18,26]. Specifically, to represent
the defeasible properties of a concept, DLs can be extended with a typicality
operator T that is applied to concepts to obtain typicality inclusions of the
form T(C) � D [26]. Intuitively, T(C) � D means that the typical individuals
in the concept C also belong to concept D (that, normally C’s are D’s), and
corresponds to a conditional implication C |∼ D in KLM preferential logics
[35,36]. A (conditional) knowledge base (KB) comprising typicality inclusions
enables defeasible reasoning, as in fact the prototypical properties of concept C
are not necessarily enforced on all individuals in C.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 481–497, 2023.
https://doi.org/10.1007/978-3-031-43619-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_33&domain=pdf
http://orcid.org/0000-0002-2052-2063
http://orcid.org/0000-0001-9445-7770
http://orcid.org/0000-0001-6798-4380
https://doi.org/10.1007/978-3-031-43619-2_33

482 M. Alviano et al.

Some control on the strength of the applicability of typicality inclusions
(which, otherwise, depends on specificity) is obtained by assigning them a rank,
that is, a natural number as large as strong is the expressed property. The result-
ing ranked DL KBs—reminiscent of ranked KBs by Brewka [11]—are interpreted
according to a concept-wise multi-preferential semantics, that is, by associating
a preference relation to single concepts to identify the most typical individuals
in a concept [27]. A more fine-grained control is obtained by assigning weights
to typicality inclusions, hence obtaining weighted DL KBs [29]. In fact, weighing
typicality inclusions with positive and negative real numbers allow for represent-
ing their plausibility or implausibility. A concrete application of the extended
concept-wise multi-preferential semantics is represented by the fuzzy interpre-
tation of MultiLayer Perceptrons (MLPs) [32] obtained by encoding synaptic
connections as weighted typicality inclusions [29]. Then, the widespread inter-
est in neural networks strongly motivates the development of proof methods for
reasoning with weighted DL KBs.

Entailment for fuzzy DLs is in general undecidable [7,20], and this moti-
vates the investigation of many-valued approximations of fuzzy multi-preferential
entailment. In particular, the finitely many-valued case is widely studied in
the DL literature [6,8,24], and has been recently considered also in the con-
text of weighted DL KBs [30] by means of the notions of coherent, faith-
ful and ϕ -coherent models of such KBs, previously considered in the fuzzy
case [25,29,30]. A proof-of-concept implementation in Answer Set Programming
(ASP) and asprin [12] has been provided for the LC fragment of ALC, which
is obtained by disabling roles, and universal and existential restrictions. The
approach adopts Gödel connectives (alternatively, Łukasiewicz connectives) and
addresses ϕ-coherent entailment, a form of defeasible reasoning based on canon-
ical ϕ-coherent models. As concerns the complexity of the problem, a Πp

2 upper
bound was given [30].

This paper contributes to the understanding of the problem both from a
theoretical point of view and on the practical side. In fact, after introducing
the required background (Sect. 2), the upper bound is improved to PNP [log]

by showing an algorithm running in polynomial time and performing parallel
queries to an NP oracle (P ||NP ; Sect. 3). As P ||NP is known to coincide with
PNP [log] [16], while Πp

2 = PNP [log] is unlikely to hold (unless the polynomial
hierarchy collapses to PNP [log]), there must be space for improving the proof-
of-concept implementation. A contribution in this respect is given by the ASP
encodings reported in Sect. 4, obtaining the desired multi-preferential semantics
by taking advantage of weak constraints, possibly without the need for weights.
Further improvements at an asymptotic level are unlikely, as the problem can be
shown to be actually PNP [log]-complete by giving a polynomial-time reduction
of the max sat odd problem [45], which amounts to determining whether the
maximum number of jointly satisfiable clauses among a given set is an odd
number. Finally, the scalability of the different ASP encodings powering the
implemented system is evaluated empirically on defeasible entailment queries
over synthetic weighted DL KBs, reporting results on KBs (Sect. 5) with large
search spaces, while the earlier proof-of-concept implementation can only deal
with small KBs and search spaces.

Complexity and Scalability of Defeasible Reasoning 483

2 Weighted Finitely-Valued LCn with Typicality

Let Cn = {0, 1
n , . . . , n−1

n , n
n}, for an integer n ≥ 1, denote the finitely-valued

set of truth degrees, also called truth space. The truth degree functions ⊗, ⊕,
� and � associated with the connectives ∧, ∨, ¬ and →, respectively, are the
following: a ⊗ b = min{a, b}, a ⊕ b = max{a, b}, �a = 1 − a, and a � b = 1
if a ≤ b and b otherwise (as in Gödel logic with involutive negation). Let NC

be a set of concept names and NI be a set of individual names. The set of LCn

concepts is defined inductively as follows: (i) A ∈ NC , � and ⊥ are concepts;
(ii) if C and D are concepts, then C � D, C � D, ¬C are concepts. An LCn

KB K is a pair (T ,A), where T (the TBox) is a set of concept inclusions of the
form C � D θα, and A (the ABox) is a set of assertions of the form C(a) θ α,
with C and D being concepts, a ∈ NI , θ ∈ {≥,≤, >,<} and α ∈ [0, 1]. Concept
inclusions and assertions are collectively called axioms.

A finitely many-valued interpretation (short. interpretation) is a pair I =
〈ΔI , ·I〉, where ΔI is a non-empty domain and ·I is an interpretation function
that assigns to each a ∈ NI a value aI ∈ ΔI , and to each A ∈ NC a function
AI : ΔI → Cn. Hence, a domain element x ∈ ΔI belongs to the extension of a
concept name A ∈ NC to some degree AI(x) in Cn, and to a composed concept
according to the following inductive definition:

�I(x) = 1 (C � D)I(x) = CI(x) ⊗ DI(x) (¬C)I(x) = �CI(x)
⊥I(x) = 0 (C � D)I(x) = CI(x) ⊕ DI(x)

The interpretation function ·I is also extended to axioms as follows:

(C � D)I = inf x∈ΔICI(x) � DI(x) (C(a))I = CI(aI)

(note that in our setting the infimum truth degree in Cn in the above expression
coincides with the minimum truth degree in Cn).

Definition 1 (Satisfiability and entailment for LCn knowledge bases).
Let K = (T ,A) be a weighted LCn KB, and I be an interpretation. Relation

|= is defined as follows: I |= C � D θ α if (C � D)I θ α; I |= C(a) θ α if
CI(aI) θ α; for a set S of axioms, I |= S if I |= E for all E ∈ S; I |= K if
I |= T and I |= A. If I |= Γ , we say that I satisfies Γ or that I is a model of
Γ (for Γ being an axiom, a set of axioms, or a KB). An axiom E is entailed by
K, written K |= E, if I |= E holds for all models I of K.

LCn is extended with typicality concepts of the form T(C) so that the degree
of membership of domain individuals in C defines the typical elements of C. For
an interpretation I = 〈ΔI , ·I〉, a preference relation ≺C on ΔI (where x ≺C y
means that x is preferred to y) is obtained as follows: for all x, y ∈ ΔI , x ≺C y
if and only if CI(x) > CI(y). The typical elements of C are the ones belonging
to C with the greatest positive truth degree. Formally, the interpretation of a
typicality concept T(C) is as follows: for all x ∈ ΔI , (T(C))I(x) = 0 if there is
y ∈ ΔI such that y ≺C x, and CI(x) otherwise. When (T(C))I(x) > 0, x is said

484 M. Alviano et al.

to be a typical C-element in I. Note that each relation ≺C has the properties of
a preference relation in KLM-style ranked interpretations by [36], that is, ≺C is
a modular and well-founded strict partial order.

Although non-nested typicality concepts may be allowed to freely occur in
the KB and in the queries, typicality inclusions of the form T(C) � D have a
special interest, as they correspond to conditional implications C |∼ D in KLM
conditional knowledge bases [36]. Here, we restrict to such typicality inclusions,
further considering assigning weights to typicality inclusions to describe saliency
of properties for the individuals belonging to a given concept (category).

Weighted typicality inclusions for a concept C have the form (T(C) � Di, wi),
and describe the prototypical properties of C-elements (where Di is a concept,
and the weight wi is a real number); concept C is also said to be a distinguished
concept. A weighted LCnT KB is a a tuple 〈T ,D,A〉, where the TBox T is a
set of concept inclusions, D (defeasible TBox) is a set of weighted typicality
inclusions for ther distinguished concepts C, and A is a set of assertions. For an
interpretation I = 〈ΔI , ·I〉, the weight of x ∈ ΔI with respect to a distinguished
concept C is given by weightC(x) =

∑
(T(C)�D,w)∈T w · DI(x). Intuitively, the

higher the value of weightC(x), the more typical is x relative to the defeasible
properties of C. The weight of an individual is then mapped to a truth degree by
means of a monotonically non-decreasing function ϕ : R → Cn, so that the notion
of model can be naturally extended to weighted LCnT KBs. For example, the
weighted LCnT KB 〈{Tall � Small � ⊥ ≥ 1}, {T(Horse) � Has_Tail ,+50),
(T(Horse) � Tall ,+40), (T(Horse) � Has_Stripes,−50)}, ∅〉 encodes that a
horse normally has a tail and is tall, but usually does not have stripes. Accord-
ingly, a tall horse with tail and without stripes is more typical than a tall horse
with tail and stripes. Moreover, as usual in preferential semantics, we restrict to
canonical models, which are large enough to contain a domain element for any
possible valuation of concepts.

Definition 2 (Canonical ϕ-coherent model and ϕ-coherent entail-
ment). Let K = 〈T ,D,A〉 be a weighted LCnT KB, and ϕ : R → Cn be
a monotonically non-decreasing function. An interpretation I = 〈ΔI , ·I〉 is ϕ-
coherent if CI(x) = ϕ(weightC(x)) holds for each distinguished concept C in D
and for all x ∈ ΔI . I is a ϕ-coherent model of K if it is a ϕ-coherent interpre-
tation satisfying T and A. I is a canonical ϕ-coherent model of K if (i) I is a
ϕ-coherent model of K, and (ii) for each ϕ-coherent model J = (ΔJ , ·J) of K
and each x ∈ ΔJ , there is an element y ∈ ΔI such that, for all concept names
A occurring in K, AI(y) = AJ(x).1 An axiom E is ϕ-coherently entailed by K
(written K |= E) if I |= E holds for all canonical ϕ-coherent models I of K.

1 Note that the semantics adopted here slightly differs from the original definition
given by [30] in the interpretation of typicality concepts, which is not crisp in Def-
inition 2. Anyway, the existence of canonical ϕ-coherent models, for weighted KBs
having at least a ϕ-coherent model, can be proved as with the crisp interpretation
of typicality concepts (see the supplementary material for paper [30], Appendix A).

Complexity and Scalability of Defeasible Reasoning 485

According to the above definition, for every distinguished concept C, the
degree of membership of typical C-elements is the same in all canonical ϕ-
coherent models; it is the highest degree of membership among all ϕ-coherent
models. Without loss of generality, we can as well restrict to a unique canonical
model, as in defeasible ALC [13]. In the next sections, we take advantage of such
a property to study ϕ-coherent entailment. We prove that deciding ϕ-entailment
of a query T(C) � D θ α is a PNP [log]-complete problem, we introduce sev-
eral ASP encodings addressing the computational problem and investigate their
scalability. (We refer to [17] for background on ASP.)

The interest for the entailment of queries of the form T(C) � D θ α lies
again in the fact that they are the many-valued correspondent of conditionals
C |∼ D. Moreover, weighted typicality inclusions can be associated [29,30] to
trained MultiLayer Perceptrons, with ϕ corresponding to the neuron activation
function; in this case, ϕ-coherent entailment of formulae T(C) � D θ α may be
used to verify what has been learned by the neural network, in particular if C
is the concept associated to an output unit and D is a boolean combination of
concepts associated with input units. Using T(C) restricts the attention to the
inputs that are classified by the network as Cs with highest degree.

3 Computing ϕ-Coherent Entailment in ASP is
in P NP [log]

In this section we elaborate on the encoding by [30] to obtain an upper bound
on the complexity of deciding ϕ-coherent entailment of a typicality inclusion of
the form T(Cq) � Dq θα from a weighted LCnT knowledge base K = 〈T ,D,A〉.
Specifically, we first introduce a PNP algorithm, and then refine it to obtain a
PNP [log] upper bound.

We associate with K an ASP program ΠK with the following main features:

(i) Names in NC and in NI occurring in K, as well as an anonymous individual
name, are encoded by constant terms (i.e., strings starting by lowercase), com-
posed concepts such as C �D are encoded by composed terms such as and(c, d),
and any C � D is encoded by impl(c, d). Predicates concept/1 and ind/1 are
used to mark concepts and individual names in K, and each weighted typicality
inclusion (T(C) � D,w) is encoded by the fact wti(c, d, w).
(ii) Cn is encoded by val(0..n), and an interpretation I is guessed by rules

{eval(c,X, V) : val(V)} = 1 ← ind(X). (1)

for each C ∈ NC , so that an atom of the form eval(c, x, v) means that CI(x) =
v
n ∈ Cn. Relation eval/3 is extended to complex concepts naturally. Additionally,
for any C � D, the valuation CI(x)� DI(x) is obtained by the following rules:

eval(impl(c, d),X, 1) ← eval(c,X, V), eval(d,X, V ′), V ≤ V ′.

eval(impl(c, d),X, V ′) ← eval(c,X, V), eval(d,X, V ′), V > V ′.

486 M. Alviano et al.

(iii) For instance, each concept inclusion C � D ≥ α in T , each assertion
C(a) ≥ α in the ABox A, each C � D < α in T , and each typicality inclusion
for a distinguished concept C in D are enforced by the following constraints:

⊥ ← eval(impl(c, d),X, V), V < α. ⊥ ← eval(c, a, V), V < α.

⊥ ← eval(impl(c, d), ci(c, d,< α), V), V ≥ α.

⊥ ← ind(X),W = #sum{WD ∗ VD,D : wti(c,D,WD), eval(D,X, VD)},

eval(c,X, V), valphi(n,W, V ′), V �= V ′.

the last one imposing ϕ-coherence, where valphi/3 is defined so that
ϕ(W) = V ′

n ; the term ci(c, d,< α) is introduced to represent a domain element
satisfying C � D < α.

From the next proposition (which extends Lemma 1 in [30]), there is a duality
relation between domain individuals in a ϕ-coherent model I = 〈ΔI , ·I〉 of K
and the answer sets of ΠK .

Proposition 1. Let C ∈ NC and v
n ∈ Cn. If there is a ϕ-coherent model I =

〈ΔI , ·I〉 of a knowledge base K and x ∈ ΔI such that CI(x) = v
n , then there is

an answer set S of ΠK such that eval(c, anonymous , v) ∈ S, and vice-versa.

For the query T(Cq) � Dq ≥ α, entailment can be decided by the following
algorithm:

(a) find the highest value v
n ∈ Cn such that there is a ϕ-coherent model I of K

with CI
q (x) =

v
n for some x ∈ ΔI ;

(b) verify that for all ϕ-coherent models I of K and all x ∈ ΔI , if CI
q (x) =

v
n

then CI
q (x) � DI

q (x) ≥ α holds (note that the implication trivially holds
when v = 0).

Step (a) identifies the degree of membership of typical Cq-elements (if any)
by invoking multiple times an ASP solver for ΠK extended with

⊥ ← #count{X : ind(X), eval(cq,X, v)} = 0

in order to verify the existence of an answer set containing eval(cq, x, v), for some
x. Specifically, the ASP solver can be called no more than n times, for decreasing
v = n, . . . , 1 and stopping at the first successful call; if none is successful, there
are no typical C-elements, and the query is trivially true.

Step (b) checks that, for the selected v
n , there is no answer set of ΠK con-

taining both eval(cq, x, v) and eval(dq, x, v′) whenever v
n � v′

n < α, for any x. It
requires one additional solver call to check that there is an answer set for ΠK

extended with

counterexample ← eval(cq,X, v), eval(dq,X, V ′), V ′ > v, V ′ < α.

⊥ ← not counterexample.

Complexity and Scalability of Defeasible Reasoning 487

i.e., a counterexample exists. As the size of ΠK and its extensions is polynomial
in the size of K and of the query, and no disjunctive head or recursive aggregate
is used, each call to the ASP solver can be answered by a call to an NP oracle.
In the worst case, n + 1 calls to the NP oracle are performed, which provides a
PNP upper bound on the complexity of the decision problem.

The upper bound can be refined by observing that step (a) can be executed
in parallel for each v = 1, . . . , n, and similarly step (b) can be speculatively
checked for each value v

n , regardless from v
n being the degree of membership of

typical Cq-elements (if any). Once the answers to such 2n calls are obtained, the
decision problem can be answered by selecting the highest value v

n for which calls
of type (a) returned yes, and flipping the answer obtained for the corresponding
call of type (b)—all other answers to calls of type (b) are simply ignored.

For the query T(Cq) � Dq < α, note that K |= T(Cq) � Dq < α, iff
K �|= T(Cq) � Dq ≥ α (as we can restrict to a unique canonical model).

The next result follows from Proposition 1 and algorithm above:

Theorem 1 (Complexity upper bound for ϕ-coherent entailment).
Deciding ϕ-coherent entailment of inclusion T(C) � D θ α from a weighted
LCnT KB K can be achieved using a polynomial number of parallel queries to
an NP-oracle.

It follows that the decision algorithm is in PNP [log] [16]. The upper bound is
actually strict, as the problem can be shown to be PNP [log]-hard by means of
a reduction from the PNP [log]-complete problem max sat odd [45], asking to
verify whether the maximum number of jointly satisfiable clauses in a given set
is odd.

Theorem 2 (Strict complexity lower bound for ϕ-coherent entail-
ment). Determining if a typicality inclusion T(C) � D θ α is ϕ-coherently
entailed by a weighted LCnT KB K = 〈T ,D,A〉 is PNP [log]-hard, even if T and
A are empty, C and D are concept names, and θα is fixed to ≥ 1.

4 Comparing Different ASP Encodings of ϕ-Coherent
Entailment

We present four ASP encodings improving the one in Sect. 3 both in terms of
generality and of scalability. The encodings adopt a combination of several ASP
constructs, among them @-terms, custom propagators, weak constraints and
weight constraints. First of all, the input is encoded by the following facts (with
weights represented as integers):

– valphi(v,LB,UB) whenever ϕ(w) = v
n if and only if LB < w ≤ UB holds;

– concept(C) for each relevant concept C, where named concepts are repre-
sented as constant terms, and complex terms by means of the uninterpreted
functions and, or, neg and impl;

– ind(a) for each individual name a, among them the anonymous one;

488 M. Alviano et al.

– concept_inclusion(C,D,θ,α) for each concept inclusion C � D θ α
n ;

– assertion(C,a,θ,α) for each assertion C(a) θ α
n ;

– wti(C,D,w) for each weighted typicality inclusion (T(C) � D,w);
– query(Cq,Dq,θ,α) for the typicality inclusion T(Cq) � Dq θ α

n ;
– crisp(C) as an optimization for (T(C) � C,∞), to enforce a crisp evaluation

of concept C (where ∞ is a sufficiently large integer to obtain ϕ(∞ · 1
n) = 1;

see equation (1) for an example);
– exactly_one(ID) and exactly_one_element(ID,Ci) (i = 1..k) to optimize

� � C1 � · · · � Ck ≥ 1 (at least one) and Ci � Cj ⊆ ⊥ ≥ 1 with j = i + 1..k
(at most one)

The latter two predicates are useful to express membership of individuals in
mutually exclusive concepts. Moreover, the following interpreted functions are
implemented via @-terms: @is_named_concept(C), returning 1 if C is a named
concept, and 0 otherwise; @min(v,v), @max(v,v), @neg(v), and @impl(v,v,n), for
the truth degree functions ⊗, ⊕, � and � in Gödel logic (other truth degree
functions can be considered, see Sect. 2).

1 val(0..n). concept(bot). eval(bot,X,0) :- ind(X). concept(top). eval(top,X,n) :- ind(X).

2 {eval(C,X,V) : val(V)} = 1 :- concept(C), ind(X), @is_named_concept(C) = 1, not crisp(C).
3 {eval(C,X,0); eval(C,X,n)} = 1 :- concept(C), ind(X), @is_named_concept(C) = 1, crisp(C).

4 eval(and(A,B),X,@min(V,V')) :- concept(and(A,B)), eval(A,X,V), eval(B,X,V').
5 eval(or(A,B),X,@max(V,V')) :- concept(or(A,B)), eval(A,X,V), eval(B,X,V').
6 eval(neg(A),X,@neg(V)) :- concept(neg(A)), eval(A,X,V).
7 eval(impl(A,B),X,@impl(V,V',n)) :- concept(impl(A,B)), eval(A,X,V), eval(B,X,V').
8 :- concept(C), @is_named_concept(C)!=1, crisp(C); ind(X), not eval(C,X,0), not eval(C,X,n).

9 :- concept_inclusion(C,D,θ>,α), eval(impl(C,D),X,V), not V θ> α.
10 ind(ci(C,D,θ<,α)) :- concept_inclusion(C,D,θ<,α).
11 :- concept_inclusion(C,D,θ<,α), eval(impl(C,D),ci(C,D,θ<,α),V), not V θ< α.
12 :- assertion(C,X,θ,α); eval(C,X,V), not V θ α.

13 :- exactly_one(ID), ind(X), #count{C : exactly_one_element(ID,C), eval(C,X,n)} != 1.

14 % find the largest truth degree for the left-hand-side concept of query
15 :∼ query(C,_,_,_), eval(C,X,V), V > 0. [-1@V+1]

16 % verify if there is a counterexample to the truth of query (θ>) or to its falsity (θ<)
17 typical(C,X) :- query(C,_,_,_), eval(C,X,V), V = #max{V' : eval(C,X',V')}.
18 witness :- query(C,D,θ>,α); typical(C,X), eval(impl(C,D),X,V), not V θ> α.
19 witness :- query(C,D,θ<,α); typical(C,X), eval(impl(C,D),X,V), V θ< α.
20 :∼ witness. [-1@1]

21 #show witness : witness.
22 #show eval(C,X,V) : witness, eval(C,X,V), concept(C), @is_named_concept(C) = 1.

Fig. 1. Base encoding, with θ ∈ {≥, ≤, >, <}, θ> ∈ {>, ≥}, and θ< ∈ {<, ≤}

The base encoding is shown in Fig. 1. Line 1 introduces the truth degrees
from Cn and fixes the interpretation of ⊥ and �. Lines 2–3 guess a truth degree
for named concept, using only crisp truth degrees for crisp concepts. Lines 4–8
evaluate composed concepts, and impose crisp truth degrees for crisp concepts.
Lines 9–12 enforce concept inclusions and assertions; note that, by the semantic
definition given in Sect. 2, concept inclusions with ≥ and > define properties
holding for all individuals, while concept inclusions with ≤ and < define prop-
erties holding for at least one individual; such an individual is introduced by

Complexity and Scalability of Defeasible Reasoning 489

line 10. Line 13 enforces exactly one constraints. Line 15 expresses a preference
for assigning a large truth degree to Cq. Lines 17–20 define typical Cq-elements
and express a weaker preference for the existence of a witness: if the query
uses θ> ∈ {>,≥}, a witness is a ϕ-coherent model I and an element x ∈ ΔI

such that (T(Cq))I(x) � DI
q (x) θ>

α
n does not hold (i.e., x makes the query

false), and the query is true if such a witness does not exist; if the query uses
θ< ∈ {<,≤}, a witness is a ϕ-coherent model I and an element x ∈ ΔI such that
(T(Cq))I(x) � DI

q (x) θ<
α
n holds (i.e., x makes the query true), and the query

is false if such a witness does not exist. Lines 21–22 report in output whether a
witness was found (and the truth degrees it assigns to named concepts).

The encoding must be enriched with the enforcement of ϕ-coherence. A first
solution is the addition, for each distinguished concept C, of a custom propagator
that infers eval(C,x,v) whenever ϕ(weightC(x)) = v

n . In case of conflict, the
propagator provides

:- eval(D1,x,v1), ..., eval(Dk,x,vk), not eval(C,x,v).

as the reason of inference, where (T(C) � Di, wi), for i = 1..k, are all the
weighted typicality inclusions for C in T and eval(Di,x,vi) is true in the current
assignment.

23 :∼ query(C,_,_,_), eval_ge(C,X,V). [-1@2]

24 {eval_ge(C,X,V) : val(V), V > 0} :- concept(C), ind(X).

25 :- eval_ge(C,X,V), V > 1, not eval_ge(C,X,V-1). % CI(x) ≥ v
n =⇒ CI(x) ≥ v−1

n

26 % CI(x) = v
n ⇔ CI(x) ≥ v

n and CI(x) < v+1
n

27 :- concept(C), ind(X); eval(C,X,V), V > 0; not eval_ge(C,X,V).
28 :- concept(C), ind(X); eval(C,X,V); eval_ge(C,X,V+1).
29 :- concept(C), ind(X); eval_ge(C,X,V), not eval_ge(C,X,V+1); not eval(C,X,V).

30 % (A � B)I(x) ≥ v
n ⇐⇒ AI(x) ≥ v

n and BI(x) ≥ v
n

31 :- concept(and(A,B)), ind(X), eval_ge(and(A,B),X,V); not eval_ge(A,X,V).
32 :- concept(and(A,B)), ind(X); eval_ge(and(A,B),X,V); not eval_ge(B,X,V).
33 :- concept(and(A,B)), ind(X); eval_ge(A,X,V), eval_ge(B,X,V); not eval_ge(and(A,B),X,V).

34 % (A � B)I(x) ≥ v
n ⇐⇒ AI(x) ≥ v

n or BI(x) ≥ v
n

35 :- concept(or(A,B)), ind(X); eval_ge(or(A,B),X,V); not eval_ge(A,X,V), not eval_ge(B,X,V).
36 :- concept(or(A,B)), ind(X); eval_ge(A,X,V); not eval_ge(or(A,B),X,V).
37 :- concept(or(A,B)), ind(X); eval_ge(B,X,V); not eval_ge(or(A,B),X,V).

38 % (¬A)I(x) ≥ v
n ⇐⇒ AI(x) ≤ 1 − v

n

39 :- concept(neg(A)), ind(X); eval_ge(neg(A),X,V); eval_ge(A,X,n-V+1).
40 :- concept(neg(A)), ind(X), val(V), V > 0; not eval_ge(A,X,n-V+1); not eval_ge(neg(A),X,V).

41 % (A
 B)I(x) ≥ v
n ⇐⇒ AI(x) ≤ BI(x) or BI(x) ≥ v

n

42 l_gt_r(A,B,X) :- concept(impl(A,B)), ind(X); eval_ge(A,X,V); not eval_ge(B,X,V).
43 :- concept(impl(A,B)), ind(X); eval_ge(impl(A,B),X,V); l_gt_r(A,B,X); not eval_ge(B,X,V).
44 :- concept(impl(A,B)), ind(X), val(V), V>0; not l_gt_r(A,B,X); not eval_ge(impl(A,B),X,V).
45 :- concept(impl(A,B)), ind(X); eval_ge(B,X,V); not eval_ge(impl(A,B),X,V).

Fig. 2. Rules replacing line 15 of the base encoding to obtain the order encoding

The base encoding is not suitable to obtain a strict upper bound for our
problem, due to the weak constraint in line 15 using a linear number of levels
with respect to the size of Cn. Such levels can be removed by replacing [-1@V+1]
with [-2V @1] [2], which however results into a weighted preference relation giving

490 M. Alviano et al.

a PNP upper bound [15]. Removing such weights is less trivial, nonetheless can
be achieved by introducing atoms representing CI(x) ≥ v

n , that is, an order
encoding [44] for finitely many-valued interpretations as shown in Fig. 2. Note
that the level in line 23 can be removed by replacing [-1@2] with [-2@1], and
in turn the weight -2 can be removed by introducing two copies of the weak
constraint using [-1@1, 1] and [-1@1, 2]. As for the other rules, lines 24–25
define the search space for predicate eval_ge/2, lines 27–29 match the assignment
of eval/2 and eval_ge/2, and lines 31–45 implement inferences of eval_ge/2
over composed concepts. We therefore have an alternative proof of Theorem 1:
Deciding ϕ-coherent entailment of a typicality inclusion T(C) � D θα from a
weighted LCnT KB K is in PNP [log].

46 % CI(x) = v
n ⇐⇒ LB < weightC(x) ≤ UB

47 :- val(V), val_phi(V,LB,UB); wti(C,_,_), ind(X); eval(C,X,V);
48 not LB < #sum{W*VD, D,VD : wti(C,D,W), eval(D,X,VD)} <= UB.
49 :- val(V), val_phi(V,LB,UB); wti(C,_,_), ind(X); not eval(C,X,V);
50 LB < #sum{W*VD, D,VD : wti(C,D,W), eval(D,X,VD)} <= UB.

51 % CI(x) ≥ v
n ⇐⇒ weightC(x) > LB

52 :- val(V), V > 0, val_phi(V,LB,UB); wti(C,_,_), ind(X); eval(C,X,V);
53 #sum{W ,D,VD : wti(C,D,W), eval_ge(D,X,VD)} > LB.
54 :- val(V), V > 0, val_phi(V,LB,UB); wti(C,_,_), ind(X); not eval(C,X,V);
55 #sum{W, D,VD : wti(C,D,W), eval_ge(D,X,VD)} > LB.

Fig. 3. Rules added to the base encoding (lines 46–50) and to the order encoding
(lines 51–55) to enforce ϕ-coherence via weight constraints.

Even if the custom propagators provide a sensible performance gain with
respect to the previously implemented encoding, indeed settling the grounding
bottleneck, they miss the opportunity for several deterministic and inexpensive
inferences. An alternative way to enforce ϕ-coherence is given by the weight
constraints reported in Fig. 3, for both the base and order encodings, leading
to the results in Sect. 5. The idea is to just check membership of weightC(x) in
the intervals of interest, without materializing its actual value so to avoid the
reintroduction of the grounding bottleneck.

5 Experiment

The encoding in [30] was shown to work as a proof-of-concept for small instances,
and the variation described in Sect. 3 is already challenged by KBs correspond-
ing to fully-connected neural networks with 20 binary inputs and 150 weighted
typicality inclusions. Such KBs are acyclic, considering the graph with an edge
from C to D for (T(C) � D,w)—where C and D are concept names. The size
of the search space is around 106, since, for such KBs, it is given by the combi-
nation of values for concepts corresponding to input nodes, as in fact the values
of the other nodes is implied. We observed that the number of weighted typi-
cality inclusions has a significant impact on the size of the grounding of these
encodings.

Complexity and Scalability of Defeasible Reasoning 491

We therefore focus on the encodings presented in Sect. 4, and consider syn-
thetic KBs encoding fully-connected multi-layer perceptrons with one input
layer, two hidden layers and one output node; nodes are encoded by concept
names, edges are encoded by weighted typicality inclusions, and there are edges
from any node in a layer to any node in the next layer. We consider KBs of four
different sizes, comprising 50/100/200/400 nodes, including 10/20/40/80 input
nodes. For each size, we generated 10 instances by randomizing edge weights. As
for the query, we fix it to T(O) � I1�I2 ≥ 0.5; that is, we check whether instances
classified as Os with highest degree belong to I1 or I2 with at least degree 0.5.
We use as ϕ the approximation in Cn of the logistic function S(x) = 1/(1+e−x),
widely used as activation function in multi-layer perceptrons.

The experiment was run on an Intel Xeon 5520 2.26GHz, with runtime lim-
ited to 30min. Figure 4 and Table 1 report data on running times for answering
the queries using the truth spaces C4 and C9, that is, 5 and 10 truth degrees;
the resulting search spaces have sizes ranging from 510 (around 107) to 1080.
Data is reported for the base and order encodings relying on the use of weight
constraints; the results using the custom propagator are worse. The percentage
of 10 cases solved within a timeout of 30min is shown, as well as the minimum,
average and maximum time for the solved instances. The two scatter plots high-
light that, with a few exceptions, the order encoding provides a performance
gain to the system. Finally, there is an impact of the number of truth degrees
on performance, but there could be space for a compromise between the level of
approximation of reasoning and the consumed computational resources.

Table 1. Runtime of the base and order encodings relying on weight constraints to
answer queries over weighted KBs encoding fully-connected neural networks of different
sizes (10 for each size). The KBs have a concept for each node, and a weighted typicality
inclusion for each edge. Best performance in terms of solved instances is highlighted in
bold, and ties are broken by smallest average execution time.

Size (number of) |Cn| = 5 |Cn| = 10

Solved Runtime (seconds) Solved Runtime (seconds)
inputs nodes edges min avg max min avg max

order 10 50 580 90% 4 139 798 40% 6 393 1534
20 100 2360 60% 15 30 70 50% 21 24 30
40 200 9520 70% 67 79 118 50% 94 242 766
80 400 38240 60% 298 309 339 50% 400 412 433

base 10 50 580 40% 4 465 1639 20% 6 7 8
20 100 2360 50% 16 21 34 50% 22 89 150
40 200 9520 70% 69 96 187 60% 95 180 444
80 400 38240 60% 415 608 1125 40% 500 813 1330

492 M. Alviano et al.

0 300 600 900 1 200 1 500 1 800
0

300

600

900

1 200

1 500

1 800

base encoding

o
r
d
er

en
co

d
in
g

|Cn| = 5

10/ 50/ 580
20/100/ 2360
40/200/ 9520
80/400/38240

0 300 600 900 1 200 1 500 1 800
0

300

600

900

1 200

1 500

1 800

base encoding

o
r
d
er

en
co

d
in
g

|Cn| = 10

10/ 50/ 580
20/100/ 2360
40/200/ 9520
80/400/38240

Fig. 4. Runtime (in seconds) of the base and order encodings relying on weight con-
straints to answer queries over weighted KBs encoding fully-connected neural networks
of different sizes (input nodes/total nodes/total edges). Timeouts are normalized to
1800 s.

Complexity and Scalability of Defeasible Reasoning 493

6 Related Work

Fuzzy description logics (DLs) have been widely studied in the literature for rep-
resenting vagueness in DLs, e.g., by [7,39,43], based on the idea that concepts
and roles can be interpreted as fuzzy sets and fuzzy relations. In fuzzy DLs, for-
mulas have a truth degree from a truth space S, usually either the interval [0, 1],
as in Mathematical Fuzzy Logic [21], or the finitely-valued set Cn. Moreover, the
truth degree functions ⊗, ⊕, � and �, used to define the semantics of operators
�, �, ¬ and inclusion axioms, are chosen as t-norm, s-norm, negation function
and implication function in some well known system of many-valued logic [31].
The finitely-valued case is also well studied for DLs [6,8,24], and in this paper
we have considered a variant of the boolean fragment LCn of the finitely-valued
ALC with typicality considered by [30], by considering a many-valued interpre-
tation of typicality concepts rather than a crisp one. We have taken Cn as the
truth degree set and restricted our consideration to Gödel many-valued logic
with involutive negation.

LCn is extended with typicality concepts of the form T(C), in the spirit of
the extension of ALC with typicality in the two-valued case [26], but in the
many-valued case we use the degree of membership of domain individuals in
a concept C to identify the typical elements of C. While the semantics has
strong relations with KLM logics by [35] and with other preferential semantics,
such as c-representations [34] which also consider weights, we have adopted a
concept-wise multi-preferential semantics, in which different preferences ≺C are
associated with different concepts C. This also makes our formalism different
form the one considered by Casini and Straccia [19], in their rational closure
construction for fuzzy logic. The choice of a finitely-valued interpretation of
the typicality operator has been first considered in [1] to develop a conditional
semantics for gradual argumentation.

The notion of typicality we have considered is clearly reminiscent of prototype
theory [42] and it also relates to Freund’s ordered models for concept representa-
tion [22]. Under some respects, our approach can be regarded as a simplification
of the ordered model approach (in the many-valued case), as we regard features
as concepts and we consider a single (rather then two) preference relation <C

for a concept C. On the other hand, the idea of associating weights/ranks to the
properties of concepts in weighted KBs, as a measure of their saliency, was also
inspired by Brewka’s framework for basic preference descriptions [10,11], and
to Lehmann’s lexicographic closure [37]. Among the recent work on preference
combination, let us mention the algebraic framework for preference combination
in multi-relational contextual hierarchies proposed by Bozzato et al. [9], and the
work by Lieto and Pozzato on concept combination based on typicality [38].
Weighted DL KBs also relate to threshold concepts [4] and to weighted threshold
operators [23,41] which, however, lead to monotonic DLs for weighted concept
combination.

494 M. Alviano et al.

7 Conclusions

Defeasible reasoning over weighted LCn KBs is a computationally intensive task,
previously addressed in the finitely many-valued case by adopting solving tech-
niques suitable for problems in the complexity class Πp

2 [30]. As shown in Sect. 3,
the ASP encoding powering the available solution in the literature can be the
basis for defining an algorithm asking all required queries to the NP oracle in
parallel, and then inspecting the obtained answers to decide if the entailment
holds. We therefore refined the upper bound on the complexity of the problem
to P ||NP = PNP [log], which is optimal as the problem is also PNP [log]-hard.

On a more practical side, in Sect. 4 we revised the previously proposed ASP
encoding by taking advantage of several linguistic extensions and coding tech-
niques for ASP, among them @-terms, custom propagators, weak constraints,
weight constraints and order encoding. While all such constructs improve read-
ability of the code, it turns out that the implementation and maintenance of the
custom propagator has a higher cost than the others. In fact, the implemented
custom propagator was very helpful to settle the grounding bottleneck, but it
was also clear that capturing all deterministic and inexpensive inferences was
non-trivial. A pondered use of weight constraints showed to be more rewarding,
performing better on the verification of typicality properties of the test cases
considered in Sect. 5. Source code is available at https://github.com/alviano/
valphi.

Among acyclic KBs, we have considered KBs corresponding to Multilayer
Perceptrons which represent a specific case of interest for applications. A natu-
ral direction to extend this work is allowing different ϕi functions for different
concepts Ci, to address the verification of typicality properties of MultiLayer
Perceptrons (MLPs) with different activation functions for different layers, as
considered in [40].

This work is also a step towards the definition of proof methods for reason-
ing from weighted KBs under a finitely many-valued preferential semantics in
lightweight DLs, in the spirit of the weighted KBs with typicality for EL [3] (in
the two valued case [28] and in the fuzzy case [29]), as well as for more expressive
DLs, starting from a many-valued ALC with typicality [25].

The co-existence of strict and defeasible inclusions in weighted KBs allows
for combining empirical knowledge with elicited knowledge for reasoning and,
specifically for verification.

Acknowledgements. We thank the anonymous referees for their helpful suggestions.
This research was partially supported by INDAM-GNCS. Mario Alviano was partially
supported by Italian Ministry of Research (MUR) under PNRR project FAIR “Future
AI Research”, CUP H23C22000860006 and by LAIA lab (part of the SILA labs).

References

1. Alviano, M., Giordano, L., Theseider Dupré, D.: Many-valued argumentation,
conditionals and a probabilistic semantics for gradual argumentation. CoRR
abs/2212.07523 (2022)

https://github.com/alviano/valphi
https://github.com/alviano/valphi

Complexity and Scalability of Defeasible Reasoning 495

2. Alviano, M.: Algorithms for solving optimization problems in answer set program-
ming. Intell. Artif. 12(1), 1–14 (2018)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saf-
fiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center, Edinburgh
(2005)

4. Baader, F., Brewka, G., Gil, O.F.: Adding threshold concepts to the description
Logic EL. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322,
pp. 33–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0_3

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook - Theory, Implementation, and Applications. Cam-
bridge (2007)

6. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Joining Gödel and Zadeh
fuzzy logics in fuzzy description logics. Int. J. Uncertain. Fuzziness Knowl. Based
Syst. 20(4), 475–508 (2012)

7. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Brewka,
G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of the KR 2012, 10–14 June 2012,
Rome, Italy (2012)

8. Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description
logics. J. Data Semant. 2(1), 1–19 (2013)

9. Bozzato, L., Eiter, T., Kiesel, R.: Reasoning on multirelational contextual hier-
archies via answer set programming with algebraic measures. Theory Pract. Log.
Program. 21(5), 593–609 (2021). https://doi.org/10.1017/S1471068421000284

10. Brewka, G.: Preferred subtheories: an extended logical framework for default rea-
soning. In: Proceedings of the 11th International Joint Conference on Artificial
Intelligence. Detroit, MI, USA, August 1989, pp. 1043–1048 (1989)

11. Brewka, G.: A rank based description language for qualitative preferences. In: 6th
European Conference on Artificial Intelligence, ECAI 2004, Valencia, Spain, 22–27
August 2004. pp. 303–307 (2004)

12. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: Asprin: customizing answer
set preferences without a headache. In: Proceedings of the AAAI 2015, pp. 1467–
1474 (2015)

13. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles
of KLM-style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1:1–
1:46 (2021)

14. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Brewka,
G., Lang, J. (eds.) KR 2008, pp. 476–484. AAAI Press, Sydney (2008)

15. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive
datalog. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265,
pp. 2–17. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63255-7_2

16. Buss, S.R., Hay, L.: On truth-table reducibility to SAT. Inf. Comput. 91(1), 86–102
(1991)

17. Calimeri, F., et al.: ASP-core-2 input language format. Theory Pract. Log. Pro-
gram. 20(2), 294–309 (2020)

18. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5_9

19. Casini, G., Straccia, U.: Towards rational closure for fuzzy logic: the case of propo-
sitional Gödel logic. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR
2013. LNCS, vol. 8312, pp. 213–227. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-45221-5_16

https://doi.org/10.1007/978-3-319-24246-0_3
https://doi.org/10.1017/S1471068421000284
https://doi.org/10.1007/3-540-63255-7_2
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-642-45221-5_16
https://doi.org/10.1007/978-3-642-45221-5_16

496 M. Alviano et al.

20. Cerami, M., Straccia, U.: On the undecidability of fuzzy description logics with
GCIs with Lukasiewicz t-norm. CoRR abs/1107.4212 (2011)

21. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic,
vol. 37–38. College Publications (2011)

22. Freund, M.: Ordered models for concept representation. J. Log. Comput. 30(6),
1143–1181 (2020)

23. Galliani, P., Righetti, G., Kutz, O., Porello, D., Troquard, N.: Perceptron connec-
tives in knowledge representation. In: Keet, C.M., Dumontier, M. (eds.) EKAW
2020. LNCS (LNAI), vol. 12387, pp. 183–193. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61244-3_13

24. García-Cerdaña, A., Armengol, E., Esteva, F.: Fuzzy description logics and t-norm
based fuzzy logics. Int. J. Approx. Reason. 51(6), 632–655 (2010)

25. Giordano, L.: On the KLM properties of a Fuzzy DL with typicality. In: Vejnarová,
J., Wilson, N. (eds.) ECSQARU 2021. LNCS (LNAI), vol. 12897, pp. 557–571.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86772-0_40

26. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential exten-
sion of Description Logics. Fund. Inform. 96, 1–32 (2009)

27. Giordano, L., Theseider Dupré, D.: An ASP approach for reasoning in a concept-
aware multipreferential lightweight DL. TPLP 10(5), 751–766 (2020)

28. Giordano, L., Theseider Dupré, D.: Weighted conditional EL⊥ knowledge bases
with integer weights: an ASP approach. In: Proceedings of the 37th Interna-
tional Conference on Logic Programming, ICLP 2021 (Technical Communications),
Porto, 20–27 September 2021. EPTCS, vol. 345, pp. 70–76 (2021)

29. Giordano, L., Theseider Dupré, D.: Weighted defeasible knowledge bases and a mul-
tipreference semantics for a deep neural network model. In: Faber, W., Friedrich,
G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp.
225–242. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_16

30. Giordano, L., Theseider Dupré, D.: An ASP approach for reasoning on neural net-
works under a finitely many-valued semantics for weighted conditional knowledge
bases. Theory Pract. Log. Program. 22(4), 589–605 (2022). https://doi.org/10.
1017/S1471068422000163

31. Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press (2001)
32. Haykin, S.: Neural Networks - A Comprehensive Foundation. Pearson (1999)
33. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.

Chapman and Hall/CRC Press (2010). http://www.semantic-web-book.org/
34. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision -

Considering Conditionals as Agents. LNCS, vol. 2087. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44600-1_3

35. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

36. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55(1), 1–60 (1992)

37. Lehmann, D.J.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

38. Lieto, A., Pozzato, G.L.: A description logic of typicality for conceptual com-
bination. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W.
(eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 189–199. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01851-1_19

39. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncer-
tainty and fuzzy vagueness. Int. J. Approx. Reason. 50(6), 837–853 (2009)

https://doi.org/10.1007/978-3-030-61244-3_13
https://doi.org/10.1007/978-3-030-61244-3_13
https://doi.org/10.1007/978-3-030-86772-0_40
https://doi.org/10.1007/978-3-030-75775-5_16
https://doi.org/10.1017/S1471068422000163
https://doi.org/10.1017/S1471068422000163
http://www.semantic-web-book.org/
https://doi.org/10.1007/3-540-44600-1_3
https://doi.org/10.1007/978-3-030-01851-1_19

Complexity and Scalability of Defeasible Reasoning 497

40. Alviano, M., et al.: A preferential interpretation of multilayer perceptrons in a
conditional logic with typicality. CoRR (2023)

41. Porello, D., Kutz, O., Righetti, G., Troquard, N., Galliani, P., Masolo, C.: A tooth-
ful of concepts: towards a theory of weighted concept combination. In: Proceedings
of the 32nd International Workshop on Description Logics, Oslo, Norway, 18–21
June 2019. CEUR Workshop Proceedings, vol. 2373. CEUR-WS.org (2019)

42. Rosch, E.: Natural categories. Cogn. Psychol. 4(3), 328–350 (1973)
43. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL:

uncertainty and the semantic web. In: OWLED*05 Workshop. CEUR Workshop
Proceedings, vol. 188 (2005)

44. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints Int. J. 14(2), 254–272 (2009)

45. Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)

Deontic Equilibrium Logic with eXplicit
Negation

Pedro Cabalar1(B) , Agata Ciabattoni2 , and Leendert van der Torre3

1 University of A Coruña, A Coruña, Spain
cabalar@udc.es

2 TU Wien, Vienna, Austria
agata@logic.at

3 University of Luxembourg, Luxembourg City, Luxembourg
leon.vandertorre@uni.lu

Abstract. Equilibrium logic is a logical characterization of Answer
Set Programming (ASP). We introduce Deontic Equilibrium Logic with
eXplicit negation (DELX), its extension for normative reasoning. In con-
trast to modal approaches, DELX utilizes a normal form that restricts
deontic operators solely to atoms. We establish that any theories in
DELX can be reduced to ASP, and demonstrate the efficacy of this mini-
malist approach in addressing key challenges from the defeasible deontic
logic literature.

1 Introduction

Before deploying AI systems in real-world settings, it is imperative that they
satisfy legal and ethical requirements. Regulators, researchers and practitioners
from various disciplines are providing such requirements, which are typically
expressed as norms involving obligations and related concepts. To assess whether
AI systems comply with them, we need formal languages to represent norms, and
automated reasoning tools to derive conclusions from their representation.

Normative reasoning is the realm of deontic logic, which formalizes obligation
and related concepts. While there is consensus on the importance of defeasibility
in dealing with norms or on the fact that obligations cannot be defeated by their
violations, the specific properties of deontic operators vary depending on the
application. This has resulted in the emergence of numerous deontic systems
(refer to the handbooks [15,16]) as advancements over the “standard” deontic
logic KD [45], which proved inadequate in tackling various scenarios commonly
referred to as deontic ‘paradoxes’; in particular the necessity operator Oϕ in
KD (read as “ϕ is obligatory”) could not deal with secondary obligations (aka
contrary-to-duty) or defeasible reasoning, as in the following well-known scenario

Example 1 (Cottage Fence [41]). The scenario consists of the norms

(i) There must be no fence (f).
(ii) If there is a fence, it must be a white (w) fence.
(iii) If the cottage is by the sea (s), there must be a fence.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 498–514, 2023.
https://doi.org/10.1007/978-3-031-43619-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_34&domain=pdf
http://orcid.org/0000-0001-7440-0953
http://orcid.org/0000-0001-6947-8772
http://orcid.org/0000-0003-4330-3717
https://doi.org/10.1007/978-3-031-43619-2_34

Deontic Equilibrium Logic with eXplicit Negation 499

If we build a fence f , we violate the norm O¬f from (i) but then we are subject
to the secondary obligation of a white fence Ow, that implies Of since a white
fence is a fence. Thus, we may have to accept situations in which both O¬f and
Of coexist, something impossible in KD whose main axiom D: ¬(Of ∧ O¬f)
states that this is inconsistent. Furthermore a cottage by the sea (iii) is usually
read as an exception to the prohibition (i) when we understand the latter as
a default, something that cannot be represented using (a monotonic logic like)
KD.

To represent and reason about norms, deontic logic is commonly used in
combination with techniques from nonmonotonic reasoning (e.g. [29,34]). Few
tools exist e.g. [5,21,24], but flexible computational techniques and standard-
ization are still lacking. Standardization and flexibility are among the key fea-
tures of Answer Set Programming (ASP)—one of the most prominent paradigms
of knowledge representation and reasoning for problem solving [6]. ASP’s suc-
cess can be attributed to its wide range of applications [14], efficient tools like
clingo [17] and DLV [32], and others used in ASP competitions [18], but also
to its solid theoretical foundations. The logical characterization of ASP based
on Equilibrium Logic [39] allows the treatment of the ASP connectives, includ-
ing both default and explicit negation [2]. It has been extended to deal with
quantifiers [40], functions, sets and aggregates [9] and has also facilitated the
homogeneous extension of ASP with temporal [1] and epistemic [8] modalities.
A hybrid combination with the logic KD has been introduced in [3], and called
Deontic Equilibrium Logic (DEL). Syntactically, DEL builds upon Equilibrium
Logic and replaces the role of atoms by KD modal formulas that use a dis-
tinct set of Boolean connectives. This orientation is less integrated than other
modal extensions of equilibrium logic, e.g. [1,8], in the sense that modal and
non-modal operators cannot be freely combined. Besides, instead of collapsing
to regular ASP, the non-modal fragment of DEL can capture Reiter’s Default
Logic [42]. More importantly, being based on KD, DEL considers the simultane-
ous obligation and prohibition of the same fact as inconsistent, which may need
to be relaxed to deal with contrary-to-duties.

In this paper we present a novel deontic extension of Equilibrium Logic that,
instead of dealing with a modal language, focuses on reasoning about literals
built with explicit negation, originally known in ASP as “classical” negation [19].
To this aim, in Sect. 3, we introduce deontic logic programs that minimally extend
ASP with two new propositions representing obligation and prohibition of atoms.
This framework can be straightforwardly encoded in ASP, maintaining the same
computational complexity. To overcome the syntactic limitations of logic pro-
grams, we propose Deontic Equilibrium Logic with eXplicit negation (DELX)
in Sect. 4. DELX is a full logical language that extends equilibrium logic (with
explicit negation) by incorporating obligations and prohibitions as new connec-
tives. We demonstrate that any DELX theory can be reduced to a deontic logic
program, enabling the use of ASP to compute its (deontic) equilibrium mod-
els. To assess the adequacy of the proposed formalism, we use our framework
to tackle the most salient challenges of normative reasoning, which we formal-

500 P. Cabalar et al.

ize and discuss in Sect. 5 as variations of Example 1. Through various DELX
expressions, we capture nuanced interpretations of norms in a formal manner,
showcasing a high degree of elaboration tolerance [33].

2 ASP in a Nutshell

We recall the definition of answer sets for propositional logic programs with
explicit negation; we extend here the original definition in [19] by allowing default
negation in the head, something familiar in modern ASP. We start from a propo-
sitional signature, a set of atoms At , and define an explicit literal as any p ∈ At
or its explicit negation ¬p. A default literal is any explicit literal L or its default
negation not L. A rule is an implication of the form:

H1 ∨ · · · ∨ Hn ← B1 ∧ · · · ∧ Bm (1)

where n,m ≥ 0 and all Hi and Bj are default literals. The disjunction H1 ∨· · ·∨
Hn in (1) is called the rule head. When n = 0, the head is the empty disjunction
⊥, and the rule is said to be a constraint. The conjunction B1 ∧ · · · ∧ Bm in (1)
is called the rule body. When m = 0, it corresponds to the empty conjunction �
and, when this happens, we normally omit both the body � and the ← symbol.
Moreover, if m = 0, n = 1, and the head consists of a unique explicit literal
H1 (no default negation), we say that the rule is a fact. A logic program is a
set of rules. For simplicity, in this paper we deal with finite programs and we
sometimes represent them as the conjunction of their rules. Logic programs may
contain variables, but they are understood as an abbreviation of all their possible
ground instances (for simplicity, we do not allow function symbols).

A propositional interpretation T for a signature At is any set of explicit
literals that is consistent, i.e., it contains no pair of literals p and ¬p for a same
atom p ∈ At . Given any rule r like (1) containing no default negation, we say
that an interpretation satisfies r if there is some head explicit literal Hi ∈ T
whenever all body literals Bj ∈ T . The reduct of a logic program Π with respect
to an interpretation T , written ΠT , is the result of: (1) removing all rules with
a default literal not L in the body such that L ∈ T ; (2) removing all rules with
a default literal not L in the head such that L 	∈ T ; and (3) removing the rest
of default literals. An interpretation T is an answer set of a logic program Π if
it is ⊆-minimal among all the interpretations satisfying all rules of ΠT .

3 Deontic Logic Programs

Following a minimalist approach, we extend ASP with two new types of propo-
sitions that talk about atomic obligations Op (read as “p is obligatory”) and
atomic prohibitions Fp (“p is forbidden”), for any atom p ∈ At . In many deontic
logics (e.g. KD [45]) the prohibition Fp can be defined as the obligation O¬p.
However, at this point, we refrain from reading O and F as real operators, and
see them as prefixes for new ASP atoms called “Op” and “Fp” in the signature.

Deontic Equilibrium Logic with eXplicit Negation 501

Keeping p, Op and Fp separated as three independent propositions makes sense
since, for instance, there is no established connection between Op and p, as one
may have the obligation of p but yet, p may not hold (i.e., the obligation is not
fulfilled), and similarly for prohibitions. In addition, under certain conditions we
will allow Op and Fp to hold together, as discussed in the introduction.

A deontic atom is either p ∈ At or any of the expressions Op or Fp. The
deontic signature At ′ is defined as At ′ := At ∪ {Op | p ∈ At} ∪ {Fp | p ∈ At}.
We may now form explicit literals for At ′. Intuitively, p (and ¬p) means that p
is true (false, resp.) in a factual sense, so that when none of the two hold, there
is no evidence that p or ¬p hold or have happened. E.g., if p means “pay taxes”,
when p holds we can read it as “the payment can be checked”, and when ¬p
holds as “we can prove that the payment was not done”. The explicit literals Op
and ¬Op stand for “the obligation of p is true” and “is explicitly false”, or “¬p is
explicitly permitted” (we will see below that permissions can also be expressed
in a weaker way by using default negation). Again, we may also have that none
of the two hold. We permit having at the same time both the literal ¬p in the
real world and an obligation Op, meaning that the latter is violated. Finally, the
prohibition Fp is dual to the obligation. Its explicit negation ¬Fp can be read
as “p is explicitly permitted” whereas a violation happens when both Fp and
p hold simultaneously. By introducing default negation, for any atom p ∈ At
we can form 12 default literals corresponding to (atomic) normative positions
(cf. [43]):

p,¬p,Op,¬Op,Fp,¬Fp,not p,not ¬p,not Op,not ¬Op,not Fp,not ¬Fp

For instance, the reading of not Op is “there is no evidence about Op” as opposed
to ¬Op that provides evidence for Op to be explicitly false. In fact, we can also
see not Op as an implicit permission for ¬p, and something similar happens with
not Fp, that becomes an implicit permission for p (see C1 in Sect. 5). A literal
like not ¬Fp reads as “there is no reason to conclude the explicit permission of
p”.

An interpretation containing both the obligation Op and the prohibition Fp
is a dilemma and should be inconsistent. This corresponds to the Deontic axiom
D, present in most deontic logics. Let us encode (i)–(iii) from Example 1 as:

Ff Ow ← f ∧ Ff Of ← s (2)

and assume we add the fact s (“the cottage is by the sea”). The only answer set
is {Ff,Of, s} and so, we have a specification demanding both the presence and
absence of a fence simultaneously. This specification should be considered incon-
sistent because, somehow, we have contradicting indications on how to proceed.
To achieve the inconsistency of the program (2)∪{s} we could define the deontic
answer sets as those in which for no atom p, Op,Fp occurs. However, to deal
with secondary obligations, we may require that both Op and Fp hold, if one of
them has been violated. As a white fence is also a fence, we add:

f ← w Of ← Ow (3)

502 P. Cabalar et al.

and if we take the extended program (2) ∪ (3) ∪ {f} we obtain the answer set
{f,Ff,Ow,Of} so, we conclude both Ff and Of . These two deontic atoms
however do not provide indications on how to proceed, as the decision to put a
fence has been already taken, forcing the violation of Ff and the fulfillment of
Of , derived from Ow. The conclusion is that Of and Ff may coexist, provided
that one of the two has been violated. This leads us to the following definition.

Definition 1. A deontic interpretation T is a propositional interpretation for
At ′ satisfying: {Op,Fp} ⊆ T implies {p,¬p} ∩ T 	= ∅, for any p ∈ At .

T is consistent by definition, that is, T cannot contain literals A and ¬A for a
same deontic atom A. To be a deontic interpretation, we additionally require that
the atoms Op and Fp can only hold together when T contains information about
p, i.e., either p or its explicit negation ¬p are in T . Note that the mere presence
of Op and Fp together will not permit to derive p or ¬p, as the derivation can
only be achieved by application of rules in the logic program. We call deontic
answer sets to the answer sets of a deontic logic program that are also deontic
interpretations. To obtain them, we can use the axiom schema (for any p ∈ At):

⊥ ← Op ∧ Fp ∧ not p ∧ not ¬p (wD)

that is a weaker version of the Deontic axiom D, and states that the conjunction
of Op and Fp is inconsistent only if none of the two has been violated.

Proposition 1. T is a deontic answer set of a deontic logic program Π iff T is
an answer set of Π ∪ (wD).

To see the effect of (wD), consider again the program Π = (2) ∪ {s}. As
mentioned before, the only answer set of this program would be T = {Ff,Of, s}
but this is ruled out by constraint (wD). In fact, T is not a deontic answer
set since we have both the obligation and the prohibition of f but we did not
provide any information about f or ¬f . This means we face a dilemma, because
we have two contradictory norms and none of them has been violated. If we take
program Π ′ = Π ∪ {f} (that is, we decide to put a fence) then Ff is violated
and consistency is restored, obtaining the answer set T ′ = {Ff,Of, s, f,Ow}.
Note how we derive the obligation of a white fence Ow, and that the prohibition
of Ff has not been retracted, but is being violated instead. If, instead of f , we
are said that no fence will be built ¬f (i.e. we have evidence that there is no
fence), then program Π ′′ = Π ∪{¬f} also becomes consistent, leading this time
to answer set T ′′ = {Ff,Of, s,¬f} where Of is violated.

Proposition 1 allows a direct encoding of any deontic logic program Π into
a regular ASP program Π ′. To do so, a compact representation can be achieved
by reifying all atoms in Π to become arguments of three predicates in Π ′, say
h, ob and fb respectively standing for holds (in a factual sense), obligatory and
forbidden. As an illustration, (2)–(3) can be represented as the ASP program1

below where the constraint in the last line is an encoding of (wD).
1 In the ASP-core-2 input language, ←,¬ and ∧ are represented as ‘:-’, ‘-’ and com-

mas.

Deontic Equilibrium Logic with eXplicit Negation 503

fb(f). % The fence is forbidden
ob(w) :- h(f), fb(f). % CTD: if fence, it must be white
ob(f) :- h(s). % Obligatory fence if by the sea
h(f). % We have a fence
h(f) :- h(w). % White fence means fence
ob(f) :- ob(w). % The same for obligation
:- ob(P), fb(P), not h(P), not -h(P). % Axiom (wD)

This encoding can be easily automated in linear time, so the complexity results
of deontic logic programs are as in the regular (disjunctive) ASP case [13]. In
particular we have the following:

Proposition 2. Deciding whether a deontic logic program Π has a deontic
answer set is ΣP

2 -complete. If every head in Π is free from disjunction, deciding
the existence of a deontic answer set is NP-complete.

4 Extension to Equilibrium Logic

Introducing deontic atoms in logic programs provides a simple and practical
approach for formalizing deontic scenarios, but falls short if we need a proper
logical formalism. Note that, so far, O and F are not proper operators but
just a kind of prefix for atoms: in fact, all program operators in ASP are also
treated under a very restricted syntax, and their semantics relies on a syntactic
transformation (the program reduct). If we are interested in arbitrary nesting
of operators, defining new constructs or extensions to incorporate temporal or
epistemic reasoning, we need a logical formalisation that overcomes the syntax
limitations and the program reduct operation. An excellent starting point for our
purposes is the logical characterization of ASP based on Equilibrium Logic [39]
which has also been extended to deal with strong [36] or explicit negation [2].
As happens in ASP, when explicit negation is used, equilibrium models become
three-valued (an atom can be true p, false ¬p or none of the two). To introduce
O and F in this setting, we adopt a practical approach, so that, although they
will be applicable now on other operators, their expressive power is still limited
to a kind of three-valued semantics. The advantage of this approach is to reduce
arbitrary formulas to theories where deontic operators are only used in explicit
literals, something that can be easily translated into ASP logic programs. Yet,
when compared to a modal interpretation of O and F, the price to pay is a
loss in expressiveness when dealing with obligations on compound formulas: for
example, O(ϕ ∨ ψ) will simply be Oϕ ∨ Oψ. This coincides with the ASP
reading of disjunction, and in fact to the natural language reading of disjunction
in the free choice permission scenario [30].

Equilibrium models are defined by a selection among models from the inter-
mediate logic called Here-and-There [28] (HT), or 3-valued Gödel logic. We
now incorporate deontic operators in the extension X5 of HT with explicit nega-
tion [2], thus defining the logic of Deontic Here-and-There with Explicit Negation

504 P. Cabalar et al.

(DHTX for short). A formula ϕ of DHTX follows the grammar:

ϕ ::= p ∈ At | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ | Oϕ | Fϕ

We define the derived operators ϕ ↔ ψ
def= (ϕ → ψ)∧(ψ → ϕ), not ϕ

def= (ϕ → ⊥)
and the constant � as not ⊥. We assume that the conditional rule ϕ ← ψ in
logic programs is nothing but the reversed implication ψ → ϕ. We also define
the following derived deontic operators:

Ov ϕ
def= Oϕ ∧ ¬ϕ Of ϕ

def= Oϕ ∧ ϕ

Onf ϕ
def= Oϕ ∧ not ϕ Onv ϕ

def= Oϕ ∧ not ¬ϕ

Ou ϕ
def= Oϕ ∧ not (ϕ ∨ ¬ϕ) Pϕ

def= ¬Fϕ

Od ϕ
def= (not P¬ϕ → Oϕ) Pd ϕ

def= (not Fϕ → Pϕ)
O(ϕ | ψ) def= (ψ ∨ Onv ψ → Oϕ) Fx ϕ

def= Ox ¬ϕ

Pϕ stands for the explicit permission for ϕ whereas Pd ϕ is its default version.
The superindexed variants of O stand for: d=default, f=fulfilled, v=violated,
nv=non-violated, nf=non-fulfilled and u=undetermined. We define the same
variants Fx in terms of Ox for all x ∈ {d, f ,v,nv,nf ,u} having in mind that
we can now replace Fϕ by O¬ϕ. The conditional obligation O(ϕ | ψ) (“ϕ is
obligatory, given ψ”) is explained in Sect. 5 (challenge C6).

A formula is said to be deontic if it contains deontic operators, and non-
deontic otherwise. A theory is a set of formulas. Finite theories (or subtheories)
are understood as the conjunction of their formulas. Notice that deontic logic
programs are theories.

Definition 2. A Deontic HT-interpretation is a pair 〈H,T 〉 of sets of explicit
literals s.t. T is a deontic interpretation and H ⊆ T . 〈H,T 〉 is total when H = T .

Intuitively, literals in H (“here”) can be considered founded or proved, literals
in T \ H are assumed but unfounded and literals not in T (“there”) are not
assumed and they directly do not hold. For instance, the pair H = {Op,Fp}
and T = {¬p,Op,Fp,¬Fq} is a deontic HT-interpretation where Op and Fp are
founded whereas ¬p and ¬Fq are assumed but unfounded. The interpretation
just considers the rest of literals as not assumed. Note that the potential incon-
sistency between Op and Fp is only checked at the component T . The same
effect is obtained if (wD) is added as an axiom instead of requiring T to be
a deontic interpretation in Definition 2. In this case, the two literals can occur
together because ¬p ∈ T , so we assume that Op is violated. On the other hand,
¬p is not justified at H but we still allow Op and Fp in H, since ¬p is assumed
at T .

We define the set of “deontic worlds” as {r, o, f} respectively standing for
real, obligation and forbidden. Given a world w ∈ {r, o, f}, its complementary
world w is defined as r

def= r, o
def= f and f

def= o.

Deontic Equilibrium Logic with eXplicit Negation 505

Definition 3. M = 〈H,T 〉 satisfies (resp. falsifies) a formula ϕ at a deontic
world w ∈ {r, o, f}, written M,w |= ϕ (M,w=| ϕ), if the conditions below hold:

ϕ M,w |= ϕ when M,w=| ϕ when

� (⊥) always (never) never (always)

α ∧ β M,w |= α and M,w |= β M,w=| α or M,w=| β

α ∨ β M,w |= α or M,w |= β M,w=| α and M,w=| β

α → β
M ′, w 	|= α or M ′, w |= β
for M ′ ∈{M, 〈T, T 〉}

〈T, T 〉, w |= α and M,w=| β

¬α M,w=| α M,w |= α

p
p ∈ H if w = r

Op ∈ H if w = o
¬Fp ∈ H if w = f

¬p ∈ H if w = r
¬Op ∈ H if w = o
Fp ∈ H if w = f

Oα M, o |= α M, o=| α

Fα M, f =| α M, f |= α

In the definition above, if we just take the syntactic fragment for ∧, ∨, ¬, ⊥, �
and atoms (we can fix w = r), we obtain classical logic with strong negation [44].
If we further extend it with the evaluation of → (still fixing w = r) we get
Equilibrium Logic with explicit negation X5 [2]. So, the new features are the
three deontic worlds and their interplay with the operators O, F and ¬. As we
can see, the interpretation of an atom p ∈ At depends on each specific world.
The real world w = r works as expected whereas, in world w = o, satisfying
(resp. falsifying) an atom p actually corresponds to requiring that the literal
Op (resp. ¬Op) holds in the interpretation. In the world w = f the roles of
literals are swapped, so satisfaction of an atom p corresponds to including the
literal ¬Fp whereas falsifying p corresponds to the literal Fp. The reason for this
swapping is that a prohibition Fα is a kind of negation (we will see later that it
is actually equivalent to O¬α). The operators that permit moving to a different
deontic world are ¬, O and F. To satisfy Oα we simply check the satisfaction of
α after “jumping” to world o, regardless of the world we started from, and the
same happens for the falsification of Oα. With Fα a similar effect is obtained for
the world f , but again, it additionally swaps satisfaction to falsification and vice
versa. In the case of explicit negation, satisfaction of ¬α becomes falsification
of α but, additionally, if we are not in the real world w 	= r, we switch from
w to w. An example on how these three operators work: M, r |= O¬p becomes
M,o |= ¬p that is interpreted as M,f =| p and, finally, it amounts to Fp ∈ H.

An HT-interpretation 〈H,T 〉 is a model of a theory Γ , written 〈H,T 〉 |= Γ , if
〈H,T 〉, r |= ϕ for all ϕ ∈ Γ . A formula ϕ is a DHTX-tautology (or DHTX-valid),
|= ϕ in symbols, if any DHTX-interpretation is a model of ϕ. DHTX is the logic
induced by all DHTX-tautologies.

The properties below are fundamental in any extension of HT.

506 P. Cabalar et al.

Theorem 1 (Persistence). For any DHTX-interpretation 〈H,T 〉, any world
w ∈ {r, o, f} and any formula ϕ: (i) 〈H,T 〉, w |= ϕ implies 〈T, T 〉, w |= ϕ for
any world w, and (ii) 〈H,T 〉, w=| ϕ implies 〈T, T 〉, w=| ϕ for any world w. ��
Proposition 3. For any 〈H,T 〉, world w and formula ϕ: (i) 〈H,T 〉, w |= not ϕ
iff 〈T, T 〉, w 	|= ϕ; (ii) 〈H,T 〉, w =| not ϕ iff 〈T, T 〉, w |= ϕ. ��
DHTX is an extension of X5 in the following sense:

Proposition 4. If ϕ is X5-valid then ϕ is DHTX-valid.

For instance, the following X5 tautologies are also DHTX-valid:

¬(ϕ → ψ) ↔ not not ϕ ∧ ¬ψ ¬not ϕ ↔ not not ϕ (4)

As happens in X5 the validity of ϕ ↔ ψ does not guarantee that we can always
substitute ϕ by ψ. To this aim, we introduce the following stronger relation
(taken from [2]). Two formulas ϕ and ψ are DHTX-equivalent, written ϕ ≡ ψ, if
for any DHTX-interpretation M = 〈H,T 〉 and any world w ∈ {r, o, f}, we have
both: (1) M,w |= ϕ iff M,w |= ψ; and (2) M,w=| ϕ iff M,w=| ψ.

Proposition 5. For any pair of formulas ϕ and ψ, if ϕ ≡ ψ then |= ϕ ↔ ψ.

In general, the other direction does not hold. As a counterexample (already used
in [2]) take the DHTX-tautology p∧not p ↔ ⊥ (which is also an X5-tautology).
It is not difficult to see, however, that p ∧ not p 	≡ ⊥. In fact, we cannot replace
p ∧ not p inside ¬(p ∧ not p) to get ¬⊥. Indeed, the former amounts to a rule
¬p ← not p while the latter to �.

Yet, we can still use |= ϕ ↔ ψ to perform substitutions in some contexts:

Theorem 2. |= ϕ ↔ ψ iff ϕ and ψ have the same DHTX-models.

Corollary 1. Let Γ [ϕ] be a theory containing a subformula ϕ not in the scope of
¬, F or O and let |= ϕ ↔ ψ. Then, Γ [ϕ] and Γ [ψ] have the same DHTX-models.

Definition 4. A total DHTX-interpretation 〈T, T 〉 is an equilibrium model of
a theory Γ if 〈T, T 〉 |= Γ and there is no H ⊂ T such that 〈H,T 〉 |= Γ .

Deontic Equilibrium logic is the non-monotonic logic induced by equilibrium
models. For deontic logic programs, answer sets and equilibrium models coincide:

Theorem 3. Let Π be a deontic logic program. A deontic interpretation T is a
deontic answer set of Π iff 〈T, T 〉 is an equilibrium model of Π. ��

We show below that any deontic theory can be reduced to a deontic logic
program, and so, its equilibrium models can be eventually computed via regular
ASP. We start observing a group of DHTX-equivalences that also hold in X5:

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬¬ϕ ≡ ϕ ¬⊥ ≡ � ¬� ≡ ⊥ (5)

We can use (4)–(5) from the outermost occurrences of ¬ to push this operator
inside non-deontic connectives. As a result we get an Explicit-negation Normal

Deontic Equilibrium Logic with eXplicit Negation 507

Form (XNF), where all outermost occurrences of ¬ are applied to atoms, to O or
to F. To unfold expressions inside O or F we can further apply the equivalences:

O(ϕ ∨ ψ) ≡ Oϕ ∨ Oψ F(ϕ ∨ ψ) ≡ Fϕ ∧ Fψ (6)
O(ϕ ∧ ψ) ≡ Oϕ ∧ Oψ F(ϕ ∧ ψ) ≡ Fϕ ∨ Fψ (7)

O⊥ ≡ ⊥; F⊥ ≡ � O� ≡ �; F� ≡ ⊥ (8)
O(ϕ → ψ) ≡ Oϕ → Oψ (9)

Onot ϕ ≡ not Oϕ Fnot ϕ ≡ not not ¬Fϕ (10)
O¬ϕ ≡ Fϕ F¬ϕ ≡ Oϕ (11)
OOϕ ≡ Oϕ FOϕ ≡ ¬Oϕ (12)
OFϕ ≡ Fϕ FFϕ ≡ ¬Fϕ (13)

By (11), we may choose either O or F as a primitive connective, and hence the
primitive DELX connectives can be reduced to five ∧,∨,→,¬,O, together with
the constant ⊥. Equivalences (6)–(13) do not cover the case when F is applied
to an implication: if so, we can only proceed from the outermost occurrences
of this operator (as happened with explicit negation) using the valid double
implications:

F(ϕ → ψ) ↔ not not ¬Fϕ ∧ Fψ ¬F(ϕ → ψ) ↔ ¬Fϕ → ¬Fψ (14)

Using these properties we can reach the syntactic form we call Deontic-Atom
Normal Form (DANF), in which all deontic operators are applied to atoms.
Once in DANF, we can then resort to X5 reduction to logic programs.

Theorem 4. Any deontic theory can be reduced to a deontic logic program hav-
ing the same DHTX models.

It is not hard to see that the reduction to DANF is polynomial whereas the step
from arbitrary combinations of ∧,∨,not ,→ into a logic program may be expo-
nential due to distributivity laws. Yet, [11] proposes an alternative polynomial
reduction that avoids the combinatorial blowup by introducing auxiliary atoms.

5 DELX at Work on Challenging Normative Problems

We discuss the nuances of defeasible deontic reasoning that we aimed to capture,
using variants of the cottage regulation (Example 1). We consider below the
starting program Π = (2) ∪ (3) and analyze the challenges from [7] we refer to
as C1–C6.

C1 (Explicit versus Negative permission). We want to distinguish between
the existence of permission vs absence of prohibition. Suppose that a new neigh-
bor ignores the local regulations and has in mind the practical reasoning rule:

(iv) If it is permitted, I build a fence around my cottage

508 P. Cabalar et al.

A cautious behavior is to wait for an explicit permission to build the fence.
A more adventurous behavior is to build it if there is no explicit prohibition
(negative or implicit permission): without more information, she concludes to
build the fence, but retracts that conclusion once she becomes aware of norm (i).
Explicit and implicit permissions can be respectively captured by the rules:

f ← ¬Ff (15) f ← not Ff (16)

The program (16) alone permits to conclude f (the adventurous neighbor
builds the fence), but with Π ∪ (16) this is not possible anymore, as we have Ff .
On the other hand, the cautious neighbor cannot conclude f from Π ∪ (15) or
even from (15) alone, since it requires the permission ¬Ff . We could get it with
a cottage by the sea, but then (i) should be formalized as a default (see C4).

We may be sometimes interested in generalizing this distinction into a Closed
World Assumption for a given set Γ of formulas. For instance, a Closed Explicit
Permission Assumption (CEPA) stands for “anything not explicitly forbidden
is permitted” and can be simply formalized as Pd ϕ for every ϕ ∈ Γ . Similarly,
a Closed Negative Permission Assumption (CNPA) rather means “anything not
explicitly permitted is forbidden” and just corresponds to Fd ϕ, for all ϕ ∈ Γ .

C2 (Contrary-to-Duty (CTD) and Compliance). A CTD or secondary
obligation comes into force only when another (the primary) obligation is vio-
lated. For instance, the two sentences (i) and (ii) from Example 1 are primary
obligation and CTD. A different, though related concept is that of compensatory
obligation, as:

(v) If you put a fence when forbidden, you should pay a fine.

If we combine the prohibition (i) with the existence of a fence we want to derive
from (v) that fences are forbidden and that a fine must be paid. This is known
as monitoring, compliance, or conformance checking. Likewise, if obligations are
fulfilled, rewards may be given. Encoding compliance in DELX is straightfor-
ward: we may just use the derived operators for violation Fv or fulfillment Ff .
E.g., (v) is formalized as (Fv f → Opay) that amounts to the logic program
rule:

Opay ← Ff ∧ f (17)

C3 (CTD and Dilemmas). A dilemma is a situation where we deal with the
simultaneous obligation and prohibition of a same fact. For instance having (i)
together with Ow leads to a dilemma. There is consensus in the literature that
such dilemmas should be inconsistent. This is, in fact, what happens with the
program Π ∪ {Ow} that has no answer set, since axiom (wD) does not accept
Of ∧Ff without information about f . However, when a dilemma follows from a
CTD, consistency should be restored. E.g., suppose we have the premises (i)–(iii)
plus (v) and, additionally, there exists a fence f . By (ii), we must have a white
fence, but this is in conflict with (i), that says we must have no fence at all.
This scenario is consistent in DELX: the program Π ∪ (17) ∪ {f} has a unique

Deontic Equilibrium Logic with eXplicit Negation 509

answer set {f,Ff,Ow,Of,Opay} where Of ∧ Ff is now consistent because
Ff has been violated. Notice that some deontic approaches remove the CTD
dilemma by retracting the primary prohibition (i) to have a fence. This leads to
the so-called drowning problem [38]: we would no longer have a violation of Ff
so we cannot derive the payment of the fine Opay . Note that the combination of
compliance and dilemmas has become problematic for some deontic approaches
(most notably Dyadic Deontic Logic [27,37]), requiring ad hoc representations
like the introduction of so-called violation constants.

C4 (CTD and Defeasible Obligations). Some obligations should be read as
defaults in the presence of exceptions. Let us rephrase (iii) as the permission:

(vi) If the cottage is by the sea (s), there may be a fence.

This was the original wording for the Cottage scenario in [41], introduced to
illustrate the distinction between CTD reasoning ((i) and (ii)) and exceptions
((i) and (vi)); the two types of reasoning should be treated differently. Indeed,
if we consider (i) and (ii) as instances of defeasible reasoning, we would let the
primary obligation (i) be defeated by the secondary obligation (ii), which is not
desirable. Premise (vi) leads to a new reading of the normative scenario: on the
one hand, being by the sea provides now an explicit permission to build the fence;
on the other hand, (i) is read now as “There must be no fence, unless a permission
is granted ” becoming a default prohibition. In our DELX formalization we may
simply replace the first and third formulas in (2) respectively by Fd f (default
prohibition) and Pf ← s (explicit permission) leading to:

Ff ← not ¬Ff Ow ← f ∧ Ff ¬Ff ← s (18)

If we have no information about the location, we consider the program (18)∪ (3)
alone, and the only answer set is {Ff}, we cannot put a fence by default. If
we add the fact s we obtain {s,¬Ff}, that is, we have the permission to put
a fence, and Ff is no longer derived. If we further know there is a fence, the
program (18) ∪ (3) ∪ {s, f} produces the answer set {s, f,¬Ff} so there is no
CTD obligation of a white fence, because there is no violated prohibition.

C5 (Constitutive Norms). We now deal with the derivation of obligations in
presence of an “is a” or a “count as” relation. Though there exist various kinds
of constitutive norms of increasing complexity, in this paper we only consider
simple factual rules. In the example we assume that a white fence is a fence.
Does this also imply that the obligation for white fences implies the obligation
for fences? And does the prohibition for fences imply the prohibition for white
fences? In general yes, but as we see next, it is useful to allow for exceptions.

Our previous formalization was already considering a constitutive norm (3),
namely, since a white fence w is a fence f , we also want to derive Of from Ow.
In fact, contraposition for explicit negation could also be added:

¬w ← ¬f Fw ← Ff (19)

where the former means that not having a fence implies not having a white fence,
and the latter, that a prohibition to put a fence is also a prohibition to put a

510 P. Cabalar et al.

white fence. The program Π ∪ (19) ∪ {f}, however, has no answer set. This is
because we derive Ow and Fw, whereas no evidence about the fence color is
given: once w or ¬w is added to the program, consistency is restored. A less
rigid formalization of these implicit derived obligations is to replace (3) by:

f ← w ¬w ← ¬f Of ← Onv w Fw ← Fnv f (20)

where the rules for obligations become now default rules. The condition Onv w
stands for Ow∧not ¬w, i.e., we derive the obligation of a fence if we have a non-
violated obligation of a white fence. In the example, this is the case. Similarly,
the condition Fnv f stands for Ff ∧ not f meaning that the prohibition of a
white fence is derived when we had a non-violated prohibition of a fence. In
our example, we do have the prohibition of a fence, but it has been violated,
so the default does not apply, and we do not obtain a prohibition to put a
white fence. As a result, the only equilibrium model of (2) ∪ (20) ∪ {f} is again
{f,Ff,Ow,Of}.

C6 (Defeasible Deontic Detachment). This requirement is related to the
distinction between factual versus deontic detachment, that is, when a condi-
tional obligation should sometimes be triggered by facts and sometimes by other
obligations. This is typically illustrated by the notorious scenario in [12] adapted
below to our running example. Assume we add the norms:

(vii) If we put a fence, we must put a street mailbox (m).
(viii) If we do not put a fence, we must not put a street mailbox.

If we have information about the presence or absence of a fence, we will respec-
tively derive the obligation or prohibition to have a mailbox by factual detach-
ment. However, when no information is given, by default, we still want to derive
the prohibition of a mailbox from the prohibition to have a fence in (i). This
corresponds to a (defeasible) deontic detachment.

A direct reading of the premises (vii) and (viii) could be formalized as:

Om ← f Fm ← ¬f (21)

The program Π ∪ (21) ∪ {f ∨ ¬f} as the two answer sets {¬f,Ff,Fm} and
{f,Ff,Ow,Of,Om} so the obligation about the mailbox is derived from the
facts f or ¬f respectively (factual detachment). The problem with (21) arises
in presence of Π ∪ (21) without further evidence about f or ¬f . In that case,
no obligation is derived, whereas given Ff , the mailbox would be also forbidden
(deontic detachment). To strengthen our representation, we replace (21) by the
conditional obligations:

O(m | f) O(¬m | ¬f) (22)

The derived operator O(m | f) is an abbreviation of (Om ← f ∨Onv f) and the
disjunction in the antecedent can be unfolded into the two rules (Om ← f) and
(Om ← Onv f). Note that Onv f , in turn, stands for Of ∧ not ¬f . A similar

Deontic Equilibrium Logic with eXplicit Negation 511

unfolding can be done for O(¬m | ¬f) to find out that (22) amounts to the two
rules (21) we had before plus the following account for deontic detachment:

Om ← Of ∧ not ¬f Fm ← Ff ∧ not f

As a result, for Π ∪ (22) ∪ {f ∨ ¬f} we get the same answer sets as before, but
when we just consider Π ∪ (22), the only answer set is {Ff,Fm} and we cannot
put a mailbox because we have a (non-violated) prohibition to put a fence.

6 Related and Future Work

Related deontic extensions of ASP are Deontic Logic Programs (DLP) [22,23]
and Deontic Temporal ASP (DTASP) [21]. Both make use of the KD modal-
ity [45] (in DTASP, also temporal operators) and define answer sets in terms
of the (syntactic) reduct operation on logic programs. DLP was later extended
to Deontic Equilibrium Logic (DEL) [3] that avoids the reduct but, as already
discussed, maintains a strict syntactic separation between logic program con-
nectives and deontic formulas. In contrast, DELX relies on logical semantics,
applicable to arbitrary combinations of operators and free from syntactic restric-
tions or transformations. The modal logic KD allows DLP and DTASP to deal
with obligations on compound formulas, while DELX is specifically designed
for obligations on literals. One final important difference is that DELX makes
an homogeneous integration of explicit negation, a feature already existing in
ASP and commonly used in its applications. This permits to deal with factual
situations where no information, e.g., about fence nor ¬fence, is available. Repre-
senting incomplete information about the real world in DLP or DTASP, requires
instead epistemic modalities or the use of ASP explicit negation, whose semantic
treatment is different from negation inside a modality.

A computationally oriented approach for deontic logic extended with features
from nonmonotonic reasoning is Defeasible Deontic Logic (DDL) [24] (extending
Defeasible Logic [35]) whose syntax is similar to logic programming without the
default negation. To express defeasibility, DDL relies on different types of impli-
cations in rules (strict, defeasible and defeaters) additionally subscripted with
deontic modalities. This contrasts with the five primitive DELX connectives.
DDL also has a more complex semantics w.r.t. DELX, that employs neigh-
bourhood models [25] or argumentation [26], and uses a dedicated theorem
prover [31].

As immediate future work, we plan to develop a deontic ASP tool that accepts
both deontic logic programs and DELX expressions as input, enabling the inte-
gration of deontic knowledge into existing ASP domains or encodings. Also, we
will explore the extrapolation to DELX of other ASP features, such as the tem-
poral extension [1], the generation of explanations [10] or ASP-based policies
such as [20]. As a long term goal, we plan to obtain a translation of (temporal)
DELX into monitors and use them in combination with Reinforcement Learning
(cf. [4]) to design autonomous agents sensitive to legal, social and ethical norms.

512 P. Cabalar et al.

Acknowledgments. Work partially supported by the WWTF project ICT22-023,
by the Spanish Ministry of Science and Innovation, Spain, MCIN/AEI/10.13039/5011
00011033 (grant PID2020-116201GB-I00), by Xunta de Galicia, Spain and the Euro-
pean Union (grant GPC ED431B 2022/33) and by project LIANDA - BBVA Founda-
tion Grants for Scientific Research Projects, Spain.

References

1. Aguado, F., et al.: Linear-time temporal answer set programming. Theory Pract.
Logic Program. 23(1), 2–56 (2023). https://doi.org/10.1017/S1471068421000557

2. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Revisiting
explicit negation in answer set programming. Theory Pract. Logic Program. 19(5–
6), 908–924 (2019). https://doi.org/10.1017/S1471068419000267

3. Alferes, J.J., Gonçalves, R., Leite, J.: Equivalence of defeasible normative systems.
J. Appl. Non Class. Logics 23(1–2), 25–48 (2013)

4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the AAAI, pp. 2669–2678
(2018)

5. Benzmüller, C., Parent, X., van der Torre, L.: A deontic logic reasoning infrastruc-
ture. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936,
pp. 60–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_6

6. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Broersen, J., van der Torre, L.: Ten problems of deontic logic and normative rea-
soning in computer science. In: Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010-
2011. LNCS, vol. 7388, pp. 55–88. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31485-8_2

8. Cabalar, P., Fandinno, J., Fariñas del Cerro, L.: Autoepistemic answer set pro-
gramming. Artif. Intell. 289, 103382 (2020). https://doi.org/10.1016/j.artint.2020.
103382

9. Cabalar, P., Fandinno, J., Fariñas del Cerro, L., Pearce, D.: Functional ASP with
intensional sets: application to Gelfond-Zhang aggregates. Theory Pract. Logic
Program. 18(3–4), 390–405 (2018). https://doi.org/10.1017/S1471068418000169

10. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set program-
ming. In: Ricca, F., et al. (eds.) Proceedings of the 36th International Conference
on Logic Programming (Technical Communications). EPTCS, vol. 325, pp. 124–
136 (2020). https://doi.org/10.4204/EPTCS.325.19

11. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA
2005. LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005). https://doi.
org/10.1007/11595014_2

12. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24(2),
33–36 (1963)

13. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and
application to nonmonotonic logics. In: Miller, D. (ed.) Logic Programming, Pro-
ceedings of the 1993 International Symposium, pp. 266–278. MIT Press (1993)

14. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016). https://doi.org/10.1609/aimag.v37i3.2678

https://doi.org/10.1017/S1471068421000557
https://doi.org/10.1017/S1471068419000267
https://doi.org/10.1007/978-3-319-94418-0_6
https://doi.org/10.1007/978-3-642-31485-8_2
https://doi.org/10.1007/978-3-642-31485-8_2
https://doi.org/10.1016/j.artint.2020.103382
https://doi.org/10.1016/j.artint.2020.103382
https://doi.org/10.1017/S1471068418000169
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.1007/11595014_2
https://doi.org/10.1007/11595014_2
https://doi.org/10.1609/aimag.v37i3.2678

Deontic Equilibrium Logic with eXplicit Negation 513

15. Gabbay, D., Horty, J., Parent, X., van der Mayden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems, vol. 2. College Publications
(2021)

16. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications (2013)

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko,
P.: Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeed-
loei, N., Vos, M.D. (eds.) Technical Communications of the 32nd International
Conference on Logic Programming, ICLP 2016 TCs. OASIcs, vol. 52, pp. 2:1–
2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/
10.4230/OASIcs.ICLP.2016.2

18. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming compe-
tition: design and results. Theory Pract. Logic Program. 20(2), 176–204 (2020).
https://doi.org/10.1017/S1471068419000061

19. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. N. Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/
BF03037169

20. Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
22–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_7

21. Giordano, L., Martelli, A., Dupré, D.T.: Temporal deontic action logic for the
verification of compliance to norms in ASP. In: Francesconi, E., Verheij, B. (eds.)
International Conference on Artificial Intelligence and Law, ICAIL 2013, pp. 53–62.
ACM (2013)

22. Gonçalves, R., Alferes, J.J.: An embedding of input-output logic in deontic logic
programs. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012. LNCS
(LNAI), vol. 7393, pp. 61–75. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31570-1_5

23. Gonçalves, R., Alferes, J.J.: Deontic logic programs. In: Gini, M.L., Shehory, O.,
Ito, T., Jonker, C.M. (eds.) International Conference on Autonomous Agents and
Multi-agent Systems, pp. 1333–1334. IFAAMAS (2013)

24. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Philos. Log. 42(6), 799–829 (2013). https://
doi.org/10.1007/s10992-013-9295-1

25. Governatori, G., Rotolo, A., Calardo, E.: Possible world semantics for defeasi-
ble deontic logic. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012.
LNCS (LNAI), vol. 7393, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31570-1_4

26. Governatori, G., Rotolo, A., Riveret, R.: A deontic argumentation framework
based on deontic defeasible logic. In: Miller, T., Oren, N., Sakurai, Y., Noda,
I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol.
11224, pp. 484–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03098-8_33

27. Hansson, B.: An analysis of some deontic logics. Nôus 3, 373–398 (1969)
28. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der

Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse,
pp. 42–56 (1930)

29. Horty, J.F.: Deontic logic as founded on nonmonotonic logic. Ann. Math. Artif.
Intell. 9(1–2), 69–91 (1993). https://doi.org/10.1007/BF01531262

30. Kamp, H.: Free choice permission. In: Proceedings of the Aristotelian Society, vol.
74, pp. 57–74 (1973)

https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1017/S1471068419000061
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/978-3-540-89982-2_7
https://doi.org/10.1007/978-3-642-31570-1_5
https://doi.org/10.1007/978-3-642-31570-1_5
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1007/978-3-030-03098-8_33
https://doi.org/10.1007/978-3-030-03098-8_33
https://doi.org/10.1007/BF01531262

514 P. Cabalar et al.

31. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04985-9_29

32. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7(3), 499–562 (2006). https://doi.org/10.1145/1149114.
1149117

33. McCarthy, J.: Elaboration tolerance (1998). http://www-formal.stanford.edu/
jmc/elaboration.html

34. Nute, D. (ed.): Defeasible Deontic Logic. Kluwer, Dordrecht (1997)
35. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and

Logic Programming. Oxford University Press (1993)
36. Odintsov, S., Pearce, D.: Routley semantics for answer sets. In: Baral, C., Greco,

G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
343–355. Springer, Heidelberg (2005). https://doi.org/10.1007/11546207_27

37. Parent, X.: Preference-based semantics for Hansson-type dyadic deontic logics: a
survey of results. In: Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van
der Torre, L. (eds.) Handbook of Deontic Logic and Normative Systems, vol. 2,
pp. 7–70 (2021)

38. Parent, X., van der Torre, L.: I/O logics with a consistency check. In: Broersen,
J.M., Condoravdi, C., Shyam, N., Pigozzi, G. (eds.) Deontic Logic and Norma-
tive Systems - 14th International Conference, DEON 2018, pp. 285–299. College
Publications (2018)

39. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

40. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 546–560. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89982-2_46

41. Prakken, H., Sergot, M.: Dyadic deontic logic and contrary-to-duty obligations. In:
Nute, D. (ed.) Defeasible Deontic Logic, pp. 223–262. Springer, Dordrecht (1997).
https://doi.org/10.1007/978-94-015-8851-5_10

42. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
43. Sergot, M.: Normative positions. In: Gabbay, D., Horty, J., Parent, X., van der

Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative
Systems, vol. 1, pp. 353–406 (2013)

44. Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation.
Stud. Logica. 36(1–2), 109–125 (1977)

45. von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)

https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117
http://www-formal.stanford.edu/jmc/elaboration.html
http://www-formal.stanford.edu/jmc/elaboration.html
https://doi.org/10.1007/11546207_27
https://doi.org/10.1007/BFb0023801
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-94-015-8851-5_10

Categorical Approximation Fixpoint
Theory

Angelos Charalambidis1(B) and Panos Rondogiannis2

1 Department of Informatics and Telematics, Harokopio University, Athens, Greece
acharal@hua.gr

2 Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, Athens, Greece

prondo@di.uoa.gr

Abstract. Approximation fixpoint theory (AFT) is a powerful frame-
work that has been widely used for defining the semantics of non-
monotonic formalisms in artificial intelligence and logic programming.
In particular, AFT is used to derive the fixed points of (potentially non-
monotonic) operators over complete lattices. However, in certain appli-
cation domains, there arise operators defined over structures that are not
necessarily complete lattices. Therefore, the quest for a more general ver-
sion of AFT has been lingering as an interesting research direction. We
develop an extension of AFT, namely Categorical AFT, that allows us to
study the fixed points of (potentially non-functorial) operators defined
over categories. Since categories are more general structures than com-
plete lattices, we argue that our approach provides a more general and
unified framework for the study of non-monotonicity. The versatility of
category theory creates the potential of new insights and applications.

Keywords: Approximation Fixpoint Theory · Category Theory ·
Non-Monotonicity · Domain Theory

1 Introduction

Approximation fixpoint theory (AFT) [14,15] has been developed to provide
semantics for non-monotonic formalisms that arise in artificial intelligence and
logic programming. Associated with every such formalism, there usually exists
a non-monotonic operator defined over an appropriate structure of semantic
objects. AFT provides a means for finding the fixed points of such operators:
given an arbitrary operator O : L → L, where L is a complete lattice, AFT
approximates O using a monotonic operator AO, called the approximator of O.
The fixed points of AO can be shown to approximate those of O (and in many
cases to actually coincide with those of O). An alternative view of AFT is that it
represents an extension of the Knaster-Tarski fixed point theorem of monotone
lattice operators [30], to arbitrary ones. It has been used in several applica-
tion domains, such as extensions of logic programming [7,11,22], non-monotonic
logics [32], argumentation theory [29], description logics [20], and so on.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 515–530, 2023.
https://doi.org/10.1007/978-3-031-43619-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_35&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_35

516 A. Charalambidis and P. Rondogiannis

There often arise applications that require deviations from the standard
framework of AFT [11,12,19]. Therefore, the quest for more general versions
of AFT has been lingering as an interesting research direction. We develop an
extension of AFT, namely Categorical AFT, that allows us to study the fixed
points of (potentially non-functorial) operators over arbitrary categories. Since
categories are much more general mathematical structures than complete lat-
tices, Categorical AFT provides a genuine extension of classical AFT. In a more
specific view, the two main contributions of the present paper, are the following:

– We generalize classical AFT [14,15] and make it applicable to a much broader,
categorical, setting. AFT is currently applicable to operators that are defined
over complete lattices. Our development extends AFT to handle operators
that are defined over arbitrary categories that possess both an initial and a
terminal object. We generalize (almost all) the results of classical AFT [14]
to corresponding results in our categorical framework.

– We argue that all the standard applications of AFT can be retrieved in our
framework by specializing our results to categories that are complete lattices.
Moreover, we argue that there exist novel categorical applications that can
not be handled by classical AFT. In particular, we identify the connections
of our approach with fundamental domain-theoretic constructions that have
been developed in the semantics of programming languages. Linking domain
theory with the techniques that have arisen in the area of non-monotonic
logics, creates the potential of new insights and applications. In particular,
we argue that such applications can lead to the development of novel higher-
order non-monotonic formalisms for artificial intelligence.

As a brief preview of the analogies between AFT and Categorical AFT, the
reader can consult the following table. All these analogies will be explained in
detail in the forthcoming sections of the paper. We assume familiarity with the
basic notions of category theory (see, for example, [3]) and AFT (see [14,15]).
Moreover, the proofs of all the results of the paper have been omitted; they will
be provided in an extended version of the paper that will appear online.

AFT Categorical AFT

Complete lattice L Category K with initial and terminal objects

Elements of L Objects in K

Partial order � of L Arrows in K

Equality in L Object isomorphism in K

Monotonic function Functor

Least fixed point of a function Initial fixed point of a functor

Operator O : L → L Partial Functor O : K → K

Approximator A : L2 → L2 Functor A : K × Kop → K × Kop

The paper is organized as follows. Section 2 presents preliminary concepts
regarding fixed points of functors in categories. Section 3 initiates our develop-

Categorical Approximation Fixpoint Theory 517

ment of a categorical version of AFT. In particular, it introduces the notion of a
(categorical) approximator, defines its Kripke-Kleene fixed point and investigates
its properties. Section 4 introduces the well-founded fixed point of a (categorical)
approximator and studies its properties. Section 5 examines conditions under
which the initial fixed point of an approximator corresponds to an initial fixed
point of an operator. Section 6 discusses applications of Categorical AFT. Finally,
Sect. 7 gives pointers for future work.

2 Fixed Points in Categories

The notion of “functor” in category theory is a conceptual generalization of
the familiar mathematical notion of “monotonic function”. This section contains
background material on the key notions that arise when studying the fixed points
of functors. In our presentation we follow the notation and definitions of [27].

Definition 1. Let K be a category and let F : K → K be a functor. A pair (x, v)
will be called a fixed point of F if x is an object of K and v : F (x) → x is an
isomorphism of K. A prefixed point (respectively, postfixed point) of F is a pair
(x, v) where x is an object of K and v : F (x) → x (respectively, v : x → F (x))
is a morphism of K.

Prefixed points (respectively, postfixed points) of a functor F are usually
called algebras (respectively, coalgebras) of F . For compatibility with the glos-
sary of AFT, we find it more convenient to use the terms “prefixed point” and
“postfixed point” instead of “algebra” and “coalgebra” (although the latter are
clearly more standard in categorical contexts).

In some cases, when the actual isomorphism in the above definition is not
needed in our discussion, instead of writing “(x, v) is a fixed point of F”, we will
write F (x) ∼= x (where ∼= denotes isomorphism between objects). The following
lemma is easy to establish.

Lemma 1. Let K be a category, let F : K → K be a functor, and let (x, v) be
a fixed point of F . Let y be an object in K such that y ∼= x. Then, there exists
an isomorphism u : F (y) → y, i.e., (y, u) is a fixed point of F .

The notions of initial prefixed point and initial fixed point of a functor F , are
defined through the categories PFP(F) and FP(F) of the prefixed points and
fixed points of F , respectively. The following definition introduces PFP(F) and
FP(F); for a proof that these are indeed categories, see for example [9].

Definition 2. Let K be a category and let F : K → K be a functor. The category
of prefixed points of F , denoted by PFP(F), is defined as follows:

– The objects of PFP(F) are the prefixed points of F .
– For all objects (x, v), (x′, v′) in PFP(F), the arrows from (x, v) to (x′, v′)

in PFP(F) are those arrows f in K for which the following diagram com-
mutes:

518 A. Charalambidis and P. Rondogiannis

F (x) x

F (x′) x′

v

F (f) f

v′

The category FP(F) of fixed points of F , is defined analogously as above.

Definition 3. Let K be a category and let F : K → K be a functor. The initial
prefixed point (respectively, initial fixed point) of F , is the initial object, if it
exists, of the category PFP(F) (respectively, FP(F)).

The notions of terminal postfixed point and terminal fixed point are dual to
the above ones and can be defined in an analogous way (see, for example, [2]). A
functor may have many fixed points; however, the initial (respectively, terminal)
fixed point is unique up to a natural isomorphism. Not every functor has an
initial (respectively, terminal) fixed point. However, many “reasonable” functors
over appropriate categories can be shown to have initial (respectively, terminal)
fixed points.

3 Extending AFT to Categories

In some applications of category theory, there arise mappings which are not
functors. Moreover, we are often interested in the fixed points of such mappings,
and the standard categorical fixed point constructions [6,27] can not (directly)
be used in such cases since they only apply to functors (for a classical such
example, see Sect. 6). We extend AFT to a categorical setting so as to capture
such mappings. We start by defining the notion of an operator over a category K.
Intuitively, an operator is a partial functor that is defined for all the objects but
not necessarily for all the arrows of K.

Definition 4. Let K be a category. We say that a mapping O : K → K is an
operator if for every object x in K there is an object O(x) in K and for every
morphism f : x → y in K either there is an arrow O(f) : O(x) → O(y) in K,
or O(f) is undefined. Moreover:

– for every object x of K, O(idx) is defined and O(idx) = idO(x); and
– for all arrows f , g of K, if both O(f) and O(g) are defined and composable,

then O(f · g) = O(f) · O(g).

Fixed points of operators can be defined analogously to fixed points of func-
tors.

Definition 5. Let K be a category and let O : K → K be an operator. A
pair (x, v) will be called a fixed point of O if x is an object and v : O(x) → x is
an isomorphism in K.

We will also need the notion of the opposite of an operator.

Categorical Approximation Fixpoint Theory 519

Definition 6. Let K be a category and let O : K → K be an operator. The
opposite operator Oop : Kop → Kop of O is an operator such that:

– for every object x, Oop(x) = O(x); and,
– for every arrow f , if O(f) is undefined then Oop(fop) is undefined and if

O(f) is defined then O(f) = Oop(fop)op.

Since operators are not necessarily (total) functors, the well-known tech-
niques [2,4,27] for finding fixed points of functors, are not always applicable in
this more general setting. We revise and extend the principles of AFT in order
to derive fixed points of categorical operators. A key notion in our development
is that of an approximation category. More specifically, given a category K, we
define its approximation category to be the category K×Kop. This allows us to
define approximators as functors in K × Kop → K × Kop. We require that our
category K has both an initial and a terminal object, and by duality, the same is
true of Kop. The initial fixed point of an approximator A : K×Kop → K×Kop,
if it exists, will be called the Kripke-Kleene fixed point of A.

Definition 7. Let K be a category. Then, K×Kop is the approximation cate-
gory of K and is denoted by K≈.

In the rest of the paper we fix K to denote a category which has both an
initial and a terminal object, and we will use K free in definitions and results.

Let A : K≈ → K≈ be an endofunctor. Then, it is easy to verify that there
exist functors A1 : K × Kop → K and A2 : K × Kop → Kop such that for
all objects x in K and y in Kop it is A(x, y) = (A1(x, y), A2(x, y)), and for all
arrows f in K and g in Kop it is A(f, g) = (A1(f, g), A2(f, g)).

Given an operator O : K → K, we will define an endofunctor A : K≈ → K≈

which will be closely related to O. The fixed points of A will give insights on the
fixed points of O. Of special interest will be the fixed points of A that are exact.

Definition 8. A pair (x, y) in K≈ is called exact if x ∼= y. A fixed point
((x, y), v) of a functor F : K≈ → K≈ is called exact if (x, y) is an exact pair.

Definition 9. Let O : K → K be an operator and let A : K≈ → K≈ be a
functor. We will say that A approximates O (or, A is an approximator of O),
if for all (x, y) in K≈ with x ∼= y, it holds A(x, y) ∼= (O(x), O(y)).

Many of the approximators that arise in practice are symmetric:

Definition 10. An approximator A : K≈ → K≈ is symmetric iff

– for all objects x in K and y in Kop, A1(x, y) = A2(y, x); and,
– for all arrows f in K and g in Kop, A1(f, g) = A2(gop, fop)op.

The following lemma demonstrates that when we seek the exact fixed points
of a functor A that approximates O, it suffices to look at pairs of the form (x, x).

520 A. Charalambidis and P. Rondogiannis

Lemma 2. Let O : K → K be an operator and let A : K≈ → K≈ be an
approximator of O. Let x, y be objects in K such that x ∼= y. If A(x, y) ∼= (x, y),
then A(x, x) ∼= (x, x) and A(y, y) ∼= (y, y).

The following proposition indicates that we can study the fixed points of an
operator O by examining the exact fixed points (if they exist) of its approxima-
tors.

Proposition 1. Let O : K → K be an operator and let A : K≈ → K≈ be an
approximator of O. Then, for all x in K, O(x) ∼= x if and only if A(x, x) ∼= (x, x).

The following corollary is a direct consequence of Lemma 2 and Proposition 1.

Corollary 1. Let O : K → K be an operator and let A : K≈ → K≈ be a functor
that approximates O. Assume that A has an initial fixed point ((x, y), v) that is
exact. Then O(x) ∼= x and O(y) ∼= y.

As in classical AFT, we will refer to the initial fixed point of A as the Kripke-
Kleene fixed point of A. For many applications, the Kripke-Kleene fixed point
suffices (see Subsect. 6.3 for one such case). However, in certain application
domains a different fixed point seems more appropriate. This is the main topic
of the next section.

4 The Stable Operator and the Well-Founded Fixed
Point

Given an operator O : K → K and an approximator A : K≈ → K≈ of O, we
define the stable operator CA : K≈ → K≈ of A. As it turns out, every fixed point
of CA induces a corresponding fixed point of A. In particular, the initial fixed
point of CA (if it exists) is a distinguished one, which, in general, is different
from the initial fixed point of A. We will call the initial fixed point of CA the
well-founded fixed point of A. In many applications (such as for example, in
logic programming), the well-founded fixed point can give more insight than the
Kripke-Kleene one.

In order to define CA, we will use the initial (respectively, terminal) fixed
points of two auxiliary operators, namely S1

A : Kop → K and S2
A : K → Kop.

We start with some preliminary definitions and propositions.

Definition 11. Let K be a category and let A : K≈ → K≈ be a functor. Then:

– For every y in Kop, we introduce the mapping A1(·, y) : K → K, which for
every object x and arrow f in K is defined as A1(·, y)(x) = A1(x, y) and
A1(·, y)(f) = A1(f, idy).

– For every x in K, we introduce the mapping A2(x, ·) : Kop → Kop, which for
every object y and arrow g in Kop is defined as A2(x, ·)(y) = A2(x, y) and
A2(x, ·)(g) = A2(idx, g).

The following proposition generalizes [14, Proposition 5].

Categorical Approximation Fixpoint Theory 521

Proposition 2. Let K be a category and let A : K≈ → K≈ be a functor.
Then, for all objects x in K and y in Kop, the mappings A1(·, y) : K → K and
A2(x, ·) : Kop → Kop, are functors.

In order for an approximator to have a well-founded fixed point, we will
require that it is sensible:

Definition 12. A functor A : K≈ → K≈ will be called sensible iff for all objects
x in K and y in Kop, the functor A1(·, y) has an initial fixed point, denoted
by μA1(·, y), and the functor A2(x, ·) has a terminal fixed point, denoted by
νA2(x, ·).
By abuse of notation, we will also use μA1(·, y) and νA2(x, ·) to denote the
underlying objects of these fixed points.

Given a sensible functor A : K≈ → K≈, we define the mappings S1
A : Kop →

K and S2
A : K → Kop which operate on objects as follows: for all x in K and

y in Kop, S1
A(y) = μA1(·, y) and S2

A(x) = νA2(x, ·). The definitions of S1
A and

S2
A on arrows, are more involved (see [5, Notation 7.1] for the case of S1

A and [5,
Notation 7.5] for S2

A). We can now define the stable operator of a sensible functor:

Definition 13. Let A : K≈ → K≈ be a sensible functor. The stable operator
CA : K≈ → K≈ of A is defined as follows: for every pair of objects (x, y)
in K≈, CA(x, y) = (S1

A(y), S2
A(x)), and for every pair of arrows (f, g) in K≈,

CA(f, g) = (S1
A(g), S2

A(f)).

The following proposition is a direct consequence of the definitions of S1
A,

S2
A, and CA.

Proposition 3. Let A : K≈ → K≈ be a sensible functor. Then, CA : K≈ → K≈

is a functor.

As it turns out, the fixed points of a sensible functor are closely related to
those of its stable operator.

Lemma 3. Let A : K≈ → K≈ be a sensible functor. Let (x, y) in K≈ such that
CA(x, y) ∼= (x, y). Then, A(x, y) ∼= (x, y).

Remark 1. Notice that in the above lemma the fixed point of CA is not necessarily
identical to that of A. More specifically, the lemma suggests that if ((x, y), v) is
a fixed point of CA, then there exists an isomorphism v′ such that ((x, y), v′) is a
fixed point of A. The object parts of the two fixed points are identical, however
the isomorphisms may differ. In the following, in situations where the above
lemma is used, we will talk about the fixed point of A induced by the given fixed
point of CA.

If O is an operator and A is an approximator of O, then every exact fixed
point of CA gives rise to a closely related fixed point of O. Formally:

Corollary 2. Let O : K → K be an operator and let A : K≈ → K≈ be a
sensible functor that approximates O. Let (x, y) in K≈, such that x ∼= y. If
CA(x, y) ∼= (x, y) then O(x) ∼= x and O(y) ∼= y.

522 A. Charalambidis and P. Rondogiannis

Of special interest is the initial fixed point of CA, if it exists. Notice that if
this fixed point is exact, then, by Corollary 2, it gives rise to corresponding fixed
points of O. We have the following definition.

Definition 14. Let O : K → K be an operator and let A : K≈ → K≈ be a
sensible functor that approximates O. Assume that CA has an initial fixed point.
Then, the fixed point of A induced by the initial fixed point of CA is called the
well-founded fixed point of A.

We now demonstrate that the proposed approach is compatible with the
categorical approaches for deriving initial fixed points of functors (such as, for
example, [2,4,27]). In particular, we show that if O is a (total) functor, then
there exists an obvious approximator AO of O whose well-founded fixed point is
the initial fixed point of O.

Proposition 4. Let O : K → K be a functor that has an initial fixed point.
Then, there exists a sensible functor AO that approximates O, such that CAO

has the initial fixed point ((μO, μO), v), where v = id(µO,µO).

Therefore, when O is a functor, then the well-founded fixed point of the
obvious approximator of O, leads us to the initial fixed point of O.

5 Initiality of Fixed Points

The approach followed in this paper in order to construct the Kripke-Kleene
fixed point of an operator O, is to define an approximator AO and compute its
initial fixed point. If this fixed point is of the form ((x, y), v), with x ∼= y, then
we know that there exist isomorphisms u1, u2 such that (x, u1) and (y, u2) are
fixed points of O. However, we do not know whether (x, u1) or (y, u2) are initial
fixed points of O; actually, we don’t even know if O has an initial fixed point,
because we know nothing about the “ordering” of the fixed points of O.

In order to get an initiality result like the one described above, we need some
more insight into the way that O behaves on arrows – recall that, at present, we
have no assumptions regarding the way that O operates on arrows. Below, we
define the notion of smooth operator, which intuitively means that O is a (total)
functor when restricted to the fixed points of O.

Definition 15. Let O : K → K be an operator. Then, O is a smooth operator
if for all fixed points (x, u) and (y, v) of O, and for every arrow f : x → y in K,
O(f) : O(x) → O(y) is an arrow in K.

It is straightforward to verify that the fixed points of a smooth operator,
form a category.

Definition 16. Let O : K → K be a smooth operator. The fixed points of O
define a category FP(O), as follows:

– The objects of FP(O) are the fixed points of O.

Categorical Approximation Fixpoint Theory 523

– For all objects (x, v), (x′, v′) in FP(O), the arrows from (x, v) to (x′, v′) in
FP(O) are those arrows f in K for which the following diagram commutes:

O(x) x

O(x′) x′

v

O(f) f

v′

We now show that when O is a smooth operator and we are given an exact
initial fixed point of A, then there exists a corresponding initial fixed point of
O. Before proceeding to the statement of this result, we need to strengthen our
definition of approximator. This requires a notion of isomorphism for arrows.

Definition 17. Let f1 : x → x′ and f2 : y → y′ be arrows in K such that x ∼= y
and x′ ∼= y′. We will say that f1 is strongly isomorphic to f2, written f1 ∼= f2, if
for all isomorphisms v : x → y and u : x′ → y′, the following diagram commutes:

x y

x′ y′

v

f1 f2

u

It can be verified that the above notion is a stronger version of arrow iso-
morphism than the one that can be defined through the arrow category Arr(K)
of K (see [3] for a formal definition of the arrow category).

Definition 18. Let O : K → K be an operator and let A : K≈ → K≈ be
a functor. We will say that A strongly approximates O, if the following two
conditions are satisfied:

– for all x, y in K with x ∼= y, it holds A(x, y) ∼= (O(x), O(y)); and,
– for all arrows f : x → x′ in K and g : y → y′ in Kop such that O(f)

and Oop(g) are both defined and x ∼= y and x′ ∼= y′, it holds A(f, g) ∼=
(O(f), Oop(g)).

Lemma 4. Let O : K → K be a smooth operator and let A : K≈ → K≈ be a
functor that strongly approximates O. If ((x, y), (v1, v2)) is an exact initial fixed
point of A, then there exist isomorphisms w1, w2 such that (x,w1) is an initial
fixed point of O and (y, w2) is an initial fixed point of Oop.

In the case where our category K is a partial order, we get the following
proposition.

Proposition 5. Let K be a category that corresponds to a partial order. Let
O : K → K be a smooth operator and let A : K≈ → K≈ be a functor that
approximates O. Then, A strongly approximates O.

The above proposition implies that if K is a partial order and A is an approx-
imator of a smooth operator O, then, by Lemma 4, if the least fixed of A is exact,
then it is also the least fixed point of O. This result generalizes the discussion
just after [14, Corollary 15].

524 A. Charalambidis and P. Rondogiannis

6 Comparison with AFT and a Novel Application Area

In this section, we compare Categorical AFT with classical AFT and discuss how
the former can be used to handle common AFT applications. However, the most
important contribution of this section is the development of a novel application
in the area of domain theory. Since domain theory is the main semantic tool for
capturing most features of modern programming languages, we believe that Cat-
egorical AFT paves the way for the development of powerful new non-monotonic
formalisms for artificial intelligence and logic programming.

6.1 A Comparison with Classical AFT

As we have already discussed, classical AFT can be used for operators O : L → L,
where L is a complete lattice. This guarantees that if AO : L2 → L2 is an
approximator of O, then AO has a least fixed point. Moreover, as shown in [14],
the stable operator CAO

of AO also has a least fixed point. On the other hand,
Categorical AFT considers operators O : K → K, where K is an arbitrary
category that has both an initial and a terminal object. However, in our case,
if AO : K≈ → K≈ is an approximator of O, then it is not always guaranteed
to have an initial fixed point (because, functors over arbitrary categories do not
always have initial fixed points). Similarly, the stable operator CAO

of AO in
our framework, does not always have an initial fixed point (we require AO to
be sensible in order for CAO

to have a fixed point). Recapitulating, in classical
AFT the fixed points of AO and CAO

are always guaranteed to exist, while in
Categorical AFT, due to its generality, the existence of the specific fixed points
(especially in the case of demanding applications, see Subsect. 6.3 below) must
be established as a separate task.

Despite the above difference, Categorical AFT is clearly a proper extension
of classical AFT: it is well-known that every preordered set defines a category,
and therefore every complete lattice L defines a corresponding category K that
has an initial and terminal object (namely, the least and greatest element of L).
In this special case, all the results of Sects. 3 and 4 collapse to corresponding
results in [14]. However, categories are much more general structures than pre-
ordered sets and therefore they have a much broader applicability (see also the
forthcoming discussion in Subsect. 6.3). Of course, it is important to note that
since complete lattices have more specific properties than arbitrary categories,
there exist certain results of [14], such as for example the minimality property of
the well-founded fixed point (see [14, Theorem 19]), which do not seem to hold
for arbitrary categories. Notice also that, due to the more abstract nature of
categories, certain results are harder to establish in the categorial setting (such
as, for example, the minimality result of Sect. 5).

6.2 Classical Applications Through the Prism of Categorical AFT

In this subsection we give an example of how Categorical AFT can be used
in classical applications of AFT. We consider the case of logic programming,

Categorical Approximation Fixpoint Theory 525

which is one of the most well-known application domains of AFT. We assume
some familiarity with the basic concepts that arise in the semantics of logic
programming (see for example [16,21]). Let P be a normal logic program, namely
a program consisting of rules that may use negation-as-failure in their bodies.
The semantics of such programs is developed based on the notion of Herbrand
interpretation. Given a program P , let us denote by BP the so-called Herbrand
Base of P , namely the set of atoms that appear in P . A Herbrand interpretation
of P is a subset of the Herbrand Base of P . The semantics of logic programs
is based on the so-called immediate consequence operator TP of P , which maps
Herbrand interpretations to Herbrand interpretations, i.e., TP : 2BP → 2BP .
For logic programs that do not use negation, it can be easily demonstrated that
TP is monotonic [21]. Moreover, 2BP is a complete lattice under set inclusion,
and therefore the least fixed point of TP exists and can be computed using the
Knaster-Tarski fixed point theorem. This least fixed point of TP is taken as the
meaning of program P . However, for general logic programs the function TP

is not monotonic in general, and it does not always have a least fixed point.
The fixed points of TP however, are of paramount importance even in the non-
monotonic case and the semantics of such programs is centered around these
fixed points.

