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Preface

Agriculture has been the foundation of human civilization for thousands of years, and
with the world population expected to reach 9.7 billion by 2050, it is more important than
ever to find sustainable solutions to feed the Earth. As our population continues to grow,
the demand for food and the need for innovative solutions in agriculture are increasing.
At the same time, advances in science and computing technology have opened new
possibilities for precision agriculture, data-driven decision-making, and automation in
the last few years.

ICA 2023 is one of the rare conferences focusing on “Agriculture-Centric Com-
putation”, which explores the exciting and rapidly evolving intersection of agriculture
and computing. This integration has the potential to revolutionize the way we produce,
distribute, and consume food. It is a privilege to present the proceedings of the Inter-
national Conference on Agriculture-Centric Computation (ICA 2023), held during May
11–13, 2023 at the Indian Institute of Technology Ropar (Punjab), India. The conference
is funded by Agriculture and Water Technology Development Hub (iHub– AWaDH),
which is established by the Department of Science & Technology (DST), Government
of India, at the Indian Institute of Technology Ropar.

ICA is a platformwhere we explore the research challenges emerging in the complex
interaction between computing and agriculture. We examine how computing can be
applied to agriculture to address some of the biggest challenges facing the industry today,
such as climate change, food security, and environmental sustainability. We delve into
topics such as big data analytics, artificial intelligence, machine learning, the Internet
of Things (IoT), remote sensing, robotics, and drones, and how they can be used to
optimize crop yields, reduce resource consumption, and improve farm profitability. All
the stakeholders, such as leading researchers, practitioners, and industry representatives,
participate and share their views.

Out of 52 submitted papers, 18 were accepted for oral presentation and publication
by the program committee based on the recommendations of at least 2 expert review-
ers in a double-blind review process. ICA 2023 included three keynote speakers and
four invited talks, panel discussions, interaction with progressive farmers, twenty poster
presentations, and nineteen powerful expert session chairs who have worked in both
industry and academia.

ICA attracts gatherings of academic researchers, undergraduate students, postgradu-
ate students, research scholars, top research think tanks, and industry technology devel-
opers. Therefore, we do believe that the biggest benefit to the participant is the actual-
ization of their goals in the field of agriculture-centric computation. That will ultimately
lead to greater success in agriculture, which is beneficial to society. Moreover, our warm
gratitude should be extended to all the authors who submitted their work to ICA 2023.
During the submission, review, and editing stages, the EasyChair conference system
proved very helpful. We are grateful to the technical program committee (TPC) and the
local organizing committee for their immeasurable efforts to ensure the success of this
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conference. Finally, we would like to thank our speakers, authors, and participants for
their contributions to making ICA 2023 a stimulating and productive conference.

May 2023 Mukesh Kumar Saini
Neeraj Goel

Hanumant Singh Shekhawat
Jaime Lloret Mauri

Dhananjay Singh
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Fine Tuned Single Shot Detector
for Finding Disease Patches in Leaves

Divyansh Thakur1(B), Jaspal Kaur Saini1, and Srikant Srinivasan2

1 School of Computing, Indian Institute of Information Technology Una,
Una, Himachal Pradesh, India

{divyansh,jaspalkaursaini}@iiitu.ac.in
2 Plaksha University, Chandigarh, India
srikant.srinivasan@plaksha.edu.in

Abstract. Plant disease detection is an important aspect of modern
agriculture that is crucial for ensuring crop productivity and quality.
Sweet lime is an important citrus fruit, and its leaves are susceptible
to a range of diseases that can significantly impact its yield. However,
the lack of publicly available data on sweet lime diseases has made the
development of effective detection systems challenging. To address this
problem, the authors of this paper developed their own dataset of sweet
lime leaves containing 4000 images. The dataset was carefully curated to
ensure diversity and accuracy, and it was used to train a fine-tuned cus-
tomised single-shot detector (SSD) model. The SSD is a popular object
detection algorithm that is known for its speed and accuracy, making it
well-suited for this task. The results of the evaluation showed that the
proposed approach achieved impressive performance metrics. The model
had an accuracy of 99%, which indicates that it was able to correctly
identify the presence or absence of diseases in the sweet lime leaves with
high confidence. The mean intersection over union (mIoU) of 97% is a
measure of how well the model was able to detect the boundaries of the
diseased areas, indicating that it was able to accurately localize the dis-
eases. The model’s inference time of 16ms and frames per second (FPS)
of 60 demonstrate that it is fast enough to be used in real-time appli-
cations. Finally, the mean average precision (mAP) of 0.97 is a measure
of how well the model was able to rank the detected diseases by their
severity, demonstrating its effectiveness in prioritizing diseases for further
action. These findings have important practical implications for agricul-
tural management. The proposed approach could be used to monitor
sweet lime orchards for diseases and to identify the specific types of dis-
eases present. This information could be used to make targeted interven-
tions, such as applying fungicides or removing infected leaves, to prevent
the spread of diseases and ensure the health and productivity of the crop.
Furthermore, the methodology used in this study could be adapted for
use with other crops and diseases, expanding its potential impact in the
field of agriculture.

Keywords: Sweet lime dataset · Plant disease detection · Single Shot
Detector

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. K. Saini et al. (Eds.): ICA 2023, CCIS 1866, pp. 1–14, 2023.
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1 Introduction

The integration of technology in the agriculture sector has revolutionized the way
we produce, process, and distribute food globally. As the world’s population con-
tinues to grow, the demand for food is increasing, and farmers face the challenge
of meeting these demands while minimizing their environmental footprint. To
achieve sustainable and efficient agriculture practices, technology has become
an indispensable tool. Advancements in precision agriculture, robotics, artifi-
cial intelligence, and data analytic have transformed the agriculture industry,
enabling farmers to increase crop yields, reduce production costs, and improve
food quality. By utilizing AI algorithms,drones, sensors, and GPS systems, farm-
ers can gather accurate information about soil quality, moisture levels, and plant
growth rates, enabling them to make informed decisions about when to plant,
water, and harvest crops [1].

The use of Artificial Intelligence (AI) in the agriculture sector has revolution-
ized the way farming is practiced. With the advent of AI technology, farmers can
now analyze vast amounts of data on crops, weather patterns, soil quality, and
pest infestations to make informed decisions that enhance crop yield and reduce
wastage. AI has enabled the creation of smart farms, where technology is inte-
grated with farming practices to optimize resources and improve efficiency. This
has led to increased productivity, reduced costs, and improved sustainability in
the agriculture sector [2].

Detecting disease patches in plant leaves is of utmost importance in ensuring
healthy plant growth and maximizing crop yields. Disease patches can indicate
the presence of pathogens, such as bacteria, fungi, or viruses, which can cause
severe damage to plants and result in substantial crop losses. Identifying these
patches early on can help prevent the spread of the disease, allowing farmers
to take proactive measures, such as targeted treatment, to mitigate the dam-
age. Disease patch detection also plays a critical role in ensuring food safety,
as contaminated crops can pose significant health risks to consumers. By using
advanced technologies, such as deep learning, to detect disease patches, farmers
can make more informed decisions about crop management, leading to better
yields, improved crop quality, and increased profitability. Deep learning [3], a
subset of artificial intelligence, has been gaining popularity in various industries,
including agriculture. With the increasing global population and the need to
produce more food, farmers are turning to technology to enhance their yields
and optimize resource utilization. Deep learning, which enables computers to
learn from large amounts of data, has the potential to revolutionize the agri-
culture sector by providing valuable insights into crop growth, soil quality, and
weather patterns. The application of deep learning in agriculture involves the
use of advanced algorithms and techniques to analyze data from various sources,
such as drones, satellites, and sensors [4]. By processing this data, deep learning
models can help farmers make informed decisions about irrigation, fertilization,
and pest control, resulting in improved crop yields and resource efficiency.

Deep learning has become increasingly important for disease patch detection
in plant leaves, as it enables more accurate and efficient identification of diseased
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plants. By analyzing large amounts of data, deep learning algorithms can iden-
tify subtle patterns and differences in plant images that are indicative of disease
patches, allowing farmers to take proactive measures to mitigate crop damage.
The use of deep learning in disease patch detection has several advantages over
traditional methods. For one, it allows for a more objective and automated app-
roach, reducing the need for manual inspection of plant leaves. This can save
farmers a significant amount of time and resources, allowing them to focus on
other critical aspects of crop management. Additionally, deep learning models
can process vast amounts of data quickly, enabling farmers to identify disease
patches early and take appropriate action to prevent crop losses. In this particu-
lar undertaking, we have employed a finely-tuned single shot detector algorithm
to accurately detect disease patches in our self-curated data set comprising of
sweet lime leaves. The utilization of fine-tuning techniques has led to remark-
ably good results, exhibiting a high degree of precision in identifying the disease
patches.

2 Work Flow

This work is started by creating a data set of sweet lime leaves which contained
images of healthy, infected, and decayed leaves. The data set was cleaned to
ensure that the data was of high quality and ready for further analysis. Image
annotation was done to label the disease patches in the images. After the data
was labeled, a custom fine tuned single shot detector (SSD) was trained and
tested using both labelled and unlabeled data. Performance parameter results
were obtained to evaluate the effectiveness of the model. Finally, the trained
SSD was used to detect the disease patches on the sweet lime leaves, successfully
completing the work.

3 Related Work

In this particular section, we delve into a comprehensive analysis of existing lit-
erature on plant disease detection. Our focus is on exploring the work of various
researchers in this field, investigating the methodologies they use, the results
they obtain, and their contributions towards advancing plant disease detection
technologies. Our aim is to provide a comprehensive overview of the current
state of the art in plant disease detection, highlight the significant contributions
made by researchers in this area, and pave the way for further research and
innovation. The work of Chowdhury et al. [5] aimed to detect diseases affecting
tomato plants in fields or greenhouses using deep learning. The algorithm’s goal
was to run in real-time on a robot to detect plant diseases while moving around
the field or greenhouse, or on sensors in fabricated greenhouses to capture close-
up photographs of the plants. Durmug et al. [6] highlighted the importance of
plants as a primary source of energy production for humans due to their nutri-
tious and medicinal values. However, plant diseases caused significant damage to
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crop production and economic market value. Therefore, various machine learn-
ing (ML) and deep learning (DL) methods were developed and examined by
researchers to detect plant diseases. Mahum et al. [7] addressed the challenge
of minimizing crop damage for food security by timely detection of diseases in
plants. The researchers investigated the use of segmented image data to train
convolutional neural network (CNN) models for disease detection. Mohameth et
al. [8] proposed the use of computer vision and artificial intelligence (AI) for early
detection of plant diseases to reduce the adverse effects of diseases and overcome
the limitations of continuous human monitoring. Sharma et al. [9] investigated
the use of deep learning and transfer learning techniques for detecting crop
diseases, specifically on leaves. They proposed a “smartphone-assisted disease
diagnosis” approach using the Plant Village Dataset. Sujatha et al. [10] pre-
sented an improved deep learning algorithm for timely detection and classifica-
tion of potato leaf diseases. The algorithm used a pre-trained Efficient DenseNet
model with a reweighted cross-entropy loss function to minimize overfitting dur-
ing training. Finally, Roy et al. [11] proposed a novel deep learning-based object
detection model for accurate detection of fine-grained, multi-scale early plant
diseases, specifically in multi-class apple plant disease detection in real orchard
environments. In their research work, Vallabhajosyula, et al. [12] proposed an
automatic plant disease detection technique using deep ensemble neural net-
works (DENN). They addressed the challenge of early plant disease detection
by fine-tuning pre-trained models through transfer learning and employing data
augmentation techniques to overcome overfitting. The proposed approach was
evaluated on the publicly available plant village dataset, and the results showed
that DENN outperformed state-of-the-art pre-trained models. Another study
by Tiwari et al. [13] proposed a deep-learning-based approach for automatic
plant disease detection and classification using leaf images captured at various
resolutions. They used the Dense Convolutional Neural Network (DCNN) archi-
tecture to train on a large plant leaves image dataset from multiple countries and
obtained high cross-validation and test accuracy. The proposed method has real-
time performance and can potentially save time and resources in plant disease
monitoring. In a study by Islam et al. [14], an automated detection approach
for paddy leaf disease detection was developed using deep learning Convolu-
tional Neural Network (CNN) models. They focused on four common diseases
of paddy leaves in Bangladesh and compared the performance of four different
CNN models. The Inception-ResNet-V2 model achieved the highest accuracy of
92.68

4 Data Processing

This section provides critical information about the dataset and the process of
data cleaning, which is a crucial aspect of any deep learning model. High-quality
data is an indispensable element for achieving accurate and reliable results from
a deep learning model. Therefore, Therefore, in this section, we will delve into
the details of data set and data cleaning and its significance in ensuring the
robustness and accuracy of deep learning models.



Fine Tuned Single Shot Detector for Finding Disease Patches in Leaves 5

4.1 Description of Data Set

The dataset comprised of 4000 images of sweet lime leaves, which were self-
clicked by the authors. The images were captured using high-quality cameras
and under proper sunlight conditions to ensure good image quality. Among the
4000 images, 1500 were of healthy sweet lime leaves, and 1500 were of diseased
leaves, while the remaining 1000 images were of decayed leaves. The images of
diseased leaves were captured to encompass a range of common diseases that
affect sweet lime leaves. With the help of this dataset, we trained our model to
recognize healthy, diseased, and decayed sweet lime leaves with a high degree of
accuracy. The high-quality images in the dataset could prove to be beneficial in
developing algorithms that can function in real-world situations, such as on a
farm, where leaf health analysis is a crucial aspect of plant health management.

4.2 Data Cleaning

In order to prepare the dataset for analysis, data cleaning was conducted through
a combination of manual and automated methods. The manual method involved
filtering the images to remove any redundant or poor quality ones, which was
performed by the researchers. Additionally, a Python script was employed to
standardize the size of all images and rename them in a sequential manner from
1 to N, where Nth represents number of last image in the dataset. This automated
approach ensured consistency and efficiency in the data preparation process.

5 Material and Methods

This section allows readers to understand how the research was conducted, The
purpose of this section is to ensure that the study can be replicated by others
and to establish the credibility and validity of the findings. In this section, we
provide a detailed description of the materials and methods used in our study
to investigate our problem.

5.1 Image Annotation

Image annotation is used to identify objects and their corresponding locations in
the image, which enables the deeplearning model to detect them accurately. For
this work we annotated the images by using LabelMe software [15]. Annotated
images provide information about the location and class of objects within an
image. The annotated image sample is shown in Fig. 1.

5.2 TTS Ratio

The train-test ratio for object detection using Single Shot Detection (SSD)
depends on the size of the dataset, the complexity of the task, and the amount of
available data. The size of the training set is usually larger than the testing set.
However, the split can vary depending on the task and dataset. For this work
we used train-test ratio of 80:20.
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Fig. 1. Annotated images

5.3 GPU

For execution of this work we used NVIDIA V100. The NVIDIA V100 GPU
is a high-performance graphics processing unit (GPU) designed for use in data
centers and high-performance computing applications. It was first released in
2017 and is based on the Volta architecture, which is known for its ability to
handle both traditional graphics workloads and complex artificial intelligence
(AI) and deep learning tasks. The V100 GPU is incredibly powerful, with 5,120
CUDA cores and 640 Tensor Cores. It also has a memory bandwidth of up to
900 GB/s and a maximum memory size of 16 GB per GPU. This makes it ideal
for demanding applications such as scientific simulations, machine learning, and
natural language processing.

5.4 Single Shot Detector

The SSD (Single Shot Detector) architecture is a popular object detection model
that is designed to efficiently detect objects of different sizes and aspect ratios
in an image. The model is based on a convolutional neural network (CNN) that
is pre-trained on a large dataset (such as ImageNet) to learn useful features that
can be used for object detection. SSD is a popular object detection algorithm
that can detect objects in images and video frames. It was first introduced in
2016 by Wei Liu, Dragomir Anguelov, and other researchers from Google. The
main idea behind SSD is to divide the input image into a grid of cells and
predict the presence of objects in each cell. Unlike some other object detection
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algorithms, SSD uses a single neural network to perform both object detection
and classification, making it very efficient and fast. The network architecture of
SSD consists of a base convolutional neural network, such as VGG or ResNet,
followed by a set of convolutional layers that predict the class and location of
objects in each cell of the grid. Specifically, these layers predict a set of bounding
boxes (i.e., rectangles) around objects and the probability that each bounding
box contains an object of a particular class.

In our work we proposed customised and fine tuned the SSD, Table 1 shows
the layer architecture of SSD that we use in our work. Here in Table 1, The
architecture of the SSD model consists of two main components: a base network
and a set of additional layers. The base network is typically a CNN that is pre-
trained on a large-scale image classification task. In the case of the SSD model,
the base network includes layers up to conv7 1, which is a convolutional layer
that outputs a feature map of size 3× 3× 1024. The additional layers in the
SSD model are designed to capture features at different scales and resolutions.
These layers are added on top of the base network and include convolutional
layers with different filter sizes and kernel sizes. The detection conv8 2 layer, for
example, is a convolutional layer with 1024 filters and a 3× 3 kernel size that
takes as input the output from the conv7 1 layer and produces a feature map of
size 1× 1× 1024. The final layers in the SSD model (including detection conv9 2,
detection conv10 2, and detection conv11 2) take as input the output from the
detection conv8 2 layer and apply additional convolutional layers with smaller
filter sizes to further refine the predicted bounding boxes and class probabili-
ties. The output of the SSD model is a tensor of shape (batch size, 1, 1, 4 *
num classes), where batch size is the number of images in the input batch and
num classes is the number of object classes that the model is trained to detect.
This tensor contains the predicted bounding boxes and class probabilities for all
the objects in the input image. The asterisk (*) in the output shape (batch size,
1, 1, 4 * num classes) represents the multiplication operator. In this case, it indi-
cates that the output tensor has a shape of (batch size, 1, 1, 4 * num classes),
where the size of the fourth dimension is equal to four times the number of
object classes (num classes). Each bounding box prediction in the output tensor
contains four values, corresponding to the coordinates of the top-left and bottom-
right corners of the bounding box. Therefore, the size of the fourth dimension
in the output tensor is four times the number of object classes to account for
the four bounding box coordinate values for each class. Algorithm 1 shows the
working of proposed SSD model.

5.5 Performance Parameters

Mean Average Precision (mAP): mAP is the most commonly used perfor-
mance metric for object detection tasks. It measures the average precision of the
model across different levels of recall. In other words, it measures how accurately
the model can detect objects of different sizes and aspect ratios. Equation 1 is the
mathematical representation of mAP, where N is the number of object classes,
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Table 1. Layer architecture of the network

Layer Name Layer Type Input Shape Output Shape

input Input (batch size, 300, 300, 3) (batch size, 300, 300, 3)

conv1 1 Conv2D (batch size, 300, 300, 3) (batch size, 150, 150, 64)

pool1 MaxPooling2D (batch size, 150, 150, 64) (batch size, 75, 75, 64)

conv2 1 Conv2D (batch size, 75, 75, 64) (batch size, 38, 38, 128)

pool2 MaxPooling2D (batch size, 38, 38, 128) (batch size, 19, 19, 128)

conv3 1 Conv2D (batch size, 19, 19, 128) (batch size, 19, 19, 256)

conv4 1 Conv2D (batch size, 19, 19, 256) (batch size, 19, 19, 512)

conv5 1 Conv2D (batch size, 19, 19, 512) (batch size, 19, 19, 512)

conv6 1 Conv2D (batch size, 19, 19, 512) (batch size, 19, 19, 1024)

conv7 1 Conv2D (batch size, 19, 19, 1024) (batch size, 10, 10, 1024)

conv8 1 Conv2D (batch size, 10, 10, 1024) (batch size, 5, 5, 1024)

conv9 1 Conv2D (batch size, 5, 5, 1024) (batch size, 3, 3, 1024)

conv10 1 Conv2D (batch size, 3, 3, 1024) (batch size, 1, 1, 1024)

detection conv4 3 Conv2D (batch size, 19, 19, 512) (batch size, 19, 19, 4 * num classes)

detection fc7 Conv2D (batch size, 10, 10, 1024) (batch size, 10, 10, 6 * num classes)

detection conv6 2 Conv2D (batch size, 5, 5, 1024) (batch size, 5, 5, 6 * num classes)

detection conv7 2 Conv2D (batch size, 3, 3, 1024) (batch size, 3, 3, 6 * num classes)

detection conv8 2 Conv2D (batch size, 1, 1, 1024) (batch size, 1, 1, 4 * num classes)

detection conv9 2 Conv2D (batch size, 1, 1, 256) (batch size, 1, 1, 4 * num classes)

detection conv10 2 Conv2D (batch size, 1, 1, 256) (batch size, 1, 1, 4 * num classes)

detection conv11 2 Conv2D (batch size, 1, 1, 256) (batch size, 1, 1, 4 * num classes)

and AP(i) is the average precision for class i.

mAP =
1
N

N∑

i=1

AP (i) (1)

Frames per Second (FPS): The FPS measures how many frames the model
can process per second. Higher FPS values indicate faster processing times,
which can be important for real-time applications. Equation 2 is the mathe-
matical equation for evaluating FPS, where t is the time it takes for the model
to process one frame.

FPS =
1
t

(2)

Inference Time: Inference time measures the time it takes for the model to
process a single image. Lower inference times indicate faster processing and can
be important for real-time applications.

InferenceT ime = t (3)

Accuracy: The accuracy of an SSD measures how well the model can clas-
sify objects. This parameter is particularly important when dealing with com-
plex object classes. Equation 4 is the mathematical equation for geting accuracy,
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Algorithm 1. Customised SSD Algorithm.
Input image I Object detections
Preprocessing: Resize I to 300 × 300 and subtract the mean value
Base Network: Pass the preprocessed image through a pre-trained VGG16 network
up to ‘conv7 1‘
Additional Layers: Pass the output of ‘conv7 1‘ through a set of additional convo-
lutional layers (‘conv8 1‘, ‘conv8 2‘, etc.) to generate a set of feature maps at different
scales
Default Anchor Boxes: Generate a set of default anchor boxes at each spatial loca-
tion in the feature maps based on different aspect ratios and scales
Bounding Box Regression: For each anchor box, predict the offset values for the
four bounding box coordinates (x, y, width, height) relative to the default anchor box
Objectness Scores: For each anchor box, predict the probability that the box contains
an object of interest
Non-Maximum Suppression: Filter out overlapping bounding boxes based on their
objectness scores and perform non-maximum suppression to obtain the final set of
object detections

where TP is the number of true positive detections, TN is the number of true
negative detections, FP is the number of false positive detections, and FN is the
number of false negative detections.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Mean Intersection over Union (mIoU): mIoU is a measure of the overlap
between the predicted bounding boxes and the ground truth bounding boxes.
It measures how well the model is able to localize the objects in the image.
Equation 5 is the mathematical equation of mIoU, where N is the number of
objects, and IoU(i) is the intersection over union value for object i.

mIoU =
1
N

N∑

i=1

IoUi (5)

6 Results

Within this section, we present details regarding the hyperparameters employed
during the training of our bespoke fine-tuned single shot detector (SSD) model,
an evaluation of its performance metrics, as well as the visual output generated
by our model. This section serves to demonstrate the robustness and effectiveness
of our SSD model in accurately detecting plant diseases.

6.1 Hyper Parameters

Hyperparameter values are essential components of any deep learning model.
They are the parameters that are set before the training process begins and can
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have a significant impact on the performance of the model. In this particular
case, the hyperparameter values for a Fine-Tuned Single Shot Detector (FTSSD)
for finding disease patches in leaves have been specified in Table 2. The base
network used for this model is VGG16, a convolutional neural network (CNN)
architecture that is widely used for computer vision tasks. The input shape for
the model is (300, 300, 3), which means that the input images are 300 pixels wide
and 300 pixels high with 3 color channels (RGB). The batch size for training
the model is set to 32. The learning rate for this model is set to 0.001, which
determines how much the model adjusts its parameters during training based on
the error between predicted and actual values. The optimizer used in this case
is stochastic gradient descent (SGD), which is a popular optimization algorithm
used in machine learning. The momentum is set to 0.9, which helps the model
converge faster by adding a fraction of the previous gradient to the current
gradient. The weight decay is set to 0.0005, which is a regularization technique
that helps prevent overfitting. The loss function used for this model is MultiBox
Loss, which is a combination of localization loss and classification loss. The
model has a total of 8 convolutional layers, which helps the model extract useful
features from the input image. The total number of parameters in this model
is approximately 34 million, which means that the model is quite large and
complex.

Table 2. Hyperparameter values for a Fine-Tuned Single Shot Detector (FTSSD) for
finding disease patches in leaves.

Hyperparameter Value

Base Network VGG16

Input Shape (300, 300, 3)

Batch Size 32

Learning Rate 0.001

Optimizer SGD

Momentum 0.9

Weight Decay 0.0005

Loss Function MultiBox Loss

Num Classes 20

Num Prior Boxes 8732

Convolutional Layers 8

Total Parameters ∼34 million
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6.2 Performance Parameters Evaluation

The Table 3 provides information on the values obtained for Mean Average Pre-
cision (mAP), Frames Per Second (FPS), Inference Time, Accuracy, and Mean
Intersection over Union (mIoU). Mean Average Precision (mAP) is a widely
used metric for evaluating the performance of object detection algorithms, and
a high value of 0.97 indicates that the system is able to accurately detect and
classify objects in the input data. The high FPS value of 60 and low inference
time of 16 ms indicates that the system is able to process input data quickly and
provide results in real-time, which is essential for many real-world applications
such as robotics, surveillance, and autonomous driving. The high accuracy value
of 99 indicates that the system is able to classify objects with high precision
and low false positive rate. Finally, the high value of Mean Intersection over
Union (mIoU) of 0.95 indicates that the system is able to accurately localize
and segment objects in the input data.

Table 3. Results obtained by different performance parameters.

Performance parameter Value

Mean Average Precision (mAP) 0.97

Frames Per Second (FPS) 60

Inference Time 16 ms

Accuracy 99

Mean Intersection over Union (mIoU) 0.95

6.3 Visual Output by Model

Table 4 showcases the visual output of the proposed fine-tuned SSD model,
wherein the model’s accuracy in identifying disease patches is observed to be
exceptionally high. The bounding boxes demarcate the specific areas on the
sweet lime leaves where the disease patches have been identified by the model.
The fine-tuned SSD model demonstrates impressive speed in detecting these dis-
ease patches, thereby enhancing its practical applicability in the field of plant
disease detection.
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Table 4. Visual output by SSD

Randpm Input Visual Output
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6.4 Conclusion

In conclusion, this paper presents an innovative approach for sweet lime dis-
ease detection that achieved impressive performance metrics using a fine-tuned
customised single-shot detector (SSD) model. The proposed method could sig-
nificantly improve agricultural management by enabling targeted interventions
to prevent the spread of diseases and ensure crop health and productivity. Addi-
tionally, the methodology used in this study could be extended for use with
other crops and diseases, expanding its potential impact in the field of agri-
culture. Future research could focus on refining the model to further increase
its accuracy and performance, as well as developing a user-friendly interface to
make it accessible to farmers and agricultural experts. Overall, this study has
significant implications for the field of agriculture, highlighting the potential of
machine learning techniques to improve crop disease management and increase
productivity.
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Abstract. Rising food demand emphasizes need to modernize ways of
agricultural production. The use of digital technologies in agriculture
provide a large avenue for increasing production efficiency with limited
resources. Artificial Intelligence (AI) uses agricultural data and generates
insights for farmers and facilitators for making better decisions during
crop lifecycle management resulting in increased productivity. Despite a
large number of benefits and government initiatives, the adoption level
of AI-based automation solutions in agriculture is quite low which moti-
vates the present study to focus on recognizing factors influencing adop-
tion of AI-based solutions in agriculture. Based on an integrated frame-
work developed on three eminent theories from Information Systems,
this study uses of survey data of farmers and facilitators from North-
ern India, and further examines the interaction of independent variables
and validates the proposed framework using factor analysis and regres-
sion analysis. The results show that user expectations, information avail-
ability, users’ involvement in engagement activities and compatibility of
technology solution are key factors influencing intent to adopt AI-based
solutions in agriculture. The given framework significantly explains the
adoption intention and hence enhances understanding of researchers and
practitioners to increase adoption of AI-based solutions for sustainable
agriculture.

Keywords: Artificial intelligence · sustainable Agriculture ·
adoption · exploratory factor analysis · regression analysis

1 Introduction

Agriculture has long history of development associated with human civilization
and technology. The nature of agricultural activities has changed from labor-
intensive to machine-driven with industrial revolution. In modern age, the digital
technologies, such as Big Data, Cloud Computing, Artificial Intelligence (AI),
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Machine Learning, Internet of Things (IoT) etc. [1], triggered a new era of agri-
culture which is named as “Agriculture 4.0” [2]. The focus of researchers to create
sustainable methods of enhancing agricultural yield using new digital technolo-
gies has increased across globe. [3]. With objective of increasing agricultural
production level, solutions based on these technologies use limited resources to
meet rising demand in line with Sustainable Development Goal (SDG) of United
Nations (UN) to reduce hunger level to zero globally by 2030.

Artificial Intelligence enable farmers at different stages in agriculture, for
example, an appropriate time to sow by analyzing weather conditions, to iden-
tify crop diseases from image analysis, indicating appropriate time to irrigate to
maintain required moisture levels and many other useful insights. In the back-
ground, it uses sensors, unmanned aerial vehicles (UAVs), cameras etc. to collect
inputs from field in terms of location, temperature, humidity, crop images etc.
to send these over network for storage using technologies such as Cloud and Big
Data etc. In next stage, the collected data is analyzed using Artificial Intelligence,
Machine Learning etc. to provide useful insights regarding crop health, weather
pre-dictions, appropriate sowing time and alerts based on regular monitoring.
These characteristics of automation and artificial intelligence based solutions
are presented in Fig. 1. It is also illustrated that such insights are not available
in traditional work practices by farmers which were highly dependent on human
intellect and physical observations.

Fig. 1. Technology impact on users with automation and artificial intelligence.

In the field of agriculture, although AI has high potential for exploration by
researchers and solution developers to address the concerns related to agricul-
tural operations and production efficiency [1], still there are several challenges
which act as deterrents to its adoption in agriculture [2–4]. The low rate of adop-
tion is delaying the achievement of sustainable development goal across many
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developed and developing countries. With this background, we focus on identify-
ing key factors which influence adoption of AI-based solution. The present study
involves two groups - (a) farmers who are the end users of the technology solution
and (b) facilitators who act as enablers in the process of implementing new tech-
nology solutions which include agricultural universities, government agencies,
private organisations etc. The remainder of the paper covers research method-
ology in Sect. 2 which includes literature review and methodology implemented.
Section 3 presents data analysis for the data sets of farmers and facilitators. The
results are discussed in Sect. 4 and finally Sect. 5 presents conclusion of the study.

2 Research Methodology

This section discusses the methodology adopted to empirically analyze and evalu-
ate factors influencing adoption of AI-based automation solutions for sustainable
agriculture. The flow of activities carried out for present study are presented in
Fig. 2.

Fig. 2. Flow diagram of the research work carried out in present study.

2.1 Literature Review

Review of literature is carried out using SCOPUS, Web of Science and ACM aca-
demic research databases and developed framework based on three well-known
theories from Information Systems - Unified Theory of Acceptance and Use of
Technology (UTAUT) [5], Technology-Organization-Environment (TOE) Frame-
work [6] and Diffusion of Innovation (DoI) [7] in our previous work [8]. While
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UTAUT model evaluates adoption of a new technology in an organized manner,
DoI explains how innovation spreads in an organization and TOE presents a
combined perspective of Technology, Organization and Environmental factors
impacting technology adoption.

The proposed framework provides a total of fifteen independent variables
selected from literature that have shown impact on the intention to adopt digital
technology solution in agriculture. For improved understanding and analysis,
the selected variables are grouped under categories - individual characteristics,
environmental factors, structural factors, technology factors and demographic
factors. The interaction of grouped factors with dependent variable is visually
represented in Fig. 3. Based on proposed framework we developed questionnaire
for collecting inputs from farmers and facilitators for analysis using Exploratory
Factor Analysis (EFA) and Regression Analysis.

Fig. 3. Literature-based integrated framework for research.

2.2 Methodology

With objective of recognizing significant factors that influence intent of users to
adopt AI-based solutions in agriculture, we develop a questionnaire to collect
inputs using the lens of proposed framework [8] as explained below:
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Instrument Development
To comprehensively understand the adoption factors, this study is divided into
two parts: (a) studying adoption intent of farmers who are end users of the
solution; (b) evaluating adoption preference of facilitators who enable the imple-
mentation of solution in field. The developed questionnaire with 45 questions
based on 5-point LIKERT scale evaluates the intention of farmers and facilita-
tors across five dimensions - Individual Characteristics, Environmental Factors,
Structural Factors, Technology Factors and Demographic Factors based on the
fifteen factors of proposed framework.

Data Collection
The data is collected from the states of Punjab and Haryana which are major
contributors of agricultural production in India. The process of data collection
uses two separate set of questionnaires for farmers and facilitator groups in three
languages including English, Hindi and Punjabi. Inputs are collected from 495
farmers contacted through government offices, local contacts, agricultural uni-
versity, extensions and co-operatives. The present analysis utilizes 486 responses
after excluding nine incomplete responses. Similarly, for facilitator group, data
is collected with snowball sampling method. The survey inputs from 198 respon-
dents are used in analysis out of total 205 respondents excluding seven incomplete
responses.

3 Data Analysis

The data obtained through survey is used for analysis in three stages: (a) descrip-
tive statistics, (b) Exploratory Factor Analysis (EFA) and (c) Regression Anal-
ysis as explained in Sect. 2. The techniques of EFA and Regression Analysis are
utilized separately for datasets of farmers and facilitator groups.

3.1 Characteristics of Respondents Included in Study

Descriptive statistics is utilized to analyze the characteristics of respondents
included in the present study as summarized in Table 1. Representation of farm-
ers and facilitators from Punjab state is 61% and 57% respectively and remain-
ing from Haryana state. Majority of the farmers (24%) have farming experience
between 11 to 20 years and facilitators (30%) with 5–10 years of experience.
Largely the respondents from both groups indicate small and marginal farm size
i.e. below 2 ha. A very high percentage of smartphone usage, 86% farmers and
92% facilitators is also indicated which is a positive indicator for increasing pen-
etration of digital technology through information dissemination using mobile
phone.
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Table 1. Summary of characteristics of respondents included in the study

Category Farmers Facilitators

Frequency Percent (%) Frequency Percent (%)

State

Punjab 295 61% 113 57%

Haryana 191 39% 85 43%

Gender

Female 121 25% 44 22%

Male 365 75% 174 88%

Age

Below 20 years 50 10% – 0%

21–29 years 129 27% 76 38%

30–39 years 109 22% 55 28%

40–49 years 120 25% 44 22%

Above 50 years 78 16% 23 12%

Experience

Below 4 years 110 23% 24 12%

5–10 years 106 22% 59 30%

11–20 years 115 24% 51 26%

21–30 years 78 16% 36 18%

More than 30 years 77 16% 28 14%

Education

No education 12 2% – 0%

Primary school 43 9% – 0%

High school 134 28% 2 1%

Senior Secondary 109 22% 46 23%

Graduate or above 188 39% 150 76%

Farm Size

Marginal (Below 1 ha i.e.<2.47 acres or killas) 85 17% 65 33%

Small (1 to 2 ha i.e. 2.47 to 4.94 acres or killas) 147 30% 56 28%

Semi-medium (2 to 4 ha i.e. 4.94 to 9.88 acres or killas) 140 29% 37 19%

Medium (4 to 10 ha i.e. 9.88 to 24.71 acres or killas) 77 16% 28 14%

Large (10 ha and above i.e. above 24.71 acres or killas) 37 8% 12 6%

Associated with Organization

Co-operative 243 50% 69 35%

Extension 17 3% 34 17%

Agricultural University 111 23% 48 24%

Private organization 49 10% 32 16%

Others 66 14% 15 8%

Languages known

Regional language 258 53% 28 14%

Regional language and English 228 47% 170 86%

Smartphone usage

No 70 14% 16 8%

Yes 416 86% 182 92%
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3.2 Analysis Using Inputs from Farmers

EFA is one of the major statistical techniques used in data analytics and research
to condense a large number of variables into a smaller set of uncorrelated factors
to maximize the variance of these components [9] as represented by following
equation:

Di = ΛFj + ei (1)

where Di is the observed variable in the study, Fj is the common factor, ei is
error term associated with single observed ith variable and i > j as a number of i
variables get condensed into j factors. The results of EFA on dataset of farmers
yields five factors with eigen value greater than one and explained variance of
64% using principal component analysis with varimax rotation. The summary
of extracted factors which influence the intention of farmers to adopt AI-based
solutions in agriculture (ITAfarmers) is given in Table 2 and are interpreted as
below:

– Factor-1 is labelled as ‘User Expectations’ which includes eight observed
variables dealing with a combination of performance expectancy and effort
expectancy.

– Factor-2 is interpreted as ‘Technology Factors’ which covers total seven items
related to compatibility, security and privacy while using AI-based solutions
in agriculture.

– Factor-3 comprises of four items associated with facilitating conditions and
two items with financial conditions, hence labelled as ‘Facilitating Condi-
tions’.

– Factor-4 is a combination of items related to information availability and
formal and informal structures with which farmers are connected with other
communities. This factor is interpreted as ‘Information and Involvement’.

– Factor-5 includes the component of influence of social elements on the inten-
tion of farmers to adopt and is interpreted as ‘Social Influence’.

The revised framework with extracted factors is presented in Fig. 4 showing
their influence on adoption intent and hence following hypotheses are framed:
H1: User expectations positively influence the intention to adopt AI-based solu-
tions in agriculture.
H2: Technology factors positively influence the intention to adopt AI-based solu-
tions in agriculture.
H3: Facilitating conditions positively influence the intention to adopt AI-based
solutions in agriculture.
H4: Information and involvement positively affects the intention to adopt AI-
based solutions in agriculture.
H5: Social influence positively impacts the intention to adopt AI-based solutions
in agriculture.

The revised framework is further examined using Regression Analysis to
understand the significant factors influencing intent of farmers towards adoption
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Table 2. Interpretation of latent variables for dataset of farmers

Factor Interpreted
Factor Name

Sum of
Squared
Loading

Proportion
Variance

Original
Constructs

Number of Items
(Factor Loading
>0.5)

Factor-1 User

expectations

(PUE)

5.01 0.16 Performance

expectancy

4

Effort expectancy 4

Factor-2 Technology

factors

(TEC)

4.76 0.15 Compatibility 4

Security and

Privacy

3

Factor-3 Facilitating

conditions

(FAC)

3.76 0.12 Facilitating

conditions

4

Financial

conditions

2

Factor-4 Information

and

Involvement

(INF)

3.65 0.12 Information

availability

3

Formal and

Informal Link

1

Factor-5 Social

Influence

(SIN)

2.77 0.09 Social Influence 4

Fig. 4. Revised framework with extracted factors.

of AI-based solutions in agriculture. Regression analysis is widely used statistical
technique which is useful in research and business decision making. Using regres-
sion analysis, the predictive power of a model can be explained and predictors
are evaluated for their relative importance. In the present model for farmers, the
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regression equation is expressed as below:

ITAfarmers = α0 + α1A1 + α2A2 + α3A3 + α4A4 + α5A5 + εfarmers (2)

where α0 is the intercept,α1 to α5 are regression coefficients of predictor vari-
ables A1 to A5 i.e. PUE, TEC, FAC, INF and SIN, respectively (see Table 2).
The farmers’ intention to adopt AI-based solutions in agriculture using the pro-
posed model resulted in R2 of 0.7178 i.e. the set of variables explain about 72%
variance in intention to adopt AI-based solutions in agriculture. High value of
adjusted R2 indicates good explanatory power of the model [9]. A visual repre-
sentation of the results is shown in Fig. 5. The results suggest that all five fac-
tors are statistically significant in influencing the intention to AI-based solutions
in agriculture. User expectations (PUE), Technology factors (TEC), Facilitat-
ing conditions (FAC), Information and Involvement (INF) and Social Influence
(SIN) are significant predictors of adopting AI-based solutions with p-values less
than 0.001, therefore, all the five hypotheses H1–H5 are supported.

Fig. 5. Summary of results for evaluating intention of farmers.

3.3 Analysis Using Inputs from Facilitators

To understand the perceptions of facilitators, who are enablers in the agricultural
system for implementation of the new technology such as agricultural universi-
ties, government agencies etc., we adopt similar methodology as used in previous
section. Applying EFA on the data set of facilitators, yields five factors with eigen
value greater than one which are able to explain the variance of 64% using princi-
pal component analysis and varimax rotation. The summary of extracted factors
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Table 3. Interpretation of latent variables for dataset of facilitators

Factor Interpreted

Factor Name

Sum of

Squared

Loading

Proportion

Variance

Original

Constructs

Number of

Items

Hypothesis

Factor-1 User

expectations

(PUE)

5.41 0.21 Performance

expectancy

4 H1 (+)

Effort

expectancy

4

Factor-2 Information and

Involvement

(INF)

3.73 0.14 Information

availability

4 H2 (+)

Formal and

Informal Link

3

Factor-3 Perceived Risks

(RSK)

2.44 0.09 Risk aversion 4 H3 (–)

Factor-4 Compatibility

(CMP)

2.43 0.09 Compatibility 4 H4 (+)

Factor-5 Facilitating

conditions (FAC)

1.57 0.06 Facilitating

conditions

4 H5 (+)

which impact the intention of facilitators to adopt AI-based solutions in agricul-
ture (ITAfacilitators) with respective interpretation and proposed hypotheses is
given in Table 3.

The framework based on extracted factors is evaluated for intention of facil-
itators for adopting AI-based solutions in agriculture using regression analysis.
The equation representing the relationship of factors in the framework and their
influence on the dependent factor is represented as:

ITAfacilitators = β0 + β1B1 + β2B2 + β3B3 + β4B4 + β5B5 + εfacilitators (3)

where β0 is the intercept, β1 to β5 are regression coefficients of predictor vari-
ables B1 to B5 i.e. PUE, INF, RSK, CMP and FAC, respectively (see Table 3).
The value of R2 of the given framework for facilitators is 69% which indicates
that the set of factors is able to be explain the variance in the intention of
facilitators for adopting AI-based solutions. The results are illustrated in Fig. 6
which indicate that four factors are statistically significant to influence the inten-
tion of facilitators to adopt AI-based solutions in agriculture. User expectations
(PUE), Information and Involvement (INF) and Compatibility (CMP) are sig-
nificant predictors of adopting AI-based solutions with p-values less than 0.001
and Perceived risks (RSK) with p-value < 0.01, while Facilitating conditions
(FAC) having p-value 0.833 is non-significant. Therefore, four hypotheses H1–
H4 are supported. It is important to note that Perceived risks are negatively
influencing the intention of facilitators for adopting AI-based solutions.
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Fig. 6. Summary of results for evaluating intention of facilitators.

4 Discussion

The results of this study suggest that User expectations, Technology factors,
Facilitating conditions, Information and Involvement and Social Influence the
significant factors which drive the intention of farmers to adopt AI-based solu-
tions in agriculture. The level of intention to adopt new technology increases
when users relate expected benefits of new technology [10] as indicated in results
for the factor User Expectations with highest coefficient (β = 0.310 for farmers
and β = 0.305 for facilitators). The two dimensions - compatibility, security and
privacy represented by technology factors demonstrate fitting of new solution
with existing practices, farmer’s work style and existing set-up at farm [11,12].
Facilitating conditions play a vital role towards farmers’ intention to adopt AI-
based solutions in agriculture. The resources in form of experiential trainings and
infrastructural aids facilitate farmers to gain knowledge and experience of new
technology [13,14]. With such supporting conditions, farmers’ trust on the new
technology deepens and they get encouraged to start using it [15]. The fourth
factor Information and Involvement represents availability of information on AI-
based solutions and involvement of farmers in agricultural programs. Farmers
learn benefits and features of the new technology using available information,
[16,17]. The social engagement by local communities and co-operatives enhances
the level of adoption for new technology and practice [13–15] as these project
improvement in farmers’ work practices. Thus, Social influence also plays an
important role towards adoption intent of farmers.

The second part of the study deals with evaluation of perceptions of facili-
tators towards adopting AI-based solutions in agriculture. The results indicate
that User expectations, Information and Involvement, and Compatibility are
significant predictors towards adoption intent of facilitators in the similar way
as observed for farmers. Additionally, the perceived risks are negatively influ-
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encing the adoption intent due to the concerns regarding the new technology in
terms of its high cost, efficiency and technical risks. Many of the facilitators are
concerned about the initial cost involved in deploying the new technology while
others have apprehensions on its performance. Thus, the framework evaluates
comprehensive view of factors which influence intent of farmers and facilitators
for adopting AI-based solutions in agriculture.

5 Conclusion

The present study evaluates the factors which motivate for adoption of AI-
based solutions in agriculture from the perspective of farmers and facilitators.
The study uses a framework based on well-known theories to analyze the sur-
vey responses from farmers and facilitators with EFA and Regression Analysis
techniques. Using EFA the factors from original framework are condensed into
five factors which are further analyzed using regression. Our findings indicate
that user perceived benefits, information availability, involvement of users and
compatibility with existing work practices encourage farmers and facilitators to
adopt AI-based solutions. However, perceived risks from the new technology act
as deterrent for facilitators towards its adoption. The results of the study can be
used by researchers, solution developers and policy-makers to develop improved
solutions and devise strategies for higher acceptance of the new technology.
While the present study has observed intention of farmers towards adoption
of AI-based solutions in Indian context, future research can examine validity
of this framework for other emerging economies. Moreover, the present study
offers a generalized view of adoption behavior of farmers, while future studies
can focus on specific crops or agricultural domains where AI finds large number
of applications.
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Abstract. Rice is one of the most cultivated crops in the world and a
primary food source for more than half of the global population. The
primary focus of this paper is to implement an ensemble learning model,
i.e., FusedNet, that aims to precisely classify 90 different rice seed vari-
eties by utilizing both Red-Green-Blue (RGB) and hyperspectral images
(HSI). The FusedNet model comprises two classifiers: first, the support
vector machine (SVM) classifier that utilizes spatial and spectral features
extracted from the RGB and hyperspectral image data, respectively, and
second, the ResNet-50 network (based on Convolutional Neural Network)
trained using single seed RGB image data. The model proposed in this
study achieved an impressive testing accuracy score of 87.27% and an
average F1-score of 86.87%, surpassing the results of the prior investiga-
tion conducted on the same publicly available dataset.

Keywords: Hyperspectral Image (HSI) · Convolutional Neural
Network (CNN) · Support Vector Machine (SVM) · Ensemble
Learning · ResNet-50

1 Introduction

Rice is a widely consumed food crop all over the world. About 50% of the
world’s global population consumes rice regularly to get nutrients, including
carbohydrates, proteins, fats, vitamins, minerals, and dietary fibres. China and
India are the top two countries in the world for rice cultivation, with China
ranking first and India ranking second in rice production. The quality of rice is
linked directly or indirectly to human health. Different rice varieties have varying
levels of nutritional value and health benefits. Moreover, the type of rice can also
affect the final product’s texture, flavor, and aroma.
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Traditionally, the rice varieties were identified manually by observing the
morphological traits, color, and texture with the assistance of experienced profes-
sional employees. Moreover, High-Performance Liquid Chromatography (HPLC)
and Gas Chromatography-Mass Spectrometry are chemical techniques that can
be used to identify rice varieties. They are often time-consuming and require
costly equipment. Additionally, the aforementioned methods are laborious and
lead to the disintegration of the rice samples. Developing a real-time, accu-
rate, and non-destructive automated method for rice variety identification would
enable a more efficient allocation of human resources and deliver rapid and con-
sistent outcomes. When used in conjunction with computer vision, hyperspec-
tral imaging [1] shows excellent potential in precisely categorizing rice seeds.
The automatic, real-time approaches for classifying rice seeds utilize the follow-
ing features, including morphological traits, color features, and texture features
fetched from the RGB images and spectral traits fetched from the HSI data.
Huang et al. [2] utilized a back propagation neural network (BPNN) to classify
three paddy seed varieties by extracting spatial features from RGB images. The
study reported a classification accuracy of 95.56%. Hong et al. [3] employed a
random forest classifier to distinguish six rice varieties from northern Vietnam,
utilizing morphological traits such as color, shape, and texture extracted from
RGB images. The model demonstrated a discriminative accuracy of 90.54%. Kuo
et al. [4] applied a sparse coding method to classify 30 rice varieties by utiliz-
ing their morphological features fetched from the RGB images and obtained the
highest accuracy of 89.1%. Jin et al. [5] achieved an impressive accuracy of 95%
in classifying ten rice varieties by utilizing a convolutional neural network on
hyperspectral images. A detailed literature review was explored by Fabiyi et al.
[6] on the classification of seeds.

The present study utilizes the fusion of two classifiers to differentiate 90 rice
seed varieties. The first classifier is an SVM-based model trained using nine
spatial features (perimeter, area, solidity, eccentricity, aspect ratio, major axis
length, minor axis length, extent, and maximum Feret diameter) and spectral
features (mean spectra and variance). The second classifier utilizes ResNet-50
architecture (based on CNN) trained using the single seed RGB image dataset.
The single seed RGB image dataset was prepared by cropping the individ-
ual seeds from the original RGB images. The seeds were cropped based on
their bounding boxes to preserve the boundary features. Moreover, each seed
image was placed on a 350×350 black background to standardize the image
size. Finally, both classifiers were fused through an ensemble approach, which
resulted in improved classification accuracy and F1-score. This improvement can
be attributed to the fact that the CNN-based Resnet-50 classifier extracted addi-
tional features from the RGB images, which were then integrated with the SVM
classifier’s results.

Paper Contributions: (1) Developed machine learning models and trained
them using spatial and spectral features extracted from RGB and hyperspec-
tral images, respectively, and compared their performance to obtain the optimal
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model (Classifier 1). (2) Prepared a dataset of individual seed images cropped
from the original RGB images. (3) Developed a second classifier (Classifier 2)
based on ResNet-50 architecture and trained it using the prepared single seed
RGB image dataset. (4) Combined the optimal machine learning model (Clas-
sifier 1) with the ResNet-50-based model (Classifier 2) using weighted average
approach and classified rice seeds according to their variety. Further, evaluated
the proposed model using various performance metrics.

The structure of the paper is as follows: A concise introduction to the dataset
and its preprocessing is presented in Sect. 2, while Sect. 3 elaborates on the mod-
eling techniques employed. Section 4 offers a detailed analysis of the experiments
conducted and their outcomes, and the study is concluded in Sect. 5 with a brief
summary of future research potential.

2 Materials and Methods

2.1 Original Dataset Description

The dataset under study consists of ninety different varieties of rice seeds, con-
tributed by the National Centre of Protection of New Varieties and Good Plants
(NCPNVGP), Vietnam. These varieties were carefully chosen as they are among
the most commonly cultivated and consumed rice seed types. Skilled and trained
personnel manually ensured that each seed of the dataset belonged to the men-
tioned variety. A seed sample of 96 seeds for each of the 90 varieties was analyzed
in this study. The seeds were then divided into two bundles, with each containing
48 seeds. These 48 seeds were arranged in an 8 × 6 matrix form. Consequently,
the data collected in this study corresponds to a total of 8640 seeds (90 varieties
× 96 seeds per variety).

