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5.1 Introduction

Facial landmark localization aims to detect a sparse set of facial fiducial points on a human
face, some of which include “eye corner”, “nose tip”, and “chin center”. In the pipeline
of face analysis, landmark detectors take the input of a face image and the bounding box
provided by face detection, and output a set of coordinates of the predefined landmarks,
which is illustrated in Fig. 5.1. It provides a fine-grained description of the face topology,
such as facial features locations and face region contours, which is essential for many
face analysis tasks, e.g., recognition [32], animation [33], attributes classification [34], and
face editing [35]. These applications usually run on lightweight devices in uncontrolled
environments, requiring landmark detectors to be accurate, robust, and computationally
efficient, all at the same time.

Over the past few decades, there have been significant developments in facial landmark
detection. The early works consider landmark localization as the process of moving and
deforming a face model to an image, and they construct a statistical facial model to model
the shape and albedo variations of human faces. The most prominent algorithms include
Active Shape Model (ASM) [42], Active Appearance Model (AAM) [43], and Constrained
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Fig. 5.1 Facial landmark localization

LocalModel (CLM) [44], bywhich the faces in controlled environments (normal lighting and
frontal poses) can be well handled. However, these methods deteriorate greatly when facing
enormous challenges in the wild, such as large poses, extreme illuminations, low resolution,
and partial occlusions. The next wave of methods is based on cascaded regression [45, 88,
89], which cascades a list of weak regressors to reduce the alignment error progressively.
For example, the Supervised Descent Method (SDM) [88] updates the landmark locations
by several iterations of regressions. In each iteration, a regressor takes the input of the
appearance features (e.g., SIFT) around landmarks, and estimates a landmark update to
approach the ground-truth locations. The Ensemble of Regression Trees (ERT) [45] learns
an ensemble of regression trees to regress the landmarks from a sparse subset of intensity
values, so as to handle partial or uncertain labels. One of themost popular landmark detectors
Dlib [46] implements ERT as its landmark detector due to its high speed of 1 millisecond
per face.

Following the great success of deep learning in computer vision [47], researchers started
to predict facial landmarks by deep convolutional neural networks. In general, deep learning-
based landmark detectors can be divided into coordinate-based and heatmap-based, illus-
trated in Fig. 5.2, depending on the detection head of network architecture. Coordinate-
based methods output a vector consisting of 2D coordinates of landmarks. On the contrary,
heatmap-based methods output one heatmap for each landmark, where the intensity value
of the heatmap indicates the probability that this landmark locates in this position. It is com-
monly agreed [38, 39] that heatmap-based methods detect more accurate landmarks, but are
computationally expensive and sensitive to outliers. In contrast, coordinate-based methods
are fast and robust, but have sub-optimal accuracy.

In recent years, 3D landmark localization has attracted increasing attention due to its
additional geometry information and superiority in handling large poses [40]. However,
localizing 3D landmarks is more challenging than 2D landmarks because recovering depth
from a monocular image is an ill-posed problem. This requires the model to build a strong
3D face prior from large-scale 3D data in order to accurately detect and locate the facial
landmarks in 3D space. Unfortunately, acquiring 3D faces is expensive, and labeling 3D
landmarks is also tedious. A feasible solution is to fit a 3DMorphable Model (3DMM) [41]
by a neural network [40] and sample the 3D landmarks from the fitted 3D model. Another
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Fig. 5.2 Coordinate-based methods and heatmap-based methods

one is utilizing a fully convolutional network to regress the 3D heatmaps, on which the
coordinates of the largest probabilities are sampled as 3D landmarks [51, 52].

5.2 Coordinate Regression

As deep learning has become the mainstream method for facial landmark localization, this
section focuses on recent advances in deep learning-based coordinate regression approaches.
Given an input face image, coordinate regression-based methods predict the 2D coordinates
of a set of predefined facial landmarks directly from the deep features extracted by a backbone
network, as shown in Fig. 5.3.

5.2.1 Coordinate Regression Framework

The task of coordinate regression-based facial landmark localization is to find a nonlinear
mapping function (usually a deep CNN model):

...

         Input Image Backbone Network 2D Coordinates

Fig.5.3 Coordinate regression-based facial landmark localization. The input is an RGB face image,
and the output is a vector consisting of the 2D coordinates of all the facial landmarks



140 X.Zhu et al.

� : I → s, (5.1)

that outputs the 2D coordinates vector s ∈ R
2L of L landmarks for a given facial image

I ∈ R
H×W×3. In general, the input image is cropped by using a bounding box obtained by a

face detector in a full-stack facial image/video analysis pipeline. The 2D coordinate vector
s = [x1, ..., xL , y1, ..., yL ]T consists of the coordinates of L predefined landmarks, where
(xl , yl) are the X- and Y-coordinates of the lth landmark.

To obtain the above mapping function, a deep neural network can be used, which is
formulated as a compositional function:

� = (φ1 ◦ ... ◦ φM )(I), (5.2)

with M sub-functions, and each sub-function (φ) represents a specific network layer, e.g.,
convolutional layer and nonlinear activation layer. Most existing deep learning-based facial
landmark localization approaches use CNN as the backbone with a regression output
layer [24–26].

Given a set of labeled training samples� = {Ii , si }Ni=1, the network training aims to find
the best set of the parameters � so that to minimize:

N∑

i=1

loss(�(Ii ), si ), (5.3)

where loss() is a predefined loss function that measures the difference between the predicted
and ground-truth coordinates over all the training samples. To optimize the above objective
function, a variety of optimization methods, such as Stochastic Gradient Descent (SGD) and
AdamW, can be used for network training.