We can model the above state of affairs in category theoretic terms. Given
program P , we define the category HP of the Herbrand interpretations of P .
The objects of HP are the Herbrand interpretations of P . Given interpretations
I, J in HP , an arrow f : I → J exists if and only if I ⊆ J . Given an arrow
f : I → J , TP (f) is defined if and only if TP (I) ⊆ TP (J); in this case, TP (f) is
the unique arrow from TP (I) to TP (J). It is straightforward to establish that,
under the above definition, TP is an operator in the sense of Definition 4.

It has been shown [13, pages 181–182] that there exists a simple approximator
for TP in the classical AFT sense, namely a ≤i-monotonic function on 2BP ×
2BP → 2BP ×2BP . A reformulation of this approximator in our categorical setting
is straightforward and gives a functor ATP

: H≈
P → H≈

P . Since ATP
is essentially

a monotonic function over the complete lattice of Herbrand interpretations, it
has a least fixed point. Notice that we can obtain the same result by easily
verifying that ATP

is a smooth operator that strongly approximates TP in the
sense of Definition 18; therefore Lemma 4 applies to it and it has a least fixed
point. Moreover, ATP

is a sensible functor (in the sense of our Definition 12) and
therefore CATP

also has a least fixed point.

6.3 A Novel Application: Non-monotonicity in Domain Theory

As it turns out, non-monotonicity emerges in unexpected contexts that are not
directly related to traditional application areas of AFT. As we are going to dis-
cuss in this subsection, non-monotonicity is a key concept in the area of domain
theory [1]. Categorical AFT gives an elegant approach for finding the fixed points
of domain equations that involve non-monotonic operators. Since domain theory
is the theoretical cornerstone for developing the semantics of modern program-
ming languages, we believe that the connections established in this subsection

526 A. Charalambidis and P. Rondogiannis

will form the basis for developing the semantics of novel formalisms for knowl-
edge representation and logic programming. In particular, since the semantics of
higher-order languages are heavily based on domain theory, the material in this
subsection may form the basis for the development of non-monotonic higher-
order knowledge representation systems (possibly unifying and extending exist-
ing approaches such as [10,11,24,25]).

The solution of recursive domain equations is one of the fundamental issues in
the area of the denotational semantics of programming languages. For example,
the solution of D ∼= At + [D → D] specifies the semantics of the untyped
lambda calculus over a domain At of atoms. The early tools for the solution of
such equations were provided by the pioneering work of Dana Scott, based on his
inverse limit construction (see, for example, [26,28] for accessible introductions).

The possibility of solving domain equations using a categorical approach, was
advocated by Wand [33], Smyth and Plotkin [27], Adámek and Koubek [2,4],
and others. Motivated introductions to the categorical approach can be found
in many standard texts, such as [1,18,23,31]. The key idea is that, under cer-
tain conditions, a recursive domain equation gives rise to a functor. The initial
fixed point of this functor can be taken as the solution of the domain equa-
tion. There exist some well-known constructions for obtaining the initial fixed
point of a functor (see for example Adámek’s theorem [6] and the closely related
Smyth-Plotkin Basic Lemma [27]). Despite their fundamental nature, these con-
structions can not be used directly to solve certain involved domain equations
such as the D ∼= At + [D → D] one mentioned above. The problem with this
equation is that the aforementioned categorical fixed point constructions can
only be applied directly to covariant functors, while the arrow functor [− → −]
has mixed variance: it is contravariant in its left argument and covariant in its
right one (see [23, page 68] or [18, page 327] for a thorough discussion of this
issue). To paraphrase the problem using AFT terminology, the arrow functor is
non-monotonic and therefore we can not find the least fixed point of the corre-
sponding domain equation using standard categorical techniques. To bypass this
problem, Smyth and Plotkin in [27] take an indirect route in order to make the
Basic Lemma applicable to such domain equations. This state of affairs has been
noted and discussed in the literature [1]: “While it may seem harmless to restrict
a covariant functor to embeddings in order to solve a recursive domain equation,
it is nevertheless not clear what the philosophical justification for this step is.
For mixed variant functors this question becomes even more pressing since we
explicitly change the functor”.

In the following, we describe a solution to the above problem in the context
of Categorical AFT. We assume familiarity with some background material that,
due to space limitations, we can not include here. An accessible source for this
material is [5], from which we will cite the needed results.

Let K be a strict DCPO-enriched category (see [5, Section 4, page 50]). As
discussed in Sect. 3, we also require that K has both an initial and a terminal
object. Such categories are common: by Lemma 4.4 of [5] (which is attributed to
Barr [8, Proposition 4.7]), every strict DCPO-enriched category with ω-colimits,

Categorical Approximation Fixpoint Theory 527

has an initial object that is also a terminal object. A well-known example of a
strict DCPO-enriched category is DCPO⊥, the category of directed complete
partial orders with least element and continuous functions that preserve the least
element. Notice that DCPO⊥ has the dcpo {⊥} as both an initial and terminal
object. The following lemma, mentioned in [5] and attributed to Smyth and
Plotkin [27], will play an important role in our discussion. The notion of local
continuity is a fundamental one, initially introduced in [27, Definition 10].

Lemma 5 (Smyth and Plotkin [27]). Every locally continuous endofunctor
on a strict DCPO-enriched category, has an initial fixed point which is also a
terminal fixed point.

We can use the above result to give a solution to the domain equation
D ∼= At + [D → D]. Assume that K = DCPO⊥. Moreover, consider the
operator O : K → K defined as O(D) = At + [D → D], O(idD) = idO(D),
and O(f) is undefined for all other arrows in K. Before defining the approx-
imator AO : K≈ → K≈ for O, we define, as an intermediate step, a mixed
variant functor F : Kop × K → K as follows: for objects D in K and E
in Kop, F (E,D) = At + [E → D], and for arrows f in K and g in Kop,
F (g, f) = idAt +[g → f]. It is straightforward to verify that F is locally continu-
ous (see the discussion in [27, pages 774–775]). Let F op : K×Kop → Kop be the
opposite functor of F . Then, we define AO(D,E) = (F (E,D), F op(D,E)) and
AO(f, g) = (F (g, f), F op(f, g)). Again, it is straightforward to verify that AO is
locally continuous (see the discussion just after [27, Definition 10]). The proof of
the following lemma follows as a special case of the more general Lemma 7 that
will be stated shortly.

Lemma 6. AO : K≈ → K≈ is a symmetric approximator of O and it has an
initial fixed point that is exact.

The above example for the given domain equation, can be extended to a
wider context, namely to all operators O that can be defined using a locally
continuous mixed variant functor F . Let K be a strict DCPO-enriched category
that has both an initial and a terminal object. Consider the operator O : K →
K defined on objects through a locally continuous mixed variant functor F :
Kop × K → K. For any object x in K, O(x) = F (x, x) and O(f) is defined
only for identity arrows. Let F op : K × Kop → Kop be the opposite functor
of F . We define AO : K≈ → K≈ as follows: for all x in K and y in Kop,
AO(x, y) = (F (y, x), F op(x, y)), and for all f in K and g in Kop, AO(f, g) =
(F (g, f), F op(f, g)). The following lemma holds (which generalizes Lemma 6):

Lemma 7. AO : K≈ → K≈ is a symmetric approximator of O and it has an
initial fixed point that is exact.

7 Future Work

An aspect of this work that we believe is important to further investigate, is the
construction of approximators. One of the shortcomings of AFT (which is also

528 A. Charalambidis and P. Rondogiannis

shared by Categorical AFT), is that there is no “automatic” way to find the
correct approximator of a given operator. This problem has been alleviated with
the development of the theory of ultimate approximators [15]. More specifically,
as it is demonstrated in [15], the set of approximators of a given operator O,
forms a complete lattice, and therefore it has a greatest element denoted by UO;
this is the ultimate approximator of O. Then, given an operator O, we can use
unambiguously UO to study the fixed points of O. Although the details of the
results in [15] are not straightforward, it is conceivable that a similar theory can
be developed for Categorical AFT.

Another promising topic for future work, has to do with new applications
of the proposed approach. We believe that Categorical AFT can be used to
investigate the semantics of novel non-monotonic (and, possibly, higher-order
and typed) formalisms for knowledge representation and logic programming.
Moreover, we believe that there exist applications in domain theory that might
require the introduction of non-exact fixed points. One possible such application
is that of negation types [17], for which, to our knowledge, there does not exist
at present a domain-theoretic semantics.

References

1. Abramsky, S., Jung, A.: Domain Theory, pp. 1–168. Oxford University Press Inc.
(1995)

2. Adámek, J.: Recursive data types in algebraically omega-complete categories. Inf.
Comput. 118(2), 181–190 (1995). https://doi.org/10.1006/inco.1995.1061

3. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The
Joy of Cats. Dover Publications (2009)

4. Adámek, J., Koubek, V.: Least fixed point of a functor. J. Comput. Syst. Sci.
19(2), 163–178 (1979). https://doi.org/10.1016/0022-0000(79)90026-6

5. Adámek, J., Milius, S., Moss, L.S.: Fixed points of functors. J. Log. Algebraic
Methods Program. 95, 41–81 (2018). https://doi.org/10.1016/j.jlamp.2017.11.003

6. Adámek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carol. 015(4), 589–602 (1974)

7. Antić, C., Eiter, T., Fink, M.: Hex semantics via approximation fixpoint theory. In:
Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 102–115.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8 11

8. Barr, M.: Algebraically compact functors. J. Pure Appl. Algebra 82(3), 211–231
(1992). https://doi.org/10.1016/0022-4049(92)90169-G

9. Bos, R., Hemerik, C.: An Introduction to the Category-Theoretic Solution of Recur-
sive Domain Equations. Computing Science Notes. Technische Universiteit Eind-
hoven (1988)

10. Charalambidis, A., Ésik, Z., Rondogiannis, P.: Minimum model semantics for
extensional higher-order logic programming with negation. Theory Pract. Log.
Program. 14(4–5), 725–737 (2014). https://doi.org/10.1017/S1471068414000313

11. Charalambidis, A., Rondogiannis, P., Symeonidou, I.: Approximation fixpoint
theory and the well-founded semantics of higher-order logic programs. The-
ory Pract. Log. Program. 18(3–4), 421–437 (2018). https://doi.org/10.1017/
S1471068418000108

https://doi.org/10.1006/inco.1995.1061
https://doi.org/10.1016/0022-0000(79)90026-6
https://doi.org/10.1016/j.jlamp.2017.11.003
https://doi.org/10.1007/978-3-642-40564-8_11
https://doi.org/10.1016/0022-4049(92)90169-G
https://doi.org/10.1017/S1471068414000313
https://doi.org/10.1017/S1471068418000108
https://doi.org/10.1017/S1471068418000108

Categorical Approximation Fixpoint Theory 529

12. Dasseville, I., van der Hallen, M., Bogaerts, B., Janssens, G., Denecker, M.: A
compositional typed higher-order logic with definitions. In: Carro, M., King, A.,
Saeedloei, N., Vos, M.D. (eds.) Technical Communications of the 32nd Interna-
tional Conference on Logic Programming, ICLP 2016 TCs, New York City, USA,
16–21 October 2016. OASIcs, vol. 52, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.14

13. Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory and
the semantics of logic and answers set programs. In: Erdem, E., Lee, J., Lierler,
Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 178–194. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0 13

14. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.)
Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers, Dor-
drecht (2000)

15. Denecker, M., Marek, V.W., Truszczynski, M.: Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Inf. Comput.
192(1), 84–121 (2004). https://doi.org/10.1016/j.ic.2004.02.004

16. Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput.
Sci. 278(1–2), 25–51 (2002). https://doi.org/10.1016/S0304-3975(00)00330-3

17. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: dealing set-
theoretically with function, union, intersection, and negation types. J. ACM 55(4),
19:1–19:64 (2008). https://doi.org/10.1145/1391289.1391293

18. Gunter, C.A.: Semantics of Programming Languages - Structures and Techniques.
Foundations of Computing. MIT Press (1993)

19. Liu, F., Bi, Y., Chowdhury, M.S., You, J.-H., Feng, Z.: Flexible approximators
for approximating fixpoint theory. In: Khoury, R., Drummond, C. (eds.) AI 2016.
LNCS (LNAI), vol. 9673, pp. 224–236. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34111-8 28

20. Liu, F., You, J.: Alternating fixpoint operator for hybrid MKNF knowledge bases
as an approximator of AFT. Theory Pract. Log. Program. 22(2), 305–334 (2022).
https://doi.org/10.1017/S1471068421000168

21. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-83189-8

22. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. Theory Pract. Log. Program. 7(3), 301–353 (2007).
https://doi.org/10.1017/S1471068406002973

23. Pierce, B.C.: Basic Category Theory for Computer Scientists. Foundations of Com-
puting. MIT Press (1991)

24. Rondogiannis, P., Symeonidou, I.: The intricacies of three-valued extensional
semantics for higher-order logic programs. Theory Pract. Log. Program. 17(5–6),
974–991 (2017). https://doi.org/10.1017/S1471068417000357

25. Rondogiannis, P., Symeonidou, I.: Extensional semantics for higher-order logic pro-
grams with negation. Log. Methods Comput. Sci. 14(2) (2018). https://doi.org/
10.23638/LMCS-14(2:19)2018

26. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-
ment. William C. Brown Publishers (1986)

27. Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain
equations. SIAM J. Comput. 11(4), 761–783 (1982). https://doi.org/10.1137/
0211062

28. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge (1977)

https://doi.org/10.4230/OASIcs.ICLP.2016.14
https://doi.org/10.1007/978-3-642-30743-0_13
https://doi.org/10.1016/j.ic.2004.02.004
https://doi.org/10.1016/S0304-3975(00)00330-3
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1007/978-3-319-34111-8_28
https://doi.org/10.1007/978-3-319-34111-8_28
https://doi.org/10.1017/S1471068421000168
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1017/S1471068406002973
https://doi.org/10.1017/S1471068417000357
https://doi.org/10.23638/LMCS-14(2:19)2018
https://doi.org/10.23638/LMCS-14(2:19)2018
https://doi.org/10.1137/0211062
https://doi.org/10.1137/0211062

530 A. Charalambidis and P. Rondogiannis

29. Strass, H., Wallner, J.P.: Analyzing the computational complexity of abstract
dialectical frameworks via approximation fixpoint theory. Artif. Intell. 226, 34–
74 (2015). https://doi.org/10.1016/j.artint.2015.05.003

30. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

31. Tennent, R.D.: Semantics of Programming Languages. Prentice Hall International
Series in Computer Science. Prentice Hall (1991)

32. Vennekens, J., Gilis, D., Denecker, M.: Splitting an operator: algebraic modularity
results for logics with fixpoint semantics. ACM Trans. Comput. Log. 7(4), 765–797
(2006). https://doi.org/10.1145/1183278.1183284

33. Wand, M.: Fixed-point constructions in order-enriched categories. Theor. Comput.
Sci. 8, 13–30 (1979). https://doi.org/10.1016/0304-3975(79)90053-7

https://doi.org/10.1016/j.artint.2015.05.003
https://doi.org/10.1145/1183278.1183284
https://doi.org/10.1016/0304-3975(79)90053-7

Deciding Subsumption in Defeasible ELI⊥
with Typicality Models

Igor de Camargo e Souza Câmara1(B) and Anni-Yasmin Turhan2,3

1 University of São Paulo, São Paulo, Brazil
igor.camara@alumni.usp.br

2 Technische Universität Dresden, Dresden, Germany
anni-yasmin.turhan@tu-dresden.de

3 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)
Dresden/Leipzig, Dresden, Germany

Abstract. Some reasoning methods for Defeasible Description Logics
(DDLs) suffer from quantification neglect (QN) as they omit un-defeated
information for quantified objects. Reasoning in defeasible EL⊥ based on
so-called typicality models (TMs), which extend canonical models of clas-
sical EL⊥, can alleviate QN. The DDL ELI⊥ extends EL⊥ by inverse roles,
i.e., a limited form of value restriction. Extending TMs to inverse roles is
challenging due to their interaction with existential restrictions. In this
paper, we develop TMs for ELI⊥ for 4 different semantics reliant on ratio-
nal and relevant closure. Our computation methods for those TMs are
effective decision procedures for subsumption in defeasible ELI⊥ and the
stronger forms of TMs can mitigate QN.

Keywords: Description Logics · Defeasible Logics · Nonmonotonic
Reasoning

1 Introduction

Defeasible Description Logics (DDLs) are nonmonotonic extension of Description
Logics. DDL knowledge bases extend those for DLs by a DBox in which defeasible
concept inclusions (DCIs) are stated. Intuitively, DCIs state sub-concept rela-
tionships that hold unless contradictory information overrides them. There are
different semantics defined for DDLs [4,6,9,12,13,16,17,22]. A well-investigated
approach to terminological reasoning in DDLs is to use materialization to answer
(defeasible) subsumption queries, say C �∼ D, by enriching C with DBox informa-
tion [7,12–15]. As observed in [5,19], materialization-based methods often suffer
from quantification neglect (QN), i.e., they omit un-defeated information from
the DBox for quantified objects in relational neighborhood leading to weaker,
essentially propositional consequences of DCIs.

To solve QN for the DDL EL⊥ so-called typicality models were introduced in
[19,20]. Typicality models extend the canonical models of classical EL⊥. Canoni-
cal models have interpretation domains that contain an element for each concept
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 531–546, 2023.
https://doi.org/10.1007/978-3-031-43619-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_36&domain=pdf
http://orcid.org/0000-0002-1831-1750
http://orcid.org/0000-0001-6336-335X
https://doi.org/10.1007/978-3-031-43619-2_36

532 I. de Camargo e Souza Câmara and A.-Y. Turhan

occurring in the ontology, the concept representative. Since classical entailments,
e.g. subsumption, can be read-off directly from canonical models [1,3], reason-
ing in EL⊥ amounts to computing the canonical model of an ontology. This can
be done in polynomial time [1,3]. Typicality models for defeasible EL⊥ are also
canonical in that sense for (skeptical) defeasible consequences.

In typicality interpretations, domain elements are pairs of a concept repre-
sentative and a set of DCIs that is a subset of the DBox. Intuitively, an element
AV represents members of concept A satisfying all DCIs in V. The varying sets of
DCIs admit reasoning w.r.t. differing “degrees” of typicality. Typicality models
can be parameterized to achieve different semantics [18,21]. The collection of
subsets of the DBox used for domain elements determines the strength of rea-
soning, e.g. rational or relevant strength. Another parameter for the semantics
is coverage of reasoning. Propositional coverage admits as role successors only
atypical elements, i.e. elements of the form A∅. Reasoning w.r.t. such minimal
typicality models can reproduce materialization-based reasoning. Nested cover-
age is achieved by maximal typicality models, which use role successors that are
“fully saturated” with defeasible information, i.e., adding one more DCI from
the DBox would render them inconsistent. These models are faithful to the idea
of defeasible logics, as they discard typicality information only, if overriding does
necessitate it.

In this paper we investigate defeasible subsumption under different semantics
for the DL ELI⊥, which extends EL⊥ by inverse roles. Initial results of this inves-
tigation were published in [11]. Classical ELI also enjoys the canonical model
property. Inverse roles can express a limited form of value restriction that inter-
act with existential restrictions. Due to this interaction, the domain of canonical
models contains representatives for each set of named concepts from the signa-
ture of the KB, making reasoning ExpTime-hard [2,3]. We develop typicality
models for the DDL ELI⊥ where domain elements now combine representatives
for concept sets with sets of DCIs. The minimal typicality models are then used
to define semantics of propositional coverage. We show that minimal typicality
models for rational and for relevant strength can attain classical subsumption
and materialization-based defeasible subsumption.

A main contribution of this paper is the computation method for maximal
typicality models for ELI⊥. The approach to compute these models that are
saturated with defeasible information, is a fix-point construction, where each
iteration strengthens the typicality of some successor element in the interpre-
tation domain by increasing its set of DCIs, and then “restores” the resulting
interpretation s.t. that becomes a model. Our algorithm extends the method for
EL⊥ substantially. For instance, we need to introduce a labeling function for the
edges to be able to track which endpoint is to be updated. We show termination
of our computation method and define semantics for nested coverage based on
maximal typicality models and for rational and relevant strength. Finally, we
show that nested coverage yields more consequences than propositional cover-
age for both of the considered strengths. By the virtue of each domain element
being fully saturated with defeasible information, reasoning under nested cover-
age alleviates quantification neglect. The full proofs can be found in [10].

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 533

2 Preliminaries

We assume that the reader is familiar with basic notions of DLs and the com-
putation of canonical models for monotone ELI, as described in [3], Ch. 6. We
use the following countable, disjoint name sets: NC for concept names and NR

for role names. We also use NR
− := {r− | r ∈ NR} and R := NR ∪ NR

−.
ELI⊥ concepts are defined inductively by: C,D := A | ⊥ | � | C � D | ∃r.C

where A ∈ NC and r ∈ R. EL⊥ is the fragment of ELI⊥, where R = NR. We
also use value restrictions ∀r.C. The semantics of concepts in the DL ELI⊥
is the usual one. General concept inclusions (GCIs) are axioms of the form
C
 D. A TBox T is a finite set of GCIs. An interpretation I satisfies a GCI
(I |= C
 D) iff CI ⊆ DI holds. I is a model of a TBox T iff it satisfies every
GCI in T . Concept C is subsumed by D w.r.t. T iff CI ⊆ DI in every model
I of T . The signature of X (sig(X)) contains all names occurring in X and
sigC(X) := sig(X) ∩ NC and sigR(X) := sig(X) ∩ NR.

Note, that (∃r.A
 B) ≡ (A
 ∀r−.B) holds. A TBox T is in TBox normal
form (T-NF(T)), iff all of its GCIs are either of type: A1
 B, A1 � A2
 B,
A
 ∃r.B, or A
 ∀r−.B, where r ∈ R. ELI⊥ has the canonical model property
that admits to read-off subsumption relationships from concept memberships of
domain elements directly. In canonical models for ELI⊥, the domain elements are
conjunctions of concept names. Let M = {A1, . . . , An} be a set of concept names,
then �M� :=

�n
i=1 Ai. Construction of canonical models relies on prime role

successors. A set N is an r-prime successor of M in I iff (i) K |= �M�
 ∃r.�N�
and (ii) �N ′ ⊃ N s.t. K |= �M�
 ∃r.�N ′�. A canonical model for the DL
ELI⊥ has only role edges between elements and their prime successors. Deciding
subsumption between conjunctions of concept names, e.g. �M�
 �N�, is to
check whether the element M is an instance of �N� in the canonical model IC,
i.e. K |= �M�
 �N� iff M ∈ �N�IC .

Defeasible Description Logics (DDLs) extend DLs by defeasible concept inclu-
sions (DCIs), which are axioms of the form C �∼ D. A finite set of DCIs
is a DBox D and a defeasible knowledge base (DKB) is a pair K = (T ,D).
Materialization-based semantics are nonmonotonic entailment relations using
reductions to classical DL reasoning by transforming DCIs into material impli-
cations. For ELI⊥, we use materialization by TBox extension from [21]. Then,
define DCI materialization as E �∼ F := AE �∼ F , where AE �∼ F is a fresh concept
name, DBox materialization as D :=

�
(E �∼ F)∈D E �∼ F , and DKB materializa-

tion as K :=
(
T ∪ {(E �∼ F � E)
 F | E �∼ F ∈ D}, ∅

)
. Note, that each new

GCI in the TBox of K represents a DCI and describes the typical members of E
and that the DBox in K is always empty.

Materialization-based defeasible subsumption selects some set of DCIs U ⊆ D
to materialize in conjunction with the concept C from a subsumption query
C �∼ D. Different selection criteria produce distinct kinds of materialization-
based reasoning, called strengths. This is formalized by a consistent-selection
function sels, which is a function that gets an ELI⊥ concept C and a DKB K
as input and returns a set where each element U is a subset of the DBox D s.t.

534 I. de Camargo e Souza Câmara and A.-Y. Turhan

C � U is satisfiable w.r.t. K. Formally, K |=mat,s C �∼ D iff K |= C � U
 D, for
every U ∈ sels(C,K).

Both rational and relevant closures rely on the exceptionality chain of K, orig-
inally defined in [13]. The exceptionality chain is a sequence of sets E0, E1, . . . , En

s.t. D = E0, Ei+1 ⊂ Ei and C �∼ D ∈ Ei+i iff K |= C � Ei
 ⊥. The set En is
either a fixpoint or ∅. If it is ∅, D is well-separated. For every DKB there is an
equivalent well-separated DKB [8], thus we can assume w.l.o.g. that all DKBs
are well-separated. The rank of a concept C, denoted by rK(C), is the least i s.t.
K �|= C � Ei
 ⊥. The rank of a DCI C �∼ D is given by the rank of the concept
on its left-hand side, i.e. rK(C �∼ D) := rK(C).

The consistent selection function for the rational closure uses the exception-
ality chain directly by setting selrat(C,K) := {Ei | rK(C) = i}. The relevant clo-
sure [12] uses justifications, i.e., subset minimal sets of axioms from K causing an
inconsistency. A C-justification is a set J ⊆ D s.t. K |= C �J
 ⊥ and for every
J ′ ⊂ J , it holds that K �|= C � J ′
 ⊥. The relevant closure is then defined by
excluding minimally ranked axioms from all C-justifications, i.e. selrel(C,K) :=
D \ {E �∼ F ∈ D | E is minimally ranked for a C-justification J }.

3 Typicality Models for Defeasible ELI⊥

We give a general definition of minimal typicality models of a DKB parame-
terized with strength s. To do so, we require the input DKB to be in a nor-
mal form that moves complex concepts from the DBox to the TBox, but keeps
their semantics by introducing new concept names. For a DKB K = (T ,D),
define NF(D) := {AC

�∼ AD | C �∼ D ∈ D}, where AC , AD ∈ NC \ sigC(K)
and define Taux := {C
 AC , AD
 D | AC

�∼ AD ∈ NF(D)}, then finally
NF(K) := (T-NF(T ∪ Taux),NF(D)) is the normal form of K. It is straightfor-
ward to show that the normalization does not affect the computation of the
rank. We assume in the following that we want to decide for K = (T ,D) already
in normal form whether K |= C �∼ D holds.

Typicality interpretations are built on the representative domain of a DKB,
which collects concept names possibly occurring in the scope of quantifiers. The
set of quantified concepts of an axiom is Qc(C �∼ D) := Qc(C
 D) := {A ∈
sigC(C
 D) | ∃r ∈ NR.∃r.A or ∀r.A occurs in C or D}. The representative
domain of K = (T ,D) is ΔK := {{A} | A ∈ sigC(T ∪D)} ∪ P(Qc(T ∪ D)). The
combination of existential and value restrictions, say ∃r.E and ∀r.F , necessitates
representatives for E � F . For a domain element M ∈ ΔK, the corresponding
concept is �M� :=

�
A∈M A, if M �= ∅ and �, otherwise. Each domain element is

the representative of its corresponding concept. Typicality interpretations have
2-dimensional domains and their elements MU are pairs, where M ∈ ΔK is the
concept set and U ⊆ D is the typicality set. Intuitively, MU represents instances
of concept �M� that conform with the DCIs in U .

Definition 1. Let ΔK be the representative domain of K = (T ,D). A typicality
domain of K is ΔT (K) ⊆ ΔK × P(D) s.t. if M ∈ ΔK, then M∅ ∈ ΔT (K). I =
(ΔI , ·I) is a typicality interpretation iff ΔI is a typicality domain.

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 535

The maximally typical instances of a concept set M in a typicality interpre-
tation domain in I = (ΔI , ·I) are those MU ∈ ΔI s.t. there is no MV ∈ ΔI with
U ⊂ V. Intuitively, satisfaction of �M� �∼ A holds in I, if it is satisfied by the
“most typical” instances of M .

Definition 2. Let C,D be concepts, A ∈ NC, M ∈ P(NC), and I = (ΔI , ·I) a
typicality interpretation. Then satisfaction of DKB axioms is defined as follows:

– I satisfies a GCI C
 D (denoted I |= C
 D) iff CI ⊆ DI ,
– I satisfies a DCI �M� �∼ A (denoted I |= �M� �∼ A) iff MU ∈ AI for every

maximally typical instance MU of M in ΔI .

I is a model of a (normalized) DKB K = (T ,D) iff I |= α holds for all α ∈ T ∪D.

4 Minimal Typicality Models for Propositional Coverage

We define general minimal typicality models that can be parameterized with a
strength s. We show that these structures are models of the given K and that
they are canonical, so that (defeasible) subsumption relations can be read-off
from the elements. Finally, we define kinds of typicality domains tailored to s
that realize this strength of reasoning.

In canonical models for monotone ELI, an element is connected to those
elements that are ⊆-maximal r-successors. Limiting connections to these
“strongest” successors guarantees that concept membership to existential restric-
tions can be read-off. We want to achieve this property for typicality models as
well. Now, in defeasible ELI⊥, the “strongest” successors need to be selected
according to the concept set and the typicality set. We use the NC-type of an
element to identify its maximally typical r-successors.

Definition 3. Let K = (T ,D) be a DKB, I = (ΔI , ·I) be an interpretation, and
d ∈ ΔI be an element. The NC-type of d w.r.t. K and I is NC-typeK(d, I) :=
{A ∈ sigC(K) | d ∈ AI}.

Let I = (ΔT (K), ·I) be a typicality interpretation, and r ∈ {s, s−} with s ∈
sigR(K). Then, NV ∈ ΔT (K) with N ∈ ΔK is a prime r-successor of MU in I iff:

1. K |= �NC-typeK(MU , I)� � U
 ∃r.�N�, and
2. there is no N ′ ∈ ΔK s.t. it fulfills Property 1 and N ⊂ N ′.

In minimal typicality models all role-successors are atypical elements, i.e., ele-
ments with ∅ as their typicality set.

Definition 4. Let K = (T ,D) be a DKB and ΔT (K) its typicality domain. The
minimal typicality model is IK

min := (ΔT (K), ·IK
min), where:

AIK
min :={MU | K |= �M� � U � A} for all A ∈ sigC(K)

rIK
min :={(N∅, MU) | N is a prime r−-successor for MU in IK

min} ∪
{(MU , N∅) | N is a prime r-successor for MU in IK

min} for all r ∈ sigR(K)

536 I. de Camargo e Souza Câmara and A.-Y. Turhan

It still needs to be shown that IK
min is a model of K, i.e. it satisfies GCIs in K

and that every element MU satisfies all DCIs in its typicality set U .

Lemma 1. Let K = (T ,D) be a DKB, ΔT (K) be a typicality domain over K,
and IK

min = (ΔT (K), ·IK
min) its minimal typicality model. Then,

1. CIK
min ⊆ DIK

min for every C
 D ∈ K, i.e. IK
min is a model of K.

2. for all MU ∈ ΔT (K) and all A �∼ B ∈ U holds: MU ∈ AIK
min ⇒ MU ∈ BIK

min .

This lemma implies that minimal typicality models of a DKB K are models of
K, i.e. that IK

min |= K holds. The main argument is that every GCI C
 D
is satisfied by construction, since the following sequence of implications holds:
MU ∈ CIK

min ⇒ K |= �M� � U
 C ⇒ K |= �M� � U
 D ⇒ MU ∈ DIK
min .

For the DCIs, the entailment relation that defines membership for MU is defined
over �M� � U , ensuring that it satisfies the DCIs in U .

Recall, that DCIs are satisfied in IK
min if all most typical instances of the

concept from the left-hand side satisfy it. In order to be canonical for a selected
strength s, the maximally typical instances of the concepts in the representative
domain must be exactly those selected by the consistent selection function for
s. More formally, the typicality domain must

1. contain all the elements MU , where U is the set of DCIs to be materialized
with �M� in s, and

2. not contain any maximally typical instance of M , MU ′ , s.t. U ′ is not selected
by sels.

Theorem 1. Let sels be a consistent-selection function for some strength s, K
a DKB, and A ∈ sigC(K). Let IK

min = (ΔT (K), ·IK
min) be a minimal typicality model

of K s.t. for every M ∈ ΔK holds that MU is maximally typical in ΔT (K) iff
U ∈ sels(�M�,K). Then, for every M ∈ ΔK it holds that:

1. K |= �M�
 A iff M∅ ∈ AIK
min , and

2. K |=mat,s �M� �∼ A iff MU ∈ AIK
min , for all maximally typical instances MU of

M in ΔT (K).

Proof. Claim 1. follows directly from the definition of minimal typicality models.
Claim 2. K |=mat,s �M� �∼ A holds iff MU ∈ AIK

min for every maximally typical
instance of A, where A ∈ ΔT (K). By the requirement on the maximally typical
instances in the theorem, every maximally typical instance of MU ∈ ΔT (K) of
M is such that U ∈ sels(�M�,K). Then, notice that K |=mat,s �M� �∼ A iff
K |= �M� � U
 A iff MU ∈ AIK

min .

Theorem 1 guarantees canonicity of IK
min, provided that the domain ΔT (K)

selected by strength s does not omit consistent elements. This condition holds
for rational and relevant strength and their typicality domain, which extends the
definition for the DDL EL⊥ [18,21]. Intuitively, for rational strength, the second
dimension of ΔT (K) is the exceptionality chain of the DKB returned by selrat,
and in case of relevant strength it is the part of the ⊂-lattice over P(D) returned
by selrel.

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 537

Cat

Penguin

Bird

E0 E1 ∅

{B}E0
{B}E1

{B}∅

{P}E1
{P}∅

{C}E0
{C}E1

{C}∅

ΔT(Kex)
rat

Fig. 1. Fragment of the minimal typicality domain built over Δ
T (Kex)
rat from Example 1,

depicting only singleton concept sets. Arrows represent the role eats; the dotted area,
the extension of Bird; and the dashed area, the extension of Flying.

Definition 5. Let E0, . . . , En be the exceptionality chain of K = (T ,D). Then

– Δ
T (K)
rat := {MEi

∈ ΔK × {E0, . . . , En} | 0 ≤ i ≤ n and K �|= �M� � Ei
 ⊥}.
is the rational typicality domain of K and

– Δ
T (K)
rel := {MU ∈ ΔK × P(D) | U ⊆ V ∈ selrel(�M�,K)}

is the relevant typicality domain of K.

Using the rational and relevant typicality domain and the mapping function
·IK

min for minimal typicality models, we can define the corresponding minimal
typicality models for s and based on these the resulting semantics.

Definition 6. A minimal typicality model of a DKB K

– IK
min,rat := (ΔT (K)

rat , ·IK
min) is a rational minimal typicality model of K.

– IK
min,rel := (ΔT (K)

rel , ·IK
min) is a relevant minimal typicality model of K.

Let α ∈ {�M�
 A, �M� �∼ A} be an axiom. The semantics of

– rational strength and propositional coverage (denoted |=prop,rat)
is defined as K |=prop,rat α iff IK

min,rat |= α.
– relevant strength and propositional coverage (denoted |=prop,rel)

is defined as K |=prop,rel α iff IK
min,rel |= α.

We illustrate rational minimal typicality models by an example.

Example 1. Let Kex = (Tex,Dex), with

Tex = {Cat
 ∃eats.Bird,Penguin
 Bird} and
Dex = {Bird �∼ Flying,Bird �∼ Feathered,Penguin � Flying �∼ ⊥}.

The exceptionality chain for Kex is: E0 = Dex, E1 = {Penguin � Flying �∼ ⊥} and
E2 = ∅. Figure 1 depicts a fragment of the rational minimal typicality model
IKex

min,rat. The rational domain for Kex is a matrix of ΔKex and the exceptionality

chain. The element PenguinE0
is omitted in Δ

T (Kex)
rat as K |= Penguin � E0
 ⊥.

538 I. de Camargo e Souza Câmara and A.-Y. Turhan

Both domains Δ
T (K)
rat and Δ

T (K)
rel satisfy the condition from Theorem 1, i.e.

MU is maximally typical in the domain ΔT (K) iff U ∈ sels(�M�,K). Therefore,
the resulting models IK

min,rat and IK
min,rel fulfill canonicity.

In general, if K = (T , ∅), its typicality domain would only contain the atyp-
ical elements M∅, therefore would be isomorphic to the canonical model for the
DL ELI⊥ giving rise to monotonic reasoning as expected. On the whole, the
computation of minimal typicality models for a strength s fulfilling the condi-
tion from Theorem 1 is an effective reasoning method for deciding defeasible
subsumption for propositional coverage and strength s.

5 Computing Maximal Typicality Models

In maximal typicality models successors of elements are fully saturated with
defeasible information from D. The computation of a maximal typicality model
of a given DKB K and a strength s starts from a minimal typicality model IK

min

on which model upgrades are performed exhaustively. Each model upgrade of a
model I consists of two phases:

1. model update: for an edge in I, introduce a new edge to an element with the
same concept set, but an extended typicality set, i.e. increase the set of DCIs
that the (inverse) role successor must satisfy.

2. model recovery : preserving the edge introduced by the upgrade, add and
replace a minimal amount of information in I ′ necessary to transform it into
a canonical model again (if possible).

This general computation method was introduced for EL⊥ in [18,20]. Extending
it to inverse roles is non-trivial and requires overcoming challenges in both phases
of an upgrade.

5.1 Updates of Typicality Models

An effect caused by inverse roles is that edges in typicality models need not be
“initiated” by the predecessor, but can be “initiated” by the successor (or even
by both). Thus an edge, say (MU , NV) ∈ rI , does not indicate whether K entails
�M� � U
 ∃r.�N� or �N� � V
 ∃r−.�M� and thus the information present
in I does not suffice to decide whether to update MU or NV . To address this
problem, we extend typicality interpretation by an edge labeling function that
indicates which of the end-points of the edge initiates the edge.

Definition 7. Let I be a typicality interpretation and K be a DKB. For r ∈ NR

an edge (MU , NV) ∈ rI is

– p-initiated if K |= �NC-typeK(MU , I)�
 ∃r.�N� and
N is a prime r-successor for NC-typeK(MU , I) in I.

– s-initiated if K |= �NC-typeK(NV , I)�
 ∃r−.�M� and
M is a prime r−-successor for NC-typeK(NV , I) in I.

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 539

A function InitI : ΔI × sigR(K) × ΔI → P({s, p}) is an initiator labeling for I
w.r.t. K, if it fulfills the following conditions:

1. If p ∈ InitI(d, r, e), then (d, e) ∈ rI is p-initiated,
2. If s ∈ InitI(d, r, e), then (d, e) ∈ rI is s-initiated, and
3. InitI(d, r, e) = ∅ iff (d, e) �∈ rI .

A pair (I, InitI) is a labeled interpretation. We abbreviate p ∈ InitI(e, r, d) by
(d, e) ∈ rI

p and s ∈ InitI(e, r, d) by (d, e) ∈ rI
s .

The input to the first model update is IK
min with a labeling InitIK

min
determined by

K and the fact that all successors are atypical elements. The initiator labeling
for IK

min maps each (MU , r,NV) to the set containing p, if (MU , NV) ∈ rIK
min is

p-initiated and V = ∅ and to a set containing s, if (MU , NV) ∈ rIK
min is s-initiated

and U = ∅. One can show that this mapping is an initiator labeling.
An update candidate for a typicality model I is a pair of a domain element

d and an edge from or to d that is initiated by d. Adding this edge to I would
increase the typicality of a successor of d. We define a function that returns a
set of update candidates for a labeled interpretation. Let d,MU ,MV ∈ ΔI and
r ∈ NR. The set of r-update candidates for (I, InitI) is:

UpCanr(I, InitI) :={((d,MU), d) | (d,MV) ∈ rI
p and V ⊂ U} ∪

{((MU , d), d) | (MV , d) ∈ rI
s and V ⊂ U}.

We call element d the update root and the other element MU the update tar-
get. Update candidates preserve the concept set M of the successor so that the
update target becomes a prime successor if the successor that it supersedes was
already a prime successor. A model update augments a given labeled typicality
interpretation by realizing an update candidate, i.e., it adds the edge connecting
the update root with the target, and it updates the initiator labeling accordingly.

Definition 8. Let (I, InitI) be a labeled typicality model, with the interpretation
I = (ΔI , ·I). Furthermore, let ((d1, d2), di) ∈ UpCanr(I, InitI) an update can-
didate for some root di ∈ {d1, d2} and r ∈ NR. A typicality model r-update is
Updr(I, InitJ , ((d1, d2), di)) := (J , InitJ , di), where J = (ΔI , ·J) with

AJ := AI , rJ := rI ∪ {(d1, d2)}, sJ := sI , for all s ∈ NR, s �= r,

init := p if di = d1 and init := s if di = d2 and InitJ is the following mapping:

InitJ (d1, r, d2) := InitI(d1, r, d2) ∪ {init}
InitJ (e1, r′, e2) := InitI(e1, r′, e2) if e1 �= d1 or e2 �= d2 or r′ �= r

Obviously, InitJ is an initiator labeling of J . Note that InitJ differs from InitI
only in the label for the edge from the update candidate. Since realizing some
update candidates can block the realization of others, it is necessary to consider
all candidates in parallel by using sets of updates. Let (I, InitI) be a labeled

540 I. de Camargo e Souza Câmara and A.-Y. Turhan

typicality interpretation for K. The set of all labeled typicality interpretation
updates of (I, InitI) w.r.t. K is

UpdK(I, InitI) :=
⋃

r∈sigR(K)

{
Updr(I, InitI , ((d1, d2), di)) |
((d1, d2), di) ∈ UpCanr(I, InitI)

}
.

After an update, a model need no longer be a canonical model of K, but some
can be recovered into one in the second phase of an upgrade.

5.2 Model Recovery of Typicality Interpretations

A model recovery aims to transform elements from UpdK(I, InitI) into models of
K. More precisely, it mends violations of GCIs from K caused (in)directly by the
last update, but without revoking the update. Our model recovery procedure
only changes elements affected by the last update and preserves the property
that an element can be a successor only if its concept set is prime. Under these
conditions, not all updates can be transformed into a model, due to clashes.

Definition 9. Let (I, InitI) be a labeled typicality interpretation for K, where
I = (ΔT (K), ·I), r ∈ R, and MU , NV ∈ ΔI . (I, InitI) contains a

– direct clash, if {C
 ⊥, C
 ∃r.⊥} ∩ K �= ∅ and MU ∈ CI .
– successor clash, if A
 ∀r.⊥ ∈ K, MU ∈ AI , and A ∈ (∃r.�)I .
– successor domain clash, if A
 ∀r.B ∈ K, (MU , NV) ∈ rI

p , B �∈ N , and
N ∪ {B}V �∈ ΔT (K).

– predecessor domain clash, if A
 ∀r−.B ∈ K, (NV ,MU) ∈ rI
s , B �∈ N , and

N ∪ {B}V �∈ ΔT (K).

A domain clash is encountered, if the typicality domain ΔT (K) lacks an element
that the selection function sels omitted. For selrat and selrel such an omission is
due to an inconsistency between N ∪ {B} and the DCIs in V.

As fixing one violation of a GCI can cause another, model recovery results
from exhaustively applying a set of fix rules which are similar to completion rules
for monotone EL. Now, to replace information in a labeled typicality interpreta-
tion (I, InitI) it is necessary to align the resulting I ′ and InitI′ . While addition
of information is simply set union, removal is more complex. Let MU , NV ∈ ΔI ,
and let � ∈ {p, s}. To remove (MU , NU ′) from rI

� in (I, InitI) results in a labeled
typicality interpretation (J , InitJ) differs from (I, InitI) only in:

1. InitJ (MU , r,NV) := InitI(MU , r,NV) \ {�} and
2. if InitJ (MU , r,NV) = ∅, then rJ := rI \ {(MU , NV)}.

The fix rules for model recovery in defeasible ELI are listed in Fig. 2. The rules
R
, R�, R∃, R∃−, R∀C, and R∀−C ensure for each type of GCI from a nor-
malized DKB, that violations of this type of GCI are fixed. The rules R∀prime
and R∀−prime serve the purpose to strengthen successors into prime successors
(possibly successively). Observe that each fix rule can only be applied once to a
particular set of domain elements.

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 541

R� If A � B ∈ K, MU ∈ AI , and MU �∈ BI , then add MU to BJ .
R� If A1 � A2 � B ∈ K, MU ∈ (A1 � A2)I and MU �∈ BI ,

then add MU to BJ .
R∃ If A � ∃r.B ∈ K, MU ∈ AI , and �N.B ∈ N , and (MU , NV) ∈ rI

p , for
any V ⊆ D, then add (MU , {B}∅) to rJ

p .
R∃− If A � ∃r−.B ∈ K, MU ∈ AI , and �N.B ∈ N and (NV , MU) ∈ rI

s , for
any V ⊆ D, then add ({B}∅, MU) to rJ

s .
R∀C If A � ∀r.B ∈ K, MU ∈ AI , NV �∈ BI , and (MU , NV) ∈ rI

s ,
then add NV to BJ .

R∀−C If A � ∀r−.B ∈ K, MU ∈ AI , NV �∈ BI , and (NV , MU) ∈ rI
p ,

then add NV to BJ .
R∀prime If A � ∀r.B ∈ K, MU ∈ AI and ∃N, V.(MU , NV) ∈ rI

p , B �∈ N , and
N ∪ {B}V ∈ ΔI , then replace in rJ

p (MU , NV) by (MU , N ∪ {B}V).
R∀−prime If A � ∀r−.B ∈ K, MU ∈ AI and ∃N, V.(NV , MU) ∈ rI

s , B �∈ N , and
N ∪ {B}V ∈ ΔI , then replace in rJ

s (NV , MU) by (N ∪ {B}V , MU).

Fig. 2. The fix rules for model recovery.

Definition 10. Let (I ′, Init′I) be a labeled typicality model of K and (I, InitI) ∈
UpdK(I ′, InitI′) with I = (ΔI , ·I).

The labeled typicality interpretation (J , InitJ) is a model recovery of
(I, InitI) iff it is a result of applying the fix rules to (I, InitI) exhaustively and it
does not contain a clash. The set of all model recoveries for (I, InitI) w.r.t. K is
ModRecK(I, InitI) := {(J , InitJ) | J is a model recovery of (I, InitI) w.r.t.K}.

There can be several model recoveries for an interpretation or even none, if all
sequences of fix rule applications lead to a clash. In this case, the correspond-
ing update is unsuccessful and is discarded. For successful updates and model
recoveries, we show that they result indeed in models of K.

Lemma 2. Let (I ′, Init′I) be a labeled typicality model of K and (I, InitI) ∈
UpdK(I ′, InitI′). Then, for all (J , InitJ) ∈ ModRecK(I, InitI) holds J |= K.

Proof (sketch). Since K ⊆ K, any violated GCI in K appears in K. We make a
case distinction on the GCI types in a normalized K. For GCI type A
 ∀r.B
and every (MU , NV) ∈ rJ , the labeling InitJ (MU , r,NV) �= ∅ by definition. If
(MU , NV) ∈ rJ

p and MU ∈ AJ , the violation can trigger R∀prime if N ∪ {B}V ∈
ΔJ . If N ∪ {B}V �∈ ΔJ , then J contains a successor domain clash and J is not
a model recovery. If (MU , NV) ∈ rJ

s and MU ∈ AJ , then NV is added to BJ by
rule R∀C. Note, for the dual case with r ∈ NR

−, the same argument holds, with
applications of R∀−prime and R∀−C or J contains a predecessor domain clash.
The proofs for the other 3 GCI types are easier and thus omitted here due to
space constraints.

Model recoveries yield canonical models, i.e. subsumption is indicated by concept
membership and role edges to prime successors indicate existential restrictions.

542 I. de Camargo e Souza Câmara and A.-Y. Turhan

Definition 11. Let (I, InitI) be a labeled typicality interpretation for K. The
pair (I, InitI) is quasi-canonical w.r.t. K iff the following conditions hold:

1. If K |= �NC-typeK(MU , I)� � U
 ∃r.�N� for a prime r-successor N , then
∃NV ∈ ΔI s.t. (MU , NV) ∈ rI

p , if r ∈ NR and (NV ,MU) ∈ r−I
s , if r ∈ NR

−.
2. If (MU , NV) ∈ rI

� , for some non-empty � ⊆ {p, s}, then it must hold that
– if p ∈ �, then K |= �NC-typeK(MU , I)� � U
 ∃r.�N� and N is a prime

r-successor of MU and
– if s ∈ �, then K |= �NC-typeK(NV , I)� � V
 ∃r−.�M� and M is a prime

r−-successor of NV .

Quasi-canonicity is preserved by model recoveries, but not necessarily by the
application of a single fix rule.

Lemma 3. Let (J , InitJ) ∈ ModRecK(I, InitI). If (I, InitI) is quasi-canonical,
then (J , InitJ) is quasi-canonical.

Proof (sketch). We consider w.l.o.g. only the case r ∈ NR. The proof is symmetric
for r ∈ NR

−. For Property (1), let K |= �NC-typeK(MU ,J)� � U
 ∃r.�N�, for a
prime r-successor N of some MU ∈ ΔI . The edge (MU , NV) ∈ rJ

p is guaranteed
by either (MU , {B}∅) ∈ rIk

p in some intermediate interpretation Ik generated
from the R∃ rule during the transformation of I into J or by (MU , N ′V) ∈ rI

p ,
where in both cases the successor is not prime and thereby making R∀prime
applicable (multiple times).

For Property (2): If (MU , NV) ∈ rJ
p for which N is a prime r-successor, then

either (MU , NV) ∈ rI
p , or (MU , NV) ∈ rJ

p \ rI
p . If (MU , NV) ∈ rI

p , then NV is
prime, since I is quasi-canonical. If (MU , NV) ∈ rJ

p \ rI
p , then one can show that

the edge was generated either by R∃ (and V = ∅) or from an edge that made
R∀prime applicable (more than once).

With model update and recovery being shown to be well-behaved, we can
define an upgrade step. Generally, an upgrade step gets a labeled typicality model
as input, starting with (IK

min, InitIK
min
) as the initial input. An upgrade computes all

update candidates and the corresponding set of updates, then model recovery is
applied to each of the updates in that set. Upgrades are performed exhaustively.

Definition 12. Let (I, InitI) be a labeled typicality model for K. An upgrade
step over (I, InitI) and K is defined as:

UpGr((I, InitI),K) :=
⋃

(J ,InitJ ,d)∈UpdK(I,InitI)ModRecK(J , InitJ)

A full upgrade applies upgrade steps exhaustively and is defined as the sequence:

S0 := UpGr((IK
min, InitIK

min
),K) Si+1 :=

⋃
(I,InitI)∈Si

UpGr((I, InitI),K)

We show that iterating the upgrade steps always terminates, if the initial input
is a labeled minimal typicality model.

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 543

Theorem 2. Let (IK
min, InitIK

min
) be a labeled minimal typicality model for K.

Computation of a full upgrade of (IK
min, InitIK

min
) always reaches a fixpoint that

is denoted by UpGrmax((IK
min, InitIK

min
),K).

Proof. Clearly, for one (labeled) typicality model there are only finitely many
updates and for one (labeled) typicality interpretation, there are only finitely
many model recoveries. While termination of an update is trivial, termination of
model recovery can be shown by inspection of the fix rules. W.l.o.g. let IK

min =
(ΔIK

min , ·IK
min), |ΔIK

min | = n, |sigC(K)| = m, and |sigR(K)| = k. The rules R
, R�,
R∀C, and R∀−C add a concept membership and thus can each be applied at
most n ∗ m times. Rule R∃− adds a new role edge, thus R∃− can be applied
up to k ∗ n2 times. The rules R∀prime and R∀−prime replace an edge between
elements MU and NV with a corresponding one between MU and N ∪ {B}V .
There are only up to m many candidates for such B and thus there are only up
to k ∗ n2 ∗ m rule applications of R∀prime and R∀−prime each.

6 Maximal Typicality Models for Nested Coverage

Nested reasoning is reasoning under preferred model semantics, where the pre-
ferred models are maximal typicality models. Recall, that in those models all
(successor) elements are fully saturated with defeasible information. To define
semantics based on maximal typicality models, alleviates quantification neglect
immediately.

Definition 13. Let K be a DKB, A ∈ sigC(K), and M ∈ ΔK be an element. Let
s be a strength and (IK

min, InitIK
min
) the minimal labeled typicality model with the

domain selected by sels. We define s nested entailment by:

– K |=nest,s �M�
 A iff �M�I ⊆ AI .
– K |=nest,s �M� �∼ A iff MU ∈ AI for every maximally typical instance

of M in the domain..

For every I ∈ UpGrmax((IK
min, InitIK

min
),K). For nested coverage, again the domain

and thus ultimately the consistent selection function determines the strength of
reasoning.

Definition 14. Let α ∈ {�M�
 A, �M� �∼ A}, IK
min,rat be the minimal rational

and IK
min,rel the minimal relevant typicality model of some K. The semantics of

– rational strength and nested coverage (denoted |=nest,rat) is defined as
K |=nest,rat α iff I |= α, ∀I ∈ UpGrmax((IK

min,rat, InitIK
min,rat

),K).
– relevant strength and nested coverage (denoted |=nest,rel) is defined as

K |=nest,rel α iff I |= α, ∀I ∈ UpGrmax((IK
min,rel, InitIK

min,rel
),K).

Theorem 3. Let K be a DKB, s be a strength, A ∈ sigC(K), and M ∈ ΔK be a
set of concept names in the representative domain. Then the following holds:

544 I. de Camargo e Souza Câmara and A.-Y. Turhan

1. K |= �M�
 A ⇔ K |=prop,s �M�
 A ⇔ K |=nest,s �M�
 A.
2. K |=prop,s �M� �∼ A ⇒ K |=nest,s �M� �∼ A.
3. If s ∈ {rat, rel}, then K |=prop,s �M� �∼ A �⇐ K |=nest,s �M� �∼ A.

Proof (Sketch). Claim 1. follows from the following facts (i) the atypical
instance M∅ does not change during the full upgrade, and (ii) it is canonical
for �M�. Therefore, any element d added to �M�I during the full upgrade must
also be added to AI .

Claim 2. can be shown as follows: the maximally typical instances of any
element M stay the same during the upgrade, as the domain does not change.
The upgrade procedure only increases the NC-type of the elements. Hence, if
MU ∈ AIK

min , MU ∈ AI , for any I ∈ UpGrmax((IK
min, InitIK

min
),K).

Claim 3. is shown by a counter-example. Let Kex be as in Example 1. The
most typical instance of Cat is CatE0 for both domains, Δ

T (Kex)
rat and Δ

T (Kex)
rel .

For both (J , InitJ) ∈ {(IK
min,rat, InitIK

min,rat
), (IK

min,rel, InitIK
min,rel

)} it holds that
(CatE0 ,Bird∅) ∈ eatsJp and thus ((CatE0 ,BirdU),CatE0) is an eats-upgrade can-
didate. The set U differs for rat and rel, but each contains Bird �∼ Flying. This
upgrade step leads to a full upgrade for which Kex |=nest,s Cat �∼ ∃eats.Flying with
s ∈ {rat, rel}. Clearly, this inference is not obtained in propositional coverage.

7 Conclusion

We have proposed four semantics for defeasible subsumption in ELI⊥ that are
defined by typicality models. Typicality models can simply be parameterized
with strength and coverage for reasoning making these models a versatile app-
roach for nonmonotonic reasoning. We have investigated rational and relevant
strength and have shown that for both strengths, propositional coverage is equiv-
alent to materialization-based semantics, while nested coverage is stronger than
materialization-based semantics and alleviates quantification neglect. Our deci-
sion procedure for defeasible inference is simply to compute the appropriate typi-
cality model. This can be done by a reduction to classical reasoning—facilitating
implementations by the use of optimized DL reasoners.

As future work, we plan to compare the different semantics and to provide a
complexity analysis of reasoning by computing typicality models. We conjecture
a single exponential upper bound even for the |=nest,rel semantics. Furthermore,
we plan to investigate ABox reasoning problems, such as instance checking.

Acknowledgements. This work was partially supported by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001,
by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the
INCT of the Future Internet for Smart Cities funded by CNPq proc. 465446/2014-0,
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc. 15/24485-9, and by
the AI competence center ScaDS.AI Dresden/Leipzig.

Deciding Subsumption in Defeasible ELI⊥ with Typicality Models 545

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI 2005, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pp. 364–369. Professional Book Center (2005)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K.,
Patel-Schneider, P.F. (eds.) Proceedings of the OWLED 2008 DC Workshop on
OWL: Experiences and Directions (2008)

3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

4. Bonatti, P.A.: Rational closure for all description logics. Artif. Intell. 274, 197–223
(2019)

5. Bonatti, P.A., Faella, M., Petrova, I.M., Sauro, L.: A new semantics for overriding
in description logics. Artif. Intell. 222, 1–48 (2015)

6. Bonatti, P.A., Faella, M., Sauro, L.: EL with default attributes and overriding.
In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 64–79.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_5

7. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles
of KLM-style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1–46
(2021)

8. Britz, K., Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Ordered interpre-
tations and entailment for defeasible description logics. Technical report, CAIR,
CSIR Meraka and UKZN, South Africa (2013)

9. Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential descrip-
tion logics. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp.
491–500. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25832-
9_50

10. Câmara, I.: Quantification in description logics of typicality. Ph.D. thesis, Univer-
sity of São Paulo (2023, to appear)

11. Câmara, I., Turhan, A.Y.: Rational defeasible subsumption in DLS with nested
quantifiers: the case of ELI⊥. In: Arieli, O., Casini, G., Giordano, L. (eds.) Pro-
ceedings of the 20th International Workshop on Non-Monotonic Reasoning, NMR
2022, Part of FLoC 2022. CEUR Workshop Proceedings, vol. 3197, pp. 159–162.
CEUR-WS.org (2022)

12. Casini, G., Meyer, T., Moodley, K., Nortjé, R.: Relevant closure: a new form of
defeasible reasoning for description logics. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS (LNAI), vol. 8761, pp. 92–106. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11558-0_7

13. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5_9

14. Casini, G., Straccia, U.: Lexicographic closure for defeasible description logics. In:
Proceedings of Australasian Ontology Workshop, vol. 969, pp. 28–39 (2012)

15. Giordano, L., Dupré, D.T.: A framework for a modular multi-concept lexicographic
closure semantics. CoRR abs/2009.00964 (2020)

16. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

17. Giordano, L., Olivetti, N., Gliozzi, V., Pozzato, G.L.: ALC + T: a preferential
extension of description logics. Fund. Inform. 96(3), 341–372 (2009)

https://doi.org/10.1007/978-3-642-17746-0_5
https://doi.org/10.1007/978-3-642-25832-9_50
https://doi.org/10.1007/978-3-642-25832-9_50
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-642-15675-5_9

546 I. de Camargo e Souza Câmara and A.-Y. Turhan

18. Pensel, M.: A lightweight defeasible description logic in depth-quantification in
rational reasoning and beyond. Ph.D. thesis, TU Dresden, Germany (2019)

19. Pensel, M., Turhan, A.-Y.: Including quantification in defeasible reasoning for the
description logic EL⊥. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 78–84. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5_9

20. Pensel, M., Turhan, A.Y.: Computing standard inferences under rational and rele-
vant semantics in defeasible EL⊥. In: Proceedings of the 31st International Work-
shop on Description Logics (2018)

21. Pensel, M., Turhan, A.Y.: Reasoning in the defeasible description logic EL⊥–
computing standard inferences under rational and relevant semantics. Int. J.
Approximate Reasoning (IJAR) 103, 28–70 (2018). https://doi.org/10.1016/j.ijar.
2018.08.005

22. Varzinczak, I.: A note on a description logic of concept and role typicality for
defeasible reasoning over ontologies. Log. Univers. 12(3–4), 297–325 (2018)

https://doi.org/10.1007/978-3-319-61660-5_9
https://doi.org/10.1007/978-3-319-61660-5_9
https://doi.org/10.1016/j.ijar.2018.08.005
https://doi.org/10.1016/j.ijar.2018.08.005

Truth and Preferences - A Game
Approach for Qualitative Choice Logic

Robert Freiman(B) and Michael Bernreiter

Institute of Logic and Computation, TU Wien, Vienna, Austria
robert@logic.at, mbernrei@dbai.tuwien.ac.at

Abstract. In this paper, we introduce game-theoretic semantics (GTS)
for Qualitative Choice Logic (QCL), which, in order to express prefer-
ences, extends classical propositional logic with an additional connective
called ordered disjunction. In particular, we present a new semantics that
makes use of GTS negation and, by doing so, avoids contentious behavior
of negation in existing QCL-semantics.

1 Introduction

Preferences are a key research area in artificial intelligence, and thus a multitude
of preference formalisms have been described in the literature [12]. An interesting
example is Qualitative Choice Logic (QCL) [6], which extends classical propo-
sitional logic by the connective #»× called ordered disjunction. F

#»×G states that
F or G should be satisfied, but satisfying F is more preferable than satisfying
only G. This allows to express soft constraints (preferences) and hard constraints
(truth) in a single language.

For example, say we want to formalize our choice of pizza toppings: we defi-
nitely want tomato-sauce (t); Moreover, we want either mushrooms (m) or arti-
chokes (a), but preferably mushrooms. This can easily be expressed in QCL via
the formula t∧ (m #»×a). This formula has three models in QCL, namely M1 = {t,
m, a}, M2 = {t,m}, and M3 = {t, a}. QCL-semantics then ranks these models
via so-called satisfaction degrees. The lower this degree, the more preferable the
model. In this case, M1 and M2 would be assigned a degree of 1 and M3 would be
assigned a degree of 2, i.e., M1 and M2 are the preferred models of this formula.

In the literature, QCL has been studied with regards to possible applica-
tions [13], computational properties [4], and proof systems [3]. However, not
all aspects of QCL-semantics are uncontroversial. For example, a QCL-formula
F is not logically equivalent to its double negation ¬¬F , as all information
about preferences is erased by ¬. This issue has been addressed by Prioritized
QCL (PQCL) [1], which defines ordered disjunction in the same way as QCL
but changes the meaning of the classical connectives, including negation. While
PQCL solves QCL’s problem with double negation, it in turn introduces other
controversial behavior, e.g., a formula F and its negation ¬F can be satisfied by
the same interpretation. No alternative semantics for QCL is known to us that
addresses both of these issues at the same time.

In order to tackle these issues, we develop game-theoretic semantics (GTS)
for QCL, embedding choice logics in the rich intersection of the fields of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 547–560, 2023.
https://doi.org/10.1007/978-3-031-43619-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_37&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_37

548 R. Freiman and M. Bernreiter

game-theory and logics [2,11,15]. Building on the concepts of rational behav-
ior and strategic thinking, GTS offer a natural dynamic viewpoint of dealing
with truth and preferences. Originally, GTS go back to Jaakko Hintikka [10],
who designed a win/lose game for two players, called Me (or I) and You, both
of which can act in the role of Proponent or Opponent of a formula F over an
interpretation I. The game proceeds by rules for step-wise reducing F to an
atomic formula. It turns out that I have a winning strategy for this game if
and only if F is classically true over I. Most importantly, negation in GTS is
interpreted as dual negation, [14]: at formulas ¬G, the game continues with G
and a role switch.

To capture not only truth but also preferences, we extend the two-valued
game of Hintikka with more fine-grained outcomes and introduce a game-
theoretic interpretation of ordered disjunction. Moreover, we reinterpret negation
in QCL using game-theoretic methods. From our GTS we extract a new logic we
call Game-induced Choice Logics (GCL), where negation behaves as in classical
logic.

2 Qualitative Choice Logic (QCL)

We now recall QCL [6]. U denotes an infinite set of propositional variables. An
interpretation I ⊆ U is a set of variables, with a ∈ U true under I iff a ∈ I.

Definition 1 (QCL-formula). The set F of QCL-formulas is built induc-
tively: if a ∈ U , then a ∈ F ; if F ∈ F , then (¬F) ∈ F ; if F,G ∈ F , then
(F ◦ G) ∈ F for ◦ ∈ {∧,∨,

#»×}.
The semantics of QCL is based on two functions: optionality and satisfaction

degree. The satisfaction degree of a formula can be a natural number or ∞
and is used to rank interpretations (lower degrees are better). The optionality
of a formula represents the maximum finite satisfaction degree the formula can
obtain and is used to penalize interpretations that do not satisfy F in F

#»×G.

Definition 2 (Optionality in QCL). The optionality of QCL-formulas is
defined inductively as follows: (i) opt(a) = 1 for a ∈ U , (ii) opt(¬F) = 1,
(iii) opt(F ∧ G) = opt(F ∨ G) = max(opt(F), opt(G)), and (iv) opt(F #»×G) =
opt(F) + opt(G).

Definition 3 (Satisfaction Degree in QCL). The satisfaction degree of
QCL-formulas under an interpretation I is defined inductively as follows:

degI(a) = 1 if a ∈ I,∞ otherwise
degI(¬F) = 1 if degI(F) = ∞,∞ otherwise

degI(F ∧ G) = max(degI(F),degI(G))
degI(F ∨ G) = min(degI(F),degI(G))

degI(F
#»×G) =

⎧
⎪⎨

⎪⎩

degI(F) if degI(F) < ∞
opt(F) + degI(G) if degI(F) = ∞,degI(G) < ∞
∞ otherwise

Truth and Preferences - A Game Approach for Qualitative Choice Logic 549

If degI(F) = k we say that I satisfies F to a degree of k. If degI(F) < ∞ we
say that I (classically) satisfies F , or that I is a model of F . A crucial notion
in QCL is that of preferred models, i.e., models with minimal degree.

Definition 4 (Preferred Model under QCL-semantics). Let F be a QCL-
formula. An interpretation I is a preferred model of F iff degI(F) < ∞ and,
for all interpretations J , degI(F) ≤ degJ (F).

Satisfaction degrees are bounded by optionality, i.e., either degI(F) ≤ opt(F)
or degI(F) = ∞ must hold. As stated earlier, optionality is used to penalize
non-satisfaction: given F

#»×G, if degI(F) < ∞ we get degI(F
#»×G) = degI(F) ≤

opt(F); if degI(F) = ∞ we get degI(F
#»×G) = opt(F) + degI(G) > opt(F).

Moreover, ordered disjunction is associative under QCL-semantics, which
means that we can simply write A1

#»×A2
#»× . . .

#»×An to express that we must satisfy
at least one of A1, . . . , An, and that we prefer Ai to Aj for i < j.

Example 1. Consider F = (a ∧ b) #»×a
#»×b. Then opt(F) = 3, deg∅(F) = ∞,

deg{b}(F) = 3, deg{a}(F) = 2, and deg{a,b}(F) = 1. Thus, {a}, {b}, {a, b} are
models of F while {a, b} is also a preferred model of F .

Now consider F ′ = F ∧ ¬(a ∧ b). Again, deg∅(F ′) = ∞, deg{b}(F ′) = 3, and
deg{a}(F ′) = 2. However, deg{a,b}(F ′) = ∞. Since it is not possible to satisfy
F ′ to a degree of 1, {a} is a preferred model of F ′.

An alternative semantics for QCL has been proposed in the form of PQCL [1].
Specifically, PQCL changes the semantics for the classical connectives (¬,∨,∧),
but defines ordered disjunction (#»×) in the same way as QCL. For our purposes
it suffices to note that negation in PQCL propagates to the atom level, meaning
that ¬(F ∧G) is assigned the satisfaction degree of ¬F ∨¬G, ¬(F ∨G) is assigned
the degree of ¬F ∧ ¬G, and ¬(F #»×G) is assigned the degree of ¬F

#»×¬G.

3 Comments on Negation

While choice logics are a useful formalism to express both soft constraints (pref-
erences) and hard constraints (truth) in a single language, existing semantics
(such as QCL and PQCL) are not entirely uncontroversial. Table 1 shows how
negation acts on ordered disjunction in both systems: negation in QCL erases
preferences, while in PQCL it is possible to satisfy a formula and its negation at
the same time ({a} and {b} classically satisfy both a

#»×b and ¬a
#»×¬b). Moreover,

in PQCL, the satisfaction degree of ¬F does not only depend on the degree and
optionality of F ({a} and {a, b} satisfy a

#»×b to degree 1, but {a} satisfies ¬a
#»×¬b

to degree 2 while {a, b} does not satisfy ¬a
#»×¬b at all).

We will make use of game-theoretic negation to define an alternative seman-
tics for the language of QCL. Our main goal is to define a negation that acts both
on hard constraints as in QCL and soft constraints as in PQCL. Specifically, we
will ensure that (i) the satisfaction degree of ¬F depends only on the degree of
F , (ii) formulas and their negation can not be classically satisfied by the same
interpretation, (iii) formulas are equivalent to their double negation.

550 R. Freiman and M. Bernreiter

Table 1. Truth table showing the satisfaction degrees of ¬(a #»×b) in QCL (equivalent
to ¬a ∧ ¬b) and PQCL (equivalent to ¬a #»×¬b).

I a
#»×b ¬a ∧ ¬b ¬a #»×¬b

∅ ∞ 1 1

{b} 2 ∞ 1

{a} 1 ∞ 2

{a, b} 1 ∞ ∞

4 A Game for Ordered Disjunction

In this section, we introduce GTS for the language of QCL. As a first step, let us
briefly recall Hintikka’s game [10] over a classical propositional formula F and
an interpretation I. There are two players, Me and You, both of which can act
in the role of Proponent (P) or Opponent (O). The game starts with Me as P
of the formula F and You as O. At formulas of the form G1 ∨ G2, P chooses a
formula Gi that the game continues with. At formulas of the form G1 ∧ G2 it is
O’s choice. At negations ¬G, the game continues with G and a role switch. The
outcome of the game is a propositional variable a. The player currently in the
role of P wins the game (and O loses) iff a ∈ I. Otherwise, P wins and O loses.
It turns out that I have a winning strategy for the game iff I |= F .

The first question we must answer in order to introduce our GTS for QCL
is how ordered disjunction should be handled in a game-theoretic setting. We
propose the following solution: at G1

#»×G2 it is P’s choice whether to continue
with G1 or with G2, but this player prefers G1. My aim in the game is now not
only to win the game but to do so with as little compromise to My preferences
as possible. Thus, it is natural to express My preference of G1-outcomes O1 over
G2-outcomes O2 via the relation O2 	 O1.

The second question to answer is how the classical connectives should interact
with the newly introduced preferences 	 between outcomes. For G1 ∧ G2 and
G1 ∨ G2 it suffices to simply combine the preferences of G1 and G2, as we will
see. For ¬G, the preferences associated with G will be inverted in order to ensure
that negation not only acts on hard constraints but also on soft constraints.

Formally, game states will be either of the form P : F or O : F , where F
is a QCL-formula and “P” and “O” signify that I currently act in the role of
Proponent and Opponent respectively. Each game state appears in the game
tree defined below. Every node is labeled with either “I” (when it is My turn) or
“Y ” (when it is Your turn). If the game reaches a game state g, then the player
whose turn it is chooses a child of g in the game tree where the game continues.
The relation 	 captures My preferences on outcomes, as motivated above.

Definition 5 (Game Tree). We inductively define the game tree T (P : F) =
(V,E, l) with (game) states V and edges E. Leafs of T are called outcomes and
are denoted O(T). The labeling function l maps nodes of T to the set {I, Y }.
Moreover, we define a partial order 	 over outcomes.

Truth and Preferences - A Game Approach for Qualitative Choice Logic 551

P : ((a×b)×c) ∧ ¬(a×d) Y

[
P : (a×b)×c

]I

[
P : a×b

]I

[P : a] [P : b]

[P : c]

[
P : ¬(a×d)

]I

[
O : a×d

]Y

[O : a] [O : d]

Fig. 1. The game tree from Example 2

(Ra) T (P : a) consists of the single leaf and 	P:a= ∅.
(R¬) T (P : ¬G) consists of a root labeled “I”, the immediate subtree T (O : G),

and 	P:¬G equal to 	O:G.
(R∧) T (P : G1 ∧ G2) consists of a root labeled “Y” and immediate subtrees

T (P : G1), T (P : G2). The preference is given by 	P:G1∧G2=	P:G1 ∪	P:G2 .
(R∨) T (P : G1 ∨ G2) consists of a root labeled “I” and immediate subtrees

T (P : G1), T (P : G2). The preference is given by 	P:G1∧G2=	P:G1 ∪	P:G2 .
(R #»×) T (P : G1

#»×G2) consists of a root labeled “I” and the immediate subtrees
T (P : G1), T (P : G2). Moreover, O2 	P:G1

#»×G2
O1 iff O1 ∈ O(T (P : G1))

and O2 ∈ O(T (P : G2)), or O2 	P:Gj
O1 for j ∈ {1, 2}.

The tree T (O : F) is defined analogously to T (P : F), except that labels are
swapped and preferences are switched, i.e., O1 	O:F O2 iff O2 	P:F O1.

Example 2. Figure 1 depicts the game tree for F = ((a #»×b) #»×c) ∧ ¬(a #»×d). Note
that O : a

#»×d is labeled “Y” since roles are switched in P : ¬(a #»×d). The order
on outcomes is given by P : c 	 P : b 	 P : a and O : a 	 O : d.

An outcome P : a is true in I iff a ∈ I. Conversely, O : a is true iff a �∈ I.
An outcome O is a winning outcome w.r.t an interpretation I iff O is true in I.

To evaluate an interpretation via a game tree, we introduce the payoff func-
tion δI which will respect My preferences 	 on My winning outcomes. Given
outcome O, let π�(O) = O1, ..., On be the longest 	-chain starting in O, i.e.
O1 = O, all Oi are pairwise different, and Oi 	 Oi+1 for 1 ≤ i < n. The length
of π�(O) is |π�(O)| = n.

Definition 6 (Payoff). δI maps outcomes of a game tree T into Z := (Z \
{0},�). The ordering � is the inverse of the natural ordering on Z

− and on Z
+

and for k ∈ Z
−, � ∈ Z

+ we set k � �, i.e. −1 � −2 � . . . � 2 � 1. For an outcome
O ∈ O(T), we set1

δI(O) =

{
|π�(O)|, if O is true,
−|π�(O)|, if O is false.

We write δ instead of δI if I is clear from context.

552 R. Freiman and M. Bernreiter

Fig. 2. Preferences and winning payoffs of the two players in the game NG.

Winning outcomes are ascribed a payoff in Z
+ and losing outcomes have

a payoff in Z
−. Intuitively, it is better for Me to have a higher payoff with

respect to �. If both O1 and O2 are winning outcomes (or if they both are
losing outcomes), then δI(O1) � δI(O2) iff O1 	 O2. If O1 is a losing outcome
and O2 is a winning outcome, then δI(O1) � δI(O2). See Fig. 2 for a graphical
representation of winning ranges and preferences.

Example 3 (Example 2 cont.). The winning outcomes for I = {a} are P : a,
O : d with δ(P : a)= 1, δ(P : b)= −2, δ(P : c)= −1, δ(O : a)= −1, δ(O : d)= 1.

We are now ready to formally define the notion of a game.

Definition 7 (Game). A game NG = (T (Q : F), δI), also written NG(Q :
F, I), is a pair, where T (Q : F) is a game tree and δI is a payoff-function with
respect to some interpretation I.

The goal of both players is to win the game with as little compromise as
possible, and thus force the opponent in as much compromise as possible. To
this end, we must consider the optimal strategies that both players have at their
disposal. A strategy σ for Me in a game can be understood as My complete
game plan. For every node of the game tree labeled “I”, σ tells Me to which node
I have to move.

Definition 8 (Strategy). A strategy σ for Me for the game NG is a subset
of the nodes of the underlying tree such that (i) the root of T is in σ and for all
v ∈ σ, (ii) if l(v) = I, then at least one successor of v is in σ and (iii) if l(v) = Y ,
then all successors of v are in σ. A strategy for You is defined symmetrically.
We denote by ΣI and ΣY the set of all strategies for Me and You, respectively.

Conditions (i) and (iii) make sure that all possible moves by the other player
are taken care of by the game plan. Note that each pair of strategies σI ∈ ΣI ,
σY ∈ ΣY defines a unique outcome of NG, which we will denote by O(σI , σY).
We abbreviate δ(O(σI , σY)) by δ(σI , σY). A strategy σ∗

I for Me is called win-
ning if, playing according to this strategy, I win the game, no matter how You
move, i.e. for all σY ∈ ΣY , δ(σ∗

I , σY) ∈ Z
+. An outcome O that maximizes My

pay-off in light of Your best strategy is called maxmin-outcome. Formally, O
is a maxmin-outcome iff δ(O) = max�

σI
min�

σY
δ(σI , σY) and δ(O) is called the

maxmin-value of the game. A strategy σ∗
I for Me is a maxmin-strategy for NG

if σ∗
I ∈ argmax�

σI
min�

σY
δ(σI , σY), i.e. the maximum is reached at σ∗

I . Minmax
values and strategies for You are defined symmetrically.
1 Notice the flipped �-sign in the second case.

Truth and Preferences - A Game Approach for Qualitative Choice Logic 553

The class of games that we have defined falls into the category of zero-sum
perfect information games in game theory. They are characterized by the fact
that the players have strictly opposing interests. In these games, the minmax
and maxmin value always coincide and is referred to as the value of the game.

Example 4 (Example 2 cont.). I have a winning strategy for I = {a, d}: if you
move to the left at the root, I will reach P : a with optimal payoff 1. If You go
to the right instead, You still cannot win the game but You can minimize My
payoff by reaching O : a with δ(O : a) = 2 instead of O : d with δ(O : d) = 1.
Thus, the value of the game is 2.

Now let I = {d} with payoffs δI(P : c) = −1, δ(P : b) = −2, δ(P : a) = −3,
δ(O : a) = 2, δ(O : d) = −2. In this game, I have no winning strategy: if You
move to the left at the root, it is best for Me to reach P : a with payoff −3. If
You move to the right, You can force O : d with payoff −2. Thus, it is better
for You to move to the right at the root note, giving us the game value −2.

5 Game-Induced Choice Logic (GCL)

To examine the properties of our GTS and compare it with QCL, we extract a
novel degree-based semantics for the language of QCL from our game NG. The
resulting logic will be called Game-induced Choice Logic (GCL). Syntactically,
GCL is defined in the same way as QCL (cf. Definition 1), i.e., F is a GCL-
formula iff F is a QCL-formula. The optionality function of GCL is denoted by
optG and defined in the same way as opt (cf. Definition 2), except for negation.

Definition 9 (Optionality in GCL). The optionality of GCL-formulas is
defined inductively as follows: (i) optG(a) = 1 for a ∈ U , (ii) optG(¬F) =
optG(F), (iii) optG(F ∧ G) = optG(F ∨ G) = max(optG(F), optG(G)),
(iv) optG(F #»×G) = optG(F) + optG(G).

The degree-function of GCL is denoted by degG
I , and maps pairs of formulas

and interpretations to values in the domain (Z,�) (cf. Definition 6).

Definition 10 (Satisfaction Degree in GCL). The satisfaction degree of
GCL-formulas under an interpretation I is defined inductively as follows:

degG
I (a) = 1 if a ∈ I,−1 otherwise

degG
I (¬F) = −degG

I (F)

degG
I (F ∧ G) = min�(degG

I (F),degG
I (G))

degG
I (F ∨ G) = max�(degG

I (F),degG
I (G))

degG
I (F

#»×G) =

⎧
⎪⎨

⎪⎩

degG
I (F) if degG

I (F) ∈ Z
+

optG(F) + degG
I (G) if degG

I (F) ∈ Z
−,degG

I (G) ∈ Z
+

degG
I (F) − optG(G) otherwise

554 R. Freiman and M. Bernreiter

If degG
I (F) ∈ Z

+, then I classically satisfies F (I is a model of F). In con-
trast to QCL, those interpretations that result in a higher degree relative to the
ordering � are more preferable, which is why we take the maximum degree for
disjunction and the minimum degree for conjunction. However, since � inverts
the order on Z

+, a degree of 1 is considered to be higher than a degree of 2.
Preferred models are defined analogously to QCL (cf. Definition 4).

Definition 11 (Preferred Model under GCL-semantics). Let F be a
GCL-formula. An interpretation I is a preferred model of F iff degG

I (F) ∈ Z
+

and, for all interpretations J , degG
J (F) � degG

I (F).

We are now ready to show that NG and GCL are semantically equivalent,
which will allow us to examine properties of NG via GCL. As a first step,
we show that the the notion of optionality, which must be defined a-priori in
degree-based semantics, arises naturally in our game.

Proposition 1. The longest 	-chain in O(Q : F) has length optG(F), where
Q ∈ {P,O}.
Proof. By structural induction. For the base case F = a, where a ∈ U , this
clearly holds, as optG(a) = 1.

Induction step: for the inductive hypothesis we assume that for two GCL-
formulas A,B the longest 	-chain O1, . . . , Ok in O(Q : A) has length k =
optG(A) and the longest 	-chain O′

1, . . . , O
′
� in O(Q : B) has length � =

optG(B).
F = ¬A: since negation results in a role switch with inverted preferences, the

longest 	-chain in O(Q′ : ¬A), where Q′ ∈ {P,O} \ {Q}, is Ok, . . . , O1 with
length k = optG(A) = optG(¬A).

F = (A ∧ B): Note that 	Q:A∧B=	Q:A ∪ 	Q:B . Moreover, O(Q : A)
and O(Q : B) are disjoint, i.e., the longest 	-chain in O(Q : A ∧ B) has length
max(k, �) = max(optG(A), optG(B)) = optG(A ∧ B).

F = (A ∨ B) is analogous to F = (A ∧ B).
F = (A #»×B): by construction of 	Q:A

#»×B (cf. Definition 5), the longest
	-chain in O(Q : A

#»×B) is O1, . . . , Ok, O′
1, . . . , O

′
� with a length of k + � =

optG(A) + optG(B) = optG(A #»×B). �
The following results express semantic equivalence between NG and GCL.

The key is to show that the degree-based semantics captures My preferences in
the game as induced by the choice connective #»×.

Theorem 1. The value of NG(P : F, I) is degG
I (F). The value of NG(O : F, I)

is −degG
I (F).

Proof. We fix an interpretation I. For this proof, we introduce some handy
notation: for a game state Q : F , let d(Q : F) denote the maxmin-value and
O(Q : F) the maxmin-outcome of the game NG(Q : F, I), and W (Q : F)
and L(Q : F) the set of its winning and losing outcomes, respectively. Let δQ:F

I

Truth and Preferences - A Game Approach for Qualitative Choice Logic 555

denote the payoff function for the game NG(Q : F, I). We proceed by structural
induction on F , starting with the cases where Q = P.

F = a: This game consists of a single node v. The longest 	-chain starting at
v has length 1. Therefore, d(P : a) = 1 iff a ∈ I iff degG

I (a) = 1, and d(P : a) =
−1 iff a /∈ I iff degG

I (a) = −1.
F = G1 ∨ G2: In the first round, I choose between P : G1 and P : G2.

By the inductive hypothesis, the values of these games are degG
I (P : G1) and

degG
I (P : G2), respectively. Since I am looking to maximize My payoff, I move

to the subgame with maximal payoff:

d(P : G1 ∨ G2) = max�{d(P : G1), d(P : G2)}
= max�{degG

I (G1),degG
I (G2)} = degG

I (G1 ∧ G2)

F = G1 ∧ G2 is analogous to F = G1 ∨ G2.
F = G1

#»×G2: From the fact that δI respects 	 for the winning outcomes
of both players and the game rule of #»×, we observe the following facts: First, if
the G1-game is winning for Me, I go to G1 in the first round. Secondly, if G1 is
losing and G2 is winning, I go to G2. And thirdly, if both games are losing, I go
to G1. Since all outcomes of the G2-games are in 	-relation to all outcomes of
the G1-game, we have by Proposition 1 for all outcomes O:

δP:F
I (O) =

⎧
⎪⎨

⎪⎩

δP:G1
I (O), if O ∈ W (P : G1),

δP:G2
I (O) + opt(G1), if O ∈ W (P : G2),

δP:G1
I (O) − opt(G2), if O ∈ L(P : G1).

The last case comes from the fact that O � O′ for all O′ ∈ O(P : G2),
Proposition 1 and the definition of δI . We now use the inductive hypothesis:
in the first case from above, O(P : F) ∈ W (P : G1) and therefore d(P : F) =
d(P : G1) = degG

I (G1). In the second case, O(P : F) ∈ W (P : G2) and therefore
d(P : F) = d(P : G2) + opt(G1) = degG

I (G2) + opt(G1). Finally, in the third
case, O(P : F) ∈ L(P : G1) and therefore d(P : F) = d(P : G1) − opt(G2) =
degG

I (G2) − opt(G2).
F = ¬G: The game continues at O : G. Therefore, using the inductive

hypothesis, d(P : F) = d(O : G) = −degG
I (G) = degG

I (F).
Cases where I am in the role of Opponent are similar. For example, let us

consider O : G1 ∧ G2. In the first move I choose between the two subgames
O : G1 and O : G2. I seek to maximize My payoff, so I go to the subgame with
maximal value. Therefore, using the inductive hypothesis,

d(O : G1 ∧ G2) = max�{d(O : G1), d(O : G2)}
= max�{−degG

I (G1),−degG
I (G2)}

= −min�{degG
I (G1),degG

I (G2)} = −degG
I (G1 ∧ G2).

The argument can be adapted analogously for the other logical connectives. �

556 R. Freiman and M. Bernreiter

Negation in our new semantics behaves as desired. To see this, compare the
discussion in Sect. 3 to statements (i–iii) in Proposition 2 below. Intuitively,
negation in GCL preserves information on preferences by allowing for degrees
of dissatisfaction. For example, the formula ¬(a #»×b) can only be satisfied by
∅. However, we must also inspect the interpretations that do not satisfy the
formula: {b} results in a degree of −2 while {a} and {a, b} result in a degree of
−1, meaning that {b} is more preferable than {a} and {a, b}.

Moreover, De Morgan’s laws still hold in GCL, and ordered disjunction is
still associative (see statements (iv–vi) in Proposition 2).

Definition 12 (Equivalence). Two GCL-formulas F and G are equivalent,
written F ≡ G, iff optG(F) = optG(G) and degG

I (F) = degG
I (G) for all I ⊆ U .

Proposition 2. The following holds:

(i) degG
I (F)=degG

J (F) ⇐⇒ degG
I (¬F)=degG

J (¬F)
(ii) degG

I (F) ∈ Z
+ ⇐⇒ degG

I (¬F) ∈ Z
−

(iii) F ≡ ¬¬F
(iv) ¬(F ∧ G) ≡ ¬F ∨ ¬G
(v) ¬(F ∨ G) ≡ ¬F ∧ ¬G
(vi) ((F ◦ G) ◦ H) ≡ (F ◦ (G ◦ H)) for ◦ ∈ {∧,∨,

#»×}
Proof. Statements (i–iii) follow by definition of negation in GCL, i.e.,
degG

I (¬F) = −degG
I (F). Let us consider statements (iv–vi):

(iv) First, note that optG(¬(F ∧ G)) = optG(F ∧ G) = max{opt(F), opt(G)} =
max{opt(¬F), opt(¬G)} = optG(¬F ∨ ¬G). Moreover, for any I ⊆ U , we
have degI(¬(F ∧ G)) = −min�{degI(F),degI(G)} = max�{−degI(F),
−degI(G)} = degI(¬F ∨ ¬G).

(v) Analogous to (iv).
(vi) Associativity of ∧,∨ follows from associativity of min/max over any

total order like Z (cf. Definition 6). For example: min�{a,min�{b, c}} =
min�{a, b, c} = min�{min�{a, b},min�{c}}.
We now show associativity of #»×. Let F1 = ((A #»×B) #»×C), F2 = (A #»×(B #»×C)).
optG(F1) = optG(F2) is immediate. Let I be an arbitrary interpreta-
tion. We can show degG

I (F1) = degG
I (F2) by distinguishing all cases for

degG
I (A),degG

I (B),degG
I (C) ∈ {Z−,Z+}.

– degG
I (A) ∈ Z

+. Then degG
I (F2) = degG

I (A). Moreover, degG
I (A

#»×B) =
degG

I (A) and therefore degG
I (F1) = degG

I (A).
– degG

I (A) ∈ Z
− and degG

I (B) ∈ Z
+. Then degG

I (A
#»×B) = optG(A) +

degG
I (B) and degG

I (B
#»×C) = degG

I (B). Thus, degG
I (F1) = degG

I (F2) =
optG(A) + degG

I (B).
– degG

I (A) ∈ Z
−, degG

I (B) ∈ Z
−, and degG

I (C) ∈ Z
+. Then degG

I (A
#»×B) =

degG
I (A) − optG(B) and degG

I (B
#»×C) = optG(B) + degG

I (C). Observe
that degG

I (A
#»×B) ∈ Z

− and thus degG
I (F1) = optG(A #»×B) + degG

I (C) =
optG(A) + optG(B) + degG

I (C) = optG(A) + degG
I (B

#»×C) = degG
I (F2).

Truth and Preferences - A Game Approach for Qualitative Choice Logic 557

– degG
I (A) ∈ Z

−, degG
I (B) ∈ Z

−, and degG
I (C) ∈ Z

−. Then degG
I (A

#»×B) =
degG

I (A) − optG(B) and degG
I (B

#»×C) = degG
I (B) − optG(C). Thus,

degG
I (F1) = degG

I (A
#»×B) − optG(C) = degG

I (A) − optG(B) − optG(C) =
degG

I (A) − optG(B #»×C) = degG
I (F2)q. �

While GCL deviates from QCL, the two logics agree when it comes to classical
satisfaction, as expressed by the following result.

Proposition 3. degG
I (F) ∈ Z

+ iff degI(F) < ∞.

Proof. By structural induction. Let I ⊆ U . For the base case F = a, where
a ∈ U , we distinguish two cases: If a ∈ I, then degI(a) = degG

I (a) = 1. If a �∈ I,
then degI(a) = ∞ and degG

I (a) = −1.
Induction step: the I.H. is that degG

I (A) ∈ Z
+ iff degI(A) < ∞, and that

degG
I (B) ∈ Z

+ iff degI(B) < ∞.
F = ¬A: degG

I (¬A)∈Z
+ iff degG

I (A)∈Z
− iff degI(A)=∞ iff degI(¬A)<∞.

F = (A ∧ B): degG
I (A ∧ B) ∈ Z

+ iff degG
I (A) ∈ Z

+ and degG
I (B) ∈ Z

+ iff
degI(A) < ∞ and degI(B) < ∞ iff degI(A ∧ B) < ∞.

F = (A ∨ B): degG
I (A ∨ B) ∈ Z

+ iff degG
I (A) ∈ Z

+ or degG
I (B) ∈ Z

+ iff
degI(A) < ∞ or degI(B) < ∞ iff degI(A ∨ B) < ∞.

F = (A #»×B): analogous to F = (A ∨ B). �
Moreover, if we allow negation only in front of classical formulas, QCL and

GCL agree even when it comes to (positive) satisfaction degrees.

Proposition 4. If F is a QCL-formula in which negation is only applied to
classical formulas, degG

I (F) ∈ Z
+ implies degG

I (F) = degI(F).

Proof. By structural induction. Let I ⊆ U . In this proof, min� and max� are
relative to � (cf. Definition 6) while min≤ and max≤ are relative to the regular
order on integers.

Base case: let F be a classical formula. Assume degG
I (a) ∈ Z

+. By Proposi-
tion 3 this implies degG

I (F) < ∞. Thus, degI(F) = degG
I (F) = 1.

Induction step: let A and B be formulas such that negation only appears
in front of classical formulas, i.e., if ¬G is a subformula of A or B then G is a
classical formula. The I.H. is that degG

I (A) ∈ Z
+ implies degG

I (A) = degI(A)
and degG

I (B) ∈ Z
+ implies degG

I (B) = degI(B).
F = (A ∧ B): assume degG

I (A ∧ B) ∈ Z
+. Then we have degG

I (A) ∈ Z
+ and

degG
I (B) ∈ Z

+. This means that, degG
I (A ∧ B) = min�(degG

I (A),degG
I (B)) =

max≤(degG
I (A),degG

I (B)) = max≤(degI(A),degI(B)) = degI(A ∧ B).
F = (A ∨ B): assume degG

I (A ∨ B) ∈ Z
+. Then either degG

I (A) ∈ Z
+ or

degG
I (B) ∈ Z

+. If both degG
I (A) ∈ Z

+ and degG
I (B) ∈ Z

+ the proof is analo-
gous to F = (A ∧ B). Suppose degG

I (A) ∈ Z
+ and degG

I (B) ∈ Z
− (the other

case is symmetric). By Proposition 3, degI(B) = ∞. Thus, degG
I (A ∨ B) =

max�(degG
I (A),degG

I (B)) = degG
I (A) = degI(A) = min≤(degI(A),degI(B)) =

degI(A ∨ B).
F = (A #»×B): assume degG

I (A
#»×B) ∈ Z

+. If degG
I (A) ∈ Z

+, then
degG

I (A
#»×B) = degG

I (A) = degI(A) = degI(A
#»×B). If degG

I (A) ∈ Z
−, then

558 R. Freiman and M. Bernreiter

degG
I (B) ∈ Z

+. By Proposition 3, degI(A) = ∞. Then degG
I (A

#»×B) = optG(A)+
degG

I (B) = opt(A)+degI(B) = degI(A
#»×B). Note that optG(A) = opt(A) holds

because negation is only applied to classical formulas in A, and, except for nega-
tion, optionality is defined equivalently in QCL and GCL. �

Note that Propositions 3 and 4 do not hold if we substitute QCL for PQCL.
Regarding Proposition 3, recall that, in PQCL, an interpretation may classically
satisfy a formula F and its negation ¬F (see Sect. 3), which is not possible in
GCL. As for Proposition 4, classical conjunction and disjunction are defined
differently in PQCL compared to QCL and GCL.

Lastly, we investigate the computational complexity of GCL (and therefore
our game NG). Familiarity with complexity classes P, NP, and coNP is assumed.
Moreover, the complexity class ΘP

2 contains the problems solvable in polynomial
time with access to O(log(n))-many NP-oracle calls [16]. We consider decision
problems pertaining to the preferred models of a formula.

Definition 13. We define the following two decision problems:

– PMChecking: given a GCL-formula F and an interpretation I, is I a pre-
ferred model of F?

– PMContainment: given a GCL-formula F and a variable x ∈ U , is there a
preferred model I of F such that x ∈ I?

For QCL, PMChecking is coNP-complete while PMContainment is ΘP
2 -

complete [4]. Intuitively, PMChecking is coNP-complete for QCL since we must
go through all other interpretations to check that our given interpretation I
results in an optimal degree. The same is true in the case of GCL.

Proposition 5. PMChecking is coNP-complete for GCL.

Proof. NP-membership of the complementary problem: given a GCL-formula F
and an interpretation I, compute k = degG

I (F) (this can be done in polynomial
time) and check whether k ∈ Z

+. If no, then I is not a preferred model and
we are done. If yes, non-deterministically guess an interpretation J and check
whether k � degG

J (F). If yes, then I is not a preferred model, i.e. (F, I) is a
yes-instance for the complementary problem of PMChecking.

coNP-hardness by reduction from Unsat2: given a classical formula F , we
construct the GCL-formula

F ′ = (F ∨ ((a ∧ ¬a) #»×a) ∧ ¬(F ∧ a)

where a is a fresh variable that does not occur in F . It holds that F is unsatis-
fiable iff {a} is a preferred model of F ′:

Assume F is unsatisfiable. Note that {a} satisfies F ′ to a degree of 2. More-
over, ((a∧¬a) #»×a) can not be satisfied to a degree more preferable than 2. Thus,
to satisfy F ′ to a degree of 1 we must satisfy F , which is not possible.
2 In the coNP-complete Unsat problem we are given a classical formula F and ask

whether I �|= F for all interpretations I.

Truth and Preferences - A Game Approach for Qualitative Choice Logic 559

Assume F is satisfiable, i.e., there is some interpretation I that satisfies F .
Note that we can assume a �∈ I, since a is a fresh variable. Then I satisfies F ′

to a degree of 1. But {a} satisfies F ′ to a degree of 2. �
As for PMContainment, ΘP

2 -completeness in the case of QCL can intu-
itively be explained by the fact that we must first find the optimal degree m for
the given formula F . This can be done via binary search, using O(log(opt(F)))
NP-oracle calls. Then, a last oracle call suffices to guess an interpretation I and
check whether degI(F) = m and a ∈ I. This algorithm can be adapted for GCL.

Proposition 6. PMContainment is ΘP
2 -complete for GCL.

Proof. ΘP
2 -membership: let F be a GCL-formula and a ∈ U . First, using an NP-

oracle call, check whether there is some interpretation I such that degG
I (F) ∈

Z
+. If no, then F has no preferred models and we have a no-instance. If yes,

we continue. We conduct a binary search over (1, . . . , optG(F)). At each step
of the binary search we use an NP-oracle call to check whether there is some
interpretation I such that k � degG

I (F), where k is the current mid-point of the
binary search. If yes, we continue the binary search over (1, . . . , k−1), otherwise
we continue with (k+1, . . . , optG(F)). In this way, we find the optimal degree m
with which F can be satisfied, i.e., every preferred model of F must satisfy F to
a degree of m. The binary search requires O(log(optG(F))) NP-oracle calls. Note
that optG(F) is linear in the size of F , since optG(A #»×B) = optG(A) + optG(B).
Finally, we make one last NP-oracle call to guess an interpretation I and check
whether degG

I (F) = m and a ∈ I.
ΘP

2 -hardness: in the ΘP
2 -hardness proof of PMContainment for QCL (see

Proposition 19 in [4]), a formula F ′ is constructed in which negation is only
applied to atoms, i.e., if ¬G is a subformula of F ′ then G is a propositional
variable. By our Proposition 4, this means that an interpretation I is a preferred
model of F ′ in QCL if and only if I is a preferred model of F ′ in GCL. Thus,
the same construction used in the hardness proof of QCL works for GCL. �

We have shown that the complexity of GCL with respect to preferred models
is the same as that of QCL. Note that the complexity of PQCL has not been
formally investigated yet (to the best of our knowledge).

6 Conclusion

We propose a game-theoretic semantics (GTS) for the language of Qualitative
Choice Logic (QCL), and thereby show that GTS are well-suited for languages
in which soft and hard constraints are expressed in a single language.

We extract the degree-based Game-induced Choice Logic (GCL) from our
GTS and show equivalence between the two formalisms. By leveraging game-
theoretic negation, our new semantics avoids the contentious behavior of nega-
tion in QCL and Prioritized QCL (PQCL) while retaining desirable properties
such as associativity of ordered disjunction. Moreover, we show that the com-
plexity of GCL is the same as that of QCL when it comes to preferred models.

560 R. Freiman and M. Bernreiter

Regarding future work, our game semantics can be lifted to a provability
game [8,9] by which a cut-free sequent calculus can be obtained. We also plan to
investigate how our approach can be adapted to formalisms related to QCL such
as other choice logics [4,5] or the recently introduced lexicographic logic [7].

Acknowledgements. We thank the anonymous reviewers for their feedback. This
work was funded by the Austrian Science Fund (FWF) under grants P32830 and
P32684, the Vienna Science and Technology Fund (WWTF) under grant ICT19-065,
and partially funded by the EU (Marie Skłodowska-Curie RISE) project MOSAIC,
grant 101007624.

References

1. Benferhat, S., Sedki, K.: Two alternatives for handling preferences in qualitative
choice logic. Fuzzy Sets Syst. 159(15), 1889–1912 (2008)

2. van Benthem, J.: Logic in Games. MIT Press, Cambridge (2014)
3. Bernreiter, M., Lolic, A., Maly, J., Woltran, S.: Sequent calculi for choice logics. In:

Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp.
331–349. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6_20

4. Bernreiter, M., Maly, J., Woltran, S.: Choice logics and their computational prop-
erties. Artif. Intell. 311, 103755 (2022)

5. Boudjelida, A., Benferhat, S.: Conjunctive choice logic. In: ISAIM 2016, Fort Laud-
erdale, Florida, USA, 4–6 January 2016 (2016)

6. Brewka, G., Benferhat, S., Berre, D.L.: Qualitative choice logic. Artif. Intell.
157(1–2), 203–237 (2004)

7. Charalambidis, A., Papadimitriou, G., Rondogiannis, P., Troumpoukis, A.: A
many-valued logic for lexicographic preference representation. In: KR 2021, Online
event, 3–12 November 2021, pp. 646–650 (2021)

8. Fermüller, C.G., Metcalfe, G.: Giles’s game and the proof theory of Łukasiewicz
logic. Stud. Logica 92(1), 27–61 (2009)

9. Freiman, R.: Games for hybrid logic. In: Silva, A., Wassermann, R., de Queiroz,
R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 133–149. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88853-4_9

10. Hintikka, J.: Logic, Language-Games and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, Oxford (1973)

11. Hodges, W., Vänänen, J.: Logic and games. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall
2019 edn. (2019)

12. Pigozzi, G., Tsoukiàs, A., Viappiani, P.: Preferences in artificial intelligence. Ann.
Math. Artif. Intell. 77(3–4), 361–401 (2016)

13. Sedki, K., Lamy, J., Tsopra, R.: Qualitative choice logic for modeling experts
recommendations of antibiotics. In: Proceedings of the Thirty-Fifth International
Florida Artificial Intelligence Research Society Conference, FLAIRS 2022, Hutchin-
son Island, Jensen Beach, Florida, USA, 15–18 May 2022 (2022)

14. Tulenheimo, T.: Classical negation and game-theoretical semantics. Notre Dame
J. Form. Logic 55(4), 469–498 (2014)

15. Vänänen, J.: Models and Games. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge (2011)

16. Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)

https://doi.org/10.1007/978-3-031-10769-6_20
https://doi.org/10.1007/978-3-030-88853-4_9

Rational Closure Extension
in SPO-Representable Inductive

Inference Operators

Jonas Haldimann1(B) , Thomas Meyer2 , Gabriele Kern-Isberner3 ,
and Christoph Beierle1

1 FernUniversität in Hagen, Hagen, Germany
{jonas.haldimann,christoph.beierle}@fernuni-hagen.de

2 University of Cape Town and CAIR, Cape Town, South Africa
tmeyer@cs.uct.ac.za

3 University of Dortmund, Dortmund, Germany
gabriele.kern-isberner@cs.tu-dortmund.de

Abstract. The class of inductive inference operators that extend ratio-
nal closure, as introduced by Lehmann or via Pearl’s system Z, exhibits
desirable inference characteristics. The property that formalizes this,
known as (RC Extension), has recently been investigated for basic defea-
sible entailment relations. In this paper, we explore (RC Extension) for
more general classes of inference relations. First, we semantically charac-
terize (RC Extension) for preferential inference relations in general. Then
we focus on operators that can be represented with strict partial orders
(SPOs) on possible worlds and characterize SPO-representable inductive
inference operators. Furthermore, we show that for SPO-representable
inference operators, (RC Extension) is semantically characterized as a
refinement of the Z-rank relation on possible worlds.

1 Introduction

Inductive reasoning from (conditional) belief bases is one of the major tasks in
knowledge representation. Especially in the field of non-monotonic reasoning,
research often deals with inferences that can be drawn from a set of given defea-
sible rules, and the resulting inference relations are assessed in terms of broadly
accepted axiomatic properties, like system P [25]. Beyond the inference relations,
the seminal papers [27,30] put the role of the belief base into the focus of rea-
soning methods, proposing closure operations for reasoning from defeasible rule
bases that have inspired many other works on non-monotonic reasoning since
then. In particular, Rational Closure, (RC) [27] (or equivalently system Z [30])
are inductive inference operators that can be characterized by a certain closure
of a belief base under rational monotony (RM) [25,29] and exhibit desirable
properties. Every inference relation satisfying system P and (RM) is induced
by a ranked model (or equivalently a total preorder (TPO) on worlds) [26]. An
inference relation satisfying system P is called preferential and is induced by a
preferential model [25]. Both system P and (RM) have benefits and drawbacks:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 561–576, 2023.
https://doi.org/10.1007/978-3-031-43619-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_38&domain=pdf
http://orcid.org/0000-0002-2618-8721
http://orcid.org/0000-0003-2204-6969
http://orcid.org/0000-0001-8689-5391
http://orcid.org/0000-0002-0736-8516
https://doi.org/10.1007/978-3-031-43619-2_38

562 J. Haldimann et al.

– System P is generally seen as a kind of gold standard which a non-monotonic
inference relation should fulfil. However, inference only with the axioms of
system P (p-entailment) is very skeptical because it takes all preferential
models of a belief base Δ into account. Therefore, system P on its own is
often perceived to be too weak for drawing informative inferences.

– If A |∼ C, the postulate (RM) licences the entailment A ∧ B |∼ C for every B
as long as from A we cannot defeasibly entail the negation of B. Therefore,
because no other condition on B is required, (RM) is often perceived to be
too strong.

Thus, one would expect inference operators to comply with system P while
possibly licensing additional conditional entailments. The postulate (Classic
Preservation) [7] requires that the inductive inference operator licenses an entail-
ment of the form A |∼Δ ⊥ only if A |∼p

Δ ⊥, i.e., if it is a p-entailment. Note that
A |∼Δ ⊥ causes all models of A to be completely infeasible, thus expressing that
¬A is a strict belief.

The postulate (RC Extension) [7] restricts the closure under (RM) to the
belief base Δ and thus makes a difference between beliefs explicitly given in Δ
and implicit beliefs derived from Δ by non-monotonic entailment. This distinc-
tion between explicit and implicit beliefs perfectly fits the basic idea of inductive
inference operators [22], which map a belief base Δ to a complete inference rela-
tion induced by Δ. Inference relations satisfying (RM), Classic Preservation
(CP), and (RC Extension) can be semantically characterized by ranked models
that are rank preserving with respect to the Z-ranking [7].

In this paper, we explore the field of inference relations involving system P
respectively (RM) as limiting characterizations, and extend the work started in
[7] by dropping the rather strong requirement of (RM). Instead, we consider
more general classes of so-called RCP inductive inference operators, i.e., induc-
tive inference operators satisfying (RC Extension) and (Classic Preservation).
For RCP inductive inference operators that satisfy system P (RCP preferential
inductive inference operators) we show that these are characterized by Z-rank
refining preferential models, where Z-rank refining is a newly introduced adap-
tion of rank preserving to preferential models. The intuition of Z-rank refining is
that the preferential model respects and possibly refines the structure on worlds
that is induced by Z-ranking functions κz

Δ.
While preferential models are more general than TPOs, they are also more

complex. Between the class of preferential inference relations and the class of
inference relations induced by TPOs there is the class of inductive inference oper-
ators induced by strict partial orders (SPOs) on worlds. SPOs on worlds are more
expressive than TPOs but less complex than preferential models: e.g., for signa-
tures of size |Σ| = 2 there are 75 TPOs, 219 SPOs, and 485 (non-equivalent) pref-
erential models on the four Σ-worlds [3–5]. Thus, to fill the gap between TPOs
and preferential models we also consider the class of RCP inductive inference
operators induced by SPOs on worlds, called RCP SPO-representable inductive
inference operators. We show that RCP SPO-representable inductive inference
operators are characterized by Z-rank refining SPOs on worlds. Furthermore, we

RC Extension in SPO-Representable Inductive Inference Operators 563

investigate inference relations induced by SPOs on formulas and show that such
inductive inference operators satisfy RCP if they are based on Z-rank refining
SPOs on formulas. Thus, our work extends [7] in different directions, in particu-
lar by providing characterization theorems for different classes of RCP inductive
inference operators. To summarize, the main contributions of this paper are:

– A characterization theorem showing that RCP preferential inductive inference
operators can be characterized by Z-rank refining preferential models.

– Introduction of the class of SPO-representable inductive inference operators,
which prove to be central within a map of inductive inference operators.

– A characterization theorem showing that RCP SPO-representable inductive
inference operators can be characterized by Z-rank refining SPOs on formulas.

After recalling preliminaries of conditional logic (Sect. 2) and non-monotonic
reasoning (Sect. 3), we introduce RCP preferential and SPO representable induc-
tive inference operators (Sect. 4 and 5) and prove corresponding characteriza-
tions in Sect. 6. In Sect. 7, we conclude and point out future work.

2 Conditional Logic

A (propositional) signature is a finite set Σ of propositional variables. Assuming
an underlying signature Σ, we denote the resulting propositional language by L.
Usually, we denote elements of signatures with lowercase letters a, b, c, . . . and
formulas with uppercase letters A,B,C, We may denote a conjunction A∧B
by AB and a negation ¬A by A for brevity of notation. The set of interpretations
over the underlying signature is denoted as Ω. Interpretations are also called
worlds and Ω is called the universe. An interpretation ω ∈ Ω is a model of
a formula A ∈ L if A holds in ω, denoted as ω |= A. The set of models of a
formula (over a signature Σ) is denoted as Mod (A) = {ω ∈ Ω | ω |= A} or short
as ΩA. A formula A entails a formula B if ΩA ⊆ ΩB . By slight abuse of notation
we sometimes interpret worlds as the corresponding complete conjunction of all
elements in the signature in either positive or negated form.

A conditional (B|A) connects two formulas A,B and represents the rule “If
A then usually B”, where A is called the antecedent and B the consequent of the
conditional. The conditional language is denoted as (L|L) = {(B|A) | A,B ∈ L}.
A finite set Δ of conditionals is called a belief base.

We use a three-valued semantics of conditionals in this paper [9]: for a world
ω a conditional (B|A) is either verified by ω if ω |= AB, falsified by ω if ω |= AB,
or not applicable to ω if ω |= A. Popular models for belief bases are ranking func-
tions (also called ordinal conditional functions, OCFs) [31] and total preorders
(TPOs) on Ω [8]. An OCF κ : Ω → N0 ∪ {∞} maps worlds to a rank such that
at least one world has rank 0, i.e., κ−1(0)
= ∅. The intuition is that worlds with
lower ranks are more plausible than worlds with higher ranks; worlds with rank
∞ are considered infeasible. OCFs are lifted to formulas by mapping a formula
A to the smallest rank of a model of A, or to ∞ if A has no models. An OCF
κ is a model of a conditional (B|A), denoted as κ |= (B|A), if κ(AB) < κ(AB);

564 J. Haldimann et al.

κ is a model of a belief base Δ, denoted as κ |= Δ, if it is a model of every
conditional in Δ. A belief base Δ is called consistent if there exists at least one
ranking function κ with κ |= Δ and κ−1(∞) = ∅, i.e., if there is at least one
ranking function modelling Δ that considers all worlds feasible. This notion of
consistency is used in many approaches, e.g., in [14] while in, e.g., [7,13] a more
relaxed notion of consistency is used. The latter is characterized precisely by the
notion of weak consistency introduced in [20] which is obtained by dropping the
condition κ−1(∞) = ∅, i.e., a belief base Δ is weakly consistent if there exists at
least one ranking function κ with κ |= Δ.

3 Defeasible Entailment

Having the ability to answer conditional questions of the form does A entail B?
enables an agent to draw appropriate conclusions in different situations. The set
of conditional beliefs the agent can draw is formally captured by a binary relation
|∼ on propositional formulas with A |∼ B representing that A (defeasibly) entails
B; this relation is called inference or entailment relation. As we consider defea-
sible or non-monotonic entailment, it is possible that there are formulas A,B,C
with both A |∼ B and AC
|∼ B: given more specific information the agent might
revoke a conclusion that she drew based on more general information.

There are different sets of properties for inference relations suggested in the
literature. A preferential inference relation is an inference relation satisfying the
following set of postulates called system P [1,25], which is often considered as
minimal requirement for inference relations:

(REF) Reflexivity for all A ∈ L it holds that A |∼ A
(LLE) Left Logical Equivalence A ≡ B and B |∼ C imply A |∼ C
(RW) Right Weakening B |= C and A |∼ B imply A |∼ C
(CM) Cautious Monotony A |∼ B and A |∼ C imply AB |∼ C
(CUT) A |∼ B and AB |∼ C imply A |∼ C
(OR) A |∼ C and B |∼ C imply (A ∨ B) |∼ C

Beyond system P, another axiom has been proposed that seems to be desir-
able in general, and is also satisfied by Rational Closure (or system Z [30]):

(RM) Rational Monotony A |∼ C and A
|∼ B imply (A ∧ B) |∼ C

Besides ranking functions, preferential models are another kind of models for
conditionals that are useful to represent preferential inference relations.

Definition 1 (preferential model [25]). Let M = (S, l,≺) be a triple consist-
ing of a set S of states, a function l : S → Ω mapping states to interpretations,
and a strict partial order ≺ on S. For A ∈ L and s ∈ S we denote l(s) |= A by
s A; and we define �A�M = {s ∈ S | s A}. We say M is a preferential
model if for any A ∈ L and s ∈ �A�M either s is minimal in �A�M or there is
a t ∈ �A�M such that t is minimal in �A�M and t ≺ s (smoothness condition).

Note that the smoothness condition is automatically satisfied for finite sets
of interpretations. As this paper only considers propositional logic with finite

RC Extension in SPO-Representable Inductive Inference Operators 565

signatures, we can ignore this condition. A preferential model M = (S, l,≺)
induces an inference relation |∼M by A |∼M B iff min(�A�M,≺) ⊆ �B�M.

One result from [25] states that preferential models characterize preferential
entailment relations: ever inference relation |∼M induced by a preferential model
M is preferential, and for every preferential inference relation |∼ there is a
preferential model M with |∼M = |∼ . Two preferential models M, N are called
equivalent if they induce the same inference relation, i.e., if |∼M = |∼N .

Inductive inference is the process of completing a given belief base to an
inference relation, formally defined by the concept of inductive inference opera-
tors.

Definition 2 (inductive inference operator [22]). An inductive inference
operator is a mapping C : Δ �→ |∼Δ that maps each belief base to an inference
relation such that direct inference (DI) and trivial vacuity (TV) are fulfilled, i.e.,
(DI) if (B|A) ∈ Δ then A |∼Δ B, and
(TV) if Δ = ∅ and A |∼Δ B then |= B.

We can define p-entailment [25] as an inductive inference operator.

Definition 3 (p-entailment). Let Δ be a belief base and A,B be formulas.
A p-entails B with respect to Δ, denoted as A |∼p

Δ B, if A |∼M B for every
preferential model M of Δ. P-entailment is the inductive inference operator
mapping each Δ to |∼p

Δ.

In the context of conditional beliefs, a conditional of the form (⊥|A) or an
entailment A |∼ ⊥ expresses a strict belief in the sense that every A-world is
considered to be impossible. The following postulate (Classic Preservation) for-
malizes that an inference relation treats strict beliefs in the same way as p-
entailment.

Postulate (Classic Preservation). An inference relation |∼ satisfies (Classic
Preservation) [7] w.r.t. a belief base Δ if for all A ∈ L, A |∼ ⊥ iff A |∼p

Δ ⊥.
An inductive inference operator satisfies (Classic Preservation) if every Δ is

mapped to an inference relation satisfying (Classic Preservation) w.r.t. Δ.

We are now ready to formally define the first two subclasses of inductive
inference operators that we will use in this paper (for an overview over all classes
of inductive inference operators considered here, see Fig. 1 on page 11).

Definition 4 (preferential inductive inference operator, basic defea-
sible inductive inference operator). An inductive inference operator C is
called a

– preferential inductive inference operator if every inference relation |∼Δ in the
image of C satisfies system P;

– basic defeasible inductive inference operator, for short BD-inductive inference
operator, if every inference relation |∼Δ in the image of C satisfies system P,
rational monotony (RM), and (Classic Preservation).

566 J. Haldimann et al.

The original definition of BD-inductive inference operator is based on the
notion of basic defeasible entailment relations [7] (short BD-entailment relations)
which satisfy system P and rational monotony (RM) and, additionally, direct
inference (DI) and (Classic Preservation) with respect to a belief base Δ.

BD-entailment relations can be characterized in many different ways. For
instance, an inference relation |∼Δ is a BD-entailment relation with respect to a
belief base Δ iff there is a ranked model of Δ inducing |∼Δ, or equivalently iff
there is a rank function that is a model of Δ and induces |∼Δ [7, Theorem 1].
BD-entailment relations can also be characterized by ranking functions. The
inference relation |∼κ induced by a ranking function κ is defined by

A |∼κ B iff κ(A) = ∞ or κ(AB) < κ(AB). (1)

Note that the condition κ(A) = ∞ in (1) ensures that system P’s axiom (REF)
is satisfied for A ≡ ⊥. Exploiting the relationship between ranked models and
ranking functions, it is easy to show that |∼Δ is a BD-entailment relation with
respect to Δ iff there is a ranking function κ with κ |= Δ that induces |∼Δ.

System Z is a BD-inductive inference operator that is defined based on the
Z-partition of a belief base [30]. Here we use an extended version of system Z
that also covers belief bases that are only weakly consistent and that was shown
to be equivalent to rational closure [27] in [15].

Definition 5 ((extended) Z-partition). A conditional (B|A) is tolerated by
Δ = {(Bi|Ai) | i = 1, . . . , n} if there exists a world ω ∈ Ω such that ω verifies
(B|A) and ω does not falsify any conditional in Δ, i.e., ω |= AB and ω |=∧n

i=1(Ai ∨ Bi). The (extended) Z-partition EZP(Δ) = (Δ0, . . . ,Δk,Δ∞) of a
belief base Δ is the ordered partition of Δ that is constructed by letting Δi be the
inclusion maximal subset of

⋃n
j=i Δj that is tolerated by

⋃n
j=i Δj until Δk+1 = ∅.

