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Abstract. Planning the most efficient routes in a cooperative manner
is a challenge for many mobility and logistics service providers. In this
paper, a new methodological approach is presented based on the Multi-
Agent Path Planning (MAPP) problem which is a variant of the classi-
cal Multiple Traveling Salesmen Problem (MTSP). Given a team of m
agents that must visit n targets, the optimal paths plan (a set of m paths)
should be determined such that each target is visited only once. Mini-
mizing the time of this cooperative operation is the optimization goal
in this study. Thus, the plan is optimal, if the longest path in the plan
is the shortest possible (Min-Max problem). In order to deal with more
practical situations, two additional constraints are applied: the maxi-
mum number of targets each agent is allowed to visit, and the maximum
range for each agent. Accordingly, a so-called Constrained Multi-Agent
Path Planning (CMAPP) problem is elaborated in this paper. An easy
to apply Genetic Algorithm (GA) is presented, which improves the paths
using genetic-like operators and a heuristic method. The applicability of
the approximate solution was tested in four random scenarios where it
showed a decent performance. The developed method can be used for
route planning of mobility and logistics services in which several desti-
nations must be reached by a fleet of vehicles (e.g., group ride-sharing,
last-mile delivery).

Keywords: Multi-Agent Planning Problem · Genetic Algorithm ·
Routing Problem · Optimization · Metaheuristic · MAPF · MTSP

1 Introduction

The importance of cooperative path planning for vehicle fleets has been demon-
strated by various applications such as logistics and delivery services [19,26],
ride-sharing services [13,25], and mission planning for autonomous/unmanned
vehicles [4,28]. In general, a multi-agent planner is required for cooperative path
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planning of vehicle fleets. This planning problem can be defined as finding a set
of paths that allows a fleet of agents to reach a specified number of targets in the
minimum amount of time. This problem is similar to the classical Multiple Trav-
eling Salesmen Problem (MTSP) [1], and its variants such as the Multi-Agent
Path Planning (MAPP) problem [16]. The classical MTSP is generally defined
as follows. Given n cities (targets) and m salesmen (agents), the aim is to find
m tours (closed paths) starting and ending at a depot (initial position of the
agents) such that each target is visited only once and the total cost of visiting
all targets is minimized. The cost metric can be expressed in terms of distance,
time, etc., [1]. The MAPP problem is similar to the classical MTSP with two
differences:

– Subtours (open paths) are considered in the MAPP problem, so each agent
starts and ends its path at two distinct points.

– Agents can have different initial positions.

More practical situations can be modeled by applying additional restric-
tions to these combinatorial optimization problems. These restrictions affect
the agents mostly by restricting their path length, workload, or operational
range [13,19,25,26]. As a novelty, in this study the cooperative path planning
for vehicle fleets is modeled as a so-called Constrained Multi-Agent Path Plan-
ning (CMAPP) problem. This problem is formed by applying two additional
constraints to the MAPP problem: the maximum number of targets each agent
is allowed to visit, and the maximum range for each agent. This paper presents
a two-step solution method composed of an initial solution and a complex solu-
tion for this problem. The initial solution benefits from a new targets assignment
algorithm. The complex solution uses a Genetic Algorithm (GA) to improve the
result of the initial solution. The additional constraints are applied in both ini-
tial and complex solutions. The aim of this study is to show the applicability of
the developed method.

The remainder of the paper is organized as follows. Section 2 reviews solution
methods for similar problems. The CMAPP problem is described in detail in
Sect. 3. The methodology of the proposed solution is described in Sect. 4; then
results are presented and discussed in Sect. 5. Finally, conclusions are drawn in
Sect. 6.

2 Review of Solution Methods

Solving the MTSP and the MAPP problem is difficult because of their complex
combinatorial character (NP-hardness). In general, two types of approaches are
used to tackle the MTSP [12]: exact and heuristic-based approaches.

The exact approaches are based on either the transformation of the MTSP to
an equivalent Traveling Salesman Problem (TSP), or relaxing some constraints
of the problem [1,12]. The problem is solved by applying exact methods such
as Branch-and-Bound [6], Cutting Planes [20], and Integer Linear Programming
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Table 1. Literature instances on the MTSP having similarities to the CMAPP problem
considered in our study

Literature Solution method Multi-depot
MTSP

Min-Max
MTSP

Min. and Max.
No. of targets
for each agent

[17] Integer linear programming
formulations + new bounding and
Subtour Elimination Constraints
(SECs)

× ×

[18] A heuristic approach based on an
Evolution Strategy (ES)

× ×

[8] An ACO algorithm × ×
[30] Two variants of Parthenogenetic

Algorithm (PGA)
× Only Min.

