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This handbook is dedicated to all the researchers,
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the countless individuals who have contributed to
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their support of emerging technologies. Your
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handbook to the future generations of researchers
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take the field of face recognition to new heights.
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Foreword

Over the past decade, deep learning has emerged as a powerful tool for solving a wide
range of complex problems in computer vision, speech recognition, and natural language
processing. One area where deep learning has shown particularly promising results is in
face recognition.

Face recognition is a critical technology with applications in security, surveillance, bio-
metrics, and human-computer interaction. Deep learning-based approaches have achieved
state-of-the-art performance in face recognition tasks, enabling accurate and efficient
recognition of faces in a variety of settings.

This handbook brings together some of the leading experts in the field of deep learning-
based face recognition to provide a comprehensive overview of the current state of the
art.

The chapters cover a broad range of topics, such as deep learning fundamentals,
face detection, facial landmark localization, facial attribute analysis, face presentation
attack detection, face feature embedding, video-based face recognition, face recognition
with synthetic data, uncertainty-aware face recognition, reducing bias in face recogni-
tion, adversarial attacks on face recognition, heterogeneous face recognition, and 3D face
recognition.

I believe this handbook will be an invaluable resource for researchers and practitioners
interested in deep learning-based face recognition. It provides a comprehensive overview
of the field, from the fundamentals to the latest advances, and offers guidance on how
to develop and deploy these technologies in a responsible and ethical manner. I am hon-
ored to have the opportunity to introduce this important work, and I hope it will inspire
innovations and help shape the future of face recognition.

Surrey, UK
December 2023

Josef Kittler
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Preface to the Third Edition

As the leading biometric technique for identity authentication, face recognition is widely
utilized in areas such as access control, finance, law enforcement, and public security.
Over its 50-year history, research and development in this field have been groundbreak-
ing. The emergence of deep learning and neural networks has dramatically reshaped face
recognition research and applications in almost every aspect since the publication of the
first two editions of this Handbook.

The third edition of the Handbook of Face Recognition presents an entirely new col-
lection of content emphasizing the latest face recognition methodologies and technologies
within the deep neural network framework. Featuring contributions from leading experts
in the field, this comprehensive handbook offers a current overview of the state-of-the-
art while examining the newest developments and emerging trends. The chapters cover
a broad range of topics, from the fundamentals of deep learning to the latest advances
in face recognition algorithms and applications. This book serves as an all-encompassing
resource, providing theoretical underpinnings, algorithms, and implementations to guide
students, researchers, and practitioners across all aspects of face recognition. In addition
to showcasing the most recent advancements in methods and algorithms, the book also
supplies code and data to facilitate hands-on learning and the creation of reproducible
face recognition algorithms and systems (Appendix) through deep learning programming.
The code and data will be accessible on GitHub and will be updated regularly to keep the
materials up to date.

This handbook will be a valuable resource for researchers, and practitioners interested
in face recognition. It provides a comprehensive overview of the field and guidance on
the responsible development and implementation of these technologies. We extend our
gratitude to all the authors for their contributions and the editorial team for their tireless
efforts in bringing this handbook to fruition. We hope it will inspire innovation and help
shape the future of face recognition.

Hangzhou, China
East Lansing, USA
London, UK

Stan Z. Li
Anil K. Jain

Jiankang Deng
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Introduction and Fundamentals



1Face Recognition Research and Development

Zichang Tan and Guodong Guo

1.1 Introduction

Face recognition aims to identify or verify the identity of a person through his or her face
images or videos. It is one of the most important research topics in computer vision with
great commercial applications [37, 59, 86, 210], like biometric authentication, financial
security, access control, intelligent surveillance, etc. Because of its commercial potential
and practical value, face recognition has attracted great interest from both academia and
industry.

The concept of face recognition probably appeared as early as 1960s [10], when
researchers tried to use a computer to recognize the human face. In the 1990s and early
2000s, face recognition had rapid development and methodologies were dominated by
holistic approaches (e.g., linear space [11], manifold learning [70], and sparse represen-
tations [227, 253]), which extract low-dimensional features by taking the whole face as
the input. Later, in the 2000s and early 2010s, local descriptors (like Gabor [103, 129],
LBP [3, 118], DFD [104], etc.), and Support Vector Machine (SVM) [58] were applied
to face recognition, which further improved the recognition performance. However, these
traditionalmethods [3, 11, 70, 104, 129, 227, 238, 253] suffer from elaborate design and shal-
low representations and hardly achieve a robust recognition performance against complex
variations in head poses, occlusions, illuminations, expressions, etc.

In 2014, deep learning [67, 98, 101, 185, 191] was applied to the problem of face recogni-
tion and made remarkable achievements. For example, DeepFace [192] and DeepID [190],

Z. Tan · G. Guo (B)
Institute of Deep Learning, Baidu Research, Beijing, China
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which are constructed based on several Convolutional Neural Networks (CNN) layers,
reached human-like performance (99%accuracy inLFWbenchmark) for the first time. Com-
pared with the traditional methods, the deep learning-basedmethods show an overwhelming
advantage in recognition accuracy. Inspired by this, many researchers have been actively
involved in the research of deep face recognition, and have developed a series of algorithms
to push the state-of-the-art performance. The success of deep learning for face recognition
comes from several aspects. First, the proper structure of stackedCNN layers allows learning
discriminative features with a strong invariance against relatively large variations in head
pose, occlusions, illuminations, and so on. Second, training deep learning-based methods
with massive learnable parameters on large-scale datasets (e.g., CASIA-WebFace [241] and
MS-Celeb-1M [63]) allows the extraction of discriminative representations in an efficient
way. Last but not least, the development of computing technologies and hardware (e.g.,
GPUs) provides strong support for large-scale training.

This survey mainly focuses on the latest advances in face recognition using deep learning
technologies [28, 60, 62, 131, 135, 205], as well as the development of specific recognition
tasks and databases [8, 63, 167, 241, 280].

Generally, a complete face recognition system consists of face detection, alignment,
feature extraction, and facematching. For face detection [256, 257] and face alignment [277],
they can be regarded as pre-processing steps. For these pre-processing steps, we briefly
review the related works, while we will put our focus on face representation and matching.

In this chapter, we present a comprehensive overview of deep face recognition. Figure 1.1
illustrates the structure of this survey. The key insights are as follows:

• The advances of deepmethods in face recognition are investigated, including the network
architectures, loss functions, face recognition with Generative Adversarial Networks
(GAN), and multi-task learning methods.

• Challenges in many specific face recognition tasks are presented, including masked face
recognition (FR), large-scale FR, cross-factor FR, heterogeneous FR, low-resolution FR,
and FR against adversarial attacks.

• The face datasets for training and evaluation are examined, especially the developments
related to noisy data and data imbalance problems.

1.2 ProcessingWorkflow

Generally, the workflow of the face recognition process has four stages, including face
detection, face alignment, face anti-spoofing, feature extraction, and face matching. The
diagram of the workflow can be found in Fig. 1.2.

Face detection is the basic step of face recognition and other face analysis applications
(such as face attribute analysis [193, 194], expression recognition [232, 233], face forgery
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Fig. 1.1 The structure of this survey. The survey focuses on three aspects: the advances in deep
methods, specific recognition tasks, and databases

Fig.1.2 The processing workflow of face recognition. For a given face image, face detection is first
employed to locate the face, and then landmark detection is taken to find the locations of some key
facial landmarks, which are then used to align the face. In some commercial face recognition systems,
face anti-spoofing is also often used to filter fake faces to ensure the security of the system. The real
face would be input to the next stage for face recognition, where a deep network is used to extract its
face feature and then match the extracted feature with the face features in the gallery

detection [155], etc.). Face detection is to detect the face in a given image, in other words, to
find the location of the face.With the development of deep learning and general object detec-
tion, face detection has also made great progress in recent years. At the early stages of deep
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learning, themulti-stage detectors played a leading role in the field of face detection, likeMT-
CNN [251] and FA-RPN [161]. Multi-stage detectors first generate a number of candidate
boxes, and then refine these candidate boxes in the later stages. Multi-stage face detectors
usually can achieve good performance but with a low efficiency. To improve the efficiency,
some single-stage face detectors are proposed, like S3FD [257] andRefineFace [254]. Singe-
stage face detectors could conduct the classification and bounding box regression from the
feature maps directly in a single stage. They remove the stage of generating candidate boxes,
which improves the detection efficiency. Moreover, some researchers propose the CPU real-
time detectors for real-world applications, like Faceboxes [256] and RetinaFace [27]. Those
methods are designed with lots of efficient components like a lightweight network, rapidly
digested convolutional layer, knowledge distillation, and so on, which largely improves the
efficiency.

Face alignment [61, 277] is the next step after face detection. Its goal is to calibrate
unconstrained faces and it facilitates the later stages of face feature extraction. Most existing
methods align the face through some pre-defined facial landmarks, which is called landmark-
based face alignment. For example, given five points at the center of two eyes, tip of the nose,
and two corners of the mouth, the face is then aligned by an affine transformation. Therefore,
the quality of face alignmentmainly depends on the quality of facial landmark detection, and
the core of face alignment is how to accurately detect facial landmarks. Existing methods of
landmark regression can be classified into three categories, namely regression-based [143],
heatmap-based [228], and 3D model fitting [61, 277] methods. Regression-based methods
usually employ several regression layers to regress the landmark locations with L1, L2, or
smoothed L1 loss functions. Regarding heatmap-basedmethods, they predict the scoremaps
of all landmarks, which is inspired by the works of human pose estimation [164, 207]. For
3D model fitting, it aims to improve the accuracy of landmark locations by exploring the
relationship between 2D facial landmarks and 3D facial shapes.

The detailed review on face anti-spoofing can be found in Sect. 1.6. Feature extraction
and face matching are the core parts of our survey. In recent years, many methods have
been proposed to study how to extract better facial features or improve face matching, like
designing network architectures, modifying loss functions, improve FR with GAN, and
multi-task learning strategies. The related works will be introduced in the following.

1.3 Advances in DeepMethods

In the past several years, a large number of researchers have been devoted to the research on
face recognition and numerous deep learning based methods have been proposed [28, 60,
62, 131, 135, 205]. In these studies, Convolutional Neural Networks (CNN) [102] are the
most popular architecture and have brought great improvement to face recognition. Thus,
we first present a detailed overview of the employed CNN architectures. Face recognition is
different from the general object classification problem, where there are massive classes but
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the inter-class differences are very small. How to design an effective loss function to train the
deep networks has became one of the hottest research directions. Thus, the progress of loss
function modification will be checked extensively in the following.With the development of
GenerativeAdversarialNetworks (GAN) [56], applyingGANfor face recognitionhas gained
promising developments, especially in domain-invariant face recognition. Moreover, we
present the advances inmulti-task learningmethods,which learns the task of face recognition
with other tasks, such as pose estimation and gender recognition.

1.3.1 Network Architectures

The early CNN architectures in face recognition, like DeepFace [192] and DeepID [190],
only contained a few neural layers due to the limited computing capability. For example,
DeepFace consists of nine layers including convolutional, local-connected and fully con-
nected layers. In the following years, the architecture evolved along with the evolution of
networks for general object classification. For example, in 2015, FaceNet [178] and VGG-
Face [167] utilized the GoogleNet [191] and VGGNet [185] for extracting face features,
respectively. Later, SphereFace [135] designed a 64-layer residual networks with an angular
loss named A-softmax to extract discriminative features. In 2019, ArcFace [28] proposed
an improved residual networks named IResNet. IResNet was constructed based on the stan-
dard ResNet [67], but replacing the redisual unit with an improved residual unit, which
has a BN-Conv-BN-PReLu-Conv-BN structure. Experiments show that this improved unit
can obviously improve the verification performance. This made IResNet the most popular
structure in face recognition, widely used in both academia and industry. Han et al. [65]
proposed a personalized convolution for face recognition, which aims to enhance the indi-
vidual characteristics while suppressing common characteristics for each person. Recently,
transformer [35] was also taken for extracting face representations [106, 273]. However,
Zhong et al. [273] took various transformers and a classic CNN architecture (ResNet-100)
with similar number of parameters for comparisons. Experiments show that the transformer
could achieve comparable performance with the CNNwhen sufficient images are accessible
for training.

Besides designing network architectures, it is also important to enhance the networks’
capability by developing attention mechanisms for face recognition [28, 120, 121, 211,
213]. In ArcFace [28], an attention-based network, namely SE-IResNet, was constructed
with applying Squeeze-and-Excitation (SE) [73] attention to IResNet. SE attention is a
kind of channel-wise attention, and it recalibrates channel-wise feature responses by learn-
ing attentive weights. Spatial attention is also widely used in face recognition. For exam-
ple, Wang et al. [213] proposed a pyramid diverse attention (PDA) to adaptively learn
multi-scale diverse local representations. DSA-Face [212] presented diverse and sparse
attentions, which extract diverse discriminative local representations while suppressing the
responses on noisy regions.Moreover, Ling et al. [121] proposedSRANet that consists of self
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channel attention (SCA) and self spatial attention (SSA) blocks to learn channel and spatial
attentions simultaneously for better capturing discriminative feature embeddings. In addi-
tion to channel and spatial attentions, Kang et al. [89] proposed an Attentional Feature-pair
Relation Network (AFRN), which represents a face by exploring the relations of pairs of
local appearance block features. These attention mechanisms usually contain only a small
number of calculations and parameters but they can bring considerable performance gains.
Therefore, the attentionmechanism has attracted great research interests and lots of attention
mechanisms have been constructed and applied to face recognition in the past several years.

In the early stages of deep face recognition, the employed networks only contained a few
layers [190, 192]. However, with the development of related technologies and the pursuit
of high recognition performance, the networks became deeper and deeper. For example,
the popular network IResNet100 in ArcFace [28] consists of 100 layers (with a model size
of 249M), which is difficult to put into practical use. From a practical point of view, how
to design a lightweight architecture for face recognition is also an important task in the
community. In 2018, Wu et al. [229] proposed a Light CNN framework, which aims to learn
a compact embedding against large-scale datawith noisy labels. In thiswork, three networks,
namely Light CNN-4, Light CNN-9 and Light CNN-29, were carefully designed to obtain
good performance while reducing the complexity and computational costs. In 2019, Deng
et al. [30] holded a challenge/workshop named Lightweight Face Recognition Challenge in
conjunction with ICCV 2019, which attracted a large number of researchers to participate
in the competition. Most importantly, lots of insightful solutions, like VarGFaceNet [235],
AirFace [111] and ShuffleFaceNet [148], were proposed and promoted the progress of
lightweight face recognition. For example, VarGFaceNet [235] proposed a variable group
convolution to support large-scale face recognition while reduced the computational cost
and parameters. VarGFaceNet finally won the first place in DeepGlint-Light track with an
accuracy of 88.78% at FPR=1e-8 while containing only 1G FLOPs.

1.3.2 Loss Function

Loss function [28, 51, 135, 136, 168, 201, 205, 217] plays an important role in deep learning,
especially for face recognition. Early works [178, 190, 192] adopted the Softmax loss or
Triplet loss for face recognition. However, lots of large face datasets have been assembled
in recent years (e.g., WebFace42M [280] contains over 200K identities), the plain softmax
and triplet losses are not satisfactory to extract discriminative face features. In recent years,
lots of works focus on how to design an effective loss function, which have brought great
progress to face recognition. The newly developed losses mainly can be divided into four
main categories: including classification-based loss, metric learning loss, set-based loss and
adaptive loss, which will be presented in detail in the following.

Face recognition can be regarded as a classification problem, and some early works [190,
192] used the softmax loss for deriving face representations. In verification stage, the cosine
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similarity or equivalently L2 normalized Euclidean distance for a pair of face representa-
tions is calculated for matching. However, the features are not normalized in the standard
softmax loss, which results in an inconsistency between the training and testing stages.
To eliminate this inconsistency, NormFace [202] was proposed to add feature normal-
ization to the softmax loss. Later, angular-margin-based loss was proposed to explicitly
encourage intra-class compactness and inter-class separability, e.g., L-softmax [136], A-
softmax [135], AM-softmax/CosFace [201, 205] and ArcFace [28]. In L-softmax, the sep-
arability between the sample x and the parameter W is transformed to angular similarity:
Wx = ||W ||2||x||2cos(θ), and then it produces the angular margin by multiplying a con-
stantm with the angle θ (i.e., cos(mθ)), which learns compact and separated features. Then,
A-softmax further constrains the learned features lying on a hypersphere manifold by set-
ting ||W ||2 = 1. For AM-softmax/CosFace and ArcFace, they produce the angular margin
by computing cos(θ) − m and cos(θ + m), respectively, which are easy to be trained and
achieve more compact features. Inspired by these losses, lots of variants [85, 139, 188,
216, 244] have been developed in recent years as well, showing clearly the effectiveness of
angular-margin-based softmax loss for face recognition.

The metric learning loss [64, 178] optimizes the networks based on a pair-wise distance
or similarity. In 2015, Schroff et al. [178] proposed the Triplet loss, which learns feature
representations based on the triplet of one anchor, one positive and one negative samples. The
triplet loss aims to narrow the distance between the positive pair (intra-variation) and enlarge
the distance between the negative pair (inter-variation). Later, Sohn et al. [186] generalized
the triplet loss by associating each samplewithmore than one negative samples. Hierarchical
triplet Loss [48] collects informative triplets according to a defined hierarchical tree. There
are also some works focusing on hard example mining [91, 282] to select effective sample
pairs for training. For example, Tan et al. [282] extended the selection space of hard sample
pairs by taking samples in previous batches as a reference. Other losses, e.g. SFace [274],
CDT [42], Circle loss [189], also promote the accuracies of face recognition.

The performance of the developed losses usually highly depends on the hyperparameter
settings. In the works [28, 93, 135, 201, 205], the parameters are usually fixed for all classes,
which ignores the differences between different categories. Some researchers [83, 128, 132,
153, 165, 219, 259] propose adaptive losses by adjusting parameters dynamically, which
aims to obtain more effective supervisions during training. For example, Liu et al. [132]
proposed an Adaptive Margin Softmax Loss (AdaM-Softmax) to adaptively find the appro-
priate margins for different classes. Zhang et al. [259] proposed the AdaCos to dynamically
change the scale and margin parameters. Moreover, Liu et al. [128] adopted a margin-aware
reinforcement learning to adaptively learn margins. Kim et al. [93] proposed the AdaFace
to adaptively adjust the margins based on the image quality.

The set-based losses [39, 80, 224, 225]were designed based on a set of samples rather than
a single example. For example, Center loss [224, 225] tried to enhance the discriminative
capability by learning a center for each class, and then adding an extra regularization term
to narrow the distance between the face feature and the corresponding center. Later, Git
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loss [14] improved the Center loss by adding an additional term to maximize the distance
between the face feature and other negative centers. Range loss [258] proposed to reduce
intra-class variations while enlarging inter-class variations based on the range and center of
each class. Moreover, other losses, e.g. Contrastive-center loss [171] and Cosmos-Loss [80],
were also constructed based on feature centers and gain some improvements. Liu et al. [134]
proposed a Feature Consistency Distillation (FCD) loss to fully transfer the relation-aware
knowledge from the teacher to student.

The loss function is essential in deep face recognition, and it has made a significant
progress in recent years. For detailed descriptions and mathematical forms about the losses,
please refer to the previous survey [59].

1.3.3 Face Recognition with GAN

In 2014, Goodfellow et al. [56] proposed the Generative Adversarial Networks (GAN),
which employs a generator and a discriminator to perform adversarial learning in the form
of zero-sum game. Since then, GAN has attracted great research interest and successfully
applied to various tasks. In face recognition, GAN is mainly taken for face synthesis and
feature disentanglement in order to achieving a better performance.We introduce the related
advances of adversarial learning in these sub-fields.

Face synthesis is a straightforward solution to assist face recognition through the use
of GAN. In video face recognition, one common practice is to generate one or more high-
quality face images [157, 174, 175] by a given input video. Then, the high-quality face pic-
ture is taken for feature extraction and thus the recognition performance can be improved.
Some researchers [197] adopted synthetic faces to augment the face dataset, which led to
an increased recognition accuracy. Others synthesized faces in various cross-factor settings,
e.g. cross-domain [107, 158], cross-pose [16, 23, 82, 117, 133, 264, 265], cross-spectral [44,
68, 245], cross-age [84, 263, 267], cross-makeup [114, 250], etc. A common way in these
methods is to generate an appropriate face image from other imaging conditions, e.g. gen-
erating frontal-view faces [23, 133, 265], cross-spectral face generation [44, 68, 187, 245],
facial de-makeup [114, 250] and so on. For example, Zhao et al. [265] proposed a Face
Frontalization sub-Net (FFN) to normalize profile face images to frontal pose, which facil-
itates pose-invariant feature extraction. Note that face synthesis is not the whole in those
methods. Most of them only took the face synthesis as an intermediate step and then com-
bined it with other modules to achieve a better performance. Let us take the work [265] as an
example again. In addition to the face frontalization part, it further proposed aDiscriminative
Learning sub-Net (DLN) to capture pose-invariant features. However, using synthetic faces
for training is not always useful. For example, previous works [25, 97] trained networks
on both the real dataset and the synthetic data. Both showed that the synthetic data could
give a reduced performance on real-world face recognition, compared with training on real
datasets. The reduced performance may be caused by the poor intra-class variations in
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synthetic data and the domain gap between synthetic and real face images. Therefore,
although various works have demonstrated that synthetic data could improve the perfor-
mance of face recognition, it still requires care on how to select appropriate algorithms and
strategies to use the synthetic data.

The feature disentanglement with GAN also received lots of attention. In 2017, Chen
et al. [22] proposed an InfoGAN to learn interpretable representations, which is probably
the first work of applying GAN for feature disentanglement. The disentangled representa-
tion is useful for face recognition, which usually only requires the identity knowledge of
the face data. One intuitive approach of feature disentanglement [142] in face recognition
is to disentangle the identity-related features from other irrelevant features (e.g., pose, age,
makeup andmodality information) [113, 196, 204, 263, 268], and thus reduces the impact of
irrelevant information on recognition. Such an approach is widely used in cross-pose [196,
204], cross-age [263, 268], cross-makeup [113] and heterogeneous [130] face recognition.
For example, DR-GAN [196] disentangled the face representations from pose variations
through providing pose code to the decoder and pose estimation in the discriminator. In this
way, the discriminative pose-invariant identity representations are captured because the pose
variations are explicitly disentangled. Besides, feature disentanglement is also employed to
unbiased face recognition [52]. More specifically, DebFace [52] extracted disentangled fea-
ture representations (including identity, age, gender and race representations) via adversarial
learning, and then employed the disentangled features for face recognition and demographics
estimation with abating bias influence.

1.3.4 Multi-task learning

A face contains a wealth of information, e.g., identity, gender, race, pose, etc, which are
highly coupled and correlated andmay increase the difficulty for face recognition. Therefore,
some researchers [40, 52, 84, 163, 221, 242, 247] proposed to use the multi-task learning
to do multiple tasks together, such as face recognition, age estimation, gender classification
and pose estimation. In such a way, different tasks can be exploited and interacted with each
other, which may facilitate to capture complementary features. For example, Yin et al. [242]
proposed a multi-task network by jointly learning identity classification and other side
tasks including pose, illumination, and expression estimations. By jointly learning them, the
side tasks help reduce pose, illumination and expression variations in the learned identity
features. Besides boosting the recognition performance, multi-task learning also helps in
reducing computation cost and improving efficiency, since multiple tasks (e.g., identity and
expression) can be accomplished by using a single network.
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1.4 Recent Development in Specific Face Recognition Tasks

1.4.1 Large-Scale Face Recognition

With the wide application of face recognition technology and the requirements of high
performance, the face database has become larger and larger in recent years, as shown in
Fig. 1.4. For example, the largest academic face dataset, i.e., WebFace260M [280], consists
of 260M images of over 200K identities.Moreover, some companies usemore face data than
this to train the model for commercial use. Although training on such large-scale datasets
usually can lead to a good performance it also poses a great pressure on computing resources,
where a large-scale distributed cluster is needed to conduct model training. For example,
when classifying on millions of identities, hundreds of millions of parameters would be
produced in the classifier layer, which requires many computational resources especially
the GPU memory. However, such high requirements on devices are infeasible for most
academic laboratories. How to train a face model on a large-scale face recognition dataset
with limited computational resources is still a challenge [8, 110, 278, 282]. To address this
problem, ArcFace [28] took a distributed learning and Automatic Mixed Precision (AMP)
to reduce computational cost. Further, An et al. [7, 8] proposed a Partial-FC and Li et
al. [110] propose Virtual-FC to reduce the computational consumption especially the GPU
memory when classifying millions of identities. More specifically, Partial-FC randomly
samples partial classes (e.g., 10%) rather than taking the full classes for training at each
step, while Virtual-FC divides N identities into M groups (M � N ) with each group of
identities sharing the parameter vector in the projection matrix (W ). Moreover, Zhu et
al. [278] developed a Dominant Prototype Softmax (DP-softmax) to only select important
prototypes for training. Recently, Tan et al. [282] trained the model on ID vs. Spot (IvS)
face dataset, containing millions of identities using metric learning, where the classification
layer is removed and massive parameters can be avoided. There is room left to improve
large-scale face recognition. How to train a large-scale face model faster, better and more
efficiently will be a long-term topic for the whole FR community.