The image data was captured using two systems: a detailed RGB camera
and an HSI system. The RGB and HSI systems captured data simultaneously
for each bundle. The RGB image captured has a high resolution of 4896 ×
3264 pixels. The spectral image comprised reflectance values corresponding to
wavelengths ranging from 385 nm to 1000 nm. As a result, the hyperspectral data
cube consisted of reflectance values of 256 spectral bands.

Dark and white references were also used in this study. For capturing the
dark reference, a shutter was used, while a white spectralon surface was used to
capture the white reference data. These references were used for the normaliza-
tion of spectral data. The dataset is described in more detail in [6]. It is publicly
available at [7].

The original raw dataset has noise and illumination defects that need to
be preprocessed. The RGB and hyperspectral images were processed separately
due to their different features of interest. The main features to extract from the
high-resolution RGB images are morphological features related to shape and size.
Therefore, there is a need to have high-contrast images so as to easily and accu-
rately extract these features. Similarly, the hyperspectral images are required to
obtain the reflectance values; therefore, the illumination inconsistencies must be
eliminated.
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2.2 RGB Image Data Preprocessing and Feature Extraction
for Classifier 1

To train Classifier 1, nine morphological traits were fetched from the RGB image
dataset. The raw RGB images were cropped to keep only the region with seeds in
the frame. The morphological features were extracted using only the red channel
out of the three bands (red, green, and blue) since it exhibits the highest contrast
with respect to the background.

Next, the images were subjected to a white top-hat transformation to reveal
fine details. Then, Otsu’s method [8] was applied to threshold the images and
convert them to binary images. This method determines a threshold value that
separates the foreground objects from the background by maximizing the inter-
class variance on the intensity histogram. Subsequently, morphological closing
and opening [9] operations were applied to the image. Morphological closing
filled all the small holes inside the seeds, making the measurement of features
such as area more accurate. Morphological opening and area thresholding were
used to eliminate any unwanted noise present in the background. This helped
label only the actual seeds and avoid any noise being labeled. In the dataset
images, the seeds are arranged in an 8 × 6 grid. To label them, the centroids of
the seeds were sorted in a top-to-bottom order and then grouped into buckets
of size 6. Within each bucket, the centroids of the seeds were sorted in left-
to-right order. This labeling scheme ensured that the seeds were labeled based
on their row position first and then in a left-to-right manner within each row,
thus establishing a consistent and organized labeling convention as described in
Fig. 1.

After processing, the images were utilized to extract nine spatial features,
namely perimeter, area, major-axis length1, minor-axis length(see footnote 1),
eccentricity(see footnote 1), aspect ratio(see footnote 1), solidity2, extent3, and
maximum Feret diameter4.

2.3 Hyperspectral Data Preprocessing and Feature Extraction
for Classifier 1

The mean spectra and variance of the reflectance values of each seed were fetched
from the hyperspectral images and fed as input to train Classifier 1. For this,
the hyperspectral images need to be preprocessed. The first step in this process
involved normalizing the image to correct for any distortions caused by uneven
illumination. This was achieved using the standard procedure that has been used
in previous works [6,21]. The next step was to create a binary mask to isolate
the region of interest, i.e., the seed pixels. This was done by subtracting the
1 These features were extracted by considering the seed region as an ellipse.
2 Solidity is computed by dividing the shape area by the area of its convex hull.
3 Extent is computed by dividing the shape area by the area of the smallest rectangle

enclosing the shape.
4 Maximum Feret diameter is defined as the longest distance between two parallel

lines restricting the shape.
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Fig. 1. labeling Scheme

0th band from the 100th band to enhance the contrast of the image and then
applying the mean threshold method [10] to create a binary mask. This mask
was then subjected to Morphological Opening and Closing transformations, as
well as area thresholding to remove any background noise. The resultant binary
mask was then used to isolate regions of interest by multiplying it with each
band of the normalized hyperspectral image. Next, the seed regions were labeled
using the same labeling scheme as described in Sect. 2.2. Following this, the mean
and variance of the reflectance values were computed for each of the 256 bands,
resulting in a total of 512 hyperspectral features that were utilized in the study.

2.4 Single Seed RGB Image Dataset Preparation for Classifier 2

In the present study, a single seed RGB image dataset is prepared from the
original RGB images for training Classifier 2. An overview of the dataset prepa-
ration is shown in Fig. 2. To prepare the dataset, binary images were generated
from the original RGB images and labeled using the same procedure described
in Sect. 2.2. These binary images were then utilized to create a bounding box for
each seed. Next, individual seeds were cropped from the original RGB images
based on their respective bounding boxes. This approach ensured that the seed
boundary region information was retained and incorporated by the classifier.
The bounding boxes were of different dimensions for different seeds; therefore,
to ensure uniformity in image size for input to the CNN, a black background was
placed behind the seed images. This background had a resolution of 350× 350
pixels, chosen to fit all the seeds within the image frame.
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Individual seeds dataset prepared from original seed matrix

Fig. 2. An overview of single seed RGB image dataset preparation

The preprocessing steps are described in Sect. 2.2, 2.3 and 2.4 are summarised
in Fig. 3.

3 Modeling Methods

3.1 Support Vector Machine

The SVM algorithm works by finding the most suitable hyperplane that sep-
arates various data classes while maximizing the margin, which refers to the
amount of separation between the hyperplane and the closest data points from
each class [11]. The SVM algorithm is capable of converting the input data into
a higher-dimensional space through the utilization of a kernel function, thereby
facilitating the linear separation of the data. Different kernels and hyperparame-
ters were tuned using a grid search technique with 5-fold cross-validation on the
training set. Finally, the ‘rbf’ kernel with penalty term ‘C’ as 1 and ‘γ’ as 0.001
gave the best results. The mathematical equation of the radial basis function
(RBF) kernel is:

K(ya, yb) = e−γ||ya−yb||2
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Fig. 3. Schematic representation of the proposed methodology

Here, K is the RBF kernel function, ya and yb are data points, γ is a hyper-
parameter that governs the width of the RBF kernel, and ||.|| represents the
distance (Euclidean) between ya and yb.

3.2 XGBoost

Extreme Gradient Boosting (XGBoost) [12] uses a boosting approach where mul-
tiple weak models, usually decision trees, are combined to form a strong model.
XGBoost differs from traditional gradient boosting algorithms by incorporating
regularization techniques and parallel computing, resulting in improved accuracy
and faster training times.
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3.3 Random Forest

Random Forest algorithm constructs multiple decision trees using different sub-
sets of the training data and integrates their outputs to produce a final prediction
[13]. During the construction of each decision tree, a random set of features is
selected, and the criterion for splitting is determined based on the degree of
impurity reduction in the target variable.

3.4 Convolutional Neural Network (CNN) and ResNet-50

CNNs [14] use a special type of neuron called a convolutional neuron that applies
a mathematical operation known as a convolution on the input image to extract
vital features, including edges, corners, and textures. Multiple convolutional lay-
ers are stacked together to form a deep neural network that can learn increasingly
complex and abstract features from the input image. Additionally, CNNs may
incorporate pooling layers to decrease the output size and fully connected layers
to make predictions based on the extracted features.

ResNet-50. ResNet stands for Residual Network and is a specific type of con-
volutional neural network introduced by He et al. [15]. ResNet-50 is a pre-trained
model (pre-trained on ImageNet dataset [16]) which uses 50 layers in its archi-
tecture and uses skip connections to deal with the problem of vanishing gradients
which is quite common in deep neural networks.

4 Experiments and Results

4.1 Performance Metrics

The metrics [17] used for evaluating the performance of models in this work are
accuracy, precision, recall and F1-score.

Accuracy =
Number of Correct Predictions

Number of Total Predictions
(1)

Precision =
TruePositives

TruePositives + False Positives
(2)

Recall =
TruePositives

TruePositives + FalseNegatives
(3)

F1 − score = 2.
P recision.Recall

Precision + Recall
(4)

The precision, recall and F1-score metrics described in Eq. 2, 3 and 4 are
calculated for each class separately, and then the macro-average of these metrics
is computed to describe the performance of the model across all classes.
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4.2 Experimental Setup

We conducted our research experiments on a system with specific hardware
specifications. The CPU used was an Intel Xeon Gold 5120 processor, which has
a base clock speed of 2.2 GHz, 14 cores, and 28 threads, featuring a SmartCache
of 19.25 MB. The GPU used an Nvidia Quadro P5000 with 16 GB of GDDR5X
VRAM, 2560 CUDA cores, and a memory bandwidth of 288 GB/s. The system
was running on the Ubuntu 18.04.6 LTS operating system, and the experiments
were conducted using Python 3.9.16 and PyTorch 1.12.1.

4.3 Model Development

In this study, two classifiers have been used, namely, Classifier 1 and Classifier
2, which are further combined, giving the final ‘FusedNet’ model.

Classifier 1. The RGB and Hyperspectral image dataset was preprocessed,
as described in Sects. 2.2 and 2.3, resulting in a dataset with 512 spectral
features and 9 spatial features, totalling 521 features. The dataset was parti-
tioned into two sets: a training set consisting of 7344 samples and a testing set
consisting of 1296 samples with an 85:15 ratio. To eliminate the redundancy
in features, dimensionality reduction was performed using Linear Discriminant
Analysis (LDA) [18] which reduced the feature count to 89. The input features
were normalized by subtracting the mean and scaling to a standard deviation of
one.

The Classifier 1 was chosen from the following three machine learning models:
Support Vector Classifier, Random Forest (RF) Classifier and XGBoost Clas-
sifier. The hyperparameters of these classifiers were tuned using a grid search
technique with 5-fold cross-validation [19]. For Support Vector Classifier, the
hyperparameters ‘C’ (penalty parameter), ‘γ’ (kernel coefficient), and kernel
(‘rbf’, ‘poly’ and ‘sigmoid’) were tuned. To optimize the performance of the
Random Forest Classifier, various hyperparameters such as ‘n estimators’ (the
number of trees in the forest), ‘max depth’ (the maximum depth of each tree),
‘max features’ (the number of features considered for the best split), and the
criterion of split were tuned. To optimize the performance of the XGBoost Clas-
sifier, the hyperparameters ‘max depth’ (the maximum depth of each tree),
‘n estimators’ (the number of estimators), and learning rate were tuned. The
best-tuned model of each classifier is presented in Table 1. The Support Vector
Classifier (with hyperparameters ‘C’ = 1, ‘γ’ = 0.001 and ‘rbf’ kernel) achieved
the highest F1-score of 85.96 compared to the other classifiers. Based on these
results, the Support Vector Classifier was selected as Classifier 1.To further ana-
lyze the performance of the model, spectral and spatial features were separately
used as input data, and the Support Vector Classifier (Classifier 1) was trained
on each of them. LDA and standardization were applied to the data the same
as before. Table 2 presents a comparison of the performance of Classifier 1 on
various combinations of image features. The accuracy achieved by solely utilizing
spatial features was 24.31%, whereas utilizing solely spectral features resulted
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in an accuracy of 79.39%. These results suggest that the selected nine spatial
features do not fully capture the information contained in RGB images. Convo-
lution Neural Networks (CNN) have been very successful in image classification
tasks, and their ability to extract relevant features from images makes them suit-
able for this problem. Therefore, to complement the Support Vector Classifier,
a second classifier based on CNN was trained on the single seed RGB image
dataset.

Table 1. Performance of different machine learning classifiers on spatial and spectral
feature data

Classifier name Hyperparameter values Accuracy Average F1-Score Average Precision Average Recall

XGBoost (2, 0.1, 180)a 80.71 79.93 80.44 80.53

RF (1000, 15, ‘auto’, ‘gini’)b 86.34 85.51 85.97 86.52

SVM (1, 0.001, ‘rbf’)c 86.41 85.96 86.46 86.62
a(max depth, learning rate, n estimators)
b(n estimators, max depth, max features
c (C, γ, kernel)criterion)

Table 2. Performance of Support Vector Classifier on different combinations of image
features

Data Accuracy Avg. F1-Score Avg. Precision Avg. Recall

Spatial features only 24.31 23.05 23.32 26.38

Spectral features only 79.39 78.61 79.77 79.37

Spatial + spectral features 86.41 85.96 86.46 86.62

Classifier 2. The CNN based Classifier 2 was trained using the single seed
RGB image dataset prepared in Sect. 2.4. The dataset was partitioned into a
training set of 7344 images, which accounted for 85% of the dataset, and a testing
set of 1296 images, which accounted for the remaining 15%. The random state
used for the train-test split was the same for both Classifier 1 and Classifier 2.
Same random state implies that the same seeds whose features were used in the
training set of Classifier 1 were present as cropped images in the training set of
this classifier. A further division of the training set resulted in a training subset
consisting of 5875 images, representing 80% of the dataset, and a validation
subset consisting of 1469 images, representing the remaining 20%. During the
training process, the loss function employed was categorical cross-entropy, and
the Adam optimizer was utilized. Different pre-trained CNN models were trained
and validated, and the ResNet-50 [20] model was found to outperform the others
in terms of validation accuracy. Hyperparameter tuning was performed using the
same training and validation sets. The final Classifier 2 model contained three
fully connected layers on top of pre-trained ResNet-50 with ReLU activation
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and 30% dropout, achieving an accuracy of 31.01%, F1-score of 30.04%, recall
of 31.42%, and precision of 32.28%. Our findings indicate that this CNN-based
Classifier 2 (trained on RGB image dataset) performs better than Classifier 1
(trained on only spatial features).

FusedNet. The present study culminates with the integration of the two classi-
fiers discussed earlier to create an ensemble classifier. Figure 4 depicts the archi-
tecture of the proposed ensemble classifier. In order to find the final predicted
label, the predicted probabilities for the 90 seed varieties were obtained using
the two classifiers. Subsequently, the weight coefficients (α and 1−α as described
in Eq. 5) for the two classifiers were determined through a grid search process
using 5-fold cross-validation. Finally, a weighted average of the outputs from
both classifiers was calculated to obtain the final predicted label. The predicted
probability of ith class generated by ensemble-based FusedNet, PFusedNeti is
given by Eq. 5
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FusedNet Model for Varietal Classification of Rice Seeds 39

PFusedNeti = α ∗ PClf1i + (1 − α) ∗ PClf2i (5)

Here, PClf1i , and PClf2i are the probabilities of the ith class generated by Clas-
sifier 1 and Classifier 2, respectively. α is the weight parameter corresponding to
Classifier 1. The optimal value of the parameter α, say α∗ was computed using
the following algorithm.

1. Initialize the possible values of α = [0.00, 0.01, 0.02, 0.03, ...., 0.98, 0.99, 1.00].
2. For each possible value of α, say αj , calculate the PFusedNeti,j for ith class

as given in Eq. 5. Then calculate the 5-fold cross-validation accuracy.
For each αj ,

Accuracyavg,j =

∑

all folds

(

∑

val set

( argmax
i

(PFusedNeti,j
)==Yseed )

size(val set) )

number of folds
(6)

where Yseed is the actual class (variety) of the seed and val set is the validation
set in each fold.

3. Choose that value of αj as α∗ that gives the maximum mean accuracy over
all the folds.

α∗ = arg max
αj

(Accuracyavg,j) (7)

The plot of 5-fold cross-validation accuracy vs α is shown in Fig. 5. The opti-
mal value of α was determined to be 0.90, which resulted in the highest accuracy.
This value was then selected as α∗, representing the optimal value for FusedNet’s
final class prediction. Here, α∗ = 0.9 implies that Classifier 1 contributes 90%
to the prediction, while Classifier 2 contributes 10%. The inclusion of Classifier
2 has played a crucial role in achieving improved accuracy.

The proposed FusedNet Classifier achieved a testing accuracy of 87.27%, an
average F1-score of 86.87%, an average precision of 87.36%, and an average recall
of 87.53% on the testing dataset.

4.4 Comparison with State-of-the-Art Methods

Table 3 presents a comparison between our proposed approach and the current
state-of-the-art methods, all evaluated on the same dataset. The preceding sec-
tions discuss the quantitative outcomes, while the qualitative findings, illustrated
in Fig. 6, showcase the predicted varieties of seed images.
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Table 3. Comparison with State-of-the-art Methods

Author/Model Avg. F1-Score Avg. Precision Avg. Recall

Filipović et al. [21] 85.65 86.21 86.00

Fabiyi et al. [6] 78.27 79.64 78.80

Proposed FusedNet 86.87 87.36 87.53

Fig. 5. Plot of cross validation accuracy versus α parameter. The best accuracy was
achieved at α = 0.9. Figure (b) is a magnified version of Fig. (a) for α in the range
[0.80,1.00].

AV : LocTroi183
PV : LocTroi183

AV : R068
PV : R068

AV : KN5
PV : KN5

AV : GiaLoc301
PV : GiaLoc301

AV : DMV58
PV : DMV58

AV : CT286
PV : CT286

Fig. 6. Predictions for sample data. Here, ‘AV’: Actual Variety, ‘PV’: Predicted Variety.
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5 Conclusion and Future Work

The proposed FusedNet architecture based on ensemble learning [22] outper-
formed the machine learning models. The F1-score obtained by the FusedNet
architecture is superior to that achieved by existing state-of-the-art methods.
Specifically, the CNN-based classifier trained using RGB images outperformed
the SVM-based classifier trained using only spatial features, suggesting that
CNNs are better equipped to extract features from images that may be missed
by traditional methods. Moving forward, the proposed method could be applied
to larger datasets, as deep learning models require a significant amount of data to
be trained properly. Moreover, the results demonstrate the potential of ensemble
learning approaches in improving the accuracy of seed classification models.
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Abstract. Precise application of fertilizer is essential for sustainable
agricultural yield. Machine learning-based classifiers are vital in eval-
uating soil fertility without contaminating the environment. This work
uses machine learning-based classifiers such as Classification and Regres-
sion Tree, Extra Tree, J48 Decision Tree, Random Forest, REPTree,
Naive Bayes, and Support Vector Machine to classify soil fertility. Ini-
tially, soil classification was conducted using chemical measurements of
11 soil parameters such as Electrical Conductivity, pH, Organic Car-
bon, Boron, Copper, Iron, Manganese, Phosphorus, Potassium, Sulphur,
and Zinc. The traditional laboratory analysis of soil chemical param-
eters is time-consuming and expensive. This research work focuses on
developing a robust machine learning-based classification approach by
employing prominent features recommended by the ensemble filter-based
feature selection. To overcome the inconsistency in generating differ-
ent feature scores, an ensemble filter-based feature selection is devised
using three different filter-based feature selection approaches: Informa-
tion Gain, Gain Ratio, and Relief Feature. Two different datasets are
used to evaluate the robustness of the proposed approach. Obtained
experimental results demonstrated that the proposed approach with the
Random Forest classifier achieved the highest Accuracy of 99.96% and
99.90% for dataset-1 and dataset-2, respectively. The proposed method
reduces the inconsistency in feature selection by eliminating a common
parameter from both datasets. It minimizes the cost of soil fertility clas-
sification by using relevant soil parameters. The classification results are
used to provide fertilizer prescriptions.

Keywords: Classifier · Feature Selection · Machine Learning · Soil
Fertility · Sustainable Agriculture

1 Introduction

India’s development predominantly relies on agricultural development. The
increased or decreased soil fertilization deteriorates or accelerates the soil nutri-
ents [13]. The variation in soil nutrients decreases crop yield. Excess fertilization

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. K. Saini et al. (Eds.): ICA 2023, CCIS 1866, pp. 43–57, 2023.
https://doi.org/10.1007/978-3-031-43605-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43605-5_4&domain=pdf
http://orcid.org/0000-0002-2685-0471
https://doi.org/10.1007/978-3-031-43605-5_4


44 M. Sujatha and C. D. Jaidhar

causes environmental pollution. It is essential to maintain soil fertility balance
to improve agricultural productivity. As a result, it is essential to classify the
soil parameters for fertilizer recommendations with environmentally sustainable
technologies. Soil classification using machine learning-based classifiers helps sus-
tainable and improved agricultural production [20].

The goal of using a machine learning-based classifier in this work is to classify
soil fertility sustainably without affecting the environment. This work uses tree-
based classifiers, namely Classification and Regression Tree (CART), Extra Tree,
J48 Decision Tree (J48), Random Forest (RF), REPTree (REP), and Random
Tree (RT) to classify the soil fertility, and compares them with Naive Bayes
(NB) and Support Vector Machine (SVM) classifiers. Soil fertility depends on
various chemical parameters such as Electrical Conductivity (EC), pH, Organic
Carbon (OC), and nutrition levels existing in the soil. The soil nutrients such
as Potassium (K), Nitrogen (N), and Phosphorous (P) are essential in large
quantities, whereas Sulphur (S), Boron (B), Copper (Cu), Iron (Fe), Manganese
(Mn), and Zinc (Zn) are necessary at lesser quantities for better crop growth and
yield [14]. Many former works have employed machine learning-based approaches
to estimate soil fertility. A few researchers have recommended fertilizers based on
deficiency of soil nutrients N, P, K, or S [2,17,20]. In this research, fertilizers are
recommended based on soil chemical parameters including EC, pH, OC, B, Cu,
Fe, Mn, K, P, S, and Zn. The deficit of N is determined based on the chemical
measurement of pH.

Traditional laboratory analysis of soil samples is plagued by time constraints
and high costs for determining soil nutrients. The filter-based feature selection
techniques reduce the computational overhead and complexity of classification by
selecting a subset of the most relevant features [15]. It is advantageous to select
the relevant soil parameters to minimize the cost of lab analysis. The different
filter-based feature selection methods are Correlation, Chi-Squared, Information
Gain (InfoG), Gain Ratio (GainR), OneR, and Relief Feature (ReliefF). Cor-
relation determines the linear relationship between two or more features [15].
As the soil parameters are correlated, using a correlation approach to decide on
irrelevant features is inappropriate. Chi-squared finds the relevance of features
by measuring Chi-squared statistics with respect to the class. It is erratic for
the imbalanced dataset [10]. InfoG applies entropy to calculate the weight of
the feature. As a result, the class prediction becomes less uncertain. It assesses
both relevancy and redundancy of features in predicting the target variable [4].
GainR differs from InfoG in that it incorporates a normalization factor to cor-
rect the bias of high-valued features [15]. ReliefF ranks the features according to
their ability to separate data points close to each other in the attribute space.
It selects a sample instance from the dataset, and its features are compared to
its neighbors [5]. The selected features vary for different feature selection tech-
niques and depend on the datasets used [15]. This research proposes a robust soil
fertility classification approach using the features selected based on an ensemble
filter-based feature selection approach. With the proposed approach, farmers can
apply precise amounts of fertilizer with minimal soil nutrient testing.
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The prime contributions of this research work are:

– Soil-health data was collected from two different districts of Karnataka
(State), India, and labeled as LOW, MEDIUM (MED), or HIGH.

– An ensemble filter-based feature selection approach is proposed by combining
three different filter-based feature selection approaches, namely InfoG, GainR,
and ReliefF.

– Soil fertility classification approach is proposed based on the features rank
given by the ensemble filter-based feature selection approach.

– Based on the classification results, fertilizers are prescribed.

2 Related Work

Many authors have investigated using machine learning-based classifiers to classify
soil fertility. Schillaci et al. [19] used Boosted Regression Tree (BRT) to measure
OC present in the soil. Sirsat et al. [20] used various machine learning-based classi-
fiers such as RF, AdaBoost, Support Vector Machines (SVM), and Bagging to clas-
sify soil nutrient levels by using village-wise fertility indices of Phosphorous Pen-
toxide (P2O5), OC, Fe, and Mn and chemical measurements of EC, pH, Nitrous
Oxide (N 2O), Potassium Oxide (K 2O), Sulfate (SO4, Zn), soil type and rec-
ommended fertilizers for crops bajra, cotton, and soybean, based on N2O, P2O5
and K2O. BRT and RF classifiers were used by Wang et al. [23] to estimate vari-
ation in soil OC stock. Khanal et al. [11] adopted site-specific data with cation
exchange capacity, pH, K, Magnesium (Mg), organic matter, and yield data for
corn collected from several fields and developed models using Linear regression,
RF, Multilayer Perceptrons, SVM, Gradient Boosting, and Cubist. Ransom et al.
[17] incorporated the site-specific soil data to improve Nitrogen fertilizer recom-
mendation for corn and evaluated the performance of Decision Tree, RF classi-
fier, Elastic Net Regression, Stepwise Regression, Ridge Regression, Least Abso-
lute Shrinkage and Selection Operator Regression, Principal Component Regres-
sion, and Partial Least Squares Regression. Zhang et al. [24] used an amalgamation
of Mutual Information and Ant Colony Optimization to identify total N content
spectrometer-sensitive wavebands, and Partial Least Square, Multi Linear Regres-
sion, and SVM models were used to determine total nitrogen content. Fernandes
et al. [8] verified that Artificial Neural Networks could measure soil organic mat-
ter with the highest Accuracy using pH, Calcium, Mg, and soil acidity. Zia et al.
[25] developed models using M5 tree, Multi Linear Regression, Multilayer Percep-
trons, and REPTree to predict total Nitrogen loss. Delavar et al. [6] developed a
hybrid model using Artificial Neural Networks and a Genetic Algorithm to predict
variation in soil salinity. Mahmoudzadeh et al. [12] estimated OC, using Cubist,
K Nearest Neighbours, Extreme Gradient XGBoost, RF, and SVM. Abera et al.
[2] predicted variation in N, P, K, and S using RF classifier and recommended
fertilizer for wheat based on yield response to fertilizer.

In previous works, soil fertility has been estimated based on a few soil param-
eters. A few researchers have recommended fertilizer based on a deficit of a few
soil nutrients. This research recommends fertilizers based on a deficit of 11 soil
chemical parameters to improve soil fertility.
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3 Dataset Used

To conduct the experimental study, soil health data [21] collected from the farm-
lands of villages of Dakshina Kannada and Gulbarga districts of Karnataka
(State), India were used. Dakshina Kannada is a coastal district consisting of
acidic soil with pH<6.5. Gulbarga is a noncoastal district consisting of neutral
with 6.5<=pH<8.5 or alkaline soil with pH>8.5 [3]. The data collected consists
of 19 attributes: sample number, state name, district name, block name, village
code, village name, latitude, longitude, and 11 soil chemical parameters. The 11
chemical parameters, namely, EC, pH, OC, P, K, S. B, Cu, Fe, Mn, and Zn, are
selected from the dataset. A data cleaning process is performed using the open-
source WEKA tool to remove redundant data, missing parameter values, and
parameters with a value of 0. The dataset instances are labeled as LOW, MED,
or HIGH using the level of soil parameters [22]. After performing data prepro-
cessing, the data collected from Dakshina Kannada district (dataset-1) has 36979
instances, with 36796 instances of LOW fertile soil, 158 instances of MED, and
25 instances of HIGH fertile soil. The preprocessing of data collected from the
Gulbarga district resulted in 40929 instances, among which 36979 instances were
randomly selected (dataset-2). Dataset-2 consists of 36775 instances of LOW fer-
tile soil, 174 instances of MED, and 30 instances of HIGH fertile soil.

4 Proposed Soil Fertility Classifier

The steps involved in the proposed soil fertility classification approach are
depicted in Fig. 1. The soil health data is preprocessed and fed as input to the
ensemble filter-based feature selection module. The feature scores are calculated
for each feature using three different filter-based feature selection techniques,
such as InfoG, GainR, and ReliefF. The features are ranked in descending order
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Fig. 1. Sequence of Steps in Proposed Soil Fertility Classification Approach
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of the scores obtained, i.e., the feature with the highest score is ranked as 1,
whereas the feature with the lowest score is ranked with a higher rank. The fea-
ture with rank 1 is considered more relevant, whereas the higher rank is consid-
ered least relevant. It was observed that the feature ranks depend on the datasets
used. The ranks obtained for a dataset using three different techniques were not
constant. The ranking of features based on scores obtained using InfoG, GainR,
and ReliefF feature selection approaches are given in Tables 1 and 2, respectively.
For dataset-1, it was observed that InfoG and GainR recommended the feature
'S' as least relevant, whereas the least relevant feature recommended by ReliefF
was 'B'. For dataset-2, it was found that the least relevant feature recommended
by InfoG and GainR was 'P', whereas the least relevant feature recommended
by ReliefF was 'S'. To maintain the stability in feature selection, an ensemble
filter-based feature selection is proposed as depicted in Fig. 2. The average of
ranks obtained by InfoG, GainR, and ReliefF for each soil parameter 'x' is cal-
culated using Eq. (1). The features are arranged based on the ascending order of
their rankings. The subset of features by removing the feature with the highest
average ranking was given as input to the classifier. The classifier classifies the
input data instances as LOW, MED, or HIGH fertility. The soil parameter with
the highest average rank was chosen as the parameter to be eliminated.

Table 1. Feature selection scores and ranks obtained for dataset-1

Features
(x)

ScoreInfoG(x) ScoreGainR(x) ScoreReliefF(x) RankInfoG(x) RankGainR(x) RankReliefF(x) Average
Rank

EC 0.00238 0.00193 0.018103 9 8 4 7

pH 0.01207 0.01483 0.055469 2 2 2 2

OC 0.0021 0.00163 0.004477 10 9 7 8.67

K 0.00241 0.00157 0.058884 8 10 1 6.33

P 0.00414 0.00209 0.000824 6 7 9 7.33

S 0.00174 0.00139 0.016596 11 11 5 9

B 0.0071 0.00499 0.000107 4 4 11 6.33

Cu 0.01497 0.02021 0.003144 1 1 8 3.33

Fe 0.00351 0.00311 0.023297 7 6 3 5.33

Mn 0.00641 0.00481 0.012952 5 5 6 5.33

Zn 0.01097 0.01138 0.000107 3 3 10 5.33

Table 2. Feature selection scores and ranks obtained for dataset-2

Features
(x)

ScoreInfoG(x) ScoreGainR(x) ScoreReliefF(x) RankInfoG(x) RankGainR(x) RankReliefF(x) Average
Rank

EC 0.02031 0.27375 0.012372 2 1 2 1.67

pH 0.01665 0.01017 0.032111 4 7 1 4

OC 0.01643 0.00885 0.005453 5 8 5 6

K 0.01397 0.01033 0.00374 8 6 7 7

P 0.00435 0.00297 0.001717 11 11 8 10

S 0.01042 0.00629 0.000475 10 10 11 10.33

B 0.01187 0.00751 0.001393 9 9 9 9

Cu 0.02379 0.04659 0.007797 1 2 3 2

Fe 0.01563 0.01639 0.005312 6 4 6 5.33

Mn 0.01535 0.0242 0.006917 7 3 4 4.67

Zn 0.01828 0.01518 0.001236 3 5 10 6
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 Feature, X     Rank       (X)
InfoG

 Feature, X     Rank       (X)
GainR

 Feature, X     Rank       (X)
ReliefF

 Feature      Score     Rank    Feature      Score     Rank    Feature      Score     Rank   

 Information Gain                 Gain Ratio    Relief Feature   

Filter-based Feature Selection Approaches   

                         Average Rank(X)
                                     =
(Rank        (X)+Rank        (X) +  Rank         (X))/3

InfoG GainR ReliefF

Ensemble Filter-based Feature Selection Approach   

 Preprocessed Dataset   

 Features with Rank from higher priority to lower priority   

 Input   

Fig. 2. Proposed Ensemble filter-based feature selection approach

Aerge Rnk(x) =
RnknƒoG(x) + RnkGnR(x) + RnkReeƒF(x)

3
(1)

After classifying the instances, a fertilizer suggestion is made based on the
value of P and K to boost the amount of 'P ' and 'K ' in the soil, respectively.
The fertility level of N and S is determined based on pH value. The fertility level
of N in the soil is considered inadequate when pH<5.1 or pH>8.75. If the pH is
between 5.1 and 5.9 or 8 and 8.5, it is considered moderate; otherwise, the nitro-
gen level is considered high. The fertility level of S is low when pH<5.5, medium
when the pH value is between 5.5 and 5.9, and high when pH>=5.9. The defi-
ciency of soil micronutrients, including B, Cu, Fe, Mn, and Zn, is determined
based on their chemical measurements, and the fertilizer prescription is made
accordingly. Based on the classification results, the proposed model prescribes
fertilizer for the specified crops in the given location. This research uses the most
prevalent crops in Karnataka state: rice, green gram/ black gram, black pepper,
and cucumber. Coastal saline or alluvial soil is used to cultivate the cereal crop
paddy. It is grown during the Kharif season (Sowing: June - July, Harvesting:
September - October) and the Rabi season (Sowing: October-November, Har-
vesting: March - April) [18]. Pulses like green gram and black gram are typically
cultivated during the Kharif or Zaid (or summer) season in mixed red and black
soil. Black pepper is a spice and medicinal crop grown in the Kharif season. The
cucumber is widely grown in Zaid/Summer season. Soils often become deficient
in major nutrients, particularly N, P, K, and sometimes S and other micronu-
trients. The quantity of fertilizers to be applied for various crops based on the
fertility level of N, P, and K are given in Tables 3, 4, and 5, respectively. Table 6
shows the fertilizer prescription for any crop based on deficiency of 'S ' and other
micronutrients.
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Table 3. Quantity of Neam Coated Urea recommended (kg/ha) based on fertility level
of 'N'

Paddy Black Pepper Cucumber Green
gram/ Black
gram

Fertility
Level of N

Kharif Rabi Kharif Zaid/
Summer

Kharif Zaid/
Summer

LOW 289.13 360.87 289.13 173.91 36.96 71.74

MED 217.39 271.74 217.39 130.43 28.26 54.35

HIGH 145.65 180.43 145.65 86.96 17.39 36.96

Table 4. Quantity of Single Superphosphate recommended (kg/ha) based on fertility
level of 'P'

Paddy Black Pepper Cucumber Green gram/
Black gram

Fertility Level
of P

Kharif Rabi Kharif Zaid/ Summer Kharif Zaid/
Summer

LOW 418.75 518.75 331.25 418.75 206.25 418.75

MED 312.5 393.75 250 312.50 156.25 312.50

HIGH 206.25 262.5 168.75 206.25 106.25 206.25

Table 5. Quantity of Potassium Chloride recommended (kg/ha) based on fertility level
of 'K'

Paddy Black Pepper Cucumber Green gram/
Black gram

Fertility Level
of K

Kharif Rabi Kharif Zaid/ Summer Kharif Zaid/ Summer

LOW 111.67 138.33 310 176.67 55 55

MED 83.33 105 233.33 133.33 41.67 41.67

HIGH 55 70 155 88.33 28.33 28.33

Table 6. Quantity of fertilizers recommended based on deficiency of soil macronutrient
'S' and micronutrients

Soil Parameter Fertilizer Name Quantity

S Sulphur / Gypsum S: 20-40 kg/ha/ Gypsum:140-280 kg/ha

B Borax 5-10 kg/ha

Cu Copper sulphate 5-10 kg/ha

Fe Ferrous sulphate 25-50 kg/ha

Mn Manganese sulphate 10 -25 kg/ha

Zn Zinc sulphate 15 -25 kg/ha

5 Experimental Setup and Results

5.1 Experimental Results of Feature Selection

The feature ranks were obtained using WEKA open-source tool. The proposed
approach assigns rank 1 to the feature with the lowest average rank and the
highest rank to the feature with the highest average rank. The feature rank



50 M. Sujatha and C. D. Jaidhar

Table 7. Ranking of features using the proposed approach

Dataset-1 Dataset-2

Features Average

Rank

Rank Features Average

Rank

Rank

pH 2 1 EC 1.67 1

Cu 3.33 2 Cu 2 2

Fe 5.33 3 pH 4 3

Mn 5.33 4 Mn 4.67 4

Zn 5.33 5 Fe 5.33 5

K 6.33 6 OC 6 6

B 6.33 7 Zn 6 7

EC 7 8 K 7 8

P 7.33 9 B 9 9

OC 8.67 10 P 10 10

S 9 11 S 10.33 11

generated by the proposed approach is given in Table 7. For both datasets, the
feature 'S' obtained the highest rank of 11.

5.2 Performance Evaluation of Classifiers

The classifiers and fertilizer prescription module are implemented using Google
Collab with python-weka-wrapper3 [16] and java bridge. Two different sets of
experiments were conducted 1) by using a 10-fold cross-validation of datasets
and 2) by using split datasets, i.e., datasets split into 75%: 25% as training
datasets and test datasets, respectively.

The ground truth is established by comparing the actual class to which the
instance belongs with the predicted class. The performance of the classifiers is
assessed using performance metrics, including Accuracy, Precision, Recall, F1-
Score as given in Eq. (2) [1], Eq. (9), Eq. (4), and Eq. (5) [9], respectively.

Accrcy =
TP + TN

TP + TN + FP + FN
(2)

where TP, TN, FP, FN indicate True Positive, True Negative, False Positive, and
False Negative, respectively. TP indicates an instance for which both predicted,
and actual classes are positive. TN is an instance of both predicted and actual
classes being negative. FP is an instance for which the predicted class is positive,
whereas the actual class is negative. FN refers to an instance where the predicted
class is negative, but the actual class is positive.

Precson =
TP

TP + FP
(3)

Rec =
TP

TP + FN
(4)

F1 − Score =
2∗ Precson∗ Rec

Precson + Rec
(5)
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The dataset is imbalanced, hence Per-class Precision, Per-class Recall, and
Per-class F1-Score using Eq. (6), Eq. (7), Eq. (8) for class i, where 'i' represents
LOW, MED or HIGH are calculated.

Per − css Precson =
TP

TP + FP
(6)

where i indicates the class LOW, MED, or HIGH.

Per − css Rec =
TP

TP + FN
(7)

Per − css F1 − Score =
2∗Per−css Precson∗Per−css Rec
Per−css Precson+Per−css Rec

(8)

The Kappa statistics for each classifier are calculated using Eq. (5.2) [7].

Kpp sttstcs =
pobs − pexp

N − pexp
(9)

where pobs is observed prediction, pexp is the expected prediction and N is the
total number of observations.

A batch size of 100 was used to create the tree classifiers. All 11 soil parame-
ters from the datasets were initially considered for the experiment. CART created
a tree of size 25 with 13 leaf nodes for dataset-1 and a tree of size 39 with 20
leaves for dataset-2 using number folds for pruning equal to 5 and a seed value
of 1. Extra Tree used a seed value of 1, a minimum of two instances at each
node for splitting, and randomly selected

�
(m − 1) attributes at each node.

For dataset-1, it produced a tree with 1301 nodes, while for dataset-2, it had 561
nodes. Using a fold of three and a seed value of one for dataset-1, J48 produced a
tree of 33 and 17 leaves and a tree with a size of 45 with 23 leaves for dataset-2.
For both datasets-1 and dataset-2, the RF classifier produced random forests
using 100 bags and 100 iterations. For all nodes, REP utilized a minimum vari-
ance proportion of 0.001, a maximum number of 3 folds, and a seed value of 1.
For dataset-1 and dataset-2, REP produced trees of sizes 27 and 39, respectively.
After eliminating the feature 'S' from the datasets, experiments were repeated.
CART created a tree of size 25 with 13 leaf nodes for dataset-1 and a tree of size
43 with 22 leaves for dataset-2 using number folds for pruning equal to 5 and
a seed value of 1. For datasets-1 and dataset-2, Extra Tree produced trees with
1033 and 655 nodes, respectively. J48 produced a tree with a size of 33 and 17
leaves for dataset-1, creating a tree of size 41 with 21 leaves for dataset-2. The
random forest was created using 100 bags and 100 iterations using the RF clas-
sifier. For dataset-1 and dataset-2, REP produced trees with sizes of 27 and 45,
respectively. NB and SVM classifiers used a batch size of 100. SVM classifier is
created using radial bias kernel function, with a seed and cost value of 1, gamma
value of 0.1, epsilon of 0.001, loss value of 0.1, and degree 3.

The performance of the classifiers with 10-fold cross-validation for dataset-1
and dataset-2 without removing feature 'S' are given in Tables 8 and 9, respec-
tively. Without eliminating feature 'S', for dataset-1, the Accuracy achieved by
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Table 8. Performance of classifiers with 10-fold cross-validation for dataset-1 with all
11 features

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.92% 1.000 0.907 0.862 1.000 0.924 1.000 1.000 0.915 0.926 0.999 0.999 0.999

Extra
Tree

99.19% 0.996 0.172 0.000 0.996 0.171 0.000 0.996 0.171 0.000 0.992 0.992 0.992

J48 99.92% 1.000 0.900 0.889 1.000 0.911 0.960 1.000 0.906 0.923 0.999 0.999 0.999

RF 99.92% 1.000 0.928 0.885 1.000 0.899 0.920 1.000 0.913 0.902 0.999 0.999 0.999

REP 99.91% 1.000 0.897 0.857 1.000 0.937 0.960 1.000 0.916 0.906 0.999 0.999 0.999

NB 76.99% 1.000 0.017 0.065 0.770 0.911 0.200 0.870 0.033 0.098 0.995 0.770 0.866

SVM 99.51% 0.995 - - 1.000 0.000 0.000 0.998 - - - 0.995 -

Table 9. Performance of classifiers with 10-fold cross-validation for dataset-2 using all
11 features

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.84% 0.999 0.886 0.692 1.000 0.805 0.600 0.999 0.843 0.643 0.998 0.998 0.998

Extra
Tree

99.64% 0.999 0.661 0.303 0.998 0.695 0.333 0.999 0.678 0.317 0.997 0.996 0.996

J48 99.89% 0.999 0.920 0.742 1.000 0.856 0.767 1.000 0.887 0.754 0.999 0.999 0.999

RF 99.89% 0.999 0.910 0.923 1.000 0.874 0.400 1.000 0.891 0.558 0.999 0.999 0.999

REP 99.89% 1.000 0.895 0.727 1.000 0.879 0.533 1.000 0.887 0.615 0.999 0.999 0.999

NB 88.14% 1.000 0.036 0.018 0.882 0.879 0.167 0.937 0.069 0.032 0.994 0.881 0.932

SVM 99.45% 0.994 - - 1.000 0.000 0.000 0.997 - - - 0.994 -

CART, J48, and RF classifiers was 99.92% whereas REP, Extra Tree, NB, and
SVM classifier achieved an Accuracy of 99.91%, 99.19%, 76.99%, and 99.51%,
respectively. For dataset-2, the Accuracy attained by J48, RF REP was 99.89%
whereas CART, Extra Tree, NB, and SVM classifier was 99.84%, 99.64%,
88.14%, and 99.45%, respectively.

The performance of the classifiers for dataset-1 and dataset-2 after removing
feature 'S' are given in Tables 10 and 11, respectively. After removing the feature
'S', for dataset-1 CART, Extra Tree, J48, RF, REP, NB, and SVM classifier
achieved an Accuracy 99.92%, 99.20%, 99.92%, 99.93%, and 99.92%, 76.45%, and
99.51%, respectively. For dataset-2, CART, Extra Tree, J48, RF, REP, NB, and
SVM classifier achieved an Accuracy of 99.84%, 99.67%, 99.88%, 99.91%, 99.88%,
89.73%, and 99.45%, respectively. The Kappa statistic achieved by classifiers for
dataset-1 and dataset-2 is shown in Fig. 3.

The performance of the classifiers with a split dataset (75% as a training
dataset and 25% as a test dataset) for dataset-1 and dataset-2 without removing
feature 'S' are given in Table 12 and Table 13, respectively. Without removing
feature 'S', for dataset-1 CART, Extra Tree, J48, RF, REP, NB, and SVM
classifier achieved an Accuracy 99.96%, 99.29%, 99.96%, 99.94%, and 99.95%,
77.06%, and 99.56% respectively. For dataset-2, the CART, Extra Tree, J48, RF,
REP, NB, and SVM classifier achieved an Accuracy of 99.81%, 99.62%, 99.87%,
99.88%, 99.83%, 99.84%, and 99.47%, respectively.
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Table 10. Performance of classifiers with 10-fold cross-validation for dataset-1 after
removing feature 'S'

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.92% 1.000 0.907 0.862 1.000 0.924 1.000 0.915 1.000 0.926 0.999 0.999 0.999

Extra
Tree

99.20% 0.996 0.195 0.040 0.996 0.196 0.040 0.996 0.196 0.040 0.992 0.992 0.992

J48 99.92% 1.000 0.912 0.862 1.000 0.918 1.000 1.000 0.915 0.926 0.999 0.999 0.999

RF 99.93% 1.000 0.918 0.875 1.000 0.924 0.840 1.000 0.921 0.857 0.999 0.999 0.999

REP 99.92% 1.000 0.897 0.857 1.000 0.937 0.960 1.000 0.916 0.906 0.999 0.999 0.999

NB 76.45% 1.000 0.017 0.068 0.764 0.918 0.200 0.866 0.032 0.101 0.995 0.765 0.862

SVM 99.51% 0.995 - - 1.000 0.000 0.000 0.998 - - - 0.995 -

Table 11. Performance of classifiers with 10-fold cross-validation for dataset-2 after
removing feature 'S'

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.84% 0.999 0.870 0.750 1.000 0.805 0.600 0.999 0.836 0.667 0.998 0.998 0.998

Extra
Tree

99.67% 0.999 0.707 0.231 0.999 0.707 0.200 0.999 0.707 0.214 0.997 0.997 0.997

J48 99.88% 0.999 0.912 0.742 1.000 0.833 0.767 1.000 0.871 0.754 0.999 0.999 0.999

RF 99.91% 0.999 0.933 0.944 1.000 0.885 0.567 1.000 0.909 0.708 0.999 0.999 0.999

REP 99.88% 1.000 0.889 0.679 1.000 0.874 0.633 1.000 0.881 0.655 0.999 0.999 0.999

NB 89.73% 1.000 0.041 0.017 0.898 0.879 0.133 0.946 0.079 0.030 0.994 0.897 0.941

SVM 99.45% 0.994 - - 1.000 0.000 0.000 0.997 - - - 0.994 -

Fig. 3. Kappa statistic achieved by the proposed approach with 10-fold cross-
validation

The performance of classifiers after removing feature 'S' for dataset-1 and
dataset-2 are given in Table 14 and Table 15, respectively. After removing the
feature 'S' for dataset-1 CART, Extra Tree, J48, RF, REP, NB, and SVM classi-
fier achieved an Accuracy 99.96%, 99.32%, 99.96%, 99.96%, 99.95%, 76.27%, and
99.56%, respectively. For dataset-2, CART, Extra Tree, J48, RF, REP, NB, and
SVM classifier achieved an Accuracy of 99.85%, 99.73%, 99.88%, 99.90%, 99.81%,
90.14%, and 99.47%, respectively. The Kappa static achieved for dataset-1 and
dataset-2 is shown in Fig. 4.
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Table 12. Performance of classifiers with Split dataset for dataset-1 with all 11 features

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.96% 1.000 0.927 0.667 1.000 0.974 1.000 1.000 0.950 0.800 1.000 1.000 1.000

Extra
Tree

99.29% 0.997 0.256 0.000 0.996 0.256 0.000 0.996 0.256 0.000 0.993 0.993 0.993

J48 99.96% 1.000 0.927 0.667 1.000 0.974 1.000 1.000 0.950 0.800 1.000 1.000 1.000

RF 99.94% 1.000 0.946 0.500 1.000 0.897 0.500 1.000 0.921 0.500 0.999 0.999 0.999

REP 99.95% 1.000 0.905 0.667 1.000 0.974 1.000 1.000 0.938 0.800 1.000 0.999 0.999

NB 77.06% 1.000 0.017 0.000 0.770 0.949 0.000 0.870 0.034 0.000 0.996 0.771 0.866

SVM 99.56% 0.996 - - 1.000 0.000 0.000 0.998 - - - 0.996 -

Table 13. Performance of classifiers with Split dataset for dataset-2 with all 11 features

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.81% 0.999 0.931 0.500 1.000 0.675 0.778 0.999 0.783 0.609 0.998 0.998 0.998

Extra
Tree

99.62% 0.998 0.700 0.154 0.999 0.525 0.222 0.999 0.525 0.182 0.996 0.996 0.996

J48 99.87% 1.000 0.917 0.600 0.999 0.825 1.000 1.000 0.868 0.750 0.999 0.999 0.999

RF 99.88% 0.999 0.897 1.000 1.000 0.875 0.333 1.000 0.886 0.500 0.999 0.999 0.999

REP 99.83% 0.998 0.935 1.000 1.000 0.725 0.667 0.999 0.817 0.800 0.998 0.998 0.998

NB 99.84% 1.000 0.043 0.051 0.920 0.800 0.222 0.958 0.082 0.083 0.994 0.918 0.953

SVM 99.47% 0.995 - - 1.000 0.000 0.000 0.997 - - - 0.995 -

Table 14. Performance of classifiers with Split dataset for dataset-1 after removing
feature 'S'

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.96% 1.000 0.927 0.667 1.000 0.974 1.000 1.000 0.950 0.800 1.000 1.000 1.000

Extra
Tree

99.32% 0.997 0.282 0.000 0.996 0.282 0.000 0.997 0.282 0.000 0.994 0.993 0.993

J48 99.96% 1.000 0.927 0.667 1.000 0.974 1.000 1.000 0.950 0.800 1.000 1.000 1.000

RF 99.96% 1.000 0.927 0.667 1.000 0.974 1.000 1.000 0.950 0.800 1.000 1.000 1.000

REP 99.95% 1.000 0.905 0.667 1.000 0.974 1.000 1.000 0.938 0.800 1.000 0.999 0.999

NB 76.27% 1.000 0.017 0.000 0.762 0.949 0.000 0.865 0.033 0.000 0.996 0.763 0.861

SVM 99.56% 0.996 - - 1.000 0.000 0.000 0.998 - - - 0.996 -
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Table 15. Performance of classifiers with Split dataset for dataset-2 after removing
feature 'S'

Classifier Accuracy Per-class Precision Per-class Recall Per-class F1-Score Precision Recall F1-Score

LOW MED HIGH LOW MED HIGH LOW MED HIGH

CART 99.85% 0.999 0.889 1.000 1.000 0.800 0.778 0.999 0.842 0.875 0.998 0.998 0.998

Extra
Tree

99.73% 0.999 0.743 0.375 0.999 0.650 0.333 0.999 0.693 0.353 0.997 0.997 0.997

J48 99.88% 0.999 0.971 0.667 1.000 0.825 0.889 1.000 0.892 0.762 0.999 0.999 0.999

RF 99.90% 0.999 0.923 1.000 1.000 0.900 0.444 1.000 0.911 0.615 0.999 0.999 0.999

REP 99.81% 0.999 0.872 1.000 1.000 0.850 0.667 1.000 0.861 0.800 0.999 0.999 0.999

NB 90.14% 1.000 0.035 0.054 0.902 0.800 0.222 0.949 0.068 0.087 0.994 0.901 0.944

SVM 99.47% 0.995 - - 1.000 0.000 0.000 0.997 - - - 0.995 -

Fig. 4. Kappa statistic achieved by the proposed approach with Split dataset

6 Conclusions and Future Work

Precise classification of soil fertility is a major requirement to enhance agricul-
tural production sustainably. Using a limited number of soil parameters reduces
the complexity of classifiers and laboratory chemical analysis costs. An ensemble
filter-based feature selection was proposed using three different feature selection
approaches: InfoG, GainR, and ReliefF. The proposed approach removes the
least relevant feature. The proposed soil fertility classification approach’s per-
formance is evaluated using two datasets. The performance of tree-based machine
learning classifiers such as CART, Extra Tree, J48, RF, and REP are compared
with NB and SVM classifiers. With the elimination of soil parameter 'S' from
both the datasets, and using a subset of features consisting of ten soil parame-
ters, EC, pH, OC, K, P, B, Cu, Fe, Mn, and Zn the RF classifier outperformed
the other classifiers. The RF achieved the highest Accuracy and kappa statistics
of 99.96%, 0.9286 for dataset-1 and the highest Accuracy and kappa statistics of
99.90%, 0.9091 for dataset-2, respectively. A significant improvement in kappa
statistics were observed after removing the least relevant feature 'S ', with both
10-fold cross-validation and split dataset. Using both datasets, the RF classi-
fier’s performance increased compared to other classifiers after removing feature
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'S '. An adequate amount of fertilizers is recommended based on the obtained
classification results. In future work, dataset-balancing techniques can be used
to obtain accurate results. Real-time soil parameters can be used to assess the
proposed approach for classifying soil fertility.
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Abstract. Today machine learning and deep learning are being used in
all industrial and social reform. The use and acceptability of AI solu-
tions are rapidly growing. So, traditional agriculture practices adopt
these modern technologies and move towards precision farming. Pest
detection and classification is one of the critical areas of concern for
agriculture and farmers. Deep learning-based detection and classifica-
tion have recently automated the process, making detection significantly
faster. However, centralized training is required to upload crop images
(infected or not infected) which leads to privacy invasion and may lead
to a negative reputation for the crop. It may incur financial losses due
to the low pricing of the harvest to the farmer. Therefore, we provide
privacy-preserving pest detection and classification using personalized
federated learning that generates detection models based on agricultural
characteristics while the farmers keep the data. We provide a perfor-
mance comparison between centralized and federated approaches for five
classes of pests. Further, we perform experiments to create a group-based
personalized model. Through experiments, we found that the accuracy
of the federated approach is lower than the centralized training. We also
found that the performance of groups varies in personalized FL, so the
accuracy of Group A (0.69) is higher than Group B (0.63). Based on
the experimental result, the proposed solution is suitable for agriculture
because of the privacy preservation and personalization with distributed
and low computing devices.