[15] An Ant Colony-Parthenogenetic
Algorithm (AC-PGA)

× ×

[14] A heuristic approach based on a
graph simplification method and
the 2-OPT algorithm

×

Formulations [17]. The exact approaches are restricted to the MTSPs with rea-
sonable sizes (Euclidean and Non-Euclidean problems up to 100 and 500 cities
(targets), respectively [6]) because their performance is highly dependent on the
size of the problem. Accordingly, the solution runtime encounters an exponen-
tial rise with increasing the problem size [1,12]. Additionally, transforming the
MTSP to an equivalent TSP might result in an even more difficult problem to
solve, especially using the exact approaches [6,20].

The heuristic-based approaches solve the problem by applying approximate
heuristic methods such as Ant Colony Optimization (ACO) [8,12,15], Genetic
Algorithm (GA) [12,15,29,30], Simulated Annealing [24], Neural Networks [23],
and Tabu Search [22]. The heuristic-based approaches can achieve near-optimal
solutions in a reasonable amount of time even for larger problems [12].

The problems tackled in several previous papers on the MTSP have some
similarities to the CMAPP problem considered in our study (see Table 1). These
similarities include considering multiple depots for the MTSP, minimizing the
length (cost) of the longest tour (Min-Max MTSP), and applying additional
constraints.

There are only a few studies on the variants of the MAPP problem. In [9], a
GA was introduced to solve a so-called Subtour problem which is similar to the
MAPP problem with one difference: there is only one agent. This method was
developed for solving the MAPP problem in [10], and a similar method was pro-
posed in [16] to address the MAPP problem. In [27], a heuristic approach based
on a graph simplification method was presented to solve a multi-depot open
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tours MTSP which is basically the MAPP problem with Min-Sum optimization
objective.

Concluding the literature review, the MTSP is a well-studied problem, while
there are only a few studies on the MAPP problem. Furthermore, previous stud-
ies have not solved the MAPP problem with our additional constraints.

3 Constrained Multi-agent Path Planning Problem:
General Terms and Notation

In this section, the required foundation from Graph theory, and the notations
of the classical MTSP and the MAPP problem are presented. In addition, our
additional constraints for the MAPP problem are defined.

According to Graph theory, a graph is an ordered pair G = (V,E) consisting
of: V = {v1, ..., vm}, a set of m vertices (nodes), and E = {(vi, vj) | vi, vj ∈
V, i �= j}, a set of edges (links) connecting vertices vi and vj . This type of
graph may be precisely referred to as simple graph which means multiple edges
connecting the same two vertices are not allowed. In the context of the classical
MTSP and the MAPP problem, the targets and the points where the agents
begin their journey, are considered as vertices. In this study, only undirected
graphs are taken into consideration. In an undirected graph, edges are comprised
of unordered pairs of vertices where (vi, vj) = (vj , vi). Moreover, if in a graph
all vertices of V are connected to each other, the graph is a complete graph and
it is designated by Km(V ) where m is the number of vertices constituting the
vertex set V .

A path/cycle is a sequence of edges connecting a sequence of vertices. If the
sequence of vertices is composed of distinct vertices, a simple path/cycle is given
with the exception that for simple cycle the starting and ending vertices are
repeated. Here we only consider simple paths/cycles, so henceforth paths/cycles
simply refer to simple paths/cycles. P = (V1, E1) is a path in G = (V,E) if:
V1 = {v1, ..., vk} ⊂ V , and E1 = {(v1, v2), (v2, v3), ..., (vk−1, vk)} ⊂ E. This
means a path consisting of k vertices is a sequence of k − 1 edges connecting
these vertices in which each two consecutive edges share a vertex in common.
Likewise, C = (V2, E2) is a cycle in G = (V,E) if: V2 = {v1, ..., vk} ⊂ V , and
E2 = {(v1, v2), ..., (vk−1, vk), (vk, v1)} ⊂ E. In other words, a cycle comprising
k vertices is a sequence of k edges connecting these vertices in which each two
consecutive edges as well as the first and the last edge share a vertex in common.
Hence, a cycle starts and ends at the same vertex (tour), while a path starts and
ends at different vertices (subtour).