1.4.2 Cross-Factor Face Recognition

Some common research topics of cross-factor face recognition are cross-pose FR, cross-age
FR and cross-makeup FR. We review them separately in the following.

Cross-pose FR: Face recognition still suffers from pose variations although cross-pose
face recognition has been studied for many years. Cross-pose face recognition is also known
as pose-invariant face recognition, which aims to improve face recognition when exhibiting
large poses variations. In cross-pose face recognition, using synthetic faces (e.g., frontal
view) [16, 23, 82, 117, 133, 141, 147, 243, 261, 264–266] to assist recognition has aroused
great interest.More specifically, thesemethods synthesize faceswith different views byusing
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GAN[23, 82, 147, 264, 265] or 3DMorphableModel (3DMM) [147, 243, 266],which brings
better identity information for the self-occludedmissing part and thus boosts the performance
in recognition. Taking a recent work as an example, Marriott et al. [147] incorporated
a 3D morphable model into a GAN, which allows to manipulate a person’s expression,
illumination and pose without compromising the identity. Then, the manipulated faces were
employed to augment the dataset and enhance the performance. As we have mentioned in
Sect. 1.3.3, feature disentanglement [152, 170, 196, 204] is also a reliable way for cross-pose
face recognition, where the identity features used for recognition are disentangled from other
features (e.g., pose). Besides synthesizing faces and feature disentanglement, other methods
learn pose-invariant features by multi-task learning [40, 242], e.g. jointly learning identity
classification and pose estimation [242], or designing effective networks [18, 119, 198]
like using attention mechanism [198] and Deep Residual EquivAriant Mapping (DREAM)
block [18].

Cross-age FR: Face recognition across age is still a challenging problem due to large
variations caused by face aging. Similar to cross-pose face recognition, both synthesizing
faces [84, 263, 267] and feature disentanglement [204, 220, 263, 268] are effective ways
to capture age-invariant features. Somewhat different, both synthesizing faces and feature
disentanglement aim to reduce aging rather than pose variations. In particular, different
from employing the GAN for feature disentanglement [204, 263, 268], Wang et al. [220]
decomposed features in a spherical coordinate systemwith the angular component represent-
ing identity and the radial component representing age information. Note that the angular
component and radial component are orthogonal. Moreover, some other works captured
age-invariant features by exploring multi-layer fusion [234] or cascading networks utilizing
cross-age identity difference [38]. Experiments show that those methods gained promising
improvements.

Cross-makeup FR: Facial makeup can greatly change facial characteristics, especially
in this era that the makeup technology is so developed. Some researchers employed GAN to
first remove makeup [114, 250], and then the synthesized non-makeup faces were employed
for identity recognition or verification. Li et al. [113] decomposed the face representations
into a makeup code and an identity code, which reduce the effect of makeup for recognition.
Considering that the face makeup is mainly presented in the eyes and mouth area, some
works [115, 214] employ a multi-branch CNN to capture global and local information
concurrently, where the one corresponds to the global region and the others correspond to
local regions, e.g. eyes and mouth.

1.4.3 Masked Face Recognition

With the outbreak of the COVID-19 epidemic, people usually wear masks to hinder the
spread of the virus. Wearing masks poses a great challenge to face recognition, because
a large part of the face area is occluded, causing the general face recognition systems
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Fig.1.3 Face examples fromRMFRD [77, 222] with and without facial masks. For the faces wearing
masks, a large part of the face area is blocked, which brings great difficulties to recognition

and algorithms to fail. Some examples of masked face recognition are shown in Fig. 1.3.
Since 2019, masked face recognition has become an active research topic, and various new
algorithms [9, 12, 21, 36, 49, 72, 87, 105, 112, 150, 159, 163, 172, 173, 208, 215, 246, 271]
emerged endlessly. In masked face recognition, one obvious challenge is the lack of training
face imageswithmasks.A simple and effective approach against this problem is to synthesize
masked face images for training [21, 172, 208, 215, 246]. However, synthesized images are
still different from real masked face images. There are still some defects when applying the
model trained on synthesized images to real-world applications. Considering that themasked
faces are easily available on the web, some researchers [271] proposed a webly supervised
meta-learning approach to utilize web images of containing label noise. Many other studies
proposed to focus on learning attentive features against mask occlusions [21, 112, 212],
improving the fairness ofmasked face recognition among different people groups [172, 246],
designing effective losses [12, 173] or unmasking [33]. Moreover, the work [87] conducted
an empirical study on masked face recognition, in which lots of experiments were executed
to investigate the impacts of network architectures, loss functions and training strategies on
recognition performance.

In addition to algorithms, lots of databases and benchmarks [77, 78, 156, 199, 222] have
been developed in recent years, including Real-world Masked Face Recognition Dataset
(RMFRD) [77, 222], Synthetic Masked Face Recognition Dataset (SMFRD) [77, 222],
Masked LFW (MLFW) [199] and IndianMasked Faces in theWild (IMFW) [156]. RMFRD
and IMFW consist of images from real-world scenes, while SMFRD and MLFW are syn-
theticmasked face datasets, whichwere created bywearing virtualmasks on faces in existing
datasets. These datasets will be introduced in detail in Sect. 1.5.

Several competitions were held to promote the development of masked face recogni-
tion, such as Masked Face Recognition Competitions in IJCB 2021 (IJCB-MFR-2021) [13],
Masked Face Recognition Challenge (MFR) in ICCV 2021 [26, 279] and Face Recognition
Vendor Test (FRVT): FaceMaskEffects.1 IJCB-MFR-2021 only focuses on the performance
of masked face recognition and evaluates models on a private masked face dataset. MFR
ICCV 2021 is more comprehensive and realistic, as it employs a mixed metric that con-
siders both masked and standard faces. In MFR ICCV 2021, two tracks were held, namely
InsightFace Track and WebFace260 Track. The differences between the two tracks mainly
exist in training and evaluation datasets. For example, the models were evaluated with more

1 https://pages.nist.gov/frvt/html/frvt_facemask.html.

https://pages.nist.gov/frvt/html/frvt_facemask.html
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comprehensive datasets including a mask set, a children set and a multi-racial set in Insight-
Face Track. Both competitions attracted teams from all over the world and lots of insightful
solutions [173, 208] were proposed for masked face recognition, dramatically improving
the state-of-the-art performance. For the contest in FRVT, it mainly quantifies the accuracy
of 1:1 verification for people wearing masks. The masked faces were generated by applying
a synthetic mask to the existing raw images. Different from the above two competitions,
the FRVT contest is an ongoing test that remains open to new participations, which means
that the participating teams can submit their results at any time, and the ranking list is also
dynamically updated. By March 2022, over 300 algorithms have been submitted to FRVT.

1.4.4 Heterogeneous FR

Heterogeneous Face Recognition (HFR) objective is to recognize and match faces from
different visual domains or modalities. Typical HFR tasks include VIS-NIR face recognition
(VISble face vs.Near InfRared face) [32, 44, 51, 75, 100, 239], Photo-Sketch face recognition
(face photo vs. face sketch) [41, 160, 166], and IvS face recognition (ID face vs. Spot
face) [183, 184, 278, 282]. There aremany challenges in the task ofHFR, because of the large
modality discrepancy between different sensors. The lack of data in some specificmodalities
is another issue. For example, there are significant discrepancies between the RGB images
and the near infrared images in VIS-NIR face recognition. Besides, near infrared faces are
not often collected, which also brings difficulty in training. Although HFR has been studied
for many years, the relevant research is still valuable and plays an important role in daily
lives. For example, the VIS-NIR face recognition provides an effective solution for low-
light recognition scenarios. Photo-Sketch face recognition has a wide range of applications
in both social entertainment and police enforcement. For IvS face recognition, it verifies the
identity of a person by comparing the live face to the photo of an ID Document, which is
widely used in our daily life, e.g. ID card gates in railway stations or ePassport gates.

In HFR, a popular approach is to translate the images from one domain/modality to the
another to reduce the domain/modality variations [32, 41, 44, 68, 71, 88, 140, 145]. For
example, Mallat et al. [145] propose the cascaded refinement networks to generate visible-
like colored images of high visual quality for cross-spectrum face recognition, which reduces
the need for large amounts of training data. Fang et al. [41] proposed an Identity-Aware
CycleGAN (IACycleGAN), focusing on key facial regions (e.g., eyes and noses), which
improved the quality of synthetic faces in both sketch-to-photo and photo-to-sketch transfer
tasks, and thus improved performance in photo-sketch face recognition. A lot of efforts have
been invested in other works [32, 44, 68, 71, 88, 140] to improve the quality of the generated
images.

Some works [36, 43, 44, 230] addressed the problem of HFR by mapping data from
different domains to a common latent space, or learning domain-invariant features from
different domains/modalities. For example, He et al. [69] narrowed the domain gap by
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Fig. 1.4 Comparisons of
dataset sizes of several popular
training datasets published in
the deep learning era. The
y-axis indicates the number of
images in the dataset, and the
size of the scatter denotes the
number of identities of the
corresponding dataset. The
collected datasets are getting
larger and larger, which helps
improve the performance while
also poses some challenges in
training

Wasserstein distance to obtain domain-invariant features for VIS-NIR face recognition.
Further, some researchers addressed HFR from other perspectives [74, 169, 230, 278].
Specifically,Wu et al. [230]made use of the DisentangledVariational Representation (DVR)
to treat theHFRas a cross-modalmatching task. Tan et al. [282] andZhu et al. [278] extracted
discriminative features for IvS face recognition through a large-scale training with millions
of faces.

1.4.5 Low-Resolution Face Recognition

Low-Resolution (LR) face recognition [2, 24, 46, 47, 71, 88, 108, 140, 149] is another impor-
tant task in real-world applications, e.g. long-distance surveillance. The low-resolution face
images are usually captured in non-ideal conditions with low quality, noise and occlusions,
whichmakes the recognition problem quite challenging. As stated in thework [71], onemain
challenge in low-resolution face recognition is the deviation (domain shift) in gallery and
probe sets, in which the probe images are in low resolution, while the gallery images are clear
and of high quality. Some researchers addressed this problem by domain transferring [71]
or domain translation [88]. For example, Hong et al. [71] proposed an unsupervised face
domain transfer method for capturing domain-invariant features. Jiao et al. [88] proposed
a dual domain adaptive structure to generate high-quality faces. Recently, Li et al. [109]
developed a Rival Penalized Competitive Learning (RPCL) to add penalty to not only the
target category but also the rival categories, which further enlarges inter-class variations and
narrows intra-class variations.
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1.4.6 FR Under Atmospheric Turbulence

Remote face recognition has also been on the spotlight. The challenge is that the face image is
usually degraded due to the inconsistent atmospheric refractive indexes when capturing it at
long distances. This phenomenon is called atmospheric turbulence and it can lead to a decline
in face recognition performance. Some researchers address the atmospheric turbulence by
restoring face images. In detail, Lau et al. [99] proposed an ATFaceGAN to reconstruct the
restored image and eliminate the blur and deformation caused by atmospheric turbulence.
Moreover, Yasarla et al. [240] proposed an AT-Net to remove the atmospheric turbulence
distortion from a single image. Recently, Wes Robbins and Terrance Boult presented a
different view on the problem of face recognition against atmospheric turbulence [177].
Robbins et al. [177] first studied the influence of atmospheric turbulence on deep features
for face recognition, and found that feature magnitudes would increase for a certain degree
of atmospheric turbulence. Based on these results, the authors have made more in-depth
investigations, including the reason of feature defection for low face recognition performance
and proposed several future research directions.

1.4.7 Face Recognition Against Adversarial Attacks

Although a very high performance has been achieved in deep face recognition, researchers
have found that thosemodels are vulnerable to adversarial attacks [34, 96, 182, 195, 231, 248,
272, 281]. In general, there are two types of attacks, namely digital attack and physical attack.
Concerning the digital attack [34, 96, 195, 248, 272, 281], it creates an attack image by adding
imperceptible perturbations on the raw images to mislead the identification. Regarding the
physical attack [182], it produces the actual entity for attack rather than the digital image.
For example, Adversarial Generative Nets (AGNs) [182] can produce physical eyeglasses,
which enables an attacker to either evade correct identification or to impersonate a specific
target. Such attacks have threaten the applications of face recognition in security systems,
and some researchers [57, 116] have studied defense strategies against them. For example,
Li et al. [116] proposed to improve model’s robustness by using a denoising neural network
with a carefully designed loss function.

1.4.8 Fair Face Recognition

Although the accuracy of face recognition has been improved greatly in recent years, many
studies [45, 53, 209, 249] have shown the demographic bias in deep face recognition systems.
For example, the error rate of non-Caucasians is usually higher than that of Caucasians in
face recognition. The face recognition bias stems from two aspects. One is the data bias.
In other words, different groups have different quality or quantity of training data. Training
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the network on biased data may lead to the recognition bias. The other is the inherent
bias as discussed by the work [94], where certain groups are inherently very difficult in face
matching.Many fairness technologies were proposed by preventing themodel from learning
data bias, including the design of novel loss functions [128, 180], data pre-processing [6, 249]
and adversarial training [52, 92]. In addition to that, Gong et al. [53] mitigated the bias by
learning the feature representations on every demographic group with adaptive convolution
kernels and attention mechanisms. Wang et al. [209] employed deep reinforcement learning
to increase the fairness of face recognition systems. Despite the many efforts over the years,
face recognition bias persists and concerns about it are often expressed. How to effectively
eliminate the bias in face recognition systems is still a challenge to further study.

1.4.9 Video-Based Face Recognition

Video-based FR [20, 54, 55, 175, 176, 237] is to extract face representations based on a
series of video frames rather than still images. Compared to still images, a video presents
temporal andmulti-view information, whichmay facilitate themodel to learn better features.
One straightforward approach for video-based FR is to aggregate the information from a
set of video frames. Intuitively, the aggregation is two-fold: image-level and feature-level
aggregations. Image-level aggregation, merges multiple frames to a single frame [174, 175].
For example, Rao et al. [175] proposed a discriminative aggregation network (DAN) to syn-
thesize a high-quality image from multiple low-quality frames. Then, only a small number
of aggregated high-quality frames would be sent to the network for feature extraction, thus
improving the efficiency and performance of face recognition system. Feature-level aggre-
gation [54, 55, 237, 262] merges multiple face vectors to a single discriminative vector. One
widely used scheme to conduct feature-level aggregation is the aggregation through attention
mechanisms [54, 55, 237]. For example, Gong et al. [54] employed the recurrent networks
to generate attentive fusing weights based on contextual quality information, while some
other researchers achieved the aggregation throughGraph Convolutional Networks [262]. In
recent years, the research in video-based face recognition has not attracted much attention.
One reason might be that image-based face recognition has achieved a very high perfor-
mance (near 100% accuracy), and there is not much room for improvement in video-based
face recognition. Moreover, video-based face recognition has larger computation burdens
compared to image-based approaches.

1.5 Databases

1.5.1 Overview of FR Datasets

Data plays an important role in deep face recognition. The commonly used training datasets
in the deep learning era are CASIA-WebFace [241], VGG-Face [167], VGG-Face2 [19],
MS-Celeb-1M [63], MegaFace [90], MegaFace2 [162], Glint360K [8], WebFace42M [280]
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Table 1.1 A summary of training and evaluation sets for general face recognition

Datasets Year Identities Images Description

CASIA-
WebFace [241]

2014 10,575 0.5M Usually as training set

VGG-Face [167] 2015 2,622 2.6M Usually as training set

VGG-Face2 [19] 2018 9,131 3.31M Large-scale training set; pose, age,
illumination

MS-Celeb-1M [63] 2016 100K 10M Large-scale training set; noisy data

MegaFace2 [162] 2017 672,057 4.7M Large-scale training set

Glint360K [8] 2021 360K 18M Large-scale training set

WebFace42M [280] 2021 2M 42M Large-scale training set; automatically
cleaned data

WebFace260M [280] 2021 4M 260M Large-scale training set; noisy data

LFW [81] 2008 5,749 13,233 The classic evaluation set

IJB-A [95] 2015 25,809 500 Evaluation set

IJB-B [226] 2017 11,754 1,845 Evaluation set

IJB-C [151] 2018 3,531 21,294 Evaluation set

MegaFace [90] 2016 690K 1M Used as gallery for evaluation

CFP [179] 2016 7,000 500 Frontal to profile face verification

CPLFW [269] 2018 11,652 3968 Cross-pose evaluation dataset

CALFW [270] 2017 4,025 – Cross-age evaluation datasets, 6,000 pairs

IFRT [29] 2021 242K 1.6M Multiple races and large-scale evaluation
dataset

FRUITS [280] 2021 2,225 38,578 Cross-age, multiple races, various
scenarios

and WebFace260M [280]. The commonly used evaluation datasets include LFW [81], IJB-
A [95], IJB-B [226], MegaFace [90], CFP [179], CPLFW [269] and so on. A summary of
these datasets is shown inTable 1.1.Regarding training datasets, all of themcontain amassive
amount of images to ensure the performance of face recognition. For example, the dataset
WebFace42M contains about 42M images of over 200K identities. Some other training and
evaluation datasets, e.g. IMDb-Face [200] and Megvii Face Classification (MFC) [276],
have been detailed summarized by previous surveys [59, 210], and readers can refer to those
surveys for more details.

Moreover, the masked face recognition has received increasing attentios in recent years.
However, there is no work that systematically summarizes these masked face databases.
Due to the high cost of collecting masked face data, researchers prefer to synthesize massive
masked faces by adding virtual face masks on existing large-scale datasets. For example,
two large masked face datasets, namely SMFRD [77, 222] and Webface-OCC [78], were
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Table 1.2 A summary of training and evaluation sets for masked face recognition. For the images
column, the symbol ‘A’ indicates the number of all masked and non-masked images. The symbols
‘Y’ and ‘N’ denote the number of masked and non-masked images, respectively

Datasets Year Identities Images (A/N/Y) Description

RMFRD [77, 222] 2020 525 95K/5K/90K Containing both
masked and
unmasked
real-world faces

Deng et al. [26] 2021 7K 21K/7K/14K Evaluation dataset

MFR [279] 2021 2,478 61K/3K/58K Real-world
masked face
evaluation dataset

generated based on CASIA-WebFace [241]. These synthesized faces are usually treated as
the training data since they are still different from the real-data. Moreover, some works [26,
206] released some tools for wearing masks, which is convenient for generating masked
faces for any face dataset. Table 1.2 summarizes the real-world masked face datasets. These
datasets usually contain both masked and unmasked faces, which are usually treated as test
sets. Here we do not give a summary on the virtual masked datasets because these datasets
are uncertain and depend on the employed synthetic strategies. For example, the synthesized
masked faces can be more or less, depending on the setting of generating control.

1.5.2 Noisy Data

As mentioned above, face datasets are growing tremendously in recent years. Most of these
large-scale datasets, e.g., CASIA-WebFace [241] andMS-Celeb-1M [63], are automatically
collected via image search engines or movies, where the labor costs are significantly reduced
but noisy labels are also inevitably introduced.

According to previous works [275], the noise can be divided into the following types: (1)
Label flips: the image of an identity is wrongly labeled as another identity in the dataset; (2)
Outliers: the images, which do not belong to anyone in the dataset, are incorrectly labeled
as the identity in the dataset. (3) Entirely dirty data: this noise mainly refers to non face
images, which are mainly caused by wrong face detection or annotation. Intuitively, data
plays an important role in network training and the noisy data can hurt the performance of
the model. Wang et al. [200] conducted a comprehensive investigation on the source of label
noise and its consequences for face recognition. The authors found that the performance of
face recognition drops rapidly with the increase of label noise. This result also promotes
researchers to conduct data cleaning or propose robust algorithms against label noise.
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A straightforward way for data cleaning is to clean up the data manually. For example,
Wang et al. [200] hired 50 annotators to clean 1.7M images from 2M raw images in a month.
Although a clean and high-quality dataset named IMDb-Face was collected, it also cost a
lot of human effort. More recently, Zhu et al. [280] proposed a Cleaning Automatically by
Self-Training (CAST)method for automatic data cleaningwithout human intervention.With
this algorithm, a large-scale high-quality 2M identities and 42M images (WebFace42M)was
collected from the Internet. Besides, lots of robust algorithms [76, 218, 229, 260, 275] against
label noise were proposed in recent years. Most previous works learn to detect the noisy
data according to output probabilities [275], the distribution of classifier parameters [76]
and loss values [218]. After that, the noisy samples will be discarded or their importance
will be reduced during training, which forces the clean faces to dominate during training.
For example, Wang et al. [218] proposed a co-mining framework, which employed two peer
networks to detect the noisy faces. Al Jazaery et al. [4] proposed an approach for detecting
identity label noise by incorporating the face image quality measure. In addition to filtering
noisy data, some researchers [229, 260] aim at designing novel network structures, which are
more robust to noise. For example, LightCNN [229] proposed a Max-Feature-Map (MFM)
at every convolutional layer, which can well separate noisy from informative signals.

1.5.3 Data Imbalance

The imbalance phenomenon in face recognition datasets usually exists in the distribution
of class (identity) and domain attributes (age, race, etc.). This skewed data distribution
can adversely affect the training process of the network, biasing it toward the majority
classes. Focusing on the class imbalance, [258] proposed a novel loss function called range
loss, which reduces overall intrapersonal variations while enlarges interpersonal differences
simultaneously. A similar idea was also proposed in [79], where a Cluster-based Large
Margin Local Embedding (CLMLE) was introduced to improve performance. For domain
imbalance, Cao et al. [15] andAlbiero et al. [5] did severalworks. For example, [15] proposed
a Domain Frequency Indicator (DFI) to judge whether a sample is from head domains or
tail domains. Then, they formulated a Residual BalancingMapping (RBM) block to balance
the domain distribution according to the result of DFI. Finally, a Domain Balancing Margin
(DBM) was utilized in the loss function to further optimize the feature space of the tail
domains. Moreover, Albiero et al. [5] investigated how gender balance in training data
affects the test accuracy. Nowadays, the data imbalance problem is still a great challenge
for face recognition and more research is needed.
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1.6 Other Related Topics

In this section, we briefly discuss some topics closely related to face recognition, including
facial attribute recognition [17, 66, 193, 194], face anti-spoofing [123, 124, 223], and face
privacy issue [144, 146]. Besides, face detection [257] and face alignment [277] are also
closely related to face recognition. The corresponding review on face detection and face
alignment has been presented in Sect. 1.2.

Facial attribute recognition: In some applications, a complete face recognition system
may function as attribute analysis, e.g. age estimation, gender classification, race recognition
and soon,whichprovides detaileddescriptions aboutwhat the input face looks like.Although
the accuracy of related attribute analysis tasks have been greatly improved [66, 194, 233] in
the era of deep learning, some of these attributes still hardly achieve an accurate recognition
due to the inherent ambiguity of those attributes themselves. For example, the faces from
adjacent ages (e.g., 20 and 21 years old) look very similar and it is difficult to distinguish
them. Due to the ambiguity, the attribute recognition tasks can be challenging. For age
estimation and expression recognition, the lowest Mean Absolute Error (MAE) and highest
recognition rate are only about 1–3 years [31] and 90% [233], respectively, which is far from
the near 100% accuracy of face recognition. From the perspective of recognition accuracy,
more efforts on facial attribute recognition are urgently needed.

Face anti-spoofing: FaceAnti-Spoofing (FAS) [123, 124, 223] is a technology of defend-
ing the face recognition system from a variety of presentation attacks (PAs), such as print
attack, replay attack, or 3D mask attack. It has been widely incorporated in face recognition
systems for face unlocking, payment and self-security inspection. Due to its importance, Pre-
sentation Attacks Detection (PAD) has been studied a lot in recent years. A series of datasets
have been proposed as well, e.g. CeFA [123] and HiFiMask [127]. At the same time, the
face anti-spoofing algorithms were developed from the early binary classification [236] to
face depth fitting [137], multimodal fusion [50, 255], cross-modal translation [124], feature
disentangling [138, 252] and domain generalization [181, 203]. In order to improve the
practicality of face anti-spoofing algorithms, many competitions [122, 125, 126] were suc-
cessfully held,which promoted the face anti-spoofing algorithmdevelopment fromacademic
research laboratory to industry.