5.2.2 Network Architectures

As shown in Fig. 5.3, the input for a coordinate regression-based facial landmark localiza-
tion model is usually an image enclosing the whole face region. Then a backbone CNN
network can be used for feature extraction and fully connected layers are used for regressing
the landmark coordinates. With the development of deep learning, different backbone net-
works have been explored and evaluated for accurate and robust landmark localization. For
example, Feng et al. [38] evaluated different backbone networks, including VGG, ResNet,
MobileNet, etc., for efficient and high-performance facial landmark localization. As face
landmarking is a key element in a full-stack facial image/video analysis system, the design
of a lightweight network is crucial for real-time applications. For instance, Guo et al. [18]
developed a light framework that is only 2.1MB and runs at 140 fps on a mobile device. Gao
et al. [19] proposed EfficientFAN that applies deep knowledge transfer via a teacher-student
network for efficient and effective network training. Feng et al. [38] compared different
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designs of network architectures and evaluated their inference speed on different devices,
including GPU, CPU, and portable devices.

Instead of the whole face image, shape- or landmark-related local patches have also been
widely used as the input of neural networks [24, 83]. To use local patches, one can apply
CNN-based feature extraction to the local patches centered at each landmark and for fine-
grained landmark prediction or update [83]. The advantage of using the whole face region,
in which the only input of the network is a cropped face image, is that it does not require
the initialization of facial landmarks. In contrast, to use local patches, a system usually
requires initial estimates of facial landmarks for a given image. This can be achieved by
either using the mean-shape landmarks [83] or the output of another network that predicts
coarse landmarks [24, 27, 61].

The accuracy of landmark localization can be degraded by in-plane face rotations and
inaccurate bounding boxes output by a face detector. To address these issues, a widely used
strategy is to cascade multiple networks to form a coarse-to-fine structure. For example,
Huang et al. [28] proposed to use a global network to obtain coarse facial landmarks for
transforming a face to the canonical view and then applied multiple networks trained on
different facial parts for landmark refinement. Similarly, both Yang et al. [29] and Deng et
al. [30] proposed to train a network that predicts a small number of facial landmarks (5 or
19) to transform the face to a canonical view. It should be noted that the first network can be
trained on a large-scale dataset so it performswell for unconstrained faceswith in-plane head
rotation, scale, and translation. With the first stage, the subsequent networks that predict all
the landmarks can be trained with the input of normalized faces.

Feng et al. [38] also proposed a two-stage network for facial landmark localization,
as shown in Fig. 5.4. The coarse network is trained on a dataset with very heavy data
augmentation by randomly rotating an original training image between [−180◦, 180◦] and
perturbing the bounding box with 20% of the original bounding box size. Such a trained
network is able to perform well for faces with large in-plane head rotations and low-quality

...
Coarse
CNN  

...

Fine-Grained 
CNN  

Transform 

Inverse 
Transform 

Fig. 5.4 A two-stage coarse-to-fine facial landmark localization framework
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bounding boxes. For training the second network, each training sample is fed to the first
network to obtain its coarse facial landmarks for geometric normalization. To be specific, two
anchor points (blue points in Fig. 5.4) are computed to perform the rigid transformation,
where one anchor is the mean of the four inner eye and eyebrow corners and the other
one is the chin landmark. Afterward, the normalized training data is lightly augmented by
randomly rotating the image between [−10◦, 10◦] and perturbing the bounding box with
10%of the bounding box size. The aim is to address the issues caused by inaccurate landmark
localization of the first network. Finally, a second network is trained on the normalized-and-
lightly-augmented dataset for further performance boosting in localization accuracy. The
joint use of these two networks in a coarse-to-fine fashion is instrumental in enhancing the
generalization capacity and accuracy.

5.2.3 Loss Functions

Another important element for high-performance coordinates regression is the design of a
proper loss function.Most existing regression-based facial landmark localization approaches
with deep neural networks are based on the L2 loss function. Given a training image I and
a network �, we can predict the facial landmarks as a vector s′ = �(I). The loss function
is defined as:

loss(s, s′) = 1

2L

2L∑

i=1

f (si − s′
i ), (5.4)

where s is the ground-truth facial landmark coordinates and si is its i th element. For f (x)
in the above equation, the L2 loss is defined as:

fL2(x) = 1

2
x2. (5.5)

However, it is well known that the L2 loss function is sensitive to outliers, which has
been noted in connection with many existing studies, such as the bounding box regression
problem in face detection [31]. To address this issue, L1 and smooth L1 loss functions are
widely used for robust regression. The L1 loss is defined as:

fL1(x) = |x |. (5.6)

The smooth L1 loss is defined piecewise as:

fsmL1(x) =
{ 1

2 x
2 if |x | < 1

|x | − 1
2 otherwise

, (5.7)

which is quadratic for small values and linear for large values [31].More specifically, smooth
L1 uses fL2(x) for x ∈ (−1, 1) and shifts to fL1(x) elsewhere. Figure 5.5 depicts the plots
of these three loss functions.
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Fig. 5.5 Plots of the L2, L1
and smooth L1 loss functions
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However, outliers are not the only subset of points which deserve special consideration.
Feng et al. [38] argued that the behavior of the loss function at points exhibiting small-
medium errors is just as crucial to finding a good solution to the landmark localization task.
Based on a more detailed analysis, they proposed a new loss function, namely Rectified
Wing (RWing) loss, for coordinate regression-based landmark localization. Similar to the
original Wing loss function, RWing is also defined piecewise:

RWing(x) =
⎧
⎨

⎩

0 if |x | < r
w ln(1 + (|x | − r)/ε) if r ≤ |x | < w

|x | − C otherwise
, (5.8)

where the non-negative parameter r sets the range of rectified region to (−r , r) for very small
values. The aim is to remove the impact of noise labels onnetwork convergence. For a training
samplewith small-medium range errors in [r , w), RWing uses amodified logarithm function,
where ε limits the curvature of the nonlinear region and C = w − w ln(1 + (w − r)/ε) is a
constant that smoothly links the linear and nonlinear parts. Note that one should not set ε to a
very small value because this would make the training of a network very unstable and cause
the exploding gradient problem for small errors. In fact, the nonlinear part of the RWing loss
function just simply takes a part of the curve of ln(x) and scales it along both the X-axis
and Y-axis. Also, RWing applies translation along the Y-axis to allow RWing(±r) = 0 and
to impose continuity on the loss function at ±w. In Fig. 5.6, some examples of the RWing
loss with different hyper parameters are demonstrated.