Keywords: Deep learning · Precision Agriculture · Privacy-preserving
computing · Federated Learning · Personalized Federated Learning

1 Introduction

With the advancement in Information and Communication Technology (ICT),
traditional agriculture is evolving into smart agriculture. Along with ICT, the
adoption of artificial intelligence (AI) has provided other opportunities to help
and improve the agriculture process by easing soil testing to disease prediction
in the crop. Today, there is wide adoption of deep learning and machine learning
technologies in agriculture, and farmers can use them due to the affordable
Internet of Things (IoT) devices ubiquitously connected to smartphones.
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Deep learning is suitable for classification and prediction, so there are many
use cases in agriculture [7,10,13]. The crop and fruit production forecast can be
made using deep learning [12], and it can also be used for plant classification
(for plant phenology) [18] and disease identification in the plant [2,17,21]. Some
other applications are like weed detection [20], species recognition [9], and water
management [16]. Considering the impact of deep learning on agriculture and
humans, there has been rising interest in research and development in agriculture
using deep learning [6].

Deep learning is helpful and solves many challenges for traditional agricul-
ture [19]. However, the existing deep learning-based solutions have many bot-
tlenecks and limitations, such as lower prediction or classification accuracy and
high computational and memory requirements for training and inference [23].
In addition to performance and hardware-based limitations, there are some key
challenges, such as the noisy background in crop images, conditions of image
capture (controlled vs. natural environment), complex segmentation (a symp-
tom of disease in plant and fruit), and size of the dataset (difficulty in collecting
images [19]) in preparing datasets and in training deep learning models [3].

Restriction for collecting data due to privacy law adds another challenge
to the already smaller dataset of developing a deep learning model for smart
agriculture [2,19]. The model trained with a smaller dataset lacks generalization
and is prone to errors, while inference is made on the validation dataset or with
a natural environment.

Traditionally, the deep learning models are trained in a centralized manner,
i.e., all the training data from multiple sources. For example, data from mul-
tiple farms or controlled environment agriculture (CEA) facilities are collected
at a central server that performs pre-processing, labeling, and training. Such
an approach is computationally and communication inefficient and rooting to
data privacy, leading to data scarcity. Recently, Federated Learning (FL), a dis-
tributed training architecture that does not require centralized data collection,
has been adopted to address the bottlenecks of traditional centralized deep learn-
ing approaches [14]. The main goal of FL is to achieve data privacy for clients
or data sources and yet to be able to train models. The key benefit of FL is that
raw data never leaves the source/origin, and only a lower dimension represen-
tation (i.e., model weight) is shared with the parameter server. In most cases,
the parameter server is either among available devices or trusted. However, in
the case of external or untrusted parameter servers, methods such as differential
privacy and multi-parties computation further improve the privacy and security
of model weight [4,24].

As discussed, collecting crop data at a centralized location raises privacy con-
cerns and limits data access. In addition, farmers will be more concerned about
sharing information about plant diseases due to fear of unnecessarily hurting
their crop costs. Such use cases undermine the usability and training of cen-
tralized deep learning models. Considering the challenges of centralized deep
learning and the benefits of FL, the proposed work presents the performance of
FL for pest classification. Using personalized federated learning (PFL), the pro-
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posed work also addresses the requirement of the specialized model that would
be required due to differences in types of crops and plants (morphology), diseases
(pathology), or changes in the environment (natural vs. controlled or tropical
vs. temperate vs. arid vs. alpine, etc.). In PFL, the clients participate in learn-
ing similar to vanilla FL (non-PFL); however, they retrain the global model and
create a personalized model suitable for their needs. We have trained deep learn-
ing models in centralized and federated learning approaches and compared their
performance. In the proposed work, we have made the following contributions:

– Proposed a personalized federated learning model to detect pests on the
farms.

– Proposed to create clusters based on terrain features and temperature and
humidity environments and assign farms with similar features to the same
cluster group. Each farmer participates in FL. They create a local model
with their dataset and send the local model to the central server. The server
aggregates the collected local models to create a global model. The global
model created by running FL per group is distributed to each clustered group.

– We conducted an experiment using the pest dataset on Kaggle and compared
the accuracy of Centralized Machine Learning (CML) and Federated Learning
(FL), and then compared the accuracy of FL when the dataset is IID (general
environment) and non-IID (personalized environment). From the experimen-
tal results, the accuracy of CML is 72%, the accuracy of general FL is 49%,
and the accuracy of FL in the personalized environment is 69%.

– As a result, the personalized FL outperforms the traditional FL under a non-
IID environment and achieves accuracy close to that of the CML.

The remaining article is structured as follows. Section 2 presents the related
works on using deep learning and federated learning for plant and disease clas-
sification. The methodologies of the proposed work are explained in Sect. 3.
Section 4 presents experiments and performance evaluation details. We have con-
cluded the proposed work in Sect. 5.

2 Related Works

Deep learning can be used for different related tasks of agriculture. In this related
work section, we have considered discussing and analyzing the literature on clas-
sification tasks such as types of plant diseases or morphology. We have also
included early works of federated learning in agriculture. Too et al. [22] presented
a review of fine-tuning and evaluation of convolutional neural network (CNN)
deep learning architectures (VGG net, ResNet, and DenseNet) for plant disease
classification using the leaf image dataset from plantVillage [8]. The dataset has
images of fruit plants’ healthy and unhealthy (variation like early blight, healthy,
and late blight) leaves; each fruit has unequal classes depending on plant dis-
eases. The authors achieved the best performance of 99.75% using DenseNets.
Saleem et al. [21] presented a comprehensive survey of deep learning architec-
tures, data augmentation, and features for plant disease detection using the



Privacy-Preserving Pest Detection Using Personalized Federated Learning 61

plantVillage dataset. Arsenovic [2] introduced a plant disease dataset recorded
in an actual environment (different weathers, angles, daylight, and varing back-
grounds) and improved by classical and using generative adversarial networks.
Through the review of key literature, authors have mentioned four limitations
of existing deep learning-based disease classification: i) data scarcity, ii) effec-
tiveness in actual conditions, iii) accuracy, and iv) identifying the stage of the
disease. The authors have highlighted the issue of performance degradation when
the model trained with images collected in a controlled environment is tested on
the actual environment.

Smart agriculture will significantly benefit from deep learning; Ale et al. [1]
proposed a deep learning-based solution for plant disease detection. The authors
aim to reduce the size of the trained model and enable it to run on Inter-
net of Things (IoT) devices using the proposed lightweight deep learning net-
work (by reducing neurons in each layer and input size) and transfer learning.
Geetharamani et al. [8] conducted experiments using the plantVillage1 dataset
and achieved 71.98% and 90% accuracy with input sizes 32 × 32 and 512 × 512,
respectively. Mohanty et al. [17] used a deep learning-based smartphone app for
disease diagnosis, and the model was trained to classify 14 crop species and 26
diseases.

Recently, Khan et al. [11] used FL and UAV to classify different pests. The
authors have trained EfficientNet architecture on the angle-based augmented
dataset to classify pests into nine classes. The local model is trained, and updates
are collected from four locations. Deng et al. [5] have used R-CNN with ResNet
in the FL approach to improve the convergence and training speed. The authors
have considered the detection of a number of pests of different sizes and diseases
in fruit. The proposed work is similar to Khan et al. [11] and Deng et al. [5] in
the use of FL for agriculture; however, our approach is focused on personaliza-
tion, whereas Khan et al. [11] mainly aim to use UAV-based classification and
Deng et al. [5] addressing the optimization issue in terms of training speed and
convergence.

We can observe from the related works that earlier deep learning models were
being trained only in a centralized approach. Recently, a few FL-based meth-
ods have been adopted for agriculture tasks. However, the existing FL-based
techniques mainly focus on adopting FL for agricultural tasks and improving
the performance of training and inference time performance. Considering the
research gap, the proposed work has used PFL to fulfill the need for a personal-
ized model for the agricultural task that can address plant diversity in terms of
morphology and pathology. In the further section, the proposed work is presented
in detail.

1 https://www.kaggle.com/datasets/emmarex/plantdisease.

https://www.kaggle.com/datasets/emmarex/plantdisease
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3 Pest Classification Using Federated Learning

3.1 Federated Learning

In this study, we use associative learning for pest detection. Federated learning
was first published in 2015 by McMahan et al. [15]. It is characterized by two
main advantages: improved privacy and communication efficiency. Unlike cen-
tralized learning, which requires tens of thousands of local devices to transmit
data to a centralized server, resulting in high network traffic and storage costs,
federated learning can significantly reduce communication costs by transmitting
only the results of learning from local clients (local models) to the server.

The motivation for using federated learning for pest classification is to ensure
the privacy-preservation of farm-owned data. Collecting data for pest detection
inevitably reveals the pest status of the farm where the data was collected.
However, since this data is directly related to the farmer’s income, most farmers
do not want to reveal this data. Traditional pest detection algorithms collect pest
data from each farmer to create a model. This reveals information about pest-
rich farmers (i.e., farmers with poor-quality produce). To solve this problem, we
propose a pest detection algorithm using association learning to generate a pest
detection model without revealing data on pest status.

3.2 Proposed Algorithm

We first provide the overview of our privacy-preserving pest detection algorithm
using personalized federated learning in steps, as illustrated in Fig. 1.

Step 1: A number of clusters are created based on features that affect pest
reproduction, such as terrain, temperature, and humidity. Then, the server com-
putes the similarity of the features of each farmer (hereinafter referred to as a
client) to that of the clusters. Then, the server assigns the client to the clusters
that share the most similar features.

Step 2: Each client participates in associative learning with their own pest
dataset. Each client belonging to the same cluster creates a local model by
training from their dataset and sends it to the central server.

Step 3: The central server collects local models from each client. Since the
collected models are categorized by the cluster to which each client belongs, the
models from the clients in the same cluster are aggregated to create a global
model for the cluster.

Step 4: The server distributes the global models created for different clusters
to respective clusters. Hence, the model distributed to the same cluster is shared
by all clients in the cluster.

Finally, the above steps can be repeated until we obtain a satisfactory model
for each cluster. In general, the performance is expected to improve with the
iterations as more data is trained.

The details of the proposed algorithm are shown in Algorithm 1. We assume
that there are N clients and K clusters, where each client is denoted as i ∈
{1, 2, . . . , N} and each cluster is denoted as k ∈ {1, 2, . . . ,K}.
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Fig. 1. Proposed Personalized Federated Learning Model for Pest Detection: (1) the
server creates a group of farms with similar environments, (2) each farm locally trains
the model using its own data and sends the updated model to the server, (3) the server
aggregates the models received from the farms to create an updated global model for
each cluster, and (4) the server distributes the updated model to each group of farms
belonging to the same cluster.

Clustering is presented in lines 5-9. First, the server computes the similarity
between the features of the client Fi and the features of cluster Fk, and selects
the combination of the client and the cluster that gives the highest similarity
defined as (i, k) = argmaxi,k S(Fi, Fk), where S(Fi, Fk) represents the function
that computes the similarity between the client i and the cluster k. The similarity
can be computed in various ways. Note that the features used in the computation
of similarity, such as terrain, temperature, and humidity, are general information
that does not contain sensitive private information. So, the client can safely share
this information with the server to be assigned to the most appropriate cluster
that shares the most similar features.

The server-side execution is presented in lines 11-16. The server sends the
initial weight w0 to the clients. In each iteration, the server collects local model
updates from the m participating clients. The updated model received from
each client wt

i is aggregated to create an updated global model for each cluster
wt+1

k . The local model received from the clients is weighted proportional to the
number of data that each client contributed to training the model. Note that,
in line 12, the max(·) function is used to ensure that there is at least one client
participating in the process.
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Algorithm 1. Privacy-Preserving Pest Detection Using Personalized Federated
Learning Algorithms. Fi is the features of client i, Fk is the features of cluster k,
B is the local mini-batch size, C is the fraction of clients to participate in each
round (0 ≤ C ≤ 1), E is the number of local epochs, and η is the learning rate.
1: Initialize clients i ∈ {1, 2, . . . , N}
2: Initialize clusters Gk = {∅}, k ∈ {1, 2, . . . , K}
3: initialize w0

4: 1. Clustering:
5: Initialize similarity value S(Fi, Fk)
6: for each client i do
7: Compute similarity between the clients and the clusters using S(Fi, Fk)
8: Assign client i to cluster k as Gk ∪ {i}, where (i, k) = argmaxi,k S(Fi, Fk)
9: end for

10: 2. Server Aggregation:
11: for each round t = 1, 2, . . . do
12: m ←max(C · N, 1)
13: for each cluster k do
14: wt+1

k ← ∑
i∈Gk

ni
n

wt
i

15: end for
16: end for
17: 3. Client Update:
18: B ← (split Pi into batches of size B based on cluster k recommendation)
19: for each local epoch j from 1 to E do
20: for batch b ∈ B do
21: wt

i ← wt
i − η��(w; b)

22: end for
23: end for
24: return wt

i to server

The client-side execution is presented in lines 18-24. Each client i divides its
local data Pi into mini-batches of size B based on the recommendation of cluster
k and calculates the model weights wt

i by training the model using. Then, the
updated gradient is sent to the server.

4 Performance Evaluation

4.1 Experimental Setup

The dataset used in this experiment was processed from the Pest Dataset2 on
Kaggle. The original dataset consists of 9 classes; aphid, armyworm, beetle,
bollworm, grasshopper, mites, mosquito, sawfly, and stem borer, with 300 train-
ing and 50 testing images per class. We cleaned this dataset by reducing the
number of classes from 9 to 5, merging training and test images, and remov-
ing duplicated images. As a final step, they were augmented to complement the

2 https://www.kaggle.com/datasets/simranvolunesia/pest-dataset.

https://www.kaggle.com/datasets/simranvolunesia/pest-dataset
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insufficient number of images. Moreover, based on our assumption about het-
erogeneous environments, we generated two non-IID data groups; the number of
images of a class is higher than others. Figure 2 is an example of this process.

IID data is “independent” and “identically distribution” data. Non-IID data
is “non-independent” and “unequally distributed” data. Referring to the Fig. 3,
IID data is a dataset of data of the same size with the same distribution, and
Non-IID data is a dataset of different sizes and different distributions.

Fig. 2. Five representative images from each classes are shown horizontally, and their
augmented version is shown below the respective images. We used the data cleansing
process to make the data cleaner overall. The preprocessed version reduces the unneces-
sary parts of the data imported from Kaggle into 5 classes, and the augmented version
is the result of augmenting the quality data by reducing the unnecessary parts.

The experimental environment used Colab, provided by Google. Colab does
not require any environment configuration, and anyone can easily use the GPU
environment for free. The experimental settings are Centralized ML, FL with
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general IID, FL with Group A, and FL with Group B. The experiments are con-
ducted by comparing Centralized ML and FL with general IID. Group A and B
augment the amount of specific pest data to assume that there are more clus-
ters with specific pest data. We used the CNN base model as the base detection
model for CML and FL.

Fig. 3. The percentage of datasets used in the experiment. The Baseline group is a
dataset with data for each pest divided evenly (IID data). Group A and B are datasets
with increased data for different specific pests, creating datasets specialized for specific
pests (Non-IID data).
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Fig. 4. Comparison of accuracy between Centralized Machine Learning(CML) and
Federated Learning(FL). CML has an accuracy of 0.72 and FL has an accuracy of
0.49.

4.2 Results

Figure 4 shows the comparison of accuracy in each round between Centralized
Machine Learning and Federated Learning with IID. Here, round means one
round of the FL algorithm, i.e., the process until the global model is created.
The accuracy obtained using Centralized Machine Learning is 0.72, while the
accuracy result of Federated Learning with IID is 0.49. In general, Federated
Learning is less accurate than Centralized Machine Learning because it only
receives the weight of each client to create a model, whereas Centralized Machine
Learning collects all data and learns directly to create a model, so it is inevitably
less accurate than Centralized Machine Learning.

Figure 5 shows the comparison of accuracy between the FL with IID data and
FL with Group A and B. The accuracy result of FL with IID is 0.49, which is
the same as the previous result, and the results of personalized FL with Group
A and B are higher at 0.69 and 0.63, respectively. The results show that FL
models personalized for specific datasets can achieve better accuracy than the
traditional FL models using general datasets.

By analyzing the results compared, we can observe that general Federated
Learning is less accurate than Centralized ML, but FL using datasets specialized
for specific data can make the accuracy of detecting specific data close to the
accuracy of Centralized Machine Learning. In other words, the personalized Fed-
erated learning method for each cluster, such as the algorithm introduced earlier,
produces higher accuracy than learning with general Federated Learning.
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Fig. 5. Comparison of accuracy between IID data and non-IID data. FL with IID
data has an accuracy of 0.49, and FL with non-IID has an accuracy of 0.69 and 0.63,
respectively.

5 Conclusion

The use of deep learning and machine learning is driving today’s smart agricul-
ture. We have proposed the PFL for training and building a classification model
for pest classification in personalized and privacy-preserving mode. Thus, the
proposed work has addressed three critical issues of traditional deep learning,
i.e., i) data scarcity, ii) data privacy, and iii) the need for a personalized model.
The experimental results (0.69 and 0.63 accuracies) of the PFL model in the
non-IID setting are encouraging and open possibilities for further investigations
and improvements. With the proposed work, we have experimented with the
capability of FL and PFL in opposition to centralized learning. In continuation
of the proposed work, in future work, we aim to improve the performance of PFL
further and extend the classification to plant and fruit disease classification. We
will address the morphological and pathological challenges that increase sample
heterogeneity and create many classes.
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Abstract. Soil nutrients play a crucial role in the growth and produc-
tivity of crops, which are essential for meeting the increasing global
food demand. However, the traditional methods of soil nutrient anal-
ysis are time-consuming, labour-intensive, and often not cost-effective.
Recently, there has been a growing interest in applying Artificial Intel-
ligence (AI) techniques to soil nutrient analysis. AI can help optimize
soil nutrient management and improve crop yields. Farmers can identify
potential nutrient deficits in soil quality using artificial intelligence tech-
nology, particularly electronic applications for Machine Learning (ML)
and Deep Learning (DL). This paper aims to summarise and assess state
of the art in using Artificial Intelligence for soil nutrient analysis. The
study explores the different ML and DL techniques used for soil nutri-
ent analysis and the results obtained from their application. The review
additionally points out areas of improvement for the current research and
suggests possibilities for future investigations. It further explains differ-
ent datasets based on satellite images, smartphone images, and chemi-
cal data. Furthermore, the report includes several publicly available soil
datasets.

Keywords: Soil nutrients · Artificial Intelligence · Machine Learning ·
Deep Learning

1 Introduction

Soil is a vital resource for the Earth but still needs to be appreciated. The health
of the soil has significantly impacted the state of the food chain, the quality
of air and water, and many other ecosystems on Earth. Earth’s population is
overgrowing, and soil nutrient analysis is essential to feed such a vast population
in precision farming.

Soil nutrients heavily influence the yield of crops [3]. The primary source
of nutrient absorption for plants is the soil. By understanding the nutrient sta-
tus of the soil, farmers can take appropriate measures to adjust the levels of
deficient nutrients and maintain optimal soil conditions for plant growth. It
can help increase crop yield and improve the quality and consistency of the
crops. Soil nutrient prediction improves agricultural productivity, environmen-
tal sustainability, and food security. Farmers, agronomists, and soil scientists
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Fig. 1. Structure of Paper

Table 1. Comparison of Review Studies. [N1]-Macronutrients, [N2]-Micronutrients,
[N3]-Soil pH, [N4]-Soil Organic Carbon (SOC), [N5]-Soil Organic Matter (SOM)

Study ML DL N1 N2 N3 N4 N5 Open Issues

Odebiri et al. [21] × � × × × � × �
Wankhede et al. [42] � × � × � × × ×
Shahare et al. [29] � × � � � � � ×
Lamichhane et al. [16] � × × × × � × ×
Proposed Study � � � � � � � �

widely use it to inform soil management and crop production decisions. Lack
of artificial intelligence (AI) usage to anticipate soil nutrient levels may lead to
problems such as low crop yields, access restrictions to testing tools, inaccurate
testing procedures, and inefficient fertilizer use. The field of AI is expansive and
includes a diverse range of technologies and methodologies, such as Machine
Learning (ML) and Deep Learning (DL). The past ten years have seen a broad
application of ML approaches in various scientific domains [24]. DL applications
mainly minimize the dependence on spatial-form designs and preprocessing tech-
niques by simplifying the entire process [32]. Artificial Intelligence’s (AI) adapt-
ability, high performance, accuracy, and cost-effectiveness are critical agricul-
tural concepts [7]. Previously inaccessible agricultural data sources, like satellite
and Unmanned Aerial Vehicle (UAV) readings, humidity sensor readings, and
ground-based weather stations, are now available to agricultural producers for
decision-making. Figure 1 depicts the structure of this paper.
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1.1 Previous Reviews

This section presents the existing survey papers about the methods of soil nutri-
ent analysis. In their study, Odebiri et al. [21] conducted a concise overview
of how Neural Networks (NN) and DL methods can be applied to predict soil
organic carbon (SOC) levels using remotely sensed data. Wankhede et al. [42]
explain several machine-learning techniques for analyzing soil pH, nitrogen, phos-
phorus, and potassium. Shahare et al. [29] reviewed various machine-learning
techniques to evaluate crop yield and soil properties. Lamichhane et al. [16] pre-
sented a review identifying the RF method as the most significant concerning
digital soil organic carbon mapping.

It was deemed necessary to compile a survey of research publications describ-
ing the uses of artificial intelligence approaches for soil due to advancements in
Soil Artificial Intelligence. This review presents the most recent computational
studies on soil nutrient analysis. Table 1 compares previous literature studies and
this study.

1.2 Research Questions

This study’s primary goal was to examine whether ML and DL methods are
being used successfully in the field of soil. As a result, this study addresses the
following research questions:

– RQ1: What are the different types of soil datasets for ML and DL techniques?
– RQ2: Which ML models are applied to estimate soil nutrients?
– RQ3: Which DL models are applied to estimate soil nutrients?
– RQ4: What are the open challenges while predicting soil nutrients using ML

and DL techniques?

RQ1 examines various types of datasets of soil used for ML and DL techniques.
RQ2 investigates how ML is used in the soil domain and identifies the most pop-
ular techniques. RQ3 examines various DL methods for predicting soil nutrient
levels, and RQ4 outlines the significant challenges of DL and ML in analyzing
soil nutrients.

1.3 Search Process

The literature review on artificial intelligence and soil was diverse and probed
at various depths. The database is Google Scholar and Scopus. The following
search strings are used to gather data “soil AND nutrient AND analysis AND
artificial AND intelligence,” “machine learning OR deep learning AND soil pH
OR soil organic carbon OR soil organic matter,” and “soil AND hyperspectral
AND images AND deep learning OR machine learning.” The titles and abstracts
of each paper were collected. Research articles over the preceding four years
(2019-2021) that deal with soil nutrient analysis using ML and DL models are
considered for this study.
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This paper examines the various model evaluation criteria and explores how
well they function with soil-specific ML and DL techniques. The article has fur-
nished the following details in the subsequent sections. An introduction to soil
nutrients and their importance is mentioned in Sect. 2. Section 3 shows an analy-
sis of ML and DL algorithms. Section 4 describes different types of soil datasets.
The literature review results to respond to the research questions are presented
in Sect. 5. Some soil domain open datasets are provided in Sect. 6. Section 7
describes various available issues in ML, and DL approaches for analyzing soil
nutrients, and a summary is provided in Sect. 8.

2 Soil Nutrients and Its Importance

Soil nutrients are mainly classified into two categories which are macronutrients
and macronutrients. Plants require macronutrients such as Nitrogen(N), Phos-
phorous(P), Potassium(K), Sulfur(S), Calcium(Ca), and Magnesium(Mg) in rel-
atively high quantities. They also need micronutrients such as Chlorine(Cl),
Iron(Fe), Boron(B), Manganese(Mn), Zinc(Zn), Copper(Cu), and Molybde-
num(Mo), but in much lesser amounts. The growth of crops relies on several
other crucial soil nutrients, which are listed below [5]:-

1. Soil pH: The soil’s pH determines the soil’s acidity or alkalinity. For optimal
plant growth, the soil pH should generally fall within 5.5 to 7.5.

2. Soil Organic Carbon (SOC): SOC exclusively refers to the carbon atom in
organic molecules. It is essential for synthesizing the organic acids in soil,
which are necessary for dissolving soil minerals, their availability to plants,
and the leaching of nutrients.

3. Soil Organic Matter (SOM): SOM is primarily made up of carbon, hydrogen,
and oxygen. At the same time, organic wastes also contain trace amounts of
nitrogen, phosphorus, sulfur, potassium, calcium, and magnesium.

Although these nutrients are necessary for plants, they must be provided
in the right quantities. These nutrients are required for soil fertility to grow,
resulting in crop nutrient demands needing to be fulfilled. Nutrient excess or
deficiency can harm a plant’s growth and development. For crops to develop
well and firmly, the soil has to contain a balance of all nutrients.

3 Analysis of ML and DL Algorithms

Both ML and DL algorithms are used to predict soil nutrients. ML applications
employ supervised and unsupervised learning techniques to improve data anal-
ysis and generate sufficient data to facilitate statistical solutions. DL techniques
help to process a large amount of data to test soil nutrients. It is essential to do
it on a regional scale to ensure reliable and accurate results. DL techniques are
easily applied to image datasets as well. Table 2 shows the abbreviations used
for ML and DL techniques.
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Table 2. Abbreviations for ML and DL techniques

Abbreviation ML and DL Techniques

SVM Support Vector Machine

ULR Univariate Linear Regression

RF Random Forest

DNN Deep Neural Network

RCNN Region-Based CNN

DLMLP Deep Learning Multi-Layer Perceptron

ANFIS Adaptive-Network-Based Fuzzy Inference System

MLR Multiple Linear Regression

PCR Principle Component Regression

FIS Subtractive Clustering Based Fuzzy Inference System

RBF NN Radial Basis Function Neural Network

SVR Support Vector Regression

PLSR Partial Least Squares Regression

GBRT Gradient Boost Regression Tree

RFR Random Forest Regression

MLP Multilayer Perceptron

DT Decision Tree

DBSCAN Density-Based Spatial Clustering of Applications With Noise

CNN Convolutional Neural Network

BDT Bagging Decision Tree

SMLP Stepwise Multiple Linear Regression

BPNN Back Propagation Neural Network

3.1 Classification of ML and DL Algorithms

The two primary categories of Machine Learning are classified as follows:-

– Supervised Learning: This type of machine learning involves training models
with labelled data. The result is labelled data that is previously known.

– Unsupervised Learning: These Models are trained using unlabeled datasets in
machine learning.

Some common ML algorithms used in soil nutrient analysis are [30]:-

1. Random Forest (RF): RF is a versatile algorithm that can be used for both
classification and regression tasks and consists of multiple decision trees to
make predictions.

2. Support Vector Machine (SVM): SVM is primarily utilized for classification
purposes, but it can also be applied to regression tasks on occasion. It creates
a hyperplane between different types of data.
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3. Extreme Gradient Boost (XGBoost): XGBoost is an ensemble-based Machine
Learning technique that utilizes the collective predictions of numerous indi-
vidual decision trees to yield a more precise overall prediction.

4. Multiple Linear Regression (MLR): Multiple linear regression, which is a fun-
damental regression method, models the linear association between a solitary
continuous dependent variable and multiple independent variables.

Some common DL algorithms used in soil nutrient analysis are [21]:-

1. Convolutional Neural Network (CNN): It is primarily utilized for examining
structured data arrays, with a particular focus on image analysis. CNNs excel
at detecting design features such as lines, gradients, circles, and even complex
objects like eyes and faces in input images.

2. Recurrent Neural Network (RNN): It retains all computation-related infor-
mation within its “memory.” RNNs execute identical operations on all inputs
or hidden layers to generate the output by employing the same parameters
for each input, thereby minimizing the parameter set’s complexity compared
to other neural networks.

3. Artificial Neural Network (ANN): It can be trained to identify patterns and
correlations in data, making them applicable to a broad spectrum of tasks,
such as speech and audio recognition, natural language processing (NLP),
and decision-making.

4 Different Types of Soil Dataset

This section addresses RQ1. There are various types of Soil data on which ML
and DL are applied, which are categorized as follows:-

– Image data - Images are captured through various cameras, smartphones,
UAVs, and satellites [1]. The images can be in RGB, multispectral, and hyper-
spectral forms. Mainly DL models are applied to the image dataset.

– Chemical based data: Soil nutrients are related to each other. They have
correlated with each other, as phosphorus solubility decreases in higher soil pH
soils where it reacts with soil calcium [50]. In this data type, input parameters
are some soil nutrients used to predict other soil nutrients.

– Hyperspectral data: This type of data is collected with the help of UAVs and
satellites and requires high processing and robust models for data analysis
[18].

5 Review of ML and DL Techniques to Estimate Soil
Nutrients

This section addresses RQ2 and RQ3. The search method in the introduction
is used to find works suggesting ML and DL soil nutrient analysis approaches.
Figure 2 shows the number of studies published annually from (2019-2022) on
soil nutrient analysis using artificial intelligence.



A Review on Applications of Artificial Intelligence 77

Fig. 2. Number of studies published per year on soil nutrient analysis using artificial
intelligence

Table 3. Papers that use data ML and DL models to analyze macronutrients

Previous
Work

Type of
dataset

ML/DL Nutrients Location Algorithm Results

Liu et al.
(2022).
[17]

Spectral ML, DL Nitrogen China SVM, BPNN, PLSR R2 value of SVM -
0.676, BPNN -
0.560, PLSR - 0.374

Yi et al.
(2020).
[47]

RGB DL Nitrogen,
Phosphorous,
Potassium,
Calcium

Germany CNN Accuracy score is
98.4%

Farwa et
al.
(2020).
[9]

Chemical ML Nitrogen,
Potassium,
Phosphorus

Pakistan Linear, Ridge, Lasso,
Elastic net and
Bayesian Regression
model

R2 value for
Linear-0.057,
Ridge-0.475,
Lasso-0.304, Elastic
net-0.258,
Bayesian-0.113

Jin et al.
(2020).
[13]

Spectral ML Potassium China PLSR, SVR, GBRT,
AdaBoost, Elastic
net, Lasso, Ridge

Best R2 value is of
AdaBoost and
GBRT - 0.99

Peng et
al.(2019).
[25]

Spectral ML, DL Nitrogen,
Potassium,
Phosphorous

China PLSR, BPNN and
Genetic Algorithm
(GA)-BPNN

Best RMSE value is
for GA-BPNN that
is 20.1%, 16.5% and
47.1% for nitrogen,
potassium and
phosphorous

Tables 3, 4, 5, 6 and 7 compare various ML and DL techniques for predict-
ing soil macronutrients, micronutrients, soil pH, soil organic carbon (SOC) and
soil organic matter (SOM). Each item is categorized in these tables according
to the dataset type explained in Sect. 4. The tables include a thorough list of
authors, their individual models, and the associated results. Table 8 illustrates
the summary of papers that use AI models for multiple soil nutrients.

In recent years, AI has shown significant promising results in soil nutrient
analysis. The study suggests that these techniques have the potential to accu-
rately predict soil nutrient levels and identify important trends and patterns in
soil composition.
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Table 4. Papers that use data ML and DL models to analyze micronutrients

Previous
Work

Type of dataset ML/DL Nutrients Location Algorithm Results

Keshavarzi
et al. (2022)
[15]

Hyperspectral ML iron,
manganese,
zinc and
copper

Northeast
Iran

RF RMSE values are
91%, 94%, 91% and
108% for iron,
manganese, zinc
and copper

Zhang et al.
(2022) [49]

Hyperspectral ML Chromium
and zinc

China Deep Forest
(DF21)

R2 - 0.58

Xu et al.
(2022) [45]

Hyperspectral ML Iron China RF, XGBoost,
CatBoost and SVR

SVR shows better
RMSE value that is
2.465

Shi et al.
(2021) [31]

Hyperspectral ML Zinc China RF R2 value is 0.68

Wang et al.
(2021) [40]

Hyperspectral DL Soil
chromium

Eastern
Junggar
Coalfield in
Xinjiang

Deep Neural
Network

Accuracy score is
96.25%

Table 5. Papers that use data ML and DL models to analyze Soil pH

Previous
Work

Type of
dataset

ML/DL Location Algorithm Results

Guo et al.
(2022) [12]

Chemical ML China SVM R2 is 0.68

Natarajan
et al. (2022)
[19]

Spectral ML Tamilnadu Gradient
Boost
Regression

RMSE -
0.92

Tejaswani
et al. (2021)
[41]

RGB ML India MLP Accuracy is
95%

Sunori et al.
(2021) [34]

Chemical ML Uttarakhand SVM -
Linear,
Quadritic
and Cubic

MSE of
Linear
SVM-0.44,
Quadritic
SVM -0.43,
Cubic SVM
=0.48

Barman et
al. (2019).
[2]

RGB ML, DL Assam,
India

Linear,
ANN and
KNN
Regression

Regression
coefficient
of Linear
Regression -
0.859, ANN
- 0.940,
KNN
Regression -
0.893
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Table 6. Papers that use data ML and DL models to analyze Soil organic carbon

Previous
Work

Type of
dataset

ML/DL Location Algorithm Results

Tripathi et
al. (2022)
[37]

Spectral DL Rupnagar
District,
Punjab

DLMLP MAE - 0.98,
RMSE -
1.24, R2 -
0.684

Odebiri et
al. (2022)
[22]

Chemical DL South
Africa

Deep
Neural
Network

R2 - 0.685

Yang et al.
(2022) [46]

Satellite DL Anhui
province,
China

CNN RMSE -
5.57% , R2 -
31.29%

Zadeh et al.
(2020) [48]

Chemical ML Western
Iran

RF, KNN,
SVM,
XGBoost

The
performance
metrics of
RMSE-
0.35% and
R2-0.60
indicated
that RF
had the
best results.

Nawar et al.
(2019) [20]

Spectral ML Germany RF R2 - 0.80

Table 3 shows that mainly nitrogen, potassium, and phosphorus are analyzed
by ML and DL algorithms. There is a need to investigate other soil macronu-
trients such as sulfur, calcium, and magnesium. The findings of Tables 4 and
5 present that mainly ML models are applied to predict soil micronutrients
and soil pH, and more use of DL models is also required. In previous stud-
ies, authors utilized hyperspectral data for analyzing soil micronutrients, but
there still needs to be more exploration of other soil data, such as chemical
and RGB image data. Table 6 shows that researchers have used both ML and
DL models to analyze soil organic carbon on different soil datasets. In contrast,
Table 7 concludes that smartphone-based image datasets mainly predict SOM
and chemical data, and hyperspectral data still need to explore. Finally, Table 8
concludes that researchers mainly predict macronutrients and mention SOM the
least in their studies. The capacity of regression algorithms and neural networks
to forecast continuous values based on input data makes them popular tools for
soil nutrient analysis. Regression techniques, such as linear and support vector
regression, describe the relationship between input variables and output values.
Neural networks, on the other hand, can be used to analyse soil nutrients to dis-
cover patterns and connections between various soil characteristics and nutrient
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Table 7. Papers that use data ML and DL models to analyze Soil organic matter

Previous
Work

Type of
dataset

ML/DL Location Algorithm Results

Gorthi et al.
(2021) [11]

RGB ML Different
agroclimatic
zones of
West
Bengal

RFR, SVR ,
AdaBoost
Regression ,
Ridge

R2 - 0.88,
RMSE -
0.28%

Taneja et
al. (2021)
[35]

RGB ML, DL Canada SVM, DT,
Linear
Regression,
Gausian
Regression,
Cubist
Regression
and ANN

ANN and
Cubist
Regression
well with
R2 values
0.91 and
0.72

Dong et al.
(2021) [6]

Spectral ML, DL China Cubist
method,
PLSR,
SVM, ANN

Cubist
method
performed
well among
all with R2
value o.86

Fu et al.
(2020) [10]

RGB ML Macdonald
Campus
Farm,
McGill
University,
Quebec,
Canada

ULR,
SMLP

Below soil
moisture
content R2
is 0.936 and
above soil
moisture
content R2
is 0.819 and
without
including
soil
moisture
content R2
is 0.741

Chen et al.
(2019) [4]

Chemical ML China DT, BDT,
RF and
GBRT

RF and DT
performed
well with
R2 value is
0.61
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Table 8. Summary of the papers that use data ML and DL models to multiple
soil nutrients [N1]-Macronutrients, [N2]-Micronutrients, [N3]-Soil pH, [N4]-Soil Organic
Carbon (SOC), [N5]-Soil Organic Matter (SOM)

Previous
Work

Type of
dataset

ML/DL Nutrient Type Nutrients Location Algorithm Results

Wei et al.
(2022). [43]

Spectral ML [N1],[N3],[N5] SOM, soil pH,
Potassium,
Phosphorous,
Calcium,
Magnesium

Luiz de Queiroz
College of
Agriculture at
the University of
São Paulo

MLR, PCR,
lasso method

lasso method
and PCR
overperformed
MLR approach
with R2 values
range from
0.33-.96 and
0.03-0.84 for
Vis-NIR and
XRF sensor data

Wilhelm et
al. (2022).
[44]

Chemical ML [N1],[N2],[N3],
[N4],[N5]

SOM, SOC, soil
pH, Potassium,
Phosphorous,
Zinc, Iron,
Manganese and
Magnesium

Farmlands across
the USA and
Canada

RF and SVM R2 for SVM is
0.056 and RF -
0.065

Pillai et al.
(2022). [26]

Chemical ML [N1],[N2] Sodium, Zinc,
Potassium, and
Copper

Southeastern
United States

RF, XGBoost,
Multi-layer
Perceptron,
Stacked
autoencoder,
Generative
adversarial
network

AUC score is
0.921

Wang et al.
(2021). [39]

Chemical ML [N1],[N5] SOM, Nitrogen,
Potassium,
Phosphorus

Hongliulin
Coalfield on the
Loess Plateau of
China

DBSCAN
clustering

The training set
and testing set
achieved
accuracy scores
of 98% and 95%,
respectively.

Suchitra et
al. (2020).
[33]

Chemical ML [N1],[N2],[N3],
[N4]

Phosphorous,
Potassium, SOC,
Boron and soil
pH

North Central
Laterites
Agro-Ecological
Unit (AEU),
Kerala

Extreme
Learning
Machine
Parameters

Accuracy score
of
Phosphorus-90%,
Boron - 85%,
SOC - 80%,
Potassium - 78%,
soil pH - 89%.

Gutierrez et
al. (2022).
[8]

Chemical DL [N1],[N2],[N3],
[N4]

soil pH, SOC,
Phosphorous,
Potassium, Iron,
Zinc, Boron,
Chlorine, Copper
and Manganese.

Soil samples
were collected by
individual
farmers by the
soil testing
laboratory

Ensemble Deep
learning
techniques
(ISNpHC-WVE)

Accuracy for Soil
Nutrients -
0.9281 and soil
pH - 0.9497

Padarian et
al. (2019).
[23]

Spectral DL [N1],[N3],[N4] SOC, soil pH,
and Nitrogen

LUCAS soil
database, Europe

CNN Compared with
PLS regression
and Cubist
regression tree
CNN decreased
the error 87%
and 62%

concentrations, which can subsequently be applied to forecast nutrient concen-
trations in soil samples. Since all soil nutrients are essential and contribute to
plant growth, predicting every soil nutrient is vital.
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Table 9. Open datasets of soil domain.

References Dataset Description Research Focuses

Tavares et al.
(2022) [36]

Spectral data of
tropical soils
using
dry-chemistry
techniques
(VNIR, XRF,
and LIBS): A
dataset for soil
fertility
prediction

In addition to
characterizing key soil
fertility attributes
(clay, organic matter,
cation exchange
capacity, pH, base
saturation, and
exchangeable P, K,
Ca, and Mg) of 102
soil samples from a
Brazilian agricultural
area, the shared
dataset also includes
spectral data from
VNIR, XRF, and
LIBS sensors

Wei et al. (2022)
[43] used this
dataset for soil
attribute
prediction. Applied
MLR, PCR and
lasso method with
R2 values ranges
from 0.02-0.84

Riese et al.
(2018). [27]

Hyperspectral
benchmark
dataset on soil
moisture

In May 2017 in
Karlsruhe, Germany, a
five-day field campaign
was used to collect the
data for this dataset.
A hyperspectral
snapshot camera
captures one hundred
twenty-five spectral
bands in 50 by
50-pixel images

Keller et al. (2018)
[14] used this
dataset to estimate
soil moisture in
which an extremely
random tree model
without
preprocessing offers
the best
performance

Bolanos et al.
(2023). [28]

Determination of
phosphorus in
the soil through
the analysis of
hyperspectral
images

A hyperspectral cube
was created for each of
the 152 soil samples,
consisting of 145
images in the VIS-NIR
bands from 420 to
1000 nm. The data was
collected in Columbia

No previous work
has been done till
now.

Tziachris et al.
(2022). [38]

Soil data
Grevena

The data is collected
from northern Greece,
Grevena. This dataset
contains studies of soil
parameters including
pH, OM, EC, salinity,
major elements (N, P,
K, Mg), and several
microelements (Fe, Zn,
Mn, Cu, B) that have
a big impact on plant
nutrition

No previous work
has been done till
now

6 Open Datasets of Soil

The ability to assess trends and hidden patterns and make judgments based on
the dataset is enabled by sufficient data quaThe ntities. Table 9 shows some open
datasets of the soil domain. All these datasets are publicly available. Anyone
can download these datasets and perform ML and DL models to analyze the soil
nutrients.
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7 Open Issues of ML and DL in Soil Research

This section addresses RQ4. The development of prediction methods like AI and
ML is leaning toward the research area. Some of the following issues are analyzed
after the literature survey:-

1. Regional differences in soil: It cannot be easy to create precise and trust-
worthy AI models that can generalise successfully to new regions due to the
variation in soil qualities across different geographical areas. This is due to
the possibility of regional differences in the connections between soil nutri-
ents and other environmental factors, including temperature, rainfall, and
vegetation [32].

2. Data impacts performance: The computational complexity of deep learning
algorithms is a critical factor affecting the training process’s speed and effi-
ciency. To improve the computational efficiency of deep learning algorithms,
researchers and practitioners need to develop efficient optimization algorithms
and reduce the complexity of the neural network [42].

3. High-dimensional hyperspectral data: The high dimensionality of hyperspec-
tral data is due to its enormous number of spectral bands or channels. As
a result, processing hyperspectral data can be difficult since it necessitates
many calculations, which raises the cost of computing, increases processing
time, and decreases accuracy [40].

4. Natural light interference: Due to the influence of natural light, taking soil
samples with a smartphone camera for soil pH prediction can be complicated.
The colour and appearance of the soil in the image can change depending on
the intensity and direction of the sunlight and the presence of shadows, which
can result in inaccurate pH predictions [2].

8 Conclusion

This review provides a comprehensive overview of the current knowledge in
applying artificial intelligence to soil nutrient analysis. It draws attention to
the deficiencies in the existing body of literature and pinpoints potential areas
for further investigation. The review also explains different soil datasets like
image, chemical, and hyperspectral data on which soil nutrient analysis is done.
The review has also highlighted some open datasets for soil nutrient prediction.
It provides a foundation for further research in the soil field and encourages
continued exploration of the potential of AI for soil nutrient analysis. However,
more research is needed to realize AI’s potential in the soil field. Future research
should focus on developing robust and scalable AI algorithms that can handle
large and complex soil nutrient data, as well as the integration of AI with other
technologies such as sensor networks and remote sensing.