The set Δ∞ is the remaining set of conditionals that contains no conditional
which is tolerated by Δ∞.

It is well-known that the construction of EZP(Δ) is successful with Δ∞ = ∅
iff Δ is consistent, and because the Δi are chosen inclusion-maximal, the Z-
partition is unique [30]. Also, it holds that EZP(Δ) has Δ0
= ∅ iff �
|∼p

Δ ⊥.

Definition 6 ((extended) system Z). Let Δ be a belief base with EZP(Δ) =
(Δ0, . . . ,Δk,Δ∞). If Δ satisfies � |∼p

Δ ⊥, then let A |∼z
Δ B for any A,B ∈ L.

Otherwise, the (extended) Z-ranking function κz
Δ is defined as follows. For a

world ω ∈ Ω, if one of the conditionals in Δ∞ is applicable to ω define κz
Δ(ω) =

∞. Otherwise, let Δj be the last partition in EZP(Δ) that contains a conditional
falsified by ω. Then let κz

Δ(ω) = j + 1. If ω does not falsify any conditional in
Δ, then let κz

Δ(ω) = 0. (Extended) system Z maps Δ to the inference relation
|∼z

Δ induced by κz
Δ.

For consistent belief bases the extended system Z coincides with system Z as
defined in [14,30].

RC Extension in SPO-Representable Inductive Inference Operators 567

4 Extending Rational Closure

In [7], the authors explored BD-inductive inference relations that extend the
rational closure (i.e., the system Z inference relation) of a belief base. This prop-
erty of a belief base is formally defined by (RC Extension).

Postulate (RC Extension). An inference relation |∼ satisfies (RC Extension)
[7] with respect to a belief base Δ if for all A,B ∈ L, A |∼z

Δ B implies A |∼ B.
An inductive inference operator satisfies (RC Extension) if every Δ is mapped

to an inference relation satisfying (RC Extension) with respect to Δ.

This formulation of (RC Extension) uses the fact that rational closure and
system Z coincide. In [7] the BD-inductive inference relations satisfying (RC
Extension) are called rational defeasible entailment relations and are charac-
terized in different ways, among them the following: an inference relation is a
rational defeasible entailment relation (with respect to a belief base Δ) iff it is
induced by some base rank preserving ranked model of Δ, or equivalently iff it
is induced by some base rank preserving rank function that is a model of Δ. In
this paper we apply (RC Extension) to inductive inference operators in general.

Definition 7 (RCP inductive inference operator). An RCP inductive
inference operator is an inductive inference operator satisfying (RC Extension)
and (Classic Preservation).

As BD-inductive inference operators satisfy (Classic Preservation) by definition,
BD-inductive inference operators satisfying (RC Extension) are RCP.

Similar to the results in [7] we can provide model-based characterizations of
RCP inductive inference operators. For preferential inference operators we iden-
tify the following property which we will show to characterize RCP preferential
inductive inference operators.

Definition 8 (Z-rank refining). A preferential model M = (S, l,≺) is called
Z-rank refining (with respect to a belief base Δ) if l(S) = {ω ∈ Ω | κz

Δ(ω) < ∞}
and additionally κz

Δ(ω) < κz
Δ(ω′) implies that for every s′ ∈ l−1(ω′) there is

an s ∈ l−1(ω) s.t. s ≺ s′ for any ω, ω′ ∈ Ω. A preferential model for Δ with
� |∼p

Δ ⊥ is said to be Z-rank refining if and only if S = ∅.
Building on the result from [25] that preferential inference relations are char-

acterized by preferential models, we can show that RCP preferential inductive
inference operators are characterized by Z-rank refining preferential models. For
every inference relation satisfying (Classic Preservation) and (RC Extension)
there is a Z-rank refining preferential model inducing this inference relation. In
the other direction, every Z-rank refining preferential model induces an inference
relation satisfying (Classic Preservation) and (RC Extension).

Theorem 1. (1.) If |∼ is a preferential inference relation satisfying (Classic
Preservation) and (RC Extension) w.r.t. a belief base Δ, then every preferential
model inducing |∼ is Z-rank refining with respect to Δ.

568 J. Haldimann et al.

(2.) If a preferential model M = (S, l,≺) is Z-rank refining with respect to
a belief base Δ, then the inference relation |∼M induced by it satisfies (Classic
Preservation) and (RC Extension) with respect to Δ.

Proof (sketch). Ad (1.): Let M = (S, l,≺) be a preferential model inducing |∼ .
First use (Classic Preservation) to show that κz

Δ(ω) = ∞ iff ω |∼ ⊥. Therefore,
l(S) = {ω ∈ Ω | κz

Δ(ω) < ∞}. Then use (RC Extension) to show that κz
Δ(ω) <

κz
Δ(ω′) implies that for every s′ ∈ l−1(ω′) there is an s ∈ l−1(ω) with s ≺ s′.
Ad (2.): For F ∈ L, we show that F |∼p

Δ ⊥ iff �F �M = ∅ which is equivalent
to F |∼M ⊥. Therefore, |∼M satisfies (Classic Preservation). For A,B ∈ L with
A |∼z

Δ B, let sA ∈ min(�A�M,≺). We show that every ωA ∈ l−1(sA) satisfies
ωA |= B by contradiction. Hence, |∼M satisfies (RC Extension). ��
Theorem 2 (RCP preferential). An inductive inference operator is RCP iff
it maps each belief base Δ to an inference relation that is induced by a preferential
model that is Z-rank refining with respect to Δ.

The proof of Theorem 2 is a direct consequence of Theorem 1.

5 Entailment Based on SPOs

Preferential models are not the only structures that can model belief bases and
entail an inference relation. Sometimes it is sufficient to consider a strict partial
order (SPO), i.e., a transitive, antisymmetric, and irreflexive binary relation, on
the possible worlds to induce an inference relation. For example system W [24]
is an inductive inference operator defined based on SPOs on worlds.

Note that we allow an SPO ≺ to order only a subset Ωfeas of all worlds in
Ω. This supports expressing beliefs of the form A |∼ ⊥, i.e., A strictly holds, by
choosing Ωfeas ⊆ Mod (A). The worlds in Ωfeas are called feasible.

Definition 9 (SPO on worlds). An SPO on worlds (over Σ) is an SPO ≺
on a set Ωfeas ⊆ Ω of feasible worlds, denoted as feas(≺) = Ωfeas . A full SPO
on worlds ≺ is an SPO on worlds s.t. feas(≺) = Ω, i.e., if all possible worlds
are feasible. An SPO on worlds ≺ on Ω models a conditional (B|A), denoted
as ≺ |= (B|A), if for any feasible ω′ ∈ ΩAB there is a feasible ω ∈ ΩAB with
ω ≺ ω′. We say ≺ models a belief base Δ if ≺ models every conditional in Δ, in
this case ≺ is also called an SPO model of Δ.

The inference relation |∼≺ induced by an SPO on worlds ≺ is defined by

A |∼≺ B iff ≺ |= (B|A). (2)

The SPOs on worlds are defined on a subset of Ω to allow modelling belief
bases that force some worlds to be completely implausible. If we consider only
consistent belief bases we only need full SPOs on worlds.

Example 1. Let Σ = {a, b} and let ≺ be the full SPO on worlds defined by
≺ = {(ab, ab), (ab, ab), (ab, ab), (ab, ab), (ab, ab)}. Then we have, e.g., � |∼≺ a
and a ∨ b |∼≺ a ∨ b.

RC Extension in SPO-Representable Inductive Inference Operators 569

Equation (2) enables us to introduce a new class of inductive inference operators.

Definition 10 (SPO-representable inductive inference operator). An
inference relation |∼ is SPO-representable if there is an SPO on worlds inducing
|∼ . An SPO-representable inductive inference operator is an inductive inference
operator C : Δ �→ |∼Δ s.t. every |∼Δ in the image of C is an SPO-representable
inference relation.

An SPO-representable inductive inference operator can alternatively be writ-
ten as a mapping Cspo : Δ �→ ≺Δ that maps each belief base to an SPO on worlds
≺Δ. The induced inference relation |∼Δ is obtained from ≺Δ as in (2). Then (DI)
and (TV) amount to ≺Δ |= Δ and ≺∅ = ∅. For every SPO on worlds, there is
an equivalent preferential model on the respective subset of worlds.

Proposition 1. Let ≺ be an SPO on worlds with Ωfeas = feas(≺). The prefer-
ential model M = (Ωfeas , id,≺) induces the inference relation |∼≺.

Therefore, every SPO-representable inference relation is a preferential infer-
ence relation and every SPO-representable inductive inference operator is a pref-
erential inductive inference operator. This implies that every SPO-representable
inductive inference operator C extends p-entailment, i.e., for a belief base Δ, and
formulas A,B we have that A |∼p

Δ B implies A |∼C
Δ B. Because not every prefer-

ential inference relation is induced by an SPO on worlds, the inference relations
induced by SPOs on worlds form a proper subclass of all preferential inference
relations. BD-inference relations are a subclass of SPO-representable inference
relations. The reverse is not true in general because there are SPO-representable
inference relations that are not BD-inference relations.

Proposition 2. Every basic defeasible inference relation is an SPO-
representable inference relation.

Now we present a property that characterizes SPO-representable inference
relations. The following Proposition 3 is based on the representation result for
injective preferential models in [10, Theorem 4.13] and the observation that injec-
tive preferential models are equivalent to strict partial orders on worlds for our
setting of a finite logical language. An injective preferential model is a preferen-
tial model M = (S, l,≺) such that l is injective.

Proposition 3. An inference relation |∼ is SPO-representable iff it is prefer-
ential and satisfies that, for any A,B,D ∈ L and C|∼ (X) := {Y ∈ L | X |∼ Y },

A ∨ B |∼D implies (C|∼ (A) ∪ C|∼ (B)) |= D. (3)

Proof (sketch). First we show that |∼ is SPO-representable iff it is representable
by an injective model. Then we use that |∼ is representable by an injective model
iff it is a preferential inference relation satisfying (3) [10, Theorem 4.13]. ��

Requiring the function l in a preferential model (S, l,≺) to be injective means
that for any world there is at most one state mapping to it. This allows to identify

570 J. Haldimann et al.

each state s ∈ S with the world l(s) ∈ l(S). By considering the set of feasible
worlds Ωfeas = l(S) we can see that an injective preferential model is equivalent
to an SPO on the set Ωfeas ⊆ Ω.

To obtain a model of a belief base, instead of considering an SPO on worlds
we could also consider an SPO on formulas. To support expression of strict
beliefs, the SPO may order only a subset Lfeas of all formulas in L; the formulas
in Lfeas are called feasible. If ¬A /∈ Lfeas then it is strictly believed that A holds.

Definition 11 (SPO on formulas). An SPO on formulas is an SPO � on a
set Lfeas of feasible formulas that satisfies

– syntax independence, i.e., for A,B,C,D ∈ L with A ≡ C and B ≡ D it holds
that A � B iff C � D and A ∈ Lfeas iff C ∈ Lfeas

– plausibility preservation, i.e., for E,F ∈ L with E |= F it holds that E
� F
and E ∈ Lfeas implies F ∈ Lfeas .

The set of feasible formulas of an SPO on formulas is denoted as feas(�) = Lfeas .
An SPO on formulas � is a full SPO on formulas if feas(�) = L \ {⊥}, i.e., if
all consistent formulas are feasible. An SPO on formulas � models a conditional
(B|A), denoted as � |= (B|A), if AB is not feasible or if AB � AB. We say �

models a belief base Δ if � models every conditional in Δ.

Thus, to rule out models that are too obscure, an SPO on formulas requires
that equivalent formulas have the same position in the SPO and that the logical
entailments of a formula F may not be considered less plausible than F itself.

Analogously to |∼≺ in Eq. (2), the inference relation |∼
�

induced by a SPO
on formulas � is defined by

A |∼
�

B iff � |= (B|A). (4)

Example 2. Let � be the full SPO on formulas defined by A � B if A ≡ ab ∨ ab
and B ≡ ab. We have a ∨ b |∼

�
a ∨ b.

An SPO on worlds induces an equivalent SPO on formulas.

Definition 12 (SPO on formulas induced by an SPO on worlds). Let
≺ be an SPO on worlds. The SPO on formulas ≺L over Lfeas = {A ∈ L |
ΩA ∩ Ωfeas
= ∅} induced by ≺ is defined by, for any formulas A,B ∈ Lfeas ,

A ≺L B iff for every feasible ω′ ∈ ΩB (5)
there is a feasible ω ∈ ΩA such that ω ≺ ω′.

Proposition 4. Let ≺ be an SPO on worlds and ≺L the SPO on formulas
induced by ≺. For A,B ∈ L we have that ≺ |= (B|A) iff ≺L |= (B|A).

With Proposition 4 and (2) and (4) we can see that A |∼≺ B iff A |∼≺L B.
This entails that for every SPO on worlds ≺ there is an SPO on formulas � that
induces the same inference relation. Lemma 1 states that the reverse is not true.

RC Extension in SPO-Representable Inductive Inference Operators 571

SPO-representablebasic defeasible

preferential
induced by an

SPO on formulas

RCP
SPO-representable

RCP
basic defeasible

RCP preferential

RCP and induced by
an SPO on formulas

Fig. 1. Relationships among the classes of inductive inference operators. C1 ↪→ C2

indicates that C1 is a proper subclass of C2.

Lemma 1. There are SPOs on formulas � that induce an inference relation
that is not SPO-representable.

To summarize the relations between the class of SPO-representable inductive
inference operators and other classes of inference operators: every BD-inductive
inference operator is SPO-representable. Every SPO-representable inductive
inference operator is preferential and can be induced by an SPO on formulas.
The reverse of none of these statements is true. An overview over these classes
of inference operators is given in Fig. 1.

6 RCP SPO-Representable Inference

After introducing SPO-representable inductive inference operators in the previ-
ous section, in this section we consider RCP SPO-representable inductive infer-
ence operators, i.e. SPO-representable inductive inference operators that satisfy
(RC Extension) and (Classic Preservation).

Just as Z-rank refining preferential models characterize RCP preferential
inductive inference operators, we can characterize RCP SPO-representable
inductive inference operators with Z-rank refining SPOs on worlds.

Definition 13 (Z-rank refining). An SPO on worlds ≺ with Ωfeas = feas(≺)
is called Z-rank refining (with respect to a belief base Δ) if Ωfeas = {ω ∈ Ω |
κz

Δ(ω) < ∞} and additionally κz
Δ(ω) < κz

Δ(ω′) implies ω ≺ ω′ for any ω, ω′ ∈
Ωfeas . For Δ with � |∼p

Δ ⊥ the only Z-rank refining SPO on worlds is defined
to be ≺ with feas(≺) = ∅.

While Definition 13 for Z-rank refining SPOs on worlds deviates from Defini-
tion 8 for Z-rank refining preferential models, they both formulate the same idea
that the structure on worlds induced by the Z-ranking function κz

Δ is preserved
and possibly refined.

Theorem 3. (1.) Let |∼ be an inference relation. If |∼ satisfies (Classic
Preservation) and (RC Extension) w.r.t. Δ then every SPO on worlds induc-
ing |∼ is Z-rank refining w.r.t. Δ. (2.) Let ≺ be an SPO on worlds and |∼≺
be the inference relation induced by it. If ≺ is Z-rank refining then |∼≺ satisfies
(Classic Preservation) and (RC Extension).

572 J. Haldimann et al.

Proof (sketch). Ad (1.): Let ≺ be an SPO on worlds inducing |∼ . Use (Classic
Preservation) to show that κz

Δ(ω) = ∞ iff ω /∈ feas(≺), i.e., Ωfeas = {ω ∈ Ω |
κz

Δ(ω) < ∞}. Use (RC Extension) to show that κz(ω) < κz(ω) entails ω ≺ ω′.
Ad (2.): Let ≺ be Z-rank refining. First we show that for F ∈ L we have

F |∼p
Δ ⊥ iff ΩF ∩ feas(≺) = ∅ which is equivalent to F |∼≺ ⊥. Therefore,

|∼≺ satisfies (Classic Preservation). Then, for any A,B ∈ L with A |∼z
Δ B let

ω ∈ argminω∈ΩAB
κz

Δ(ω). Then we show that ω ≺ ω′ for any feasible ω′ ∈ ΩAB .
Therefore, A |∼≺ B. Hence, |∼≺ satisfies (RC Extension). ��

From Theorem 3 we obtain the following characterization of RCP SPO-
representable inductive inference operators.

Theorem 4 (RCP SPO-representable). Let C : Δ �→ |∼C
Δ be an SPO-

representable inductive inference operator. C is RCP iff for each belief base Δ
the inference relation C(Δ) is induced by a SPO on worlds that is Z-rank refining.

As every SPO-representable inductive inference operator is preferential we
have that every RCP SPO-representable inductive inference operator is an RCP
preferential inductive inference operator. Similarly, every RCP BD-inductive
inference operator is an RCP SPO-representable inductive inference operator.
The reverse of these statements is not true, as observed by the Lemmas 2 and 3.

Lemma 2. There are RCP preferential inductive inference operators that are
not RCP SPO-representable inductive inference operators.

Lemma 3. There are RCP SPO-representable inductive inference operators that
are not RCP basic defeasible inductive inference operators.

Finally, we can extend the notion of Z-rank refining to SPOs on formulas,
and we can show its connection to RCP inductive inference operators that map
each belief base to an inference relation induced by some SPO on formulas.

Definition 14 (Z-rank refining). An SPO on formulas � with Lfeas =
feas(�) is called Z-rank refining (with respect to a belief base Δ) if Lfeas =
{A ∈ L | κz

Δ(A) < ∞} and additionally κz
Δ(A) < κz

Δ(B) implies A � B for any
A,B ∈ Lfeas . For Δ with � |∼p

Δ ⊥ the only Z-rank refining SPO on formulas is
defined to be � with feas(�) = ∅.

While Definition 13 describes preserving the structure on worlds induced by
Z-ranking functions, Definition 14 describes preserving the structure on formulas
that is induced by Z-ranking functions. Note that Z-rank refining SPOs on worlds
always induce Z-rank refining SPOs on formulas.

Theorem 5. Let ≺ be an SPO on worlds, ≺L be the SPO on formulas induced
by ≺, and Δ a belief base. Then ≺ is Z-rank refining iff ≺L is Z-rank refining
(each with respect to Δ).

Theorem 5 implies that every RCP SPO-representable inference operator
maps belief bases to inference relations that can be obtained from Z-rank refining
SPOs on formulas. The reverse is not true in general: not every Z-rank refining
SPO on formulas induces an SPO-representable inference relation.

RC Extension in SPO-Representable Inductive Inference Operators 573

Lemma 4. Let C : Δ �→ |∼C
Δ be an RCP SPO-representable inductive inference

operator. For every Δ there is a Z-rank refining SPO on formulas inducing |∼C
Δ.

We can show that Z-rank refining SPOs on formulas induce inference rela-
tions satisfying (Classic Preservation) and (RC Extension). In the other direction
we have that if an SPOs on formulas induces an inference relation that satis-
fies (Classic Preservation) and (RC Extension) then it must be Z-rank refining,
provided that E
≡ F , E |= F implies F � E. This additional assumption is
necessary as information about entailments, as provided by (RC Extension), can
only be translated to information about formulas with disjoint sets of models.
The additional assumption allows connecting formulas that share models.

Theorem 6. Let � be an SPO on formulas, |∼
�

be the inference relation
induced by �, and let Δ be a belief base.

1. If � is Z-rank refining with respect to Δ then |∼
�

satisfies (Classic Preser-
vation) and (RC Extension) with respect to Δ.

2. If additionally � satisfies that for E,F ∈ L, E
≡ F it holds that E |= F
implies F �E, then |∼

�
satisfying (Classic Preservation) and (RC Extension)

with respect to Δ implies that � is Z-rank refining with respect to Δ.

Proof (sketch). Ad (1.): For F ∈ L we have F |∼
�

⊥ iff κz
Δ(F) = ∞ because � is

Z-rank refining. This yields (Classic Preservation). For A,B ∈ L with A |∼z
Δ B

we have AB�AB because � is Z-rank refining. Therefore, (RC Extension) holds.
Ad (2.): For F ∈ L we can show that κz

Δ(F) = ∞ iff F /∈ feas(�) using
(Classic Preservation). For A,B ∈ feas(�) with κz

Δ(A) < κz
Δ(B) we get A ∨

B |∼
�

B with (RC Extension). This yields AB � B and thus A � B. ��
Theorem 6 shows that an inductive inference operator mapping a belief base

to an inference relation induced by a Z-rank refining SPO on formulas is RCP.
Rational BD-inductive inference operators like lexicographic inference [28]

are examples of RCP SPO-representable inductive inference operators because
they are based on TPOs and every TPO is also an SPO. System W [23,24] is an
example of an RCP SPO-representable inductive inference operator that is not a
BD-inductive inference operator. In addition to the Z-partition of a belief base Δ,
system W also takes into account the structural information which conditionals
are falsified. The definition of system W is based on a binary relation called a
preferred structure on worlds <w

Δ over Ω that is assigned to every belief base
Δ. Here, we use an extended version of system W introduced in [20] that also
covers weakly consistent belief bases.

Definition 15 (ξj , ξ, preferred structure <w
Δ on worlds [20,24]). Let Δ

be a belief base with the Z-partition EZP(Δ) = (Δ0, . . . ,Δk,Δ∞). For j =
0, . . . , k,∞ the functions ξj and ξ are the functions mapping worlds to the set
of falsified conditionals in Δj given by ξj(ω) = {(Bi|Ai) ∈ Δj | ω |= AiBi}. Let
Ωfeas = Ω \ {ω | ξ∞(ω)
= ∅}. The preferred structure on worlds is the relation
<w

Δ ⊆ Ωfeas × Ωfeas defined by

574 J. Haldimann et al.

ω <w
Δ ω′ iff there exists an m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m + 1 , . . . , k} and
ξm(ω) � ξm(ω′) .

Thus, ω <w
Δ ω′ iff ω falsifies strictly fewer conditionals than ω′ in the partition

with the biggest index m where the conditionals falsified by ω and ω′ differ.

Definition 16 (system W, |∼w
Δ [20,24]). Let Δ be a belief base and A,B be

formulas. Then B is a system W inference from A, denoted A |∼w
Δ B, if for

every ω′ ∈ ΩAB there is a feasible ω ∈ ΩAB such that ω <w
Δ ω′.

Multipreference-closure (short MP-closure) is an inference method developed
for the description logic with typicality ALC+TR introduced in [11]. MP-closure
was adapted for reasoning with conditionals based on propositional logic in [12].
While system W and MP-closure were developed independently in different con-
texts and defined using distinct approaches, it is interesting that it has been
shown that MP-closure for propositional conditionals and system W coincide
both for consistent belief bases [16] and weakly consistent belief bases [20].

Since <w
Δ is a strict partial order [24, Lemma 3], system W, and thus also MP-

closure, is an SPO representable inductive inference operator Cw : Δ �→ |∼<w
Δ

.
System W fulfils the postulates of system P, strictly extends both system Z
[30] and also c-inference [2], and enjoys further desirable properties like avoiding
the drowning problem, [6,24] fully complying with syntax splitting [17,18,20,
22], and also with conditional syntax splitting [21]; a map of approximations
of system W by other inductive inference operators is given in [19]. Because
system W satisfies (RC Extension) and (Classic Preservation), it is an RCP
SPO-representable inductive inference operator.

7 Conclusions and Future Work

In this paper we investigated RCP inductive inference operators, i.e., inductive
inference operators satisfying (RC Extension) and (Classic Preservation). Doing
this we focused on SPO-representable inference relations, i.e., inference relations
that can be obtained from SPOs on worlds. We showed that this class of inductive
inference operators is a subclass of preferential inductive inference operators and
a superclass of basic defeasible inductive inference operators. We provided char-
acterization theorems for RCP preferential and RCP SPO-representable induc-
tive inference operators using the newly introduced property ‘Z-rank refining’ for
preferential models and SPOs on worlds. Future work includes to further inves-
tigate instances of rational inductive inference operators; especially the charac-
terization of such inference operators by their properties will be of interest.

Acknowledgements. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation), grant BE 1700/10-1 awarded to Christoph
Beierle as part of the priority program “Intentional Forgetting in Organizations” (SPP
1921). Jonas Haldimann was supported by this grant.

RC Extension in SPO-Representable Inductive Inference Operators 575

References

1. Adams, E.W.: The Logic of Conditionals: An Application of Probability to Deduc-
tive Logic. SYLI, Springer, Dordrecht (1975). https://doi.org/10.1007/978-94-015-
7622-2

2. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Properties and interrela-
tionships of skeptical, weakly skeptical, and credulous inference induced by classes
of minimal models. Artif. Intell. 297, 103489 (2021)

3. Beierle, C., Haldimann, J.: Normal forms of conditional belief bases respect-
ing inductive inference. In: Keshtkar, F., Franklin, M. (eds.) Proceedings of the
Thirty-Fifth International Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS), Hutchinson Island, Florida, USA, 15–18 May 2022 (2022)

4. Beierle, C., Haldimann, J., Kutsch, S.: A complete map of conditional knowledge
bases in different normal forms and their induced system P inference relations over
small signatures. In: Bell, E., Keshtkar, F. (eds.) Proceedings of the Thirty-Fourth
International Florida Artificial Intelligence Research Society Conference, North
Miami Beach, Florida, USA, 17–19 May 2021 (2021). https://doi.org/10.32473/
flairs.v34i1.128467

5. Beierle, C., Haldimann, J., Schwarzer, L.: Observational equivalence of conditional
belief bases. In: Chun, S.A., Franklin, M. (eds.) Proceedings of the Thirty-Sixth
International Florida Artificial Intelligence Research Society Conference (2023)

6. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntax-based entailment. In: Proceedings of the IJCAI 1993,
San Francisco, CA, USA, vol. 1, pp. 640–647. Morgan Kaufmann Publishers (1993)

7. Casini, G., Meyer, T., Varzinczak, I.: Taking defeasible entailment beyond rational
closure. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI),
vol. 11468, pp. 182–197. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19570-0_12

8. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1–
2), 1–29 (1997)

9. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst.
H. Poincaré 7(1), 1–68 (1937). Engl. transl. Theory of Probability (1974)

10. Freund, M.: Injective models and disjunctive relations. J. Log. Comput. 3(3), 231–
247 (1993). https://doi.org/10.1093/logcom/3.3.231

11. Giordano, L., Gliozzi, V.: Reasoning about multiple aspects in DLs: semantics and
closure construction. CoRR abs/1801.07161 (2018). http://arxiv.org/abs/1801.
07161

12. Giordano, L., Gliozzi, V.: A reconstruction of multipreference closure. Artif. Intell.
290, 103398 (2021). https://doi.org/10.1016/j.artint.2020.103398

13. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015). https://doi.org/10.1016/j.artint.2015.05.001

14. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

15. Goldszmidt, M., Pearl, J.: On the relation between rational closure and system-Z.
In: Proceedings of the Third International Workshop on Nonmonotonic Reasoning,
31 May–3 June, pp. 130–140 (1990)

16. Haldimann, J., Beierle, C.: Characterizing multipreference closure with system W.
In: de Saint-Cyr, F.D., Öztürk-Escoffier, M., Potyka, N. (eds.) SUM 2022. LNCS,
vol. 13562, pp. 79–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
18843-5_6

https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.32473/flairs.v34i1.128467
https://doi.org/10.32473/flairs.v34i1.128467
https://doi.org/10.1007/978-3-030-19570-0_12
https://doi.org/10.1007/978-3-030-19570-0_12
https://doi.org/10.1093/logcom/3.3.231
http://arxiv.org/abs/1801.07161
http://arxiv.org/abs/1801.07161
https://doi.org/10.1016/j.artint.2020.103398
https://doi.org/10.1016/j.artint.2015.05.001
https://doi.org/10.1007/978-3-031-18843-5_6
https://doi.org/10.1007/978-3-031-18843-5_6

576 J. Haldimann et al.

17. Haldimann, J., Beierle, C.: Inference with system W satisfies syntax splitting. In:
Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
KR 2022, Haifa, Israel, 31 July–5 August 2022, pp. 405–409 (2022)

18. Haldimann, J., Beierle, C.: Properties of system W and its relationships to other
inductive inference operators. In: Varzinczak, I. (ed.) FoIKS 2022. LNCS, vol.
13388, pp. 206–225. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
11321-5_12

19. Haldimann, J., Beierle, C.: Approximations of system W between C-inference,
system Z, and lexicographic inference. In: Bouraoui, Z., Jabbour, S., Vesic, S.
(eds.) ECSQARU 2023. LNCS, Springer, Cham (2023)

20. Haldimann, J., Beierle, C., Kern-Isberner, G., Meyer, T.: Conditionals, infeasible
worlds, and reasoning with system W. In: The International FLAIRS Conference
Proceedings, vol. 36, no. 1 (2023)

21. Heyninck, J., Kern-Isberner, G., Meyer, T., Haldimann, J.P., Beierle, C.: Condi-
tional syntax splitting for non-monotonic inference operators. In: Williams, B.,
Chen, Y., Neville, J. (eds.) Proceedings of the 37th AAAI Conference on Artifi-
cial Intelligence, vol. 37, pp. 6416–6424 (2023). https://doi.org/10.1609/aaai.v37i5.
25789

22. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting = relevance + indepen-
dence: new postulates for nonmonotonic reasoning from conditional belief bases.
In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the 17th International Conference, KR
2020, pp. 560–571. IJCAI Organization (2020)

23. Komo, C., Beierle, C.: Nonmonotonic inferences with qualitative conditionals based
on preferred structures on worlds. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI
2020. LNCS (LNAI), vol. 12325, pp. 102–115. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58285-2_8

24. Komo, C., Beierle, C.: Nonmonotonic reasoning from conditional knowledge bases
with system W. Ann. Math. Artif. Intell. 90(1), 107–144 (2022)

25. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

26. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55, 1–60 (1992)

27. Lehmann, D.: What does a conditional knowledge base entail? In: Brachman, R.J.,
Levesque, H.J., Reiter, R. (eds.) Proceedings of the 1st International Conference
on Principles of Knowledge Representation and Reasoning (KR 1989), Toronto,
Canada, 15–18 May 1989, pp. 212–222. Morgan Kaufmann (1989)

28. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995). https://doi.org/10.1007/BF01535841

29. Makinson, D., Gärdenfors, P.: Relations between the logic of theory change and
nonmonotonic logic. In: Fuhrmann, A., Morreau, M. (eds.) The Logic of Theory
Change. LNCS, vol. 465, pp. 183–205. Springer, Heidelberg (1991). https://doi.
org/10.1007/BFb0018421

30. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on
Theoretical Aspects of Reasoning About Knowledge (TARK 1990), San Francisco,
CA, USA, pp. 121–135. Morgan Kaufmann Publishers Inc. (1990)

31. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:
Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics,
II, pp. 105–134. Kluwer Academic Publishers (1988)

https://doi.org/10.1007/978-3-031-11321-5_12
https://doi.org/10.1007/978-3-031-11321-5_12
https://doi.org/10.1609/aaai.v37i5.25789
https://doi.org/10.1609/aaai.v37i5.25789
https://doi.org/10.1007/978-3-030-58285-2_8
https://doi.org/10.1007/978-3-030-58285-2_8
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/BFb0018421
https://doi.org/10.1007/BFb0018421

Planning

DELPHIC: Practical DEL Planning
via Possibilities

Alessandro Burigana1(B) , Paolo Felli2 , and Marco Montali1

1 Free University of Bozen-Bolzano, Bolzano, Italy
{burigana,montali}@inf.unibz.it

2 University of Bologna, Bologna, Italy
paolo.felli@unibo.it

Abstract. Dynamic Epistemic Logic (DEL) provides a framework for
epistemic planning that is capable of representing non-deterministic
actions, partial observability, higher-order knowledge and both factual
and epistemic change. The high expressivity of DEL challenges existing
epistemic planners, which typically can handle only restricted fragments
of the whole framework. The goal of this work is to push the envelop
of practical DEL planning, ultimately aiming for epistemic planners to
be able to deal with the full range of features offered by DEL. Towards
this goal, we question the traditional semantics of DEL, defined in terms
on Kripke models. In particular, we propose an equivalent semantics
defined using, as main building block, so-called possibilities: non well-
founded objects representing both factual properties of the world, and
what agents consider to be possible. We call the resulting framework
delphic. We argue that delphic indeed provides a more compact rep-
resentation of epistemic states. To substantiate this claim, we implement
both approaches in ASP and we set up an experimental evaluation to
compare delphic with the traditional, Kripke-based approach. The eval-
uation confirms that delphic outperforms the traditional approach in
space and time.

1 Introduction

Multiagent Systems are employed in a wide range of settings, where autonomous
agents are expected to face dynamic situations and to be able to adapt in order
to reach a given goal. In these contexts, it is crucial for agents to be able to
reason on their physical environment as well as on the knowledge that they have
about other agents and the knowledge those possess.

Bolander and Andersen [5] introduced epistemic planning as a planning
framework based on Dynamic Epistemic Logic (DEL), where epistemic states are
represented as Kripke models, event models are used for representing epistemic
actions, and product updates define the application of said actions on states.
On the one hand, the resulting framework is very expressive, and it allows one
to naturally represent non-deterministic actions, partial observability of agents,
higher-order knowledge and both factual and epistemic changes. On the other
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 579–594, 2023.
https://doi.org/10.1007/978-3-031-43619-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_39&domain=pdf
http://orcid.org/0000-0002-9977-6735
http://orcid.org/0000-0001-9561-8775
http://orcid.org/0000-0002-8021-3430
https://doi.org/10.1007/978-3-031-43619-2_39

580 A. Burigana et al.

hand, decidability of epistemic planning is not guaranteed in general [5]. This has
led to a considerable body of research adopting the DEL framework to obtain
(un)decidability results for fragments of the epistemic planning problem (see [6]
for a detailed exposition), typically by constraining the event models of actions.
Nonetheless, even when such restriction are in place, epistemic planners directly
employing the Kripke-based semantics of possible worlds face high complexities,
hence considerable efforts have been put in studying action languages that are
more amenable computationally [4,10,14].

In contrast with the traditional approach in the literature, in this paper
we depart from the Kripke-based semantics for DEL and adopt an alternative
representation called possibilities, first introduced by Gerbrandy and Groeneveld
[12]. As we are going to show experimentally, this choice is motivated primarily
by practical considerations. In fact, as we expand in Sect. 3, possibilities support
a concise representation of factual and epistemic information and yield a light
update operator that promises to achieve better performances compared to the
traditional Kripke-based semantics. This is due to the fact that possibilities are
non-well-founded objects, namely objects that have a circular representation (see
Aczel [1] for an exhaustive introduction on non-well-founded set theory). In fact,
due to their non-well-founded nature, possibilities naturally reuse previously
calculated information, thus drastically reducing the computational overhead
deriving from redundant information. Conceptually, whenever an agent does
not update his knowledge upon an action, then the possibilities representing its
knowledge are directly reused (see Examples 3 and 6).

This paper presents a novel formalization of epistemic planning based on pos-
sibilities. Although these objects have been previously used in place of Kripke
models to represent epistemic states [10], previous semantics lacked a general
characterization of actions. In this paper, we complement the possibility-based
representation of states by formalizing two novel concepts: eventualities, repre-
senting epistemic actions, and union update, providing an update operator based
on possibilities and eventualities. The resulting planning framework, called del-
phic (DEL-planning with a Possibility-based Homogeneous Information Char-
acterisation), benefits from the compactness of possibilities and promises to
positively impact the performance of planning. This suggests that delphic is a
viable but also convenient alternative to Kripke-based representations. We sup-
port this claim by implementing both frameworks in ASP and by setting up an
experimental evaluation of the two implementations aimed at comparing the tra-
ditional Kripke semantics for DEL and delphic. The comparison confirms that
delphic outperforms the traditional approach in terms of both space and time.
We point out that time and space gains are obtained in the average case, as there
exist extreme (worst) cases where the two semantics produce epistemic states
with the same structure. This follows by the fact that the delphic framework
is semantically equivalent to the Kripke-based one (Theorem 1). As a result, the
plan existence problems of both frameworks have the same complexity.

Partial evidences of the advantages of adopting possibilities were already
experimentally witnessed in [10]. However, the planning framework therein cor-

delphic: Practical DEL Planning via Possibilities 581

responds only to a fragment of the DEL framework. Indeed, as mentioned above,
an actual possibility-based formalization of actions is there absent, in favour of
a direct, ad-hoc encoding of the transition functions of three prototypical types
of actions described in the action language mA∗ [4], namely ontic, sensing and
announcements actions. As already mentioned, we overcome this limitation by
equipping delphic with eventualities, which we relate to DEL event models.

In conclusion, we provide a threefold contribution: (i) we introduce delphic
as a general DEL planning framework based on possibilities; (ii) we formally
show that delphic constitutes an alternative but semantically equivalent frame-
work for epistemic planning, compared to the Kripke-based framework; (iii) we
experimentally show that the underlying model employed by delphic indeed
offers promising advantages in performance, in terms of both time and space.

The paper is organised as follows. In Sect. 2, we recall the necessary prelim-
inaries on DEL; in Sect. 3, we formally define delphic and we show its equiva-
lence with the Kripke-based framework and in Sect. 4 we show our experimental
evaluation.

2 Preliminaries

In this section we provide the required preliminaries on DEL [9] by illustrating its
fundamental components: epistemic models in Sect. 2.1, event models in Sect. 2.2,
and the product update in Sect. 2.3. Although the notion of possibility is part
of the preliminaries [12], we defer these to Sect. 3, as this allows us to illustrate
the components of delphic by following a similar structure.

2.1 Epistemic Models

Let us fix a countable set P of propositional atoms and a finite set AG =
{1, . . . , n} of agents. The language LP,AG of multi-agent epistemic logic on P
and AG with common knowledge/belief is defined by the following BNF:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | �iϕ,

where p ∈ P, i ∈ AG, and G ⊆ AG. Formulae of the form �iϕ are read as
“agent i knows/believes that ϕ”. We define the dual operators ♦i as usual. The
semantics of DEL formulae is based on the concept of possible worlds. Epistemic
models are defined as Kripke models [15] and they contain both factual infor-
mation about possible worlds and epistemic information, i.e., which worlds are
considered possible by each agent.

Definition 1 (Kripke Model). A Kripke model for LP,AG is a triple M =
(W,R, V) where:

– W �= ∅ is the set of possible worlds.
– R : AG → 2W×W assigns to each agent i an accessibility relation R(i).
– V : P → 2W assigns to each atom a set of worlds.

582 A. Burigana et al.

We abbreviate the relations R(i) with Ri and use the infix notation wRiv in
place of (w, v) ∈ Ri. An epistemic state in DEL is defined as a multi-pointed
Kripke model (MPKM), i.e., as a pair (M,Wd), where Wd ⊆ W is a non-empty
set of designated worlds.

Example 1 (Coin in the Box). Agents a and b are in a room where a box is
placed. Inside the box there is a coin. None of the agent knows whether the coin
lies heads (h) or tails up (¬h). Both agents know the perspective of the other.
This is represented by the following MPKM (where the circled bullet represent
the designated world).

w1:h w2:¬h
a, b

a, b a, b

Definition 2 (Truth in Kripke Models). Let M = (W,R, V) be a Kripke
model, w ∈ W , i ∈ AG, p ∈ P and ϕ,ψ ∈ LC

P,AG be two formulae. Then,

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) �|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= �iϕ iff ∀v if wRiv then (M,v) |= ϕ

Moreover, (M,Wd) |= ϕ iff (M,v) |= ϕ, for all v ∈ Wd.

We recall the notion of bisimulation for MPKMs [7].

Definition 3 (Bisimulation). A bisimulation between MPKMs ((W,R, V),
Wd) and ((W ′, R′, V ′),W ′

d) is a binary relation B ⊆ W × W ′ satisfying:

– Atoms: if (w,w′) ∈ B, then for all p ∈ P, w ∈ V (p) iff w′ ∈ V ′(p).
– Forth: if (w,w′) ∈ B and wRiv, then there exists v′ ∈ W ′ such that w′R′

iv
′

and (v, v′) ∈ B.
– Back: if (w,w′) ∈ B and w′R′

iv
′, then there exists v ∈ W such that wRiv and

(v, v′) ∈ B.
– Designated: if w ∈ Wd, then there exists a w′ ∈ W ′

d such that (w,w′) ∈ B,
and vice versa.

We say that two MPKMs s and s′ are bisimilar (denoted by s↔s′) when there
exists a bisimulation between them. It is well known that bisimilar states satisfy
the same formulae, hence encode the same information.

2.2 Event Models

In DEL, actions are modeled by event models [3,8], which capture action precon-
ditions and effects from the perspectives of multiple agents at once. Intuitively,
events represent possible outcomes of the action, accessibility relations describe
which events are considered possible by agents, preconditions capture the appli-
cability of events, and postconditions specify how events modify worlds.

delphic: Practical DEL Planning via Possibilities 583

Definition 4 (Event Model). An event model for LP,AG is a quadruple E =
(E,Q, pre, post) where:

– E �= ∅ is a finite set of events.
– Q : AG → 2E×E assigns to each agent i an accessibility relation Q(i).
– pre : E → LP,AG assigns to each event a precondition.
– post : E→(P→LP,AG) assigns to each event a postcondition for each atom.

We abbreviate Q(i) with Qi and use the infix notation eQif in place of
(e, f) ∈ Qi. An epistemic action1 in DEL is defined as a multi-pointed event
model (MPEM), i.e., as a pair (E , Ed), where Ed ⊆ E is a non-empty set of
designated events. An action is purely epistemic if, for each e ∈ E, post(e) is the
identity function id; otherwise it is ontic.

Example 2. Suppose that, in the scenario of Example 1, agent a peeks inside
the box to learn how the coin has been placed while b is distracted. Two events
are needed to represent this situation: e1 (the designated event) represents the
perspective of agent a, who is looking inside the box; e2 represents the fact that
agent b does not know what a is doing. In the figure below, a pair 〈pre(e), post(e)〉
represents the precondition and the postconditions of event e.

e1:〈h,id〉 e2:〈�,id〉b
a a, b

We give a notion of bisimulation for actions, which will be needed to show
an important relationship with our model.

Definition 5 (Bisimulation for actions). A bisimulation between MPEMs
((E,Q, pre, post), Ed) and ((E′, Q′, pre′, post′), E′

d) is a binary relation B⊆E ×
E′ satisfying:

– Formulae: if (e, e′) ∈ B, then pre(e) = pre′(e′) and, for all p ∈ P,
post(e)(p) = post′(e′)(p).

– Forth: if (e, e′) ∈ B and eQif , then there exists f ′ ∈ W ′ such that e′Q′
if

′ and
(f, f ′) ∈ B.

– Back: if (e, e′) ∈ B and e′Q′
if

′, then there exists f ∈ W such that eQif and
(f, f ′) ∈ B.

– Designated: if e ∈ Ed, then there exists a e′ ∈ E′
d such that (e, e′) ∈ B, and

vice versa.

We say that two MPEMs α and α′ are bisimilar (denoted by α↔α′) when there
exists a bisimulation between them.

2.3 Product Update

The product update of a MPKM with a MPEM results into a new MPKM that
contains the updated information of agents. Here we adapt the definition of van
Ditmarsch and Kooi [8] to deal with multi-pointed models. An MPEM (E , Ed)
1 We use “epistemic action” with a broad meaning, simply referring to actions in

epistemic planning, irrespective of their effects.

584 A. Burigana et al.

is applicable in (M,Wd) if for each world w ∈ Wd there exists an event e ∈ Ed

such that (M,w) |= pre(e).

Definition 6 (Product Update). The product update of a MPKM (M,Wd)
with an applicable MPEM (E , Ed), with M = (W,R, V) and E = (E,Q, pre,
post), is the MPKM (M,Wd) ⊗ (E , Ed) = ((W ′, R′, V ′),W ′

d), where:

W ′ = {(w, e) ∈ W × E | (M,w) |= pre(e)}
R′

i = {((w, e), (v, f)) ∈ W ′ × W ′ | wRiv and eQif}
V ′(p)= {(w, e) ∈ W ′ | (M,w) |= post(e)(p)}
W ′

d = {(w, e) ∈ W ′ | w ∈ Wd and e ∈ Ed}

Example 3. The product update of the MPKM of Example 1 with the MPEM
of Example 2 is the MPKM below, where v3 = (w1, e1), v1 = (w1, e2) and
v2 = (w2, e2). Now, agent a knows that the coin lies heads up, while b did not
change its perspective. Importantly, notice that w1 (resp., w2) and v1 (resp., v2)
encode the same information, but they are distinct objects.

v3:h

v1:h v2:¬h
b b

a

a, b

a, b a, b

2.4 Plan Existence Problem

We recall the notions of planning task and plan existence problem in DEL [2].

Definition 7 (DEL-Planning Task). A DEL-planning task is a triple T =
(s0,A, ϕg), where: (i) s0 is the initial MPKM; (ii) A is a finite set of MPEMs;
(iii) ϕg ∈ LC

P,AG is a goal formula.

Definition 8. A solution (or plan) to a DEL-planning task (s0,A, ϕg) is a finite
sequence α1, . . . , α� of actions of A such that:

1. s0 ⊗ α1 ⊗ · · · ⊗ α� |= ϕg, and
2. For each 1≤k≤�, αk is applicable in s0 ⊗ α1 ⊗ · · · ⊗ αk−1.

Definition 9 (Plan Existence Problem). Let n ≥ 1 and T be a class of
DEL-planning tasks. PlanEx(T , n) is the following decision problem: “Given a
DEL-planning task T ∈ T , where |AG|=n, does T have a solution?”

3 DELPHIC

We introduce the delphic framework for epistemic planning. delphic is built
around the concept of possibility (Definition 10), first introduced by Gerbrandy
and Groeneveld to represent epistemic states. We develop a novel representation
for epistemic actions inspired by possibilities, which we term eventualities (Def-
inition 15). Then, we present a novel characterisation of update, called union
update (Definition 19), based on possibilities and eventualities.

delphic: Practical DEL Planning via Possibilities 585

3.1 Possibilities

Possibilities are tightly related to non-well-founded sets, i.e., sets that may give
rise to infinite descents X1 ∈ X2 ∈ . . . (e.g., Ω = {Ω} is a n.w.f. set). We refer
the reader to Aczel [1] for a detailed account on non-well-founded set theory.

Definition 10 (Possibility). A possibility u for LP,AG is a function that
assigns to each atom p ∈ P a truth value u(p) ∈ {0, 1} and to each agent i ∈ AG
a set of possibilities u(i), called information state.

Definition 11 (Possibility Spectrum). A possibility spectrum is a finite set
of possibilities U = {u1, . . . uk} that we call designated possibilities.

Possibility spectrums represent epistemic states in delphic and are able to rep-
resent the same information as MPKMs. Intuitively, each possibility u represent
a possible world and the components u(p) and u(i) correspond to the valua-
tion function and the accessibility relations of the world, respectively. Finally,
the possibilities in a possibility spectrum represent the designated worlds. We
formalize this intuition in Proposition 1.

Definition 12 (Truth in Possibilities). Let u be a possibility, i ∈ AG, p ∈ P
and ϕ,ψ ∈ LC

P,AG be two formulae. Then,

u |= p iff u(p) = 1
u |= ¬ϕ iff u �|= ϕ
u |= ϕ ∧ ψ iff u |= ϕ and u |= ψ
u |= �iϕ iff ∀v if v ∈ u(i) then v |= ϕ

Moreover, U |= ϕ iff v |= ϕ, for all v ∈ U.

Comparing Possibilities and Kripke Models. Gerbrandy and Groeneveld [12]
show how possibilities and Kripke models correspond to each other. In what
follows, we extend this result by analyzing the relation between possibility spec-
trums and MPKMs. First, following [12], we give some definitions.

Definition 13 (Decoration of Kripke Model). The decoration of a Kripke
model M = (W,R, V) is a function δ that assigns to each world w ∈ W a
possibility w = δ(w), such that:

– w(p) = 1 iff w ∈ V (p), for each p ∈ P;
– w(i) = {δ(w′) | wRiw

′}, for each i ∈ AG.

Intuitively, decorations provide a link between Kripke-based representations and
their equivalent possibility-based ones: given w in M , the decoration of M returns
the possibility that encodes w (its valuation and accessibility relation).

Definition 14 (Picture and Solution). If δ is the decoration of a Kripke
model M = (W,R, V) and Wd ⊆ W , then (M,Wd) is the picture of the possibility
spectrum W = {δ(w) | w ∈ Wd}. W is called solution of (M,Wd).

586 A. Burigana et al.

w1 w2

(M, w1)

Picture

w1

W = w1

Solution

Decoration

Fig. 1. Relation between picture, decoration and solution.

Namely, the solution of a MPKM (M,Wd) is the possibility spectrum W that
contains the possibilities calculated by the decoration function, one for each
designated world in Wd. Finally, (M,Wd) is the picture of W. Notice that, in
general, different MPKMs may share the same solution. This observation will
be formally stated in Proposition 1. We now give an example (see also Fig. 1).

Example 4. The decoration δ of the MPKM of Example 1 assigns the possibilities
w1 = δ(w1), w2 = δ(w2). Since Wd = {w1}, we have that W = {w1} is the
solution of (M,Wd), where:

– w1(h) = 1 and w1(a) = w1(b) = {w1,w2};
– w2(h) = 0 and w2(a) = w2(b) = {w1,w2}.

Notice that, in Example 4, although the possibility w2 is not explicitly part
of W, it is “stored” within w1. That is, we do not lose the information about w2.

Given the above definitions, we are now ready to formally compare possibility
spectrums with MPKMs. The following result generalize the one by Gerbrandy
and Groeneveld [12, Proposition 3.4]:

Proposition 1.

1. Each MPKM has a unique decoration;
2. Each possibility spectrum has a MPKM as its picture;
3. Two MPKMs have the same solution iff they are bisimilar.

From item 3 of the above Proposition, we obtain the following remark:

Remark 1. Let s = (M,Wd) be a MPKM and let s′ be its bisimulation contrac-
tion (i.e., the smallest MPKM that is bisimilar to s). Since s and s′ share the
same solution W, it follows that possibility spectrums naturally provide a more
compact representation w.r.t. MPKMs.

Finally, we show that the solution of a MPKM preserves the truth of formulae.

Proposition 2. Let (M,Wd) be a MPKM and let W be its solution. Then, for
every ϕ ∈ LP,AG, (M,Wd) |= ϕ iff W |= ϕ.

Proof. Let δ be the decoration of (M,Wd). We denote with eq(ψ) the fact that
(M,w) |= ψ iff δ(w) |= ψ, for all w∈W .

Consider now w ∈ W and let w = δ(w). We only need to show that eq(ϕ)
holds for any ϕ ∈ LP,AG. The proof is by induction of the structure of ϕ. For the
base case, let ϕ = p. By Definition 13, we immediately have that, for any p ∈ P
and w ∈ W , (M,w) |= p iff w |= p (i.e., eq(p)). For the inductive step, we have:

delphic: Practical DEL Planning via Possibilities 587

– Let ϕ=¬ψ. From eq(ψ) we get eq(¬ψ);
– Let ϕ=ψ1∧ψ2. From eq(ψ1), eq(ψ2) we get eq(ψ1∧ψ2);
– Let ϕ=�iψ and assume eq(ψ). Then we have:

(M,w)|=�iψ
Def. 2⇔ ∀v if wRiv, then (M,v)|=ψ

Def. 13, eq(ψ)⇔ ∀v if v ∈ ui, then v|=ψ
Def. 12⇔ w |= �iψ

3.2 Eventualities

In delphic, we introduce the novel concept of eventuality to model epistemic
actions that is compatible with possibilities. In the remainder of the paper, we
fix a fresh propositional atom pre /∈ P and let P ′ = P ∪ {pre}. In the following
definition, pre encodes the precondition of an event, while the remaining atoms
in P encode postconditions.

Definition 15 (Eventuality). An eventuality e for LP,AG is a function that
assigns to each atom p′ ∈ P ′ a formula e(p′) ∈ LP,AG and to each agent i ∈ AG
a set of eventualities e(i), called information state.

Note that an eventuality is essentially a possibility that associates to each atom
a formula (instead of a truth value).

Definition 16 (Eventuality Spectrum). An eventuality spectrum is a finite
set of eventualities E={e1, . . . ek} that we call designated eventualities.

Eventuality spectrums represent epistemic actions in delphic. Moreover, we
can easily show that they are able to represent the same information as MPEMs.
Intuitively, each eventuality e represents an event and the components e(pre) and
e(p) represent the precondition and the postconditions of the event, respectively.
Finally, the eventualities in an eventuality spectrum represent the designated
events. We formalize this intuition in Proposition 3.

Comparing Eventualities and Event Models. We now analyze the relationship
between eventuality spectrums and MPEMs. We introduce the notions of deco-
ration, picture and solution for event models.

Definition 17 (Decoration of an Event Model). The decoration of an
event model E = (E,Q, pre, post) is a function δ that assigns to each e ∈ E
an eventuality e = δ(e), where:

– e(pre) = pre(e) and e(p) = post(e)(p), for each p ∈ P;
– e(i) = {δ(e′) | eQie

′}, for each i ∈ AG.

Definition 18 (Picture and Solution). If δ is the decoration of an event
model E = (E,Q, pre, post) and Ed ⊆ E, then (E , Ed) is the picture of the
eventuality spectrum E = {δ(e) | e ∈ Ed} and E is the solution of (E , Ed).

The above definitions are the counterparts of the notions of decoration and
picture given in Definitions 13 and 14.

588 A. Burigana et al.

Example 5. The decoration δ of the MPEM of Example 2 assigns the eventual-
ities e1 = δ(e1) and e2 = δ(e2). Since Ed = {e1}, we have that E = {e1} is the
solution of (E , Ed), where:

– e1(pre) = h; e1(h) = h; e1(a)={e1} and w1(b)={w2};
– e2(pre) = �; e2(h) = h; e2(a) = w2(b) = {e2}.

The following results formally compare eventuality spectrums with MPEMs.

Proposition 3.

– Each MPEM has a unique decoration;
– Each eventuality spectrum has a MPEM as its picture;
– Two MPEMs have the same solution iff they are bisimilar.

Thus, analogously to the case of possibility spectrums, we can see that even-
tuality spectrums provide us with a compact representation of epistemic actions.

3.3 Union Update

We are now ready to present the novel formulation of update of delphic. We
say that an eventuality e is applicable in a possibility u iff u |= e(pre). Then,
an eventuality spectrum E is applicable in a possibility spectrums U iff for each
u ∈ U there exists an applicable eventuality e ∈ E.

Definition 19 (Union Update). The union update of a possibility u with an
applicable eventuality e is the possibility u′ = u ∪× e, where:

u′(p) = 1 iff u |= e(p)
u′(i) = {v ∪× f | v ∈ u(i), f ∈ e(i) and v |= f(pre)}

The union update of a possibility spectrum U with an applicable eventuality
spectrum E is the possibility spectrum

U ∪× E = {u ∪× e | u ∈ U, e ∈ E and u |= e(pre)}.

Example 6. The union update of the possibility spectrum W of Example 4 with
the eventuality spectrum of Example 5 is W ∪× E = {w1 ∪× e1} = {v3}, where
v3(h) = 1, v3(a) = {v3} and v3(b) = {w1 ∪× e2,w2 ∪× e2} = {w1,w2}.

Notice that, since w1 ∪× e2=w1 and w2 ∪× e2=w2 the union update allows to
reuse previously calculated information.

Comparing Union Update and Product Update. Intuitively, it is easy to see that
the possibility spectrum of Example 6 represents the same information of the
MPKM of Example 3. We formalize this intuition with the following lemma,
witnessing the equivalence between product and union updates (full proof in the
arXiv Appendix).

Lemma 1. Let (E , Ed) be a MPEM applicable in a MPKM (M,Wd), with solu-
tions E and W, respectively. Then the possibility spectrum W′ = W ∪× E is the
solution of (M ′,W ′

d) = (M,Wd) ⊗ (E , Ed).

delphic: Practical DEL Planning via Possibilities 589

3.4 Plan Existence Problem in DELPHIC

We conclude this section by giving the definitions of planning task and plan
existence problem in delphic.

Definition 20 (delphic-Planning Task). A delphic-planning task is a
triple T = (W0, Σ, ϕg), where: (i) W0 is an initial possibility spectrum; (ii) Σ is
a finite set of eventuality spectrums; (iii) ϕg ∈ LC

P,AG is a goal formula.

Definition 21. A solution (or plan) to a delphic-planning task (W0, Σ, ϕg)
is a finite sequence E1, . . . ,E� of actions of Σ such that:

1. W0 ∪× E1 ∪× . . . ∪× E� |= ϕg, and
2. For each 1≤k≤�, Ek is applicable in W0 ∪× E1 ∪× . . . ∪× Ek−1.

Definition 22 (Plan Existence Problem). Let n ≥ 1 and T be a class
of delphic-planning tasks. PlanEx(T , n) is the following decision prob-
lem: “Given a delphic-planning task T∈ T , where |AG| = n, does T have a
solution?”

From Lemma 1, we immediately get the following result:

Theorem 1. Let T = (s0,A, ϕg) be a DEL-planning task and let T =
(W0, Σ, ϕg) be a delphic-planning task such that W0 is the solution of s0 and
Σ is the set of solutions of A. Then, α1, . . . , α� is a plan for PlanEx(T, n) iff
E1, . . . ,E� is a plan for PlanEx(T, n), where Ei is the solution of αi, for each
1 ≤ i ≤ �.

4 Experimental Evaluation

In this section, we describe our experimental evaluation of the Answer Set Pro-
gramming (ASP) encodings of delphic and of the traditional Kripke semantics
for DEL. Due to space constraints, we provide a brief overview of the encodings2
(the full presentation can be found in the arXiv Appendix).

The aim of the evaluation is to compare the semantics of delphic and the
traditional Kripke-based one in terms of both time and space. We do so by test-
ing the encodings on epistemic planning benchmarks collected from the liter-
ature3 (e.g., Collaboration and Communication, Grapevine and Selective Com-
munication). Time and space performances are respectively evaluated on the
total solving time (given in seconds) and the grounding size (i.e., the number of
ground ASP atoms) provided by the ASP-solver clingo output statistics. We now
describe the encodings (Sect. 4.1) and discuss the obtained results (Sect. 4.2).
2 The full code and documentation of the ASP encodings are available at https://

github.com/a-burigana/delphic_asp.
3 Due to space limits, the description of the benchmarks is delegated to the arXiv

Appendix. All benchmarks are available at https://github.com/a-burigana/delphic_
asp.

https://github.com/a-burigana/delphic_asp
https://github.com/a-burigana/delphic_asp
https://github.com/a-burigana/delphic_asp
https://github.com/a-burigana/delphic_asp

590 A. Burigana et al.

4.1 ASP Encodings

Since our goal is to achieve a fair comparison the two semantics, we imple-
mented a baseline ASP encoding for both of them. Although optimizations for
both encoding are possible, the baseline implementations are sufficient to show
our claim. Towards the goal of a fair and transparent comparison, we opted for a
declarative language such as ASP (notice that, as our goal is simply to compare
the two baselines, the choice of an alternative declarative language would make
little difference). In fact, while imperative approaches would render the compar-
ison less clear, as one would need to delve into opaque implementation details,
ASP allows to write the code that is transparent and easy to analyze. In fact, the
two ASP encodings are very similar, since the representation of delphic objects
(possibility/eventuality spectrums) and DEL objects (MPKMs/MPEMs) closely
mirror each other. The only difference is in the two update operators (i.e., union
update and product update). This homogeneity is instrumental to obtain a fair
experimental comparison of the two encodings.

We now briefly describe our encodings, assuming that the reader is familiar
with the basics concepts of ASP. The two encodings were developed by following
the formal definitions of delphic and DEL objects (possibility/eventuality spec-
trums and MPKMs/MPEMs) and update operators (union and product update)
introduced in the previous sections. To increase the efficiency of the solving and
grounding phases, the two encodings make use of the multi-shot solving app-
roach provided by the ASP-solver clingo, which allows for a fine-grained control
over grounding and solving of ASP programs. Specifically, this approach allows
one to divide an ASP encoding into sub-programs, then handling grounding and
solving of these sub-programs separately. In particular, this technique is useful
to implement incremental solving, which, at each time step, allows to extend the
ASP program in order to look for solutions of increasing size. Intuitively, every
step mimics a Breadth-First Search over the planning state space: at each time
step t, if a solution is not found (i.e., there is no plan of length t that satisfies
the goal), the ASP program is expanded to look for a longer plan. For a detailed
introduction on multi-shot ASP, we refer the reader to [11,13].

Finally, to visually witness the compactness that possibility spectrums pro-
vide w.r.t. MPKMs (see Remark 1), we exploited the Python API offered by
clingo to implement a graphical representation of the epistemic states visited by
the planner. This provides an immediate way of concretely compare the size of
output of the two encodings on a given domain instance. Due to space reasons,
we report an example of graphical comparison in the arXiv Appendix.

4.2 Results

We ran our test on a 1.4 GHz Quad-Core Intel Core i5 machine with 8 GB of
memory and with a macOS 12.6 operating system and using clingo version 5.6.2
with timeout (t.o.) of 10min. The results are shown in Fig. 2. Space and time
results are expressed in number of ASP atoms and in seconds, respectively. The
comparison clearly shows that the delphic encoding outperforms the one based

delphic: Practical DEL Planning via Possibilities 591

0

750000

1500000

2250000

3000000

Delphic space Kripke space

(a) Space results
0.000

75.000

150.000

225.000

300.000

Delphic time Kripke time

(b) Time results

Fig. 2. Results of the evaluation of the delphic and Kripke encodings.

on the traditional Kripke semantics both in terms of space and time. As shown in
Fig. 2.a, the number of ASP atoms produced by the delphic encoding is smaller
than the ones produced by the Kripke-based ones. The “spikes” witnessed in the
latter case are found in presence of instances with longer solutions. This indicates
that delphic scales much better in terms of plan length than the traditional
Kripke-semantics. In turn, this is positively reflected by the time results graph.
In fact, observing space and time results together, we can see how the growth of
the size of the epistemic states negatively affects the planning process in terms
of time performances. This concretely shows that possibilities can be exploited
to achieve more efficient planning tools, thus allowing epistemic planners to be
able to deal with the full range of features offered by DEL.

We now analyze the results in detail. The central factor that contributes to
the performance gains of delphic is the fact that possibilities allow for a more
efficient use of space during the computation of a solution. Specifically, this
efficiency results from two key aspects. First, as shown in Remark 1, possibility
spectrums are able to represent epistemic information in a more compact way.
Working with compact objects contributes significantly to reducing the size of
epistemic states after sequences of updates. Second, as shown in Example 6,
possibilities naturally allow to reuse previously calculated information (i.e., other
possibilities that were calculated in previous states). We give a more concrete
example of this property in Fig. 3, that shows a sequence of epistemic states
(surrounded by rectangles) from a generalization of the Coin in the Box domain
of Example 1. We clearly see how the possibilities w0 and w1 are reused in the
epistemic states s1, s2, s3 and s4. The space efficiency provided by delphic
is clearly witnessed in Fig. 2.a. In presence of instances with longer solutions,
delphic outperforms the Kripke-based representation, as the latter requires a
considerable amount of space to compute a solution (i.e., the spikes of the graph).

The space efficiency of delphic is directly reflected on time performances.
Indeed, in Fig. 2.b are shown the same peaks in correspondence of instances
with longer solutions. As a result, we can conclude that the delphic framework

592 A. Burigana et al.

s0

s1 = s0 * signal_a_c s2 = s1 * open_a s3 = s2 * signal_a_b

s4 = s3 * peek_a s5 = s4 * shout_tail_a

w0 a, b, cw1
a, b, c

a, b, c

w2

bb

a, c w3
a, c

bb

a, c w4

bb

a, c w5
a, c

bb

a, c w6

bb

a, c w7
c

bb

a, c

w10

c c

a

w8

b

w9

b

cc

a, b
a, b

cc

a, b

w11 a, b, c

w12

b

a, c w13

c

a, b

w14

c b

a

w0 - looking_a, -looking_b, -looking_c, -opened, tail

w1 - looking_a, -looking_b, -looking_c, -opened, -tail

w2 (w0, sig) looking_a, -looking_b, looking_c, -opened, tail

w3 (w1, sig) looking_a, -looking_b, looking_c, -opened, -tail

w4 (w2, sig) looking_a, -looking_b, looking_c, opened, tail

w5 (w3, sig) looking_a, -looking_b, looking_c, opened, -tail

w6 (w4, sig) looking_a, -looking_b, looking_c, opened, tail

w7 (w5, tau) looking_a, -looking_b, looking_c, opened, -tail

w8 (w0, sig) looking_a, looking_b, -looking_c, -opened, tail

w9 (w1, sig) looking_a, looking_b, -looking_c, -opened, -tail

w10 (w6, sig) looking_a, looking_b, looking_c, opened, tail

w11 (w0, sig) looking_a, -looking_b, -looking_c, -opened, tail

w12 (w6, sig) looking_a, -looking_b, looking_c, opened, tail

w13 (w8, sig) looking_a, looking_b, -looking_c, -opened, tail

w14 (w10, sig) looking_a, looking_b, looking_c, opened, tail

Fig. 3. Reuse of previously calculated information in delphic. This figure was obtained
by running the terminal command python delphic.py -i exp/CB/instance__
pl_5.lp --print (see https://github.com/a-burigana/delphic_asp for the complete
documentation).

allows for a more scalable implementation both in terms of space and time
performances. Finally, we point out that the analyzed performance gains are
obtained in the average case, as there exist extreme (worst) cases where the two
semantics produce epistemic states with the same structure. In fact, we recall
that the delphic framework is semantically equivalent to the Kripke-based one
(Theorem 1). Thus, we can conclude that delphic provides a practical and
usable framework for DEL planning that can be exploited to tackle a wide range
of concrete epistemic planning scenarios.

We close this section by noting that a similar, but less general result, was
obtained by Fabiano et al. [10], where a possibility-based semantics is compared
to the traditional Kripke-based one on a fragment of DEL called mA∗ [4], that
allows three kinds of actions, i.e., ontic, sensing and announcement actions.
Since delphic is equivalent to the full DEL framework (see Theorem 1), our
comparison indeed provides a generalization of the claim made by Fabiano et al.

5 Conclusions

We have introduced a novel epistemic planning framework, called delphic, based
on the formal notion of possibility, in place of the more traditional Kripke-based
DEL representation. We have formally shown that these two frameworks are
semantically equivalent. Possibilities provide a more compact representation of
epistemic states, in particular by reusing common information across states. To
show the benefits of possibilities, we have implemented delphic and the Kripke-
based approach in ASP, performing a comparative experimental evaluation with
known benchmark domains. The results show that delphic indeed outperforms
the Kripke-based approach both in terms of space and time performances, and
is thus a good candidate for practical DEL planning.

https://github.com/a-burigana/delphic_asp

delphic: Practical DEL Planning via Possibilities 593

In the future, we plan to exploit the performance gains provided by the del-
phic semantics in more competitive implementations based on C++. An inter-
esting avenue of work is to deepen our analysis of possibility-based succinctness
on fragments of DEL, where only a set of specific types of actions are allowed
(e.g., the language mA∗ [4] and the framework by Kominis and Geffner [14]).

Acknowledgements. This research has been partially supported by the Italian
Ministry of University and Research (MUR) under PRIN project PINPOINT Prot.
2020FNEB27, and by the Free University of Bozen-Bolzano with the ADAPTERS
project.

References

1. Aczel, P.: Non-well-founded sets, CSLI lecture notes series, vol. 14. CSLI (1988)
2. Aucher, G., Bolander, T.: Undecidability in epistemic planning. In: Rossi, F. (ed.)

IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, 3–9 August 2013, pp. 27–33. IJCAI/AAAI (2013)

3. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common
knowledge and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Confer-
ence on Theoretical Aspects of Rationality and Knowledge (TARK-98), Evanston,
IL, USA, 22–24 July 1998, pp. 43–56. Morgan Kaufmann (1998)

4. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for multi-agent
domains: foundations. CoRR abs/1511.01960 (2015)

5. Bolander, T., Andersen, M.B.: Epistemic planning for single and multi-agent sys-
tems. J. Appl. Non Class. Log. 21(1), 9–34 (2011)

6. Bolander, T., Charrier, T., Pinchinat, S., Schwarzentruber, F.: Del-based epistemic
planning: decidability and complexity. Artif. Intell. 287, 103304 (2020)

7. Bolander, T., Dissing, L., Herrmann, N.: DEL-based epistemic planning for human-
robot collaboration: theory and implementation. In: Proceedings of the 18th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
pp. 120–129 (11 2021)

8. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change, pp.
87–117. Texts in Logic and Games 3, Amsterdam University Press (2008)

9. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic Epistemic Logic,
vol. 337. Springer, Dordrecht, Netherlands (2007). https://doi.org/10.1007/978-1-
4020-5839-4

10. Fabiano, F., Burigana, A., Dovier, A., Pontelli, E.: EFP 2.0: a multi-agent epistemic
solver with multiple e-state representations. In: Beck, J.C., Buffet, O., Hoffmann,
J., Karpas, E., Sohrabi, S. (eds.) Proceedings of the Thirtieth International Con-
ference on Automated Planning and Scheduling, Nancy, France, 26–30 October
2020, pp. 101–109. AAAI Press (2020)

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

12. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. Log. Lang.
Inf. 6(2), 147–169 (1997)

13. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own asp-based
system?! Theory Pract. Log. Program. 23(1), 299–361 (2023)

https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4

594 A. Burigana et al.

14. Kominis, F., Geffner, H.: Beliefs in multiagent planning: from one agent to many.
In: Brafman, R.I., Domshlak, C., Haslum, P., Zilberstein, S. (eds.) Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Schedul-
ing, ICAPS 2015, Jerusalem, Israel, 7–11 June 2015, pp. 147–155. AAAI Press
(2015)

15. Kripke, S.A.: Semantical considerations on modal logic. Acta Philos. Fenn.
16(1963), 83–94 (1963)

Enhancing Temporal Planning
by Sequential Macro-Actions

Marco De Bortoli1(B), Lukáš Chrpa2, Martin Gebser1,3,
and Gerald Steinbauer-Wagner1

1 Graz University of Technology, Graz, Austria
mbortoli@ist.tugraz.at

2 Czech Technical University in Prague, Prague, Czechia
3 University of Klagenfurt, Klagenfurt, Austria

Abstract. Temporal planning is an extension of classical planning
involving concurrent execution of actions and alignment with tempo-
ral constraints. Unfortunately, the performance of temporal planning
engines tends to sharply deteriorate when the number of agents and
objects in a domain gets large. A possible remedy is to use macro-actions
that are well-studied in the context of classical planning. In tempo-
ral planning settings, however, introducing macro-actions is significantly
more challenging when the concurrent execution of actions and shared
use of resources, provided the compliance to temporal constraints, should
not be suppressed entirely. Our work contributes a general concept of
sequential temporal macro-actions that guarantees the applicability of
obtained plans, i.e., the sequence of original actions encapsulated by a
macro-action is always executable. We apply our approach to several
temporal planners and domains, stemming from the International Plan-
ning Competition and RoboCup Logistics League. Our experiments yield
improvements in terms of obtained satisficing plans as well as plan qual-
ity for the majority of tested planners and domains.

1 Introduction

Temporal planning is a framework dealing with concurrent actions and timing
requirements, providing an intuitive syntax for representing planning domains,
such as PDDL 2.1 [15], together with off-the-shelf planners, e.g., Optic [2], to
generate plans. As an extension of classical planning, temporal planning offers
support for durative actions, their concurrent execution, and the management of
temporal constraints. Logistics domains are prominent examples in which such
timing information matters, e.g., for planning transport and delivery, cargo ship-
ment, shuttle services, or just-in-time production, to mention some application
areas. However, with larger numbers of tasks and/or resources to operate and
synchronize, the performance of (temporal) planning engines tends to sharply
deteriorate, which limits their usability for practical problem solving.

As a possible remedy for the scalability issue, in this paper, we provide a gen-
eral concept of sequential temporal macro-actions (Sect. 2), i.e., macros encapsu-
lating sequences of durative actions, where preconditions, invariants, and effects
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 595–604, 2023.
https://doi.org/10.1007/978-3-031-43619-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_40&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_40

596 M. De Bortoli et al.

action a2

mutex x(a2)

action a1
macro-action a = a1 ◦a2

mutex x(a) ⊇ x(a2)
Composition

effect-safe action ax

Augmentation

action a1

action a2

Refinement

Fig. 1. Outline of the composition and refinement of macro-actions, augmented with
mutex atoms for sound temporal planning.

are assembled in a fine-grained way to enable concurrent execution when it does
not compromise the macro-action applicability. We evaluate our approach using
state-of-the-art planners on domains from the International Planning Competi-
tion as well as the RoboCup Logistics League (Sect. 3), obtaining improvements
in coverage and in some cases also plan quality. Finally, we discuss related work
(Sect. 4) and provide conclusions along with directions for future work (Sect. 5).
An extended version of this paper is available online [10].

2 Sequential Macro-Actions

In contrast to classical planning, where actions are viewed as instantaneous
events and modeling their sequential execution by a macro-action boils down
to accumulating preconditions and effects independently of other actions, con-
current actions must be taken into account for temporal planning, which makes
it non-trivial to guarantee the applicability of plans with macro-actions. These
considerations lead us to the question how a sequence of durative actions can be
turned into a sequential macro to be used for temporal planning (in place of its
constituent actions), so that the resulting plan guarantees the sequential appli-
cability of the original actions but does not suppress other concurrent actions
unnecessarily. Adhering to these design objectives, the principal steps of our
construction of macro-actions are outlined in Fig. 1. In this paper, these steps
are presented through a running example. Definitions of Composition, Augmen-
tation and Refinement, together with the related theorems and proofs, can be
found in the extended version of the paper [10].

We use the following notation: a durative action a is defined by a dura-
tion dur(a) ∈ R

+, the sets pre�(a), pre��(a), and pre�(a) of atoms specifying
preconditions that must hold at the start, as invariants during, or at the end
of the action a, respectively, as well as the sets eff �(a) and eff �(a) of literals
determining effects that apply at the start or at the end of a. Let add�(a) (or
add�(a)) and del�(a) (or del�(a)) denote the sets of atoms occurring as positive
or negative literals, respectively, in eff �(a) (or eff �(a)).

The three steps outlined in Fig. 1 are now briefly introduced. For a formal
definition, the reader is referred to [10]. Composition specifies how the sequential
execution of two actions, a1 and a2, is mapped to a macro-action a = a1 ◦ a2,

Enhancing Temporal Planning by Sequential Macro-Actions 597

Fig. 2. Description of two actions and the resulting macro. Literals below each action
represent effects, while the literals above them provide preconditions (at the start, end,
or during an action, as indicated by their positions). The mutex atoms of the macro
are omitted for better readability.

where the internal structure incorporating the ending event for a1, the starting
event for a2, as well as the invariants pre��(a1) and pre��(a2) requires particular
attention. In case some literal � needs to be excluded from the effects of events
taking place within the duration of the macro-action a, we introduce a mutex
atom x� in the set x(a) associated with a, which extends the corresponding
set x(a2) for a2. This inductive accumulation of mutex atoms accommodates
the right-associative chaining of macro-action composition steps, starting from
x(a2) = ∅ for an ordinary action a2.

After composing macro-actions a and gathering their associated mutex atoms
x(a), Augmentation incorporates mutex atoms into the preconditions and effects
of effect-safe (macro-)actions ax. The main idea is that the precondition of any
event is augmented with x� for corresponding effects � that must not apply
during some macro-action a. Such an effect-safe macro-action ax in turn falsifies
x� at the start and re-enables it at the end, thus suppressing undesired effects
of events and also ruling out interferences with (other) macro-actions whose
associated mutex atoms include xv or x¬v for � ∈ {v,¬v}. The latter restriction
on the concurrent applicability of macro-actions guarantees that mutex atoms
are neither manipulated in uncontrolled ways nor that unfolding macro-actions
into their constituent actions risks the release of undesired effects.

Given a solution for a planning task built from effect-safe (macro-)actions,
Refinement formalizes how a time-stamped macro-action (t, a) with a = a1 ◦ a2

is unfolded into the sequence of (t1, a1) and (t2, a2) to obtain a refined plan. The
introduced time stamps t1 and t2 are chosen such that t1 < t, t1 + dur(a1) < t2,
and t2 + dur(a2) < t + dur(a), where no other starting or ending event takes
place in-between t1 and t, t1 + dur(a1) and t2, or t2 + dur(a2) and t + dur(a),
respectively.

Our macro-action concept combines preconditions and effects at the start
and end of composed actions as well as their invariants in a fine-grained way,
based on the idea of incorporating invariants if they do not spoil the applicability
of a macro-action, or to gather mutex atoms on literals otherwise.

Example 1. Fig. 2 visualizes how two actions from a simple temporal domain
are composed into a macro-action. The actions at the top involve an agent r
capable of moving from a location l1 to l2 for picking up an object at location

598 M. De Bortoli et al.

l2. (The syntax used for literals is inspired by PDDL, where not represents the
logical connective ¬.) First observe that the macro-action displayed at the right
of Fig. 2 pulls the delete effects applied at the end of the move or at the start of
the get action, i.e., (not (free l2)) and (not (empty r)), together with the original
start effects of the move action. The positive end effect (at r l2) of the move
action, however, joins (holding r) at the end of the composed macro-action.

Preconditions at the start of the macro-action include the original (at r l1)
atom from move together with (free l2) and (empty r) required at the end of
move or at the start of get , respectively. The reason for not turning the latter
two atoms into invariants required throughout the macro-action is that their
negative literals occur as new start effects, so that invariants would render the
macro-action inapplicable. Moreover, the precondition and invariant (at r l2) of
get is not taken as a precondition or invariant of the macro-action since it is
enabled by the end effect of move, which is now postponed to the end of the
macro-action. Hence, it would be overcautious to insist on the truth of (at r l2)
at the start or during the entire macro-action. In fact, considering that any other
actions in the domain will hardly admit (at r l1), which is a precondition at the
start, and (at r l2) to hold simultaneously, turning the latter into a precondition
or invariant would most likely yield an (unnoticed) inapplicable macro-action.�

In general, the idea of Composition is to forward delete effects del�(a1) ∪
del�(a2) ((not (free l2)) and (not (empty r)) in Example 1) from the ending
event for a1 or the starting event for a2 to the start of the composed macro-action
a = a1 ◦a2. In this way, atoms getting falsified in the course of the macro-action
become false, so that the preconditions of other actions are not met after the
macro-action starts. Similarly, the add effects add�(a1) ∪ add�(a2) ((at r l2) in
Example 1), which may enable preconditions of other actions, are postponed to
the end of the macro-action (unless they get canceled by subsequently occurring
delete effects del�(a2) and del�(a2)). Taken together, the early application of
delete effects and postponement of add effects prevent that other actions building
on the volatile atoms are applied.

Concerning the preconditions of the macro-action a, pre�(a) consists of the
atoms in pre�(a2) that are not enabled by the add effects add�(a1) ∪ add�(a2)
during the macro-action. Note that atoms in add�(a2) may also belong to the
delete effects del�(a1), in which case they are included in del�(a) at the start
of a and listing them among the preconditions pre�(a) at the end would ren-
der a inapplicable. For the same reason, atoms of the invariant pre��(a2) that get
enabled by add�(a1)∪add�(a2) during a are not required as invariants in pre��(a)
for not (unnecessarily) compromising the applicability of a. Atoms of the invari-
ant pre��(a1) as well as the preconditions pre�(a1) and pre�(a2) during a are
taken as invariants in pre��(a) only if they are not falsified by subsequent delete
effects in del�(a1) or del�(a2). Otherwise, such atoms ((free l2) and (empty r)
in Example 1) augment the original preconditions pre�(a1) at the start of a1 in
pre�(a) (unless they get readily enabled by add effects add�(a1) and add�(a1), as
with (at r l2) in Example 1). While the composition of a1 and a2 into a = a1 ◦a2

aims at restricting the preconditions pre�(a), pre��(a), and pre�(a) to necessary

Enhancing Temporal Planning by Sequential Macro-Actions 599

parts, it can happen that a1 and a2 are incompatible in the sense that delete
effects undo required preconditions, and checking that del�(a) ∩ pre��(a) = ∅ as
well as pre�(a2)∩ (del�(a1)∪ del�(a2)) \ add�(a2) = ∅ excludes the composition
of incompatible actions.

Although the specific delete effects in Example 1 do not permit taking atoms
as invariants of the composed macro-action a = a1 ◦ a2, it would be the first
choice for, e.g., (empty r) from pre�(a2) if it were not also included in del�(a2).
If this choice cannot be made for an atom v of interest, as in Example 1, a
mutex atom x¬v is collected in x(a) to express that any delete effects on v need
to be rejected as long as the macro-action a is in progress. The respective cases
in Composition cover all atoms from the preconditions pre��(a1), pre�(a1), and
pre�(a2) subject to subsequent delete effects, atoms from pre��(a2) and pre�(a2)
getting enabled in the course of the macro-action a, as well as postponed effects
from add�(a1) and add�(a2) that are not to be removed before the ending event
for a (unless any of these atoms belongs to the invariants of a). Additional mutex
atoms of the form xv are included in x(a) for delete effects del�(a1) ∪ del�(a2)
occurring during a. They signal that add effects on v must be rejected to prevent
concurrent actions building on atoms that get falsified during a. Mutex atoms
of macro-actions are then used to model mutex locks by Augmentation.

Example 2. Continuing Example 1, the mutex atoms (omitted in Fig. 2 for bet-
ter readability) associated with the composed move and get macro-action are
x(not (free l2)), x(not (empty r)), x(not (at r l2)), x(free l2), and x(empty r). In the not
cases, they result from preconditions at the end of move and at the start of
or during get that are canceled by subsequent delete effects or enabled dur-
ing the macro-action, respectively. On the other hand, x(free l2) and x(empty r)

stem from the delete effects at the end of move and at the start of get . The
effect-safe version of the macro-action includes the above mutex atoms as well
as x(at r l2), x(free l1), and x(not (at r l1)) as additional preconditions at the start
(provided that the latter show up among the mutex atoms associated with other
macro-actions composed for the domain) to rule out any interferences with other
macro-actions on start effects or the original atoms v occurring as xv or x¬v

among mutex atoms. When the macro-action composed from move and get is
applied, its associated mutex atoms are set to false at the start in order to reject
undesired effects of other actions, i.e., effects falsifying some required precon-
dition or enabling an atom falsified during the macro-action (too early). These
mutex locks get released again at the end of the macro-action, where x(at r l2)

and x(holding r) for the end effects (at r l2) and (holding r) constitute precondi-
tions (in case any other macro-actions have them as associated mutex atoms).
Importantly, if either of these atoms were among the mutex atoms associated
with the macro-action itself, it would not be taken as a precondition for the end-
ing event; e.g., if (not (holding r)) were an effect at the start of the get action,
x(holding r) would be included in the mutex atoms, so that x(holding r) is certainly
false until the end of the macro-action due to the modeled mutex lock. �

600 M. De Bortoli et al.

3 Evaluation

We evaluate the impact of sequential macro-actions on planning performance by
applying three state-of-the-art planners to solve instances from four domains.
The first domain consists of a PDDL encoding of the RoboCup Logistics League
(RCLL) along with the instance collection used in [11] for assessing and com-
paring domain models with manually defined macros. In the RCLL domain, a
team of three autonomous mobile robots cooperatively assembles products by
interacting with production stations. The other three domains originate from
the International Planning Competition (IPC) [23]: Road Traffic Accident Man-
agement (RTAM), Driverlog, and Satellite. Like RCLL, RTAM and Driverlog
encode logistics domains. However, due to different characteristics, the num-
ber of defined macros is considerably lower (17 macros for RCLL and 2 macros
only for both RTAM and Driverlog). The Satellite domain is rather simple, also
featuring 2 macros only. For each domain, the original actions composing the
introduced macros are replaced by the macro-actions in order to improve the
solving process, at the potential cost of losing optimality in case applying the
ordinary actions off sequence permits plans to finish earlier.

Our comparison includes three state-of-the-art planners: the popular Optic
system [2], also serving as baseline planner at the IPC 2018 edition, as well as
the Temporal Fast Downward (TFD) [12] and YAHSP3 [24] planners, which
achieved the runner-up and winner positions at the IPC 2014 edition [23]. The
benchmark set consists of 50 instances for RCLL, 20 instances for both RTAM
and Satellite, and 44 instances for Driverlog, where we run each planner for
up to 15 min per instance on a PC equipped with an Intel i5 10300 h CPU
and 16 GB RAM under Ubuntu 18.04, using either the original or the macro-
action domain. Notably, the composition of macro-actions described in Sect. 2
is automatically performed at the level of first-order PDDL domains by a Java
tool we developed for this purpose. Table 1 indicates the original domain by
“Nat.” and the new one replacing some of the ordinary actions by “Macro”.
The displayed metrics are Coverage, i.e., the ratio of instances for which some
satisficing plan is obtained to the number of all instances in a domain, and
average Relative Makespan, comparing the finishing time of best plans found in
15 min between the original domain and the one with macro-actions. That is, the
Relative Makespan considers instances such that a planner found at least one
solution for either version of the domain, where values greater than 1 express
better plan quality for the domain with macros, or worse plan quality otherwise.
In addition, we quantify the Relative Makespan deviance as an indicator of
the plan quality differences, and greater values mean that the plan quality per
instance varies significantly w.r.t. the (non-)use of macros.

As can be seen by the results displayed in Table 1, equipping domains with
macro-actions can change the landscape of heuristic features, having an impact
on the quality of solutions and how fast planners can find them. The particularly
positive effects on the RCLL domain show that replacing a large portion of ordi-
nary actions by macros can significantly improve the planner performance and
plan quality. However, when the majority of ordinary actions remain in com-

Enhancing Temporal Planning by Sequential Macro-Actions 601

Table 1. For each combination of domain and planner, the table displays the Coverage
(% of solved instances) and average Relative Makespan (ratio between makespans of
native and macro) over the instance set, with corresponding deviance. Makespan results
bigger than 1 are highlighted, meaning better makespan for the macro version.

RCLL RTAM

planner Cov. Nat Cov. Macro Rel. Mkspan Dev Cov. Nat Cov. Macro Rel. Mkspan Dev

OPTIC 0.66 1.00 1.08 0.07 0.95 0.95 0.72 0.01

TFD 0.22 1.00 0.76 0.00 0.16 0.05 n/a n/a

YAHSP 1.00 1.00 1.38 0.26 1.00 1.00 0.93 0.03

SATELLITE DRIVERLOG

planner Cov. Nat Cov. Macro Rel. Mkspan Dev. Cov. Nat. Cov. Macro Rel. Mkspan Dev.

OPTIC 0.15 0.45 0.75 0.01 0.15 0.27 0.99 0.00

TFD 0.85 0.25 0.95 0.03 0.03 0.15 0.94 0.00

YAHSP 1.00 0.75 1.37 0.30 0.91 0.82 0.53 0.04

parison to those replaced by macros, the overhead induced by the mutex atoms
associated with macro-actions can outweigh the performance gains, particularly
when considering the makespan of the obtained plans.

4 Related Work

Macro-actions are well-known in classical planning, starting with the STRIPS
[14] and REFLECT [9] systems in the 1970s. Classical planning systems may
generate macro-actions in pre-processing [3–6,18,19,21,22] or on the fly during
the planning process [7,8]. In contrast to classical planning, very few works con-
sider macro-actions in the context of temporal planning. A technique to generate
macro-actions out of partially overlapping temporal actions is presented in [25].
To our knowledge, the most recent approach to define temporal macro-actions
stems from a master thesis [17], but the used model of durative actions deviates
from PDDL 2.1 [15]. Macro-actions and abstractions also find application in lan-
guages and paradigms beyond PDDL, like Situation Calculus and other ad-hoc
languages [1,13,16,20].

5 Conclusion and Future Work

Temporal planning allows for modeling and solving a variety of planning and
scheduling tasks. However, the high computational complexity of temporal plan-
ning remains a notorious obstacle for its successful application to challenging
target domains. A popular approach in classical planning to reduce combina-
torics and boost the performance of the planning process is the introduction of
macro-actions. In this paper, we propose a general concept of sequential macro-
actions for temporal planning that guarantees the applicability of plans. Sequen-
tial macro-actions are particularly advantageous in logistics domains, where it
is common that the activities of agents follow specific patterns.

602 M. De Bortoli et al.

Our experiments investigate the performance of three state-of-the-art plan-
ners on four domains (three of which are logistics-related). For the majority
of tested planners and domains, more satisficing plans and in some cases also
better plan quality are obtained when frequent sequences of ordinary actions
are encapsulated and replaced by a macro. In fact, while native domains always
admit solutions that are at least as good as a plan with macro-actions, enhanc-
ing temporal domains by macro-actions can sometimes help to guide planners to
suitable solutions in shorter solving time. This is particularly the case when the
macro-actions subsume and replace a large portion of ordinary actions, which
is not unlikely for logistics domains. However, our macro-action concept is not
exclusive to logistics domains and can be applied to any temporal planning task.

As future work, we want to develop methods to automatically detect suitable
candidates for macro-actions in a given domain. Moreover, the formalization of
further kinds of macros in temporal planning, like parallel or, more generally,
overlapping macro-actions and support for numeric fluents, constitutes an inter-
esting future work direction.

Acknowledgements. M. De Bortoli and M. Gebser were funded by Kärntner
Wirtschaftsförderungs Fonds (project no. 28472), cms electronics GmbH, FunderMax
GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria
AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse. L.
Chrpa was funded by the Czech Science Foundation (project no. 23-05575S). M. De
Bortoli’s and M. Gebser’s visit to CTU in Prague was funded by the OP VVV project
no. EF15 003/0000470 “Robotics 4 Industry 4.0” and by the Czech Ministry of Edu-
cation, Youth and Sports under the Czech-Austrian Mobility programme (project no.
8J22AT003), respectively. L. Chrpa’s visits to University of Klagenfurt were funded
by OeAD, Austria’s Agency for Education and Internationalisation (project no. CZ
15/2022).

References

1. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus
action theories. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 1048–1055. AAAI Press (2017). https://doi.org/10.1609/aaai.v31i1.10693

2. Benton, J., Coles, A., Coles, A.: Temporal planning with preferences and time-
dependent continuous costs. In: Proceedings of the International Conference on
Automated Planning and Scheduling, pp. 2–10. AAAI Press (2012). https://doi.
org/10.1609/icaps.v22i1.13509

3. Botea, A., Enzenberger, M., Müller, M., Schaeffer, J.: Macro-FF: improving AI
planning with automatically learned macro-operators. J. Artif. Intell. Res. 24,
581–621 (2005). https://doi.org/10.1613/jair.1696

4. Chrpa, L., Vallati, M.: Improving domain-independent planning via critical section
macro-operators. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 7546–7553. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33017546

5. Chrpa, L., Vallati, M.: Planning with critical section macros: theory and practice.
J. Artif. Intell. Res. 74, 691–732 (2022). https://doi.org/10.1613/jair.1.13269

6. Chrpa, L., Vallati, M., McCluskey, T.L.: MUM: a technique for maximising the
utility of macro-operators by constrained generation and use. In: Proceedings of

https://doi.org/10.1609/aaai.v31i1.10693
https://doi.org/10.1609/icaps.v22i1.13509
https://doi.org/10.1609/icaps.v22i1.13509
https://doi.org/10.1613/jair.1696
https://doi.org/10.1609/aaai.v33i01.33017546
https://doi.org/10.1613/jair.1.13269

Enhancing Temporal Planning by Sequential Macro-Actions 603

the International Conference on Automated Planning and Scheduling, pp. 65–73.
AAAI Press (2014). https://doi.org/10.1609/icaps.v24i1.13626

7. Coles, A., Smith, A.: On the inference and management of macro-actions in
forward-chaining planning. In: Proceedings of the UK Planning and Schedul-
ing SIG. University of Strathclyde (2005). www.strathprints.strath.ac.uk/2751/
1/strathprints002751.pdf

8. Coles, A., Smith, A.: Marvin: a heuristic search planner with online macro-action
learning. J. Artif. Intell. Res. 28, 119–156 (2007). https://doi.org/10.1613/jair.
2077

9. Dawson, C., Siklóssy, L.: The role of preprocessing in problem solving systems.
In: Proceedings of the International Joint Conference on Artificial Intelligence, pp.
465–471. William Kaufmann (1977). www.ijcai.org/Proceedings/77-1/Papers/078.
pdf

10. De Bortoli, M., Chrpa, L., Gebser, M., Steinbauer-Wagner, G.: Enhancing temporal
planning domains by sequential macro-actions (extended version) (2023). https://
doi.org/10.48550/arXiv.2307.12081

11. De Bortoli, M., Steinbauer-Wagner, G.: Evaluating action-based temporal planners
performance in the RoboCup logistics league. In: Eguchi, A., Lau, N., Paetzel-
Prüsmann, M., Wanichanon, T. (eds.) RoboCup 2022, RoboCup 2022. Lecture
Notes in Computer Science, vol. 13561, pp. 87–99. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-28469-4 8

12. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuris-
tic for temporal and numeric planning. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling, pp. 130–137. AAAI Press (2009).
https://doi.org/10.1609/icaps.v19i1.13373

13. Fadel, R.: Planning with complex actions. Master’s thesis, Stanford University
(2002). www.ksl.stanford.edu/pub/KSL Reports/KSL-02-03.pdf

14. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3/4), 189–208 (1971). https://doi.org/
10.1016/0004-3702(71)90010-5

15. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003). https://doi.org/10.1613/
jair.1129

16. Gabaldon, A.: Programming hierarchical task networks in the situation calculus.
In: Proceedings of the AIPS 2002 Workshop on On-line Planning and Scheduling
(2002). www.cs.toronto.edu/∼alfredo/Papers/Gabaldon-KRA11.pdf

17. Hansson, E.: Temporal task and motion plans: planning and plan repair–repairing
temporal task and motion plans using replanning with temporal macro operators.
Master’s thesis, Linkoping University (2018). www.liu.diva-portal.org/smash/get/
diva2:1263869/FULLTEXT01.pdf

18. Hofmann, T., Niemueller, T., Lakemeyer, G.: Initial results on generating macro
actions from a plan database for planning on autonomous mobile robots. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling,
pp. 498–503. AAAI Press (2017). https://doi.org/10.1609/icaps.v27i1.13868

19. Hofmann, T., Niemueller, T., Lakemeyer, G.: Macro operator synthesis for ADL
domains. In: Proceedings of the European Conference on Artificial Intelligence, pp.
761–768. IOS Press (2020). https://doi.org/10.3233/FAIA200164

20. Lifschitz, V., Ren, W.: A modular action description language. In: Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 853–859. AAAI Press (2006).
www.aaai.org/Papers/AAAI/2006/AAAI06-135.pdf

https://doi.org/10.1609/icaps.v24i1.13626
www.strathprints.strath.ac.uk/2751/1/strathprints002751.pdf
www.strathprints.strath.ac.uk/2751/1/strathprints002751.pdf
https://doi.org/10.1613/jair.2077
https://doi.org/10.1613/jair.2077
www.ijcai.org/Proceedings/77-1/Papers/078.pdf
www.ijcai.org/Proceedings/77-1/Papers/078.pdf
https://doi.org/10.48550/arXiv.2307.12081
https://doi.org/10.48550/arXiv.2307.12081
https://doi.org/10.1007/978-3-031-28469-4_8
https://doi.org/10.1007/978-3-031-28469-4_8
https://doi.org/10.1609/icaps.v19i1.13373
www.ksl.stanford.edu/pub/KSL_Reports/KSL-02-03.pdf
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
www.cs.toronto.edu/~alfredo/Papers/Gabaldon-KRA11.pdf
www.liu.diva-portal.org/smash/get/diva2:1263869/FULLTEXT01.pdf
www.liu.diva-portal.org/smash/get/diva2:1263869/FULLTEXT01.pdf
https://doi.org/10.1609/icaps.v27i1.13868
https://doi.org/10.3233/FAIA200164
www.aaai.org/Papers/AAAI/2006/AAAI06-135.pdf

604 M. De Bortoli et al.

21. Miura, S., Fukunaga, A.: Automatic extraction of axioms for planning. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling,
pp. 218–227. AAAI Press (2017). https://doi.org/10.1609/icaps.v27i1.13815

22. Newton, M., Levine, J., Fox, M., Long, D.: Learning macro-actions
for arbitrary planners and domains. In: Proceedings of the International
Conference on Automated Planning and Scheduling, pp. 256–263. AAAI
Press (2007). https://aaai.org/papers/icaps-07-033-learning-macro-actions-for-
arbitrary-planners-and-domains/

23. Vallati, M., Chrpa, L., McCluskey, T.: What you always wanted to know about
the deterministic part of the international planning competition (IPC) 2014 (but
were too afraid to ask). Knowl. Eng. Rev. 33, e3 (2018). https://doi.org/10.1017/
S0269888918000012

24. Vidal, V.: YAHSP3 and YAHSP3-MT in the 8th International Planning Competi-
tion. In: Proceedings of the International Planning Competition, pp. 64–65 (2014).
www.v.vidal.free.fr/onera/publis/ipc14-yahsp3.pdf

25. Wullinger, P., Schmid, U., Scholz, U.: Spanning the middle ground between classical
and temporal planning. In: Workshop Planen und Konfigurieren (2008). www.
cogsys.wiai.uni-bamberg.de/publications/pw us us puk 22.pdf

https://doi.org/10.1609/icaps.v27i1.13815
https://aaai.org/papers/icaps-07-033-learning-macro-actions-for-arbitrary-planners-and-domains/
https://aaai.org/papers/icaps-07-033-learning-macro-actions-for-arbitrary-planners-and-domains/
https://doi.org/10.1017/S0269888918000012
https://doi.org/10.1017/S0269888918000012
www.v.vidal.free.fr/onera/publis/ipc14-yahsp3.pdf
www.cogsys.wiai.uni-bamberg.de/publications/pw_us_us_puk_22.pdf
www.cogsys.wiai.uni-bamberg.de/publications/pw_us_us_puk_22.pdf

Planning with Partial Observability
by SAT

Saurabh Fadnis(B) and Jussi Rintanen

Department of Computer Science, Aalto University, Espoo, Finland

saurabh fadnis@yahoo.co.in

Abstract. Geffner & Geffner (2018) have shown that finding plans by
reduction to SAT is not limited to classical planning, but is competitive
also for fully observable non-deterministic planning. This work extends
these ideas to planning with partial observability. Specifically, we handle
partial observability by requiring that during the execution of a plan,
the same actions have to be taken in all indistinguishable circumstances.
We demonstrate that encoding this condition directly leads to far better
scalability than an explicit encoding of observations-to-actions mapping,
for high numbers of observations.

1 Introduction

Geffner and Geffner [7] have shown how SAT yields an effective method for
solving non-deterministic fully observable (conditional) planning problems. This
is the first time SAT has been directly used for solving a broad class of problems
outside deterministic planning, by only a polynomial number of SAT calls in
the size of the plan being constructed. This approach is in strong contrast with
earlier constraint-based approaches, which have required formalisms stronger
than SAT, for example Σp

2-hard SSAT [11,12] or QBF [16], or separate calls to
SAT solvers for plan generation and verification [6] (again going up to Σp

2) and
using SAT as a sub procedure of an otherwise exponential search algorithm, even
when restricting to plans of a polynomial size.

We view as the core idea in Geffner & Geffner’s work that contingent plan-
ning is in NP whenever all executions of a plan have a representation that has
polynomial size. Our work demonstrates that the same applies also to the far
harder problem of planning with partial observability.

1.1 Background

Finding plans in classical planning, with one initial state and deterministic
actions, can be represented as propositional formulas of a size that is linear
in the number of actions in a plan. The formula with length parameter n is
satisfiable if and only if there is a sequence of n actions that reaches a goal state
from the given initial state. For plans with a polynomial length, the NP-complete
problem of finding them can be done with a SAT solver [8,9].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 605–620, 2023.
https://doi.org/10.1007/978-3-031-43619-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_41&domain=pdf
http://orcid.org/0000-0001-9307-281X
http://orcid.org/0000-0001-5983-0074
https://doi.org/10.1007/978-3-031-43619-2_41

606 S. Fadnis and J. Rintanen

When a plan can have multiple alternative executions, planning is harder.
Conditional planning, with branching program-like plans, is in the complexity
class Σp

2 for poly-sized plans, and hence – in general – believed to be outside
the reach of the NP-complete SAT problem, and to require the more powerful
framework of quantified Boolean formulas (QBF) [15,16,21].

The idea that Σp
2 complexity was somehow inherent to practically significant

conditional planning was broken by Geffner & Geffner [7] who showed that –
under full observability – the two separate NP computations for plan search and
for plan verification collapse to a single NP computation, if execution graphs and
plans have the same form. Plans are (possibly cyclic) graphs, with non-terminal
nodes associated with actions, and executions are viewed as paths in the graph.
The states in a node are represented by the literals that are true in it.

Given a problem instance of size m and an n � 0, Geffner & Geffner generate
a propositional formula so that any satisfying assignment represents a graph that
has n nodes and represents a conditional plan and all of its executions. The size
of the formula is polynomial in n and m. The formula leaves the structure of the
plan open, and it is the SAT solver that chooses the (positive) literals in each
node, the action in each node, and the outgoing arcs for each node.

1.2 Contributions

Our contributions are as follows. We present the first SAT-based encodings of
succinctly represented (state variable based) planning problems under partial
observability. Earlier works either use more powerful (and less scalable) for-
malisms than SAT such as QBF or effectively simulate such [6,16], use a non-
succinct enumerative representation [5], or cover full observability only [7,14].

We use 3-valued (partial) execution graphs to represent all possible execu-
tions of a plan. Earlier 3-valued representations [1] have low complexity and
are scalable, but lead to incompleteness, as most state sets do not have a 3-
valued representation. We will show how case analysis on state variables marked
unknown makes the 3-valued approach complete, that is, being able to represent
a plan whenever one exists, by selectively eliminating partiality.

Finally, we show how an implicit representation of small memory plans can
make the approach better scalable. Instead of accurately keeping track of the
belief state, only an abstraction of the belief state is maintained, as a state as in
a finite automaton, in order to distinguish between different execution histories.
Plans are mappings from memory states and observations to next actions and
next memory states. As the number of observables increases, the sizes of these
mappings increase exponentially, making an explicit representation impractical:
a smaller and smaller fraction of all observation combinations actually occur in
any execution of a plan. A main result is that replacing an explicit encoding of
small memory plans (as in [5]) by an implicit encoding can lead to substantial
scalability improvements. We can still guarantee the existence of these mappings,
and they can be easily extracted from satisfying assignments.

Planning with Partial Observability by SAT 607

2 Planning with Partial Observability

A key idea in Geffner & Geffner’s representation of branching plans as graphs
is that each path can represent multiple possible executions as the nodes corre-
spond to partial states which determine the values of some state variables only.
A partial state is essentially a representation of a set of states. For example,
with state variables a, b, c and d, the partial state represented by the partial
valuation {a = 1, b = 0} corresponds to the set of those four states that match
the partial valuation on a and b, and assign any value combination to c and d.

Example 1. In this navigation problem moving into a wall is not allowed, and
hence it must be possible to detect which cells are next to a wall (observations
N = y4, S = y0, E = x4, W = x0, indicating which wall(s) the robot is next to).

Considering the non-wall locations as possible starting locations, the plan
that first moves to north until the north wall is encountered, and then moves
west until the NW corner is encountered, is depicted on the right in Fig. 1.

One graph that represents all executions of this plan is partly given in Fig. 1.
The rest of graph would be similar and repeats the “move west” action when
north wall is observed until the NW corner location is reached.

n0

n1

n2

n3

n4

n5

n6

y3 y3

move north

move north

move north

y4 y4

move north

y0

y1

y2

y3

y4

x0 x1 x2 x3 x4

Fig. 1. Execution of a grid navigation problem (part)

In this example, the topmost branching (node n0 in the graph) is on the
variable y3. We call such branching Case Analysis and it is discussed in the next
subsection. The thing to note here is that y3 is not observable, and in general the

608 S. Fadnis and J. Rintanen

branching is not directly related to observations, but to the different execution
paths of a given plan. Despite the branching being on an unobservable variable,
the graph is still a faithful representation of all executions of the plan. The key
property here is that if an action is taken, then it is the same action that is taken
in all mutually indistinguishable states with respect to observations: move north
in all (partial) states that are not next to any wall (nodes n1,n2,n3 and n5 in
Fig. 1), and move west whenever next to the north wall.

In this example there is no need to remember any of the previous belief states.
In cases where this memory is needed, the same action is taken in all mutually
indistinguishable states with respect to observations and memory. If the plan
includes memory, more fine-grained choice of actions is possible. We consider
small-memory plans [5,10,13], which means that at execution time there are
only a small number of possible “memories” in the execution mechanism, and
they – together with the observations – determine the next action and memory.
We represent the different memories as integers from 0 to some small Mmax.

2.1 Case Analysis

For 3-valued partial representations, if some state variable values are unknown,
the determination of which observations can be made, or what are the effects of
actions with conditional if-then effects becomes problematic. This necessitates
case analysis on the values of a state variable x with an unknown value: a node
in the plan will have two successors, with x true in one and x false in the other.

Example 2. Consider a node n0 with literals {p,¬q}, and for which the plan
assigns the action a1 = (¬q, {IF r THEN {p, q} ELSE {¬p,¬q}}). Since the
value of r is not known in n0, the values of p and q in the successor node cannot
be determined based on the information in n0.

If some of these values need to be known, a case-analysis on r is performed
in n0 instead, before executing the action. Now n0 has two successor nodes, one
with literals {p,¬q, r} and the other {p,¬q,¬r}. In both nodes the action a1 is
taken. The successor of the first node has literals {p, q, r} and the successor of
the second node has {¬p,¬q,¬r}.

This example shows that we can always make enough of the state explicit so
that values of sufficiently many observables can be determined so that actions
can be chosen, and literals in successor nodes can be determined.

3 Formal Definition of Planning

We view states as valuations of Boolean state variables. If X is the set of state
variables, then a state s : X → {0, 1} assigns a value to every state variable in
X. By identifying states and Boolean valuations, we can directly use definitions
from the Propositional Logic to talk about states. For example, we can say that
a formula φ is true in a state s if s |= φ, that is, this formula φ is true in the
valuation s. We denote the set of all states (over some fixed set X) by S.

Planning with Partial Observability by SAT 609

Next, problem instances are formally defined. Atomic effects are of the form
x := 0 or x := 1, where x is a state variable. A conditional effect has the form
IF φ THEN e, where φ is a formula over X, and e is a set of atomic effects. An
action is associated with a set of atomic and conditional effects. For simplicity,
we don’t discuss non-deterministic actions in this work.

Definition 1 (Problem Instance). A problem instance in planning is a tuple
Π = 〈X,A, I,G,O〉 where

– X is a set of state variables,
– A is a set of actions (p, e), where

• p is a formula over X, and
• e is a set of effects,

– the initial states are represented by a formula I over X,
– the goal states are represented by a formula G over X, and
– the observations are a set O of formulas over X.

4 Execution Graphs

Our introduction of case analysis nodes in the execution graphs allows to com-
plete, on demand, the approximated information sufficiently that every problem
instance has a solution as a 3-valued execution graph.

Below we show a basic formalization of (2-valued) execution graphs without
partiality, and then provide a proof sketch of the completeness of our approach
by showing that any execution graph can be represented in terms of a (some-
times much more compact) 3-valued execution graph. The key result maps every
non-approximate 2-valued execution graph to a 3-valued execution graph that
includes case analysis nodes so that all executions in the former are represented
also in the latter. Additionally, the approach is sound, so the 3-valued representa-
tion only represents solutions that are representable in the 2-valued framework.

Definition 2 (Execution graphs). Given an instance Π = 〈X,A, I,G,O〉,
an execution graph is G = 〈N,E, P, S,M,B〉 where

– N is a finite set of nodes,
– E ⊆ N × N are the arcs of the graph,
– the (partial) function P : N → A maps non-terminal nodes to actions,
– the function S : N → S assigns a state to every node.
– M = {0, . . . , Mmax} is the set of memory states with Mmax ≥ 1, and
– the function B : N → M assigns a memory state to every node.

The memory state with the highest index Mmax is for indicating that a goal
state has been reached.

Definition 3 (Solutions as execution graphs). An execution graph G =
〈N,E, P, S,M,B〉 is a solution to Π = 〈X,A, I,G,O〉 if the following hold.

1. The graph 〈N,E〉 is acyclic (it has no directed cycles.)
2. {s ∈ S | s |= I} = {S(n) | n ∈ N,n has no parents}

610 S. Fadnis and J. Rintanen

3. S(n) |= G for every n ∈ N such that B(n) = Mmax

4. B(n) = 0 for every node n with no parent
5. B(n) = Mmax for every node n that has no successors
6. S(n) |= p if P (n) = (p, e)
7. For x ∈ X and nodes n′ with a parent, S(n′) |= x iff there is n ∈ N such

that (n, n′) ∈ E and P (n) = (p, e), and either
– (x := 1) ∈ e,
– (IF φ THEN x := 1) ∈ e and S(n) |= φ, or
– S(n) |= x and (x := 0) �∈ e and S(n) �|= φ for all (IF φ THEN x := 0) ∈ e.

8. S(n′) |= ¬x analogously
9. For all n1, n2 ∈ N , if P (n1) �= P (n2), then either B(n1) �= B(n2) or for

some ω ∈ O, S(n1) |= ω iff S(n2) �|= ω.
10. For all (n1, n

′
1), (n2, n

′
2) ∈ E, if B(n′

1) �= B(n′
2), then either B(n1) �= B(n2)

or for some ω ∈ O, S(n1) |= ω iff S(n2) �|= ω.

Condition 7 guarantees that the changes in the values of state variables
between a node and its successor exactly correspond to the changes caused by
the action in that node.

Conditions 9 and 10 express the distinguishability between two situations
during the execution of a plan: if two situations cannot be distinguished through
the memory or the observations, then the same actions have to be taken in both,
and the next memory states have to be the same.

An execution graph represents every possible execution s0, . . . , sn explicitly,
and different executions (state sequences) are represented by different paths in
the graph. Hence, for any problem instance for which an exponential number of
different states has to be considered, the size of the execution graph is exponen-
tial. Next we define partial execution graphs that can represent large numbers of
states and executions more compactly.

5 Partial Execution Graphs

Partial execution graphs can be exponentially smaller than execution graphs if
many executions share the same structure. The nodes in partial execution graphs
are labelled with partial states which only determine the values of a subset of
state variables. One partial state represents all states that assign the same values
to the represented state variables. This same idea has been used by Geffner &
Geffner in their work on planning with full observability [7].

Definition 4. A partial state is a partial function z : X → {0, 1}.
Toggle the table of contents We denote the set of all partial states by Sp.
Clearly, S ⊂ Sp. A partial state z represents all states that do not disagree
on the value of any state variable. That is, z represents {s ∈ S | s(x) =
z(x) or z(x) is not defined, for all x ∈ X}.

Planning with Partial Observability by SAT 611

Definition 5. A partial execution graph G = 〈N,E, P,C, S,M,B〉 for a prob-
lem instance Π = 〈X,A, I,G,O〉 consists of

– a finite set N of nodes,
– a set E ⊆ N × N of arcs,
– a (partial) function P : N → A that assigns an action to some of the nodes,
– a (partial) function C : N → X that assigns a state variable to some of the

nodes (for case analysis),
– a function S : N → Sp that assigns a partial state to every node.
– M = {0, . . . , Mmax} is the set of memory states with Mmax ≥ 1, and
– the function B : N → M assigns a memory state to every node.

The function C indicates in which nodes a case analysis is performed. If
C(n) = x, then node n has two successor states n1 and n2 so that S(n1) |= x
and S(n2) |= ¬x. From now on, we assume all formulas to be in Negation Normal
Form (NNF)1. We define truth of a formula in a partial state as follows.

1. s |=3 x if s(x) = 1, and s |=3 ¬x if s(x) = 0
2. s |=3 α ∧ β iff s |=3 α and s |=3 β
3. s |=3 α ∨ β iff s |=3 α or s |=3 β

Here it is critical that we do not define a formula ¬φ to be true if φ is not true
(as in 2-valued logic), because the value of φ might be undetermined due to the
partiality of the state.

Define cubeof(s) that maps a partial state s to a corresponding conjunction
of literals cubeof(s) =

∧
({x ∈ X | s(x) = 1} ∪ {¬x | x ∈ X, s(x) = 0}).

Definition 6. A partial execution graph G = 〈N,E, P,C, S,M,B〉 is a solution
to Π = 〈X,A, I,G,O〉 if the following hold.

1. The graph 〈N,E〉 is acyclic (it has no directed cycles.)
2. I |=3 δ1 ∨ · · · ∨ δm, where n1, . . . , nm are the nodes with no parents, and

δi = cubeof(S(ni)) for every i ∈ {1, . . . , m}
3. S(n) |=3 G for every n ∈ N such that B(n) = Mmax

4. B(n) = 0 for every n ∈ N with no parent
5. B(n) = Mmax for every n ∈ N that has no successors
6. S(n) |=3 p if P (n) = (p, e), for every n ∈ N
7. For every n ∈ N , exactly one of the following holds.

– C(n) is defined
– P (n) is defined
– B(n) = Mmax

8. If C(n) = x for some x ∈ X, then n has exactly two successors, n1 and n2,
and S(n1) |=3 x and S(n2) |=3 ¬x.

9. If C(n) is defined and (n, n′) ∈ E, then B(n) = B(n′).
10. If C(n) = x and s = S(n), then s(x) is not defined.

1 In NNF, a formula contains only connectives ∨, ∧ and ¬, and all negations ¬ are
directly in front of an atomic proposition.

612 S. Fadnis and J. Rintanen

11. If S(n′) |=3 x for n′ ∈ N that has a parent n ∈ N , then either
(a) (n, n′) ∈ E and P (n) = (p, e) and

– (x := 1) ∈ e,
– (IF φ THEN x := 1) ∈ e and S(n) |=3 φ, or
– S(n) |=3 x and (x := 0) �∈ e and S(n) �|=3 φ for all (IF φ THEN

x := 0) ∈ e.
(b) or n is a case analysis node with C(n) = x,
(c) or n is a case analysis node with C(n) �= x and S(n) |=3 x.

12. S(n′) |=3 ¬x analogously
13. For all n1, n2 ∈ N , if P (n1) �= P (n2), then either B(n1) �= B(n2) or for

some ω ∈ O, either S(n1) |=3 ω and S(n2) |=3 ¬ω, or S(n1) |=3 ¬ω and
S(n2) |=3 ω.

14. For all n1, n2 ∈ N and n′
1, n

′
2 such that (n1, n

′
1), (n2, n

′
2) ∈ E, if B(n′

1) �=
B(n′

2), then either B(n1) �= B(n2) or for some ω ∈ O either S(n1) |=3 ω
and S(n2) |=3 ¬ω, or S(n1) |=3 ¬ω and S(n2) |=3 ω.

A key feature of partial execution graphs, similarly to the work by Geffner
& Geffner [7], is that some state variable values may be “forgotten” when going
from a node to its successor. Increasing the partiality this way allows parts of a
plan to be more general in being applicable for more states.

An important question about partial execution graphs is whether they can
represent any solution, as expressible by an execution graph.

Proposition 1. For every execution graph G, there is a partial execution graph
G′ that represents exactly the same solution.

Proof. Sketch: The most trivial way to eliminate all partiality is to enumerate all
states that satisfy the initial state formula I, and create an initial node for each
of those states s. So the partial states in all initial states are (total) states. The
partial execution graph in this case does not contain any case analysis nodes,
and its structure is exactly the same as that of the execution graph. Stated
differently, execution graphs are a special case partial execution graphs, only
without case analysis nodes, and with (total) states instead of partial states.

6 Encodings of Partial Execution Graphs

Next we describe the encoding of partial execution graphs as propositional for-
mulas. Table 1 lists the atomic propositions used in the encoding.

State variable x is true in node n if Pn
x holds and false if Nn

x holds. Otherwise
its value is unknown (could be either true or false.) To refer to the truth of
arbitrary formulas in a node, we define Lφ

n as the formula obtained from φ by
transforming it to the Negation Normal Form (NNF) and then (for all x ∈ X)
replacing subformulas ¬x by Nn

x , and finally replacing subformulas x by Pn
x .

Hence Lφ
n is true in a partial state z iff φ is true in all states represented by z.

In the rest of the section, the schema variables n, a, x (possibly with sub-
scripts or other embellishments) are instantiated with all possible nodes, action
names or state variable names, unless stated otherwise.