5.3 Heatmap Regression

Another main category of the state-of-the-art facial landmark localization methods is
heatmap regression. Different from coordinate regression, heatmap regression outputs a
heatmap for each facial landmark. In the heatmap, the intensity value of a pixel in a heatmap
indicates the probability that its location is the predicted position of the corresponding
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Fig. 5.6 The Rectified Wing loss function plotted with different hyper parameters, where r and w

limit the range of the nonlinear part and ε controls the curvature. By design, the impact of the samples
with small- and medium-range errors is amplified, and the impact of the samples with very small
errors is ignored

...

         Input Image Encoder-Decoder Heatmaps

...

...

Fig. 5.7 Heatmap regression-based facial landmark localization. The input is a face image and the
output are L 2D heatmaps, each for one predefined facial landmark. The backbone network usually
has an encoder-decoder architecture

landmark. The task of heatmap regression-based facial landmark localization is to find a
nonlinear mapping function:

� : I → H, (5.9)

that outputs L 2D heatmaps H ∈ R
H×W×L for a given image I ∈ R

H×W×3. As shown
in Fig. 5.7, heatmap regression usually uses an encoder-decoder architecture for heatmap
generation. For network training, typical loss functions used for heatmap generation include
MSE and L1.
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Fig. 5.8 A typical architecture of a stacked hourglass network

5.3.1 Network Architectures

As aforementioned, heatmap regression usually applies an encoder-decoder architecture for
high-performance facial landmark localization. The most popular backbone network used
for heatmap regression might be the stacked hourglass network [29, 30, 55, 68]. The key to
the success of a stacked hourglass network is the use of multiple hourglass networks with
residual connections, as shown in Fig. 5.8. On the one hand, the use of residual connections
in each hourglass network maintains multi-scale facial features for fine-grained heatmap
generation. On the other hand, stacking multiple hourglass networks improves the overall
network capacity, so as to improve the quality of a generated heatmap. Besides the stacked
hourglass network, another two popular network architectures used for heatmap regression
are HRNet [75] and U-Net [77]. Similar to hourglass, both HRNet and U-Net try to find an
effective way of using multi-scale features rather than the single use of a deep high-level
semantic feature map for heatmap generation.

To reduce false alarms of a generated 2D heatmap, Wu et al. [22] proposed a distance-
aware softmax function that facilitates the training of a dual-path network. Lan et al. [79]
further investigated the issue of quantization error in heatmap regression, and proposed
a heatmap-in-heatmap method for improving the prediction accuracy of facial landmarks.
Instead of using a Gaussian map for each facial landmark,Wu et al. [68] proposed to create a
boundary heatmap mask for feature map fusion and demonstrated its merits in robust facial
landmark localization.

5.3.2 Loss Function

Similar to coordinate regression, the design of a proper loss function is crucial for heatmap
regression-based facial landmark localization.Most of the existing heatmap regressionmeth-
ods use MSE or L1 loss for heatmap generation via an encoder-decoder network. However,
a model trained with MSE or L1 loss tends to predict blurry and dilated heatmaps with
low intensity on foreground pixels compared to the ground-truth ones. To address this issue,
Wang et al. [76] proposed an adaptiveWing loss function for heatmap regression. In contrast
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to the original Wing loss [20], the adaptive Wing loss is a tailored version for heatmap gen-
eration. The adaptive Wing loss is able to adapt its shape to different types of ground-truth
heatmap pixels. This adaptability penalizes loss more on foreground pixels while less on
background pixels, hence improving the quality of a generated heatmap and the performance
of the final landmark localization task in terms of accuracy.

To be specific, the adaptive Wing loss function is defined as:

AWing(y, ŷ) =
{

w ln(1 + | y−ŷ
ε

|α−y) if |y − ŷ| < θ

A|y − ŷ| − C otherwise
, (5.10)

where y and ŷ are the intensities of the pixels on the ground truth and predicted heatmaps,
respectively. w, θ , ε and α are positive values, A = w(1/(1 + (θ/ε)(α−y)))(α − y)
((θ/ε)(α−y−1))(1/ε) and C = (θ A − w ln(1 + (θ/ε)α−y)) are designed to link different
parts of the loss function continuously and smoothly at |y − ŷ| = θ . Unlike the Wing loss,
which uses w as the threshold, the adaptive Wing loss introduces a new variable θ as the
threshold to switch between linear and nonlinear parts. For heatmap regression, a deep net-
work usually regresses a value between 0 and 1, so the adaptive Wing loss sets the threshold
in this range. When |y − ŷ| < θ , adaptive Wing considers the error to be small and thus
needs stronger influence. More importantly, this new loss function adopts an exponential
term α − y, which is used to adapt the shape of the loss function to y and makes the loss
function smooth at the origin.

It should be noted that adaptive Wing loss is able to adapt its curvature to the ground-
truth pixel values. This adaptive property reduces small errors on foreground pixels for
accurate landmark localization, while tolerating small errors on background pixels for better
convergence of a network.

5.4 Training Strategies

5.4.1 Data Augmentation

For a deep learning-based facial landmark localization method, a key to the success of net-
work training is big labeled training data. However, it is a difficult and tedious task to man-
ually label a large-scale dataset with facial landmarks. To mitigate this issue, effective data
augmentation has become an essential alternative. Existing data augmentation approaches
in facial landmark localization usually inject geometric and textural variations into training
images. These augmentation approaches are efficient to implement and thus can be easily
performed online for network training.