84 S. Jain and D. Sethia

References

1. Five ways satellite images, remote sensing and smartphones are combining
to transform agriculture. https://www.cgiar.org/news-events/news/five-ways-
satellite-images-remote-sensing-and-smartphones-are-combining-to-transform-
agriculture/. Accessed 7 Feb 2023

2. Barman, U., Choudhury, R.D.: Prediction of soil pH using smartphone based digital
image processing and prediction algorithm. J. Mech. Contin. Math. Sci. 14, 226–
249 (2019)

3. Chandraprabha, M., Dhanaraj, R.K.: Soil based prediction for crop yield using
predictive analytics. In: 2021 3rd International Conference on Advances in Com-
puting, Communication Control and Networking (ICAC3N), pp. 265–270. IEEE
(2021)

4. Chen, D., et al.: Mapping dynamics of soil organic matter in croplands with MODIS
data and machine learning algorithms. Sci. Total Environ. 669, 844–855 (2019)

5. Diaz-Gonzalez, F.A., et al.: Machine learning and remote sensing techniques
applied to estimate soil indicators-review. Ecolog. Indicat. 135, 108517 (2022)

6. Dong, Z., Wang, N., Liu, J., Xie, J., Han, J.: Combination of machine learning and
VIRS for predicting soil organic matter. J. Soils Sedim. 21(7), 2578–2588 (2021).
https://doi.org/10.1007/s11368-021-02977-0

7. Eli-Chukwu, N.C.: Applications of artificial intelligence in agriculture: a review.
Eng. Technol. Appl. Sci. Res. 9(4), 4377–4383 (2019)

8. Escorcia-Gutierrez, J., et al.: Intelligent agricultural modelling of soil nutrients and
pH classification using ensemble deep learning techniques. Agriculture 12(7), 977
(2022)

9. Farwa, U.E., et al.: Prediction of soil macronutrients using machine learning algo-
rithm. Int. J. Comput. (IJC) 38(1), 1–14 (2020)

10. Fu, Y., et al.: Predicting soil organic matter from cellular phone images under
varying soil moisture. Geoderma 361, 114020 (2020)

11. Gorthi, S., et al.: Soil organic matter prediction using smartphone-captured digital
images: use of reflectance image and image perturbation. Biosyst. Eng. 209, 154–
169 (2021)

12. Guo, J., et al.: Mapping of soil pH based on SVM-RFE feature selection algorithm.
Agronomy 12(11), 2742 (2022)

13. Jin, X., et al.: Prediction of soil-available potassium content with visible near-
infrared ray spectroscopy of different pretreatment transformations by the boosting
algorithms. Appl. Sci. 10(4), 1520 (2020)

14. Keller, S., et al.: Developing a machine learning framework for estimating soil
moisture with VNIR hyperspectral data. arXiv preprint arXiv:1804.09046 (2018)

15. Keshavarzi, A., et al.: Spatial prediction of soil micronutrients using machine learn-
ing algorithms integrated with multiple digital covariates (2022)

16. Lamichhane, S., et al.: Digital soil mapping algorithms and covariates for soil
organic carbon mapping and their implications: a review. Geoderma 352, 395–
413 (2019)

17. Liu, Z., et al.: Spatial prediction of total nitrogen in soil surface layer based on
machine learning. Sustainability 14(19), 11998 (2022)

18. Lu, B., et al.: Recent advances of hyperspectral imaging technology and applica-
tions in agriculture. Remote Sens. 12(16), 2659 (2020)

19. Natarajan, V.A., et al.: Prediction of soil pH from remote sensing data using gra-
dient boosted regression analysis. J. Pharm. Negat. Results 13, 29–36 (2022)

https://www.cgiar.org/news-events/news/five-ways-satellite-images-remote-sensing-and-smartphones-are-combining-to-transform-agriculture/
https://www.cgiar.org/news-events/news/five-ways-satellite-images-remote-sensing-and-smartphones-are-combining-to-transform-agriculture/
https://www.cgiar.org/news-events/news/five-ways-satellite-images-remote-sensing-and-smartphones-are-combining-to-transform-agriculture/
https://doi.org/10.1007/s11368-021-02977-0
http://arxiv.org/abs/1804.09046


A Review on Applications of Artificial Intelligence 85

20. Nawar, S., et al.: On-line vis-NIR spectroscopy prediction of soil organic carbon
using machine learning. Soil Tillage Res. 190, 120–127 (2019)

21. Odebiri, O., Mutanga, O., Odindi, J., Naicker, R., Masemola, C., Sibanda, M.:
Deep learning approaches in remote sensing of soil organic carbon: a review of
utility, challenges, and prospects. Environ. Monitor. Assess. 193(12), 1–18 (2021).
https://doi.org/10.1007/s10661-021-09561-6

22. Odebiri, O., et al.: Modelling soil organic carbon stock distribution across different
land-uses in South Africa: a remote sensing and deep learning approach. ISPRS J.
Photogramm. Remote Sens. 188, 351–362 (2022)

23. Padarian, J., et al.: Using deep learning to predict soil properties from regional
spectral data. Geoderma Reg. 16, e00198 (2019)

24. Padarian, J., et al.: Machine learning and soil sciences: a review aided by machine
learning tools. SOIL 6(1), 35–52 (2020)

25. Peng, Y., et al.: Prediction of soil nutrient contents using visible and near-infrared
reflectance spectroscopy. ISPRS Int. J. Geo-Inf. 8(10), 437 (2019)

26. Pillai, N., et al.: An ensemble learning approach to identify pastured poultry farm
practice variables and soil constituents that promote salmonella prevalence. Heliyon
8(11), e11331 (2022)

27. Riese, F.M., Keller, S.: Hyperspectral benchmark dataset on soil moisture. In:
Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Sym-
posium (IGARSS), Valencia, Spain, pp. 22–27 (2018)

28. Rivadeneira-Bola, F.E., et al.: Dataset for the determination of phosphorus in soil
through the analysis of hyperspectral images. Data Brief 46, 108789 (2023)

29. Shahare, Y., Gautam, V.: Soil nutrient assessment and crop estimation with
machine learning method: a survey. In: Tavares, J.M.R.S., Dutta, P., Dutta, S.,
Samanta, D. (eds.) Cyber Intelligence and Information Retrieval. LNNS, vol.
291, pp. 253–266. Springer, Singapore (2022). https://doi.org/10.1007/978-981-
16-4284-5 22

30. Sheeba, B., et al.: Machine learning algorithm for soil analysis and classification
of micronutrients in IoT-enabled automated farms. J. Nanomater. 2022, 5343965
(2022)

31. Shi, T., et al.: Digital mapping of Zinc in urban topsoil using multisource geospatial
data and random forest. Sci. Total Environ. 792, 148455 (2021)

32. Srivastava, P., Shukla, A., Bansal, A.: A comprehensive review on soil classifica-
tion using deep learning and computer vision techniques. Multimedia Tools Appl.
80(10), 14887–14914 (2021). https://doi.org/10.1007/s11042-021-10544-5

33. Suchithra, M.S., et al.: Improving the prediction accuracy of soil nutrient classifi-
cation by optimizing extreme learning machine parameters. Inf. Process. Agricult.
7(1), 72–82 (2020)

34. Sunori, S.K., et al.: Machine learning based prediction of soil pH. In: 2021 5th
International Conference on Electronics, Communication and Aerospace Technol-
ogy (ICECA), pp. 884–889. IEEE (2021)

35. Taneja, P., et al.: Multi-algorithm comparison to predict soil organic matter and
soil moisture content from cell phone images. Geoderma 385, 114863 (2021)

36. Tavares, T.R., et al.: Spectral data of tropical soils using dry-chemistry techniques
(VNIR, XRF, and LIBS): a dataset for soil fertility prediction. Data Brief 41,
108004 (2022)

37. Tripathi, A., et al.: A deep learning multi-layer perceptron and remote sensing
approach for soil health based crop yield estimation. Int. J. Appl. Earth Observ.
Geoinform. 113, 102959 (2022)

https://doi.org/10.1007/s10661-021-09561-6
https://doi.org/10.1007/978-981-16-4284-5_22
https://doi.org/10.1007/978-981-16-4284-5_22
https://doi.org/10.1007/s11042-021-10544-5


86 S. Jain and D. Sethia

38. Tziachris, P., et al.: Soil data Grevena. https://data.mendeley.com/datasets/
r7tjn68rmw/1 (2022). https://doi.org/10.1016/j.dib.2022.108408

39. Wang, Z., et al.: Assessment of soil fertility degradation affected by mining dis-
turbance and land use in a coalfield via machine learning. Ecolog. Indicators 125,
107608 (2021)

40. Wang, Y., et al.: Hyperspectral monitor of soil chromium contaminant based on
deep learning network model in the eastern Junggar coalfield. Spectrochimica Acta
Part A Molecul. Biomolecul. Spectros. 257, 119739 (2021)

41. Wani, T., Dhas, N., Sasane, S., Nikam, K., Abin, D.: Soil pH prediction using
machine learning classifiers and color spaces. In: Joshi, A., Khosravy, M., Gupta,
N. (eds.) Machine Learning for Predictive Analysis. LNNS, vol. 141, pp. 95–105.
Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7106-0 10

42. Wankhede, D.S.: Analysis and prediction of soil nutrients pH,N,P,K for crop using
machine learning classifier: a review. In: Raj, J.S. (ed.) ICMCSI 2020. EICC, pp.
111–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49795-8 10

43. Wei, M.C.F., et al.: Dimensionality reduction statistical models for soil attribute
prediction based on raw spectral data. AI 3(4), 809–819 (2022)

44. Wilhelm, R.C., et al.: Predicting measures of soil health using the microbiome and
supervised machine learning. Soil Biol. Biochemis. 164, 108472 (2022)

45. Xu, S.X., et al.: A comparison of machine learning algorithms for mapping soil iron
parameters indicative of pedogenic processes by hyperspectral imaging of intact soil
profiles. Eur. J. Soil Sci. 73(1), e13204 (2022)

46. Yang, L., et al.: A deep learning method to predict soil organic carbon content
at a regional scale using satellite-based phenology variables. Int. J. Appl. Earth
Observ. Geoinform. 102, 102428 (2021)

47. Yi, J., et al.: Deep learning for non-invasive diagnosis of nutrient deficiencies in
sugar beet using RGB images. Sensors 20(20), 5893 (2020)

48. Mahmoudzadeh, H., et al.: Spatial prediction of soil organic carbon using machine
learning techniques in western Iran. Geoderma Reg. 21, e00260 (2020)

49. Zhang, Z.H., et al.: On retrieving the chromium and zinc concentrations in the
arable soil by the hyperspectral reflectance based on the deep forest. Ecol. Ind.
144, 109440 (2022)

50. Zhao, J., et al.: Effect of annual variation in soil pH on available soil nutrients in
pear orchards. Acta Ecol. Sinica 31(4), 212–216 (2011)

https://data.mendeley.com/datasets/r7tjn68rmw/1
https://data.mendeley.com/datasets/r7tjn68rmw/1
https://doi.org/10.1016/j.dib.2022.108408
https://doi.org/10.1007/978-981-15-7106-0_10
https://doi.org/10.1007/978-3-030-49795-8_10


IRPD: In-Field Radish Plant Dataset

Simrandeep Singh(B) , Davinder Singh , Snigdha Agarwal ,
and Mukesh Saini

Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
{staff.simrandeep.singh, staff.davinder.singh,

staff.snigdha.agarwal,mukesh}@iitrpr.ac.in

Abstract. In this study, we present an in-field radish plant dataset
(IRPD) for the segmentation and counting of leaves. Precision agriculture
requires such a dataset to estimate the development, growth monitoring,
health status, and yield potential of plants using computer vision and
deep learning algorithms. The dataset consists of 6504 total images, out
of which 3252 were captured over ten weeks in an uncontrolled open
field environment, and the remaining 3252 were generated using image
augmentation. Images were taken from germination through harvesting
using different cameras. The total of 1025 images in the dataset are man-
ually annotated for segmentation and leaf count. We present a baseline
for leaf count and segmentation using Detectron2 and UNet. We hope
that by making this dataset and annotated data available to the public,
we can encourage research in this field, where a lack of publicly available
in-field datasets is currently a barrier to advancement.

Keywords: Leaf count · dataset · segmentation

1 Introduction

The collection of image dataset, especially in the agriculture field, requires a
great deal of effort and workforce, which makes it expensive. Sharing the collected
dataset is therefore helpful for the researchers to access the data, which varies
in region, time, soil, and weather conditions [19].

From a phenotyping point of view, leaf segmentation and counting the num-
ber of leaves in plants is important for the developmental stage, plant growth
monitoring, flowering time, plant phenotyping, and yield estimation. However,
counting the number of leaves is a tedious task even when undertaken by experts,
as leaves frequently overlap each other [17]. It becomes more challenging when
rosette plants [18] are considered as shown in Fig. 1. All leaves must be precisely
taken into account by the automatic system to figure out the current growth
period and decide the best course of action.
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Fig. 1. Top and side views of rosette leaf structure of radish plant.

An in-field radish plant dataset (IRPD) is proposed in this paper. Radish
is an annual or biennial cultivated vegetable plant in the mustard family. It is
traditionally famous in many countries, and also cultivated and consumed with
different names such as cultivar, Chinese radish, Japanese radish, or Oriental
radish. Radish was portrayed on the Pyramids of Egypt, it may be one of the
common agricultural plants in ancient Egypt. Radish and its uses were first
mentioned nearly 2,000 years ago in China and about 1,000 years ago in Japan.

Its biological name is Raphanus sativus L. and is a member of the Crucifereae
family. It has a short hairy stem and contains radical leaves. The radish fruit is
available in different shapes based on the variety i.e. circular, long and conical,
or tapered. Moreover, it has variety of colours such as white, yellow, pink, red,
or purple, and also differs in size and weight from a few grams to kilogram. In
Punjab, radish is usually grown on ridges to encourage healthy growth of plant.
The height of ridge, plant to plant distance, and ridge to ridge distance is 25 cm,
45 cm, and 10 cm approximately as shown in Fig. 2.

The major contribution of this paper is that, (i) we are proposing a novel
dataset of 6404 in-field radish plant images (IRPD) acquired using different
cameras; (ii) data is acquired from an uncontrolled environment i.e.(in-field);
(iii) images are manually annotated for leaves, number of leaves, age in days,
and view information (side view or top view) by agriculture experts; and (iv)
the collection period of the data is from germination till maturity.

The remainder of this article is organized as follows. Section 2 offers related
work. Section 3 describes the dataset, while Sect. 4 discusses the baseline model
implementation. Section 5 offers concluding remarks and future work.

2 Related Work

Public datasets are highly valued in the research community because they allow
scientists to perform operations on the data and compare different algorithms
with the state-of-the-art. Public dataset are well-established and play a signif-
icant role in many domains such as image processing, machine learning, time
series, natural language processing, health care and image processing. Teimouri
et al. [16] propose a dataset of fifty distinct tree species found in Sweden. A
computer vision classifier is proposed using descriptors that classify leaves and
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Fig. 2. Full view of field.

provide the name of the tree. Minervini et al. [13] provide a rigorous collection of
image datasets, annotation, and procedure of annotation process for Arabidopsis
and tobacco plants. To estimate the growth stage of a weed[16] proposes dataset
of 9372 weed and crop coloured images. In the annotation process, leaf count for
training dataset is provided.

Leaf Segmentation Challenge (LSC-2014) [13] was organized in CVPPP 2014,
and a dataset having raw and annotated images was released. The same pattern
followed in coming events, in which the Leaf Counting Challenge (LCC-2015)
and (LCC-2017) were organized. Mortensen et al. [14] propose an oil radish
growth dataset containing image and field data describing RGB images and
weather data, but they have only labeled 95 images, and the rest, 5287 are
unlabeled images. Fan et al. proposes both a multi-scale segmentation model
and a regression model for leaf counting [7].

Leaf dataset proposed in the semi-controlled environment includes ‘sugar
beet and weed dataset’ [4], ‘organic carrot and weed dataset’ [11] and ‘white
clover and grass species’ [1]. Dobrescu [5] discusses different approaches for leaf
count, such as counting via detection, segmentation, density estimation, and
direct count. As reviewed above, the problem of leaf counting is dealt with two
ways: (i) counting using leaf segmentation or detection: Instance or semantic
segmentation is performed at the pixel, segment, and object levels using different
CNN models [12,17]; (ii) considering the task as a regression problem: Counting
leaves using a regression model is a bit easier as it only requires the total number
of leaves in the training image [5,10].
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Barbedo [3] demonstrated that even in the absence of a large dataset, deep
learning models can be trained if a database has significant quality. Moreover, it
may be artificially enhanced and diversified using different augmentation tech-
niques.

There are many databases reported in the literature, but most of them are
recorded in controlled environments. Very few databases are available that are
taken directly from the agricultural field, i.e., under natural environments. This
is the reason why the majority of experiments in the literature, conducted in a
controlled environment show higher accuracy [2]. If the model is trained on the
data of controlled environment and tested on real-time in-field data, Ferentinos
[8] observed that there is a drop in accuracy from 99.5% to around 33%.

We are confident that other investigations will reveal similarly poor perfor-
mance on real-world datasets. It occurs due to a lack or unavailability of real-
time in-field labeled dataset, which is a time-consuming, labor-intensive, and
expensive task.

3 Dataset and Problem Description

The leaf is the most important part of the plant, as it is responsible for pho-
tosynthesis and the generation of other nutrients. Growth stages, health status,
and growth rate have a direct relationship with the number of leaves. Thus, the
growth of any plant may be estimated based on the number of leaves [13].

We propose a dataset of in-field radish plants dataset (IRPD) col-
lected in a natural environment with overlapped plant leaves. The dataset
images are collected in fields across Ropar district in Punjab (India)
(30.974922N/76.500364W).

3.1 Dataset Description

We have captured the data under uncontrolled conditions i.e. from the agricul-
tural field directly, which greatly increases its research potential. The overall
cycle of data acquisition, labeling, and evaluation is represented in Fig. 3. We
highlight some salient features and characteristics of the data below.

Field Data: IRPD is collected in the uncontrolled and natural range of con-
ditions, which makes it more comprehensive, diverse, complex, realistic, and
informative. It provides relevant visual manifestations that accurately depict,
what an operator would observe in the field. A model that has been trained
on a collection of controlled condition images actually won’t be able to gener-
alize information from a more complex environment, including all the intricate
details of leaf architecture. This type of dataset is most preferable for developing
an operational autonomous intelligent system.

Data Annotation/Labeling: Manual annotation is carried out by agriculture
experts at various growth phases, which is labor-intensive but less error-prone.
More details can be seen in Table 2, which shows the distribution of images on
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Fig. 3. Overall data acquisition cycle

Fig. 4. Field view demonstrating overlapping of plants.

a weekly basis. As the week progresses, the number of labeled images decreases;
this is because when multiple plants are grown together in a field, the percent-
age of overlap between them increases, as shown in Fig. 4. After overlapping, it
becomes very difficult or impossible to annotate images.

Duration: IRPD contains a set of ten-week images from the day of germination
until maturity on a weekly basis. We can observe the week-wise growth of the
plant and its life cycle, as shown in Fig. 5.

Quality: The dataset contains high-resolution (HD or 4K) images taken from
both top and side views.

3.2 Field Setup and Acquisition Protocol

The reason for selecting the radish plant for this problem is the structure of
the leaves. The lobed-shaped leaves of radish plants form a basal rosette, in
which the ground level has horizontal and circular leaves. These oblong-shaped
leaves arise from the top of the root and measure 5–30 cm (2–12 in.) in length.
As the plant matures, the overlapping of leaves rises, and even the overlapping
of different plants also increases.

Germination of radish usually starts in 5 to 6 days in the winter season,
and the growth of radish plants becomes massive after five weeks. It becomes
challenging to capture the images after that period. We have tried to capture
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Fig. 5. Radish lifecyle

Table 1. Description of the camera system and acquisition parameters.

Acquisition Parameters Value

Camera Mobile camera of (Google Pixel 5, Onelus
Note CE, and iphone 14 pro), RGB sensor
of Fluke TiX580 Infrared Camera

Focal length 4.4 mm

Mean distance to ground 457 mm

Coordinates 30.974922N/76.500364W (232 mm)

images of plants from all possible viewing angles. The images are acquired at
midday on a sunny day under in-field conditions at intervals of a week.

Throughout the data collection drive, the plant samples were fixed. To ensure
an approximately uniform sampling from the field, sampling areas were preal-
located. Corner ridges were selected for the sampling area, to avoid damaging
the plants. Throughout the data collection drive, the same sampling area was
under consideration, and the acquisition parameters are mentioned in Table 1.
The data collection drive continued until maturity, i.e. for ten weeks. Before the
first week of data collection, a stick with a tag was placed near the corner of
each sampling area. When capturing images during the data collection drive in
the following subsequent weeks, the stick was helpful in locating the sampling
areas.

3.3 Dataset and Annotation Format

An online, open-source, and visual annotation tool “LabelMe” was used to anno-
tate plant images. The leaves were marked using polygons, rectangles, circles,
and points. In the labeling process, leaf shapes are individually annotated for
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segmentation by experts, as shown in Fig. 6 and associated data is provided for
the learning process. IRPD can be used to train the system for per-leaf segmen-
tation or direct image-to-count using a regression model.

Fig. 6. LabelMe Software used for data annotation.

As we know, the leaves of the radish plant grow in clusters and form a rosette
structure. Thus, the overlapping of leaves makes this problem more complex and
interesting. We were unable to label the leaves, where the overlapping is more
than 80%. In such cases, the number of leaves counted by an expert is listed in
the CSV file for reference.

To increase the count of data images, image augmentation techniques such as
contrast and rotation are applied to the original dataset. Another 3252 images
were created using such techniques.

Considering it to be the regression problem, the number of leaves can be
estimated with the availability of only leaf count as ground truth.

3.4 Dataset Availability

The dataset proposed, along with the annotation data analyzed in this study, is
readily available online for research purposes with a few terms and conditions.
It can be downloaded from https://github.com/mriglab/IRPD (Fig. 7).

Fig. 7. In field data acquisition.

https://github.com/mriglab/IRPD
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Table 2. In-field radish plants dataset (IRPD) distribution.

Week Data Images Augmented Images Labelled Unlabelled Total Images

1 259 259 220 298 518

2 211 211 170 252 422

3 324 324 260 388 648

4 489 489 325 653 978

5 446 446 50 842 892

6 339 339 - 678 678

7 410 410 - 820 820

8 274 274 - 548 548

9 206 206 - 412 412

10 294 294 - 588 588

3.5 Potential Applications

We now list a few key application scenarios that would benefit from the avail-
ability of such a dataset.

Segmentation: IRPD can easily be used for training and testing of data for
instance/semantic segmentation. In instance segmentation, different occurrences
of the same class are segmented separately. This can be applied to multiple
agriculture applications such as crop and weed classification, disease & pest
detection, and leaf counting. It is well suited to segment the class of every pixel
or different occurrences of the same class even for overlapping cases. In semantic
segmentation, we can identify the class of every pixel in a given image but it
doesn’t differentiate among different instances belonging to the same class.

Classification: IRPD is appropriate for classification of plant, weed, soil, and
other classes. It can also be used in plant recognition system like leaves, stem
and soil, etc. Identification of plant species traditionally involves a lot of human
labor. Pattern recognition and computer vision techniques are widely used in
research. Our dataset is appropriate for training, since the plant components
utilized in identifying different plant species, such as flowers and leaves, are
accurately represented. It can also be used in plant part recognition like leaves,
stem and soil, etc.

Growth Model: IRPD can help to develop a growth model, as we have images
from every stage of growth. We can use this dataset to calculate the maturity
time, average growth rate or crop’s present growth stage. Growth is a key factor
in determining the health and production of crops. It also serves as an important
mediator of competitive interactions in plant communities. Thus, it is crucial for
plant evolution, ecology, and agriculture science to understand what restricts
plant development. This dataset can help develop a growth model of the crop as
we have images from every stage of growth. We can use this dataset to calculate
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the necessary time and the average crop growth rate. It can also be used to
create models that identify the crop’s present growth stage.

Diseases Detection: IRPD contains a collection of pest images from which
an automated diagnosis of pests and illnesses can be determined using deep
learning, computer vision, and pattern recognition. For farmers, a key concern is
the automated diagnosis of pests and illnesses that impact crops. Conventional
approaches to computer vision and pattern recognition have limits when dealing
with such difficult issues. But in recent years, there has been a rise in interest in
deep learning, notably in the detection and recognition of biotic stressors from
in-field images of plants. Our dataset is, therefore, ideal for tackling these issues.
Since the images were taken using cellphones, they were impacted by changes in
lighting, complicated backgrounds, image noise, and other factors.

Yield Estimation: IRPD provides an opportunity for researchers to test their
yield-estimation algorithms in realistic scenarios. Estimating crop yields is a
crucial part of crop management. The present manual yield estimating method
requires a lot of time, effort, and is unreliable. Researchers working on computer
vision-based systems for automated, quick, and accurate yield estimation to
address this problem. The dataset provides an opportunity for the researchers
to test their yield-estimation algorithms in realistic scenarios.

4 Baseline Evaluation

To provide baseline models for this challenge, we trained our dataset on two
network models. Instance segmentation and semantic segmentation tasks are
addressed using Detectron2 [15] and UNet [6] respectively. In instance segmen-
tation, we detect the leaves in the image and count the number of leaves. In this
experiment, the Detectron2 library is used to train the labeled images. We used
the Faster RCNN model from the Detectron 2’s model [9], and the experiments
were performed using 50 epochs, batch size equal to 1, a learning rate of 0.005,
and a confidence rate of 0.7. Second, we used UNet [6] for semantic segmentation
to identify different classes of elements present. For UNet, the experiments were
performed using 20 epochs with batch size 3 and a learning rate of 0.005. In the
image, each pixel is classified as either radish, grass, weed, soil, equipment, or
stubble. Pixels labeled as unknown in manual annotations are ignored during
evaluation and can thus be ignored during training (Fig. 8).

The results obtained by the Faster R-CNN model implemented with the
Detectron2 library using ResNet50 and ResNet101 for instance segmentation
tasks are presented in Table 3. It represents that the Detectron2 Faster RCNN
implementation, which uses ResNet50 as its backbone, performs better than
ResNet101, with ARmax=100 = 87.7% as opposed to ARmax=100 = 82%.

This suggests that the Detectron2 with ResNet50 as backbone implementa-
tion was more successful in recovering the proper instances. Since the object of
interest appears more than once in every image, it can also be seen that ARmax=1

for the two solutions was low. The results obtained by UNet for semantic seg-
mentation can be seen in Fig. 5 (Fig. 9).
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Fig. 8. Detectron2 Results

Table 3. Results obtained by Detectron2 Faster RCNN.

Parameters ResNet50 ResNet101

AP 86.0 78.82

APIoU=0.5 80.386 96.87

APIoU=0.75 100 96.87

ARmax=1 40 39.1

ARmax=10 87.7 82.0

ARmax=100 87.7 82.0

Fig. 9. Semantic Segmentation results using UNet
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UNet helps in semantic segmentation of the image which can be utilized in
multiple problems. We can measure the performance of UNet based on AIoU
and AC metrics in Table 4.

Table 4. Results obtained by UNet.

Model AIoU AC

UNet 86.43 87.26

5 Conclusion

In this paper, a dataset of radish plants (IRPD) collected from the field using
various mobile phone cameras over the ten week period is proposed. The dataset
is available for download and use for academic and research purposes. Radish
plant is having rosette leaf structure, so counting the number of leaves and
segmenting the leaves is very challenging job. Annotation of leaves is carried
out in Labelme software, When overlapping of leaves becomes more than eighty
percent then only total leaf count per plant is provided as annotation. IRPD
is analyzed for instance and semantic segmentation using Detectron2 and UNet
model. This data is collected for one season only, in the future work we would
like to extend this dataset for different seasons with different field locations.
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Abstract. Traditionally, object detection models use axis-aligned
bounding boxes (AABBs), but these are often a poor fit for elongated
object instances, such as wheat heads. Using rotated bounding box
(RBB) annotations can improve object detection results, but RBBs are
much more time-consuming and tedious to annotate than AABBs for
large datasets. In this work, we propose a novel annotation tool for pro-
ducing high-quality RBB annotations with low time and effort. The tool
generates accurate RBB proposals for objects of interest as the annotator
makes progress through the dataset. It can also adapt available AABBs
to generate RBB proposals. Furthermore, a multipoint box drawing sys-
tem is provided to reduce manual annotation time. Across three diverse
datasets, we show that the proposal generation methods can achieve a
maximum of 88.92% manual workload reduction. We also show that our
proposed manual annotation method is twice as fast as the existing sys-
tem with the same accuracy. Lastly, we publish the RBB annotations for
two public datasets.

Keywords: Computer vision · Object detection · Aerial imaging ·
Wheat

1 Introduction

Object detection is an important and well-studied computer vision task. With
the advent of large scale benchmark datasets [13,19], deep learning based detec-
tion algorithms have advanced rapidly [25]. However, these datasets primarily
contain natural images labeled with axis-aligned bounding boxes (AABB), which
do not localize elongated and rotated objects well. This is particularly problem-
atic in aerial image datasets, due to the immense scale variations as well as
random rotations of the objects therein (e.g., plants, ships). Also, AABBs fail
to isolate the objects properly in crowded scenes, such as images of plants and
crops, as adjacent bounding boxes heavily overlap each other (Fig. 1). The inclu-
sion of background features or adjacent objects within an AABB potentially
degrades detection performance and precise localization. To overcome this issue,
object annotation with rotated bounding boxes (RBB) has been explored for
detecting ships [20], vehicles [28], text [32] and other categories of objects [12].
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Most previous RBB-based object detection methods are based on super-
vised learning and require a large amount of annotated images with RBBs
around objects for training. Creating RBB annotations is more tedious and
time-consuming than annotating AABBs with current tools because it requires
iteratively rotating and resizing bounding boxes until they are a good fit. Anno-
tation tools that support directly drawing RBBs are not widely available. In
this work, we aim to fill this gap by integrating new RBB annotation features
to the existing open-source annotation tool LabelImg [1,2]. The modified Labe-
lImg tool is publicly available at https://github.com/p2irc/FastRoLabelImg to
enable annotators to efficiently label large image datasets with RBBs.

Fig. 1. Adjacent axis-aligned bounding boxes (AABB, top) have higher overlap com-
pared to rotated boxes (RBB, bottom).

In order to reduce annotation workload, our tool automatically provides RBB
proposals assisted by computer vision techniques. We use pre-trained models as
well as an iteratively trained object detector. The latter model incrementally
learns about the dataset as new annotations are available. As the annotator
goes through the images in the dataset, the model is continually and seamlessly
retrained and provides improved RBB proposals. We also explore ways in which a
priori AABB annotations can be used to improve the accuracy of RBB proposals,
for datasets with existing AABB annotations.

We evaluate the effectiveness of our developed methods using images drawn
from the GWHD dataset [11], CARPK dataset [16], and Airbus ship detection
challenge dataset [3]. The selected images (∼1000) of the GWHD and CARPK
dataset are manually annotated using RBBs and publicly made available at
https://doi.org/10.6084/m9.figshare.13014230.v1 to encourage further research
in this domain. The proposed RBB proposal generation methods attain a min-
imum workload reduction of 65.80% for the wheat dataset and a maximum of
88.92% for the ship dataset.

https://github.com/p2irc/FastRoLabelImg
https://doi.org/10.6084/m9.figshare.13014230.v1
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In addition to providing RBB proposals, our tool also includes a multipoint
box drawing mechanism to speed-up manual bounding box creation. This system
simplifies the process of drawing RBBs which is otherwise quite cumbersome
in existing tools. We evaluate our proposed RBB drawing interface through a
participant study and show that our two proposed variants are significantly faster
than the traditional method and achieve the same level of annotation accuracy.

The contributions of this paper include: 1) development of multiple methods
based on detection models and image processing to automatically generate RBB
proposals for specific object classes; 2) design of a multipoint drawing system
to accelerate the process of manually creating RBB annotations; 3) integration
of existing AABB annotations, if available, to improve RBB proposals; 4) eval-
uation of the proposed RBB generation methods on subsets of three publicly
available datasets (GWHD dataset, CARPK dataset, Airbus ship dataset); 5)
assessment of the effectiveness of the presented RBB drawing system by conduct-
ing a participant study; and 6) publicly-available RBB annotations for subsets
of two datasets (GWHD dataset, CARPK dataset).

2 Related Works

Bounding Box Annotation Tools. For automated content analysis, fully
supervised computer vision models rely on manual annotation of images. To
facilitate manual annotation, a lot of annotation tools have been developed over
the years which allow different shapes such as box, polygon, circle, point, etc.
to describe the object of interest. Label Studio [29] and a modified version of
LabelImg [2] support drawing of an RBB in three steps. First, an AABB is
drawn which is followed by rotating the box in any direction using keypress or
mouse drag to match the orientation of the encapsulated object. Finally, the
width and height of the box are adjusted again to fit the object. This process is
labor-intensive and time-consuming when thousand of object instances need to
be annotated. Some of the tools [4,5] allow pre-trained machine learning models
to automate the annotation process but are limited by the number of classes the
pre-trained model supports.

Weakly Supervised Object Localization. In weakly supervised object local-
ization approaches image-level labels that describe the classes of objects present
in the image are used to train object detectors instead of actual bounding boxes.
Though these techniques [14,33] eliminate the need for bounding box annota-
tions, the trained object detectors are significantly weak in terms of accuracy.
Fully supervised object detectors with AABBs have twice the accuracy than
weak detectors. Alternative forms of cheap human supervision have also been
explored in recent works. In the box-verification series [22], human verification
signals are used in both retraining an object detector and re-localizing the objects
in the images via proposals iteratively. The trained detector achieves better
object localization compared to WSOL approaches as only the correct bounding
boxes are used in the training. In [18], the researchers proposed an Intelligent
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Annotation Dialogues (IAD) agent that can determine the most time-efficient
sequences of annotation actions to produce bounding box annotations for an
image when image-level labels are available. It demonstrates that initially, the
majority of the bounding boxes need to be manually drawn. But, as the detec-
tor gets stronger, box verification grows in number. Among others, eye-tracking
[21] has been utilized to train object detectors, and click supervision has been
leveraged for obtaining high qualify object annotations [23] as well as learning
semantic segmentation models [8].

Human-Machine Collaborative Annotation. Computer vision models pre-
trained on large scale benchmark datasets [13,19] are not strong enough to detect
all the object instances in complex scenes. This becomes more evident when the
intention is to build a new dataset that contains uncommon classes of objects.
To solve the challenging task of getting high-quality object annotations effi-
ciently, various works have combined the responses of computer vision models
with human input. Adhikari et al. [7] divided the dataset into two parts. Then, a
Faster RCNN model was trained using the manually annotated first part of the
dataset to generate AABB proposals on the second part. These proposals were
further refined by a human annotator with actions like removing incorrect boxes
and drawing new ones. Adhikari [6] built on this approach by iteratively training
the model with small batches of labeled images and proposals were generated
on the next batch in the line. The focus of this work was not on developing an
annotation tool but to compare different ordering of images to train a strong
detector as early as possible. Getting a better model in early iterations helps
to reduce the manual annotation effort as well as the total time needed. Sev-
eral other works used human-machine collaborative annotation effort to develop
interactive object segmentation [10,17], interactive video annotation [30] and
attribute-based classification [9,24] methods.

3 Method

In this work, we aim to produce RBB annotations for better localization instead
of the traditional AABBs. Rotating and re-scaling AABBs manually is tedious,
therefore we design a multipoint drawing system to easily create a RBB from
scratch. Our tool can also adapt and filter existing AABB annotations, when
available, to automatically propose RBBs and speed up the annotation process.

3.1 Manual RBB Annotation

The purpose of the multipoint drawing system is to facilitate the process of man-
ual bounding box creation. There are three configurations available categorized
based on the number of points needed to be drawn to create a bounding box.
The 2-point system is the traditional annotation method for drawing AABBs.
The other two configurations can be used to create RBB annotations.
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3-Point System. In this approach, the annotator can draw three corner points
to create a bounding box of any rotations. Following the Fig. 2a, if the drawn
points are A, B, and C ′ in this order, then first we calculate the perpendicular
distance d from C ′ to the line AB. Afterward, we determine the coordinates of
point C at a perpendicular distance d from B such that the point C lies on the
same side of AB as C ′. We take these additional steps to make sure that the
line BC is perpendicular to AB through the point B. Given the corner points
A(x1, y1), B(x2, y2) and C(x3, y3) of the box, we can determine the other corner
point D(x4, y4) as: x4 = x1 + x3 − x2, and y4 = y1 + y3 − y2.

4-Point System. In the 4-point drawing system (Fig. 2b), if the points drawn
are A,B,C ′, and D′, we find the center O of the line AB. Then, similar to the 3-
point drawing system, we consider points A,O, and D′ to calculate the position
of the point P . Consecutively, we calculate the coordinates of Q using A,O, and
C ′; the coordinates of R using B,O, and C ′; the coordinates of S using B,O,
and D′. Thus, we have all the coordinates of the RBB PQRS.

Fig. 2. Multipoint box drawing system for objects of interest (grey shapes). The colored
dots are clicked around the objects in the order: Red ⇒ Green ⇒ Blue ⇒ Orange.
(Color figure online)

3.2 RBB Proposals

When no AABBs are available for an image, we use object detection models
capable of predicting RBBs to generate proposals for the specified classes of
objects in the image. We integrate two object detection models in the tool.

Pre-trained Detector. The pre-trained detector is based on the Faster R-
CNN [26] framework embedded with ROI Transformer [12] to be able to pre-
dict the RBBs. The predicted bounding boxes can be denoted as {(xi, yi), i =
1,2,3,4}, where (xi, yi) denotes the positions of the box corners in the image.
The pre-trained detector is trained on the DOTA [31] dataset which consists of
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2,806 aerial images and the contained objects belong to 15 classes including ship,
plane, storage tank, ground track field, tennis court, baseball diamond, basket-
ball court, bridge, harbor, small vehicle, large vehicle, roundabout, helicopter,
basketball court, and soccer ball field. So, this detector can support up to 15
categories when used to generate proposals. The predictions can also be filtered
by confidence score and non-maximum suppression (NMS) before finalizing the
proposals. The user can pre-configure the confidence score and overlap threshold
for NMS through the interface of the tool.

Iterative Detector. We also use an object detector (Faster R-CNN with ROI
Transformer) that is updated iteratively on previously annotated data using ver-
tical re-training. The approach is motivated by batch-mode active learning [27].
In this tool, we use a batch size of 1. So, when a particular image is completely
annotated by the user and annotations are saved, the newly available RBBs are
utilized to retrain the detector right away. Each time the proposal generation
step is requested, the most updated detector is used to generate the proposals
for the selected categories. Similar to the pre-trained detector, the predictions
can be filtered by a confidence score and NMS. The iterative detector can sup-
port up to 1,000 categories of objects. As the labels of the categories are not
known beforehand, we use 1,000 placeholder labels when the model is config-
ured initially. Later, when a bounding box appears with a new label, a mapping
is created between the original label and a placeholder label to continue the
training. Similarly, this mapping is also used to retrieve the predictions of a
specified category. The mapping is saved as a JSON file to maintain its state
among multiple annotation sessions.

3.3 Using Existing AABB Annotations

When AABBs are available, we leverage the bounded regions to apply segmen-
tation based approaches to identify the pixels of interest and produce the RBB
proposals with additional post-processing. However, we also use the object detec-
tion models to convert the AABBs to RBBs and if certain boxes are missed in
this conversion, the tool falls back to the segmentation based approaches to fill
the gap.

Filtering Proposals with IOU. If RBB proposals are requested for the avail-
able AABBs in an image using the object detection models, then we first get
the predictions on the image for the specified categories of objects. Then, the
predicted proposals are associated with the given AABBs using Intersection-
over-Union (IoU) considering both of the boxes as polygons. This IOU-based
matching process filters out many of the false positives. The IOU threshold for
box matching can be set by the user in the tool.
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Adapting AABBs with Thresholding. We make use of both traditional
computer vision techniques as well as a deep learning-based instance segmenta-
tion model to serve the purpose of proposal generation from AABBs. Though
a deep learning-based model can detect a large number of object classes, the
detection is limited by the number of classes the model is pre-trained on. To
overcome this issue, a set of assumptions is made about the objects inside the
bounding boxes to develop an image processing based approach in support of
the segmentation model. The image processing based approach might construct
a better bounding box proposal than the model if the object of interest satisfies
the assumptions.

We assume that the AABBs fit the objects as tightly as possible and that the
centers of the bounding boxes are on the encapsulated objects. Also, we presume
that the histograms of the pixel intensities in the grayscale patches formed by
the bounding boxes will be bimodal.

Let’s define p as a patch image bounded by an AABB b and i as an object
instance of class c which is annotated by b. We convert the patch p to a grayscale
image and determine a threshold value t using Otsu’s method for the patch. We
also calculate a mean pixel value m for the middle 10% region of the grayscale
patch p. Then, m and t are used to determine the foreground and background
pixels of the patch. If m is greater than t, then all the pixels having an intensity
value greater than t are marked as foreground (in white color). Alternatively, if
m is less than t, then all the pixels having an intensity value greater than t are
marked as background (in black color).

We do a series of post-processing steps to get the final RBB proposal after
getting the region of interest. Firstly, we might get one or multiple regions of
interest. But, we know that a bounding box should contain one object at most.
So, if multiple regions of interest are detected in a patch p, we try to find the
best suitable region by weighting each of the regional areas with the distance
between the center of the region and the center of the patch. Formally, if there
are n regions, then we calculate the weighted area for the ith region as wi =
area(i)/distance(ci, cp) where i = {1 . . . n}, ci is the center of the ith region and
cp is the center of the patch p. Afterward, the region with the maximum weighted
area is chosen to apply the post-processing steps.

Subsequently, we find an ellipse that has the same second moments as the
selected region of interest. The length of the minor axis of the ellipse is used as
the height of the RBB. Furthermore, we extend the major axis on both sides and
obtain the two intersecting points with the AABB. The distance between these
points is used as the width of the RBB. As for the rotation of the box, the angle
between the major axis of the ellipse and the positive x-axis is used. The range of
the angle is between 0 to 180◦ in the pixel coordinate system (positive rotation
is clockwise from the x-axis). Lastly, the center of the AABB is considered as
the center of the RBB.

Finally, we can compute the coordinates of the four corners of the RBB in
the image given the width, height, center, and rotation of the box. We proceed
by creating an AABB with the determined center, width, and height (width is
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along the x-axis). Then, we apply a rotation matrix to each of the corner points
to get the rotated corner points {(x

′
i, y

′
i), i = 1, 2, 3, 4}. For example, if (x, y) is

a corner point that is rotated clockwise by an angle θ, we can get the rotated
points (x

′
, y

′
) using the equation:[

x′

y′

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
(1)

Adapting AABBs with Mask R-CNN. We employ the popular Mask R-
CNN [15] model pre-trained on the MS COCO 2017 [19] dataset to get the regions
of the objects inside the AABBs. Let’s assume that we need to determine an RBB
proposal for an object of class c and the object is contained in an AABB b. Then,
the model is used to run prediction on the whole image and we get segmentation
masks as well as respective bounding boxes for objects of class c. Later, we find
the predicted AABB that has the maximum overlap with the given bounding box
b and utilize the associated segmentation mask to locate each pixel belonging
to the encapsulated object in the patch image. Once the region of the object
is found, the post-processing steps remain the same as before to get the RBB
proposal.

4 Datasets

We chose three datasets of diverse elongated objects (wheat heads, cars, ships)
to evaluate our proposed RBB methods. Statistics regarding the annotations in
these datasets are summarized in Table 1 and Fig. 3.

Wheat Dataset. The wheat dataset is adopted from the Global Wheat Head
Detection (GWHD) dataset [11]. The original dataset is comprised of wheat head
images from ten different locations around the world covering a large number of
genotypes from Europe, North America, Australia, and Asia. The full dataset
consists of 4,698 RGB images with 188,445 wheat heads labeled with AABBs.
For our proposal generation experiments, we have randomly sampled images
from four of the sources named usask 1 (Canada, 200 images), rres 1 (UK, 200
images), ethz 1 (Switzerland, 200 images), and inrae 1 (France, 176 images).
However, the participant study to evaluate manual RBB annotation methods
uses images from utokyo 1 and utokyo 2. The selected images are manually
annotated with RBBs.

Car Dataset. The car dataset is prepared by selecting drone-view images from
the CARPK dataset [16] that contains cars from four different parking lots. The
native dataset has 1,448 images with 89,777 cars and only AABB annotations
are available. Many of the images are close to identical as the drone used to
collect the images was stalled or moving slowly. To reduce the overlap between
images, we have taken each 10th image of the dataset and a total of 150 images
are selected. Similar to the wheat dataset, selected images are manually labeled
with RBBs for further experimentation.
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Table 1. Object detection datasets used for RBB studies.

Name No.of images No. of labeled objects Avg no. of objects/image

Wheat 776 30,449 39

Car 150 9,330 62

Ship 4,500 5,401 1

Fig. 3. The distribution of aspect-ratio for AABBs, aspect-ratio for RBBs, rotations
of RBBs and number of annotated objects with RBBs for wheat (a), car (b) and ship
(c) datasets.

Ship Dataset. The images of the Airbus Ship Detection Challenge dataset
[3] are used to form the ship dataset. The challenge dataset has more than
100k satellite images but only around 25% of the images contain ships. First,
we process the dataset by discarding the images with no ships. Then, only the
images (≈9k) where the area of each of the ships is more than 1,000 pixels
are kept. Finally, we randomly select 4,500 images from those to build the ship
dataset.

5 Experiments and Results

5.1 Manual RBB Annotation

We conducted a participant study to examine the impact of the proposed RBB
drawing methods and the current method on annotation time and accuracy. The
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study used a 3 × 2 within-participants RM-ANOVA with factors Annotation
Method (3-point, 4-point, current) and Object Type (car, wheat). The car and
wheat instances represent rectangular and ellipsoid shaped objects respectively.
The dependent variables were annotation time and accuracy. We analyzed the
dependent variables separately. Our hypotheses for the studies were:

H1. The 3-point and 4-point methods will be faster than the current method.
H2. The 3-point and 4-point methods will be more accurate than the current

method.
H3. The 3-point method will be faster than the 4-point method as it requires

fewer clicks.
H4. The 4-point method will be more accurate than the 3-point method as the

specified points are mostly on the edges of the object.

Tasks and Data. Each of the participants annotated a set of car and wheat
images using the current, 3-point, and 4-point systems. Each set comprises 3–4
wheat images with 45–60 wheat heads and 3–4 car images (cropped if neces-
sary) containing a total of 50 cars. We asked the participants to avoid any
object instances that were partly visible in the images. The set of images were
unique to each participant but they remained the same across all conditions.
As the participants repeatedly annotated the same set of images with different
conditions, there could be a potential learning effect on the observed annotation
time and accuracy. Therefore, we counterbalanced the order of object types and
annotation methods to control the effect and enhance the validity of the study.

Procedure. We ran the study remotely using the laptops/desktops of the par-
ticipants due to the COVID-19 restrictions. For each participant, we supplied
the images to be annotated and a Windows-compatible installer of the annota-
tion tool. Therefore, we started the study with a device compatibility check. If
compatible the participants signed an informed consent form online. Then, the
participants filled up a pre-questionnaire which queried them about the level of
experience of using computer, mouse, and annotation tool as well as some basic
information e.g. gender, age. After completing the form, the annotation tool
was installed on their devices. Any required support and guidance were given
remotely.

Once the software was installed, the participants were given a demonstration
of the user interface of the annotation tool and each of the annotation methods.
In addition, the criteria of accurate annotations were explained to them with
examples for both wheat and car instances. Then, they were given a few minutes
to practice the box drawing approaches on some practice wheat and car images.
During the practice tasks, necessary feedback was given to the participants on
their annotations over video conferences. They were also instructed to complete
the annotations as fast and as accurately as possible for all of the methods.

Finally, the participants performed the main annotation tasks. They took
part in two separate sessions. Each session involved annotating either wheat
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or car images with the three conditions repeatedly. During the sessions, the
RBB annotations were saved to measure the accuracy (using IOU) of each box
by comparing those to the ground truth RBBs. The annotation time was also
recorded for each of the boxes using the annotation tool internally. At the end of
every session, the participants completed a user preference questionnaire. They
were asked to rank the annotation methods for the recently concluded object
type based on the annotation speed (higher rank represented faster method),
difficulty (higher rank represented easier method), and overall preference. In
total, the study lasted around 90 min for each participant.

Participants and Apparatus. Twelve participants (6 male, 6 female, all right-
handed) were recruited from a local university for the user study. The age range
of the participants was 24–31 (mean 27.3). The participants self-reported very
high familiarity with computer and mouse. However, six of the participants self-
reported no experience of using annotation tools, and the others had low to high
familiarity (4 low, 1 moderate, 1 high).

The experiments were conducted on the personal laptops of the participants
due to the remote nature of the study. All the devices had MS Windows 10
operating system and the display sizes were in the range 15–17 in. The installed
annotation tool was written in Python (PyQT5). The annotation inputs were
received using a USB optical mouse.

Results and Discussion. For both annotation time and accuracy, we deter-
mined outliers within each object type and annotation method for each par-
ticipant. A trial was considered an outlier and discarded if the measured value
was three s.d away from the respective group mean. Out of 1236 trials, 67 trials
were discarded based on annotation time and 16 trials were discarded based on
annotation accuracy.

ANOVA results showed that for annotation time there was no statistically
significant interaction (F (2, 22) = 2.24, p = 0.130) between Annotation Method
and Object Type, suggesting that the effect of annotation methods does not
depend on the object types. The Annotation Method had a significant main
effect (F (2, 22) = 132.09, p =< 0.0001) on annotation time; Greenhouse-Geiser
correction was applied for sphericity violation. Post-hoc pairwise t-tests (Bonfer-
roni corrected) revealed significant difference between the annotation methods
(all p < 0.05) as shown in Fig. 4. The mean annotation time was 7.54 s (s.d.
2.10 s) for 3-point, 5.78 s (s.d. 1.08 s) for 4-point and 17.3 s (s.d. 3.32 s) for the
current method. Therefore, we accept H1 and must reject H3. Both 3-point and
4-point methods were faster than the current method as those required fewer
steps. However, the 3-point method involved a higher degree of approximations
for ellipsoid shaped objects because distinct object corners are not apparent.
Therefore, it performed worse compared to the 4-point method.

RM-ANOVA results indicated no significant interaction between Annotation
Method and Object Type (F (2, 22) = 4.57, p = 0.15) for annotation accuracy,
again suggesting that the effect of annotation methods does not depend on the
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object types. We found that there was a significant main effect of Annotation
Method ((F (2, 22) = 4.44, p = 0.024) and Object Type ((F (1, 12) = 541.39, p =<
0.0001) on annotation accuracy. Post-hoc pairwise t-tests (Bonferroni corrected)
showed significant difference between the 3-point and 4-point methods (p =
0.007) as illustrated in Fig. 4. The mean annotation accuracy was 81.5 (s.d.
5.14) for 3-point, 84.3 (s.d. 5.97) for 4-point and 82.4 (s.d. 5.66) for the current
method. Therefore, we must reject H2 and accept H4.

Though the current method was slower, it had a higher accuracy than the
3-point method. It suggests that the participants spent more time making the
annotations as accurate as possible. However, we observed during the study that
the participants increasingly compromised the accuracy when they had to stay
on an object for a longer period. It might be responsible for the lower mean
accuracy of the current system compared to the 4-point method but it’s not
statistically significant (p = 0.169).

For annotating car objects, 75% of the participants preferred the 4-point
method and the other 25% participants preferred the 3-point method. For wheat
instances, all the participants preferred the 4-point method over others. For
both types of objects, the current method got the lowest ranking based on the
participant preferences.

Fig. 4. The effect of annotation method on time (left) and accuracy (right). (** : p ≤
0.01, **** : p ≤ 0.0001)

5.2 Proposal Generation

We estimate the manual workload to evaluate the different strategies of proposal
generation. In the absence of proposal generation, the workload is measured as
the number of total objects in the images of a dataset because the annotator
will only create a new box for each of the objects. We count the objects of inter-
est by the available ground truth RBBs. When proposal generation is used, the
workload is modeled as removals of the incorrect proposals (false positives) and
additions of the missed ground truth bounding boxes (false negatives). We cal-
culate the number of such boxes per image using the precision and recall metrics
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following [6]. When no assisting AABBs is given, the amount of corrections is
determined as

# corrections = # additions + # removals (2)

where,
# additions = # objects of interest × (1 − recall) (3)

# removals = # proposals × (1 − precision) (4)

Also, precision and recall are defined as

precision =
# correct proposals

# generated proposals
(5)

recall =
# correct proposals
# objects of interest

(6)

However, if proposals are generated for a set of given AABBs, the number of
false positives is limited by the number of given boxes. As the time taken to
remove incorrect proposals is minimal in this case, we only examine the number
of box additions to determine the number of corrections.

Table 2. Manual workload reduction (%) using different methods on wheat, car and
ship dataset. (Higher is better, NA: method does not apply to a dataset)

Detector Filtering Adapting Wheat Car Ship

Pretrained No No NA 27.41 64.95

Iterative No No 39.77 54.79 69.09

Pretrained Yes No NA 28.75 75.80

Iterative Yes No 63.52 66.72 81.04

No No Thresholding 50.53 75.11 67.30

No No Mask RCNN NA 4.13 NA

Pretrained Yes Thresholding NA 80.42 87.59

Iterative Yes Thresholding 65.80 81.08 88.92

In our experiments, we considered a proposal as correct if the IOU overlap is
greater or equal to 0.5 between the ground truth bounding box and the proposed
bounding box as well as the difference in the rotations is less than 10◦. We
configured the other parameters such as confidence score, NMS threshold, and
box match IOU threshold to 0.5, 0.1, and 0.2 respectively. The images in a
dataset were iteratively traversed to calculate the number of required corrections
per image. For iterative detector, proposals were generated on the ith image
using the model trained on 1 . . . (i − 1) images for evaluation. Also, the model
was trained for 30 epochs for each of the images.
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Fig. 5. The required number of manual corrections using different methods for the
three datasets. (Lower is better)
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The experimental results are shown in Table 2 for all of the datasets. For each
dataset, manual workload reduction (%) is calculated as the difference between
the cumulative number of ground truth bounding boxes and the cumulative
number of required manual corrections for all the images. We see that both the
pre-trained and iterative detector get a better performance when proposals are
generated for a set of given AABBs. This is because the given boxes can be used
to filter out many of the false positives. The maximum workload reduction is
achieved for any dataset when the iterative detector is employed in combination
with the thresholding technique as the latter can produce proposals for any
missed objects by the detector. The Mask R-CNN model experienced a low
workload reduction because it is trained on ground-view car images instead of
the aerial-view of the car dataset.

Figure 5a reveals the impact of different strategies to alleviate the workload
throughout the annotation campaign for the wheat dataset. Without any RBB
suggestion, the annotator would need to create a total of 30,420 new bounding
boxes. But, with the proposals constructed by the iterative detector in absence
of AABBs, the number of manual corrections depletes to 18,321. In presence
of AABBs, manual corrections are further reduced to 11,097 bounding boxes.
However, it goes to as low as 10,401 giving us a workload reduction of 65.90%
when the thresholding approach joins to aid the detector. Figure 5b depicts that
the required manual corrections can be as minimum as 1,756 bounding boxes
while the total bounding boxes are 9,330. Finally, we can reach the maximum
workload reduction of 88.92% as shown in Fig. 5c by using the combination of
the iterative detector and thresholding approach. Only 598 boxes need to be
corrected out of 5,401 instances in this case.

6 Conclusion

In this work, we extend the publicly available annotation tool, LabelImg, to
speed up the tedious task of RBB annotations. We add an online learning based
object detector that improves over time to generate RBB proposals. We also
integrate a pre-trained detector and segmentation methods to propose RBBs in
the early stages of the iterative detector before it is sufficiently trained. The
tool provides the user with the flexibility to tune the key parameters of the
proposal generation approaches to best match the dataset at hand. We found
that the percentage of workload reduction depends on the size and nature of
the dataset. Nevertheless, it is evident from our experimental results that our
proposal generation methods reduce the annotation time and effort substantially.
Furthermore, we propose and evaluate an easy-to-use multipoint drawing system
to speed up direct manual RBB annotations. Therefore, we provide an open-
source annotation environment that supports efficient and accurate generation
of rotated bounding box annotations for large image datasets.
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Abstract. Over the past ten years, precision agriculture has raised
much awareness in the agricultural sector. It automates and optimizes
almost all agriculture practices. But the success of this technology
depends upon the data. The more accurate and extensive the data is,
the more accurate the system will be. Despite large datasets available
online, there is still a lack of datasets from the Indian perspective. One of
the main roadblocks to advancement is the shortage of publicly available
statistics. This paper proposes a benchmark dataset named IndianPota-
toWeeds for Potato crops and weeds from Indian farms. The dataset com-
prises 270 images with annotations and is available online https://www.
kaggle.com/datasets/rajni88/indianpotatoweed-dataset. All images were
acquired with the Sony CyberShot W830 20.1 M camera and mobile
phone. There were intra and inter-row weeds present at the time of
data collection. We have provided mask and manual annotation of the
plant type (crop vs. weed) for every dataset image using VIA annotation
tool. Images can be split into background and foreground via masking,
enabling us to concentrate on the areas of the image that interest us. By
making this information available to the public, we hope to encourage
study in this field.