Planning with Partial Observability by SAT 613

Table 1. Atomic propositions used in the encoding

P n
x , Nn

x State variable x is true or false in node n, respectively
oP n

ω , oNn
ω Observation ω or ¬ω is made in n, respectively, for ω ∈ O

(n, a) Action a is applied in node n

(n, a, n′) n′ is the next node after action a is applied in node n

(n, n′) n′ is a successor node of n

An Node n is an action node

CAn n is a case analysis node

CAn
x Case analysis is done in node n on variable x

CA1
n,n′ n′ is the successor node with P n′

x when case analysis is done on x in n

CA0
n,n′ n′ is the successor node with Nn′

x when case analysis is done on x in n

(n, m) node n has the memory state m

Zm
i,j Nodes i and j have the same memory state m

Zω
i,j Nodes i and j are indistinguishable w.r.t. observation ω

Zi,j Nodes i and j are indistinguishable w.r.t. memory state and all observations

6.1 Nodes and Arcs

State variables are true, false or unknown (1). Preconditions are true (2).

¬Pn
x ∨ ¬Nn

x (1) (n, a) → Lφ
n where φ is the precondition of a (2)

The acyclicity of the encoding is handled by instantiating all formulas referring
to arcs from node n to a successor n′ so that the index of n′ is strictly higher
than the index of n.

Node n has at least one action if and only if An is true (3), and An excludes
case analysis in the same node (4). The variable (n, a) is defined by (5). Action
nodes have exactly one successor node (6).2

An ↔
∨

a∈A

(n, a) (3) ¬(An ∧ CAn) (4)

(n, a) ↔
∨

n′∈N\{n}
(n, a, n′) (5)

An → exactly1({(n, n′) | n′ ∈ N}) (6)
Anything true in a successor node of an action node is an effect of the action or
something that was true already and not made false by the preceding action.

(n, n′) ∧ An ∧ Pn′
x → LPpcx∨(x∧¬Npcx)

n (7)

(n, n′) ∧ An ∧ Nn′
x → LNpcx∨(¬x∧¬Ppcx)

n (8)

where Ppcx = χ1 ∨ · · · ∨ χm and is the disjunction of the conditions χi under
which action ai makes x true, and Npcx is the same for making x false. Each χi

consists of the action variable (n, ai) and additionally for conditional effects the
condition under which x becomes true or false. This encodes Condition 11a.
2 To encode the constraints exactly-one and at-most-one for φ1, . . . , φk, we use the

quadratic encoding ¬φi ∨ ¬φj for all 1 ≤ i < j ≤ k. Better encodings exist [18].

614 S. Fadnis and J. Rintanen

For the implicit encoding in Sect. 6.4 we have to enforce this explicitly by

¬(n, a1) ∨ ¬(n, a2) whenever a1 �= a2 (9)

Note that (7) and (8) allow the effects of an action to be true in the successor
node, but they do not have to be. This is because those values might not be
needed, and the successor node is more general the fewer values are made explicit.
This is as in the work by Geffner & Geffner [7].

6.2 Case Analysis

The following formulas encode how case analysis is done on some x so that a
node has two successors, respectively with x true and false.

CAn ↔
∨

x∈X

CAn
x (10)

For case analysis nodes, there is some variable to do the case analysis on, and
there are two successor nodes (respectively for x and ¬x).

∨

n′∈N\{n}
CA1

n,n′ →
∨

x∈X

CAn
x (11)

∨

n′∈N\{n}
CA0

n,n′ →
∨

x∈X

CAn
x (12)

CAn
x → exactly1n′∈N\{n}CA1

n,n′ (13) CAn
x → exactly1n′∈N\{n}CA0

n,n′ (14)

Case analysis is on at most one variable (15). Case analysis on x is only possible
if its value is unknown (16). If node n does case analysis on x, then n has two
successor nodes, and they respectively have x and ¬x (17–18). The only new
facts in the successor nodes of a case analysis node are x and ¬x (19–22).

atmost1({CAn
x | x ∈ X}) (15) CAn

x → ¬Pn
x ∧ ¬Nn

x (16)
CAn

x ∧ CA1
n,n′ → Pn′

x (17) CAn
x ∧ CA0

n,n′ → Nn′
x (18)

CA1
n,n′ ∧ Pn′

x → CAn
x ∨ Pn

x (19) CA1
n,n′ ∧ Nn′

x → Nn
x (20)

CA0
n,n′ ∧ Nn′

x → CAn
x ∨ Nn

x (21) CA0
n,n′ ∧ Pn′

x → Pn
x (22)

The last six are for nodes n and n′ such that n �= n′.
Arcs are induced by case analysis or by actions only.

(n, n′) ↔
(

CA1
n,n′ ∨ CA0

n,n′ ∨
∨

a∈A

(n, a, n′)

)

(23)

6.3 Initial and Goal Nodes

We assume the initial state formula to be in DNF as I = φ1 ∨ · · · ∨ φk. Let
ΦI = {φ1, . . . , φk}. We require that for each φ ∈ ΦI , at least one of the nodes
n0, . . . , nk−1 does not falsify any of the literals in φ (and hence all initial states
for φ are “included” in some initial node), and that node has memory 0. We
have for every φ ∈ ΦI the following.

k−1∨

i=0

((ni,m0) ∧ ¬L¬φ
ni

∧
∧

ω∈O

(¬oPni
ω ∧ ¬oNni

ω)) (24)

Planning with Partial Observability by SAT 615

The unique goal node ng has memory mMmax and the formula G holds in ng,
and other node has memory mMmax .

(ng,mMmax) ∧ LG
ng

(25) ¬(n,mMmax) for all n �= ng (26)

6.4 Encoding of Small-Memory Plans Implicitly

The implicit encoding, which does not make the plans explicit and only guaran-
tees that one exists that matches the execution graph, is the one better scalable
than the explicit encoding when there is a high number of observation combina-
tions. It consists of the following.

exactly1((n,m0), . . . , (n,mMmax)) (27)

For case analysis nodes, the successor nodes have the same memory.

CA1
n,n′ → ((n,m) ↔ (n′,m)) for m ∈ M (28)

CA0
n,n′ → ((n,m) ↔ (n′,m)) for m ∈ M (29)

Formulas (30–32) define the indistinguishability of two nodes w.r.t. memory,
observations, and both respectively as Zm

i,j , Zω
i,j and Zi,j .

(ni,m) ∧ (nj ,m) → Zm
i,j for i < j,m ∈ M (30)

¬(oPni
ω ∧ oNnj

ω) ∧ ¬(oNni
ω ∧ oPnj

ω) → Zω
i,j (31)

Zm
i,j ∧

∧

ω∈O

Zω
i,j → Zi,j (32)

If a node has observation ω, then ω must hold in the preceding node.
(n, n′) ∧ oPn′

ω → Lω
n (33) (n, n′) ∧ oNn′

ω → L¬ω
n (34)

If two action nodes are indistinguishable, same action must be taken in both,
and successor nodes must have the same memory state.

Zi,j ∧ Ani
∧ Anj

→ ((ni, a) ↔ (nj , a)) (35)
Zi,j ∧ (ni, n

′) ∧ (nj , n
′′) ∧ Ani

∧ Anj
→ ((n′,m) ↔ (n′′,m)) (36)

6.5 Encodings of Small Memory Plans Explicitly

Here we briefly describe the encoding of explicitly represented small-memory
plans. The standard way of representing small-memory plans is by explicitly
encoding the whole mapping from all observation combinations and the memory
state to the action to be taken and the new memory state [5]. A finite memory
plan is an automaton with

– k � 1 memory states M = {m1, . . . ,mk},
– mapping AM,O : M ×O → A from the current memory state and observation

to an action,

616 S. Fadnis and J. Rintanen

– mapping MM,O : M×O → M from the current memory state and observation
to the next memory state.

New atoms in the encoding:

– (n, ω): observation ω is observed in node n.
– (n,O): O is the combination of observations observed in node n. To define

the atoms, O is enumerated by valuation of all possible observations ω. For k
observations and node n, there are 2k different valuations and (n,O) atoms.

– (O,m, a): action a is mapped to observation combination O and the current
memory state is m.

– (O,mi,mj): the memory state mj is mapped to observation combination O
and the memory state is mi.

Explicit encoding of the small-memory plans is as follows.

valuation((n, ω1), (n, ω2) . . .) ↔ (n,O) (37)

Map each observation valuation to an observation combination O for all nodes.

exactly1((O,m, a1), (O,m, a2), . . .) (38)
exactly1((O,mi,m1), (O,mi,m2), . . .) (39)

Each pair of observation combination and memory state is mapped to exactly
one action and to exactly one memory state.

(ni,mj) ∧ (ni,O) ∧ (O,mj , a) ∧ Ani
→ (ni, a) (40)

(ni,mj) ∧ (ni,O) ∧ (ni, a) → (O,mj , a) (41)

Only the action mapped to the memory and the observation combination can be
applied in an action node with that memory and observation combination. Also
if an action is taken in a node, then the memory and the observation combination
must be mapped to that action in the plan.

(ni, nj) ∧ (ni,O) ∧ (ni,mk) ∧ (O,mk,ml) ∧ Ani
→ (nj ,ml) (42)

(ni, nj) ∧ (ni,O) ∧ (ni,mk) ∧ (nj ,ml) → (O,mk,ml) (43)

If memory state ml is mapped to observation combination O and memory state
mk, then the successor of an action node with those observations and memory
should have memory state ml.

(ni, nj) ∧ (ni,mk) ∧ CAni → (nj ,mk) (44)

The memory stays the same in the successor nodes after case analysis.

exactly1((n,m1), (n,m2), . . .) (45)

Each node can have only one memory state.
(n, n′) ∧ ¬CAn ∧ (n′, ω) → Lω

n (46) (n, n′) ∧ ¬(n′, ω) → ¬Lω
n (47)

If a node has an observation for ω, the formula ω must hold in the predecessor.
In case analysis nodes, the observations are copied forward.

(n, n′) ∧ CAn → ((n′, ω) ↔ (n, ω)) (48)

Planning with Partial Observability by SAT 617

7 Sizes of the Encodings

In the implicit encoding, as given in Sect. 6.4, the largest component is formula
(36) with size |N |4×|M |. Other dominant formulas are only quadratic with sizes
|N |2 × |A| (35), |N |2 × |M | (28–30) and |N |2 × |O| (31, 33 , 34).

On the other hand, the dominant formulas in the explicit encoding of small
memory plans have components of size 2|O| simply because the mapping has an
exponential size, making the encoding quickly impractical for higher numbers of
observations.

There are a number of components quadratic in |N | used by both the implicit
and explicit encoding, addressing arcs between nodes, for example in Sect. 6.2.

8 Invariants

Invariants are formulas (over state variables) that hold in all reachable states.
They reduce the search performed by a SAT solver. With our 3-valued partial
states, invariants don’t have an obvious representation as redundant constraints,
unlike in classical planning, as their interaction with frame axioms becomes more
complicated due to partiality. Our solution is to compile invariants to actions: if
l1 ∨ l2 is an invariant, and l1 is an effect, then include l2 as an effect. This makes
it unnecessary to handle invariants explicitly in (7) and (8). Additionally we
add redundant constraints that help SAT solvers prune the search space: For an
invariant x ∨ y, we include ¬Nn

x ∨ ¬Nn
y in the encoding, to allow inferring ¬Nn

y

whenever Nn
x has been inferred. Note that inferring Pn

y would be too strong, as
abstraction/generalization may call for not making the value of y explicit.

We use 2-literal invariants l1 ∨ l2 that are found with invariant algorithms
that apply to non-deterministic actions [17].

9 Experiments

We have a proof-of-concept implementation of our framework, and we have run
computational experiments to demonstrate its potential. Table 2 shows statistics
on solving a number of planning problems. All runs were with a 2400 s time limit
and performed on Xeon E5 2680 2.50 GHz CPUs with a memory limit of 8 GB.
We tested by increasing number of nodes by 5 and memory states by 2 until the
instances became solvable. All experiments used the KisSAT solver [2].

The largest instances reported here have tens of thousands of states, which is
outside the scalability of methods that represent all states explicitly [5]. While
this shows good potential for this approach, it is currently not competitive with
the state-of-the-art, specifically the DNF/CNF family of planners [19,20] or
reductions of partial observability to fully observable problems [3,4].

618 S. Fadnis and J. Rintanen

Table 2. Comparison of the implicit and explicit encodings. V: number of variables;
A: number of actions; O: number of observations; TO: time-out ; OM: out-of-memory

Implicit Explicit

INSTANCE V A O n m time n m time

doors2 6 12 4 10 6 7.78 15 6 17.59

medical002 6 10 2 10 4 2.85 10 4 1.48

medical003 8 11 3 10 4 3.28 10 4 3.75

medical004 9 11 3 15 4 332.86 15 4 94.64

medical005 11 12 4 20 6 1364.99 35 10 TO

bombRB1 3 3 2 10 4 1.82 10 4 0.77

bombRB2 5 6 4 10 4 1.9 20 8 1501.97

bombRB3 7 9 6 15 4 74.64 35 8 TO

bombRB4 9 12 8 15 4 346.75 15 4 OM

bts010 11 20 10 15 2 93.27 5 4 OM

gridXY13 3 3 2 10 4 1.37 10 4 0.97

gridXY15 5 3 2 15 4 52.09 50 8 TO

gridXY33 6 5 4 15 4 60.31 25 8 OM

rovers2 10 17 2 15 10 1505.43 15 10 180.66

elogistics1 13 24 6 15 6 66.21 15 8 770.26

elogistics3 19 39 9 20 6 795.27 10 4 OM

egrid2 42 100 20 15 10 1815.77 5 2 OM

logistics1 13 24 6 10 6 7.94 15 8 OM

logistics3 19 39 9 15 8 137.99 5 4 OM

medpks2 6 6 2 10 4 2.64 10 4 1.68

grid2 42 100 20 15 10 1816.62 5 2 OM

blocks3 15 51 15 10 4 3.41 5 2 OM

erovers2 10 17 2 15 10 1485.55 15 8 100.47

10 Conclusion

We have shown how planning with a complex actions and partial observability,
can be effectively reduced to propositional logic and solved with SAT solvers.
This is the first time that planning with partial observability has been solved
with single SAT solver calls that both find a plan and determine its correctness,
showing significant potential in the ideas presented by Geffner & Geffner [7].

Our framework is effective when belief states can be represented as conjunc-
tions of literals. Complex dependencies between state variables, representable e.g.
as disjunctions a ∨ b, require making plan executions more explicit, increasing
the size of the graphs and the search cost. More expressive belief state represen-
tations should be investigated.

Planning with Partial Observability by SAT 619

An obvious inefficiency in our encoding is that the use of case analysis is not
restricted in any way, for example allowing forgetting immediately followed by
case analysis on the same variable. Another inefficiency worth further research
is symmetry reduction for the graphs.

References

1. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and
approximate planning in the presence of incompleteness. Artif. Intell. 122(1), 241–
267 (2000)

2. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, kissat, paracooba, plin-
geling and treengeling entering the SAT competition 2020. In: Proceedings of SAT
Competition 2020 - Solver and Benchmark Descriptions, pp. 51–53. Department
of Computer Science Report Series B, vol. B-2020-1, University of Helsinki (2020)

3. Bonet, B., Geffner, H.: Planning under partial observability by classical replanning:
theory and experiments. In: Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, pp. 1936–1941 (2011)

4. Bonet, B., Geffner, H.: Flexible and scalable partially observable planning with
linear translations. In: Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI-14), pp. 2235–2241. Citeseer (2014)

5. Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI-16), pp. 3225–3232. AAAI
Press (2016)

6. Ferraris, P., Giunchiglia, E.: Planning as satisfiability in nondeterministic domains.
In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-
2000) and the 12th Conference on Innovative Applications of Artificial Intelligence
(IAAI-2000), pp. 748–753. AAAI Press (2000)

7. Geffner, T., Geffner, H.: Compact policies for non-deterministic fully observable
planning as SAT. In: Proceedings of the Twenty-Eighth International Conference
on Automated Planning and Scheduling, ICAPS 2018, pp. 88–96. AAAI Press
(2018)

8. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th Euro-
pean Conference on Artificial Intelligence, pp. 359–363. John Wiley & Sons (1992)

9. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and
stochastic search. In: Proceedings of the 13th National Conference on Artificial
Intelligence and the 8th Innovative Applications of Artificial Intelligence Confer-
ence, pp. 1194–1201. AAAI Press (1996)

10. Lusena, C., Li, T., Sittinger, S., Wells, C., Goldsmith, J.: My brain is full: when
more memory helps. In: Uncertainty in Artificial Intelligence, Proceedings of the
Fifteenth Conference (UAI 1999), pp. 374–381. Morgan Kaufmann Publishers
(1999)

11. Majercik, S.M., Littman, M.L.: MAXPLAN: a new approach to probabilistic plan-
ning. In: Proceedings of the Fourth International Conference on Artificial Intelli-
gence Planning Systems, pp. 86–93. Pittsburgh, Pennsylvania (1998)

12. Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochas-
tic satisfiability. Artif. Intell. 147(1–2), 119–162 (2003)

620 S. Fadnis and J. Rintanen

13. Meuleau, N., Kim, K.E., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: Uncertainty in Artificial Intelligence, Pro-
ceedings of the Fifteenth Conference (UAI 1999), pp. 417–426. Morgan Kaufmann
Publishers (1999)

14. Pandey, B., Rintanen, J.: Planning for partial observability by SAT and graph con-
straints. In: ICAPS 2018. Proceedings of the Twenty-Eighth International Confer-
ence on Automated Planning and Scheduling, pp. 190–198. AAAI Press (2018)

15. Rintanen, J.: Constructing conditional plans by a theorem-prover. J. Artif. Intell.
Res. 10, 323–352 (1999)

16. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.
In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI
2007), pp. 1045–1050. AAAI Press (2007)

17. Rintanen, J.: Regression for classical and nondeterministic planning. In: Proceed-
ings of the 18th European Conference on Artificial Intelligence, ECAI 2008, pp.
568–571. IOS Press (2008)

18. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

19. To, S.T., Pontelli, E., Son, T.C.: On the effectiveness of CNF and DNF repre-
sentations in contingent planning. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pp. 2033–2038. AAAI Press (2011)

20. To, S.T., Son, T.C., Pontelli, E.: A generic approach to planning in the presence of
incomplete information: theory and implementation. Artif. Intell. 227, 1–51 (2015)

21. Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Flesca,
S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
111–124. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7 10

https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/3-540-45757-7_10

Optimal Planning with Expressive Action
Languages as Constraint Optimization

Enrico Giunchiglia and Armando Tacchella(B)

DIBRIS - University of Genoa, V.le Causa 13, 16145 Genoa, Italy
{enrico.giunchiglia,armando.tacchella}@dibris.unige.it

Abstract. We consider the problem of optimal planning in determin-
istic domains specified with expressive action languages. We show how
it is possible to reduce such problem to finding an optimal solution of a
constraint optimization problem incorporating a bound n on the maxi-
mum length of the plan. By solving the latter, we can conclude whether
(i) the plan found is optimal even for bounds greater than n; or (ii) we
need to increase n; or (iii) it is useless to increase n since the planning
problem has no solution.

1 Introduction

We consider the problem of optimal planning in deterministic domains (action
descriptions) specified with expressive action languages. In particular, for each
domain/action description D in the state variables X and action variables A,
we assume to be able to compute a quantifier free formula T (X ,A,X ′) in the
variables X , A and X ′ whose models correspond to the valid transitions of D
(as usual, X ′ is a copy of the set of state variables encoding their value in the
state resulting from the execution of the action). Computing T (X ,A,X ′) start-
ing from D is already known for many action languages, like PDDL [9], or C+
[11], the latter being the language we are particularly interested in, given its
high expressive capabilities that enable the modelling of complex robotics sce-
narios with, e.g., constraints, concurring interacting actions and events. More in
general, C+ allows to specify any transition system with action variables (the
ones under agents’ control) and state variables (the ones changing because of
actions and/or of external events), see [10]. Such generality comes at a price,
since it is not possible to exploit the specific properties of the transition systems
being captured (as it would be possible for systems specified, e.g., in STRIPS),
and this is why we consider problems in which T (X ,A,X ′) is an arbitrary con-
junction of formulas. On the bright side, our contribution is applicable to all
determistic planning problems in which the action description represents a tran-
sition system. Thus, we consider problems specified as a pair 〈Π,C〉 where Π
is a deterministic planning problem specified with three formulas T (X ,A,X ′),

The authors wish to thank Erika Ábrahám, Francesco Leofante and Marco Maratea
for useful discussions about the research topic presented in this paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 621–637, 2023.
https://doi.org/10.1007/978-3-031-43619-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_42&domain=pdf
http://orcid.org/0000-0001-5758-2556
http://orcid.org/0000-0001-9487-331X
https://doi.org/10.1007/978-3-031-43619-2_42

622 E. Giunchiglia and A. Tacchella

I(X) and G(X) in conjunctive normal form (CNF), where I(X) represents the
initial state and G(X) the set of goal states, and C associates a non-negative
cost to each transition. Our objective is to determine an optimal plan, i.e., a
sequence of actions leading from the initial state to a goal state with minimum
associated total cost, defined as the sum of the costs of the transitions induced
by the actions in the plan.

With such objective, we extend the planning as satisfiability approach [18]
and reduce the problem of finding an optimal plan for 〈Π,C〉 to the one of
solving a corresponding constraint optimization problem incorporating a bound
n on the maximum length of the plan. The basic idea is to construct an encoding
ΠO

n of Π and CO
n of C such that each valid plan π of Π with cost C(π) bijectively

corresponds to a model πO
n of ΠO

n having cost CO
n (πO

n) = C(π), if π is shorter
than n, and corresponds to a model πO

n of ΠO
n having cost CO

n (πO
n) ≤ C(π),

if π is longer than n. Thus, if πO
n is an optimal model of 〈ΠO

n , CO
n 〉 then if πO

n

corresponds to a plan π of Π with at most n actions, then π is an optimal plan
of Π, and if πO

n does not correspond to a plan of Π with at most n actions
then we have to increase the bound n. Moreover, if ΠO

n is unsatisfiable then Π
does not admit a valid plan and it is useless to increase the bound n. Our work
substantially generalizes previous approaches for optimal symbolic deterministic
planning, including [20] which considers numeric planning problems expressible
in PDDL2.1 level 2 [9]. Despite being far more general than [20], (i) we provide
non trivial lower bounds on the cost and length of the optimal plans, and (ii)
we guarantee that our encoding is linear in the size of Π and the bound n (while
the one in [20] is worst case exponential).

The paper is structured as follows. After the formal framework, we focus on
how to encode plans shorter than or equal to the bound (Sect. 3), and then we
consider plans longer than the bound (Sect. 4). We put all the pieces together
in Sect. 5, ending the paper in Sect. 6 with some remarks, including related and
future works. For the lack of space, most examples and all the proofs are moved
to appendices.

2 Formal Framework

We consider deterministic planning problems (i) that can be described using
finitely many state and action variables, and (ii) whose initial state, valid tran-
sitions and goal states are the models of corresponding quantifier free CNF
formulas.

For the language signature, we assume to have

1. a non empty finite set X of state variables, each variable x ∈ X equipped
with its domain dom(x), with |dom(x)| ≥ 2, representing the values x can
assume,

2. a finite set A of Boolean action variables,
3. a copy X ′ of X of next state variables such that, for each state variable x ∈ X ,

there is a corresponding variable x′ ∈ X ′ with dom(x′) = dom(x).

Optimal Planning with Expressive Action Languages 623

An assignment to a set of variables V is a function mapping each variable in V to
an element of its domain. In the case of Boolean variables, their domain is {�,⊥}
for truth and falsity, and we use v in place of v = �. A state (resp. action, resp.
next state) is an assignment to the variables X (resp. A, resp. X ′). States, actions
and next states are denoted with σ, σ0, . . ., α, α0, . . ., and σ′, σ′

0, . . ., respectively.
A transition is an assignment to all the state, action and next state variables
at hand. Besides variables, we assume to have other, possibly theory dependent,
symbols (like “0”, “+”, “≥”) and auxiliary symbols (like “(” and “)”) that are
used to define atomic formulas, literals and well formed formulas. We take for
granted standard logic notions like satisfiability, entailment, model, and the like.
Unless explicitly noted, assignments are total. (Partial) actions are represented
with the set of action literals they satisfy.

A (deterministic) planning problem Π is a 5 tuple 〈X ,A, I(X), T (X ,A,X ′),
G(X)〉 where

1. I(X) is the initial state formula in the state variables X , assumed to be
satisfied by exactly one state;

2. T (X ,A,X ′) is the transition relation, i.e., a formula in the X ,A,X ′ variables,
whose models are the valid transitions. For each state σ and action α it is
assumed that there is at most one valid transition σ, α, σ′;

3. G(X) is the goal formula in the state variables X , whose models are the goal
states.

In the following, lx, lx1, . . . (resp. la, la1, . . ., resp. lx′, lx′
1, . . .) denote state

(resp. action, resp. next state) literals, i.e., literals in the X (resp. A, resp. X ′)
variables. When convenient, we use also the symbol “→” for implication and
write clauses in T (X ,A,X ′) either as

p∧

i=1

lai →
q∨

i=1

lxi (1)

(p, q ≥ 0) to model that (
∨q

i=1 lxi) is an explicit precondition of the partial
actions which satisfy (

∧p
i=1 lai), or as

p∧

i=1

lai ∧
q∧

i=1

lxi →
r∨

i=1

lx′
i (2)

(p, q ≥ 0, r ≥ 1), to model that (
∨r

i=1 lx′
i) is an explicit (conditional) effect of

the actions and states which satisfy
∧p

i=1 lai ∧ ∧q
i=1 lxi.

Example 1. Consider a domain SQUARE in which an integer variable var is
initialized to a value VI and should reach a value VG ≥ 0. The value of var can
be changed only in states with var ≥ 0, and the value of var is automatically
incremented by 1 in the next state, unless it is squared. This domain can be
formalized as the planning problem Π = 〈X ,A, I(X), T (X ,A,X ′), G(X)〉 where

624 E. Giunchiglia and A. Tacchella

X = {var}, A = {square}, I(X) = (var = VI), G(X) = (var ≥ VG), and
T (X ,A,X ′) is the formula

(¬square ∧ var ≥ 0 → var′ = var + 1)∧
(square → var ≥ 0) ∧ (square → var′ = var2)∧

(var < 0 → var′ = var).
(3)

In C+ [11], the SQUARE domain can be formalized as the action description
consisting, for each value V , of the following static and dynamic causal laws

¬square causes var = V + 1 if var = V ∧ V ≥ 0,
nonexecutable square if var < 0,
square causes var = V 2 if var = V,
caused var = V after var = V ∧ V < 0.

Analogous formalizations are possible in other languages for describing actions,
like BC+ [2]. ��
The fact that the transition relation formula in the example corresponds to an
action description in C+ is not coincidental. It can be easily proved that for
any transition relation T (X ,A,X ′) there exists a definite action description D
in C+ whose transitions are the models of T (X ,A,X ′).1 On the converse, for
any definite action description D in C+ with state and action variables X and
A, respectively, there exists a CNF formula T (X ,A,X ′) whose models are the
transitions of D [11].

Let Π = 〈X ,A, I(X), T (X ,A,X ′), G(X)〉 be a planning problem. Our next
step is to define the valid plans of Π — most of our terminology is from [9,15].
If F (V) is a formula/function in the V variables and μ is a partial assignment
to V defined on U ⊆ V, by F (μ) we mean the formula/function obtained by
substituting each variable v ∈ U with μ(v) in F (V).

An action α is executable in a state σ if there is a next state σ′ satisfying
T (σ, α,X ′), in which case the result of executing α in σ is the state σ′′ such
that, for each state variable x, σ′′(x) = σ′(x′). A plan (of length k) is a sequence
of k ≥ 0 actions.

Consider a plan π = α0; . . . ;αk−1. π is executable if for each i ∈ [0, k − 1],
αi is executable in σi, where σ0 is the state satisfying the initial state formula,
and σi+1 is the result of executing αi in σi. If π is executable, the state σi

(0 ≤ i ≤ k) as above defined is the i-th state induced by π. The plan π is valid
if it is executable and the k-th induced state σk satisfies G(X).

For the definition of optimal plan, we introduce a cost associated to each
valid transition. By Cmin we denote a fixed positive constant. A pair 〈Π,C〉 is
a planning problem with costs if C is a cost function such that for each valid
transition σ, α, σ′, (i) C(σ, α, σ′) ≥ Cmin whenever σ′(x′) �= σ(x) for some state
variable x, and (ii) C(σ, α, σ′) ≥ 0 otherwise. If π is a valid plan of length k, the
cost C(π) of π is the sum of the costs of each transition, i.e.,

1 Formal statement and proof omitted for lack of space.

Optimal Planning with Expressive Action Languages 625

C(π) =
k−1∑

i=0

C(σi, αi, σ
′
i+1) (4)

where σi and σi+1 are the i-th and (i + 1)-th states induced by π and, for each
x ∈ X , σ′

i+1(x
′) = σi+1(x). The plan π is optimal if it is valid and there is no

valid plan with a smaller cost.

Example 2. In SQUARE, assume that the cost of each transition is the max-
imum between 1 and the difference between the new and old values of var.
Formally,

C(X ,A,X ′) = max(var′ − var, 1).

Then, if VI = 1 and VG = 9, the plans ξ = {square}; {¬square}; {¬square};
{square}, and π = {¬square}; {¬square}; {square}, are both valid, but only π
is optimal (since C(ξ) = 9 and C(π) = 8). There are only two other optimal plans
(ai means action a repeated i times): ω = {¬square}; {square}; {¬square}5 and
� = {¬square}8 of length 7 and 8, respectively. If we assume that the cost of
each transition is equal to the difference between the new and old values of var,
i.e.,

C(X ,A,X ′) = var′ − var

then also ξ is optimal, and indeed there are infinitely many optimal plans, simply
obtained by adding at the beginning of π, ω, �, finitely many times the action
{square}. ��

As the example shows, a plan π can contain loops, but to compute optimal
plans, we can focus on plans without loops.

Proposition 1. Let 〈Π,C〉 be a planning problem with costs. Let π =
α0; . . . ;αk−1 (k ≥ 0) be a valid plan such that for given 0 ≤ i < j ≤ k,
the i-th state σi and j-th state σj induced by π are the same. Then, π′ =
α0; . . . ;αi−1;αj ; . . . ;αk−1 is a valid plan and

1. C(π) ≥ C(π′), and
2. C(π) = C(π′) only if all the states induced by π in between σi and σj are

equal to σi.

As a consequence of the above proposition2, if the plan π contains loops of
length j − i − 1 > 0, i.e., if the i-th state σi and the j-th state induced by π are
the same, but some state in between σi and σj is different from σi then π is not
optimal. The presence of loops of length 0 may cause the existence of arbitrarily
long optimal plans, as it happens in Example 2, and termination problems for
approaches (like ours) imposing a bound on the maximum length of the plan.
For this reason, we will restrict to the valid/optimal plans which are 0-loop free,
i.e., which do not contain loops of length 0. Determining the existence of a valid
or optimal plan (and thus the existence of a bound n for which there exists a
2 We omit the proof of proposition 1 as it is an easy consequence of the hypothesis

and the definitions.

626 E. Giunchiglia and A. Tacchella

valid or optimal plan of length ≤ n) in our framework is, in general, undecidable
[16], but the existence of a valid plan implies the existence of an optimal plan
with an upper bound on its length.

Proposition 2. Let 〈Π,C〉 be a planning problem with costs. If π is a valid plan
of Π with cost C(π) then there exists an optimal plan of length less than or equal
to �C(π)/Cmin�.

3 Plans Shorter Than or Equal to the Bound

Let Π = 〈X ,A, I(X), T (X ,A,X ′), G(X)〉 be a planning problem with costs given
by C(X ,A,X ′), and let n ≥ 0 be a fixed integer called bound or number of steps.

Following the approach of [18], we make n + 1 disjoint copies X0, . . . ,Xn of
the set X of state variables, and n copies A0, . . . ,An−1 of the set A of action
variables. Then, for each i ∈ [0, n − 1], T (Xi,Ai,Xi+1) is the formula obtained
substituting each variable x ∈ X (resp. a ∈ A, x′ ∈ X ′) with xi ∈ Xi (resp.
ai ∈ Ai, xi+1 ∈ Xi+1) in T (X ,A,X ′), and similarly for other formulas like
I(X0), G(Xn) and C(Xi,Ai,Xi+1).

Then, we define

ΠS
n = I(X0) ∧ ∧n−1

i=0 T (Xi,Ai,Xi+1) ∧ G(Xn),
CS

n =
∑n−1

i=0 C(Xi,Ai,Xi+1).

ΠS
n and CS

n define a constraint optimization problem, whose optimal models are
the models of ΠS

n that have minimum associated cost CS
n .

We now establish the correspondence between the plans of Π and the models
of ΠS

n .
For a plan π = α0; . . . ;αn−1 with induced states σ0; . . . ;σn, we define πS

n to
be the assignment to the variables in ΠS

n such that, for each state variable x ∈ X ,
each action variable a ∈ A and each i ∈ [0, n), πS

i (xi) = σi(x), πS
n (ai) = αi(a),

πS
n (xi+1) = σi+1(a). Notice that the above definition of πS

n assumes π to be
executable, otherwise the state sequence induced by π is not defined and thus
also πS

n is not defined. We state3 the following:

Proposition 3. Let 〈Π,C〉 be a planning problem with costs. Let π be a plan of
length n ≥ 0. π is a valid plan of Π iff πS

n is a model of ΠS
n , and C(π) = CS

n (πS
n).

Notice that ΠS
n and CS

n (πS
n) encode the validity and the cost of plans of

length exactly n. Indeed, it is possible that valid plans shorter than n exist
and do not correspond to models of ΠS

n with the same cost. This is because,
in general, it is not the case that the transition relation T (X ,A,X ′) and cost
function C(X ,A,X ′) are inertial, i.e., that for every state σ there exists an action
α whose execution in σ results in the same state σ with cost 0. We thus,

1. extend the action signature with the variable NoOp, and
3 The proof is an easy induction on the length of the plan.

Optimal Planning with Expressive Action Languages 627

2. define T I(X ,A ∪ {NoOp},X ′) as

(¬NoOp → T (X ,A,X ′) ∧ (NoOp ≡ ∧
x∈X x′ = x) ∧ ∧

a∈A(NoOp → ¬a).

Imposing in the definition above

1. that NoOp is true whenever the resulting state is equal to the state in which
the action is executed, and

2. that all the action variables a ∈ A have to be false whenever NoOp is true,

yields a one-to-one correspondence between the 0-loop free valid plans of Π of
length k ≤ n and the models of

ΠI
n = I(X0) ∧∧n−1

i=0 T I(Xi,Ai ∪ {NoOpi},Xi+1)
∧∧n−2

i=0 (NoOpi → NoOpi+1) ∧ G(Xn).

For a plan π of length k ≤ n, we define the assignment πI
n to the variables of

ΠI
n to be the extension of πS

k such that πI
n(NoOp0) = . . . = πI

n(NoOpk−1) = ⊥,
πI

n(NoOpk) = . . . = πI
n(NoOpn−1) = �, and for each i ∈ [k, n), for each state

variable x ∈ X and for each action variable a ∈ A, πI
n(xi) = πI

n(xi+1) = πS
k (xk)

and πI
n(ai) = ⊥.

If we define CI(X ,A ∪ {NoOp},X ′) to be such that, for each assignment
σ, α, σ′ to X ,A,X ′,

CI(σ, α ∪ {¬NoOp}, σ′) = C(σ, α, σ′),
CI(σ, α ∪ {NoOp}, σ′) = 0,

then we have also that the cost C(π) of a plan π of length k ≤ n is equal to
CI

n(πI
n), defined as:

CI
n =

n−1∑

i=0

CI(Xi,Ai ∪ {NoOpi},Xi+1).

Proposition 4. Let 〈Π,C〉 be a planning problem with costs. Let π be a plan
of length k ≤ n. π is a 0-loop free valid plan of Π iff πI

n is a model of ΠI
n, and

C(π) = CI
n(πI

n).

Owing to proposition 4, we know that if a model πI
n of ΠI

n is optimal (i.e.,
all the other models ρI

n of ΠI
n are such that CI

n(ρI
n) ≥ CI

n(πI
n)), then there is no

valid plan of Π with length ≤ n and cost smaller than C(π).

Example 3. Assume that VI = 1 and VG = 9 in our 〈Π,C〉 formalization of
the SQUARE domain. From the previous example, we know that the plans π, ω
and ρ of length 3, 7 and 8, respectively, are optimal. Assuming n = 8, from the
proposition we can conclude that πI

n, ωI
n and ρI

n are optimal models of 〈ΠI
n, CI

n〉.
On the other hand, from the fact that πI

n, ωI
n and ρI

n are optimal models of
〈ΠI

n, CI
n〉, the proposition does not allow us to conclude that π, ω and ρ are

optimal plans of 〈Π,C〉. ��

628 E. Giunchiglia and A. Tacchella

4 Plans Longer Than or Equal to the Bound

Let Π = 〈X ,A, I(X), T (X ,A,X ′), G(X)〉 be a planning problem with costs given
by C(X ,A,X ′), and let n ≥ 0 be the selected bound. We build an abstract
encoding ΠA

n of Π such that for each valid plan π of length k ≥ n there exists
a corresponding model πA

n of ΠA
n with cost CA

n (πA
n) ≤ C(π).

Consider a valid plan π = α0; . . . ;αk−1 of length k ≥ n and let σi, i ∈ [0, k],
be the i-th state induced by π.

The definition of ΠA
n is based

1. on the abstract transition relation TA(X ,LX ,LA,VX) defined on the basis
of T (X ,A,X ′), and on

2. the abstract goal GA(X ,LX ,VX , {λG}) defined on the basis of G(X).

Both formulas are over the sets of variables X ,LX ,LA,VX , {λG}, where

1. LX is a finite set of variables of the form λlx, each corresponding to a state
literal lx.

2. LA contains a variable λla for each action literal la (thus, |LA| = 2 × |A|).
3. VX contains a variable λx′ �=x for each state variable x ∈ X (thus, |VX | = |X |).
4. λG is a variable associated to the goal formula G(X).

For each variable λv ∈ LX ,LA,VX , {λG}, λv defines the level of v and provides
a lower bound on the step at which v is true in πk. More precisely,

1. for each state literal lx with λlx ∈ LX , for each i ∈ [n, k], if σi(lx) = � then
πA

n (λlx) ≤ min(i − n, |X |),
2. for each action literal la, for each i ∈ [n, k), if αi(la) = � then πA

n (λla) ≤
min(i − n, |X |),

3. for each state variable x, for each i ∈ (n, k], if σi(x) �= σi−1(x) then
πA

n (λx′ �=x) ≤ min(i − n, |X |), and
4. for each i ∈ [n, k], if σi(G(X)) = � then πA

n (λG) ≤ min(i − n, |X |).
Notice that there can be infinitely many state literals lx, but we are going to
introduce only finitely many variables λlx ∈ LX . For each state literal lx in the
state variables x1, . . . , xm with λlx ∈ LX , the value of λlx is defined by the two
formulas

lx →λlx = 0
¬lx→λlx = min(λx′

1 �=x1 , . . . , λx′
m �=xm

). (5)

In order to show how the values for the variables in LA are defined, consider
an action literal la. The value of λla is defined on the basis of a given set P la(X)
of preconditions of la. A disjunction p of state literals is a precondition of la if
T (X ,A,X ′) entails (la → p). Since the set of the preconditions of la is equivalent
to

∃A∃X ′(la ∧ T (X ,A,X ′)), (6)

each precondition is entailed by (6). Computing a set of preconditions starting
from equation (6) requires the theory behind the planning problem to admit a

Optimal Planning with Expressive Action Languages 629

quantifier elimination procedure, which, in general, cannot be guaranteed. How-
ever, there are cases in which such quantifier elimination is possible, though com-
putationally expensive, e.g., using Fourier-Motzkin procedure, assuming vari-
ables are either Boolean or range over the reals, and that in T (X ,A,X ′) there
are only Boolean variables and linear inequalities. Furthermore, in many cases
all preconditions are explicit in T (X ,A,X ′), e.g., for PDDL encoded problems.
Finally, in all cases — since we wish to compute a superset of the set of actions
literals la which have their precondition satisfied — we do not need all the
(infinitely many) preconditions of la, and we can just consider some of the pre-
conditions of la, like the explicit ones of the partial actions {la} in T (X ,A,X ′)
(we recall that each explicit precondition of {la} corresponds to a formula of
the form (1) with either p = 0 or p = 1 and la1 = la). If T (X ,A,X ′) contains
a clause of the form (1) with either p = 0 or p = 1 and la1 = la, then (6)
is equivalent to (

∨q
i=1 lxi ∧ ∃A∃X ′(la ∧ T (X ,A,X ′))), and thus every explicit

precondition of the partial action {la} is entailed by (6).

Example 4. The preconditions of square coincide with its explicit precondition
(var ≥ 0), while ¬square has no preconditions. Indeed, in this case, the explicit
preconditions of square and ¬square are equivalent to the formula (6). However,
in general, the preconditions of an action literal are not necessarily equivalent to
its explicit preconditions, since there can be also other, implicit, preconditions.
For instance, if we add the clause (var′ > var) to (3), the precondition of square
and ¬square become respectively (var > 1) and (var ≥ 0). ��

Consider a finite subset P la(X) of the preconditions of la, which, as men-
tioned above, it is reasonable to expect it includes the explicit preconditions of
{la}. Then, the abstract precondition formula defining the value of λla is

λla �= |X | + 1 → λla = max(λp : p ∈ P la(X), 0), (7)

where, for each precondition p =
∨q

i=1 lxi with q ≥ 0,

λp = min(λlx1 , . . . , λlxq
, |X | + 1).

The above equation imposes that if the level λla of la is not |X |+1, then λla

is equal to the maximum among the levels associated to all the preconditions in
P la(X) and 0.

Given a state variable x, we now consider how the value of λx is defined.
Similarly to the previous case, the value of λx′ �=x is defined on the basis of a
given set Ex(X ,A) of conditions with (possible) effect x′ �= x. A conjunction e
of state and action literals is a condition with effect x′ �= x if T (X ,A,X ′) entails
(e → x′ �= x) and there exists a state σ and an action α executable in σ such
that σ, α satisfies e. Computing conditions with effect x′ �= x can be based on

∃X ′(x′ �= x ∧ T (X ,A,X ′)). (8)

As for the preconditions of an action literal, computing a quantifier free formula
equivalent to Eq. (8) may not be possible. However, we need to find a superset

630 E. Giunchiglia and A. Tacchella

of the set of next state variables x′ which change value, and we can consider an
overapproximation of the conditions with effect x′ �= x. Formally, let Ex(X ,A)
be a finite set of state and action literals whose disjunction is entailed by (8).
One such set can be determined by taking the set of the antecedents of the
explicit effects (2) in T (X ,A,X ′) such that

1. r = 1 and x′ occurs in the next state literal lx′
1, and

2. (
∧q

j=1 lxj ∧ lx′
1) does not entail x′ = x.

The above conditions are generalized by the following proposition.

Proposition 5. Let Π be a planning problem with transition relation
T (X ,A,X ′). Consider a subset S of the set of formulas (2) in T (X ,A,X ′)
with (

∧q
i=1 lxi ∧ ∨r

i=1 lx′
i) entailing x′ = x. Let S′ be the set of conjunctions

(
∧p

i=1 lai ∧
∧q

i=1 lxi) for which there exists a formula (2) in T (X ,A,X ′) and not
in S and in which x′ occurs. The disjunction of the formulas in S′ is entailed by
(8).

Consider a finite set Ex(X ,A) of conjunctions whose disjunction is entailed
by (8), which, given proposition (5) can be the antecedents of the explicit effects
formulas in which x′ = x is not entailed by the conjunction of the antecedent
and of the consequent. Then, the abstract effect formula defining the value of
λx′ �=x is

λx′ �=x = min(λe : e ∈ Ex(X ,A), |X |) + 1. (9)

where, for each conjunction e =
∧p

i=1 lai ∧ ∧q
i=1 lxi ∈ Ex(X ,A) (p, q ≥ 0), λe

stands for
λe = max(λla1 , . . . , λlap

, λlx1 , . . . , λlxq
, 0).

The previous definitions (7) and (9) of λla and λx′ �=x include the terms λlx (i)
corresponding to the state literals positively occurring in P la(X) and Ex(X ,A),
and thus (ii) that we assume to be elements of LX .

The abstract transition relation TA(X ,LX ,LA,VX) is the conjunction of the
formulas in (5), (7) and (9), for each state literal in LX , for each action literal la
and corresponding set P la(X), and for each state variable x and corresponding
set Ex(X ,A). Of course, for each set PA(X) and each set EX(X ,A) we have a
corresponding abstract transition relation TA(X ,LX ,LA,VX). For sake of read-
ability, we do not stress in the notation the dependency of TA(X ,LX ,LA,VX)
on PA(X) and EX(X ,A). Example 5 shows how to construct the abstract tran-
sition relation in the SQUARE domain according to the following:

Proposition 6. Let Π be a planning problem. Let TA(X ,LX ,LA,VX) be
the abstract transition relation corresponding to the chosen sets PA(X) and
EX(X ,A).

1. For every model μ of TA(X ,LX ,LA,VX), for every variable λz in
LX ,LA,VX , μ(λz) ∈ [0, |X | + 1].

2. For every state σ and pair of distinct models μ1 and μ2 of
TA(X ,LX ,LA,VX) extending σ, there exists a variable λla ∈ LA such that
μ1(λla) < μ2(λla) = |X | + 1 or μ2(λla) < μ1(λla) = |X | + 1.

Optimal Planning with Expressive Action Languages 631

3. For every state variable x and model μ of TA(X ,LX ,LA,VX), if μ(λx′ �=x) =
μ(λe) + 1 for some e ∈ EX(X ,A) then μ(λx′ �=x) ≤ |X |.

4. For every state σ there is a model μ of TA(X ,LX ,LA,VX) extending σ and
such that for each action literal la μ(λla) = |X | + 1.

Example 5. Let Psquare = {var ≥ 0} and P¬square = ∅, corresponding to
the explicit preconditions of {square} and {¬square} respectively. Let Evar =
{(¬square∧var ≥ 0), square}, corresponding to the first and third clauses in (3).
Then, LX includes λvar≥0 and from TA(X ,LX ,LA,VX), the following formulas
follow

var ≥ 0 → λvar≥0 = 0,¬var ≥ 0 → λvar≥0 = λvar′ �=var,
λsquare �= 2 → λsquare = max(λvar≥0, 0), λ¬square �= 2 → λ¬square = 0,

λvar′ �=var = min(max(λ¬square, |λvar≥0, 0),max(λsquare, 0), 1) + 1.

1. If (var ≥ 0), then the equations above entail

λvar≥0 = 0, λsquare = 2 ∨ λsquare = 0, λ¬square = 2 ∨ λ¬square = 0,
λvar′ �=var = min(λ¬square, λsquare, 1) + 1.

2. if (var < 0), then the following formulas are entailed

λvar≥0 = λvar′ �=var, λsquare = 2 ∨ λsquare = λvar′ �=var,
λ¬square = 2 ∨ λ¬square = 0,

λvar′ �=var = min(max(λ¬square, λvar≥0), λsquare, 1) + 1.

The equations above entail λvar≥0 = λvar′ �=var = 2. In fact
max(λ¬square, λvar≥0) ≥ λvar′ �=var, and λsquare ≥ λvar′ �=var and hence
λvar′ �=var ≥ min(λvar′ �=var, 1) + 1 which holds only if λvar′ �=var = 2. Since
λvar′ �=var = 2, then λsquare = 2 while λ¬square can take value either 0 or 2.

��
Now we consider GA(X ,LX ,VX , {λG}), the abstract version of the goal for-

mula G(X). Consider the goal formula G(X) =
∧s

i=1

∨si

j=1 lxij . Let λci , i ∈ [1, s]
stand for min(λlxi1 , . . . , λlxisi

, |X | + 1); then GA(X ,LX ,VX , {λG}) consists of
the formula

λG = max(λc1 , . . . , λcs , 0), λG ≤ |X | (10)

and of the formulas (5) corresponding to the variables λlxi1 , . . . , λlxisi
which are

assumed to be included in LX .

Proposition 7. Let Π be a planning problem with transition relation
T (X ,A,X ′) and goal G(X). Let TA(X ,LX ,LA,VX) and GA(X ,LX ,VX , {λG})
be an abstract transition relation and the abstract goal. For any model μ of
TA(X ,LX ,LA,VX) and GA(X ,LX ,VX , {λG}),

1. μ(λG) = 0 iff μ(G) = �, and
2. μ(λG) ≤ |X | iff μ(GA) = �.

632 E. Giunchiglia and A. Tacchella

Example 6. GA(X ,LX ,VX , {λG}) is equivalent to the conjunction of

λG = λvar≥VG
, λG ≤ 1, (var ≥ VG → λvar≥VG

= 0),
(var < VG → λvar≥VG

= λvar′ �=var).

Considering the conjunction TA(X ,LX ,LA,VX) ∧ GA(X ,LX ,VX , {λG}) (see
the running example 5) we have three cases:

1. if (var < 0), then λvar′ �=var = 2 and thus the conjunction is unsatisfiable.
2. if (0 ≤ var < VG), then if λsquare = 0 or λ¬square = 0 then λvar′ �=var = 1 and

thus also λG = 1, and
3. if (var ≥ VG), then λG = 0.

��
The definition of the level ordering λG associated to the goal formula allows

us to define (i) a lower bound λG on the number of steps necessary, starting
from the n-th induced state σn, to reach a goal state, and (ii) a lower bound

CG
n = λG × Cmin (11)

of the cost to reach a goal state starting from σn. The above cost CG
n is a lower

bound which makes no assumption whatsoever about the cost function other
than that each transition to a different state has an associated cost ≥ Cmin. If
the cost of each transition is equal to the sum of a constant cost ca > 0 associated
to each action variable a, then also

∑

a:a∈A,πA
n (λa)≤|X|

ca (12)

is a lower bound, possibly much stronger than λG × Cmin. Both ways to com-
pute CG

n are admissible. An abstract cost function CG
n (Xn,LX ,LA,VX , {λG})

is admissible if, for each valid plan π of Π of length k ≥ n, we have CG
n (πA

n) ≤∑k−1
i=n C(σi, αi, σ

′
i+1) where πA

n is the model of ΠA
n corresponding to π — defined

below in proposition 8 — and C(σi, αi, σ
′
i+1) as in (4).

We can now state the correspondence between the plan π with cost C(π) and
the model πA

n of ΠA
n with cost CA

n , defined as

ΠA
n = I(X0)∧∧n−1

i=0 T (Xi,Ai,Xi+1) ∧ TA(Xn,LX ,LA,VX)
∧GA(Xn,LX ,VX , {λG}).

CA
n = CS

n + CG
n .

(13)

Proposition 8. Let 〈Π,C〉 be a planning problem with costs. Let n ≥ 0 be a
bound. Let π = α0; . . . ;αk−1 be a valid plan of Π of length k ≥ n. Let σi,
i ∈ [0, k], be the i-th state induced by π.

There exists exactly one model πA
n of ΠA

n such that

1. for each i ∈ [0, n] and for each state variable x ∈ X , πA
n (xi) = σi(x),

2. for each i ∈ [0, n) and for each action variable a ∈ A, πA
n (ai) = αi(a), and

Optimal Planning with Expressive Action Languages 633

3. for each variable λla ∈ LA, πA
n (λla) ≤ |X | iff there exists i ∈ [n, k) such that

αi(la) = �.

Further, πA
n satisfies the following properties:

1. for each i ∈ [n, k), for each variable λla ∈ LA, if αi(la) = � then πA
n (λla) ≤

min(i − n, |X |),
2. for each i ∈ [n, k], for each variable λx′ �=x ∈ VX , if σn(x) �= σi(x) then

πA
n (λx′ �=x) ≤ min(i − n, |X |),

3. for each i ∈ [n, k], for each variable λlx ∈ LX , if σi(lx) = � then πA
n (λlx) ≤

min(i − n, |X |), and
4. πA

n (λG) ≤ min(k − n, |X |) and CA
n (πA

n) ≤ C(π).

From statement 7 of the above proposition, if a model πA
n of ΠA

n is optimal
(i.e., all the other models ρA

n of ΠA
n have CA

n (ρA
n) ≥ CA

n (πA
n)) and satisfies

λG = 0, then there is no valid plan of Π with length ≥ n and cost smaller than
C(π).

5 Optimal Planning as Constraint Optimization

Let Π = 〈X ,A, I(X), T (X ,A,X ′), G(X)〉 be a planning problem with costs given
by C(X ,A,X ′), and let n ≥ 0 be a bound. We combine the results in Sects. 3, 4
and define a constraint optimization problem 〈ΠO

n , CO
n 〉 allowing to determine (i)

an optimal plan of length k ≤ n, or (ii) the non existence of a valid plan, or (iii)
whether the bound n needs to be increased. These statements are consequences
of the Theorem below, based on the following definition of 〈ΠO

n , CO
n 〉:

ΠO
n = I(X0)∧∧n−1

i=0 T I(Xi, Ai ∪ {NoOpi},Xi+1)
∧∧n−2

i=0 (NoOpi → NoOpi+1) ∧ TA(Xn,LX ,LA,VX)
∧(NoOpn−1 → λG = 0) ∧ GA(Xn,LX ,VX , {λG}),

CO
n = CI

n + CG
n .

Proposition 9. Let 〈Π,C〉 be a planning problem with costs. Let n be a bound.
Let π = α0; . . . ;αk−1 be a 0-loop free valid plan of Π. There exists exactly one
model πO

n of ΠO
n such that, if m = min(k, n), for every i ∈ [0,m) and action

variable a, πO
n (ai) = αi(a) and πO

n (NoOpm) = . . . = πO
n (NoOpn−1) = ⊥, for

every action literal la, πO
n (λla) ≤ |X | iff there exists an action αi with i ∈

[m, k − 1] and αi(la) = �, then CO
n (πO

n) ≤ C(π).

Theorem 1. Let 〈Π,C〉 be a planning problem with costs.

1. A plan π of length k is optimal and 0-loop free iff there exists a bound n ≥ k
such that πO

n is an optimal model of 〈ΠO
n , CO

n 〉 and πO
n (λG) = 0.

2. For a bound n ≥ 0, if πO
n is an optimal model of 〈ΠO

n , CO
n 〉 and πO

n (λG) = 0,
then for every m ≥ n, πO

m is an optimal model of 〈ΠO
m, CO

m〉 and πO
m(λG) = 0.

634 E. Giunchiglia and A. Tacchella

3. For a bound n ≥ 0, if ΠO
n is unsatisfiable then for every m ≥ n, ΠO

m is
unsatisfiable and Π has no valid plans.

4. For a bound n ≥ 0, if πO
n is an optimal model of 〈ΠO

n , CO
n 〉 then any valid

plan of Π has cost greater than or equal to CO
n (πO

n).
5. For a bound n ≥ 0, if πO

n is an optimal model of 〈ΠO
n , CG

n 〉 and πO
n (λG) �= 0

then any valid plan of Π has length greater than or equal to (n + πO
n (λG)).

6. Assuming the size of TA(Xn,LX ,LA,VX) is linear in the size [Π] of Π, the
size of ΠO

n is O([Π] × n).

Given Proposition 2, the Theorem guarantees that, assuming the existence
of a valid plan for Π, we are able to determine an optimal plan by repeatedly
solving the constraint optimization problem 〈ΠO

n , CO
n 〉 for increasing n, till an

optimal model πO
n is found with πO

n (λG) = 0. The second and third statements
imply that we do not need to increment the bound in unitary steps: indeed, we
can fix the new bound according to some policy (see, e.g., [25,26]). The fourth
and fifth statements provide the lower bounds on the cost and length of valid
plans. Notice that if πO

n is an optimal model of 〈ΠO
n , CO

n 〉 and πO
n (λG) �= 0, we

can conclude neither the existence of a valid plan nor that valid plans have length
≥ n + πO

n (λG). Indeed, the latter holds (fifth statement) assuming that the cost
function of the optimization problem is fixed to CG

n (and not to CO
n = (CI

n+CG
n)).

Finally, the last statement ensures that our encoding is linear in the size of Π
and n.

Example 7. If VI < 0 and VG �= VI then, for any n ≥ 0, ΠO
n is unsatisfiable

and indeed Π does not have valid plans. If VI = 1 and VG = 9 there are three
optimal plans of length 3, 7 and 8; and (i) for n ≤ 6, ΠO

n has one optimal model
with cost (n−1) and satisfying λG = 1; (ii) for n = 7, ΠO

n has 3 optimal models
with cost 8 but only two of them satisfy λG = 0; and (iii) for n ≥ 8, there are
3 optimal models and all of them satisfy λG = 0. If we extend the transition
relation (3) with the constraint (var < 9) and VI = 1 and VG = 10, then ΠO

n

admits one optimal model satisfying λG = 1 for n ≤ 8, while for n ≥ 9, ΠO
n is

unsatisfiable, proving that Π has no valid plan. ��
The example shows that it is possible to have (i) a bound n greater than the

length of an optimal plan π and πO
n is not an optimal model of 〈ΠO

n , CO
n 〉; (ii) a

bound n for which various optimal models of 〈ΠO
n , CO

n 〉 exist, but only some of
them convey optimal plans; (iii) a bound n after which for every optimal plan
π, πO

n is an optimal model of 〈ΠO
n , CO

n 〉.

6 Conclusions

Our results are applicable to planning problems specified, e.g., in various versions
of the PDDL language (in particular, in subsets of PDDL 2.1, 2.2, 3.1) and in
the action language C when the domain is deterministic. We are not aware of
comparable approaches as general as ours. Previous attempts to find solutions
for optimal planning problems include [27], where partial weighted MaxSAT is

Optimal Planning with Expressive Action Languages 635

proposed as a backend to solve specific kinds of optimal planning problems. More
recently, in [4] a mixed-integer programming encoding of a perfect heuristic is
developed, landing on an incremental Boolean satisfiability encoding, while our
results can be applied to back-ends dealing with decidable first order theories,
e.g., satisfiability modulo theories.

Work on additive fluents [19] provides an approach to check whether a plan
found is also of minimal cost, but it does not generalize, e.g., to state-dependent
costs. Also, previous work on computing the cumulative value of numeric flu-
ents [7] considers only additive or measure fluents, whereas our approach is not
restricted in this sense. The framework for extending Answer Set Programming
with theories, called ASPMT by [3] is closely related to our work as it shows
that the tight fragment of ASPMT programs can be turned into SMT instances,
thereby allowing SMT solvers to compute stable models of ASPMT programs.
Howver, the optimization part does not seem to be developed in this context.
Finally, our approach is also closely related to delete relaxations as found in sev-
eral works. For instance, in the case of lower bounds, some results related to ours
can be found in [13] presenting incremental lower bounds, but limited to additive
cost planning problems, and [14] discussing optimal planning with conditional
effects using a mechanism of relaxation similar to ours. In [1] upper bounds on
the length of cost optimal plans that are valid for problems with 0-cost actions
are investigated.

More in general, there are many papers focusing on optimal planning and/or
showing how to translate planning problems in logic-based formalisms — see,
e.g., [10] for an overview. Literature considering action costs is available in the
field of Answer Set Programming — see, e.g., [6] — as well as in the field of
Constraint Logic Programming — see, e.g., [5]. As mentioned, our work gener-
alizes [20] which considers numeric problems specified in PDDL 2.1 level 2. If
we do not take into account the optimizations introduced by [20] enabled by the
restricted language used, the substantial difference is in the encoding of plans
longer than the bound. In particular, to eliminate the unwanted models caused
by loops between preconditions and effects, we use level order formulas based on
[8,12,17,23], while in [20] loop formulas based on [22] are considered. However,
with loop formulas (i) the size of the encoding is worst-case exponential [21],
and (ii) it is not possible to compute non trivial lower bounds of the length of
valid plans and of their cost.

This work is still preliminary, a primary extension being to assess whether the
proposed theory and/or a generalization/specialization scales in practice, also
compared to other approaches. The results in [20], and also in [24] for numeric
problems, are encouraging even for sequential planning problems in which, in
every action, at most one variable is true. Indeed, in the non sequential case,
planners based on search have to evaluate 2|A| possible actions in every state,
making symbolic approaches like ours very appealing.

636 E. Giunchiglia and A. Tacchella

References

1. Abdulaziz, M.: Cost optimal planning as satisfiability. CoRR abs/2103.02355
(2021). arxiv.org/abs/2103.02355

2. Babb, J., Lee, J.: Action language BC+. J. Log. Comput. 30(4), 899–922 (2020).
https://doi.org/10.1093/logcom/exv062

3. Bartholomew, M., Lee, J.: System aspmt2smt: computing ASPMT theories by
SMT solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761,
pp. 529–542. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-
0 37

4. Davies, T.O., Pearce, A.R., Stuckey, P.J., Lipovetzky, N.: Sequencing operator
counts. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15
July 2016, pp. 4140–4144. IJCAI/AAAI Press (2016)

5. Dovier, A., Formisano, A., Pontelli, E.: An investigation of multi-agent planning
in CLP. Fundam. Inform. 105(1–2), 79–103 (2010). https://doi.org/10.3233/FI-
2010-359

6. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer set planning under
action costs. J. Artif. Intell. Res. 19, 25–71 (2003). https://doi.org/10.1613/jair.
1148

7. Erdem, E., Gabaldon, A.: Cumulative effects of concurrent actions on numeric-
valued fluents. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth Innova-
tive Applications of Artificial Intelligence Conference, 9–13 July 2005, Pittsburgh,
Pennsylvania, USA, pp. 627–632. AAAI Press/The MIT Press (2005). www.aaai.
org/Library/AAAI/2005/aaai05-098.php

8. Erdem, E., Lifschitz, V.: Tight logic programs. Theory Pract. Log. Program. 3(4–
5), 499–518 (2003). https://doi.org/10.1017/S1471068403001765

9. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

10. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice.
Elsevier, Amsterdam (2004)

11. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artif. Intell. 153(1–2), 49–104 (2004). https://doi.org/10.1016/j.artint.
2002.12.001

12. Giunchiglia, E., Maratea, M.: A simple characterization of Stable Models and cor-
responding reduction to Difference Logic (2022). submitted

13. Haslum, P.: Incremental lower bounds for additive cost planning problems. In:
McCluskey, L., Williams, B.C., Silva, J.R., Bonet, B. (eds.) Proceedings of the
Twenty-Second International Conference on Automated Planning and Scheduling,
ICAPS 2012, Atibaia, São Paulo, Brazil, 25–19 June 2012. AAAI (2012)

14. Haslum, P.: Optimal delete-relaxed (and semi-relaxed) planning with conditional
effects. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013, pp. 2291–
2297. IJCAI/AAAI (2013)

15. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the
Planning Domain Definition Language. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, San Rafael (2019). https://
doi.org/10.2200/S00900ED2V01Y201902AIM042

http://arxiv.org/2103.02355
https://doi.org/10.1093/logcom/exv062
https://doi.org/10.1007/978-3-319-11558-0_37
https://doi.org/10.1007/978-3-319-11558-0_37
https://doi.org/10.3233/FI-2010-359
https://doi.org/10.3233/FI-2010-359
https://doi.org/10.1613/jair.1148
https://doi.org/10.1613/jair.1148
www.aaai.org/Library/AAAI/2005/aaai05-098.php
www.aaai.org/Library/AAAI/2005/aaai05-098.php
https://doi.org/10.1017/S1471068403001765
https://doi.org/10.1016/j.artint.2002.12.001
https://doi.org/10.1016/j.artint.2002.12.001
https://doi.org/10.2200/S00900ED2V01Y201902AIM042
https://doi.org/10.2200/S00900ED2V01Y201902AIM042

Optimal Planning with Expressive Action Languages 637

16. Helmert, M.: Decidability and undecidability results for planning with numerical
state variables. In: Ghallab, M., Hertzberg, J., Traverso, P. (eds.) Proceedings of
the Sixth International Conference on Artificial Intelligence Planning Systems, 23–
27 April 2002, Toulouse, France, pp. 44–53. AAAI (2002). www.aaai.org/Library/
AIPS/2002/aips02-005.php

17. Janhunen, T.: Representing normal programs with clauses. In: de Mántaras, R.L.,
Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intel-
ligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS
2004, Valencia, Spain, 22–27 August 2004, pp. 358–362. IOS Press (2004)

18. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363 (1992)
19. Lee, J., Lifschitz, V.: Additive fluents. In: Provetti, A., Son, T.C. (eds.) Answer

Set Programming, Towards Efficient and Scalable Knowledge Representation and
Reasoning, Proceedings of the 1st Intl. ASP’01 Workshop, Stanford, CA, USA,
26–28 March 2001. www.cs.nmsu.edu/%7Etson/ASP2001/14.ps

20. Leofante, F., Giunchiglia, E., Ábrahám, E., Tacchella, A.: Optimal planning mod-
ulo theories. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 4128–4134. ijcai.org
(2020). https://doi.org/10.24963/ijcai.2020/571

21. Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261–268 (2006). https://doi.org/10.1145/1131313.1131316

22. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. In: AAAI, pp. 112–118 (2002)

23. Niemelä, I.: Stable models and difference logic. Ann. Math. Artif. Intell. 53(1–4),
313–329 (2008)

24. Piacentini, C., Castro, M.P., Ciré, A.A., Beck, J.C.: Compiling optimal numeric
planning to mixed integer linear programming. In: ICAPS, pp. 383–387 (2018)

25. Rintanen, J.: Planning as satisfiability: heuristics. Artif. Intell. 193, 45–86 (2012).
https://doi.org/10.1016/j.artint.2012.08.001

26. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell. 170(12–13), 1031–1080 (2006)

27. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: Partial weighted MaxSAT for
optimal planning. In: PRICAI, pp. 231–243 (2010)

www.aaai.org/Library/AIPS/2002/aips02-005.php
www.aaai.org/Library/AIPS/2002/aips02-005.php
www.cs.nmsu.edu/%7Etson/ASP2001/14.ps
https://doi.org/10.24963/ijcai.2020/571
https://doi.org/10.1145/1131313.1131316
https://doi.org/10.1016/j.artint.2012.08.001

Plan Selection Framework
for Policy-Aware Autonomous Agents

Charles Harders and Daniela Inclezan(B)

Miami University, Oxford, OH 45056, USA
{harderc2,inclezd}@miamioh.edu

Abstract. This paper proposes a framework for representing and rea-
soning about the plan selection process of an autonomous agent that is
expected to operate within the boundaries of a given policy. We assume
that the agent takes into consideration both policy compliance and plan
length, and may prioritize one of these aspects over the other, based on
circumstances. We consider authorization and obligation policies speci-
fied in the language AOPL by Gelfond and Lobo. Our framework builds
upon the AAA agent architecture and is implemented in ASP.

Keywords: Planning · ASP · Authorization and Obligation Policies

1 Introduction

In this work, we propose a framework for the controller of an autonomous agent
to specify the agent’s intended behavior and plan selection strategy with respect
to policy compliance. Policies written by the controllers of autonomous agents
may specify actions that the autonomous agents are required to perform (or not
perform) in specific situations, and actions they are allowed (or not) to perform.
The former are referred to as obligation policies, while the latter are authorization
policies. An autonomous agent can decide whether to abide by these policies or
not, depending on the priorities set for it by its controller. In normal scenarios,
compliance with policies may take precedence over all other aspects, but there
are also situations in which it may be preferred to select a shorter and less
compliant plan than a longer but more compliant one, for instance if the agent
is performing a rescue operation. In our framework, the desired agent behavior
is defined by setting preferences and constraints for several metrics related to
policy compliance and plans. Reasoning about compliance and planning with
preferences is achieved using Answer Set Programming (ASP) [8–10,15].

A first policy-aware autonomous agent was implemented in the APIA archi-
tecture [16], based on the AAA [1] and AIA agent architectures [2]. The language
AOPL by Gelfond and Lobo [12] was used in APIA for policy specification,
as it allows for the description of complex policies, either strict or defeasible.
APIA agents operate with a coarse-grained characterization of plans borrowed
from Gelfond and Lobo’s work that is only able to compare plans that consist of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 638–646, 2023.
https://doi.org/10.1007/978-3-031-43619-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_43&domain=pdf
http://orcid.org/0000-0002-4534-9658
https://doi.org/10.1007/978-3-031-43619-2_43

Plan Selection Framework for Policy-Aware Autonomous Agents 639

actions with the same level of compliance (e.g., plans consisting of only explic-
itly compliant actions vs plans consisting of only non-compliant actions). In our
work, we consider: (1) plans that consist of a mix of actions at different levels of
compliance; (2) additional features of a plan, for instance the length of a plan;
and (3) ambiguities in policy specification not addressed in the original work by
Gelfond and Lobo, i.e., modality conflicts [4]. To illustrate the importance of a
finer-grained characterization of plans let’s consider the following example:

Example 1. There are six rooms, labeled r1, . . . , r6, laid out as shown in Fig. 1.
Our autonomous agent is currently in room r1 and wants to move to r3. The
agent a is able to enter a room r, enter(a, r), from an adjacent room. Some
of the agent’s possible actions are indicated by arrows in Fig. 1. All actions
are compliant w.r.t obligations. However, w.r.t. authorizations, some actions are
known to be compliant (called strongly-compliant and labeled “s” in the picture);
others are unknown to be compliant or non-compliant (underspecified actions
labeled “u”), and others are known to be non-compliant (labeled “n”).

Fig. 1. Example Scenario: Moving between Rooms

Let’s consider the following possible plans:
α1 = 〈enter(a, r4), enter(a, r5), enter(a, r6), enter(a, r3)〉,
α2 = 〈enter(a, r4), enter(a, r5), enter(a, r2), enter(a, r3)〉,
α3 = 〈enter(a, r2), enter(a, r3)〉, and
α4 = 〈enter(a, r2), enter(a, r5), enter(a, r6), enter(a, r3)〉.

According to Gelfond and Lobo [12], α1 is strongly-compliant and also
weakly-compliant; α2, α3 are weakly-compliant. Nothing can be said about α4

because its actions are not at the same level of compliance. Instead, we want
to create an ordering of plans, whenever possible, based on preferences set by
the agent’s controller. A simple preference could be prioritizing compliance over
plan length. In that case α1 would be the best plan, followed by α2 and α3.
Plan α4 may not even be considered due to the inclusion of a non-compliant
action. If instead plan length is prioritized over compliance (as may be the case
in emergency rescue operations), then α3 would be the best, followed by α1 and
α2. Here, note that α1 and α2 have the same length, but the compliance of all
actions of α1 is guaranteed, whereas one action of α2 is not explicitly stated to be

640 C. Harders and D. Inclezan

compliant (but it is not non-compliant either). Existing work does not currently
address comparisons between plans and the setting of preferences described here.

2 Background: Policy Specification Language AOPL
Gelfond and Lobo [12] introduced the Authorization and Obligation Policy Lan-
guage AOPL, which works in conjunction with a dynamic system description of
the agent’s environment written in an action language [11], such as ALd [7,8].
The signature of the dynamic system description includes: sorts for the elements
in the domain; fluents; and (elementary) actions.

Strict AOPL policies are specified using predicates permitted for authoriza-
tions and obl for obligations, and statements of the form:

permitted (e) if cond
¬permitted (e) if cond

(1)

where e is an elementary action and cond is a collection of atoms of the signature,
except those obtained from a predicate prefer. In obligation rules, permitted(e)
is replaced by obl(h) where h is a happening (i.e., an elementary action or its
negation). AOPL also supports defeasible statements, shown here for authoriza-
tions, and priorities between them encoded via the predicate prefer :

d : normally permitted(e) if cond (2a)
d : normally ¬permitted(e) if cond (2b)

prefer(di, dj) (2c)

Reasoning about the compliance of an agent to a policy is defined via a
translation lp into ASP of the policy and dynamic system description, which
is straightforward for atoms, literals, and strict rules. Below we indicate the lp
translation for defeasible rule (2a) and preference rule (2c) respectively:

permitted(e) ← lp(cond), not ab(d), not ¬permitted(e)
ab(dj) ← lp(condi)

where condi is the condition of defeasible rule with label di; “¬” is strong nega-
tion; and “not” is default negation read as “there is no reason to believe.”

Given a policy P and a state σ, lp(P, σ) =def lp(P) ∪ lp(σ).
Gelfond and Lobo define a policy as consistent if, for every state σ, the logic

program lp(P, σ) has an answer set, and categorical if it has exactly one answer
set. Below, we include compliance definitions, where ca denotes a compound
action and e refers to an elementary action.

Definition 1 (Compliance for Authorizations). (Defs. 4 and 5 [12])

• An event 〈σ, ca〉 is strongly-compliant with authorization policy P if lp(P, σ)
|= permitted(e), ∀e ∈ ca. Similarly, 〈σ, ca〉 is weakly-compliant if lp(P, σ)
�|= ¬permitted(e), and non-compliant if lp(P, σ) |= ¬permitted(e), ∀e ∈ ca.

Plan Selection Framework for Policy-Aware Autonomous Agents 641

• A path 〈σ0, ca0, σ1, . . . , σn−1, can−1, σn〉 is strongly (weakly) compliant with
authorization policy P if, for every 0 ≤ i < n, the event 〈σi, cai〉 is strongly
(weakly) compliant with P.

Definition 2 (Compliance for Obligations). (Def. 9 [12])
An event 〈σ, ca〉 is compliant with obligation policy P if

• For every e such that lp(P, σ) |= obl(e) we have that e ∈ ca, and
• For every e such that lp(P, σ) |= obl(¬e) we have that e /∈ ca.

3 Policy-Driven Plan Selection Framework

In Answer Set Planning [14,18] (i.e., planning using ASP) a problem is defined as
a triple 〈D, Γ,Δ〉 where D is the ASP encoding of the dynamic system in which
the autonomous agent is acting; Γ is a collection of fluent literals that hold in
the initial state; and Δ is the set of fluent literals representing the goal to be
achieved by the agent. A solution to a planning problem is a sequence of actions
to be performed by the agent to achieve the goal state; it is generated by the
ASP program expanded with a planning module. In this work, we limit ourselves
to deterministic dynamic system descriptions and complete knowledge about the
initial state (to remove complexities [5,19,20] orthogonal to policy compliance).
In this case, a solution to a planning problem is a sequence of agent actions
α = 〈a0, . . . , an−1〉 that guarantees to reach a desired state.

With respect to planning with AOPL policies, Inclezan [13] showed that a
division of paths into strongly- and weakly-compliant is too coarse and the label
“weakly-compliant” is not specific enough to create a relative priority order
between plans, because all strongly-compliant events are also weakly-compliant.
Instead Inclezan introduced the terminology of an “underspecified” event 〈σ, ca〉
if, for every e ∈ ca, the logic program lp(P, σ) entails both “not permitted(e)”
and “not ¬permitted(e)”. In categorical policies, an event 〈σ, ca〉 is either
strongly-compliant, non-compliant, or underspecified with respect to P [13].

With respect to obligations, situations when lp(P, σ) entails obl(¬e) and e
is not planned to be executed in state σ tend to abound. Thus, what needs
to be tracked instead is the occurrence of non-compliant actions with respect
to obligations. A final case that requires attention is when a plan contains an
event 〈σ, ca〉 such that e ∈ ca and lp(P, σ) |= {obl(e),¬permitted(e)} or lp(P, σ)
|= {obl(¬e), permitted(e)}. Such situations are not considered by Gelfond and
Lobo, and thus a policy in which these situations occur can still be deemed
categorical. However, policies that allow this have a certain level of ambiguity.
We refer to such events as modality ambiguous, as they reflect an ambiguity that
arises at the intersection between two modalities, obligation and authorization.
Including a modality ambiguous event 〈σ, ca〉 in a plan should be avoided.

Based on these considerations, our framework qualifies a plan α =
〈a0, . . . , an−1〉 based on the following metrics (i.e., functions): (1) the plan
length (l(α) =def n) and (2) the number and percentage of:

642 C. Harders and D. Inclezan

– modality ambiguous events, n ma(α) and p ma(α) =def (n ma(α)∗100)/l(α)
respectively;

– non-compliant events w.r.t. obligation; and
– strongly-compliant/underspecified/non-compliant events w.r.t. authoriza-

tion.

To compute these metrics in ASP, we extend predicates permitted and obl
with a new parameter representing the time step I, use predicate occurs(A, I)
to indicate that action A is planned to be executed at time step I, and introduce
new predicates (e.g., mod ambg for modality ambiguous actions). ASP rules like
the ones below are added to calculate the metrics:

mod ambg(A, I) ← occurs(A, I), obl(A, I), ¬permitted(A, I).
mod ambg(A, I) ← occurs(A, I), obl(¬A, I), permitted(A, I).
n ma(N) ← #count{A, I : mod ambg(A, I)} = N.
p ma(N) ← n ma(N1), l(N2), N = (N1 ∗ 100)/N2.

Here predicate l indicates the length of a plan and is calculated w.r.t. to the
horizon h (maximum plan length considered) by adding a new wait action,
similar to action noop introduced by Son and Pontelli [17], and rules:

n wait(N) ← #count{I : occurs(wait, I)} = N.
l(N) ← n wait(N1), N = h + 1 − N1.

These metrics can be used to describe acceptable and “best” plans. Here, we
show how they can be used to describe some predefined agent behavior modes:

– Safe Behavior Mode: Do not accept plans with non-compliant actions or
modality ambiguous events; maximize the percentage of strictly-compliant
actions, then prioritize plan length. A safe agent would select plan α1 from
Example 1 as it has the highest percentage of strongly-compliant events.

– Normal Behavior Mode Do not accept plans with non-compliant actions
or modality ambiguous events; prioritize plan length first and then maximize
the percentage of strongly-compliant actions. A normal agent would select
plan α3 from Example 1 as it prioritizes plans with a minimal length over
plans with a higher percentage of strongly-compliant actions.

– Risky Behavior Mode Do not try to follow policy rules, but do not go out
of your way to break rules either. A risky agent would also select plan α3

from Example 1 as it is the shortest plan.

These behavior modes are encoded using the #maximize directive of the
ASP solver Clingo [3,6], as in:

← n undes(N),not N = 0.
#maximize{N@2 : p sa(N);M@1 : n wait(M)}.

for the Safe Behavior Mode, where n undes is a predicate representing the sum
of modality ambiguous and non-compliant actions and p sa is the percentage of
strongly-compliant actions.

Plan Selection Framework for Policy-Aware Autonomous Agents 643

4 Experimental Analysis and Discussion

We empirically evaluated our implementation on an elaborated scenario in which
there is an agent that operates in a building with nine rooms, r0 to r8. Rooms
may be connected by doors, some of which may be one-way doors. Doors can
be locked and unlocked by the agent using either a key specific to a door or a
badge that can open any door. The agent is located in one of the rooms initially
and wants to get to another room. The agent has information about extreme
situations such as an active fire or contamination in a room. The agent may
have a special protective equipment. Our scenario contains both authorization
and obligation policies, both strict and defeasible, some of which are listed below:

1. The agent is obligated to use the key before using the badge if it has both.
2. The agent is not permitted to use its badge more than 3 times.
3. The agent is not permitted to open a one-way door from the wrong side.
4. Normally, the agent is obligated not to enter a room where there is a fire.
5. However, the agent is allowed to enter (i.e., not obligated to not enter) a room

in which there is an active fire if it has a special protective equipment.
6. Normally, the agent is not permitted to enter a contaminated room.

We tested the ASP implementation of our framework on fourteen planning
scenarios.1 For each scenario, we ran the planning agent in the three different
modes listed in Sect. 3: Safe, Normal, and Risky. Table 1 shows average times over
10 runs and the length of the optimal plan for each category. All experiments were
performed on a machine with an Intel(R) Core(TM) i5-1135G7 CPU 2.40 GHz
RAM 8 GB.

Table 1. Experimental Results (NU - number of undesirable actions)

Scenario Safe Normal Risky

Time (ms) Plan Length Time (ms) Plan Length Time (ms) Plan Length NU

1 4124.7 3 4104.4 3 4037.0 3 0

2 4189.3 5 4143.2 5 4109.7 4 1

3 4098.0 8 4032.4 6 3972.2 5 1

4 4349.0 10 4173.5 10 4078.3 3 1

5 4455.6 7 4064.9 7 4001.3 2 1

6 4249.4 3 4009.7 3 4004.9 3 0

7 4556.2 9 4176.3 5 4116.5 3 1

8 3894.6 10 4078.9 4 4014.7 4 0

9 5425.4 5 4121.9 3 4144.4 3 0

10 3550.3 0 3628.8 0 3503.4 0 0

11 4402.6 5 4186.4 4 4176.3 3 1

12 4532.2 3 4080.6 3 4000.0 3 0

13 4081.5 10 4117.3 6 4113.6 6 0

14 5749.3 6 4227.3 4 4105.1 4 0

1 Available at https://tinyurl.com/4exs9ens.

https://tinyurl.com/4exs9ens

644 C. Harders and D. Inclezan

Optimal plans in the Risky mode are generally the fastest to compute and the
shortest, since policy compliance is not enforced in this mode. Overall though,
there is not a big difference in terms of computational time between the three
behavior modes. The plans matched the priorities set for their respective mode.
We also compared the plans found for a scenario across behavior modes and
deemed the Normal Agent mode as the most desirable and closest to the decision
process of a human. The Risky Agent mode sometimes included non-compliant
actions (see column NU in Table 1), as expected based on the specification. This
is undesirable in general, as policies are set in order to be followed. The Safe
Agent mode sometimes created longer-than-needed plans in which the agent
went out of its way and performed unnecessary strongly-compliant actions just
to maximize the percentage of strongly-compliant events, as illustrated below:

Fig. 2. Layout for Scenario 3

Scenario 3: The agent must move from room r6 to room r1 (see Fig. 2). It is
equipped with the keys to the doors from room r0 to r1, r0 to r3, and r1 to r4.
The directions in place are from room r0 to room r1 and from r3 to r0. Doors
between the following rooms are locked: r0 and r1, r1 and r4, r4 and r7, r3
and r6. There is an active fire in room r2. The Safe Agent chooses the following
8-step plan: Move from r6 to r7. Move from r7 to r8. Move from r8 to r5. Move
from r5 to r4. Move from r4 to r3. Move from r3 to r0. Unlock the door from
0 to 1. Move from r0 to r1. The Normal Agent takes a different approach – the
following 6-step plan: Move from r6 to r7. Move from r7 to r8. Move from r8
to r5. Move from r5 to r4. Unlock the door from r4 to r1. Move from r4 to r1.
The Risky Agent ignores the active fire in room r2 and policy rules associated
with such situations, and executes a 5-step long plan: Move from r6 to r7, then
r7 to r8, then r8 to r5, then r5 to r2, and finally r2 to r1. Notice that, when
located in room r4, the Safe Agent chooses to move to room r0 so that it can
maximize its strong-compliance by unlocking the door from r0 to r1 from the
correct direction. The Normal Agent simply moves from room r4 to room r1,
which is an underspecified action (neither permitted nor not permitted).

Plan Selection Framework for Policy-Aware Autonomous Agents 645

5 Conclusions

We introduced a framework that allows the specification of the desired behavior
of an autonomous agent in terms of plan selection with respect to policy compli-
ance. The framework defines various metrics that can be used to define different
behavior modes, including the Safe, Normal, and Risky agent modes. We deemed
the Normal mode to be the most suitable and reasonable one, as shown by the
experimental results.

References

1. Balduccini, M., Gelfond, M.: The AAA architecture: an overview. In: Architec-
tures for Intelligent Theory-Based Agents, Papers from the 2008 AAAI Spring
Symposium, 2008, pp. 1–6. AAAI Press (2008)

2. Blount, J., Gelfond, M., Balduccini, M.: A theory of intentions for intelligent agents
- (extended abstract). In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Logic
Programming and Nonmonotonic Reasoning. LPNMR 2015. LNCS, vol. 9345, pp.
134–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5 12

3. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Log. Pro-
gram. 20(2), 294–309 (2020)

4. Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E., Bandara, A.: Expressive policy
analysis with enhanced system dynamicity. In: Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pp. 239–
250. ASIACCS ’09, Association for Computing Machinery, New York, NY, USA
(2009)

5. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning, II: the DLVk system. Artif. Intell. 144(1–
2), 157–211 (2003)

6. Gebser, M., et al.: Potassco user guide, 2 ed. University of Potsdam (2015)
7. Gelfond, M., Inclezan, D.: Some properties of system descriptions of ALd. J. Appl.

Non Class. Log. 23(1–2), 105–120 (2013)
8. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of

Intelligent Agents. Cambridge University Press, Cambridge (2014)
9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

Proceedings of the International Conference on Logic Programming (ICLP88), pp.
1070–1080 (1988)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. N. Gener. Comput. 9(3/4), 365–386 (1991)

11. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 3(16), 193–210
(1998)

12. Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
22–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2 7

13. Inclezan, D.: An ASP framework for the refinement of authorization and obliga-
tion policies. Theory Pract. Log. Program. 1–16 (2023). https://doi.org/10.1017/
S147106842300011X

14. Lifschitz, V.: Answer set planning. In: Schreye, D.D. (ed.) Logic Programming:
The 1999 International Conference, Las Cruces, New Mexico, USA, November 29–
4 December 1999, pp. 23–37. MIT Press (1999)

https://doi.org/10.1007/978-3-319-23264-5_12
https://doi.org/10.1007/978-3-540-89982-2_7
https://doi.org/10.1017/S147106842300011X
https://doi.org/10.1017/S147106842300011X

646 C. Harders and D. Inclezan

15. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm. Artificial Intelligence, pp. 375–398. Springer,
Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2 17

16. Meyer, J., Inclezan, D.: APIA: an architecture for policy-aware intentional agents.
In: Formisano, A., et al. (eds.) Proceedings 37th International Conference on
Logic Programming (Technical Communications), ICLP Technical Communica-
tions 2021, Porto (virtual event), 20–27th September 2021. EPTCS, vol. 345, pp.
84–98 (2021)

17. Son, T.C., Pontelli, E.: Planning with preferences using logic programming. Theory
Pract. Log. Program. 6(5), 559–607 (2006)

18. Son, T.C., Pontelli, E., Balduccini, M., Schaub, T.: Answer set planning: a survey.
Theory Pract. Log. Program. 23(1), 226–298 (2023)

19. Son, T.C., Tu, P.H., Gelfond, M., Morales, A.R.: Conformant planning for domains
with constraints-a new approach. In: Veloso, M.M., Kambhampati, S. (eds.) Pro-
ceedings, The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference, 9–13 July
2005, Pittsburgh, Pennsylvania, USA, pp. 1211–1216. AAAI Press/The MIT Press
(2005)

20. Tu, P.H., Son, T.C., Gelfond, M., Morales, A.R.: Approximation of action theories
and its application to conformant planning. Artif. Intell. 175(1), 79–119 (2011)

https://doi.org/10.1007/978-3-642-60085-2_17

Reasoning About Causes
and Dependencies

Strongly Complete Axiomatization for a Logic
with Probabilistic Interventionist

Counterfactuals

Fausto Barbero1(B) and Jonni Virtema2(B)

1 University of Helsinki, Helsinki, Finland
fausto.barbero@helsinki.fi

2 University of Sheffield, Sheffield, UK
j.t.virtema@sheffield.ac.uk

Abstract. Causal multiteam semantics is a framework where probabilistic
notions and causal inference can be studied in a unified setting. We study a
logic (PCO) that features marginal probabilities, observations and intervention-
ist counterfactuals, and allows expressing conditional probability statements, do
expressions and other mixtures of causal and probabilistic reasoning. Our main
contribution is a strongly complete infinitary axiomatisation for PCO.

1 Introduction

In the past few decades, the study of causation has transformed from being a topic
of mere philosophical speculation to a discipline making use of rigorous mathemati-
cal tools. The main two strands of this new discipline, paralleling the division of roles
between probability and statistics, are causal inference ([16,28,29]) and causal discov-
ery ([33]). The former studies which causal effects can be inferred from data coupled
with causal assumptions about the processes which generated the data. The latter stud-
ies which causal connections are compatible with given data (coming from observations
or experiments). In both strands new languages, capable of expressing concepts that lie
beyond the merely associational or probabilistic properties of data, are needed. A key
novel concept that is required is the notion of an intervention (modifying a given sys-
tem). One way of describing interventions is given by expressions called interventionist
counterfactuals. In their simplest form, these are expressions such as:

If variables X1, . . . , Xn were fixed to values x1, . . . , xn, then variable Y would take
value y

or their (causal-)probabilistic counterparts:

If variables X1, . . . , Xn were fixed to values x1, . . . , xn, then the probability that variable
Y takes value y would be ε.

Typically, such expressions are given precise semantics by causal models (also known
as structural equation models). Causal models and interventionist counterfactuals have
been reabsorbed as mainstream ideas in the philosophical debate on causation [22,35]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 649–664, 2023.
https://doi.org/10.1007/978-3-031-43619-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_44&domain=pdf
http://orcid.org/0000-0002-0959-6977
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-031-43619-2_44

650 F. Barbero and J. Virtema

but also became widespread tools for the study of causation in disparate applied fields
such as epidemiology [21], econometrics [19], social sciences [25] and machine learn-
ing [31]. As a recent development, J. Pearl argued that the capability of AI systems to
represent and reason about causal knowledge will be the next important leap in the field
of artificial intelligence (see, e.g., [30]).

The simple interventionist counterfactuals exhibited above do not exhaust the wide
variety of causal-probabilistic expressions that appear in the literature on causal infer-
ence (an extended discussion of this issue can be found in [10]). In [28], Pearl empha-
sizes two kinds of formal notations, the (conditional) do expressions, and what we may
call, for lack of a better terminology, Pearl counterfactuals. These expressions con-
cern probabilities in a post-intervention scenario, but differ in whether one conditions
upon events of the pre-intervention or the post-intervention scenario. A conditional do
expression discusses conditioning over a post-intervention event, as in the statement
“The probability that a patient abandons treatment, if he does not quickly improve, is
ε”; in symbols:

Pr(Abandon = 1 | do(Treated = 1), Improve = 0) = ε

where Abandon, Treated and Improve are Boolean variables taking values 1 or 0
depending on whether a certain fact holds or not. On the other hand, a Pearl counterfac-
tual conditions in the pre-intervention system, so that there might even be contradictions
between the measured and the conditioning event. E.g., “The probability that a patient
who died would have recovered if treated is ε”:

Pr(Dies = 0 | do(Treated = 1),Dies = 1) = ε.

In [4], Barbero and Sandu propose to tame this wild proliferation of notational devices
by decomposing these kinds of expressions in terms of three simpler ingredients:
marginal probabilities, interventionist counterfactuals (�), and selective implica-
tions (⊃). The selective implication describes the effect of acquiring new information,
whereas the interventionist counterfactual describes the effect of an action. The com-
plex expressions described above become, respectively,

Treated = 1� (Improve = 0 ⊃ Pr(Abandon = 1) = ε)

Dies = 1 ⊃ (Treated = 1� Pr(Dies = 0) = ε)

showing that qualitative difference between the two kinds of expressions amounts to
an inversion in the order of application of two logical operators.

Interventionist counterfactuals, selective implications, and marginal probability
statements can be studied in a shared semantic framework called causal multiteam
semantics. The framework is meaningful already in a non-probabilistic context, where
it generalizes causal models by providing a (qualitative) account of imperfect informa-
tion,1 and where it has been studied both from a semantic and a proof-theoretic per-
spective [3,5,9]. The proof-theoretic results rely on a body of earlier work ([12,14,17])

1 The idea of modeling imperfect information via team semantics was developed by Hodges
[23] and Väänänen [34].

Logics with Probabilistic Interventionist Counterfactuals 651

on proof systems for (non-probabilistic) counterfactuals evaluated on causal models. In
the probabilistic setting, some work in the semantic direction is forthcoming [6,7].

In this paper, we initiate the proof-theoretic study of logics involving probabilistic
counterfactuals in the causal multiteam setting. To the best of our knowledge, there has
been only one proposal in the literature of a deduction system for probabilistic interven-
tionist counterfactuals ([24]). The language considered in [24] differs in many respects
from those we are interested in. It is more expressive in allowing the use of arithmetical
operations (sums and products of probabilities and scalars). In contrast, it is also less
expressive, since it does not allow for nesting of counterfactuals (iterated interventions),
and it has no obvious means for describing complex interactions of interventions and
conditioning. For example, it has no obvious way to condition at the same time on both
a pre-intervention and a post-intervention scenario, or condition on a state of affairs
that holds at an intermediate stage between two interventions. Both of these scenarios
can be dealt with in relative ease using the framework of Barbero and Sandu [6]: the
former by expressions of the form α ⊃ (X = x� (β ⊃ Pr(γ) = ε)) and the latter by
X = x� (α ⊃ (Z = z� Pr(γ) = ε)).

Axiomatizing probabilistic logics is a notoriously difficult problem. As soon as a
language allows expressing inequalities of the form Pr(α) ≤ ε (ε being a rational num-
ber), it is not compact, as for example the set of formulas of the form Pr(α) ≤ 1

n (n
natural number) entails that Pr(α) = 0, but no finite subset yields the same conclusion.
Consequently, no usual, finitary deduction system can be strongly complete for such a
language. A possible answer to this problem is to settle for a deductive system that is
weakly complete, i.e. it captures all the correct inferences from finite sets of formulas.
This has been achieved for a variety of probabilistic languages with arithmetic opera-
tions (e.g. [13]). The result for probabilistic interventionist counterfactuals mentioned
above ([24]) is a weak completeness result in this tradition. Proving weak completeness
for probabilistic languages without arithmetical operations seems to be a more difficult
task, and we could find only one such result in the literature ([20])2. Unfortunately, the
completeness proof of [20] relies on a model-building method that seems not to work
for languages where conditional probabilities are expressible; thus, it is not adaptable
in any straightforward way to our case.

Another path, on which we embark, is to respond to the failure of compactness by
aiming for strong completeness using a deduction system with some kind of infinitary
resources. The use of infinitary deduction rules (with countably many premises) has
proved to be very fruitful and has led to strong completeness theorems for a plethora
of probabilistic languages (cf. [27]). Of particular interest to us are [32], where strong
completeness is obtained for a language with conditional probabilities, and [26], which
obtains strong completeness for “qualitative probabilities” (i.e., for expressions such as
Pr(α) ≤ Pr(β), that do not involve numerical constants). We build on these works in
order to obtain a strongly complete deduction system (with two infinitary rules) for the
probabilistic-causal language PCO used in [6,7]. The proof proceeds via a canonical
model construction, relying on a Lindenbaum lemma whose proof takes into account

2 An axiomatization of this kind has also been found for a probabilistic fuzzy logic ([15]), which
has been proved to be intertranslatable with (classical) probabilistic logic with arithmetical
operators ([2]).

652 F. Barbero and J. Virtema

the role of infinitary rules. While the proof follows essentially the scheme of [32],
it presents peculiar difficulties of its own due to the presence of additional operators
(counterfactuals and comparison atoms).

2 Preliminaries

Capital letters such as X,Y, . . . denote variables (thought to stand for specific magni-
tudes such as “temperature”, “volume”, etc.) which take values denoted by small letters
(e.g. the values of the variable X will be denoted by x, x′, . . .). Sets (and tuples, depend-
ing on the context) of variables and values are denoted by boldface letters such as X and
x. We consider probabilities that arise from the counting measures of finite (multi)sets.
For finite sets S ⊆ T , we define PT (S) := |S ||T | .

A signature is a pair (Dom,Ran), where Dom is a nonempty, finite set of variables
and Ran is a function that associates to each variable X ∈ Dom a nonempty, finite set
Ran(X) of values (the range of X). We consider throughout the paper a fixed order-
ing of Dom, and write W for the tuple of all variables of Dom listed in such order.
Furthermore, we write WX for the variables of Dom \ {X} listed according to the fixed
order. Given a tuple X = (X1, . . . , Xn) of variables, we denote as Ran(X) the Carte-
sian product Ran(X1) × · · · × Ran(Xn). An assignment of signature σ is a mapping
s : Dom → ⋃X∈Dom Ran(X) such that s(X) ∈ Ran(X) for each X ∈ Dom. The set of all
assignments of signature σ is denoted by Bσ. Given an assignment s that has the vari-
ables of X in its domain, s(X) will denote the tuple (s(X1), . . . , s(Xn)). For X ⊆ Dom,
s�X denotes the restriction of s to the variables in X.

A team T of signature σ is a subset of Bσ. Intuitively, a multiteam is just a multiset
analogue of a team. We represent multiteams as (finite) sets of assignments with an
extra variable Key (not belonging to the signature) ranging over N, which takes dif-
ferent values over different assignments of the team, and which is never mentioned in
the formal languages. A multiteam can be represented as a table, in which each row
represents an assignment. For example, if Dom = {X,Y,Z}, a multiteam may look like
this:

Key X Y Z

0 x y z
1 x′ y′ z′

2 x′ y′ z′

The purpose of a multiteam is to encode a probability distribution (over the team
obtained by removing the variable Key); in this case, that the assignment s(X) =
x, s(Y) = y, s(Z) = z has probability 1

3 while the assignment t(X) = x′, t(Y) = y′, t(Z) =
z′ has probability 2

3 . Multiteams by themselves do not encode any solid notion of causa-
tion; they do not tell us how a system would be affected by an intervention. We therefore
need to enrich multiteams with additional structure.

Definition 1. A causal multiteam T of signature (Dom(T),Ran(T)) with endogenous
variables V ⊆ Dom(T) is a pair T = (T−,F) such that

1. T− is a multiteam of domain Dom(T),

Logics with Probabilistic Interventionist Counterfactuals 653

2. F is a function {(V,FV) | V ∈ V} that assigns to each endogenous variable V a
non-constant |WV |-ary function FV : Ran(WV)→ Ran(V), and

3. The compatibility constraint holds: FV (s(WV)) = s(V) for all s ∈ T− and V ∈ V.
We will also write End(T) for the set of endogenous variables of T . Due to the compat-
ibility constraint, not all instances for V and T− give rise to causal multiteams.

The function F induces a system of structural equations; an equation

V := FV (WV)

for each variable V ∈ End(T). A structural equation tells how the value of V should be
recomputed if the value of some variables in WV is modified. Note that that some of the
variables in WV may not be necessary for evaluating V . For example, if V is given by
the structural equation V := X + 1, all the variables in WV \ {X} are irrelevant (we call
them dummy arguments of FV). The set of non-dummy arguments of FV is denoted
as PAV (the set of parents of V).

We associate to each causal multiteam T a causal graph GT , whose vertices are
the variables in Dom and where an arrow is drawn from each variable in PAV to V ,
whenever V ∈ End(T). The variables in Dom(T) \End(T) are called exogenous. In this
paper, we will always assume that causal graphs are acyclic; a causal multiteam with an
acyclic causal graph is said to be recursive.

Definition 2. A causal multiteam S = (S −,FS) is a causal sub-multiteam of T =
(T−,FT), if they have same signature, S − ⊆ T−, and FS = FT . We then write S ≤ T.

We consider causal multiteams as dynamic models, that can be affected by various
kinds of operations – specifically, by observations and interventions. Given a causal
multiteam T = (T−,F) and a formula α of some formal language (evaluated over
assignments according to some semantic relation |=), “observing α” produces the causal
sub-multiteam Tα = ((Tα)−,F) of T , where3

(Tα)− := {s ∈ T− | ({s},F) |= α}.
An intervention on T will not, in general, produce a sub-multiteam of T . It will

instead modify the values that appear in some of the columns of T . We consider inter-
ventions that are described by formulas of the form X1 = x1 ∧ · · · ∧ Xn = xn (or, shortly,
X = x). Such a formula is inconsistent if there are two indexes i, j such that Xi and
Xj denote the same variable, while xi and x j denote distinct values; it is consistent
otherwise.

Applying an intervention do(X = x), where X = x is consistent, to a causal mul-
titeam T = (T−,F) will produce a causal multiteam TX=x = (T−X=x,FX=x), where the
function component is FX=x := F�(V\X) (the restriction of F to the set of variables V\X)
and the multiteam component is T−X=x := {sFX=x | s ∈ T−}, where each sFX=x is the unique

3 Throughout the paper, the semantic relation in terms of which T α is defined will be the seman-
tic relation for language CO, which will soon be defined.

654 F. Barbero and J. Virtema

assignment compatible with FX=x defined (recursively) as

sFX=x(V) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xi if V = Xi ∈ X
s(V) if V ∈ Exo(T) \ X
FV (sFX=x(PAV)) if V ∈ End(T) \ X.

Example 3. Consider the following table:

T−:

Key X Y Z
0 0 1 0
1 1 2 2
2 1 2 2
3 2 3 6

where each row represents an assignment (e.g., the fourth row represents an assignment
s with s(Key) = 3, s(X) = 2, s(Y) = 3, s(Z) = 6). Assume further that the variable
Z is generated by the function FZ(X,Y) = X × Y , Y is generated by FY (X) = X + 1,
and X is exogenous. The rows of the table are compatible with these laws, so this is a
causal multiteam (call it T). It encodes many probabilities; for example, PT (Z = 2) = 1

2 .
Suppose we have a way to enforce the variable Y to take the value 1. We represent the
effect of such an intervention (do(Y = 1)) by recomputing the Y and then the Z column:

Key X Y Z
0 0 1 . . .

1 1 1 . . .

2 1 1 . . .

3 2 1 . . .

� T−Y=1:

Key X Y Z
0 0 1 0
1 1 1 1
2 1 1 1
3 2 1 2

where the new value of Z is computed, in each row, as the product of the value for X and
the (new) value for Y . The probability distribution has changed: now PTY=1 (Z = 2) is
1
4 . Furthermore, the function FY is now omitted from TY=1 (otherwise the assignments
would not be compatible anymore with the laws). Correspondingly, the arrow from X
to Y has been omitted from the causal graph.

3 Languages for Events and Probabilities

The language CO (“causation and observations”) is for the description of events; later
we incorporate it in a language for the discussion of probabilities of CO formulas. For
any fixed signature, the formulas of CO are defined by the following BNF grammar:

α ::= Y = y | Y � y | α ∧ α | α ⊃ α | X = x� α,

Logics with Probabilistic Interventionist Counterfactuals 655

where X ∪ {Y} ⊆ Dom, y ∈ Ran(Y), and x ∈ Ran(X). Formulae of the forms Y = y and
Y � y are called literals. The semantics for CO is given by the following clauses:

T |= Y = y iff s(Y) = y for all s ∈ T−.
T |= Y � y iff s(Y) � y for all s ∈ T−.
T |= α ∧ β iff T |= α and T |= β.
T |= α ⊃ β iff Tα |= β.
T |= X = x� ψ iff TX=x |= ψ or X = x is inconsistent.

where Tα is defined simultaneously with the semantic clauses. We will reserve the let-
ters α, β to denote CO formulas.

We can introduce more logical operators as useful abbreviations. � stands for X =
x� X = x, and ⊥ stands for X = x� X � x. ¬α (dual negation) stands for α ⊃ ⊥.
This is not a classical (contradictory) negation; it is easy to see that its semantics is:

– (T−,F) |= ¬α iff, for every s ∈ T−, ({s},F) |= α.

Thus, it is not the case, in general, that T |= α or T |= ¬α. Note that X � x is seman-
tically equivalent to ¬(X = x), and X = x is semantically equivalent to ¬(X � x). In
previous works ∨ (tensor disjunction) was taken as a primitive operator, but here we
define α ∨ β as ¬(¬α ∧ ¬β). Its semantic clause can be described as follows:

– T |= α ∨ β iff there are T1,T2 ≤ T s.t. T−1 ∪ T−2 = T−, T1 |= α and T2 |= β.
In contrast with the statement above, the formula α ∨ ¬α is valid. Furthermore, α ≡ β
abbreviates (α ⊃ β) ∧ (β ⊃ α). Notice that this formula does not state that α and β
are logically equivalent, but only that they are satisfied by the same assignments in the
specific causal multiteam at hand.

All the operators discussed here (primitive and defined) behave classically over
causal multiteams containing exactly one assignment.

A causal multiteam (T−,F) is empty (resp. nonempty) if the multiteam T− is. All
the logicsL considered in the paper have the empty team property: if T is empty, then
T |= α for any α ∈ L (and any F of the same signature).

Our main object of study is the probabilistic language PCO. Besides literals, it
allows for probabilistic atoms:

Pr(α) ≥ ε | Pr(α) > ε | Pr(α) ≥ Pr(β) | Pr(α) > Pr(β)

where α, β ∈ CO and ε ∈ [0, 1] ∩ Q. The first two are called evaluation atoms, and
the latter two comparison atoms. Probabilistic atoms together with literals of CO are
called atomic formulas. The probabilistic languagePCO is then given by the following
grammar:

ϕ ::= η | ϕ ∧ ϕ | ϕ � ϕ | α ⊃ ϕ | X = x� ϕ,

where X ⊆ Dom, x ∈ Ran(X), η is an atomic formula, and α is a CO formula. Note
that the antecedents of ⊃ and the arguments of probability operators are CO formulas.

656 F. Barbero and J. Virtema

Semantics for the additional operators are given below:

T |= ψ � χ iff T |= ψ or T |= χ
T |= Pr(α) � ε iff T− = ∅ or PT (α) � ε

T |= Pr(α) � Pr(β) iff T− = ∅ or PT (α) � PT (β)

where �∈ {≥, >} and PT (α) is a shorthand for PT−((Tα)−).
As usual, for a set of formulas Γ, we write T |= Γ if T satisfies each of the formulas

in Γ. For Γ∪ {ϕ} ⊆ PCO, we write Γ |=σ ϕ if T |= Γ implies T |= ϕ, for all causal teams
T of signature σ. |=σ ϕ abbreviates ∅ |=σ ϕ. We will always assume that some signature
is fixed, and omit the subscripts.

The abbreviations �,⊥ can be used freely in PCO, while ¬,∨ and ≡ can be applied
only to CO arguments. The definability of the dual negation in CO allows us to introduce
more useful abbreviations:

Pr(α) ≤ ε := Pr(¬α) ≥ 1 − ε Pr(α) = ε := Pr(α) ≥ ε ∧ Pr(α) ≤ ε
Pr(α) < ε := Pr(¬α) > 1 − ε Pr(α) � ε := Pr(α) > ε � Pr(α) < ε.

Furthermore, the ⊃ operator enables us to express some statements involving condi-
tional probabilities. Writing, as usual, Pr(α | γ) for the probability of α conditional on
γ, we can define corresponding atoms as follows (where � ∈ {≥, >}):

T |= Pr(α | γ) � ε iff (T γ)− = ∅ or PT γ (α) � ε.

T |= Pr(α | γ) � Pr(β | γ) iff (T γ)− = ∅ or PT γ (α) � PT γ (β).

It was observed in [6] that Pr(α | γ) � ε and Pr(α | γ) � Pr(β | γ) can be defined by
γ ⊃ Pr(α) � ε and γ ⊃ Pr(α) � Pr(β), respectively.

The weak contradictory negation ϕC of a formula ϕ is inductively definable inPCO;
this is an operator that behaves exactly as a contradictory negation, except on empty
causal multiteams. We list the definitory clauses together with the values produced by
the negation of defined formulas.

– (Pr(α) ≥ ε)C is Pr(α) < ε (and vice versa)
– (Pr(α) > ε)C is Pr(α) ≤ ε (and vice versa)
– (Pr(α) = ε)C is Pr(α) � ε (and vice versa)
– (X = x� χ)C is X = x� χC

– (α ⊃ χ)C is Pr(α) > 0 ∧ α ⊃ χC
– (Pr(α) ≥ Pr(β))C is Pr(β) > Pr(α) (and vice versa)

– (ψ ∧ χ)C is ψC � χC
– (ψ � χ)C is ψC ∧ χC
– (⊥)C is � (and vice versa)
– (X = x)C is Pr(X = x) < 1
– (X � x)C is Pr(X � x) < 1.

In the clause for ⊃, the conjunct Pr(α) > 0 (whose intuitive interpretation is “if T is
nonempty, then Tα is nonempty”) is added to insure that (α ⊃ χ)C is not satisfied by T
in case (T is nonempty and) Tα is empty.4

4 Whereas Pr(α) > 0 could be replaced with (¬α)C , and (X = x)C could be also expessed as
∨

x′�x X = x′, the use of probability atoms in (X � x)C seems essential.

Logics with Probabilistic Interventionist Counterfactuals 657

We emphasise that, since CO formulas are PCO formulas, the weak contradictory
negation can also be applied to them; however, the contradictory negation of a CO for-
mula will typically not be itself a CO formula. The meaning of the weak contradictory
negation is as follows.

Theorem 4. For every ϕ ∈ PCOσ and nonempty causal multiteam T = (T−,F) of
signature σ, T |= ϕC ⇔ T |= ϕ.
Proof. The proof proceeds by induction on the structure of formulas ϕ. We show the
only non-trivial case of ⊃.

Suppose T |= Pr(α) > 0 ∧ α ⊃ χC . Thus Tα |= χC . Since T is nonempty and T |=
Pr(α) > 0, we conclude that Tα is nonempty as well. Now by applying the induction
hypothesis on χ, we obtain Tα |= χ. Thus, T |= α ⊃ χ.

For the converse, assume T |= α ⊃ χ. Then Tα |= χ, which (by the empty team
property) entails that Tα is nonempty, and thus T |= Pr(α) > 0. Moreover, applying the
induction hypothesis to χ yields Tα |= χC , and thus T |= α ⊃ χC . ��

Using the weak contradictory negation, we can define an operator that behaves
exactly as the material conditional:

– ψ→ χ stands for ψC � χ.
Indeed, T |= ψ → χ iff T is empty or T |= ψ or T |= χ. However, since PCO has the
empty multiteam property, “T is empty” entails T |= χ; thus, for PCO,→ really is the
material conditional:

– ψ→ χ iff T |= ψ or T |= χ.
Similarly, we let ψ↔ χ denote (ψ→ χ) ∧ (χ→ ψ).

Note that α→ β and α ⊃ β are not in general equivalent even if α, β are CO formu-
las. Consider for example a causal multiteam T with two assignments s = {(X, 0), (Y, 0)}
and t = {(X, 1), (Y, 1)}. Clearly T |= X = 0 → Y = 1 (since T |= X = 0), while
T |= X = 0 ⊃ Y = 1 (since TX=0 |= Y = 1). However, the entailment from α ⊃ ψ
to α → ψ always holds, provided both formulas are in PCO (i.e., provided α ∈ CO).
Indeed, suppose T |= α ⊃ ψ and T |= α. From the former we get Tα |= ψ. From the
latter we get T = Tα. Thus, T |= ψ. The opposite direction does not preserve truth, but
it does preserve validity: if |= α→ ψ, then |= α ⊃ ψ. Indeed, the former tells us that any
causal multiteam that satisfies α also satisfies ψ. Thus, in particular, for any T , Tα |= ψ,
and thus T |= α ⊃ ψ.

Similar considerations as above apply to the pair of operators ≡ and ↔. Futher
differences in the proof-theoretical behaviour of these (and other) pairs of operators are
illustrated by the axioms T1 and T2 presented in Sect. 4.2.

4 The Axiom System

We present a formal deduction system with infinitary rules for PCO and show it to be
strongly complete over recursive causal multiteams. We follow the approach of [32],
which proved a similar result for a language with probabilities and conditional prob-
abilities. Our result adds to the picture comparison atoms, counterfactuals, and pre-
intervention observations (“Pearl’s counterfactuals”).

658 F. Barbero and J. Virtema

4.1 Further Notation

The formulation of some of the axioms – in particular, those involving reasoning with
counterfactuals – will involve some additional abbreviations. For example, we will write
X � x for a disjunction X1 � x1 � · · · � Xn � xn.

There will be an axiom (C11) that characterizes recursivity as done in [17]. For it,
we need to define the atom X � Y (“X causally affects Y”) by the formula:

∨

Z⊆Dom
x�x′∈Ran(X)
y�y′∈Ran(Y)
z∈Ran(Z)

[((Z = z ∧ X = x)� Y = y) ∧ ((Z = z ∧ X = x′)� Y = y′)].

This formula states that there is some intervention on X that makes a difference for Y;
it is the weakest form of causation that is definable in terms of interventionist counter-
factuals.

We will also need a formula (from [5]) characterizing the stricter notion of direct
cause (X is a direct cause of Y iff X ∈ PAY), which is expressible by a PCO formula
ϕDC(X,Y) defined as:

∨

x�x′∈Ran(X)
y�y′∈Ran(Y)
w∈Ran(WXY)

[((WXY = w ∧ X = x)� Y = y) ∧ ((WXY = w ∧ X = x′)� Y = y′)].

where WXY stands for Dom \ {X,Y}. The formula asserts that modifying the value of
X may alter the value of Y even when all other variables are held fixed (thus excluding
causation via intermediate variables).

Now, some axioms describe specific properties of exogenous or endogenous vari-
ables, which can be again characterized in PCO. We can express the fact that a variable
Y is endogenous by the following formula (where, as before, WV stands for Dom\ {V}):

ϕEnd(Y) :
⊔

X∈WY

ϕDC(X,Y)

and its contradictory negation (ϕEnd(Y))C will express that Y is exogenous.
Finally, for each function component F , ΦF is a formula that characterizes the fact

that a causal team has function component F . In detail,

ΦF :
∧

V∈End(F)

ησ(V) ∧
∧

V�End(F)

ξσ(V)

where
ησ(V) :

∧

w∈Ran(WV)

(WV = w� V = FV (w))

and
ξσ(V) :

∧

w∈Ran(WV)
v∈Ran(V)

V = v ⊃ (WV = w� V = v).

A nonempty causal multiteam T = (T−,G) satisfies ΦF iff G = F .5

5 Save for some inessential differences, this is is the content of Theorem 3.4 from [9].

Logics with Probabilistic Interventionist Counterfactuals 659

4.2 Axioms and Rules

We present a few axiom schemes and rules for PCO, roughly divided in six groups.
Each axiom and rule is restricted to formulas of a fixed signature σ, so that actually we
have a distinct axiom system for each signature. As usual, α and β are restricted to be
CO formulas.

Tautologies

T1. All instances of classical propositional tautologies in ∧,�,→,C ,�,⊥.
T2. All CO instances of classical propositional tautologies in ∧,∨,⊃,¬,�,⊥.

Rule MP.
ψ ψ→χ
χ

Rule Rep.
�ϕ �θ↔θ′
�ϕ[θ′/θ] (provided ϕ[θ′/θ] is well-formed)

Probabilities

P1. α↔ Pr(α) = 1.
P2. Pr(α) ≥ 0.
P3. (Pr(α) = δ ∧ Pr(β) = ε ∧ Pr(α ∧ β) = 0)→ Pr(α ∨ β) = δ + ε
(when δ + ε ≤ 1).
P3b. Pr(α) ≥ ε ∧ Pr(α ∧ β) = 0→ Pr(β) ≤ 1 − ε.
P4. Pr(α) ≤ ε → Pr(α) < δ (if δ > ε).
P5. Pr(α) < ε → Pr(α) ≤ ε.
P6. (α ≡ β)→ (Pr(α) = ε → Pr(β) = ε).
P6b. (α ⊃ β)→ (Pr(α) = ε → Pr(β) ≥ ε).

Rule ⊥ω.
ψ→Pr(α)�ε,∀ε∈[0,1]∩Q

ψ→⊥
Comparison

CP1. (Pr(α) = δ ∧ Pr(β) = ε)→ Pr(α) ≥ Pr(β). (if δ ≥ ε)
CP2. (Pr(α) = δ ∧ Pr(β) = ε)→ Pr(α) > Pr(β). (if δ > ε)

Observations

O1. Pr(α) = 0→ (α ⊃ ψ).
O1b. (α ⊃ ⊥)→ Pr(α) = 0.
O2. (Pr(α) = δ ∧ Pr(α ∧ β) = ε)→ (α ⊃ Pr(β) = ε

δ
). (when δ � 0)

O3. (α ⊃ Pr(β) = ε)→ (Pr(α) = δ↔ Pr(α ∧ β) = ε · δ) (when ε � 0).
O4. (α ⊃ ψ)→ (α→ ψ).
O5∧. α ⊃ (ψ ∧ χ)↔ (α ⊃ ψ) ∧ (α ⊃ χ).
O5�. α ⊃ (ψ � χ)↔ (α ⊃ ψ) � (α ⊃ χ).
O5⊃. α ⊃ (β ⊃ χ)↔ (α ∧ β) ⊃ χ.

Rule Mon⊃.
�ψ→χ

�(α⊃ψ)→(α⊃χ)
Rule→to⊃.

�α→ψ
�α⊃ψ

Rule ⊃ω.
ψ→(Pr(α∧β)=δε↔Pr(α)=ε),∀ε∈(0,1]∩Q

ψ→(α⊃Pr(β)=δ)

660 F. Barbero and J. Virtema

Literals

A1. Y = y→ Y � y′. (when y � y′)
A2. X � x↔ (X = x ⊃ ⊥).
A3.
∨

y∈Ran(Y) Y = y.