Privacy issue:With the expansion of face recognition technology, the face privacy issue
has been raised. A human face contains rich personal information, including identity, demo-
graphic information and even health status. The face recognition systems collect personal
face data, which can be easily copied, shared and abused for illegal purposes, which may
lead to the users’ concerns regarding their privacy. One approach to regulate the use of
FR technology and face data is through legislation. For example, in 2021, New York City
enacted the biometric information law to regulate the collection, retention, storage or sharing
of biometric information. Moreover, some researchers [1, 154] addressed the data privacy
issue in the training stage with federated learning techniques, which learn face recognition
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models in a privacy aware manner. Even with a lot of efforts, there is still a risk of face data
leakage and abuse, so the privacy issue still exists.

1.7 Conclusions

We have conducted a comprehensive survey on deep face recognition from three aspects,
deep methods, specific recognition tasks and data. For deep methods, we have reviewed
the main advances in network architectures, loss functions, FR with GAN and multi-task
learning. Regarding specific recognition tasks, we have presented some challenges with
specific tasks, e.g. masked FR, large-scale FR and so on. Concerning datasets, several recent
face databases and the developments of addressing data-related issues (noisy data and data
imbalance) have been given. The survey shows that great progress has been made in face
recognition over the recent years, especially the performance on various applications has
been significantly improved, and a large number of databases have been developed. In the
future, face recognition will still be a topic of great interest in both academia and industry.
Future face recognition works may focus on the following challenges:

• Under the continuous influence of COVID-19, masked face recognition will still be a
focus of research. At present, the accuracy of masked face recognition is not very high,
and thus, how to improve the accuracy is especially important in the coming years.

• Data plays an important role in face recognition, and collecting large-scale face datasets
is still the trend. Large-scale datasets could further promote the development of face
recognition models, while they also bring some challenges in training as mentioned in
Sect. 1.4. Therefore, the large-scale face recognition will continue to draw attention,
especially with big models.

• The FR in complex scenes (e.g., cross-factor FR, low-resolution FR and so on) needs
further investigation. These FR tasks are full of challenges and the corresponding per-
formance is far from that of state-of-the-art in the usual recognition scenario.

• The way of collecting large-scale datasets has gradually evolved from full manual anno-
tation to semi-automatic and even full-automatic annotation. The collected datasets
inevitably contain noise. Therefore, addressing recognition with noisy data is still worth
of investigation in the future.
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2Convolutional Neural Networks
and Architectures

Xiangyu Zhang

2.1 Convolutional Neural Network Basics

This chapter briefly introduces Convolutional Neural Networks (CNNs). One of the first
CNNs is proposed in [41] (known as LeNet) to deal with handwriting recognition task.
After that, CNN becomes the most popular deep neural network model to process visual
data, including images and videos. Until now, a lot of modern fundamental computer vision
systems, e.g., image classification and face recognition, are usually built upon convolutional
networks.

2.1.1 Motivation: Idea Behind Convolutional Layer

Let us consider how to design a neural network layer to process a digital image. Suppose
the image data is represented in a three-channel matrix: X ∈ R

3×H×W , where H and W are
the height and the width of the image, respectively. To fit the data with the simplest neural
network (i.e., perceptron), one straightforward way is to flatten the tensor into a vector
vec(X). Hence, the i-th output of the perceptron is

yi = w�
i vec(X)

zi = σ(yi ),
(2.1)

where wi is the weight associated with the i-th neuron and σ(·) is the (nonlinear) activation
function. For simplicity, we omit the bias term unless otherwise specified here and in the
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next text. We name the above perceptron fully connected layer (FC layer), as each of the
outputs is connected to each component of the input via an independent weight.

Deep neural networks typically involve a lot of layers. When directly applying an FC
layer to the input image, a drawback comes up: the number of parameters could greatly
blow up. For example, suppose the image size is 3 × 1000 × 1000; in order to maintain
the representative capacity of the hidden layer, we assume the number of neurons is the
same as the input dimensions. Hence, the total number of the parameters is as many as
9 × 1012. The same issue occurs in subsequent layers unless the number of hidden neurons
is greatly reduced, however, large parameter reduction may cause too much information
loss, especially for the early layers in the neural network.

To save parameters, we have to investigate some unique properties of image data. One
important property is locality, whose insight is that in most visual tasks each semantic
concept only relates to a local patch rather than the whole image. Figure 2.1a illustrates the
property: the red neuron responsible for dog detection only needs to connect the region in
the red box; so does the “cat” neuron (green). Inspired by the locality property, FC layer
can be simplified into locally-connected layer (or local layer), in which each output is only
related to a specified window of the input rather than the whole. Local layer is formulated
as follows:

yo,i, j =
∑

c

K−1∑

k=0

K−1∑

l=0

w
i, j
o,c,k,l × xc,i+k, j+l . (2.2)

Note that, in the above formulation, we reorganize the outputs into a tensor Y ∈ R
O×H×W ,

and yo,i, j is the corresponding component. Nonlinear activation function is omitted here
for simplicity. K is named filter size, which controls the window size each output neuron is
connected to. Comparing Eq. 2.2 with Eq. 2.1, it can be inferred that a local layer requires

Fig. 2.1 a Locality property. The “dog” neuron (red) and the “cat” neuron (green) only relate to a
local patch of the image, respectively, rather than the whole. b Translational equivariant property.
“Apple” neurons (blue) at different locations share the same weight, since location does not matter
in recognizing apples
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far less parameters than that of an FC layer if the filter size is small. For example, given the
input and output channels C = O = 3 and H = W = 1000, K = 10, the total number of
parameters in the local layer is 9 × 108, much smaller than 9 × 1012 in a fully connected
layer.

Can we further reduce the number of parameters in a local layer? We further explore
another important property: translational equivariance. In signal processing, translational
equivariance means that when the input sequence shifts by an offset, the output sequence
thus shifts in the same way. Interestingly, many visual tasks share such property. Figure 2.1b
gives an example: for “apple detection” task, suppose a neuron in a local layer captures an
apple in the left box; when the applemoves to the right, it will be captured by another neuron.
We definitely want the two neurons output the same activation value, since the location of
the apple should not affect the recognition result. In other words, the “apple detection” task
requires the network to be translational equivariant.1

How to make a local layer translational equivariant? One simple but effective way is to
make neurons at different locations share the same weight, or formally, for any i, j, i ′, j ′,
let w

i, j
o,c,k,l = w

i ′, j ′
o,c,k,l � wo,c,k,l in Eq. 2.2. Figure 2.1b illustrates the idea: if all the blue

neurons share the same parameters, no matter where the apple appears, the corresponding
neuronwill produce the sameoutput value, hence the layer becomes translational equivariant.
Therefore, Eq. 2.2 can be simplified as

yo,i, j =
∑

c

K−1∑

k=0

K−1∑

l=0

wo,c,k,l × xc,i+k, j+l . (2.3)

We say that Eq. 2.3 defines a convolutional layer, or more precisely, named 2D-
convolutional layer. The layer got its name because if we let the number of input and
output channels to be one (O = C = 1), Eq. 2.3 satisfies the definition of 2D convolution in
mathematics.2 Thanks to weight sharing, the convolutional layer further reduces the number
of parameters from the local layer. For example, we still let C = O = 3, H = W = 1000,
and K = 10, the total number of weights significantly decreases from 9 × 108 to 9 × 102.
In practice, we usually adopt more output channels to maintain the representative capability,
e.g., 100 or up to 1000. Nevertheless, convolutional layers are still much more efficient in
parameters than the counterpart local layers.

In summary, the convolutional layer is proposed to overcome the inefficiency of the
fully connected layer on image data. The reason why the convolutional layer requires far
less parameters is that it utilizes locality and translational equivariance properties in many

1 Another class of tasks, e.g., image classification, requires the network to be translational invariant,
i.e., invariant to the shift of the input. It can be simply done by adding a global pooling layer [62] on
top of the network if it is already translational equivariant.
2 Strictly, Eq. 2.3 defines a correlation operation. Nevertheless, literature usually does not distinguish
convolution from correlation in neural networks since they can be simply bridged by vertically and
horizontally flipping the weights.
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visual tasks, termed inductive bias of the model. In deep learning methods, introducing a
proper inductive bias is an important methodology, which not only helps to save parameters
but also eases the optimization and gains more generalization capability.

•! Attention

Keep in mind the No Free Lunch principle. Although widely used in computer vision world,
CNNs could be unexpectedly inefficient or not proper if locality or translational equivariance
properties break, unless some workarounds are introduced. For example, [42] shows an
extreme case that CNN is even not as good as a simple multi-layer perceptron (MLP) if they
shuffle the pixels in each imagewith a fixed pattern before training, since the locality property
thoroughly breaks. In general, if the target task prefers global or long-term interaction
properties instead of locality properties, consider introducing deeper architectures [25, 60],
large convolutional kernels [5, 14, 54], non-local structures [69], transformers [16, 66] or
MLP-Mixer [65] into your CNN models.

Accordingly, some tasks may not satisfy translational equivariance, for instance, in face
recognition, the input face image is usually aligned according to the landmark label, there-
fore the absolute position of the eye or mouth matters to the recognition result. Some early
face recognition networks, e.g., [64], employ local layers on top of convolutional backbones.
Recent research [14, 34] suggests large padding can help CNNs learn absolute positions;
CoordConv [46] also works in the similar way, so does vision transformer [16] with abso-
lute positional embeddings. All those methods help CNNs to deal with those tasks where
translational equivariance does not strictly satisfy.

2.1.2 Convolutional Layer: Concepts andVariants

In this subsection, we define convolution in formal. Given an input tensor X ∈ R
C×Ih×Iw ,

where C is the number of input channels and Ih × Iw is the spatial size. A convolutional
layer can be viewed as a linear mapping that derives the output tensor Y ∈ R

O×Fh×Fw . The
tensors X and Y are also named input feature map and output feature map accordingly.
Convolutional operation is generally noted as:

Y = X ∗ w, (2.4)

where the tensorw ∈ R
O×C×Kh×Kw is theweights of the convolution, named filter or kernel;

and Kh × Kw is the kernel size.
Figure 2.2 intuitively shows how a convolutional layer operates. To compute the o-th

output channel, we first slice out the corresponding kernel wo � wo,:,:,:, viewed as a 3D-
volume (see the green or orange box in Fig. 2.2, left). Then, we allow the kernel volume
to slide from the left-top corner to the right-bottom corner in the input feature map. Each
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Fig. 2.2 Illustration on the convolutional layer operation

time the kernel moves to a certain position, we compute the dot product between the kernel
weights and the corresponding elements of the feature map, which derives the output value
at the position. The computation can also be interpreted as a kind of template matching:
suppose we have O templates (namely kernels); we compute the similarity between each
template and each local patch of the input image, thus generating O similarity score maps
(i.e., output feature map).

The following formulation describes the computation of each output exactly:

yo,i, j =
C−1∑

c=0

Kh−1∑

k=0

Kw−1∑

l=0

xc,i×sh−ph+k, j×sw−pw+l × wo,c,k,l . (2.5)

Readers may have already found that the above equation is an extension to Eq. 2.3. Two
additional parameters control the behavior of the sliding convolutional kernel3 (illustrated
in Fig. 2.2):

Stride (s) It indicates the step length where the filter moves along the vertical or hori-
zontal axis. Letting s = 1 derives a roughly equal-sized output feature map
from the input, while s = 2 could reduce the output size by half. Besides,
if stride is smaller than kernel size K , we say the convolutional operation is
overlapped; otherwise, it is non-overlapped.

Padding (p) It controls the behavior of convolution around the edge or corner. If p > 0, the
input feature map will first be padded with zeros along the spatial dimensions
before computation, whose padding width is specified by p.

3 In this chapter, the subscript form, i.e., sh or sw indicates the index along height or width direction,
respectively.
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It can be derived that the relation between input size (I ), kernel size (K ), stride (s), padding
(p), and output size (F) is

F = �(I − K + 2p)/s� + 1 (2.6)

Equation 2.6 is very useful in designing convolutional networks. For example, if the spatial
size of the feature map must remain unchanged after convolution, one could use odd-sized
kernel (e.g., K = 3) as well as let p = �K/2� and s = 1.

Complexity analysis. Literature often uses FLOPs (i.e., the number of floating-point oper-
ations) and the number of parameters to measure the computation cost and the storage
footprint of a neural network, respectively. For a typical convolutional layer, they can be
estimated as follows4:

F L O Ps = Fh × Fw × Kh × Kw × C × O

Parameters = Kh × Kw × C × O. (2.7)

It is easy to see that the number of parameters in a convolutional layer has nothing to do
with the feature map size, but the computation does. That is why convolution is very param-
eter efficient compared with the counterpart fully connected layer or local layer. Instead,
shrinking the output feature size (e.g., setting s > 1 according to Eq. 2.6) may greatly save
computations. In most convolutional networks, convolutional layers consume most of the
FLOPs and parameters.

•! Attention

A common misunderstanding on FLOPs is that a network with smaller FLOPs must run
faster. It is actually not always true because the running speed also heavily depends on the
hardware architecture and implementation, especially memory access cost and degree of
parallelism [53]. Similarly, the number of parameters is not the only factor that affects the
running memory footprint either, because the feature maps between layers also consume a
lot of memory.

Variants of Convolutional Layers

Point-wise convolution. Namely, the kernel size is 1 × 1, which is introduced in [45] for
the first time. Point-wise convolution transforms a feature map without spatial interaction.
Besides, point-wise convolution is often employed to increase or decrease the number of
channels in the feature map. In some vision transformers [16], the so-named “feed-forward
network” (FFN) is actually composed of point-wise convolutions too.

4 For convolutions under special configurations, there may exist clever implementations such as FFT
and Winograd [39] involving fewer FLOPs.
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Group convolution. As illustrated in Fig. 2.2, each filter can be viewed as a 3D-volume,
whose number of channels (C) equals to that of input feature map. If the channel number is
big, the complexity will also increase. One solution is to introduce group convolution [38,
72], which divides the input channels as well as the filters into g groups, then computes
convolutions within each group accordingly. Therefore, the channel number of each kernel
decreases to C/g so that the complexity also drops by a factor of g. As an extreme case,
depth-wise convolution [8] is a special group convolution where C = O = g, hence i-th
output channel of a depth-wise convolution only depends on i-th input channel. Depth-wise
convolution is widely used in lightweight CNNs [27, 80].

Factorized convolution. According to Eq. 2.7, the complexity of a convolution layer rapidly
increases if the kernel size and input/output channels scale up. One commonway to decrease
the complexity is to decompose a large convolution into several small convolutions. There
are two major factorization schemes: in serial or in parallel:

X ∗ w ≈ X ∗ w(1) ∗ w(2) ∗ ...

≈ X ∗ w(1) + X ∗ w(2) + ...

The decomposition method varies in different works, for example, low-rank decomposition
[36, 81], depth-wise separable convolution [8], CP-decomposition [40], criss-cross decom-
position [54] and etc. Notice that several works add nonlinearities between the factorized
components [27, 62, 63]; even though the decomposition helps to reduce the complexity,
those architectures cannot be simply viewed as a factorization of a big convolution.

Dilated convolution. Some applications (e.g., semantic segmentation) may prefer big con-
volution kernels to obtain large receptive field.5 However, according to Eq. 2.7, enlarging the
kernel size brings a lot of complexity. One workaround is to introduce dilated convolution
[5, 75] (also known as atrous convolution). Figure 2.3 illustrates how it works. Dilated con-
volution can be viewed as a kind of sparse convolution (or convolution with “holes”), whose
sparsity is specified by dilation rate d. For example, if the kernel size is 3 × 3 and d = 2, it
behaves like a 5 convolution, however, only 9/25 elements in the filter could be non-zero.
If d = 1, dilated convolution degenerates to normal convolution. The computation follows
the formulation:

yo,i, j =
C−1∑

c=0

Kh−1∑

k=0

Kw−1∑

l=0

xc,i×sh−ph+k×dh , j×sw−pw+l×dw × wo,c,k,l , (2.8)

where dh and dw are the dilation rates along height and width axes accordingly.

5 Receptive field means the largest possible region in which the perturbation of any input pixel could
affect the output of a given neuron. For a single convolutional layer, the size of the receptive field
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Fig. 2.3 Dilated convolutions.
The chart shows 3 × 3
convolutional kernels with
different dilation rates (image
credit to [85])

Kernel: 3x3 
Dilation rate: 1 

Kernel: 3x3 
Dilation rate: 3 

Kernel: 3x3 
Dilation rate: 5 

Transposed convolution. In some literature it has an alias deconvolution [48, 77]. Note that
transposed convolution (or deconvolution) does not really inverse the convolution operation;
instead, it just inverses the connectivity between the input and the output. Figure 2.4 illustrates
the “inversion of connectivity” in transposed convolution. Before starting, suppose we have
a conventional convolution layer (noted by “original convolution”, not marked in the figure)
that predicts the blue feature map from the green. Hence the transposed convolution takes
the blue feature map as the input and predicts the green back.

First, let us consider the case of s = 1 for the original convolution. Figure 2.4a shows
the configuration of p = 2 and K = 3. The spatial size of the green map is 5 × 5, hence the
blue map size is 7 × 7 according to Eq. 2.6. Then we analyze the connectivity between the
two feature maps: since each pixel in the blue map is derived from 3 × 3 pixels in the green
map, to inverse the connectivity, each pixel in the green map should also relate to 3 × 3
pixels in the blue map. Therefore, in this case, the transposed convolution acts like a normal
convolution of configuration K = 3, p = 0, and s = 1, from the blue map back to the green
map (however, we should flip the filter vertically and horizontally before computing).

(a) ( )

Fig. 2.4 Transposed convolutions. Suppose there is a conventional convolution taking the green
featuremap to predict the blue accordingly. Then the corresponding transposed convolution otherwise
takes the blue feature map as the input and predicts the green. (1) s = 1, K = 3 and p = 2 for the
original convolution; (2) s = 2, K = 3, and p = 1 for the original convolution. Images are taken
from [17]

equals to the kernel size. There is another related concept: effective receptive field (ERF) [51], which
further considers the content of the kernel. Readers may refer to [51] for more details.
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Second, consider the configuration of s = 2, K = 3, and p = 1 for the original convo-
lution, as in Fig. 2.4b. Still, each value in the blue map corresponds to 3 × 3 pixels in the
green map. However, when considering the inverse connection, things will be a little differ-
ent: each pixel in the green map could relate to 1, 2, or 4 pixels in the blue map, depending
on the coordinate of the pixel. It is because the original convolution uses a stride larger
than 1, hence to perform down-sampling; so accordingly, the transposed convolution has to
upsample the feature map to inverse the connectivity. Nevertheless, a clever trick helps to
make it simpler: first we “dilate” the blue map with zeros, as illustrated in Fig. 2.4b, then
the green map can be derived from a normal convolution with K = 3, s = 1, and p = 1 on
the dilated blue map (we still require to flip the kernel first).

In mathematics, transposed convolution can be rigorously defined as a linear transfor-
mation by the transposed kernel matrix. Generally speaking, for a conventional convolution
operation Y = X ∗ w, X ∈ R

C×Ih×Iw , Y ∈ R
O×Fh×Fw , w ∈ R

O×C×Kh×Kw , there exists a
kernel matrix � ∈ R

(O Fh Fw)×(C Ih Iw), such that

vec(Y ) = � × vec(X).

Readers are recommended referring to [17] to understand how to construct the matrix �

from the weight w. Then, transposed convolution (∗�) is defined as

Z = Y ∗� w ⇐⇒ vec(Z) = �� × vec(Y ),

where Z ∈ R
C×Ih×Iw . The following equation computes the output of a transposed convo-

lution:

zc,i, j =
O−1∑

o=0

Kh−1∑

k=0

Kw−1∑

l=0

yo,(i+k−Kh+ph+1)/sh ,( j+l−Kw+pw+1)/sw × wo,c,Kh−k−1,Kw−l−1.

(2.9)
Note that in the above formulation, if the subscript is not an integer or out of the dimension
range, the result is regarded as 0.

Transposed convolution is very useful in convolutional neural networks. First, it can be
used in computing the gradientw.r.t. the input of a convolutional layer, because we can prove

∂L
∂ X

= ∂L
∂Y

∗� w,

where Y = X ∗ w andL is the loss. Second, since transposed convolution will predict a big-
ger featuremap if the stride is greater than 1,we can employ it to upsample a featuremap [48].

Global convolution. It indicates a convolution whose kernel size is as big as or even larger
than the size of the featuremap. Therefore, global convolution is good at summarizing global
information from the whole image. Due to the huge computational cost, global convolution
is often designed in a depth-wise [14, 56] or factorized [54] manner. There are a few variants.
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For example, if the padding is zero, the spatial size of the resulted feature map will be 1 × 1,
thus the convolution degenerates to weighted global pooling [29]. Moreover, some works
[56] implement global convolution with circular convolution instead of the conventional
zero-padded counterpart, which is convenient to speed up with fast Fourier transform (FFT).

Dynamic convolution.Up until now, all mentioned convolutions store weights on their own.
The weights are learned during training and kept fixed in inference. These convolutions are
known as static. Dynamic convolutions [52], on the other hand, the filter weights can be
generated by another network:

Y = X ∗ f (X ′), (2.10)

where we name the weight prediction function f (·) hyper-network [22] or meta-network.
The input of the hyper-network X ′ can directly relate to the image (e.g., directly letting
(X ′ = X) [52]) or relies on additional input (e.g., [30, 47, 73]). Therefore, the weights of
dynamic convolution can change with the inputs during inference.

3D/1D convolution. All convolutional layers mentioned above are 2D convolutions. As
shown in Fig. 2.2, even though each convolution filter appears to be a 3D volume, since it can
only slide along two spatial dimensions (height and width), we still name it 2D convolution.
Nevertheless in video processing, sometimes, we need “true” 3D convolution [4] to process
both spatial and temporal dimensions. Given the input feature map X ∈ R

C×It ×Iw×Ih , 3D
convolution predicts the result Y = X ∗ w, Y ∈ R

O×Ft ×Fw×Fh , w ∈ R
O×C×Kt ×Kh×Kw , in

which each element is computed as follows:

yo,u,i, j =
C−1∑

c=0

Kt −1∑

m=0

Kh−1∑

k=0

Kw−1∑

l=0

xc,u×st −pt +m,i×sh−ph+k, j×sw−pw+l × wo,c,m,k,l . (2.11)

Accordingly, to process 1D sequence (e.g., data for natural language processing (NLP)
[9]) we can define 1D convolution in the similar way. Details are omitted.

2.1.3 CNN Example: AlexNet

AlexNet [38] is one of the cutting-edge convolutional neural networks in history, which
is also the first deep learning architecture achieving state-of-the-art results on large-scale
image classification dataset ImageNet [12]. Although the network was proposed over 10
years ago, some of the design choices are still being adopted in the follow-up works.

Next, we go over the elements in AlexNet and briefly discuss the relation between its
design choices and more recent related works.

Macro design.AlexNet is a typical plain network, i.e., in which all layers are stacked one by
one in series. Table 2.1 lists the architecture details. We say the depth of AlexNet is 8, since
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Table 2.1 AlexNet architecture details

Layer Kernel size Stride Group Input dim Output dim

Conv1 11 × 11 4 1 3 × 224 × 224 96 × 55 × 55

LRN – – – 96 × 55 × 55 96 × 55 × 55

Max Pool 3 × 3 2 – 96 × 55 × 55 96 × 27 × 27

Conv2 5 × 5 1 2 96 × 27 × 27 256 × 27 × 27

LRN – – – 256 × 27 × 27 256 × 27 × 27

Max Pool 3 × 3 2 – 256 × 27 × 27 256 × 13 × 13

Conv3 3 × 3 1 1 256 × 13 × 13 384 × 13 × 13

Conv4 3 × 3 1 2 384 × 13 × 13 384 × 13 × 13

Conv5 3 × 3 1 2 384 × 13 × 13 256 × 13 × 13

Max Pool 3 × 3 2 – 256 × 13 × 13 256 × 6 × 6

FC6 – – 1 256 × 6 × 6 4096

FC7 – – 1 4096 4096

FC8 – – 1 4096 1000

it contains eight weight layers: five convolutional layers and three fully connected layers. A
few other non-parametric layers, e.g., max pooling, are involved in between.