Keywords: Precision Agriculture · Weed Dataset · Annotation ·
Image Masking

1 Introduction

Food and fiber are mainly produced via agriculture. Agriculture provides all the
world’s inhabitants with the nutrition it needs. Also vital to the economy is agri-
culture. A significant share of the global workforce is employed in the agriculture
sector. 50% of the Indian population is employed in the agriculture sector. The
economic survey estimates that agriculture’s share of the GDP for the fiscal
year 2020–2021 was 19.9%1. The population has increased exponentially over
the past three decades (almost 10 billion by 2050, according to a U.N. study),

1 https://statisticstimes.com/economy/country/india-gdp-sectorwise.php.
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which has led to a sharp rise in food demand [1]. To feed such a vast population,
conventional food production methods are insufficient.

Hence, there is a need for innovative and intelligent ways of farming. Smart
and Precision farming is one of the best solutions to meet the current food
demands of the large population. Precision agriculture provides the automation
of various agriculture practices, which reduces time and labor costs. Artificial
intelligence(AI) and IoT (Internet of things) are advanced technological tools
that help to digitize agricultural activities. To cut waste, boost revenues, and pro-
tect the environment, precision agriculture manages each crop production input
(water, fertilizer, herbicide, seed, pesticide, etc.) on a site-specific basis. (Ess &
Morgan 2013). Precision agriculture has a wide application area. It helps in crop
management, weather forecasting, weeds, and pest control, intelligent spraying,
livestock farming, remote sensing, storage management, innovative harvesting,
etc. It automates almost all agriculture practices. It helps to detect weeds and
pests in crop fields and provides site-specific spraying of pesticides and herbicides
to remove weeds and pests.

Weeds are a fundamental problem that affects crop yields to a large extent.
Weeds are unwanted plants that compete for nutrients, water, and other
resources with valuable plants. These unwanted plants are always needed to
be removed from fields. The type of weeds depends upon the location, season,
and crop. Weeds vary from country to country. So, the kind of weeds present in
Germany’s land does not need to also be present in the land of India. There are
many datasets available from various countries. But from the Indian perspective,
there is a lack of weed/crop datasets.

So in this paper, we provide a thoroughly annotated and masked crop/weed
dataset from potato fields. The dataset contains 270 images manually anno-
tated using VIA (VGG Image Annotator) [30]. The annotations made available
with this dataset enable the development of weed detection and classification
solutions and many types of image processing, including edge detection, motion
detection, and noise reduction. The information presented is crucial from a com-
puter vision standpoint. On the one hand, the process of picture collecting in
the agricultural industry is challenging since it necessitates sophisticated hard-
ware systems, access to fields, and lightning conditions, and the timing of the
acquisition must be accurate and linked with the crop growth cycle (only once a
year for many cultures). On the other hand, defining appropriate ground truth
requires the assistance of agricultural professionals [2].

The dataset comprises field images in a top-down view that were acquired
with a Sony CyberShot W830 20.1 M and mobile phone camera. The images
are collected from the potato fields of Punjab Agriculture University (Precision
farming) fields in Punjab, India. The crop was photographed at a stage of devel-
opment where many genuine leaves were visible. The manual weeding was done
in this field after a few hours of data collection. Here, we focus on potatoes, but
wheat, peas, onions, and other cultivars also need manual weed control proce-
dures. Every image has annotations, and the dataset contains crop/weed annota-
tion JSON file, CSV file, Coco format file, and annotation mask for each image.



118 R. Goyal et al.

Fig. 1. Sample images from dataset

The dataset is available online at https://www.kaggle.com/datasets/rajni88/
indianpotatoweed-dataset Fig. 1 provides sample images from the dataset.

2 Literature Survey

In general, there is a lack of open datasets accessible by researchers and aca-
demicians. Data sets are like the food for classification and detection problems

https://www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset
https://www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset
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in machine learning models [3]. These technologies are used in a variety of agri-
cultural fields, including crop disease detection, weed classification and identifi-
cation, plant seedling classification, fruit identification and accounting, manage-
ment of water resources and soil, weather forecasting (climate) [3–6]. Accurately
classifying and detecting weed species in their natural environment may be the
most significant barrier to the general adoption of robotic weed management.

The more data included in these databases, the more effective artificial intel-
ligence systems can govern robotic weed growth, provide more accurate plant
growth, and allocate scarce resources.Potato/weed dataset [8]is an open-access
dataset having 411 images taken from potato fields. But this dataset contains sep-
arate images for crop and weed and cannot be used for segmentation problems. It is
valid for classification problems only. Another dataset for weed detection has 202
images [9] that can be used for classification problems in deep learning. Another

Table 1. Public Crop/Weed datasets

Dataset Type of crop Number
of Images

Data Location Reference

Potato Plant Dataset Potato 411 not specified [8]
Weed detection Dataset not specified 202 not specified [9]
Crop/Weed Field
Image Dataset

Carrot 60 Germany [10]

Dataset of food crop
and weed

Six crop 1118 Latvia [11]

DeepWeeds Not Specified 17,509 Australia [12]
Perennial ryegrass and
weed

Perennial ryegrass 33086 USA [15]

Early crop weed dataset Tomato, cotton 508 Greece [14]
Soybean and weed
dataset

Soybean 400 Brazil [16]

Open Plant Phenotype
Dataset

Not Specified 7,590 Denmark [17]

Sugar beet and hegde
bindweed
dataset

Sugar beet 652 Belgium [18]

Sugar beet fields dataset Sugar beet 12340 Germany [19]
UAV Sugar beet 2015-16
Datasets

Sugarbeets 675 Switzerland [20]

Corn, Lettuce and weed
dataset

Corn and lettuce 6800 China [22]

Carrot weed dataset Carrot 39 Republic of Macedonia [23]
Bccr-segset dataset Canola, corn, radish 30,000 Australia [24]
Carrots 2017 dataset carrots 20 UK [25]
Onions 2017 dataset onions 20 UK [25]
GrassClover image
dataset

Red Clover and white
clover

31,600 real and
8000 synthetic images

Denmark [26]

Leaf counting dataset not specified 9372 Denmark [27]
CNU weed dataset not specified 208,477 Republic of Korea [28]
Plant Seedling dataset three crops 5539 Denmark [29]
CNU weed dataset not specified 208,477 Republic of Korea [28]

IndianPotatoWeeds Potato 270
India This paper
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Fig. 2. The polygon annotation of images. The yellow color specify crop, and the blue
color specify weed.
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dataset named cwfid [10], having 60 shots, is available on GitHub for crop /weed
classification and segmentation for computer vision in precision agriculture.

Sudras et al. [11] annotated 1118 images having six food crops and eight
weed species from different locations in Latvia. DeepWeeds [12] is an extensive
dataset having 17,509 images taken from different crop fields in Australia. Table 1
represents the various datasets available online from fields of other countries for
different crops.

This paper aims to provide a real-world image dataset for image segmentation
and classification model like Faster Region-based Convolutional Neural Network
(RCNN) and Mask RCNN. This enables researchers to acquire research on the
perception of data acquisition and treatment for weeds in potato fields.

3 Problem Description

Data presented in this paper shows how the dataset is distributed among food
crops and weeds. The crop selected for this work is potato. Two hundred seventy
images presented in this paper are manually annotated using the VGG image
annotator (VIA) tool. The dataset is split into train and val folders containing
80:20 images. Each folder contains the JSON file having annotations. Raw images
and mask for each image is also included in the dataset. Figure 3 displays images
from a dataset with polygon annotation with yellow color specifying crop and
blue color specifying weed (Better visible in color image).

4 Material and Methods

4.1 VIA (VGG Image Annotator)

VGG Image Annotator (VIA) is an easy-to-use standalone program for manually
annotating images, audio files, and videos. There is no setup or installation
needed with VIA; it simply runs in a web browser. The complete VIA program
is included in a single self-contained HTML page that is less than 400 kilobytes
and works as an offline application in most modern web browsers [30]. Using
the VIA tool, we have annotated the images. We have also classified images into
weed and crop categories, shown in Fig. 3. The region shape used for annotation
is the polygon. The total number of annotations is 776, of which 393 are crop
annotations and 383 for weed. The extent of the dataset is represented in Table 2.

Table 2. Extent of dataset

Parameter Value Format

Image count 270 .jpg

Annotations 776 json, csv

Crop annotations 393 json, csv

Weed annotations 383 .json, .csv

Mask of images 270 .png
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Fig. 3. Annotated and masked images into crop/weed using VIA tool and python (a)
& (b) mask of images (c) & (d) masked images

4.2 Masking

A mask allows us to focus only on the portions of the image that interests us.
It can be defined as setting specific pixels of an image to some null value such
as 0 (black color). So, only that portion of the image is highlighted where the
pixel value is not 0. In this program, we begin with reading the image using the
cv2.imread() function in python. Then we convert the image to HSV format as
all the operations can only be performed in HSV format.

During masking, the images can be segmented into background and fore-
ground. Figure 3 shows the mask and the masked image from the dataset.

4.3 Field Setup and Acquisition Method

The 270-image dataset was captured at a precision agriculture potato farm
in Northern India in December 2022 before manual weeding was applied. The
potato plants were grown in a single row on small soil beds. Small close-to-close
intra-row weeds were present at data acquisition time. Sony CyberShot W830
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Table 3. Specifications of Dataset

Subject Precision Agriculture, Computer vision, Agronomy, and
Science

Specific Subject Area Image classification, segmentation, Object detection, crop
growth and development

Type of data Images
Annotations
Image Mask and masked images

Camera specifications Sony CyberShot W830 20.1 MP and mobile phone camera
Data Format Raw images: .jpg format

Manually annotated images: JSON files
Mask and masked image: .png format

Description of data Dataset consists of Directory Raw images -270 images and
mask for each image,
train folder - 214 images, JSON file, CSV file
test folder - 56 images, JSON file, CSV file

Data source location Precision farms Punjab Agriculture University, Ludhiana,
Punjab, India

Data accessibility https://www.kaggle.com/datasets/rajni88/indianpotatoweed-
dataset

20.1 MP and mobile cameras captured the images in an unregulated environ-
ment. During data collection, the weather was clear, with no clouds. Specifica-
tions of the dataset are provided in Table 3.

5 Work Flow

Sony Cyber-shot cameras and mobile devices were initially used to capture the
raw photos. There were 600 pictures altogether. The data were cleaned to elim-
inate duplicate photos, blurry images, and noise. After cleaning, 270 images in
total were collected. The data were divided 80:20 between train and val folders.
Using VIA Annotator, each image was manually annotated. The annotation tool
exported JSON and CSV files. We manually constructed a mask for each image
and used Python to mask each image. The files were all uploaded to https://
www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset.

6 Value of the Data

– The dataset presents images of potato crops and weeds in their early growth
stages, which can be used by agronomists and researchers in different fields
for computer vision and smart farming.

– The open-access dataset can be used for weed recognition and segmentation
algorithms.

https://www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset
https://www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset
https://www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset
https://www.kaggle.com/datasets/rajni88/indianpotatoweed-dataset
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Collecting images from the real
crop environment

Cleaning the data(Removing noise, blur
images, duplicate images etc.)

Splitting the data into train and val
folder(80:20)

Annotating each image into crop and weed
class

Exporting the JSON and CSV files

Mask each and every image using
Python code

Downloading each mask and masked
image into respective folders

Saving all images into PNG format

Uploading all the files on Kaggle.com

Masking

Annotation

Fig. 4. Work Flow Diagram of the Proposed Approach

– The dataset can train, test and validate convolutional neural networks(CNN)
models.

7 Conclusion

A potato crop and weeds dataset for addressing the weed issues in precision
agriculture is collected, masked and posted on Kaggle. The images of crops and
weeds are acquired using a Sony digital camera and mobile camera in Punjab,
India. During the collection of data, there were inter and intra-row weeds were
present in the field. The images are manually annotated using VIA (VGG Image
Annotator)Tool. There are a total of 270 images in the dataset divided into train
and val folders.

This dataset can be used for weed detection, segmentation, and classification
problem. We hope this will help increase the progress in the required data acqui-
sition domain and generate ground truth. It will help researchers and agriculture
experts to develop ground truth of weed management. In the future, this dataset
can be extended with more images from different regions in different seasons and
growth days.
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Abstract. This paper reports the use of a deep learning based approach
for analyzing leaf micro/macro nutrients from raw multi-spectral drone
images. A total of 11 parameters including Boron, Calcium, Copper,
Iron, Potassium, Magnesium, Manganese, Sodium, Phosphorus, Sulphur
and Zinc are analysed. ResNet-18 model variant has been used for this
purpose and the model’s precision is assessed using mean absolute error.
The study also displays the comparison based analysis of different CNN
architectures which includes variants of VGG16, ResNet-50, ResNet-18,
AlexNet, LeNet-5, ResNet-152, GoogleNet, and ResNet-101. According
to the findings of the study, which was carried out in the fields at the
Punjab Agricultural University (PAU), the ResNet-18 model primarily
provides better results as compared to other deep learning networks for
estimating various leaf parameters.

Keywords: Precision Agriculture · UAVs · ResNet-18

1 Introduction

Agriculture plays a vital role in the economy of every country, particularly in
developing nations like India. It is a key area for economic development and the
only industry where more than 50% of people work directly in the sector [3].
It does not only provides employment opportunities, but also satisfy mankind’s
fundamental need for food. By 2050, the world’s population is estimated to reach
9.1 billion which represents a significant increase from the current population.
As a result, the demand for food is also expected to increase at a rapid pace.
Therefore, it is necessary to meet the growing food demands of ever increasing
population which can only be achieved through sustainable agriculture [18].

Precision agriculture is a farming method used to achieve sustainable agri-
culture. It makes use of technology to enhance agricultural operations. Technol-
ogy can enhance agriculture in multiple ways, both before and after harvesting.
One of the ways is by using image processing to analyze soil and leaf nutrient
composition, which helps in determining the appropriate quantity and timing
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for applying farm inputs such as fertilizers, herbicides, water, etc. [1]. Preci-
sion agriculture requires gathering and analyzing ample amounts of crop health
data, which involve various factors such as water levels, temperature, and other
parameters. This involves gathering extensive information from diverse sources
and locations within the field, such as soil nutrient levels, crop nutrients, rele-
vant weather conditions, etc. Subsequently, all the collected data is analyzed to
generate accurate agronomic recommendations [17].

In recent times unmanned aerial vehicles (UAVs) or drones have proven useful
for monitoring and accessing vegetation status. This technology has been found
to be particularly effective in monitoring large and remote areas that are difficult
to access by foot or ground-based vehicles. With the help of advanced sensors and
cameras mounted on the drones, vegetation cover and health can be monitored
and analyzed with high precision and accuracy [5]. The availability of UAV-
compatible digital RGB, multi-spectral, thermal, and hyper-spectral sensors has
greatly improved the ability to conduct in-depth remote sensing investigations in
precision agriculture, particularly in the areas of crop yield estimation and field
nutrient variability assessment. These sensors, when mounted on UAVs, offer a
high degree of control over various parameters such as flight altitude, geograph-
ical coverage, acquisition operation, which results in high spatial resolution data
[15]. The aim of this study is to analyse the potential of deep neural networks
to estimate various crop parameters using multi-spectral drone images.

2 Related Work

Precision farming, which is commonly referred to as digital agriculture, have
emerged as new scientific fields that employ data-intensive strategies to increase
agricultural productivity [11]. The digital transformation of agriculture has
transformed many areas of management into artificially intelligent systems with
the purpose of extracting value from an ever-increasing volume of data originat-
ing from a variety of sources [4].

Many new and emerging trends in computer science including deep learning
(DL) and machine learning (ML) have already been applied in various fields of
food and agriculture industry by researchers to solve various complex problems.
Machine learning is a rapidly expanding field that focuses on how to create
computers that can improve automatically with experience. It combines elements
of computer science and statistics, and is a crucial component of data science
and artificial intelligence [7]. On the other hand, deep learning is a subset of
machine learning that uses neural networks with multiple layers to learn and
extract complex features from data. Deep learning is a new and advanced method
for image processing and data analysis, which has shown great promise and
potential. It has been effectively used in many different areas and has recently
been applied in the field of agriculture as well [8]. This advanced technology
is helping farmers to minimize losses and gain more by providing them with
useful information and insights about crops [14]. For instance, scientific decisions
regarding fertilization rely on the foundation of precise and adaptable monitoring
of the Nitrogen status of crops.
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Table 1. Literature Review

Ref
No

Dataset Location Pre-process Objective Algorithm GT measure Crop

[6] Each
experi-
mental
plot was
scanned
to collect
hyper-
spectral
data

Northeast
of
Xiaotang-
shan
Town,
Chang-
ping
District,
Beijing

Eliminating
noise using
Savitzky-
Golay (SG)
convolution
smoothing
method

To estimate
LNC (Leaf
Nitrogen
Content)

Partial least
squares
(PLS)
regression,
Random
forest (RF)
and
Successive
projections
algorithm
(SPA)

- Corn

[13] NDVI
maps
derived
from
Satellite
images

A
vineyard
in North
Italy

- Refinement
of
Vegetation
Index
driven by
Satellite
images

RarefyNet NDVI maps
derived
from UAV
based multi-
spectral
images

-

[12] UAV
based
hyper-
spectral
images

China Data
splicing,
radiation
correction
and
geometric
correction
of hyper-
spectral
orthoimages

Quantitaive
estimation
of leaf
nitrogen
content

Back
Propagation
neural
network
methods

Spectral
data mea-
surements
of wheat
canopy and
leaf sample
collection
for
statistical
measure-
ments of
LNC

Winter
wheat

[16] UAV
based
multi-
spectral
images
with five
bands of
the
spectrum

Olive
groves
located in
Portale-
gre

Radio-
metrically
corrected,
multi-
spectral
Image
Mosaicking
and a
greyscale
DSM
generation,
background
estimation,
homoge-
nizes of
DSM

To predict
leaf
parameters
i.e. Leaf
Phosphorus
Content,
Leaf
Nitrogen
Content
and Leaf
Potassium
Content

Partial least
squares
regression,
artificial
neural
network,
Gaussian
process
regression
and support
vector
regression

Chemical
analysis was
conducted
on leaf
samples
taken from
two
different
varieties of
olive trees

Two
vari-
eties of
Olive
trees

(continued)
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Table 1. (continued)

Ref
No

Dataset Location Pre-process Objective Algorithm GT measure Crop

[19] UAV
based
RGB
images,
multi-
spectral
images
and Raster
data con-
struction
for crop
surface
models

The west of
Shandong
Province in
China

Orthomosaic
maps were
generated
for RGB and
multi-
spectral
images

To estimate
maize
above-
ground
biomass

DCNN LAI, AGB, and
plant height
(PHGM)
measurements
were done

Maize

[10] UAV
based
multi-
spectral
images
with 5
reflectance
values

Melbourne,
Ontario,
Canada

Ortho-
mosaic
image,
Radiometri-
cally
corrected

To predict
canopy
nitrogen
weight

Support
vector
machine,
random
forests and
linear
regression
using R pro-
gramming
language

For plant tissue
analysis, dried
biomass weight
was sent to A
and L canada
laboratories and
subsequently,
LNC was
measured

Corn

[20] UAV
multi-
spectral
imagery
which
includes
five bands
i.e., red,
green,
blue,
red-edge,
and near-
infrared
(NIR)

Corn field in
southwestern
Ontario,
Canada

UAV images
were
orthomosaic
using Pix4D-
mapper

To predict
canopy
nitrogen
weight

Support
vector
regression
and random
forest

Plant height,
tissue nitrogen
content, dry
biomass, soil
texture class, soil
nitrate nitrogen,
water extracted
soil nitrate,
mineralizable
nitrogen, water
extracted total
nitrogen, and A
and L’s soil
health index
rating were
evaluated

Corn

[2] UAV
based
drone
images
with four
spectral
bands,
Landsat
images
having the
same UAV
fight date
were also
obtained

The study
area located
in the
Bhakkar
district

The SfM
(structure
from
motion)
software was
used for
orthomo-
saicking of
the drone
images

To analyse
the
Chickpea
crop for
spatio
temporal
analysis

Vegetation
indices were
used to
perform a
regression
analysis on
crop growth
variables

Measurement of
plant height,
number of plants
and pods, soil
pH, temperature
and crop yield
were recorded in
the end of
growing season.
A field survey
was also
conducted using
a soil-moisture
meter and GPS

Chick-
pea
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Research based on crop nutrients is an important area of study in the field
of agriculture and plant sciences. Leaf nutrients are a direct reflection of the
nutrient status of the plant as they are the primary site of nutrient uptake
and utilization. Measuring leaf nutrient levels can provide important informa-
tion about the plant’s nutritional status, which can be used to diagnose nutrient
deficiencies or excesses, and guide fertilizer application and management prac-
tices. Additionally, leaf nutrient analysis can be used to monitor the effectiveness
of nutrient management practices and assess the impact of environmental fac-
tors on plant nutrition. A summarized overview of prior research is shown in the
Table 1

In the current study, crop nutrients analysis using multi-spectral images is
carried out. The experiments are carried out in the crop intensive yet under
explored regions of northern regions of the country. The study is largely moti-
vated by the realization that the outcomes derived from one crop cannot be
applied to another due to variations in environmental conditions, soil quality,
and crop planting practices. Similarly, the results obtained from one region can-
not be reused. The spatial and temporal dependency of the problem, makes it
necessary to apply it region and crop wise. The main objective of the study
was to explore the potential of deep learning neural networks to predict leaf
micro/macro nutrients from multispectral images. The model is trained using
pairwise images and leaf analysis data from the lab. As it is already known that
leaf analysis for micro/macro nutrients is time taking and costly, hence estima-
tion of the same using multispectral images is very effective for precision agri-
culture. Automatic leaf analysis using multispectral images will help understand
plant nutrition status and can serve as an advisory for fertilizer application.
The rest of the paper is organised as follows: Sect. 3 describes the study area,
data acquisition and analysis carried out on ground truth data as well as multi-
spectral drone images, Sect. 4 includes the results of the research experiments
and Sect. 5 describes the conclusion of the research conducted.

3 Materials and Methods

3.1 Study Area

The experiment was carried out from June 2022 to November 2022 on a paddy
field in Punjab Agricultural University (PAU), Ludhiana, Punjab. PR 126 variety
of direct seeded rice was sown in the study plot on 9 June 2022. The total area
of the experimental plot was 1917 sq. m. Figure 1 shows the experimental field
of PAU.

The experimental field was further divided into 10 plots which includes first
field as control. Three distinct treatments were carried out in the nine remain-
ing fields, with fields 2, 5, and 8 receiving the same treatment, fields 3,6, and 9
receiving another treatment, and fields 4, 7, and 10 undergoing the third treat-
ment. The variation in treatments were carried out to estimate differences in
leaf parameters across the same treatment fields as well as different treatment
fields. The reason for applying the same treatment to fields 2, 5, and 8, as well
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Fig. 1. PAU experimental field

Fig. 2. PAU experimental field with field-wise measurements

as to other set of fields was to increase the amount of multispectral image data
available for that specific treatment. This strategy was intended to enhance the
accuracy of estimating various leaf nutrients. Figure 2 shows the field wise mea-
surements of experimental field in PAU.

3.2 Data Acquisition

Remote sensing using UAVs or drone is expanding globally in a number of agri-
cultural and environmental monitoring and modelling applications. Drones were
used to capture multi-spectral images of the PAU field, which consisted of 5
distinct bands including red, green, blue, NIR, and red-edge. The drone was
equipped with a Micasense RedEdge-MX multispectral camera whose specifica-
tions are given in Table 2. The multispectral camera utilized for data collection
has a resolution of 1280*960, whereas the resulting image after orthomosaic has
an approximate resolution of 4500*6500. According to the field dimensions, a
resolution of approximately 1.4cm/pixel is obtained. In the research analysis,
images captured on the following four days were used: [12-Aug-2022, 7-Sept-
2022, 20-Sept-2022, and 10-Oct-2022]. The primary objective of the study is to
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estimate leaf parameters using multispectral image data. To achieve this goal,
fertilizer treatments were applied at various stages of crop growth. These fertil-
izers were absorbed by the soil and subsequently reflected in the crops. Image
capturing and leaf sampling were scheduled to take place 2-3 d after each fertilizer
treatment. This approach was intended to allow sufficient fertilizer absorption
time in the leaves before capturing the multispectral images and collecting leaf
samples.

Table 2. Micasense RedEdge-MX multispectral Camera Properties

Pixel Size Resolution Aspect Ratio Sensor
Size

Focal
Length

Field of View

3.75 µm 1280× 960 4:3 4.8 mm x
3.6 mm

5.4 mm 47.2◦

Horizontal,
35.4◦ Vertical

Leaf samples were also collected from the fields and used as a ground truth
for the analysis of different crop parameters. Over the course of four days in
the growing season, 10 fields were used for sample collection resulting in 40
groups. Each group is sampled at 8-10 different sampling points. The samples
were collected on the same day as the drone acquired multi-spectral images.
Figure 3 shows the analysis report of the collected leaf samples. 11 different
parameters were analysed from these samples in the testing lab of soil science
in PAU. These parameters include Boron, Calcium, Copper, Iron, Potassium,
Magnesium, Manganese, Sodium, Phosphorus, Sulphur, and Zinc.

Fig. 3. Analysis report for collected leaf samples from PAU fields
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Data Preprocessing. For each day, a series of multi-spectral images were
orthomosaiced, resulting in an orthomosaiced image that is shown in Fig. 4.
These orthomosaic images were used to extract two distinct regions of interest
(ROIs) from each field. These are generated using Python code. The selection
area in each field is random so as to cover different sampling points both in
terms of ground truth (leaf sample) collection as well as multispectral data such
that the model can be generalized well. As the entire field is covered with the
same crop, any area can be treated as a sample region. Each ROI is then further
divided into 4 equal parts of 100*100 resolution.

Fig. 4. Orthomosaic multispectral images of different bands

3.3 Ground-Truth Data Analysis

In this research the ground truth values of several leaf parameters were compared
using a heatmap to examine their relationships. A heatmap is a graphical repre-
sentation of data that uses colors to display the relative values of each data point
in a matrix. Heatmapping enables to easily visualize the patterns and correla-
tions between different leaf parameters. The colors in the heatmap represent the
relative values of the parameters. The darker colours denote higher values while
lighter colours denote lower values. The heatmap in the Fig. 5 represents the mea-
sured correlation matrix, indicating a high correlation between Cu, Fe, K, Mg,
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P, and S. The research conducted various experiments to show how this heatmap
analysis can improve the understanding of the relationship between various leaf
metrics and their corresponding ground truth values. Initially, experiment was
conducted on all the leaf parameters, then another experiment was conducted
by selecting parameters having low correlation only.

Fig. 5. Heatmap for Leaf Parameters

3.4 Multispectral Drone Data Analysis Using Different CNN
Architectures

Convolutional Neural Networks (CNNs) are a form of deep neural networks
used most frequently in deep learning to analyse visual data. Modern models
for image classification, segmentation, object detection, and many other image
processing tasks include convolutional neural networks. To get started in the
realm of image processing or to increase prediction accuracy, many architectural
techniques have been utilised. Several CNN architectures have been developed
over the years, with each one designed to tackle specific challenges. The VGG16,
ResNet-50, ResNet-18, AlexNet, LeNet-5, GoogleNet, ResNet-152, and ResNet-
101 are among the most popular and widely-used CNN architectures, each with
its unique features and capabilities. AlexNet was the first CNN to use the ReLU
activation function, while LeNet-5 is designed for handwritten digit recognition
tasks. GoogleNet, on the other hand, uses a novel architecture that includes
multiple branches to handle different feature scales. VGG16 is known for its
simplicity and its ability to extract high-level features from images. ResNet-50
and ResNet-18 use residual blocks to address the problem of vanishing gradients
and improve training performance, while ResNet-152 and ResNet-101 are deeper
and more complex architectures that achieve state-of-the-art performance on a
wide range of computer vision tasks [9].
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4 Results

In this research, various CNN architectures have been employed with same hyper-
parameters (i.e. epochs=100, learning rate = 0.01) to analyze the prediction of
leaf parameters for the purpose of enhancing prediction accuracy. A total of 320
samples were generated from the data using the ROIs. A 70-30 split was used
for training and testing the same. Table 3 displays the normalized loss errors
observed during the assessment of crop parameters using various deep learn-
ing models i.e. VGG16, ResNet-50, ResNet-18, AlexNet, LeNet-5, GoogleNet,
ResNet-152, ResNet-101. Different from the general models, the ones used here
have 5 input channels instead of 3 and are trained as a regression model with
mean absolute error (MAE) loss instead of cross-entropy classification loss. Based
on the model’s output, either 11 or 6 neurons have been substituted for the last
layer. The initial column presents the parameters employed in the analysis. An
error rate greater than 1 suggests an unacceptably high error rate. It can be
inferred that ResNet-18 yields significantly lower loss than any other architec-
ture when compared to the mean target. This is mainly because ResNet-18 is the
shallowest network with skip connections. Other deeper ResNet variants require
more data to provide comparative results. Consequently, further research will be
conducted using ResNet-18. It can also be stated that an error rate of 0.1–0.12
i.e. 10–12 percent can be termed as acceptable for the current problem. The
obtained results show an average of 0.15–0.2 error rates. This model will gener-
alize better with a bigger sample size. It should be noted that the current study
was performed with four growth stages collected on four days only.

Table 3. Analysis metrics of Leaf Parameters using different CNN Architectures

Para-
meter

VGG
16

ResNet
50

ResNet
18

Alex
Net

Le
Net5

ResNet
152

Google
Net

ResNet
101

Avg
Target

B > 1 > 1 0.57 > 1 > 1 0.55 0.48 > 1 9.32

Ca 0.34 0.13 0.10 0.35 0.17 0.17 0.18 0.17 4478.63

Cu > 1 > 1 0.29 > 1 > 1 0.57 0.57 0.89 8.16

Fe 0.36 0.28 0.26 0.29 0.28 0.28 0.30 0.29 174.58

K 0.17 0.07 0.05 0.09 0.11 0.09 0.11 0.09 16241.42

Mg 0.25 0.17 0.13 0.19 0.22 0.19 0.20 0.19 1106.77

Mn > 1 0.24 0.19 0.48 0.98 0.24 0.25 0.33 33.29

Na 0.47 0.25 0.22 0.50 0.42 0.27 0.28 0.29 186.55

P 0.19 0.13 0.09 0.14 0.16 0.14 0.14 0.14 1590.95

S 0.31 0.14 0.13 0.26 0.18 0.17 0.17 0.14 1624.47

Zn 0.82 0.23 0.18 > 1 0.68 0.23 0.31 0.33 25.17
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4.1 Estimation of 11 Leaf Parameters Using ResNet-18

In this study, the initial experiment involved the analysis of all 11 parameters
using ResNet-18. The 11 parameters were Boron (B), Calcium (Ca), Copper
(Cu), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium
(Na), Phosphorus (P), Sulphur (S), and Zinc (Zn). The network’s input channels
were five due to the utilization of multi-spectral images having five distinct
bands namely Red, Green, Blue, Near-infrared (NIR), and RedEdge. The model
underwent 100 epochs of training and testing, with a learning rate of 0.01. The
total number of trainable ResNet-18 parameters were 11,010,699 with 5 input
channels and 11 estimation parameters. The FLOPs are approximately 1.82
billion and inference of 25 samples per second are obtained on NVIDIA GeForce
RTX 3050 4GB GPU. To assess the accuracy of the predictions, mean absolute
error was calculated. The results are depicted in Fig. 6, which displays box plots
of the training and testing datasets.

In machine learning, box plots are a crucial tool for data visualisation, espe-
cially when used for data analysis and statistics. They are useful for summa-
rizing and displaying the distribution of a data, including the median, quar-
tiles, minimum and maximum values, and outliers. In this research, box plots
were employed to visually compare the distribution of various leaf parameters.
The study analyzed the normalized loss error ranges of 0–1, encountered by the
ResNet-18 model after both training and testing phases. Figure 6 box plot for
training phase depicts that Calcium (Ca), Potassium (K), Phosphorus (P), and
Sulphur (S) displayed lower loss errors, which indicates better results in compar-
ison to other parameters. It was also observed that Phosphorus (P) and Sulphur
(S) exhibited a larger number of outliers. In Fig. 6 box plot for testing phase, it
can be seen that Boron (B), Copper (Cu), Iron (Fe), Magnesium (Mg), Sodium
(Na) and Sulphur (S) exhibit a lower loss error, while Sulphur (S) shows a higher
number of outliers. In addition to this, Fig. 7 shows the MAE loss obtained for
both the training and testing phases over 100 epochs while estimating 11 leaf
parameters. As the graph shows, both the training and testing losses decrease as
the number of epochs increases. This indicates that the model is improving and
becoming better at predicting the actual values of the leaf parameters. However,
after approximately 20 epochs, the rate of improvement slows down, indicating
that the model is approaching its optimal performance level.

Overall, the graph provides valuable insights into the performance of the
model in estimating leaf parameters, and the decreasing MAE loss is a positive
indication that the model is learning and improving.

4.2 Estimation of 6 Leaf Parameters Using ResNet-18

The model was trained and tested using six parameters: Boron (B), Calcium
(Ca), Copper (Cu), Manganese (Mn), Sodium (Na), and Zinc (Zn). These spe-
cific parameters were chosen based on a heatmap analysis of all the available
parameters, selecting only those with low correlation. Figure 8 illustrates the box
plot of loss error during both the testing and training phases. Figure 8 box plot
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Fig. 6. Loss error with 11 Parameters for both testing and training phase

Fig. 7. Loss obtained for 100 epochs while estimating 11 leaf parameters

Fig. 8. Loss error with 6 parameters for both testing and training phase

for training phase indicates that Calcium (Ca), Manganese (Mn) and Sodium
(Na) displayed lower loss errors in comparison to other parameters. It was also
observed that Calcium (Ca), Copper (Cu) and Manganese (Mn) exhibited a
larger number of outliers. In Fig. 8, the box plot for the testing phase, it can
be seen that Boron (B), Calcium (Ca) and Manganese (Mn) exhibit a lower
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Fig. 9. Loss obtained for 100 epochs while estimating 6 leaf parameters

loss error, while Boron (B) and Sodium (Na) shows a higher number of outliers.
Figure 9 shows the MAE obtained for both the training and testing phases over
100 epochs while estimating 6 leaf parameters. Here the graph illustrates a reduc-
tion in loss error in less than 10 epochs which indicates great improvement as
compared to the above experiment of estimation of 11 different leaf parameters.

5 Conclusion

Based on the research analysis conducted above, it was found that ResNet-18
performs better as compared to other models. The research benefited greatly
from the heatmap analysis. Using the data analysis mentioned earlier, experi-
ments were carried out and it was concluded that the model which was trained
and tested with only six leaf parameters (i.e. Boron (B), Calcium (Ca), Copper
(Cu), Manganese (Mn), Sodium (Na), Zinc (Zn)) showed less error than the
model trained and tested with all 11 parameters which are Boron (B), Calcium
(Ca), Copper (Cu), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese
(Mn), Sodium (Na), Phosphorus (P), Sulphur (S), and Zinc (Zn). The study
was conducted on a limited dataset collected between June 2022 and November
2022, which resulted in an average error of 15–20% in estimating leaf parameters.
Therefore, to address the limitations of this study, it is necessary to increase the
sample size. Currently, the research utilized raw multi-spectral images, but in
the future, vegetation indices calculated from these images could also be used
for analysis of leaf parameters.
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Abstract. Chickpea flour, being high in protein content, is used in sev-
eral culinary preparations to make protein rich foods. Dumas method is
typically used to measure the protein content of chickpea flour, but it
is time-consuming, expensive, and labor-intensive. The protein content
of chickpea flour was predicted using near-infrared (NIR) hyperspec-
tral imaging in this research. To produce chickpea flour, eight chickpea
varieties with varying levels of protein were ground into powder. NIR
reflectance hyperspectral imaging was carried out on chickpea flour pow-
der samples between 900 and 2500 nm spectral range. The protein con-
tent of twenty-four samples of chickpea flour (8 var × 3 replications) was
measured using the Dumas combustion method. The measured reference
protein content (dependent variables) and the spectral data (independent
variables) of the chickpea flour samples were correlated. Out of total 24
samples, the calibration model was built using 16 powder samples, while
the prediction model was built using 8 powder samples. With orthogonal
signal correction (OSC)+standard normal variate (SNV) preprocessing,
the optimal protein prediction model was obtained using PLSR, which
yielded correlation coefficient of prediction (R2p) and root mean square
error of prediction (RMSEP) values of 0.934 and 1.006, respectively.
Further, competitive adaptive reweighted sampling (CARS) selected 11
feature wavelengths from the studied spectrum and produced the best
PLSR model with R2p and RMSEP of 0.944 and 0.889, respectively. As
a result, the best prediction model for protein prediction in chickpea
flour was obtained by combining PLSR, OSC+SNV and CARS selected
wavelength.
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1 Introduction

Pulses are a staple food crop that originates from the leguminous family. The
total amount of pulses produced worldwide in 2020 was 89.82 million metric
tonnes [1]. Common beans, lentils, chickpeas, dry peas, cowpeas, mung beans,
urad beans, and pigeon peas are the principal pulses farmed around the world.
Protein content is one of the most important quality variables in pulses [2], and
the nutritious value of pulses has boosted demand for its inclusion in baked,
milled, and processed foods [3]. The protein content of such food products has
a significant effect on their technological efficiency [4]. Chickpea is a legume
with a high protein content. After beans and peas, chickpeas are the third most-
produced crop in the globe, with a total production of 11.67 million metric tonnes
[4]. Chickpea protein content varies from 17% to 24% (dry basis) depending on
cultivar, agronomic, and meteorological circumstances [2]. As a result, chickpeas
can be a cheap protein source for low-income consumers worldwide, particularly
in developing countries where a large population limits access to meat as a
protein source. Chickpea protein content is projected to be a component that
greatly influences its price in the future, since it will be a critical source for
creating protein-enriched goods. Wheat protein content is already employed as
a crucial criterion in various nations when determining its price [5].

Although chickpeas can be eaten whole, they often go through many funda-
mental processing procedures, such as dehulling and grinding to form chickpea
flour, which affect the quality, utility, and nutritional content of the proteins in
chickpeas [6]. Chickpea flour has a protein content of 17%-21%, a fat content
of 5%-7%, a carbohydrate content of 61%-62%, an ash content of 3%, and a
water content of 9%-12% [7]. Chickpea flour contains more protein and fiber
than wheat flour and is a rich source of polyunsaturated fats. Chickpea flour
has been incorporated into various food products, such as bread, pasta, and
cakes, along with other cereal flours in recent years, and has been reported to
improve the quality of cereal-based products. Chickpea flour is almost always
used as a starting point for producing protein-enriched products with appropri-
ate yield, purity, and functional characteristics [8–10]. As a result, chickpea flour
production reflects the commercial opportunities that have led to the industrial
production of chickpea protein concentrates and isolates from the primary pro-
cessing of chickpeas into flour. Hence, a rapid and accurate analytical method
for detecting the protein content of chickpea flour is required. Wet chemical
analysis, specifically the Kjeldahl and Dumas combustion method, is the most
used method for assessing chickpea protein content [11]. Conventional chemical
treatments, on the other hand, are typically inefficient, pricey, and harmful to
the environment.

NIR spectroscopy is combined with digital imaging to provide a three-
dimensional “hypercube” dataset with a single spectral dimension and two spa-
tial dimensions for each pixel in the image [12,13]. NIR hyperspectral imaging
has a penetration depth of roughly 4mm, making it suitable for determining
interior qualities of food goods [14]. It has been used successfully to determine
the chemical composition distribution in a wide range of foods, including fruits,
vegetables, meat, fish, and a number of cereal applications [15,16]. Multivariate
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regression calibration approaches that are effective and highly accurate are cru-
cial in detecting the internal quality of food products and forecasting its compo-
sition using HSI. Several chemometric approaches, such as partial least squares
regression, support vector machine regression, and artificial neural network, have
been developed to identify the composition of chemical components [17]. The
most used models for displaying linear and non-linear relationships, respec-
tively, are partial least squares regression (PLSR) and support vector machine
regression (SVMR). To reduce modeling complexity and improve model predic-
tion capabilities, feature wavelength selection procedures were used to eliminate
collinearity and duplication across HSI data [18]. Furthermore, an adequate and
representative detecting position for hyperspectral image acquisition is neces-
sary to minimize positional variability interference in determining the internal
content of the component [19].

Even though NIR calibrations work well for detecting protein content in bulk
grain samples and are routinely utilized in industry for research laboratories and
online measurements, little study on the use of HSI for chickpea protein analysis
in flour has been recorded. When paired with the contactless and quick nature
of NIR spectrometry, hyperspectral imaging has the potential to increase uni-
formity in the assessment of chickpea flour and other pulses flour. As a result,
the goals of this study were as follows: (1) to investigate the feasibility of using
hyperspectral imaging in the Near Infrared (NIR) spectral region (900-2500 nm)
to quantitatively predict protein content in chickpea flour; (2) to evaluate the
predictive performance of chemometric regression models (PLSR and SVMR)
utilizing entire spectra and significant wavelengths acquired using various spec-
tral pre-processing approaches.

2 Materials and Methods

2.1 Chickpea Samples

Eight chickpea varieties harvested in 2020 was supplied by University of
Saskatchewan, Saskatoon, Canada. The initial moisture content of all chickpea
cultivars was determined using a hot air oven at 105◦C for 24 h [11]. The chickpea
seeds adjusted to 12.5±0.5% wet basis moisture content was crushed into pow-
der with a Ninja 900W blender and sieved through a Tyler series 50 sieve (300
µm). Using the Dumas combustion method, the protein content of twenty-four
(8 var. × 3 replications) samples of chickpea flour was determined for reference.
Thereafter, the calibration model was created and validated with the spectral
and reference protein data. The imaging and protein content determination of
chickpea flour was completed within two days to minimize moisture content
fluctuations.

2.2 Hyperspectral Imaging System and Image Acquisition

A camera with spectrograph, a source of illumination (150W halogen lamp),
a translation stage equipped with a sample tray, and a computer running the
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Hyperspec III Software suite (Headwall Photonics NIR M series, Massachusetts,
USA) comprise the near infrared (NIR) hyperspectral imaging system (Fig. 1).

To obtain the images, 9.50 g of sample was placed in aluminum plates (0.7 cm
height and 2.5 cm diameter) and scanned in the 900-2500 nm wavelength range
using the reflectance mode. Two plates were scanned at the same time. The
thickness of the top layer of the powder top layer was restricted to 7mm. This
thickness meant that the sample holder bottom had no effect on the near infrared
reflectance signal of the hyperspectral system [20]. Line by line, the samples were
scanned at a speed of 18.01mm/s. The camera was placed 0.3m above the sam-
ples. The images were captured with the computer’s HyperSpec III program
(Headwall Photonics). The intensity of the halogen light source was set to 70%
during scanning, and the exposure period was set to 7.5 ms. The NIR camera
and light source were turned on one hour before image acquisition to ensure
thermal and temporal stability. To avoid sample heating, the halogen lamp was
only turned on during the scanning phase. The imaging system settings were
adjusted to ensure that the samples had the correct aspect ratio and to avoid
motor-induced scanning bed vibrations that could perturb the samples. Hyper-
spectral images were acquired as the scanning bed moved horizontally along the
track. The picture hypercubes have 367×368×169 pixels captured at 9.527 nm
intervals between 901.121 and 2501.676 nm. Before each imaging session, adjust-
ments were done using black and white references once the images were collected.
The camera shutter was closed throughout the dark current measurement, and
the white reference was a 99% Spectralon reflectance standard bar (Labsphere,
North Sutton, NH) placed below the camera. The images must be corrected
for spectral and spatial radiation disparities caused by spectral response, dark
current, and unequal light source intensity [21]. The data containing the pixel
values were normalized as reflectance using the inbuilt Hyperspec III software
(Headwall Photonics, Massachusetts, USA).

Fig. 1. Hyperspectral imaging system for collecting images of samples
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2.3 Quantitative Determination of Protein Content in Chickpea

The protein content of each chickpea flour variety was estimated using Dumas
combustion method. According to ISO/TS 16634-2, the protein values were mea-
sured on an as-is moisture basis (N× 6.25) (2009). The analysis was performed
on a Leco FP-628 (LECO, Stockport, UK) piece of equipment. The samples were
analyzed within two days to minimize moisture content change between HSI and
Dumas assessments. To test for any drift during the experiment, two samples
of chickpea flour with low (16.2%) and high (25.4%) protein contents were used
on a consistent basis. The final data were presented in the form of “as-is” total
protein content.

2.4 Spectral Data Extraction and Pre-processing

The hyperspectral images of powder samples were in HDR format, which was
converted to .mat (MATLAB) files for convenience of processing, and the trans-
formed .mat data were treated to a median filter to remove dead pixels. To
label and segment the individual powder samples, the threshold and bwlabel
functions were utilized [22]. The powder sample was selected as the region of
interest (ROI) after segmenting the corrected hyperspectral images, and a mask
was built to discern between the ROI and the background using the difference in
intensity. MATLAB 2020a (Mathworks, Natick, USA) code was used to extract
the mean spectrum from the pixels within the ROI for each sample [23]. This
study’s spectral library included twenty-four replicates of pure chickpea flour of
eight varieties. Non-useful information, electrical noise, background noise, radio
scattering, and baseline drift are common in spectral data. Traditional spec-
tral preprocessing methods, such as Savitzky-Golay (SG) derivatives (1st and
2nd), Standard Normal Variate (SNV), Orthogonal Signal Correction (OSC),
Multiplicative Scatter Correction (MSC), and their combinations, were applied
to spectral data in order to reduce the effects of these irrelevant elements on
modeling and improve model accuracy [24].

2.5 Feature Wavelength Selection

The hyperspectral pictures acquired contained 169 wavelengths, which is a sub-
stantial amount and exhibits multi-collinearity, resulting in a longer collecting
time. Hyperspectral data with high dimensionality is unsuitable for commercial
applications where camera acquisition and data processing speed must match
manufacturing pace. To improve calculation speed and prediction accuracy, a
subset of critical wavelengths from the entire spectral matrices was chosen to
compress hyperspectral data. These wavelengths must offer the majority of the
information needed to effectively analyze chickpea flour adulteration. The ROI’s
spectrum data spans the wavelength range 900-2500 nm, with significant overlap
due to the close link between adjacent bands. As a result, it is critical to select
the appropriate feature wavelengths while performing spectroscopic analysis in
order to construct a robust model with fewer wavelengths [25].
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Competitive Adaptive Reweighted Sampling (CARS). To choose effec-
tive wavelengths, the Competitive Adaptive Reweighted Sampling (CARS) tech-
nique was used. This technique, which was implemented in MATLAB 2020a
(MathWorks Inc., Natick, MA), chooses important wavelengths step by step
[26]. The absolute value of the regression coefficient from the PLS model is used
in CARS to select the N wavelength subgroups using the Monte Carlo approach
[27]. The modest weight of the wavelength is then removed using an Exponen-
tially Decreasing Function (EDF) and Adaptive Reweighted Sampling (ARS)
approach. This strategy is analogous to Darwin’s principle of “survival of the
fittest.” The feature wavelengths were tested in this study using tenfold cross
validation with the number of Monte Carlo sampling runs (N) set at fifty because
a higher number of sampling runs did not result in a substantial improvement
of the results. Following many loop runs, several subsets of wavelengths were
obtained. Finally, effective wavelengths are those with the lowest root mean
squared cross validation error (RMSECV) [28]. The chosen wavelengths were
used to build the prediction models.

Iteratively Retaining Informative Variables (IRIV). Iteratively Retain-
ing Informative Variables (IRIV) is a variable selection strategy based on the
Binary Matrix Shuffling Filter (BMSF) [29]. Model Population Analysis (MPA)
is used by the algorithm to classify all variables as highly informative, poorly
informative, uninformative, or interfering. Uninformative and interfering vari-
ables are eliminated through an iterative procedure. Finally, the feature vari-
ables are selected from among the variables that remain following backward
elimination [30]. In this investigation, ten-fold cross validation was used with a
maximum of ten principal components. Following that, prediction models were
built utilizing the wavelengths selected.

2.6 Model Training and Evaluation

PLSR is a linear predictive method for analyzing multivariate data. Many
researchers have used it to overcome the difficulty of producing quantitative
forecasts in the agricultural domain. The PLSR method combines PCA and
multiple regression. In this example, it seeks a collection of latent factors that
shed light on the covariance between the two variables. The appropriate number
of latent components is determined by the lowest value of the cross-validation
root mean square error [28]. In this study, PLSR was utilized to generate linear
regression models based on complete spectra and feature wavelengths.

PLSR assumes a linear spectrum-property relationship which is not always
true [31], a non-linear model such as Support Vector Machine Regression was
used as a comparison. The models were built using ten-section split venetian
blind cross-validation. This method of cross-validation divides the dataset into
many folds, each with a preset sample count. After determining the number
of folds, the classic n-fold cross-validation procedure is used, in which several
models are trained with n-1 folds and then tested with the remaining fold.
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This technique is repeated until all folds have been used in training except one.
The average performances of these models are computed to obtain the venetian
cross-validation result. Further, the models’ robustness and capacity to predict
protein content in samples not contained in the training set were assessed using
an independent test set [32].

The Kennard-Stone method was used to randomly partition the original
dataset in a 66:34 ratio to create 16 samples for the calibration set and 8 samples
for the test set. The Kennard Stone technique [33] is a rigorous sample selection
procedure that assures that the samples picked accurately represent the calibra-
tion and test datasets. All models used the same calibration set of 16 chickpea
flour and prediction set of 8 chickpea flour to avoid bias. The performance of the
models was evaluated in this study using the Correlation Coefficient of Calibra-
tion (R2

c), Cross-Validation (R2
cv), and Prediction (R2

p), as well as the Root Mean
Square Error of Calibration (RMSEC), Cross-Validation (RMSECV), and Pre-
diction (RMSEP). To assess the model’s reliability, the R2c, R2cv, and R2p were
used as guidelines. RMSEC, RMSECV, and RMSEP parameters could reflect the
average difference between the predicted and actual values in the relevant set.
A good model should have greater R2c and R2p values and lower RMSEC and
RMSEP values in general. These parameters were determined using the following
formulas:

R2
c , R

2
cv, R

2
p = 1−

∑n
i=1(yi − Yi)2∑n
i=1(yi − Ym)2

(1)

RMSEC, RMSECV, RMSEP =

√
√
√
√ 1

n

n∑

i=1

(yi − Yi)2 (2)

where yi is the measured protein content of the i-th flour in the calibration
set and Yi is the predicted protein content of the i-th flour in the prediction
set, ym is the mean of all chickpea flour protein content measurements in the
calibration or prediction set, and n is the number of flours in the calibration or
prediction set. Furthermore, the model’s robustness was assessed using Residual
Predictive Deviation (RPD), which is the ratio of the Standard Deviation (SD)
of the population’s reference value to the standard error of prediction in the
cross-validated data set. RPD standardizes the prediction accuracy of the model
[34], and RPD values of 2.4-3.0, as stated by [35], indicate a bad model; values
greater than 3 indicate a robust model.