Counterfactuals

C1. (X = x� (ψ ∧ χ))↔ ((X = x� ψ) ∧ (X = x� χ)).
C2. (X = x� (ψ � χ))↔ ((X = x� ψ) � (X = x� χ)).
C3. (X = x� (α⊃χ))↔ ((X = x� α)⊃ (X = x� χ)).
C4. (X = x� (Y = y�χ))→ ((X′ = x′ ∧ Y = y)�χ)
(where X′ = X \ Y and x′ = x \ y; and provided X = x is consistent).
C4b. ((X = x ∧ Y = y)�χ)→ (X = x� (Y = y�χ)).
C5. (X = x� ⊥)→ ψ. (when X = x is consistent)
C6. (X = x ∧ Y = y)� Y = y.
C7. (X = x ∧ γ)→ (X = x� γ). (where γ ∈ PCO without occurrences of�)
C8. (X = x� Pr(α) � ε)↔ Pr(X = x� α) � ε. (where �=≥ or >)
C8b. (X = x� Pr(α) � Pr(β))↔ Pr(X = x� α) � Pr(X = x� β)
(where �=≥ or >).
C9. ϕEnd(Y) → (WY = w�

⊔
y∈Ran(Y) Y = y).

C10. (ϕEnd(Y))C → (Y = y ⊃ (WV = w� Y = y)).
C11. (X1 � X2 ∧ · · · ∧ Xn−1 � Xn)→ (Xn � X1)C . (for n > 1).

Rule Mon�.
�ψ→χ

�(X=x�ψ)→(X=x�χ)

We will refer to this list of axioms and rules as the deduction system, and write Γ � ϕ if
there is a countable sequence of PCO formulas ϕ1, . . . , ϕκ = ϕ (enumerated by ordinals
≤ κ) where each formula in the list is either an axiom, a formula from Γ, or it follows
from earlier formulas in the list by one of the rules. The sequence itself is called a proof.

We write � ϕ for ∅ � ϕ; if it holds, we say that ϕ is a theorem. Notice that some
of the rules (Rep, Mon⊃, Mon�, →to⊃) can only be applied to theorems, since they
preserve validity but not truth.

5 Discussion of the Proof System

We have described a family of infinitary axiom systems, one for each finite signature
σ. Our main result is that each such axiom system is sound and strongly complete
for PCOσ over the corresponding class of multiteams of signature σ. By saying that a
deduction system is sound for PCOσ we mean that, for all formulas Γ ∪ {ϕ} ⊆ PCOσ,
Γ � ϕ entails Γ |=σ ϕ; and it is strongly complete for PCOσ if Γ |=σ ϕ entails Γ � ϕ. As
discussed in the Introduction, a finitary axiom system could at most aspire to be (sound
and) weakly complete for PCOσ, i.e. to satisfy the equivalence Γ0 |= ϕ iff Γ0 � ϕ, for
finite sets Γ0.

Theorem 5 (Soundness and strong completeness). Let σ be a signature and Γ∪{ϕ} ⊆
PCOσ. Then Γ |= ϕ if and only if Γ � ϕ.

Logics with Probabilistic Interventionist Counterfactuals 661

The proof of this result (which can be found in the full version of the paper, [8]) uses a
Henkin-style canonical model construction, i.e. it proceeds by showing that each maxi-
mal consistent set Γ of formulas of PCOσ provides sufficient information for construct-
ing a canonical causal multiteam T that satisfies Γ. The proof essentially follows the
lines of the completeness proof given in [32], but it presents some novel difficulties in
dealing with the additional operators ⊃ and �, especially towards obtaining a Truth
Lemma, which takes the unusual form:

For allα ∈ CO and ϕ ∈ PCO,Tα |= ϕ ⇐⇒ α ⊃ ϕ ∈ Γ.
The choice of axioms and rules is largely built on earlier axiomatizations of simpler

languages for probabilistic or causal reasoning; let us briefly illustrate how our system
adapts or differs from earlier sources. Rules MP, ⊥ω, ⊃ω and axioms P1-2-3-4-5 and
O1-2–3 are essentially adapted from the paper [32] (the rule ⊥ω comes from the earlier
[1]). Keeping in mind that a formula of the form α ⊃ Pr(β) = ε is semantically equiva-
lent to a conditional probability statement Pr(β | α) = ε, axioms O2-3 encode the usual
definition of conditional probability in terms of marginal probability. Our Rule Mon⊃
allows omitting axioms 8, 11 and 12 from [32], which follow from it. Our restriction
δ + ε ≤ 1 in axiom P3 is imposed by the syntax (we do not allow numbers greater
than 1 as symbols). The additional axiom P3b guarantees that, despite this restriction,
axiom scheme P3 is always applicable, in the sense that, if an instance of it is not
admitted as an axiom, then the premises of said instance are contradictory.6 Axiom P6
derives from [32], but in our case the correct formulation requires the interaction of
the two conditionals ⊃ (used to define ≡) and→; notice that the analogous formulation
(α ↔ β) → (Pr(α) = ε → Pr(β) = ε) is not valid. The variant P6b is our addition.
These adaptations are due both to differences in the syntax ([32] has an explicit condi-
tional probability operator, while we talk of conditional probabilities only indirectly, by
means of the selective implication; and we have distinct logical operators at the level of
events vs. the level of probabilities) and in the semantics (in particular, we differ in the
treatment of truth over empty models).

Regarding comparison atoms, analogues of CP1-2 appear, for example, in [26], and
in earlier literature. An interesting difference from [26] is that in our system we do not
need an additional infinitary rule to deal with the comparison atoms.

Axioms C6, C7 and C11 take the same roles as the principles of Effectiveness, Com-
position and Recursivity from [14]. The current, more intuitive form of axiom C7 was
introduced in [9]; it captures the intuition that intervening by fixing some variables to
values they already possess will not alter the value of any variable (although it may
alter the set of causal laws, whence the restriction to γ without occurrences of �).
Halpern [17] noticed that� distributes over Boolean operators, and formulated ana-
logues of C1 and C2. The validity of C3-4-4b was pointed out in [5] (although an earlier
axiom for dealing with nested counterfactuals had already been devised in [12]), and
the importance of C5 emerged in [9].

6 It seems to us that an axiom analogous to P3b should be added also to the system in [32].

662 F. Barbero and J. Virtema

6 Conclusions

We produced a strongly complete axiom system for a language PCO for probabilis-
tic counterfactual reasoning (without arithmetical operations). As for most analogous
results in the literature on interventionist counterfactuals, we have assumed that the sig-
natures are finite; it would be interesting to find out if the recently developed methods
of [18] for axiomatizatizing infinite signatures may be extended to our case. Our system
features infinitary rules, and it is therefore natural to wonder whether finitary axiomati-
zations could be obtained. Due to the failure of compactness, such axiomatizations can
aspire at most at weak completeness.

There is another closely related axiomatization issue that would be important to set-
tle. In [6], an extension PCOω of PCO is considered that features a countably infinite
version of the global disjunction �. This uncountable language is much more expres-
sive than PCO and it can be proved that, in a sense, it encompasses all the expressive
resources that a probabilistic language for interventionist counterfactuals should have.
Given the special semantic role of this language, it would be important to find out
whether an (infinitary) strongly complete axiomatization can be obtained for it. The
main obstacle is proving an appropriate Lindenbaum lemma; as shown e.g. in [11], for
an uncountable language with an infinitary axiom system the Lindenbaum lemma can
even be false.

Acknowledgments. Fausto Barbero was partially supported by the DFG grant VI 1045-1/1 and
by the Academy of Finland grants 316460 and 349803. Jonni Virtema was partially supported by
the DFG grant VI 1045-1/1 and by the Academy of Finland grant 338259.

References

1. Alechina, N.: Logic with probabilistic operators. Proc. ACCOLADE 1994, 121–138 (1995)
2. Baldi, P., Cintula, P., Noguera, C.: Classical and fuzzy two-layered modal logics for uncer-

tainty: translations and proof-theory. Int. J. Comput. Intell. Syst. 13, 988–1001 (2020).
https://doi.org/10.2991/ijcis.d.200703.001

3. Barbero, F., Galliani, P.: Embedding causal team languages into predicate logic. Ann. Pure
Appl. Logic 173, 103–159 (2022). https://doi.org/10.1016/j.apal.2022.103159

4. Barbero, F., Sandu, G.: Interventionist counterfactuals on causal teams. In: CREST 2018
Proceedings - Electronic Proceedings in Theoretical Computer Science, vol. 286, pp. 16–30.
Open Publishing Association (2019). https://doi.org/10.4204/eptcs.286.2

5. Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: observations vs.
interventions. J. Philos. Logic 50, 471–521 (2021)

6. Barbero, F., Sandu, G.: Multiteam semantics for interventionist counterfactuals: probabilities
and causation (2023). pre-print, arxiv:2305.02613

7. Barbero, F., Virtema, J.: Expressivity landscape for logics with probabilistic interventionist
counterfactuals. CoRR abs/2303.11993 (2023). https://doi.org/10.48550/arXiv.2303.11993

8. Barbero, F., Virtema, J.: Strongly complete axiomatization for a logic with probabilistic inter-
ventionist counterfactuals. arXiv preprint arXiv:2304.02964 (2023)

https://doi.org/10.2991/ijcis.d.200703.001
https://doi.org/10.1016/j.apal.2022.103159
https://doi.org/10.4204/eptcs.286.2
http://arxiv.org/abs/2305.02613
https://doi.org/10.48550/arXiv.2303.11993
http://arxiv.org/abs/2304.02964

Logics with Probabilistic Interventionist Counterfactuals 663

9. Barbero, F., Yang, F.: Characterizing counterfactuals and dependencies over (generalized)
causal teams. Notre Dame J. Formal Logic 63(3), 301–341 (2022). https://doi.org/10.1215/
00294527-2022-0017

10. Bareinboim, E., Correa, J., Ibeling, D., Icard, T.: On pearl’s hierarchy and the foundations of
causal inference (1st edition). In: Geffner, H., Dechter, R., Halpern, J.Y. (eds.) Probabilistic
and Causal Inference: the Works of Judea Pearl, pp. 507–556. ACM Books (2022)

11. Bílková, M., Cintula, P., Lávička, T.: Lindenbaum and Pair extension lemma in infinitary
logics. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944,
pp. 130–144. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_7

12. Briggs, R.: Interventionist counterfactuals. Philos. Stud. Int. J. Philos. Anal. Trad. 160(1),
139–166 (2012)

13. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput.
87(1–2), 78–128 (1990)

14. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci.
3(1), 151–182 (1998)

15. Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. In: Proceedings of the Uncer-
tainty in Artificial Intelligence UAI, vol. 95, pp. 237–244 (1995)

16. Halpern, J.: Actual Causality. MIT Press, Cambridge (2016)
17. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Int. Res. 12(1), 317–337 (2000)
18. Halpern, J.Y., Peters, S.: Reasoning about causal models with infinitely many variables.

In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 5668–5675
(2022)

19. Heckman, J.J., Vytlacil, E.J.: Econometric evaluation of social programs, part i: causal mod-
els, structural models and econometric policy evaluation. Handb. Econ. 6, 4779–4874 (2007)

20. Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econom. Behav. 35(1),
31–53 (2001). https://doi.org/10.1006/game.1999.0788

21. Hernan, M., Robins, J.: Causal Inference: What if. Chapman & Hall/CRC, Boca Raton
(forthcoming)

22. Hitchcock, C.: Causal models. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclope-
dia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023 edn. (2023)

23. Hodges, W.: Compositional semantics for a language of imperfect information. Logic J.
IGPL 5, 539–563 (1997)

24. Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10170–10177 (2020)

25. Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference. Cambridge University
Press, Cambridge (2015)

26. Ognjanović, Z., Perović, A., Rašković, M.: Logics with the qualitative probability operator.
Logic J. IGPL 16(2), 105–120 (2008). https://doi.org/10.1093/jigpal/jzm031

27. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based Formal-
ization of Uncertain Reasoning. Springer, Berlin (2016)

28. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New
York, NY, USA (2000)

29. Pearl, J., Glymour, M., Jewell, N.P.: Causal Inference in Statistics: A Primer. Wiley, Hoboken
(2016)

30. Pearl, J., Mackenzie, D.: The Book of Why: The New Science Of Cause and Effect. Basic
Books, New York City (2018)

31. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learn-
ing Algorithms. MIT Press, Cambridge (2017)

32. Rašković, M., Ognjanović, Z., Marković, Z.: A logic with conditional probabilities. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 226–238. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_21

https://doi.org/10.1215/00294527-2022-0017
https://doi.org/10.1215/00294527-2022-0017
https://doi.org/10.1007/978-3-662-57669-4_7
https://doi.org/10.1006/game.1999.0788
https://doi.org/10.1093/jigpal/jzm031
https://doi.org/10.1007/978-3-540-30227-8_21

664 F. Barbero and J. Virtema

33. Spirtes, P., Glymour, C., Scheines, R.N.: Causation, Prediction, and Search. Lecture Notes
in Statistics, vol. 81. Springer, New York (1993)

34. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic, London
Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)

35. Woodward, J.: Making Things Happen, Oxford Studies in the Philosophy of Science, vol.
114. Oxford University Press, Oxford (2003)

Logics with Probabilistic Team Semantics
and the Boolean Negation

Miika Hannula1 , Minna Hirvonen1(B) , Juha Kontinen1 ,
Yasir Mahmood2 , Arne Meier3 , and Jonni Virtema4

1 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
{miika.hannula,minna.hirvonen,juha.kontinen}@helsinki.fi

2 DICE Group, Department of Computer Science, Paderborn University,
Paderborn, Germany

yasir.mahmood@uni-paderborn.de
3 Institut für Theoretische Informatik, Leibniz Universität Hannover,

Hannover, Germany
meier@thi.uni-hannover.de

4 Department of Computer Science, University of Sheffield, Sheffield, UK
j.t.virtema@sheffield.ac.uk

Abstract. We study the expressivity and the complexity of various log-
ics in probabilistic team semantics with the Boolean negation. In par-
ticular, we study the extension of probabilistic independence logic with
the Boolean negation, and a recently introduced logic FOPT. We give a
comprehensive picture of the relative expressivity of these logics together
with the most studied logics in probabilistic team semantics setting, as
well as relating their expressivity to a numerical variant of second-order
logic. In addition, we introduce novel entropy atoms and show that the
extension of first-order logic by entropy atoms subsumes probabilistic
independence logic. Finally, we obtain some results on the complexity of
model checking, validity, and satisfiability of our logics.

Keywords: Probabilistic Team Semantics · Model Checking ·
Satisfiability · Validity · Computational Complexity · Expressivity of
Logics

1 Introduction

Probabilistic team semantics is a novel framework for the logical analysis of prob-
abilistic and quantitative dependencies. Team semantics, as a semantic frame-
work for logics involving qualitative dependencies and independencies, was intro-
duced by Hodges [17] and popularised by Väänänen [25] via his dependence logic.
Team semantics defines truth in reference to collections of assignments, called
teams, and is particularly suitable for the formal analysis of properties, such
as the functional dependence between variables, that arise only in the presence
of multiple assignments. The idea of generalising team semantics to the proba-
bilistic setting can be traced back to the works of Galliani [6] and Hyttinen et
al. [18], however the beginning of a more systematic study of the topic dates
back to works of Durand et al. [4].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 665–680, 2023.
https://doi.org/10.1007/978-3-031-43619-2_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_45&domain=pdf
http://orcid.org/0000-0002-9637-6664
http://orcid.org/0000-0002-2701-9620
http://orcid.org/0000-0003-0115-5154
http://orcid.org/0000-0002-5651-5391
http://orcid.org/0000-0002-8061-5376
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-031-43619-2_45

666 M. Hannula et al.

Table 1. Overview of our results. Unless otherwise noted, the results are completeness
results. Satisfiability and Validity are considered for finite structures.

Logic MC for sentences SAT VAL

FOPT(≤δ
c) PSPACE (Corollary 20) RE [11, Theorem 5.2] coRE [11, Theorem 5.2]

FO(⊥⊥c) ∈ EXPSPACE and NEXPTIME-hard (Theorem 24) RE (Theorem 26) coRE (Theorem 26)

FO(∼) AEXPTIME[poly] [22, Proposition 5.16, Lemma 5.21] RE [22, Theorem 5.6] coRE [22, Theorem 5.6]

FO(≈) ∈ EXPTIME, PSPACE-hard (Theorem 22) RE (Theorem 26) coRE (Theorem 26)

FO(∼,⊥⊥c) ∈ 3-EXPSPACE, AEXPTIME[poly]-hard (Theorem 25) RE (Theorem 26) coRE (Theorem 26)

In probabilistic team semantics the basic semantic units are probability distri-
butions (i.e., probabilistic teams). This shift from set-based to distribution-based
semantics allows probabilistic notions of dependency, such as conditional proba-
bilistic independence, to be embedded in the framework1. The expressivity and
complexity of non-probabilistic team-based logics can be related to fragments
of (existential) second-order logic and have been studied extensively (see, e.g.,
[5,7,9]). Team-based logics, by definition, are usually not closed under Boolean
negation, so adding it can greatly increase the complexity and expressivity of
these logics [15,19]. Some expressivity and complexity results have also been
obtained for logics in probabilistic team semantics (see below). However, richer
semantic and computational frameworks are sometimes needed to characterise
these logics.

Metafinite Model Theory, introduced by Grädel and Gurevich [8], generalises
the approach of Finite Model Theory by shifting to two-sorted structures, which
extend finite structures by another (often infinite) numerical domain and weight
functions bridging the two sorts. A particularly important subclass of metafinite
structures are the so-called R-structures, which extend finite structures with the
real arithmetic on the second sort. Blum-Shub-Smale machines (BSS machines
for short) [1] are essentially register machines with registers that can store arbi-
trary real numbers and compute rational functions over reals in a single time
step. Interestingly, Boolean languages which are decidable by a non-deterministic
polynomial-time BSS machine coincide with those languages which are PTIME-
reducible to the true existential sentences of real arithmetic (i.e., the complexity
class ∃R) [2,24].

Recent works have established fascinating connections between second-order
logics over R-structures, complexity classes using the BSS-model of computation,
and logics using probabilistic team semantics. In [13], Hannula et al. establish
that the expressivity and complexity of probabilistic independence logic coincide
with a particular fragment of existential second-order logic over R-structures and
NP on BSS-machines. In [16], Hannula and Virtema focus on probabilistic inclu-
sion logic, which is shown to be tractable (when restricted to Boolean inputs),
and relate it to linear programming.

1 In [21] Li recently introduced first-order theory of random variables with probabilistic
independence (FOTPI) whose variables are interpreted by discrete distributions over
the unit interval. The paper shows that true arithmetic is interpretable in FOTPI
whereas probabilistic independence logic is by our results far less complex.

Logics with Probabilistic Team Semantics and the Boolean Negation 667

formulas:

SOR(+,×, log)

FO(⊥⊥c,∼) = SOR(+,×)FO(H)

FO(⊥⊥c)

FO(≈) FOPT(≤c)

FO

sentences:

SOR(+,×, log)

FO(⊥⊥c,∼) = SOR(+,×) [Thm. 8]FO(H)

FO(⊥⊥c)

FO(≈)

FO = FOPT(c) [Thm. 19]

T
hm

.
21

[10, Thm. 10]

Cor. 15 Pr
op
. 4

Th
m.

16

AC0

P

∃R

Fig. 1. Landscape of relevant logics as well as relation to some complexity classes. Note
that for the complexity classes, finite ordered structures are required. Single arrows
indicate inclusions and double arrows indicate strict inclusions.

In this paper, we focus on the expressivity and model checking complexity
of probabilistic team-based logics that have access to Boolean negation. We
also study the connections between probabilistic independence logic and a logic
called FOPT(≤δ

c), which is defined via a computationally simpler probabilistic
semantics [11]. The logic FOPT(≤δ

c) is the probabilistic variant of a certain
team-based logic that can define exactly those dependencies that are first-order
definable [20]. We also introduce novel entropy atoms and relate the extension
of first-order logic with these atoms to probabilistic independence logic.

See Fig. 1 for our expressivity results and Table 1 for our complexity results.

2 Preliminaries

We assume the reader is familiar with the basics in complexity theory [23]. In
this work, we will encounter complexity classes PSPACE, EXPTIME, NEXPTIME,
EXPSPACE and the class AEXPTIME[poly] together with the notion of complete-
ness under the usual polynomial time many to one reductions. A bit more for-
mally for the latter complexity class which is more uncommon than the others,
AEXPTIME[poly] consists of all languages that can be decided by alternating
Turing machines within an exponential runtime of O(2nO(1)

) and polynomially
many alternations between universal and existential states. There exist prob-
lems in propositional team logic with generalized dependence atoms that are
complete for this class [14]. It is also known that truth evaluation of alternating
dependency quantified boolean formulae (ADQBF) is complete for this class [14].

2.1 Probabilistic Team Semantics

We denote first-order variables by x, y, z and tuples of first-order variables by
x,y, z. For the length of the tuple x, we write |x|. The set of variables that

668 M. Hannula et al.

appear in the tuple x is denoted by Var(x). A vocabulary τ is a finite set of
relation, function, and constant symbols, denoted by R, f , and c, respectively.
Each relation symbol R and function symbol f has a prescribed arity, denoted
by Ar(R) and Ar(f).

Let τ be a finite relational vocabulary such that {=} ⊆ τ . For a finite τ -
structure A and a finite set of variables D, an assignment of A for D is a function
s : D → A. A team X of A over D is a finite set of assignments s : D → A.

A probabilistic team X is a function X : X → R≥0, where R≥0 is the set of non-
negative real numbers. The value X(s) is called the weight of assignment s. Since
zero-weights are allowed, we may, when useful, assume that X is maximal, i.e.,
it contains all assignments s : D → A. The support of X is defined as supp(X) :=
{s ∈ X | X(s) �= 0}. A team X is nonempty if supp(X) �= ∅.

These teams are called probabilistic because we usually consider teams that
are probability distributions, i.e., functions X : X → R≥0 for which

∑
s∈X X(s) =

1.2 In this setting, the weight of an assignment can be thought of as the probabil-
ity that the values of the variables are as in the assignment. If X is a probability
distribution, we also write X : X → [0, 1].

For a set of variables V , the restriction of the assignment s to V is denoted
by s � V . The restriction of a team X to V is X � V = {s � V | s ∈ X}, and the
restriction of a probabilistic team X to V is X � V : X � V → R≥0 where

(X � V)(s) =
∑

s′�V =s,
s′∈X

X(s′).

If φ is a first-order formula, then Xφ is the restriction of the team X to
those assignments in X that satisfy the formula φ. The weight |Xφ| is defined
analogously as the sum of the weights of the assignments in X that satisfy φ,
e.g.,

|Xx=a| =
∑

s∈X,
s(x)=a

X(s).

For a variable x and a ∈ A, we denote by s(a/x), the modified assignment
s(a/x) : D ∪ {x} → A such that s(a/x)(y) = a if y = x, and s(a/x)(y) = s(y)
otherwise. For a set B ⊆ A, the modified team X(B/x) is defined as the set
X(B/x) := {s(a/x) | a ∈ B, s ∈ X}.

Let X : X → R≥0 be any probabilistic team. Then the probabilistic team
X(B/x) is a function X(B/x) : X(B/x) → R≥0 defined as

X(B/x)(s(a/x)) =
∑

t∈X,
t(a/x)=s(a/x)

X(t) · 1
|B| .

2 In some sources, the term probabilistic team only refers to teams that are distribu-
tions, and the functions X : X → R≥0 that are not distributions are called weighted
teams.

Logics with Probabilistic Team Semantics and the Boolean Negation 669

If x is a fresh variable, the summation can be dropped and the right-hand side
of the equation becomes X(s) · 1

|B| . For singletons B = {a}, we write X(a/x)
and X(a/x) instead of X({a}/x) and X({a}/x).

Let then X : X → [0, 1] be a distribution. Denote by pB the set of all proba-
bility distributions d : B → [0, 1], and let F be a function F : X → pB . Then the
probabilistic team X(F/x) is a function X(F/x) : X(B/x) → [0, 1] defined as

X(F/x)(s(a/x)) =
∑

t∈X,
t(a/x)=s(a/x)

X(t) · F (t)(a)

for all a ∈ B and s ∈ X. If x is a fresh variable, the summation can again be
dropped and the right-hand side of the equation becomes X(s) · F (s)(a).

Let X : X → [0, 1] and Y : Y → [0, 1] be probabilistic teams with common
variable and value domains, and let k ∈ [0, 1]. The k-scaled union of X and Y,
denoted by X 	k Y, is the probabilistic team X 	k Y : Y → [0, 1] defined as

X 	k Y(s) :=

⎧
⎪⎨

⎪⎩

k · X(s) + (1 − k) · Y(s) if s ∈ X ∩ Y,

k · X(s) if s ∈ X \ Y,

(1 − k) · Y(s) if s ∈ Y \ X.

3 Probabilistic Independence Logic with Boolean
Negation

In this section, we define probabilistic independence logic with Boolean nega-
tion, denoted by FO(⊥⊥c,∼). The logic extends first-order logic with probabilistic
independence atom y ⊥⊥x z which states that the tuples y and z are independent
given the tuple x. The syntax for the logic FO(⊥⊥c,∼) over a vocabulary τ is as
follows:

φ:: = R(x) | ¬R(x) | y ⊥⊥x z | ∼ φ | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ,

where x is a first-order variable, x, y, and z are tuples of first-order variables,
and R ∈ τ .

Let ψ be a first-order formula. We denote by ψ¬ the formula which is obtained
from ¬ψ by pushing the negation in front of atomic formulas. We also use the
shorthand notations ψ → φ := (ψ¬ ∨ (ψ ∧ φ)) and ψ ↔ φ := ψ → φ ∧ φ → ψ.

Let X : X → [0, 1] be a probability distribution. The semantics for the logic
is defined as follows:

– A |=X R(x) iff A |=s R(x) for all s ∈ supp(X).
– A |=X ¬R(x) iff A |=s ¬R(x) for all s ∈ supp(X).
– A |=X y ⊥⊥x z iff |Xxy=s(xy)| · |Xxz=s(xz)| = |Xxyz=s(xyz)| · |Xx=s(x)| for all

s : Var(xyz) → A.
– A |=X ∼φ iff A �|=X φ.
– A |=X φ ∧ ψ iff A |=X φ and A |=X ψ.

670 M. Hannula et al.

– A |=X φ ∨ ψ iff A |=Y φ and A |=Z ψ for some Y, Z, k such that Y 	k Z = X.
– A |=X ∃xφ iff A |=X(F/x) φ for some F : X → pA.
– A |=X ∀xφ iff A |=X(A/x) φ.

The satisfaction relation |=s above refers to the Tarski semantics of first-order
logic. For a sentence φ, we write A |= φ if A |=X∅ φ, where X∅ is the distribution
that maps the empty assignment to 1.

The logic also has the following useful property called locality. Denote by
Fr(φ) the set of the free variables of a formula φ.

Proposition 1 (Locality, [4, Proposition 12]). Let φ be any FO(⊥⊥c,∼)[τ]-
formula. Then for any set of variables V , any τ -structure A, and any probabilistic
team X : X → [0, 1] such that Fr(φ) ⊆ V ⊆ D,

A |=X φ ⇐⇒ A |=X�V φ.

In addition to probabilistic conditional independence atoms, we may also
consider other atoms. If x and y are tuples of variables, then =(x,y) is a depen-
dence atom. If x and y are also of the same length, x ≈ y is a marginal identity
atom. The semantics for these atoms are defined as follows:

– A |=X=(x,y) iff for all s, s′ ∈ supp(X), s(x) = s′(x) implies s(y) = s′(y),
– A |=X x ≈ y iff |Xx=a| = |Xy=a| for all a ∈ A|x|.

We write FO(=(·)) and FO(≈) for first-order logic with dependence atoms
or marginal identity atoms, respectively. Analogously, for C ⊆ {=(·),≈,⊥⊥c,∼},
we write FO(C) for the logic with access to the atoms (or the Boolean negation)
from C.

For two logics L and L′ over probabilistic team semantics, we write L ≤ L′ if
for any formula φ ∈ L, there is a formula ψ ∈ L′ such that A |=X φ ⇐⇒ A |=X ψ
for all A and X. The equality ≡ and strict inequality < are defined from the
above relation in the usual way. The next two propositions follow from the
fact that dependence atoms and marginal identity atoms can be expressed with
probabilistic independence atoms.

Proposition 2 ([3, Proposition 24]) FO(=(·)) ≤ FO(⊥⊥c).

Proposition 3 ([10, Theorem 10]) FO(≈) ≤ FO(⊥⊥c).

On the other hand, omitting the Boolean negation strictly decreases the expres-
sivity as witnessed by the next proposition.

Proposition 4. FO(⊥⊥c) < FO(⊥⊥c,∼).

Proof. By Theorems 4.1 and 6.5 of [13], over a fixed universe size, any open
formula of FO(⊥⊥c) defines a closed subset of R

n for a suitable n depending
on the size of the universe and the number of free variables. Now, clearly, this
cannot be true for all of the formulas of FO(⊥⊥c,∼) as it contains the Boolean
negation, e.g., the formula ∼ x ⊥⊥y z. �	

Logics with Probabilistic Team Semantics and the Boolean Negation 671

4 Metafinite Logics

In this section, we consider logics over R-structures. These structures extend
finite relational structures with real numbers R as a second domain and add
functions that map tuples from the finite domain to R.

Definition 5 (R-structures). Let τ and σ be finite vocabularies such that τ
is relational and σ is functional. An R-structure of vocabulary τ ∪ σ is a tuple
A = (A, R, F) where the reduct of A to τ is a finite relational structure, and
F is a set that contains functions fA : AAr(f) → R for each function symbol
f ∈ σ. Additionally, (i) for any S ⊆ R, if each fA is a function from AAr(f)

to S, A is called an S-structure, (ii) if each fA is a distribution, A is called a
d[0, 1]-structure.

Next, we will define certain metafinite logics which are variants of functional
second-order logic with numerical terms. The numerical σ-terms i are defined as
follows:

i ::= f(x) | i × i | i + i | SUMyi | log i,

where f ∈ σ and x and y are first-order variables such that |x| = Ar(f). The
interpretation of a numerical term i in the structure A under an assignment s is
denoted by [i]As . We define

[SUMyi]As :=
∑

a∈A|y|

[i]As(a/y).

The interpretations of the rest of the numerical terms are defined in the obvious
way.

Suppose that {=} ⊆ τ , and let O ⊆ {+,×,SUM, log}. The syntax for the
logic SOR(O) is defined as follows:

φ:: = i = j | ¬i = j | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ | ∃fψ | ∀fψ,

where i and j are numerical σ-terms constructed using operations from O, R ∈ τ ,
x, y, and x are first-order variables, f is a function variable, and ψ is a τ∪σ∪{f}-
formula of SOR(O).

The semantics of SOR(O) is defined via R-structures and assignments anal-
ogous to first-order logic, except for the interpretations of function variables f ,
which range over functions AAr(f) → R. For any S ⊆ R, we define SOS(O) as
the variant of SOR(O), where the quantification of function variables ranges over
AAr(f) → S. If the quantification of function variables is restricted to distribu-
tions, the resulting logic is denoted by SOd[0,1](O). The existential fragment, in
which universal quantification over function variables is not allowed, is denoted
by ESOR(O).

For metafinite logics L and L′, we define expressivity comparison relations
L ≤ L′, L ≡ L′, and L < L′ in the usual way, see e.g. [13]. For the proofs of the
following two propositions, see the full version [12] of this paper in ArXiv.

Proposition 6. SOR(SUM,×) ≡ SOR(+,×).

Proposition 7. SOd[0,1](SUM,×) ≡ SOR(+,×).

672 M. Hannula et al.

5 Equi-Expressivity of FO(⊥⊥c,∼) and SOR(+,×)

In this section, we show that the expressivity of probabilistic independence
logic with the Boolean negation coincides with full second-order logic over R-
structures.

Theorem 8. FO(⊥⊥c,∼) ≡ SOR(+,×).

We first show that FO(⊥⊥c,∼) ≤ SOR(+,×). Note that by Proposition 7, we
have SOd[0,1](SUM,×) ≡ SOR(+,×), so it suffices to show that FO(⊥⊥c,∼) ≤
SOd[0,1](SUM,×). We may assume that every independence atom is in the form
y ⊥⊥x z or y ⊥⊥x y where x,y, and z are pairwise disjoint tuples. [4, Lemma 25]

Theorem 9. Let formula φ(v) ∈ FO(⊥⊥c,∼) be such that its free-variables are
from v = (v1, . . . , vk). Then there is a formula ψφ(f) ∈ SOd[0,1](SUM,×) with
exactly one free function variable such that for all structures A and all proba-
bilistic teams X : X → [0, 1], A |=X φ(v) if and only if (A, fX) |= ψφ(f), where
fX : Ak → [0, 1] is a probability distribution such that fX(s(v)) = X(s) for all
s ∈ X.

Proof. Define the formula ψφ(f) as follows:

1. If φ(v) = R(vi1 , . . . , vil), where 1 ≤ i1, . . . , il ≤ k, then ψφ(f) := ∀v(f(v) =
0 ∨ R(vi1 , . . . , vil)).

2. If φ(v) = ¬R(vi1 , . . . , vil), where 1 ≤ i1, . . . , il ≤ k, then ψφ(f) := ∀v(f(v) =
0 ∨ ¬R(vi1 , . . . , vil)).

3. If φ(v) = v1 ⊥⊥v0 v2, where v0,v1,v2 are disjoint, then

ψφ(f) := ∀v0v1v2(SUMv\(v0v1)f(v) × SUMv\(v0v2)f(v) =
SUMv\(v0v1)f(v) × SUMv\v0f(v)).

4. If φ(v) = v1 ⊥⊥v0 v1, where v0,v1 are disjoint, then

ψφ(f) := ∀v0v1(SUMv\(v0v1)f(v) = 0 ∨ SUMv\(v0v1)f(v) = SUMv\v0f(v)).

5. If φ(v) = ∼ φ0(v), then ψφ(f) := ψ¬
φ0

(f), where ψ¬
φ0

is obtained from ¬ψφ0

by pushing the negation in front of atomic formulas.
6. If φ(v) = φ0(v) ∧ φ1(v), then ψφ(f) := ψφ0(f) ∧ ψφ1(f).
7. If φ(v) = φ0(v) ∨ φ1(v), then

ψφ(f) := ψφ0(f) ∨ ψφ1(f)
∨ (∃g0g1g2g3(∀v∀x(x = l ∨ x = r ∨ (g0(x) = 0 ∧ g3(v, x) = 0))
∧ ∀v(g3(v, l) = g1(v) × g0(l) ∧ g3(v, r) = g2(v) × g0(r))
∧ ∀v(SUMxg3(v, x) = f(v)) ∧ ψφ0(g1) ∧ ψφ1(g2))).

8. If φ(v) = ∃xφ0(v, x), then ψφ(f) := ∃g(∀v(SUMxg(v, x) = f(v)) ∧ ψφ0(g)).
9. If φ(v) = ∃xφ0(v, x), then

ψφ(f) := ∃g(∀v(∀x∀y(g(v, x) = g(v, y)) ∧ SUMxg(v, x) = f(v)) ∧ ψφ0(g)).

Logics with Probabilistic Team Semantics and the Boolean Negation 673

Since the the above is essentially same as the translation in [4, Theorem 14], but
extended with the Boolean negation (for which the claim follows directly from
the semantical clauses), it is easy to show that ψφ(f) satisfies the claim. �	

We now show that SOR(+,×) ≤ FO(⊥⊥c,∼,). By Propositions 3 and 7,
FO(⊥⊥c,∼,≈) ≡ FO(⊥⊥c,∼) and SOR(+,×) ≡ SOd[0,1](SUM,×), so it suffices
to show that SOd[0,1](SUM,×) ≤ FO(⊥⊥c,∼,≈).

Note that even though we consider SOd[0,1](SUM,×), where only distribu-
tions can be quantified, it may still happen that the interpretation of a numerical
term does not belong to the unit interval. This may happen if we have a term of
the form SUMxi(y) where x contains a variable that does not appear in y. For-
tunately, for any formula containing such terms, there is an equivalent formula
without them [16, Lemma 19]. Thus, it suffices to consider formulas without such
terms.

To prove that SOd[0,1](SUM,×) ≤ FO(⊥⊥c,∼,≈), we construct a useful nor-
mal form for SOd[0,1](SUM,×)-sentences. The following lemma is based on sim-
ilar lemmas from [4, Lemma, 16] and [16, Lemma, 20]. The proofs of the next
two lemmas are in the full version [12] of this paper.

Lemma 10. Every formula φ ∈ SOd[0,1](SUM,×) can be written in the form
φ∗ := Q1f1 . . . Qnfn∀xθ, where Q ∈ {∃,∀}, θ is quantifier-free and such that
all the numerical identity atoms are in the form fi(uv) = fj(u) × fk(v) or
fi(u) = SUMvfj(uv) for distinct fi,fj,fk such that at most one of them is not
quantified.

Lemma 11. We use the abbreviations ∀∗xφ and φ →∗ ψ for the FO(⊥⊥c,∼,≈)-
formulas ∼ ∃x ∼φ and ∼(φ ∧ ∼ψ), respectively. Let φ∃ := ∃y(x ⊥⊥ y ∧ ψ(x,y))
and φ∀ := ∀∗y(x ⊥⊥ y →∗ ψ(x,y)) be FO(⊥⊥c,∼)-formulas with free variables
form x = (x1, . . . , xn). Then for any structure A and probabilistic team X over
{x1, . . . , xn},
(i) A |=X φ∃ iff A |=X(d/y) ψ for some distribution d : A|y| → [0, 1],
(ii) A |=X φ∀ iff A |=X(d/y) ψ for all distributions d : A|y| → [0, 1].

Theorem 12. Let φ(p) ∈ SOd[0,1](SUM,×) be a formula in the form φ∗ :=
Q1f1 . . . Qnfn∀xθ, where Q ∈ {∃,∀}, θ is quantifier-free and such that all the
numerical identity atoms are in the form fi(uv) = fj(u) × fk(v) or fi(u) =
SUMvfj(uv) for distinct fi,fj,fk from {f1, . . . , fn, p}. Then there is a formula
Φ ∈ FO(⊥⊥c,∼,≈) such that for all structures A and probabilistic teams X := pA,

A |=X Φ if and only if (A, p) |= φ.

Proof. Define

Φ := ∀xQ∗
1y1(x ⊥⊥ y1 ◦1 Q∗

2y2(xy1 ⊥⊥ y2 ◦2 Q∗
3y3(xy1y2 ⊥⊥ y3 ◦3 . . .

Q∗
nyn(xy1 . . .yn−1 ⊥⊥ yn ◦n Θ) . . .))),

where Q∗
i = ∃ and ◦i = ∧, whenever Qi = ∃ and Q∗

i = ∀∗ and ◦i =→∗, whenever
Qi = ∀. By Lemma 11, it suffices to show that for all distributions f1, . . . , fn,

674 M. Hannula et al.

subsets M ⊆ A|x|, and probabilistic teams Y := X(M/x)(f1/y1) . . . (fn/yn), we
have

A |=Y Θ ⇐⇒ (A, p, f1, . . . , fn) |= θ(a) for all a ∈ M.

The claim is shown by induction on the structure of the formula Θ. For the
details, see the full ArXiv version [12] of the paper.

1. If θ is an atom or a negated atom (of the first sort), then we let Θ := θ.
2. Let θ = fi(xi) = fj(xj) × fk(xk). Then define

Θ := ∃αβ((α = 0 ↔ xi = yi) ∧ (β = 0 ↔ xjxk = yjyk) ∧ xα ≈ xβ).

The negated case ¬fi(xi) = fj(xj) × fk(xk) is analogous; just add ∼ in front
of the existential quantification.

3. Let θ = fi(xi) = SUMxk
fj(xkxj). Then define

Θ := ∃αβ((α = 0 ↔ xi = yi) ∧ (β = 0 ↔ xj = yj) ∧ xα ≈ xβ).

The negated case ¬fi(xi) = SUMxk
fj(xkxj) is again analogous.

4. If θ = θ0 ∧ θ1, then Θ = Θ0 ∧ Θ1.
5. If θ = θ0 ∨ θ1, then Θ := ∃z(z ⊥⊥x z ∧ ((Θ0 ∧ z = 0) ∨ (Θ1 ∧ ¬z = 0))). �	

6 Probabilistic Logics and Entropy Atoms

In this section we consider extending probabilistic team semantics with novel
entropy atoms. For a discrete random variable X, with possible outcomes
x1, ..., xn occuring with probabilities P(x1), ...,P(xn), the Shannon entropy of
X is given as:

H(X) := −
n∑

i=1

P(xi) log P(xi),

The base of the logarithm does not play a role in this definition (usually it is
assumed to be 2). For a set of discrete random variables, the entropy is defined
in terms of the vector-valued random variable it defines. Given three sets of
discrete random variables X,Y,Z, it is known that X is conditionally indepen-
dent of Y given Z (written X ⊥⊥ Y | Z) if and only if the conditional mutual
information I(X;Y |Z) vanishes. Similarly, functional dependence of Y from X
holds if and only if the conditional entropy H(Y |X) of Y given X vanishes.
Writing UV for the union of two sets U and V , we note that I(X;Y |Z) and
H(Y |X) can respectively be expressed as H(ZX)+H(ZY)−H(Z)−H(ZXY)
and H(XY) − H(X). Thus many familiar dependency concepts over random
variables translate into linear equations over Shannon entropies. In what fol-
lows, we shortly consider similar information-theoretic approach to dependence
and independence in probabilistic team semantics.

Let X : X → [0, 1] be a probabilistic team over a finite structure A with
universe A. Let x be a k-ary sequence of variables from the domain of X. Let
Px be the vector-valued random variable, where Px(a) is the probability that

Logics with Probabilistic Team Semantics and the Boolean Negation 675

x takes value a in the probabilistic team X. The Shannon entropy of x in X is
defined as follows:

HX(x) := −
∑

a∈Ak

Px(a) log Px(a). (1)

Using this definition we now define the concept of an entropy atom.

Definition 13 (Entropy atom). Let x and y be two sequences of variables
from the domain of X. These sequences may be of different lengths. The entropy
atom is an expression of the form H(x) = H(y), and it is given the following
semantics:

A |=X H(x) = H(y) ⇐⇒ HX(x) = HX(y).

We then define entropy logic FO(H) as the logic obtained by extending first-
order logic with entropy atoms. The entropy atom is relatively powerful com-
pared to our earlier atoms, since, as we will see next, it encapsulates many
familiar dependency notions such as dependence and conditional independence.
The proof of the theorem is in the full version [12] of this paper.

Theorem 14. The following equivalences hold over probabilistic teams of finite
structures with two distinct constants 0 and 1:

1. =(x,y) ≡ H(x) = H(xy).
2. x ⊥⊥ y ≡ φ, where φ is defined as

∀z∃uv
([

z = 0 → (
=(u,x)∧ =(x,u)∧ =(v,xy)∧ =(xy,v)

)]∧
[
z = 1 → (

=(u,y)∧ =(y,u) ∧ v = 0
)]∧

[
(z = 0 ∨ z = 1) → H(uz) = H(vz)

])
,

where |u| = max{|x|,y|} and |v| = |xy|.
Since conditional independence can be expressed with marginal indepen-

dence, i.e., FO(⊥⊥c) ≡ FO(⊥⊥) [10, Theorem 11], we obtain the following corol-
lary:

Corollary 15. FO(⊥⊥c) ≤ FO(H).

It is easy to see at this point that entropy logic and its extension with negation
are subsumed by second-order logic over the reals with exponentiation.

Theorem 16. FO(H) ≤ ESOR(+,×, log) and FO(H,∼) ≤ SOR(+,×, log).

Proof. The translation is similar to the one in Theorem 9, so it suffices to notice
that the entropy atom H(x) = H(y) can be expressed as

SUMzf(x, z) log f(x, z) = SUMz′f(y, z′) log f(y, z′).

Since SUM can be expressed in ESOR(+,×, log) and SOR(+,×, log), we are
done. �	

676 M. Hannula et al.

7 Logic for First-Order Probabilistic Dependecies

Here, we define the logic FOPT(≤δ
c), which was introduced in [11].3 Let δ be a

quantifier- and disjunction-free first-order formula, i.e., δ:: = λ | ¬δ | (δ∧δ) for a
first-order atomic formula λ of the vocabulary τ . Let x be a first-order variable.
The syntax for the logic FOPT(≤δ

c) over a vocabulary τ is defined as follows:

φ:: = δ | (δ|δ) ≤ (δ|δ) | ∼̇φ | (φ ∧ φ) | (φ\∨ φ) | ∃1xφ | ∀1xφ.

Let X : X → R≥0 be any probabilistic team, not necessarily a probability
distribution. The semantics for the logic is defined as follows:

– A |=X δ iff A |=s δ for all s ∈ supp(X).
– A |=X (δ0|δ1) ≤ (δ2|δ3) iff |Xδ0∧δ1 | · |Xδ3 | ≤ |Xδ2∧δ3 | · |Xδ1 |.
– A |=X ∼̇φ iff A �|=X φ or X is empty.
– A |=X φ ∧ ψ iff A |=X φ and A |=X ψ.
– A |=X φ\∨ ψ iff A |=X φ or A |=X ψ.
– A |=X ∃1xφ iff A |=X(a/x) φ for some a ∈ A.
– A |=X ∀1xφ iff A |=X(a/x) φ for all a ∈ A.

Next, we present some useful properties of FOPT(≤δ
c).

Proposition 17. (Locality, [11, Proposition 3.2]). Let φ be any FOPT(≤δ
c)

[τ]-formula. Then for any set of variables V , any τ -structure A, and any prob-
abilistic team X : X → R≥0 such that Fr(φ) ⊆ V ⊆ D,

A |=X φ ⇐⇒ A |=X�V φ.

Over singleton traces the expressivity of FOPT(≤δ
c) coincides with that of

FO. For φ ∈ FOPT(≤δ
c), let φ∗ denote the FO-formula obtained by replacing

the symbols ∼̇, \∨,∃1, and ∀1 by ¬,∨,∃, and ∀, respectively, and expressions of
the form (δ0 | δ1) ≤ (δ2 | δ3) by the formula ¬δ0 ∨ ¬δ1 ∨ δ2 ∨ ¬δ3.

Proposition 18. (Singleton equivalence). Let φ be a FOPT(≤δ
c)[τ]-formula,

A a τ structure, and X a probabilistic team of A with support {s}. Then A |=X φ
iff A |=s φ∗.

Proof. The proof proceeds by induction on the structure of formulas. The cases
for literals and Boolean connectives are trivial. The cases for quantifiers are
immediate once one notices that interpreting the quantifiers ∃1 and ∀1 maintain
singleton supportness. We show the case for ≤. Let ‖δ‖A,s = 1 if A |=s δ, and
‖δ‖A,s = 0 otherwise. Then

A |=X (δ0 | δ1) ≤ (δ2 | δ3) ⇐⇒ |Xδ0∧δ1 | · |Xδ3 | ≤ |Xδ2∧δ3 | · |Xδ1 |
⇐⇒ ‖δ0 ∧ δ1‖A,s · ‖δ3‖A,s ≤ ‖δ2 ∧ δ3‖A,s · ‖δ1‖A,s

⇐⇒ A |=s ¬δ0 ∨ ¬δ1 ∨ δ2 ∨ ¬δ3.

3 In [11], two sublogics of FOPT(≤δ
c), called FOPT(≤δ) and FOPT(≤δ,⊥⊥δ

c), were
also considered. Note that the results of this section also hold for these sublogics.

Logics with Probabilistic Team Semantics and the Boolean Negation 677

The first equivalence follows from the semantics of ≤ and the second follows
from the induction hypotheses after observing that the support of X is {s}. The
last equivalence follows via a simple arithmetic observation.

The following theorem follows directly from Propositions 17 and 18.

Theorem 19. For sentences we have that FOPT(≤δ
c) ≡ FO.

For a logic L, we write MC(L) for the following variant of the model checking
problem: given a sentence φ ∈ L and a structure A, decide whether A |= φ. The
above result immediately yields the following corollary.

Corollary 20. MC(FOPT(≤δ
c)) is PSPACE-complete.

Proof. This follows directly from the linear translation of FOPT(≤δ
c)-sentences

into equivalent FO -sentences of Theorem 19 and the well-known fact that the
model-checking problem of FO is PSPACE-complete.

The first claim of the next theorem follows from the equi-expressivity of
FO(⊥⊥c,∼) and SOR(+,×), and the fact that every FOPT(≤δ

c) formula can be
translated to ESOR(SUM,+,×), a sublogic of SOR(+,×). For the details and
the proof of the second claim, see the full version [12] of this paper.

Theorem 21. FOPT(≤δ
c) ≤ FO(⊥⊥c,∼) and FOPT(≤δ

c) is non-comparable to
FO(⊥⊥c) for open formulas.

8 Complexity of Satisfiability, Validity and Model
Checking

We now define satisfiability and validity in the context of probabilistic team
semantics. Let φ ∈ FO(⊥⊥c,∼,≈). The formula φ is satisfiable in a structure
A if A |=X φ for some probabilistic team X, and φ is valid in a structure A if
A |=X φ for all probabilistic teams X over Fr(φ). The formula φ is satisfiable if
there is a structure A such that φ is satisfiable in A, and φ is valid if φ is valid
in A for all structures A.

For a logic L, the satisfiability problem SAT(L) and the validity problem
VAL(L) are defined as follows: given a formula φ ∈ L, decide whether φ is
satisfiable (or valid, respectively).

Theorem 22. MC(FO(≈)) is in EXPTIME and PSPACE-hard.

Proof. First note that FO(≈) is clearly a conservative extension of FO, as it is
easy to check that probabilistic semantics and Tarski semantics agree on first-
order formulas over singleton traces. The hardness now follows from this and the
fact that model checking problem for FO is PSPACE-complete.

For upper bound, notice first that any FO(≈)-formula φ can be reduced to
an almost conjunctive formula ψ∗ of ESOR(+,≤,SUM) [16, Lem, 17]. Then
the desired bounds follow due to the reduction from Proposition 3 in [16]. The

678 M. Hannula et al.

mentioned reduction yields families of systems of linear inequalities S from a
structure A and assignment s such that a system S ∈ S has a solution if and
only if A |=s φ. For a FO(≈)-formula φ, this transition requires exponential time
and this yields membership in EXPTIME.

This lemma is used to prove the upper-bounds in the next three theorems.
See the full version [12], for the proofs of the lemma and the theorems.

Lemma 23. Let A be a finite structure and φ ∈ FO(⊥⊥c,∼). Then there is a
first-order sentence ψφ,A over vocabulary {+,×,≤, 0, 1} such that φ is satisfiable
in A if and only if (R,+,×,≤, 0, 1) |= ψφ,A.

Theorem 24. MC(FO(⊥⊥c)) is in EXPSPACE and NEXPTIME-hard.

Theorem 25. MC(FO(∼,⊥⊥c)) ∈ 3-EXPSPACE and AEXPTIME[poly]-hard.

Theorem 26. SAT(FO(⊥⊥c,∼)) is RE-, VAL(FO(⊥⊥c,∼)) is coRE-complete.

Corollary 27. SAT(FO(≈)) and SAT(FO(⊥⊥c)) are RE- and VAL(FO(≈)) and
VAL(FO(⊥⊥c)) are coRE-complete.

Proof. The lower bound follows from the fact that FO(≈) and FO(⊥⊥c) are both
conservative extensions of FO. We obtain the upper bound from the previous
theorem, since FO(⊥⊥c,∼) includes both FO(≈) and FO(⊥⊥c).

9 Conclusion

We have studied the expressivity and complexity of various logics in probabilistic
team semantics with the Boolean negation. Our results give a quite comprehen-
sive picture of the relative expressivity of these logics and their relations to
numerical variants of (existential) second-order logic. An interesting question
for further study is to determine the exact complexities of the decision problems
studied in Sect. 8. Furthermore, dependence atoms based on various notions of
entropy deserve further study, as do the connections of probabilistic team seman-
tics to the field of information theory.

Acknowledgements. The first author is supported by the ERC grant 101020762. The
second author is supported by Academy of Finland grant 345634. The third author
is supported by Academy of Finland grants 338259 and 345634. The fourth author
appreciates funding by the European Union’s Horizon Europe research and innovation
programme within project ENEXA (101070305). The fifth author appreciates funding
by the German Research Foundation (DFG), project ME 4279/3-1. The sixth author
is partially funded by the German Research Foundation (DFG), project VI 1045/1-1.

Logics with Probabilistic Team Semantics and the Boolean Negation 679

References

1. Blum, L., Shub, M., Smale, S.: On a theory of computation over the real numbers;
NP completeness, recursive functions and universal machines. In: 29th Annual
Symposium on Foundations of Computer Science, pp. 387–397 (1988)

2. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations
II: algebraic and semialgebraic sets. J. Complex. 22(2), 147–191 (2006)

3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and
dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320
(2018)

4. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp.
186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 11

5. Durand, A., Kontinen, J., de Rugy-Altherre, N., Väänänen, J.: Tractability frontier
of data complexity in team semantics. ACM Trans. Comput. Log. 23(1), 3:1–3:21
(2022)

6. Galliani, P.: Game values and equilibria for undetermined sentences of dependence
logic. MSc Thesis. ILLC Publications, MoL-2008-08 (2008)

7. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: CSL. LIPIcs, vol.
23, pp. 281–295. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)

8. Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140(1), 26–81
(1998)

9. Hannula, M., Hella, L.: Complexity thresholds in inclusion logic. Inf. Comput. 287,
104759 (2022)

10. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of dis-
tribution identities in probabilistic team semantics. In: Calimeri, F., Leone, N.,
Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 304–320. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19570-0 20

11. Hannula, M., Hirvonen, M., Kontinen, J.: On elementary logics for quantitative
dependencies. Ann. Pure Appl. Log. 173(10), 103104 (2022)

12. Hannula, M., Hirvonen, M., Kontinen, J., Mahmood, Y., Meier, A., Virtema,
J.: Logics with probabilistic team semantics and the Boolean negation. arXiv
arXiv:2306.00420 (2023)

13. Hannula, M., Kontinen, J., den Bussche, J.V., Virtema, J.: Descriptive complexity
of real computation and probabilistic independence logic. In: LICS, pp. 550–563.
ACM (2020)

14. Hannula, M., Kontinen, J., Lück, M., Virtema, J.: On quantified propositional
logics and the exponential time hierarchy. In: GandALF. EPTCS, vol. 226, pp.
198–212 (2016)

15. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018)

16. Hannula, M., Virtema, J.: Tractability frontiers in probabilistic team semantics
and existential second-order logic over the reals. Ann. Pure Appl. Log. 173(10),
103108 (2022)

17. Hodges, W.: Compositional semantics for a language of imperfect information. Log.
J. IGPL 5(4), 539–563 (1997)

18. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in
measure teams. Arch. Math. Log. 56(5–6), 475–489 (2017)

19. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundam. Informaticae
106(2–4), 259–272 (2011)

https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-030-19570-0_20
http://arxiv.org/abs/2306.00420

680 M. Hannula et al.

20. Kontinen, J., Yang, F.: Complete logics for elementary team properties. J. Symbolic
Logic 88, 579–619 (2022). https://doi.org/10.1017/jsl.2022.80

21. Li, C.T.: First-order theory of probabilistic independence and single-letter charac-
terizations of capacity regions. In: ISIT, pp. 1536–1541. IEEE (2022)

22. Lück, M.: Team logic: axioms, expressiveness, complexity. Ph.D. thesis, Univer-
sity of Hanover, Hannover, Germany (2020). www.repo.uni-hannover.de/handle/
123456789/9430

23. Papadimitriou, C.H.: Computational complexity. Academic Internet Publ. (2007)
24. Schaefer, M., Stefankovic, D.: Fixed points, Nash equilibria, and the existential

theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017)
25. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly

Logic. London Mathematical Society Student Texts, vol. 70. Cambridge University
Press, Cambridge (2007)

https://doi.org/10.1017/jsl.2022.80
www.repo.uni-hannover.de/handle/123456789/9430
www.repo.uni-hannover.de/handle/123456789/9430

Formalizing Statistical Causality
via Modal Logic

Yusuke Kawamoto1,2(B) , Tetsuya Sato3 , and Kohei Suenaga4

1 AIST, Tokyo, Japan
yusuke.kawamoto@aist.go.jp

2 PRESTO, JST, Tokyo, Japan
3 Tokyo Institute of Technology, Tokyo, Japan

4 Kyoto University, Kyoto, Japan

Abstract. We propose a formal language for describing and explaining
statistical causality. Concretely, we define Statistical Causality Language
(StaCL) for expressing causal effects and specifying the requirements for
causal inference. StaCL incorporates modal operators for interventions
to express causal properties between probability distributions in different
possible worlds in a Kripke model. We formalize axioms for probability
distributions, interventions, and causal predicates using StaCL formulas.
These axioms are expressive enough to derive the rules of Pearl’s do-
calculus. Finally, we demonstrate by examples that StaCL can be used
to specify and explain the correctness of statistical causal inference.

1 Introduction

Statistical causality has been gaining significant importance in a variety of
research fields. In particular, in life sciences, more and more researchers have
been using statistical techniques to discover causal relationships from experi-
ments and observations. However, these statistical methods can easily be misused
or misinterpreted. In fact, it is reported that many research articles have serious
errors in the applications and interpretations of statistical methods [8,27].

A common mistake is to misinterpret statistical correlation as statistical
causality. Notably, when we analyze observational data without experimental
interventions, we may overlook some requirements for causal inference and make
wrong calculations, leading to incorrect conclusions about the causality.

For this reason, the scientific community has developed guidelines on many
requirements for statistical analyses [29,37]. However, since there is no formal
language to describe the entire procedures and their requirements, we refer to
guidelines manually and cannot formally guarantee the correctness of analyses.

To address these problems, we propose a logic-based approach to formal-
izing and explaining the correctness of statistical causal inference. Specifically,
we introduce a formal language called statistical causality language (StaCL) to
formally describe and check the requirements for statistical causal inference. We
consider this work as the first step to building a framework for formally guaran-
teeing and explaining the reliability of scientific research.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 681–696, 2023.
https://doi.org/10.1007/978-3-031-43619-2_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_46&domain=pdf
http://orcid.org/0000-0002-2151-9560
http://orcid.org/0000-0001-9895-9209
http://orcid.org/0000-0002-7466-8789
https://doi.org/10.1007/978-3-031-43619-2_46

682 Y. Kawamoto et al.

Contributions. Our main contributions are as follows:

– We propose statistical causality language (StaCL) for formalizing and explain-
ing statistical causality by using modal operators for interventions.

– We define a Kripke model for statistical causality. To formalize not only sta-
tistical correlation but also statistical causality, we introduce a data generator
in a possible world to model a causal diagram in a Kripke model.

– We introduce the notion of causal predicates to express statistical causality
and interpret them using a data generator instead of a valuation in a Kripke
model. In contrast, (classical) predicates are interpreted using a valuation in
a Kripke model to express only statistical correlations.

– We introduce a sound deductive system AXCP for StaCL with axioms for
probability distributions, interventions, and causal predicates. These axioms
are expressive enough to reason about all causal effects identifiable by Pearl’s
do-calculus [30]. We show that AXCP can reason about the correctness of
causal inference methods (e.g., backdoor adjustment). Unlike prior work,
AXCP does not aim to conduct causal inference about a specific causal dia-
gram; rather, it concerns the correctness of the inference methods for any
diagram. To the best of our knowledge, ours appears to be the first modal
logic that can specify and reason about the requirements for causal inference.

Related Work. Many studies on causal reasoning rely on causal diagrams [31].
Whereas they aim to reason about a specific diagram, our logic-based approach
aims to specify and reason about the requirements for causal inference methods.

Logic-based approaches for formalizing causal reasoning have been proposed.
To name a few, Halpern and Pearl provide logic-based definitions of actual causes
where logical formulas with events formalize counterfactuals [11–13]. Proba-
bilistic logical languages [19] are proposed to axiomatize causal reasoning with
observation, intervention, and counterfactual inference. Unlike our logic, how-
ever, their framework does not aim to syntactically derive the correctness of
statistical causal inference. The causal calculus [28] is used to provide a logical
representation [3,4] of Pearl [31]’s structural causal model. The counterfactual-
observational language [1] can reason about interventionist counterfactuals and
has an axiomatization that is complete w.r.t. a causal team semantics. A modal
logic in [2] integrates causal and epistemic reasoning. While these works deal
with deterministic cases only, our StaCL can reason about statistical causality
in probabilistic settings.

There have been studies on incorporating probabilities into team seman-
tics [15]. For example, team semantics is used to deal with the dependence and
independence among random variables [5,6]. A probabilistic team semantics is
provided for a first-order logic that can deal with conditional independence [7]. A
team semantics is also introduced for logic with exact/approximate dependence
and independence atoms [14]. Unlike our StaCL, however, these works do not
allow for deriving the do-calculus or the correctness of causal inference methods.

Concerning the axiomatic characterization of causality, Galles and Pearl [9]
prove that the axioms of composition, effectiveness, and reversibility are sound
and complete with respect to the structural causal models. They also show that

Formalizing Statistical Causality via Modal Logic 683

the reversibility axiom can be derived from the composition axiom if the causal
diagram is acyclic (i.e., has no feedback loop). Halpern [10] provides axiomatiza-
tions for more general classes of causal models with feedback and with equations
that may have no solutions. In contrast, our deductive system AXCP has axioms
for causal predicates and two forms of interventions that can derive the rules of
Pearl’s do-calculus [30], while being equipped with axioms corresponding to the
composition and effectiveness axioms mentioned above only for acyclic diagrams.

For the efficient computation of causal reasoning, constraint solving is applied
[17,18,35]. Probabilistic logic programming is used to encode and reason about
a specific causal diagram [32]. These are orthogonal to the goal of our work.

Finally, a few studies propose modal logic for statistical methods. Statistical
epistemic logic [20–22] specifies various properties of machine learning. Belief
Hoare logic [24,26] can reason about statistical hypothesis testing programs.
However, unlike our StaCL, these cannot reason about statistical causality.

2 Illustrating Example

We first present a simple example to explain our framework.

Example 1 (Drug’s efficacy). We attempt to check a drug’s efficacy for a disease
by observing a situation where some patients take a drug and the others do not.

Table 1 shows the recovery rates and the numbers of patients treated
with/without the drug. For both males and females, more patients recover
by taking the drug. However, for the combined population, the recovery rate
with the drug (0.73) is less than that without it (0.80). This inconsistency is
called Simpson’s paradox [34], showing the difficulty of identifying causality from
observed data.

To model this, we define three variables: a treatment x (1 for drug, 0 for no-
drug), an outcome y (1 for recovery, 0 for non-recovery), and a gender z. Figure 1a
depicts their causal dependency; the arrow x A y denotes that y depends on x.
The causal effect p(y|do(x= c)) of a treatment x= c on an outcome y [31] is
defined as the distribution of y in case y were generated from x = c (Fig. 1b).

However, since the gender z influences the choice of the treatment x in reality
(Fig. 1a), the causal effect p(y|do(x= c)) depends on the common cause z of x
and y and differs from the correlation p(y|x= c). Indeed, in Table 1, 80 % of
females chose to take the drug (x = 1) while only 20 % of males did so; this
dependency of x on the gender z leads to Simpson’s paradox in Table 1. Thus,
calculating the causal effect requires an “adjustment” for z, as explained below.

Overview of the Framework. We describe reasoning about the causal effect
in Example 1 using logical formulas in our formal language StaCL (Sect. 5).

We define ϕRCT
def= �c/x�(c0 = y) to express a randomized controlled trial

(RCT), where we randomly divide the patients into two groups: one taking the
drug (x = 1) and the other not (x = 0). This random choice of the treatment x
is expressed by the intervention �c/x� for c = 0, 1 in the diagram G�c/x� (Fig. 1b).
Since x is independent of z in G�c/x�, the causal effect p(y|do(x= c)) of x on the
outcome y is given as y’s distribution c0 observed in the experiment in G�c/x�.

684 Y. Kawamoto et al.

Table 1. Recovery rates of
patients with/without taking a
drug.

Drug

x = 1

No-drug

x = 0

Male 0.90

(18/20)

0.85

(68/80)

Female 0.69

(55/80)

0.60

(12/20)

Total 0.73

(73/100)

0.80

(80/100)

x y

z

(a) The actual diagram G with a gender (con-
founder) z, a treatment x, and an outcome y.

x y

zc

(b) The diagram G c/x with an intervention to x.

Fig. 1. Causal diagrams in Example 1.

In contrast, ϕBDA
def= (f = y|z,x=c ∧ c1 = z ∧ c0 = f(c1) ↓y) describes

the inference about the causal effect from observation without intervention to
x (Fig. 1a). This saves the cost of the experiment and avoids ethical issues in
random treatments. Instead, to avoid Simpson’s paradox, the inference ϕBDA

conducts a backdoor adjustment (Sect. 7) to cope with the confounder z.
Concretely, the backdoor adjustment ϕBDA computes x’s causal effect on y

as follows. We first obtain the conditional distribution f
def= y|z,x=c and the prior

c1
def= z. Then we conduct the adjustment by calculating the joint distribution

f(c1) from f and c1 and then taking the marginal distribution c0
def= f(c1) ↓y.

The resulting c0 is the same as the c0 in the RCT experiment ϕRCT; that is, the
backdoor adjustment ϕBDA can compute the causal effect obtained by ϕRCT.

For this adjustment, we need to check the requirement pa(z, x) ∧ pos(x :: z),
that is, z is x’s parent in the diagram G and the joint distribution x :: z satisfies
the positivity (i.e., it takes each value with a non-zero probability).

Now we formalize the correctness of this causal inference method (for any
diagram G) as the judgment expressing that under the above requirements, the
backdoor adjustment computes the same causal effect as the RCT experiment:

pa(z, x) ∧ pos(x :: z) �g ϕRCT ↔ ϕBDA. (1)

By deriving this judgment in a deductive system called AXCP (Sect. 6), we
show the correctness of this causal inference method for any diagram (Sect. 7).
We show all proofs of the technical results in this paper’s full version [25].

3 Language for Data Generation

In this section, we introduce a language for describing data generation.

Constants and Causal Variables. We introduce a set Const of constants to
denote probability distributions of data values and a set dConst ⊆ Const of
deterministic constants, each denoting a single data value (strictly speaking,
denoting a distribution having a single data value with probability 1).

We introduce a finite set CVar of causal variables. A tuple 〈x1, . . . , xk〉 of
causal variables represents the joint distribution of k variables x1, . . . , xk. We

Formalizing Statistical Causality via Modal Logic 685

denote the set of all non-empty (resp. possibly empty) tuples of variables by
CVar+ (resp. CVar∗). We use the bold font for a tuple; e.g., x = 〈x1, . . . , xk〉. We
write size(x) for the dimension k of a tuple x. We assume that the variables in
a tuple x are sorted lexicographically.

For disjoint tuples x and y, x :: y denotes the joint distribution of x and y.
Formally, ‘::’ is not a function symbol, but a meta-operator on CVar∗; x ::y is the
tuple obtained by merging x and y and sorting the variables lexicographically.

We use conditional causal variables y|z ,x=c to denote the conditional distri-
bution of y given z and x = c. We write FVar for the set of all conditional causal
variables. For a conditional distribution y|x and a prior distribution x, we write
y|x(x) for the joint distribution x :: y.

Terms. We define terms to express how data are generated. Let Fsym be a
set of function symbols denoting algorithms. We define the set CTerm of causal
terms as the terms of depth at most 1; i.e., u ::= c | f(v, . . . , v) where c ∈ Const,
f ∈ Fsym, and v ∈ CVar ∪ Const. For example, f(c) denotes a data generated
by an algorithm f with input c. We denote the set of variables (resp. the set of
constants) occurring in a term u by fv(u) (resp. fc(u)).

We also define the set Term of terms by the BNF: u ::= x | c | f(u, . . . , u),
where x ∈ CVar+, c ∈ Const, and f ∈ Fsym ∪ FVar. Unlike CTerm, terms in Term
may repeatedly apply functions to describe multiple steps of data generation.

We introduce the special function symbol ↓x for marginalization. y↓x denotes
the marginal distribution of x given a joint distribution y; e.g., for a joint dis-
tribution x = 〈x0, x1〉, x ↓x0 expresses the marginal distribution x0. We also
introduce the special constant ⊥ for undefined values.

Data Generators. To describe how data are generated, we introduce the notion
of a data generator as a function g : CVar → CTerm ∪ {⊥} that maps a causal
variable x to a causal term representing how the data assigned to x is generated.
If g(y) = u for u ∈ CTerm and y ∈ CVar, we write u A g y. For instance, the
data generator g in Fig. 2 models the situation in Example 1. To express that
a variable x’s value is generated by an algorithm f1 with an input z, the data
generator g maps x to f1(z), i.e., f1(z) A g x. Since the causal term f1(z)’s depth
is at most 1, z represents the direct cause of x. We denote the set of all variables
x satisfying g(x) �= ⊥ by dom(g), and the range of g by range(g).

Data generator g
Causal diagram
G given from g

dom(g)= {x, y, z}
f1(z) g x

f2(z, x) g y x y

z

Fig. 2. The data generator and
causal diagram for Example 1.

We assume the following at-most-once
condition: Each function symbol and con-
stant can be used at most once in a single
data generator. This ensures that different
sampling uses different randomness and is
denoted by different symbols.

We say that a data generator g is finite
if dom(g) is a finite set. We say that a data
generator g is closed if no undefined vari-

able occurs in the terms that g assigns to variables, namely, fv(range(g)) ⊆
dom(g).

We write x≺g y iff y’s value depends on x’s, i.e., there are variables z1, . . . , zi

(i ≥ 2) such that z1 = x, zi = y, and zj ∈ fv(g(zj+1)) for 1 ≤ j ≤ i − 1. A data

686 Y. Kawamoto et al.

generator g is acyclic if ≺g is a strict partial order over dom(g). Then we can
avoid the cyclic definitions of g . E.g., the data generator g1 defined by f(z)A g1 x
and f(c) A g1 z is acyclic, whereas g2 by f(z) A g2 x and f(x) A g2 z is cyclic.

4 Kripke Model for Statistical Causality

In this section, we introduce a Kripke model for statistical causality.
We write O for the set of all data values we deal with, such as the Boolean

values, integers, real numbers, and lists of data values. We write ⊥ for the unde-
fined value. For a set S, we denote the set of all probability distributions over S
by DS. For a probability distribution m ∈ DS, we write supp(m) for the set of
m’s non-zero probability elements.

Causal Diagrams. To model causal relations corresponding to a given data
generator g, we consider a causal diagram G = (U, V,E) [31] where U ∪ V is the
set of all nodes and E is the set of all edges such that:

– U
def= fc(range(g)) ⊆ Const is a set of symbols called exogenous variables that

denote distributions of data;
– V

def=dom(g) ⊆ CVar is a set of symbols called endogenous variables that may
depend on other variables;

– E
def= {x → y ∈ V ×V |x∈ fv(g(y))} ∪ {c → y∈U×V | c∈ fc(g(y))} is the set

of all structural equations, i.e., directed edges (arrows) denoting the direct
causal relations between variables defined by the data generator g.

For instance, in Fig. 2, Example 1 is modeled as the causal diagram G.
Since a causal term’s depth is at most 1, g specifies all information for defining

G. By g’s acyclicity, G is a directed acyclic graph (DAG) (See Proposition 4 in
the full version [25] for details).

Pre-/Post-intervention Distributions. For a causal diagram G = (U, V,E)
and a tuple y ⊆ V , we write PG(y) for the joint distribution of y over Osize(y)

generated according to G. As shown in the standard textbooks (e.g., [31]), PG(V)
is factorized into conditional distributions according to G as follows:

PG(V) def=
∏

yi∈V PG(yi | paG(yi)), (2)

where paG(yi) is the set of parent variables of yi in G. For example, in Fig. 2,
for V = {x, y, z}, PG(V) = PG(y |x, z)PG(x | z)PG(z).

For tuples x ⊆ V and o ⊆ O with size(x) = size(o), the post-intervention
distribution PG(V | do(x=o)) is the joint distribution of V after x is assigned o
and all the variables dependent on x in G are updated by x := o as follows:

PG(V | do(x=o)) def=

⎧
⎪⎨

⎪⎩

∏
yi∈V \x PG(yi | paG(yi))

for values of V consistent with x = o

0 otherwise.

For instance, in Fig. 2, PG(y, z|do(x = o)) = PG(y|x = o, z)PG(z) for any o∈ O.

Formalizing Statistical Causality via Modal Logic 687

Possible Worlds. We introduce the notion of a possible world to define the
probability distribution of causal variables from a data generator. Formally, a
possible world is a tuple (g , ξ,m) of (i) a finite and acyclic data generator g :
CVar → CTerm ∪ {⊥}, (ii) an interpretation ξ that maps a function symbol in
Fsym with arity k ≥ 0 to a function from Ok to DO, and (iii) a memory m
that maps a tuple of variables to a joint distribution of data values, which is
determined by g and ξ. We denote these components of a world w by gw, ξw,
and mw, and the set of all defined variables in w by Var(w) = dom(mw).

The interpretation ξ can be constructed using a probability distribution I
over an index set I and a family {ξr}r∈I of interpretations each mapping a
function symbol f with arity k ≥ 0 to a deterministic function ξr(f) from Ok to
O. Then ξ(f) maps data values o to the probability distribution over O obtained
by randomly drawing an index r from I and then computing ξr(f)(o).

If k = 0, f is a constant and ξr(f) ∈ O, hence ξ(f) ∈ DO is a distribution of
data values. For the undefined constant, we assume ξr(⊥) = ⊥.

Interpretation of Terms. Terms are interpreted in a possible world w =
(ξ, g,m) as follows. First, for each index r ∈ I, we define the interpretation
[[]]rξ,g that maps a tuple of k terms to k data values in O or ⊥ by:

[[x]]rξ,g = [[g(x)]]rξ,g [[〈u1, . . . , uk〉]]rξ,g = ([[u1]]
r
ξ,g , . . . , [[uk]]rξ,g)

[[c]]rξ,g = ξr(c) [[f(u1, . . . , uk)]]rξ,g = ξr(f)([[〈u1, . . . , uk〉]]rξ,g).

For instance, in Fig. 2, we have [[x]]rξ,g = [[g(x)]]rξ,g = [[f1(z)]]rξ,g = ξr(f1)([[z]]rξ,g),
where the interpretation of z does not depend on that of x due to g’s acyclicity.
We define the probability distribution [[u]]w over O by randomly drawing r and
then computing [[u]]rξ,g . Similarly, we define [[〈u1, . . . , uk〉]]w via [[〈u1, . . . , uk〉]]rξ,g .

We remark that the interpretation [[]]w defines the joint distribution PGw
of

all variables in the causal diagram Gw; e.g., [[y|z]]w = PGw
(y |z) (See Proposition

5 in the full version [25] for details). A function symbol f is interpreted as the
function ξ(f) that maps data values in O to the distribution over O. We define
the memory m by m(x) = [[x]]w for all x ∈ CVar+. Notice that [[]]w is defined
using g and ξ without using m.

We expand the interpretation [[]]w to a conditional causal variable
y|z ,x=c ∈ FVar to interpret it as a function that maps a value c′ of z
to the distribution [[(x :: y :: z)|z=c′,x=c]]w. We then have [[y|z ,x=c(z|x=c)]]w =
[[y|z ,x=c]]w([[z|x=c]]w).

For the sake of reasoning in Sect. 6, for each data generator g , x ∈ CVar+, and
y|z ,x=c ∈ FVar, we introduce a constant c(g,x) and a function symbol f (g,y |z,x=c).
For brevity, we often omit the superscripts of these symbols.

Eager/Lazy Interventions. We introduce two forms of interventions and their
corresponding intervened worlds. Intuitively, in a causal diagram, an eager inter-
vention �c/x� expresses the removal of all arrows pointing to a variable x by
replacing x’s value with c.

In contrast, a lazy intervention �c/x� expresses the removal of all arrows
emerging from x, which does not change the value of x itself but affects the

688 Y. Kawamoto et al.

values of the variables dependent on x, computed using [[c]] (instead of [[x]]) as
the value of x.

For instance, Fig. 3 shows how two interventions �c/x� and �c/x� change the
data generator and the causal diagram in a world w that models Example 1.

World Data generator Causal diagram

w
f1(z) x;

f2(z, x) y x y

z

w�c/x� c x;

f2(z, x) y x y

zc

w�c/x� f1(z) x;

f2(z, c) y x y

z

c

Fig. 3. Eager/lazy interventions.

For a world w and a c ∈
dConst, we define an eagerly inter-
vened world w�c/x� as the world
where [[c]]w is assigned to x and
is used to compute the other vari-
ables dependent on x. Formally,
w�c/x� is defined by ξw�c/x� = ξw,
gw�c/x�(y) = c if y = x, and
gw�c/x�(y) = gw(y) if y �= x. For
instance, in Fig. 3, in the world
w�c/x�, we use the value of c to
compute [[x]]w�c/x� = ξw(c) and

[[y]]w�c/x� = [[f2(z, x)]]w�c/x� = [[f2(z, c)]]w.
Then the interpretation [[]]w�c/x� defines the joint distribution of all variables

in the causal diagram Gw after the intervention x := [[c]]w; e.g., [[y|z]]w�c/x� =
PGw

(y | do(x= [[c]]w), z) (See Proposition 5 in the full version [25] for details).
We next define a lazily intervened world w�c/x� as the world where x’s value

is unchanged but the other variables dependent on x are computed using [[c]]w
instead of [[x]]w. Formally, w�c/x� is defined by ξw�c/x	 = ξw, gw�c/x	(y) = x if y =
x, and gw�c/x	(y) = gw(y)[x �→ c] if y �= x. E.g., in Fig. 3, [[x]]w�c/x	 = [[f1(z)]]w.

For x= 〈x1, . . . , xk〉 and c= 〈c1, . . . , ck〉, we define �c/x� from the simultane-
ous replacement gw�c1/x1,...,ck/xk�. We also define �c/x� analogously.

Kripke Model. Let Psym be a set of predicate symbols. For a variable tuple
x and a deterministic constant tuple c, we introduce an intervention relation
wR�c/x�w′ that expresses a transition from a world w to another w′ by the
intervention �c/x�; namely, R�c/x� = {(w,w′) ∈ W × W | w′ = w�c/x�}.

Then we define a Kripke model for statistical causality as a tuple M = (W,
(R�c/x�)x∈CVar+,c∈dConst+ ,V) consisting of: (1) a set W of all possible worlds over
the set CVar of causal variables; (2) for each x ∈ CVar+ and c ∈ dConst+,
an intervention relation R�c/x�; (3) a valuation V that maps a k-ary predicate
symbol η ∈ Psym to a set V(η) of k-tuples of distributions.

Notice that different worlds w and w′ in W may have different data generators
gw and gw′ corresponding to different causal diagrams; that is, W specifies all
possible causal diagrams. Furthermore, different worlds w and w′ may also have
different interpretations ξw and ξw′ of function symbols if we do not have the
knowledge of functions [23].

5 Statistical Causality Language

Predicates and Causal Predicates. Classical predicates in Psym describe
statistical correlation among the distributions of variables, and are interpreted

Formalizing Statistical Causality via Modal Logic 689

using a valuation V. For example, pos(x) expresses that x takes each value in
the domain O with a non-zero probability. However, predicates cannot express
the statistical causality among variables, whose interpretation relies on a causal
diagram. Thus, we introduce a set CPsym of causal predicates (e.g., dsep, nanc,
allnanc) and interpret them using a data generator g instead of a valuation V.

Syntax and Semantics of StaCL. We define the set Fml of formulas: For
η ∈ Psym, χ ∈ CPsym, x∈Var+, u∈Term+, c∈Const+, and f ∈Fsym ∪ FVar,

ϕ ::= η(x, . . . ,x) |χ(x, . . . ,x) |u=u | f = f | true | ¬ϕ |ϕ ∧ ϕ | �c/x�ϕ | �c/x�ϕ.

Intuitively, �c/x�ϕ (resp. �c/x�ϕ) expresses that ϕ is satisfied in the eager (resp.
lazy) intervened world. We assume that each variable appears at most once in
x in �c/x� and �c/x�. We use syntax sugar false, ∨, →, and ↔ as usual. Note
that the formulas have no quantifiers over variables.

We interpret a formula in a world w in a Kripke model M by:

M, w |= η(x1, . . . ,xk) iff ([[x1]]w, . . . , [[xk]]w) ∈ V(η)

M, w |= u = u′ iff [[u]]w = [[u′]]w M, w |= f = f ′ iff [[f]]w = [[f ′]]w
M, w |= ¬ϕ iff M, w �|= ϕ M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′

M, w |= �c/x�ϕ iff M, w�c/x� |= ϕ M, w |= 	c/x
ϕ iff M, w	c/x
 |= ϕ,

where w�c/x� and w�u/x� are intervened worlds and the interpretation of atomic
formulas with causal predicates χ is given below. For brevity, we often omit M.

Note that η(x1, . . . , xk) represents a property of k independent distributions
[[x1]]w, . . . , [[xk]]w, where the randomness ri in each [[xi]]ri

w is chosen independently.
In contrast, η(〈x1, . . . , xk〉) expresses a property of a single joint distribution,
since the same r is used in all of [[x1]]rw, . . ., [[xk]]rw.

Atomic formulas with causal predicates χ are interpreted using a causal dia-
gram Gw corresponding to gw. Let ANC(y) is the set of all ancestors of y in Gw,
and PA(y) be the set of all parent variables of y in Gw. Then:

w |= dsep(x,y, z) iff x and y are d-separated by z in Gw

w |= nanc(x,y) iff x∩ ANC(y) = ∅ and x∩y = ∅
w |= allnanc(x,y, z) iff x = y \ ANC(z)

w |= pa(x,y) iff x = PA(y) and x ∩ y = ∅,

where the d-separation1 of x and y by z [36] is a sufficient condition for the
conditional independence of x and y given z (See Appendix A in the full ver-
sion [25]).

Formalization of Causal Effect. Conventionally, the conditional probability
of y given z = o2 after an intervention x = o1 is expressed using the do-operator
by P (y | do(x = o1),z = o2). This causal effect can be expressed using StaCL:
1 An undirected path in a causal diagram Gw is said to be d-separated by z if it has

either (a) a chain v′
A v A v′′ s.t. v ∈ z, (b) a fork v′ A

v A v′′ s.t. v ∈ z, or (c) a
collider v′

A v

A

v′′ s.t. v �∈ z ∪ ANC(z). x and y are said to be d-separated by z if
all undirected paths between variables in x and in z are d-separated by z.

690 Y. Kawamoto et al.

Axioms for probability distributions

EqC

EqF

PD
MPD

Fig. 4. The axioms of AX for probability distributions, where x,x1,x2,y ∈ CVar+ are
disjoint, c0, c1, c

(g,x) ∈ Const, f, f (g,y |z,x=c) ∈ Fsym.

Axioms for eager interventions

DGEI iff
EffectEI

EqEI

SplitEI

SimulEI
RptEI

CmpEI

DistrEI
¬

DistrEI
∧

Axioms for lazy interventions

CondLI

Other axioms are analogous to eager interventions except for EffectEI .

Axioms for the exchanges of eager and lazy interventions

ExpdEILI

ExcdEILI

Fig. 5. The axioms of AX, where x,x1,x2,x3,y, z ∈ CVar+ are disjoint, f ∈ Fsym,
c, c1, c2 ∈ dConst+, c′ ∈ Const+, u,u1,u2 ∈ Term+, and ϕ, ϕ1, ϕ2 ∈ Fml.

Proposition 1 (Causal effect). Let w be a world, x,y,z ∈ Var(w)+ be dis-
joint, c∈ dConst+, c′ ∈Const+, and f ∈Fsym. Then:

(i) w |= �c/x�(c′ =y) iff there is a distribution PGw
that is factorized according

to Gw and satisfies PGw
(y | do(x= c))= [[c′]]w.

(ii) w |= �c/x�(f =y|z) iff there is a distribution PGw
that is factorized according

to Gw and satisfies PGw
(y | do(x= c),z) = [[f]]w.

If x and y are d-separated by z, they are conditionally independent given
z [36] (but not vice versa). StaCL can express this by |=g(dsep(x,y,z)∧pos(z) →
y|z ,x=c = y|z , where pos(z) means that z takes each value with a positive
probability, and |=g ϕ is defined as w |=g ϕ for all world w having the data
generator g . Furthermore, if [[x]]w and [[y]]w are conditionally independent given
[[z]]w for any world w with the data generator gw, then they are d-separated
by z: |=g y|z ,x=c = y|z ∧ pos(z) implies |=g dsep(x,y,z) (See Proposition 15
in the full version [25] for details).

Formalizing Statistical Causality via Modal Logic 691

6 Axioms for StaCL

We present a sound deductive system for StaCL in the Hilbert style. Our system
consists of axioms and rules for the judgments of the form Γ �g ϕ.

The deductive system is stratified into two groups. The system AX, deter-
mined by the axioms in Figs. 4 and 5, concerns the derivation of Γ �g ϕ that does
not involve causal predicates (e.g., pa, nanc, dsep). The system AXCP, deter-
mined by the axioms in Fig. 6, concerns the derivation of a formula ϕ possibly
equipped with causal predicates in a judgment Γ �g ϕ.

In these systems, we deal only with the reasoning that is independent of a
causal diagram. Indeed, in Sect. 7, we will present examples of reasoning using
the deductive system AXCP that do not refer to a specific causal diagram.

Axioms of AX. Figure 4 shows the axioms of the deductive system AX, where
we omitted the axioms for propositional logic and equations (PT for the propo-
sitional tautologies, MP for the modus ponens, Eq1 for the reflexivity, and Eq2
for the substitutions for formulas). EqC and EqF represent the definitions of
constants and function symbols corresponding to causal variables. PD describes
the relationships among the prior distribution x, the conditional distribution y|x
of y given x, and the joint distribution x ::y. MPD represents the computation
↓x2 of the marginal distribution x2 from a joint distribution x1.

The axioms named with the subscript EI deal with eager intervention.
Remarkably, DGEI reduces the derivation of �g �c/x�ϕ, which involves an inter-
vention modality �c/x�, to the derivation of �g�c/x� ϕ, which does not involve the
modality under the modified data generator g�c/x�. The axioms DistrEI

¬ and
DistrEI

∧ allow for pushing intervention operators outside logical connectives.
The axioms with the subscript LI deal with lazy intervention; they are analo-

gous to the corresponding EI-rules. The axioms with the subscript EILI describe
when an eager intervention can be exchanged with a lazy intervention.

Axioms of AXCP. Figure 6 shows the axioms for AXCP. DsepCI repre-
sents that d-separation implies conditional independence. DsepSm, DsepDc,
DsepWu, and DsepCn are the semi-graphoid axioms [36], characterizing the
d-separation. However, these well-known axioms are not sufficient to derive
the relationships between d-separation and interventions. Therefore, we intro-
duce two axioms DsepEI and DsepLI in Fig. 6 for the d-separation before/after
interventions, and four axioms to reason about the relationships between the
causal predicate nanc and the interventions/d-separation (named Nanc{1,2,3,4}
in Fig. 6). By AllNanc, PaNanc, and PaDsep, we transform the formulas
using allnanc and pa into those with nanc or dsep.

Properties of Axiomatization. For a data generator g , a set Γ
def= {ψ1, . . . , ψn}

of formulas, and a formula ϕ, we write Γ �g ϕ if there is a derivation of �g (ψ1 ∧
· · · ∧ ψn) → ϕ using axioms of AX or AXCP. We write Γ |=g ϕ if for all model
M and all world w having the data generator g , M, w |= ϕ. Then we obtain the
soundness of AX and AXCP.

692 Y. Kawamoto et al.

Axioms for d-separation

DsepCI �g

DsepSm �g

DsepDc �g

DsepWu �g

DsepCn �g

Axioms for d-separation with interventions

DsepEI �g

DsepLI �g

Axioms with other causal predicates
Nanc1 �g

Nanc2 �g

Nanc3 �g

Nanc4 �g

AllNanc �g

PaNanc �g

PaDsep g

Fig. 6. The additional axioms for AXCP where x,y,y′, z, v ∈CVar+ are disjoint,
c∈ dConst+, and f∈Fsym.

Theorem 1 (Soundness). Let g be a finite, closed, and acyclic data generator.
Γ ⊆ Fml, and ϕ ∈ Fml. If Γ �g ϕ then Γ |=g ϕ.

We show the proof in Appendices B and C in the full version [25]. As shown in
Sect. 7, AXCP is expressive enough to derive the rules of Pearl’s do-calculus [30];
it can reason about all causal effects identifiable by the do-calculus (without
referring to a specific causal diagram). Furthermore, AX includes/derives the
axioms used in the previous work [1] that are complete w.r.t. a different semantics
without dealing with probability distributions. We leave investigating whether
AX is complete w.r.t. our Kripke model for future work. We also remark that
AXCP has axioms corresponding to the composition and effectiveness axioms
introduced by Galles and Pearl [9].

7 Reasoning About Statistical Causality

Deriving the Rules of the Do-Calculus. Using StaCL, we express the do-
calculus’s rules [30], which are sufficient to compute all identifiable causal effects
from observable quantities [16,33]. Let fv(ϕ) be the set of all variables occurring
in a formula ϕ, and cdv(ϕ) be the set of all conditioning variables in ϕ.

Proposition 2 (Do-calculus rules). Let v,x,y,z ∈ CVar+ be disjoint,
x1,x2 ∈ CVar+, and c0, c1, c2 ∈ dConst+. Let S = cdv(ϕ0) ∪ cdv(ϕ1).

Formalizing Statistical Causality via Modal Logic 693

Do2
Nanc3
Do3 EqEI

DistrEI
∧

EqC , EqF , Eq2
PD, Eq2
MPD , Eq2

Fig. 7. Sketch of a derivation tree for the correctness of the backdoor adjustment
(Sect. 2) using AXCP where ψpos

def
= pos(z ::x), ψd1

def
= 	c/x
dsep(x,y, z)∧ψpos, ψd2

def
=

�c/x�dsep(x, z, ∅)∧ψpos, ψnanc
def
= nanc(x, z)∧ψpos, ψpre

def
= ψd1∧ψnanc, ψ0

def
= (f = y|z),

ψ1
def
= (f = y|z ,x=c), ψ2

def
= (c1 = z), and ψ3

def
= (c0 = f(c1)↓y).

1. Do1. Introduction/elimination of conditioning:

�g �c0/v�(dsep(x,y,z) ∧ ∧
s∈S pos(s)) → ((�c0/v�ϕ0) ↔ �c0/v�ϕ1)

where ϕ1 is obtained by replacing some occurrences of y|z in ϕ0 with y|z ,x=c1 ;
2. Do2. Exchange between intervention and conditioning:

�g �c0/v��c1/x�(dsep(x,y,z) ∧ ∧
s∈S pos(s)) →((�c0/v , c1/x�ϕ0) ↔ �c0/v�ϕ1)

where ϕ1 is obtained by replacing every occurrence of y|z in ϕ0 with y|z ,x=c1 ;
3. Do3

Introduction/elimination of intervention:

�g �c0/v�(allnanc(x1,x,y) ∧ �c1/x1�(dsep(x,y,z) ∧ pos(z)))
→ ((�c0/v�ϕ) ↔ �c0/v , c1/x1, c2/x2�ϕ)

where fv(ϕ) = {y|z} and x
def= x1 :: x2.

By using the deductive system AXCP, we can derive those rules. Thanks to
the modal operators for lazy interventions, our derivation of those rules is partly
different from Pearl’s [30] in that it does not use diagrams augmented with the
intervention arc of the form Fx A x (See Appendix D in the full version [25]).

Reasoning About Statistical Adjustment. We present how AXCP can be
used to reason about the correctness of the backdoor adjustment discussed in
Sect. 2 (See Appendix A.6 in the full version [25] for the details of the backdoor
adjustment).

Figure 7 shows the derivation of the judgment:

ψpre �g (�c/x�c0 = y) ↔ (ψ1 ∧ ψ2 ∧ ψ3). (3)

This judgment asserts the correctness of the backdoor adjustment in any
causal diagram. Recall that ϕRCT

def= (�c/x�c0 = y) expresses the RCT and
ϕBDA

def= (ψ1 ∧ ψ2 ∧ ψ3) expresses the backdoor adjustment. The correctness
of the backdoor adjustment (ϕRCT ↔ ϕBDA) depends on the precondition ψpre.

694 Y. Kawamoto et al.

By reading the derivation tree in a bottom-up manner, we observe that the
proof first converts (�c/x�c0 = y) to a formula to which EqC and EqF are
applicable. Then, the derived axioms Do2 and Do3 in Proposition 2 are used
to complete the proof at the leaves of the derivation.

In Sect. 2, we stated the correctness of the backdoor adjustment in (1) using
a simpler requirement pa(z, x) instead of ψd1 and ψnanc. We can derive the
judgment (1) from (3), thanks to the axioms PaDsep and PaNanc.

The derivation does not mention the data generator g representing the causal
diagram G. This exhibits that our logic successfully separates the reasoning
about the properties of arbitrary causal diagrams from those depending on a
specific causal diagram. Once we prove ψpre �g ϕRCT ↔ ϕBDA using AXCP, one
can claim the correctness of the causal inference (ϕRCT ↔ ϕBDA) by checking
that the requirement ψpre indeed holds for a specific causal diagram G.

8 Conclusion

We proposed statistical causality language (StaCL) to formally describe and
explain the correctness of statistical causal inference. We introduced the notion of
causal predicates and Kripke models equipped with data generators. We defined
a sound deductive system AXCP that can deduce all causal effects derived using
Pearl’s do-calculus. In ongoing and future work, we study the completeness of AX
and AXCP and develop a decision procedure for AXCP for automated reasoning.

Acknowledgements. We thank Kenji Fukumizu for providing helpful information on
the literature on causal inference. The authors are supported by ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603), JST. Yusuke Kawamoto
is supported by JST, PRESTO Grant Number JPMJPR2022, Japan, and by JSPS
KAKENHI Grant Number 21K12028, Japan. Tetsuya Sato is supported by JSPS KAK-
ENHI Grant Number 20K19775, Japan. Kohei Suenaga is supported by JST CREST
Grant Number JPMJCR2012, Japan.

References

1. Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: obser-
vations vs. interventions. J. Philos. Log. 50(3), 471–521 (2021). https://doi.org/
10.1007/s10992-020-09573-6

2. Barbero, F., Schulz, K., Smets, S., Velázquez-Quesada, F.R., Xie, K.: Thinking
about causation: a causal language with epistemic operators. In: Martins, M.A.,
Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp. 17–32. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65840-3 2

3. Bochman, A.: A Logical Theory of Causality. MIT Press, Cambridge (2021)
4. Bochman, A., Lifschitz, V.: Pearl’s causality in a logical setting. In: Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1446–1452.
AAAI Press (2015), http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/9686

https://doi.org/10.1007/s10992-020-09573-6
https://doi.org/10.1007/s10992-020-09573-6
https://doi.org/10.1007/978-3-030-65840-3_2
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9686
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9686

Formalizing Statistical Causality via Modal Logic 695

5. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical app-
roach to context-specific independence. Ann. Pure Appl. Log. 170(9), 975–992
(2019). https://doi.org/10.1016/j.apal.2019.04.004

6. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation
and dependence via multiteam semantics. In: Gyssens, M., Simari, G. (eds.) FoIKS
2016. LNCS, vol. 9616, pp. 271–291. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30024-5 15

7. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp.
186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 11

8. Fernandes-Taylor, S., Hyun, J.K., Reeder, R.N., Harris, A.H.: Common statistical
and research design problems in manuscripts submitted to high-impact medical
journals. BMC Res. Notes 4(1), 304 (2011)

9. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals.
Found. Sci. 3, 151–182 (1998)

10. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337
(2000)

11. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Pro-
ceedings of the IJCAI 2015, pp. 3022–3033. AAAI Press (2015)

12. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach
- part II: explanations. In: Proceedings of the IJCAI 2001, pp. 27–34. Morgan
Kaufmann (2001)

13. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach:
part 1: causes. In: Proceedings of the UAI 2001, pp. 194–202. Morgan Kaufmann
(2001)

14. Hirvonen, Å., Kontinen, J., Pauly, A.: Continuous team semantics. In: Gopal, T.V.,
Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 262–278. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14812-6 16

15. Hodges, W.: Compositional semantics for a language of imperfect information. Log.
J. IGPL 5(4), 539–563 (1997). https://doi.org/10.1093/jigpal/5.4.539

16. Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. In: Proceed-
ings of the UAI 2006, pp. 217–224. AUAI Press (2006)

17. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: con-
flict resolution with answer set programming. In: Proceedings of the Thirtieth Con-
ference on Uncertainty in Artificial Intelligence (UAI 2014), pp. 340–349. AUAI
Press (2014)

18. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is
unknown. In: Proceedings of the Thirty-First Conference on Uncertainty in Arti-
ficial Intelligence (UAI 2015), pp. 395–404. AUAI Press (2015)

19. Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In:
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 2020), pp. 10170–10177. AAAI Press (2020). http://aaai.org/ojs/index.
php/AAAI/article/view/6577

20. Kawamoto, Y.: Statistical epistemic logic. In: Alvim, M.S., Chatzikokolakis, K.,
Olarte, C., Valencia, F. (eds.) The Art of Modelling Computational Systems: A
Journey from Logic and Concurrency to Security and Privacy. LNCS, vol. 11760,
pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-
9 20

21. Kawamoto, Y.: Towards logical specification of statistical machine learning. In:
Proceedings of the SEFM, pp. 293–311 (2019). https://doi.org/10.1007/978-3-030-
30446-1 16

https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1007/978-3-319-30024-5_15
https://doi.org/10.1007/978-3-319-30024-5_15
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-030-14812-6_16
https://doi.org/10.1093/jigpal/5.4.539
http://aaai.org/ojs/index.php/AAAI/article/view/6577
http://aaai.org/ojs/index.php/AAAI/article/view/6577
https://doi.org/10.1007/978-3-030-31175-9_20
https://doi.org/10.1007/978-3-030-31175-9_20
https://doi.org/10.1007/978-3-030-30446-1_16
https://doi.org/10.1007/978-3-030-30446-1_16

696 Y. Kawamoto et al.

22. Kawamoto, Y.: An epistemic approach to the formal specification of statistical
machine learning. Softw. Syst. Model. 20(2), 293–310 (2020). https://doi.org/10.
1007/s10270-020-00825-2

23. Kawamoto, Y., Mano, K., Sakurada, H., Hagiya, M.: Partial knowledge of functions
and verification of anonymity. Trans. Jpn. Soc. Industr. Appl. Math. 17(4), 559–
576 (2007). https://doi.org/10.11540/jsiamt.17.4 559

24. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical beliefs in hypothesis
testing using program logic. In: Proceedings of the KR 2021, pp. 411–421 (2021).
https://doi.org/10.24963/kr.2021/39

25. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical causality via modal
logic. CoRR abs/2210.16751 (2022). https://doi.org/10.48550/arXiv.2210.16751

26. Kawamoto, Y., Sato, T., Suenaga, K.: Sound and relatively complete belief Hoare
logic for statistical hypothesis testing programs. CoRR abs/2208.07074 (2022)

27. Makin, T.R., de Xivry, J.J.O.: Science forum: Ten common statistical mistakes to
watch out for when writing or reviewing a manuscript. Elife 8, e48175 (2019)

28. McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of
the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative
Applications of Artificial Intelligence Conference (AAAI 1997/IAAI 1997), pp. 460–
465. AAAI Press/The MIT Press (1997)

29. Moher, D., et al.: Consort 2010 explanation and elaboration: updated guidelines
for reporting parallel group randomised trials. Int. J. Surg. 10(1), 28–55 (2012)

30. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688
(1995). http://www.jstor.org/stable/2337329

31. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
32. Rückschloß, K., Weitkämper, F.: Exploiting the full power of Pearl’s causality in

probabilistic logic programming. In: Proceedings of the 9th Workshop on Proba-
bilistic Logic Programming (PLP 2022). CEUR Workshop Proceedings, vol. 3193.
CEUR-WS.org (2022). http://ceur-ws.org/Vol-3193/paper1PLP.pdf

33. Shpitser, I., Pearl, J.: Identification of conditional interventional distributions. In:
Proceedings of the UAI 2006, pp. 437–444. AUAI Press (2006)

34. Simpson, E.H.: The interpretation of interaction in contingency tables. J. Roy.
Stat. Soc. Ser. B (Methodol.) 13(2), 238–241 (1951). http://www.jstor.org/stable/
2984065

35. Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple
interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205
(2015)

36. Verma, T., Pearl, J.: Causal networks: semantics and expressiveness. In: Proceed-
ings of the UAI 1988, pp. 69–78. North-Holland (1988)

37. Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vanden-
broucke, J.P.: The strengthening the reporting of observational studies in epidemi-
ology (strobe) statement: guidelines for reporting observational studies. Bull. World
Health Organ. 85, 867–872 (2007)

https://doi.org/10.1007/s10270-020-00825-2
https://doi.org/10.1007/s10270-020-00825-2
https://doi.org/10.11540/jsiamt.17.4_559
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.48550/arXiv.2210.16751
http://www.jstor.org/stable/2337329
http://ceur-ws.org/Vol-3193/paper1PLP.pdf
http://www.jstor.org/stable/2984065
http://www.jstor.org/stable/2984065

Boosting Definability Bipartition
Computation Using SAT Witnesses

Jean-Marie Lagniez1 and Pierre Marquis1,2(B)

1 Univ. Artois, CNRS, CRIL, Lens, France
{lagniez,marquis}@cril.fr

2 Institut Universitaire de France, Paris, France

Abstract. Bipartitioning the set of variables Var(Σ) of a propositional
formula Σ w.r.t. definability consists in pointing out a bipartition 〈I, O〉
of Var(Σ) such that Σ defines the variables of O (outputs) in terms of
the variables in I (inputs), i.e., for every o ∈ O, there exists a formula
Φo over I such that o ⇔ Φo is a logical consequence of Σ. The existence
of Φo given o, I, and Σ is a coNP-complete problem, and as such, it
can be addressed in practice using a SAT solver. From a computational
perspective, definability bipartitioning has been shown as a valuable pre-
processing technique for model counting, a key task for a number of AI
problems involving probabilities. To maximize the benefits offered by
such a preprocessing, one is interested in deriving subset-minimal bipar-
titions in terms of input variables, i.e., definability bipartitions 〈I, O〉
such that for every i ∈ I, 〈I \ {i}, O ∪ {i}〉 is not a definability biparti-
tion. We show how the computation of subset-minimal bipartitions can
be boosted by leveraging not only the decisions furnished by SAT solvers
(as done in previous approaches), but also the SAT witnesses (models
and cores) justifying those decisions.

Keywords: Automated reasoning including satisfiability checking and
its extensions · definability · propositional logic

1 Introduction

In this paper, we are interested in identifying definability relations between vari-
ables occurring in a given propositional formula Σ. When I is a subset of the
variables of Σ and o is a variable of Σ, Σ is said to define o in terms of I if
and only if (1) there exists a formula Φo over I such that o ⇔ Φo is a logical
consequence of Σ. o can be considered as an output variable provided that the
variables in I are viewed as input variables, since Σ defines o in terms of I if and
only if (2) under every assignment γI of variables from I that is consistent with
Σ, either o or ¬o is implied by Σ (i.e., the truth value of variable o is fixed).
The two characterizations (1) and (2), namely explicit definability and implicit
definability, are known to be equivalent in classical logic [2].

More precisely, in the following, our goal is to compute definability biparti-
tions: we want to split the set Var(Σ) of variables occurring in Σ into disjoint
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 697–711, 2023.
https://doi.org/10.1007/978-3-031-43619-2_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_47&domain=pdf
http://orcid.org/0000-0002-6557-4115
http://orcid.org/0000-0002-7979-6608
https://doi.org/10.1007/978-3-031-43619-2_47

698 J.-M. Lagniez and P. Marquis

subsets I and O such that Σ defines every variable of O in terms of the variables
in I. The resulting pair 〈I,O〉 is referred to as a definability bipartition.

Deriving such bipartitions has been shown as a valuable preprocessing tech-
nique for model counting, a key task for a number of AI problems involving
probabilities (see e.g., [4–7,14]). Indeed, whenever a variable o has been identi-
fied as an output variable from O, it can be forgotten from Σ without modifying
the number of models. The forgetting of o from Σ [9,11] is the quantified formula
∃o · Σ, i.e., Σ into which o is existentially quantified. This quantified formula is
equivalent to the standard formula given by (Σ|¬o) ∨ (Σ|o). Here, Σ|¬o (resp.
Σ|o) is the formula Σ where every occurrence of variable o has been replaced by
the Boolean constant ⊥ (falsum) (resp. the Boolean constant � (verum)). Thus,
when 〈I,O〉 is a definability bipartition of Var(Σ), the number of models of Σ
is precisely the number of models of Σ once projected onto I.

This observation led us to design and evaluate a preprocessing technique dedi-
cated to model counting, which consists in deriving first a definability bipartition
〈I,O〉 of Var(Σ) and then in eliminating in Σ the implicit existential quantifica-
tions over variables from O [6,7]. Accordingly, the corresponding preprocessing
algorithm B+ E consists of a pipeline of two algorithms B (for deriving a biparti-
tion) and E for eliminating the output variables. Many experiments with various
model counters considered upstream have shown that huge computational ben-
efits can be achieved by taking advantage of B+ E (see [7] for details). In order
to avoid trivial bipartitions (e.g., 〈Var(Σ), ∅〉) to be considered and maximize
the leverage of the approach, the focus was on deriving subset-minimal biparti-
tions in terms of input variables, i.e., definability bipartitions 〈I,O〉 such that
for every i ∈ I, 〈I \ {i}, O ∪ {i}〉 is not a definability bipartition.1

B mainly is a greedy algorithm, equipped with a definability oracle based
on a SAT solver. The definability oracle used in B relies only on the decision
returned by the SAT solver, i.e., whether the CNF formula considered as input
is consistent or not. However, modern SAT solvers furnish more information
that can be exploited for further treatments when used in an incremental way.
Especially, when the input formula is consistent, a truth assignment forming a
model of the formula is computed; when it is inconsistent, a subset of clauses
that is conjunctively inconsistent (alias a core) can be extracted as well.

In the following, we show how the computation of subset-minimal bipartitions
can be boosted by taking into account not only the decisions furnished by SAT
solvers (as done in B), but also the SAT witnesses (models and cores) justifying
those decisions. We present an improved bipartition algorithm, named B+, which
takes advantage of extra-information reported by the SAT solver. We prove the
correctness of the algorithm and present an empirical evaluation of it based on
a large number of benchmarks (CNF instances) from various families. In order
to figure out the benefits offered by the use of SAT witnesses of each type, we
measure the number of instances for which B+ (using models, cores, both of
them, or none of them) succeeds in computing a subset-minimal bipartition in

1 In practice, computing smallest bipartitions in terms of input variables, i.e., bipar-
titions 〈I, O〉 such that |I| is minimal, is in general too demanding for being useful.

Boosting Definability Bipartition Computation Using SAT Witnesses 699

a given amount of time. The experiments made show that taking advantage of
both models and cores is useful in practice and that B+ outperforms B (which
boils down to the variant of B+ where neither models nor cores are exploited).
For space reasons, proofs are not provided in the paper, but they are available
online at http://www.cril.univ-artois.fr/~marquis/BDBCSW.pdf.

2 Preliminaries

Let L be the (classical) propositional language defined inductively from a count-
able set P of propositional variables, the usual connectives (¬, ∨, ∧, ↔, etc.)
and including the Boolean constants � (verum) and ⊥ (falsum). A literal � is
a variable � = x from P or a negated one � = ¬x. When � is a literal, var(�)
denotes the variable from P upon which � is built. An interpretation ω is a
mapping from P to {0, 1}, represented as a set of literals. Formulae Σ are inter-
preted in the classical way. If Σ(ω) = 1, then ω is called a model of Σ and Σ
is consistent. In the case when Σ has no model, Σ is said to be inconsistent.
|= denotes logical entailment. For any formula Σ from L, Var(Σ) is the set of
variables from P occurring in Σ. A term is a conjunction of literals or �, and
a clause is a disjunction of literals or ⊥. A CNF formula Σ is a conjunction of
clauses (also viewed as a set of clauses when convenient). Let X be any subset
of P. A canonical term γX over a subset X of P is a consistent term into which
every variable from X appears (either as a positive literal or as a negative one,
i.e., as a negated variable).

Let us now recall the concept of definability in propositional logic (the follow-
ing definition is about implicit definability, i.e., it does not refer to any definition
of y in Σ):

Definition 1 (definability). Let Σ ∈ L, X ⊆ P and y ∈ P. Σ defines y in
terms of X if and only if for every canonical term γX over X, we have γX∧Σ |= y
or γX ∧ Σ |= ¬y.

Example 1. Let Σ be the CNF formula consisting of the following clauses:

¬a ∨ b ¬a ∨ c a ∨ ¬b ∨ ¬c ¬e ∨ c ∨ d ¬c ∨ e
¬d ∨ e b ∨ ¬c ∨ d d ∨ ¬a

a and e are defined in Σ in terms of X = {b, c, d}. For instance, the canonical
term γX = b ∧ c ∧ d over {b, c, d} is such that Σ ∧ γX |= a ∧ e.

Clearly enough, Definition 1 shows that the concept of definability trivializes
when Σ is inconsistent, in the sense that Σ defines each of its variables in terms
of ∅ when Σ is inconsistent. Thus, in the rest of the paper, we suppose that Σ
is consistent.

In the following, we state that a subset Y of variables from P is defined in
terms of X in Σ (denoted by X �Σ Y) when every variable y ∈ Y is defined in
terms of X in Σ. It is known that deciding whether Σ defines y in terms of X is

http://www.cril.univ-artois.fr/~marquis/BDBCSW.pdf

700 J.-M. Lagniez and P. Marquis

“only” coNP-complete [10]. Indeed, we can take advantage of the following result
(Padoa’s theorem [13]), restricted to propositional logic and recalled in [10], to
decide whether Σ defines y in terms of X. This theorem gives an entailment-
based characterization of definability:

Theorem 1. For any Σ ∈ L and any X ⊆ P, let Σ′
X be the formula obtained by

replacing in Σ in a uniform way every propositional symbol z from Var(Σ) \ X
by a new propositional symbol z′. Let y ∈ P. If y �∈ X, then Σ (implicitly) defines
y in terms of X if and only if Σ ∧ Σ′

X ∧ y ∧ ¬y′ is inconsistent.2

In [6,7], the authors took advantage of Theorem 1 in order to design a greedy
bipartition algorithm, called B. Given a CNF formula Σ, B makes intensive use
of Theorem 1 to compute a subset-minimal bipartition 〈I,O〉 of Var(Σ), where
a definability bipartition 〈I,O〉 of Var(Σ) is a subset-minimal bipartition of
Var(Σ) if �x ∈ I such that I \{x} �Σ O∪{x}. Algorithm 1 presents a version of
B where some technicalities (the ordering under which the variables are processed
and the possibility to limit the number of learned clauses) are abstracted away.
At line 1, backbone(Σ) computes the backbone of Σ (i.e., the set of all literals
implied by Σ), and initializes O with the corresponding variables (indeed, if a
literal � belongs to the backbone of Σ, then var(�) is defined in Σ in terms of
∅). Still at line 1, I is initialized to the empty set. Then, variables that are not
yet identified as inputs or outputs are considered iteratively (lines 2 – 4). At
line 3, defined? takes advantage of Theorem 1 for determining whether x is
defined in Σ in terms of Var(Σ) \ (O ∪ {x}), i.e., all the variables but x and
those in the current set of output variables. defined? uses a SAT solver solve
based on CDCL architecture [12] for achieving the (in)consistency test required
by Padoa’s method. Note that solve allows SAT solving “under assumptions”
[3], i.e., the input CNF formula consists of two parts, F a CNF formula and A, a
conjunction of unit clauses. Thanks to the use of assumptions, clauses that are
learnt at each call to solve are kept for the subsequent calls to solve within B.

defined?(x,Σ,Var(Σ) \ (O ∪ {x})) returns true precisely when solve indi-
cates that the CNF formula F ∧ A is inconsistent, where

F = Padoa(Σ) = Σ ∧ Σ′
∅ ∧

∧

z∈Var(Σ)

((¬sz ∨ ¬z ∨ z′) ∧ (¬sz ∨ z ∨ ¬z′))

and A = (
∧

sz|z∈Var(Σ)\(O∪{x}) sz)∧x∧¬x′. Variables sz are fresh variables, used
as selectors: whenever sz is set to 1, z and z′ must take the same truth value
in Padoa(Σ). Depending on the result returned by defined?, x is added either
to O (line 3) or to I (line 4). Finally, the bipartition that has been computed is
returned at line 5.

2 Obviously enough, in the remaining case when y ∈ X, Σ defines y in terms of X.

Boosting Definability Bipartition Computation Using SAT Witnesses 701

Algorithm 1: B
input : a CNF formula Σ
output : 〈I, O〉 a subset-minimal definability bipartition of Var(Σ)

1 〈Σ, O〉← backbone(Σ); I←∅;
2 foreach x ∈ Var(Σ) \ (I ∪ O) do
3 if defined?(x, Σ,Var(Σ) \ (O ∪ {x})) then O←O ∪ {x};
4 else I←I ∪ {x};

5 return 〈I, O〉

Example 2 (Example 1 cont’ed). Let us consider the CNF formula given in Exam-
ple 1, we have:

Padoa(Σ) = ¬a ∨ b ¬a ∨ c a ∨ ¬b ∨ ¬c ¬e ∨ c ∨ d
¬c ∨ e ¬d ∨ e d ∨ ¬a b ∨ ¬c ∨ d
¬a′ ∨ b′ ¬a′ ∨ c′ a′ ∨ ¬b′ ∨ ¬c′ ¬e′ ∨ c′ ∨ d′

¬c′ ∨ e′ ¬d′ ∨ e′ d′ ∨ ¬a′ b′ ∨ ¬c′ ∨ d′

sa ∨ a ∨ ¬a′ sa ∨ ¬a ∨ a′ sb ∨ b ∨ ¬b′ sb ∨ ¬b ∨ b′

sc ∨ c ∨ ¬c′ sc ∨ ¬c ∨ c′ sd ∨ d ∨ ¬d′ sd ∨ ¬d ∨ d′

se ∨ e ∨ ¬e′ se ∨ ¬e ∨ e′

To check whether e is defined in Σ in terms of X = {a, b, c}, it is enough to test
the consistency of Padoa(Σ) under the assumption A = {sa, sb, sc, e,¬e′}. Since
{¬a, b,¬c, d, e,¬a′, b′,¬c′,¬d′,¬e′, sa, sb, sc,¬sd,¬se} is a model of Padoa(Σ)
under the given assumption A, we can conclude that e is not defined in Σ in
terms of X. On the other hand, e is defined in Σ in terms of X ′ = {b, c, d}, since
Padoa(Σ) under the assumption A′ = {sb, sc, sd, e,¬e′} is inconsistent.

3 Exploiting SAT Oracle Witnesses

Interestingly, modern SAT solvers “under assumptions” A may provide an output
that does not consist only of the decision made about the consistency of its input,
but may also contain a justification of the decision, alias a SAT witness. Thus,
a triple (s,V, C) can be reported by the SAT solver when run on F and A. In
such a triple, s (the decision) is a Boolean value set to true when F ∧ A is
consistent, V is a model of F ∧ A when s is true (the SAT witness), and C ⊆ A
is an inconsistent core of F ∧ A, i.e., C is such that F ∧ C is inconsistent, when
s is false (the UNSAT witness).

In order to understand how the witnesses offered by the SAT solver can be
exploited in the context of a definability bipartition algorithm, it is necessary
to enter into the details about the way B and defined? precisely work. At each
iteration of the greedy algorithm B, the focus is on a variable x that has not
been considered so far in previous iterations. When encountered, x is undecided,
i.e., it has not been classified yet as input or as output. For every x, Var(Σ) can
be split into four pairwise-disjoint sets of variables: {x}, the set Ix of variables

702 J.-M. Lagniez and P. Marquis

already encountered when x is processed, classified as input variables, and put
in I, the set Ox of variables already encountered when x is processed, classified
as output variables, and put in O, and finally the remaining set Ux of variables
that will be considered next and are still undecided when x is processed. Each
of the variables u ∈ Ux will be classified either as input (noted u ∈ U I

x) or as
output (noted u ∈ UO

x) in a subsequent iteration, thus when all the variables
will be processed, we will have either u ∈ I or u ∈ O. When Ix ∪ Ux �Σ {x},
since Ux = U I

x ∪ UO
x , U I

x ⊆ I, UO
x ⊆ O, and I �Σ O, we can conclude that

I �Σ {x}, as expected. Thus, no backtracking is necessary: the classification of
each variable x achieved by the greedy algorithm when x is processed never has
to be questioned. This ensures the correctness of B for computing a definability
bipartition of Var(Σ) (see Proposition 3 in [7]).

At each step, defined? is called to determine whether or not Σ defines x in
terms of Ix ∪Ux. Finally, deciding whether or not Σ defines x in terms of Ix ∪Ux

amounts to calling solve on F = Padoa(Σ) = Σ∧Σ′
∅∧

∧
z∈Var(Σ)((¬sz∨¬z∨z′)

∧(¬sz ∨ z ∨ ¬z′)) and A = {x,¬x′} ∪ {sx | x ∈ Ix ∪ Ux}.
In the definability bipartition algorithm B presented in [6,7], only the decision

value s of the triple returned by solve has been considered. We now explain how
the two other components of the triple, i.e., the two types of SAT witnesses, can
be exploited to improve the performance of the algorithm. Basically, at each
iteration, when defined? is called to decide whether or not Σ defines x in terms
of Ix ∪ Ux, the goal is to take advantage of the SAT witnesses furnished by
solve when providing a decision about x to reduce the computational efforts to
be made by the definability bipartition algorithm in subsequent iterations. The
two types of witnesses will be leveraged in two different ways.