The number of edges in a path or cycle is called the length of that path or
cycle. For G = (V,E), the set of all paths and cycles with length k are designated
by Pk(G) and Ck(G), respectively. A weight (cost) w(vi, vj) can be assigned to
an edge. If every edge of a graph has a weight, the graph is called a weighted
graph. In a weighted graph if w(vi, vj) = w(vj , vi) is valid for every edge, the
weighted graph is called symmetric. In this study, for simplicity, the Euclidean
distance between two vertices of each edge is assigned as the weight of that edge
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w(vi, vj) = w(vj , vi) = |�r(vi) − �r(vj)|; note that the problems discussed here
are not restricted to Euclidean distance, so any desired measure (e.g., rectilinear
distance, actual driving distance) can be assigned as the weight of edges. For
a path P ∈ Pk(G), the sum of its edges’ weights is called the total cost of the
path:

c(P ) =
k∑

i=1

w(vi, vi+1) (1)

Similarly, the total cost of a cycle C ∈ Ck(G) is:

c(C) =
k−1∑

i=1

w(vi, vi+1) + w(vk, v1) (2)

If there is no associated weight to each edge, the total cost of a path or cycle is
simply equal to the length of the path or cycle.

The classical MTSP and the MAPP problem can be formulated on the basis
of the foundation from Graph theory described above. Consider A = {a1, ..., am}
and T = {t1, ..., tn} as the set of m agents and n targets, respectively. The agents
and targets are located in Euclidean space. The location of the ith agent and the
jth target is therefore determined by �r(ai) and �r(tj), respectively. The classical
MTSP is formulated as follows. Consider a as the depot for all agents, so ∀ ai = a
and ∀�r(ai) = �r(a). The configuration space of the problem is the complete graph
Kn+1(V ) with the vertex set V = T ∪ a. Consider Ci as a cycle with length ki
that starts and ends at vertex a (the depot). Let C = {C1, ..., Cm} be the set
of m cycles Ci with length ki. The aim is to determine C such that each target
is visited only once (visitation only by one agent), and the total cost of C (Eq.
(3)) is minimized (Min-Sum problem).

c(C) =
m∑

i=1

c(Ci) (3)

The total cost of C is the sum of the lengths (costs) of all m cycles Ci constituting
C (see Eq. (3)).

Likewise, the MAPP problem is formulated as follows. For each agent, the
configuration space of the problem is the complete graph Kn+1(Vi) with the
vertex set Vi = T ∪ai. The Euclidean distance between two vertices of each edge
(e.g., vx and vy) is assigned as the weight of that edge; w(vx, vy) = w(vy, vx) =
|�r(vx) − �r(vy)| where vx, vy ∈ Vi. As a result, Kn+1(Vi) is a symmetric weighted
graph. Consider Pi as a path with length ki starting at vertex ai. Let P =
{P1, ..., Pm} be the set of m paths Pi with length ki that each pair of them
do not have any vertex in common (except possible same position for starting
points). The aim is to determine P such that each target is visited only once
(visitation only by one agent), and the cost of the path with the largest cost in
P (Eq. (4)) is minimized.

cm(P) =
m

max
i=1

c(Pi) (4)
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Therefore, the MAPP problem is a Min-Max problem in which a team of m
agents must visit n targets in the minimum amount of time. The whole team
of agents should be used, so each agent must visit at least one target (ki ≥ 1).
However, the number of targets visited by each agent can be different.

In this study, our additional constraints for the MAPP problem are applied
independently of each other. These constraints are defined as follows. In the
MAPP problem, if the maximum number of targets that can be assigned to
each agent is limited, the solution would be affected since the maximum length
of each agent’s path is restricted. Accordingly, we introduced the maximum
number of targets each agent is allowed to visit as the first additional constraint.
Let Q = {q1, ..., qm} be the set of the maximum number of targets for each
agent, so the maximum number of targets that can be assigned to the ith agent
is qi. As a result, the length of each agent’s path is limited to: 1 ≤ ki ≤ qi.
In the case of applying this additional constraint, if the sum of all elements of
Q is less than the number of targets (

∑m
i=1 qi < n), then the fleet of m agents

cannot visit all n targets. Hereafter, this situation is referred to as the lack-of-
capacity issue. Additionally, if the maximum number of targets for each agent
is the same for all agents (∀ qi = q), the fleet of agents is called a homogeneous
capacity fleet. In this study, for solving the problem with the first additional
constraint, a homogeneous capacity fleet was assumed.