Convolutional layers build up themain body of AlexNet as well as all other CNNs. AlexNet
employs large kernel convolutions on bottom layers (Conv1 and Conv2) and small con-
volutions with more channels on top layers (Conv3, Conv4 and Conv5), which used to
be a common fashion but was challenged afterward [14, 60]. It is worth noting that Conv2,
Conv4, and Conv5 introduce group convolutions, not only reducing the complexity but
also allowing efficient computing on multiple devices—it is a form of model parallelism.

Fully connected (FC) layers compose the last three layers of AlexNet to derive the 1000-
way classification scores. As the spatial resolution is sufficiently small, those FC layers are
able to gather information from the whole feature mapmaintaining low levels of complexity.
Nevertheless, they still take ∼58.6M parameters, which is much bigger than convolutional
layers. To save parameters, following works like [25, 62] usually use global average pool-
ing followed by an FC layer instead of multiple FC layers to predict the classification results.

Pooling layers are used in AlexNet to perform down-sampling. Like depth-wise convolu-
tion, pooling layer also works in the channel-wise manner, which predicts the results by
applying the pooling function to the elements in the sliding window. There are two common
pooling functions: average pooling (mean pooling) and max pooling, where average pooling
can also be viewed as a special depth-wise convolution with a (fixed) uniform kernel. It was
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believed that pooling layers help to introduce permutation invariance in the local region.
However, further research seems to indicate that pooling layers can be replaced by (stride)
convolutions without performance loss.

Normalization layers can stabilize training and highlight the contrast of input signal.
AlexNet utilizes local response normalization (LRN), which is defined as

yc,i, j = xc,i, j/

⎛

⎝k + α

min(C−1,c+n/2)∑

m=max(0,c−n/2)

(xm,i, j )
2

⎞

⎠
β

, (2.12)

where X , Y ∈ R
C×Ih×Iw are input and output tensors, respectively; k, α, β and window size

n are the hyper-parameters. Clearly, LRN layer normalizes the input along the channel axis
in a sliding-window manner. In modern CNNs, simpler normalization techniques such as
batch normalization (BN) [33], layer normalization (LN) [1], or group normalization (GN)
[70] are often employed instead of LRN.

Activation function. AlexNet chooses rectified linear unit (ReLU), i.e., y = max(x, 0), as
the activation function, which is placed right after each of the weight layers except for FC8.
ReLU could be the most popular activation function in CNN design as it is simple and
effective. Compared with other counterparts like tanh or sigmoid, one benefit of ReLU is
that it does not saturate for positive inputs, which speeds up the convergence significantly
as demonstrated in the paper. As an alternative to ReLU, Leaky ReLU or PReLU [24] fur-
ther solve the vanishing gradient issue in the negative part. More recently, inspired by the
success of transformers and neural architecture search, more sophisticated activations like
GeLU [66] or SiLU [55] are proposed to obtain higher performance, however, at the cost of
extra computation.

Training. AlexNet uses back-propagation with momentum SGD to train the parameters in
end-to-end manner. Although a lot of sophisticated optimizers have been proposed, until
now momentum SGD and Adam [37] (or its variant AdamW [49]) are the most widely used
solvers in training CNNs. Additionally, research shows that if the batch size becomes large,
then some hyper-parameter tuning [21] or other tricks [74] may be required.

As CNNs typically involve a large quantity of parameters, it is important to mitigate
over-fitting. AlexNet suggests random cropping and color jittering to augment data. Other
common data augmentation techniques include scale augmentation [62], cutout [13], mixup
[79], etc. Apart from data augmentation, AlexNet also adopts dropout [61] as a structural
regularization. Other similar techniques also include drop-path [32], which is mainly used
in ResNet-like architectures [25].
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2.1.4 Concept Modeling in CNNs

It is important to learn how convolutional neural networks extract rich semantic concepts
from the input image. As illustrated in Fig. 2.2, it appears that the convolution operation can
be viewed as template matching: each filter serves as a template thus generating a similarity
map via sliding on the input image. For example, to detect a car, one possible way is to store
all kinds of cars as templates in the convolutional kernels, therefore the detection results are
embedded in the outputs after convolution. However, such template matching interpretation
has the following two fatal drawbacks. First, in modern CNNs many convolutional kernels
are very small (e.g., 3 × 3), hence it is unable to store complex templates nor catch the
long-range interactions in the image. Second but more importantly, the number of required
templates can be exponentially large—a good car detector may need the template set to
cover all kinds of views, styles, colors, etc., which is extremely inefficient or impossible in
practice.

Instead, deep learning draws power from the composition of layers, so do CNNs. As
shown in Fig. 2.5, research (e.g., [76]) demonstrates that a network stacked with multiple
convolutional layers learns visual concepts in a hierarchical way: the bottom most layers
(Layer 1 andLayer 2) detect simple low-level concepts—edge, corner, local texture, or
color patch; themedium layers (Layer 3 andLayer 4) employ the low-level information
as the input thus predicting mid-level concepts, for instance, wheels, animal’s heads, and
object parts; finally, the mid-level features are composed high-level into semantic concepts
by the top most layer (Layer 5), thus generating the prediction of the whole network. It is
worth noting that such hierarchical feature composition is muchmore efficient than template
matching. Still taking car detector as an example, to deal with a new deformation on the
shape, rather than designing (exponentially) many new templates, we only need to adjust the
way of predicting the highest level concepts, while low-level and mid-level features can still
be reused. Therefore, hierarchical concept modeling is the key to the powerful capability of
CNN models.

The fact that CNNsmodel hierarchical concepts further inspires researchers to design new
architectures. For example, many dense prediction tasks in computer vision (e.g., semantic
segmentation) require to predict semantic label for each input pixel. Therefore, those tasks
not only require high-level features to generate semantic information but also rely on low-
level details to align the results to the pixels. A widely used architectural paradigm for dense
prediction is U-net [57], see Fig. 2.6. U-net introduces a decoder, which starts with the top
layer in a pretrained network, then progressively up-samples the feature map and fuses the
information with earlier feature maps. During up-sampling, the decoder takes rich concepts
from different semantic levels, which helps to generate high-quality dense predictions.
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Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2.5 Feature visualization in different CNN layers, as well as the corresponding image patch
(courtesy of [76])
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Fig. 2.6 U-net architecture (image credit to [57])

2.2 Convolutional Network Architectures

In the last decade, researchers have come up with enormous convolutional networks for
different purposes. Why it is important to design new architectures? Generally speaking,
architecture invention aims at:

• improving the representative capability;
• introducing new inductive bias for the target task;
• reducing the complexity for practical use;
• easing the optimization or overcoming the possible over-fitting in training.

In the next subsections, let us review some representative CNN architectures as well as the
motivations behind them.

2.2.1 Going Deeper

The success of deep learning lies in deep composition of nonlinear functions. Therefore, to
enhance the capability of CNNs, one of themost important directions is to scale up the depth.
As mentioned in the last section, AlexNet includes eight weight layers. After that, a series
ofworks successfully increased the depth toward a dozen or evenmore than a hundred layers.
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VGG-Net

VGG-net [60] could be one of the earliest CNNs which gets improved performance via
increasing the depth to more than 10 layers. VGG-net roughly follows the plain architecture
of AlexNet [38], but with further simplifications. First, due to universal approximation
theorem of neural networks, the authors believe a stack of pure convolutional layers is
strong enough, hence they remove the local response layers suggested in AlexNet. Second,
VGG-net abandons large kernel convolutions (e.g., 11 × 11 and 5 × 5 in AlexNet), instead,
utilizes 3 × 3 convolutions only—the paper supposes that the capability of one large kernel
can be implemented by stacking several small convolutions more efficiently.6 The derived
network is very simple and elegant, which contains only three different types of layers: 3 × 3
convolutions, 2 × 2 (non-overlapping) max-pooling layers, and fully connected layers. The
deepest version of VGG-net is VGG-19 and it includes 19 weighted layers in total (16
convolutional layers in addition to 3 FC layers).

It is interesting to discuss how VGG-net manages to increase the depth over AlexNet.
The authors find that when adding layers to AlexNet, the optimization becomes more and
more difficult to converge. Therefore, they propose two-step training schedule, i.e., first to
train a shallower network, then introducing additional layers with random initialization for
further fine-tuning. In the following works, such training trick has developed to Net2net
methodology [7], which provides a general approach to scale up a small network to a big
one without training from scratch. Another line of research focuses on how to train deep
VGG-style architectures directly. For example, [24] suggests initializing the convolutional
kernels (followed by a ReLU activation) with Gaussian distribution, whose mean is zero
and standard deviation is

σ =
√

2

N
, (2.13)

whereNdenotes the size of the filter (Kh × Kw × C).7 It is known as “MSRA initialization”.
The authors find that under such initialization, VGG-net can train from scratch without
convergence problems such as vanishing or exploding gradient.

Although a lot of efforts have been done to overcome the optimization issue of VGG-net,
the performance starts to saturate when the depth increases to around 20 layers. For exam-
ple, VGG-19 obtains nearly the same accuracy as VGG-16. In [60], the authors hypothesize
the saturation is resulted from the side effect of ReLU activation, which might block the
information flow when the depth increases. However, [24] suggests that even when replac-
ing ReLU with PReLU, it cannot significantly increase the depth without performance drop
either. The problem remains unsolved until ResNet [25] comes up.

6 However, it is challenged by the theory of effective receptive field [51].
7 An alternative configuration is N = Kh × Kw × O . Please refer to [24] for details.
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(a) (b)

Fig.2.7 Inception module in GoogleNet. a Naive version. bModule with dimensionality reduction.
Image is taken from [62]

GoogleNet

Concurrent toVGG-net,GoogleNet [62] also aims to increase the depth but in a differentway.
The core of GoogleNet is the proposed Inception module, as shown in Fig. 2.7. Different
from the plain network fashion as in AlexNet and VGG-net, the Inception module is a
multi-path structure, in which the input feature map is passed into four branches and the
corresponding results are concatenated up as the output. The four branches include different
types of layers—1 × 1 convolution, 3 × 3 convolution, 5 × 5 convolution, and 3 × 3 max
pooling, respectively, as illustrated in Fig. 2.7a. Furthermore, since large kernel branches
are costly, the paper introduces additional 1 × 1 convolutional layers to all branches other
than the 1 × 1 branch, in order to reduce the number of channels (see Fig. 2.7b). The authors
believe the multi-path design helps to encode rich representations of multiple scales.

Based on Inception blocks, the resulted GoogleNet successfully increases the depth to 22
layers,8 achieving outstanding performances and winning the ILSVRC 2014 competition
[58]. Some researchers believe the isolated 1 × 1 branch (Fig. 2.7b, the left-most branch)
is the key to success: although it is known that a network deeper than 20 layers suffer from
severe optimization problem, thanks to the 1 × 1 branch, the shallowest path in GoogleNet
contains only 12 layers, which may greatly ease the optimization. A number of empirical
results support the conjecture. For example, the original paper [62] mentioned that purely
stacking the naive version of the Inception block (Fig. 2.7a) does notwork.And the following
work [63] implies the 1 × 1 serves as a “shortcut” analogous to that in ResNet [25].

GoogleNet raises several interesting research topics. For example, for multi-branch struc-
tures like Inception, how to balance the output of each branch? The following work Batch
Normalization (BN) [33] proposes a nice idea via normalizing the output of each convolu-
tional layer in such a way:

y(c) = x (c) − μ
(c)
B

σ
(c)
B

γ (c) + β(c), (2.14)

8 For multi-path architectures like GoogleNet, the depth is defined according to the longest path from
the input to the output.
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where x and y are the input and output, respectively; and the superscript “(c)” means c-th
channel, μ

(c)
B and σ

(c)
B are the mean and standard deviation accordingly within the batch;

γ (c) and β(c) are learnable parameters. During inference, since “batch data” are not avail-
able, μ

(c)
B and σ

(c)
B are replaced by the running statistics. BN contributes great benefits to

CNN networks, for example, it helps to balance the magnitude of feature maps, prevent the
variance shift as well as the saturation of activation functions, introduce additional regular-
ization, and speed up the convergence. Therefore, BN has become one of the most popular
normalization techniques in modern CNNs. Nevertheless, in theory, the mystery behind BN
is still not fully clear yet [2, 44, 50, 59, 68, 78].

ResNet

In the race of going deeper, ResNet [25] could be the most influential CNN architecture,
which first increases the depth to hundreds of layers with improved performances. The idea
of ResNet is based on the following observation: when increasing the depth of a VGG-
style plain network from 18 to 34 layers, even though the number of parameters increases,
the accuracy unexpectedly drops (shown in Fig. 2.8). It cannot be attributed to over-fitting
because training loss and validation accuracy degenerate at the same time. Such a phe-
nomenon seems rather counter-intuitive because the capability of a 34-layer network is
strictly stronger than the 18-layer counterpart, since the former can exactly represent the
latter by setting the additional layers toward identity. Therefore, it is in fact the optimization
problem that causes the degradation.

To overcome the optimization issue in deep networks, ResNet thus proposes a very simple
solution: just adding the identity prior back. For each building block in a network, rather
than predict a brand new feature map, ResNet suggests predicting the residue subject to the
input:

y = σ(F (x) + x), (2.15)

where F (·) is the residual block and σ(·) is the activation function (ReLU by default).
The design of the residual function F (·) can be arbitrary. For example, the original paper of

18-layer

34-layer
18-layer

34-layer

Fig. 2.8 Comparison of training curves between plain network and ResNet (courtesy of [25])



2 Convolutional Neural Networks and Architectures 55

ResNet proposes two residual blocks: one is composed of two successive 3 × 3 convolutional
layers (following VGG-style structure); the other is so-named “bottleneck” block stacking
1 × 1, 3 × 3 and another 1 × 1 convolutions, inwhich the two 1 × 1 layers shrink the number
of channels to reduce the cost. The latter design obtains slightly better performance under
the given complexity budget.

In Eq. 2.15, the identity shortcut term (plus x) plays a key role. From the perspective
of representative capability, this term seems to be unnecessary because it can be absorbed
into the residual function F (·). However, the experiment in Fig. 2.8 indicates the difference
during optimization: after the shortcut is introduced, a 34-layer ResNet starts to outperform
the 18-layer counterpart, while a 34-layer plain network cannot. It strongly suggests that
ResNet greatly overcomes the optimization problem when network becomes deep, even
though ResNetmay share the same functional space with conventional VGG-style networks.

The original ResNet paper finally manages to train a 152-layer network on ImageNet,
which also wins ILSVRC 2015 challenge [58]. The depth of a smaller ResNet on Cifar-10
even exceeds 1000 layers, however, it does not further improve the performance. Afterward,
an improved version of ResNet [26] overcomes the drawback via keeping a “clean” shortcut
path. The idea of residual connection has been widely accepted in the community—not only
in computer vision but also in natural language processing and many other fields, for exam-
ple, transformers [66] utilize identity shortcuts in each of the attention blocks. Moreover,
researchers further find the shortcut is neither necessary in identity form, nor in additive
manner. For example, [31, 53] demonstrate that shortcuts of 1 × 1 convolutions, or fused
by concatenation, still work for deep architectures. A recent work RepVGG [15] manages
to train a VGG-style plain network toward ResNet’s performance. The proposed methodol-
ogy, i.e., structural re-parameterization, suggests training the network with shortcuts while
merging the additional branches into an equivalent plain structure in inference time, which
is also inspired by the optimization bonus of ResNet.

ResNet has attracted a lot of attention from researchers to study how it works. Veit et
al. [67] conjectures that ResNet may actually behave like an ensemble of many shallower
networks; since the underlying subnetworks are shallow, it avoids optimization issue brought
by deep architectures. The conjecture can explain some empirical results, e.g., [14] finds
the effective receptive field of deep ResNet is not that large, which implies ResNet may be
intrinsically shallow.De and Smith [11] further points that batch normalization [33] layers in
ResNet may be the key to make it shallow. Additionally, there exist other related directions.
For example, [43] suggests that the shortcut connections in ResNet make the loss landscape
smooth. [23] finds that the identity shortcut changes the distribution of local optima. Chen
et al. [6] relates ResNet to Ordinary Differential Equations, etc.
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2.2.2 Spatial Modeling

As mentioned above, CNNs model spatial relations via spatial convolutions (i.e., whose
kernel size is larger than 1 × 1), which is built upon locality and translational equivari-
ant properties. However, not all vision tasks strictly satisfy these properties, such as face
recognition. Fortunately, researchers have come up with many spatial modeling techniques
to make CNN effective on those tasks.

Spatial Transformer Network

Spatial Transformer Network (STN) [35] is a plug-and-play module for convolutional net-
works. It is known that objects in real world may be deformed or transformed in geometry.
For example, a face image can be taken from either the front view or the side view; thus, the
network should be robust to these transformations. However, it is difficult for vanilla CNNs
to learn the invariance by design: CNNs process image with regular sampling grid, while
if global transformations are applied (e.g., rotation or affine transformations), the desired
sampling grid could also be transformed or become irregular, as illustrated in Fig. 2.9b. In
other words, the default inductive bias for convolutional layers is not suitable to represent
global transformations.

To overcome such drawback, the solution proposed by [35] is simple and straightforward:
introducing a building block namedSTN to learn global transformations explicitly.As shown
in Fig. 2.9a, the block mainly consists of two parts: the localization network that predicts a
transformation matrix � from the input feature map, followed by the grid generator as well
as the sampler that performs transformation according to�. Tomake thewhole network end-
to-end trainable, every component in STN has to be differentiable. STN warps the feature
map in the following formulation:

V c
i =

H∑

n

W∑

m

U c
nmk(xs

i − m)k(ys
i − n), ∀i ∈ [1...H ′W ′], (2.16)

U V

Localisation net

Sampler

Spatial Transformer

Grid 
generator

Tθ(G)θ

(b)(a)

Fig. 2.9 Illustration of Spatial Transformer Network (courtesy of [35]). a Overall architecture. b
Image sampling mechanism according to the learned transformation
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where U ∈ R
C×H×W and V ∈ R

C×H ′×W ′
are the input and output feature maps, respec-

tively; the function k(·) denotes the interpolation kernel; the coordinate (xs
i , ys

i ) is the sam-
pling point corresponding to the output position i , which is predicted by the grid generator
T�(G):

(
xs

i
ys

i

)
= T�(G) = � ×

⎛

⎝
xt

i
yt

i
1

⎞

⎠ ; (2.17)

� ∈ R
2×3 is the affinematrix generated by the localization network; (xt

i , yt
i ) is the coordinate

of i-th position in the output feature map V .
In detail, Eq. 2.16 can be interpreted as extracting a feature point at (xs

i , ys
i ) for the position

i , i.e., V c
i = U c

ys
i ,xs

i
. However, there are two problems: first, the coordinates (xs

i , ys
i ) could

be non-integers; second, the operation of extracting features is not differentiablew.r.t. xs
i and

ys
i . To solve this problem, Eq. 2.16 proposes to sum up several surrounding points weighted
by the kernel k(·) centered at (xs

i , ys
i ), instead of directly extracting the features exactly at

the location. For example, the kernel function could be chosen as a bilinear kernel:

k(x) � max(0, 1 − |x |).

Hence, the partial derivatives w.r.t. the input feature map U and the sampling point (xs
i , ys

i )

are as follows:

∂V c
i

∂U c
nm

=
H∑

n

W∑

m

max(0, 1 − |xs
i − m|) max(0, 1 − |ys

i − n|),

∂V c
i

∂xs
i

=
H∑

n

W∑

m

U c
nm max(0, 1 − |ys

i − n|)
⎧
⎨

⎩

0 |m − xs
i | ≥ 1

1 m ≥ xs
i

−1 m < xs
i

and the case of ∂V c
i /∂ ys

i is similar.
In conclusion, STN is a very powerful plugin for CNNs to deal with global transformation

or deformation. The general idea of STN has inspired many follow-ups, e.g., [10]. In some
tasks like face recognition, introducing an STN block to the bottom layer can significantly
improve the performance and robustness to pose variations [82].

Deformable Convolutional Network

Besides global transformations, in computer vision, it is also very important to model local
transformation or deformation. For example, consider an image with multiple objects, each
of which can have different poses and be deformed in many ways, respectively. On the one
hand, introducing a learned global transformation like [35] is clearly insufficient to deal with
the deformation of each object individually. On the other hand, the vanilla convolutional
layer is good at modeling local objects, however, it cannot produce robust features for
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(b) ( )

Fig.2.10 Deformable convolutional network (DCN). a Deformable convolutional layer. b Compar-
ison between regular convolution and deformable convolution. Image is taken from [10]

object’s deformation. Is there any way to combine the advantages of convolutions and
STNs? Deformable convolutional network (DCN) [10] is one of the solutions following
such motivation.

Figure 2.10a gives an illustration of the structure of deformable convolution. Like vanilla
convolution, DCN also includes Kh × Kw convolutional kernels; however, whose shape is
data-dependent and context-aware—for various inputs and different locations on the feature
map, the kernel shapes are also different. Specifically, DCN includes an auxiliary branch
(usually implemented with a conventional convolution) to predict the spatial offsets for each
element in the kernel, thus the kernels can be deformable with the input. In mathematics, a
deformable convolution is formulated as9:

Y [o, i, j] =
∑

c

Kh−1∑

k=0

Kw−1∑

l=0

W [o, c, k, l] × X [c, i + k + 	
i, j
h (k, l), j + l + 	i, j

w (k, l)],
(2.18)

where X ∈ R
C×Ih×Iw , Y ∈ R

O×Fh×Fw , andW ∈ R
O×C×Kh×Kw are the input tensor, output

tensor, and weight tensor, respectively, similar to the vanilla convolutions, while	
i, j
h (·) and

	
i, j
w (·) specify the kernel offsets at location (i, j) vertically and horizontally, which is the

key to deformation and produced by an auxiliary convolutional subnetwork from the input.
Similar to that in STN, the offset values 	h and 	w are not integers necessarily; a bilinear
interpolation can be introduced to make the formulation differentiable and compatible with
non-integer indexes, i.e.,

X [c, dy, dx ] �
Ih∑

n

Iw∑

m

X [c, n, m] max(0, 1 − |dy − n|) max(0, 1 − |dx − m|).

Readers may refer to STN [35] in the previous text for more details about how the interpo-
lation works.

9 For simplicity, in the formulation we omit common hyper-parameters of convolutions such as stride,
padding, and dilation, although they are still applicable in DCNs.
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DCN enables convolutional kernels to sample feature map adaptively according to the
context. As shown in Fig. 2.10b, in a vanilla convolution, the kernel shape is always regu-
lar and irrelevant to the input content; while in deformable convolution, the kernel shape is
context-aware: a convolutional filter sliding over different objects will have different shapes,
which enhances the capability to model the deformation of each individual object, respec-
tively. For example, for animals with various poses, deformable convolutions could adapt
their kernel shapes with the deformation of the contours, thus help to derive robust features.

The idea of DCN can be further extended. For example, as pointed in [10], RoIPooling
[20], a commonoperator inCNN-based object detection frameworks, can also be generalized
to the deformable counterpart. Research in [83] further suggests that deformable convolution
can be viewed as a special but efficient self-attention [66] layer. More recently, [84] takes
the idea of DCN to propose a new attention mechanism named deformable attention, which
yields outstanding performance on end-to-end object detection frameworks.

Non-local Network

In visual understanding tasks, sometimes we not only need to recognize each object indi-
vidually but also require to learn their relations along spatial or temporal dimensions. For
example, to track a quick-moving object, the network has to look at not only the surrounding
pixels around the object but also far-away patches which have similar appearances in other
frames. Yet again, vanilla convolutions (including 3D convolution layers) are not suitable
to model such non-local relations due to the intrinsic locality prior. Hence, non-local neural
networks (NLNet) [69] are proposed to address the drawback of CNNs.

The building block design of NLNet is greatly inspired by multi-head self-attention
(MHSA) [66], which is firstly applied in natural language processing tasks to deal with
the long-term dependency problem. The following equation gives the general form of the
proposed non-local block:

yi = 1

C(x)

∑

∀ j

f (xi , x j )g(x j ), (2.19)

where xi is the feature point vector (whose dimension equals to the number of channels) at
location i ,10 and yi is the corresponding output; f (xi , x j ) indicates the similarity between
xi and x j ; g(·) is a unary mapping and C(x) is the normalization term. The summation in
Eq. 2.19 is performed over all possible locations—not only limited to the positions near i—
therefore we say the operator is “non-local”. It is worth noting that some classic computer
vision algorithms such as non-local means [3] and bilateral filter [18] also share the similar
formulation as Eq. 2.19.

10 In non-local network, the “location” refers to both spatial position and temporal frame (if any).
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Fig. 2.11 Non-local neural
network. Image is taken from
[10]

: 1×1×1 : 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x

As a special case of non-local module, letting f (xi , x j ) = exp(< Wθxi , Wφx j >),
g(xi ) = Wgxi and C(xi ) = ∑

∀ j f (xi , x j ), the proposed building block can be formulated
in the following matrix form (also shown in Fig. 2.11):

Y = Softmax(X Wθ W �
φ X�)X Wg

Z = X + Y W �
z .