When the decision returned by solve is false, Σ defines x in terms of Ix ∪Ux

and an inconsistent core C will be exhibited. This core makes precise a subset
of assumptions of XC ⊆ Ix ∪ Ux such that Σ defines x in terms of XC . The
idea is to keep track of this definability relation by forming a clause (based on
selectors) (

∨
v∈XC ¬sv) ∨ sx) that reflects that Σ defines x in terms of XC . This

clause can be freely added to Padoa(Σ) in subsequent iterations: adding it does
not change the definability relationships that may exist among variables in Σ
but enables to reducing the search space visited by solve in the next iterations.
As a matter of example, suppose that C indicates that Σ defines x in terms of
XC ⊆ Ix∪Ux. For each variable y processed after x by the definability bipartition
algorithm, if XC ⊆ Iy ∪ Uy, then the part of the search space where x and x′

do not take the same truth value does not have to be explored by solve. The
clause (

∨
v∈XC ¬sv) ∨ sx that is recorded prevents such an exploration.

When the decision returned by solve is true, Σ does not define x in terms of
Ix ∪ Ux. A model V of F ∧A is exhibited and by construction, the restriction of V
to Var(Σ) is a model of Σ. Let y be any variable from Ux. If the canonical term
γ
flip(V,y)
Ix∪{x}∪Ux

that coincides with V on Ix ∪{x} and on every variable from Ux but
y is consistent with Σ, then Σ does not define y in terms of Ix ∪{x}∪Ux. Since
Ix ∪ {x} ∪ Ux ⊆ Iy ∪ Uy when y is processed after x and x has been put into I,
this implies that Σ does not define y in terms of Iy ∪Uy. Therefore, y can be put

Boosting Definability Bipartition Computation Using SAT Witnesses 703

in I as well (and removed from the current set of undecided variables) as soon
as x is processed. That way, there is no need to process y later on (one iteration
of the definability bipartition algorithm is saved). In order to avoid an expensive
SAT call to determine whether γ

flip(V,y)
Ix∪{x}∪Ux

is consistent with Σ, an incomplete
local search approach is used instead. The neighborhood of V constrained by
γ
flip(V,y)
Ix∪{x}∪Ux

is explored in search for a partial assignment of the variables of Ox

that extends γ
flip(V,y)
Ix∪{x}∪Ux

into a model of Σ.
In the following, before presenting our improved definability bipartition algo-

rithm B+, we first point out a couple of formal results that will be useful to
establish the correctness of B+.

3.1 Exploiting UNSAT Witnesses

First, let us consider the case when the decision s returned by solve when x
is processed is false. In this case, x is defined in terms of X. Hence, x ↔ x′ is
a logical consequence of Σ ∧ Σ′

X . As a consequence, assigning in Padoa(Σ) the
corresponding selector sx to true or false does not matter when the selectors
associated to the variables v ∈ X have been set to true. Formally:

Proposition 1. If Σ defines x ∈ Var(Σ) in terms of X ⊆ Var(Σ) \ {x}, then
Padoa(Σ) ∧ ∧

v∈X sv does not depend on sx, i.e., it can be rewritten into an
equivalent formula into which sx does not occur.

As a consequence, definability recording clauses that keep track of previously
identified definability relationships X �Σ {x} can be freely added to Padoa(Σ).
Formally, (

∨
v∈X ¬sv) ∨ sx is a definability recording clause of Σ if X �Σ {x}

holds. The presence of such clauses does not modify the definability relationships
between variables of Σ that can be found using Padoa(Σ). This is made precise
by the following proposition:

Proposition 2. If R is a set of definability recording clauses of Σ, then for any
set X ⊆ Var(Σ) of variables and variable x ∈ Var(Σ), we have that Padoa(Σ)∧
R∧∧

v∈X sv ∧x∧¬x′ is inconsistent if and only if Padoa(Σ)∧∧
v∈X sv ∧x∧¬x′

is inconsistent.

A last observation is that the inconsistent core C returned by solve can be
exploited to derive a definability recording clause that is, in general, logically
stronger than (

∨
v∈X ¬sv) ∨ sx:

Proposition 3. Let (s,V, C) ← solve(Padoa(Σ), {x,¬x′} ∪ {sv | v ∈ X}). If s
is false, then Σ defines x in terms of S = {v | sv ∈ C}.

The definability recording clause (
∨

v∈S ¬sv) ∨ sx found using the extracted
core can then be added to Padoa(Σ) for subsequent computations, as justified
by Proposition 2.

704 J.-M. Lagniez and P. Marquis

Example 3 (Example 2 cont’ed). Suppose that the variables are considered in
the following order by the definability bipartition algorithm: e, a, b, c, d. Thus,
the first definability test that occurs aims to decide whether Σ defines e in
terms of {a, b, c, d}. In this case, the assumption under consideration is A =
{sa, sb, sc, sd, e,¬e′}. (false, ∅, {sb, sc, sd, e,¬e′}) could be an outcome returned
by the SAT solver. This reflects the fact that {b, c, d} �Σ {e} (there is no
need to consider a as an input variable for defining e in Σ when b, c, d are
already considered as input variables). Consequently, the clause added into F is
¬sb ∨¬sc ∨¬sd ∨se. In the next iteration, when we will check whether Σ defines
a in terms of {b, c, d}, the assumption A = {sb, sc, sd, a,¬a′} will enforce se to
be assigned to true without any significant computational effort, thanks to the
added clause. Consequently, the two clauses ¬e∨e′ and e∨¬e′ will be activated,
so that solve will not explore the part of the search space where e and e′ take
distinct truth values.

3.2 Exploiting SAT Witnesses

Now let us consider the case when s is true, so that the variable x tested at the
current iteration of the definability bipartition algorithm must be added to I. As
we will see, in this case, it is possible to take advantage of the model V returned
by solve and to “dig around” it in order to classify as inputs variables y that
are still undecided.

Proposition 4. Let X ⊆ Var(Σ) and x ∈ Var(Σ). If there exists a canonical
term γX over X such that γX ∧x is consistent with Σ and γX ∧¬x is consistent
with Σ, then Σ does not define x in terms of X.

Since the restriction to Var(Σ) of the SAT witness returned by solve is a
model of Σ, Proposition 4 gives a sufficient condition based on V that ensures
that a variable y ∈ Ux can be put into I. Indeed, if the canonical term γ

flip(V,y)
Ix∪{x}∪Ux

that coincides with V on Ix∪{x} and on every variable from Ux but y is consistent
with Σ, then Σ does not define y in terms of Ix ∪ {x} ∪ Ux. Hence, as explained
previously, y can be put in I and removed from the current set of undecided
variables.

Because deciding whether γ
flip(V,y)
Ix∪{x}∪Ux

is consistent with Σ is computationally
expensive in general (it requires to call a SAT solver if a complete algorithm is
expected), we turn to a much cheaper, though incomplete, greedy local search
to do the job. One looks for a canonical term γOx

over Ox such that the inter-
pretation that satisfies γ

flip(V,y)
Ix∪{x}∪Ux

and γOx
satisfies Σ. Since every variable of

Var(Σ) is assigned either in γ
flip(V,y)
Ix∪{x}∪Ux

or in γOx
, the latter model checking test

can be achieved in linear time.
Thus, once solve has shown that x must be put in the set I of input variables

and has returned a model V justifying this decision, the variables y ∈ Ux are
considered successively. For each y, starting from V where the truth value of
y has been flipped, we iteratively flip the truth value of variables of Ox. Such
flipping operations are made while they lead to an interpretation that decreases

Boosting Definability Bipartition Computation Using SAT Witnesses 705

Algorithm 2: greedyLS
input : a CNF formula Σ, (I, U, O) a partition of Var(Σ) s.t. Σ defines O in

terms of I ∪ U and V a model of Σ over Var(Σ).
output : IU ⊆ U such that Σ does not define any variable y ∈ IU in terms of

(I ∪ U) \ {y}.
1 IU←∅;
2 foreach y ∈ U do
3 V ′←flip(V, y);
4 while ∃o ∈ O and #false(Σ, V ′) > #false(Σ, flip(V ′, o)) do
5 V ′←flip(V ′, o);

6 if #false(Σ, V ′) = 0 then IU←IU ∪ {y};

7 return IU

the number of falsified clauses in Σ. If at the end of the process, the number
of falsified clauses is zero, then the current interpretation is a model of Σ and
since it satisfies γ

flip(V,y)
Ix∪{x}∪Ux

by construction, y can be definitely put in the set I

of input variables that will be returned by the definability bipartition algorithm,
so it is removed from the current set of undecided variables. In the remaining
case when the number of falsified clauses is not null, no conclusion can be drawn.
y is kept in the current set of undecided variables and it will be put in I or in
O later on (at last, during the iteration when y will be processed).

Algorithm 2 implements the greedy local search process greedyLS. It takes
as input the CNF formula Σ, a partition (I, U,O) of Var(Σ) s.t. Σ defines O in
terms of I ∪U , and a model V of Σ over Var(Σ). The algorithm returns a subset
of variables IU of U such that Σ does not define any variable y of IU in terms
of (I ∪ U) \ {y}. It starts by initializing IU to the empty set (line 1). For each
variable y in U , the algorithm tests whether y can be moved into IU (lines 2–6).
To do so, at line 3 the interpretation V ′ obtained by flipping the truth value of y
in V is considered. Then, while it is possible to decrease the number of falsified
clauses of Σ by flipping the truth value of some output variable o ∈ O, the truth
value of o in V ′ is flipped (lines 4–5). If at line 6 the number of falsified clauses
is zero, then y fulfills the expected requirement (the resulting interpretation V ′

is a model of Σ) and y can be added safely to the set IU of variables (thus, its
status changes from “undecided” to “input”). Finally, IU is returned at line 7.

A last, yet useful observation, is that the SAT witness V returned by solve
run on its input F ∧ A when variable x is processed can be exploited to derive
not only one model of Σ but in general two models of Σ that can be used
to classify as inputs variables that are still undecided when x is processed. As
explained before, the restriction of V to Var(Σ) is one of them, but there is
a second interpretation that can be exploited, namely the interpretation over
Var(Σ) obtained from the restriction of V to {v′ | v ∈ Var(Σ)} by “renaming
back” every variable v′ into v.

Example 4 (Example 3 cont’ed). Suppose now that the variables have been con-
sidered in the following order by the definability bipartition algorithm: e, b, a,

706 J.-M. Lagniez and P. Marquis

Algorithm 3: B+
input : a CNF formula Σ
output : 〈I, O〉 a subset-minimal definability bipartition of Var(Σ)

1 〈Σ, O, M〉← backbone(Σ);
2 I←∅;
3 foreach M ∈ M do
4 I←I ∪ greedyLS(Σ, (I,Var(Σ) \ (I ∪ O), O), M);

5 Ψ←Padoa(Σ);
6 U←Var(Σ) \ (I ∪ O);
7 while U �= ∅ do
8 Pick a variable x in U and remove it from U ;
9 (s, V, C)←solve(Ψ, {sv|v ∈ I ∪ U} ∪ {x, ¬x′});

10 if s is false then
11 O←O ∪ {x};
12 Ψ←Ψ ∧ (sx ∨ ∨

sv∈C ¬v)

13 else
14 I←I ∪ {x};
15 I←I ∪ greedyLS(Σ, (I, U, O), {� ∈ V | var(�) ∈ Var(Σ)});
16 U←U \ I;
17 I←I ∪ greedyLS(Σ, (I, U, O), {� | �′ ∈ V and var(�′) ∈ Var(Σ′

∅)});
18 U←U \ I;

19 return 〈I, O〉

c, d. And that e has already been processed and classified as an output variable.
Then the next step is to determine whether Σ defines b in terms of {a, c, d}.
In this case, the assumption under consideration is A = {sa, sc, sd, b,¬b′} and
a possible outcome of solve is (true, V = {¬a, b, ¬c, d, e, ¬a′, ¬b′, ¬c′, d′,
e′, sa, ¬sb, sc, sd, se}, ∅). Hence, b can be put into the set of input variables.
Before considering the next iteration of the definability bipartition algorithm, it
is possible to take advantage of two models of Σ to determine whether some vari-
ables that are currently undecided can be classified as inputs. The two models
are {¬a, b,¬c, d, e} (obtained by restricting V to Var(Σ)) and {¬a,¬b,¬c, d, e}
(obtained from the restriction of V to {v′ | v ∈ Var(Σ)} by “renaming back”
every variable v′ into v). Digging around {¬a, b,¬c, d, e}, we can check that the
interpretation {¬a, b,¬c,¬d,¬e} is a model of Σ. As a consequence, variable d
which is still undecided can be put into the set of input variables. Digging around
{¬a,¬b,¬c, d, e}, we can check that the interpretation {¬a,¬b, c, d, e} also is a
model of Σ. Therefore, the undecided variable c can be put as well into the set
of input variables. Hence, only variable a remains undecided after two iterations
provided that the order e, b, a, c, d has been used.

3.3 Improving B by Considering SAT Oracle Witnesses

Algorithm 3 gives the pseudo-code of B+, our implementation of the improved
version of B that exploits the witnesses returned by the SAT oracle solve.

Boosting Definability Bipartition Computation Using SAT Witnesses 707

B+ starts by computing the backbone of Σ using the algorithm proposed in
[8]. Starting from a model ω of Σ and considering each literal � satisfied by ω in
an iterative way, one tests the consistency of Σ ∧¬�. If Σ ∧¬� is consistent, then
a model of Σ different from ω is exhibited and we can conclude that neither � nor
its negation belongs to the backbone of Σ. Otherwise, � belongs to the backbone
of Σ. Contrary to what happens in B, where the models generated during the
computation of the backbone are not used, they are exploited in B+. At line 1,
Σ is simplified by its backbone, O is assigned to the set of variables belonging
to the backbone and M is a set of models of Σ found as a by-product of the
computation of the backbone. I is set to the empty set at line 2. Then, for each
model M in M, the greedy algorithm greedyLS is called in order to spot input
variables (lines 3–4). More precisely, additional input variables are gathered into
I in an iterative way by calling greedyLS on Σ and the given model M. O
is not modified during those iterations over M, but as soon as input variables
are detected, they are added into I (line 4), hence I usually changes (and as a
consequence Var(Σ) \ (I ∪ O) changes as well) during the iterations.

Then, Padoa’s theorem is leveraged. First, at line 5, Ψ is initialized with the
CNF formula Padoa(Σ). At line 6, the set of undecided variables U is set to the
variables that have not been classified so far as inputs or outputs. Then, while
some undecided variables remain, one variable is selected and a call to the SAT
solver solve is performed (lines 7–18). More precisely, at line 8, a variable x
belonging to U is selected and it is removed from U . solve is called at line
9 with the formula Ψ , and its output is stored in the triple (s,V, C). The set
of assumption variables used for this call contains x, x′ and the propositional
variables that correspond to selectors sv making equivalent the pairs of variables
v, v′ in I ∪ U .

Depending on the value of s, two cases have to be considered (lines 10–18). If
s is false, which means Ψ is inconsistent regarding the given assumptions, then
x is added into the set of output variables (line 11) and a definability recording
clause, as presented in Sect. 3.1, is added to Ψ (line 12). If s is true, which means
Ψ is consistent under the considered assumptions, then the input set of variables
I is updated with x (line 14). From the model V found by solve, two models of Σ
can be extracted in general, as explained previously. Consequently, it is possible
to call greedyLS twice in order to try and collect additional input variables (lines
15–18). The first call is made at line 15, where the function greedyLS is called
with the CNF formula Σ, O the set of already identified output variables, U the
set of undecided variables and the restriction of V to the variables of Σ. Then,
the set of undecided variables U is updated to take into account the variables
that have just been identified as inputs (line 16). The second call to greedyLS
differs from the first one only as to the model of Σ used. For the second call, the
restriction of V to {v′ | v ∈ Var(Σ)} obtained by “renaming back” its literals is
considered. Again, at line 18, U is updated to take account for the update of I
at line 17. Finally, the computed bipartition is returned at line 19.

708 J.-M. Lagniez and P. Marquis

The following proposition ensures that the bipartition computed by Algo-
rithm 3, when considering Σ as an input, is a subset-minimal definability bipar-
tition of Σ.

Proposition 5. Algorithm 3 is correct and it terminates after a number of calls
to a SAT oracle that does not exceed 2n + 1 if n is the number of variables in
Var(Σ).

4 Experimental Evaluation

Our objective was to evaluate empirically the benefits offered by the use of SAT
witnesses of each type within B+. In our experiments, we have considered 1942
CNF instances from the Compile! project.3 Those instances are gathered into 8
datasets, as follows: BN (Bayes nets) (1116), BMC (Bounded Model Check-
ing) (18), Circuit (41), Configuration (35), Handmade (58), Planning (557),
Random (104), Qif (7) (Quantitative Information Flow analysis - security) and
Scheduling (6). We have also considered 1200 instances from the model counting
and the projected model counting tracks of the last model counting compe-
titions (see https://mccompetition.org (2020–2022)). The SAT solver (solve)
used was Glucose [1]. Our experiments have been conducted on Intel Xeon E5-
2643 (3.30GHz) processors with 32 GiB RAM on Linux CentOS. A time-out of
100 s and a memory-out of 7.6 GiB have been considered for each instance.

For each instance, we measured the time needed by B+ to derive a subset-
minimal definability bipartition. For each run, the opportunity of exploiting
cores (core) or models (model) has been activated or not, rendering possible
to compare four variants of B+ depending on the choices made for the two
parameters. The version where cores and models are not used is noted (init) in
the following. It merely boils down to B and is considered as a baseline approach
in the comparison.

Table 1 presents the number of instances for which B+ terminated in due
time and returned a subset-minimal definability bipartition. From this table,
it is clear that exploiting SAT witnesses really helps in practice to reduce the
time needed to compute a subset-minimal bipartition. Furthermore, whatever
the benchmark category considered, the version of B+ equipped with both SAT
and UNSAT witnesses solved systematically at least as many instances as B (init),
and for several datasets, significantly more instances. A similar conclusion can
be drawn for the versions of B+ equipped with either SAT or UNSAT witnesses.
No significant degradation of performance in terms of the number of instances
solved in due time can be observed (compared to B (init), only one instance
from the Planning dataset is lost by B+ equipped with SAT witnesses). Thus, B+
equipped with both SAT and UNSAT solved 72 more instances than the baseline
approach (2859 vs. 2787), 21 more instances than the version of B+ that only
uses SAT witnesses (2859 vs. 2838), and 51 more instances than the version of B+
that only uses UNSAT witnesses (2859 vs. 2808). From this table, we also observe
3 See http://www.cril.univ-artois.fr/kc/benchmarks.html for details.

https://mccompetition.org
http://www.cril.univ-artois.fr/kc/benchmarks.html

Boosting Definability Bipartition Computation Using SAT Witnesses 709

Table 1. The table shows the number of instances solved by different versions of B+
within a time limit of 100 s and a memory limit of 7680 MB.

Method
init model core core+model

Competition 930 966 937 973

BN 1078 1081 1079 1081

Handmade 38 39 42 43

Circuit 36 36 36 36

Planning 548 547 557 557

Random 95 104 95 104

BMC 18 18 18 18

Configuration 35 35 35 35

Qif 7 7 7 7

Scheduling 2 5 2 5

Total 2787 2838 2808 2859

that the best improvement is obtained when considering the two types of SAT
witnesses at the same time, which means that the benefits offered by each type
of witness are complementary.

Fig. 1. Cactus plot used to compare different versions of B+. The number of instances
solved is provided on the x-axis and the time needed to solve them on the y-axis.

The cactus plot in Fig. 1 compares the run times of the four different versions
of B+. It shows that whatever the time limit between 10 and 100 s, the init con-
figuration solves systematically less instances than the other configurations (this
behavior still occurs when the time limit is set to a value less than 10 s, we do
not report this part of the cactus here because the figure becomes hard to be

710 J.-M. Lagniez and P. Marquis

(a) core+model vs. core (b) core+model vs. model

Fig. 2. Comparing the run times of different versions of B+.

read). Figure 1 also shows that when instances become harder, the performance
gap between B+ and B increases with the time bound, which demonstrates that
using SAT witnesses is all the more efficient when the instance under consider-
ation appears as difficult.

Figure 2 shows a comparison between between B+ equipped with core+model
and the versions of B+ where only one of core or model is used. Each dot
represents an instance. The time (in seconds) needed to solve it using the version
of B+ corresponding to the x-axis (resp. y-axis) is given by the x-coordinate
(resp. y-coordinate) of the dot. The experimental results, reported in Figs. 2a
and 2b, clearly show that the version of B+ exploiting SAT and UNSAT witnesses
is generally faster than the versions of B+ where only one of the two types of
witness is leveraged.

5 Conclusion

We have shown how to boost the computation of subset-minimal definability
bipartitions through the leverage of SAT witnesses (models and cores) justify-
ing the decisions made by the SAT solver used to solve successive instances of
the definability problem. The experiments made show that taking advantage of
both models and cores is useful in practice. Our new algorithm B+ for com-
puting subset-minimal definability bipartitions clearly outperforms the previous
algorithm, B, developed so far for the same purpose.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their comments and insights. This work has benefited from the support of the
PING/ACK project (ANR-18-CE40-0011) of the French National Research Agency
(ANR).

Boosting Definability Bipartition Computation Using SAT Witnesses 711

References

1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5_23

2. Beth, E.: On Padoa’s method in the theory of definition. Indag. Math. 15, 330–339
(1953)

3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

4. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints Int. J. 21(1),
41–58 (2016). https://doi.org/10.1007/s10601-015-9204-z

5. Kiesel, R., Totis, P., Kimmig, A.: Efficient knowledge compilation beyond weighted
model counting. Theory Pract. Log. Program. 22(4), 505–522 (2022). https://doi.
org/10.1017/S147106842200014X

6. Lagniez, J., Lonca, E., Marquis, P.: Improving model counting by leveraging defin-
ability. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9–15 July 2016, pp. 751–757. IJCAI/AAAI Press (2016). http://www.ijcai.org/
Abstract/16/112

7. Lagniez, J., Lonca, E., Marquis, P.: Definability for model counting. Artif. Intell.
281, 103229 (2020). https://doi.org/10.1016/j.artint.2019.103229

8. Lagniez, J., Marquis, P.: On preprocessing techniques and their impact on proposi-
tional model counting. J. Autom. Reason. 58(4), 413–481 (2017). https://doi.org/
10.1007/s10817-016-9370-8

9. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable
independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

10. Lang, J., Marquis, P.: On propositional definability. Artif. Intell. 172(8–9), 991–
1017 (2008). https://doi.org/10.1016/j.artint.2007.12.003

11. Lin, F., Reiter, R.: Forget it! In: Proceedings of AAAI Fall Symposium on Rele-
vance, pp. 154–159 (1994)

12. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity - Second Edition. Frontiers in Artificial Intelligence and Applications, vol. 336,
pp. 133–182. IOS Press (2021). https://doi.org/10.3233/FAIA200987

13. Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une intro-
duction logique à une théorie déductive quelconque. In: Bibliothèque du Congrès
International de Philosophie, Paris, pp. 309–365 (1903)

14. Soos, M., Meel, K.S.: Arjun: an efficient independent support computation tech-
nique and its applications to counting and sampling. In: Mitra, T., Young, E.F.Y.,
Xiong, J. (eds.) Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2022, San Diego, California, USA, 30 October–3
November 2022, p. 71. ACM (2022). https://doi.org/10.1145/3508352.3549406

https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1017/S147106842200014X
https://doi.org/10.1017/S147106842200014X
http://www.ijcai.org/Abstract/16/112
http://www.ijcai.org/Abstract/16/112
https://doi.org/10.1016/j.artint.2019.103229
https://doi.org/10.1007/s10817-016-9370-8
https://doi.org/10.1007/s10817-016-9370-8
https://doi.org/10.1016/j.artint.2007.12.003
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1145/3508352.3549406

Hybrid Modal Operators for Definite
Descriptions

Przemysław Andrzej Wałȩga1,2 and Michał Zawidzki1,2(B)

1 University of Łódź, Łódź, Poland
2 University of Oxford, Oxford, UK

{przemyslaw.walega,michal.zawidzki}@cs.ox.ac.uk

Abstract. In this paper, we study computational complexity and
expressive power of modal operators for definite descriptions, which cor-
respond to statements ‘the modal world which satisfies formula ϕ’. We
show that adding such operators to the basic (propositional) modal lan-
guage has a price of increasing complexity of the satisfiability problem
from PSpace to ExpTime. However, if formulas corresponding to descrip-
tions are Boolean only, there is no increase of complexity. Furthermore,
we compare definite descriptions with the related operators from hybrid
and counting logics. We prove that the operators for definite descrip-
tions are strictly more expressive than hybrid operators, but strictly less
expressive than counting operators. We show that over linear structures
the same expressive power results hold as in the general case; in contrast,
if the linear structures are isomorphic to integers, definite descriptions
become as expressive as counting operators.

Keywords: Definite descriptions · Modal logics · Hybrid operators ·
Counting operators · Computational complexity · Expressive power

1 Introduction

Definite descriptions are term-forming expressions such as ‘the x such that
ϕ(x)’, which are usually represented with Peano’s ι-operator as ιxϕ(x) [28].
Such expressions intend to denote a single object satisfying a property ϕ, but
providing a complete formal theory for them turns out to be a complex task due
to several non-intuitive cases, for example, when there exists no object satisfy-
ing ϕ, when there are multiple such objects, or when a formula with a definite
description is in the scope of negation. As a result, a number of competing the-
ories have been proposed [7,20,24,33,34], including Russell’s famous approach
according to which the underlying logical form of a sentence ‘ιxϕ(x) satisfies ψ’
is that ‘there exists exactly one x which satisfies ϕ and moreover this x satisfies
ψ’ [29].

More recently it has been observed that definite descriptions, and referring
expressions in general, provide a convenient way of identifying objects in infor-
mation and knowledge base management systems [6,13]. Such expressions can be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 712–726, 2023.
https://doi.org/10.1007/978-3-031-43619-2_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_48&domain=pdf
http://orcid.org/0000-0003-2922-0472
http://orcid.org/0000-0002-2394-6056
https://doi.org/10.1007/978-3-031-43619-2_48

Hybrid Modal Operators for Definite Descriptions 713

used to replace obscure identifiers [13,14], enhance query answering [38], iden-
tify problems in conceptual modelling [12], and identity resolution in ontology-
based data access [39,40]. For this reason referring expressions have been stud-
ied in the setting of description logics (DLs) [5,25,38]—well-known formalisms
for ontologies and the Semantic Web. In particular, Neuhaus et al. [26] intro-
duced free DLs (free of the presupposition that each term denotes) with three
alternative dual-domain semantics: positive, negative, and gapping, where state-
ments in ABoxes and TBoxes involving non-referring expressions can still be
true, become automatically false, or lack a truth value, respectively. Artale et al.
[6], in turn, proposed free DLs using single domain semantics; they introduced
definite descriptions in DLs by allowing for expressions of the form {ιC}, whose
extension is a singleton containing the unique element of which a (potentially
complex) concept C holds, or the empty set if there does not exist such a unique
element. Definite descriptions can therefore be seen as a generalisation of nom-
inals, which in DLs take the form {a} with a being an individual name. Since
Artale et al. do not assume that all individual names must refer, a nominal {a}
with a being a non-referring name, denotes the empty set. As shown by Artale et
al. [6], definite descriptions can be simulated in DLs with nominals and the uni-
versal role. In particular, adding definite descriptions to ALCOu (i.e., ALC with
nominals and the universal role) does not increase the computational complexity
of checking ontology satisfiability, which remains ExpTime-complete.

In modal logics nominals are treated as specific atoms which must hold in
single modal worlds [9,15,19,32]. Satisfaction operators @i, in turn, are indexed
with nominals i and allow us to write formulas such as @iϕ, whose meaning is
that ϕ holds in the unique modal world in which nominal i holds (but ϕ can
also hold in other worlds). Nominals and satisfaction operators constitute the
standard hybrid machinery, which added to the basic modal logic gives rise to
the hybrid logic H(@) [3,8]. Such a machinery increases the expressiveness of
the basic modal logic by making it possible, for example, to encode irreflexivity
or atransitivity of the accessibility relation. At the same time the computational
complexity of the satisfiability problem in H(@) remains PSpace-complete, so
the same as in the basic modal logic [1]. On the other hand, introducing further
hybrid operators or considering temporal hybrid logics oftentimes has a drastic
impact on the computational complexity [1–3,18,36].

Closely related are also the difference D and the universal A modalities.
Adding any of them to the basic modal language makes the satisfiability prob-
lem ExpTime-complete [10]. It is not hard to show that D allows us to express
nominals and satisfaction operators; what is more interesting, however, is that
the basic modal logic with D is equivalent to the hybrid modal logic with A [19].
Furthermore, one can observe that having access to both A and nominals enables
to express definite descriptions by marking with a nominal the unique world in
which the definite description holds, and using A to state that this description
holds only it the world satisfying this nominal (as observed by Artale et al. [6]).

Uniqueness of a world can also be expressed in the modal logic with count-
ing MLC, which extends the basic modal language with counting operators of

714 P. A. Wałȩga and M. Zawidzki

the form ∃≥n, where n ∈ N, and ∃≥nϕ states that ϕ holds in at least n distinct
worlds [4]. Using Boolean connectives and ∃≥n enables to also express the count-
ing operators of the forms ∃≤n and ∃=n. Such operators can be used to encode
the hybrid machinery, as well as A and D, but this comes at a considerable
complexity cost. In particular, the satisfiability problem in MLC is ExpTime-
complete if numbers n in counting operators are encoded in unary [37] and it is
NExpTime-complete if the numbers are encoded in binary [30,31,41].

In contrast to the extensive studies of hybrid and counting modal operators,
as well as definite descriptions in first-order modal logics [17,21,22,27], definite
descriptions have not been thoroughly analysed in propositional modal logics,
which we address in this paper. To this end, we consider the basic modal language
and extend it with a (hybrid) modal operator for definite descriptions @ϕ which
can be indexed with an arbitrary modal formula ϕ. The intuitive meaning of @ϕψ
is that ψ holds in the unique world in which ϕ holds. Our goal is to determine
the computational cost of adding such definite descriptions to the language, and
to investigate the expressive power of the obtained logic, denoted as ML(DD).

The main contributions of this paper are as follows:

1. We show that adding to the basic modal language definite descriptions @ϕ

with Boolean ϕ (so ϕ does not mention modal operators) can be done with no
extra computational cost. In other words, satisfiability of ML(DD)-formulas
with Boolean definite descriptions is PSpace-complete. The main part of the
proof is to show the upper bound by reducing ML(DD)-satisfiability to the
existence of a winning strategy in a specific game played on Hintikka sets.

2. On the other hand, if we allow for arbitrary ϕ’s in definite descriptions, the
satisfiability problem becomes ExpTime-complete. Thus, the computational
price of adding non-Boolean definite descriptions is the same as for adding
the universal modal operator A or counting operators ∃≥n with numbers n
encoded in unary. The important ingredient of the proof is showing the lower
bound by reducing satisfiability in the basic modal logic with the universal
modality A to ML(DD)-satisfiability.

3. We show that, over the class of all frames, ML(DD) is strictly more expressive
than H(@), but strictly less expressive than MLC. In particular, MLC can
define frames with domains of cardinality n, for any n ∈ N. On the other
hand, the only frame cardinality ML(DD) can define is 1, and H(@) cannot
define any frame properties related to cardinality.

4. We prove that over linear frames the same expressiveness results hold as for
arbitrary frames, but over the integer frame ML(DD) becomes as expres-
sive as MLC. In particular, over such a frame the operators ∃≥n become
expressible in ML(DD), which is still not the case for H(@).

The rest of the paper is organised as follows. In Sect. 2 we present ML(DD)
formally. We obtain its syntax by extending the basic modal logic with defi-
nite description operators @ϕ and we provide the semantics for these operators
exploiting the standard Russellian theory of definite descriptions. We also present
H(@) and MLC, which are considered in the later parts of the paper. In Sect. 3
we prove both of our computational complexity results, namely tight PSpace and

Hybrid Modal Operators for Definite Descriptions 715

ExpTime bounds. Then, in Sect. 4 we turn our attention to expressive power;
we define notions used to compare the expressive power of the logics in question
and present a variant of bisimulation which is adequate for ML(DD). We show
results that hold over arbitrary and linear frames, and we finish with results that
hold over integers. Finally, we briefly conclude the paper in Sect. 5.

2 Logic of Definite Descriptions and Related Formalisms

In what follows, we introduce formally the modal logic of definite descriptions
ML(DD) and present closely related logics which were studied in the literature.

We let formulas of ML(DD) be defined as in the basic modal logic, but we
additionally allow for using the operator @ to construct formulas of the form
@ϕψ whose intended meaning is that formula ψ holds in the unique world in
which formula ϕ holds.

Formally, ML(DD)-formulas are generated by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | @ϕϕ,

where p ranges over the set PROP of propositional variables. We refer to an
expression @ϕ as a definite description—DD in short—and we call it Boolean
if so is ϕ (i.e., ϕ does not mention ♦ or @). We will also use ⊥, �, ∧, →,
and �, which stand for the usual abbreviations. We let PROP(ϕ) be the set
of propositional variables occurring in ϕ and the modal depth, md(ϕ), of ϕ the
deepest nesting of ♦ in ϕ.

We will consider the Kripke-style semantics of ML(DD), where a frame is
a pair F = (W,R) consisting of a non-empty set W of worlds and an acces-
sibility relation R ⊆ W × W . A model based on a frame F = (W,R) is a
tuple M = (W,R, V), where V : PROP −→ P(W) is a valuation assigning a
set of worlds to each propositional variable. The satisfaction relation |= for
M = (W,R, V) and w ∈ W is defined inductively as follows:

M, w |= p iff w ∈ V (p), for each p ∈ PROP

M, w |= ¬ϕ iff M, w
|= ϕ

M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2

M, w |= ♦ϕ iff there exists v ∈ W such that (w, v) ∈ R and M, v |= ϕ

M, w |= @ϕ1ϕ2 iff there exists v ∈ W such that M, v |= ϕ1,M, v |= ϕ2

and M, v′
|= ϕ1 for all v′
= v in W

We say that ϕ is satisfiable if there exist M and w such that M, w |= ϕ; we will
focus on checking satisfiability as the main reasoning task.

It is worth observing that ML(DD) allows us to naturally express definite
descriptions with both the external and internal negation. The first type of
negation corresponds to sentences of the form ‘it is not the case that the x such
that ϕ satisfies ψ’ which can be written as ¬@ϕψ. The internal negation occurs

716 P. A. Wałȩga and M. Zawidzki

in sentences of the form ‘the x such that ϕ does not satisfy ψ’, which can be
expressed in ML(DD) as @ϕ¬ψ.

Next, we present well-studied extensions of the basic modal language which
are particularly relevant for investigating ML(DD), namely the logic MLC with
counting operators ∃≥n, with any n ∈ N [2,4], and the logic H(@) with hybrid
operators @i, where i is a nominal (i.e., an atom which holds in exactly one
world) [1,3]. The intended reading of ∃≥nϕ is that ϕ holds in at least n distinct
worlds, whereas @iϕ is that ϕ holds in the unique world labelled by i.

Formally, MLC-formulas are generated by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | ∃≥nϕ,

where p ∈ PROP and n ∈ N. We will also use ∃≤nϕ as an abbreviation for
¬∃≥n+1ϕ and ∃=nϕ as an abbreviation for ∃≥nϕ∧∃≤nϕ. The semantics of MLC
is obtained by extending the basic modal logic semantics with the condition

M, w |= ∃≥nϕ iff there are at least n worlds v ∈ W such that M, v |= ϕ

Formulas of H(@), in turn, are generated by the grammar

ϕ ::= p | i | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | @iϕ,

for p ∈ PROP and i belonging to the set NOM of nominals. The semantics of
H(@) exploits hybrid models M = (W,R, V) which are defined like standard
modal models except that V : PROP ∪ NOM −→ P(W) assigns not only sets of
worlds to propositional variables, but also singleton sets to nominals. Then the
conditions of the satisfaction relation are extended with

M, w |= i iff V (i) = {w}, for each i ∈ NOM

M, w |= @iϕ iff M, v |= ϕ, for v such that V (i) = {v}
We can already observe some relations between definite descriptions @ϕ,

the counting operator ∃=1, and satisfaction operators @i. For example, @ϕψ
can be expressed as ∃=1ϕ ∧ ∃=1(ϕ ∧ ψ), which states that ϕ holds in a single
world and that ψ also holds in this world. On the other hand we can simulate
a nominal i with a propositional variable pi by writing a formula @pi

�, which
guarantees the existence of the unique world in which pi holds. Then @iϕ can be
simulated as @pi

ϕ; note that for the latter simulation we use only Boolean DDs.
In the following sections we will study the relation between logics with these
operators in detail. In particular, we will aim to determine how the complexity
and expressiveness of ML(DD) compares to the ones of the related logics.

3 Computational Complexity

In this section, we investigate the computational complexity of the satisfiabily
problem in ML(DD). First, we show that if we allow for Boolean DDs only, the
problem is PSpace-complete, that is, the same as in the language without DDs;

Hybrid Modal Operators for Definite Descriptions 717

hence, extending the language in this way can be performed with no computa-
tional cost. However, in the second result we show that in the case of arbitrary
DDs the problem becomes ExpTime-complete, and so, the computational price
of adding DDs is the same as for adding counting quantifiers (with numbers
encoded in unary) [2,37] or for adding the universal modality [10].

We start by showing PSpace-completeness of the satisfiability problem in
the case of Boolean DDs. The lower bound follows trivially from PSpace-
completeness of the same problem in basic modal logic [10,23]. For the upper
bound, we show that the problem reduces to checking the existence of a winning
strategy in a specific two-player game. States of this game can be represented
in polynomial space, and so, we can check the existence of a winning strategy
in PSpace. It is worth observing that a similar technique was used to show the
PSpace upper bound for H(@) [1] and for modal logics of topological spaces with
the universal modality [35].

Our game for checking if an input formula ϕ is satisfiable will be played using
ϕ-Hintikka sets defined as follows.

Definition 1. We let the closure, cl(ϕ), of an ML(DD)-formula ϕ be the min-
imal set of formulas which contains all subformulas of ϕ, and such that if
ψ ∈ cl(ϕ) but ψ is not of the form ¬χ, then ¬ψ ∈ cl(ϕ). A ϕ-Hintikka set
H is any maximal subset of cl(ϕ) which satisfies the following conditions, for all
ψ,ψ1, ψ2 ∈ H:

– if ¬ψ ∈ cl(ϕ), then ¬ψ ∈ H if and only if ψ
∈ H,
– if ψ1 ∨ ψ2 ∈ cl(ϕ), then ψ1 ∨ ψ2 ∈ H if and only if ψ1 ∈ H or ψ2 ∈ H.

For example, if ϕ is of the form @¬(p∨¬p) then {p, (p∨¬p),@¬(p∨¬p)} constitutes
a ϕ-Hintikka set. Note that although ϕ-Hintikka sets are consistent with respect
to Boolean connectives, they do not need to be consistent (i.e., satisfiable) in
general; indeed, @¬(p∨¬p) in the set above is unsatisfiable.

Given the definition of a ϕ-Hintikka set we are ready to present the game.
To this end, we will use the symbol DD(ϕ) to represent the set of all formulas ψ
such that @ψ occurs in ϕ.

Definition 2. For an ML(DD)-formula ϕ we let the ϕ-game be played between
Eloise and Abelard as follows. In the first turn Eloise needs to provide a set H
of at most |DD(ϕ)| + 1 ϕ-Hintikka sets and a relation R ⊆ H × H such that:

– ϕ ∈ H, for some H ∈ H,
– each ψ ∈ DD(ϕ) can occur in at most one H ∈ H,
– for all @ψχ ∈ cl(ϕ) and H ∈ H we have @ψχ ∈ H iff there is H ′ ∈ H such

that {ψ, χ} ⊆ H ′,
– and for all ♦ψ ∈ cl(ϕ), if R(H,H ′) and ψ ∈ H ′, then ♦ψ ∈ H.

Then Abelard and Eloise play in turns. Abelard selects H ∈ Current (initially
Current = H) and a formula ♦ϕ′ ∈ H, which he wants to verify. This ♦ϕ′ needs
to have the modal depth not larger than md(ϕ) decreased by the number of turns
Abelard already played. Then it is Eloise’s turn in which she needs to provide a
witnessing ϕ-Hintikka set H ′ such that

718 P. A. Wałȩga and M. Zawidzki

– ϕ′ ∈ H ′,
– if H ′ ∩ DD(ϕ)
= ∅, then H ′ ∈ H,
– for all @ψχ ∈ cl(ϕ) we have @ψχ ∈ H ′ iff there is H ′′ ∈ H such that {ψ, χ} ⊆

H ′′,
– and for all ♦ψ ∈ cl(ϕ), if ψ ∈ H ′, then ♦ψ ∈ H.

If H ′∩DD(ϕ)
= ∅, then Eloise wins. Otherwise the game continues with Abelard’s
turn in which H ′ is added to H and the set Current becomes {H ′}. When one
of the players cannot make any move, the game ends and this player loses.

We observe that a ϕ-game needs to terminate, as Abelard can play at most
md(ϕ) + 1 turns. Moreover, we show next that verifying the satisfiability of ϕ
reduces to checking the existence of Eloise’s winning strategy in the ϕ-game.

Lemma 3. For any ML(DD)-formula ϕ with Boolean DDs, ϕ is satisfiable if
and only if Eloise has a winning strategy in the ϕ-game.

Proof. If ϕ is satisfiable, then Eloise can construct a winning strategy by
reading the required ϕ-Hintikka sets from a model of ϕ. For the opposite
direction, assume that Eloise has a winning strategy that starts by playing
H0 = {H0, . . . ,Hn}. We define H1, . . . ,Hmd(ϕ) such that each Hk+1 is the set of
all ϕ-Hintikka sets not belonging to H0 which Eloise would play (using the win-
ning strategy) as a response to Abelard having played some set (and a formula)
in Hk. We exploit these H0, . . . ,Hmd(ϕ) to construct a model M = (W,R, V)
such that

W = {wH
k | k ∈ {0, . . . ,md(ϕ)} and H ∈ Hk},

R = {(wH
k , wH′

k′) ∈ W × W | ψ ∈ H ′ implies ♦ψ ∈ H, for all ♦ψ ∈ cl(ϕ)},

V (p) = {wH
k ∈ W | p ∈ H}, for each p ∈ PROP.

We can show by induction on the structure of formulas that for any wH
k ∈ W

and any ψ ∈ cl(ϕ) with md(ψ) ≤ md(ϕ) − k it holds that M, wH
k |= ψ if and

only if ψ ∈ H. Thus, M, wH
0 |= ϕ, for H ∈ H0 such that ϕ ∈ H (which needs to

exist by the definition of the ϕ-game). ��
We observe that each state of the ϕ-game can be represented in polynomial

space with respect to the size of ϕ. In particular, in each state we need to
specify a set of polynomially many ϕ-Hintikka sets played so far, each containing
polynomially many formulas, which in total uses polynomial space. The existence
of a winning strategy for Eloise can therefore be decided in PSpace (e.g., by
exploiting the fact that PSpace coincides with the class of problems decided by
alternating Turing machines in polynomial time [16]).

Theorem 4. Checking satisfiability of ML(DD)-formulas with Boolean DDs is
PSpace-complete.

Hybrid Modal Operators for Definite Descriptions 719

Importantly, Theorem 4 does not hold if we allow for non-Boolean DDs, which
disallows us to conduct the induction from the proof of Lemma 3. As we show
next, this is not a coincidence, namely the satisfiability problem for ML(DD)
with non-Boolean DDs is ExpTime-complete.

The ExpTime upper bound follows from an observation that DDs can be
simulated with the counting operator ∃=1; recall that we can simulate @ϕψ
with ∃=1ϕ ∧ ∃=1(ϕ ∧ ψ). As we use only one counting operator ∃=1 and MLC-
satisfiability with numbers encoded in unary is ExpTime-complete [2,37], our
upper bound follows. The proof of the matching lower bound is more complicated
and is obtained by simulating the universal modal operator A with DDs, where
Aϕ stands for ‘ϕ holds in all worlds’. To simulate A we start by guaranteeing
that there exists a unique ‘trash’ world in which a special propositional variable
s holds and which is accessible with ♦ only from itself; this can be obtained
by the formula @s� ∧ @♦ss. Now, we can use this world to simulate Aϕ with
@(s∨¬ϕ)�, which states that ϕ holds in all worlds in which s does not hold, that
is, in all worlds different from our ‘trash’ world. Although this does not allow
us to express the exact meaning of Aϕ, it turns out to be sufficient to reduce
satisfiability of formulas of the logic ML(A) with the A operator to ML(DD)-
satisfiability. As the former problem is ExpTime-complete [10], we obtain the
required lower bound.

Theorem 5. Checking satisfiability of ML(DD)-formulas (with arbitrarily com-
plex DDs) is ExpTime-complete.

Proof. As we have observed, the upper bound is trivial, so we focus on showing
ExpTime-hardness. To this end, we reduce ML(A)-satisfiability to ML(DD)-
satisfiability. First, given an ML(A)-formula, we transform it into a formula
ϕ in the negation normal form NNF, where negations occur only in front of
propositional variables. This can be done in logarithmic space, but requires using
additional operators, namely ∧, �, and E. In particular, E stands for ‘somewhere’
and is dual to A similarly to ♦ being dual to �. Then, we construct a translation
of such formulas in NNF to ML(DD)-formulas as follows:

τ(p) = p, τ(♦ψ) = ♦τ(ψ),
τ(¬p) = ¬p, τ(�ψ) = �τ(ψ),

τ(ψ ∨ χ) = τ(ψ) ∨ τ(χ), τ(Eψ) = @pψ
(τ(ψ) ∧ ¬s),

τ(ψ ∧ χ) = τ(ψ) ∧ τ(χ), τ(Aψ) = @(s∨¬τ(ψ))�,

where p ∈ PROP, ψ and χ are subformulas of ϕ, s is a fresh variable marking
a ‘trash’ world, and pψ is a fresh variable for each ψ. Our finally constructed
formula ϕ′ is defined as follows:

ϕ′ = τ(ϕ) ∧ ¬s ∧ @s� ∧ @♦ss.

Since ϕ′ is constructed in logarithmic space from ϕ, it remains to show that ϕ
and ϕ′ are equisatisfiable.

720 P. A. Wałȩga and M. Zawidzki

If ϕ is satisfiable, then M, w |= ϕ, for some M = (W,R, V) and w ∈ W . To
show that ϕ′ is satisfiable, we construct, in two steps, a model M′ = (W ′, R′, V ′)
extending M. First, for each subformula ψ of ϕ which is satisfied in some world
in M we choose an arbitrary world v ∈ W such that M, v |= ψ and we let
V ′(pψ) = {v}. Second, we add a single new world ws to W ′ as well as we set
V ′(s) = {ws} and (ws, ws) ∈ R′. Then, we can show by induction on the struc-
ture of ϕ that for all v ∈ W , if M, v |= ϕ then M′, v |= τ(ϕ). This, in par-
ticular, implies that M′, w |= τ(ϕ). By the construction of M′ we have also
M′, w |= ¬s ∧ @s� ∧ @♦ss, so we can conclude that M′, w |= ϕ′.

For the opposite direction we assume that ϕ′ is satisfiable, so M′, w |= ϕ′ for
some M′ = (W ′, R′, V ′) and w ∈ W ′. In particular M′, w |= ¬s ∧ @s� ∧ @♦ss,
so there exists a unique world ws ∈ W ′ such that M′, ws |= s, and M′, w |= ¬s
implies that ws
= w. Now, we construct M = (W,R, V) by deleting from M′

the world ws and restricting the accessibility relation and the valuation to this
smaller set of worlds. Then, we can show by induction on the structure of ϕ
that for any v ∈ W , if M′, v |= τ(ϕ), then M, v |= ϕ. Since M′, w |= τ(ϕ) and
w ∈ W , we obtain that M, w |= ϕ. ��

Note that the reduction in the proof above provides us with a satisfiability
preserving translation between languages. The existence of such a reduction
does not mean, however, that there exists a translation preserving equivalence
of formulas. In the next section we will study the existence of the second type
of translations to compare the expressiveness of ML(DD) with that of H(@)
and MLC.

4 Expressive Power

In the previous section we have established the computational complexity of
reasoning in ML(DD). Now, we will compare ML(DD) with H(@) and MLC
from the point of view of expressiveness. We will study their relative expressive
power over the class of all frames, as well as over linear frames L (where the
accessibility relation is irreflexive, transitive, and trichotomous), and over the
frames Z which are isomorphic to the standard (strict) order of integers.

To this end, for a class F of frames below we define the greater-than expres-
siveness relation �F (we drop the index F in the case of all frames). If logics L1

and L2 are non-hybrid, then we let L1 �F L2, if, for any L1-formula ϕ, there is
an L2-formula ϕ′ such that M, w |= ϕ if and only if M, w |= ϕ′, for any model
M based on a frame from the class F and any world w in M. If L1 is hybrid
but L2 is not, we treat nominals as fresh propositional variables in L2, so we can
still require that M, w |= ϕ implies M, w |= ϕ′. For the opposite direction we
require that if M, w |= ϕ′, for a non-hybrid model M = (W,R, V), then V (i)
is a singleton for each i ∈ NOM(ϕ); thus we can treat M as a hybrid model
and require now that M, w |= ϕ. If L1 is non-hybrid but L2 is hybrid, we define
L1 � L2 analogously. Then, L2 has a strictly higher expressiveness than L1,
in symbols L1 ≺F L2, if L1 �F L2, but L2
�F L1, whereas L1 have the same
expressiveness as L2, in symbols L1 ≈F L2, if both L1 �F L2 and L2 �F L1.

Hybrid Modal Operators for Definite Descriptions 721

For L1 �F L2 it suffices to construct a translation, but showing that L1
�F L2

is usually more complicated. It can be obtained, for example, by using an ade-
quate notion of bisimulation, which we present for ML(DD) below.

Definition 6. A DD-bisimulation between M = (W,R, V) and M′ =
(W ′, R′, V ′) is any total (i.e., serial and surjective) relation Z ⊆ W × W ′ such
that whenever (w,w′) ∈ Z, the following conditions hold:

Atom: w and w′ satisfy the same propositional variables,
Zig: if there is v ∈ W such that (w, v) ∈ R, then there is v′ ∈ W ′ such (v, v′) ∈ Z
and (w′, v′) ∈ R′,
Zag: if there is v′ ∈ W ′ such that (w′, v′) ∈ R′, then there is v ∈ W such
(v, v′) ∈ Z and (w, v) ∈ R,
Singular: Z(w) = {w′} if and only if Z−1(w′) = {w}1.

Note that by relaxing the definition of DD-bisimulation, namely not requir-
ing the totality of Z and removing Condition (Singular), we obtain the stan-
dard notion of bisimulation, which is adequate for basic modal language [10,11].
Additional restrictions imposed on the bisimulation give rise to bisimulations
adequate for MLC and H(@). In particular, MLC-bisimulation is defined
by extending the standard bisimulation (for basic modal language) with the
requirement that Z contains a bijection between W and W ′ [4]. In turn, an
H-bisimulation introduces to the standard bisimualtion an additional condi-
tion (Nom): for each i ∈ NOM, if V (i) = {w} and V ′(i) = {w′}, then
Z(w,w′) [3]. We write M, w↔DDM′, w′ if there is a DD-bisimulation Z between
M and M′ such that (w,w′) ∈ Z. Similarly, in the cases of MLC and H(@)
we write M, w↔MLCM′, w′ and M, w↔HM′, w′, respectively. These bisimu-
lations satisfy invariance lemmas for the corresponding languages, namely if
M, w↔MLCM′, w′ (resp. M, w↔HM′, w′), then, for any MLC-formula (resp.
H(@)-formula) ϕ, it holds that M, w |= ϕ if and only if M′, w′ |= ϕ [3,4]. Next,
we show an analogous result for DD-bisimulation.

Lemma 7. If M, w↔DDM′, w′ then, for any ML(DD)-formula ϕ, it holds that
M, w |= ϕ if and only if M′, w′ |= ϕ.

Proof. Assume that Z is a DD-bisimulation between models M = (W,R, V)
and M′ = (W ′, R′, V ′) satisfying M, w↔DDM′, w′. The proof is by induction
on the structure of ϕ, where the non-standard part is for the inductive step
for DDs, where ϕ is of the form @ψ1ψ2. If M, w |= @ψ1ψ2, there is a unique
world v ∈ W such that M, v |= ψ1, and moreover M, v |= ψ2. As Z is serial,
there is v′ ∈ Z(v), and so, by the inductive assumption, M′, v′ |= ψ1 ∧ ψ2.
Suppose towards a contradiction that M′, w′
|= @ψ1ψ2, so there is u′
= v′ such
that M′, u′ |= ψ1. Since Z is surjective, there is u ∈ W such that u′ ∈ Z(u).
Moreover, by the inductive assumption we obtain that M, u |= ψ1. However, v
is the only world in W which satisfies ψ1, so u = v and consequently u′ ∈ Z(v).
For the same reason there cannot be in W any world different than v which is

1 We use here the functional notation where Z(w) = {v | (w, v) ∈ Z}.

722 P. A. Wałȩga and M. Zawidzki

mapped by Z to v′. Hence, Z−1(v′) = {v} and thus Z(v) = {v′}. This, however,
contradicts the fact that u′ ∈ Z(v) and u′
= v′. The opposite implication is
shown analogously. ��

We will exploit bisimulations in our analysis. We start by considering arbi-
trary frames and we show that H(@) ≺ ML(DD) and ML(DD) ≺ MLC.

Theorem 8. It holds that H(@) ≺ ML(DD); the result holds already over the
class of finite frames.

Proof. Given an H(@)-formula ϕ we construct an ML(DD)-formula ϕ′ by setting
ϕ′ = ϕ ∧ ∧

i∈NOM(ϕ) @i�. The conjunction
∧

i∈NOM(ϕ) @i� guarantees that each
i ∈ NOM(ϕ) holds in exactly one world, so H(@) � ML(DD).

To prove that ML(DD)
� H(@), we show that the ML(DD)-formula @��,
defining the class of frames with exactly one world, cannot be expressed in H(@).
For this, we construct models M and M′ and an H-bisimulation Z between
them:

M M H

w

i, j, k, . . .
w′

i, j, k, . . .

M M′

Z

Clearly M, w |= @��, but M′, w′
|= @��. However, since Z is an
H-bisimulation, there exists no H(@)-formula which holds in w, but not
in w′. ��

Next, we use DD-bisimulation to show that ML(DD) ≺ MLC.

Theorem 9. It holds that ML(DD) ≺ MLC; the result holds already over the
class of finite frames.

Proof. To show that ML(DD) � MLC, we observe that @ϕψ can be expressed
as E(ϕ∧ψ∧¬Dϕ), where E and D are the ‘somewhere’ and ‘difference’ operators.
Both E and D can be expressed in MLC, for example, Eϕ can be expressed as
∃≥1ϕ and Dϕ as (ϕ → ∃≥2ϕ) ∧ (¬ϕ → ∃≥1ϕ) [4]. Thus ML(DD) � MLC.

To prove that MLC
� ML(DD), we show that ML(DD) cannot express
the MLC-formula ∃=2� defining frames with exactly two worlds in the domain.
Indeed, consider models M and M′ and a DD-bisimulation between them as
below:

w1 w2 w′
1 w′

2 w′
3

M M′

Z

Clearly M, w1 |= ∃=2�, but M′, w′
1
|= ∃=2�. Since Z is a DD-bisimulation

mapping w1 to w′
1, these words satisfy the same ML(DD)-formulas. ��

Hybrid Modal Operators for Definite Descriptions 723

We note that the argument from the proof above, showing that there is no
ML(DD) formula which defines the class of frames with domains of cardinality
2, can be easily generalised to any cardinality larger than 1. In contrast, as we
showed in the proof of Theorem 8, the frame property of having the domain of
cardinality 1 can be captured by the ML(DD)-formula @��. In other words,
ML(DD) cannot define frames bigger than singletons.

Next, we focus on linear frames where the following result holds

Theorem 10. The following relations hold: H(@) ≺L ML(DD) ≺L MLC.

Proof. Clearly, H(@) �L ML(DD) and ML(DD) �L MLC follow from The-
orem 8 and 9, so it remains to show that ML(DD)
�L H(@) and MLC
�L

ML(DD).
To show that ML(DD)
�L H(@) we construct models M and M′ over Z

with an H-bisimulation Z, as depicted below (note that the accessibility relation
in the models is the transitive closure of the relation depicted by arrows):

· · ·
p

i, j, k, . . .

w′
· · · · · ·

p p

i, j, k, . . .

w′
· · ·

M M

Z

′

Clearly M, w |= @p�, but M′, w′
|= @p�. However, since Z is an H-bisimulation
mapping w to w′, these worlds need to satisfy the same H(@)-formulas.

To show that MLC
�L ML(DD) we construct models N and N ′, each of
them over a frame Z+ Z consisting of two copies of Z, as depicted below:

· · ·
w−1

p

w0

p

w1

p
· · ·

v−1 v0 v1
· · · · · ·

w′
−1

p

w′
0 w′

1
· · ·

v′
−1 v′

0 v′
1
· · ·

N N ′

Z

It holds that N , v0 |= ∃≥1p, but N ′, v′
0
|= ∃≥1p. However, we can show that v0

and v′
0 satisfy the same ML(DD)-formulas. To this end, we observe that Z is a

(standard) bisimulation, so v0 and v′
0 satisfy the same formulas from the basic

modal language. The language of ML(DD) contains also formulas of the form
@ϕψ, but none of them is satisfied in any world of N or N ′. Indeed, in the case of
N we can construct a DD-bisimulation ZN between N and itself which consists
of pairs (wn, wm) and (vn, vm) for all n,m ∈ Z. Hence, all worlds of the form wn

satisfy the same ML(DD)-formulas, and the same holds for all worlds vn. Thus,
no formula of the form @ϕψ can be satisfied in N , as there are either no worlds
satisfying ϕ or there are infinitely many of them. An analogous argument shows
that no formula of the form @ϕψ can be satisfied in N ′. ��

Next we show that expressiveness results change when we consider frames Z.

724 P. A. Wałȩga and M. Zawidzki

Theorem 11. The following relations hold: H(@) ≺Z ML(DD) ≈Z MLC.

Proof. The fact that H(@) ≺Z ML(DD) follows from the proof of Theorem 10 as
the H-bisimulation constructed therein is over Z. To show ML(DD) ≈Z MLC
it suffices to prove MLC �Z ML(DD), as ML(DD) �Z MLC follows from
Theorem 9.

To express MLC-formulas in ML(DD) it will be convenient to introduce, for
any n ∈ N, a formula ψn as the following abbreviation

ψn = ψ ∧ ♦(ψ ∧ ♦(ψ ∧ . . .)), whereψ occursn times.

We observe that by the irreflexivity of the accessibility relation over Z we
obtain that ψn holds in all worlds w1 of a model such that there exists a chain
w1 < w2 < · · · < wn of (not necesarily consecutive) distinct worlds satisfying ψ.

Given an MLC-formula ϕ, we let ϕ′ be an ML(DD)-formula obtained by
replacing in ϕ each ∃≥nψ with ♦ψn ∨ @(ψn∧¬♦ψn)�. To show that ϕ and ϕ′

are equivalent over Z it suffices to show that ∃≥nψ is equivalent to ♦ψn ∨
@(ψn∧¬♦ψn)�. Indeed, ∃≥nψ holds at w if either (1) there are w1 < · · · < wn,
all larger than w, in which ψ holds or (2) there exists the unique w′ such that
ψ holds in w′ and in exactly n − 1 words larger than w′. The first condition
is expressed by ♦ψn and the second by @(ψn∧¬♦ψn)�, so ∃≥nψ is equivalent to
♦ψn ∨@(ψn∧¬♦ψn)�. Note that the disjunct ♦ψn would not be needed over finite
linear frames. ��

Observe that in the proof above we have shown that over Z ML(DD) allows
us to count the number of occurrences of p in a model, which is impossible over
arbitrary frames and over linear frames, as we showed in the proof of Theorem
10.

5 Conclusions

In this paper we have studied the computational complexity and expressive
power of modal operators for definite descriptions. We have shown that after
adding Boolean DDs to the basic modal language the satisfiability problem
remains PSpace-complete, so such an extension can be obtained with no com-
putational cost. However, if we allow for arbitrary DDs, the problem becomes
ExpTime-complete, so the computational price is the same as for adding the uni-
versal modal operator or counting quantifiers with numbers encoded in unary.
Moreover, we have shown that in this setting DDs provide strictly higher expres-
sive power than the (basic) hybrid machinery, but strictly lower expressive power
than counting operators. The same holds over linear structures, but over integers
DDs become as expressive as counting operators.

Regarding the future research directions, it would be interesting to provide a
complexity-wise optimal decision procedure for ML(DD)-satisfiability, for exam-
ple, using a tableaux systems. We would also like to study the complexity and
expressiveness of well-behaving fragments of modal logic, such as Horn frag-
ments.

Hybrid Modal Operators for Definite Descriptions 725

Acknowledgments. This research is funded by the European Union (ERC, ExtenDD,
project number: 101054714). Views and opinions expressed are however those of the
authors only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

References

1. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics.
In: Flum, J., Rodriguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–
321. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48168-0_22

2. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. Log. J. IGPL 8(5), 653–679 (2000)

3. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, vol. 3, chap.
14, pp. 821–868 (2007)

4. Areces, C., Hoffmann, G., Denis, A.: Modal logics with counting. In: Dawar, A., de
Queiroz, R. (eds.) WoLLIC 2010. LNCS (LNAI), vol. 6188, pp. 98–109. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13824-9_9

5. Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of descrip-
tion logic. In: Proceedings of INLG, pp. 42–49 (2008)

6. Artale, A., Mazzullo, A., Ozaki, A., Wolter, F.: On free description logics with
definite descriptions. In: Proceedings of KR, pp. 63–73 (2021)

7. Bencivenga, E.: Free logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of
Philosophical Logic, vol. 5, pp. 147–196. Springer, Dordrecht (2002). https://doi.
org/10.1007/978-94-017-0458-8_3

8. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Log. J. IGPL 8(3), 339–365 (2000)

9. Blackburn, P.: Nominal tense logic. Notre Dame J. Formal Log. 34(1), 56–83 (1993)
10. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in The-

oretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2002)
11. Blackburn, P., Van Benthem, J., Wolter, F.: Handbook of Modal Logic, vol. 3.

Elsevier, Amsterdam (2007)
12. Borgida, A., Toman, D., Weddell, G.: On referring expressions in information sys-

tems derived from conceptual modelling. In: Comyn-Wattiau, I., Tanaka, K., Song,
I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 183–197.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_14

13. Borgida, A., Toman, D., Weddell, G.: On referring expressions in query answering
over first order knowledge bases. In: Proceedings of KR (2016)

14. Borgida, A., Toman, D., Weddell, G.E.: Concerning referring expressions in query
answers. In: Proceedings of IJCAI, pp. 4791–4795 (2017)

15. Bull, R.A.: An approach to tense logic. Theoria 36(3), 282–300 (1970)
16. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–

133 (1981)
17. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthese Library, vol.

277. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-011-5292-1
18. Franceschet, M., de Rijke, M., Schlingloff, B.H.: Hybrid logics on linear structures:

expressivity and complexity. In: Proceedings of TIME, pp. 166–173 (2003)
19. Gargov, G., Goranko, V.: Modal logic with names. J. Philos. Log. 22, 607–636

(1993)

https://doi.org/10.1007/3-540-48168-0_22
https://doi.org/10.1007/978-3-642-13824-9_9
https://doi.org/10.1007/978-94-017-0458-8_3
https://doi.org/10.1007/978-94-017-0458-8_3
https://doi.org/10.1007/978-3-319-46397-1_14
https://doi.org/10.1007/978-94-011-5292-1

726 P. A. Wałȩga and M. Zawidzki

20. Hilbert, D., Bernays, P.: Grundlagen der Mathematik I. Springer, Heidelberg
(1968). https://doi.org/10.1007/978-3-642-86894-8

21. Indrzejczak, A.: Cut-free modal theory of definite descriptions. In: Proceedings of
AiML, pp. 359–378 (2018)

22. Indrzejczak, A.: Existence, definedness and definite descriptions in hybrid modal
logic. In: Proceedings of AiML, pp. 349–368 (2020)

23. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

24. Lambert, K.: Free logic and definite descriptions. In: Morscher, E., Hieke, A. (eds.)
New Essays in Free Logic. Applied Logic Series, vol. 23, pp. 37–48. Springer, Dor-
drecht (2001). https://doi.org/10.1007/978-94-015-9761-6_2

25. Mazzullo, A.: Finite traces and definite descriptions. A knowledge representation
journey. Ph.D. thesis, Free University of Bozen-Bolzano (2022)

26. Neuhaus, F., Kutz, O., Righetti, G.: Free description logic for ontologists. In: Pro-
ceedings of JOWO (2020)

27. Orlandelli, E., Corsi, G.: Labelled calculi for quantified modal logics with non-rigid
and non-denoting terms. In: Proceedings of ARQNL, pp. 64–78 (2018)

28. Peano, G.: Studii di logica matematica. Carlo Clausen, Torino (1897)
29. Pelletier, F.J., Linsky, B.: What is Frege’s theory of descriptions. In: On Denoting:

1905–2005, pp. 195–250 (2005)
30. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-

tifiers. J. Log. Lang. Inf. 369–395 (2005)
31. Pratt-Hartmann, I.: The two-variable fragment with counting revisited. In: Dawar,

A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS (LNAI), vol. 6188, pp. 42–54.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13824-9_4

32. Prior, A.: Past, present and future (1967)
33. Rosser, J.B.: Logic for Mathematicians. Dover Publications, Dover (1978)
34. Scott, D.: Existence and description in formal logic. In: B. Russell, Philosopher of

the Century, pp. 181–200 (1967)
35. Sustretov, D.: Topological semantics and decidability. arXiv preprint

math/0703106 (2007)
36. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders.

In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg
(2005). https://doi.org/10.1007/11538363_24

37. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. Ph.D. thesis (2001)

38. Toman, D., Weddell, G.: Finding ALL answers to OBDA queries using referring
expressions. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp.
117–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_10

39. Toman, D., Weddell, G.: Identity resolution in ontology based data access to
structured data sources. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS
(LNAI), vol. 11670, pp. 473–485. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29908-8_38

40. Toman, D., Weddell, G.E.: Identity resolution in conjunctive querying over DL-
based knowledge bases. In: Proceedings of DL (2018)

41. Zawidzki, M., Schmidt, R.A., Tishkovsky, D.: Satisfiability problem for modal logic
with global counting operators coded in binary is NExpTime-complete. Inf. Pro-
cess. Lett. 113(1), 34–38 (2013)

https://doi.org/10.1007/978-3-642-86894-8
https://doi.org/10.1007/978-94-015-9761-6_2
https://doi.org/10.1007/978-3-642-13824-9_4
https://doi.org/10.1007/11538363_24
https://doi.org/10.1007/978-3-030-35288-2_10
https://doi.org/10.1007/978-3-030-29908-8_38
https://doi.org/10.1007/978-3-030-29908-8_38

Reasoning About Quantities
and Functions

Data Graphs with Incomplete Information
(and a Way to Complete Them)

Carlos Areces1,2, Valentin Cassano1,2,3(B), Danae Dutto1,2,3,
and Raul Fervari1,2,4

1 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),
Buenos Aires, Argentina

valentin@dc.exa.unrc.edu.ar
2 Universidad Nacional de Córdoba (UNC), Córdoba, Argentina

3 Universidad Nacional de Ŕıo Cuarto (UNRC), Ŕıo Cuarto, Argentina
4 Guangdong Technion - Israel Institute of Technology (GTIIT), Shantou, China

Abstract. We introduce a modal language for reasoning about data
graphs with incomplete information. Such data graphs are formally rep-
resented as models in which data value functions are partial—to capture
what is unknown. In this setting, we also allow for unknown data values to
be learned. Our main result is a sound and strongly complete axiomatiza-
tion for the logic.

Keywords: Data Graphs · Incomplete Data · Modal/Intuitionistic
Logic

1 Modal Logic and Semistructured-Data Query
Languages

Nowadays, there is a well established connection between modal logics [13,15]
and semistructured-data query languages such as XPath and some of its rela-
tives [20,25]. The main reason is that semistructured data is usually represented
in the form of relational structures or graphs (e.g., an XML document), and
modal logics are well suited for describing and reasoning over this kind of struc-
tures. This perspective enables us to use modal logic tools to reason with (and
about) XPath-like languages (see, e.g., [9]), thereby helping us to develop meth-
ods to check the consistency of a database and to optimize queries, among other
tasks. Some of these ideas have been explored, e.g., in [18,19], and also, in the
presence of data comparisons, in, e.g., [1,3,6,8,11].

The connection mentioned above is illustrated in [16]. There, a version of
XPath with (in)equality data tests between attributes in an XML document is
named Core-Data-XPath, here called XPath=. Models of XPath= are usually
data trees which can be seen as XML documents. A data tree is a tree whose
nodes contain a label from a finite alphabet and a data value from an infinite
domain. From a modal logic perspective, these data trees are a particular class of
relational models. Naturally, this view can be extended to more general relational
structures, i.e., to arbitrary data graphs. Since data graphs are the underlying
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 729–744, 2023.
https://doi.org/10.1007/978-3-031-43619-2_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_49&domain=pdf
https://doi.org/10.1007/978-3-031-43619-2_49

730 C. Areces et al.

d : Person
name = D. Adams

j : Person
name = J. Cortazar

g : Book
title = H2G2

l : Book
title = A Certain Lucas

h : Book
title = Hopscotch

:Date
year = 1979

:Date
year = 1963

published

author
author

published

published

author

Fig. 1. Graph Database.

B

P

D

D. Adams d j J. Cortazar

H2G2 g l h Hopscotch

A Certain Lucas

1979 1963

a

p

a

p

a

p

dn dn

dt dt

dt

dy dy

Fig. 2. Concrete Data Model.

mathematical structure in graph databases (see, e.g., [4,28,30]), studying the
meta-logical properties of languages to query this particular kind of models is
important (see, e.g., [1,27]).

Let us provide an example to guide our discussion. Figure 1 depicts a graph
database modelling a piece of a library catalog. There, we can see attributes
(e.g., “author”) as labels on edges; while nodes store data values represented
as “tag = value” pairs (e.g., “title = H2G2”). Attributes are usually drawn
from a finite set, while data values are assumed to be drawn from an infinite
set. Additionally, some nodes may contain keys that uniquely identify a node
(e.g., the ISBN number associated to a certain book, or the passport number
of a person, indicated, e.g., “d:”). On this kind of graph database, we can state
queries such as: “The book with the id l has the same author as the one with
the id h”. In this way, we can express both properties about the structure of the
data graph, and about equality or inequality of the data values contained in it.

To explore graph databases and the possibility of querying them from a
logical perspective we need an adequate logical language. We build on [6] and
consider a hybrid modal language. In this setting, modalities encode attributes,
proposition symbols encode types, and nominals from hybrid logic encode unique
identifiers. Figure 2 shows what the graph database in Fig. 1 looks like as a model
of the hybrid modal language. In this figure, a and p are accessibility relations
associated to their corresponding modalities (for the attributes “author” and
“published”); P , B, and D, are proposition symbols (for the types “Person”,
“Book”, and “Date”); and d, j, g, l, and h are nominals (for the unique identifiers
appearing in the graph database, representing the passport number of a person
or the ISBN of a book). Finally, data values in Fig. 2 are encoded as functions
dn, dt, and dy (standing for “name”, “title”, and “year” values).

To be noted, the model Fig. 2, usually called a concrete model, tries to remain
as close as possible to the actual graph-database (the similarities between Fig. 1
and Fig. 2 should be obvious). However, depending on the expressive power of our
logical language, a simpler, more abstract class of models may be better suited.
In particular, many data query languages, like XPath, “abstract away” from
the actual data values in the graph database, and only care about the result of
performing comparisons between them (see, e.g., [1,3,6,22,23]). In other words,
if the language includes only tests for (in)equality, for example, we can forget
about actual data values and define an equivalent model (from the logic stand-
point) with data equality relations instead of data value functions. Precisely, two

Data Graphs with Incomplete Information (and a Way to Complete Them) 731

nodes will be related by data equality if and only if they have the same data
value. In [6] this connection is made explicit, and the simpler class of abstract
models is exploited to prove a soundness and completeness result for a Hilbert-
style axiomatization of XPath= extended with nominals and the satisfaction
operator. Henceforth, we will refer to this logic as HXPath=.

To tackle the main theme of this article, let us continue with our running exam-
ple. Suppose that the library catalog fromFig. 1 contains a record of a rare book like
the Voynich Manuscript [31]. If we treat books uniformly, the catalog will have a
book nodewith data values for the name(s) of its author(s) and its publication year.
The problem with the Voynich Manuscript is that neither the author(s) name(s)
nor the exact year of publication are known. Notwithstanding, the book certainly
has one or more authors, and certainly it was completed at some point in time. It is
only that this information is unknown to us at the moment (but nothing prevents
us from discovering this information in the future). It seems natural to consider, in
this case, that the data values for author and year are undefined for the correspond-
ing node (or, equivalently, to consider that they are assigned a special ‘null’ value).
We call these models “partial data models”. Formally, in the above-mentioned set
up of concrete models, this calls for the use of partial functions for data repre-
sentation, and to consider update operators that would complete the assignment
whenever the previously unknown information becomes available. But once this is
done, we should reconsider the relation between concrete and abstract data mod-
els, as it is in principle unclear how partial data models should be represented in an
abstract way, and how are they related by updates. Intuitively, we could think that
now abstract partial models would contain “partial equivalence relation” (but we
would have to give up reflexivity!). And “learning” the value of an attribute (e.g.,
the date of edition of a book) may be thought of as “extending” these relations
to reflect the (in)equalities that now are obtained. As we will discuss in this arti-
cle, allowing for this perspective has a huge impact on the logic, and surprisingly at
first (and less so after all the work is properly done) it leads to an intuitionistic ver-
sion of HXPath=. Interestingly, this perspective also points to a fresh connection
between modal intuitionistic logics and dynamic logics like those in, e.g., [7,10,29].

Our Contribution. We explore a novel approach for treating undefined values
on data graphs. We define a notion of update and present it as a partial ordering
on a collection of partial data models. To our knowledge this is the first time
that these notions have been studied for variants of XPath=. Our work builds on
ideas present in [6] about the data-aware language HXPath=. Moreover, we use
tools from intuitionistic hybrid logic [17] to model the possibly undefined data
values and their possible future definition. The result of putting these pieces
together is a new logic that we call IHXPath=. While at the syntactic level, the
language of IHXPath= seems identical to the one of HXPath=, semantics is much
more involved (as is the case with classical and intuitionistic propositional logic).
Partial data models, and the exact correspondence between concrete and abstract
models in this new setting is presented in Sect. 2. A variant of the language
HXPath= studied in [6], interpreted over abstract partial data models is given
in Sect. 3. Section 4 presents an axiom system for IHXPath=, which is strongly
complete for any extension with so-called pure axioms and saturation rules (Sect.
5). Section 6 discusses our results and describes future lines of research.

732 C. Areces et al.

2 Background and Motivation

The logic HXPath= in [6] formalizes a fragment of XPath that captures both
topological and data (in)equality queries using elements from hybrid modal
logic [5]. In HXPath= data graphs become models of the logic defined in two
alternative, yet equivalent, ways. We explain what these models look like and
use this explanation to motivate our work. In what follows, we assume Prop,
Nom, Mod, and Cmp, are pairwise disjoint fixed sets of symbols for propositions,
nominals, modalities, and data comparisons, respectively. Moreover, we assume
Mod and Cmp to be finite; and Prop and Nom to be countably infinite.

Definition 1 (The models of HXPath=). A concrete data model is a tuple

C = 〈N, {Ra}a∈Mod,D, {dc}c∈Cmp, g, V 〉,
where N is a non-empty set of nodes; each Ra is a binary accessibility relation
on nodes; D is a non-empty set of data values; dc : N → D is a (total) function
that assigns data values to nodes; g : Nom → N is a (total) function that assigns
nominals to nodes; and V : Prop → 2N is a valuation function. In turn, an
abstract data model is a tuple

A = 〈N, {Ra}a∈Mod, {≈c}c∈Cmp, g, V 〉,
where N , Ra, g, and V are as before; and each ≈c is an equivalence relation on
nodes (representing nodes with the same data value for c).

Remark 1. Notice that concrete and abstract data models are in correspondence
to each other. The first yields the second by defining ≈c = { (n, n′) | dc(n) =
dc(n′) }, while the second yields the first by defining dc(n) = [n]c.

Figure 2 depicts a concrete data model. More precisely, it depicts only some
relevant features of a concrete data model in the context of an example. This
is particularly true, e.g., of data values functions such as dt. In other words, as
a total function, dt must assign a value to each node; yet, only some of these
values are present. Though not a technical issue, considering total data values
functions is inelegant from a knowledge representation perspective. After all,
why must we assign titles to nodes whose values are meant to represent, e.g.,
dates? This observation takes us to Definition 2.

Definition 2. A concrete partial data model is a tuple C as in Definition 1;
with the exception that each dc : N � D is a partial function.

What about corresponding abstract data models? On a first glimpse, we may
think of them via relations ≈c = { (n, n′) | dc(n) = dc(n′) }, which would turn
out to be equivalence relations. However, this fails to account for the cases when
dc is undefined. Namely, n and n′ need defined data values, i.e., need to belong to
the domain of dc. This forces us to abandon reflexivity and view ≈c as a partial
equivalence relation. This observation takes us to Definition 3.

Definition 3. An abstract partial data model is a tuple A as in Definition 1,
except that ≈c is a partial equivalence relation, i.e., it is symmetric and transitive.

Data Graphs with Incomplete Information (and a Way to Complete Them) 733

As a result of these changes, it turns out that now data inequality in abstract
partial data models is not the complement of data equality. Namely, two nodes
n and n′ in an abstract partial data model are taken to have different data if
and only if it is not the case that n ≈c n′ and in addition n ≈c n and n′ ≈c n′.
This observation will have an important impact in the way we need to define
our axiomatization in Sect. 4.

Remark 2. We can still build concrete partial data models from abstract partial
data models by setting dc(n) = { n′ | n ≈c n′ } if { n′ | n ≈c n′ } �= ∅, and
dc(n) undefined otherwise. Similar to the case in Remark 1, the correspondence
between abstract and concrete partial data models is clear.

Now for the last piece of the puzzle. We have established a natural general-
ization of concrete and abstract data models capable of handling partial infor-
mation. Let us consider again the case of the Voynich manuscript. It is clear
that partial functions are all that we need to represent this book in our models.
But suppose that at some point, we do learn the date of edition. This can be
formalized as a relation on partial data models reflecting the new ‘things’ we
have learned. One of the possibly different ways in which we can capture this
idea is provided in Definition 4.

Definition 4. Let C and C′ be two concrete partial data model. We write C � C′,
and call C′ a concrete data update on C, iff C′ replaces some partial function dc
in C by the partial function d′

c = dc ∪ {n 	→ v} s.t. for all n′ ∈ dom(dc)

d′
c(n

′) =

{
v if dc(n) = dc(n′)
dc(n′) otherwise

and is otherwise equal to C. Similarly, let A and A′ be two abstract partial data
models. We write A � A′, and call A′ an abstract data update on A, iff A′

replaces some relation ≈c in A by the relation ≈′
c = (≈c ∪ {(n, n′), (n′, n)})+,

where n = n′ or n′ ∈ dom(≈c), and is otherwise equal to A.

The notion of update in Definition 4 is best explained by making explicit
the kinds of updates that are allowed. First, (1) we can add a data value v of
type c to an undefined node n. In the concrete case, we have n /∈ dom(dc). This
means that (1) yields a partial function d′

c which adds the pair n 	→ v to dc. In
the abstract case, we have n /∈ dom(≈c). This means that (1) yields a partial
equivalence relation ≈′

c which adds the pair (n, n) to ≈c. Second, (2) we can
“update” the data value v of type c assigned to a node n. On a first take, we
restrict our attention to updates that preserve “data equality”. In the concrete
case, (2) yields a partial function d′

c that replaces all pairs n′ 	→ dc(n) in dc by a
corresponding pair n′ 	→ v. This kind of update resembles an aliasing situation,
i.e., if a data value is accessed through different nodes, then, modifying the data
value through one node implicitly modifies the data values associated with all
aliased nodes. In the abstract case, (2) captures the idea of partial equivalence
classes in ≈c being “merged” in ≈′

c. Interestingly, if C and C′ are concrete partial
data models such that C � C′, then, their abstract counterparts A and A′ are
such that A � A, and viceversa.

734 C. Areces et al.

3 Reasoning with Incomplete Information

In this section we introduce a modal logic to reason about collections of abstract
partial data models related by updates. We refer to this modal logic as Intu-
itionistic Hybrid XPath with Data (IHXPath= for short). We define its syntax
in Definition 5 and its semantics in Definition 7.

Definition 5. The language of IHXPath= has path expressions (α, β, . . .) and
node expressions (ϕ, ψ, . . .), mutually defined by the grammar:

α, β := a | @i | [ϕ] | αβ

ϕ, ψ := p | i | ⊥ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ → ψ | 〈α〉ϕ | [α]ϕ | 〈α ∗c β〉 | [α ∗c β].

In this grammar, p ∈ Prop, i ∈ Nom, a ∈ Mod, and ∗c ∈ {=c, �=c}, with c ∈ Cmp.
PE is the set of all path expressions and NE is the set of all nodes expressions.

We abbreviate ¬ϕ := ϕ → ⊥, � := ¬⊥, ε := [�], @iϕ := 〈@i〉ϕ. We write ∗c
if it is indistinct to use =c or �=c. We refer to path expressions of the form [ϕ] as
tests; and to node expressions of the form 〈α∗cβ〉 or [α∗cβ] as data comparisons.
Intuitively, a path expression @iα indicates an α path which starts at a node
named i. Moreover, we read 〈α ∗c β〉 as the endpoints of some α and some β
paths have the same/different data value (of type c), and 〈α〉ϕ as ϕ holds at the
endpoint of some α path. We make clear the intuitive role of “box” modalities
after introducing what models look like in our logic.

Remark 3. It is worth noting that, on the surface, the language for IHXPath=

is inherently that of HXPath= [6]. In more detail, however, it contains some
important changes. In particular, box data comparisons [α ∗c β] are introduced
as primitive, as are the formulas 〈α〉ϕ and [α]ϕ. As it will be made clear in what
follows, [α ∗c β] and [α]ϕ are no longer definable in terms of 〈α ∗c β〉 and 〈α〉ϕ
due to the lack of duality between boxes and diamonds in an intuitionistic modal
setting. The case of 〈α〉ϕ is particularly interesting as its definability in terms of
〈α =c α〉 in HXPath= hinged on the reflexivity of data comparisons, which we
gave up to deal with partial data values.

Let us now turn our attention to the structures on which to interpret path and
nodes expressions (Definition 6), and to the corresponding notion of satisfiabil-
ity on these structures (Definition 7). Our definitions combine ideas found in [6]
and [17].

Definition 6. An abstract partial update structure (alias a model) is a tuple

M = 〈M,�, {〈Am,∼=m〉}m∈M 〉,
where 〈M,�〉 is a poset, and for all m,

Am = 〈Nm, {Ra
m}a∈Mod, {≈c

m}c∈Cmp, gm, Vm〉
is an abstract partial data model (Definition 3) and ∼=m is a congruence on Am.
In addition, for all m � m′:

(i) Nm ⊆ Nm′ , (ii) ∼=m ⊆ ∼=m′ , (iii) Ra
m ⊆ Ra

m′ , (iv) ≈c
m ⊆ ≈c

m′ ,
(v) for all p ∈ Prop, Vm(p) ⊆ Vm′(p), and (vi) for all i ∈ Nom, gm(i) = gm′(i).

Data Graphs with Incomplete Information (and a Way to Complete Them) 735

Fig. 3. Abstract Partial Data Update Structure.

Definition 7. The relation � of satisfiability is defined as:

M ,m, n, n′ � a iff nRa
mn′

M ,m, n, n′ � @i iff gm(i) ∼=m n′

M ,m, n, n′ � [ϕ] iff n ∼=m n′ and M ,m, n � ϕ
M ,m, n, n′ � αβ iff exists n′′ ∈ Nm s.t. M ,m, n, n′′ � α and M ,m, n′′, n′ � β

M ,m, n � ⊥ never
M ,m, n � p iff n ∈ Vm(p)
M ,m, n � i iff n ∼=m gm(i)
M ,m, n � ϕ ∧ ψ iff M ,m, n � ϕ and M ,m, n � ψ
M ,m, n � ϕ ∨ ψ iff M ,m, n � ϕ or M ,m, n � ψ
M ,m, n � ϕ → ψ iff for all m � m′, M ,m′, n � ϕ implies M ,m′, n � ψ

M ,m, n � 〈α〉ϕ iff exists n′ ∈ Nm s.t. M ,m, n, n′ � α and M ,m, n′ � ϕ
M ,m, n � [α]ϕ iff for all m � m′, n′ ∈ Nm′

M ,m′, n, n′ � α implies M ,m′, n′ � ϕ

M ,m, n � 〈α =c β〉 iff exists n′, n′′ ∈ Nm s.t.
M ,m, n, n′ � α, M ,m, n, n′′ � β, and n′ ≈c

m n′′

M ,m, n � 〈α �=c β〉 iff exists n′, n′′ ∈ Nm s.t.
M ,m, n, n′ � α, M ,m, n, n′′ � β, and

n′ ≈c
m n′, n′′ ≈c

m n′′, and n′ �≈c
m n′′

M ,m, n � [α =c β] iff for all m � m′, n′, n′′ ∈ Nm′

M ,m′, n, n′ � α and M ,m′, n, n′′ � β implies n′ ≈c
v n′′

M ,m, n � [α �=c β] iff for all m � m′, n′, n′′ ∈ Nm′

M ,m′, n, n′ � α and M ,m′, n, n′′ � β implies
n′ ≈c

m n′, n′′ ≈c
m n′′, n′ �≈c

m n′′.

For Γ ⊆ NE, we define M ,m, n � Γ iff M ,m, n � γ for all γ ∈ Γ . Moreover,
for Γ ∪ {ϕ} ⊆ NE, we define Γ � ϕ iff M ,m, n � Γ implies M ,m, n � ϕ.

Intuitively, models as in Definition 6 can be understood as collections of
abstract partial data models related by abstract data updates (cf. Definition
4). These collections capture possible “histories” of updates. Interpreting “box”
data comparisons and implications in an intuitionistic way permit us to reason

736 C. Areces et al.

about such “histories”. The result in Proposition 1 is typical in an intuitionistic
setting.

Proposition 1. It follows that:

(1) M ,m, n � ϕ and m � m′ implies M ,m′, n � ϕ;
(2) M ,m, n, n′ � α and m � m′ implies M ,m′, n, n′ � α;
(3) M ,m, n � ϕ and n ∼=m n′ implies M ,m, n′ � ϕ;
(4) M ,m, n, n′ � α and n ∼=m n′′ and n′ ∼=m n′′′ implies M ,m, n′′, n′′′ � α.

Example 1. We conclude this section with an example illustrating models and
node and path expressions in use. For instance, the model in Fig. 3 may be
understood as the history of what would occur if we add the Voynich manuscript
(m2) to our original library catalog (m1), and later on we learn its author(s) and
publication date (m3). This history can be queried using node expressions such
as 〈@la =n @ha〉, stating that the author’s name of “A certain Lucas” (l) and of
“Hopscotch” (h) is the same, and it holds in m1, m2, and m3. We can also write
@vB, stating that “The Voynich Manuscript” (v) is a book on the catalog. This
new node expression does not hold at m1, but it holds at m2 and m3 –once the
book has been added into the catalog. To be noted, adding a new named node
is modeled by the addition of a new node together with the association, via ∼=,
of this new node to an already existing named node. Moreover, we can check
that @v〈p〉�, stating that v has a publication date, does not hold at m1, but
it holds at m2 and m3. Finally, we can check that @v〈p =y p〉, stating that the
publication date (p) of v is known, holds only at m3.

4 Axiomatization and Completeness

In this section we present a strongly complete axiom system for IHXPath=. This
axiom system takes inspiration from [6,17], and consists of the axiom schemata
in Table 1 and the inference rules in Table 2. The axioms under the heading
‘Comparisons’ in Table 1 deserve a short explanation. These axioms differ slightly
from those in [6], since dealing with partial data values forced us to give up
reflexivity for data equality. This implies that equality/inequality tests must
ensure that they contain actual data. The rules of inference for ‘Paths’ generalize
those from [17] and handle data comparisons. The axiom system for IHXPath=

gives rise to a Hilbert-style notion of deduction of a node expression ϕ from a set
of node expressions Γ , written Γ � ϕ, defined inductively as usual. Proposition
2 is useful in our proof of completeness.

Proposition 2 (Agree). � @i@jϕ ↔ @jϕ.

Soundness and Completeness. The rest of this section covers the adequacy of
the axiom system. Soundness is obtained by induction. We prove completeness
by showing that every consistent set of node expressions is satisfiable. We use a
Henkin-style construction akin to that for Hybrid Logic (see [14,24]). We take
NE(Nom′), alias NE′, for the set of node expressions with nominals in a set Nom′.

Data Graphs with Incomplete Information (and a Way to Complete Them) 737

Table 1. Axioms for IHXPath=

Basic

(IPL) Theorems of Intuitionistic Prop. Logic

Satisfaction

(Distr@∧) @i(ϕ ∧ ψ) ↔ (@iϕ ∧ @iψ)

(Distr@∨) @i(ϕ ∨ ψ) ↔ (@iϕ ∨ @iψ)

(Distr@→) @i(ϕ → ψ) ↔ (@iϕ → @iψ)
(Falsum) @i⊥ → ⊥
(Refl@) @ii

Comparisons

(T〈∗〉) 〈α ∗c β〉 → 〈α =c α〉
(B〈∗〉) 〈α ∗c β〉 ↔ 〈β ∗c α〉
(4〈=〉) (〈α =c @i〉 ∧ 〈@i =c β〉) → 〈α =c β〉
(Irref) ¬〈α =c α〉
(CTran) (〈α =c β〉 ∧ 〈@i =c @i〉) → (〈α =c @i〉 ∨ 〈@i =c β〉)
(Comp) (〈α =c @i〉 ∧ 〈@i =c β〉) → 〈α =c β〉
(EM

〈=〉
〈�=〉) (〈α =c α〉 ∧ 〈β =c β〉) → (〈α =c β〉 ∨ 〈α =c β〉)

Paths

(Cat) 〈α〉〈β〉ϕ ↔ 〈αβ〉ϕ
(Idε) 〈ε〉ϕ ↔ ϕ
(Dist1) @i〈αβ ∗c γ〉 ↔ @i(〈α〉〈β ∗c @iγ〉)
(Dist2) 〈α〉〈β ∗c γ〉 → 〈αβ ∗c αγ〉
(Dist3) 〈@iα ∗c @iβ〉 → @i〈α ∗c β〉
(Test) 〈[ψ]α〉ϕ ↔ ψ ∧ 〈α〉ϕ
(Scope) 〈@jα ∗c β〉 → 〈@i@jα ∗c β〉
(Back) 〈α@iβ ∗c γ〉 → 〈@iβ ∗c γ〉
(〈α〉I) (〈α〉i ∧ @iϕ) → 〈α〉ϕ
(〈∗〉I) (〈α〉i ∧ 〈@i ∗c β〉) → 〈α ∗c β〉
([α]E) (〈α〉j ∧ [α]ϕ) → @jϕ
([∗]E) (〈α〉i ∧ 〈β〉j ∧ [α ∗c β]) → 〈@i ∗c @j〉

Table 2. Rules of Inference for IHXPath=

Basic

ϕ ϕ → ψ
(MP)

ψ

Satisfaction

ϕ
(@I’)

@iϕ @ij @iϕ
(Nom)

@jϕ@iϕ
(@E)†

ϕ

† i does not occur in ϕ.

Paths

ϕ → @i〈αβ ∗c γ〉 ∧ (ϕ ∧ @i〈α〉j ∧ @i〈@jβ ∗c γ〉) → ψ
(〈∗〉E)†

ϕ → ψ

(ϕ → @i〈α〉χ) ∧ ((ϕ ∧ @jχ ∧ @i〈α〉j) → ψ)
(〈α〉E)†

ϕ → ψ

(ϕ ∧ @i(〈α〉j ∧ 〈β〉k)) → 〈@j ∗c @k〉
([∗]I)†

ϕ → @i[α ∗c β]

(ϕ ∧ @i〈α〉j) → @jψ
([α]I)†

ϕ → @i[α]ψ

† j and k do not occur in α, β, γ, χ nor ψ.

Definition 8 (Saturated). Let Nom′⊂Nom′′; Γ ′′⊆NE(Nom′′) is saturated iff:

1. Γ ′′ = { ϕ | Γ ′′ � ϕ } ⊂ NE(Nom′′);
2. @i(ϕ ∨ ψ) ∈ Γ ′′ implies @iϕ ∈ Γ ′′ or @iψ ∈ Γ ′′;
3. exists i ∈ Nom′′ s.t. i ∈ Γ ′′;
4. @i〈a〉ϕ ∈ Γ ′′ implies exists j ∈ Nom′′ s.t. {@jϕ,@i〈a〉j} ⊆ Γ ′′

5. @i〈@jaα ∗c β〉 ∈ Γ ′′ implies
exists k ∈ (Nom′′ \ Nom′) s.t. {@j〈a〉k,@i〈@kα ∗c β〉} ⊆ Γ ′′.

The conditions above have the following names: 1. �-closed; 2. the disjunction
property; 3. named; 4. 〈α〉-pasted; and 5. 〈∗〉-pasted.

Now we are in position to establish Lemma 1, a.k.a., the Lindenbaum Lemma.
This lemma states a crucial result: consistent sets can be extended to saturated
sets (enriching the language with new symbols for nominals).

738 C. Areces et al.

Lemma 1 (Saturation Lemma). Let Nom′ ⊂ Nom′′, and Γ ′ ∪ {ψ} ⊆ NE′ be
s.t. Γ ′

� ψ. There is Γ ′′ ⊆ NE′′ s.t. (1) Γ ′ ⊆ Γ ′′, (2) Γ ′′ is saturated, and (3)
Γ ′′

� ψ.

Proof. Enumerate all node expressions in NE′′ and let k ∈ (Nom′′ \Nom′) be the
first nominal in this enumeration. Define Σ0 = Γ ′ ∪ {k}. Now, suppose that we
have defined Σn, for n ≥ 0. Let ϕ(n+1) be the (n + 1)th node expression in the
enumeration. If Σn ∪ {ϕ(n+1)} � ψ, then, define Σ(n+1) = Σn. Otherwise, i.e., if
Σn ∪ {ϕ(n+1)} � ψ, then, define Σ(n+1) = Σn ∪ {ϕ(n+1)} ∪ Σ′ where:

Σ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if ϕ(n+1) /∈ {@i(θ ∨ χ),@i〈a〉ϕ,@i〈@jaα ∗c β〉}
{@iθ} if ϕ(n+1) is @i(θ ∨ χ) and Σn ∪ {ϕ(n+1),@iθ} � ψ

{@iχ} if ϕ(n+1) is @i(θ ∨ χ) and Σn ∪ {ϕ(n+1),@iθ} � ψ

{@i〈a〉j,@jϕ} if ϕ(n+1) is @i〈a〉ϕ
and j ∈ Nom′′ does not appear in Σn ∪ {ϕ(n+1)}.

{@j〈a〉k,@i〈@kα ∗c β〉} if ϕ(n+1) is @i〈@jaα ∗c β〉
and k ∈ Nom′′ does not appear in Σn ∪ {ϕ(n+1)}.

Define Σ =
⋃

n≥0 Σn. It is possible to prove by induction that Σ � ψ. The proof
finishes if Σ is saturated. We prove only the cases 〈α〉-pasted and 〈∗〉-pasted.

(〈α〉-pasted) Let @i〈a〉ϕ ∈ Σ and, w.l.o.g., ϕ(n+1) = @i〈a〉ϕ. It follows that,
{@i〈a〉j,@jϕ} ⊆ Σ(n+1) ⊆ Σ for j a nominal in Nom′′ \ Nom′.

(〈∗〉-pasted) Let @i〈@jaα ∗c β〉 ∈ Σ and, w.l.o.g., ϕ(n+1) = @i〈@jaα ∗c β〉. It
follows that, {@i〈a〉j,@i〈@kα ∗c β〉} ⊆ Σ(n+1) ⊆ Σ for j ∈ Nom′′.

Lemma 1 enables us to build the model needed for proving completeness
(Definition 9).

Definition 9 (Extracted Model). Let {Nom′
i}i∈N

be a family of pairwise
disjoint denumerable sets of nominals. Moreover, let Nom∗

n =
⋃n

i=1 Nom
′
i; and

NE∗
n = NE(Nom ∪ Nom∗

n). For every consistent set Γ ⊆ NE; define

MΓ = 〈M,⊆, {〈AΓ ′ ,∼=Γ ′〉}Γ ′∈M 〉
where: AΓ ′ = 〈NΓ ′ , {Ra

Γ ′}a∈Mod, {≈c
Γ ′}c∈Cmp, gΓ ′ , VΓ ′〉 and

1. M = { Γ ′ ⊆ NE∗
n | n ∈ N and Γ ⊆ Γ ′ and Γ ′ is saturated };

2. for all NΓ ′ = { i | i is a nominal appearing in Γ ′ };
3. for all ∼=Γ ′ = { (i, j) | @ij ∈ Γ ′ };
4. for all Ra

Γ ′ = { (i, j) | @i〈a〉j ∈ Γ ′ };
5. for all ≈c

Γ ′= { (i, j) | 〈@i =c @j〉 ∈ Γ ′ };
6. for all VΓ ′ : Prop → 2NΓ ′ , it follows that VΓ ′(p) = { i | @ip ∈ Γ ′ }; and
7. for all gΓ ′ : Nom → NΓ ′ , it follows that gΓ ′(i) = i.

It can be checked that the structure in Definition 9 is a model in the sense of
Definition 6. On this basis, we state the Truth Lemma 2 and the Completeness
Theorem 1.

Data Graphs with Incomplete Information (and a Way to Complete Them) 739

Lemma 2 (Truth Lemma). Let MΓ be as in Definition 9, it follows that:

(1) MΓ , Γ ′, i, j � α iff @i〈α〉j ∈ Γ ′ (2) MΓ , Γ ′, i � ϕ iff @iϕ ∈ Γ ′.

Proof. The proof is by mutual induction on path and node expressions. The
inductive hypotheses are

(IH1) MΓ , Γ ′, i, j � α iff @i〈α〉j ∈ Γ ′; (IH2) MΓ , Γ ′, i � ϕ iff @iϕ ∈ Γ ′.

We prove the inductive case for [α =c β] as one of the most interesting. For this
case, we need to prove MΓ , Γ ′, i � [α =c β] iff @i[α =c β] ∈ Γ ′.
(⇒) The proof proceeds by contradiction. Suppose: (a) MΓ , Γ ′, i � [α =c β] and
(b) @i[α =c β] /∈ Γ ′. We prove (c) Γ ′ ∪{@i〈α〉j,@i〈β〉k} � @i〈@j =c @k〉 for j, k
arbitrary in NΓ ′ . From not (c), i.e., Γ ′∪{@i〈α〉j,@i〈β〉k} � @i〈@j =c @k〉, we get
Γ ′ � @i((〈α〉j∧〈β〉k) → 〈@j =c @k〉); and using ([∗]I) we obtain Γ ′ � @i[α =c β];
this contradicts (b). Then, from Lemma 1,

(d) exists Γ ′′ ⊇ Γ ′ ∪ {@i〈α〉j,@i〈β〉k} s.t. @i〈@j =c @k〉 /∈ Γ ′′.

The claim is: (d) contradicts (a). Suppose that exists such a Γ ′′, using (IH1), we
get that exists Γ ′′ ⊇ Γ ′ and {j, k} ⊆ NΓ ′′ s.t. MΓ , Γ ′′, i, j � α, MΓ , Γ ′′, i, k � β,
and j �≈c

Γ ′′ k. This means that MΓ , Γ ′, i � [α =c β]; which is a contradiction.
Therefore, MΓ , Γ ′, i � [α =c β] implies @i[α =c β] ∈ Γ ′.
(⇐) Let @i[α =c β] ∈ Γ ′. Proving MΓ , Γ ′, i � [α =c β] is equiv. to proving that
for all Γ ′′ ⊇ Γ ′ and all {j, k} ⊆ NΓ ′′ , if MΓ , Γ ′′, i, j � α and MΓ , Γ ′′, i, k � β,
then, j ≈c

Γ ′′ k. Let Γ ′′ ⊇ Γ ′ and {j, k} ⊆ NΓ ′′ be s.t. MΓ , Γ ′′, i, j � α and
MΓ , Γ ′′, i, k � β. The proof is concluded if j ≈c

Γ ′′ k, i.e., 〈@j =c @k〉 ∈ Γ ′′. From
(A) {@i〈α〉j,@i〈β〉k} ⊆ Γ ′′. Since Γ ′ ⊆ Γ ′′, @i[α =c β] ∈ Γ ′′. Using ([∗]E), we
get @i〈@j =c @k〉 ∈ Γ ′′. Thus, j ≈c

Γ ′′ k.

Theorem 1 (Completeness). Γ � ϕ implies Γ � ϕ.

Proof. We prove Γ � ϕ implies Γ � ϕ. Let MΓ be as in Definition 9. From
Lemma 1 we know that exists Γ ′ ⊇ Γ s.t. Γ ′ ∈ MΓ and ϕ /∈ Γ ′. From Lemma 2,
it is clear that for some nominal i ∈ NΓ ′ , MΓ , Γ ′, i � Γ and MΓ , Γ ′, i � ϕ. This
proves Γ � ϕ.

5 Extended Axiomatic Systems

In this section we briefly cover extensions of IHXPath= with pure axioms and
existential saturation rules, a family of axioms and rules that enables us to extend
our strong completeness result for a wider family of logics. These ideas make use
of the ability of hybrid logics to fully internalize the first-order conditions that
are needed to characterize many interesting frame classes. Similarly to what is
done in [6,14], if we add pure axioms and existential saturation rules into the
axiom system for IHXPath=, the completeness proof in the previous section
automatically yields strong completeness for the extended axiom systems, with
respect to their respective classes of models.

740 C. Areces et al.

Table 3. Standard Translation into IFOL

Propositional Paths

ST′
x(⊥) = ⊥

ST′
x(p) = p(x)

ST′
x(i) = x = xi

ST′
x(ϕ ∨ ψ) = ST′

x(ϕ) ∨ ST′
x(ψ)

ST′
x(ϕ ∧ ψ) = ST′

x(ϕ) ∧ ST′
x(ψ)

ST′
x(ϕ → ψ) = ST′

x(ϕ) → ST′
x(ψ)

ST′
x(〈α〉ϕ) = ∃y(ST′

x,y(α) ∧ ST′
y(ϕ))

ST′
x([α]ϕ) = ∀y(ST′

x,y(α) → ST′
y(ϕ))

ST′
x,y(a) = a(x, y)

ST′
x,y(@i) = y = xi

ST′
x,y([ϕ]) = (x = y) ∧ ST′

y(ϕ)

ST′
x,y(αβ) = ∃z(ST′

x,z(α) ∧ ST′
z,y(β))

Comparisons

ST′
x(〈α =c β〉) = ∃y∃z(ST′

x,y(α) ∧ ST′
x,z(β) ∧ c(y, z))

ST′
x(〈α �=c β〉) = ∃y∃z(ST′

x,y(α) ∧ ST′
x,z(β) ∧ c(y, y) ∧ c(z, z) ∧ ¬c(y, z))

ST′
x([α =c β]) = ∀y∀z(ST′

x,y(α) ∧ ST′
x,z(β) → c(y, z))

ST′
x([α �=c β]) = ∀y∀z(ST′

x,y(α) ∧ ST′
x,z(β) → (c(y, y) ∧ c(z, z) ∧ ¬c(y, z)))

Partial Equality

σc = ∀x∀y(c(x, y) → c(x, y)) τc = ∀x∀y∀z(c(x, y) ∧ c(y, z) → c(x, z))

Standard Translation. We will define a standard translation of the language of
IHXPath= into the language of Intuitionistic FOL with equality (IFOL). This
translation is needed to characterize the frame conditions that the new axioms
and rules define. The semantics of IFOL, can be found, e.g., in [21].

Definition 10. Fix an alphabet of denumerable sets of: unary predicate symbols
(P), binary relation symbols (R), constant symbols (Con),and variable symbols
(Var). The language of IFOL is defined by the grammar:

ϕ,ψ := p(t) | r(t, t′) | ⊥ | t = t′ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ → ψ | ∃xϕ | ∀xϕ,

where t, t′ are terms –i.e., symbols for constants or variables, p ∈ P, and r ∈ R.

Definition 11 establishes a correspondence from the language of IHXPath=

to that of IFOL. Notice that symbols in Prop and P are in a one to one corre-
spondence; that we map each a ∈ Mod to a unique a ∈ Rels; and that x, y, z, . . .
are symbols in Var. Proposition 3 indicates that such a correspondence preserves
satisfiability.

Definition 11. The standard translation of a node expression ϕ is defined as:
STx(ϕ) =

(∧
c∈Cmp(σc ∧ τc)

)
∧ ST′

x(ϕ); where σc, τc, and ST′
x are as in Table 3.

Proposition 3. M ,m, n � ϕ iff M ,m � STx(ϕ)[x 	→ w, xi 	→ gm(i)].

Data Graphs with Incomplete Information (and a Way to Complete Them) 741

Pure Axioms and Existential Saturation Rules. We introduce pure axioms and
existential saturation rules, and their associated frame conditions. Briefly, pure
axioms are formulas that use no proposition symbols; and existential saturation
rules are instantiations of first-order formulas with a ∀∃ quantification pattern.
These axioms and rules are incorporated to the axiom system from Sect. 4, which
contains unorthodox inference rules, i.e., rules with side conditions. As discussed
in [6,14], unorthodox rules are crucial to obtain a general completeness result.

Notation. We use in to indicate a sequence i1 . . . in of nominals; and ϕ(in) to
indicate a node expression with no proposition symbols and with nominals in
in. Lastly, we use Qinϕ to indicate Qxi1 . . . Qxin

ϕ for Q ∈ {∀,∃}.

Definition 12. A node expression is called pure iff it has no proposition sym-
bols. A rule of the form

ϕ(injm) → ψ
(ρ)

ψ

is called an existential saturation rule iff in and jm are disjoint sequences of
nominals, and the nominals in ψ are not in jm. We use hd(ρ) to indicate
ϕ(injm). Sets Π and P of pure expressions and existential saturation rules,
respectively, define a frame condition FC(Π ∪ P) defined as:∧{ ∀x∀in(STx(ϕ(in))) | ϕ(in) ∈ Π } ∧ ∧{ ∀x∀in∃jm(STx(hd(ρ))) | ρ ∈ P }.

Extending the axiom system of IHXPath= with pure axioms and existential
saturation forces us to revise the definition of saturation and the saturation
lemma in Definition 8 and Lemma 1; necessary for completeness. This is done
in Definition 13 and Lemma 3, respectively. Theorem 2 states the generalized
completeness theorem.

Definition 13 (P-saturated). Let Nom′ ⊂ Nom′′ and P a set of existential
saturation rules; Γ ′′ ⊆ NE′′ is P-saturated iff Γ ′′ is saturated and
for all ρ ∈ P and all nominals kn ∈ Γ ′′,

exists lm ⊆ (Nom′′ \ Nom′) s.t. ϕ[injm/knlm] ∈ Γ ′′ –where ϕ(injm) = hd(ρ).

Lemma 3 (P-saturation Lemma). Let Nom′ ⊂ Nom′′; Π be a set of pure
axioms and P a set of existential saturation rules. Moreover, let Γ ′ ⊆ NE′ be s.t.
Γ ′

� ψ. Exists Γ ′′⊆NE′′ s.t.: (1) Γ ′⊆Γ ′′; (2) Γ ′′ is P-saturated; and (3) Γ ′′
� ψ.

Theorem 2. Let Π and P be sets of pure axioms and existential saturation
rules, respectively. The axiomatic system obtained by extending that from Tables
1 and 2 with Π and P as additional axioms and rules, is strongly complete w.r.t.
the class of models whose frames satisfy FC(Π ∪ P).

742 C. Areces et al.

6 Final Remarks

We presented a logic –IHXPath=– that provides an intuitionistic reading of
XPath with (in)equality checks for attribute values in the presence of partial data
value functions and updates. For this logic, we first identified suitable notions
of concrete and abstract models, and characterized a certain class of update
functions. This lead us to the definition of abstract partial update structures,
which became the models of our logic. To our knowledge, this is the first approach
for dealing with incomplete information based on partial orders between data
graphs. Other attempts to address similar problems use completely different
ideas, such as those presented in [2,12,26]. Moreover, by defining a suitable
notion of updates (defining certain cases in which new information can be added
to a graph database) we discovered a novel link between dynamic data updates
and intuitionistic logic.

We provided an axiomatization and a strong completeness result. Moreover,
we showed that our system preserves strong completeness when extended with
pure axioms and existential saturation rules (with respect to the corresponding
class of models). These extensions allow to characterize several interesting classes
of models (cf, e.g., [6,14]).

Much remains to be done. For instance, besides (in)equalities, we would like
to explore comparison operators such as less than, greater than, etc. Moreover,
we would like to study this logic from a purely dynamic logic perspective, à
la [7,10,29]. It would also be interesting to characterize particular classes of
models (e.g., the case were the accessibility relations define trees). Other model
theoretic questions should also be addressed, e.g., defining a proper notion of
bisimulation that captures the expressive power of the logic. Finally, decidabil-
ity and complexity of different reasoning tasks (e.g., model-checking, satisfia-
bility) should be established. We conjecture, e.g., that the notions of filtration
defined in [6] for HXPath=, might be extended and adapted to IHXPath= to
prove decidability of the satisfiability problem, together with upper-bounds to
its complexity. These are some initial thoughts that deserve further exploration.

Acknowledgments. We thank the reviewers for their valuable comments. Our work is
supported by the Laboratoire International Associé SINFIN, the EU Grant Agreement
101008233 (MISSION), the ANPCyT projects PICT-2020-3780, PICT-2021-00400,
PICT-2021-00675, and PICTO-2022-CBA-00088, and the CONICET projects PIBAA-
28720210100428CO, PIBAA-28720210100165CO, and PIP-11220200100812CO.

References

1. Abriola, S., Barceló, P., Figueira, D., Figueira, S.: Bisimulations on data graphs.
J. Artif. Intell. Res. 61, 171–213 (2018)

2. Abriola, S., Cifuentes, S., Martinez, M., Pardal, N., Pin, E.: An epistemic approach
to model uncertainty in data-graphs. Int. J. Approximate Reason. 160, 108948
(2023)

3. Abriola, S., Descotte, M.E., Fervari, R., Figueira, S.: Axiomatizations for downward
XPath on data trees. J. Comput. Syst. Sci. 89, 209–245 (2017)

Data Graphs with Incomplete Information (and a Way to Complete Them) 743

4. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1-1:39 (2008)

5. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, pp. 821–868.
Elsevier (2006)

6. Areces, C., Fervari, R.: Axiomatizing hybrid XPath with data. Log. Methods Com-
put. Sci. 17(3) (2021)

7. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
J. IGPL 23(4), 601–627 (2015)

8. Areces, C., Fervari, R., Seiler, N.: Tableaux for hybrid XPath with data. In:
Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS
(LNAI), vol. 10423, pp. 611–623. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65340-2 50

9. Arenas, M., Fan, W., Libkin, L.: On verifying consistency of XML specifications.
In: 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS 2002), pp. 259–270. ACM (2002)

10. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. J.
Logic Comput. 28(2), 269–303 (2018)

11. Baelde, D., Lunel, S., Schmitz, S.: A sequent calculus for a modal logic on finite
data trees. In: 25th EACSL Annual Conference on Computer Science Logic (CSL
2016), LIPIcs, vol. 62, pp. 32:1–32:16. Schloss Dagstuhl (2016)

12. Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. J. ACM
61(1), 81–854 (2014)

13. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier,
Amsterdam (2006)

14. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics.
Stud. Logica. 84(2), 277–322 (2006)

15. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in The-
oretical Computer Science, vol. 53. Cambridge University Press (2001)

16. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3) (2009)

17. Braüner, T.: Hybrid Logics and its Proof-Theory, Applied Logics Series, vol. 37.
Springer, Cham (2011). https://doi.org/10.1007/978-94-007-0002-4

18. ten Cate, B., Fontaine, G., Litak, T.: Some modal aspects of XPath. J. Appl.
Non-Class. Logics 20(3), 139–171 (2010)

19. ten Cate, B., Litak, T., Marx, M.: Complete axiomatizations for XPath fragments.
J. Appl. Logic 8(2), 153–172 (2010)

20. Clark, J., DeRose, S.: XML path language (XPath). Website (1999). W3C Recom-
mendation. http://www.w3.org/TR/xpath

21. van Dalen, D.: Logic and Structure, 5th edn. Springer, Berlin (2013). https://doi.
org/10.1007/978-3-540-85108-0

22. Figueira, D.: Reasoning on Words and Trees with Data. PhD thesis, Laboratoire
Spécification et Vérification, ENS Cachan, France (2010)

23. Figueira, D.: Decidability of downward XPath. ACM Trans. Comput. Logic 13(4),
34 (2012)

24. Goldblatt, R.: An abstract setting for Henkin proofs. Topoi 3(1), 37–41 (1984)
25. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath

queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)
26. Grabon, M., Michaliszyn, J., Otop, J., Wieczorek, P.: Querying data graphs with

arithmetical regular expressions. In: 25th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2016), pp. 1088–1094. IJCAI/AAAI Press (2016)

https://doi.org/10.1007/978-3-319-65340-2_50
https://doi.org/10.1007/978-3-319-65340-2_50
https://doi.org/10.1007/978-94-007-0002-4
http://www.w3.org/TR/xpath
https://doi.org/10.1007/978-3-540-85108-0
https://doi.org/10.1007/978-3-540-85108-0

744 C. Areces et al.

27. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2),
14:1-14:53 (2016)

28. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: International
Conference on Database Theory (ICDT 2012), pp. 74–85. ACM (2012)

29. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
30. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc., New-

ton (2013)
31. Schinner, A.: The Voynich manuscript: evidence of the hoax hypothesis. Cryptolo-

gia 31(2), 95–107 (2007)

Computing MUS-Based Inconsistency
Measures

Isabelle Kuhlmann1 , Andreas Niskanen2 , and Matti Järvisalo2(B)

1 University of Hagen, Hagen, Germany
2 University of Helsinki, Helsinki, Finland

matti.jarvisalo@helsinki.fi

Abstract. We detail two instantiations of a generic algorithm for the
problematic and MUS-variable-based inconsistency measures, based on
answer set programming and Boolean satisfiability (SAT). Empirically,
the SAT-based approach allows for more efficiently computing the mea-
sures when compared to enumerating all minimal correction subsets of a
knowledge base.

Keywords: Inconsistency measurement · minimal unsatisfiability

1 Introduction

Inconsistency measurement [27,29] aims to provide a quantitative assessment
of the level of inconsistency in knowledge bases. However, inconsistency mea-
surement in propositional knowledge bases is highly non-trivial under essentially
any reasonable quantitative measure of inconsistency [61]. Despite this, algorith-
mic approaches to inconsistency measurement have been developed [39–42,57]
based on declarative techniques. However, various inconsistency measures based
on minimally unsatisfiable subsets (MUSes) of knowledge bases [21,28,32,63]
cannot be directly captured with a single call to an NP optimizer due to higher
complexity of MUS-based inconsistency measures [61]. Less attention has been
paid so-far on developing algorithms for such measures [34].

We develop algorithms for the problematic (P) [28] and MUS-variable-based1

(MV) [63] inconsistency measures. Both can be determined by enumerating all
MUSes in the knowledge base (KB) in terms of the KB formulas: the former
measure is the number of KB formulas that occur in the union of the MUSes,
the latter the number of variables that occur in the union of the MUSes (relative
to the number of variables in the KB). By hitting set duality [60], instead of enu-
merating all MUSes, the measures can alternatively be computed by enumerating
all MCSes of the KB [63] using SAT-based MCS enumerators [6,10,30,58,59] as

1 Not to be confused with the notion of variable minimal unsatisfiability [5,18].

Work financially supported by Deutsche Forschungsgemeinschaft (grant 506604007/IK)
and by Academy of Finland (grants 347588/AN and 322869, 356046/MJ).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 745–755, 2023.
https://doi.org/10.1007/978-3-031-43619-2_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_50&domain=pdf
http://orcid.org/0000-0001-9636-122X
http://orcid.org/0000-0003-3197-2075
http://orcid.org/0000-0003-2572-063X
https://doi.org/10.1007/978-3-031-43619-2_50

746 I. Kuhlmann et al.

extensions of MCS extractors [4,31,48,51,53]; MCS enumeration is known to
be often easier than MUS enumeration [7–9,11,45,55]. However, MCS enumer-
ation algorithms are not specifically developed with inconsistency measurement
in mind.