Furthermore, we defined the maximum range of the ith agent as the maximum
Euclidean distance from the position of ai that can be accessed by the ith agent.
This range is unlimited without applying any constraint on it, so each agent
can access all targets regardless of their Euclidean distance from its position.
However, if this range is limited, the only accessible targets for each agent are
located within its maximum range. This not only impacts the assignment of
targets to agents, but also can influence the total cost of each agent’s path.
Accordingly, we introduced the maximum range for each agent as the second
additional constraint. Let R = {r1, ..., rm} be the set of the maximum range
for each agent, so the maximum range of the ith agent is ri. Consequently, the
jth target can be accessible for the ith agent only if: |�r(ai) − �r(tj)| ≤ ri. In the
case of applying this additional constraint, if there would be at least one target
that is not in the maximum range of any agent (|∀�r(ai) − �r(tj)| > ri), then the
fleet of m agents cannot visit all n targets. Henceforth, this situation is referred
to as the out-of-range issue. Moreover, if the maximum range for each agent is
the same for all agents (∀ ri = r), the fleet of agents is called a homogeneous
range fleet. In this study, for solving the problem with the second additional
constraint, a homogeneous range fleet was assumed.

4 Methodology of the Approximate Solution

In this study, a two-step solution based on the method developed in [16] is pre-
sented for the CMAPP problem. The solution method is composed of an initial
solution and a complex solution. The complex solution improves the result of
the initial solution using a GA that applies genetic-like operators and a heuristic
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method. A solution is a set of paths that is called Plan (P) in this context. The
Plan is optimal if the longest path in the Plan is the shortest possible (Min-Max
problem). Thus, the solution algorithm is as follows:

– Step 1: a Plan P is generated by the initial solution.
– Step 2: the complex solution is applied to the Plan P to minimize the cost

cm(P) (see Eq. (4)) and eventually obtain the near-optimal Plan.

4.1 Initial Solution

The initial solution generates the Initial Plan (a starting set of paths). Consider
A = {a1, ..., am} and T = {t1, ..., tn} as the set of m agents and n targets,
respectively. A Plan is viable if each pair of paths do not have any vertex in
common (except possible same starting points). For the order of planning, we
assume that the targets are assigned to the agents in the following order: a1 →
a2 → · · · → am. The targets assignment algorithm is as follows:

– Step 1: a target ti1 ∈ T1 = T is selected and assigned to the first agent.
– Step 2: a target ti2 ∈ T2 = T1 − ti1 is selected and assigned to the second

agent.
...

– Step m: a target tim ∈ Tm = Tm−1 − tim−1 is selected and assigned to the
mth agent.

A viable Plan P = {P1, ..., Pm} is generated by iterating this algorithm until all
targets would be assigned to the agents.

However, a target selection approach is also required for selecting a target in
every step of the targets assignment algorithm. Therefore, different initialization
methods can be employed by adopting various target selection approaches. In
this study, two initialization methods were employed:

1. Greedy initialization method:
It selects targets on the basis of the nearest neighbor heuristic and assigns
them to the agents. For each agent, the nearest unassigned target to the
previously assigned target to that agent is selected in every iteration of the
targets assignment algorithm. In order to select the first target for each agent,
the nearest unassigned target to the position of that agent (ai) is selected.

2. Random initialization method:
It selects targets randomly and assigns them to the agents. For each agent, a
random unassigned target is selected in every iteration of the targets assign-
ment algorithm.