(2.20)

Here, X , Z ∈ R
(T ×H×W )×C are the input and output feature maps of NLNet block (in

matrix form), in which T is the number of frames in the video (T = 1 if performed on a
single image) and H × W is the spatial size. Wθ , Wφ, Wg, Wz ∈ R

C×C ′
are linear mappings

which can be implemented by 1 × 1 convolutions, respectively. Notice that Eq. 2.20 extends
Eq. 2.19 with an additional shortcut so that it can be applied in deeper network architecture.
The formulation is very similar to that in self-attention [66], while in the latter work, the
dimension of X is N × C , where N is the sequence length of the input sentences. NLNet
utilizes Eq. 2.20 as the default block design.

Further research works suggest that blocks like NLNet or self-attention givemany advan-
tages to CNNs, such as enabling object relation modeling [28], feature denoising [71], and
enlarging the effective receptive field [19]. More recently, [16] finds that given more train-
ing data and complexity budget, pure attention networks (i.e., vision transformers) could
even outperformCNN counterparts, suggesting non-local mechanism is a strong and general
spatial modeling paradigm.
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3Generative Networks

Ziwei Liu, Shuai Yang,Yuming Jiang, and Ziqi Huang

3.1 Introduction

Synthesizing photorealistic human faces is an appealing yet challenging task. Before the
advent of deep learning, researchers used predefined 3D face models to design generative
models for facial images. However, the abstraction and distortion of predefined models
hinder the realism of the generated faces. With the development of deep learning, a large
number of generative models have been proposed, especially in the field of face image
generation. These generative models do not rely on the predefined 3Dmodels and are purely
data-driven. The generative facemodels can successfully capture the features of human faces.
Recent years havewitnessed the great progress in various generative frameworks and training
paradigms, as well as the large collections of face datasets from LFW [28], CelebA [47],
CelebA-HQ [37] to FFHQ [40]. As shown in Fig. 3.1, the quality and resolution of the
generated faces have gradually increased. By the end of 2020, the state-of-the-art generative
model [41] has the capability to generate 1024 × 1024 photorealistic human faces.

Face generation has many exciting applications. In the filming and gaming industry, we
can synthesize virtual avatars to create interactions that are beyond the capabilities of humans
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Fig.3.1 Progress in face generation every 2 years.With the rapid development of advanced generative
models and the collection of large datasets, the quality and resolution of face generation have improved
greatly over the past 10 years

in the real world. For example, in the fantasy world of Cyberpunk, players can use wonderful
special effects to become a cyborg and interact with NPCs. In social media, users can create
their own personalized avatars. In the security domain, we can protect privacy by replacing
real faces with generated ones. In traditional media, TV stations can create virtual digital
hosts, and entertainment companies can create virtual singers and virtual idols. Self-media
can also customize the image they present to the public in videos.

Besides, in face-related computer vision tasks, face generation and face recognition can
complement each other. On the one hand, face generation can provide thousands of synthetic
data for face recognition, and these synthetic data do not have privacy or copyright issues.
On the other hand, face recognition can provide various semantic labels for face generation,
assisting the conditional face generation, thereby supporting multiple application tasks. For
example, we can edit the facial expressions given a face image. In fact, researches [45] have
employed face generation to support face recognition.

In this chapter, we will dive into two successful generative models developed in the
past decade: Variational Autoencoder (VAE) and Generative Adversarial Networks (GAN).
VAE adopts the idea of variational inference and learns to align the latent space to a fixed
distribution. The final image is synthesized by sampling from the fixed distribution. Later,
quantization techniques and Transformers are introduced to boost the performance of VAE,
making it have comparable performance to GAN. As for GAN, it is the most popular genera-
tive model in the recent decade. Since 2017, it has dominated the field of generative models.
The core idea of adversarial training enables the network learn to generate faces implicitly
without any hand-crafted priors, which promotes the spirit of data-driven learning. We will
introduce the adversarial idea of GAN and give a brief review of the development of GAN
models, both in terms of the architectures and optimization goals. Then, we will present
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the development of generative models in face-related tasks, including unconditional face
generation and conditional face generation. Finally, we will briefly explain the metrics for
evaluating the quality of face generation.

3.2 Variational Autoencoder

3.2.1 Vanilla VAE

Autoencoders are commonly adopted in unsupervised learning to extract features from raw
data. The extracted features are used in many downstream tasks, such as image recogni-
tion and segmentation. The idea behind autoencoders is to use an encoder to extract fea-
tures, which are then reconstructed by a decoder. The extracted features learned in this way
contain compressed information of the raw data. Mathematically, the training process of
autoencoders can be expressed as follows:

x̂ = D(E(x)), (3.1)

L = ∥
∥x̂ − x

∥
∥2
2 ,

where E(·) is the encoder, D(·) is the decoder, and L is the training objectives.
The autoencoders have the ability to generate images from a given feature. However,

this ability is limited to reconstruction, i.e., the learned autoencoder cannot generate new
data. Variational autoencoders overcome the aforementioned limitation by incorporating
probabilistic concepts.

Variational autoencoders are trained to reconstruct training data {x (i)}Ni=1 from a latent
representation z, which is optimized to align with the fixed probabilistic prior, e.g., Gaussian
distribution. Once the model is trained, new data can be sampled as follows:

x ∼ p(x |z(i)), z(i) ∼ p(z), (3.2)

where p(z) is assumed as simple priors, e.g., Gaussian distribution, and p(x |z) is represented
as a neural network, e.g., the decoder in variational autoencoders.

To this end, the decoder needs to be probabilistic. The decoder takes the latent code z as
input and outputs themeanμx |z and the covariance�x |z . The newdata x is then sampled from
the Gaussian with mean and covariance. The intuition of training the decoder is to maximize
the likelihood of the raw data. For each x , if its corresponding z could be observed, then a
conditional generative model p(x |z) could be trained. However, when training variational
autoencoders, the latent representation z is unobserved, so we need to marginalize pθ (x):

pθ (x) =
∫

pθ (x, z)dz =
∫

pθ (x |z)pθ (z)dz, (3.3)



70 Z. Liu et al.

where pθ (x |z) can be implemented as a decoder network, and pθ (z) is usually a simple
Gaussian distribution in practice.

However, it is not ideal to perform the integration for all z. Another alternative solution
is to use the Bayes’ Rule to represent the pθ (x) as follows:

pθ (x) = pθ (x |z)pθ (z)

pθ (z|x) . (3.4)

It is hard to compute the posterior probability pθ (z|x), therefore, we use another network to
mimic the posterior probability. In this way, the pθ (x) can be further represented as follows:

pθ (x) = pθ (x |z)pθ (z)

qφ(z|x) . (3.5)

The qφ(z|x) can be implemented as the encoder network in variational autoencoders.
Therefore, the training of variational autoencoders involves the training of two networks:

an encoder and a decoder. The encoder receives raw data x and then outputs the distribution
over latent codes z, and the decoder transforms the latent code z into data x . The high-level
idea is to maximize pθ (x). The training goal is derived by maximizing pθ (x) as follows:

logpθ (x) = log
pθ (x |z)p(z)
pθ (z|x) = log

pθ (x |z)p(z)qφ(z|x)
pθ (z|x)qφ(z|x)

= logpθ (x |z) − log
qφ(z|x)
p(z)

+ log
qφ(z|x)
pθ (z|x)

= Ez[logpθ (x |z)] − Ez[logqφ(z|x)
p(z)

] + Ez[logqφ(z|x)
pθ (z|x) ]

= Ez∼qφ(z|x)[logpθ (x |z)] − DKL(qφ(z|x), p(z)) + DKL(qφ(z|x), pθ (z|x)).
(3.6)

Since the KL divergence is always greater or equal to 0, we can drop the last term, and then
obtain the lower bound of logpθ (x):

logpθ (x) � Ez∼qφ(z|x)[logpθ (x |z)] − DKL(qφ(z|x), p(z)), (3.7)

where the first term can be regarded as the data reconstruction objective, and the second
term is the KL divergence between the prior distribution and the output of the encoder
network. The variational autoencoder is trained by maximizing the lower bound as indicated
in Eq. (3.7).

In practice, the variational autoencoders are implemented as Fig. 3.2. The image x is
firstly encoded by an encoder to the latent representation z. In the decoder part, the latent
representation z is transformed to μ and � by two fully-connected layers, respectively. A
reparameterization trick is then applied to sample ẑ from the distributionN (μ, �). Finally,
the sampled ẑ is fed into the decoder to reconstruct the image x . The loss function in Eq. (3.7)
is then formulated as the follows:
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Fig. 3.2 Illustration of the VAE pipeline. VAE consists of an encoder and a decoder. The encoder
extracts the input image x into the latent representation z. As for the decoder part, z is firstly trans-
formed to μ and �, which are then reparameterized into ẑ. ẑ is finally fed into the generator to
reconstruct the image. KL loss is applied to align the z with the standard normal distribution

L = ∥
∥x − x̂

∥
∥2
2 − K L(N (μ, �),N (0, 1)) (3.8)

3.2.2 Vector-QuantizedVariational AutoEncoder

Vector-QuantizedVariationalAutoEncoder (VQVAE) is a variant of variational autoencoder.
Compared to VAE, it has two main modifications: 1) the output of the encoder network
is discretized; 2) the prior distribution p(z) is explicitly learned rather than fixed. The
motivation for these modifications is the “posterior collapse” issue in VAE. In the original
VAE, if the decoder is too powerful, the sampled latent z will be ignored.

As shown in Fig. 3.3, the overall architecture of VQVAE is also an encoder–decoder-
based one. The encoder takes the raw image as the input, and outputs an embedding ze(x).
The continuous embedding ze(x) is then discretized by finding its nearest neighbor in the
codebook e ∈ RK×D . Then the decoder takes the discrete embedding zq(x) as the input and
reconstructs the raw data. Mathematically, zq(x) is expressed as

zq(x) = {ek, k = argmin j

∥
∥ze(x) − e j

∥
∥
2}. (3.9)

codebook

Fig. 3.3 Illustration of VQVAE. VQVAE consists of an encoder, a codebook, and a decoder. The
encoder E extracts the input image x into z(x). The z(x) is quantized by the codebook by finding the
nearest representation stored in the codebook. The quantized feature zq (x) is finally reconstructed
by the decoder G
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Since the argmin operation is involved, there is no gradient for Eq. (3.9). The straight-
through estimator [5] is employed to approximate the gradient. The gradient from decoder
to zq(x) is copied to the output of encoder ze(x). The overall training objective is defined
as follows:

L = logp(x |zq(x)) + ‖sg[ze(x)] − e‖22 + β ‖ze(x) − sg[e]‖22 , (3.10)

where sg(·) is the stop-gradient operation. The objective consists of three terms. The first
term is the reconstruction loss to optimize the encoder and decoder. The second term is
to learn the embeddings in the codebook. The third term is the commitment loss to add
constraints to the output of the encoder.

Once the VQVAE is trained, images can be generated by sampling from the latent embed-
dings of the well-trained VQVAE. Recall that in VAE, the goal of data generation is to
maximize p(x) in Eq. (3.4).

In VQVAE, the posterior distribution p(z|x) is defined as follows:

p(z|x) =
∑

k

q(z = k|x), (3.11)

q(z = k|x) =
{

1 for k = argmin j

∥
∥ze(x) − e j

∥
∥
2 ,

0 otherwise.
(3.12)

Since the q(z|x) is a constant, the log-likelihood of p(x) can be expressed as follows:

logp(x) = log
∑

k

p(x |zk)p(zk),

≈ logp(x |zq(x))p(zq(x)).
(3.13)

The p(x |zk) is the decoder of the VQVAE. To sample images, the rest is to train a network
to approximate p(zq(x)). In vanilla VQVAE, PixelCNN [59, 91], a type of autoregressive
model, is employed to learn the distribution of p(z). PixelCNN is trained to autoregressively
predict the tokens, i.e., the indices of the learned codebook, to sample the desired images.

3.2.3 Variants of VAE andVQVAE

A variant of VAE, β-VAE [27], is proposed to make the latent space of VAE interpretable in
an unsupervised manner. In the learning of β-VAE, higher weights are assigned to the KL
divergence in Eq. (3.7). The core idea is that the larger weight limits the capacity of z, forcing
the model to disentangle the most representative features from the original data. CVAE [80]
enables VAE to generate data x conditioned on the class labels c. An intuitive idea is to feed
the class labels together with the input x into the encoder and decoder during the training.
Then the optimization of pθ (x) becomes the optimization of pθ (x |c). Tomczak et al. [87]
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extended the VAE into a hierarchical architecture with multiple priors, which learns more
powerful latent representation and avoids unused dimensions in the latent space.

Many variants of VQVAE are proposed to boost the performance. The modifications
fall into two main categories: (1) improving the training of the encoder and decoder of
VQVAE and (2) improving the learning of the prior distribution. Esser et al. [18] added
adversarial loss (explained in Sect. 1.3) to the training of VQVAE to make the reconstructed
images contain more high-frequency details. Other works [34, 69] improve the reconstruc-
tion quality by using hierarchical encoders and decoders. As for the improvement of prior
learning, transformers [18] are employed to replace the PixelCNN design. In transformers,
the self-attention mechanism is adopted to better model the correlations between features
and thus enables better results than PixelCNN. Someworks [8, 11, 17, 23, 34] propose to use
the diffusion models instead of the autoregressive models. The diffusion models gradually
predict the tokens in a bidirectional way. Compared to the unidirectional prediction in the
autoregressive models, which only predicts the incoming pixels conditioned on the previ-
ous contexts, the bi-directional prediction allows the prediction conditioned on the whole
contexts, thus making the sampled image more coherent in content.

One application of VQVAE is DALLE [68], a large pretrained model for text-to-image
generation. The training set of DALLE contains 3.3 million text–image pairs and it achieves
a wonderful performance in text–image generation. The training of DALLE consists of
two stages: (1) Stage 1 for a VQVAE to compress images into tokens, i.e., indices in the
codebook; (2) Stage 2 for an autoregressive transformer to model the joint distribution over
text and images.

In stage 1, the codebook contains 8192 elements.And then p(z|x) inEq. (3.4) becomes the
categorical distribution. To optimize the encoder and decoder, Gumbel-softmax strategy [32,
49] is adopted in DALLE instead of the straight-through estimator in vanilla VQVAE.

In stage 2, DALLE adopts the Byte Pair Encoding (BPE) [19, 75] to encode the texts into
tokens, and uses the encoder trained in stage 1 to encode the images into tokens. Then, these
two types of tokens are concatenated and modeled together in an autoregressive way. The
transformer used is a decoder-only model. Three kinds of self-attention masks are used in
the model. For text-to-text attention, standard causal attention masks are used. For image-
to-image attention, row, column, or convolutional attention masks are used. Normalized
cross-entropy loss is used to train the transformer.

3.3 Generative Adversarial Networks

3.3.1 Overview

In this decade, the Generative Adversarial Network (GAN) has become one of the most
popular generative models and has taken dominance in this field.
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In 2014, Goodfellow et al. first proposed the idea of GAN [20]. The core idea is the
two-player adversarial game, where a generative model G captures the data distribution,
and a discriminative model D estimates the probability that a sample is real or synthetic.
Let’s consider this analogy to better understand GAN: the generator is a counterfeiter trying
to produce counterfeit money, while the discriminator is a cop trying to seize the counterfeit
money. In the beginning, both the counterfeiter and the cop have little experience, so the
counterfeit money appeared to be very different from the real money. After we tell the cop
which money is fake or real, the cop can easily identify the difference between real and
fake according to the color for example. Meanwhile, the counterfeiter would learn that the
cop distinguish the counterfeit money according to color, so they would try to produce
money that has the same color as the real one. In the next round of competition, the cop
would find other features to distinguish real and fake money, and in turn, the counterfeiter
would try to eliminate the gap of those features between fake and real money. The two
players, counterfeiter (generator) and cop (discriminator), adversarially compete against
each other and both do an increasingly better job. Goodfellow et al. proved theoretically that
the adversarial game has a single outcome, in which the counterfeiter eventually masters
the technique of producing counterfeit money that the cop cannot distinguish from the real
money. That is, the generator will learn to synthesize samples that fall into the distribution
of the real data so that the cop (discriminator) cannot tell.

Prior to the GAN era, researchers used carefully designed loss functions to guide network
training. For tasks like classification, detection, and reconstruction, where ground truths are
available, there exist well-defined and commonly accepted evaluation metrics. However, for
generative models, it remained an open question of how to evaluate the quality of synthe-
sized samples. The birth of GAN provides a new paradigm by introducing a discriminiator
network to bypass the need for an explicitly defined sample quality assessment metric. GAN
turns the unsolved quality assessment problem to a binary classification problem with well-
defined loss and metric. Specifically, the discriminator network predicts whether a sample
is real or fake (i.e., synthesized), by which the generator network is encouraged to generate
realistic samples that fool the discriminator. GAN learns a good evaluation metric (i.e., the
discriminator) from unlabeled data, again unveiling the appeal of the data-driven spirit in
deep learning.

3.3.2 Architectures and Losses

As with VAE, GAN generates samples from the latent space. Normally, the generator and
the discriminator are denoted by G and D, respectively, as shown in Fig. 3.4a. We would
like G’s generative distribution pg to approximate the real data distribution pdata . To learn
pg over data x ∼ pdata, we define a prior on input latent variables pz , which is usually a
standard normal distribution, then G aims to map z ∼ pz to data space. D receives an input
sample and outputs a single scalar, representing the probability that the sample comes from
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Fig. 3.4 Illustration of network architectures of different GANs. The generator G aims to map
random noises z to images that satisfy the distribution of real images x as much as possible so that
the discriminator D cannot distinguish the authenticity. For conditional generation, side information
y is provided to control the generation process to make the generated images match y

pdata rather than pg . The goal of D is to maximize the probability of assigning the correct
label to both real data and fake data, i.e., D(x) = 1 and D(G(z)) = 0.Meanwhile,G aims to
confuse D so that D(G(z)) = 1. Therefore,G and D play the following two-playerminimax
game with the loss function L(G, D):

min
G

max
D

Ladv(G, D) = Ex∼pdata [log D(x)] + Ez∼pz [log(1 − D(G(z)))]. (3.14)

Tominimize this loss function, the training of GAN is implemented as an iterative approach,
alternately optimizing G and D. Each iteration first samples z and x to optimize D while
keeping G fixed,

max
D

Ex∼pdata [log D(x)] + Ez∼pz [log(1 − D(G(z)))]. (3.15)

Then z is sampled to optimize G with D fixed,

min
G

Ez∼pz [log(1 − D(G(z)))]. (3.16)

In the beginning of training when G is poor, D can easily tell the fake data from the real
one. In this case, log(1 − D(G(z))) saturates with tiny gradients to update G. To solve this
problem, instead of optimizing Eq. (3.16), we can optimize G with

max
G

Ez∼pz [log D(G(z))], (3.17)

which is known as the non-saturating GAN loss.
(1) Variation of the loss function. Goodfellow has presented a theoretical analysis of the
convergence of GAN in [20]. If G and D have infinite capacity, the adversarial training will
converge to a global optimum (Nash-equilibrium) for pg = pdata and the discriminator is
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unable to differentiate between the fake data and real data, i.e., D(·) = 0.5. However, in
practice, the models have limited capacity and the training of GAN is known to be unsta-
ble, leading to model collapse where G generates unreasonable and monotonous outputs.
Researches have been devoted to improving the loss functions to stabilize the training.

R1 regularization [51]. Mescheder et al. analyzed the instabilities come from oscillation
near the Nash-equilibrium [51].WhenG is far from pdata , D pushesG toward pdata . And D
becomesmore certain, which increases D’s gradients.WhenG is near theNash-equilibrium,
D accumulates strong gradients that pushes G away from the Nash-equilibrium. As a result,
training is unstable near the equilibrium point. To solve this issue, Mescheder et al. proposed
an R1 regularization [51] to prevent D from creating harmful non-zero gradients orthogonal
to the data manifold,

min
D

Ex∼pdata [‖∇ψ D(x)‖2], (3.18)

where ψ is the weights of D and the gradients are penalized on real data alone.
Least Squares GAN (LSGAN) [50]. Besides non-saturated GAN loss, LSGAN [50] is

proposed to solve the problem of vanishing gradients. The main idea is to replace the binary
cross-entropy loss with an L2 loss. D directly predicts the label to approach the ground truth
class label (0 for fake data and 1 for real data) in terms of mean squared error

min
D

Ex∼pdata [(D(x) − 1)2] + Ez∼pz [(D(G(z))2], (3.19)

while G aims to confuse D to predict 1 for fake data

min
G

Ez∼pz [((D(G(z)) − 1)2]. (3.20)

The benefit is that the L2 loss gives more penalty to large errors, allowing for large model
corrections in the beginning of training.

Wasserstein GAN (WGAN) [4]. The original GAN loss uses Jensen–Shannon divergence
to evaluate the distribution distance between the real data and fake data. Instead, WGAN
proposes to use the Wasserstein distance (also known as Earth-Mover distance), which
measures the cost of turning one distribution into another. In WGAN, weight clipping is
applied to D to enforce the Lipschitz constraint. Under this constraint, the Wasserstein
distance can be approximated by minimizing the WGAN loss

min
D

Ez∼pz [D(G(z))] − Ex∼pdata [D(x)], (3.21)

min
G

−Ez∼pz [D(G(z))]. (3.22)

This measurement provides a useful gradient almost everywhere, allowing continuous and
stable training. However, the weight clipping sometimes makes the model hard to converge.
To solve this problem,WGAN-GP [24] eliminates weight clipping by introducing a gradient
penalty regularization to enforce the Lipschitz constraint. This term penalizes the norm of
gradient of D with respect to its input. In real implementation, WGAN-GP enforces a soft
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version of the constraint with a penalty on the gradient norm for random samples x̂ ∼ px̂ :

min
D

Ez∼pz [D(G(z))] − Ex∼pdata [D(x)] + λgpEx̂∼px̂ [(‖∇x̂ D(x̂)‖2 − 1)2] (3.23)

where x̂ is defined as a uniform sampling along the straight line between the sampled real
data and the dummy data.

Spectral Normalization [54]. Apart from loss functions, the Lipschitz constraint can
be also realized by weight normalization. The spectral norm of a matrix is its maximum
singular value. Normalize a matrix with its spectral norm can enforce 1-Lipschitz continuity
Therefore, spectral normalization that normalizes the weight for each layer of D with its
spectral norm is proposed to stabilize training. The advantage is that the computational cost
of spectral normalization is small.
(2) Architecture. The vanilla GAN [20] builds both G and D with multi-layer perceptrons,
which are not suitable to handle high-dimensional images as in Fig. 3.1.

Deep Convolutional GAN (DCGAN) [67]. DCGAN proposes a successful fully convo-
lutional GAN architecture especially good at dealing with images, where some of the design
ideas become the paradigm of the subsequent GAN design:

• Use fractional-strided convolution and strided convolution for upsampling and down-
sampling. It allows the network to learn its own spatial resampling.

• Remove fully connected layers to speed up convergence.
• Use batch normalization to stabilize training, which helps gradient flow in deeper layers

and increase robustness to poor network initialization.
• Use ReLU/LeakyReLU to make the network learn more quickly to cover the color space

of the real data distribution.

Therefore, the generator of DCGAN ismainly composed of a set of fractional-strided convo-
lutional (also known as transposed convolution) layer, batch normalization layer, and ReLU
layer (the last layer uses Tanh instead). The discriminator mainly contains a set of strided
convolutional layer, batch normalization layer, and LeakyReLU layer.