RPD =
SD

RMSEP
(3)

Data extraction was carried out utilizing an in-house MATLAB script. (ver-
sion 2020a, The Mathworks Inc., Natick, MA, USA). The models were created
using the PLS Toolbox (Eigenvector Research, Inc., WA 98,801, USA).
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3 Results and Discussion

3.1 Spectral Data Analysis

Figure 2 depicts the original spectral curves of chickpea flour. The spectral curves
showed similar tendencies, but their reflectance values differed.

Fig. 2. Average reflectance spectra of chickpea flour with varied protein content

At 1101 nm, the wavelengths corresponded to the second overtone of C-H
stretch in carbohydrates. The peak at 1301 corresponds to the N-H stretch’s
initial overtone. The 1654 nm peak further suggested the C=C aromatic stretch
in proteins. The peak at 1854 nm, is the result of a C=O second overtone and
a -CONH peptide bond, serving as an indicator for proteins. It is widely known
that the C-H in-plane band emerged largely at 1000-1100 nm and 2000-2500 nm
(carbohydrates), but the N-H combination band was mostly absorbed around
1500-2000 nm (proteins). The implicit relationship between protein content and
spectra was mined and expressed using data analytic methods [11].

3.2 Model Development with Full Spectrum

With pre-processed spectrum data from hyperspectral images of chickpea flour
and their corresponding reference protein content, the PLSR and SVMR models
covering the complete spectral range were built. The calibration, cross-validation,
and prediction findings for protein prediction in chickpea were summarized in
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Table 1. R2c, R2cv, and R2p values, as well as RMSEC, RMSECV, and RMSEP
values, were used to express model performance. The OSC+SNV was the best
pre-processing technique for protein content prediction in chickpea flour using
PLSR with four latent variables and an R2p value of 0.934 and an RMSEP value
of 1.006. Furthermore, the model built using the OSC+SNV had a high RPD
score of 3.718, suggesting the model’s robustness. The accurate prediction can
be due to the use of spectral pre-processing techniques, including OSC and SNV.
OSC tends to remove the anomalies generated from the spectral data whereas
SNV seeks to normalize the data. The SVMR also performed well in predicting
protein content in chickpea flour with R2p value of 0.886 and an RMSEP value
of 1.285.

Table 1. Prediction results of protein content in chickpea flour using full spectrum
(900-2500 nm) and PLSR and SVMR with different pre-processing techniques.

Model Pre-processing LVs R2
c RMSEC R2

cv RMSECV R2
P RMSEP RPD

PLSR Nil 4 0.899 1.152 0.860 1.345 0.888 1.123 3.112
SNV 3 0.912 0.876 0.889 1.056 0.928 1.099 3.568
OSC 3 0.865 1.129 0.853 1.377 0.882 1.238 2.981
OSC + SNV 4 0.921 0.913 0.882 1.222 0.934 1.006 3.718

SVs
SVMR Nil 56 0.742 1.731 0.599 2.054 0.573 2.124 1.463

SNV 45 0.861 1.292 0.723 1.547 0.786 1.619 2.821
OSC 48 0.842 1.238 0.598 2.217 0.725 1.871 1.889
OSC + SNV 54 0.925 1.132 0.813 1.123 0.886 1.175 2.911

PLSR - partial least square regression; SVMR- support vector machine regression; SNV
- standard normal variate; OSC - orthogonal signal correction; R2c - correlation coeffi-
cient of calibration; R2cv - correlation coefficient of cross validation; R2p - correlation
coefficient of prediction; RMSEC - root mean square error of calibration; RMSECV -
root mean square error of cross validation; RMSEP - root mean square error of predic-
tion; RPD - residual predictive deviation; LV- latent variables.

3.3 Model Development Using Feature Wavelengths from CARS
and IRIV

Feature Wavelengths Selection Using CARS. CARS estimated a total of
11 wavelengths from 169 full-spectrum wavelengths (Table 2). The PLSR model
outperformed the SVMR model in terms of prediction ability when the wave-
length selected by CARS was used in model development. The calibration, cross-
validation, and prediction results for protein prediction in chickpea flour are
shown in Table 3. For the optimum PLSR model with OSC+SNV pre-processing,
the R2p and RMSEP of the prediction set for protein content were 0.944 and
0.889, respectively.
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Table 2. CARS and IRIV selected wavelengths from full spectrum (900 -2500 nm)

Method Number of wavelengths Wavelength (nm)

CARS 11 1434, 1444, 1453, 1463, 1472, 1482, 1682,
1691, 1710, 1720, 1996

IRIV 05 1406, 1853, 1863, 2244, 2263.

Table 3. Prediction results of protein content in chickpea flour using CARS selected
wavelengths and PLSR and SVMR with different pre-processing techniques; LV- latent
variables; SV-support vectors.

Model Pre-processing LVs R2
c RMSEC R2

cv RMSECV R2
P RMSEP RPD

PLSR Nil 3 0.888 1.155 0.860 1.295 0.908 1.136 3.292
SNV 3 0.903 1.073 0.880 1.194 0.913 1.116 3.351
OSC 3 0.886 1.172 0.856 1.323 0.900 1.191 3.140
OSC + SNV 3 0.925 0.943 0.903 1.073 0.944 0.889 4.207

SVs
SVMR Nil 32 0.699 2.033 0.574 2.325 0.689 2.304 1.623

SNV 35 0.945 0.815 0.893 1.126 0.946 0.898 4.165
OSC 37 0.700 2.035 0.630 2.216 0.711 2.249 1.663
OSC + SNV 38 0.950 0.803 0.863 1.279 0.925 1.048 3.569

Model Using IRIV Feature Wavelengths. IRIV calculated 05 wavelengths
from the full spectrum containing 169 wavelengths (Table 2). When wavelengths
were chosen using IRIV, PLSR model fared marginally better than the SVMR
model.

Table 4. Prediction results of protein content in chickpea flour using IRIV selected
wavelengths and PLSR and SVMR with different pre-processing techniques; LV- latent
variables; SV-support vectors.

Model Pre-processing LVs R2
c RMSEC R2

cv RMSECV R2
P RMSEP RPD

PLSR Nil 2 0.919 0.985 0.907 1.056 0.910 1.156 3.235
SNV 3 0.922 0.960 0.912 1.024 0.917 1.083 3.453
OSC 3 0.915 1.016 0.903 1.084 0.899 1.234 3.031
OSC + SNV 3 0.910 1.031 0.898 1.103 0.924 1.036 3.610

SVs
SVMR Nil 30 0.546 2.587 0.373 2.852 0.620 2.745 1.362

SNV 28 0.929 0.925 0.904 1.084 0.923 1.072 3.489
OSC 27 0.579 2.595 0.509 2.727 0.616 2.796 1.338
OSC + SNV 31 0.922 0.976 0.867 1.263 0.923 1.075 3.479
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The calibration, cross-validation, and prediction results for protein prediction
in chickpea flour are shown in Table 4. In the best PLSR model with OSC+SNV
pre-processing, the R2p and RMSEP values for the prediction set for protein
content were 0.924 and 1.036, respectively. The RPD of the model developed
using CARS selected wavelengths was found to be greater than the RPD of the
model developed using IRIV selected wavelengths. The reason for better predic-
tion could be attributed to a greater number of selected wavelengths by CARS
than IRIV. When utilizing IRIV, some critical wavelengths carrying useful infor-
mation may be lost unintentionally during the iteration process, which would
otherwise be retained during CARS method execution.

Reflectance values are a mixture of multiple molecular vibrations, it is dif-
ficult to relate a molecule’s vibration to a specific wavelength in NIR spectra
[36]. The findings show that these characteristic wavelengths play a major role
in predicting protein content in chickpea flour.

4 Conclusion

The goal of this work was to estimate protein content in chickpea flour using
near infrared hyperspectral imaging in the spectral region of 900-2500 nm and to
compare the performance of the chemometric regression models. Partial Least
Square Regression yielded the optimal model with R2p and RMSEP values of
0.934 and 1.006, respectively with OSC+SNV spectral preprocessing. To enable
rapid quantification and the system’s suitability for commercial use, feature
wavelengths were chosen without sacrificing significant spectrum information,
demonstrating the current study’s novelty. CARS and IRIV were used to select
feature wavelengths from the full spectrum. CARS selected wavelengths yielded
the optimal model using PLSR with R2p and RMSEP values of 0.944 and 0.889,
respectively. Overall, the HSI system can be used for fundamental research goals
such as wavelength selection or laboratory scale estimation of quality character-
istics, and then a multispectral imaging system equipped with dedicated filters
can be built for rapid online prediction. However, the impact of physical and bio-
logical product variability in the pulses industry may impede the automation of
current technology. Thus, future research will concentrate on the development of
multiple databases that take into consideration origin, cultivar, harvest season,
and other similar critical characteristics to ensure that the calibration dataset
contains appropriate variance. To commercialize the technology, manufacture of
multispectral imaging systems with specific filters and implementation of the
calibration model may be performed.
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Abstract. Crop classification from hyperspectral remote sensing images
is an effective means to understand the agricultural scenario of the coun-
try. Band selection (BS) is a necessary step to reduce the dimensions of
the hyperspectral image. We propose a band selection method that takes
into account the image quality in terms of a non-reference quality index
along with correlation analysis. The optimum bands selected using the
proposed method are then fed to the three supervised machine learning
classifiers, namely, support vector machine, K-nearest neighbours and
random forest. We have also investigated the impact of correlation anal-
ysis by showing the comparison of the proposed band selection method
with another variant of our method where correlation analysis is not
included. The result shows that the crop classification shows better per-
formance in terms of overall accuracy and kappa coefficient when image
quality and correlation analysis are both considered while selecting opti-
mum bands. All the experiments have been performed on the three hyper-
spectral datasets, Indian Pines, Salinas and AVIRIS-NG, which contain
major crop classes. The results show that the optimum bands selected
using the proposed method provide the highest overall accuracy, equal to
89.63% (Indian Pines), 95.88% (Salinas) and 97.44% (AVIRIS-NG). The
overall accuracy shows a rise from +2% to +4% to that of bands with-
out considering correlation analysis. The advantage of this band selection
method is that it does not require any prior knowledge about the crop
to select the bands.

Keywords: Hyperspectral image · crop classification · band selection ·
Image quality · correlation

1 Introduction

Crop classification is an inevitable step in planning and managing agriculture
worldwide. Definitive crop maps derived from remote sensing image help policy-
makers to understand many essential things, such as crop yield, growth patterns
and crop disease [1] for a larger landscape. So it can be said that remote sensing
plays a key role in providing images of the Earth’s surface using optical or active
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sensors [2–5]. One of the optical remote sensing technology known as hyperspec-
tral imaging has gained its importance in exploiting the different agriculture
parameters such as biochemical properties, leaf area index, the moisture level of
the crops and biotic stress [6]. Many studies reveal that hyperspectral images
can classify crops more accurately than multispectral images [20–23].

Hyperspectral imaging includes more than ten bands per pixel with narrow
bandwidth typically ranging from 1 to 15 nm. The most common method of
collecting (and representing) hyperspectral imagery is the data cube, with the
spatial information being collected in the X-Y plane and the spectral information
being displayed in the Z-direction. One way to visualise hyperspectral data is
as points on an n-dimensional scatterplot. The information for a certain pixel
correlates to its spectral reflectance. Figure 1 represents the reflectance spectra
of different crops captured using the Airborne hyperspectral sensor AVIRIS-NG
of the Anand district of Gujarat.

Classification of crops from the hyperspectral image is a complex task, as
it has numerous bands at different wavelengths, and it is not necessary that
every band provides unique information. They may share redundant informa-
tion, so identifying informative and discriminant bands is a big challenge [7].
Moreover, supervised machine learning classifiers require rich training data for
accurate crop classification. Hence, hyperspectral data also deals with Hugh’s
phenomenon. Hugh’s phenomenon occurs when the performance of the machine-
learning model decreases for limited training samples. There are two majorly
adopted solutions, band selection and feature extraction [8]. The latter app-
roach tends to change the original physics of the hyperspectral data, for exam-
ple, Principal Component Analysis (PCA). Principal component analysis (PCA)
uses eigenvalues to assess the importance of the principle components (PCs) it
generates, and data reduction (DR) is performed by choosing PCs with higher
eigenvalues. Thus, it loses the original significance of each band. Band selection
preserves the significant characteristics of bands by selecting the most informa-
tive and non-redundant bands. It can be done using various approaches, such as
information-theoretical methods [7,9,10], artificial intelligence models [11] and
image quality [12]. Crop classification using the new generation hyperspectral
sensors has been presented in [13]. The authors have compared the capability
of two new-generation hyperspectral data by classifying seven crops. They also
have determined optimum bands to classify the crops using peak and through
detection [14]

Despite choosing any one of the approaches, identifying bands with maxi-
mum information with minimal redundancy can be considered an open-ended
problem. This paper aims to investigate the impact of image quality along with
correlation analysis to select optimum bands for crop classification. We have
used a Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) as a
spatial quality evaluator that uses a natural scene statistics model [15] of locally
normalised luminance coefficients to quantify ‘naturalness’ using the model’s
parameters. In order to ensure that only non-redundant bands get selected, we
also calculate Pearson’s correlation coefficient(corr) between each adjacent band.
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The selected bands are then evaluated on three hyperspectral datasets using dif-
ferent machine learning classifiers Support Vector Machine (SVM), K-Nearest
Neighbours (KNN) and Random Forest (RF).

The rest of the paper is organized as follows. Section 2 presents datasets and
the proposed Band Selection Method based on Image Quality and Correlation
analysis (BSIQCorr). Section 3 presents a discussion of the experimental simu-
lation results. Finally, we conclude our work in Sect. 4.

2 Datasets and Methodology

2.1 Indian Pines Dataset

The AVIRIS (Airborne Visible Infrared Imaging Spectrometer) sensor recorded
this data in 1986 in Northwest Indiana, USA [17]. It offers a spatial resolution of
20m and 224 spectral bands with a spectral resolution of 10 nm, encompassing
a spectral range of 400 nm-2500 nm nm. There are sixteen classes which have
been shown in the Table 1. Figure 2 shows the Indian pine dataset image in false
colour composite along with its ground-truth data.

2.2 Salinas Dataset

This is another hyperspectral benchmark dataset which was captured by the 224-
band AVIRIS sensor above the Salinas Valley in California [18]. It is distinguished
by its great spatial resolution of 3.7m. After removing noisy bands, we used a
total of 200 bands in the experiments. The sixteen classes include vegetables,
barren ground, and vineyard lands Table 1 and Fig. 3.

Fig. 1. Reflectance spectral curves of various agricultural classes captured from 380 nm
to 2510 nm with 5 nm bandwidth
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Fig. 2. Indian Pines dataset

Fig. 3. Salinas dataset
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2.3 AVIRIS-NG Hyperspectral Dataset

The dataset has been captured using an AVIRIS-NG sensor over the Anand Dis-
trict of Gujarat, India [19]. The area has a heterogeneous agricultural landscape.
The Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-
NG) campaign is a collaborative project between the Space Application Centre,
ISRO and the JPL laboratory of NASA. This airborne sensor provides 425 bands
per pixel in the wavelength region of around 380 nm to 2510 nm nm. The spectral
and spatial resolution of the sensor is 5 nm and 4m, respectively. However, we
have used 392 bands in our experiments and discarded all noisy bands. A total
of eleven agricultural classes have been considered in our experiments.

Table 1. Ground-truth classes (number of training samples) for all three hyperspectral
datasets
Class Number Indian Pines Salinas AVIRIS-NG

1 Alfalfa (48) Brocoli_green_weeds_1 (2009) Castor (51)
2 Corn_notill (1428) Brocoli_green_weeds_2 (3726) Linseed (66)
3 Corn_mintill (830) Fallow (1976) Tobacco_vegetative (219)
4 Corn (237) Fallow_rough_plow (1394) Tobacco_peak vegetative (107)
5 Grass-pasture (483) Fallow_smooth (2678) Wheat (46)
6 Grass-trees (730) Stubble (3959) Wheat_softdough (49)
7 Grass-pasture-mowed (28) Celery (3579) Shade (127)
8 Hay (478) Grapes_untrained (11271) Shrub (103)
9 Oats (20) Soil_vinyard_develop (6203) Dry Fellow (295)
10 Soyabean_notill (972) Corn_senesced_green_weeds (3278) Fellow (530)
11 Soyabean_mintill (2455) Lettuce_romaine_4wk (1068) Wet Fellow (933)
12 Soyabean_clean (593) Lettuce_romaine_5wk (1927) -
13 Wheat(205) Lettuce_romaine_6wk (916) -
14 Woods (1265) Lettuce_romaine_7wk (1070) -
15 Buildings-Grass-Trees-Drives (386) Vinyard_untrained (7268) -
16 Stone-Steel-Towers (93) Vinyard_vertical_trellis (1807) -

2.4 Proposed Band Selection Method

Blind/referenceless Image Spatial Quality Evaluator (BRISQUE):
BRISQUE is an image quality assessment model that uses band pixels to derive
features rather than transform them to other spaces, such as discrete cosine
transform. The model depends on spatial Natural Scene Statistics (NSS), which
contains locally normalised brightness coefficients and their products. The locally
normalized luminescence can be calculated using Eq. (1):

Î(i, j) =
I(i, j) − μ(i, j)

σ(i, j) + C
(1)

μ(i, j) =
k∑

k=−K

L∑

l=−L

wk,1Ik,l(i, j) (2)
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σ(i, j) =

√√√√
k∑

k=−K

L∑

i=−L

wk,l (Ik,l(i, j) − μ(i, j)), (3)

where, ω = {ωk,l | k = −k . . . , k, l = −L, . . . L} is a gaussian kernel of size(K.L),
μ(i, j) and σ(i, j) are local mean and deviation respectively. The model uses a
generalized Gaussian distribution (GGD) that captures a broader spectrum of
distorted image statistics [15]. The model proposes pairwise products of neigh-
bouring MSCN coefficients that can be derived from the Eq. (4).

H(i, j) = Î(i, j) Î(i, j + 1)
V (i, j) = Î(i, j) Î(i + 1, j)
D1(i, j) = Î(i, j) Î(i + 1, j + 1)
D2(i, j) = Î(i, j) Î(i + 1, j − 1),

(4)

where H(i, j), V (i, j), D1(i, j) and D2(i, j) are horizontal, vertical, main-
diagonal and vertical diagonal orientations as shown in Fig. 4, respectively. As
presented in [15], the empirical histograms of products of coefficients do not fit
well with the generalized Gaussian distribution. Hence an Asymmetric General-
ized Gaussian Distribution (AGGD) model is used. Thus, a total of 18 features
for each side has been calculated, as shown in Table 2.

i, j i, j+1

i-1, j+1 i+1, j1 i+1, j+1

Centre Pixel Horizontal
Pixel

Vertical  Pixel On-diagonal
pixel

Off-diagonal
pixel

Fig. 4. Quantifying nearby statisti-
cal correlations required computing a
number of matched products [15]

Table 2. Eighteen features at each side to
be fed to a regression model to calculate
the Brisque score [15]

Feature ID Feature Description

f1 − f2 Shape and variance

f3 − f6 Shape, mean, left variance, right variance

f7 − f10 Shape, mean, left variance, right variance

f11 − f14 Shape, mean, left variance, right variance

f15 − f18 Shape, mean, left variance, right variance

Band Selection Using Image Quality and Correlation Analysis (BSIQ-
Corr). First of all, we calculate the score of each band using a non-referenced
image quality index BRISQUE. The score can be calculated using the method
presented in [15]. It is worth noting that a lower score represents better image
quality compared to the band having a higher score. Next, the bands have been
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sorted by their BRISQUE score in ascending manner. To ensure that the selected
bands are discriminant and non-redundant, we calculate Perason’s Correlation
Coefficient (r) between each adjacent band pair. We chose to keep the threshold
value of r equal to 0.85. Meaning that all band pairs that have the r greater than
or equal to the threshold have been considered redundant or correlated bands.
It is not necessary to keep both bands in the classification process. Hence, a
band with a good BRISQUE score has been chosen as the optimum band. The
Algorithm 15 shows the proposed band selection method.

Algorithm 1. BSIQCorr
Input: H is hypercube containing L number of bands with N × M
dimension, where N and M represent number of rows and columns
H = {b1, b2, ..., bL}N×M

Output: Selected Bandset: Φ

1: for i in L do
2: Calculate Brisque score (Br)
3: end for
4: Create an array containing BRISQUE scores of all L bands
5: Sort the array in ascending order based on their BRISQUE scores
6: Calculate Pearson’s correlation coefficient(Corr) between each adjacent

band, where each band is flattened to L dimension array. Corr(i, j) between
band i(N ×M,L) and band j(N ×M,L) can be calculated as:

Corr(i, j) =
∑L

l=1(bil − b̄il)(bjl − b̄jl)√∑L
l=1(bil − b̄il)2

√∑L
l=1(bjl − b̄jl)2

(5)

Where bil and bjl represents the spectral value of band i and band j at
wavelength l respectively.

7: if corr(i,j) ≥ 0.85 then � Corr threshold = 0.85
8: if Bri > Brj then � Bri and Brj represent Brisque scores of band i and

j respectively
9: Φ ← j

10: else if Brj > Bri then
11: Φ ← i
12: end if
13: else
14: Φ ← (i, j)
15: end if
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3 Results and Discussion

We apply the proposed algorithm on three hyperspectral datasets using the
three supervised classifiers, SVM, KNN and RF. We have shown the results with
another variant of the proposed method, named BSIQ (Band selection using only
Image Quality), where step 6 and step 7 were skipped and thus did not include
correlation analysis in the band selection process.

Fig. 5. BRISQUE score of each band for the hyperspectral datasets

As the first step of the proposed method is to calculate the BRISQUE score
of each band. For example, Fig. 5a represents the score for the Indian Pines
dataset. Here, X-axis shows the band number ranging from 400 nm to 2500 nm
nm while the y-axis represents the obtained BRISQUE score. The plot has been
shown for all 220 bands and hence also includes noisy bands. It can be seen
that band numbers 104 to 108, 150 to 163 and 219 have higher BRISQUE scores
compared to other bands. Similarly, Fig. 5b and 5c depicts BRISQUE scores of
the full band salinas and AVIRIS-NG dataset, respectively. The next step is to
calculate Corr between each adjacent band. We have selected twenty optimum
bands which are informative(i.e. good image quality) and non-redundant (least
correlated).

Optimum bands selected using the proposed method (BSIQCorr) have been
shown in the Fig. 6a. It is worth noting that the selected bands cover visible to
near-infrared regions of the spectrum. The next step is to feed the selected bands
in the machine learning classifiers. For SVM classifier, the Radial Basis Function
(RBF) kernel was used as it is well known that they are particularly efficient
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for pixel-based categorization of remotely sensed data [16]. The choice of model
parameters has a significant impact on an SVM model’s accuracy. The cross-
validation process was used to identify the best value of C and gamma for each
data set. For KNN, the number of nearest neighbours was kept equal to 3, and
in the RF classifier, the number of trees and the maximum number of features
in each node was selected equal to 100 and the square root of the total number
of input features, respectively. Each experiment has been evaluated using 5-fold
cross-validation. A straightforward comparison using the Overall Accuracy (OA)
and Kappa coefficient on twenty selected bands has been shown in Figure 7.

Fig. 6. Optimum twenty bands selected using proposed algorithm

The following observations can be drawn from the classification results shown
in Fig. 7.

– Indian Pine dataset: Highest performance is obtained by the BSIQCorr using
SVM classifier with OA and Kappa coefficient equal to 89.63% and 0.87,
respectively. Overall the BSIQCorr is outperforming the BSIQ in both eval-
uation parameters.

– Salinas dataset: Similar trend can be seen where the BSIQCorr is providing
at least +1.5% than that of BSIQ. The highest accuracy and kappa were
observed using SVM classification.

– AVIRIS-NG dataset: Optimum twenty bands able to classify the eleven classes
with the highest accuracy equals 97.22% and kappa coefficient 0.95 using SVM
classifier.
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Fig. 7. Classification result using twenty optimum bands selected using the proposed
algorithm (BSIQCorr) showing comparison with the method that only considers Image
quality (BSIQ)
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4 Conclusion

In this study, we looked into how image quality affected the choice of informative
bands while taking correlation analysis into account. The outcomes of three
hyperspectral datasets with significant agricultural classifications are displayed.
We have also shown the comparison with the other variant of the proposed
method where correlation analysis is not being considered. All of the results
indicate that the suggested band selection strategy delivers the best outcome in
accordance with the experimental design. For instance, using BSIQCorr instead
of BSIQ results in an improvement of +1.75 % in the OA of the Indian Pines
dataset. Similar to this, the highest OA for the Salinas and AVIRIS-NG datasets
is 95.88% and 97.44%, respectively.
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Abstract. A country like India mainly depends on the sector of agricul-
ture. Most people’s economies are intensely engaged in the field of agri-
culture. So, developing the agriculture sector will be an excellent benefit
for any country. Nowadays, People can immediately find any solution
regarding agriculture through technology’s modernization. We can get
any news from online articles anytime without any movement. Agricul-
ture news should also be available in online news articles so that people
who are intensely engaged with the agriculture field and economy can
quickly get their valuable news. People must go through many online
news sites to gather all the agriculture-related news. We have proposed
an NLP-based solution so people can get all agriculture-related news in
one place combining multiple features. In this process, we have collected
many articles from multiple online newspapers and classified the agri-
culture news articles. For the classification process, we have applied sev-
eral classification models. We have also added a machine learning-based
model to check the duplication between news articles. Although, there
will be multiple categories of agriculture news so that people can directly
follow the news as they want. People will also be recommended articles
based on content and times. So, Getting information about agriculture
will be more straightforward for the farmer, and they can know about
new technologies to apply in their work. Finally, in this proposed work,
people can get all the essential agriculture news from various sources in
one central point, including many exciting features.

Keywords: NLP · news articles · BERT · classification ·
Recommendation

1 Introduction

Agriculture news is vital to any country’s development or economic system. It
is essential for those whose primary income source is agriculture. Not only those
people but also many people all over the country follow the updated agriculture
news. Even the government is also started many agriculture-based projects to
keep developing in this sector. People whose workspace is entirely in agricul-
ture need to know all the recent updates about crops, the environment, market
prices, new technologies, government schemes, subsidy news, etc. To get all this,
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they must go through many online news sites daily, which takes a long time to
find the news they want. Not only countries’ news but also the situation and
technology of international cultures need to know. However, we all know that a
significantly less amount of agriculture news is available in the newspaper. Some
online newspapers miss important agriculture news because they mainly empha-
size the other news to make people more interested. There are many newspapers
based on agriculture news. Those papers have many sections of agriculture news.
But all the processes have been done manually, not an automated process. Nowa-
days, machine learning methods create a massive difference in the updation of
the world. In this modern era, our proposed idea will help to get all agriculture
news in one place.

People must face some challenges when they want to gather all agriculture
news in one place. Not all newspaper shows all information together. As a result,
people need to visit several newspapers to get all the agriculture-related news
together. In other newspapers, working processes are not automated for agricul-
ture news, so many human resources are needed to fulfill the process. In many
online newspapers, we can see old news kept for many days. As a result, the
same articles are repeated multiple times. Facing duplicate articles several times
is another challenging issue for people.

In this work, we are trying to give a solution to all these problems. We aim to
provide a platform for all agriculture news, including many features. Thus peo-
ple can be helpful by this they can get whatever news related to agriculture in
one place. In our approach, there will be different sectors to go to that category
directly, and people can search as they want. As a result, the requirement of
knowing the information will be more straightforward. We have collected much
news on agriculture and non-agriculture from popular news sites. In this work,
we classify the news and have created some subcategories of agriculture news.
We also monitor that the same news should not be repeated, so we check sim-
ilarities among news articles. Here we will recommend people’s news based on
time sensitivity, as an example of which news can show after its dates expire
and which news to show on that limited days. Our work analyses the sentiment
of the news based on the content. We have used many machine learning-based
models in this work, such as SVM, Decision tree, Naive Bayes, Random Forest,
and a state-of-the-art model BERT transformer. The overall aim is to gather all
agriculture news in one place in a systematic way. This work makes the following
contributions:

– Based on Crawler, we have fetched many news articles from the online news
site.

– Classify the news between agriculture and non-agriculture.
– Similarity check between articles to remove duplicate articles.
– Sub-classification to make separate categories among agriculture news.
– Recommend news based on content like sentiment analysis and time-sensitive

The remaining parts of the work are organized as follows: Firstly, in Sect. 2,
we discuss the related works. Then, in Sect. 3, we describe the methodology of
this proposed work and discuss about the dataset. We have shown the result
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in Sect. 4. Finally, in Sect. 5, the last section contains the conclusion, including
future work.

2 Related Works

There are a lot of related works related to our proposed approach. Recent sur-
veys show that researchers will mostly make things automated by using modern
technologies. If we come to the classification system. Text classification has been
used in many works, and many good classifiers can detect well in recognizing
data. SVM (Support Vector Machine) is used in many works and achieved better
results than many algorithms in classification. In research, text classification is
used for news, and report filtering in medical issues [1]. They found that SVM
works significantly better than other algorithms, such as Naive, CNN, KNN,
and decision trees. SVM classification works better for two dimensions events.
In Facial express detection, SVM works well in research work [2]. Zhang et al.
proposed an idea for classifying news articles into several categories [3]. Further-
more, they classified news among agriculture, sports, crime, business, and many
terms. In this work, SVM was used as a classification model.

In a crime-based work, authors classified the location after collecting the data
from an online news site by using a decision tree classifier in this work. Jijo et al.
[4] classified text, smartphones, diseases, and media. In this work, authors have
discussed different techniques of this decision tree, such as CART, QUEST, and
many more [4]. BERT is another pre-trained model based on Transformer and is
considered a state-of-the-art model with the best output result compared to most
classification algorithms and works better for a large data set. From various class
data, it can detect every class more accurately. In one survey report, Carvajal
et al. Illustrated the BERT accuracy compared to other traditional approaches.
It outperforms many classification models [5]. Zhang et al. have said BERT
can work perfectly if the dataset is well enough to label; thus, the model can
identify [6]. In his case, he took the dataset from COCO and labeled it in the
best way. Including classification, it works better in some work models, such
as summarizing an article by understanding it and finding the similarity in the
answer. For document classification, in some cases, BERT has shown a beneficial
impact [7]. BERT has two classes, BERT large and BERT base. In a work,
authors have tried both of these for their working model and tried to improve
the model with their idea for the classification between documents. Qasim et
al. proposed work for fake news or article detection [8]. During COVID-19 time,
much fake news spread all over the world. Moreover, this news creates a hamper
for the public. The authors took the dataset and pre-processed this, then used
TF-IDF for data conversion and finally went for the classification approaches.
So, the authors tried nine transfer learning models to classify fake news or tweets
from social media. Some of those models are BERT large, BERT base, Albert,
Roberta, and DistilBERT, among the highest performance shown by BERT large
and BERT base. In another work, to identify the Chinese medicines, the BERT
model was used to represent text and to classify the medical events, TEXT-CNN
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was used in this case [9]. BERT and SVM are also used together as a hybrid model
to classify the sentiment analysis to get the best performance with accuracy
[10]. Munikar et al. have used the pretend BERT model on the SST dataset to
classify people’s sentiments [11]. In this work, authors have introduced a new
model named BAE [12]. Here authors checked the written paragraph’s coherence
and grammatical mistake. Garg and Ramakrishnan’s work proved that the BAE
model is more robust than the general NLP-based model. Also, in some Korean
projects [13], BERT is used as a text classifier for technical documents.

We have surveyed some work, and some functions are similar to our proposed
work. In a work, Gupta et al. have an end-to-end model to find where most
crime works are happening [14]. In this work, they have classified the news
between crime and non-crime by using two algorithms. In one algorithm, they
have classified by taking the article text only; in the other, they took both the
article text and title. They have done duplication checks between news using TF-
IDF and finally made a framework to avoid the most crime-related places. In a
work, they also extracted the location of Srilanka based on the crime articles,
and for classification, they used SVM and used Simhash method for similarity
checking [15]. In another work, authors classified news and used the Decision
tree method for classification [16]. Here in Table 1 we can see some features
comparisons between related works.

Table 1. Comparison with the related works

Work Focus Classification Model Recommendation Time Sensitive Analysis Duplication Detection

[10] Sentiment Analysis BERT+SVM No No No

[13] Technical Doc. Classification BERT No No No

[14] Crime Density Ambiguity Score Based No No Yes

[15] Crime Article Classification SVM No No Yes

[16] Text Classification Decision Tree No No No

[3] News Classification SVM No No No

[1] Medical Doc. Filtering SVM No No Yes

[4] Diseases, text Classification Decision Tree No No No

[8] Fake News Detection BERT No No No

This Work News Article Analysis BERT Yes Yes Yes

3 Methodology

The main aim of this work is to analyze agriculture-related news systematically.
Moreover, gather all agriculture news together in one place. We can divide the
work into five main steps, as shown in Fig. 1. Step A, is the crawling process to
collect data from online news sites. Step B is the classification process to check
the data between agriculture and non-agriculture. Step C is for the duplication
process checking. The stage is to find out if the article was posted previously.
After that, the non-duplicate agriculture data will insert into the database. Step
D is for sub-classify the agriculture articles to some feature. Finally, Step E
recommends articles based on sentiment analysis and time-sensitive content.
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Fig. 1. Flow diagram of the process

3.1 Step A: Fetch Data from Online News Site

We are collecting news articles from several popular online newspapers for our
proposed work. However, manually collecting the news by exploring all the news-
papers is challenging. This process will take more time and effort, so the process
is not an efficient way to gather news. We used a web crawler to fetch data from
the online newspaper as a solution. The process needs to follow some steps to
crawl data, such as processing online news sites and managing the URL (Uniform
Resource Location). The process is an automated way to fetch data from online
resources. URL is the main component of the working model. First, we need to
analyze the URL in this process, and then data processing will be done in the
next step [17]. The process needs to detect which one is an article and which
one is an advertisement. By monitoring this, it will ignore all the advertisements
from online news sources. Beautifulsoup and Xpath parsing tools collect essential
data from online sites. Generally, beautiful soup makes the HTML (Hyper Text
Markup Language) more simple and organized to collect the data. To manage
the URL scheduler process used to crawl data and find the new links for this pro-
cess. In a nutshell, at the starting point, the crawler will look for news UI (user
interface), fetch the contents, and check for available URLs, including advertise-
ment content, by analyzing the URL. Finally, the process will store all the data
captured in the storage. We must run a crawler system daily to gather as much
news as in our storage. Moreover, we have set our crawling system to run for ten
hours daily. Then we used Cronjob to automate the crawling process daily. We
have used ten popular newspapers to collect the agriculture data in our work.
Among the ten newspapers, four newspapers are specially for agriculture news.
Those newspapers are:

– Times of India
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– The Hindu
– NDTV
– News18
– India Today
– Hindustan Times
– Down to Earth
– Krishi Jagran
– Krishak Jagat
– Successful Farming

Here Down to Earth, Krishi Jagran, Krishak Jagat, and Successful Farming
mainly focus on agriculture news. Successful farming news site provides most of
the new technology news and success stories in agriculture. We have more agri-
culture and climate-related news of India from Krishi Jagran, Krishak Jagat, and
Down to Earth news sites. Using the crawler, we have collected several articles,
including agriculture and non-agriculture, from all the mentioned newspapers.

3.2 Step B: Agriculture News Detection

In the database, there is much news, both agriculture and non-agriculture
related. For this work, we must first separate the data between agriculture news
and non-agriculture news. One way is manually dividing the data into two cate-
gories. However, for a large number of data, the process will require more work
to identify the agriculture articles manually. The text classification process can
be a solution here.

We got 4860 articles and labeled the data between agriculture and non-
agriculture news. One thousand articles for both agriculture and non-agriculture
data as Table 2. Labeling the data is a prepossessing step for the classification
process. The classifier model will be trained on the labeled data to identify
agriculture and non-agriculture articles. Many text classifiers are there to do
classification. So, here we have tried five different text classification processes:
Näıve Bayes, Decision Tree, Random Forest, Support Vector Machine (SVM),
and Bidirectional Encoder Representations from Transformers (BERT). The best
one will be selected as a classifier model for the following work based on the
performance.

Table 2. Data labeling information

Total Data 4860

Labeled Data 2000

Non-agriculture Data 1000

Agriculture Data 1000

The Näıve Bayes model follows Bayes’ theorem. The probabilistic model
works between two events, agriculture, and non-agriculture, for the proposed
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work [18]. The decision tree model is based on a tree classification model [19].
We have used the algorithm in our proposed work to get a better classification.
Random forest is also known as a good classifier for text data. As well as SVM, it
performs very well for classification problems [20]. In our proposed work, we have
two levels of data- agriculture, and non-agriculture. TF-IDF (Term frequency-
inverse document frequency) method will convert the labeled data into vectors
for the SVM working process.

BERT is considered the most successful and efficient deep learning model
for (Natural language processing) NLP work. The addition of Semi-Supervised
Learning makes BERT more efficient in NLP tasks [5,21]. Pre-training and fine-
training are the two phases of BERT model structures [5]. In pre-training, data
is unlabeled, and in fine-training, data is labeled. For our case, fine training was
used as we labeled our data. The main reason for using BERT in our proposed
work is that another classification model works based on some terms, but BERT
works based on context. For a large data set, it shows a significant performance.
So, BERT can outperform other classifier algorithms. The final model will be
selected for this work based on the best classification performance among these
five algorithms.

3.3 Step C: Duplication Article Detection

There are multiple news articles in the online newspaper, but there is a possibility
of repeating the same news multiple times. One single news site can repeat its
news after a few days. The same and another news site can publish the same
article with a different title after a few days. In this work, we are going to
ignore this duplicate news. Manual checking articles and then removing duplicate
articles is not an efficient way. For this purpose, we have used two methods. One
is cosine similarity over TF-IDF. First of all, we have to convert the text into a
vector [22]. Then a matrix will be created with the information and including the
document. In this matrix, the row vector shows the terms, and the column vector
shows the documents. In TF-IDF, every term provided a different frequency score
based on the score to identify if there were any duplicates or not [23]. For that, a
threshold value needs to be selected. Then after getting the vector and frequency,
we can check the similarity between the two documents using cosine similarity
[24]. Moreover, the second method is a state-of-the-art SBERT (Sentence BERT)
model. We have used the pre-trained SBERT model “all-MiniLM-L6-v2” [25], a
part of the Sentence Transformers library.

In both cases, we have set the threshold value as 0.6. Any document’s fre-
quency score will show as duplicate articles if it exceeds this.

3.4 Step D: Sub-classification Process

After the classification process, we now have only agriculture news. We want to
create some subclass of agriculture news. Thus people can visit directly any cat-
egories as people want. As a result, we manually labeled our data and identified
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some amounts of data for various categories. Doing the sub-classification pro-
cess by seeing all articles is a big challenge. So, here we used a classifier for the
sub-classification and trained with our labeled data. We only have agriculture
data for various categories in this process, as shown in Fig. 2. The BERT model
has been used here for classification because of its superior performance. Here
we are classifying the agriculture data into seven other categories such as:

– Government
– Environment
– International
– Economic
– Animal Husbandry
– Crop Diseases & Protections
– Technology & Methods

Here data for subcategories are imbalanced. As a result, the model’s perfor-
mance can not be better. The decision will be biased towards the majority class,
as it has more data in this section. On the other hand, the model cannot detect
the minority class properly. So accuracy metric will need clarification between
classes. In this situation, oversampling is a solution to balance the classes; thus,
the model can be trained equally. In this process, there will be added some dupli-
cates values in the minority sections to equal the size of the primary class. Then
the model can train equally for all the classes.

Fig. 2. Data for Sub-classification

After getting the best-classified accuracy and document similarity model,
we fixed this in our crawling system. Thus, by following this approach, we do
not need to save unnecessary data like duplicate and non-agriculture data. Our
approach will directly crawl the data from online resources, and after classifying
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and checking the duplication process, it will be stored in the database. Moreover,
for the following process of the sub-classifier, we have used this same data. As
a result, we will have only the agriculture and non-duplicate data and sub-
classification feature.

3.5 Step E: Recommendation Process

In the proposed work, There are various kinds of articles. Some articles positively
impact people, and some negatively impact people. We are comparing positive
and negative articles on agriculture. For example, there are some agriculture
articles in which some farmers died, committed suicide, or lost production. Such
kinds of articles are considered negative articles. Similarly, some articles are there
with a good impression, like a big success, new technology, or winning a prize.
These kinds of articles are considered positive articles. In this section, we can
call Sentiment analysis based on contents.

Another recommendation is based on time. For example, we can see some
news has extreme time limits that we can deliver to people in a time. After that
time, the news has no value to people, such kinds of articles we determined as
Time sensitive articles. For example, some extreme weather news is considered
time-sensitive because this kind of news needs to show instantly. After two or
three days, that news is not helpful. On the other hand, we keep more time for
some articles. As an example, some success stories and some technology news.
This kind of news can keep in our system for multiple days. So, we considered
the term as Non-time-sensitive.

Based on the types of news and times we are recommending articles in two
sections:

– Sentiment Analysis
– Time Sensitive Analysis

We have labeled some articles for both sections. For Sentiment analysis, we have
labeled it in two parts- positive and negative. Furthermore, for time-sensitive
analysis, we have labeled time-sensitive and not time-sensitive in two parts. For
the following process, text classification can be a solution; for the classification
process, we used the BERT model. As shown in Table 3, we have the following
data set for these classes to train the model.

Table 3. Data for content-based recommendation

Sentiment Analysis Time sensitive analysis

Positive articles 106 Time sensitive 114

Negative articles 110 Not time sensitive 122
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4 Result and Analysis

4.1 Agriculture Articles Classification Results

After the classification process, if we analyze the confusion matrix of each algo-
rithm, we can see that the Naive Bayes algorithm provides 93% test accuracy.
Furthermore, the Error Rate (ER) for this process is 7%. The Decision tree
algorithm provides 95% test accuracy with an error rate of 5%. Random For-
est also performed similarly to the Decision tree method. Another classification
algorithm, SVM, provides 95% test accuracy and a 5% error rate. However, the
BERT transformer algorithm provides the highest test accuracy of 97% with
only a 3% error rate, as shown in Table 4. Not only accuracy metric there are
other metrics to know any model performance, and those are important also,
such as Recall, Precision, and F1 score. Now, in the result for the classification
of agriculture and non-agriculture news, we can see that the BERT model has
the highest Precision, Recall, and F1 score with 98% as shown in Table 4. Naive
Bayes, Decision tree, and Random Forest have the lowest Precision rate of 96%.
For Recall, Naive and Decision tree keeps a similar recall rate of 94%, and SVM
and Random Forest have 95% in this case. For the F1 score, SVM has the lowest
rate of 94%, and BERT shows the highest at 98%. If we compare the BERT algo-
rithm with other text classification algorithms, the BERT algorithm achieves an
outstanding performance because it works depending on the context of a text.
On the other hand, other algorithms work depending on some critical term or
keyword. As a result, other algorithms sometimes show non-agriculture news as
agriculture. For example, one article is - “Apple company now producing more
new mobile day by day”; this is a piece of non-agriculture news. However, by
monitoring the “apple” word, other algorithms configured it as an agriculture
article. In that case, the BERT algorithm worked correctly. BERT shows supe-
rior performance for big data sets, and we finalized BERT as our system text
classification algorithm.

Table 4. Performance Metrics for Agri & Non-agri classification

Performance Metrics Accuracy Precision Recall F1 Score

SVM 0.95 0.97 0.95 0.94

Naive Bayes 0.93 0.96 0.94 0.95

Decision Tree 0.95 0.96 0.94 0.95

Random Forest 0.95 0.96 0.95 0.96

BERT 0.97 0.98 0.98 0.98

4.2 Duplication Articles Check Results

For the duplication check of the articles, we have set the frequency threshold
value of 0.6 in both processes. That means if an article is more than 0.6 similar,
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it will select that article as a duplicate. Moreover, we have checked the process
for the last 20 days of agriculture data. To check the performance, we have
created a database of 60 articles. Among these, 30 articles contain similar articles.
In this case, for certain news, we took data from several newspapers for the
similarity between articles. The other 30 articles are non-similar. Using this, we
have checked the performance metrics and got 84% accuracy for the TF-IDF
process and 88% accuracy for the Sentence Transformers process. As shown in
the Table 5.

Table 5. Results of Duplication Detection Process

Methods Accuracy

TF-IDF 0.84

Sentence Transformers 0.88

4.3 Sub-classification Results

The following proposed work is to classify the agriculture articles into other
categories. We took seven categories to sub-classify the agriculture data. As we
have fewer data to label, we got a preliminary result by the BERT classification.
For the performance of BERT, we considered this the final classification model
for all sections. We got 82% accuracy. And an average Recall, Precision, and F1
score of 81%, as shown in Table 6

Table 6. Performance metrics for Sub-classification Process

Performance Metrics Rate

Accuracy 0.82

Precision 0.81

Recall 0.81

F1 Score 0.81

Moreover, we can see the details of Recall, Precision, and F1 scores for all
the classes separately. Thus we can know which classes are captured most by
the model, as shown in Fig. 3. Here, the Crop Diseases and Protections class
has the highest Precision value, and the lowest has got by the Government
class. For Recall Animal Husbandry class has the highest, and the International
class shows the lowest among all. We can measure the overall by the F1 score.
Similarly, two classes, Animal Husbandry and Crop Diseases and Protection,
achieved the highest and the lowest one, illustrated by the Government class.
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Fig. 3. Performance metrics of all classes of the Sub-classification process

4.4 Content-Based Recommendation Results

We recommend people based on sentiment and time analysis articles in this work.
Here, in the sentiment analysis, we took two classes, positive and negative. In
the time-sensitive analysis, we have two classes called time-sensitive and not
time sensitive. We have used BERT for the classification of this process. Recall,
Precision, and F1 score measurement play a vital role in understanding the model
performance. Here for both, the process model shows 94% accuracy for sentiment
analysis, and for Time-sensitive, it provides 85% accuracy, as shown in Fig. 4.
Here we do not want to skip recall and precision value because recall provides
accurate positive measurements predicted by the model. We do not want to skip
positive sentiment news. Accordingly, do not let go of any negative ones. Also,
the precision value provides all positive news, so we do not want to place any
urgent news in a time-insensitive class for time-sensitive reasons. Hence, for both
process, higher recall and precision value is essential. The work can recommend
which articles make positive and negative vibes and which articles need to show
in a limited time.

Fig. 4. Results of recommendation based on contents & Time
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5 Conclusion

Online news site plays an essential role in today’s world. If news can get sep-
arately as needed, it will be easier for everyone. Especially for the agricultural
area, agriculture news is more helpful for one country’s development. In this
work, our proposed work is to analyze the agriculture news and make a platform
for everyone. Thus, people can get all agriculture-related news together. We
have crawled data from ten newspapers in India. Moreover, we have detected
the agriculture news from all the news articles. We have used five algorithms
for this classification process: SVM, Naive Bayes, Decision tree, Random Forest,
and BERT Transformer. Among all of these, BERT has provided 97% accuracy.
Furthermore, we have checked the similarity of our news articles so that the same
news should not be repeated here. We have finalized the Sentence Transformer
model for the duplication process, and the model efficiently worked for this.
BERT classifier has been used for the Sub-classification categories of agriculture
news in seven other categories. In this case, we got a decent output. More-
over, we recommended news to people based on Sentiment and Time-sensitive
analysis. BERT is also used for classification in this recommendation process.
In the future, we can add more data for better classification in sub-categories
and improve the sub-classification. Also, improve the recommendation system
by adding more data and can go for a more efficient method to make the work
more valuable. In addition, multilingual languages can be used in the future.

Acknowledgement. Authors acknowledge the grant received from the Department
of Science & Technology, Government of India, for the Technology Innovation Hub at
the Indian Institute of Technology Ropar in the framework of National Mission on
Interdisciplinary Cyber-Physical Systems (NM - ICPS).

References

1. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Aggarwal,
C., Zhai, C. (eds) Mining Text Data, pp. 163–222. Springer, Boston (2012). https://
doi.org/10.1007/978-1-4614-3223-4 6

2. Wight, C.: Speaker classification on general conference talks and byu speeches
(2021)

3. Zhang, Y., Dang, Y., Chen, H., Thurmond, M., Larson, C.: Automatic online
news monitoring and classification for syndromic surveillance. Decis. Support Syst.
47(4), 508–517 (2009)

4. Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for
machine learning. J. Appl. Sci. Technol. Trends 2(01), 20–28 (2021)
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Abstract. Agriculture is known as the economic game changer of India.
It is the primary driver of GDP growth because of India’s robust agri-
cultural industry, and proper knowledge about agriculture techniques
help increase crop yield. So, answering the different types of crop-related
queries is essential. We proposed the intelligent chatbot application in the
agriculture domain so that farmers can get the correct information about
farming practices. Our system is farmer-friendly and capable enough
to instantly answer farm-related queries from the knowledge base, such
as plant protection, fertilizer uses, government schemes, and many oth-
ers. We used the agriculture-related data in question-answer format and
implemented the pre-trained model of the Sentence-Transformer app-
roach to answer providing. We also deployed the TF-IDF and Bag-of-
Words method but achieved a reasonable accuracy rate for the test data
in the sentence transformer pre-trained model. With the help of API
services, our system also shows the crop’s latest mandi (market) rate
and current weather information. So, the proposed chatbot system will
keep the contribution for farmer’s cost savings. Overall, our chatbot sys-
tem is straightforward and more efficient for the farmer to make better
decisions.

Keywords: Sentence Transformer Pre-Trained Model · TF-IDF · Bag
of Words · Pegasus Model · Mandi(Market) Rate API · Cosine
Similarity · Weather API

1 Introduction

In Asia, most countries depend on agriculture to fulfill the food demand of the
people, and agriculture is a significant contributor to the country’s increasing
productivity. In India, nearly 60% of the population works in agriculture [1],
and lots of people from rural areas are farming for their livelihood as their
occupation [2]. However, most Indian farmers do their farming process in their
traditional method, and because of the technological and other communication
gaps, they are unknown of the latest farming information. Most of the time,
they are unable to solve farming-related problems. As a result, they experience
limited crop growth, which causes them to incur losses.
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So, to solve the agriculture sector issues, the government already take many
necessary steps. The farming authority also organizes several programs for farm-
ers, like Front Line Demonstrations with the help of a network of Krishi Vigyan
Kendras in every district, Rashtriya Krishi Vikas Yojana, and other services [3].
Moreover, we can see many existing services for farmers, like the Kisan calling
center, eNam, and farmers portal.