To investigate the impact of these data augmentation methods on the performance of a
facial landmark localization model, Feng et al. [26] introduced different data augmenta-
tion approaches and performed a systematic analysis of their effectiveness in the context of
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(a) input

(b) Gaussian Blur (c) salt & pepper noise (d) colour jetting (e) occlusion

(f) flip (g) bbox perturbation (h) rotation (i) shear

Fig. 5.9 Different geometric and textural data augmentation approaches for facial landmark local-
ization. “bbox” refers to “bounding box”

deep-learning-based facial landmark localization. Feng et al. divided the existing data aug-
mentation techniques into two categories: textural and geometric augmentation, as shown
in Fig. 5.9. Textural data augmentation approaches include Gaussian blur, salt and pepper
noise, color jetting, and random occlusion. Geometric data augmentation consists of hori-
zontal image flip, bounding box perturbation, rotation and shear transformation. According
to the experimental results, all data augmentation approaches improve the accuracy of the
baseline model. However, the key finding is that the geometric data augmentation methods
are more effective than the textural data augmentation methods for performance boosting.
Furthermore, the joint use of all data augmentation approaches performs better than only
using a single augmentation method.

In addition, Feng et al. [26] argued that, by applying random textural and geometric
variations to the original labeled training images, some augmented samples may be harder
and more effective for deep network training. However, some augmented samples are less
effective. To select the most effective augmented training samples, they proposed a Hard
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Augmented Example Mining (HAEM) method for effective sample mining. In essence,
HAEM selects N hard samples from each mini-batch those which exhibit the largest losses
but excludes the one of dominant loss. The main reason for this conservative method is that
some of the samples generated by a random data augmentation methodmight be too difficult
to train networks. Such samples become “outliers” that could disturb the convergence of the
network training. Thus in each mini-batch, HAEM identifies N + 1 hardest samples and
discards the hardest one to define the hard sample set.

5.4.2 Pose-Based Data Balancing

Existing facial landmark localization methods have achieved good performance for faces
in the wild. However, extreme pose variations are still very challenging. To mitigate this
problem, Feng et al. [20] proposed a simple but very effective Pose-based Data Balancing
(PDB) strategy. PDB argues that the difficulty for accurately localizing faces with large
poses is mainly due to data imbalance. This is a well-known problem in many computer
vision applications [21].

To perform pose-based data balancing, PDB applies Principal Component Analysis
(PCA) to the aligned shapes and projects them to a one dimensional space defined by
the shape eigenvector (pose space) controlling pose variations. To be more specific, for a
training dataset {si }Ni=1 with N samples, where si ∈ R

2L is the i th training shape vector con-
sisting of the 2D coordinates of all the L landmarks, the use of Procrustes Analysis aligns
all the training shapes to a reference shape, i.e. the mean shape, using rigid transformations.
Then PDB approximates any training shape or a new shape, s, using a statistical linear shape
model:

s ≈ s̄ +
Ns∑

j=1

p j s∗j , (5.11)

where s̄ = 1
N

∑N
i=1 si is themean shape over all the training samples, s∗j is the j th eigenvector

obtained by applying PCA to all the aligned training shapes and p j is the coefficient of the
j th shape eigenvector. Among those shape eigenvectors, we can find an eigenvector, usually
the first one, that controls the yaw rotation of a face. We denote this eigenvector as ŝ. Then
we can obtain the pose coefficient of each training sample si as:

p̂i = ŝT (si − s̄). (5.12)

The distribution of the pose coefficients of all the AFLW training samples is shown in
Fig. 5.10. According to the Fig. 5.10, it can be seen that the AFLW dataset is not well-
balanced in terms of pose variation.

With the pose coefficients of all the training samples, PDB first categorizes the training
dataset into K subsets. Then it balances the training data by duplicating the samples falling
into the subsets of lower cardinality. To be more specific, the number of training samples in
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Fig. 5.10 Distribution of the head poses of the AFLW training set

the kth subset is denoted as Bk , and the maximum size of the K subsets is denoted as B∗.
To balance the whole training dataset in terms of pose variation, PDB adds more training
samples to the kth subset by randomly sampling B∗ − Bk samples from the original kth
subset. Then all the subsets have the size of B∗ and the total number of training samples
is increased from

∑K
k=1 Bk to K B∗. It should be noted that pose-based data balancing is

performed before network training by randomly duplicating some training samples of each
subset of lower occupancy. After pose-based data balancing, the training samples of each
mini-batch are randomly sampled from the balanced training dataset for network training. As
the samples with different poses have the same probability to be sampled for a mini-batch,
the network training is pose-balanced.

5.5 Landmark Localization in Specific Scenarios

5.5.1 3D Landmark Localization

3D landmark localization aims to locate the 3D coordinates, including 2D positions and
depth, of landmarks. The 2D landmark setting assumes that each landmark can be detected by
its visual patterns. However, when faces deviate from the frontal view, the contour landmarks
become invisible due to self-occlusion. In medium poses, this problem can be addressed by
changing the semantic positions of contour landmarks to the silhouette, which is termed
landmark marching [62]. However, in large poses where half of the face is occluded, some
landmarks are inevitably invisible. In this case, the 3D landmark setting is employed tomake
the semanticmeanings of landmarks consistent, and the face shape can be robustly recovered.
As shown in Fig. 5.11, 3D landmarks are always located in their semantic positions, and
they should be detected even if they are self-occluded.