Conditional GAN (cGAN) [53]. Vanilla GAN generates random images without control.
By comparison, cGAN introduces extra conditions y such as class labels to control the
generation process. Besides the increased controllability, additional information can also
decrease the training difficulty and significantly improve the quality of generated samples.
Correspondingly, G and D in cGAN are additionally conditioned by y

min
G

max
D

Ex,y∼pdata [log D(x, y)] + Ez∼pz ,y∼py [log(1 − D(G(z, y), y))]. (3.24)

For example, cGAN [53] uses an class label y. G is conditioned by receiving a combination
of z and y and maps them to an output face image. y is also combined with the real/fake
data before sending to D as illustrated in Fig. 3.4b. The combination can be simply con-
catenations when z, y, and the data have similar dimension, i.e., one-dimensional vectors.
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When it comes to images, special combination should considered. In Auxiliary Classifier
GAN (ACGAN) [57], the class label y and the noise z are combined as the input of G. The
difference is that D is conditioned by y in the form of loss function, as shown in Fig. 3.4c.
Specifically, the last layer of D has two branches, one gives a probability distribution over
data sources and another gives a probability distribution over the class labels, denoted as
P(C |·). Therefore, the loss function has two parts: the original adversarial loss Ladv , and
the log-likelihood of the correct class LC :

LC (G, D) = Ez∼pz [log P(C = y|G(z, y))] + Ex∼pdata [log P(C = y|x))]. (3.25)

Both G and D are trained to maximize LC .
BigGAN [10]. BigGAN suggests a comprehensive cGAN framework that integrates var-

ious branches of GAN improvement. This framework shows its power by being successfully
trained on images of 256 × 256 resolution in 1,000 classes of ImageNet [14]. It can generate
very different yet plausible objects like animals, vehicles, tools, and foods within a single
network. After experimenting with a large number of GAN models and hyperparameters,
BigGAN presents several useful suggestions for training GAN:

• Increase batch size: Large batch size allows the network to see more diverse objects, thus
obtaining more accurate gradients to speed up the training.

• Increase channels: Increasing the number of channels is equivalent to increasing the
model complexity (capability). Another observation of BigGAN is that increasing the
model depth does not bring much improvement.

• Noise in each layer: Besides the input layer of G, adding z into all layers makes G learn
a hierarchical impact of z on features in different semantic levels.

• Condition in every layer: Instead of conditioning only the input layer of G, y can be
added into each layer to enforce the condition. Specifically, as shown in Fig. 3.4d, y is
embedded into a condition vector and is concatenated with zl at layer l. The resulting
condition vector of layer l is projected to a gain vector and a bias vector through two fully
connected layers. The batch-normalized feature map of layer l is adjusted by multiplying
the gain and adding the bias (also known as conditional batch normalization) to realize
the condition.

Besides, BigGAN uses projection discriminator [55] for class condition. It takes an inner
product between the embedded condition vector and the last-layer feature vector of D, which
significantly improves the quality of the class conditional image generation.
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3.4 Generative Model in Faces

Previous sections introduce the basic ideas of two kinds of popular generative networks.
This section will introduce specialized generative networks for the face generation task,
including unconditional face generation and conditional face generation.

The goal of unconditional generation is to synthesize face samples from randomGaussian
noises. This task maps the low-dimensional noise vector to the high-dimensional image,
which is rather difficult for high-resolution face images. In Sect. 3.4.1, we will introduce a
series of high-resolution face image generation models proposed by Karras et al., of which
StyleGAN [40] is the most successful face generation model in recent years, regarded as the
paradigm by researchers.

The conditional generation task aims to synthesize a face according to the conditional
inputs. With different types of inputs as conditions, we can enforce different intensities of
controllability of the output images. Therefore, conditional face generation has rich appli-
cation scenarios and the corresponding researches have also blossomed in recent years. In
Sect. 3.4.2, we will give a brief review of their representative ones sequentially according
to the type of the condition.

3.4.1 Unconditional Generation

3.4.1.1 ProgressiveGAN
ProgressiveGAN (ProGAN) [37] has greatly improved the quality and variations of gen-
erated faces as shown in Fig. 3.1. The three key contributions of ProgressiveGAN are (1)
scaling up both the generator network and discriminator network progressively, (2) introduc-
ing minibatch standard deviation to increase the variations, and (3) adopting normalization
to discourage unhealthy competition between G and D.

As shown in Fig. 3.5, the training of ProgressiveGAN starts from low-resolution images,
and gradually shifts to higher resolutions by introducing additional layers to the network.
The intuition behind this is that the network focuses on the learning of coarse features first
and then learns the fine details. The generator and discriminator have mirror designs and
they are scaled up at the same time. The benefits of progressive training lie in that (1) it
decomposes the training into several easier sub-procedures and (2) it reduces the training
time.

In ProgressiveGAN, the averaged standard deviation over the minibatch is calculated for
each feature at each spatial location. The averaged standard deviation is then replicated to
all locations in a minibatch, resulting in a one-channel feature map. The feature map is then
concatenated with the original features and inserted at the beginning of the last discriminator
block, which is empirically found to be optimal.
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Fig. 3.5 Illustration of Progressive Training Scheme of ProGAN. The generator and discriminator
of ProGAN are progressively trained from the smallest resolution (4 × 4) to the largest resolution
(1024 × 1024)

To constrain the magnitudes of the features of G and D, pixel-wise feature vector nor-
malization is introduced in the generator. The normalized features are computed by dividing
it by the square root of the average of sum of squares of pixel-wise feature values.

3.4.1.2 StyleGAN Series
After ProgressiveGAN, StyleGAN [40] further boosts the quality of generated images. The
key contributions of StyleGAN can be summarized as follows:

• Interpretable latent space: StyleGANmakes the learned latent space meaningful. Specif-
ically, by shifting the latent code in one dimension, some semantic attributes of the
generated images change accordingly, while others remain unchanged.

• Unsupervised separation of high-level attributes: In StyleGAN, at each convolution layer,
there exists a latent code adjusting the “style” of the image.

• Stochastic variation: At each layer, there is also a noise input controlling the stochastic
details of the images, e.g., freckles and hair.

• Mixable and interpolatable latent space: The latent space supports the operation of mix-
ing and interpolation of latent codes. By mixing and interpolating of latent codes, the
generated images are still photorealistic as shown in Fig. 3.6.

As shown in Fig. 3.7, the StyleGAN generator consists of four key components: (1) A
learnable constant input, (2) a mapping network, (3) AdaIN for style modulation, and (4)
noise inputs. The whole network starts from a learned constant input. The latent codes z
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Source A Source BCoarse from A Middle from A Fine from A

Fig.3.6 Illustration of StyleMixing. Bymixing different levels of latent codes, we can bring different
aspects from source B, ranging from high-level information to color schemes and microstructure
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Fig. 3.7 Illustration of the network architecture of StyleGAN. StyleGAN first maps the input z to
an intermediate latent space W with a mapping network containing fully convolutional (FC) layers.
The mapped latent codes control the generator through AdaIN at each convolution layer. Gaussian
noise is added after each convolution. Here, “A” stands for a learned affine transform to map the latent
codes to AdaIN modulation parameters, and “B” applies learned per-channel scaling factors to the
noise input. “Const” is the constant input feature

are used for layer-wise control. They are first fed into a mapping network to a W space and
then modulate the features through AdaIN. There is also a noise input branch to control the
stochastic variations. StyleGAN generates images starting from a resolution of 4 × 4. At
each level, the generated images are upsampled 2×.

The mapping network maps the latent code z into an intermediate latent space, i.e., W
space, and is implemented as an eight-layer MLP. In traditional GANs, the latent code is
directly projected to a synthesized image. The necessity of the additionalW space is to avoid
entanglement of different features. Assuming we only have Z space, the mapping from Z
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to the feature must be curved since Z space is sampled from a fixed distribution and some
combinations of characteristics may not be present in the training data. If we were to change
one property using the curved mapping, other irrelevant properties would also be updated
along the curved route. However, the W space does not follow a fixed distribution, and it is
sampled from a learned piece-wise continuous mapping. The mapping network “unwarp”
the curved mapping to some extent. Thus, the factors of variation become more linear.

Inspired by style transfer, StyleGAN uses an Adaptive Instance Normalization
(AdaIN) [29] to make the style vector explicitly control the synthesis. A learned affine trans-
formation is employed to transform the latent code w into AdaIN modulation parameters.
With the style modulation module, the StyleGAN has the capability of style localization. It
means that when wemodify a specific subset of the styles, only certain aspects of the images
would be changed.

The noise inputs branch introduces stochastic variation. It provides a direct means to
generate stochastic details. If we changed the noise inputs, only some fine details would
change. The overall appearance of the images would remain the same. Only the high-
frequency details are affected.

One year after StyleGAN was proposed, StyleGAN2 [41] comes out to solve the char-
acteristic blob-like artifacts of StyleGAN. StyleGAN2 points out that StyleGAN exhibits
blob-like artifacts that resemble water droplets in the generated face images. These artifacts
are caused by the AdaIN. AdaIN normalizes the mean and variance of each feature map
separately. Thus, it eliminates the relative size discrepancy of the features, which captures
the semantic information between the features. To retain this information, StyleGAN learns
to generate some blob-like artifacts with high activation to recover the mean magnitude as
well as to deceive the discriminator at the same time (since the artifacts are small). To this
end, StyleGAN2 redesigns the AdaIN operation, by removing the normalization to the mean
(only normalize variance) and moving the noise outside the AdaIN operation. In addition
to the AdaIN, StyleGAN2 points out that the progressive growing tends to have a strong
location preference, leading to detail stuck problem. Correspondingly, StyleGAN2 obtains
the high-resolution output by upsampling and summing the contributions of the outputs from
different low-resolution layers. This allows StyleGAN2 to be trained without changing the
network topology to gradually shift its focus from low-resolution images to high-resolution
images. An example of the generated face image is shown in Fig. 3.1.

One year later, Karras et al. introduced StyleGAN3 [39] that solves the alias artifacts
of StyleGAN series. StyleGAN and StyleGAN2 tend to generate the facial detail glued to
pixel coordinates instead of the surfaces of faces, which is not suitable for moving faces.
The reason is that operations like upsampling and ReLU in StyleGAN and StyleGAN2
can provide pixel coordinate information for the network to reference when synthesizing
details. To solve this problem, StyleGAN3 redesigns these operations to enforce continuous
equivariance to sub-pixel translation, i.e., all details are generated equally well regardless
of pixel coordinates.
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In terms of data, Karras et al. proposed a StyleGAN-ADA [38] to allow for training a
StyleGAN model with limited data. StyleGAN-ADA proposes an adaptive discriminator
augmentation mechanism to augment data with a wide range of image transformations
against overfitting, and adaptively adjust the probability of executing the augmentation
to prevent augmentations leak to the generated images (e.g., generator learns to generate
unrealistic color-augmented faces). With this mechanism, StyleGAN-ADA can be trained
to generate satisfying face images with only a few thousand training images.

3.4.1.3 Advanced Progress of StyleGAN
The success of StyleGAN has attracted much attention, and in recent years a number of
advanced advances have been made in the development and application of StyleGAN. In
this section, representative work on introducing new style modeling to StyleGAN, finding
the latent code of real-world faces, and extending StyleGAN to new domains will be briefly
presented. Later in Sect. 3.4.2, face editing with StyleGAN will be further introduced. For
a more comprehensive study of StyleGAN, readers may refer to the survey [6].
(1) Style control. StyleGAN provides a flexible control over facial style in hierarchical
semantic levels. DiagonalGAN [43] further disentangles the facial style into the content
(spatial information such as face pose, direction, expression) and style (other features such
as color, makeup, gender). The style follows the original StyleGAN to be modulated with
AdaIN. For content feature, DiagonalGAN proposes diagonal spatial attention. Randomly
sampled content latent code zc is first mapped and reshaped to an attention map through
MLPs. The attention map is then applied pixel-wisely to manipulate the feature values of
a specific location, thus it can control the spatial information of the face. By varying zc
while keeping the style feature fixed, the generated face changes its pose and expression
while maintaining the identity, enabling fine-grained control. DualStyleGAN [98], on the
other hand, introduces new styles to StyleGAN. The original real face style is defined as
intrinsic style while the new cartoon face style is defined as extrinsic style. The extrinsic
style latent code is extracted from a reference cartoon image, and is used to generate AdaIN
parameters. A modulative ResBlock is proposed to predict the structure adjustment features
from StyleGAN features, which are modulated by the AdaIN parameters and are added back
to the StyleGAN features to deform the face structures. In this way, random cartoon faces
can be generated by varying the extrinsic style latent code and the intrinsic style latent code,
as shown in Fig. 3.8c.
(2) StyleGAN inversion. StyleGAN inversion is the inverse process of StyleGAN face
generation. It aims to find the latent code of a given real face image. Then flexible face
editing can be realized by simply editing its latent code. Image2StyleGAN [1] first explores
the latent space of StyleGAN and finds thatW+ space can better reconstruct real faces.W+
space is an extendedW space. Recall that the noise vector z is mapped to a 512-dimensional
vectorw inW space. All layers of StyleGANuses this samew for style modulation. ForW+
space, on the other hand, each layer has its own w. For N -layer StyleGAN, all ws constitute
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Fig. 3.8 Style control and transfer learning in StyleGAN. a Three faces generated by StyleGAN
from three latent codes. b Toonify fine-tunes the original StyleGAN and generates the corresponding
stylized faces using the same latent codes in (a). c DualStyleGAN introduces extrinsic style codes
s into the base StyleGAN model and can render cartoon faces under different styles based on the
extrinsic style codes. The white boxmeans the original base StyleGANmodel. The orange boxmeans
the trained or fine-tuned part of the model

a N × 512 tensor w+. In addition, Image2StyleGAN [1] proposes an optimization-based
algorithm to findw+ of an image I .w+ is initialized by amean latent vector and is optimized
via gradient descent to minimize the reconstruction error:

Lperc(G(w+), I ) + ‖G(w+) − I‖2, (3.26)

where Lperc is the perceptual loss [36]. PIE [85] additionally considers the face quality
after editing during the optimization to ensure high-fidelity and editibility. IDinvert [108]
trains an encoder to map the face to an initial highly editable latent code and requires the
optimizedw+ to be close to the initial one to maintain editibility. However, the optimization
makes inversion time-consuming. To speed up, pSp [70] proposes to train an encoder to
directly map face images to the W+ space. It follows the hierarchical characteristics of
StyleGAN to extract multi-level features to predict the latent code in corresponding layers.
Later, e4e [88] improves pSp [70] by constraining the predicted w+ to lie close to the W
space, which avoids over-fitting to the target that hampers editibility. The encoder-based
methods are hard to capture the uncommon details like accessories and background. To
preciously reconstruct the details, Restyle [2] iteratively predicts the residue of w+ wile
HFGI [95] predicts the residual mid-level StyleGAN feature maps. Instead of predicting
residues, Pivotal Tuning [71] proposes to fine-tune StyleGAN over the target face image.
Hyperinverter [16] and Hyperstyle [3] accelerate Pivotal Tuning with a hyper network to
directly predict offsets of StyleGAN weights to simulate the fine-tuning process.
(3) Transfer learning. Besides real faces, pretrained StyleGAN can be efficiently extended
to face-related domains like cartoon faces and oil-painting portraits with limited data.
Toonify [63] fine-tunes a pretrained StyleGAN on cartoon face dataset. After a few iter-
ations, the network is able to generate plausible cartoon faces. Moreover, StyleGANmodels
before and after fine-tuning are well aligned as systematically analyzed in StyleAlign [96].
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For example, real eyes will be smoothly transformed to cartoon-like eyes during transfer
learning, as shown in Fig. 3.8a, b. Therefore, one can perform StyleGAN inversion over a
real face with the original StyleGAN and apply the resulting latent code to the fine-tuned
StyleGAN to obtain its cartoon version, which is called “toonify”. AgileGAN [81] extends
z to z+ just as w to w+ and experimentally finds that z+ strikes good balance between
the fidelity and the quality of toonify. FS-Ada [58] investigates a more challenging task of
fine-tuning StyleGAN with extremely limited images (e.g., 10) of the target domain. The
main idea is to preserve the relative pairwise distances before and after fine-tuning and to
combine global discriminator and local patch discriminator, where global discriminator is
only used near the real samples. Although real images are limited, real patches extracted
from the images are abundant to train the local discriminator. The two strategies effectively
prevent mode collapse.

3.4.2 Conditional Generation

With increasingly promising unconditional face synthesis techniques, it is natural to explore
how to synthesize a face image according to user requirements. Tomake face synthesis more
user-friendly, recent works have been studying the face synthesis task conditioned on various
modalities, such as semantic segmentation masks [110], sketches [100], and texts [97].
Conditional face generation has potential applications in avatar generation, criminal profiling
and photo editing.

3.4.2.1 Reference-to-Face
Reference-to-face generation aims to synthesize a face image based on reference images.
The commonly used reference images contain face parsing maps, sketch/edge images and
partially masked face image as shown in Fig. 3.9.

parsing map to face edge to face

sketch to face

sketch to face + inpainting

sketch to face with attribute editing

Asia Male White

Fig. 3.9 Applications of reference-to-face translation. Images from [101] and [44]
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(1) Parsing map to face. Face parsing is an important topic in face recognition to predict
the parsing map of a face. The parsing map is the semantic mask of a face image, where each
channel is a binarymask indicating the region of a facial component such as the nose or eyes.
Generating a face image from a face parsing map, also known as parsing-to-face translation,
is the reverse process of face parsing, where parsing maps can serve as a suitable interme-
diate representation with strong spatial constraints for flexible face manipulation. With the
collection of large-scale face parsing dataset like CelebA-Mask-HQ [44], this task can be
achieved by simply applying general image-to-image translation model like pix2pix [31].
Parsing-to-face translation is an ill-posed problem where the conditional parsing map only
provides facial structure information andmay correspond to different appearances. To tackle
this problem, a common practice is to simultaneously model the appearances information
and combine it with the structure information. For example, in mask-guided portrait edit-
ing [22], the authors train anAutoencoder for each facial component to extract its appearance
features. These features are rearranged to the target position according to parsing map, and
are decoded to generate the corresponding face. Once trained, the method can synthesize
novel faces with the appearance from one face and the structure from another. With the
introduction of StyleGAN [40], AdaIN is one of the most popular way of modeling appear-
ance feature and combining it with the structure feature. The pSp [70] directly trains an
encoder to project the parsing map into the latent codes of StyleGAN, which are then used
to reconstruct the original face image. Since the structure style and the texture style are
mainly modeled by the first 7 layers and the last 11 layers of StyleGAN, applying different
appearance features to the same parsing map can be effectively achieved by altering the
latent codes of the last 11 layers. Since the structure and appearance are modeled as latent
codes globally and independently in different layers, fine-grained local editing such as only
changing the hair styles is not feasible. SEAN [110] proposes a semantic region-adaptive
normalization for local editing. In terms of appearance features, the style encoder encodes
the input face image into a style feature map. The feature map’s elements within the pars-
ing region of each facial component are globally averaged to form a style vector for the
corresponding component. In terms of the structure features, the parsing map is mapped to
a structure feature map. Within each layer of the generative network, the style vectors are
broadcast to the corresponding positions based on the facial component they belong to. The
broadcast style vectors and the structure feature map are projected to mean and variance
style codes to adjust the current layer’s feature map with AdaIN. By this implementation,
each facial component has its unique style code that only functions in its own region. User
can conveniently edit the style code or region shape to precisely adjust the local appearance.
(2) Sketch/edge to face. Sketch is a kind of more abstract intermediate representation
to provide facial structure constraints than parsing maps. With the increasing popularity
of touch-screen devices, drawing sketches become more convenient to reflect users’ idea.
Therefore, researches have been devoted to the problem of sketch-to-face translation. Since
it is difficult to collect large-scale hand-drawn sketches, most sketch-to-face translation
methods use edges extracted from real faces with post-processing like simplification or
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vectorization instead. As with parsing-to-face translation, sketch-to-face translation is an
ill-posed problem and needs conditions to specify the appearance information. The pSp [70]
directly trains an encoder to project the simplified edge into the latent codes of StyleGAN.
Structural styles in first 7 layers are controlled by the edges and other appearance styles in
last 11 layers aremodulated as in original StyleGAN.ArtEditing [90] explicitly simulates the
artistic workflows to map a sketch image to a flat color face image and further to the detailed
face image. The three-stage framework allows flexible editing in different stages. In this
work, the appearance condition is the AdaIN style codes extracted from a real face by a style
encoder or derived from Gaussian noise samplings. CocosNet [103] and CocosNetv2 [106]
directly find the correspondence between the edge map and the reference face image by
projecting them into an aligned feature domains. Then, pixels in the reference image can be
warped to the corresponding positions in the edge map to synthesize a rough face image,
which guides the generation of the final high-quality output.

When editing a local region of real faces, there is no need to draw the entire sketch.Amore
practical way is to mask out the target region and only draw the sketch in the masked region.
This task is a combination of sketch-to-face translation and image inpainting. A common
way is to train an inpainitng network to map the concatenation of the mask, the masked face
and the sketch to the original face as in Deepfillv2 [102]. The network learns to generate
face structures in the masked region based on the sketch, while maintaining appearance
consistency with the unmasked face. Faceshop [64] and SC-FEGAN [35] further introduce
color strokes as extra conditional inputs to guide the color styles in the masked region.

Networks trained on edges may fail on low-quality sketches. To bridge the domain gap
between the edge and sketch, ContextualGAN [48] trains a GAN to learn a joint distribution
of high-quality faces and edges. Then it searches nearest neighbors to the input sketch in
this distribution. Similarly, DeepVideoFaceEditing [46] leverages the powerful StyleGAN
for face editing. It extends StyleGAN to a joint face and edge generation, and optimizes the
latent code of an image to make its edge approximate the edited edge. DeepPS [100], on
the other hand, models sketches as dilated and distorted edges to learn a mapping between
the low-quality sketches and the fine edges. It serves as a pre-processing tool for translation
networks trained on edges.

3.4.2.2 Attribute-to-Face
Attribute-to-face translation aims to generate a high-quality face image that follows the given
facial attributes such as smiling, open mouth, old age and black hair. Before the proposal
of StyleGAN, researchers focus on training an image-to-image translation network to map
an input face image to another that satisfies the target face attribute, i.e., attribute editing.
Recently, interpreting the latent space of pretrained StyleGAN has drawn wide attention
because this not only helps discover internal representation learned by StyleGAN but also
allows semantic control over the generation process. The main idea of the StyleGAN-based
attribute editing is to find an editing latent vector for each attribute like smile. By adding
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this vector to the random style codes, their generated faces will be the smiling versions of
those generated from the original style codes.
(1) Conditional translation methods. Image-to-image translation normally handles map-
ping between two domains, which involves only two attributes. StarGAN [12] and Star-
GANv2 [13] proposes to train a single network for multiple attribute editing. Instead of
learning a fixed translation between two domains, StarGAN takes in as inputs both image
and attribute label, and learns to flexibly translate the input image to satisfy the correspond-
ing attribute. StarGANv2 further follows StyleGAN to use AdaIN to inject the attribute
label information, which efficiently and effectively learns the attribute-related face styles. In
DeepPS [101], the authors further integrate AdaIN-based attribute editing into the sketch-
to-face pipeline, which provides visual information like colors that is hard to characterize
solely by the sketch as shown in Fig. 3.9. IC-Face [89] proposes a face editing framework
where a face neutralization network neutralizes the input face to obtain a template face and
a face reenactment network is used to map the template face to given attributes. The com-
bination of neutralization and reenactment makes the network better model facial identity
and pose/expression. Since it is difficult to obtain the paired face photos of the same person
under different attributes, most methods are based on CycleGAN [109] to learn a two-way
mapping between domains on unpaired data. Thanks to the invention of StyleGAN that gen-
erates high-quality and style controllable face images, StyleGAN2 distillation [93] proposes
to train a one-way mapping with paired data generated by StyleGAN, which shows better
attribute editing performance than the frameworks that rely on unpaired data.
(2) Unsupervised StyleGAN-based methods. Unsupervised methods [25, 78, 94, 107]
statistically analyze the GAN latent space to discover semantically important and distin-
guishable directions, so that semantic attribute control can be achieved by manipulating the
latent codes along the directions found. Low-rank subspaces [107] relates the GAN latent
space to the image region with the Jacobian matrix and then uses low-rank factorization to
discover steerable latent subspaces. Voynov and Babenko [94] discover interpretable direc-
tions in an iterative fashion. First, an edited image is synthesized according to a latent shift.
Then a reconstructor predicts the direction and magnitude of the latent shift from the edited
image. This process is repeated to find semantically interpretable directions. GANSpace [25]
identifies important latent directions based on Principal Component Analysis (PCA) applied
in latent space or feature space, and achieves interpretable controls by layer-wise perturba-
tion along the principal directions. SeFa [78] proposes a closed-form factorization algorithm,
whichmerely uses the pretrainedweights of theGANgenerator to find semanticallymeaning
dimensions in GAN latent space.
(3) Supervised StyleGAN-based methods. Supervised methods [33, 76, 77, 111] utilize
attribute labels of face images, or off-the-shelf attribute classifiers to identify semantically
meaningful latent subspaces. For each semantic attribute, InterFaceGAN [76, 77] finds a
hyperplane in the latent space to separate its semantics into a binary state, and the normal
vector of the hyperplane serves as an editing direction to manipulate the selected attribute.
Enjoy-Your-Editing [111] learns a transformation supervised by binary attribute labels, and
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adds the transformation direction to the latent code to achieve one-step editing. Talk-to-
Edit [33] models semantic attribute score as a scalar field with respect to the StyleGAN
latent space, and trains a network to learn the gradient to the score scalar field, so that
moving the latent code along the learned gradient field lines achieves fine-grained facial
editing.