We develop a generic algorithmic approach specifically for computing the
P and MV inconsistency measures, and detail two of its instantiations: one
based on iteratively calling an answer set programming (ASP) solver [26,56]
on a sequence of queries under a disjunctive answer set program specific to P
and MV, and another based on SAT-based counterexample-guided abstraction
refinement (CEGAR) [19,20]. The SAT-based CEGAR instantiation empirically
outperforms both ASP and state-of-the-art MCS enumerators.

2 Preliminaries

A knowledge base (KB) is a finite set of propositional formulas. The signature
At(·) of a formula or knowledge base is the set of atoms (or variables) appearing
in the formula/KB. A (truth) assignment τ : At → {0, 1} assigns a truth value
(1, true or 0, false) to each atom in At. An assignment τ satisfies a formula
φ (and φ is satisfiable) iff τ(φ) = 1, i.e., φ evaluates to 1 under τ . A KB K is
consistent if there is an assignment that satisfies all formulas in K, and otherwise
inconsistent. Let K be the set of all knowledge bases. Formally, an inconsistency
measure is a function I : K → R

∞
≥0 for which I(K) = 0 iff K is consistent for

all K ∈ K. The problematic (P) inconsistency measure [28] counts the number
of formulas in a given KB participating in some conflict. Similarly, the MUS-
variable-based (MV) inconsistency measure [63] counts the number of atoms in
the signature of a KB that are involved in some conflict. A conflict is defined
by the notion of a minimal unsatisfiable subset (MUS). A set of logical formulas
S ⊆ K is a minimal unsatisfiable subset (MUS) of K if S is inconsistent, and all
S′

� S are consistent. Now, let MUS(K) be the set of MUSes of a given KB K.

Definition 1. The problematic (P) inconsistency measure Ip : K → R
∞
≥0 is

Ip(K) = |⋃MUS(K)|. The MUS-variable-based (MV) inconsistency measure
Imv : K → R

∞
≥0 is Imv(K) = |⋃M∈MUS(K) At(M)|/|At(K)|.

Example 1. Let K1 = {x∧ y,¬x,¬y, y ∨ z}. Then MUS(K1) = {{x∧ y,¬x}, {x∧
y,¬y}}. Hence |⋃MUS(K1)| = |{x ∧ y,¬x,¬y}| = 3, so Ip(K1) = 3. Moreover,
|⋃M∈MUS(K1)

At(M)| = |At({x ∧ y,¬x}) ∪ At({x ∧ y,¬y})| = |{x, y} ∪ {x, y}| =
|{x, y}| = 2, and |At(K1)| = |{x, y, z}| = 3. Therefore Imv(K1) = 2

3 .

A set S ⊆ K is a minimal correction set (MCS) if K \ S is consistent, and
for all S′

� S, K\S′ is inconsistent. In words, MCSes identify fragments of KBs
whose removal resolves inconsistency. By hitting set duality between MUSes and
MCSes [60], we have

⋃
MUS(K) =

⋃
MCS(K) for any KB K, i.e., the union of

MUSes is the same as the union of MCSes. In turn, Ip(K) = |⋃MCS(K)|. The
MV measure is equivalently defined by considering atoms in MCSes [63].

Computing MUS-Based Inconsistency Measures 747

3 Algorithms for the P and MV Inconsistency Measures

The P and MV measures can be computed via the union of MCSes of the input
KB K. This is (naively) achieved by enumerating all MCSes, as suggested for the
MV measure [63]. However, this may result in the extraction of MCSes redun-
dant w.r.t. the measure: for P, an MCS which contains only formulas encountered
in previous MCSes, and for MV an MCS whose signature is in the signature of
previous MCSes, does not affect the inconsistency value. The computation of
irredundant MCSes can be formalized as the MCS overlap problem: find an
MCS M of K which intersects a given query Q ⊆ K of interest. The correspond-
ing decision problem is Σp

2 -complete, as it is equivalent to the MUS overlap
problem [37,43] which in turn captures the Σp

2 -complete problem of deciding
whether a given clause occurs in an MUS [44]. As at most a linear number of
NP oracle calls are needed for extracting an MCS [50], it is not plausible that
MCS enumeration algorithms could avoid computing redundant MCSes.

3.1 Generic Algorithm

Our generic algorithm (Algorithm 1) avoids computing redundant MCSes by
iteratively solving the MCS overlap problem instead of enumerating MCSes.
Assume that a procedure MCSoverlap is available, returning for a given KB
K and query Q an MCS mcs with mcs ∩ Q 	= ∅, or ⊥ if no such MCS exists.
We start by initializing Q to K and C (covered elements) to ∅ (line 1). Then,
while Q remains nonempty, we extract an MCS intersecting Q (line 3). If no
such MCS exists, we exit the loop (line 4). How the query Q and the set C is
updated depends on the measure. For the P measure, we add the MCS to C and
remove it from Q (lines 5–6). For MV, we add the signature of the MCS to C
and remove from Q all formulas whose signature is included in C (lines 7–8).
Finally, we either return the size of C for the P measure, or divide it by the size
of the signature of the KB for the MV measure (line 9).

748 I. Kuhlmann et al.

3.2 Instantiation via Disjunctive ASP

1 1{inCs(X): kbElement(X)}.
2 inComplement(F):- kbElement(F), not inCs(F).
3 atomInComplement(A):- atomInFormula(A,F), inComplement(F).
4 validCS:- 1{ atomInComplement(A): queryAtom(A)}.
5 :- not validCS.
6 atomInCs(A):- atomInFormula(A,F), inCs(F).
7 1{ truthValueCS(A,T): tv(T)}1 :- atomInCs(A).
8 numElementsInCs(X):- X = #count{F: inCs(F)}.
9 csIsSat:- numElementsInCs(X), X{truthValueCS(F,t): inCs(F), kbElement(F)}X.

10 :- not csIsSat.
11 numSupersets(X):- numElementsInCs(Y), numKbElements(Z), X=Z-Y.
12 superset (1..X):- numSupersets(X), X>0.
13 1{ addElement(F,S): inComplement(F)}1 :- superset(S).
14 supersetEq(S1 ,S2):- superset(S1), superset(S2), S1!=S2, addElement(F1,S1),

addElement(F2,S2), F1==F2.
15 :- supersetEq(S1 ,S2).
16 inSuperset(F,S):- inCs(F), superset(S).
17 inSuperset(F,S):- addElement(F,S), superset(S).
18 atomInSuperset(A,S):- atomInCs(A), superset(S).
19 atomInSuperset(A,S):- addElement(F,S), atomInFormula(A,F).
20 truthValueSet(A,S,t) | truthValueSet(A,S,f):- atomInSuperset(A,S),

superset(S).
21 truthValueSet(A,S,t):- isUnsat(S), atomInSuperset(A,S), superset(S).
22 truthValueSet(A,S,f):- isUnsat(S), atomInSuperset(A,S), superset(S).
23 isUnsat(S):- truthValueSet(F,S,f), inSuperset(F,S).
24 :- not isUnsat(S), superset(S).

Listing 1.1. Disjunctive ASP encoding for MCS overlap.

First, we detail a disjunctive ASP [17,25,47] approach, directly capturing Σp
2 ,

to the MCS overlap problem; see Listing 1.1. Its idea is to guess a candidate set
Scs of formulas and check whether it is a maximal satisfiable subset (MSS)—the
set-complement of which is an MCS. An MSS must be satisfiable while all of its
supersets must be unsatisfiable. Moreover, we enforce that at least one atom from
At(Q) (w.r.t. MV) or, respectively, formula from Q (w.r.t. P) must be included
in the set-complement of the candidate set, i.e., an MCS. Following [39,40], we
encode the formulas in a KB K by representing each atom x in a formula φ as
atomInFormula(x,φ), and the number of formulas as numKbElements(|K|). Atoms
and formulas are modeled as atom/1 and kbElement/1, respectively. For MV, we
represent each atom xq ∈ At(Q) as queryAtom(xq), and, for P, each formula
φq ∈ Q as queryFormula(φq). Then, e.g., a conjunction φ = φ1 ∧φ2 is encoded as
conjunction(φ,φ1,φ2). Truth values 1 (t) and 0 (f) are represented by tv(t,f).
The evaluation of (sub)formulas is encoded following the semantics of the con-
nectives: e.g., a conjunction φ = φ1 ∧ φ2 evaluates to 1 by truthValueCS(F,t):-
conjunction(F,G,H), truthValueCS(G,t), truthValueCS(H,t). Note that we need
to avoid the use of not, due to the use of saturation [23]. To check if supersets
of a candidate set are unsatisfiable, we refer to a specific superset, i.e., instead
of truthValueCS(F,t), we use truthValueSet(F,S,t), etc. A candidate set Scs

containing at least one formula φ ∈ K is guessed (line 1). We check that at
least one atom (w.r.t. MV) is in the set-complement (lines 2–5). (For P, line 3 is
omitted and atomInComplement (line 4) replaced by inComplement, and queryAtom
by queryFormula.) To check Scs for satisfiability, each atom in Scs (line 6) gets a
truth value (line 7); Scs is satisfiable iff all |Scs| of its formulas evaluate to 1

Computing MUS-Based Inconsistency Measures 749

(lines 8–9). Only satisfiable candidate sets can be derived (line 10). To ensure
that each superset of Scs is unsatisfiable, we define |K| − |Scs| supersets (lines
11–12), and add exactly one element from the set-complement to each (line 13).
No two supersets are equal by lines 14–15. Lines 16–24 check if all supersets of
Scs are unsatisfiable. Lines 16–17 and 18–19 determine formulas (respectively
atoms) in a given superset. The unsatisfiability check is done by saturation: the
rule in line 20 allows the atoms in a superset to be both 1 and 0. If both 1 and
0 are derived for each atom (lines 21–22) and the formula evaluates to 0 (line
23), the formula is unsatisfiable. The constraint on line 24 enforces each super-
set to be unsatisfiable. If the disjunctive ASP program does not have an answer
set, no MCS containing at least one formula from Q (w.r.t. P) or at least one
atom from At(Q) (w.r.t. MV) exists, and Algorithm 1 terminates. Otherwise, we
extract the corresponding formulas or atoms (represented by inComplement/1 /
atomInComplement/1), and remove them from Q.

3.3 Instantiation via SAT-Based CEGAR

We detail SAT-based CEGAR as a second approach to MCS overlap. The key
idea in SAT-based CEGAR is to overapproximate the solutions to the problem
via a propositional abstraction. By iteratively solving the abstraction we obtain
candidate solutions, which are subsequently verified. This is done by search-
ing for a counterexample for the candidate solution being a valid solution to
the problem. If a counterexample is found, the abstraction is refined by adding
constraints which rule out the candidate solution. Our SAT-based CEGAR algo-
rithm is closely related to an earlier-proposed approach that reduces MCS over-
lap to propositional circumscription [36,37] and employs CEGAR for circum-
scription [2,3,35] (which in itself is not directly applicable as it only supports
computations over sets of individual clauses).

The CEGAR algorithm (Algorithm 2) for the MCS overlap problem takes
as input a KB K and a subset of query formulas Q ⊆ K, with the goal of find-
ing an MCS of K that intersects Q. This is equivalent to finding an MSS of K

750 I. Kuhlmann et al.

which excludes at least one φ ∈ Q. As the abstraction, we drop the requirement
on maximality, and consider satisfiable subsets of K. To avoid finding assign-
ments which do not correspond to such MSSes, we initialize a set B of blocking
clauses (line 1). Since SAT solvers operate on formulas in conjunctive normal
form (CNF), each φ ∈ K is encoded in a standard way [62] to a set of clauses
Cls(φ) and a variable Var(φ) so that φ is satisfiable iff Cls(φ) ∧ Var(φ) is. Thus
by initializing a SAT solver with

∧
φ∈K Cls(φ), we can query for the satisfiability

of any subset S ⊆ K with additional unit clauses
∧

φ∈S Var(φ).
In the main CEGAR loop (lines 2–12), we iteratively ask the SAT solver for

an assignment which falsifies some φ ∈ K (line 3). If there is no such assignment,
there is no MCS which overlaps Q, and we return ⊥ (line 3). Otherwise, a
satisfying assignment gives a satisfiable subset S of K (line 5) and K \ S is a
correction set. We subset-maximize S iteratively under the constraint that some
φ ∈ K is falsified (lines 6–9). Finally, we check if S is an MSS of K by asking for a
counterexample, i.e., an assignment satisfying every φ in Q∩S (line 10). If there
is no such assignment, K\S is an MCS which intersects Q (line 11). Otherwise we
block all subsets of the obtained satisfiable subset, including the candidate MSS
S (line 12). The number of iterations is bounded by the number of candidate
MSSes, and Algorithm 2 terminates. Note that the CEGAR approach allows for
several optimizations, in addition to using an incremental SAT solver. Since so-
called autark variables cannot be included in any MUS [38], the lean kernel, i.e.,
the set of clauses not touched by any autarky [12,52], is an overapproximation
of the union of MUSes. A maximum autarky A of K is obtained with an MCS
extraction call [49]; A can be safely removed from every query Q in Algorithm 2.
Further, disjoint cores can be extracted by iteratively querying the SAT solver
for pairwise disjoint MUSes; their union D is an underapproximation of the union
of MUSes and hence the elements (formulas for P, atoms for MV) in D are known
to be covered in the set C.

4 Empirical Evaluation

For implementations of the SAT-based CEGAR and ASP instantiations of Algo-
rithm 1, see https://bitbucket.org/coreo-group/sat4im. We use the ASP solver
Clingo [24] 5.5.1, and we implemented the SAT-based CEGAR approach via
PySAT [33] 0.1.8.dev3 using the CaDiCaL 1.5.3 [16] SAT solver. We compare the
performance of the ASP and SAT-based CEGAR instantiations to mcscache [58]
as a state-of-the-art MCS enumerator and umuser [52] computing the union of
MUSes. Each KB formula φ ∈ K is encoded into CNF via Cls(φ) and Var(φ), so
that MCSes (resp. MUSes) of K can be computed as group-MCSes (resp. group-
MUSes [46,54]) over {Var(φ) | φ ∈ K} with

∧
φ∈K Cls(φ) as hard constraints.

mcscache extracts one MCS of the KB at a time. We keep track of the set of
formulas (P) or variables (MV) currently covered by some MCS. We terminate
mcscache once all of the elements are covered.

We consider three variants of CEGAR: (i) CEGAR: with subset-
maximization, disjoint cores, and autarky trimming. (ii) CEGAR/no CM:

https://bitbucket.org/coreo-group/sat4im

Computing MUS-Based Inconsistency Measures 751

Table 1. Number of solved instances (#solved) and cumulative runtimes (CRT).

SRS (90 KBs) ML (100 KBs) ARG (100 KBs)

Approach #solved CRT (s) #solved CRT (s) #solved CRT (s)

P CEGAR 87 1300.16 55 2576.94 51 298.78

CEGAR/no AT 87 1302.10 46 19.98 52 516.61

CEGAR/no CM 85 937.42 52 796.21 43 198.07

mcscache 87 1318.20 46 27.86 42 365.05

umuser 71 699.87 38 11.32 40 455.72

ASP 21 1783.06 15 651.65 10 203.71

MV CEGAR 90 4.99 93 4775.11 53 453.82

CEGAR/no AT 90 5.07 46 20.17 52 629.98

CEGAR/no CM 90 5.62 85 2353.93 51 356.5

mcscache 90 6.72 46 29.06 46 387.78

umuser 71 699.87 38 11.32 40 455.72

ASP 36 1119.48 17 2645.44 10 339.04

Subset-maximization of candidate MSSes (lines 6–9) is disabled, instead the
SAT solver is directly asked for a counterexample (line 10) and instead (line 11),
the satisfiable subset for an MSS is maximized. (iii) CEGAR/no AT: No autarky
trimming.

We use KBs from three sources. (i) SRS [39,40,42]: 90 KBs, generated using
SyntacticRandomSampler from https://tweetyproject.org/, under 9 parameter
combinations, randomly selecting 10 KBs per combination; (ii) ML [39,40]:
100 randomly selected KBs from the Animals with Attributes dataset (http://
attributes.kyb.tuebingen.mpg.de), interpreting association rules mined with
Apriori [1] as implications; (iii) ARG [40]: 100 randomly selected KBs con-
sisting of CNF clauses of a standard SAT encoding [15] for stable extensions
of abstract argumentation frameworks [22] from the ICCMA 2019 competition
with the constraint that a random subset of 20% of arguments are in the stable
extension. The experiments were run on Intel Xeon E5-2643 v3 3.40-GHz CPUs
with 192-GB RAM under Ubuntu 20.04.5 using a per-instance 900-s time limit.

The CEGAR approach performs the best, followed by mcscache and umuser;
see Table 1. Default CEGAR performs consistently well, solving significantly
more instances in particular on the ML and ARG datasets. Disjunctive ASP
solves significantly fewer instances than the other approaches. For CEGAR, dis-
abling autarky trimming (CEGAR/no AT) leads to more timeouts especially on
ML benchmarks and MV. Disabling subset-maximization (CEGAR/no CM) also
yields more timeouts, especially on the ARG dataset and P. (Disjoint cores did
not have a noticeable impact.) Every benchmark instance solved by mcscache is
also solved by the CEGAR approach, with the exception of a single ARG instance
for the P measure. CEGAR altogether outperforms mcscache on a great majority
of the benchmarks.

https://tweetyproject.org/
http://attributes.kyb.tuebingen.mpg.de
http://attributes.kyb.tuebingen.mpg.de

752 I. Kuhlmann et al.

Overall, the CEGAR approach empirically outperformed ASP as well as
state-of-the-art MCS enumerators. Our results motivate the development of
specialized algorithms for other computationally notably complex inconsistency
measures, such as ones based on counting MCSes [13] and MUSes [12,14].

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the VLDB 1994, pp. 487–499 (1994)

2. Alviano, M.: Model enumeration in propositional circumscription via unsatisfiable
core analysis. Theory Pract. Log. Program. 17(5–6), 708–725 (2017)

3. Alviano, M.: Query answering in propositional circumscription. In: Proceedings of
the IJCAI 2018, pp. 1669–1675. ijcai.org (2018)

4. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: A
simple way of managing optional clauses. In: Proc. AAAI 2014. pp. 835–841. AAAI
Press (2014)

5. Belov, A., Ivrii, A., Matsliah, A., Marques-Silva, J.: On efficient computation
of variable MUSes. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol.
7317, pp. 298–311. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31612-8_23

6. Bendík, J.: On decomposition of maximal satisfiable subsets. In: Proceedings of
the FMCAD 2021, pp. 212–221. IEEE (2021)

7. Bendík, J., Benes, N., Cerná, I., Barnat, J.: Tunable online MUS/MSS enumera-
tion. In: Proceedings of the FSTTCS 2016. LIPIcs, vol. 65, pp. 50:1–50:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016)

8. Bendík, J., Černá, I.: MUST: minimal unsatisfiable subsets enumeration tool. In:
TACAS 2020. LNCS, vol. 12078, pp. 135–152. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45190-5_8

9. Bendík, J., Černá, I.: Replication-guided enumeration of minimal unsatisfiable sub-
sets. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 37–54. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58475-7_3

10. Bendík, J., Cerna, I.: Rotation based MSS/MCS enumeration. In: Proceedings of
the LPAR 2020. EPiC Series in Computing, vol. 73, pp. 120–137. EasyChair (2020)

11. Bendík, J., Černá, I., Beneš, N.: Recursive online enumeration of all minimal unsat-
isfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
143–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_9

12. Bendík, J., Meel, K.S.: Approximate counting of minimal unsatisfiable subsets. In:
Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 439–462. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_21

13. Bendík, J., Meel, K.S.: Counting maximal satisfiable subsets. In: Proceedings of
the AAAI 2021, pp. 3651–3660. AAAI Press (2021)

14. Bendík, J., Meel, K.S.: Counting minimal unsatisfiable subsets. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 313–336. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81688-9_15

15. Besnard, P., Doutre, S., Herzig, A.: Encoding argument graphs in logic. In: Lau-
rent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS,
vol. 443, pp. 345–354. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08855-6_35

https://doi.org/10.1007/978-3-642-31612-8_23
https://doi.org/10.1007/978-3-642-31612-8_23
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-58475-7_3
https://doi.org/10.1007/978-3-030-01090-4_9
https://doi.org/10.1007/978-3-030-53288-8_21
https://doi.org/10.1007/978-3-030-81688-9_15
https://doi.org/10.1007/978-3-319-08855-6_35
https://doi.org/10.1007/978-3-319-08855-6_35

Computing MUS-Based Inconsistency Measures 753

16. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Proceedings of
the SAT Competition 2020 - Solver and Benchmark Descriptions. Department of
Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki
(2020)

17. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

18. Chen, Z., Ding, D.: Variable minimal unsatisfiability. In: Cai, J.-Y., Cooper, S.B.,
Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 262–273. Springer, Heidelberg
(2006). https://doi.org/10.1007/11750321_25

19. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

20. Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided
abstraction refinement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
23(7), 1113–1123 (2004)

21. Doder, D., Raskovic, M., Markovic, Z., Ognjanovic, Z.: Measures of inconsistency
and defaults. Int. J. Approx. Reason. 51(7), 832–845 (2010)

22. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

23. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15, 289–323 (1995)

24. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with Clingo 5. In: Technical Communications of ICLP,
pp. 2:1–2:15. OASICS, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

25. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6,
no. 3, pp. 1–238 (2012)

26. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the ICLP/SLP, pp. 1070–1080. MIT Press (1988)

27. Grant, J.: Classifications for inconsistent theories. Notre Dame J. Formal Log.
19(3), 435–444 (1978)

28. Grant, J., Hunter, A.: Measuring consistency gain and information loss in step-
wise inconsistency resolution. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI),
vol. 6717, pp. 362–373. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22152-1_31

29. Grant, J., Martinez, M.V. (eds.): Measuring Inconsistency in Information, Studies
in Logic, vol. 73. College Publications (2018)

30. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: Proceedings
of the IJCAI 2018, pp. 1309–1315. ijcai.org (2018)

31. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: Proceedings of AAAI 2014, pp. 2666–2673. AAAI Press
(2014)

32. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In: Proceedings KR 2008, pp. 358–366. AAAI Press (2008)

33. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018.
LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94144-8_26

https://doi.org/10.1007/11750321_25
https://doi.org/10.1007/978-3-642-22152-1_31
https://doi.org/10.1007/978-3-642-22152-1_31
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26

754 I. Kuhlmann et al.

34. Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: A MIS partition based
framework for measuring inconsistency. In: Baral, C., Delgrande, J.P., Wolter, F.
(eds.) Proceedings of the KR 2016, pp. 84–93. AAAI Press (2016)

35. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction
refinement algorithm for propositional circumscription. In: Janhunen, T., Niemelä,
I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 195–207. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15675-5_18

36. Janota, M., Marques-Silva, J.: cmMUS: a tool for circumscription-based MUS mem-
bership testing. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI),
vol. 6645, pp. 266–271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20895-9_30

37. Janota, M., Marques-Silva, J.: On deciding MUS membership with QBF. In: Lee, J.
(ed.) CP 2011. LNCS, vol. 6876, pp. 414–428. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23786-7_32

38. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Appli-
cations, vol. 336, pp. 571–633. IOS Press (2021)

39. Kuhlmann, I., Gessler, A., Laszlo, V., Thimm, M.: A comparison of ASP-based
and SAT-based algorithms for the contension inconsistency measure. In: Dupin de
Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds.) Scalable Uncertainty Man-
agement. SUM 2022. Lecture Notes in Computer Science, vol. 13562, pp. 139–153.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18843-5_10

40. Kuhlmann, I., Gessler, A., Laszlo, V., Thimm, M.: Comparison of SAT-based and
ASP-based algorithms for inconsistency measurement. arXiv p. 2304.14832 (2023).
preprint

41. Kuhlmann, I., Thimm, M.: An algorithm for the contension inconsistency measure
using reductions to answer set programming. In: Davis, J., Tabia, K. (eds.) SUM
2020. LNCS (LNAI), vol. 12322, pp. 289–296. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58449-8_23

42. Kuhlmann, I., Thimm, M.: Algorithms for inconsistency measurement using answer
set programming. In: Proceedings of the NMR 2021, pp. 159–168 (2021)

43. Kullmann, O.: Constraint satisfaction problems in clausal form II: minimal unsat-
isfiability and conflict structure. Fundam. Informaticae 109(1), 83–119 (2011)

44. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

45. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints An Int. J. 21(2), 223–250 (2016)

46. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

47. Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-24658-7

48. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On comput-
ing minimal correction subsets. In: Proceedings of the IJCAI 2013, pp. 615–622.
IJCAI/AAAI (2013)

49. Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient
autarkies. In: Proceedings of the ECAI 2014. Frontiers in Artificial Intelligence and
Applications, vol. 263, pp. 603–608. IOS Press (2014)

50. Marques-Silva, J., Mencía, C.: Reasoning about inconsistent formulas. In: Proceed-
ings of the IJCAI 2020, pp. 4899–4906. ijcai.org (2020)

https://doi.org/10.1007/978-3-642-15675-5_18
https://doi.org/10.1007/978-3-642-20895-9_30
https://doi.org/10.1007/978-3-642-20895-9_30
https://doi.org/10.1007/978-3-642-23786-7_32
https://doi.org/10.1007/978-3-642-23786-7_32
https://doi.org/10.1007/978-3-031-18843-5_10
https://doi.org/10.1007/978-3-030-58449-8_23
https://doi.org/10.1007/978-3-030-58449-8_23
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7

Computing MUS-Based Inconsistency Measures 755

51. Mencía, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol.
9710, pp. 342–360. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2_21

52. Mencía, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union
of MUSes. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 211–
221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_15

53. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Pro-
ceedings of the IJCAI 2015, pp. 1973–1979. AAAI Press (2015)

54. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proceedings of the
FMCAD 2010, pp. 221–229. IEEE (2010)

55. Narodytska, N., Bjørner, N.S., Marinescu, M.V., Sagiv, M.: Core-guided minimal
correction set and core enumeration. In: Proceedings of the IJCAI 2018, pp. 1353–
1361. ijcai.org (2018)

56. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

57. Niskanen, A., Kuhlmann, I., Thimm, M., Järvisalo, M.: MaxSAT-Based inconsis-
tency measurement. In: Proceedings of the ECAI 2023. IOS Press (2023)

58. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumera-
tion via caching. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_12

59. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for
enumerating minimal correction subsets. In: Proceedings of the AAAI 2018, pp.
6633–6640. AAAI Press (2018)

60. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

61. Thimm, M., Wallner, J.P.: On the complexity of inconsistency measurement. Artif.
Intell. 275, 411–456 (2019)

62. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer,
Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28

63. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsat-
isfiable subsets. In: Proceedings of the ECAI 2012, pp. 864–869. IOS Press (2012)

https://doi.org/10.1007/978-3-319-40970-2_21
https://doi.org/10.1007/978-3-319-40970-2_21
https://doi.org/10.1007/978-3-030-24258-9_15
https://doi.org/10.1007/978-3-319-66263-3_12
https://doi.org/10.1007/978-3-642-81955-1_28

Towards Systematic Treatment of Partial
Functions in Knowledge Representation

Djordje Markovic1,2(B) , Maurice Bruynooghe1,2 , and Marc Denecker1,2

1 Department of Computer Science, K.U. Leuven, Leuven, Belgium
{dorde.markovic,maurice.bruynooghe,marc.denecker}@kuleuven.be

2 Leuven.AI – KU Leuven Institute for AI, Leuven, Belgium

Abstract. Partial functions are ubiquitous in Knowledge Represen-
tation applications, ranging from practical, e.g., business applications,
to more abstract, e.g., mathematical and programming applications.
Expressing propositions about partial functions may lead to non-denot-
ing terms resulting in undefinedness errors and ambiguity, causing subtle
modeling and reasoning problems.

In our approach, formulas are well-defined (true or false) and non-
ambiguous in all structures. We develop a base extension of three-valued
predicate logic, in which partial function terms are guarded by domain
expressions ensuring the well-definedness property despite the three-val-
ued nature of the underlying logic. To tackle the verbosity of this core
language, we propose different ways to increase convenience by using dis-
ambiguating annotations and non-commutative connectives. We show a
reduction of the logic to two-valued logic of total functions and prove that
many different unnesting methods turning partial functions into graph
predicates, which are not equivalence preserving in general, are equiv-
alence preserving in the proposed language, showing that ambiguity is
avoided.

Keywords: Knowledge Representation · Partial functions · Non-
denoting terms · Guards · Nested function terms

1 Introduction

Partial functions and non-denoting terms have been studied in many different
domains: in linguistics and philosophy [20,23], mathematics [8,13,21], proof the-
ory [10,18], and computation [15]. Partial functions enjoy many different treat-
ments in programming languages. They have been studied in the context of
formal specification languages [3,12], in declarative constraint languages [5,9],
and knowledge representation languages [1,2,4,6]. Good overviews of different
approaches are found in [7,24]. In this paper, we look at partial functions from
the perspective of modelling and Knowledge Representation (KR).

This work was partially supported by the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen”.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 756–770, 2023.
https://doi.org/10.1007/978-3-031-43619-2_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_51&domain=pdf
http://orcid.org/0000-0002-1932-975X
http://orcid.org/0000-0002-6881-1462
http://orcid.org/0000-0002-0422-7339
https://doi.org/10.1007/978-3-031-43619-2_51

Towards Systematic Treatment of Partial Functions 757

The problem of non-denoting terms arises with applying a function concept
to some entity for which the function might be undefined. This problem may
occur in a mathematical text, in formal theories, or in programs of declarative
or imperative languages. An example made famous by Bertrand Russell is the
statement: “The king of France is bald” (since France has no king). In mathe-
matical texts, the problem arises, e.g., in propositions applying division to zero.
In practical applications, the problem might appear with variables that are not
always defined, e.g., when using attribute Age for a deceased person.

In many logics, e.g., first-order predicate logic (FO), it is assumed that func-
tion symbols represent total functions, which are often used to represent partial
functions [7]. In such theories, the problem of non-denoting terms does not for-
mally occur (i.e., every term denotes in every structure). However, problems man-
ifest themselves in a different way. We illustrate this with a FO theory1 for graph
colouring containing the axioms: ∀x : V er(x) ⇒ Col(colOf(x)) and ∀x : ∀y :
Nei(x, y) ⇒ ¬(colOf(x) = colOf(y)). The function symbol colOf/1 is used to
represent the colouring function defined only on vertices, but in first-order logic,
it is interpreted as a total function, hence defined on colours as well. As a conse-
quence, there is a semantic mismatch between the user’s knowledge and its mod-
elling which easily can lead to subtle representation and reasoning problems. For
example, applying model expansion inference [17] on this theory together with
a structure (interpreting all symbols except colOf) will return many redundant
models A: groups of models that assign the same colours to vertices but assign dif-
ferent colours to . . . colours. Further, to represent that all colours are to be used
for colouring, one may write the axiom ∀x : Col(x) ⇒ ∃y : colOf(y) = x. But this
axiom is too weak, it does not exclude models in which some colour is used only for
colouring colours. Or perhaps to count the number of different graph colourings,
model counting inference [11] is applied; but with this theory, the wrong number
is obtained. These problems are consequences of the semantic mismatch between
the correct/intended states of affairs of the application domain (in which only ver-
tices are coloured), and the formal models of this theory (in which also colours are
coloured). This problem is caused by the use of the total function symbol colOf/1
to model a partial function. One may observe that switching to sorted logic resolves
the semantic mismatch problem here, for the base graph coloring problem; how-
ever, not for the many variants of it, e.g., when only a subset of vertices is to be
colored.

Competent knowledge engineers, logicians, and mathematicians are capable
to handle such modelling problems. E.g., by representing partial functions with
graph predicates (i.e., using hasColour/2 instead of colOf/1). Unfortunately,
relying blindly on such competences does not progress the scientific state of the
art. Moreover, such techniques are well-known to sometimes lead to verbose,
unwieldy formulae [7]. In addition, if the goal is to build broadly applicable KR
languages, it is important to offer support to less experienced users, e.g., from
ICT departments of companies applying declarative methods for representing

1 V er/1 and Col/1 are denoting the set of vertices and colours respectively, Nei/2 is
neighbourhood relation, and function colOf/1 is mapping objects to their colour.

758 D. Markovic et al.

business logic. Thus, it seems to us that the development of modelling languages
with partial functions is a worthy topic for scientific research in the field of KR.

In natural language, the treatment of non-denoting terms is well-known to
be rather unsystematic. E.g., suppose we are told “The king of France is bald”.
According to Russell, this is an ambiguous proposition which could mean either
“There exists an x which is King of France and x is bald”, or “For any x, if x is
a King of France, x is bald ”. Likely, knowing that France has no king, we will
protest there is an error, or at least a false statement here, taking the existen-
tial disambiguation. However, suppose the context was in a discussion of some
famous medieval French parliamentary charter in which it is decreed that the
king of France is to be bald. In that case, we might very well agree with the
statement, taking the universal disambiguation.2 Also in the mathematical text,
partial functions and relations abound (e.g., x

y ,
√

x). According to good math-
ematical practice, a potentially non-denoting expression is allowed to appear
only in contexts where it is provable that the expression is denoting. Thus, given
variable c ranging over the real numbers, one should not write “ 1

c > 0.5” but
“c �= 0 and 1

c > 0.5”. However, even mathematical text is not always so rigorous,
and often enough the proposition “ 1

c > 0.5” will be used where the implicature
is meant that 1

c is denoting, i.e., c �= 0. In the context of logic, one mainstream
view is to interpret atomic formulae containing non-denoting terms as false,
which provides an easy integration into two-valued logic [21, pp. 39–40]. A more
rigorous approach is however that a proposition on non-denoting terms contains
a semantic error [13].

In this paper, we develop a logical framework FO(pf) for a logic with partial
functions. The leading principle is that the logical treatment of partial func-
tions has to result in formulae that are well-defined (true or false) and non-
ambiguous in all structures. The logic should cope with partial functions with
an unknown domain. Moreover, the well-definedness of the logic expressions
should be a decidable property. A first basic approach extends 3-valued predi-
cate logic with guards, in which partial function terms are guarded by domain
expressions ensuring the well-definedness property despite the 3-valued nature of
the underlying logic. Next, to tackle the verbosity of this core language, we pro-
pose different ways to increase convenience by using disambiguating annotations
and non-commutative connectives. Hence, the main contribution of this work
is the syntax of guards that allows a systematic treatment of partial functions.
Finally, we show a reduction of the logic to two-valued logic of total functions
and prove that many different unnesting methods turning partial functions into
graph predicates, which are not equivalence preserving in general, are equivalence
preserving in the proposed language, showing that ambiguity is avoided.

The paper is structured as follows: First, the syntax and semantics of the
FO(pf) are defined. Next, we propose the language of guards, show its reduction
to the total function logic, and present convenient guard constructs. Finally, we

2 Grice’s principle of cooperativity explains that the human interpretation of a text is
influenced by a subconscious desire to make good sense of it.

Towards Systematic Treatment of Partial Functions 759

demonstrate the properties of guarded logic in terms of elimination of function
terms. We close the paper with related work and conclusion.

2 FO(pf) Syntax

This section describes the syntax of first-order logic with partial functions. We
use various meta-variables: τ for terms, φ, ψ for formulae, and α for expressions.

Definition 1. A vocabulary Σ is a set of predicate and functions symbols σ,
each having an arity n ≥ 0 (denoted as σ/n). A function symbol f/0 is called an
object symbol, a predicate symbol p/0 is called a propositional symbol. In
addition, for each function symbol f/n, Σ contains a domain predicate symbol
δf/n and a graph predicate symbol γf/n + 1.

Intuitively, each function symbol f has an associated domain predicate δf ,
expressing the domain of the function, i.e., where f is defined, and a graph
predicate γf of f , which represents the set of pairs (x, y) such that x is mapped
to y by the function.

We assume the logic possesses an infinite set X of variable symbols, and that
all quantified variables have different names.

Definition 2. Given a vocabulary Σ, a term over Σ is defined inductively: if
c/0 ∈ Σ, then c is a term; if x ∈ X, then x is a term; if f/n ∈ Σ is a func-
tion symbol and τ1 . . . , τn are terms over Σ, then so is f(τ1, . . . , τn). Similarly,
formula is defined inductively as: true and false atoms t and f are formu-
lae; if p/n ∈ Σ is a predicate symbol and τ1 . . . , τn are terms over Σ, then
p(τ1, . . . , τn) is a formula; if φ, ψ, ϕ are formulae over Σ then so are: ¬φ, φ∨ψ,
if φ then ψ else ϕ fi, and ∃x : φ.

Definition 3. An FO(pf) expression is an FO(pf) term or a formula. An
FO(pf) sentence is an FO(pf) formula without free variables (i.e., all variables
are quantified). An FO(pf) theory is a set of FO(pf) sentences.

2.1 Syntactical Abbreviations

The FO(pf) language as defined in Definition 2 is composed of a limited set of
language connectives. Other familiar connectives, ∧, ⇒, ∀, and ⇔ can be defined
in the standard way as shortcuts in terms of the basic ones.

A material implication φ ⇒ ψ is similar in meaning to the conditional
if φ thenψ else t fi but not equivalent. The difference appears in a 3-valued con-
text where φ is undefined and ψ true, in which case the material implication is
true and the if-then-else undefined. The latter statement is equivalent to what is
known as the asymmetric or sequential version of the material implication [8,15].
The if-then-else conditional will be the building block for guarded expressions.

760 D. Markovic et al.

3 FO(pf) Semantics

In this section, we define a truth conditional model semantics for FO(pf). Below,
Dn denotes the n-ary Cartesian product of the set D.

Definition 4. Given a vocabulary Σ, a partial function structure A over Σ
is a two-valued structure consisting of:

– A non empty set UA, called the universe of A. If A is clear from the context,
it will be denoted compactly as U .

– An assignment of interpretations σA to non-logical symbols σ ∈ Σ: (i) Per
predicate symbol p/n ∈ Σ, a relation pA ⊆ U n. (ii) Per function symbol
f/n ∈ Σ, a set fA ⊆ U n × U such that for all tuples (d̄, e1), (d̄, e2) ∈ fA, it
holds that e1 = e2. If ((d1, . . . , dn), e) ∈ fA, we write that f(d1, . . . , dn) = e.
(iii) Per domain predicate symbol δf/n ∈ Σ, δf

A is the domain of fA, i.e.,
{d̄ | ∃e ∈ U : (d̄, e) ∈ fA}. (iv) Per graph predicate symbol γf/n + 1, the
graph relation γf

A = {(d1, . . . , dn, e) | ((d1, . . . , dn), e) ∈ fA}.
– The interpretation3 =A is the identity relation {(d, d)|d ∈ U} on U .

To be able to evaluate formulas with free variables, a structure A need to be
extended with a variable substitution denoted here as [x → d, . . . , y → e]. Thus,
A[x → d, . . . , y → e] denotes a structure extended with a variable assignment.

We now define evaluation function of FO(pf) as an extension of Kleene’s
strong truth assignment. It maps expressions to their value; a term is mapped
to either an object from the domain of discourse or the special value ⊥term

representing an undefined term; a formula is mapped to one of t, f , and the
special value ⊥formula representing an undefined formula. So, while the structure
is two-valued, the evaluation function is 3-valued4. When clear from the context,
we omit subscripts and simply write ⊥.

Definition 5. Let α be an FO(pf) expression, A a structure extended with a
variable assignment over the free variables of α, (all) over vocabulary Σ. The
value of α in A, denoted as [[α]]A, is defined by induction on the structure of α:

[[x]]A = xA

[[f(τ1, . . . , τn)]]A =

⎧
⎪⎨

⎪⎩

fA([[τ1]]A, . . . , [[τn]]A), if [[τi]]A �= ⊥ for all i ∈ {1..n}
and δAf ([[τ1]]

A, . . . , [[τn]]A) = t;
⊥, otherwise;

3 Note that every structure with the same domain interpreters “=” as the same rela-
tion. All other language built-in relations and functions are to be interpreted in the
same way. Note that in the case of partial functions their domain predicate would
also be interpreted (e.g., division/would come with δ/ that is true for all pairs of
numbers (x1, x2) such that x2 �= 0.

4 It is also possible to move undefined values into the structure and then just manip-
ulate it in the evaluation function. However, we choose to stay close to the standard
set-theoretic implementation of concepts.

Towards Systematic Treatment of Partial Functions 761

[[p(τ1, . . . , τn)]]A =

{
pA([[τ1]]A, . . . , [[τn]]A), if [[τi]]A �= ⊥ for all i ∈ {1..n};
⊥, otherwise;

[[∃x : φ]]A =

⎧
⎪⎨

⎪⎩

t, if for some d ∈ UA, [[φ]]A[x→d] = t;
f , if for all d ∈ UA, [[φ]]A[x→d] = f ;
⊥, otherwise;

[[φ1 ∨ φ2]]A =

⎧
⎪⎨

⎪⎩

t, if [[φ1]]A = t or [[φ2]]A = t;
f , if [[φ1]]A = [[φ2]]A = f ;
⊥, otherwise;

�
if φ then φ1

else φ2 fi

�A

=

⎧
⎪⎨

⎪⎩

⊥, if [[φ]]A = ⊥;
[[φ1]]A, if [[φ]]A = t;
[[φ2]]A, if [[φ]]A = f .

[[¬φ]]A =

⎧
⎪⎨

⎪⎩

t, if [[φ]]A = f ;
f , if [[φ]]A = t;
⊥, if [[φ]]A = ⊥.

According to the Definition 5, undefinedness arises only by application of a
partial function to entities outside its domain. In the case of a structure assigning
total functions to all function symbols, the truth assignment coincides to the
standard two-valued one of first-order logic.

Definition 6. A total expansion5 of a partial function structure A is a struc-
ture A↑ such that, for each predicate symbol p ∈ Σ, pA

↑
equals pA, and for each

function symbol f ∈ Σ, fA↑
is a total function expanding the partial function

fA, i.e., fA ⊆ fA↑
. This function agrees with fA on elements d̄ in the domain

of fA and otherwise assigns an arbitrary domain element.

The following theorem characterizes the relation between 3-valued and two-
valued semantics (where ‖α‖A↑

denotes the value of α according to the two-
valued semantics).

Theorem 1. Let α be a partial function expression and A a structure (over Σ)
and A↑ be an arbitrary total expansion of A, then: [[α]]A �= ⊥ ⇒ [[α]]A = ‖α‖A↑

.

Proof (Sketch). Inspection of the rules in Definition 5 shows that, for each rule
that does not produce a ⊥-value, changing a ⊥-input value into another value
cannot affect the outcome.

Kleene [13, p. 334] called this regularity of language connectives and expressed it
as a property of truth tables, Fitting [8] explored it as a monotonicity property
of language connectives in an order where ⊥ is below both t and f .

4 Guarded FO(pf)

In this section, we propose syntactical constraints, guards, that will ensure the
well-definedness of an FO(pf) formula. The guarded formula ensures that any
5 The total expansion of a structure does not satisfy the constraints of a partial func-

tion structure (Definition 4).

762 D. Markovic et al.

occurrence of a partial function term occurs in the context of a constraint that its
argument belongs to the domain of the partial function. For example, to protect
the atom 1/x > 0 against division by 0, one can use if δ/(1, x) then 1/x >
0 elseφfi where φ can be t or f (or another formula) depending on the desired
outcome when x = 0; we call such a guard a conditional guard. To formalize
the notion of a guarded formula, we introduce first a guard context. Intuitively,
context represents a set of guards that are appearing higher in the syntax tree
of a formula.

Definition 7. A guard context ω is a set of domain predicate atoms over
vocabulary Σ.

First, we define a syntax of a conservative theoretical language of guards.
Namely, a partial function term can occur only in a “then” part of a if-then-else
statement that contains its domain predicate as a condition.

Definition 8. Given a guard context ω and a vocabulary Σ, a guarding rela-
tion ω � φ is defined by the following inductive definition (where t̄ stands for
t1, . . . , tn and ω � t̄ for ω � t1 . . . ω � tn):

ω � t ω � f ω � x
ω � t̄

ω � p(t̄)
ω � φ

ω � ¬φ

ω � φ ω � ψ

ω � φ ∨ ψ

ω � φ

ω � ∃x : φ

δf (t̄) ∈ ω ω � t̄

ω � f(t̄)
ω � φ ω � ψ ω � ϕ

ω � if φ then ψ else ϕ fi
ω � t̄ (ω ∪ δf (t̄)) � ψ ω � ϕ

ω � if δf (t̄) then ψ else ϕ fi

Definition 9. Formula φ is well-guarded iff it is guarded in an empty context:
∅ � φ.

The following theorem reflects the main property of well-guarded formulae.

Theorem 2. Let φ be a well-guarded formula and A a partial function structure
over Σ, then φ is well-defined in A, in symbols: ∅ � φ ⇒ [[φ]]A �= ⊥.

Proof (Sketch). Each rule of Definition 8 decomposes the formula into well-
guarded parts, all the way to the atoms and terms. Note that a functional
term f(t̄) is well-guarded only if its domain predicate δf (t̄) is in the guard-
ing context ω. This is possible only if term f(t̄) occurred in φ1 in formula like
if δf (t̄) thenφ1 elseφ2 fi; according to the last rule. It is clear that in case f(t̄) is
undefined its domain predicate δf (t̄) is false and hence the value of sub-formula
φ1 becomes irrelevant.

Every well-guarded formula has to contain atoms t or f or some propositional
atom. This is because not all else parts of conditional statements can be guarded.
In this way, a precise truth value is specified for every formula in case some term
turns out not to be defined. This aligns with our principle of well-definedness
and non-ambiguity.

Towards Systematic Treatment of Partial Functions 763

Theorem 2 suggests that if all formulae in a theory are well-guarded it is
guaranteed that the theory is well-defined. To check well-guardedness of a for-
mula it is sufficient to follow the syntactical rules from the Definition 8, which
leads a complete/decidable method, solvable in linear time as characterized in
the following theorem.

Theorem 3. Given an FO(pf) sentence φ of length l and with n terms (includ-
ing all sub-terms), the time complexity of well-guardedness check of φ is O(l)
and space O(n + l).

Proof. Counting the number of terms and storing them into an associative array
is obviously linear, it requires linear parsing of a sentence. So, we assume that
there is an associative array T mapping all terms in φ to 0 initially. Intuitively, 0
denotes that the term is not guarded, and 1 that it is. Next we can start parsing
the sentence φ. When any term t is encountered we check whether T (t) = 0, if
it is, φ is not well-guarded and the procedure terminates, otherwise we continue
parsing. Whenever ifδf (t̄)then . . . else . . .fi is encountered, if f(t̄) is in T it is set
to 1 for the analysis of the then branch, while it remains 0 for the analysis of the
else branch. If the end of the sentence is reached, the sentence is well-guarded.

The described procedure makes two iterations over the sentence, one to create
T , and one for analysing guards. Since the sentence is of length l the time
complexity is O(l). The memory used in this procedure is the array T of length
n (number of terms in φ) and a stack of maximal length l for parsing the sentence.
Hence space complexity is O(n + l).

4.1 Conjunctive and Implicative Guards

Writing well-guarded theories using guards as they are defined in Definition 8
would require every single term to be guarded using conditionals, which is by
many criteria of Knowledge Representation languages unacceptable. Such a lan-
guage would be extremely inconvenient and elaboration intolerant; “A formalism
is elaboration tolerant to the extent that it is convenient to modify a set of facts
expressed in the formalism to take into account new phenomena or changed cir-
cumstances.” [16], whereas in the proposed language adding just a single new
function term to a formula would require updating the entire formula. To make
guarding more convenient, new guards constructs, based on the principles of
well-definedness and non-ambiguity, could be introduced.

The first step towards a compact language of guards is to remove the need
for explicit annotations of truth values when terms are not denoting. A well-
guarded statement if δt thenφ else f fi can be replaced with a conjunctive guard
δt∧φ which evaluates to f when the guard is false and if δt thenφ else t fi can be
replaced with an implicative guard δt ⇒ φ which evaluates to t when the guard
is false. Notice that the original guarded statement is not equivalent to the
proposed replacements. Namely, if δt is undefined and φ is f in some structure,
conditional guards would be undefined, while δt ∧ φ would be f . However, this
is not possible in a well-guarded statement; for δt to be undefined it has to be

764 D. Markovic et al.

applied to some term t′ which is undefined, but according to the guarding rules,
that term has to be guarded too. So, semantically conjunctive and implicative
guard connectives are asymmetric, they correspond to connectives in McCarthy’s
left-sequential 3-valued propositional logic [15] also analysed by Fitting in [8].
In our paper, the semantics of these connectives is not formally needed as they
are treated syntactically. Hence, conjunctive and implicative guards should be
considered as a shorthand for particular conditional guards (those that have f
and t in the “else” part respectively).

However, formulae often contain more than one term and newly proposed
guards would often be in a chained form: (δt1 ∧ · · · ∧ δtn) ∧ φ and (δt1 ∧ · · · ∧
δtn) ⇒ φ. In this situation reduction to the primitive conditional guard takes
into account the order of domain atoms δ which is important for nested terms.
For example, statement like “My husband’s mother is a doctor” modeled as
Doctor(mother(mh)), requires first constant mh to be guarded, and only then
mother(mh), i.e., δmh ∧ δmother(mh) ⇒ Doctor(mother(mh)). The reason is
that δmother(mh) is well-defined only if mh is well-defined and hence it has to be
constrained first. This means that the conjunction of guards in conjunctive and
implicative guards is also a non-commutative connective (e.g., δmother(mh) ∧
δmh ⇒ Doctor(mother(mh)) is not a well-guarded statement).

4.2 Implicit Guards

Although expressing guards is slightly more convenient with conjunctive and
implicative guards than with conditional guards it is still necessary to guard
every single term, furthermore, this has to be done for all nested terms respect-
ing the order of nesting. This is still below the standards of a good KR
language. What is necessary for improvement is the support for annotations
that can replace a conjunction of guards. Hence, we introduce two new lan-
guage constructs. The annotation [[[[[[φ]]]]]] stands for implicit conjunctive guards
and the annotation 〈〈〈〈〈〈φ〉〉〉〉〉〉 for implicit implicative guards. When a formula is
implicitly guarded it is extended with guards for all the terms, and sub-terms,
it contains. For example formula 〈〈〈〈〈〈Doctor(mother(mh))〉〉〉〉〉〉 stands for δmh ∧
δmother(mh) ⇒ Doctor(mother(mh)), while formula [[[[[[Doctor(mother(mh))]]]]]]
stands for δmh ∧ δmother(mh) ∧ Doctor(mother(mh)).

Intuitively, these operators will bring all guards of all terms of the guarded
statement in front of it in a correct order. For example, with ψ representing the
conjunction of guards needed to guard terms inside a formula φ, [[[[[[φ]]]]]] is translated
as ψ ∧ φ while 〈〈〈〈〈〈φ〉〉〉〉〉〉 is translated as ψ ⇒ φ. Note that [[[[[[]]]]]] and 〈〈〈〈〈〈〉〉〉〉〉〉, similarly to
the modal6 operators � and �, form a dual pair of operators, i.e., 〈〈〈〈〈〈φ〉〉〉〉〉〉 ≡ ¬[[[[[[¬φ]]]]]]
and [[[[[[φ]]]]]] ≡ ¬〈〈〈〈〈〈¬φ〉〉〉〉〉〉.

However, it is not always possible to guard all terms at the same level of
the formula, some variables are introduced only deeper in the formula, and they

6 The notation for operators is selected to be aligned with the intuition of modal oper-
ators, i.e., [[[[[[]]]]]] expresses the necessity that all terms are defined, while 〈〈〈〈〈〈〉〉〉〉〉〉 expresses
possibility.

Towards Systematic Treatment of Partial Functions 765

do not exist on the top level. Consider the following statement: “If France is
coloured blue then there exists a country that is a neighbour of France and is
coloured red”; modelled7 as: colOf(F) = B ⇒ ∃c : Nei(F, c) ∧ colOf(c) = R.

In this statement, it is not possible to guard colOf(c) outside of the scope
of ∃c quantifier. Furthermore, as it is not always the case that the intended
guards for the quantified sub-formula are the same as the ones used on the
higher level, we require that every quantified sub-formula has its own guard.
So, the translation of the implicit guards always puts the guards at the level
of the guarded sub-formula. For example: 〈〈〈〈〈〈colOf(F) = B ⇒ ∃c : [[[[[[Nei(F, c) ∧
colOf(c) = R]]]]]]〉〉〉〉〉〉 is translated as: δcolOf (F) ⇒ (colOf(F) = B ⇒ ∃c : δcolOf (c)∧
Nei(F, c) ∧ colOf(c) = R).

This avoids that the KR engineer neglects that the quantified sub-formula
is in a different context, e.g., negated, so that the meaning of an implicit guard
changes. Consider as an example statement “if France is coloured blue, no country
is coloured red”: [[[[[[colOf(F) = B ⇒ ∀c : colOf(c) �= R]]]]]]. If the same guard were
propagated to the quantified sub-formula it would imply that all countries are
coloured. However the intended meaning is that a country, if coloured, is not
red: [[[[[[colOf(F) = B ⇒ ∀c : 〈〈〈〈〈〈colOf(c) �= R〉〉〉〉〉〉]]]]]].

For similar reasons we do not allow implicit guarding of terms, for example:
Nei(〈〈〈〈〈〈F〉〉〉〉〉〉, [[[[[[G]]]]]]), where terms F and G in the atom have to be guarded. The
above statement can be translated in two ways depending on which guard is
applied first: δF ⇒ (δG ∧ Nei(F,G)) and δG ∧ (δF ⇒ Nei(F,G)). These two
translations are not equivalent, and hence the language should establish a con-
vention in which way guards are applied. In this paper, we stick with the slightly
more conservative approach and require users to be explicit.

We have shown that the basic principles of guarding require tedious modelling
and that they are almost always implicit in mathematical texts and natural
language statements. Hence, a good KR language has to employ such constructs,
and we have demonstrated their principles.

5 Unnesting of Nested Function Terms

Nested function terms are very common in the modelling of human knowledge,
e.g., Doctor(father(mw)). We demonstrated in the previous section that sen-
tences containing them can carry an ambiguity. Sometimes, there is a need to
eliminate functions (e.g., because the preferred solver does not support func-
tions). This can be achieved by unnesting, i.e., introducing new quantified vari-
ables and replacing functions with their graphs8 (a good overview of the tech-
nique is available in [25]). For example, the constant mw of the above statement
could be unnested as: ∃x : γmw(x)∧Doctor(father(x)) or using universal quan-
tification: ∀x : γmw(x) ⇒ Doctor(father(x)). Two statements are equivalent, in
the case of two-valued logic, because there is exactly one x such that γmw(x).

7 We use constants F for France, B for blue and R for red.
8 Recall that the graph predicate of a function f is denoted with γf .

766 D. Markovic et al.

This is obviously not the case when the term mw might fail to denote. For exam-
ple, when γmw(x) is false for every x, meaning that mw does not exist, the first
statement is false and the second is true.

The unnesting procedure can get very complex, as terms could be unnested
higher in the syntax tree. For example, formula t ∨ c = 10, which is obviously
a tautology, can be unnested in the following way ∃x : γc(x) ∧ (t ∨ x = 10)
which is false when c is undefined. This means that not all unnestings are
equivalence preserving. Additionally, the problem aggravates because terms can
be unnested in a different order, e.g., first father(mw) and mw afterward:
∃x : γfather(mw,x)∧Doctor(x). This results in an enormous number of unnest-
ings, which potentially leads to different values in case of undefinedness.

The examples from above are suggesting that replacing atoms directly with
their unnestings is a safe approach, meaning that if the original formula is
well-defined the unnested version will have the same value. This property
indeed holds and is not difficult to be proven9. However, this method has a
major downside as it has to introduce a new variable for each term being
unnested, even though the same term might repeat multiple times in a for-
mula. Consider the following example: “My husband is an actor and a pilot.”
modelled as: Actor(mh) ∧ Pilot(mh). This sentence would be unnested as:
∃x1 : γmh(x1)∧ Actor(x1)∧ ∃x2 : γmh(x2)∧ Pilot(x2). In general, this approach
would lead to more complex formulae containing more quantified variables with
a strict order (which is known to affect the solving efficiency for QBF [14,19]).

The problem of unnesting is present because potentially non-denoting terms
are not used in a disambiguated manner. It is not hard to see that terms in a
well-guarded formula are safe to be unnested in the scope of their guards. This
justifies the principle of disambiguation imposed by the guarding mechanism.
To formalize the described properties we first have to define the two unnestings.
We call the one with existential quantifier strong, since it approximates a for-
mula to false when an undefined term is unnested and the other one weak, as it
approximates it to true. Below, φ[t → t′] stands for the substitution of a term t
with term t′ in formula φ.

Definition 10. Given a formula φ containing a term f(t̄) such that all vari-
ables occurring in f(t̄) are free in φ, the term f(t̄) is Weak-ly unnested
as: w(f(t̄), φ) = ∀x : γf (t̄, x) ⇒ φ[f(t̄) → x] and Strong-ly unnested as:
s(f(t̄), φ) = ∃x : γf (t̄, x) ∧ φ[f(t̄) → x].

For example w(mh,Actor(mh) ∧ Pilot(mh)) would result in: ∀x : γmh(x) ⇒
Actor(x) ∧ Pilot(x).

Intuitively, a guarded term can be safely unnested as long as it is in the
scope of its guard because if unnested inside its guard, a term is always defined.
For example, δmh ∧ Actor(mh) unnested as δmh ∧ ∀x : γmh(x) ⇒ Actor(x) is a
perfectly safe operation. If the term is not defined, the guard will ensure that
the sub-formula where it occurs is not relevant. This is characterized by the
following theorem.
9 The proof is omitted due to space constraints.

Towards Systematic Treatment of Partial Functions 767

Theorem 4. Given a well-guarded formula φ, a sub-formula ψ of φ, and a term
t, if term t is guarded in ψ by some guard (higher in a syntax tree) in φ, then
for any structure A the following holds: [[φ[ψ → w(t, ψ)]]]A = [[φ[ψ → s(t, ψ)]]]A.

Proof (Sketch). If [[t]]A = ⊥, values of either w(t, ψ) or s(t, ψ) are not relevant
for φ as there is (higher in a syntax tree) guard for t. If [[t]]A �= ⊥ then we
should show that [[w(t, ψ)]]A = [[s(t, ψ)]]A. This boils down to the proof that
[[∀x : γt(x) ⇒ φ[t → x]]]A is the same as [[∃x : γt(x) ∧ φ[t → x]]]A. As there can
be only one such x (according to Definition 4) it is not hard to see that both
formulae reduce to [[φ[t → x]]]A for such x.

The main motivation in this paper for introducing guards was to create a
language capable of disambiguating the meaning of expressions using partial
functions. We have shown that the well-definedness property is not enough (e.g.,
t ∨ c = 10) to ensure non-ambiguity. However, guards are providing both, well-
definedness is reflected in Theorem 2 and non-ambiguity in Theorem 4.

6 Related Work

This section discusses some of the most relevant works for this paper.
The problem of ambiguity, from the Knowledge representation perspective,

was already recognized in [6,9]. The work of De Cat et al. briefly discusses
the need for disambiguated forms for statements containing partial functions.
Inspired by the work of Frisch and Stuckey [9] they adopt the default disam-
biguation to be the strong one (one with the existential10 quantifier). While
sharing the intuition and base principles, our view is that default assumptions
about the language are dangerous and are leading to many pitfalls where users
do not understand what is really the meaning of the statements they are making.
A distinguishing contribution of our paper is the development of a suitable syn-
tax for a language where no assumptions are made. Another strength of paper
[6] is that various other extensions of a good KR language are discussed. Some
of these extensions (e.g., aggregates and definitions) require special non-trivial
treatment. As our approaches are sharing the base principles, we believe that
the language we proposed is flexible and general enough to be extendable with
common first-order extensions while preserving the elaboration tolerance [16] of
the language.

The constraints that we imposed on the guarded language are strongly related
to some special language connectives and constructs as mentioned earlier. The
asymmetric connectives from [8,15] were already discussed throughout the paper.
A similar idea appears in [18] as a notion of lazy implication [A]B and lazy
conjunction 〈A〉B. The laziness means that the second proposition B will be
ignored when the first one, A, is false. In this way, one can write statements

10 Weak unnesting becomes strong when the formula occurs in a negative context (odd
number of negations upper in syntax tree). This can cause problems, i.e., some con-
nectives (e.g., ⇔) contain implicit negations, and hence polarity is not well defined.

768 D. Markovic et al.

in which irrelevant parts are undefined. Also, the authors of [18] perceive ill-
defined formulas as errors, which is in line with our view. The main difference
between both works is that we are focused on the syntactical restrictions of
such a language as opposed to the development of a proof system for it. In fact,
developing a proof system for our language is not needed due to the result of
the reduction to two-valued logic. This means that the standard proof system
for first-order logic is sufficient for the language proposed in this paper.

Substantial efforts in the Answer Set Programming (ASP) community have
been made when it comes to the integration of partial functions in ASP [1,2,4].
These papers aim at the proper treatment of partial functions and at construct-
ing practical systems for ASP. In the paper [4] by P. Cabalar, the strict app-
roach is followed, namely when an atom contains an undefined term it evaluates
to false. Initially, this approach substantially differs from ours. However, the
derived operators inspired by Scott’s existence operator [22] are used in [4] to
create convenient language constructs relevant to those discussed in this paper.
For example, t1#t2 has a meaning that both t1 and t2 are defined and different.
Further [φ] is similar to an implicative guard from this paper, except it operates
on the level of atoms, i.e., each atom A containing term t will be replaced with
Et ⇒ A where E is Scott’s existence operator. While being very close to the
idea proposed in this paper, the generalized notion of guards is not studied in
[4]. This does not mean that the results presented in this paper are beyond ASP,
on the contrary, the use of the existence operator would allow the implementa-
tion of guards as proposed in this paper in the ASP language. Hence, the main
difference between these two works is the goal, the work in [4] focuses on partial
functions in ASP, while this paper has guards as language constructs in the first
plan.

The approach to partial functions in the theorem prover CVC Lite [3] is
that a theory must be provably well-defined (referred to as the principle of least
surprise), a similar approach appears in the Event-B Modelling Method [12].
This principle aligns with the approach proposed in this paper. However, the
difference is that we insist on the additional principle of proving well-defined-
ness on the level of syntax. In CVC Lite, the well-definedness of a formula is
established by generating TCC (Type Correctness Conditions) formula out of
the original formula and checking its validity. Validity checking is in general
undecidable, hence for some formulae, it is impossible to establish well-defined-
ness. We believe that in KR languages this can and should be avoided using the
approach proposed in this paper. A good argument for that appears in [3] itself;
namely, TCC formulae enjoy the well-definedness property from the way they
are constructed, which is exactly the way well-guarded formulae are designed.

Note that one has more “freedom” in guarding partial functions in the for-
malisms compared so far, e.g., c �= 0 ⇒ 1/c > 0 is a two-valued statement
accepted by CVC and not by the language we propose (i.e., one has to write
〈〈〈〈〈〈1/c > 0〉〉〉〉〉〉). It is true that it is more common in mathematical texts to see
guarding like “if x �= 0” or “if x > 0”, this is because usually guarded functions
are rigid (i.e., the same in all structures), like division or square root, and hence

Towards Systematic Treatment of Partial Functions 769

always defined on the exact same set of values. Hence, proving that statements
guarded in such a manner are well-defined is trivial. However, when it comes
to Knowledge Representation it is often the case that functions are not rigid,
and guarding them by enumerating all the cases where they are undefined is not
possible. For this reason, we believe that guarding techniques proposed in this
paper are much more relevant for KR languages. In a sense one does not have to
know the value of functions to be able to see that the statement is well-defined;
it is inferable from the syntax.

7 Conclusion

We argued the importance and scientific interest in supporting partial functions
in KR languages in order to avoid undefinedness errors, ambiguities, and seman-
tic mismatches leading to subtle modelling and reasoning errors.

We started from a logic with expressions in which partial function terms occur
in a context guarded by domain expressions. The syntax of the logic is decidable.
The logic satisfies the principle of well-definedness: although the underlying logic
is 3-valued, guarded formulas are “error-free” in the sense that their truth value is
well-defined in all structures. This is so even when no complete knowledge of the
domain of partial functions is available. Further, we showed the extensions of the
base language reducing verbosity and increasing convenience. Also, we proved
that the ambiguity problem of different unnestings does not occur in the defined
language. Thus, we argue that the proposed framework is a good core language
for partial functions and a good foundation for more convenient languages.

Acknowledgements. Thanks to Pierre Carbonnelle, Gerda Janssens, Linde Vanbe-
sien, and Marcos Cramer for the discussions and for reading this paper.

References

1. Balduccini, M.: A “conservative” approach to extending answer set programming
with non-Herbrand functions. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.)
Correct Reasoning. LNCS, vol. 7265, pp. 24–39. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30743-0_3

2. Balduccini, M.: ASP with non-Herbrand partial functions: a language and system
for practical use. Theory Pract. Logic Program. 13(4–5), 547–561 (2013)

3. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L.: A
practical approach to partial functions in CVC lite. Electron. Notes Theor. Com-
put. Sci. 125(3), 13–23 (2005)

4. Cabalar, P.: Partial functions and equality in answer set programming. In: Garcia
de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 392–406.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_36

5. Cristiá, M., Rossi, G., Frydman, C.S.: Adding partial functions to Constraint Logic
Programming with sets. Theory Pract. Log. Program. 15, 651–665 (2015)

https://doi.org/10.1007/978-3-642-30743-0_3
https://doi.org/10.1007/978-3-540-89982-2_36

770 D. Markovic et al.

6. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: the IDP system. In: Declarative Logic Program-
ming: Theory, Systems, and Applications, pp. 279–323. Association for Computing
Machinery and Morgan & Claypool (2018)

7. Farmer, W.M.: A partial functions version of Church’s simple theory of types. J.
Symb. Log. 55(3), 1269–1291 (1990)

8. Fitting, M.: Kleene’s three valued logics and their children. Fundam. Inform. 20(1,
2, 3), 113–131 (1994)

9. Frisch, A.M., Stuckey, P.J.: The proper treatment of undefinedness in constraint
languages. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 367–382. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_30

10. Gavilanes-Franco, A., Lucio-Carrasco, F.: A first order logic for partial functions.
Theoret. Comput. Sci. 74(1), 37–69 (1990)

11. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satis-
fiability, pp. 993–1014. IOS press (2021)

12. Hoang, T.S.: An introduction to the Event-B modelling method. Industr. Deploy.
Syst. Eng. Methods 211–236 (2013)

13. Kleene, S.C.: Introduction to Metamathematics. North Holland, Princeton (1952)
14. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In:

Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276–294. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9_19

15. McCarthy, J.: A basis for a mathematical theory of computation. In: Studies in
Logic and the Foundations of Mathematics, vol. 26, pp. 33–70. Elsevier (1959)

16. McCarthy, J.: Elaboration tolerance. In: Common Sense, vol. 98, p. 2 (1998)
17. Mitchell, D., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a frame-

work for modelling and solving search problems. Technical report, Citeseer (2006)
18. Nivelle, H.: Classical logic with partial functions. In: Giesl, J., Hähnle, R. (eds.)

IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 203–217. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14203-1_18

19. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2_23

20. Russell, B.: On denoting. Mind 14(56), 479–493 (1905)
21. Schock, R.: Logics Without Existence Assumptions. Stockholm, Almqvist & Wik-

sell, Stockholm (1968)
22. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey,

C., Scott, D. (eds.) Applications of Sheaves. LNM, vol. 753, pp. 660–696. Springer,
Heidelberg (1979). https://doi.org/10.1007/BFb0061839

23. Strawson, P.F.: On referring. Mind 59(235), 320–344 (1950)
24. Suppes, P.: Introduction to Logic. Courier Corporation (1999)
25. Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds.

J. Artif. Intell. Res. 38, 223–269 (2010)

https://doi.org/10.1007/978-3-642-04244-7_30
https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.1007/978-3-642-14203-1_18
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1007/BFb0061839

Deterministic Weighted Automata Under
Partial Observability

Jakub Michaliszyn and Jan Otop(B)

University of Wroc�law, Wroc�law, Poland
{jmi,jotop}@cs.uni.wroc.pl

Abstract. Weighted automata is a basic tool for specification in quanti-
tative verification, which allows to express quantitative features of anal-
ysed systems such as resource consumption. Quantitative specification
can be assisted by automata learning as there are classic results on
Angluin-style learning of weighted automata. The existing work assumes
perfect information about the values returned by the target weighted
automaton. In assisted synthesis of a quantitative specification, knowl-
edge of the exact values is a strong assumption and may be infeasi-
ble. In our work, we address this issue by introducing a new frame-
work of partially-observable deterministic weighted automata, in which
weighted automata return intervals containing the computed values of
words instead of the exact values. We study the basic properties of this
framework with the particular focus on the challenges of active learning
partially-observable deterministic weighted automata.

1 Introduction

Finite automata is a fundamental computational model with a wide range of
applications spanning from computational complexity, through AI [17] to formal
methods [7]. In some applications, however, the qualitative answers returned
by finite automata, i.e., each word is accepted or rejected, are insufficient. For
instance, in formal verification, one can check the existence of execution trances
violating a given specification, but violating traces come from a model rather
than the actual system and their severity may differ from critical, which are
likely to occur in the actual system to one, which are unlikely to be repro-
duced. Similarly, while checking whether a system has no deadlocks, one can ask
whether every request is eventually fulfilled, which lacks performance guarantees
involving a bound on the timeframe for fulfilment.

To address these issues, there has been proposed quantitative verification, in
which the specification refers to quantitative features of the system. Quantitative
verification is based on weighted automata, which return numeric values for
words rather than accept/reject words. Weighted automata and their extensions
have been extensively studied [5,6,9]. These models can express the severity of
errors [11] and various performance metrics such as average response time [6].
The expressive power of such models entails hardness of specification.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 771–784, 2023.
https://doi.org/10.1007/978-3-031-43619-2_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_52&domain=pdf
http://orcid.org/0000-0002-5053-0347
http://orcid.org/0000-0002-8804-8011
https://doi.org/10.1007/978-3-031-43619-2_52

772 J. Michaliszyn and J. Otop

Specifying quantitative properties may be difficult because in addition to
describing events (such as a system failure) one has to come up with the associ-
ated values. This is especially difficult for properties of an approximate nature
such as the aforementioned severity of a failure. Furthermore, the precise values
are often not that important as we would be typically interested whether the
number is within some acceptable interval, e.g., does not exceed our resources.
For instance, the exact value of average response time depends on the computing
environment, e.g., its cache size, which is typically not modeled precisely. For the
same reason, assigning reasonable values of the average response time to traces
is considerably more difficult than specifying a deadlock.

In this paper, we address the issue of construction of quantitative specifica-
tions. To ease the specification process, we propose a new framework, in which
automata do not reveal the exact values. We study this framework from the
specification-synthesis perspective, i.e., we ask whether it is possible to semi-
automatically produce quantitative specifications using automata-learning app-
roach. The conditions may be more involved; for example, we may want to
express properties stating that the values 0–10 are good, 11–20 are satisfactory,
and anything over 20 is bad.

1.1 Our Framework

We introduce partially-observable deterministic weighted automata (PODWA).
These automata behave as regular deterministic weighted automata over Z, but
return an interval (from a given finite set of possible intervals) that contains the
computed value rather than the value itself. The choice of intervals as partial
observations is natural. Other choices are possible, but can increase the com-
plexity – even making the membership problem undecidable.

Our motivation comes from the specification-synthesis via automata learn-
ing. The idea is that we would like to be able to synthesize quantitative prop-
erties without necessarily providing exact values. For that reason, we focus on
problems related to active automata learning. First, we study the equivalence
problem. It is fundamental in automata learning as one needs to answer whether
the learned automaton is admissible. Second, learning algorithms typically con-
struct the structure of an automaton with no weights [2], which leads to the
weight synthesis question: given a PODWA Λ1 and an automaton structure A2

(a deterministic finite automaton) without weights, is there a weight assignment
for A2, which makes it equivalent (w.r.t. partial observations) to Λ1? Specifi-
cally, assuming that such a weight assignment does exist, is there one such that
weights vales are of polynomial order w.r.t. weights from Λ1? Finally, active
automata learning algorithms construct minimal automata [1,2,14]. Thus, to
assess feasibility of learning weighted automata in our framework, we study the
minimization problem for PODWA.

Deterministic Weighted Automata Under Partial Observability 773

1.2 Results

The main contribution of the paper is identifying obstacles in developing a
polynomial-time active learning algorithm for the new model. We start with the
basic properties of the model. We show that the class of PODWA can express
more than regular languages and is closed under the complement, but not under
the union or the intersection. Then, we show that:

– the equivalence problem for PODWA is coNP-complete in general, and it
can be solved in polynomial time if weights are given in unary,

– there is a PODWA Λ with weights −1, 0, 1, such that all equivalent minimal-
state automata are isomorphic and have exponential weights, and

– the minimization via state-merging for PODWA with unary weights is NP-
complete.

These results highlight challenges in learning weighted automata under par-
tial observation. In order to obtain polynomial-time algorithm for active learn-
ing of PODWA, we need to focus on automata with unary weights. However,
equivalence up to partial observation is too permissive to have an active learn-
ing algorithm. One needs a more rigid equivalence notion, which would make
minimization decidable in polynomial time, and prevent exponential blow-up of
weights in the minimization process.

1.3 Related Work

Typically, the partial observation term applies to equivalence on the set of con-
trol states, which has been used to model decisions under imperfect informa-
tion in Markov decision processes (partially observable Markov decision pro-
cess [18]), graph games (games with imperfect information [8]), or multi-agent
system (multi-player games with imperfect information [3,10]). In contrast, in
this work, the state space is intact, and partial observability refers to the returned
value. This is related to games with interval objectives [13], in which one of the
players objective is to make the numeric outcome of the game fall into a set
being a finite union of intervals.

This work is motivated by active automata-learning algorithms, which have
been developed for deterministic finite automata [1], deterministic weighted word
automata [2] and deterministic weighted tree automata [14] and other types
of automata. Similar algorithms have recently been developed for infinite-word
automata: deterministic Büchi automata (DBA) [16] and deterministic limit-
average automata [15]. These algorithms work in polynomial time even though
minimization, closely related to active learning, is NP-complete for DBA. It
was made possible thanks to in-depth difficulty assessment of problems related
to active learning, which indicated how to extend the learning framework to
make polynomial-time learning algorithms possible [16]. We conduct such an
assessment in this work to pave the way for the development of active learning
algorithms.

774 J. Michaliszyn and J. Otop

2 Preliminaries

A word w is a finite sequence of letters from a finite alphabet Σ. By Σ∗ we
denote the set of all words over Σ. By w[i] we denote the ith letter of a word w,
and w[i, j] stands for the subword w[i]w[i + 1] . . . w[j] of w. The empty word is
denoted by ε.

Automata and Runs. A deterministic weighted automaton (DWA) is a tuple
〈Σ,Q, q0, δ, c〉 consisting of

1. an alphabet Σ,
2. a finite set of states Q,
3. an initial state q0 ∈ Q,
4. a transition function δ : Q × Σ → Q, and
5. a weight function c : Q × Σ → Z.

The size of a DWA A, denoted by |A|, is its number of states plus the sum of
the lengths of all the weights given in binary.

We extend δ to δ̂ : Q × Σ∗ → Q inductively: for each q, we set δ̂(q, ε) = q,
and for all w ∈ Σ∗, a ∈ Σ, we set δ̂(q, wa) = δ(δ̂(q, w), a). The run π of a DWA
A on a word w is the sequence of states q0δ̂(q0, w[1])δ̂(q0, w[1, 2]) We do not
consider any acceptance condition here.

The semantics of a DWA A is a function L(A) from non-empty words Σ∗\{ε}
into integers. For a non-empty word w of length k, we define L(A)(w) as the
sum of weights of transitions along the run of A on w:

L(A)(w) = c(q0, w[1]) + c(δ̂(q0, w[1]), w[2]) + · · · + c(δ̂(q0, w[1, k − 1]), w[k]).

Remark 1. The tropical seminring The weighted automata model considered in
this paper is an instance of a more general framrework of weighted automata over
semirings [9], where the semiring is the tropical semiring restricted to integers.

3 Our Framework

A Partially-Observable DWA, PODWA, is a pair Λ = (A, S) consisting of a
DWA A and a set of a finite number of pairwise-disjoint intervals S covering
Z called observations. We assume that intervals are enumerated by {0, . . . , s}
according to the order on Z. The language of a PODWA Λ, denoted as L(Λ), is
a function from Σ∗ \ {ε} to {0, . . . , s} such that L(Λ)(w) is the number of the
interval containing L(A)(w).

A binary PODWA is a special case of PODWA having only two intervals:
(−∞, 0] and (0,+∞). We consider words ending in the interval (0,+∞) as
accepted. Then, the function L(Λ) is essentially a characteristic function of a
set that can be seen as a classic language.

Deterministic Weighted Automata Under Partial Observability 775

Example 1. Consider a single-state automaton A over Σ = {a, b, c}. The weights
of the transitions over a, b, c are, respectively, −1, 0, 1. Consider the set of
intervals S = {(−∞, 0], (0,+∞)} and the binary PODWA Λ = (A, S). Then,
L(Λ)(w) = 1 if w contains more occurrences of c than a, and 0 otherwise.

Binary PODWA can define all regular languages (without the empty word)
and some non-regular languages (see Example 1). All PODWA-recognizable lan-
guages are context-free and can be emulated by a deterministic one-counter
automaton. On the other hand, deterministic one-counter automata define lan-
guages that cannot be expressed by binary PODWA, as the former rely on the
counter value at every transition while the latter are agnostic of the counter
value. For instance, a pumping argument shows that the language of words that
have the same number of (occurrences of) a and b between every pair of c can-
not be expressed by a binary PODWA (or any other PODWA with a reasonable
language definition).

Binary PODWA can be easily complemented – it suffices to multiply all the
weights by −1 and adjust the initial state (for words with value 0). We show that
the class of languages recognizable by binary PODWA is not closed under union
nor intersection. We will prove the former; for the latter observe that closure
under intersection implies closure under union as the union operation can be
expressed by the intersection and complement operations.

Let L∪ be the language of words w that the number of occurrences of c is
greater than the number of occurrences of b or is greater than the number of
occurrences of a. Observe that L∪ is the union of two PODWA-recognizable
languages La, Lb, they can be defined as in Example 1. A simple pumping
argument shows that L∪ is not PODWA-recognizable.

Lemma 1. L∪ is not PODWA-recognizable.

Proof. Assume a PODWA Λ = (A, {(−∞, 0], (0,+∞)}) with less than N states
that recognizes L∪.

Consider the word w = aNbNcN+1. Clearly, w ∈ L∪ because there are more
occurrences of c than a.

Since Λ has less that N states, there is k ≥ 0 and l > 0 with k + l ≤ N such
that the states δ̂(q0, ak) and δ̂(q0, ak+l) are the same.

Since the automaton is deterministic, for any j the states δ̂(q0, ak) and
δ̂(q0, ak+jl) are the same. Notice that since the automaton is deterministic, this
implies that for any j we have δ̂(q0, aN) = δ̂(q0, aN+j·l).

Let wi = ak+i·l. We argue that A(w1) − A(w0) ≥ 0. Notice that for any j
we have A(wj+1) − A(wj) = A(w1) − A(w0). If this number was negative, for a
sufficiently large j we would have

A(aN+jlbNcN+1) ≤ 0

which contradicts the fact that this words belongs to L∪.
Similarly, there is k′ ≥ 0 and l′ > 0 with k′ + l′ ≤ N such that the states

δ̂(q0, aNbk
′
) and δ̂(q0, aNbk

′+l′) are the same.

776 J. Michaliszyn and J. Otop

Let w′
i = aNbk

′+i·l′ . As before, we can show that A(w′
1) − A(w′

0) ≥ 0.
Now consider wF = aN+lbN+l′cN+1. The above reasoning shows that

A(wF) ≥ A(w). However, since Λ recognizes L∪, we have A(wF) ≤ 0 and
A(w) > 0, which is a contradiction. 	

3.1 Sample Fitting

We briefly discuss the following counterpart of the sample fitting problem, which
is related to passive learning: given a set of pairs consisting of a word and an
interval, called the sample, and a number n, is there a PODWA with n states
that is consistent with the sample? The sample fitting problem is NP-complete
for PODWA; it is NP-complete even for DFA. However, we discuss it here as
the hardness proof is simple and robust.

For membership in NP, observe that if n is larger than the number of letters
in the sample (and the sample does not contain a direct contradiction, i.e., a
word with different intervals), then such a PODWA always exists (and can be
a tree). Otherwise, we can nondeterministically pick a PODWA and check it in
polynomial time.

For hardness, consider an instance ϕ of 3-SAT with variables p1, . . . , pm.
Consider n = 1, Σ = {q} ∪ {pi, p1 | i ≤ m}, and S = {(−∞, 0), [0, 1], [2,+∞)}.
The sample consists of:

– (q, [0, 1]), (qq, [2,+∞))
– (pi, [0, 1]), (pi, [0, 1]), (pipi, [0, 1]) (pipiq, [2,+∞)) for each i
– (xyzq, [2,+∞)) for each clause x ∨ y ∨ z of ϕ (we identify ¬pi with pi).

If there is a single-state automaton consistent with this sample, then each
letter has a value corresponding to the only transition over this letter. The value
of each letter is an integer. The first condition guarantees that the value of q
is 1. The second guarantees that exactly one letter among pi, pi has value 1
and the other has the value 0 (we rely on the fact that the weights are over
integers). Thus, the values define a valuation of variables p1, . . . , pm from ϕ. The
last condition guarantees that this valuation satisfies every clause of ϕ, and thus
it satisfies ϕ.

4 Towards Active Learning PODWA

The sample fitting problem is intractable for one-state automata, which is a
strong negative result for passive learning. In this section, we now focus on active
learning of automata. The classic L∗-algorithm for active learning of DFA asks
membership and equivalence queries. While in the PODWA framework, answer-
ing a membership query amounts to evaluating the DWA over the input word
and returning the interval containing the value, answering equivalence queries is
more involved.

Deterministic Weighted Automata Under Partial Observability 777

4.1 Equivalence

PODWA Λ1, Λ2 are equivalent if L(Λ1) = L(Λ2). The sets of intervals may be
different and hence PODWA equivalence is invariant to linear operations, which
are consistently applied to all weights and intervals. The equivalence problem asks
whether two given PODWAs are equivalent. We show its coNP-hardness via
reduction from (the complement of) the subset sum problem [12]. Let a1, . . . , ak

be a list of integers and T be the target value represented in binary. W.l.o.g.
we assume that a1, . . . , ak are even. We construct two binary PODWA Λ1 =
(A1, S), Λ2 = (A2, S) (where S = {(−∞, 0], (0,+∞)}) such that A1 computes
the possible values of sums of subsets of {a1, . . . , ak} minus T , and A2 returns
the value in A1 plus 1, i.e., L(A2)(w) = L(A1)(w) + 1. Observe that Λ1 and Λ2

are not equivalent if and only if A1 returns 0 for some word. For such a word
A2 returns 1, which is in a different interval than 0. Thus, the PODWAs are not
equivalent if and only if the subset sum problem has a solution.

Lemma 2. The equivalence problem for (binary) PODWA is coNP-hard.

Proof. We discuss the construction of DWA A1,A2 such that PODWA (A1, S)
and (A2, S) are equivalent if and only if there is no subsequence of a1, . . . , ak,
which sums up to T .

Without loss of generality, we assume that all values a1, . . . , ak and T are
even. The automaton A1 works over the alphabet {0, 1} and input words are
interpreted as the characteristic sequence of picked numbers minus T , i.e., the
weighted accumulated over a word w ∈ {0, 1} equals the sum of ai such that
i ∈ {1, . . . , k} and w[i] = 1 with T subtracted. One can easily construct such an
automaton with k + 2 states q0, . . . , qk+1: it moves from qi to qi+1 regardless of
the letter if i ≤ k − 1; the transition over 1 have weight ai+1 and the transition
over 0 has weight 0. Then, from qk it moves to qk+1 with both transitions of the
weight −T . Finally, in qk+1 it has self-loops of the weight 0.

Next, the automaton A2 has the same structure as A1, but the last weight
is −T + 1 rather than −T . Observe that if there is a word w distinguishing
L((A1, S)) and L((A2, S)), then it has to have the value 0 in A1 and 1 in A2 —
since the values of the two automata differ by 1 and the values of A1 are even.
So the two automata are not observationally equivalent exactly when the word
w encodes the solution for the considered instance of the subset sum problem. 	

The subset sum problem has a pseudo-polynomial time algorithm and hence
the hardness result from Lemma 2 relies on weights having exponential values
w.r.t. the automata sizes. Assuming unary weights in automata and the interval
endpoints leads to a polynomial-time algorithm for equivalence of PODWA. More
precisely, a PODWA (A, S) is unary if weights in A and interval ends in S are
represented in unary.

Theorem 1. The equivalence problem is coNP-complete for PODWA and in
PTime for unary PODWA.

778 J. Michaliszyn and J. Otop

Proof. The lower bound for the binary case follows from Lemma 2. For the
upper bound, we show that PODWA equivalence reduces to Z-reachability in
2-dimensional vector addition systems (VASS), i.e., reachability in which values
of counters may become negative. The weights in the resulting VASS are from
the weighted automata. The Z-reachability problem for fixed-dimension VASS
is NP-complete if vectors’ values are represented in binary, and it is in PTime
if they are represented in unary [4].

First, consider PODWA Λ1 = (A1, S1) and Λ2 = (A2, S2). If they are not
equivalent, then there is i = j and a word w such that A1(w) belongs to an i-th
interval and A2(w) belongs to a j-th interval. Without loss of generality, i < j
and hence there are values λ1, λ2 such that A1(w) < λ1 and A2(w) ≥ λ2. There
are |S1| · |S2| candidates for pairs λ1, λ2 and one can verify all pairs. Therefore,
we assume that λ1, λ2 are given and focus on finding w such that A1(w) < λ1

and A2(w) ≥ λ2.
We construct a VASS V of dimension 2 such that there is a path from the

initial state s0 with counters (0, 0) to the final state t with counters (0, 0) if and
only if there is a word w such that A1(w) < λ1 and A2(w) ≥ λ2. The VASS V
is as a product of automata A1 and A2, where each transition is labeled by a
vector of the weights of the corresponding transitions in A1 and A2. The V has
an additional sink state t, which is the terminal state, such that from any other
state one can reach t over a transition labeled by (−λ1 + 1,−λ2). Additionally,
t has self-loops labeled by (1, 0) and (0,−1). Finally, the initial state s of V is
the pair consisting of initial states of A1 and A2.

Formally, for i = 1, 2 let Ai = 〈Σ,Qi, q0,i, δi, ci〉. The VASS V = 〈Q, q0, τ〉
is defined as follows: Q = Q1 × Q2 ∪ {t}, q0 = 〈q0,1, q0,2〉, and τ ⊆ Q × Z

2 × Q
consist of three types of tuples:
– tuples 〈(q, s), x, (q′, s′)〉, for all q, q′ ∈ Q1, s, s

′ ∈ Q2 such that there exists
a ∈ Σ satisfying δ1(q, a) = q′, δ1(s, a) = s′, and x = 〈c1(q, a, q′), c2(s, a, s′)〉

– tuples 〈(q, s), (−λ1 + 1,−λ2), t〉, for all q ∈ Q1, s ∈ Q2, and
– tuples 〈t, (1, 0), t〉 and 〈t, (0,−1), t〉.

Now, assume that there is a word w such that A1(w) < λ1 and A2(w) ≥ λ2.
Then we construct a path in V corresponding to w, which leads from s with
counter values (0, 0) to some state with counter values (a, b), where a < λ1 and
b ≥ λ2. Since weights are integers, a ≤ λ1 − 1. Next, we take a transition to t
and the counter values change to (a′, b′) such that a′ ≤ 0 and b′ ≥ 0. Finally, we
can reach counter values (0, 0) by taking self-loops over t labeled by (1, 0) and
(0,−1). Conversely, consider a path π in V from s with counter values (0, 0) to
t with counter values (0, 0). Then, let s′ be the last state before reaching t and
(x, y) be the counter values at that position. Observe that x ≤ λ1−1 and y ≥ λ2

and hence the prefix of π up to s′ with (x, y) corresponds to a word w such that
A1(w) < λ1 and A2(w) ≥ λ2. 	

4.2 Unary Weights

Theorem 1 suggests that restricting the attention to unary PODWA can make
learning feasible. However, below we show that minimization of automata with

Deterministic Weighted Automata Under Partial Observability 779

Fig. 1. a) The automaton Λn. The omitted edges lead to s with weight 0. b) A minimal
automaton equivalent to Λn.

bounded weights from {−1, 0, 1} may involve exponential-blow up weights, i.e.,
the decrease in the number of states is possible only through introduction of
weights of exponential value:

Theorem 2. There exists a sequence of PODWA Λn = (An, S), for n > 1, with
weights −1, 0, 1 such that for all n > 1 every PODWA (B, S) equivalent to Λn

with B having the minimal number of states, has exponential weights in n.

780 J. Michaliszyn and J. Otop

Fig. 2. Two binary PODWA that are equivalent and minimal but not isomorphic.

Proof. Wedefine, for eachn > 1, aPODWAΛn = (An, {(−∞, 0), [0, 0], (0,+∞)})
over Σ = {a, b, i} with weights {−1, 0, 1} such that the minimal equivalent
PODWA to Λn needs weights exponential in n.

The automaton An is depicted in Fig. 1 a). Intuitively, the value of the word
depends on its first n + 1 letters. If the word starts with the prefix ika, where
0 ≤ k < n, then it has the value +1 unless it is followed by bn−k, in which case
its value is 0 (and symmetrically with ikb and −1). Words ik have value 0.

An example of a minimal automaton equivalent to Λn is depicted in Fig. 1
b). To show its minimality, observe that for j, k ∈ {0, . . . , n + 1} s.t. j < k, the
words ij and ik have to lead to different states, because L(Λn)(ijin−ja) = 2 and
L(Λn)(ikin−ja) = 0.

There are infinitely many minimal automata equivalent to λn though. For
example, one can multiply all the weights of the automaton in Fig. 1 b) by 2. We
can show that all automata equivalent to Λn with the minimal number of states
are structurally isomorphic to the automaton in Fig. 1 b); this proof is relegated
to the appendix.

In all such automata for any j < n we have c(qj , a) = −∑n
k=j+1 c(qk, b)

and similarly c(qj , b) = −∑n
k=j+1 c(qk, a). Therefore, one can inductively show

that for j < n − 1 we have c(qj , a) = −c(qj , b) = 2n−j−2(c(qn−1, a) + c(qn, a)).
Since c(qn−1, a) and c(qn, a) are both positive (because in−1, in have the value
0 and in−1a, ina have positive values), we conclude that the value of c(q0, a) is
exponential in n. 	

4.3 Minimization

The L∗-algorithm relies on the right congruence relation, which has its natural
counterpart for DWA. The right congruence relation defines the structure of the
minimal DWA (which is unique) and hence the active learning algorithm can
be applied to minimize DWA. Observe that minimal-size PODWA need not be
unique.

Example 2. Consider the two binary PODWA presented in Fig. 2. They both
define the language such that all word have positive values exept for the word a,
which has a negative value. Both PODWA are equivalent and minimal; if there
was an equivalent PODWA with the underlying DWA of a single state q, then
either c(q, a) ≥ 1, which would contradict the value for a, or c(q, a) ≤ 0, which
would contradict the value for aa. Clearly, the automata are non-isomorphic.

Deterministic Weighted Automata Under Partial Observability 781

Remark 2 (The right congruence for DWA). For a function f : Σ∗ \ {ε} → Z,
consider a relation ≡f defined on non-empty words w, v as follows:

w ≡f v if and only if for all u ∈ Σ∗ we have f(wu) − f(w) = f(vu) − f(v).

The relation ≡f is a counterpart of the right congruence relation for DWA and
one can easily show the counterpart of the Myhill-Nerode theorem: f is defined
by some DWA if and only if ≡f has finitely many equivalence classes, and the
relation ≡f defines the structure of the minimal DWA. This relation cannot
be straightforwardly adapted to PODWA as the result f(wu) − f(w) cannot be
inferred from observations for wu and w. More generally, Example 2 implies that
there is no counterpart of ≡f for PODWA as it would imply the uniqueness of
the structure of minimal PODWA.

We discuss the complexity of minimization for PODWA, assuming that the
set of intervals S is fixed and weights are given in unary. We say that DWA A2 is
observationally equivalent to a PODWA (A1, S), if PODWA (A1, S) and (A2, S)
are equivalent. The O-minimization problem is to find a minimal-size DWA A2

that is observationally equivalent to a given PODWA (A1, S). We study the
decision variant of the O-minimization problem obtained by stating bound k on
A2, i.e., given a PODWA Λ = (A1, S) and k > 0, is there a DWA A2 with at
most k states, which is observationally equivalent to Λ.

Minimization by Merging. A natural approach to minimization of automata is
to define an equivalence relation on the set of states of the input automaton
A, corresponding to states being semantically indistinguishable, and construct
the output automaton B based on the equivalence classes. In that approach,
semantically indistinguishable are merged into a single state. Minimization by
merging alleviates the problems arising from ambiguity of minimal automata;
it guarantees that the input automaton and the minimized one are structurally
related. We study minimization by merging for PODWA.

A DWA B is obtained from a DWA A by merging if there is a surjective
(partial) function f : QA → QB from the set of reachable states of A onto the
set of states B such that δA(q, a) = q′ if and only if δB(f(q), a) = f(q′).

The unary O-minimization by merging problem is, given an unary PODWA
(A, S) and k > 0, is there a DWA B, with at most k states and (the absolute
value of) weights bounded by the weights of A, obtained by merging from A
that is observationally equivalent to (A, S).

Theorem 3. The unary O-minimization by merging problem is NP-complete.

Proof. The problem is in NP as one can non-deterministically pick a weighted
automaton with unary weights A′ along with the homomorphism witnessing
that A′ can be obtained by merging from A. Next, we can check observational
equivalence of A and A′ in polynomial time (Theorem 1).

We show NP-hardness via reduction from the k-coloring problem. Let G =
(V,E) be a graph – for readability we assume it is a directed graph. We construct

782 J. Michaliszyn and J. Otop

a binary PODWA ΛG = (AG, {(−∞, 0], (0,+∞)}), which can be O-minimized
to an automaton with k +2 states if and only if the vertices of G can be colored
with k colors such that each edge connects vertices with different colors.

Let Σ = {e+, e− | e ∈ E} where E = {e1, . . . , em}. The states of AG are
q0, qf and {qv : v ∈ V }. For an edge ei = (v, u) we define δ(q0, e−

i) = v and
δ(q0, e+i) = u, i.e., over e−

i , e+i the automaton reaches both ends of e. All the
remaining transitions lead to qf .

We define weights function c so that pairs of states qv, qu can be merged if
and only if they correspond to vertices u, v not connected in G. For any e ∈ E we
will ensure that in AG the values of words e−e−, e+e+ are negative and the value
of words e−e+, e+e− are positive. This guarantees that e+ and e− cannot lead
to the same state. Intuitively, after e− the state in AG has outgoing transitions
over e−, e+, where the weight of e+ is strictly greater than the weight of e−, and
for the state reachable over e+, the order of weights is the opposite.

For every ei = (v, u) ∈ E we define c(q0, e−
i) = c(q0, e+i) = −3i−1. Then, for

qv we define c(qv, e−
i) = 3i and c(qv, e+i) = 3i + 2. For qu we define c(qu, e−

i) =
3i+2 and c(qu, e+i , qf) = 3i. For u that is not an endpoint of ej we set c(qu, e−

j) =
c(qu, e+j) = 3j + 1. The weights c(qf , ∗) are all 0.

We show that G is k-colorable if and only if ΛG can be O-minimized to an
automaton with k + 2 states. First, observe that the values e−

i e−
i and e+i e+i in

AG are −1 and the values e−
i e+i and e+i e−

i are 1 and hence qu and qv cannot
be merged. Second, q0 and qf cannot be merged with one another or any other
state; all words starting from q0 are negative, and all word starting from q0 retain
their values. No other state has such a property. Therefore, if AG is minimized
by merging to an automaton with k + 2 states, then k is at least equal to the
chromatic number of G.

Conversely, assume that λ : V → {1, . . . , k} is a valid coloring of G. We
construct a DWA A′

G with the same structure as AG, with the property
that states corresponding to nodes of the same color have the same values
of outgoing edges. Recall that for u that is not an endpoint of ej we set
c(qu, e−

j) = c(qu, e+j) = 3j +1. Changing any such weight to 3j or 3j +2 leads to
an equivalent automaton. Indeed, the state qu can be reached with values −3i−1,
where i = j and hence the values −3i−1+3j,−3i−1+3j+1,−3i−1+3j+2 are
either all positive or all negative. With that observation, we can modify weights
in AG such that for u, v with the same color, the weights of all outgoing transi-
tions from qi, qv are the same and hence the states can be merged. Assume that
u[1], . . . , u[k] have the same color; then for every edge e at most one of these
vertexes can be an endpoint of e; if there is such u[i] then we fix weights of all
transitions (qu[1], e−), . . . , (qu[k], e−) to be the same as the weight of (qu[i], e−).
If there is no such vertex, we do not change the weights. We fix weights over e+

accordingly. Observe, the in the resulting automaton states qu[1], . . . , qu[k] have
all the outgoing transitions to qf , and transitions over the same letter have the
same weight. Therefore, they all can be merged into the same state. 	

Deterministic Weighted Automata Under Partial Observability 783

5 Conclusions

This paper introduces partially-observable deterministic weighted automata,
which address the difficulty in specification synthesis originating from the need
of feeding the exact values to the specification procedure. We have studied the
basic properties of the model as well as problems related to specification synthe-
sis via automata learning: equivalence and minimization. The main contribution
of the paper is identifying obstacles in developing polynomial-time active learn-
ing algorithm for the new model. While our framework is unlikely to admit
such an algorithm, it is possible that restricting the equivalence notion may lead
framework admitting polynomial-time active learning algorithm.

Acknowledgements. This work was supported by the National Science Centre
(NCN), Poland under grant 2020/39/B/ST6/00521.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. J. ACM 47(3), 506–530 (2000)

3. Blackburn, P., van Benthem, J.F., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier, Amsterdam (2006)

4. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In: 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, pp.
32–43. IEEE Computer Society (2015)

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010)

6. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. ACM Trans.
Comput. Log. 18(4), 31:1–31:44 (2017)

7. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking, vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
10575-8

8. Doyen, L., Raskin, J.F.: Games with imperfect information: theory and algorithms.
In: Apt, K.R., Grädel, E. (eds.), Lectures in Game Theory for Computer Scientists,
pp. 185–212. Cambridge University Press (2011)

9. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer
Science & Business Media, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01492-5

10. Guelev, D.P., Dima, C.: Epistemic ATL with perfect recall, past and strategy
contexts. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G. (eds.)
CLIMA 2012. LNCS (LNAI), vol. 7486, pp. 77–93. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32897-8 7

11. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 273–
287. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 20

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-32897-8_7
https://doi.org/10.1007/978-3-642-40184-8_20

784 J. Michaliszyn and J. Otop

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Adison-Wesley Publishing Company, Reading, Massachusets, USA
(1979)

13. Hunter, P., Raskin, J.-F.: Quantitative games with interval objectives. In: Raman,
V., Suresh, S.P. (eds.), 34th International Conference on Foundation of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2014, volume 29
of LIPIcs, pp. 365–377. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)

14. Marusic, I., Worrell, J.: Complexity of equivalence and learning for multiplicity
tree automata. J. Mach. Learn. Res. 16, 2465–2500 (2015)

15. Michaliszyn, J., Otop, J.: Minimization of limit-average automata. In: Zhou, Z.-
H. (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021,
pp. 2819–2825. ijcai.org (2021)

16. Michaliszyn, J., Otop, J.: Learning infinite-word automata with loop-index queries.
Artif. Intell. 307, 103710 (2022)

17. Millington, I.: AI for Games. CRC Press, Boca Raton (2019)
18. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.

Math. Oper. Res. 12(3), 441–450 (1987)

Temporal and Spatial Reasoning

Past-Present Temporal Programs
over Finite Traces

Pedro Cabalar1 , Mart́ın Diéguez2 , François Laferrière3(B) ,
and Torsten Schaub3

1 University of Corunna, A Coruña, Spain
2 University of Angers, Angers, France

3 University of Potsdam, Potsdam, Germany

flaferriere@uni-potsdam.de

Abstract. Extensions of Answer Set Programming with language con-
structs from temporal logics, such as temporal equilibrium logic over
finite traces (TELf), provide an expressive computational framework for
modeling dynamic applications. In this paper, we study the so-called
past-present syntactic subclass, which consists of a set of logic program-
ming rules whose body references to the past and head to the present.
Such restriction ensures that the past remains independent of the future,
which is the case in most dynamic domains. We extend the definitions
of completion and loop formulas to the case of past-present formulas,
which allows for capturing the temporal stable models of past-present
temporal programs by means of an LTLf expression.

1 Introduction

Reasoning about dynamic scenarios is a central problem in the areas of Knowl-
edge Representation [6] (KR) and Artificial Intelligence (AI). Several formal
approaches and systems have emerged to introduce non-monotonic reasoning fea-
tures in scenarios where the formalisation of time is fundamental [3,4,13,20,25].
In Answer Set Programming [7] (ASP), former approaches to temporal reason-
ing use first-order encodings [21] where the time is represented by means of a
variable whose value comes from a finite domain. The main advantage of those
approaches is that the computation of answer sets can be achieved via incremen-
tal solving [18]. Their downside is that they require an explicit representation of
time points.

Temporal Equilibrium Logic [2] (TEL) was proposed as a temporal exten-
sion of Equilibrium Logic [23] with connectives from Linear Time Temporal
Logic [24] (LTL). Due to the computational complexity of its satisfiability prob-
lem (ExpSpace), finding tractable fragments of TEL with good computational
properties have also been a topic in the literature. Within this context, splittable
temporal logic programs [1] have been proved to be a syntactic fragment of TEL
that allows for a reduction to LTL via the use of Loop Formulas [16].

When considering incremental solving, logics on finite traces such as LTLf [12]
have been shown to be more suitable. Accordingly, Temporal Equilibrium Logic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 787–795, 2023.
https://doi.org/10.1007/978-3-031-43619-2_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_53&domain=pdf
http://orcid.org/0000-0001-7440-0953
http://orcid.org/0000-0003-3440-4348
http://orcid.org/0009-0006-8147-572X
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-031-43619-2_53

788 P. Cabalar et al.

on Finite traces (TELf) [9] was created and became the foundations of the
temporal ASP solver telingo [8].

We present a new syntactic fragment of TELf , named past-present temporal
logic programs. Inspired by Gabbay’s seminal paper [17], where the declarative
character of past temporal operators is emphasized, this language consists of
a set of logic programming rules whose formulas in the head are disjunctions
of atoms that reference the present, while in its body we allow for any arbi-
trary temporal formula without the use of future operators. Such restriction
ensures that the past remains independent of the future, which is the case in
most dynamic domains, and makes this fragment advantageous for incremental
solving.

As a contribution, we study the Lin-Zhao theorem [22] within the context
of past-present temporal logic programs. More precisely, we show that when
the program is tight [14], extending Clark’s completion [11,15] to the temporal
case suffices to capture the answer sets of a finite past-present program as the
LTLf -models of a corresponding temporal formula. We also show that, when the
program is not tight, the use of loop formulas is necessary. To this purpose, we
extend the definition of loop formulas to the case of past-present programs and
we prove the Lin-Zhao theorem in our setting.

The paper is organised as follows: in Sect. 2, we review the formal background
and we introduce the concept of past-present temporal programs. In Sect. 3, we
extend the completion property to the temporal case. Section 4 is devoted to the
introduction of our temporal extension of loop formulas. Finally, in Sect. 5, we
present the conclusions as well as some future research lines. The full version of
this paper can be found in [10].

2 Past-Present Temporal Programs over Finite Traces

In this section, we introduce the so-called past-present temporal logic programs
and its semantics based on Temporal Equilibrium Logic over Finite traces (TELf

for short) as in [2]. The syntax of our language is inspired from the pure-past
fragment of Linear Time Temporal Logic (LTL) [19], since the only future oper-
ators used are always and weak next.

We start from a given set A of atoms which we call the alphabet. Then, past
temporal formulas ϕ are defined by the grammar:

ϕ:: = a | ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | •ϕ | ϕ1 S ϕ2 | ϕ1 T ϕ2

where a ∈ A is an atom. The intended meaning of the (modal) temporal opera-
tors is as in LTL. •ϕ means that ϕ is true at the previous time point; ϕSψ can
be read as ϕ is true since ψ was true and ϕTψ means that ψ is true since both
ϕ and ψ became true simultaneously or ψ has been true from the beginning.

Given a ∈ N and b ∈ N, we let [a..b] def= {i ∈ N | a ≤ i ≤ b} and [a..b) def
= {i ∈

N | a ≤ i < b}. A finite trace T of length λ over alphabet A is a sequence
T = (Ti)i∈[0..λ) of sets Ti ⊆ A. To represent a given trace, we write a sequence

Past-Present Temporal Programs over Finite Traces 789

of sets of atoms concatenated with ‘·’. For instance, the finite trace {a} ·∅ ·{a} ·∅
has length 4 and makes a true at even time points and false at odd ones.

A Here-and-There trace (for short HT-trace) of length λ over alphabet A
is a sequence of pairs (〈Hi, Ti〉)i∈[0..λ) with Hi ⊆ Ti for any i ∈ [0..λ). For
convenience, we usually represent the HT-trace as the pair 〈H,T〉 of traces
H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ). Given M = 〈H,T〉, we also denote its
length as |M| def

= |H| = |T| = λ. Note that the two traces H, T must satisfy a
kind of order relation, since Hi ⊆ Ti for each time point i. Formally, we define
the ordering H ≤ T between two traces of the same length λ as Hi ⊆ Ti for each
i ∈ [0..λ). Furthermore, we define H < T as both H ≤ T and H �= T. Thus, an
HT-trace can also be defined as any pair 〈H,T〉 of traces such that H ≤ T. The
particular type of HT-traces satisfying H = T are called total.

An HT-trace M = 〈H,T〉 of length λ over alphabet A satisfies a past tem-
poral formula ϕ at time point k ∈ [0..λ), written M, k |= ϕ, if the following
conditions hold:

1. M, k |= � and M, k �|= ⊥
2. M, k |= p if p ∈ Hk for any atom p ∈ A
3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ
4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ
5. M, k |= ¬ϕ iff 〈T,T〉, k �|= ϕ
6. M, k |= •ϕ iff k > 0 and M, k−1 |= ϕ
7. M, k |= ϕ S ψ iff for some j ∈ [0..k], we have M, j |= ψ and M, i |= ϕ for all

i ∈ (j..k]
8. M, k |= ϕ T ψ iff for all j ∈ [0..k], we have M, j |= ψ or M, i |= ϕ for some

i ∈ (j..k]

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for any HT-
trace M and any k ∈ [0..λ). We call the logic induced by the set of all tautologies
Temporal logic of Here-and-There over finite traces (THTf for short).

The following equivalences hold in THTf : 1. � ≡ ¬⊥, 2. I ≡ ¬•�, 3. �ϕ ≡
⊥ T ϕ, 4. �ϕ ≡ � S ϕ, 5. ̂•ϕ ≡ •ϕ ∨ I.

Definition 1 (Past-present Program). Given alphabet A, the set of regular
literals is defined as {a,¬a, | a ∈ A}.

A past-present rule is either:
– an initial rule of form H ← B
– a dynamic rule of form ̂◦�(H ← B)
– a final rule of form �(F → (⊥ ← B))

where B is an pure past

formula for dynamic rules and B = b1 ∧ · · · ∧ bn with n ≥ 0 for initial and final
rules, the bi are regular literals, H = a1 ∨ · · · ∨ am with m ≥ 0 and aj ∈ A. A
past-present program is a set of past-present rules. ��

We let I (P), D(P), and F (P) stand for the set of all initial, dynamic, and
final rules in a past-present program P , respectively. Additionally we refer to H
as the head of a rule r and to B as the body of r. We let B(r) = B and H (r) = H

790 P. Cabalar et al.

for all types of rules above. For example, let consider the following past-present
program P1:

load ← (1)
̂◦�(shoot ∨ load ∨ unload ←) (2)
̂◦�(dead ← shoot ∧ ¬unload S load) (3)
̂◦�(shoot ← dead) (4)
�(F → (⊥ ← ¬dead)) (5)

We get I (P1) = {(1)}, D(P1) = {(2), (3), (4)}, and F (P1) = {(3)}. Rule (1)
states that the gun is initially loaded. Rule (2) gives the choice to shoot, load, or
unload the gun. Rule (3) states that if the gun is shot while it has been loaded,
and not unloaded since, the target is dead. Rule (4) states that if the target is
dead, we shoot it again. Rule (5) ensures that the target is dead at the end of
the trace.

The satisfaction relation of a past-present rule on an HT-trace M of length
λ and at time point k ∈ [0..λ) is defined below:

– M, k |= H ← B iff M′, k �|= B or M′, k |= H, for all M′ ∈ {M, 〈T,T〉}
– M, k |= ̂◦�(H ← B) iff M′, i �|= B or M′, i |= H for all M′ ∈ {M, 〈T,T〉}

and all i ∈ [k + 1..λ)
– M, k |= �(F → (⊥ ← B)) iff 〈T,T〉, λ − 1 �|= B

An HT-trace M is a model of a past-present program P if M, 0 |= r for all
rule r ∈ P . Let P be past-present program. A total HT-trace 〈T,T〉 is a temporal
equilibrium model of P iff 〈T,T〉 is a model of P , and there is no other H < T
such that 〈H,T〉 is a model of P . The trace T is called a temporal stable model
(TS-model) of P .

For length λ = 2, P1 has a unique TS-model {load} · {shoot, dead}.

3 Temporal Completion

In this section, we extend the completion property to the temporal case of past-
present programs.

An occurrence of an atom in a formula is positive if it is in the antecedent of
an even number of implications, negative otherwise. An occurrence of an atom in
a formula is present if it is not in the scope of • (previous). Given a past-present
program P over A, we define its (positive) dependency graph G(P) as (A, E)
such that (a, b) ∈ E if there is a rule r ∈ P such that a ∈ H (r) ∩ A and b has
positive and present occurence in B(r) that is not in the scope of negation. A
nonempty set L ⊆ A of atoms is called loop of P if, for every pair a, b of atoms
in L, there exists a path of length > 0 from a to b in G(P) such that all vertices
in the path belong to L. We let L(P) denote the set of loops of P .

Due to the structure of past-present programs, dependencies from the future
to the past cannot happen, and therefore there can only be loops within a same

Past-Present Temporal Programs over Finite Traces 791

time point. To reflect this, the definitions above only consider atoms with present
occurences. For example, rule a ← b∧•c generates the edge (a, b) but not (a, c).

For P1, we get for the initial rules G(I (P1)) = ({load, unload, shoot, dead}, ∅)
whose loops are L(I (P1)) = ∅. For the dynamic rules, we get G(D(P1)) =
({load, unload, shoot, dead}, {(dead, shoot), (dead, load), (shoot, dead)}) and
L(D(P1)) = {{shoot, dead}}.

In the following, ϕ → ψ
def
= ψ ← ϕ and ϕ ↔ ψ

def
= ϕ → ψ ∧ ϕ ← ψ.

Definition 2 (Temporal completion). We define the temporal completion
formula of an atom a in a past-present program P over A, denoted CFP (a) as:

�
(

a ↔
∨

r∈I (P),a∈H (r)

(I ∧ S(r, a)) ∨
∨

r∈D(P),a∈H (r)

(¬I ∧ S(r, a))
)

where S(r, a) = B(r) ∧ ∧

p∈H (r)\{a} ¬p.
The temporal completion formula of P , denoted CF (P), is

{CFP (a) | a ∈ A} ∪ {r | r ∈ I (P) ∪ D(P),H (r) = ⊥} ∪ F (P).

A past-present program P is said to be tight if I (P) and D(P) do not contain
any loop.

Theorem 1. Let P be a tight past-present program and T a trace of length λ.
Then, T is a TS-model of P iff T is a LTLf -model of CF (P). ��

The completion of P1 is

CF (P1) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�(load ↔ I ∨ (¬I ∧ ¬shoot ∧ ¬unload)),
�(shoot ↔ (¬I ∧ ¬load ∧ ¬unload)) ∨ (¬I ∧ dead)),

�(unload ↔ (¬I ∧ ¬shoot ∧ ¬load)),
�(dead ↔ (¬I ∧ shoot ∧ ¬unload S load)),

�(F → (⊥ ← ¬dead))

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

For λ = 2, CF (P1) has a unique LTLf -model {load} · {shoot, dead}, which is
identical to the TS-model of P1. Notice that for this example, the TS-models of
the program match the LTLf -models of its completion despite the program not
being tight. This is generally not the case. Let P2 be the program made of the
rules (1), (3), (4 and (5. The completion of P2 is

CF (P2) =

{
�(load ↔ I), �(shoot ↔ (¬I ∧ dead)), �(unload ↔ ⊥),
�(dead ↔ (¬I ∧ shoot ∧ ¬unload S load)), �(F → (⊥ ← ¬dead))

}
.

P2 does not have any TS-model, but {load} · {shoot, dead} is a LTLf -model
of CF (P2). Under ASP semantics, it is impossible to derive any element of the
loop {shoot, dead}, as deriving dead requires shoot to be true, and deriving shoot
requires dead to be true. The completion does not restrict this kind of circular
derivation and therefore is insufficient to fully capture ASP semantics.

792 P. Cabalar et al.

4 Temporal Loop Formulas

To restrict circular derivations, Lin and Zhao introduced the concept of loop
formulas in [22]. In this section, we extend their work to past-present programs.

Definition 3. Let ϕ be a implication-free past-present formula and L a loop.
We define the supporting transformation of ϕ with respect to L as

S⊥(L) def
= ⊥

Sp(L) def
= ⊥ if p ∈ L ; p otherwise, for any p ∈ A

S¬ϕ(L) def
= ¬ϕ

Sϕ∧ψ(L) def
= Sϕ(L) ∧ Sψ(L)

Sϕ∨ψ(L) def
= Sϕ(L) ∨ Sψ(L)

S•ϕ(L) def
= •ϕ

SϕTψ(L) def
= Sψ(L) ∧ (Sϕ(L) ∨ •(ϕ T ψ))

SϕSψ(L) def
= Sψ(L) ∨ (Sϕ(L) ∧ •(ϕ S ψ))

��
Definition 4 (External support). Given a past-present program P , the exter-
nal support formula of a set of atoms L ⊆ A wrt P , is defined as

ESP (L) =
∨

r∈P,H (r)∩L	=∅

(

SB(r)(L) ∧
∧

a∈H (r)\L

¬a
)

��
For instance, for L = {shoot, dead}, ESP2(L) and ESP1(L) are

ESP2(L) = Sdead(L) ∨ Sshoot∧¬unloadS load(L)
= Sdead(L) ∨ (Sshoot(L) ∧ S¬unloadS load(L))
= Sdead(L) ∨ (Sshoot(L) ∧ S¬unload(L) ∨ •(¬unload S load))
= ⊥ ∨ (⊥ ∧ ¬unload ∨ •(¬unload S load)) = ⊥.

ESP1(L) = Sdead(L) ∨ Sshoot∧¬unloadS load(L) ∨ (¬load ∧ ¬unload)
= ¬load ∧ ¬unload.

Rule (2) provides an external support for L. The body dead of rule (4) is
also a support for L, but not external as dead belongs to L. The supporting
transformation only keeps external supports by removing from the body any
positive and present occurence of element of L.

Definition 5 (Loop formulas). We define the set of loop formulas of a past-
present program P over A, denoted LF (P), as:

∨

a∈L

a → ES I (P)(L) for any loop L in I (P)

̂◦�
(

∨

a∈L

a → ESD(P)(L)
)

for any loop L in D(P)

Past-Present Temporal Programs over Finite Traces 793

Theorem 2. Let P be a past-present program and T a trace of length λ. Then,
T is a TS-model of P iff T is a LTLf -model of CF (P) ∪ LF (P). ��

For our examples, we have that LF (P1) = ̂◦�(shoot ∨ dead → ¬load ∧
¬unload) and LF (P2) = ̂◦�(shoot ∨ dead → ⊥). It can be also checked
that {load} · {shoot, dead} satisfies LF (P1), but not LF (P2). So, we have
that CF (P1) ∪ LF (P1) has a unique LTLf -model {load} · {shoot, dead}, while
CF (P2)∪LF (P2) has no LTLf -model, matching the TS-models of the respective
programs.