The Ministry of Agriculture and Farmers Welfare is continuing the Kisan call
center (KCC) to facilitate efficient communication of farmer’s queries in various
languages. However, due to many incoming calls, it is sometimes challenging
to attend to all of them promptly, and users have to wait a long time to ask
their queries. As a result, users need help getting the solution to their query.
Besides, Agriculture Ministry has also introduced a web-based service called the
Farmers Portal, which offers a comprehensive range of information and services
to farmers in one convenient site. The main feature of this digital platform is
agri-Advisory, crop management, animal husbandry management, and so on [4].
Despite its benefits, the Farmers Portal has some limitations, including fixed
support, and users may need to have the technical knowledge to navigate the
platform. These challenges may be complex for some users to access required
agricultural information. Moreover, we can see the eNAM - National Agriculture
Market platform for selling the farmer produce, the Kisan Suvidha application,
which integrates all the farm-related services.

Most of the existing works used the traditional approach or pre-implemented
platform to deploy the farmer chatbot applications, which may be less suitable
for a large number of chatbot knowledge. We can also see the most recently intro-
duced technique, CHATGPT, which can answer all types of questions. However,
in the agriculture domain, some factors also limit this application. We intro-
duced an intelligent chatbot system for farmers to get suitable solutions for var-
ious farming practice queries. We aim to enhance farmer operations and eventu-
ally support the agriculture industry’s expansion and sustainability. One of the
biggest challenges of deploying an agriculture chatbot application is ensuring
reliable and efficient data. The collected data for the agriculture chatbot appli-
cation must be relevant, accurate, and up-to-date to provide the best possible
answer and support. To overcome this challenge, we collected data from KCC
and focused on manual data collection, knowledge models, and real-time API
information. In our chatbot, users can get answers like plant protection, cul-
tural practices, fertilizer uses, water management, nutrient management, weed
management, field preparation, and varieties. Our system also provides the cur-
rent market price of different crops in India and real-time weather information
through the API system. Our system also supports the Hindi language besides
English. We developed our application in the Indian context, so we consider
the Hindi language as it is the official language of India. We deployed the lat-
est AI technique and built a user-friendly system for non-technical individuals.
Our chatbot is convenient and provides customized information about farming-
related user queries.
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The paper organizes as follows: Sects. 2 and 3 discuss the related works and
the proposed methodology. Section 4 explains the dataset collection and pre-
possessing. Section 5 represents the dataset analysis. Sections 6 and 7 describe
the approaches and analyze the test result. Finally, Sect. 8 concludes the overall
work.

2 Related Works

Bhardwaj et al. [5] proposed the farmer-assistive chatbot using the KNN and
the sequence-to-sequence model for the answer generation that is multi-linguistic
supported. Arora et al. [6] implemented the RNN seq2seq technique for the
conversational system using the KCC and web scraping data. They also used the
CNN approach to detect crop disease, and the weather information will come
through the API services. Niranjan et al. [7] discussed the overall survey on the
chatbot application. They described the shortcomings of the various technique
and suggested the seq2seq as a good solution in the case of the chatbot assistant.

Gounder et al. [8] and Mohapatra et al. [9] implemented the TF-IDF app-
roach to generate the vector and used the cosine similarity method to find the
similarities of the question from the KCC dataset. Besides, they [8] considered
the lemmatization process instead of the steaming process for the data prepro-
cessing and deployed the application in Android.

Nayak et al. [10] introduced the agriculture expert chatbot application using
the chatterbot library, where they collected agriculture-related data in question-
answer format. They used the Levenshtein distance and the best-match approach
to answer the user queries correctly. Here, users can also ask their query through
voice and get agro-expert support in case of chatbot is unable to answer.

Jain et al. [11] deployed the FarmChat android application with audio and
(audio+text) and compared the output efficiency in their study. Here, they con-
sidered not only the KCC data but also collected information from local cul-
tivators and agriculturalists so that the application could answer farm-related
questions about potato crops easily. Thatipelli et al. [12] designed an agriculture
robot with different types of sensors for collecting data from the farmland and
storing it in the IBM cloud for real-time analysis. Besides, they also deployed
the chatbot based on the collected data, which suggests a suitable fertilizer con-
sidering different parameters and detects plant diseases. Momaya et al. [13] also
introduced the farmer assistive chatbot, named “Krushi” using the RASA X
framework, which is able to provide almost 70% of query answers.

Gunawan et al. [14] proposed an IoT - based chatbot application. With the help
of an IoT device, it senses the field humidity, temperature, and soil moisture and
sends the sensor data to the database regular basis. The chatbot uses this data
to provide real-time information and help urban farmers to improve agriculture’s
efficiency. Mostaco et al. [15] proposed the AgronomoBot, which can also answer
the farmer’s queries from the agriculture wireless sensor network data. The data
will come from the WSN database and deploy the application in the telegram for
the user interface.Kiruthika et al. [16] proposed a quite different chatbot system for
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the consumer and the farmers, where a farmer can sell their crops at a suitable price
and get more profit. Their proposed approach’s main functionalities are collecting
the farmer details and crop-related information, recommending farmers as the user
needs, and constantly updating the farmer crops details.

Shao et al. [17] proposed a neural network-based transformer to solve the
tasks of answer selection in the question-and-answer systems. They implemented
the (BiLSTM) bidirectional long short-term memory, transformer-based, and
prioritized sentence embedding tasks. Here, Ngai et al. [18] deployed different
transformer-based models like BERT, ALBERT, and T5 for Question Answering
(QA) systems on COVID-19. In the result analysis, they achieved the effective
F1 score for the BERT and a better exact match for the ALBERT technique.
Soldaini et al. [19] proposed another answer selection approach, named cascade
transformer. On several benchmark datasets, they evaluated the Cascade Trans-
former, and the experiment’s outcomes indicate that the Cascade Transformer
is a promising method for choosing answer sentences in QA applications.

3 Proposed Methodology

We proposed an effective chatbot application to answer farm-related queries
using state-of-the-art technology. For the agriculture chatbot application, the
dataset plays a significant role. We combined various sources of data in the
question-answer structure. We imported the necessary library as model require-
ments, preprocessed the data, and loaded the pre-trained model. Here, the sen-
tence transformer pre-trained model encoded the input query and the knowledge
base questions and computed similarity scores using the cosine similarity app-
roach. We set a threshold value based on the chatbot’s performance. Moreover,
if the user wants to know the Weather Information or Mandi Rate, our chatbot
will display the information through the API services regarding their search. For
the weather condition, users need to input the location name, like city, and to
get mandi rates with more information; they must search by crop name. As we
already said, our system is user-friendly, meaning it will also answer the query
in Hindi. We deployed the google translate API for language translation. So,
when users ask a query in Hindi, it will translate into English, find a similar
question with an answer, and deliver it in Hindi. In the chatbot, users may ask a
question in different ways. So, to analyze the results, we used the Pegasus model
to generate paraphrases of the test questions and checked whether the model
identified the correct answer or not. We implemented different approaches but
found that the sentence-transformer pre-trained model provided the best results
for the test dataset. In Fig. 1, we can see our proposed work’s architecture.

4 Dataset Collection and Preprocessing

The utilization of datasets is a crucial part of developing question-answering
chatbots. We collected the dataset from different sources and prepossessed it
to build our farmer chatbot system. In this section, we will discuss it more
elaborately.
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Fig. 1. Proposed Architecture

4.1 KCC (Kisan Calling Center)

Earlier, we discussed the Kisan calling center, a help center facility for the farmer.
A total of 21 Kisan call center locations exist in different states of India. This
kind of service helps the farmer acquire more knowledge about farming. For the
farmer chatbot application in Indian Region, the KCC dataset is essential. This
open-source dataset is available on the government website [20] (data.gov.in). So
we collected the most recent KCC data of Punjab, Tamil Nadu, and Maharastra
for the different districts. We have 65.11% for the Punjab state, Maharastra
22.39%, Tamil Nadu 12.48%, and more than fifteen thousand total KCC raw
data. The dataset has nine features: Seasons, Sectors, Crops, Query Type, Query
Text, Answer, StateName, District Name, and CreatedOn. However, in this case,
we considered only the valuable feature that contributes most to the provided
answer in our chatbot application.

– Category: This column represents the category of the query asked by the
users, like vegetables, cereals, etc.

– Crop: This column represents the specific crop mentioned in the user’s query.
– Query Type: This column represents the type of query asked by the users,

like plant protection, varieties, etc.
– Query Text: This column represents the query asked by the users.
– KCC Answer: This column represents the answer given by the Kisan Calling

Center representative to the user’s query.

Data Preprocessing. After the dataset collection, it is essential to preprocess
the data. The KCC dataset was in JSON format, and we converted it into
CSV format to understand the data more efficiently. We merged all the district-
wise KCC collected data and evaluated it for further procedure. After analyzing
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the KCC data, we found lots of duplicate data, spelling mistakes, incomplete
sentences, etc. We followed the remaining steps to preprocess the KCC datasets.

– Used Google Translate API: The query answers of the KCC dataset were
in the local language. To build our system, we considered only the English
language. So, we translated the local language to English for better under-
standing and efficiency in working with the dataset.

– Dropped the Weather-Related Rows: Most KCC dataset queries were
related to weather conditions. We dropped the weather-related query almost
30% of the total KCC data because the user will get the answer through the
weather API services.

– Dropped the Contact Number Asked Rows: We found 7% data related
to asking for the contact number details of Krishi Vigyan Kendra, agriculture
institution, and nodal officer details. However, there needed to be more data,
and besides, most of the government scheme-related query answers were the
nearest agriculture center contact number. This kind of answer may not be
helpful to the user. So, we did not count it because we collected the contact
details manually for all asked places in the KCC dataset query and added
more government scheme data with suitable answers.

– Dropped the Duplicates Rows: We also found lots of duplicate data,
which is 40% in the KCC datasets. So, we dropped the duplicates.

– Dropped Animal and Flowers Related Data: We did not count the
animal and flower-related data in our KCC data consideration. However, in
the future, we plan to incorporate this information to enhance the knowledge
of our chatbot.

– Dropped the Farming Fair Information: In analyzing the Kisan Call-
ing Center dataset, we came across numerous queries related to agriculture
fair information. We realized that the queries were referring to fairs holding
dates that took place in the past years, and the answer was no longer valid.
Therefore, we excluded such queries from our dataset.

– Dropped the Market Information of Crop Price: We dropped the mar-
ket information-related data by almost 1.48% because our chatbot system will
provide the information regarding the market crop price through the API ser-
vices.

– Others: After completing the aforementioned steps, we noticed that the
dataset had many incomplete answers, inappropriate information, null value
rows, and insufficient crop data. Additionally, many repeated questions with
different structures could cause problems evaluating the model’s performance.
So we removed these kinds of information and decided to focus on a limited
number of crops with sufficient information available to improve the dataset’s
overall quality and ensure the effectiveness of the chatbot application.

After the KCC data cleaning, it is quite understandable that the considered
data is not sufficient enough for our proposed chatbot application. The following
sections will discuss other data collection procedures and API data.
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4.2 API Data

In the agriculture sector, knowing about the recent update on weather conditions
and the crop price in a different market is essential so that farmers can make
immediate decisions. As discussed earlier, we aim to bring all the farming-related
functionalities into our chatbot application. So for that, we also deployed the
following:

– Weather Condition
– Mandi Rates of Various Commodities

With the help of open weather API, we displayed the real-time weather
parameter like temperature, humidity, weather report, and wind speed of the
searching place [21]. It will help farmers with efficient planning and better
resource management. The second is the “Current Daily Price of Various Com-
modities from Various Markets or Mandi.” The API services are available on
the [20] (data.gov.in) website, which is open-source for all. This API provides
ten features like state, district, market Name, crop name, variety, grade, data
arrival dates, crops minimum, maximum, and model price (Rs./Quintal). In our
chatbot application, users only have to input the commodities names; according
to that, our chatbot will show the Mandi Rates with state, district, and Market
names. Here, we also deployed the spell-checker functionalities in the commodi-
ties search to keep in mind that if the user makes mistakes in writing the crop
name, it will automatically take the correct spelling.

4.3 Knowledge Model

In the farmer chatbot application, the completeness of data plays a significant
role because it will help to enlarge the knowledge and enable the application to
answer different crop-related questions. We all know that most people in India
depend on rice and wheat crops. However, we found a lack of information on dis-
ease protection, weed management, and water management for these crops in the
KCC dataset. To address this gap and enlarge the chatbot’s knowledge, we col-
lected data from agricultural experts on rice, wheat, and maize crops. Although
the data was not in a question-and-answer format, it contained valuable informa-
tion on crop varieties, sowing times, disease symptoms, protection procedures,
nutrient management, and many more. Overall, we found the highest number of
rice data, and maize is in the last position, where rice has 106 varieties, wheat 64,
and maize 25. For each variety, there are also sowing time details and features.
We also noticed the highest number of disease management data for rice and
pest management for wheat. It is necessary to the conceptual representation of
the data and its relationships to understand the data completeness or required
information. In that case, the knowledge model is more adaptable and scalable.
It provides a visual understanding and clearly and consistently represents struc-
tured data experience. The flexibility of the knowledge models helps to accumu-
late information in an organized manner and create better decisions. We took
inspiration from the Agropedia source [22] to design the knowledge model. In
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this work, we developed the knowledge model of agriculture for rice, wheat, and
maize crops. These models focused on different concepts: nutrient management,
environmental requirement, varieties, field preparation, sowing time, soil man-
agement, fertilizers, water management, weed management, pest management,
and diseases management. So these knowledge models helped us to comprehend
data completeness, identify the missing information, and understand the rela-
tionship. We converted this data into a question-answer format that can enhance
the efficiency of chatbot applications and contribute towards farmer’s adoption
of successful as well as productive agricultural practices (Fig. 2).

Knowledge Model Rice

Wheat

Maize

Diseases Management
Field Preparation
Weed Management
Environment Requirement
Soil Management
Water Management
Fertilizer Management
Nutrient Management
Pest Management
Varieties
Sowing Time

Fig. 2. Different Concepts of Rice, Wheat, and Maize Knowledge Models

4.4 Manually Data Collection

To make our chatbot application more efficient and a better resource, we took
help from various governments and farming-related sources [23–29] for required
query type data. So we manually created different questions regarding the
required data and stored the information in the answer structure. To cater to
the farmer’s diverse information needs, we prioritized the various query types
for each crop, ensuring that a range of information will be available. We also
included frequently asked questions about government schemes, such as how to
apply, required documents, benefits, and other necessary information. Moreover,
in the previous section, we discussed many queries about the Krishi Vigyan
Kendra, agriculture institution, and Nodal officer contact details. So, we added
the contact number of Krishi Vigyan Kendra all over India with senior scien-
tist details, more than 60 agriculture institutions, and nodal officer information.
Most of the contact details data was in the tables layout in the government
sources. We arranged the collected information in the question-answer structure
to help the chatbot system provide a suitable answer to the user.
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5 Dataset Analysis

After collecting the data, we have five columns: Category, Items, Query Type,
Query, and Answer. Here the item part includes the different crop names and
the government scheme name.

Table 1. Analysis of Crop’s Category and Query Type
Category Total Data (%) Query Type Total Data (%)

Vegetables 25.84% Plant Protection 27.38%

Cereals 25.50% Cultural Practices 21.14%

Fruits 11.31% Varieties 15.16%

Others 10.58% Others 10.58%

Pulses 10.17% Nutrient 7.36%

Oilseeds 6.07% Fertilizer Uses 6.49%

Spices 5.55% Seeds 4.61%

Schemes 2.59% Weed Management 2.38%

Fiber Crops 2.30% Government Schemes 2.69%

Table 1 shows the category column information and the count of different
agricultural query types. The largest segment of the table represents the veg-
etable category, almost 25.84 % of the total count-the next largest segment for
the Cereals category, followed by the fruits. The remaining categories, such as
Schemes, Pulses, and others, would occupy smaller segments proportional to
their counts. In Table 1, the most common query type is plant protection, with
a count of 27.38%, followed by cultural practices, with 21.14% queries. These two
query types represent over 49% of the total queries. The next is Varieties, with a
count of 15.16%, followed by other query types, with an exact count of 10.58%.
The dataset contains 496 contact details for KVK centers and information about
various government schemes, such as Pradhan Mantri KISAN Samman Nidhi
Yojana and the PM Kisan credit card scheme. Moreover, the dataset also adds
the contact details of agriculture institutions, universities, and Nodal Officers.

Besides, we have a vast number of rice data, with a 14% count representing
the highest crop data. The next largest crop is Wheat, with a count of 6.35%, fol-
lowed by maize and Bengal gram. Other crops, such as Potato, Brinjals, Tomato,
Garlic, and Cauliflower, are also in there but to a lesser extent. The remaining
crops, such as Coriander, Mustard, Chillies, Turmeric, and others, represent a
smaller proportion of the total crops.

The main challenge in the farmer’s question-answer chatbot application is
collecting accurate and suitable data. Besides the Kisan calling center data,
we also included the missing information from scratch, making the system more
efficient for the farmer. Overall, there are more than six thousand total data. The
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analysis shows that the chatbot application has sufficient query type knowledge
for the limited crop, government scheme, and contact number details to enhance
the chatbot’s ability to understand and respond accurately to user queries.

6 Models

For deployed the chatbot application, we used three approaches: Bag-of-Words,
TF-IDF, and a Pre-trained model of the sentence transformer. These methods
are famous and can see the contribution to NLP tasks, including intent classifica-
tion and entity recognition. Bag-of-words is a popular approach for representing
text data as numerical vectors. Depending on the specific task, it is traditional
and valuable. In our chatbot application, we used the BoW to generate the fea-
ture vector of the questions. Secondly, the widely used method in NLP is called
TF-IDF (Term Frequency-Inverse Document Frequency). Unlike BoW, the TF-
IDF prioritizes the significant word. In our chatbot, we also used the TF-IDF
technique to generate the feature vector of the queries.

Lastly, Sentence Transformer is the latest approach in NLP that provides pre-
trained models for various uses. Here, we used the quite effective, more petite,
faster pre-trained model “all-MiniLM-L12-v2” and retained a high level of accu-
racy as well as good performance [30]. The models pre-trained on extensive tex-
tual data to enhance performance on particular tasks. We used the pre-trained
model for encoding text into vector representations, where generating sentence
encoding involves several steps. The model first tokenizes the input sentence by
splitting it into individual words and integrates pooling and other processes in
the encoding phase. It can understand the connections between phrases, words,
and their context in a sentence through the pre-training procedure. The pre-
trained sentence transformer model encoded knowledge-base questions and the
user-asking query. The highest cosine similarity score counted to determine the
most similar question from the knowledge base for asking the query. Through
the testing part, we noticed that this pre-trained model also performed better
in the case of synonym words in a sentence and took less time to provide the
answer.

7 Result and Observations

After implementing the chatbot application, it is mandatory to check whether
it will provide the correct answer. So, we randomly selected unique 100 and
200 questions from our original datasets as test data with the correct answer.
After that, we deployed the pre-trained pegasus model for both test datasets to
generate the paraphrase of these questions to analyze the model performance.
Pegasus is a transformer-based language model used for the NLP tasks like
summarization [31]. We used the pre-trained pegasus model to produce para-
phrased phrases based on its internal understanding of the input text. Human
evaluation is essential in machine-generated text, so we manually evaluated the
pre-trained pegasus model [32,33]. This process is time-consuming but flexible.
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It also helped us understand the paraphrased sentence’s meaning and whether
it was relevant to the original sentence or not. We checked different facts in each
of the paraphrased sentences, such as Meaning, Fluency, and Relevance. We
observed that most of the paraphrased questions semantically connected with
the original dataset questions, and some were incomplete, such as the actual
questions that correctly defined the crop variety, like “Information Regarding
Soybean variety SL 958 (2014)?” but in the paraphrased sentence “Is there any
information soybean variety SL 958?” and for asking contact number or address
of a place like Kisan Vigyan Kendra, the paraphrased question missed the state
or district name of KVK. We also counted these questions because, in the chatbot
application, users can ask queries in different ways. So this helped us evaluate
the system’s effectiveness.

We considered the accuracy, average cosine similarity score, and the threshold
value for evaluating all three similarity models. The threshold performs as a
required minimum similarity score before a question can be considered a match.
We compared the predicted answer for each question with the actual answer for
accuracy count. A higher accuracy signifies that the system works effectively,
identifying the questions most similar to each other and providing the correct
answers for most inquiries.
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Fig. 3. Test Accuracy of 100 Ques-
tions for different threshold values
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Figures 3 and 4 show the accuracy of the Sentence Transformer pre-trained
model, TF-IDF, and BoW for 100 and 200 test questions. Here, we considered
the different threshold values (0.64 to 0.70) for the model’s performance analysis.
We defined the threshold value in our chatbot application based on the excel-
lent output. The Sentence Transformer pre-trained model (PM) has the highest
accuracy of 93% for a 0.64 threshold value. The TF-IDF model has an accuracy
range from 47% to 45%. This model is less accurate than the Sentence Trans-
former (PM) model but performs better than the BoW model. The BoW model
has an accuracy range from 39% to 26%. This one is the least accurate among
the three models and outperformed compared to the others. As seen from the
Fig. 4 for 200 questions, the Sentence Transformer (PM) has the highest accu-
racy, followed by TF-IDF and BoW. The accuracy of the models decreases as
the threshold increases. At the threshold of 0.64, the Sentence Transformer (PM)
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has an accuracy of 96%, TF-IDF has 46%, and BoW has 36%. When the thresh-
old goes to 0.7, all approaches’ accuracy decreases. The accuracy results may
vary based on the dataset and the asked questions. The threshold value is also
an essential factor in determining the model’s accuracy, and a higher threshold
value can result in lower accuracy.
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Models
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In NLP, the similarity-matching approach is well-known and determines the
similarity between two texts or documents. We calculated the average cosine
similarity by summing up the similarity scores of the highest-scoring question,
which also satisfied the threshold value, and then dividing that by the number
of total questions. For the 100 questions, in Fig. 5, the Sentence Transformer
method consistently has a better cosine similarity value than the other two
methods, with a score of 0.9139 to 0.9205 across all threshold values. The TF-
IDF method scored from 0.693 to 0.7337, while the BoW method scored from
0.315 to 0.447. For the 200 questions, in Fig. 6, we can see that the Sentence
Transformer model has the highest average cosine similarity score, followed by
the TF-IDF and BoW models. At a threshold of 0.64, the Sentence Transformer
model has an average cosine similarity score of 0.9211, which is higher than the
scores for the TF-IDF model 0.7725 and the BoW model 0.5095. Each model’s
average cosine similarity score decreases as the threshold value increases. At a
threshold of 0.7, the Sentence Transformer model still has the highest average
cosine similarity score. Overall, we also find the effectiveness of the Sentence
Transformer pre-trained model in this case.

Asked Question: Can you tell me about the potato seed treatment?
Question find from Database: Information Regarding seed treatment of
potato?
Answer: For seed treatment in potatoes, 2.5 ml of Monseron per liter of
water should be mixed and the seeds should be immersed in this solution
for 10 minutes.

Example 1. Q&A of the Chatbot Application
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Here, we can see the question-answering process of the Sentence Transformer
pre-trained model. The sentence transformer pre-trained model provides ade-
quate performance in the question-answer system. We got 96% accuracy for the
200 and 93% for test question 100 for the sentence transformer (PM), which
is the highest compared to the others. Our chatbot is limited in knowledge,
meaning it can only answer the database question and supports only Hindi and
English. We will enlarge our database to answer all agriculture-related questions
in the future and make it available in other languages. Our chatbot assistant
is less complex and helps farmers maximize agricultural yields that lead to the
development of the agriculture industry, and improve efficiency and profitability.

8 Conclusion

The chatbot system is the most extensive creation in Artificial Intelligence
because it solves the user problem quickly and positively impacts the world. Our
proposed agricultural chatbot system enables immediate responses to farming-
related inquiries in Hindi and English. We used the Sentence Transformer pre-
trained method, a state-of-the-art technique in NLP, because of large-scale pre-
training and high performance. We obtained a higher accuracy rate in the pre-
trained model compared to the other two methods. The proposed method will
increase farmer’s knowledge and help them make informed decisions about their
crop management and operations by providing an accessible, user-friendly sys-
tem with reliable information. Through the API system, the user will receive
real-time responses, which will help them stay more current on market prices
and weather information. In the future, we will increase the chatbot’s knowledge
and add more functionalities like suggesting the crop advisor details who is more
supportive regarding the queries. We will also add the query suggestions method
depending on the user asking the question and make the system robust.
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Abstract. As the world’s population continues to increase, the demand for food
production is on the rise, which requires attention to the challenges in agriculture.
Fortunately, traditional agricultural practices can be managed more effectively
with state-of-the-art techniques. These activities include irrigation management,
crop yield improvement, pest and weed control, and fertilizer recommendations,
among others. Improving crop yield is a significant aspect of agriculture manage-
ment, and the parameters of soil, water, and climate play a vital role in achieving
this goal. The application of information technology-based decisions and future
predictions related to agricultural management can help farmers improve crop
productivity by managing these complex systems. The Internet of Things (IoT),
DataMining, Cloud Computing, andMachine Learning (ML) are among the state-
of-the-art techniques playing an essential role in agriculture. In this study, various
ML models, such as Random Forest Regression, Gradient Boosting Regression,
Adaboost Regression, and Decision Tree Regression, were employed to predict
sugarcane yield. The study established a correlation between sugarcane yield and
diverse climate and soil parameters. Based on a comparative analysis of the ML
algorithms, the Gradient Boost Regression algorithm provided greater accuracy
compared to other models. The study concludes that early prediction of sugarcane
yield can help farmers increase their crop yield and subsequently improve their
socioeconomic status.

Keywords: Agriculture · Crop Yield · Prediction · Sugarcane · Machine
Learning

1 Introduction

Agriculture has existed since ancient times. The primary source of supplies for meeting
people’s basic requirements is thought to be agriculture. The Rigvedic elucidates var-
ious agricultural activities, such as ploughing, irrigation, and cultivation of fruits and
vegetables. Not only Rigveda but also there are traces of cultivation during the Indus
Valley civilization thriving period [1].

Crop yield improvement is one of the major activities of agriculture management.
Soil parameters like Nitrogen (N), Phosphorus (P), Potassium (K), moisture of the soil,
soil texture, etc., and climate parameters such as rainfall, humidity, temperature, etc. play
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an important role for crop yield improvement [2]. Accurate yield estimation, improved
productivity and improved decision-making are essential in agriculture. Indian farmers
are facing several problems such as unpredictable climate, limited irrigation facilities,
and quality of water and soil [3]. In this scenario to improve productivity, the role
of the latest information technologies, like the Internet of Things (IoT), Data Mining,
cloud computing, Machine Learning, etc. have been vital over the years. In crop yield
prediction, machine learning plays an essential role [4–9].

Ananthara et al. [10] have used the parameters like soil type, soil and water pH value,
rainfall, and humidity and achieved an accuracy of 90%. Everingham et al. [11] devel-
oped a yield prediction model for sugarcane with the help of a random forest (RF) ML
algorithm. The parameters used in this research are maximum and minimum temper-
ature, rainfall, radiation, Southern Oscillation Index. The performance of the model is
based on RMSE and R Squared. Natarajan et al.[12] developed a crop prediction model
with the help of a machine learning technique using a hybrid approach. Researchers have
used Genetic Algorithm (GA) and Driven Nonlinear Hebbian Learning (DDNHL) for
the hybrid approach. The model’s performance was based on RMSE, MAE, and Clas-
sification Accuracy (CA). Kumar et al. [13] developed a crop yield prediction model
using a ML technique and the parameters used in this research are rainfall, soil param-
eter like (PH, N, P, K, OC, Zn, Fe, Cu, Mn, & S). Charoen-Ung & Mittrapiyanuruk
developed the sugarcane yield prediction model in the year 2018 and 2019 using dif-
ferent parameters such as Soil type, plot area, groove width, water type and archived
an accuracy of 71.83%. And Plot characteristics, Plot cultivation scheme, and rain vol-
ume and archived an accuracy of 71.88% [14, 15]. Kale & Patil proposed a prediction
model using Artificial Neural Networks (ANN) algorithms. The parameters used in this
research are Cultivation area, crops, State, District, Season & The performance of the
model is based on RMSE, MAE, MSE and achieved an accuracy of 90% [16]. Khaki &
Wang used deep neural networks to predict crop yield in the United States and Canada
based on genotype and environmental data. Authors have used Lasso, shallow neural
networks (SNN), and regression tree (RT) for the comparison and the performance of
the model- based RMSE and achieved 12% accuracy [17]. Medar et al. [18] proposed
the sugarcane yield prediction model with the help of a long-term time series and sup-
port vector Machine (SVM) ML algorithm. The parameters used in this research are
temperature and soil temperature of the soil, evapotranspiration, humidity, moisture of
the soil, sunshine duration, dew temperature, and precipitation. Saranya & Sathappan
built an ensemble MME-DNN yield prediction model with the use of soil, weather and
climate data [19]. Rale et al. [20] developed a prediction model for crop yield produc-
tion by using machine-learning techniques and comparing the model performance of
different linear and non-linear regression models using 5-fold cross-validation. Kang
et al. [21] studied the effect of climatic and environmental variables on maize yield
prediction. Researchers have used Long-short term memory (LSTM), Lasso, Support
Vector Regressor, XGBoost, Convolutional Neural Network (CNN), Random Forest for
the comparison and the performance of the model-based on RMSE, MAE, R, MAPE.
Prasad et al. [22] proposed a cotton crop yield prediction model using random forest
(RF) machine learning algorithms with the help of climate data. The performance of
the model is based on the coefficient of determination (R2) and achieved an accuracy of
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0.83. Kanimozhi & Akila developed crop yield prediction model using Artificial Neural
Networks (ANN) algorithm. The parameters used in the research are Location, Humid-
ity, rainfall, Mintemp, Maxtemp. Wind_speed, Mean_temp. The performance of the
model is based on RMSE & archived an accuracy of 80% [23]. Agarwal & Tarar devel-
oped a hybrid prediction model using the machine learning algorithm such as Support
Vector Machine (SVM) and Deep learning algorithm such as Long-short term memory
(LSTM). Researchers have used Random forest (RF) for the comparison. The perfor-
mance of the model was based on precision, recall and achieved an accuracy of 97%
[24]. Ansarifar et al. [25] presented a comparative analysis of linear regression, step-
wise regression, Lasso regression, Ridge Random forest, XGBoost, Neural network, and
Interaction regression for the prediction of the crop yield using different datasets of the
crops. To calculate the performance of the model based on relative root mean square
error (RRMSE). Interaction regression reached the minimum errors across the produced
crop yield models. Dash et al. [26] proposed the yield prediction(YP) model using SVM
and a decision tree ML algorithm. The parameters used in this research are rainfall,
humidity, temperature, sunlight, and soil pH. Summary of literature review shown in the
Table 1.

Table 1. Machine Learning Algorithm for Crop Yield Prediction

Research
work

Algorithms used Feature used in
research

Crop used Evalution
Parameters

Accuracy

[10] C&R tree,
beehive
clustering

Soil type, soil pH,
water pH, Rainfall
and Humidity

Rice,
Sugarcane

Not Available 90%

[11] Random forest
(RF)

Temperature
(maximum and
minimum),
Rainfall, Radiation,

Sugarcane RMSE, R2 95.45%

[12] Hybrid
(DDNHL-DA)

soil, pH, N, P, K,
OC,Zn, Fe, Cu,
Mn, S, Soil
moisture Humidity,
Rainfall
Temperature, EC

Sugarcane RMSE, MAE„
Classification
Accuracy
(CA)

94.70%

[13] K-Nearest
Neighbor,
Support Vector
Machine, Least
Squared Support
Vector Machine

Rainfall, Depth of
soil, pH, N, P, K,
OC, Zn, Fe, Cu,
Mn, S

Sugarcane MSE 90%

(continued)
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Table 1. (continued)

Research
work

Algorithms used Feature used in
research

Crop used Evalution
Parameters

Accuracy

[14] Random Forest,
Gradient boosting
tree

Type of Soil,
groove width, plot
area, water type

Sugarcane Not Available 71.83%

[15] Random Forest Characteristics of
Plot, Plot
cultivation scheme,
Rain volume

Sugarcane Not Available 71.88%

[18] Support vector
regression (SVR)

temperature, Soil
temperature, soil
moisture, humidity,
dew temperature,
sunshine duration,
precipitation,
evapotranspiration

Sugarcane Not Available 83.49%

[24] Hybrid prediction
model using
(SVM, RNN and
LSTM)

Temperature,
Rainfall, pH value,
humidity, area

Wheat,
Rice,
Maize,
Millets,
Sugarcane

performance
metrics
(accuracy,
precision,
recall)

97%

[26] SVM and
decision tree

Rainfall, Humidity,
Temperature,
Sunlight, Soil pH

rice, wheat,
and
sugarcane

Not Available 92%

The comprehensive literature review confirms that RandomForest (RF), and decision
tree regression machine learning algorithms are the most widely algorithms used for the
sugarcane crop yield prediction. The review also confirms that the major parameters
used for prediction are Rainfall, humidity, temperature, sunlight, soil (pH, N, P, K, OC,
Zn, Fe, Cu, Mn, & S), type of the soil.

Main contributions of this work are:

• Analysing a correlation between sugarcane crop yield and various soil and climatic
parameters.

• Prediction of sugarcane yield by utilizing regression machine-learning algorithms.

Our work specifically focuses on the western regions of Satara district, Maharashtra,
India, which is known for its diverse agro-climatic areas. Further we examined three
regions within this area, including plain regions (PR), drought-prone regions (DPR),
and sub-mountain regions (SMR), all of which are known for cultivating sugarcane as a
major crop.
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2 Materials and Methods

Figure 1 shows the methodology followed for this study. The data used for the study
are climate, soil and crop yield data. After the data collection, the zone wise data pre-
processing was done & the Pearson Correlation Coefficient (PCC) was calculated. After
that developed the prediction model for sugarcane yield prediction using ML algorithm
& Model performance is measured using evaluation metrics & Generated the result.

Fig. 1. Methodology

2.1 Data Collection

The climate, soil and crop yield data are used in study from the year 2000 to 2015.
Table 2 shows the source description of the data collected for the study area for all the
three regions.

Soil moisture (soil_m), precipitation (ppt), vapor pressure (vap), actual evapotran-
spiration (aet), maximum temperature (tmax), and minimum temperature (tmin) these
parameters were used in the current study for the sugarcane yield prediction (YP).
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Table 2. Source of the Dataset

Sr. no Dataset Sources

1 Soil data Soil Survey and Soil Testing Laboratory, Satara

www.soilhealth.dac.gov.in

2 Climate Data Indian Metrological Department

3 Crop Yield data District Agriculture Department of Kolhapur

2.2 Data Pre-processing

After data collection, the data cleaning was done by applying missing value processing
methods like treatment of null values. The outliers were also removed to get the data
ready for the analysis.

2.3 Pearson Correlation Coefficient (PCC)

PCCwas calculated on the datasets of every agro-climatic region to understand the effect
of distinct parameters in the dataset, which affect the crop yield prediction (Eq. 1) [28].

rxy =
∑n

i

(
xi − x

′)(
yi − y

′)

√
∑n

i

(
xi − x′)2

√
∑n

i

(
y − y′)2

(1)

where,

n = Sample size.
xx, yi = Individual sample points indexed with i.

2.4 Crop Yield Prediction Using Machine Learning (ML) Algorithm

As the predicted value of yield will be Numerical, the category of algorithms selected
will be regression type. TheGradient Boosting regression, Random forest, Decisiontrees
Regression, Adaboost Regressionmachine learning (ML) algorithm is applied in current
study for sugarcane yield prediction (YP).

Gradient Boosting Regression: Gradient boosting regression is a ML algorithm that
allows for the optimization of any differentiable loss functions by building an additive
model in a forward stage-wisemanner. The negative gradient of the supplied loss function
is used to fit a regression tree at each stage [29].

http://www.soilhealth.dac.gov.in
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Algorithm:

Random Forest Regression: Random forest is an ensemble machine-learning algo-
rithm that creates a regression tree using the subset of feature and bootstrap samples [8,
29].

The algorithm is as follows: we choose a bootstrap sample from Ts, where Ts(i)
stands for the ith bootstrap, for each tree in the forest. Then, using a modified decision-
tree learning algorithm, we learn a decision tree. The procedure is changed as follows: at
each node of the tree, we randomly select a subset of the features f⊆ F, where F is the set
of features. Then, rather than splitting on F, the node splits on the best feature in f. After
that, the node splits based on f’s best feature rather than F’s. F is significantly smaller
in practice than f. Sometimes the most computationally expensive part of decision tree
learning is choosing which feature to split. We significantly speed up the learning of the
tree by reducing the collection of characteristics.
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Algorithm:

Decision Tree Regression: Decision trees are supervised machine learning algorithms
that are based on information. They have a tree structure comparable to a flow diagram,
with each internal node indicating an attribute analysis, the branch depicting the test
outcome, and each terminal node defining the class name [8, 29].

The decision tree has two stages:

i. Build a Decision Tree
ii. Pruning Decision Tree

The training dataset is split recursively using the best criterion in the first stage
until all or almost all of the data in each partition have the same class label. Consecutive
branches areminimised during the pruning stage to build the tree in away that effectively
generalises the model. To improve specific criteria in the decision tree, pruning often
entails traversing the decision tree from the bottom up or from the top down while
deleting the noisy and outlier nodes.
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Algorithm:

DT (S is a sample, F is a features)

Steps:
1. If End_Point (S, F) = true then

i. L = CNode()

ii. lLabel = divide(s)

iii. return L

2. root = CNode ()

3. root(test_condition) = discover the best split (S, F)

4. R = {r | r a probable result for the root(test_condition)}

5. For every value r Є R:

i. Sr = {s | root (test_condition) (s) = r and s Є S }

ii. Child = TreeGrowth( Sr ,F )

iii. Add a child as the root's descent and label the   edge {root

→child} as r

6. return root

Adaboost Regression: The AdaBoost regression is a meta-estimator that starts by fit-
ting a regression on the original dataset, then fits further copies of the regression on the
same dataset, but with the weights of instances changed based on the current predic-
tion’s error [29]. By adjusting the weight of the training set, the AdaBoost algorithm
is started. The training set (x1, y1), (x2, y2)…, (xn, yn) where each xi corresponds to
instance space X and each label yi is in the label set Y, which is identical to the set of
{-1, + 1}. It designates Wm as the weight for the training example in round m as Wm(i).
At the beginning (Wm(i) = 1/N, i = 1,…, N), the same weight will be set.

Algorithm:
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2.5 Model Evaluation

The efficiency of a machine-learning model is determined by comparing it to various
performance criteria or utilizing various evaluation methods. Performance of above
models is assessed using following evaluation metrics:

Adjusted R2: The R-squared adjusted for the number of predictors in the model is
known as adjusted R-squared (Eq. 2) [28].

Adjusted R2 =
{

1 −
[
(1 − R2)(n − 1)

(n − k − 1)

]}

(2)

where,

R2 = Sample R-square
k = Number of predictors variables
n = Total sample size

Mean Absolute Error (MAE): Mean Absolute Error is the arithmetical mean of the
absolute difference between the actual and predicted observations (Eq. 3) [4, 28].

MAE = 1/n
n∑

j=1

|yj − y
′
j| (3)

where,

i = 1, 2 …n observations
yj = actual observation
y

′
J = predicted observation

Root Mean Squared Error (RMSE): Root Mean Square Error is the measure of how
well a regression line fits the data points (Eq. 4) [28].

RMSE =

√
√
√
√∑n

j=1

(
yj − y

′
j

)2

n
(4)

where,

yj = actual observation
y

′
J = predicted observation

3 Results and Discussion

3.1 Pearson Correlation Coefficient (PCC)

Pearson correlation coefficient of soil & climate parameters with a crop yield of agro-
climatic regions is depicted in Table 3. The result shows that climate parameters such
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as tmax and tmin of this parameter are positively correlated in DPR and negatively
correlated in PR and SMR. It indicates that climate parameters i.e. tmax & tmin are
more effective parameters for DPR than PR and SMR. Soil parameters like soil moisture
(soil_m) and climate parameters like precipitation (ppt) are positively correlated in PR,
DPR and SMR. It indicates that these two parameters are more effective parameters of
all three region. In the PR and DPR climate parameters such as vapor pressure (vap)
and evapotranspiration (aet) are positively correlated and negatively correlated SMR. It
indicates that vapor pressure and evapotranspiration more effective parameters of PR
and DPR as compared to SMR.

Table 3. Correlation between Soil & Climate Parameters with Crop Yield for the Study Area

Agro-climatic Regions Parameters

P1(tmax) P2(tmin) P3(soil_m) P4(ppt) P5(vap) P6(aet)

PR −0.0945 −0.0744 0.16468082 0.0847 0.1835 0.01406

DPR 0.27706 0.29546 0.23695853 0.3129 0.42572 0.36806

SMR −0.2846 −0.2801 0.24612039 0.3012 -0.2728 -0.3654

3.2 Relationship Between Soil and Climate Parameters with Crop Yield
for the Study Area

The correlation of the parameters for the Plains, Drought Prone, and Sub-Mountain
Agro-climatic regions. For plains regions (PR), it is observed that soil parameters like
soil moisture (soil_m) and sugarcane yield is positively correlated. The climate parame-
ters such as precipitation (ppt), vapor pressure (vap), and actual evapotranspiration (aet)
are positively correlated with sugarcane yield, were as maximum temperature (tmax),
and Minimum temperature (tmin) are negatively correlated. The negative correlation of
temperature with crop yield indicates that as the temperature reduces the water holding
capacity of the soil is retained and which is very useful for sugarcane yield predic-
tion. For drought prone regions (DPR) the soil parameters like soil moisture(soil_m)
and climate parameters such as precipitation (ppt), vapor pressure (vap), actual evapo-
transpiration (aet), maximum temperature (tmax), and minimum temperature (tmin) are
equally important for the sugarcane crop production in the DPR. Due to water scarcity
in the drought prone regions the smallest change in these parameters affect the crop
yield.In correlation between sugarcane crop yield with soil and climate parameters of
the sub mountain regions (SMR). Here it has been observed that soil parameters like
soil moisture (soil_m) and climate parameters such as precipitation (ppt) are positively
correlated with sugarcane yield. The other climate parameters such as vapor pressure
(vap), and actual evapotranspiration (aet), maximum temperature (tmax), and minimum
temperature (tmin) are negatively correlated with sugarcane yield. It indicates that soil
moisture and precipitation are effective parameters for the sugarcane crop production
as compared to the other climate parameter such as vap, aet, tmin & tmax in the sub
mountain regions.
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3.3 Evaluation of Machine Learning Models

Table 4 shows the performance of the model of sugarcane yield prediction for Plain,
Drought Prone, and Sub Mountain agro-climatic regions. Gradient Boosting regression
showed accuracy scores of 85.33% for Plains, 69.62% forDrought Prone, and 61.68% for
Sub-Mountains agro-climatic regions respectively and the lowest accuracy scores were
of Random Forest regression having 38.19% for Sub Mountains, 74.68% for Plains,
62.47% for Drought Prone, and 38.19% for Sub Mountains. It is observed that the
accuracy score of the Plains regions is highest as compared to the other regions such as
Drought Prone and Sub-Mountain regions.

Table 4. Adjusted R2, MAE, RMSE value for Plain, Drought Prone, and Sub Mountain Regions

Algorithms Matrix Agro-climatic regions

Plains Drought Prone Sub-Mountain

Random Forest Adjusted R2 0.74 0.62 0.38

MAE 9.09 15.84 12

RMSE 10.12 22.15 14.79

Gradient boosting Regression Adjusted R2 0.85 0.69 0.61

MAE 8.58 15.31 11.38

RMSE 9.75 22.34 13.42

Adaboost Regression Adjusted R2 0.75 0.61 0.43

MAE 8.56 15.35 12.96

RMSE 9.73 22.86 15.32

Decision Tree Regression Adjusted R2 0.89 0.64 0.49

MAE 7.23 15.84 13.28

RMSE 8.3 24.31 15.2

Figure 2 depicts Actual vs Predicted crop yield. It is observed that predicted yield
values are influenced positively by sample number and the trend between actual and
predicted values is directly related. It can be inferred from the figure that actual values
show a significant drop for sample numbers ranging from 6 to 9. Actual and predicted
crop yields converge almost at the same point for sample number 11.
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Fig. 2. Actual vs Predicted crop yield

4 Conclusion

This study highlights the significance of considering the diverse agro-climatic regions
in predicting crop productivity. The Gradient Boosting algorithm was found to be
more effective than other machine learning algorithms in predicting sugarcane yield
in the plain, drought-prone, and sub-mountain regions, with accuracy scores of 85.33%,
69.62%, and 61.68%, respectively.Moreover, the study identified crucial soil and climate
parameters, such as soil moisture, precipitation, vapor pressure, actual evapotranspira-
tion, and temperature, that influence sugarcane yield. The results imply that farmers
can use the prediction model developed in this study to enhance sugarcane productivity.
However, the study has limitations, including its focus on only thewestern parts of Satara
district in Maharashtra and limited consideration of soil and climate parameters. Future
research should address these limitations by incorporating these parameters to develop
a more comprehensive sugarcane yield prediction model.
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Abstract. Plant diseases account for over 30%of production loss in India.
Early detection of these diseases is crucial to maintaining yield. How-
ever, manual surveillance is laborious, costly, time-consuming and requires
domain knowledge. Computer vision offers a non-destructive and efficient
solution to disease detection, with classical machine learning and deep
learning (DL) algorithms. DL methods offer several advantages, especially
in scenarios where there is a large amount of data to process. With auto-
matic feature extraction, these techniques can efficiently analyze multi-
dimensional inputs, reducing the time and effort required for processing.
Consequently, their usage has gained significant popularity in identify-
ing and diagnosing diseases in plants. In this paper, we conduct a com-
prehensive comparative study of 14 cutting-edge object detection algo-
rithms, including default and modified versions of YOLOv7 and YOLOv8.
Our study focuses on their performance in real-time plant disease detec-
tion. The study involved several stages, including pre-processing, fine-
tuning using pre-trained weights and validation on two publicly available
datasets, namely PlantDoc and Plants Final, comprising real-life images of
plant leaves. In particular, the study compared the performance of default
YOLO models with YOLO models that used default architecture after
freezing the backbone weights during theAs per Springer style, both city
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1 Introduction

Being the main source of earning in rural areas, agriculture plays an important
role in the development of developing countries like India. However, crop losses
due to diseases, pests and dynamic weather conditions significantly affecting
the contribution made by the agricultural sector. The losses in the agricultural
sector can have a significant impact on agro-based countries like India. The
cost of commonly consumed vegetables like onions, potatoes and tomatoes has
significantly risen from their typical prices, possibly attributed to crop losses.
Accurate and timely diagnosis of plant diseases is essential to prevent the wastage
of resources and promote effective management.

The traditional method of plant disease diagnosis is limited by its labor-
intensive and time-consuming nature. This leads to a high risk of yield losses in
areas without access to technical advice. Laboratory-based tests have complex
methods and time requirements, making them less practical. While some diseases
may have no visible symptoms or delayed effects, accurate diagnosis can be
challenging due to variations in symptoms, making it necessary for trained plant
scientists to carry out sight examinations [1].

To address these challenges, precision agriculture practices have been increas-
ingly adopted to achieve a sustained increase in efficiency andyields. Precision agri-
culture involves the utilisation of advanced technology sensors and analysis tools to
improve crop yields and aid in management decision-making. It is a recent concept
that has been implemented globally with the aim of boosting production, reducing
labor requirements and optimising fertiliser and irrigation management.

Plants often exhibit visible signs on leaves, trunks, flowers, or fruits, mak-
ing visual examination enough to predict the disease. As a result, non-invasive
methods have gained attention, with a focus on developing automated, fast and
accurate mechanisms for disease detection.

Technologies such as Computer Vision, Machine Learning and Deep Learning
which are sub-fields of Artificial Intelligence, have shown significant results in dif-
ferent sectors like healthcare, entertainment, defence, agriculture etc., to enhance
decision-making, automate tasks and improve overall efficiency. With the help
of computer vision, machines can perceive and interpret the world around them,
enabling them to perform tasks that were once exclusive to humans.

Image processing techniques are one of the most popular methods being
used for plant disease detection. High-quality cameras with sensitive sensors
have been developed, which can capture images in various formats such as vis-
ible light, spectral, thermal and fluorescence imaging. These images are then
processed using a variety of image processing approaches and used to train and
test Machine Learning algorithms. However, earlier work using classical machine
learning techniques faced limitations due to smaller datasets and hand-crafted
feature extraction methods, leading to limited performance and scope for detect-
ing various types of crops and diseases [2].

With recent advances in technology such as GPUs (Graphics Processing
Units), increased availability of data, new algorithms etc., deep learning has
overcome limitations faced by machine learning, enabling the development of
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more sophisticated and accurate automated systems. Deep learning algorithms
can extract meaningful features automatically from images and identify patterns
that are not easily detectable by human inspection. Therefore, the use of deep
learning in conjunction with high-quality imaging systems and image process-
ing techniques is a promising approach for improving plant disease detection
accuracy and reducing yield losses.

In the past decade, a number of convolutional neural network architectures
have been developed for classifying images into different classes. Some of them
are LeNet, AlexNet, VGG, GoogLenet and ResNet. DenseNet, in particular,
has been noted to achieve comparable accuracy to ResNet while utilising fewer
parameters. These architectures have improved prediction performance by incor-
porating non-convolutional layers, residual learning and batch normalisation
techniques. Moreover, they have reduced computational complexity by employ-
ing smaller convolution filters as compared to previous CNN architectures [3].

Object detection architectures have evolved significantly over the years, with
both two-stage and one-stage models being used for this task. Two-stage mod-
els use convolution-based region proposal networks to filter regions of interest
before passing them through the region of interest pooling network. However,
this approach has a quantisation issue that affects region of interest prediction.
To address this, a masked model based on a convolution network was developed
with a ResNet backbone that enhances semantic segmentation and small object
detection. It also uses pixel-to-pixel alignment instead of ROI pooling, which
considers all computational values of the features [4].

One-stage models like YOLO and SSD enable real-time detection of multiple
classes from input images without prior predetermination. YOLOv3, for instance,
uses cross-entropy functions and a feature pyramid network-like system to make
feature extraction more vigorous. It is faster than single shot detector due to its
darknet backbone. RetinaNet is another model that uses a feature pyramid net-
work as a backbone classifier to improve cross-entropy performance and decrease
missed classified cases during training. Several deep learning architectures have
been developed based on standard models to enhance ROI determination and dis-
ease identification. This comparison was made by L. Tan et al. [5].

The development of these models has significantly contributed to the
advancement of computer vision and object detection techniques. But the emer-
gence of YOLOv7 [6] and YOLOv8 [7] has expanded the possibilities in the area
of Object Detection.