3.4.2.3 Text-to-Face
Given a text description of a face, text-to-face translation aims to generate a high-quality
face image that is semantically consistent with the text input. Compared to visual guidance
where the constraints are at pixel level, text conditions are more flexible and can be highly
semantic. Text-to-face translation is challenging because one text description can lead to
a large variety of corresponding images. Therefore, enforcing the image–text consistency
plays a central role in text-to-face synthesis.

There are two major types of ways to enforce consistency between the synthesized face
image and the input text: (1) train text-to-face translation models directly using image–
text pairs (2) utilize a pretrained visual language model (i.e., CLIP [66]) to evaluate the
consistency between image and text.
(1) Close-domain text-to-face generation. Close-domain text-to-face generation focuses
on conditioning the face generation process on a pre-defined set of text conditions, and is
usually achieved by directly training on image–text pairs. TediGAN [97] is a StyleGAN-
basedmethod for text-based face generation andmanipulation, as shown in Fig. 3.10. It trains
a text encoder that maps the text descriptions into StyleGAN’sW latent space, where the text
embedding is expected to be close to the corresponding image embedding (i.e., theW latent
code of the image). The text and image embeddings are thenmapped to theW+ latent space,
and are mixed to obtain theW+ code which will be mapped the text-guided image using the
StyleGAN generator. Collaborative Diffusion [30] trains text-conditional diffusion models
in the latent space of VAE or VQ-VAE following Latent Diffusion Model (LDM) [72]. The
diffusion model is implemented using a UNet [73] which gradually denoises the Gaussian

Fig.3.10 Applications of text-to-face translation. a TediGAN [97] synthesizes faces consistent with
the text descriptions. b Talk-to-Edit [33] performs text-guided facial editing via interactions with
users
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prior to a natural image. The text conditions are injected into the diffusion model via cross-
attention with the UNet’s intermediate activations. The denoising process is supervised by
text–image pairs.
(2) Open-domain text-to-face generation. Close-domain text-to-face generation falls short
when a text description is out of the training text distribution. A common workaround is
using CLIP as the bridge between open-world language descriptions and the various facial
images. Contrastive Language-Image pretraining (CLIP) [66] aims to efficiently learn visual
concepts using natural language supervision. CLIP jointly optimizes an image encoder and a
text encoder to encourage a high dot product between the image embedding and text embed-
ding from a positive image–text pair, and a low dot product of that from a negative pair. Since
CLIP provides a score measuring the similarity between a pair of image and text, this score
can serve as supervision signals to ensure image–text consistency in the text-to-face gener-
ation task. StyleCLIP [62] is a text-based face manipulation framework, which first inverts
a given face image into StyleGAN’s latent code, then uses CLIP loss to optimize the latent
code in response to a user-provided text prompt. For every text input, DiffusionCLIP [42]
fine-tunes the pretrained diffusion model using CLIP loss to produce images consistent with
the text prompt. GLIDE [56], a text-to-image diffusion model, explores two techniques to
guide diffusionmodels toward text prompts: CLIP guidance and classifier-free guidance and
finds that the latter produces samples with better photorealism and image–text consistency.
For CLIP guidance, the diffusion process is adversarially pushed toward the image that has
a higher CLIP score (i.e., higher similarity) with the text condition.

3.5 Evaluation of Generative Models

There are several dimensions in which a generative model can be evaluated, such as density
estimation, sample quality, and latent representation quality. In the context of face synthe-
sis, what we care about the most is the synthesized face samples. Therefore, this section
mainly focuses on evaluation metrics that assess the sample quality. This section also briefly
discusses some evaluation methods to assess conditional consistency.

3.5.1 EvaluationMetrics on Sample Quality

Unlike many other tasks where there exists a loss function which can directly evaluate the
performance, generative models like GANs rely on a discriminator network to judge the
photorealism and do not have a straightforward evaluation objective.

It is hard to define and assess generation, as memorizing the training set would give
excellent samples but is clearly undesirable [82]. Human evaluations can be expensive,
hard to reproduce, and potentially biased. Therefore, the community turns to the existing
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quantitative evaluation metrics such as the Inception Score (IS), Fréchet Inception Distance
(FID), and Kernel Inception Distance (KID).

3.5.1.1 Inception Score (IS)
Inception Score (IS) [74] can be used if we have a pretrained classifier (usually the Incep-
tionNet [84] pretrained on ImageNet [14]) that can predict the class probabilities of each
generated sample. There are two components in IS:

I S = D × S, (3.27)

where D refers to Diversity and S refers to Sharpness. A higher IS implies better sample
quality.
(1) Diversity (D). Diversity characterizes the level of uncertainty which class a generated
sample belongs to.

D = exp(H(y)) = exp(−Ex∼pg [
∫

p(y|x) log p(y)dy]), (3.28)

where pg is the distribution of generated samples. A higher diversity means p(y) has higher
entropy H(y), indicating less severe mode collapse.
(2) Sharpness (S). Sharpness is defined as the negative entropy of the distribution of labels
predicted by the classifier on the generated images.

S = exp(−H(y|x)) = exp(Ex∼pg [
∫

p(y|x) log p(y|x)dy]), (3.29)

Ahigher sharpnessmeans the classifier’s predictive distribution p(y|x) has very low entropy.
That is, individual-generated samples are classified into corresponding classes with high
confidence.

IS can also be viewed as the KL-divergence (on the exponential scale) between the
conditional class distribution p(y|x) and the marginal class distribution over the generated
data p(y) = Ex∼pg [p(y|x)].

3.5.1.2 Fréchet Inception Distance (FID)
IS only requires samples from the generated distribution pg and does not take the desired
true data distribution pdata into consideration.

To solve this problem, Fréchet Inception Distance (FID) [26] measures the feature rep-
resentation’s similarities between generated samples from pg and the real samples in the
dataset pdata . The feature refers to those extracted by a pretrained classifier, usually the
InceptionNet [84]. A lower FID implies better sample quality.
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To compute FID,we extract the features Fg and Fdata , and then fit amultivariateGaussian
to each feature representation, giving N (μg, �g) and N (μdata, �data). FID is defined as
the Wasserstein-2 distance between the two Gaussians [82]:

F I D = ||μdata − μg||2 + Tr(�data + �g − 2(�data�g)
1/2) (3.30)

3.5.1.3 Kernel Inception Distance (KID)
Kernel Inception Distance (KID) [7] computes the Maximum Mean Discrepancy (MMD)
over the feature representations extracted by a pretrained classifier (e.g., InceptionNet [84]).
It is more computationally expensive than FID, but can provide a less biased estimation than
FID. MMD is defined as follows:

MMD(pg, pdata) = Ex1,x2∈pg [K (x1, x2)] + Ex1,x2∈pdata [K (x1, x2)]
−2Ex1∈pg,x2∈pdata [K (x1, x2)],

(3.31)

where K is a kernel function that measures similarity between points, such as the Gaussian
kernel.

3.5.1.4 Discussions on EvaluationMetrics
IS and FID are currently very commonly adopted. IS can capture inter-class diversity but fail
to capture intra-class diversity, and is sensitive to the prior class distribution [9]. FID is very
popular due to its consistency with human perception [9]. KID is a more recent technique
and is becoming adopted.

As face synthesis is a qualitative task, these quantitative metrics are still not perfect
indicators of the quality of face synthesis models. In many research publications, human
evaluation on samples is also provided as an additional indicator for sample quality. There
has also been research [61] that shows subtle differences in image processing can result in
large variations in FID values. We look forward to the next decade for future research on
stable and perceptually consistent quality assessment systems for generative models.

3.5.2 EvaluationMetrics on Consistency

In face synthesis applications, sample quality is not the only thing to care about. For example,
in conditional synthesis tasks, it is important that the synthesized face is consistent with the
provided condition. In face editing tasks, a good method should make sure that only the
desired attributes are changed, while the other attributes and the face identity are preserved.
With these considerations, there have been some evaluation metrics on consistency which
are commonly adopted by the academia.
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(1) Text–image consistency. For text-driven tasks, the CLIP [66] score is often used to
assess image–text consistency.
(2) Attribute-image consistency. To evaluate image-attribute consistency, a classifier for
the specific attributes is usually trained to predict the attributes of the synthesized image.
The predictions are then compared with the target attribute labels to indicate consistency.
(3) Parsing-image consistency. For semantic parsing (i.e., segmentation masks) to face
synthesis, a face parsing model is usually trained to measure the consistency between the
input semantic layout and the synthesized image in a pixel-wise manner.
(4) Identity preservation. In reference-to-face tasks and most of the face editing tasks, it
is desired to maintain the same identity (i.e., whose face it is). Most practices choose to
use ArcFace [15] to measure the identity similarity between the synthesized face and the
reference/input face. ArcFace uses Additive Angular Margin Loss to obtain highly discrimi-
native features for face recognition, and is a commonly used method to distinguish different
identities.
(5) Others. Image-condition consistency assessment is also accompanied by user study,
where users are given questionnaires to judge the consistency between a pair of conditions
and synthesized face.

3.6 Summary

This chapter reviews state-of-the-art generative networkmodels, especially their progress on
face generation tasks. Specifically, we introduce VAE and GAN, two most popular models
in recent years. The former proposes to encode the image domain to a certain distribution,
showingbrilliant performance in the taskof text-guided imagegeneration.The latter provides
researcherswith the classic data-driven idea of learning a robust evaluationmetric of realism,
which greatly simplifies the design of training objectives for generativemodels, and iswidely
used in tasks such as image generation, image restoration, image enhancement, and image
editing. Among them, StyleGAN [40] is the most successful face generation model in the
second decade of the 21st century and has derived a series of impressive face-relatedmodels.

Although face image generation has made great progress in the past decades, there are
still several open questions worth exploring.
(1) From 2D to 3D. While we are impressed by the 2D face images generated by StyleGAN,
the generative models still have a lot of room for improvement in generating 3D faces and
face videos. Compared with the large-scale datasets like CelebA [47] and FFHQ [40] that
are widely used in 2D face image generation tasks, high-definition 3D face datasets are
highly scarce. This is because the 3D scanning equipment is more expensive and harder to
use than the cameras and mobile phones. In recent years, researchers have begun to study
3D generative models. For example, NeRF [52] builds 3D models based on multi-view 2D
images of the same object. StyleNeRF [21] and StyleSDF [60] combine StyleGAN and
3D generative models to recover 3D information from 2D face images. Although these 3D
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generation methods have made significant progress, the current 3D face model still lacks
a comprehensive pipeline of generation, inversion, and editing like 2D faces. Therefore, a
valuable research direction in the future is to directly reconstruct 3D structural information
from 2D real face images and edit them.
(2) From images to videos. On the other hand, in terms of video generation, the face-
swapping technology conditioned by a driving face video is relatively mature [83, 99,
104, 105], but it is still a critical challenge for the network to capture reasonable motion
information for unconditional dynamic face generation. Existing works [65, 79, 86] have
demonstrated the potential of generating dynamic face videos, but the performance is not
as good as face images. Future research may focus on combining dynamic face generation
with Transformers [92].
(3) New generative models. We have noticed that the diffusion model has emerged since
2020. The basic idea of the diffusion model is to learn a parameterized Markov chain that
iteratively transits Gaussian noise to a plausible image. In Fig. 3.1, we show an example of
an artistic portrait generated by stable diffusion [72]. The excellent performance of diffusion
models has attracted the interest of researchers, being vibrantly discussed in social media
and art communities. We anticipate that the next generation of generative models with new
formulations will open up significant opportunities in the next decade.
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4Face Detection

Shiqi Yu,Yuantao Feng,Hanyang Peng,Yan-ran Li, and Jianguo Zhang

4.1 Introduction

Face detection is the first step of most face-related applications such as face recognition, face
tracking, facial expression recognition, facial landmarks detection, and so on. Face detection
is to detect human faces from images and return the spatial locations of faces via bounding
boxes as shown in Fig. 4.1. Starting with the Viola–Jones (V–J) detector [53] in 2001, the
solution to face detection has been significantly improved from handcrafting features such
as Haar-like features [53], to end-to-end convolutional neural networks (CNNs) for better
feature extraction. The face detection algorithms have been much faster and more accurate
than those of 10 years ago.
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(a) Simple case (b) Scale (c)Atypical pose

(d) Heavy occlusion (e) exaggerate expressio n (f)Extreme illumination

Fig. 4.1 Examples of face detection from WIDER Face [62]. A simple case (a) where there is only
one clear frontal face. Common variations are in scale (b), pose (c), occlusion (d), expression (e),
and illumination (f). Red boxes indicate faces in difficult conditions

Before deep learning was employed for face detection, the cascaded AdaBoost classifier
was the dominant method for face detection. Some algorithmswere specifically designed for
face detection by using some kinds of features, such as Haar-like features [53], SURF [26]
andmulti-blockLBP [67]. In recent years, deep learning has been proven to bemore powerful
for feature extraction and helps achieve impressive object detection accuracy. Numerous
object detection deep models have been designed for generic object detection which is much
more challenging than face detection. Therefore, manymodels for face detection are adopted
from or inspired by models for generic object detection. We can train a deep face detector
directly using Faster R-CNN [45], YOLO [44] or SSD [30], and much better detection
results can be obtained than traditional cascaded classifiers. Some similar works can be
found, such as Face R-CNN [55] and Face R-FCN [57] which are modified and improved
based on Faster R-CNN, R-FCN [5], respectively. Additionally, some other detectors, such
as MTCNN [66], HR [20], and SSH [41], are originally designed for face detection. Some
techniques in generic object detection have also been adapted into face detection, such as
the multi-scale mechanism from SSD, the feature enhancement from FPN [27], and the
focal loss from RetineNet [28] according to the unique pattern of human faces for face
detection. These techniques lead to the proposal of various outstanding face detectors such
as S3FD [69], PyramidBox [51], SRN [4], DSFD [25], and RetinaFace [9].

Face detection is sometimes considered a solved problem because of the high aver-
age precision (AP) achieved on many face detection datasets such as PASCAL Face [59],
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Fig. 4.2 The best APs on the easy, medium, and hard subsets of WIDER Face [62] test set in recent
years

AFW [77], and FDDB [21], has reached or exceeded 0.990 since 2017.1 On themost popular
and challenging WIDER Face dataset [62], the AP has reached 0.921 even on the hard test
set (Fig. 4.2).

If we look slightly deeper into the implementation of some recent models, we can find
that multiple scaling is heavily used in the evaluations on the WIDER face benchmark. If
we resize the input image with many different scales, such as 1/4, 1/2, 1, 3/2, 2, 4, and more,
and feed all those resized images into a detector, the combined results will have a better AP.
It is achieved by assembling and suppressing (using non-maximum suppression or NMS)
the multi-scale outputs and is independent of the backbone of the underlying face detector.
We listed the scales used by some models in Table 4.1. None of them tested an image using
only one scale. It is difficult for users to know by which the improvement is achieved, a
better backbone technology, or the follow-up computational-intensive multi-scale ensemble
strategy.

We do expect a perfect face detector that is robust and accurate even for some faces
in extremely difficult conditions while being extremely fast with low computational cost.
However, we all know the no free lunch theorem. Therefore, in this chapter, we introduce
the recent deep learning-based face detectors and evaluate them in terms of both accuracy
and computational cost.

The rest of the chapter is organized as follows. Some key challenges in face detection are
summarized in Sect. 4.2. In Sect. 4.3, we provide a roadmap to describe the development
of deep learning-based face detection with detailed reviews. In Sect. 4.4, we review several
fundamental subproblems including backbones, context modeling, the handling of face
scale variations, and proposal generation. Popular datasets for face detection and state-of-

1 State-of-the-art APs can be found in the official result pages of the datasets, and https://
paperswithcode.com/task/face-detection which also collects results from published papers.

https://paperswithcode.com/task/face-detection
https://paperswithcode.com/task/face-detection
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Table 4.1 The different strategies for better APs by some state-of-the-art face detectors. “0.25x”
denotes shrinking the width and height by 0.25, and others follow. Specifically, “Sx” and “Ex” are
shrinking and enlarging images accordingly, while “Fx” is enlarging the image into a fixed size. Test
image sizes stand for re-scaling the smaller side of the image to the given value, and the other side
follows the same ratio

Method Test image scales

HR, 2017 [20] 0.25x, 0.5x, 1x, 2x

S3FD, 2017 [69] 0.5x, 1x, Sx, Ex

SRN, 2019 [4] 0.5x, 1x, 1.5x, 2.25x, Fx

DSFD, 2019 [25] 0.5x, 1x, 1.25x, 1.75x 2.25x, Sx, Ex

CSP, 2019 [31] 0.25x, 0.5x, 0.75x, 1x, 1.25x, 1.5x, 1.75x, 2x

Method Test image sizes

SSH, 2017 [41] 500, 800, 1200, 1600

SFA, 2019 [36] 500, 600, 700, 800, 900, 1000, 1100, 1200, 1600

SHF, 2020 [70] 100, 300, 600, 1000, 1400

RetinaFace, 2020 [9] 500, 800, 1100, 1400, 1700

the-art performances are presented in Sect. 4.5. Section 4.6 reveals the relation between
computational cost and AP by conducting extensive experiments on several open-source
one-stage face detectors. In addition, speed-focusing face detectors collected from Github
are reviewed in Sect. 4.7. Finally, we conclude the chapter with a discussion on future
challenges in face detection in Sect. 4.8.

4.2 The Challenges in Face Detection

Most face-related applications need clear frontal faces. Detecting a clear frontal face is a
relatively easy task. Some may argue that some faces are useless for the next step such as
face recognition if the faces are tiny and with occlusions. But it is not. Effectively detecting
any faces in extremely difficult conditions can greatly improve the perception capability of
a computer, and it is still a challenging task. If a face can be detected and evaluated as a
bad-quality sample, the subject can be suggested to be closer to the camera, or the camera
can adjust automatically for a better image. Face detection is still a problem far from being
well solved.

Accuracy-related challenges are from facial appearance and imaging conditions. In real-
world scenes, there are many different kinds of facial appearances, varying in different skin
color, makeup, expression, wearing glasses or facial masks, and so on. In unconstrained
environments, imaging a face can be impacted by various lighting, viewing angles and
distances, backgrounds, and weather conditions. The face images will vary in illumination,
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pose, scale, occlusion, blur, and distortion. Some face samples in difficult conditions can
be found in Fig. 4.1. There are several datasets and competitions featuring face detection
in unconstrained conditions, such as FDDB [21], WIDER Face [62] and WIDER Face
Challenge 2019.2 More than 45% of faces are smaller than 20 × 20 pixels in WIDER. In
most face-related applications, we seldom need small faces whose sizes are less than 20.
However, if we can detect small or even tiny faces, we can resize the original large images to
smaller ones and send them to a face detector. Then, the computational cost can be greatly
reduced since we only need to detect faces in smaller images. Therefore, better accuracy
sometimes also means higher efficiency.

Masked face detection is becoming more important since people are wearing and will
continuously wear masks to prevent COVID-19 in the next few years. Face-related appli-
cations did not consider this situation in the past. Wearing masks will reduce the detection
accuracy obviously. Some masks are even printed with logos or cartoon figures. All of those
can disrupt face detection. If a face is with a mask and sunglasses at the same time, face
detection will be evenmore difficult. Therefore, in the next few years, masked face detection
should be explored and studied.

Efficiency-related challenges are brought by the great demands on edge devices. Since
the increasing demands on edge devices, such as smartphones and intelligentCCTVcameras,
a massive amount of data is generated per day. We frequently take selfies, photos of others,
long video meetings, etc. Modern CCTV cameras record 1080P videos constantly at 30
FPS. This results in great demand for facial data analysis, and the data is large. In contrast,
edge devices have limited computational capability, storage, and battery to run advanced
deep learning-based algorithms. In this case, efficient face detection is essential for face
applications on edge devices.

4.3 Popular Face Detection Frameworks

Before deep learning was used for face detection, cascaded AdaBoost-based classifiers [53]
were the most popular classifiers for face detection. The features used in AdaBoost were
designed specifically for faces, not generic objects. For example, the Haar-like [53] feature
can describe facial patterns of eyes, mouth, and others. In recent years, facial features can
be automatically learned from data via deep learning techniques. Therefore, many deep
learning-based face detectors are inspired by modern network architectures designed for
object detection. Following the popular manner of organizing object detection frameworks,
we organize deep learning-based face detectors into three main categories:

• Multi-stage face detection frameworks. They are inspired by cascaded classifiers in face
detection and are an early exploration of applying deep learning techniques to face detec-
tion.

2 https://competitions.codalab.org/competitions/20146.

https://competitions.codalab.org/competitions/20146
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• Two-stage face detection frameworks. The first stage generates some proposals for face
regions, and the proposals are confirmed in the second stage. The efficiency is better than
multi-stage ones most of the time.

• One-stage face detection frameworks. Feature extraction and proposal generation are
performed in a single unified network. These frameworks can be further categorized into
anchor-based methods and anchor-free methods.

To show how deep learning-based face detection evolves, milestone face detectors and
some important object detectors are plotted in Fig. 4.3. The two-stage and multi-stage face
detectors are on the top branch, and the single-stage ones are on the bottom branch. The
generic object detectors are in the middle branch and in blue. A More detailed introduction
to those detectors is provided in the following subsections.

4.3.1 Multi-stage andTwo-Stage Face Detectors

In the early era when deep learning techniques entered face detection, face detectors were
designed to have multiple stages, also known as the cascade structure which has been widely
used in most early face detectors. With the remarkable breakthrough brought by Faster
R-CNN [45], some researchers turned to improving Faster R-CNN based on face data.

In the cascade structure, features are usually extracted and refined one or multiple times
before being fed into classifiers and regressors, so as to reject most of the sliding windows

AlexNet
(A. Krizhevsky et al.)
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(K. Simonyan et al.)

SSD
(W. Liu et al.)

R-FCN
(J. Dai et al.)

FPN
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Fig. 4.3 Timeline of milestone face detectors [4, 9, 20, 24, 25, 31, 33, 34, 41, 42, 51, 57, 60, 66,
69, 74, 75], and remarkable works for object recognition [15, 47] and object detection [5, 23, 27, 28,
30, 45] (marked as blue, attached to the middle branch). The top branch is for two/multi-stage face
detectors, and the bottom branch is for one-stage ones
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Fig. 4.4 Diagrams of three multi/two-stage face detectors [24, 66, 74]. Most others share similar
architectures of these three

to improve efficiency. As shown on the result page3 of FDDB [21], Li et al. made an early
attempt and proposed their CNN-based face detector, named CascadedCNN [24]. Cas-
cadeCNN consists of 3 stages of CNNs, as shown in Fig. 4.4. Sliding windows are firstly
designed to 12 × 12 pixels and fed into the shallow 12-net to reduce candidate windows
by 90%. The remaining windows are then processed by the 12-calibration-net to refine the
size for face localization. Retained windows are then resized to 24 × 24 as the input for the
combination of 24-net and 24-calibration-net, and so on for the next CNNs combination.
CascadeCNN achieved state-of-the-art performance on AFW [77] and FDDB [21] while
reaching a compelling speed of 14 FPS for the typical 640 × 480 VGA images on a 2.0
GHz CPU. Another attempt at cascaded CNNs for face detection isMTCNN [66] proposed
by Zhang et al. MTCNN is composed of three subnetworks, which are P-Net for obtain-
ing candidate facial windows, R-Net for rejecting false candidates and refining remaining
candidates, and O-Net for producing the final output with both face bounding boxes and
landmarks in a multi-task manner. P-Net is a shallow fully convolutional network with six
CONV layers, which can take images of any size as input. MTCNN was a great success with
large and state-of-the-art advantages on WIDER Face, FDDB, and AFW while reaching 16
FPS on a 2.6 GHz CPU.

In the two-stage network architectures, a region proposal network (RPN) [45] is required
to generate object proposals. RPN can be considered as a straightforward classification
CNN, which generates proposals based on the preset anchors on CNN features, filters out
non-object regions, and refines object proposals. However, as the CNNs shrink the image to

3 http://vis-www.cs.umass.edu/fddb/results.html.

http://vis-www.cs.umass.edu/fddb/results.html
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extract features, the corresponding output features for tiny faces can be less than 1 pixel in
the feature maps, making it insufficient to encode rich information. To address this problem,
Zhu et al. proposed CMS-RCNN [74], which is equipped with a contextual multi-scale
design for both RPN and final detection. As shown in Fig. 4.4, multi-scale features from
conv3, conv4 and conv5 are concatenated by shrinking them into the same shape with conv5
as the input for RPN, so as to collect more information for tiny faces and also improve the
localization capability from low-level layers. CMS-RCNN achieved an AP of 0.899, 0.874,
and 0.624 on the easy, medium, and hard sets of WIDER Face dataset, respectively, and
outperforms MTCNN by 0.051 (Easy), 0.049 (Medium), and 0.016 (Hard).