The solution for the non-constrained MAPP problem was also considered in
order to enable us to evaluate the effect of applying our two additional con-
straints that were applied independently of each other. Hence, six different solu-
tion modes were analyzed in this study (see Table 2).
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Table 2. Analyzed solution modes

Solution
mode

Initialization method Additional constraint

Greedy Random Max. number of
targets for each agent

Max. range for
each agent

1 ×
2 × ×
3 × ×
4 ×
5 × ×
6 × ×

4.2 Complex Solution

In order to evolve a Plan P towards a near-optimal Multi-Agent Plan, the com-
plex solution is applied to the paths Pi ∈ P. The complex solution uses a GA
applying three genetic-like operators and another operator employing a heuristic
method to minimize the cost cm(P) (see Eq. (4)). This reduces the length of the
longest path in the Plan, and eventually the near-optimal Plan is obtained. The
algorithm of the complex solution is the same as a classical GA [11] with one
exception: there is only one Plan P generated by the initial solution to be evolved
(the population size is 1).

In every evolutionary iteration, the developed operators are applied sequen-
tially to a Plan P and generate a new Plan P

′
, then:

– If cm(P
′
) < cm(P), Plan P

′
is kept for the next evolutionary iteration and

Plan P is discarded.
– If cm(P

′
) > cm(P), Plan P is kept for the next evolutionary iteration and Plan

P
′
is discarded.

In every evolutionary iteration, the following operators are applied in the
same order:

1. Crossover operator:
It is stochastically applied with the probability of Pcrossover. It selects two
paths stochastically either by the best-worst selection with the probability of
Pbest−worst or by random selection with the probability of 1 − Pbest−worst,
then each of them is randomly cleaved (cleaving position can be different for
each of them) into two parts and the parts are swapped.

2. Mutation operator:
It is stochastically applied with the probability of Pmutation. It randomly
selects two paths and swaps two randomly selected targets between them.

3. Migration operator:
It is stochastically applied with the probability of Pmigration. It randomly
selects two paths Pi and Pj , then it removes a randomly selected target from



458 A. Maktabifard et al.

Pi and adds it to Pj . Obviously, in this procedure the length of Pi reduces,
while the length of Pj enlarges.

4. Boosting operator:
It is stochastically applied with the probability of Pboost. It enhances the
quality of paths by applying the 2-OPT algorithm [2]. This algorithm exam-
ines whether the inequality (5) between each four targets vi, vi+1, vj , vj+1

of a path is valid or not. If it is valid, edges (vi, vi+1) and (vj , vj+1) are
substituted with edges (vi, vj) and (vi+1, vj+1), respectively. Applying this
algorithm generates a shorter path.

c(vi, vi+1) + c(vj , vj+1) > c(vi, vj) + c(vi+1, vj+1) (5)

5 Results and Discussion

In order to demonstrate the applicability of the developed solution, four random
scenarios with 100 test cases for each one were considered (see Table 3). In all
test cases, the agents and targets were spread out randomly in a dimensionless
domain (domain area = 1 × 1). The cost reduction Δcm was defined as the
cost reduction of the Final Plan compared to the Initial Plan (see Eq. (6)). The
following evaluation parameters were considered: Δcm is the average Δcm for
100 test cases; cm(Pfinal) is the average final cost for 100 test cases; qi is the
maximum number of targets for each agent; ri is the average maximum range
for each agent for 100 test cases; and T100 is the runtime for 100 test cases.

Δcm =
cm(PInitial) − cm(PFinal)

cm(PInitial)
× 100% (6)

Table 3. Test scenarios

Scenario Number of agents (m) Number of targets (n)

1 10 100

2 9 100

3 20 200

4 10 200

In terms of the first additional constraint, in each test case the maximum
number of targets for each agent was determined by qi =

⌈
n
m

⌉
to ensure that

the lack-of-capacity issue would not occur. Regarding the second additional con-
straint, in each test case the developed solution numerically calculates the min-
imum value for the maximum range for each agent such that the out-of-range
issue would not occur. As a result, here the maximum range for each agent is a
case-sensitive variable.

The operators of the complex solution were applied with the probabilities
of: Pcrossover = 0.7, Pbest−worst = 0.5, Pmutation = 0.4, Pmigration = 0.6, and
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Pboost = 0.3. Simulations were run for 150000 evolutionary iterations for each
test case by means of MATLAB R2021b. The hardware configuration of the PC
used was as follows. CPU: AMD RyzenTM 5-5500U, RAM: 8 GB.

The computational results are shown in Table 4. Accordingly, if the maximum
number of targets for each agent was restricted:

– in the case of employing Greedy initialization, the average final cost (except
in scenario 1) and the runtime decreased, while the average cost reduction
(except in scenario 1) increased compared to the non-constrained solution
with Greedy initialization.