In recent years, 3D face alignment has achieved satisfying performance. The methods
can be divided into two categories: model-based methods and non-model-based methods.
The former performs the 3D face alignment by fitting a 3D Morphable Model (3DMM),
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Fig. 5.11 Examples of 3D landmark localization. The blue/red ones indicate visible/invisible land-
marks

Fig. 5.12 The overview of 3DDFA. At kth iteration, 3DDFA takes the images and the projected
normalized coordinate code (PNCC) generated by pk as inputs and uses a convolutional neural
network to predict the parameter update �pk

which provides a strong prior of face topology. The latter extracts features from the image
and directly regresses that to the 3D landmarks by deep neural networks.

5.5.1.1 3D Dense Face Alignment (3DDFA)
Estimating depth information from amonocular image is an ill-posed problem, and a feasible
solution to realize 3D face alignment is introducing a strong3D face prior. The3DDenseFace
Alignment (3DDFA) is a typical model-based method, which fits a 3DMM by a cascaded
convolutional neural network to recover the 3D dense shape. Since the 3DMM is topology-
unified, the 3D landmarks can be easily indexed after 3D shape recovery. An overview of
3DDFA is shown in Fig. 5.12. Specifically, the 3D face shape is described as:

S = S + Aidαid + Aexpαexp, (5.13)

where S is the 3D face shape, S is the mean shape, Aid is the principle axes for identity,
and Aexp is the principle axes for expression, αid and αexp are the identity and expression
parameters that need to be estimated. To obtain the 2D positions of the 3D vertices, the 3D
face is projected to the image plane by the weak perspective projection:

V (p) = f ∗ Pr ∗ R ∗ (S + Aidαid + Aexpαexp) + t2d , (5.14)

where f is the scalar parameter, Pr is the orthographic projection matrix

(
1 0 0
0 1 0

)
,R is the

rotation matrix derived from the rotation angles pitch, yaw, roll, and t2d is the translation
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Fig. 5.13 The illustration of the Normalized Coordinate Code (NCC) and the Projected Normal-
ized Coordinate Code (PNCC). NCC denotes the position as its texture (NCCx = R,NCCy =
G,NCCz = B) and PNCC is generated by rendering the 3D face with NCC as its colormap

vector. Parameters for shape recovery are collected as p = [ f , pitch, yaw, roll, t2d , αid ,

αexp]T , and the purpose of 3DDFA is to estimate p from the input image.
3DDFA is a cascaded-regression-based method that employs several networks to update

the parameters step by step. A specially designed feature Projected Normalized Coordinate
Code (PNCC) is proposed to reflect the fitting accuracy, which is formulated as:

NCCd = Sd − min(Sd)

max(Sd) − min(Sd)
(d = x, y, z),

PNCC = Z-Buffer(V (p),NCC), (5.15)

where S is the mean shape of 3DMM, Z-Buffer(ν, τ ) is the render operation that renders
3D mesh ν colored by τ to an image. PNCC represents the 2D locations of the visible 3D
vertices on the image plane. Note that both NCC and PNCC have three channels for x, y, z,
which is similar to RGB, and they can be shown in color as in Fig. 5.13.

At the kth iteration, 3DDFA constructs PNCC by the current parameter pk and concate-
nates it with the image as input. Then, a neural network is adopted to predict the parameter
update �pk :

�pk = Netk(I, PNCC(pk)). (5.16)

Afterward, the parameter for the k + 1 iteration is updated: pk+1 = pk + �pk , and another
network is adopted to further update the parameters until convergence. By incorporating 3D
prior, 3DDFA localizes the invisible landmarks in large poses, achieving the-state-of-the-
art performance. However, it is limited by the computation cost since it cascades several
networks to progressively update the fitting result. To deploy 3DDFAon lightweight devices,
3DDFAv2 [63] employs a mobilenet [64] to directly regress the target parameters and also
achieves satisfactory performance.
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Fig. 5.14 a The backbone of the Face Alignment Network (FAN). It consists of stacked Hourglass
networks [55] in which the bottleneck blocks are replaced with the residual block of [56]. b The
illustration of FAN for 3D face alignment. The network takes the images and their corresponding 2D
landmark heatmaps as input to regress the heatmaps of the projected 3D landmarks, which are then
concatenated with the image to regress the depth values of landmarks

5.5.1.2 Face Alignment Network (FAN)
Face Alignment Network (FAN) [52] is a non-model-based method for 3D face alignment,
which trains a neural network to regress the landmark heatmaps. FAN constructs a strong
backbone to localize 3D landmarks, shown in Fig. 5.14a. Specifically, FAN consists of four
stacked hourglass networks [55], and the bottleneck blocks in each hourglass are replaced
with the hierarchical, parallel, and multi-scale residual block [56] to further improve the
performance. Given an input image, FAN utilizes the network to regress the landmark
heatmaps, where each channel of the heatmap is a 2DGaussian centered at the corresponding
landmark’s location with a standard deviation of one pixel.

To realize the regression of 3D positions, FAN designs a guided-by-2D-landmarks net-
work to convert 2D landmarks to 3D landmarks, which bridges the performance gap between
the saturating 2D landmark localization and the challenging 3D landmark localization. The
overview of FAN for 3D landmark localization is shown in Fig. 5.14b. Specifically, given
an RGB image and their corresponding 2D landmark heatmaps as input, FAN first regresses
the heatmaps of the projected 3D landmarks, obtaining the x, y of 3D landmarks. Then, the
projected 3D landmark heatmaps are combined with the input image and sent to a followed
network to regress the depth value of each landmark, obtaining the full x, y, z coordinates
of 3D landmarks.
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Fig. 5.15 The pipeline of the MediaPipe. Given an input image, the face region is first cropped by
the face detector and then sent to the feature extractor. After that, the model is split into several
sub-models to predict the global landmarks and important local landmarks including eyes and lips

5.5.1.3 MediaPipe
MediaPipe [60] is a widely used pipeline for 2D and 3D landmark localization. It is proposed
to meet the real-time application requirements for face localization such as AR make-up,
eye tracking, AR puppeteering, etc. Different from the cascaded framework,MediaPipe uses
a single model to achieve comparable performance. The pipeline of MediaPipe is shown
in Fig. 5.15. The network first extracts the global feature map from the cropped images,
and then the network is split into several sub-networks. One sub-network predicts the 3D
face mesh, including 3D landmarks, and outputs the regions of interest (eyes and lips).
The remaining two sub-networks are employed to estimate the local landmarks of eyes
and lips, respectively. The output of MediaPipe is a sparse mesh composed of 468 points.
Through the lightweight architecture [61] and the region-specific heads for meaningful
regions, MediaPipe has good efficiency and achieves comparable performance compared
with the cascaded methods, realizing the real-time on-device inference.