Ferraris et al. [16] proposed an approach where the computation of the com-
pletion can be avoided by considering unitary cycles. We extended such results
for past-present programs in the extended version [10].

5 Conclusion

We have focused on temporal logic programming within the context of Tem-
poral Equilibrium Logic over finite traces. More precisely, we have studied a
fragment close to logic programming rules in the spirit of [17]: a past-present
temporal logic program consists of a set of rules whose body refers to the past
and present while their head refers to the present. This fragment is very interest-
ing for implementation purposes since it can be solved by means of incremental
solving techniques as implemented in telingo.

Contrary to the propositional case [16], where answer sets of an arbitrary
propositional formula can be captured by means of the classical models of
another formula ψ, in the temporal case, this is impossible to do the same map-
ping among the temporal equilibrium models of a formula ϕ and the LTL models
of another formula ψ [5].

In this paper, we show that past-present temporal logic programs can be
effectively reduced to LTL formulas by means of completion and loop formulas.
More precisely, we extend the definition of completion and temporal loop for-
mulas in the spirit of Lin and Zhao [22] to the temporal case, and we show that
for tight past-present programs, the use of completion is sufficient to achieve a
reduction to an LTLf formula. Moreover, when the program is not tight, we also
show that the computation of the temporal completion and a finite number of
loop formulas suffices to reduce TELf to LTLf .

Acknowledgments. This work was supported by MICINN, Spain, grant PID2020-
116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), Région Pays de
la Loire, France, (project etoiles montantes CTASP) and DFG grant SCHA 550/15,
Germany.

References

1. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal
logic programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI),
vol. 6645, pp. 80–92. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20895-9 9

https://doi.org/10.1007/978-3-642-20895-9_9
https://doi.org/10.1007/978-3-642-20895-9_9

794 P. Cabalar et al.

2. Aguado, F., et al.: Linear-time temporal answer set programming. Theory Pract.
Log. Program. 23(1), 2–56 (2023)

3. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In:
Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, 6–12 January 2007, pp. 236–242
(2007)

4. Baral, C., Zhao, J.: Non-monotonic temporal logics that facilitate elaboration tol-
erant revision of goals. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois,
USA, 13–17 July 2008, pp. 406–411. AAAI Press (2008)

5. Bozzelli, L., Pearce, D.: On the expressiveness of temporal equilibrium logic. In:
Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 159–173.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8 11

6. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning.
Elsevier (2004). http://www.elsevier.com/wps/find/bookdescription.cws home/
702602/description

7. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

8. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time. In:
Balduccini, M., Lierler, Y., Woltran, S. (eds.) Logic Programming and Nonmono-
tonic Reasoning. LPNMR 2019. LNCS, vol. 11481, pp. 256–269. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20528-7 19

9. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set pro-
gramming on finite traces. Theory Pract. Log. Program. 18(3–4), 406–420 (2018)

10. Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T.: Past-present temporal pro-
grams over finite traces (2023). https://arxiv.org/pdf/2307.12620.pdf

11. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1978)

12. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on
finite traces. In: Rossi, F. (ed.) Proceedings of the Twenty-third International Joint
Conference on Artificial Intelligence (IJCAI’13), pp. 854–860. IJCAI/AAAI Press
(2013)

13. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, pp. 995–1072. MIT Press (1990)

14. Erdem, E., Lifschitz, V.: Tight logic programs. Theory Pract. Log. Program. 3(4–
5), 499–518 (2003)

15. Fages, F.: Consistency of Clark’s completion and the existence of stable models. J.
Methods Log. Comput. Sci. 1, 51–60 (1994)

16. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann.
Math. Artif. Intell. 47(1–2), 79–101 (2006)

17. Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Bar-
ringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp.
409–448. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7 36

18. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89982-2 23

19. Giacomo, G.D., Stasio, A.D., Fuggitti, F., Rubin, S.: Pure-past linear tempo-
ral and dynamic logic on finite traces. In: Bessiere, C. (ed.) Proceedings of the
Twenty-ninth International Joint Conference on Artificial Intelligence, (IJCAI’20),
pp. 4959–4965. ijcai.org (2020)

https://doi.org/10.1007/978-3-319-48758-8_11
http://www.elsevier.com/wps/find/bookdescription.cws_home/702602/description
http://www.elsevier.com/wps/find/bookdescription.cws_home/702602/description
https://doi.org/10.1007/978-3-030-20528-7_19
https://arxiv.org/pdf/2307.12620.pdf
https://doi.org/10.1007/3-540-51803-7_36
https://doi.org/10.1007/978-3-540-89982-2_23

Past-Present Temporal Programs over Finite Traces 795

20. González, G., Baral, C., Cooper, P.A.: Modeling multimedia displays using action
based temporal logic. In: Zhou, X., Pu, P. (eds.) Visual and Multimedia Infor-
mation Management. ITIFIP, vol. 88, pp. 141–155. Springer, Boston, MA (2002).
https://doi.org/10.1007/978-0-387-35592-4 11

21. Lifschitz, V.: Answer set planning. In: de Schreye, D. (ed.) Proceedings of the
International Conference on Logic Programming (ICLP’99), pp. 23–37. MIT Press
(1999)

22. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI’03), pp. 853–858. Morgan Kaufmann Publishers (2003)

23. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

24. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eight-Teenth
Symposium on Foundations of Computer Science (FOCS’77), pp. 46–57. IEEE
Computer Society Press (1977)

25. Sandewall, E.: Features and Fluents: The Representation of Knowledge About
Dynamical Systems, vol. 1. Oxford University Press, New York, NY, USA (1994)

https://doi.org/10.1007/978-0-387-35592-4_11
https://doi.org/10.1007/BFb0023801

Robust Alternating-Time Temporal Logic

Aniello Murano1 , Daniel Neider2,3(B) , and Martin Zimmermann4

1 Università degli Studi di Napoli “Federico II”, Naples, Italy
2 TU Dortmund University, Dortmund, Germany

daniel.neider@tu-dortmund.de
3 Center for Trustworthy Data Science and Security, University Alliance Ruhr,

Dortmund, Germany
4 Aalborg University, Aalborg, Denmark

Abstract. In multi-agent system design, a crucial aspect is to ensure
robustness, meaning that for a coalition of agents A, small violations
of adversarial assumptions only lead to small violations of A’s goals. In
this paper we introduce a logical framework for robust strategic reason-
ing about multi-agent systems. Specifically, inspired by recent works on
robust temporal logics, we introduce and study rATL and rATL∗, logics
that extend the well-known Alternating-time Temporal Logic ATL and
ATL∗ by means of an opportune multi-valued semantics for the strat-
egy quantifiers and temporal operators. We study the model-checking
and satisfiability problems for rATL and rATL∗ and show that dealing
with robustness comes at no additional computational cost. Indeed, we
show that these problems are PTime-complete and ExpTime-complete
for rATL, respectively, while both are 2ExpTime-complete for rATL∗.

Keywords: Multi-Agents · Temporal Logic · Robustness

1 Introduction

Multi-agent system verification has been receiving a lot of attention in recent
years, thanks to the introduction of powerful logics for strategic reasoning [4,
10,20,36,40]. Along this line of research, a story of success is Alternating-Time
Temporal Logic (ATL) introduced by Alur, Henzinger, and Kupferman [4]. ATL
is a generalization of Computation Tree Logic (CTL) [21], obtained by replacing
the path quantifier ∃ (and its dual ∀), with the modality 〈〈A〉〉 (and its dual
[[A]]), where A is a set of agents. The interpretation of 〈〈A〉〉ϕ is that the coalition
A has a strategy such that the outcome of this strategy satisfies ϕ, no matter
how the coalition of the agents not in A behaves. ATL formulas are interpreted
over concurrent game structures, which extend classical Kripke structures to
represent the dynamism of the agents. The model-checking problem of ATL is
PTime-complete [4], while the satisfiability problem is ExpTime-complete [51].

A crucial aspect in multi-agent system design is to ensure system robustness,
which should reflect the ability of a coalition of agents to tolerate violations

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 796–813, 2023.
https://doi.org/10.1007/978-3-031-43619-2_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_54&domain=pdf
http://orcid.org/0000-0003-4876-3448
http://orcid.org/0000-0001-9276-6342
http://orcid.org/0000-0002-8038-2453
https://doi.org/10.1007/978-3-031-43619-2_54

Robust Alternating-Time Temporal Logic 797

(possibly up to some extent) of adversarial assumptions [19]. Numerous stud-
ies have shown that reactive AI systems can be very sensitive to intentional or
unintentional external perturbations, posing huge risks to safety-critical appli-
cations [33]. Notably, the formal methods community has put large efforts in
reasoning about system robustness in several specific settings, mainly concerning
closed system verification or (two-player) reactive synthesis [15,17,23,25,26,28].
As far as we are aware of, there are no logic-based works dealing with robust
strategic reasoning in multi-agent systems. To highlight the significance of this
challenge, we describe a few specific contexts in which multi-agent systems act
as the natural model and robustness plays a crucial role.

Scenario 1. Climate change threatens people with food and water scarcity,
increased flooding, extreme heat, diseases, and economic loss. Human migration
and conflict can be a result. The World Health Organization calls climate change
the greatest threat to global health in the 21st century. Recently, researchers
examining alternative policies to address the threat of climate change have
become increasingly concerned about uncertainty and the fact that we cannot
predict the future. This requires to develop mathematical models to properly
represent the intricate interaction among all decision makers and the ability to
define strategies that are robust against a wide range of plausible climate-change
futures [37]. For risk-averse policy-makers, such strategies would perform reason-
ably well, at least compared to the alternatives, even if confronted with surprises
or catastrophes. Robust strategies may also provide a more solid basis for con-
sensus on political action among stakeholders with different views of the future,
because it would provide reasonable outcomes no matter whose view proved
correct.

Scenario 2. The fast-evolving domain of autonomous vehicles is one of the
best examples of multi-agent modelling, where safety-critical decisions strongly
rely on sensor observations (e.g., ultrasound, radar, GPS, Lidar, and camera
signals) [50]. It is of primary importance that the resulting decisions are robust
to perturbations, which often are treated as adversarial perturbations [39]. A
careful evaluation of such adversarial behaviours is necessary to build and deploy
safer autonomous vehicle systems.

Scenario 3. Power systems play an important role in all sectors of the national
economy and in our daily lives. Ensuring a safe and reliable power supply from
the power network is a fundamental requirement. As renewable energy-based
smart grid and micro-grid systems rise in popularity, multi-agent system tech-
nology has been establishing itself as a useful paradigm of choice for modelling,
analysis, control and optimization of power systems [30,45,48]. The model usu-
ally consists of several agents competing not only among themselves to get energy
resources, but also playing against the unpredictable behaviour of nature. Then,
a classical safety requirement amounts to ensuring system robustness, in the
meaning that the power system has to keep operating, possibly by rationing
resources, despite the loss of any single asset such as lines or power plants at any
time [1,14]. This is usually enforced by following a simple guiding redundancy
principle while developing the system: designers have to predict the effect of
having any line disconnected in any moment and cope with it, in real time and

798 A. Murano et al.

even at larger scales [43]. This may also require the players to coordinate and/or
play rational while keeping the system under equilibrium [12].

Our Contribution. In this paper we introduce rATL, a robust version of the logic
ATL. Our approach here follows and extends an approach originally introduced
for robust Linear Temporal Logic (rLTL) [49] and later extended to robust Com-
putation Tree Logic (rCTL and rCTL∗) [42]. To illustrate the robust semantics,
consider an invariant of the form p specifying that the proposition p always
holds. There are several ways this invariant can be violated, with varying degrees
of severity. For example, p failing to hold a finite number of times is less severe
than p failing infinitely often. An even worse situation is p holding only finitely
often while p not even holding once is the worst way to violate the invariant.
The authors in [49] argue that these five degrees are canonical and use them as
the basis of a five-valued robust semantics for temporal logics. The semantics of
the Boolean operators are then defined to capture the intuition that there are
different degrees of violation of a formula while the other temporal operators,
e.g., next and eventually, are defined as usual. In particular, the definition of
implications captures the idea that, in a specification of the form ϕ → ψ, a
“small” violation of an environment assumption ϕ must lead to only a “small”
(proportional) violation of a system’s guarantee ψ.

Here, we devise a meaningful robust semantics for the strategy quantifiers
to obtain a robust variant of ATL, and show that it is capable to reason about
the robustness of multi-agent systems. More precisely, rATL allows to assess
whether a strategy f of a coalition A is robust in the sense that, with respect
to the outcome of f , small violations of the adversarial team assumptions only
lead to small violations of A’s goals. We study expressiveness of rATL and show
that it strictly subsumes ATL, as rATL can express fairness. We also study the
model-checking and satisfiability problems for rATL and show that dealing with
robustness comes at no additional computational cost. Indeed, we show that
these problems are PTime-complete and ExpTime-complete, respectively. This
is in line with the results on rLTL and rCTL, for which model-checking and
satisfiability are also not harder than for LTL [49] and CTL [42], respectively.

Finally, we also study rATL∗, the robustification of ATL∗, showing that also
in this setting, robustness comes for free: model-checking and satisfiability for
rATL∗ are 2ExpTime-complete, as they are already for ATL∗ [4,46].

All proofs omitted due to space restrictions can be found in the full ver-
sion [41].

Related Work. There are several works done in formal strategic reasoning that
have been used (or can be easily adapted) to develop robust systems. Besides
those reported above, we recall the works dealing with strategy logics extended
with probabilistic [5,31,47] and knowledge (imperfect information) aspects [24].
These works allow to reason about the unpredictable behaviour of the environ-
ment. Unfortunately, in both cases, the model-checking problem becomes highly
undecidable, unless one restricts strategies to be memoryless. In the imperfect
information case, memoryfull strategies with less severe restrictions have been

Robust Alternating-Time Temporal Logic 799

also studied (e.g., hierarchical visibility [13] and public action [11]) although
model-checking remains infeasible, i.e., non-elementary, in practice.

Other lines of research have considered quantitative aspects of the logic, in
different directions. Bouyer et al. [16] considered a fuzzy extension of ATL∗,
namely ATL∗[F]. The satisfaction value of ATL∗[F] formulas is a real value
in [0, 1], reflecting “how much” or “how well” the strategic on-going objectives
of the underlying agents are satisfied. In [16] a double exponential-time model-
checking procedure for ATL∗[F] is presented. A careful inspection of that pro-
cedure yields, for the special case of ATL[F], an ExpTime-completeness result
by means of an exponential reduction to Büchi games. Faella, Napoli, and Par-
ente [27] and Aminof et al. [6] considered a graded extension of the logics ATL
and ATL∗ with the ability of checking for the existence of redundant winning
strategies.

Module checking is another example of a formal method to devise robust
systems. Indeed, module checking amounts to checking whether a strategic
behaviour of a coalition of agents satisfies a goal, irrespective to all possible
nondeterministic behaviours of an external environment [32,35].

Finally, robustness is also an active field of study in reinforcement learning
[44], which treats environment mismatches as adversarial perturbations against a
coalition of agents. In the simplest version, the underlying model is a two-player
zero-sum simultaneous game between the protagonist who aims to find a robust
strategy across environments and the adversary who exerts perturbations. Com-
putational methods have been proposed to solve this game and to find a robust
strategy for the protagonist (see Pinto et al. [44] and the references therein).

2 Preliminaries

We denote the nonnegative integers by N, and the power set of a set S by 2S .
Throughout the paper, we fix a finite set AP of atomic propositions.

A concurrent game structure S = (St,Ag,Ac, δ, �) consists of a finite set St
of states, a finite set Ag of agents, a finite set Ac of actions, and a labeling
function � : St → 2AP. An action vector for a subset A ⊆ Ag is a mapping v : A →
Ac. Let AV denote the set of action vectors for the full set Ag of agents. The
transition function δ : St × AV → St maps a state and an action vector to a
state. The size of S is defined as |St × AV |.

We say that a state s′ is a successor of a state s if there is an action vector v ∈
AV such that s′ = δ(s, v). A path of S is an infinite sequence π = s0s1s2 · · · of
states such that sn+1 is a successor of sn for every n ≥ 0. We write π[n] for sn.

A strategy for an agent is a function f : St+ → Ac. Given a set FA = {fa | a ∈
A} of strategies, one for each agent in some set A ⊆ Ag, out(s, FA) denotes the
set of paths starting in s that are consistent with FA. Formally, a path s0s1s2 · · ·
is in out(s, FA) if s0 = s and for all n ≥ 0, there is an action vector v ∈ AV with
v(a) = fa(s0 · · · sn) for all a ∈ A and sn+1 = δ(sn, v). Intuitively, out(s, FA)
contains all paths that are obtained by the agents in A picking their actions
according to their strategies and the other agents picking their actions arbitrarily.

800 A. Murano et al.

3 rATL

The basic idea underlying our robust version of ATL, or rATL for short, is
that a “small” violation of an environment assumption (along the outcome of
a strategy) must lead to only a “small” violation of a system’s guarantee. This
is obtained by devising a robust semantics for the strategy quantifiers and by
stating formally what it is meant for a “small” violations of a property. For the
latter, we follow and adapt the approach by Tabuada and Neider [49], initially
proposed for a robust version of Linear Temporal Logic (rLTL), and use five
truth values: 1111, 0111, 0011, 0001, and 0000. Let B4 denote the set of these
truth values. Our motivation for using the seemingly odd-looking truth values
in B4 is that they represent five canonical ways how a system guarantee of the
form “always p” (p in LTL) can be satisfied or violated. Clearly, we prefer
that p always holds, represented by the truth value 1111. However, if this is
impossible, the following best situation is that p holds at least almost always,
represented by 0111. Similarly, we would prefer p being satisfied at least infinitely
often, represented by 0011, over p being satisfied at least once, represented by
0001. Finally, the worst situation is that p never holds, represented by 0000. Put
slightly differently, the bits of each truth value represent (from left to right) the
modalities “always” (), “eventually always” (), “always eventually” (),
and “eventually” (). We refer the reader to Anevlavis et al. [9] for an in-depth
explanation of why these five ways are canonical.

Following the intuition above, we order the truth values in B4 by

1111
 0111
 0011
 0001
 0000.

This order spans a spectrum of truth values ranging from 1111, corresponding
to true, on one end, to 0000, corresponding to false, on the other end. Since
we arrived at the set B4 by considering the canonical ways of how the invariant
property p can fail, we interpret all truth values different from 1111 as shades
of false. We return to this interpretation when we later define the semantics for
the negation in rATL.

Having formally discussed how we “grade” the violation of a property along
paths, we are now ready to define the syntax of rATL via the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | 〈〈A〉〉Φ | [[A]]Φ
Φ ::= ϕ | ϕ | ϕ

where p ranges over atomic propositions and A ranges over subsets of agents. We
distinguish between state formulas (those derivable from ϕ) and path formulas
(those derivable from Φ). If not specified, an rATL formula is a state formula.

Various critical remarks should be made concerning the syntax of rATL. First,
we add “dots” to temporal operators (following the notation by Tabuada and
Neider [49]) to distinguish between the original operators in ATL and their
robustified counterparts in rATL—otherwise, the syntax stays the same. Second,
many operators of rATL, most notably the negation and implication, can no

Robust Alternating-Time Temporal Logic 801

longer be derived via De Morgan’s law or simple logical equivalencies due to
rATL’s many-valued nature. Hence, they need to be added explicitly. Third, we
omit the until and release operators here to avoid cluttering our presentation
too much. Both can be added easily, as in rLTL [7,8].

We define the semantics of rATL by an evaluation function V that maps a
state formula and a state or a path formula and a path to a truth value in B4.
To simplify our presentation, we use b[k] as a shorthand notation for addressing
the k-th bit, k ∈ {1, 2, 3, 4}, of a truth value b = b1b2b3b4 ∈ B4 (i.e., b[k] = bk). It
is worth emphasizing that our semantics for rATL is a natural extension of the
Boolean semantics of ATL and is deliberately designed to generalize the original
Boolean semantics of ATL (see Subsect. 3.3).

Turning to the definition of rATL’s semantics, let us begin with state formulas.
For atomic propositions p ∈ AP, we define the valuation function by

V (s, p) =

{
1111 if p ∈ �(s); and
0000 if p /∈ �(s).

Note that this definition mimics the semantics of ATL in that propositions get
mapped to one of the two truth values true (1111) or false (0000). As a conse-
quence, the notion of robustness in rATL does not arise from atomic propositions
(e.g., as in LTL[F] by Almagor, Boker, and Kupferman [3] or fuzzy logics) but
from the evolution of the temporal operators (see the semantics of path formu-
las). This design choice is motivated by the observation that assigning mean-
ingful (robustness) values to atomic propositions is often highly challenging in
practice—if not impossible.

The semantics of conjunctions and disjunctions are defined as usual for many-
valued logics in terms of the functions min and max:

V (s, ϕ1 ∨ ϕ2) = max
(
V (s, ϕ1), V (s, ϕ2)

)
V (s, ϕ1 ∧ ϕ2) = min

(
V (s, ϕ1), V (s, ϕ2)

)
To define the semantics of negation, remember our interpretation of the truth

values in B4: 1111 corresponds to true and all other truth values correspond to
different shades of false. Consequently, we map 1111 to 0000 and all other truth
values to 1111. This idea is formalized by

V (s,¬ϕ) =

{
0000 if V (s, ϕ) = 1111; and
1111 if V (s, ϕ) ≺ 1111.

Note that the definition of V (s,¬ϕ) is not symmetric, which is in contrast to
other many-valued logics, such as LTL[F]. However, it degenerates to the stan-
dard Boolean negation if one considers only two truth values.

Since our negation is defined in a non-standard way, we cannot recover impli-
cation from negation and disjunction. Instead, we define the implication a → b
by requiring that c ≺ a → b if and only if min {a, c} ≺ b for every c ∈ B4. This
notion leads to

802 A. Murano et al.

V (s, ϕ1 → ϕ2) =

{
1111 if V (s, ϕ1) � V (s, ϕ2); and
V (s, ϕ2) if V (s, ϕ1)
 V (s, ϕ2).

Again, this definition collapses to the usual Boolean definition in case one con-
siders only two truth values.

We now provide the robust semantics for the strategy quantifiers, which are
the key ingredient in rATL. First, notice that the strategy quantifiers 〈〈·〉〉 and
[[·]] are not dual in our robustified version of ATL and require their individual
definitions. Intuitively, 〈〈A〉〉Φ is the largest truth value that the coalition A of
agents can enforce for the path formula Φ, while [[A]]Φ is the largest truth value
that Ag \ A can enforce against A. Formally, we have the following:

– V (s, 〈〈A〉〉Φ) is the maximal truth value b ∈ B4 such that there is a set FA of
strategies, one for each agent in A, such that for all paths π ∈ out(s, FA) we
have V (π, Φ) � b.

– V (s, [[A]]Φ) is the maximal truth value b ∈ B4 such that for all sets FA of
strategies, one for each agent in A, there exists a path π ∈ out(s, FA) with
V (π, Φ) � b.

Let us now turn to the semantics of path formulas. We begin with the -
operator. This operator captures the five canonical ways an invariant property
“always p” can be satisfied or violated, thereby implementing the intuition we
have presented at the beginning of this section. Formally, the valuation function
V (π, ϕ) is given by V (π, ϕ) = b1b2b3b4 where

b1 = mini≥0 V (π[i], ϕ)[1], b3 = mini≥0 maxj≥i V (π[j], ϕ)[3],
b2 = maxi≥0 minj≥i V (π[j], ϕ)[2], b4 = maxi≥0 V (π[i], ϕ)[4]).

Note that for p ∈ AP and a path π, the semantics of the formula p on π
amounts to the four-tuple (p, p, p, p) because V (s, p) is either 0000
or 1111 on every state s along π (i.e., all bits are either 0 or 1). However, the
interpretation of V (π, ϕ) becomes more involved once the formula ϕ is nested
since the semantics of the -operator refers to individual bits of V (π, ϕ).

Finally, the semantics for the -operator and -operator are straightforward
as there are only two possible outcomes: either the property is satisfied, or it is
violated. Consequently, we define the valuation function by

– V (π, ϕ) = b1b2b3b4 with bk = maxi≥0 V (π[i], ϕ)[k]; and
– V (π, ϕ) = b1b2b3b4 with bk = V (π[1], ϕ)[k].

Again, note that both V (π, ϕ) and V (π, ϕ) refer to individual bits of V (π, ϕ).

Example 1. Consider the formula ϕ = 〈〈A〉〉 p. We have

– V (s, ϕ) = 1111 if the coalition A has a (joint) strategy to ensure that p holds
at every position of every outcome.

– V (s, ϕ) = 0111 if the coalition A has strategy to ensure that p holds at all
but finitely many positions of every outcome.

Robust Alternating-Time Temporal Logic 803

– V (s, ϕ) = 0011 if the coalition A has strategy to ensure that p holds at
infinitely many positions of every outcome.

– V (s, ϕ) = 0001 if the coalition A has strategy to ensure that p holds at least
once on every outcome.

3.1 rATL Model-Checking

The model-checking problem for rATL is as follows: Given a concurrent game
structure S, a state s, an rATL formula ϕ, and a truth value t ∈ B4, is V (s, ϕ) � t?

Theorem 1. rATL model-checking is PTime-complete.

The proof is based on capturing the semantics of the strategy quantifiers 〈〈A〉〉
and [[A]] by sequential two-player games, one player representing the agents in
A and the other representing the agents in the complement of A. We begin by
introducing the necessary background on such games.

A (sequential) two-player game structure S = (St, St1, St2, Ac1, Ac2, δ) con-
sists of a set St of states partitioned into the states Stp ⊆ St of Player p ∈ {1, 2},
an action set Acp for Player p ∈ {1, 2}, and a transition function δ : St1 × Ac1 ∪
St2 × Ac2 → St. The size of S is |St1 × Ac1 ∪ St2 × Ac2|. A path of S is an
infinite sequence s0s1s2 · · · of states such that sn+1 = δ(sn, α) for some action α.
A strategy for Player 1 is a mapping f : St∗St1 → Ac1. A path s0s1s2 · · · is an
outcome of f starting in s, if s0 = s and sn+1 = δ(sn, f(s0 · · · sn)) for all n ≥ 0
such that sn ∈ St1. A two player game G = (S,Win) consists of a two-player
game structure S and a winning condition Win ⊆ Stω, where St is the set of
states of S. We say that a strategy f for Player 1 is a winning strategy for G
from a state s, if every outcome of f starting in s is in Win.

Given a concurrent game structure S = (St,Ag,Ac, δ, �) and A ⊆ Ag, we
define the two-player game structure SA = (St1 ∪ St2, St1, St2, Ac1, Ac2, δ

′)
where St1 = St and St2 = St × Ac1, Ac1 is the set of action vectors for A,
Ac2 is the set of action vectors for Ag \ A, δ′(s, v) = (s, v) for s ∈ St1 and
v ∈ Ac1, and δ′((s, v), v′) = δ(s, v ⊕ v′) for (s, v) ∈ St2 and v′ ∈ Ac2, where
v ⊕ v′ is the unique action vector for Ag induced by v and v′. Note that the size
of SA is at most linear in the size of S.

A path in SA alternates between states of S and auxiliary states (those in
St × Ac1), i.e., it is in (St · (St × Ac1))ω. Thus, when translating paths between
S and SA, only states at even positions are relevant (assuming we start the path
in SA in St). Hence, given a property P ⊆ Stω of paths in S, we extend it
to the corresponding winning condition P ′ = {s0s1s2 · · · ∈ (St · (St × Ac1))ω |
s0s2s4 · · · ∈ P} of paths in SA.

The next lemma reduces the (non-) existence of strategies that allow a set A
of agents to enforce a property in S (which formalize the semantics of 〈〈A〉〉 and
[[A]]) to the (non-) existence of winning strategies for Player 1 in SA. It derives
from results of de Alfaro and Henzinger [2] for concurrent ω-regular games.

804 A. Murano et al.

Lemma 1. Let S be a concurrent game structure with set St of states containing
s, let A be a subset of its agents, and let P ⊆ Stω.

1. There is a set FA of strategies, one for each agent a ∈ A, such that
out(s, FA) ⊆ P iff Player 1 has a winning strategy for (SA, P ′) from s.

2. For all sets FA of strategies, one for each agent a ∈ A, out(s, FA)∩ P �= ∅ iff
Player 1 does not have a winning strategy for (SA, (Stω \ P)′) from s.

In the following, we consider the following winning conditions for a two-player
game played in SA, all induced by a set F ⊆ St of states:

Next(F) = {s0s1s2 · · · ∈ (St · (St × Ac1))ω | s2 ∈ F}
Reach(F) = {s0s1s2 · · · ∈ (St · (St × Ac1))ω | sn ∈ F for some even n}
Safety(F) = {s0s1s2 · · · ∈ (St · (St × Ac1))ω | sn ∈ F for all even n}
Büchi(F) = {s0s1s2 · · · ∈ (St · (St × Ac1))ω |

sn ∈ F for infinitely many even n}
coBüchi(F) = {s0s1s2 · · · ∈ (St · (St × Ac1))ω |

sn ∈ F for all but finitely many even n}

Again, note that these conditions only refer to even positions, as they will be
used to capture a property of paths in S, i.e., the auxiliary states are irrelevant.

Collectively, we refer to games with any of the above winning conditions as
NRSBC games. The following result is a generalization of standard results on
infinite games (see, e.g., Grädel, Thomas, and Wilke [29]) that accounts for the
fact that only states at even positions are relevant.

Proposition 1. The following problem is in PTime: Given an NRSBC game G
and a state s, does Player 1 have a winning strategy for G from s?

Proof of Theorem 1. Consider a concurrent game structure S with set St of
states and an rATL formula ϕ. We show how to inductively compute the satis-
faction sets Sat(ϕ′, t) = {s ∈ St | V (s, ϕ′) � t} for all (state) subformulas ϕ′ of
ϕ and all truth values t ∈ B4. Note that Sat(ϕ′, 0000) = St for all formulas ϕ′,
so these sets can be computed trivially.

The cases of atomic propositions and Boolean connectives follow straightfor-
wardly from the definition of their semantics (cp. the semantics of rCTL [42]),
so we focus on the case of formulas of the form 〈〈A〉〉Φ or [[A]]Φ. Note that we
only have to consider three cases for Φ, e.g., Φ = ϕ′, Φ = ϕ′, and Φ = ϕ′

for some state formula ϕ′. The following characterizations are consequences of
Lemma 1:

– s ∈ Sat(〈〈A〉〉 ϕ′, t) if and only if Player 1 has a winning strategy for
(SA,Next(Sat(ϕ′, t))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, t) if and only if Player 1 has a winning strategy for
(SA,Reach(Sat(ϕ′, t))) from s.

Robust Alternating-Time Temporal Logic 805

– s ∈ Sat(〈〈A〉〉 ϕ′, 1111) if and only if Player 1 has a winning strategy for
(SA,Safety(Sat(ϕ′, 1111))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 0111) if and only if Player 1 has a winning strategy for
(SA, coBüchi(Sat(ϕ′, 0111))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 0011) if and only if Player 1 has a winning strategy for
(SA,Büchi(Sat(ϕ′, 0011))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 0001) if and only if Player 1 has a winning strategy for
(SA,Reach(Sat(ϕ′, 0001))) from s.

Analogously, the satisfaction of formulas [[A]]Φ can be characterized by the non-
existence of winning strategies for Player 1, relying on the duality of the reach-
ability (Büchi) and safety (coBüchi) winning conditions and the self-duality
of the winning condition capturing the next operator. For example, we have
s ∈ Sat([[A]] ϕ′, t) if and only if Player 1 does not have a winning strategy for
(SA,Next(St \ Sat(ϕ′, t))) from s.

Now, to solve the model-checking problem with inputs S, ϕ, s and t, we
inductively compute all satisfaction sets Sat(ϕ′, t′) and check whether s is in
Sat(ϕ, t). Using Proposition 1 and the fact that each NRSBC game we have to
solve during the computation is of linear size (in |S|), these O(|ϕ| · |S|) many
sets can be computed in polynomial time, where |ϕ| is the number of state
subformulas of ϕ.

Finally, the lower bound follows from the PTime-hardness of CTL model-
checking [22], which is a fragment of rATL (see Subsect. 3.3). Furthermore, let
us note that the PTime lower bound for CTL model-checking already holds for
fragment without until and release [34] (recall that we do not include until and
release in rATL for the sake of simplicity). ��

3.2 rATL Satisfability

This subsection considers the satisfiability problem for rATL, which is stated as
follows: Given an rATL formula ϕ and a truth value t ∈ B4, is there a concurrent
game structure S with a state s such that V (s, ϕ) � t?

Theorem 2. rATL satisfiability is ExpTime-complete.

Proof sketch. The upper bound is proven by embedding rATL into the alter-
nating μ-calculus while the lower bound already holds for CTL, a fragment of
rATL. ��

3.3 Expressiveness

The main impetus for introducing rATL is to devise a robust generalization of
ATL as a powerful formalism to deal with robust strategic reasoning in multi-
agent systems. A natural question is to state the expressive power of rATL with
respect to ATL and the robust version of CTL (rCTL) [42]. In this subsection,
we show that both ATL and rCTL can be embedded into rATL, i.e., rATL gen-
eralizes both of these logics. Furthermore, we show that rATL is strictly more

806 A. Murano et al.

expressive than both of them. We begin by comparing rATL and ATL, and show
first that rATL is at least as expressive as ATL, witnessing that our robust exten-
sion is set up correctly. This fact is formalized in the lemma below, intuitively
stating that the first bit of the evaluation function captures the semantics of
ATL.

Lemma 2. Let ϕ be an ATL formula. Then, there exists an rATL formula ϕ�

such that for every concurrent game structure S and all states s of S: V (s, ϕ�) =
1111 if and only if S, s |= ϕ.

Proof sketch. We obtain the rATL formula ϕ� as follows: First, we eliminate
every implication ϕ1 → ϕ2 in the ATL formula ϕ by replacing it with the
expression ¬ϕ1 ∨ ϕ2. Second, we bring the formula into negation normal form
by pushing all negations inwards to the level of atomic propositions. Finally, we
dot all the temporal operators to obtain the rATL formula ϕ�. The claim of
Lemma 2 can then be shown by induction over the structure of ϕ. ��

As we have observed above with Example 1, rATL is able to express basic
forms of fairness such as "for a given structure S there exists a strategy for
a coalition of agents A such that a certain property p holds infinitely often".
Formally this corresponds to the formula ϕ = 〈〈A〉〉 p with V (s, ϕ) � 0011.
As shown by Alur, Henzinger, and Kupferman [4], such a property cannot be
expressed in ATL, but rather requires the more expressive logic ATL∗. Indeed,
it corresponds to the ATL∗ formula ϕ = 〈〈A〉〉 p. So, by using the result
reported in Lemma 2, the following holds.

Theorem 3. rATL is strictly more expressive than ATL.

Now, we compare rATL and rCTL: The latter logic is obtained by robus-
tifying CTL along the same lines as described in Sect. 3 (see [42] for detailed
definitions). Let us just remark that rCTL formulas, as CTL formulas, are eval-
uated over Kripke structures by means of a valuation function VrCTL. Thus, to
compare the expressiveness of both logics, as usual, we have to interpret a Kripke
structure as a (one-agent) concurrent game structure. We start by showing that
rATL is at least as expressive as rCTL, just as ATL is at least as expressive as
CTL.

Lemma 3. Let ϕ be an rCTL formula. Then, there exists an rATL formula ϕ�

such that for every Kripke structure K the following holds for all states s of K:
V (s, ϕ�) = VrCTL(s, ϕ).

Proof sketch. Our construction proceeds as follows: First, we turn a Kripke struc-
ture K into a concurrent game structure with one agent a, having the same states
and state labels, a suitable set of actions, and a transition function δ such that
there is a transition in K from s to s′ if and only if s′ = δ(s, α) for some action α.
Second, we replace each existential path quantifier ∃ in ϕ by 〈〈{a}〉〉 and each
universal path quantifier ∀ by 〈〈∅〉〉, obtaining the rATL formula ϕ�. The claim
of Lemma 3 can then be shown by induction over the structure of ϕ. ��

Robust Alternating-Time Temporal Logic 807

Now, we recall that Alur, Henzinger, and Kupferman [4] have observed that
in ATL there are formulas that cannot be expressed in CTL. The reason is
that, given a concurrent game structure, CTL can only reason about a single
path (with the existential modality) or all paths (with the universal modality).
Conversely, ATL can reason about an arbitrary number of paths by means of
strategies. The same argument can be extend to rATL and rCTL. Thus, by
putting together this observation with the statement of Lemma 3, the following
holds.

Theorem 4. rATL is strictly more expressive than rCTL.

Notice that the argument that rATL formulas expressing fairness properties
such as "infinitely often" cannot be expressed in ATL (used in Theorem 3 for
the strict containment of ATL in rATL) can also be applied to rCTL. Similarly,
the argument used above to show that rATL formulas cannot be translated into
rCTL (used in Theorem 4 for the strict containment of rCTL in rATL) can also
be applied to ATL. This leads to the following corollary.

Corollary 1. ATL and rCTL are incomparable.

4 Robust ATL*

Just as one generalizes CTL, rCTL, and ATL by allowing nesting of tempo-
ral operators in the scope of a single path/strategy quantifier (obtaining CTL∗,
rCTL∗, and ATL∗, respectively), we now study rATL∗, the analogous general-
ization of rATL. Again, we will prove that adding robustness comes for free.

The formulas of rATL∗ are given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | 〈〈A〉〉Φ | [[A]]Φ
Φ ::= ϕ | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | Φ → Φ | Φ | Φ | Φ

where p ranges over atomic propositions and A over subsets of agents. Again, we
distinguish between state formulas (those derivable from ϕ) and path formulas
(those derivable from Φ). If not specified, an rATL∗ formula is a state formula.

The semantics of rATL∗ are again defined via an evaluation function V that
maps a state formula and a state or a path formula and a path to a truth value
in B4. The cases for state formulas are defined as for rATL and we define for
every path π, every state formula ϕ, and all path formulas Φ1 and Φ2

– V (π, ϕ) = V (π[0], ϕ),

– V (π,¬Φ) =

{
0000 if V (π, Φ) = 1111,
1111 if V (π, Φ) ≺ 1111,

– V (π, Φ1 ∨ Φ2) = max
(
V (π, Φ1), V (π, Φ2)

)
,

– V (π, Φ1 ∧ Φ2) = min
(
V (π, Φ1), V (π, Φ2)

)
,

– V (π, Φ1 → Φ2) =

{
1111 if V (π, Φ1) � V (π, Φ2),
V (π, Φ2) if V (π, Φ1)
 V (s, Φ2),

808 A. Murano et al.

– V (π, Φ) = b1b2b3b4 with bk = V (π[1], Φ)[k],
– V (π, Φ) = b1b2b3b4 with bk = maxi≥0 V (π[i], Φ)[k], and
– V (π, Φ) = b1b2b3b4 where

b1 = mini≥0 V (π[i], Φ)[1], b3 = mini≥0 maxj≥i V (π[j], Φ)[3],
b2 = maxi≥0 minj≥i V (π[j], Φ)[2], b4 = maxi≥0 V (π[i], Φ)[4]).

We show that every rATL∗ formula (w.r.t. a fixed truth value) can be trans-
lated into an equivalent ATL∗ formula of polynomial size. This allows us to
settle the complexity of rATL∗ model-checking and satisfiability as well as the
expressiveness of rATL∗. Below, |= denotes the ATL∗ satisfaction relation [4].

Lemma 4. For every rATL∗ formula ϕ and every truth value t ∈ B4, there is
an ATL∗ formula ϕt such that V (s, ϕ) � t if and only if S, s |= ϕt. Furthermore,
the function mapping ϕ and t to ϕt is polynomial-time computable.

The rATL∗ model-checking and satisfiability problems are defined as their
counterparts for rATL. Both model-checking and satisfiability for ATL∗ are
2ExpTime-complete [4,46]. Due to Lemma 4, we obtain the same results for
rATL∗, thereby showing that adding robustness comes indeed for free.

Theorem 5. The rATL∗ model-checking problem and the rATL∗ satisfiability
problem are both 2ExpTime-complete.

Another consequence of the translation from rATL∗ to ATL∗ and the fact
that ATL∗ is a fragment of rATL∗ is that both logics are equally expressive.

Corollary 2. rATL∗ and ATL∗ are equally expressive.

5 A Practical Example

Let us consider a smart grid with a set U of utility companies and a set C
of consumers. Assume that for every consumer c ∈ C there is a proposition �c

indicating that c’s energy consumption is within the pre-agreed limit. Conversely,
c’s consumption is higher than the limit if �c is violated. Furthermore, there is
a proposition “stable” that holds true if and only if the grid is stable (i.e., the
utility companies coordinate to provide the right amount of electricity).

Let us now consider the ATL∗ formula

〈〈U〉〉[[C]](
∧

c∈C
�c) → stable.

This formula expresses that the utility companies U have a strategy such that no
matter how the consumers behave, the following is satisfied: if each consumer’s
consumption always stays within their limit, then the utility companies keep the
grid always stable. However, this specification is not robust and provides only
limited information when satisfied: even if a single consumer exceeds their limit

Robust Alternating-Time Temporal Logic 809

once, there is no further obligation on the utility companies, and the formula is
satisfied independently of whether the grid is always stable or not.

So, let us illustrate how the rATL∗ formula

ϕ = 〈〈U〉〉[[C]](
∧

c∈C
�c) → stable

does capture robustness. To this end, assume for now that ϕ evaluates to 1111.
Then, there is a strategy for U such that for all outcomes π that are consistent
with that strategy, the following holds:

– If
∧

c∈C �c holds in every position of π, i.e.,
∧

c∈C �c evaluates to 1111 then
by the semantics of → the formula stable also evaluates to 1111. This means
the proposition “stable” also holds in every position. Therefore, the grid sup-
ply is always stable. Hence, the desired goal is retained when the assumption
regarding the consumers holds with no violation. Note that this is equivalent
to what the original ATL∗ formula above expresses.

– Assume now that the consumer assumption
∧

c∈C �c is violated finitely many
times, i.e., finitely often some consumer violates their consumption limit. This
means that the formula

∧
c∈C �c evaluates to 0111. Then, by the semantics

of rATL∗, stable evaluates to 0111 or higher, which means that “stable”
holds at every state, except for a finite number of times. So, the degree of
violation of the guarantee required by U is at most the degree of violation of
the assumptions on the consumers.

– Similarly, if
∧

c∈C �c holds infinitely (finitely) often, then stable holds
infinitely (finitely) often.

If the formula ϕ evaluates to 1111, then U has a strategy that does not behave
arbitrarily in case the assumption

∧
c∈C �c fails, but instead satisfies the guar-

antee stable to at least the same degree that the guarantee holds.
Finally, even if ϕ evaluates to a truth value t ≺ 1111, this reveals crucial infor-

mation about U ’s ability to guarantee a stable grid, i.e., the premise
∧

c∈C �c

evaluates to some truth value t′
 t while the conclusion “stable” evaluates to t.

6 Discussion and Future Work

This paper introduces rATL and rATL∗, the first logic formalisms able to deal
with robust strategic reasoning in multi-agent systems. As we have shown along
the paper, rATL results to be very expressive, useful in practice, and not more
costly than the subsumed logics ATL and rCTL. Similarly, rATL∗ is not more
costly than the subsumed logic ATL∗.

The positive results about rATL represent the foundation for a number of
useful extensions, mainly by extending robustness to logics for strategic reasoning
that are more expressive than ATL and ATL∗ such as Strategy Logic [40] and the
like. Notably, Strategy Logic is much more expressive than ATL∗ [4]. Indeed it
can express several game-theoretic concepts including Nash Equilibria over LTL
goals. Interestingly, the formula expressing Nash Equilibria uses an implication.

810 A. Murano et al.

In words the formula says that n agents’ strategies σ1, . . . , σn form an equilibrium
if, for every agent, it holds that whenever by unilaterally changing her strategy
the goal is also satisfied, then it implies that the goal is satisfied with the original
tuple of strategies as well. Robustness in Strategy Logic (by means of rLTL goals
in place of LTL) then allows to define a stronger notion of Nash Equilibrium.

Another interesting direction for future work is to come up with an implemen-
tation of the model-checking procedure for rATL, possibly by extending existing
tools such as MCMAS [18,38].

Acknowledgments. This research has been supported by the PRIN project RIPER
(No. 20203FFYLK), the PNRR MUR project PE0000013-FAIR, the InDAM project
“Strategic Reasoning in Mechanism Design”, and DIREC - Digital Research Centre Den-
mark. Furthermore, this work has been financially supported by Deutsche Forschungs-
gemeinschaft, DFG Project numbers 434592664 and 459419731, and the Research Cen-
ter Trustworthy Data Science and Security (https://rc-trust.ai), one of the Research
Alliance centers within the UA Ruhr (https://uaruhr.de).

References

1. Afzal, S., Mokhlis, H., Illias, H.A., Mansor, N.N., Shareef, H.: State-of-the-art
review on power system resilience and assessment techniques. IET Gener. Trans.
Distrib. 14(25), 6107–6121 (2020)

2. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS 2000,
pp. 141–154. IEEE Computer Society (2000). https://doi.org/10.1109/LICS.2000.
855763

3. Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. J. ACM
63(3), 24:1–24:56 (2016). https://doi.org/10.1145/2875421

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

5. Aminof, B., Kwiatkowska, M., Maubert, B., Murano, A., Rubin, S.: Probabilistic
strategy logic. In: Kraus, S. (ed.) IJCAI 2019, pp. 32–38 (2019). https://doi.org/
10.24963/ijcai.2019/5

6. Aminof, B., Malvone, V., Murano, A., Rubin, S.: Graded modalities in strategy
logic. Inf. Comput. 261, 634–649 (2018)

7. Anevlavis, T., Neider, D., Philippe, M., Tabuada, P.: Evrostos: the rLTL verifier.
In: Ozay, N., Prabhakar, P. (eds.) HSCC 2019, pp. 218–223. ACM (2019). https://
doi.org/10.1145/3302504.3311812

8. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Verifying rLTL formulas: now
faster than ever before! In: CDC 2018, pp. 1556–1561. IEEE (2018). https://doi.
org/10.1109/CDC.2018.8619014

9. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough:
efficient verification using robust linear temporal logic. ACM Trans. Comput. Log.
23(2), 8:1–8:39 (2022). https://doi.org/10.1145/3491216

10. Belardinelli, F., Jamroga, W., Kurpiewski, D., Malvone, V., Murano, A.: Strategy
logic with simple goals: tractable reasoning about strategies. In: Kraus, S. (ed.)
IJCAI 2019, pp. 88–94 (2019). https://doi.org/10.24963/ijcai.2019/13

11. Belardinelli, F., Lomuscio, A., Murano, A., Rubin, S.: Verification of multi-agent
systems with public actions against strategy logic. Artif. Intell. 285, 103302 (2020)

https://rc-trust.ai
https://uaruhr.de
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1145/2875421
https://doi.org/10.1145/585265.585270
https://doi.org/10.24963/ijcai.2019/5
https://doi.org/10.24963/ijcai.2019/5
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1145/3491216
https://doi.org/10.24963/ijcai.2019/13

Robust Alternating-Time Temporal Logic 811

12. Belhaiza, S., Baroudi, U.: A game theoretic model for smart grids demand man-
agement. IEEE Trans. Smart Grid 6(3), 1386–1393 (2014)

13. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with
imperfect information. ACM Trans. Comput. Logic (TOCL) 22(1), 1–51 (2021)

14. Bevrani, H.: Robust Power System Frequency Control. PEPS, Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07278-4

15. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robust-
ness in the presence of liveness. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 410–424. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6_36

16. Bouyer, P., Kupferman, O., Markey, N., Maubert, B., Murano, A., Perelli, G.:
Reasoning about quality and fuzziness of strategic behaviors. ACM Trans. Comput.
Log. 24(3), 21:1–21:38 (2023)

17. Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via
channel machines. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 157–
171. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_12

18. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: Bonet, B., Koenig, S.
(eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
25–30 January 2015, Austin, Texas, USA, pp. 2038–2044. AAAI Press (2015)

19. Chaaban, Y., Müller-Schloer, C.: A survey of robustness in multi-agent systems. In:
Cognitive13, Fifth International Conference on Advanced Cognitive Technologies
and Applications, pp. 7–13 (2013)

20. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6),
677–693 (2010). https://doi.org/10.1016/j.ic.2009.07.004

21. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

22. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986). https://doi.org/10.1145/5397.5399

23. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmod-
eled intermittent disturbances. In: CDC 2016, pp. 7425–7430. IEEE (2016)

24. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and per-
fect recall semantics is undecidable. arXiv:1102.4225 (2011)

25. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246,
pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-
9_9

26. Doyen, L., Henzinger, T.A., Legay, A., Nickovic, D.: Robustness of sequential cir-
cuits. In: ACSD 2010, pp. 77–84. IEEE (2010)

27. Faella, M., Napoli, M., Parente, M.: Graded alternating-time temporal logic. Fund.
Inform. 105(1–2), 189–210 (2010)

28. French, T., Mc Cabe-Dansted, J.C., Reynolds, M.: A temporal logic of robustness.
In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI), vol. 4720, pp. 193–205.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74621-8_13

29. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research, LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

https://doi.org/10.1007/978-3-319-07278-4
https://doi.org/10.1007/978-3-642-14295-6_36
https://doi.org/10.1007/978-3-642-14295-6_36
https://doi.org/10.1007/978-3-540-78499-9_12
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/5397.5399
http://arxiv.org/abs/1102.4225
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-540-74621-8_13
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4

812 A. Murano et al.

30. Hassan, S.R.M., Hasan, N., Siddique, M.A., Fahim, K.S., Rahman, R., Iftekhar,
L.: Incorporating multi-agent systems technology in power and energy systems of
Bangladesh: a feasibility study. In: ICREST 2021, pp. 342–347. IEEE (2021)

31. Huang, X., Luo, C.: A logic of probabilistic knowledge and strategy. In: AAMAS,
pp. 845–852. Citeseer (2013)

32. Jamroga, W., Murano, A.: On module checking and strategies. In: AAMAS 2014,
pp. 701–708 (2014)

33. Kaur, D., Uslu, S., Rittichier, K.J., Durresi, A.: Trustworthy artificial intelligence:
a review. ACM Computing Surveys (CSUR) 55(2), 1–38 (2022)

34. Krebs, A., Meier, A., Mundhenk, M.: The model checking fingerprints of CTL
operators. Acta Inform. 56(6), 487–519 (2019). https://doi.org/10.1007/s00236-
018-0326-9

35. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Inf. Comput. 164(2),
322–344 (2001)

36. Laroussinie, F., Markey, N.: Augmenting ATL with strategy contexts. Inf. Comput.
245, 98–123 (2015). https://doi.org/10.1016/j.ic.2014.12.020

37. Lempert, R.J., Schlesinger, M.E.: Robust strategies for abating climate change.
Clim. Change 45(3–4), 387–401 (2000)

38. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

39. Modas, A., Sanchez-Matilla, R., Frossard, P., Cavallaro, A.: Toward robust sensing
for autonomous vehicles: an adversarial perspective. IEEE Signal Process. Mag.
37(4), 14–23 (2020)

40. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: on
the model-checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014).
https://doi.org/10.1145/2631917

41. Murano, A., Neider, D., Zimmermann, M.: Robust alternating-time temporal logic.
arXiv:2307.10885 (2023)

42. Nayak, S.P., Neider, D., Roy, R., Zimmermann, M.: Robust computation tree logic.
In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022. Lecture Notes in
Computer Science, vol. 13260, pp. 538–556. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-06773-0_29

43. Omnes, L., Marot, A., Donnot, B.: Adversarial training for a continuous robustness
control problem in power systems. In: 2021 IEEE Madrid PowerTech, pp. 1–6. IEEE
(2021)

44. Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforce-
ment learning. In: International Conference on Machine Learning, pp. 2817–2826.
PMLR (2017)

45. Sampaio, R.F., Melo, L.S., Leão, R.P., Barroso, G.C., Bezerra, J.R.: Automatic
restoration system for power distribution networks based on multi-agent systems.
IET Gener. Trans. Distrib. 11(2), 475–484 (2017)

46. Schewe, S.: ATL* satisfiability Is 2EXPTIME-complete. In: Aceto, L., Damgård, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70583-3_31

47. Schnoor, H.: Epistemic and probabilistic ATL with quantification and explicit
strategies. In: Filipe, J., Fred, A. (eds.) ICAART 2013. CCIS, vol. 449, pp. 131–148.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44440-5_8

https://doi.org/10.1007/s00236-018-0326-9
https://doi.org/10.1007/s00236-018-0326-9
https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1145/2631917
http://arxiv.org/abs/2307.10885
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1007/978-3-662-44440-5_8

Robust Alternating-Time Temporal Logic 813

48. Singh, V.P., Kishor, N., Samuel, P.: Distributed multi-agent system-based load
frequency control for multi-area power system in smart grid. IEEE Trans. Industr.
Electron. 64(6), 5151–5160 (2017)

49. Tabuada, P., Neider, D.: Robust linear temporal logic. In: CSL 2016. LIPIcs, vol. 62,
pp. 10:1–10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://
doi.org/10.4230/LIPIcs.CSL.2016.10

50. Veres, S.M., Molnar, L., Lincoln, N.K., Morice, C.P.: Autonomous vehicle control
systems-a review of decision making. Proc. Insti. Mech. Eng. Part I: J. Syst. Control
Eng. 225(2), 155–195 (2011)

51. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed
EXPTIME-complete. J. Log. Comput. 16(6), 765–787 (2006)

https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10

The Universal Tangle for Spatial
Reasoning

David Fernández-Duque1,2(B) and Konstantinos Papafilippou1

1 Ghent University, Ghent, Belgium
Konstantinos.Papafilippou@UGent.be

2 University of Barcelona, Barcelona, Spain
fernandez-duque@ub.edu

Abstract. The topological μ-calculus has gathered attention in recent
years as a powerful framework for representation of spatial knowledge. In
particular, spatial relations can be represented over finite structures in
the guise of weakly transitive (wK4) frames. In this paper we show that
the topological μ-calculus is equivalent to a simple fragment based on a
variant of the ‘tangle’ operator. Similar results were proven for transitive
frames by Dawar and Otto, using modal characterisation theorems for
the corresponding classes of frames. However, since these theorems are
not available in our setting, which has the upshot of providing a more
explicit translation and upper bounds on formula size.

1 Introduction

Qualitative spatial reasoning aims to capture basic relations between regions in
space in a way that is computationally efficient and thus suitable for knowledge
representation and AI (see [4,17] for overviews). The region connection calcu-
lus (RCC8) [6,16] deals with relations such as ‘partially overlaps’ (e.g. Mexico
and Mesoamerica) or ‘is a non-tangential proper part’ (e.g. Paraguay and South
America) while avoiding undecidability phenomena by not allowing for quantifi-
cation over points or regions.

RCC8 can be embedded into modal logic (ML) with a universal modality [18].
This allows us to import many techniques from ML, including the representation
of regions using transitive Kripke frames, i.e. pairs 〈W,�〉, where W is a set
of points and � is a transitive relation representing ‘nearness’. It also tells us
that little is lost by omitting quantifiers, due to so-called modal characterization
theorems [14], which state that ML is the bisimulation-invariant fragment of first
order logic (FOL), while its extension to the modal μ-calculus is the bisimulation-
invariant fragment of monadic second order logic (MSO) [12].

However, these results apply to frames where � is an arbitrary relation,
whereas Dawar and Otto [5] showed that the situation over finite, transitive

Supported by the FWO-FWF Lead Agency grant G030620N (FWO)/I4513N (FWF)
and by the SNSF–FWO Lead Agency Grant 200021L_196176/G0E2121N.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 814–827, 2023.
https://doi.org/10.1007/978-3-031-43619-2_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_55&domain=pdf
http://orcid.org/0000-0001-8604-4183
http://orcid.org/0000-0002-2831-0575
https://doi.org/10.1007/978-3-031-43619-2_55

The Universal Tangle for Spatial Reasoning 815

frames is subtle. In this setting, the bisimulation-invariant fragments of FOL
and MSO coincide, but are stronger than modal logic. They are in fact equal to
the μ-calculus, but this in turn can be greatly simplified to its tangled fragment,
which adds expressions of the form �∞{ϕ1, . . . , ϕn}, stating that there is an
accessible cluster of reflexive points where each ϕi is satisfied.

Finite, transitive frames are suitable for representing spatial relations on
metric spaces, such as Euclidean spaces or the rational numbers [10,13]. However,
for the more general setting of topological spaces, one must consider a wider
class of frames called weakly transitive frames: a relation � is weakly transitive
if x � y � z implies x � z. The modal logic of finite, weakly transitive frames is
precisely that of all topological spaces [7], and this result extends to the full μ-
calculus [2]. In this spatial setting, Dawar and Otto’s tangled operator becomes
the tangled derivative, the largest subspace in which two or more sets are dense:
for example, the tangle of Q and R\Q is the full real line, since the rationals and
the irrationals are both dense in R. In the case of a single subset A, ♦∞{A} is
the perfect core of A, i.e. its largest perfect subset, a notion useful in describing
the limit of learnability after iterated measurements [1].

Alas, over the class of weakly transitive frames, the tangled derivative is
not as expressive as the μ-calculus [2], which is in turn less expressive than
the bisumulation-invariant fragment of MSO, so Dawar and Otto’s result fails.
Gougeon [11] proposed a more expressive operator, which here we simply dub the
tangle and denote by ♦∞, which coincides with the tangled derivative over metric
spaces (and other spaces satisfying a regularity property known as TD spaces),
but is strictly more expressive over the class of topological spaces. While this
tangle cannot be as expressive as the bisimulation-invariant fragment of MSO,
it was still conjectured to be as expressive as the μ-calculus, thus providing a
streamlined framework for representing spatial properties relevant for the learn-
ability framework of [1]. This conjecture is supported by the recent result stating
that the topological μ-calculus collapses to its alternation-free fragment [15].

In this paper we give an affirmative answer to this conjecture. Moreover,
since we cannot use games for FOL to establish our results, our proof uses new
methods which have the advantage of providing an explicit translation of the
μ-calculus into tangle logic. Among other things, we provide an upper bound on
formula size, which is doubly exponential. It is not clear if this can be greatly
improved, given the exponential lower bounds of [8].

Despite the spatial motivation for the μ-calculus over wK4, the results of [2]
allow us to work within the class of weakly transitive frames; since their logic is
that of all topological spaces, our expressivity results lift to that context as well.
The upshot is that background in topology is not needed to follow the text.

Layout

In Sect. 2 we review the μ-calculus, present Gougeon’s tangle and some basic
semantic notions over path-finite weakly transitive (wK4) frames. Section 3
begins with a review of finality as used in [2], as well as establishing additional
properties we need. In Sect. 4 we construct some formulae in the tangle logic

816 D. Fernández-Duque and K. Papafilippou

that peer into the structure of a given Kripke model, which we use to show
that the μ-calculus is equivalent to the tangle logic and strictly weaker than the
bisimulation invariant part of first order logic over finite and path finite wK4
frames.

2 Preliminaries

As is often the case when working with μ-calculi, it will be convenient to define
the μ-calculus with each of the positive operations, including νx.ϕ, as primitive,
and with negation being only subsequently defined.

Definition 1. The language of the modal μ-calculus Lμ is defined by the follow-
ing syntax:

ϕ:: = � |x | p | ¬p |ϕ ∧ ϕ |ϕ ∨ ϕ |♦ϕ |�ϕ | νx.ϕ(x) |μx.ϕ(x)

where x belongs to a set of ‘variables’ and p to a set of ‘constants’, denoted P.
Under this presentation of the language, the formulas are said to be in nega-

tion normal form. Negation is defined classically as usual with ¬νx.ϕ(x) :=
μx.¬ϕ(¬x) and ¬μx.ϕ(x) := νx.¬ϕ(¬x). We also write ⟐ϕ := ϕ ∨ ♦ϕ and
similarly ⊡ϕ := ϕ ∧ �ϕ.

The following is the standard semantics for the μ-calculus over frames with
a single relation � (or �M , to specify the frame).

Definition 2. A Kripke frame is a tuple F = 〈M,�M 〉 where �M ⊆ M × M .
A Kripke model is a triple M = 〈M,�M , ‖ · ‖M 〉 where 〈M,�M 〉 is a Kripke
frame with a valuation ‖ · ‖M : P → P(M). In the sequel, we will use M and M
interchangeably. We denote the reflexive closure of �M by �M .

Given A ⊆ M , we denote the irreflexive and reflexive upsets of A as A↑M :=
{w ∈ M : ∃v ∈ A v �M w} and A↑∗

M := A↑M ∪A respectively. The downsets are
similarly denoted as A↓M := {w ∈ M : ∃v ∈ A w �M v} and A↓∗

M := A↓M ∪ A
respectively. We will omit the M in the subscript when we will be only referring
to a single model.

The valuation ‖ · ‖ = ‖ · ‖M is defined as usual on Booleans with:

‖♦ϕ‖ := ‖ϕ‖↓ ‖μx.ϕ(x)‖ :=
⋂

{X ⊆ M : X = ‖ϕ(X)‖}
‖�ϕ‖ := M \ ((M \ ‖ϕ‖)↓) ‖νx.ϕ(x)‖ :=

⋃
{X ⊆ M : X = ‖ϕ(X)‖}

Given a Kripke model M and a world w ∈ M we say a formula ϕ is satisfied by
M at the world w and write w �M ϕ iff w ∈ ‖ϕ‖M .

A formula ϕ is valid over a class of models Ω if for every M ∈ Ω, ‖ϕ‖M = M .

We note that μx.ϕ(x) and νx.ϕ(x) are the least and greatest fixed points,
respectively, of the operator X �→ ϕ(X).

We will mostly concern ourselves only with weakly transitive frames. A rela-
tion R is weakly transitive iff for all a, b, c where a �= c, if aRb and bRc then
aRc. A frame or model is weakly transitive if its accessibility relation is.

The Universal Tangle for Spatial Reasoning 817

Example 1. Consider a frame F consisting of two irreflexive points {0, 1} such
that 0 � 1 and 1 � 0; this frame is weakly transitive since x � y � z implies
x = z, but it is not transitive since e.g. 0 � 1 � 0 but 0 �� 0. To extend this frame
into a model, we assign subsets of {0, 1} to each propositional variable. Assume
that our variables are e (even), o (odd), p (positive) and i (integer). We obtain
a valuation ‖ · ‖ if we let ‖e‖ = {0}, ‖o‖ = {1}, ‖p‖ = {1}, and ‖i‖ = {0, 1}.
Then, ‖o ∨ ♦p‖ = {0, 1}, since every element of our model is either odd or has
an accessible positive point. We may say that this formula is valid in our model.

Recall that a topological space is a pair 〈X, T 〉, where T is a family of subsets
of X (called the open sets) closed under finite intersections and arbitrary unions.
If A ⊆ X, d(A) is the set of points x ∈ X such that whenever x ∈ U and U is
open, there is y ∈ A∩U \{x}; this is the set of limit points of A. The topological
semantics for the μ-calculus is obtained by modifying Definition 2 by setting
‖♦ϕ‖ = d‖ϕ‖. This is the basis to the modal approach to spatial reasoning, but
the following allows us to work with weakly transitive frames instead.

Theorem 1. ([2]). For ϕ ∈ Lμ, the following are equivalent:

– ϕ is valid over the class of all topological spaces.
– ϕ is valid over the class of all weakly transitive frames.
– ϕ is valid over the class of all finite, irreflexive, weakly transitive frames.

This extends results of Esakia for the purely modal setting [7]. Next we
recall bisimulations (see e.g. [3]), which are binary relations preserving truth of
μ-calculus formulas that will be very useful in the rest of the text.

Definition 3. Given P ⊆ P a P -bisimulation is a relation ι ⊆ M × N such
that, whenever 〈u, v〉 ∈ ι:

atoms w �M p ⇔ v �M p for all p ∈ P ;
forth If u �M u′, then there is v �N v′ such that 〈u′, v′〉 ∈ ι;
back If v �N v′, then there is u �M u′ such that 〈u′, v′〉 ∈ ι;
global dom(ι) = M and rng(ι) = N .

Two models are called P -bisimilar and we write M �P N if there is some P -
bisimulation relation between them. Given subsets A ⊆ M and B ⊆ N , we write
A �P B when M � A �P N � B, where � denotes the usual restriction to a
subset of the domain.

In the sequel we will omit the P in the subscript and assume it to be the
set of constants occurring in some ‘target’ formula ϕ. As mentioned, bisimula-
tions are useful because they preserve the truth of all μ-calculus formulas, i,e. if
〈w, v〉 ∈ ι and ϕ is any formula (with constants among P), then w ∈ ‖ϕ‖ iff
v ∈ ‖ϕ‖. As such, since every weakly transitive model is bisimilar to an irreflex-
ive weakly transitive model, we will make the convention that every arbitrary
model mentioned in this paper is irreflexive.

As a general rule, the μ-calculus is more expressive than standard modal
logic: for example, in a frame (W,R), reachability via the transitive closure of

818 D. Fernández-Duque and K. Papafilippou

R is expressible in the μ-calculus, but not in standard modal logic. However, in
the setting of transitive frames, reachability is already modally definable (since
R is its own transitive closure), which means that the familiar examples to show
that the μ-calculus is more powerful than modal logic do not apply. Dawar and
Otto [5] exhibited an operator, since dubbed the tangle, which is μ-calculus
expressible but not modally expressible. They showed the surprising result that
every formula of the μ-calculus can be expressed in terms of tangle. In this paper,
we will use a variant introduced by Gougeon [11]. When working with multisets1,
if x occurs n times in A then it occurs max{0, n − 1} times in A \ {x}.

Definition 4. Given a finite multiset of formulae Γ ⊆ Lμ, the tangle modality
is defined as follows:

♦∞Γ = νx.
∨

ϕ∈Γ

(
⟐ (ϕ ∧ x) ∧

∧

ψ∈Γ\{ϕ}
♦(ψ ∧ x)

)
,

where x does not appear free in any ϕ ∈ Γ .
We can then define the tangle logic L♦∞ whose language is defined by the

syntax, where Γ ⊆fin L♦∞ is a multiset:

ϕ:: = � | p | ¬ϕ |ϕ ∧ ϕ |♦ϕ |♦∞Γ.

It can be checked that over transitive frames, ♦∞Γ is equivalent to the
‘tangled derivative’ ♦∞Γ [10], given by ♦∞Γ := νx.

∧
ϕ∈Γ ♦(ϕ∧x). The two are

also equivalent over familiar spaces such as the real line, but not over arbitrary
topological spaces or weakly transitive frames, in which case ♦∞ can define ♦∞

but not vice-versa [11]. In metric spaces such as the real line (and a wider class
known as TD spaces), ♦∞Γ holds on x if there is a perfect set A (i.e., A has no
isolated points) containing x such that for each ϕ ∈ Γ , ‖ϕ‖ ∩ A is dense in A.

Example 2. Consider a topological model based on the real line R with ‖r‖ being
the set of rational points and ‖i‖ the set of irrational points. Then, ♦∞{r, i} is
valid on the real line, given that the sets of rational and irrational numbers are
both dense. In contrast, if we let ‖z‖ be the set of integers, we readily obtain
that ♦∞{z, i} evaluates to the empty set, given that the subspace of the integers
consists of isolated points and hence we will not find any common perfect core
between ‖z‖ and ‖i‖.

The tangle simplifies a bit when working over finite transitive frames. In this
case, this operator is best described in terms of clusters. A cluster C of a model
M = 〈M,�, ‖ · ‖〉 is a subset of M such that ∀u, v ∈ C u � v. Note that we
don’t define clusters to be maximal (with respect to set inclusion). In contrast,
the cluster of w in M is the set Cw =

⋃
{C : C is a cluster of M and w ∈ C}.

It is well known that a transitive relation (and indeed even a weakly transitive
relation) can be viewed as a partial order on its set of maximal clusters. To this
end, define w ≺ v if w � v �� w, and for A,B ⊆ M , we write:
1 By working with multisets, we can write ♦∞{φ, φ} instead of ♦∞{φ, φ ∧ �}.

The Universal Tangle for Spatial Reasoning 819

– A ≺ B iff ∀v ∈ B ∃u ∈ Au � v �� u
– A � B iff ∀v ∈ B ∃u ∈ Au � v.

Then, ≺ is a strict partial order on the maximal clusters of M . In the sequel,
A,B will usually be nonempty clusters. We also define e.g. w ≺ A by identifying
w with {w}.

Lemma 1. Fix a multiset Γ and a finite pointed model (M,w), we have that
w �M ♦∞Γ iff there is a cluster C of M such that w � C and a map f : C → Γ
such that u ∈ ‖f(u)‖ for all u ∈ C, and whenever ϕ ∈ Γ \ {f(u)}, then there is
v ∈ C such that u � v ∈ C and v ∈ ‖ϕ‖.

Example 3. Recall the model of Example 1, consisting of an irreflexive cluster
{0, 1} with ‖e‖ = {0}, ‖o‖ = {1}, ‖p‖ = {1}, and ‖i‖ = {0, 1}. We then have that
♦∞{e, o} = {0, 1}, since each point is either even and has an accessible point
that is odd, or vice-versa. On the other hand, ♦∞{o, p} = ∅, since we cannot
assign any atom a ∈ {o, p} to 1 in such a way that 1 satisfies ⟐a ∧ ♦a′, where a′

is the complementary atom to a. And if 0 were to satisfy ⟐(a ∧ x) ∧ ♦(a′ ∧ x),
then 1 would also have to satisfy ⟐a ∧ ♦a′, something we have already shown
to be impossible. Thus it is not enough for each element of Γ to be satisfied
in a cluster in order to make ♦∞Γ true: instead, each point w must have an
accessible world satisfying all but possibly one element ϕw of Γ , in which case
it must also satisfy ϕw.

3 Final Submodels

The technique of final worlds is a powerful tool in establishing the finite model
property for many transitive modal logics [9], and is also applicable to the μ-
calculus over weakly transitive frames [2]. The idea here is that only a few
worlds in a model contain ‘useful’ information, and the rest can be deleted.
These ‘useful’ worlds are those that are maximal (or final) with respect to �,
among those satisfying a given formula of Σ.

Definition 5. (Σ-final). Given a model M and a set of formulas Σ, a world
w ∈ M is Σ-final if there is some formula ϕ ∈ Σ such that w �M ϕ and if w � u
and u �M ϕ, then u � w.
A set A ⊆ M will be called Σ-final iff every w ∈ A is Σ-final. The Σ-final part
of M is the largest Σ-final subset of M and we denote it by MΣ.

Sometimes we need to ‘glue’ a root cluster to a Σ-final model. To this end,
a rooted model (M,w) will be called Σ-semifinal if M \ Cw is Σ-final.

Baltag et al. [2] built on ideas of Fine [9] to show via final submodels that the
topological μ-calculus has the finite model property. While final submodels are
not necessarily finite (if M is infinite), they do have finite depth. Given a model
M , a set of formulas Σ and w ∈ M , we define the depth of w in M , denoted
dptM (A), as the supremum of all n such that w = w0 ≺ w1 ≺ w2 ≺ . . . ≺ wn

(recall that ≺ is the strict part of �); note that this is finite on finite weakly

820 D. Fernández-Duque and K. Papafilippou

transitive models but could be infinite on infinite ones. For A ⊆ M we define
the depth of A in M to be dptM (A) = sup(0 ∪ {dptM (w) : w ∈ A}). The Σ-
depth of w is defined analogously, except that here we only consider chains such
that w1, . . . , wn ∈ MΣ (note that w itself need not be Σ-final). Then we define
dptMΣ (A) as before. It is not hard to check that dptMΣ (w) is bounded by |Σ|, and
thus if Σ is finite we can immediately control the depth of any Σ-final model.
From a model of finite depth, it is easy to obtain a finite model.

In order to use this idea towards a proof of the finite model property (and
also for our own results), one must carefully choose Σ so that for any ϕ ∈ Σ
and w ∈ MΣ , we have that MΣ , w ≡Σ M,w. For example, Σ should be closed
under subformulas, but since we are in the μ-calculus, we will have to find a way
to treat the free variables that show up in said subformulas. Because of this,
we define a variant of the set of subformulas of a given formula where any free
occurrence of a variable is labelled according to its binding formula, thus making
sure that the same variable does not appear free with different meanings. We
also need to treat reflexive modalities as if they were primitive.

Definition 6. We define the modified subformula operator sub∗ : Lμ → P(Lμ)
recursively by

– sub∗(r) = {r} if r = �, p, x;
– sub∗(¬p) = {¬p, p};
– sub∗(ϕ � ψ) = {ϕ � ψ} ∪ sub∗(ϕ) ∪ sub∗(ψ) where � = ∧ or ∨ and ϕ � ψ �=
⟐σ or ⊡ σ for some σ;2

– sub∗(�ψ) = {ψ} ∪ sub∗(ψ) where � = ♦,�,⟐ or ⊡;
– sub∗(νx.ϕ) = {ϕ(xνx.ϕ)}∪sub∗(ϕ(xνx.ϕ)) where xνx.ϕ is a fresh propositional

variable named after νx.ϕ;
– sub∗(μx.ϕ) = {ϕ(xμx.ϕ)}∪sub∗(ϕ(xμx.ϕ)) where xμx.ϕ is a fresh propositional

variable named after μx.ϕ.

Given a set of formulae Σ, we can define a partial order on sub∗[Σ] by
ϕ <sub∗ ψ iff ϕ ∈ sub∗(ψ) and ϕ �= ψ.

Observe that if xψ is a free variable of ϕ, then ϕ <sub∗ ψ. So we will work
with these altered subformulas, but we also need to close Σ under some further
operations. Given a set X, some Y ⊆ X and a set A of mappings a : X → P(X),
we define the closure of Y over X inductively as follows:

– Cl0A(Y) = Y ;
– Clα+1

A (Y) = ClαA(Y) ∪ {a(x) : a ∈ A &x ∈ ClαA(Y)};
– ClλA(Y) =

⋃

α<λ

ClαA(Y) for λ ∈ Lim.

ClA(Y) = ClαA(Y) where α is any ordinal such that ClαA(Y) = Clα+1
A (Y).

For the remainder of the paper, unless stated otherwise, we will be working
with a set of formulae Σ such that Σ = Cl⟐,sub∗,¬(Σ). Observe that any finite

2 Remember that ⟐σ abbreviates σ ∨ ♦σ and similarly ⊡σ = σ ∧ �σ.

The Universal Tangle for Spatial Reasoning 821

set Σ0 can be extended to a Σ with this property that is finite up to modal
equivalence of formulae since in S4 there are only finitely many non equivalent
modalities and ⟐ is an S4 modality [3].

Since we have labelled our variables by their binding formula, we can substi-
tute this formula back and obtain a ‘closed’ version of this formula.

Lemma 2. Fix a finite set of formulas Σ closed under sub∗ and some ϕ ∈ Σ,
we let �ϕ� denote the closed form of ϕ; that is every instance of xψ is substituted
by ψ recursively until there are no free variables left.
It holds that �ϕ� ∈ Lμ for each ϕ ∈ Σ.

Observe that additionally ¬�ϕ� is equivalent to �¬ϕ� for all ϕ ∈ Σ. In the
sequel, given a model M and a set of formulae Σ closed under sub∗, we will read
w �M ϕ to mean w �M �ϕ�. In particular, this means that w is final for ϕ in M
iff it is final for �ϕ� in M .

Definition 7. Fix a finite rooted model (M,w) and a set of formulas Σ, we will
write

w �M 〈n〉ϕ :⇔ ∃v ∈ MΣ (v � w ∧ dptΣ(v) = n ∧ v �M ϕ).

Since for a given cluster C of M and u, v ∈ C, u �M 〈n〉ϕ ⇔ v �M 〈n〉ϕ,
we will occasionally make an abuse of notation and write C �M 〈n〉ϕ to mean
∃u ∈ C u �M 〈n〉ϕ.

The formulas 〈n〉ϕ provide all the information needed to evaluate truth on
C:

Theorem 2. Let (M,w), (N,w) be finite rooted models with root clusters C and
C ′ respectively. Assume that dptMΣ (w) = dptNΣ (w) and ∀ϕ ∈ Σ w �M 〈n〉ϕ ⇔
w �N 〈n〉ϕ for all n < dptMΣ (w), and

– if C is Σ-final then C ′ = C
– if C is not Σ-final then C ′ ⊆ C

then ∀v ∈ C ′ ∀ϕ ∈ Σ v �M ϕ iff v �N ϕ.

As an immediate corollary, we get the following, where we write M,u ≡Σ N, v
to mean ∀ϕ ∈ Σ u �M ϕ ⇔ v �N ϕ. In case M = N , we may abbreviate this by
u ≡Σ v.

Theorem 3. Given a finite model M , a model N with M ⊇ N ⊇ MΣ and any
w ∈ N , it holds that M,w ≡Σ N,w.

4 Structural Evaluation

The strategy we will follow to obtain an equivalence is to describe the parts of
the world and the model that are relevant to Theorem 2. In particular we will

822 D. Fernández-Duque and K. Papafilippou

define formulae in L♦∞ equivalent to the 〈n〉ϕ ‘formulae’, as well as a formula
which approximates the statement “w is Σ-final”.

Theorem 2 tells us that we need very little information to evaluate truth of
formulas on a given cluster, provided we have already evaluated them on clusters
of lower depth. This information is recorded by (semi-)satisfaction pairs:

Definition 8. Given a model M say that 〈C,Θ〉 is a semi-satisfaction pair for
M if ∃w ∈ M such that C = Cw and Θ = {〈m〉ψ : w �M 〈m〉ψ for ψ ∈
Σ ∧ m < dptΣ(w)}. A pair 〈C,Θ〉 is called a semi-satisfaction pair if it is a
semi-satisfaction pair for some finite pointed Σ-semifinal model. A satisfaction
pair for M is a semi-satisfaction pair 〈C,Θ〉 such that C is Σ-final in M .

Given a semi-satisfaction pair 〈C,Θ〉 for some model M , we define3

ΘC := {〈m〉ψ : C �M 〈m〉ψ for ψ ∈ Σ ∧ m ≤ dptΣ(C)}.

We extend the definition of dptΣ by saying dptΣ(Θ) = sup{n : 〈n〉ϕ ∈ Θ
for some ϕ ∈ Σ}. Let Satn be the set of satisfaction pairs 〈C,Θ〉 such that
dptΣ(Θ) = n and let Sat0n, Sat1n be the first and second projections of Satn
respectively. Similarly, Sat∗n, Sat∗0n , Sat∗1n are the corresponding sets for semi-
satisfaction pairs.

We will need to compare clusters and semi-satisfaction pairs. Roughly,
C � C ′ indicates that C is a smaller cluster than C ′ (up to bisimulation), and
〈C,Θ〉 	 〈C ′, Θ′〉 indicates that the two pairs vary only in their root cluster,
where C ′ is larger.

Let us make this precise. Fix P ⊆ P and clusters C and C ′ from models
M = 〈M,�M, ‖ · ‖M〉 and N = 〈N,�N , ‖ · ‖N 〉 respectively, we write C �P C ′

to mean that there is some C ′′ ⊆ C ′′′ such that C ′ �P C ′′. Similarly C � C ′ is
defined for when additionally C ��P C ′. As with the bisimilarity notation, the P
subscript is omitted in the sequel. Define 	n ⊆ Satn×Satn by 〈C ′, Θ′〉 	n 〈C,Θ〉
iff C ′

� C and Θ′ = Θ. Let
n be the reflexive closure of 	n. We will write 	,

 instead of 	n,
n when n is clear.

Satisfaction pairs are sufficient to evaluate truth, but our definition of 〈n〉ϕ
in tangle logic will be sensitive to depth (i.e., to n), and thus we need to control
the Σ-depth of the model we are working in. This is achieved by considering
chains of satisfaction pairs: if a chain of length n lies above a given world, that
means that the depth of that world is at least n. Since the property ‘there is
a chain of length n’ will be expressible in L♦∞ , this will allow us to have the
desired control over depth.

To formally define chains, we need to consider root clusters glued to a model.
Fix a finite model M and a cluster C with M ∩ C = ∅, we denote by

[
M
C

]
the

model N with domain M ∪ C, accessibility relation �N := �M ∪ �C ∪ (C × M)
and ‖ · ‖N := ‖ · ‖M ∪ ‖ · ‖C .

3 Due to Theorem 2, ΘC is uniquely determined irrespectively of the chosen model M
for which 〈C, Θ〉 is a semi-satisfaction pair.

The Universal Tangle for Spatial Reasoning 823

Lemma 3. For every Σ-final model M of depth n with a root cluster C, there
is some chain C = {〈Ci, Θi〉}i≤n such that

1. Cn = C
2. 〈Ci, Θi〉 is a satisfaction pair for M for each i ≤ n
3. Ci+1 ≺ Ci for each i < n

4. For all i < n, if
[

Ci

Ci+1

]
� Ci then Θi+1 �= ΘCi

i .

We will call a chain as in Lemma 3 a witnessing chain of depth n; witnessing
chains will be denoted as C, C′ or Ci. Let Chainn be the set of witnessing chains of
depth n. We extend 	n to Chainn ×Chainn by setting C 	n C′ iff the following
hold:

– 〈Ci, Θi〉 = 〈C ′
i, Θ

′
i〉 for i < n

– Cn � C ′
n

– Θn = Θ′
n

and let
n be its reflexive closure. We will identify 	 and
 to be the appropriate
	n and
n respectively. Finally, given n and a formula ϕ ∈ Σ, we write

supp(〈n〉ϕ) =
{
C ∈ Chainn : ∃(M,w) finite pointed Σ-final model where

w �M ϕ ∧ Cn = Cw ∧ C is a witnessing chain of depth n for M
}
.

The definition of witnessing chains can be further expanded to semifinal
models, however the analogue of Lemma 3 for semi-witnessing chains will not
necessarily hold for any Σ-semifinal model as we cannot guarantee that we can
always find a chain in that case for which condition 4 will hold for the root
cluster. In this setting, we instead use a weaker notion.

Definition 9. Given a Σ-semifinal model M of depth n with root cluster C,
a semi-witnessing chain for M of depth n (if it exists) is some chain C =
{〈Ci, Θi〉}i≤n such that

1. Cn = C
2. 〈Ci, Θi〉 is a semi-satisfaction pair for M for each i ≤ n
3. Ci+1 ≺ Ci for each i < n

4. For all i < n, if
[

Ci

Ci+1

]
� Ci then Θi+1 �= ΘCi

i .

We will denote by Chain∗
n the set of all semi-witnessing chains of depth n.

For M an arbitrary finite model, a (semi-)witnessing chain on M of depth n
will be a (semi-)witnessing chain on the Σ-(semi)final part of w ↑∗

M for some
w ∈ M . Finally for C ∈ Chain∗

n, let dpt(C) := n denote its depth.

We can now define formulas equivalent to the “〈n〉ϕ” in the language of
L♦∞ . This is done inductively by having the formula α express the existence
of a witnessing chain C with a satisfaction pair 〈C,Θ〉 underneath it. Then the
formulae β and γ ensure that the extension C	〈C,Θ〉 is also a witnessing chain
(i.e. the pair 〈C,Θ〉 is as high as it can possibly be while remaining below C).

824 D. Fernández-Duque and K. Papafilippou

Fig. 1. On the left, a witnessing chain. On the right, a witnessing chain ensures that
the Σ-depth of a point where 〈n〉ϕ holds is at least n.

At this point it is important to note that if we were to simply use satisfaction
pairs, we would run the risk of having the Σ-depth of worlds satisfying 〈n〉ϕ
being smaller than n; with witnessing chains, we ensure that the depth does not
collapse (Fig. 1).

Definition 10. Fix w ∈ M and a set of formulae Σ let τw :=
∧

p∈P (w) p ∧
∧

p�∈P (w) ¬p, where p ∈ Σ. We will, as a convention, not include the model M

and the set Σ in the notation. Below we define the formulas 〈n〉ϕ ∈ L♦∞ , along
with some auxiliary formulas and notation.

– Ir(C) := 〈Cn, Θn〉
 〈Cn−1, Θ
Cn−1
n−1 〉 ∧ ∃w ∈ Cn∀u ∈ Cn ∩ w ↑ P (w) �= P (u)

where n = dpt(C)
– A(Θ) :=

∧

〈m〉ψ∈Θ

〈m〉ψ ∧
∧

〈m〉ψ �∈Θ

¬〈m〉ψ

– τC
w :=

{
τw ∧ A(Θdpt(C)) ∧ ♦

(
τw ∧ δ(C�dpt(C))

)
if Ir(C)

τw ∧ A(Θdpt(C)) ∧ ♦δ(C�dpt(C)) otherwise
– α(C) := ♦∞{τC

w : w ∈ Cdpt(C)}
– β(C) := �

(∨

C′�C
α(C′) → α(C)

)

– γ(C) := ¬
∨

C′ ��C
α(C′)

– δ(C) := α(C) ∧ β(C) ∧ γ(C)
– 〈n〉ϕ :=

∨

C∈supp(〈n〉ϕ)

⟐δ(C)

Here, A describes the 〈m〉-formulas in a given Θ, Ir tells us when a bottom-
most cluster in a chain has an ‘irreflexive point’4 which we can use to be able to

4 Whilst by our convention every world w in M is irreflexive, in this context we mean
that Cn, w �� C′, w′ with w′ being reflexive.

The Universal Tangle for Spatial Reasoning 825

jump to cluster in the chain above it, τC
w describes the ‘local state’ at w, α ensures

that the desired chain is present, and β and γ rule out any unwanted chains. By
following step by step the definitions above, we can prove the following lemma:

Lemma 4. Fix a finite model M a set of formulas Σ and w ∈ M , it holds that
w �M 〈n〉ϕ ⇔ w �M 〈n〉ϕ for all ϕ ∈ Σ.

Corollary 1. Fix a finite model M , some w ∈ M and C ∈ Chain∗
n \ Chainn,

then w �M α(C) iff C�n is a witnessing chain of depth n for M strictly above w
(i.e. w ≺ Cn−1) and there is some cluster C = Cu for some u ∈ M such that

(a) w � C ≺ Cn−1

(b) Cn � C
(c) C �M A(Θn)

The formulas 〈n〉ϕ thus defined are the central ingredient in proving our
main result. The translation χ(ϕ) of ϕ itself into L♦∞ requires a case distinction
according to whether we are evaluating on a final world or not. Since a completely
accurate definition of finality is impossible to obtain, even in Lμ, we will instead
approximate one with the following. The formula split(n) roughly states that
there are two incomparable final worlds of depth n above w, or there is a semi-
witnessing chain of depth higher than n above w; in either case, w itself cannot
be a final world of depth n.

Definition 11. We define formulas

split(n) :=
∨

{⟐δ(C) ∧⟐δ(C′) : C, C′ ∈ Chainn with 〈Cn, Θn〉 �= 〈C ′
n, Θ′

n〉}

∨
∨

{α(C0) : C0 ∈ Chain∗
n+1 \ Chainn+1}.

Now, suppose we have access to the valuation at w, a chain C witnessing
that w is Σ-final of depth n (with C = ∅ if w is not Σ-final), as well as the set
Θ of formulas 〈m〉ϕ with m < n := dptΣ(w) which are true on w. For such a
tuple (w, C, Θ, n), we define a formula χ0(w, C, Θ, n) stating the above-mentioned
properties, depending on whether split(n) holds on w:

χ0(w, C, Θ, n) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈n〉� ∧ ¬〈n + 1〉�∧
¬split(n) ∧ τw ∧⟐δ(C) if C �= ∅

〈n〉� ∧ ¬〈n + 1〉�∧
split(n) ∧ τw ∧ A(Θ) if C = ∅

.

We are almost ready to define χ(w). To do so, we first define eval(ϕ, n) to be
the set of all triples 〈w, C, Θ〉 for which there exists a rooted Σ-semifinal model
(M,w) such that

1. w ∈ M
2. w �M ϕ
3. Θ = {〈m〉ψ : w �M 〈m〉ψ for ψ ∈ Σ ∧ m < dptΣ(w)}

826 D. Fernández-Duque and K. Papafilippou

4. If w �∈ MΣ then dptΣ(Θ) = n and C = ∅

5. If w ∈ MΣ then dptΣ(Θ) = n − 1 and C is a witnessing chain for M of depth
n with 〈Cw, Θ〉 = 〈Cn, Θn〉.

And let eval(ϕ) :=
⋃

n

eval(ϕ, n). Since w satisfies ϕ if and only if we can find

C and Θ such that 〈w, C, Θ〉 ∈ eval(ϕ), we may define the characteristic formula
χ(ϕ) of ϕ by

χ(ϕ) :=
∨

〈w,C,Θ〉∈eval(ϕ)

χ0

(
w, C, Θ, dptΣ(Θ)

)
.

Theorem 4. Given a formula ϕ and a finite rooted model (M,w), we have that
w �M ϕ ⇔ w �M χ(ϕ).

In view of [2], this also applies to the class of topological spaces. Moreover,
♦∞Γ can be expressed by a first order formula in all path-finite weakly transitive
frames, where path-finite means that the ordering ≺ and its inverse ≺−1 are well-
founded. So we get a first order expressibility of Lμ in frames analogous to the
ones in [5]. Thus we obtain the following.

Theorem 5. Lμ ≡ L♦∞ over the class of topological spaces and the class of
weakly transitive frames, and so Lμ ⊂ FOL/� over finite and path-finite weakly
transitive frames.

In-fact, we fail to get a characterization theorem for the μ calculus over
finite and path-finite weakly transitive frames. We show this via a bisimulation
invariant formula of FOL whose modal class is not definable via a Lμ formula.

Theorem 6. Lμ � FOL/� over finite and path-finite weakly transitive frames.

We can obtain a rough estimate of |χ(ϕ)| ≤ 2(14|ϕ|+1)214|ϕ|+6
. This upper

bound also applies in the transitive setting, whereas it is more difficult to extract
from the methods of [5]. This bound is reasonably close to the known lower
bound, which is exponential [8]. Finding the optimal size of a translation remains
an interesting open problem.

5 Conclusion

We have shown that the topological μ-calculus is equi-expressive to its tan-
gled fragment, provided it’s defined in a way that better captures its intended
behaviour on arbitrary topological spaces while retaining its original value on
metric spaces and other ‘nice’ topological spaces. Given the much more trans-
parent syntax of tangle logic, this suggests that the latter is more suitable for
applications in spatial KR than the full μ-calculus.

This begs the question of whether the topological μ-calculus, or its tangled
fragment, can be enriched in a natural way to obtain the full expressive power of
the bisimulation-invariant fragments of FOL or MSO. Perhaps something in the
spirit of hybrid logics can bridge this gap, but at this point the question remains
a challenging open problem.

The Universal Tangle for Spatial Reasoning 827

References

1. Baltag, A., Bezhanishvili, N., Fernández-Duque, D.: The topology of surprise. In:
Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
KR 2022, Haifa, Israel, 31 July–5 August 2022 (2022). https://proceedings.kr.org/
2022/4/

2. Baltag, A., Bezhanishvili, N., Fernández-Duque, D.: The topological mu-calculus:
completeness and decidability. In: 36th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS, Rome, Italy, 29 June–2 July 2021, pp. 1–13. IEEE
(2021). https://doi.org/10.1109/LICS52264.2021.9470560

3. Chagrov, A.V., Zakharyaschev, M.: Modal logic. In: Oxford Logic Guides (1997)
4. Cohn, A., Renz, J.: Qualitative spatial representation and reasoning. In: van

Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representa-
tion, Foundations of Artificial Intelligence, vol. 3, pp. 551–596. Elsevier (2008)

5. Dawar, A., Otto, M.: Modal characterisation theorems over special classes of
frames. Ann. Pure Appl. Logic 161(1), 1–42 (2009)

6. Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. Int. J. Geogr.
Inf. Syst. 5(2), 161–174 (1991)

7. Esakia, L.: Weak transitivity-a restitution. Logical Invest. 8, 244–245 (2001)
8. Fernández-Duque, D., Iliev, P.: Succinctness in subsystems of the spatial μ-calculus.

FLAP 5(4), 827–874 (2018). https://www.collegepublications.co.uk/downloads/
ifcolog00024.pdf

9. Fine, K.: Logics containing K4. I. J. Symb. Logic 39, 31–42 (1974)
10. Goldblatt, R., Hodkinson, I.: Spatial logic of tangled closure operators and modal

mu-calculus. Ann. Pure Appl. Log. 168(5), 1032–1090 (2017)
11. Gougeon, Q.: The expressive power of derivational modal logic. Master’s thesis,

ILLC, University of Amsterdam (2022)
12. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-

calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7_60

13. Lucero-Bryan, J.G.: The d-logic of the real line. J. Log. Comput. 23(1), 121–156
(2013). https://doi.org/10.1093/logcom/exr054

14. van Benthem, J.: Modal correspondence theory. Ph.D. thesis, University of Ams-
terdam (1976)

15. Pacheco, L., Tanaka, K.: The alternation hierarchy of the μ-calculus over weakly
transitive frames. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds.)
WoLLIC 2022. LNCS, pp. 207–220. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-15298-6_13

16. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, KR 1992, pp. 165–176. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1992)

17. Stell, J.: Qualitative spatial representation for the humanities. Int. J. Hum. Arts
Comput. 13(1–2), 2–27 (2019)

18. Wolter, F., Zakharyaschev, M.: Spatial reasoning in RCC-8 with Boolean region
terms. In: Horn, W. (ed.) ECAI, pp. 244–250. IOS Press (2000)

https://proceedings.kr.org/2022/4/
https://proceedings.kr.org/2022/4/
https://doi.org/10.1109/LICS52264.2021.9470560
https://www.collegepublications.co.uk/downloads/ifcolog00024.pdf
https://www.collegepublications.co.uk/downloads/ifcolog00024.pdf
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1093/logcom/exr054
https://doi.org/10.1007/978-3-031-15298-6_13
https://doi.org/10.1007/978-3-031-15298-6_13

Author Index

A
Al Anaissy, Caren 209
Ali, Ramsha 243
Alviano, Mario 3, 481
Areces, Carlos 405, 729

B
Baader, Franz 11
Balintová, Iveta 338
Banbara, Mutsunori 262, 278
Barbero, Fausto 649
Bednarczyk, Bartosz 289
Beierle, Christoph 462, 561
Belabbes, Sihem 353
Belle, Vaishak 35
Benferhat, Salem 353
Bernreiter, Michael 547
Berthold, Matti 145
Bertossi, Leopoldo 49
Bílková, Marta 420
Boborová, Janka 338
Bruynooghe, Maurice 756
Burigana, Alessandro 579

C
Cabalar, Pedro 65, 498, 787
Cassano, Valentin 405, 729
Castro, Pablo F. 405
Charalambidis, Angelos 515
Chrpa, Lukáš 227, 595
Ciabattoni, Agata 498

D
Dalmonte, Tiziano 306
Darwiche, Adnan 106
De Bortoli, Marco 595
de Camargo e Souza Câmara, Igor 531
Demri, Stéphane 322
Denecker, Marc 756

Di Florio, Cecilia 123
Diéguez, Martín 787
Dodaro, Carmine 227
Dutto, Danae 729
Dyrkolbotn, Sjur K 161

E
Eiter, Thomas 73
El-Kholany, Mohammed M. S. 243

F
Fadnis, Saurabh 605
Fandinno, Jorge 253
Felli, Paolo 579
Fernández-Duque, David 814
Fervari, Raul 405, 729
Freiman, Robert 547
Frittella, Sabine 420

G
Galliani, Pietro 385
Gebser, Martin 243, 595
Geibinger, Tobias 73
Giordano, Laura 481
Giunchiglia, Enrico 621
Governatori, Guido 123

H
Haldimann, Jonas 462, 561
Hannula, Miika 665
Harders, Charles 638
Heyninck, Jesse 462
Hirate, Takahiro 262
Hirvonen, Minna 665
Homola, Martin 338

I
Inclezan, Daniela 638
Inoue, Katsumi 262, 278

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 829–831, 2023.
https://doi.org/10.1007/978-3-031-43619-2

https://doi.org/10.1007/978-3-031-43619-2

830 Author Index

J
Jaakkola, Reijo 90
Janhunen, Tomi 90
Järvisalo, Matti 745
Ji, Chunxi 106

K
Kawamoto, Yusuke 681
Kern-Isberner, Gabriele 462, 561
Konieczny, Sébastien 446
Kontinen, Juha 665
Koopmann, Patrick 11
Kozhemiachenko, Daniil 420
Kriegel, Francesco 11
Kuhlmann, Isabelle 745
Kuusisto, Antti 90

L
Laferrière, François 787
Lagniez, Jean-Marie 697
Laouar, Ahmed 353
León, Jorge E. 49
Li, Xu 209
Lifschitz, Vladimir 253
Lima, Tiago de 437
Lorini, Emiliano 437
Lu, Xiao-Nan 262
Lyon, Tim S. 369

M
Mahmood, Yasir 665
Maratea, Marco 227
Markovic, Djordje 756
Marquis, Pierre 697
Masolo, Claudio 385
Mazzullo, Andrea 306
Meier, Arne 665
Meyer, Thomas 561
Michaliszyn, Jakub 771
Mochi, Marco 227
Montali, Marco 579
Murano, Aniello 796

N
Nabeshima, Hidetomo 262
Neider, Daniel 796
Niskanen, Andreas 745

O
Obiedkov, Sergei 176
Oetsch, Johannes 73
Otop, Jan 771
Ozaki, Ana 306

P
Papafilippou, Konstantinos 814
Pearce, David 65
Perrotin, Elise 446
Pino Pérez, Ramón 446
Popescu, Andrei 192
Pukancová, Júlia 338

Q
Quaas, Karin 322

R
Rankooh, Masood Feyzbakhsh 90
Rapberger, Anna 145
Righetti, Guendalina 385
Rintanen, Jussi 605
Rondogiannis, Panos 515
Rotolo, Antonino 123
Rudolph, Sebastian 369
Ruggieri, Salvatore 132

S
Saravia, Andrés R. 405
Sartor, Giovanni 123
Sato, Tetsuya 681
Schaub, Torsten 262, 278, 787
Schwarzentruber, François 437
Sertkaya, Barış 176
Sezgin, Meliha 462
Soh, Takehide 262
State, Laura 132
Steinbauer-Wagner, Gerald 595
Suenaga, Kohei 681

T
Tacchella, Armando 621
Tamura, Naoyuki 262
Theseider Dupré, Daniele 481
Troquard, Nicolas 306
Turhan, Anni-Yasmin 531
Turini, Franco 132

Author Index 831

U
Ulbricht, Markus 145

V
Vallati, Mauro 227
van der Torre, Leendert 209, 498
Vesic, Srdjan 209
Vilander, Miikka 90
Virtema, Jonni 649, 665

W
Wałȩga, Przemysław Andrzej 712
Wallner, Johannes P. 192
Wilhelm, Marco 462

Y
Yamada, Yuya 278
Yu, Liuwen 209

Z
Zawidzki, Michał 712
Zimmermann, Martin 796

	 Preface
	 Organization
	 Combining Symbolic and Machine Learning Approaches for Automating Legal Reasoning (Abstract of Invited Talk)
	 Contents
	Invited Papers
	Generative Datalog and Answer Set Programming – Extended Abstract
	References

	Optimal Repairs in the Description Logic EL Revisited
	1 Introduction
	2 Preliminaries
	3 Canonical and Optimal Repairs
	4 Concise Representations of Canonical IQ-Repairs
	5 Finite Representations of Optimal CQ-Repairs
	6 Conclusion
	References

	Excursions in First-Order Logic and Probability: Infinitely Many Random Variables, Continuous Distributions, Recursive Programs and Beyond
	1 Introduction
	1.1 What's Missing from a First-Order Viewpoint?
	1.2 The Story Does Not Get Easier with Actions
	1.3 The Case for Meta-Beliefs
	1.4 Our Results

	2 A Brief Overview of Results
	2.1 Language
	2.2 Beliefs
	2.3 Semantics
	2.4 Actions
	2.5 Basic Action Theories
	2.6 Revisiting the Axiomatisation
	2.7 A Revised Program

	3 Abstraction at Play
	3.1 A Note About Continuous Noise

	4 Future Work
	References

	Special Track: Logics for Explainable and Trustworthy AI
	Efficient Computation of Shap Explanation Scores for Neural Network Classifiers via Knowledge Compilation
	1 Introduction
	2 Preliminaries
	3 Compiling BNNs into dDBCs
	3.1 Representing BNNs as Formulas in CNF
	3.2 Building an SDD Along the Way
	3.3 The Final dDBC

	4 Shap Computation: Experiments
	5 Conclusions
	References

	Logic, Accountability and Design: Extended Abstract
	1 Introduction
	2 Conceptual Analysis and Explication
	3 Nonmonotonic Reasoning and Strong Equivalence
	4 Methodologies for Applied Logics
	5 Related and Future Work and Conclusions
	References

	Contrastive Explanations for Answer-Set Programs
	1 Introduction
	2 Preliminaries
	2.1 Answer-Set Programming
	2.2 Contrastive Explanations

	3 Contrastive Explanations for ASP
	4 Applications
	4.1 Decision Sets
	4.2 Planning

	5 Computational Complexity
	6 Related Work
	7 Conclusion and Future Work
	References

	Short Boolean Formulas as Explanations in Practice
	1 Introduction
	2 Preliminaries
	3 Expected Errors
	4 An Overview of the Implementation in ASP
	5 Results from Data and Interpretation
	6 Conclusion
	References

	A New Class of Explanations for Classifiers with Non-binary Features
	1 Introduction
	2 Representing Classifiers Using Class Formulas
	3 The General Reason for a Decision
	4 General Necessary and Sufficient Reasons
	4.1 General Sufficient Reasons (GSRs)
	4.2 General Necessary Reasons (GNRs)

	5 The General Reasons of Decision Graphs
	6 Computing Prime Implicants and Implicates
	6.1 Computing General Sufficient Reasons
	6.2 Computing General Necessary Reasons

	7 Conclusion
	References

	Stable Normative Explanations: From Argumentation to Deontic Logic
	1 Introduction
	2 Background: Logic and Argumentation
	3 Stable Normative Explanations
	4 From Argumentation to Deontic Logic
	5 Stable Explanations in Neighbourhood Semantics
	6 Summary
	References

	Declarative Reasoning on Explanations Using Constraint Logic Programming
	1 Introduction
	2 Background and Related Work
	3 Preliminaries: Constraint Logic Programming
	4 Explaining via Reasoning: reasonx
	4.1 Embeddings into CLP
	4.2 The Core Meta-Interpreter of reasonx

	5 Conclusion
	References

	Argumentation
	On the Expressive Power of Assumption-Based Argumentation
	1 Introduction
	2 Background
	3 Signatures of ABA Frameworks
	4 Compact Realizability in ABA
	5 Claims, Preferences and Beyond
	6 Conclusion
	References

	Weak Argumentation Semantics and Unsafe Odd Cycles: Results and a Conjecture
	1 Introduction
	2 Background
	3 Perfect Extensions of the Stable Semantics
	4 A Formal Justification for Ignoring Attacks
	5 A Class of Justified Semantics Based on Admissible Sets
	5.1 A Remark on Strongly Undisputed Sets

	6 A Counterexample and a Conjecture
	7 Conclusion
	References

	Computing Stable Extensions of Argumentation Frameworks using Formal Concept Analysis
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation Frameworks
	2.2 Formal Concept Analysis

	3 An FCA Characterization of AF Semantics
	3.1 Enumerating Stable Extensions Using Next-Closure Algorithm
	3.2 Norris-Based Algorithm for Stable Extensions
	3.3 Preferred Extensions

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Reasoning in Assumption-Based Argumentation Using Tree-Decompositions
	1 Introduction
	2 Background
	3 Complexity of ABA Under the Lens of Tree-Width
	4 Dynamic Programming Algorithms for ABA
	5 Experiments
	6 Discussions
	References

	A Principle-Based Analysis of Bipolar Argumentation Semantics
	1 Introduction
	2 Bipolar Argumentation Framework
	2.1 Defence-Based Semantics
	2.2 Selection-Based Semantics
	2.3 Reduction-Based Semantics

	3 Principles
	4 Related Work
	5 Summary and Future Work
	References

	Answer Set Programming
	Comparing Planning Domain Models Using Answer Set Programming
	1 Introduction
	2 Background
	3 Strong Equivalence of Domain Models
	4 Domain Model Similarity
	5 Comparing Domain Models via ASP
	6 Related Work and Discussion
	7 Conclusion
	References

	Hybrid ASP-Based Multi-objective Scheduling of Semiconductor Manufacturing Processes
	1 Introduction
	2 Semiconductor Manufacturing Scheduling
	3 Experiments
	4 Conclusion
	References

	On Heuer's Procedure for Verifying Strong Equivalence
	1 Introduction
	2 Review: Programs
	3 Review: Two-Sorted Formulas
	4 Translation and Its Properties
	5 Examples
	6 Logic of Here-and-there with Arithmetic
	References

	Hamiltonian Cycle Reconfiguration with Answer Set Programming
	1 Introduction
	2 Background
	2.1 Hamiltonian Cycle Reconfiguration Problem
	2.2 ASP Encoding for HCP Solving

	3 New Encodings for HCP Solving
	4 Hamiltonian Cycle Reconfiguration Problem
	5 Conclusion
	References

	Recongo: Bounded Combinatorial Reconfiguration with Answer Set Programming
	1 Introduction
	2 Background
	3 The recongoApproach
	4 ASP Encoding for Independent Set Reconfiguration
	5 CoRe Challenge 2022
	6 Conclusion
	References

	Description Logics and Ontological Reasoning
	Beyond ALCreg: Exploring Non-Regular Extensions of PDL with Description Logics Features
	1 Introduction
	2 Preliminaries
	3 Nominals Lead to Undecidability
	4 Querying in ALCvpl
	5 Seemingly Innocent Self Operator
	6 Conclusions
	References

	Non-Normal Modal Description Logics
	1 Introduction
	2 Preliminaries
	2.1 Syntax
	2.2 Semantics
	2.3 Frame Conditions and Formula Satisfiability

	3 Tableaux for Formula Satisfiability
	4 Fragments Without Modalised Concepts
	5 Reasoning on Constant Domain
	6 Discussion
	References

	First Steps Towards Taming Description Logics with Strings
	1 Introduction
	2 Description Logics with String Domains
	3 Tree Constraint Automata Manipulating Strings
	4 Nonemptiness Problem for TCA on D
	4.1 From String Constraints to Natural Number Constraints
	4.2 Reducing TCA on Strings to TCA on Natural Numbers

	5 Automata-Based Approach for ALCFP(D)
	References

	Merge, Explain, Iterate: A Combination of MHS and MXP in an ABox Abduction Solver
	1 Introduction
	2 Preliminaries
	3 Computing Explanations
	3.1 Minimal Hitting Set
	3.2 MergeXplain

	4 Combined MHS-MXP Algorithm
	5 Advantages and Limitations
	6 Implementation
	7 Evaluation
	8 Conclusions
	References

	Tractable Closure-Based Possibilistic Repair for Partially Ordered DL-Lite Ontologies
	1 Introduction
	2 Preliminaries
	3 The C-Repair Method
	4 Characterization of C-Repair
	5 Rationality Properties of -Acceptance and C-Repair
	6 Concluding Discussions
	References

	 Derivation-Graph-Based Characterizations of Decidable Existential Rule Sets
	1 Introduction
	2 Preliminaries
	3 Greediness
	4 Derivation Graphs
	5 Conclusion
	References

	Concept Combination in Weighted DL
	1 Introduction
	2 Weighted Description Logic
	3 An Algorithm to Combine -Concepts
	4 Logical Properties of Concept Combination
	5 Empirical Evaluation of the Algorithm
	5.1 Evaluation on Intensional Data
	5.2 Evaluation on Extensional Data

	6 Related Work
	7 Conclusions
	References

	Logics of Knowledge and Belief
	How Easy it is to Know How: An Upper Bound for the Satisfiability Problem
	1 Introduction
	2 Knowing How Logic
	3 An Upper Bound for the Satisfiability Problem of LKh
	4 Final Remarks
	References

	Non-standard Modalities in Paraconsistent Gödel Logic
	1 Introduction
	2 Logical Preliminaries
	3 Frame Definability
	4 Tableaux Calculus
	5 Complexity
	6 Conclusions and Future Work
	References

	Base-Based Model Checking for Multi-agent only Believing
	1 Introduction
	2 Language and Semantics
	2.1 Semantics
	2.2 Language

	3 Model Checking
	4 Implementation and Experimental Results
	5 Conclusion
	References

	Belief Reconfiguration
	1 Introduction
	2 Reconfiguration
	2.1 The Ingredients
	2.2 The Framework

	3 Reliability Functions
	3.1 Desirable Properties
	3.2 Some Options for
	3.3 Discussion of the Proposed Functions and Properties

	4 Reconfiguration Operators
	5 Example
	6 Discussion and Conclusion
	References

	Splitting Techniques for Conditional Belief Bases in the Context of c-Representations
	1 Introduction
	2 Preliminaries
	3 Syntax Splitting, CSP-Solution Splitting, and c-Semantic Splitting
	4 (Strong) CSP-Constraint Splitting
	5 Case Splitting
	6 (Safe) Conditional Syntax Splitting
	7 Conclusions and Future Work
	References

	Non-monotonic Reasoning
	Complexity and Scalability of Defeasible Reasoning with Typicality in Many-Valued Weighted Knowledge Bases
	1 Introduction
	2 Weighted Finitely-Valued LCn with Typicality
	3 Computing -Coherent Entailment in ASP is in PNP[log]
	4 Comparing Different ASP Encodings of -Coherent Entailment
	5 Experiment
	6 Related Work
	7 Conclusions
	References

	Deontic Equilibrium Logic with eXplicit Negation
	1 Introduction
	2 ASP in a Nutshell
	3 Deontic Logic Programs
	4 Extension to Equilibrium Logic
	5 DELX at Work on Challenging Normative Problems
	6 Related and Future Work
	References

	Categorical Approximation Fixpoint Theory
	1 Introduction
	2 Fixed Points in Categories
	3 Extending AFT to Categories
	4 The Stable Operator and the Well-Founded Fixed Point
	5 Initiality of Fixed Points
	6 Comparison with AFT and a Novel Application Area
	6.1 A Comparison with Classical AFT
	6.2 Classical Applications Through the Prism of Categorical AFT
	6.3 A Novel Application: Non-monotonicity in Domain Theory

	7 Future Work
	References

	Deciding Subsumption in Defeasible ELI with Typicality Models
	1 Introduction
	2 Preliminaries
	3 Typicality Models for Defeasible ELI
	4 Minimal Typicality Models for Propositional Coverage
	5 Computing Maximal Typicality Models
	5.1 Updates of Typicality Models
	5.2 Model Recovery of Typicality Interpretations

	6 Maximal Typicality Models for Nested Coverage
	7 Conclusion
	References

	Truth and Preferences - A Game Approach for Qualitative Choice Logic
	1 Introduction
	2 Qualitative Choice Logic (QCL)
	3 Comments on Negation
	4 A Game for Ordered Disjunction
	5 Game-Induced Choice Logic (GCL)
	6 Conclusion
	References

	Rational Closure Extension in SPO-Representable Inductive Inference Operators
	1 Introduction
	2 Conditional Logic
	3 Defeasible Entailment
	4 Extending Rational Closure
	5 Entailment Based on SPOs
	6 RCP SPO-Representable Inference
	7 Conclusions and Future Work
	References

	Planning
	delphic: Practical DEL Planning via Possibilities
	1 Introduction
	2 Preliminaries
	2.1 Epistemic Models
	2.2 Event Models
	2.3 Product Update
	2.4 Plan Existence Problem

	3 delphic
	3.1 Possibilities
	3.2 Eventualities
	3.3 Union Update
	3.4 Plan Existence Problem in delphic

	4 Experimental Evaluation
	4.1 ASP Encodings
	4.2 Results

	5 Conclusions
	References

	Enhancing Temporal Planning by Sequential Macro-Actions
	1 Introduction
	2 Sequential Macro-Actions
	3 Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

	Planning with Partial Observability by SAT
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Planning with Partial Observability
	2.1 Case Analysis

	3 Formal Definition of Planning
	4 Execution Graphs
	5 Partial Execution Graphs
	6 Encodings of Partial Execution Graphs
	6.1 Nodes and Arcs
	6.2 Case Analysis
	6.3 Initial and Goal Nodes
	6.4 Encoding of Small-Memory Plans Implicitly
	6.5 Encodings of Small Memory Plans Explicitly

	7 Sizes of the Encodings
	8 Invariants
	9 Experiments
	10 Conclusion
	References

	Optimal Planning with Expressive Action Languages as Constraint Optimization
	1 Introduction
	2 Formal Framework
	3 Plans Shorter Than or Equal to the Bound
	4 Plans Longer Than or Equal to the Bound
	5 Optimal Planning as Constraint Optimization
	6 Conclusions
	References

	Plan Selection Framework for Policy-Aware Autonomous Agents
	1 Introduction
	2 Background: Policy Specification Language AOPL
	3 Policy-Driven Plan Selection Framework
	4 Experimental Analysis and Discussion
	5 Conclusions
	References

	Reasoning About Causes and Dependencies
	Strongly Complete Axiomatization for a Logic with Probabilistic Interventionist Counterfactuals
	1 Introduction
	2 Preliminaries
	3 Languages for Events and Probabilities
	4 The Axiom System
	4.1 Further Notation
	4.2 Axioms and Rules

	5 Discussion of the Proof System
	6 Conclusions
	References

	Logics with Probabilistic Team Semantics and the Boolean Negation
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Team Semantics

	3 Probabilistic Independence Logic with Boolean Negation
	4 Metafinite Logics
	5 Equi-Expressivity of FO(c,) and SOR(+,)
	6 Probabilistic Logics and Entropy Atoms
	7 Logic for First-Order Probabilistic Dependecies
	8 Complexity of Satisfiability, Validity and Model Checking
	9 Conclusion
	References

	Formalizing Statistical Causality via Modal Logic
	1 Introduction
	2 Illustrating Example
	3 Language for Data Generation
	4 Kripke Model for Statistical Causality
	5 Statistical Causality Language
	6 Axioms for StaCL
	7 Reasoning About Statistical Causality
	8 Conclusion
	References

	Boosting Definability Bipartition Computation Using SAT Witnesses
	1 Introduction
	2 Preliminaries
	3 Exploiting SAT Oracle Witnesses
	3.1 Exploiting UNSAT Witnesses
	3.2 Exploiting SAT Witnesses
	3.3 Improving B by Considering SAT Oracle Witnesses

	4 Experimental Evaluation
	5 Conclusion
	References

	Hybrid Modal Operators for Definite Descriptions
	1 Introduction
	2 Logic of Definite Descriptions and Related Formalisms
	3 Computational Complexity
	4 Expressive Power
	5 Conclusions
	References

	Reasoning About Quantities and Functions
	 Data Graphs with Incomplete Information (and a Way to Complete Them)
	1 Modal Logic and Semistructured-Data Query Languages
	2 Background and Motivation
	3 Reasoning with Incomplete Information
	4 Axiomatization and Completeness
	5 Extended Axiomatic Systems
	6 Final Remarks
	References

	Computing MUS-Based Inconsistency Measures
	1 Introduction
	2 Preliminaries
	3 Algorithms for the P and MV Inconsistency Measures
	3.1 Generic Algorithm
	3.2 Instantiation via Disjunctive ASP
	3.3 Instantiation via SAT-Based CEGAR

	4 Empirical Evaluation
	References

	Towards Systematic Treatment of Partial Functions in Knowledge Representation
	1 Introduction
	2 FO(pf) Syntax
	2.1 Syntactical Abbreviations

	3 FO(pf) Semantics
	4 Guarded FO(pf)
	4.1 Conjunctive and Implicative Guards
	4.2 Implicit Guards

	5 Unnesting of Nested Function Terms
	6 Related Work
	7 Conclusion
	References

	Deterministic Weighted Automata Under Partial Observability
	1 Introduction
	1.1 Our Framework
	1.2 Results
	1.3 Related Work

	2 Preliminaries
	3 Our Framework
	3.1 Sample Fitting

	4 Towards Active Learning PODWA
	4.1 Equivalence
	4.2 Unary Weights
	4.3 Minimization

	5 Conclusions
	References

	Temporal and Spatial Reasoning
	Past-Present Temporal Programs over Finite Traces
	1 Introduction
	2 Past-Present Temporal Programs over Finite Traces
	3 Temporal Completion
	4 Temporal Loop Formulas
	5 Conclusion
	References

	Robust Alternating-Time Temporal Logic
	1 Introduction
	2 Preliminaries
	3 rATL
	3.1 rATL Model-Checking
	3.2 rATL Satisfability
	3.3 Expressiveness

	4 Robust ATL*
	5 A Practical Example
	6 Discussion and Future Work
	References

	The Universal Tangle for Spatial Reasoning
	1 Introduction
	2 Preliminaries
	3 Final Submodels
	4 Structural Evaluation
	5 Conclusion
	References

	Author Index