– in the case of employing Random initialization, the runtime (except in sce-
nario 1) and the average cost reduction decreased, whereas the average final
cost increased compared to the non-constrained solution with Random ini-
tialization.

Moreover, if the maximum range for each agent was limited:

– in the case of employing Greedy initialization, the average cost reduction and
the average final cost decreased compared to the non-constrained solution
with Greedy initialization. A general trend was not observed regarding the
runtime.

– in the case of employing Random initialization, the average final cost in the
scenarios with more targets (200) and the average cost reduction decreased,
while the average final cost in the scenarios with fewer targets (100) increased
compared to the non-constrained solution with Random initialization. A gen-
eral trend was not observed regarding the runtime.

Additionally, in the absence of any additional constraints, Random initial-
ization led to a smaller average final cost compared to Greedy initialization in
scenarios with fewer targets (100). However, in the presence of additional con-
straints, Random initialization always led to a larger average final cost compared
to Greedy initialization. An interesting result was that ri was always less than
34% of the domain diameter (

√
1 + 1). Furthermore, if the number of agents and

targets increased while n
m remained constant, the average final cost decreased in

the case of applying the additional constraints along with Greedy initialization.
For 10 agents, when the number of targets increased by 100%, the average final
cost experienced an increase averaging 47.4% and 59.6% across solution modes 1
to 3, and solution modes 4 to 6, respectively. For 100 targets, when the number
of agents decreased by 10%, the average final cost underwent an increase averag-
ing 5.4% across all solution modes. For 200 targets, when the number of agents
decreased by 50%, the average final cost experienced an increase averaging 61%
and 45.2% across solution modes 1 to 3, and solution modes 4 to 6, respectively.

In order to visualize some instances of the evolution accomplished by the
approximate solution, Fig. 1 and Fig. 2 illustrate the Initial Plans and the Final
Plans generated by three solution modes for two different test cases. In these
figures, the yellow star is the initial position of the agent with the longest path;
the green squares are the initial positions of other agents; the paths are shown
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Table 4. Computational results

Scenario Solution
mode

Δcm [%] cm (Pfinal) qi ri T100 [s]

1 1 42.2161 1.1562 4275.8578

2 39.5385 1.2115 10 3994.7323

3 32.4922 1.1229 0.4466 4401.3488

4 82.4312 1.1477 3702.8841

5 80.3621 1.2843 10 4007.1264

6 74.9173 1.1801 0.4466 4243.5765

2 1 41.7696 1.2622 4547.9586

2 43.6597 1.2183 12 4446.8247

3 32.6158 1.2054 0.4748 4146.6348

4 83.0654 1.2370 4387.3790

5 82.8877 1.2500 12 4157.2272

6 76.1382 1.3021 0.4748 4302.6578

3 1 36.8756 1.1599 6314.7105

2 38.3951 1.1295 10 6094.6654

3 31.0760 0.9202 0.3416 6569.2436

4 79.5629 1.3924 6533.8671

5 77.7243 1.5373 10 6235.4490

6 73.1099 1.0898 0.3416 6850.0604

4 1 31.1765 1.8080 7881.1427

2 32.6695 1.7667 20 7332.4831

3 28.0342 1.5705 0.4537 7552.6412

4 85.0111 1.8575 7835.9091

5 82.7509 2.1332 20 7334.5086

6 80.2113 1.7799 0.4537 7824.6231

by solid lines and the longest path is highlighted in all illustrated Plans; and
dashed-line circles depict the maximum range of the agents. Figure 1 shows the
Plans obtained for a test case with 9 agents and 100 targets. In this test case the
solution achieved the largest Δcm (see Eq. (6)) among 100 test cases of scenario
2 in the case of applying Greedy initialization along with the constraint on the
maximum number of targets for each agent. In the absence of any additional
constraints, the cost cm(P) (see Eq. (4)) decreased from 3.16 in the Initial Plan
(Fig. 1(a)) to 1.24 in the Final Plan (Fig. 1(b)). If the maximum number of
targets for each agent was restricted to qi = 12, the cost cm(P) reduced from 3.16
in the Initial Plan (Fig. 1(c)) to 1.17 in the Final Plan (Fig. 1(d)). Lastly, if the
maximum range for each agent was limited to ri = 0.38, the cost cm(P) dropped
from 1.59 in the Initial Plan (Fig. 1(e)) to 1.17 in the Final Plan (Fig. 1(f)).
Furthermore, the Plans generated for a test case with 10 agents and 200 targets
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Fig. 1. Initial Plans (left) vs. Final Plans (right) generated by solution modes 1, 2 and
3; scenario 2; the test case in which the solution achieved the largest Δcm in the case
of applying Greedy initialization along with the constraint on the maximum number
of targets for each agent. (Color figure online)