5.5.1.4 3D Landmark Data
One of the main challenges of 3D landmark localization is the lack of data. Acquiring high-
precision 3D face models requires expensive devices and a fully controlled environment,
making large-scale data collection infeasible. To overcome this bottleneck, current methods
usually label 2D projections of 3D landmarks as an alternative solution. However, it is still
laborious since the self-occluded parts have to be guessed by intuition. In recent years,
300W-LP [40, 85], AFLW2000-3D [40, 85], and Menpo-3D [84] have been popular data
sets for building 3D landmark localization systems. In addition to hand annotation, training
data can be generated by virtual synthesis. Face Profiling [40, 85] proposes to recover a
textured 3D mesh from a 2D face image and rotate the 3D mesh to given rotation angles,
which can be rendered to generate virtual data, shown in Fig. 5.16. Through face profiling,
not only the face samples in large poses (yaw angle up to 90◦) can be obtained, but also the
dataset can be augmented to any desired scale.
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Fig. 5.16 The face profiling process

5.5.2 Landmark Localization onMasked Face

Since the outbreak of the worldwide pandemic COVID-19, facial landmark localization
has encountered the great challenge of mask occlusion. First, the collection of masked face
data is costly and difficult, especially during the spread of COVID-19. Second, the masked
facial image suffers from severe occlusion, making the landmarks more difficult to detect.
Taking the 106-point landmark setting as an example, there are around 27 nose and mouth
points occluded by the facial mask (Fig. 5.18), which brings not only additional difficulty to
landmark detection, but also adverse uncertainty to the ground-truth labeling. These issues
cause serious harm to the deep-learning-based landmark localization that relies on labeled
data.

It can be perceived that most of the issues lie in themasked face data. Therefore, a feasible
and straightforward solution is synthesizing photo-realistic masked face images frommask-
free ones, so as to overcome the problems of data collection and labeling. One popular
approach [14] , as shown in Fig. 5.17, is composed of three steps, i.e., 3D reconstruction,
mask segmentation, and re-rendering of the blended result. Given the source masked face
and the target mask-free face, their 3D shapes are first recovered by a 3D face reconstruction
method (such as PRNet [53]) to warp the image pixels to the UV space to generate the
UV texture. Second, the mask area in the source image is detected by a facial segmentation
method [90], which is also warped to the UV space to get a UVmask. Finally, the target UV
texture is covered by the UV mask, and the synthesized target texture is re-rendered to the
original 2D plane.

There are two benefits of this practice. First, a large number of masked face images can
be efficiently produced with geometrically-reasonable and photo-realistic masks, and the
mask styles are fully controlled. Second, once the target image has annotated landmarks, the
synthesized one does not have to be labeled again. It can directly inherit the ground-truth
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Fig. 5.17 Adding virtual mask to face images by 3D reconstruction and face segmentation

(a) Synthesized Mask (b) Real Mask

Fig. 5.18 Examples of synthesized and real masked face images [1]

landmarks for training and testing (Fig. 5.18a).With the synthesizedmasked face images, the
mask-robust landmark detectionmodel can be built in the similar manner as in the mask-free
condition.

5.5.3 Joint Face Detection and Landmark Localization

The joint detection of face boxes and landmarks has been studied since the early ages
when deep learning begins to thrive in biometrics. The initial motivation of joint detection
is to boost face detection itself by incorporating landmarks to handle certain hard cases,
e.g., large pose, severe occlusion, and heavy cosmetics [5, 6]. Afterward, the community
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Fig. 5.19 The typical framework of joint detection of face and landmark

pays increasing attention to merging the two tasks as one. The advantages are three-fold:
First, the two highly correlated tasks benefit each other when the detector is trained by the
annotations from both sides. Second, the unified style brings better efficiency to the whole
pipeline of face-related applications, as the two detection tasks can be accomplished by a
single lightweight model. Finally, the joint model can be conveniently applied inmany tasks,
including face recognition, simplifying the implementation in practice. Despite the obvious
advantages of the multi-task framework, building such a system requires more expensive
training data with labels of multiple face attributes, improving the cost of data annotations.
Networks. The typical framework of joint face and landmark detection is shown in Fig. 5.19.
The input image contains human faces that occur with arbitrary pose, occlusion, illumina-
tion, cosmetics, resolution, etc. The backbone extracts an effective feature from the input
image and feeds it into the multi-task head. The multi-task head outputs the joint detection
results, including at least three items, i.e., face classification, face bounding box coordi-
nates, and landmark coordinates. Beyond typical tasks, some methods also predict the head
pose, gender [8], and 3D reconstruction [11] simultaneously. The major backbones include
FPN [10], Cascaded-CNN [7], multi-scale fusion within rapidly digested CNN [9], YOLO-
vX style [3], etc. The former two make full use of hierarchical features and predict fine
results, and the latter two have excellent efficiency for CPU-real-time applications.
Learning objectives. The framework should be trained with multiple objectives to per-
form joint predictions. Equation (5.17) is the typical loss formulation for multiple objective
training. L f ace−cls is the cross-entropy loss for face classification, which predicts the con-
fidence of whether the candidate is a human face. Lbbox−reg is defined as the L2 or smooth
L1 distance between the coordinates of the predicted bounding box and the ground truth,
supervising the model to learn the bounding box locations. Similarly, Llm−reg supervises
the model to predict the landmark coordinates in the same way.