This study compares different versions of YOLOv7 and YOLOv8 for the via-
bility of object detection to detect and classify diseases. For this comparison, two
datasets are used, namely PlantDoc [8] and Plants Final [9]. These datasets have
real-life plants images which can relate to real-time disease detection tasks. The
paper is structured into six sections, beginning with the introduction in Sect. 1.
Section 2 provides a comprehensive review of relevant literature. Section 3 details
the dataset used in our study. The methodology employed in the experiments
and evaluation metrics is outlined in Sect. 4. Section 5 reports the experimental
results, while Sect. 6 presents the conclusions and outlines potential areas for
future research.
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2 Literature Review

The advancements in AI have brought significant breakthroughs in deep learning
and computer vision technologies, addressing complex issues such as voice and
face recognition, NLP, medical image processing and translation, Autonomous
vehicles etc. Convolutional neural networks have demonstrated their effective-
ness in several industries, including automotive, healthcare, finance etc. and are
now being utilised in agriculture for the automated detection of crop diseases,
which provides a viable alternative to conventional methods. Recent research
has introduced various models and applications for crop disease identification
and diagnosis, which will be discussed in this section.

In recent years, crop disease identification and diagnosis using deep learn-
ing models have shown immense potential, with several studies exploring differ-
ent approaches. For instance, VGG-16 was used in a deep convolutional neural
network framework by B. S. Anami et al. [10] to classify various stresses in
paddy crops. A. Fuentes et al. [11] used ResNet for classification combined with
single-stage and two-stage Object detection algorithms in tomato plant disease
detection. D. Oppenheim et al. [12] developed an improved VGG network-based
algorithm for accurate and quick identification and classification of spots on
potato crops.

Several studies demonstrate the potential of deep learning models for crop
disease identification and diagnosis and highlight the importance of continued
research to develop more accurate and efficient methods for disease detection
in agriculture. Researchers have explored methods to improve disease recogni-
tion and classification accuracy. J. Chen et al. [13] proposed a DenseNet-based
method for detecting rice plant diseases. A region growing algorithm based on
CNN architecture to identify cucumber disease spots in greenhouse setups was
developed by J. Ma et al. [14]. VGGNet was used by C. R. Rahman et al. [15] in
a disease recognition algorithm combined with InceptionV3 with reduced param-
eters and improved classification accuracy for rice plants. X. Fan et al. [16] used
images with complex backgrounds and proposed an improved CNN architecture
based model to identify few common corn diseases. A. I. Khan et al. [17] used
the Xception model for leaf classification in a two-stage apple disease detection
system combined with the Faster-RCNN model for disease detection.

A. Abbas et al. [18] utilised a deep learning approach that incorporates Con-
ditional Generative Adversarial Network (GAN) to produce synthetic images of
tomato leaves for disease detection. C. Liu et al. [19] has presented a novel app-
roach to identify instances of cucumber leaf diseases that are present in complex
backgrounds. This method involves using an EFDet, which stands for Efficient
Feature Detection. First, the efficient backbone network extracts the features
from the input and then the feature fusion module combines these features at
different levels to provide a complete representation. Finally, the predictor uses
this comprehensive representation to detect the presence of cucumber leaf dis-
eases. On the other hand, M. P. Mathew et al. [20] developed a YOLOv5-based
disease detection model that can identify bacterial spot disease in bell pepper
plants from the symptoms seen on the leaves. In addition, R. Barosa et al. [21]
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proposed a framework for an aquaponics system that employs image processing
and decision tree methodology for detecting diseases in eggplant, chilli, citrus
and mandarin and then generating a report that is sent to the owner via a mobile
application if a disease is detected.

A novel system for detecting plant diseases using threshold segmentation
and random forest classification was developed by S. Kailasam et al. [22]. Their
approach achieved an impressive recognition accuracy of over 97% and a true
optimism rate of over 99%, along with a PSNR, SSIM and MSE of over 59, 0.99
and 0.008. A. M. Roy et al. [23] proposed a high-performance object detection
framework that addressed several common issues in plant pest and disease mon-
itoring using the modified YOLOv4 algorithm. The proposed model achieved an
accuracy of over 90%, an F1 score of over 93% and an mAP value of over 96%
at a detection rate of 70 FPS by incorporating DenseNet, SPP and modified
PANet.

Recent works on the PlantDoc dataset have shown the immense potential
for object detection in detecting plant diseases. A. Shill et al. [24] proposed
M YOLOv4 model based on YOLOv4, which achieves an mAP value of 55.45%.
It was also seen in the above study that YOLO versions overpowered faster
RCNN and were better in Object detection with higher fps. D. Wang et al. [25]
proposed the TL-SE-ResNeXt-101 model, which employs transfer learning and
residual networks, achieves an mAP of 47.37% when the input image dimensions
are 224 * 224. S. Vaidya et al. [26] used an augmented PlantDoc dataset achieving
an mAP value of 71%. No research has been published yet on the Plants Final
dataset, which is comparatively a new dataset.

The literature review has shown that deep learning techniques have been
extensively used by researchers for detecting and classifying plant or crop dis-
eases. The analysis also revealed that most disease detection systems are devel-
oped for open-air farms, with only a few systems designed for modern farming
systems like aquaponics or hydroponics. Furthermore, most models are developed
to identify multiple diseases of a single crop. Detecting diseases in crops is chal-
lenging due to several reasons. One of them is the similarity in foliage among dif-
ferent crops, which can impact the detection system’s performance. Additionally,
the visual symptoms of different diseases may appear similar due to variations in
light illumination during imaging. Moreover, there is a lack of large-scale open-
source datasets available for training deep learning models. While PlantVillage
and PlantDoc have been instrumental in advancing the field of plant disease
detection and developing more effective detection models, recently published
datasets such as Plants Final have not received as much attention. As a result,
there has been limited research on this dataset and its potential for improving
plant disease detection. However, it is possible that Plants Final, along with
other newly developed datasets, may provide valuable insights and opportuni-
ties for further enhancing the accuracy and efficiency of plant disease detection
models. Therefore, it is important for researchers to explore the potential of all
available datasets in order to make the most significant advancements in this
field.
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3 Dataset Analysis

In this paper, we utilised two publicly available datasets for Plant Disease Detec-
tion: the PlantDoc dataset and the Plants Final dataset. Both datasets are exten-
sively described in this section to provide a comprehensive understanding of the
data sources used in our research. PlantDoc dataset comprises a collection of
images of diseased and healthy plant leaves from 13 different plant species cap-
tured in diverse environments and under varying conditions. On the other hand,
the Plants Final dataset is a large-scale dataset consisting of images of dis-
eased and healthy plant leaves from 13 plant species. It combines images from
the PlantDoc dataset and several other sources. These datasets are valuable
resources for the development and evaluation of machine learning algorithms for
plant disease detection and have been widely used in the research community. By
utilising these datasets, we aimed to contribute to the development of accurate
and efficient models for plant disease detection, ultimately improving crop yield
and food security.

3.1 PlantDoc Dataset

The PlantDoc dataset was published by researchers from IIT Gandhinagar in
November 2021. One of the authors of the PlantDoc dataset made it publicly
available. There are 2598 images included in this dataset that pertain to 13
different plant species and may exhibit up to 17 different disease classifications.
These images were obtained through web scraping and have been annotated [8].
It includes both healthy and diseased categories, suitable for image classification
and object detection. A total of 8,851 labels are available. The distribution of
the PlantDoc dataset is shown in Fig. 1.

The PlantDoc dataset was carefully curated to address real-world issues. The
raw images, referred to as uncropped images, were used to assess the deep learn-
ing methods performance. The dataset includes a variety of leaf image samples,
such as leaf image records from the natural environment, leaf images with white
backgrounds, other objects in the image and composites of leaf images.

For the model, a modified version of the PlantDoc Dataset was used with
some corrections and adjustments made to the original Dataset by Roboflow.
To improve the accuracy of the annotations, more than 28 annotations were
rectified. Some bounding boxes were adjusted as they were marginally out of
the frame and had to be cropped to align with the image’s edge. In some cases,
the bounding boxes mistakenly surrounded zero pixels and had to be removed.
These corrections included 25 annotations in the training set and three in the
validation set.

Sample labelled images from the PlantDoc dataset are shown in Fig. 2.

3.2 Plants Final Dataset

Plants Final Dataset is a publicly available dataset provided by Roboflow on Mar
5, 2023. In this paper, we have used “640 and Augmentation” version, which has
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Fig. 1. Class Distribution in PlantDoc

augmented images of size 640 * 640 which is the default for both YOLOv7 and
YOLOv8. This dataset contains 5705 images with the split of approximately 5000
training, 367 validation and 364 test set. Images in the dataset are preprocessed
using auto orientation and resizing to 640 * 640. Horizontally flipped images are
used here to make training more robust. Class Distribution for the Plants Final
dataset is shown in Fig. 3. Sample labelled images from the Plants Final dataset
are shown in Fig. 4.

4 Methodology and Evaluation Metrics

4.1 Methodology

This section provides an overview of the methodology used in the study and the
modifications made to the default YOLOv7 and YOLOv8 models. The Plant-
Doc dataset was initially subjected to augmentation by applying horizontal and
vertical flips with a probability of 0.5 for each image during an epoch. This app-
roach helped to increase the dataset’s size and diversity, thereby improving the
robustness of the model to variations in the input data. The Plants Final dataset
was already horizontally augmented, so a vertical flip with a probability of 0.5
was introduced to further increase the model’s ability to predict images in any
orientation.
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Fig. 2. Sample Images from PlantDoc Dataset

After the augmentation, fine-tuning over pre-trained weights was carried out
in two phases. In the first phase, default settings were used after hyperparam-
eter evolution, which involved finding the best possible settings for the model’s
hyperparameters during a 300 epochs trial run. This phase helped to improve
the model’s overall performance by optimising the settings for each component
of the model.

In the second phase, the weights of the architecture backbone were frozen,
as it is responsible for extracting low-level features that are similar regardless
of the object being detected. This approach helped to reduce the load on the
GPU and shorten the training time while maintaining the model’s performance.
Overall, these modifications were primarily aimed at improving the efficiency
and effectiveness of the model for plant disease detection which is a critical area
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Fig. 3. Class Distribution in Plants Final

of research with significant implications for agricultural productivity and food
security.

4.2 Evaluation Metrics

For evaluating a model’s performance, we look at three metrics: Precision, Recall
and Mean Average Precision (mAP). These metrics consider true positive (TP),
false positive (FP), false negative (FN), average precision (AP) and intersection
over union (IoU).

Precision measures how well the model can identify true positives out of all
positive predictions.

Precision =
TP

TP + FP
(1)

Recall measures how well the model can identify true positives out of all correct
predictions.

Recall =
TP

TP + FN
(2)

IoU calculates the overlap between the actual and predicted bounding box coor-
dinates. The higher the overlap, the more accurate the bounding box.
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IoU =
Area of Intersection

Area of Union
(3)

The mAP is a widely used metric for object detection systems. It considers
various factors like Precision, Recall, false positives, false negatives and IoU. We
calculate the area under the Precision-Recall curve and average the precision for
all classes at a specific IoU value. This provides a comprehensive assessment of
the model’s ability to detect objects in an image.

mAP =
1
n

k=n∑

k=1

APk (4)

5 Experimental Results

In this paper, fine-tuning and validation were conducted on a total of 28 YOLO
models that were pre-trained on the COCO [27] image dataset. These models
comprise 8 YOLOv8 models and 6 YOLOv7 models on each dataset, which
include “modified” versions with frozen backbone weights from the pre-trained
architecture. The training process was executed using a GPU (Quadro RTX
6000, 24220 MiB) with a batch size of 16, image size of 416*416 for the PlantDoc
dataset and 640*640 for the Plants Final dataset.

In this study, the process of hyperparameter evolution was conducted for a
total of 300 epochs, which is a relatively large number of iterations. Hyperpa-
rameter evolution is a process of finding the best possible values for the hyper-
parameters of a machine learning model. It involves running multiple iterations
of the model with different combinations of hyperparameters and selecting the
combination that results in the best performance. However, despite the extensive
experimentation, only minor changes were observed in a few of the hyperparam-
eters. Thus default set of hyperparameters was used. Nonetheless, the hyperpa-
rameter evolution process is crucial for optimising the performance of the model
and is an important step in the development of any machine learning system.

Post hyperparameter evolution process fine-tuning was done and the Results
are shown in Table 1.

Sample label images and corresponding prediction images of the best-
performing model, i.e. YOLOv8 modified on Plants-Final dataset, is shown in
Fig. 4 and Fig. 5, respectively.

When the plot of various validation losses vs the number of epochs was
plotted it was noted that models with complex structure were getting over-fitted
on Data, whereas modified versions were fluctuating in validation losses.

The modifications made to YOLOv7 and YOLOv8 were found to significantly
reduce training time and GPU memory usage. Specifically, the modified versions
were observed to reduce training time by 9% to 25% and GPU memory usage
by 19% to 47%, depending on the size of the backbone architecture.
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Table 1. Evaluated results on different models

Dataset Model Precision Recall mAP@0.5

PlantDoc YOLOv8 nano 0.705 0.564 0.646

YOLOv8 nano modified 0.676 0.466 0.572

YOLOv8 medium 0.715 0.586 0.675

YOLOv8 medium modified 0.653 0.536 0.612

YOLOv8 large 0.691 0.604 0.677

YOLOv8 large modified 0.711 0.529 0.623

YOLOv8 XL (x6) 0.745 0.649 0.708

YOLOv8 XL (x6) modified 0.671 0.588 0.639

YOLOv7-tiny 0.568 0.629 0.618

YOLOv7-tiny modified 0.448 0.587 0.559

YOLOv7 0.665 0.618 0.635

YOLOv7 modified 0.643 0.517 0.569

YOLOv7-x 0.714 0.602 0.652

YOLOv7-x modified 0.667 0.543 0.609

Plants Final YOLOv8 nano 0.688 0.479 0.598

YOLOv8 nano modified 0.721 0.512 0.62

YOLOv8 medium 0.767 0.547 0.666

YOLOv8 medium modified 0.729 0.552 0.656

YOLOv8 large 0.747 0.57 0.672

YOLOv8 large modified 0.766 0.568 0.674

YOLOv8 XL (x6) 0.769 0.573 0.685

YOLOv8 XL (x6) modified 0.768 0.597 0.699

YOLOv7-tiny 0.699 0.594 0.628

YOLOv7-tiny modified 0.642 0.571 0.583

YOLOv7 0.724 0.639 0.67

YOLOv7 modified 0.658 0.625 0.624

YOLOv7-x 0.705 0.627 0.672

YOLOv7-x modified 0.716 0.578 0.617

The evaluation of the modified versions of YOLOv7 and YOLOv8 on the
PlantDoc dataset and the Plants Final dataset revealed some interesting obser-
vations. Table 1 shows that the modified YOLOv7 versions showed a reduction
in mAP values ranging from 6.6% to 10.3% on the PlantDoc dataset and 6.8%
to 8.1% on the Plants Final dataset. Similarly, the modified YOLOv8 versions
showed a decrease in mAP values ranging from 7.9% to 11.5% on the PlantDoc
dataset.

However, it is noteworthy that the modified YOLOv8 versions performed
better than the default versions in most cases when trained on the Plants Final
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Fig. 4. Sample labelled images in Plants-Final dataset

dataset. Examination of the two datasets revealed that the primary difference
between them was the image resolution and the number of images. The Plants
Final dataset contained images with a higher resolution and a larger number of
images than the PlantDoc dataset.

While YOLOv8 performed better in terms of mAP than YOLOv7 on both
datasets, the difference was only marginal. Based on these observations, it can
be inferred that the modifications made to the YOLOv7 and YOLOv8 models
should be used with larger and higher-resolution datasets to achieve optimal
results. However, further investigation is needed to fully understand the potential
benefits of these modifications and their applicability to other object detection
models and datasets.
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Fig. 5. Sample predicted images in Plants-Final dataset

6 Conclusions and Future Work

In conclusion, this study demonstrated that freezing backbone structures in
object detection can be a viable approach to achieving comparable results while
reducing training time and GPU memory usage. Moreover, the findings suggest
that this method may be applied to other object detection tasks beyond plant
datasets. Additionally, the study identified that complex models were suscepti-
ble to over-fitting and thus employed early stopping to address this issue. The
results also indicated that increasing the dataset size, either by enhancing image
resolution or increasing the number of images, can improve object detection
performance. Looking forward, future work will concentrate on expanding the
dataset by incorporating more real-life images and making logical modifications
to object detection models. These efforts may lead to better performance in
object detection tasks, thus advancing the field.
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Abstract. In the agricultural sector or applications, manpower is needed for seg-
regating or sorting different types of fruits. The improved sorting of fruits has an
impact on the quality evaluation. Automation enhances and improves the standard
and the efficiency of manufacturing goods. The main objective of the proposed
system is to replace themanual inspection system to reduce themanpower required
by using computer vision technology in the field of agriculture and fruit industry.
An automatic fruit quality inspection system is used for sorting and grading of
fruits- apple, banana and orange. This will help to speed up the process, improve
accuracy and efficiency in less time. In recent research, there have been several
algorithms developed by researchers to sort fruits using computer vision. The
identification of class of the fruit relies on commonly used features, such as color,
texture and morphological features. The proposed system acquires images from a
camera placed in front of a laptop, and after processing the images, it will segregate
them into specific types of fruits and will detect the quality of fruit identified. The
fruits dataset is collected from the data library (Kaggle) to train the system. Infor-
mation and images of fruits are in the dataset. FCN algorithm reads the dataset and
learns the content/features of the fruits- apple, banana and orange. Fruits features
will be used to identify the fruit type and quality of fruits. So, the segregation
of fruits is done based on features such as shape, size and color of fruits. In this
paper, we proposed a deep learning-based approach for fruit segregation using
FCNs. We trained our FCN model on a large dataset of fruit images and achieved
a high accuracy rate of 88.41% on the test dataset.

Keywords: Deep Learning · FCN · Computer Vision · Python · OpenCV ·
Feature Extraction · Google Colab · YOLO · Image Processing

1 Introduction

The use of image processing has been developing steadily in a variety of fields, including
industrial, medical, real-time imaging, texture classification, object recognition, etc.
Another rapidly expanding area of research is image processing and computer vision.
Many plant diseases affect fruits and vegetables. As diseases can be observed on plant
leaves and fruits, disease detection is crucial in agriculture. Fruit illnesses can be caused
by pathogens, fungi, bacteria, microorganisms, viruses, and unfavorable environments.
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It is becoming more appealing to use image processing technology and computer
vision software to identify fruit illness and fruit quality. Therefore, it is required to design
a quick and affordable technique for inspecting the quality of fruit. There are numerous
manual techniques for spotting fruit illnesses in their early stages. Seeing fruits with the
naked eye is a classic but ineffective method of spotting fruit diseases. Digital techniques
can make illness detection more efficient, accurate, and time efficient. To sort and grade
different fruits, a fruit quality inspection system that operates automatically can be
deployed. For precise fruit disease detection and identification, researchers have created
numerous algorithms and various image processing approaches.

A collection of machine learning algorithms called “deep learning,” which is based
on the artificial neural network (ANN), is used to extract the needed information from
a huge quantity of data using a mix of different methodologies. With the introduction
of the back propagation method, one of the optimization methods, ANN attained its
pinnacle, yet it reaches a technological limit. Hence, a nonlinear function led to the
kernel approach (Support Vector Machine, Gaussian Process, etc.), which then led to
machine learning. Many computational issues, initialization issues, and local minima
issues are some of ANN’s drawbacks. Pre-training employing unsupervised learning,
computer development, parallel processing using GPGPU (General-Purpose Computing
on Graphics Processing Units), and the growth of big data are the factors that could
solve the challenges. Many issues are addressed by deep learning studies that are not
addressed by traditional machine learning techniques. Several deep learning algorithms,
including DNN (Deep Neural Network), CNN (Convolutional Neural Network), and
RNN, are used in various fields (Recurrent Neural Network). Particularly in the areas of
image processing such as image classification and image recognition, the CNN method
performs well. As a result, numerous studies utilizing CNNs have been carried out and
a variety of CNN models have been constructed. Models are developed in accordance
with the properties of the data and fields, and transfer learning utilizing deep learning is
also used by importing a pre-training model built in a healthy environment.

To extract information from data, the feature extraction procedure is crucial. The
use of deep learning algorithms can produce more objective and superior features. One
benefit of using CNN is that it can automatically extract features and evaluate data
without the need for professional knowledge for the input data. This procedure evaluates
the effectiveness of machine learning. The paper discusses the segregation of fruits
according to their size, color and shape. It will then display the name and quality of each
fruit after segregating the various fruits in an image.

2 Literature Survey

Researchers have used various deep learning techniques, such as Convolutional Neural
Networks (CNN) [1], to recognize and classify fruits based on their shape, size, color, and
texture. Anand Upadhyay, Sunny Singh, and Shona Kanojia developed a CNN-based
system to segregate ripe and raw bananas with high accuracy [2]. Rucha Dandavate
and Vineet Patodkar developed a CNN-based fruit classification model that used data
augmentation techniques to improve classification accuracy [3].
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Y. Liu, X. Xu, L. Zhang, andW. Liang proposed an improved CNN-based model for
fruit recognition that achieved a recognition rate of 80.8% [4].

Anuja Bhargava, Atul Bansal & Vishal Goyal developed a machine learning-based
detection and sorting system that achieved an accuracy rate of 84.9% for five different
fruits and vegetables [5].

Machine learning algorithms have also been used to sort multiple fruits and
vegetables based on their quality and maturity [6–8].

Aafreen Kazi & Siba Prasad Panda proposed a system for determining the freshness
of fruits in the food industry using transfer learning [9].

Researchers have also explored the use of deep learning techniques for fruit segmen-
tation and packaging. Anand Upadhyay, Sunny Singh, and Shona Kanojia developed a
fruit segregation and packaging machine that used a CNN-based system to segregate
and package fruits automatically [10].

Other researchers have explored the use of hyperspectral imaging and data augmen-
tation techniques to improve fruit recognition accuracy. J Steinbrener, K Posch, and R
Leitner proposed a hyperspectral fruit and vegetable classification system using CNNs
[11].

In addition, some researchers have explored the use of deep learning techniques for
fruit defect identification and maturity detection. D. Sahu and R. M. Potdar proposed an
image analysis-based system for defect identification and maturity detection of mango
fruits [12].

One of the studies on fruit detection and segmentation using deep learning was
conducted by Liu et al. [13], where they proposed an efficient method for apple detection
and segmentation in the context of harvesting robots. The proposed method used a deep
learning model based on the Faster R-CNN architecture, achieving high detection and
segmentation accuracy.

Similarly, NorhidayahMohdRozi et al. [14] proposed an artificial intelligence-based
approach for fruit segmentation using a deep learning model based on the Mask R-CNN
architecture. The proposedmethod achieved high accuracy in segmenting different types
of fruits, including apples, bananas, and oranges.

Dhanapal and Jeyanthi [15] conducted a survey on fruit recognition using deep
learning approaches, where they reviewed different deep learning models, including
CNN, RNN, and LSTM. They discussed the advantages and limitations of each model
and highlighted the challenges faced in the field of fruit recognition using deep learning.

Another survey was conducted by Ukwuoma et al. [16], where they reviewed recent
advancements in fruit detection and classification using deep learning techniques. They
discussed different deep learning models, including CNN, R-CNN, and YOLO, and
compared their performance in fruit detection and classification tasks.

Nur-E-AzninMimma et al. [17] proposed a fruit classification and detection applica-
tion using a deep learning model based on the CNN architecture. The proposed method
achieved high accuracy in classifying and detecting different types of fruits, including
apples, bananas, and oranges.



228 A. Dehankar et al.

Shaikh et al. [18] proposed a deep learning-based approach for mango grading,
where they used a CNN model to detect and classify mangoes based on their ripeness.
The proposed method achieved high accuracy in mango grading, which can help in
optimizing mango supply chains.

Liu et al. [19] proposed a novel method for apple grading using an improved Faster
R-CNN model. The proposed method achieved high accuracy in grading apples based
on their size and shape, which can help in automating apple grading processes.

Dandawate [20] proposed a deep learning-based approach for mango fruit detection
and disease classification. The proposedmethod used aCNNmodel to detect and classify
mango fruits based on their health status, which can help in early disease detection and
prevention.

Zhang et al. [21] conducted a survey on recent advances in fruit detection and
segmentation, where they reviewed different deep learning models, including CNN,
R-CNN, and Mask R-CNN. They discussed the advantages and limitations of each
model and highlighted the future directions of research in the field of fruit detection and
segmentation.

Finally, Lin et al. [22] proposed a robust fruit detection and segmentation method for
apple harvesting using deep learning. The proposed method used a deep learning model
based on the Mask R-CNN architecture, achieving high accuracy in fruit detection and
segmentation, which can help in automating apple harvesting processes.

3 Methodology

3.1 Data Collection

For deep learning or machine learning, a large amount of data in the form of images is
always needed as a primary requirement. The first method for collecting data involves
capturing multiple images of fruits in perfect lighting conditions to obtain better results.
However, capturing vast numbers of images can be very timeconsuming and not feasible
for us. The second method is to use pre-made datasets that are available on various
platforms that share datasets for research purposes. One such platform is Kaggle, which
we have chosen to obtain our dataset for the proposed work. From Kaggle, a dataset
with 13.6k images of three types of fruits - apples, bananas, and oranges is obtained. The
dataset contains 6 classes of images, namely FreshApple, FreshBanana, FreshOranges,
RottenApple, RottenBanana, and RottenOranges.

3.2 Data Pre-processing

Data preprocessing is a critical step in any machine learning or deep learning as it helps
prepare the dataset for the model training process. In this paper of fruit segregation
using deep learning, a pre-made dataset is used which reduces our workload in data
preprocessing as it removes irrelevant or blurry images or labels each image indicating
the corresponding fruit type. Instead, it focuses on resizing the images to ensure that
all the images have the same dimensions. To tackle the issue of overfitting, which is a
common problem in deep learning algorithms, data augmentation techniques such as
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rotation, flipping, and zooming are utilized This technique increases the overall size of
the dataset and helps the model to generalize better. The RGB images are converted to
grayscale using OpenCV to allow the model to learn better. Furthermore, we normalized
the pixel values of the images to ensure that the model trained efficiently and accurately.
Data splitting and class balancing are not necessary as the Kaggle dataset used had
already been separated into training and testing sets, and the classes have an equal
number of images.

Overall, by performing these data preprocessing techniques, it is ensured that our
model could learn effectively from the dataset and that it could generalize well to new
data. Proper data preprocessing can significantly impact the model’s performance and
accuracy, and therefore it is essential to consider these techniques during the initial stages
of any deep learning project. Results of data pre-processing are shown in Fig. 1.

Fig. 1. (56 × 56) resize image.

3.3 Model Selection

The previous work in deep learning has mainly focused on using CNN (Convolutional
Neural Network) and other similar algorithms. However, the proposed system on fruit
segregation using deep learning, we aim to achieve better accuracy and therefore opted
for FCN (Fully Convolutional Network), a type of neural network commonly used in
computer vision tasks.

One of the key features of FCN is that it is a fully convolutional architecture that uses
only convolutional layers for both feature extraction and classification. This is different
from traditional CNNs, which often have a few fully connected layers at the end. The
architecture of FCN is found to be particularly suitable as it can process images of
arbitrary size, which is important for image segmentation tasks where the output mask
needs to have the same size as the input image. The FCN architecture uses a combination
of downsampling and upsampling layers to extract features from the input image and
generate the output mask. This approach allows FCN to capturemore spatial information
from the input image, resulting in better segmentation accuracy.
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Overall, FCN is a powerful algorithm that helped us achieve better accuracy. The
model summary is shown in Fig. 2.

Fig. 2. Model Summary.

3.4 Hyperparameter Tuning

Hyperparameter tuning is the process of selecting the optimal values for the hyperpa-
rameters of a machine learning model. Hyperparameters are parameters that are not
learned during model training, but instead must be set before training begins. Examples
of hyperparameters in deep learning include learning rate, batch size, number of epochs,
and network architecture.

The proposed systemperforms hyperparameter tuning to improve the accuracy of our
model. We started by selecting a range of values for each hyperparameter and then ran
multiple experiments using different combinations of hyperparameter values. For exam-
ple, we experimented with different learning rates, batch sizes, and number of epochs
to find the optimal values for our model. We also tried different network architectures,
such as varying the number of convolutional layers, to see which configuration provided
the best accuracy.

Based on the results of our experiments, the hyperparameters that provided the best
accuracy are selected and then used those values to train our final model Fig. 3.
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Fig. 3. Hyperparameters

3.5 Model Evaluation

The proposed system uses FCN (Fully Convolutional Network) as our deep learning
algorithm for fruit segmentation. After training our FCN model on a large dataset of
fruit images, its performance is evaluated using various performance metrics. One of the
primary performance metrics used to evaluate the FCN model is pixel accuracy, which
measures the percentage of pixels in the predicted mask that are correctly classified.
We also used intersection over union (IoU) and mean intersection over union (mIoU)
as performance metrics. IoU measures the overlap between the predicted mask and the
ground truth mask, while mIoU is the average IoU over all classes of fruit.

In addition to these metrics, we used test images to visually inspect the model’s
segmentation output and ensured that it was accurately segmenting the fruit images. This
visual inspection allowed us to identify any areas where the model was struggling and
make adjustments to improve its performance. Overall, our evaluation of the FCNmodel
using various performance metrics and visualization techniques allowed us to assess its
accuracy and identify areas for improvement. By iteratively refining our model based on
these evaluations, we were able to achieve a high level of accuracy in fruit segregation.
Figure 4(a) shows the training and validation accuracy of the model. Figure 4(b) shows
the accuracy of the model with test datasets.

3.6 Model Deployment

Model deployment involves making the trained model available for use by others. In the
proposed system, the trained FCN model needs to be deployed so that it can be used to
classify fruits in real-world scenarios. The Tkinter library is a popular Python library
used to create graphical user interfaces. It provides a set of tools and widgets that can
be used to develop interactive applications. The system uses Tkinter library to create
an intuitive interface that enables users to easily input fruit images and obtain results.
By developing a GUI for the trained FCN model using the Tkinter Python library it
makes the fruit segregation process more accessible and user-friendly, allowing users
with limited programming knowledge to make use of our model. Figure 5 shows the
output of the model deployed using Tkinter. The GUI can be run on any device with
Python and the required dependencies installed, making the model deployment process
efficient and convenient for end-users.
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Fig. 4. (a) Training and Validation Accuracy (b). Testing Accuracy.

4 Technologies Used

4.1 Deep Learning

Deep learning is a subfield of machine learning that involves the use of artificial neural
networks to model and solve complex problems. The term “deep” refers to the fact that
these networks typically consist of multiple layers of interconnected nodes, with each
layer responsible for extracting higher-level features from the input data.

Some of the most commonly used deep learning algorithms include convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and generative adversar-
ial networks (GANs). These algorithms have been developed and refined over several
decades, and they continue to be the subject of ongoing research and development in the
field of deep learning.
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Fig. 5. Model Deployment using Tkinter.

4.2 Python

Python is a high-level programming language used for various purposes such as web
development, data analysis, artificial intelligence, scientific computing, and more. It is
known for its simplicity, readability, and versatility. Python has a vast standard library
and a huge community of developers constantly creating new libraries and tools. It
supports multiple programming paradigms, including object-oriented, functional, and
procedural programming. Python is open-source and cross-platform, meaning it can be
used on different operating systems like Windows, macOS, and Linux.

4.3 OpenCV

A free and open-source software library for computer vision and machine learning is
called OpenCV (Open Source Computer Vision Library). A wide range of computer
vision and machine learning algorithms, both traditional and cutting-edge, are among
the more than 2500 optimised algorithms in the library. These algorithms can be applied
to recognise faces and objects, classify human activity in videos, track moving objects,
extract 3D object models from stereo cameras, stitch images together to create high-
resolution images of the entire scene, look for identical images in image databases, and
remove red eyes from flash images.
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4.4 YOLO

YOLO (You Only Look Once) is an object detection model that is widely used in
computer vision applications. It was developed by Joseph Redmon, Santosh Divvala,
Ross Girshick, and Ali Farhadi in 2016. YOLO is a single-stage detector that processes
the entire image at once and outputs bounding boxes and class probabilities directly. It
divides the input image into a grid of cells and for each cell predicts bounding boxes,
class probabilities, and confidence scores. The confidence score reflects the model’s
confidence that a given bounding box contains an object.

4.5 Tkinter

Tkinter is a standard GUI (Graphical User Interface) library for Python programming
language. It provides a simple way to create windows, dialogs, buttons, menus, etc. in
a Python application. Tkinter is a builtin module in Python and does not require any
external installation. With the help of Tkinter, you can create a GUIbased application
that interacts with the user. It is a cross-platform GUI toolkit, which means that your
codewill work on all major operating systems likeWindows,macOS, and Linux. Tkinter
is widely used for developing desktop applications, games, scientific and engineering
applications, and other applications.

5 Result

We evaluated our proposed system on a test dataset of fruit images. The test dataset
consists of images that were not used for training themodel.We achieved a high accuracy
rate of 88.41% on the test dataset, which indicates that our model is highly effective in
identifying and classifying fruits. Figure 6 shows the output of fruit segregation system.

Fig. 6. Running system in python virtual environment.
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In our work, we have implemented the YOLO object detection model for fruit detec-
tion, and for this purpose, we have utilized the cvlib library. Once the fruit is detected,
we need to perform classification based on its quality. For building and training our
model, we opted to use Google Colab. The reason behind choosing Google Colab is that
it offers free GPU resources for 24 h, which greatly reduces the training time of our
model. Therefore, we can train and fine-tune our model with large datasets in a shorter
amount of time. Figure 7 shows the fruit detection in the system.

Fig. 7. Fruit Detection

The system uses an object detectionmodel YOLO, to detect the presence of the apple
and then uses a classification algorithm to classify it as rotten or not Fig. 8. Once the
apple has been classified as rotten, it is then segregated from the other fruits to prevent
it from being mixed with other fruits and potentially causing contamination or spoilage.
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Fig. 8. Output images of fresh & rotten fruits.

6 Conclusion

The paper introduces an approach for fruit segregation using FCNs based on deep learn-
ing. To accomplish this, a large dataset of fruit images was utilized to train the FCN
model, which resulted in an impressive accuracy rate of 88.41% on the test dataset. The
important objective of this work is to recognize and categorize the fruits based on mor-
phological features using significant feature extraction by Fully Convolutional Network
(FCN) algorithm in deep learning. The fruit segregation system presented in this paper
uses the enhanced fruit image detection techniques for extraction of morphological fea-
tures of fresh or rotten fruits and feature selection to reduce irrelevant and redundant
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data from the feature set. This system may be adapted for accurate segregation of fruits
based on color, shape, size thus replacing the human visual assessment.
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Abstract. Studies have found that sulphur derivatives from dimethyl
disulphide, an essential semiochemical aids in numerous significant plant
growth functions such as enzyme activity, nitrogen metabolism, and syn-
thesis of proteins. Various studies have confirmed that dimethyl disul-
phide is a vital fertiliser which aids in the growth and promotion of
various plant species. Sensing the presence/prevailing sulphur content
can essentially aid in regulating the inputs that are provided in field,
thus contributing to the effective eco-friendly agrarian practices. The
vitality and longevity of plant species are influenced by availability of
this essential voc. In this paper, we investigate the adsorption behaviour
of dimethyl disulphide molecule on boron doped graphene nanorib-
bon by using the density functional theory method. On a mono atom
(boron/nitrogen/ indium) doped armchair graphene nanoribbon, a first-
principles analysis based on density functional theory is conducted in
order to recognise the presence of a volatile organic molecule named
dimethyl disulphide which can assist in sensing plant growth. The inves-
tigation of the bulk, electronic and transport properties reveal the suit-
ability of the nanoribbon for detection of this vital volatile organic com-
pound. The resulting values are favourable because they indicate the exis-
tence of the adsorption process. The electronic characteristics of boron
doped AGNR with dimethyl disulphide disclose p-type semiconducting
behaviour, whereas the electronic properties of nitrogen doped AGNR
with dimethyl disulphide reveal n-type semiconducting behaviour. Fur-
thermore, the results of indium doping on AGNR using dimethyl disul-
phide show metallic characteristics.

Keywords: adsorption · DFT · armchair graphene nanoribbon ·
sensing · plant VOC
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1 Introduction

Recent investigations have revealed that semiochemicals are pivotal in intra-
and inter-kingdom interactions in flora. These small odorous volatile organic
compounds can modify the plant behaviour and can even promote/inhibit growth
of the species in their vicinity. These primary plant communication mediators
modulate the phenotypic plasticity and aid in vital ecological functions such
as plant growth, abiotic stress tolerance management, and resilience to disease,
defence mechanism against pathogens or herbivores.

VOCs act as chemical signalling agents that can travel far and interact with
the neighbouring species acting as long-distance messengers. The interaction
causes modulation of the behaviour of the interacting plant or microbe species.
In plant kingdom, VOCs promote plant growth by acting as fumigant hence
formulating plant defences against pathogens and herbivores. VOCs are gen-
erated by the strains of the plant growth promoting rhizobacteria. They are
plant symbionts that improve crop weight, crop yield, abiotic stress tolerance
and plant disease resistance, owing to which they can find application in the
agriculture sector [1]. For instance, dimethyl disulphide (DMDS) is a VOC emit-
ted by P. agglomerans species that plays an unequivocal role in the upkeep of
the rhizosphere by enhancing sulphur nutrition [2]. Hence, from this pretext it is
established that chemical signalling by the VOCs is utilised by plants to activate
growth and for stress tolerance [3].

In this work, we aim at nano-scale sensing of DMDS, a chemical signalling
agent that aids in the facile conduct of multiple aforementioned essential plant
functions. The nanosensing can ascertain their role in interspecies (chemical sig-
nal aided) communication by aiding in construction of an effective olfactometer,
thereby facilitating external supplementation in case of deficit of the said VOC
[4].

Graphene is the first discovered two- dimensional nanomaterial that paved
the path for the discovery of various other two-dimensional nanomaterials [5].
Graphene has unique properties and these can be engineered by various methods
[6]. Graphene nanoribbons (GNR) are obtained by cutting monolayer graphene
of finite length. [7]. GNRs possess unique properties such as high carrier mobility,
semiconducting behaviour, flexible bandgap and mechanical robustness [8–10].
These properties make GNRs an important candidate in sensing application and
reports in literature have explored the use of GNRs for the sensing of various
gases [11–13]. The nanoribbons have been studied for the detection of VOCs as
biomarkers [14–16]. Precisely, the use of graphene nanoribbons for sensing appli-
cations is highly favourable in the development of ultra-sensitive sensors with
high packing density, better selectivity, higher sensitivity, faster recoverability,
and less power consumption [17].

To the best of our knowledge, this work is a first in the semiochemical
nanosensing of plant growth promoting DMDS molecule by doped armchair
graphene nanoribbon by using density functional theory method. The doping
is done by boron, nitrogen and indium in armchair graphene nanoribbon.
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Fig. 1. Block diagram of adsorption of dimethyl disulphide VOC on doped AGNR

This work is vital for application in smart agriculture domain and can be
adopted appropriately for enhanced farm practices by aiding in plant growth and
defence mechanism. The rest of the paper is arranged as follows: Sect. 2 discusses
the computational method used for the investigation of the bulk and electronic
properties of the DMDS-doped AGNR complex; Sect. 3 covers the results and
discussion for the nanosensing application which is followed by conclusion.

2 Computational Method

The investigation of the sensing of plant growth promoting DMDS by doped
armchair graphene nanoribbon (AGNR) is conducted by using Virtual NanoLab
Atomistix Toolkit [18]. In this investigation, the bulk and electronic properties of
the considered complex are analysed after extensive calculations for establishing
the use of the said nanoribbon in the sensing of DMDS. The bulk and electronic
calculations are carried out by first principles using density functional theory
(DFT) and non-equilibrium Green’s function (NEGF). The generalised gradient
approximation [19] of Perdew-Burke-Ernzerhof with double-zeta polarized basis
set was used as the exchange-correlation basis set [20].

The doping in AGNR is performed using boron, nitrogen and indium single
atom [21]. The calculations are performed on the geometrically relaxed struc-
tures with self-consistency. The density mesh cut off is set to 75 Hartree and
the electron temperature is maintained at 300K. The values of force and stress
tolerance are set as 0.05 eV/Å and 0.05 eV/Å3, respectively. The complex struc-
tures are allowed to be fully relaxed using geometry optimization before per-
forming calculations of their electronic and transport properties. The k-point
sampling of 1× 1× 12 using Monkhorst-Pack grid is set for structural relaxation
and 1× 1× 100 for electronic transport calculations [22].

3 Results and Discussion

3.1 Geometric Structure Analysis

AGNR are built having six number of atoms along the width (w = 6). The edges
are passivated by hydrogen atoms since the surfaces are less reactive than the
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edges. Various works in literature report that the sensing ability of graphene can
be altered by selectively introducing dopants or defects [17]. Doping is included in
GNR for enhancing its properties [21,23]. In boron doped AGNR with dimethyl
disulphide, the bond lengths of C-B and C-C bonds are 1.42 Å and 1.43 Å respec-
tively, before optimization. In the optimised structure the bond lengths of C-B
and C-C change to 1.51 Å and 1.41 Å respectively, as is shown in Fig. 2(a)–2(b).
In nitrogen doped AGNR with dimethyl disulphide, the bond lengths of C-N and
C-C bonds are 1.42Å and 1.42Å, before optimisation. In the optimised structure
the bond lengths of C-N and C-C change to 1.36Å and 1.40Å respectively, as
is shown in Fig. 2(c)–2(d). The bond length variations for indium doped AGNR
with dimethyl disulphide before optimisation for C-In bonds and C-C bonds are
1.42Å and 1.42 Å and these values change after optimisation in the relaxed geom-
etry and become 1.75 Å and 1.76 Å respectively as is shown in Fig. 2(e)–2(f). The
relaxed structure of indium doped AGNR with dimethyl disulphide shows a bond
formation as is evident in Fig. 2(f). The strong adsorption energy and reduction
in the distance between molecule and indium doped AGNR upon relaxation sug-
gests possible chemisorption in indium doped AGNR with dimethyl disulphide.
This can form one-time use or disposable nanosensor device.

The changes in the bulk properties are a consequence of the influence of the
adsorbate molecules on the adsorbent by the adsorption process. The resultant
changes owing to the influence of the externally introduced molecule are an
indicative of variations in the properties of the considered complex. Moreover,
the effect of the gas molecule on the electronic properties of nanoribbon with
bandgap is more than that on a nanoribbon with no bandgap. This property of
the nanomaterials is imperative in various applications of nanosensing domain.
The adsorption process upon the exposure to the guest molecule needs to be
investigated in terms of the bulk and electronic properties that are computed by
using the obtained relaxed structure shown in Fig. 1.

3.2 Adsorption of DMDS on Doped (Boron/Nitrogen/Indium)
AGNR

In order to observe the adsorption of DMDS on different geometries of doped
(boron/nitrogen/indium) AGNR, the first principles approach based on den-
sity function theory method is applied on the optimized complex structure.
The adsorption on doped (boron/nitrogen/indium) AGNR after interaction with
DMDS is investigated for bulk properties analysis. The adsorption energy cal-
culation is performed by using the following formula:

Ead = ED−AGNR+DMDS − ED−AGNR − EDMDS (1)

Where ED-AGNR+DMDS, ED-AGNR and EDMDS denote the total ener-
gies of the doped (boron/nitrogen/indium) AGNR molecule complex, doped
(boron/nitrogen/indium) AGNR, and the isolated DMDS VOC molecule, respec-
tively. The comprehensive analysis of adsorption behaviour between DMDS
molecule and boron/nitrogen doped AGNR requires the calculation of the
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Fig. 2. Optimized AGNR with DMDS having (a) boron-doped top view (b) boron-
doped side view (c) nitrogen-doped top view (d) nitrogen-doped side view (e) indium-
doped top view (d) indium-doped side view

relaxed distance obtained after optimisation D(Å), energy gap (Eg) and adsorp-
tion energy (Ead). Table 1 presents the calculated values for all the mentioned
parameters for doped (boron/nitrogen/indium) AGNR with DMDS molecule
complex.
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Table 1. The calculated band gap energy (Eg), the adsorption energy (Eads), the
interaction distance of DMDS molecule with doped (boron/nitrogen/indium) AGNR
for relaxed structure

Configuration Eg(eV ) Ead(eV ) D(Å)

Boron-AGNR with DMDS 0.864 −0.344 2.952
Nitrogen-AGNR with DMDS 0.823 −0.308 3.191
Indium-AGNR with DMDS 0.309 −0.962 2.691

In order to observe the adsorption of dimethyl disulphide on boron/
nitrogen/indium doped AGNR, dimethyl disulphide gas molecule is placed away
from doped AGNR before optimization. After optimization the calculated dis-
tance of dimethyl disulphide from boron doped AGNR has a value 2.95241 Å as
is shown in Fig. 2(b). Also, the adsorption energy of dimethyl disulphide with
boron doped AGNR is −0.34467 eV, indicating that adsorption is taking place.
Hence, owing to the obtained favourable results this complex can be further
investigated in terms of electronic properties to establish its use for plant VOC
i.e. dimethyl disulphide detection.

Also, for nitrogen doped AGNR after optimization the distance of dimethyl
disulphide has a value 3.19 Å as is shown in Fig. 2(d). The adsorption energy
of dimethyl disulphide with nitrogen doped AGNR is −1.31 eV, indicating that
adsorption process is taking place. Hence, in the light of the above results the said
complex can be further investigated in terms of its electronic properties in order
to establish its use for the detection of dimethyl disulphide. After optimization
the calculated distance of dimethyl disulphide from indium doped AGNR has a
value 2.69 Å as is shown in Fig. 2(f). Also, the adsorption energy of dimethyl
disulphide with indium doped AGNR is −0.96 eV, indicating metallic nature of
this complex.

3.3 Band Structure Analysis

Band gap is calculated to analyze the change in electronic properties of
boron/nitrogen/indium doped AGNR before and after dimethyl disulphide
adsorption. The band structure represents the energy of the available electronic
states along a series of lines in a reciprocal space. The band structure presents
the energy states of the complex formed in terms of band gaps or forbidden
gaps. The band gap value and binding distance of boron doped AGNR, nitrogen
doped AGNR and indium doped AGNR after dimethyl disulphide adsorption is
shown in Table 1. The band gap value of boron doped AGNR is 0.864eV after
dimethyl disulphide adsorption as shown in Fig. 3(a). The band gap value for
nitrogen doped AGNR is 0.823eV after dimethyl disulphide adsorption, which is
shown in Fig. 3(b) while the band structure for indium doped AGNR has a band
gap value of 0.309 eV after dimethyl disulphide adsorption. Also, the fermi level
shifts towards the valence band. The band structure analysis results for boron
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Fig. 3. Band structure of doped AGNR adsorbed dimethyl disulphide (a) boron doped
AGNR (b) nitrogen doped AGNR (c) indium doped AGNR
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doped AGNR with dimethyl disulphide show that this complex has p-type semi-
conducting behaviour while the nitrogen doped AGNR with dimethyl disulphide
complex shows n-type semiconductor behaviour. This is a useful finding that can
be utilised in creating various electronic devices at nanoscale level

3.4 Density of States Analysis

To observe the interaction of dimethyl disulphide on boron/nitrogen/indium
doped AGNR, the density of states (DOS) for this complex is studied. The DOS
plot presents the energetically favourable available states that can be occupied.
More precisely, it specifies the number of allowed electron (or hole) states per
volume at a given energy. Hence, they indicate about the carrier concentrations
and energy distributions of the carriers. Figure 4 shows the DOS plots for doped
(boron/nitrogen/indium) AGNR with dimethyl disulphide adsorption. A com-
parison of boron doped AGNR and nitrogen doped AGNR dimethyl disulphide
complex reveals that a greater number of peaks with higher DOS values are
detected after dimethyl disulphide adsorption in valence band and conduction
band, respectively.

Furthermore, the obtained DOS plot results are consistent with those of the
band structure plot analysis of Fig. 3. In boron doped AGNR, the conduction
band range shows reduction in the DOS values. Also, a gap appears in the
conduction band lying between 0–1 eV corresponding to the absence of states
in this region as is evident for Fig. 4(a). After nitrogen doping in AGNR with
dimethyl disulphide, the density of states plot indicates large variation in the
conduction band range of 0 to 2 eV and high DOS values between 1 to 2 eV.
Also, a gap appears in the valence band lying between 0.2 to −1 eV as can be
seen in Fig. 4(b). The gap corresponds to an absence of states in the mentioned
range with zero value of DOS.

Furthermore, the indium doped AGNR with dimethyl disulphide has high
DOS values about the Fermi level at 0 eV and half-filled band shows proximity
to the valence band.
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Fig. 4. DOS of (a) boron doped AGNR (b) nitrogen doped AGNR (c) indium doped
AGNR with dimethyl disulphide complex
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Fig. 5. Transmission spectrum of (a) boron doped AGNR (b) nitrogen doped AGNR
(c) indium doped AGNR adsorbed dimethyl disulphide complex.
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3.5 Transmission Spectrum Analysis

The transmission spectrum is a sum over the available modes in the band struc-
ture at each energy.

The transmission spectrum analysis for boron/nitrogen doped AGNR with
dimethyl disulphide is presented in Fig. 5(a)–5(b). It is evident from the investi-
gation that the transmission spectra plot corresponds to the resultant behaviour
of the complex in both the obtained bandstructure analysis and the density of
states analysis of Fig. 3 and Fig. 4 respectively.

The transmission coefficient has a zero value for the boron doped AGNR
with dimethyl disulphide between 0.2 to 1 while for nitrogen doped AGNR
with dimethyl disulphide the zero transmission window lies between 0 to −1
as is shown in Fig. 5(a) and Fig. 5(b), respectively. This analysis validates the
previously obtained results and shows that boron doped AGNR with dimethyl
disulphide portrays p-type behaviour while nitrogen doped AGNR with dimethyl
disulphide presents n-type semiconducting behaviour. The transmission has high
value around Fermi level as is evident form Fig. 5(c) for the indium doped AGNR
with dimethyl disulphide.

4 Conclusion

The presence of dimethyl disulphide plays a pivotal role in the plant growth pro-
motion and disease counter mechanism. However, the depleted levels or absence
of this vital VOC can lead to inhibit plant growth, the same can be externally
artificially supplemented for instance using fertilisers. The sensing of dimethyl
disulphide using doped (boron/nitrogen/indium) AGNR is investigated by cal-
culating the bulk and electronic properties upon relaxation of the complex. The
bulk properties investigations include the calculation of the distance after relax-
ation, adsorption energy and energy bandgap. The values obtained are favourable
as they reflect the occurrence of the adsorption process. The investigation of the
electronic properties by the band structure analysis, density of states analysis
and the transmission spectrum analysis for boron doped AGNR, nitrogen doped
AGNR and indium doped AGNR with dimethyl disulphide is conducted. Upon
investigation, the electronic properties reveal p-type semiconducting behaviour
for boron doped AGNR with dimethyl disulphide while the electronic properties
for nitrogen doped AGNR with dimethyl disulphide show n-type semiconducting
behaviour. The results for indium doping on AGNR with dimethyl disulphide
present metallic character. Thus, these investigations reveal the suitability of
doped AGNR for detection of dimethyl disulphide. Furthermore, these findings
can prove useful in the development of electronic devices in nanoscale domain.
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