462 A. Maktabifard et al.

Fig. 2. Initial Plans (left) vs. Final Plans (right) generated by solution modes 1, 2 and
3; scenario 4; the test case in which the solution achieved the largest Δcm in the case
of applying Greedy initialization along with the constraint on the maximum range for
each agent. (Color figure online)
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are illustrated in Fig. 2. In this test case the solution attained the highest Δcm
among 100 test cases of scenario 4 if Greedy initialization was applied together
with the constraint on the maximum range for each agent. In the absence of
any additional constraints, the cost cm(P) reduced from 2.86 in the Initial Plan
(Fig. 2(a)) to 1.74 in the Final Plan (Fig. 2(b)). If the maximum number of
targets for each agent was limited to qi = 20, the cost cm(P) dropped from 2.86
in the Initial Plan (Fig. 2(c)) to 1.95 in the Final Plan (Fig. 2(d)). Finally, if
the maximum range for each agent was restricted to ri = 0.42, the cost cm(P)
decreased from 2.60 in the Initial Plan (Fig. 2(e)) to 1.52 in the Final Plan
(Fig. 2(f)).

Comparing our developed method with previously proposed methods using
a similar GA for the MAPP problem, our method is novel because despite the
similarity in utilizing the mutation operator and the 2-OPT algorithm in [10],
their initialization phase (initial solution) and crossover operator function dif-
ferently. Moreover, our additional constraints were not applied in [16] and their
initialization phase uses a different targets assignment algorithm. The presented
method can be extended by applying other practical constraints realizing time
windows and priorities [5,13,19,25], conflict-free paths [3,7], and multi-modal
itinerary planning [21].

6 Conclusions

This paper presents a cooperative path planner based on the Multi-Agent Path
Planning (MAPP) problem with additional constraints to model more practi-
cal situations. The proposed solution uses a Genetic Algorithm (GA) applying
genetic-like operators and a heuristic method. It evolves an Initial Plan towards
a near-optimal Multi-Agent Plan by minimizing the length of the longest path.

The applicability of the approximate solution was tested in four random
scenarios. The computational results show that restricting the maximum number
of targets for each agent can mostly improve the performance of the solution if
the Initial Plan is generated by Greedy initialization. Furthermore, on average
the cost of the Final Plan can be decreased by limiting the maximum range
for each agent if the Initial Plan is generated by Greedy initialization. This
trend is observed in the scenarios with more targets (200 in this study) even if
the Initial Plan is generated by Random initialization. These results show that
using a simple yet efficient initial solution, the developed method can potentially
enhance the efficiency of route planning for a fleet of vehicles when the aim is
to optimize open paths (subtours) in a cooperative manner, and the vehicles of
the fleet have a limited operational range or a balance between their workload
is desired. This situation can be observed in a variety of mobility and logistics
services such as crowd-sourced delivery (e.g., TOURMIX), group ride-sharing,
general home delivery, and airport shuttles.
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The ultimate goal of this work is to simulate the challenges observed in
cooperative path planning for vehicle fleets. Thus, it can be extended by applying
other practical constraints like time windows and priorities. Our future work will
focus on developing a Multi-Agent route planner for shared mobility services
using the method presented here but by calculating the length of paths based
on map data (i.e., actual driving distance).
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objective bus passenger Trip Planning Problem. Public Transp. 13, 557–578 (2021).
https://doi.org/10.1007/s12469-019-00204-1

6. Gavish, B., Srikanth, K.: An optimal solution method for large-scale multiple trav-
eling salesmen problems. Oper. Res. 34(5), 698–717 (1986). https://doi.org/10.
1287/opre.34.5.698

7. Gawrilow, E., Köhler, E., Möhring, R.H., Stenzel, B.: Dynamic routing of auto-
mated guided vehicles in real-time. In: Krebs, H.-J., Jäger, W. (eds.) Mathematics -
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