L = α1β1L f ace−cls + α2β2λLbbox−reg + α3β3λLlm−reg, (5.17)

where {α1, α2, α3} ∈ R are the weights for balancing the training toward three objectives,
{β1, β2, β3} ∈ {0, 1} are binary indicators that activate the supervision if the corresponding
annotation presents in the training sample, and λ ∈ {0, 1} is applied to activate the supervi-
sion of bounding box and landmark if the candidate’s ground truth is human face [9]. It is
worth noting that the incorporation of β enables the training on partially annotated datasets.
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Datasets. The dataset most commonly used for joint detection is the WIDER FACE [13]
dataset with the supplementary annotations [11]. The initial purpose of WIDER FACE is to
train and evaluate face detection models. The supplementary annotation provides five-point
landmarks on each face, enabling the usage for the joint detection task. Owing to the wide
utilization of this dataset, most joint detection models predict five-point landmarks, which
are sufficient for face alignment in most cases. Besides, some models [8, 30] trained by the
300W [57] dataset predict 68 landmarks for joint detection.

5.6 Evaluations of the State of the Arts

In this section, we introduce how to evaluate the performance of a landmark localization
method, including various datasets and evaluation metrics. The evaluation results of repre-
sentative methods on different datasets are also collected and demonstrated.

5.6.1 Datasets

In recent years, many datasets have been collected for training and testing of 2D facial
landmark localization, including COFW [67], COFW-68 [72], 300W [65], 300W-LP [85],
WFLW [68], Menpo-2D [83], AFLW [66], AFLW-19 [86], AFLW-68 [87], MERL-RAV
[77] and WFLW-68 [39], which are listed in Table 5.1. We introduce some representative
datasets as follows:

Table 5.1 An overview of 2D facial landmark datasets. “Train” and “Test” are the number of samples
in the training set and the test set, respectively. “Landmark Num.” represents the number of annotated
landmarks

Dataset Year Train Test Landmark Num.

AFLW [66] 2011 20, 000 4, 386 21

300W [65] 2013 3, 148 689 68

COFW [67] 2013 1, 345 507 29

COFW-68 [72] 2014 – 507 68

300W-LP [85] 2016 61, 225 – 68

Menpo-2D [83] 2016 7, 564 7, 281 68/39

AFLW-19 [86] 2016 20, 000 4, 386 19

WFLW [68] 2018 7, 500 2, 500 98

AFLW-68 [87] 2019 20, 000 4, 386 68

MERL-RAV [77] 2020 15, 449 3, 865 68

WFLW-68 [39] 2021 7, 500 2, 500 68
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300W contains 3, 837 images, some images may have more than one face. Each face is
annotated with 68 facial landmarks. The 3, 148 training images are from the full set of AFW
[69] (337 images), the training part of LFPW [70] (811 images), and HELEN [71] (2, 000
images). The test set is divided into a common test set and a challenging set. The common
set with 554 images comes from the testing part of LFPW (224 images) and HELEN (330
images). The challenging set with 135 images is from the full set of IBUG [65]. 300W-
LP [85] augments the pose variations of 300W by the face profiling technique and generates
a large data set with 61, 225 samples, much of which are in profile.

COFW contains 1, 007 imageswith 29 annotated landmarks. The training set with 1, 345
samples is the combination of 845 LFPW samples and 500 COFW samples. The test set
with 507 samples has two cases. They are annotated with 29 landmarks (the same as the
training set) or 68 landmarks, and the latter is called COFW-68 [72]. Most faces in COFW
have large variations in occlusion.

AFLW contains 25, 993 faces with at most 21 visible facial landmarks annotated, but
excludes the annotations of invisible landmarks. A protocol [86] is built on the original
AFLW and divides the dataset into 20, 000 training samples and 4, 386 test samples. The
dataset has large pose variations, especially has thousands of faces in profile. AFLW-19 [86]
builds a 19-landmark annotation by removing the 2 ear landmarks. AFLW-68 [87] follows
the configuration in 300W and re-annotates the images with 68 facial landmarks.

Menpo-2D has a training set with 7, 564 images, including 5, 658 front faces and 1, 906
profile faces, and a test set with 7, 281 images, including 5, 335 front faces and 1, 946
profile faces. There are two settings for different poses. The front faces are annotated by 68
landmarks, and the profile faces are annotated by 39 landmarks.

WFLW contains 7, 500 images for training and 2, 500 images for testing. Each face in
WFLW is annotated with 98 landmarks and some attributes such as occlusion, make-up,
expression and blur. WFLW-68 [39] converts the original 98 landmarks to 68 landmarks for
convenient evaluation.

5.6.2 EvaluationMetric

There are three commonly utilized metrics to evaluate the precision of landmark localiza-
tion, including Normalized Mean Error (NME), Failure Rate (FR) and Cumulative Error
Distribution (CED).
NormalizedMean Error (NME) is one of the most widely used metrics in face alignment,
which is defined as:

NME = 1

M

M∑

i=1

||Pi − Pi
∗||2

d
, (5.18)

where {Pi } is the predicted landmark coordinates, {Pi
∗} is the ground-truth coordinates,M is

the total number of landmarks, and d is the distance between outer eye corners (inter-ocular)
[39, 68, 75, 79, 82]) or pupil centers (inter-pupils [76, 80]). It can be seen that the error is
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Fig. 5.20 An example of CED
curve from [40]. In the curve, x
is NME and y is the proportion
of samples in the test set whose
NMEs are less than x

normalized by d to reduce the deviation caused by face scale and image size. In some cases,
the image size [39] or face box size [77] is also used as the normalization factor d. A smaller
NME indicates better performance.
Failure Rate (FR) is the percentage of samples whose NMEs are higher than a certain
threshold f , denoted as FRf ( f is usually set to 0.1) [57, 68, 92]. A smaller FR means better
performance.
Cumulative Error Distribution (CED) is defined as a curve (x, y), where x indicatesNME
and y is the proportion of samples in the test set whose NMEs are less than x . Figure 5.20
shows an example ofCEDcurve,whichprovides amore detailed summaryof landmark local-
ization performance. Based on CED, theArea Under the Curve (AUC) can be obtained by
the area enclosed between the CED curve and the x-axis, whose integral interval is x = 0
to a threshold x = f , denoted as AUCf . A larger AUC means better performance.

5.6.3 Comparison of the State of the Arts

We demonstrate the performance of some state-of-the-art methods from 2018 to 2022 on
commonly used datasets, including LAB [68], SAN [73], HG-HSLE [74], AWing [76],
DeCaFA [78], RWing [38], HRNet [75], LUVLi [77], SDL [81], PIPNet [39], HIH [79],
ADNet [80], and SLPT [82]. It is worth noting that the reported results should not be
compared directly because the model sizes and training data are different.
300W: Table 5.2 summarizes the results on the most commonly used dataset 300W, with
three test subsets of “common”, “challenging”, and “full”. The NME of the 68 facial land-
marks is calculated to measure the performance. All the results are collected from the
corresponding papers.
COFW: Table 5.3 summarizes the results on the COFW and COFW-68, which mainly
measure the robustness to occlusion. There are two protocols, the within-dataset protocol
(COFW) and cross-dataset protocol (COFW-68). For the within-dataset protocol, the model
is trained with 1, 345 images and validated with 507 images on COFW. The NME and FR0.1
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Table 5.2 Performance comparison on 300W, “Common”, “Challenge”, and “Full” represent com-
mon set, challenging set, and full set of 300W, respectively. “Backbone” represents the model archi-
tecture used by each method

Method Year Backbone NME(%, inter-ocular)

Full Common Challenge

LAB [68] 2018 ResNet-18 3.49 2.98 5.19

SAN [73] 2018 ITN-CPM 3.98 3.34 6.60

HG-HSLE [74] 2019 Hourglass 3.28 2.85 5.03

AWing [76] 2019 Hourglass 3.07 2.72 4.52

DeCaFA [78] 2019 Cascaded U-net 3.39 2.93 5.26

HRNet [75] 2020 HRNetV2-W18 3.32 2.87 5.15

LUVLi [77] 2020 DU-Net 3.23 2.76 5.16

SDL [81] 2020 DA-Graph 3.04 2.62 4.77

PIPNet [39] 2021 ResNet-101 3.19 2.78 4.89

HIH [79] 2021 2 Stacked HGs 3.33 2.93 5.00

ADNet [80] 2021 Hourglass 2.93 2.53 4.58

SLPT [82] 2022 HRNetW18C-lite 3.17 2.75 4.90

of the 29 landmarks are utilized for comparison. For the cross-dataset protocol, the training
set includes the complete 300W dataset (3, 837 images), and the test set is COFW-68 (507
images). The NME and FR0.1 of the 68 landmarks are reported. All the results are collected
from the corresponding papers.
WFLW: Table 5.4 summarizes the results on WFLW. The test set is divided into six subsets
to evaluate themodels in various specific scenarios, which are pose (326 images), expression
(314 images), illumination (698 images), make-up (206 images), occlusion (736 images),
and blur (773 images). The three metrics of NME, FR0.1 and AUC0.1 of the 98 landmarks
are employed to demonstrate the stability of landmark localization. The results of SAN are
from the supplemental material of [82]. The results of LUVLi are from the supplemental
materials of [77]. The results of SLPT are from the supplemental materials of [82]. For
HRNet, the NME is from [75], and the FR0.1 and AUC0.1 are from [81]. The other results
are from the corresponding papers.
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Table 5.3 Performance comparison on COFW and COFW-68. The threshold of Failure Rate (FR)
and Area Under the Curve (AUC) are set to 0.1

Method Year Backbone COFW COFW-68

Inter-Ocular Inter-Pupil Inter-Ocular

NME(%) FR0.1(%) NME(%) FR0.1(%) NME(%) FR0.1(%)

LAB [68] 2018 ResNet-18 3.92 0.39 – – 4.62 2.17

AWing [76] 2019 Hourglass – – 4.94 0.99

RWing
[38]

2020 CNN-6&8 – – 4.80 – – –

HRNet
[75]

2020 HRNetV2-W18 3.45 0.19 – – – –

SDL [81] 2020 DA-Graph – – – – 4.22 0.39

PIPNet
[39]

2021 ResNet-101 3.08 – – – 4.23 –

HIH [79] 2021 2 Stacked HGs 3.28 0.00 – – – –

ADNet
[80]

2021 Hourglass – – 4.68 0.59 – –

SLPT [82] 2022 HRNetW18C-lite 3.32 0.00 4.79 1.18 4.10 0.59

5.7 Conclusion

Landmark localization has been the cornerstone of many widely used applications. For
example, face recognition utilizes landmarks to align faces, face AR applications use land-
marks to enclose eyes and lips, and face animation fits 3D face models by landmarks. In
this chapter, we have discussed typical methods of landmark localization, including coordi-
nate regression and heatmap regression, and some special landmark localization scenarios.
Although these strategies have made great progress and enabled robust localization in most
cases, there are still many challenging problems remaining to be addressed in advanced
applications, including faces in profile, large-region occlusion, temporal consistency, and
pixel-level accuracy. With the development of face applications, the benchmark of land-
marks on accuracy, robustness, and computation cost becomes higher and higher and more
sophisticated landmark localization strategies are needed.
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