In addition to CMS-RCNN, there are some other improvements based on Faster
R-CNN. Bootstrapping Faster R-CNN [54] builds a training dataset by iteratively adding
false positives from a model’s output to optimize Faster R-CNN. Face R-CNN [55] adopts
the same architecture as Faster R-CNN with center loss, online hard example mining, and
multi-scale training strategies. FDNet [65] exploits multi-scale training and testing and
a vote-based NMS strategy on top of Faster R-CNN with a light-head design. Position-
sensitive average pooling was proposed in Face R-FCN [57] to assign different weights
to different parts of the face based on R-FCN [5]. With the improvements considering the
special patterns of face data, those methods achieved better performance than their original
version on the same WIDER Face dataset.

Whether it is the cascaded multi-stage or two-stage network design, its computation is
heavily dependent on the number of faces in the image, the increase in which also increases
proposals passed to the next stage in the interior of the network. Notably, the multi-scale
test metric, which usually enlarges the images multiple times to make tiny faces detectable,
can dramatically increase the computational cost on this basis. Considering that the number
of faces in the image from the actual scene varies from one face in a selfie to many faces
in a large group photo, the robustness of cascade or two-stage networks in terms of runtime
may be not good.

4.3.2 One-Stage Face Detectors

In real-time face-related applications, face detection must be in real time. If the system
is deployed on edge devices, the computing capacity is low. In those kinds of situations,
one-stage face detectors may be more suitable than others since their process time is stable
regardless of the number of faces in an image. Different from the multi-stage or two-stage
detectors, the one-stage face detectors perform feature extraction, proposal generation, and
face detection in a single and unified neural network. The runtime is independent of the num-
ber of faces. Dense anchors are designed to replace proposals in two-stage detectors [41].
Starting from CornerNet [23], many works use the anchor-free mechanism in their frame-
works.
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4.3.2.1 Anchor-Based Face Detectors
HR [20] proposed by Hu et al. is one of the first to perform anchor-based face detection
in a unified convolutional neural network. The backbone of HR is ResNet-101 [15] with
layers truncated after conv4_5. Early feature fusion on layers conv3_4 and conv4_5
is performed to encode context since high-resolution features are beneficial for small face
detection. Through experiments on faces clustered into 25 scales, 25 anchors are defined
for 2X, 1X, and .5X inputs, to achieve the best performance of three input scales. HR
outperformed CMS-RCNN [74] by 0.199 on theWIDER Face validation hard set, and more
importantly, the run-time of HR is independent of the number of faces in the image, while
CMS-RCNN’s linearly scale up with the number of faces.

Different from HR, SSH [41] attempts to detect faces at different scales on different
levels of features, as shown in Fig. 4.5. Taking VGG-16 [47] as the backbone, SSH detects
faces on the enhanced features from conv4_3, conv5_3, and pool5 for small, medium,
and large faces, respectively. SSH introduces a module (SSH module) that greatly enriches
receptive fields to better model the context of faces. The SSH module is widely adopted by
later works [9, 25, 34, 51], which turns out to be efficient for performance boosting.

Since S3FD [69], many one-stage face detectors [4, 9, 25, 31, 33, 34, 51, 75] fully utilize
multi-scale features attempting to achieve scale-invariant face detection. S3FD extends the
headless VGG-16 [47] with more convolutional layers, whose stride gradually doubles from
4 to 128 pixels, so as to cover a larger range of face scales. PyramidBox [51] adopts the
same backbone as S3FD, integrates FPN [27] to fuse adjacent-level features for semantic
enhancement, and improves the SSH module with wider and deeper convolutional layers
inspired by Inception-ResNet [49] and DSSD [12]. DSFD [25] also inherits the backbone
from S3FD, but enhances the multi-scale features by the Feature Enhance Module (FEM),
so that detection can be made on two shots—one from non-enhanced multi-scale features,
and the other from the enhanced features. The same scale features from the second shot
not only have larger RFs than those from the first shot but also have smaller RFs than the
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next-level features from the first shot, indicating that the face scales are split more refined
across these multi-scale detection layers. Similarly, SRN [4] has a dual-shot network but is
trained differently on multi-scale features: low-level features need two-step classification to
refine since they have higher resolution and contribute the vast majority of anchors and also
negative samples; additionally, high-level features have a lower resolution which is worth
two-step regression using the Cascade R-CNN [2] to have more accurate bounding boxes.

There are also some significant anchor-basedmethodsusing theFPN[27] as the backbone.
RetinaFace adds one more pyramid layer on top of the FPN and replaces CONV layers with
the deformable convolution network (DCN) [6, 76] within FPN’s lateral connections and
contextmodule. RetinaFacemodels a face in threeways: a 3Dmesh (1k points), a 5-landmark
mask (5 points), and a bounding box (2 points). Cascade regression [2] is employed with
multi-task loss in RetinaFace to achieve better localization. Instead of using the handcrafting
structures, Liu et al. proposed BFBox, which explores face-appropriate FPN architectures
using the successful Neural Architecture Search (NAS). Liu decouples FPN as the backbone
and FPN connections, the former of which can be replaced by VGG [47], ResNet [15] or
the backbone from NAS, and the latter of which can be top-down, bottom-up or cross-level
fusion from NAS.

4.3.2.2 Anchor-Free Face Detectors
Since the proposal of CornerNet [23] back in 2018, which directly predicts the top left
and bottom right points of bounding boxes instead of relying on prior anchors, many explo-
rations [52, 63, 71, 72] have been made to remodel object detection more semantically using
the anchor-free design.CSPmodels a face bounding box as a center point and the scale of the
box as shown in Fig. 4.5. CSP takes multi-scale features from the modified ResNet-50 [15]
and concatenates them to take the advantage of rich global and local information for detec-
tion heads using transpose convolution layers. In particular, the anchor-free detection head
can also be an enhancement module for anchor-based heads. ProgressFace [75] appends an
anchor-free module to provide more positive anchors for the highest resolution feature maps
in FPN, so as to reduce the imbalance of positive and negative samples for small faces.

4.3.2.3 Summary of One-Stage Frameworks
One-stage frameworks are popular in face detection in recent years for the following three
reasons. (a) The runtime of one-stage face detectors is independent of the number of faces
in an image by design. Therefore, it enhances the robustness of runtime efficiency. (b) It
is computationally efficient and straightforward for one-stage detectors to reach near-scale
invariance by contextual modeling and multi-scale feature sampling. (c) Face detection is a
relatively less complex task than general object detection. This means that innovations and
advanced network designs in object detection can be quickly adjusted to face detection by
considering the special pattern of faces.
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4.4 Feature Extraction for Face Detection

The key idea of face detection has never changed whether it is in the traditional era or in
the deep learning era. It tries to find the common patterns of all faces in the training set.
In the traditional era, many of the handcrafted features, such as SIFT [35], Haar [53], and
HOG [7], are employed to extract local features from the image, which are aggregated by
approaches such as AdaBoost for a higher level representation of faces.

Different from traditional methods, which require rich prior knowledge to design hand-
crafted features, deep convolutional neural networks can directly learn features from face
images. A deep learning-based face detection model can be considered as two parts, a CNN
backbone and detection branches. Starting from some popular CNN backbones, the feature
extraction methods that can handle face scale invariance are introduced as well as several
strategies to generate proposals for face detection.

4.4.1 Popular CNN Backbones

In most deep face detectors, there is a CNN backbone for feature extraction. Some popular
backbone networks are listed in Table 4.2. They are VGG-16 from the VGGNet [47] series,
ResNet-50/101/152 from the ResNet [15] series, and MobileNet [18]. The models are pow-
erful and can achieve good accuracy in face detection, but they are a little heavy since they
were not designed directly for face detection.

Some early attempts at deep learning-based face detection are cascaded structures, and
the above CNN architectures are not used. Even some simple structured CNN is compu-
tationally heavier than AdaBoost, cascaded CNN is even heavier. With breakthroughs in
object detection, some of the techniques have been borrowed and applied to face detection.

Table 4.2 CNN backbones are commonly used by some deep learning-based face detectors. FC
layers of these CNNs are ignored when calculating “#CONV Layers”, “#Params”, and “FLOPs”.
The input size for calculating “FLOPs” is 224 × 224. The calculation of FLOPs is discussed in
Sect. 4.6. “Top-1 Error” refers to the performance on the ImangeNet [8] validation set. Note that 9
of the 20 CONV layers in MobileNet [18] are depth-wise

CNN
backbones

#CONV
layers

#Params
(×106)

FLOPs
(×109)

Top-1
error (%)

VGG-16 13 14.36 30.72 28.07

ResNet-50 52 23.45 8.25 22.85

ResNet-101 136 42.39 15.72 21.75

ResNet-152 188 56.87 23.19 21.43

MobileNet 20 3.22 1.28 29.40
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VGG-16 [47] has 13 CONV layers, which is the first choice for the baseline backbones for
many face detectors, such as SSH [41], S3FD [69], and PyramidBox [51]. Performance
improvements can easily be obtained by simply changing the backbone from VGG-16 to
ResNet-50/101/152 [15], as shown in [25]. Since the state of the arts have achieved an AP
of more than 0.900 even on the WIDER Face hard set, it is a straightforward idea to use a
deeper and wider backbone for higher APs [25, 75, 78], such as ResNet-152 and ResNets
with FPN [27] connections. Liu et al. employed Neural Architecture Search (NAS) to search
face-appropriate backbones and FPN connections.

One inexpensive choice is ResNet-50 listed in Table 4.2. It has fewer parameters and
fewer FLOPs while achieving very similar performance compared to some deeper ones.
Another choice to reach a real-time speed is to change the backbone to MobileNet [18] and
its variants, which have similar performance to VGG-16 but one order of magnitude less in
the number of parameters and FLOPs.

4.4.2 Toward Face Scale Invariance

One of the major challenges for face detection is the large span of face scales. As statistics
shown in Fig. 4.6, there are 157,025 and 39,123 face bounding boxes in the train set and the
validation set, respectively. Both sets have more than 45% of face bounding boxes smaller
than 16 × 16, and a non-negligible 1% larger than 256 × 256. We also present the visual
differences among scales in Fig. 4.7. It is challenging even for humans to tell whether the
image of size 16 × 16 contains a face. In the following, we describe the mechanism of face
detectors toward face scale invariance even with tiny faces.

Most modern face detectors are anchor-based. Anchors are predefined boxes of different
scales and aspect ratios attached to each pixel in the feature maps. The anchors serve as the

Fig. 4.6 The distribution of face scales on WIDER Face [62] dataset
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Fig.4.7 A face in different scales. It is difficult to recognize faces in the images of sizes 4 × 4, 8 × 8

proposals to match with the ground truth faces. More details about anchors are provided
in Sect. 4.4.3. As described in [69], since the predefined anchor scales are discrete while
the face scales in the wild change continuously, the outer faces whose scales are distributed
away from anchor scales cannot match enough anchors. It will result in a low recall rate.
A simple solution for a trained face detector is to perform a multi-scale test on an image
pyramid, which is built by progressively resizing the original image. It is equal to re-scale
faces and hopefully brings outer faces back into the detectable range of scales. This solution
does not require retraining the detector. But it may come with a sharp increase in redundant
computation since there is no certain answer to how deep the pyramid we should build to
match with the certain extent of scale invariance of a trained CNN.

Another solution to face scale invariance is to make full use of the feature maps produced
by CNNs. One can easily observe that the layers of standard CNN backbones gradually
decrease in size. The subsampling of these layers naturally builds up a pyramidwith different
strides and receptive fields (RFs). It produces multi-scale feature maps. In general, high-
level feature maps produced by later layers with large RFs are encoded with strong semantic
information and lead to their robustness to variations such as illumination, rotation, and
occlusion. Low-level feature maps produced by early layers with small RFs are less sensitive
to semantics but have high resolution and rich details, which are beneficial for localization.
To take both advantages, a number of methods are proposed, which can be categorized into
modeling context, detecting on a feature pyramid, and predicting face scales.
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4.4.2.1 Modeling Context
Additional context is essential for detecting faces, especially for detecting small ones.
HR [20] shows that context modeling by fusing feature maps of different scales can dra-
matically improve the accuracy of detecting small faces. Following a similar fusion strategy
as HR, SHF [70] detects in three different dilated CONV branches, aiming to enlarge RF
without too much increase in computation. CMS-RCNN [74] downsamples feature maps of
strides 4 and 8 to concatenate with those of stride 16 to improve the capability of the RPN
to produce proposals for faces at different scales. SSH [41] exploits an approach similar to
Inception [50], which concatenates the output from three CONV branches that have 3 × 3,
5 × 5 and 7 × 7 filters, respectively. PyramidBox [51] first adopts an FPN [27] module to
build up the context and is further enhanced by deeper and wider SSH modules. DSFD [25]
improves the SSH module by replacing CONV layers with dilated CONV layers. CSP [31]
upsamples feature maps of strides 8 and 16 to concatenate with those of stride 4, which is
fed to an FCN to produce center, scale, and offset heatmaps. The fusion of feature maps
encodes rich semantics from high-level feature maps with rich geometric information from
low-level feature maps, based on which the detectors can improve their capability of local-
ization and classification toward face scale invariance. Meanwhile, the fusion of feature
maps also introduces more layers, such as CONV and POOL to adjust scales and channels,
which creates additional computational overhead.

4.4.2.2 Detecting on a Feature Pyramid
Inspired by SSD [30], a majority of recent approaches, such as [4, 9, 25, 41, 51, 69], detect
in multiple feature maps of different scales, respectively, and combine detection results. It
is considered to be an effective method for weighing between speed and accuracy. SSD [30]
puts default boxes on each pixel of the feature maps from 6 detection layers that have
strides of 8, 16, 32, 64, and 128. Sharing a similar CNN backbone with SSD, [51, 69] detect
on a wider range of layers, which have strides gradually doubling from 4 to 128 pixels.
SRN [4] and DSFD [25] introduce the two-stream mechanism, which detects on both the
detection layers from the backbone and extra layers applied on the detection layers for
feature enhancement. Different from subsampling on more layers, [9, 36, 41] detects only
on the last three level feature maps, which are enhanced by their context modeling methods.
By detecting on a feature pyramid, detection layers are implicitly trained to be sensitive to
different scales, while it also leads to an increase in model size and redundant computation,
since the dense sampling may cause some duplicate results from adjacent-level layers.

4.4.2.3 Predicting Face Scales
To eliminate the redundancy from pyramids, several approaches [14, 32, 48] predict the
face scales before making a detection. SAFD [14] first generates a global face scale his-
togram from the input image by the Scale Proposal Network (SPN), which is trained with
image-level ground truth histogram vectors and without face location information. A sparse



4 Face Detection 117

image pyramid is built according to the output histogram, so as to have faces rescaled to
the detectable range of the later single-scale RPN. Similarly, RSA [32] detects on a fea-
ture pyramid without unnecessary scales, which is built by using the scale histogram to a
sequential ResNet [15] blocks that can downsample feature maps recursively. S2AP [48]
predicts not only face scales but also face locations by a shallow ResNet18 [15] with scale
attention and spatial attention attached, named S2AP. S2AP generates a 60-channel feature
map, meaning face scales are mapped to 60 bins, each of which is a spatial heatmap that
has a high response to its responsible face scale. With the 60-channel feature maps, it is
possible to decrease the unnecessary computation with the low-response channels and the
low-response spatial areas by a masked convolution.

4.4.3 Proposal Generation

Faces in the wild can be of any possible locations and scales in the image. The general
pipeline for most of the early successful face detectors is to first generate proposals in a
sliding-window manner, then extract features from the windows using handcrafted descrip-
tors [17, 26, 53, 77] or CNNs [24, 66], and finally apply face classifiers. However, inspired
by RPN [45] and SSD [30], modern anchor-based face detectors generate proposals by
applying k anchor boxes on each pixel of the extracted CNN features. Specifically, three
scales and three aspect ratios are used in Faster R-CNN [45], yielding k = 9 anchors on
each pixel of the feature maps. Moreover, the detection layer takes the same feature maps as
input, yielding 4k outputs encoding the coordinates for k anchor boxes from the regressor
and 2k outputs for face scores from the classifier.

Considering that most of the face boxes are near square, modern face detectors tend to
set the aspect ratio of anchors to 1, while the scales are varied. HR [20] defines 25 scales
so as to match the cluster results on the WIDER Face [62] training set. S3FD assigns the
anchor scale of 4 times the stride of the current layer to keep anchor sizes smaller than
effective receptive fields [37] and ensure the same density of different scale anchors on the
image. PyramidBox [51] introduces PyramidAnchors, which generates a group of anchors
with larger regions corresponding to a face, such as head and body boxes, to have more
context to help detect faces. In [73], extra shifted anchors are added to increase the anchor
sample density and significantly increase the average IoU between anchors and small faces.
GroupSampling [39] assigns anchors of different scales only on the bottom pyramid layer
of FPN [27], but it groups all training samples according to the anchor scales, and randomly
samples from groups to ensure the positive and negative sample ratios between groups are
the same.
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4.5 Datasets and Evaluation

To evaluate different face detection algorithms, datasets are needed. There have been sev-
eral public datasets, and they are FDDB [21], AFW [77], PASCAL Face [59], MALF [61],
WIDER Face [62], MAFA [13], 4K-Face [56], UFDD [40], and DARK Face [3]. Those
datasets consist of colored images from real-life scenes. Different datasets may utilize dif-
ferent evaluation criteria. In Sect. 4.5.1, we present an overview of different datasets and
cover some statistics such as the number of images and faces, the source of images, the rules
of labeling, and challenges brought by the dataset. A detailed analysis of the face detec-
tion evaluation criterion is also included in Sect. 4.5.2. Detection results on the datasets are
provided and analyzed in Sect. 4.5.3.

4.5.1 Datasets

Some essential statistics of currently accessible datasets are summarized in Table 4.3 includ-
ing the total number of images and faces, faces per image, how the datawas split into different
sets, etc. More details are introduced in the following part.

FDDB4 [21] is short for Face Detection Dataset and Benchmark, which has been one
of the most popular datasets for face detector evaluation since its publication in 2010. The
images of FDDB were collected from Yahoo! News, 2,845 of which were selected after
filtering out duplicate data. Faces were excluded with these factors, (a) height or width less
than 20 pixels, (b) the two eyes being non-visible, (c) the angle between the nose and the ray
from the camera to the head being less than 90 degrees, (d) failure estimation on position,
size or orientation of faces by a human. This led to 5,171 faces left, which were annotated by
drawing elliptical face regions covering from the forehead to the chin vertically, and the left
cheek to the right cheek horizontally. FDDB helped advance unconstrained face detection
in terms of the robustness of expression, pose, scale, and occlusion. However, its images
can be heavily biased toward celebrity faces since they were collected from the news. It is
also worth noting that although the elliptical style of the face label adopted by FDDB is
closer to human cognition, it is not adopted by later datasets and deep learning-based face
detectors, which favor the bounding box style with a relatively easier method for defining
positive/negative samples by calculating the Intersection over Union (IoU).

Zhu et al. built an annotated faces in-the-wild (AFW5) dataset [77] by randomly sampling
images with at least one large face from Flickr. 468 faces were annotated from 205 images,
each of which is labeled with a bounding box and 6 landmarks. PASCAL Face6 [59] was
contructed by selecting 851 images from the PASCAL VOC [10] test set with 1,335 faces
annotated. Since the two datasets were built to help evaluate the face detectors proposed

4 http://vis-www.cs.umass.edu/fddb/.
5 http://www.cs.cmu.edu/~deva/papers/face/index.html.
6 http://host.robots.ox.ac.uk/pascal/VOC/.

http://vis-www.cs.umass.edu/fddb/
http://www.cs.cmu.edu/~deva/papers/face/index.html
http://host.robots.ox.ac.uk/pascal/VOC/
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by [77] and [10], they only contain a few hundred images, resulting in limited variations in
face appearance and background.

Yang et al. created the Multi-Attribute Labeled Faces [61] (MALF7) dataset for fine-
grained evaluation on face detection in the wild. The MALF dataset contains 5,250 images
from Flickr and Baidu Search with 11,931 faces labeled, which is an evidently larger dataset
than FDDB, AFW, and PASCAL Face. The faces in MALF were annotated by drawing
axis-aligned square bounding boxes, attempting to contain a complete face with the nose in
the center of the bounding box. This may introduce noise for training face detectors since a
square bounding box containing 90-degree side faces can have over half of its content being
cluttered background. In addition to labeling faces, some attributes were also annotated,
such as gender, pose, and occlusion.

In 2016,WIDER Face8 [62] was released, which has been the most popular and widely
used face detection benchmark. The images in WIDER Face were collected from popular
search engines for predefined event categories following LSCOM [43] and examined manu-
ally to filter out similar images and images without faces, resulting in 32,203 images in total
for 61 event categories, which were split into 3 subsets for training, validation testing set. To
keep large variations in scale, occlusion, and pose, the annotation was performed following
two main policies: (a) a bounding box should tightly contain the forehead, chin, and cheek
and is drawn for each recognizable face and (b) an estimated bounding box should be drawn
for an occluded face, producing 393,703 annotated faces in total. The number of faces per
image reaches 12.2 and 50% of the faces are of height between 10 and 50 pixels. WIDER
Face outnumbers other datasets in Table 4.3 by a large margin. It means WIDER Face pays
never-seen-before attention to small face detection by providing a large number of images
with the densest small faces for training, validation, and testing. Furthermore, the authors of
WIDER Face defined “easy”, “medium”, and “hard” levels for the validation and test sets
based on the detection rate of EdgeBox [79]. It offers a much more detailed and fine-grained
evaluation of face detectors. Hence, the WIDER Face dataset greatly advances the research
of CNN-based face detectors, especially the multi-scale CNN designs and utilization of
context.

The last four datasets listed in Table 4.3 are less generic than those reviewed above and
focus on face detection in specified and different aspects. TheMAFA9 [13] dataset focuses
on masked face detection, containing 30,811 images with 39,485 masked faces labeled.
In addition to the location of eyes and masks, the orientation of the face, the occlusion
degree, and the mask type were also annotated for each face. The IJB series10 [22, 38, 58]
were collected for multiple tasks, including face detection, verification, identification, and
identity clustering. The IJB-C is the combination of IJB-A and IJB-B with some new face

7 http://www.cbsr.ia.ac.cn/faceevaluation/.
8 http://shuoyang1213.me/WIDERFACE/.
9 http://www.escience.cn/people/geshiming/mafa.html.
10 https://www.nist.gov/programs-projects/face-challenges.

http://www.cbsr.ia.ac.cn/faceevaluation/
http://shuoyang1213.me/WIDERFACE/
http://www.escience.cn/people/geshiming/mafa.html
https://www.nist.gov/programs-projects/face-challenges
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data. 4K-Face11 [56] was built for the evaluation of large face detection, and contains 5,102
4K-resolution images with 35,217 large faces (>512 pixels). UFDD12 [40] provides a test
set with 6,425 images and 10,897 faces in a variety of different weather conditions and
degradation such as lens impediments. DARK Face13 [3] concentrates on face detection in
low light conditions, and provides 6,000 low-light images for training dark face detector.
Since the images are captured in real-world nighttime scenes such as streets, each image in
DARK Face contains 7.3 faces on average which is relatively dense.

4.5.2 Accuracy Evaluation Criterion

There are mainly two accuracy evaluation criteria adopted by the datasets reviewed above,
one of which is the receiver operating characteristic (ROC) curve obtained by plotting
the true positive rate (TPR) against false positives such as those adopted by FDDB [21],
MALF [61], UCCS [1], and IJB [38], the other of which is the most popular evaluation
criterion from PASCAL VOC [10] by plotting the precision against recall while calculating
average precision (AP), such as those adopted by AFW [77], PASCAL Face [59], WIDER
Face [62], MAFA [13], 4K-Face [56], UFDD [40], DARK Face [3], and Wildest Face [64].
Since these two kinds of evaluation criterion are two different methods for revealing the
performance of detectors under the same calculation of the confusion matrix,14 we choose
the most popular evaluation criteria AP calculated from the precision-again-recall curve in
the paper.

To get a precision-again-recall curve, the confusion matrix, which is to define the true
positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) from the
detection and ground truths, should be firstly calculated. A true positive is a detection result
matched with a ground truth; otherwise, it is a false positive. The unmatched ground truths
are defined as false negatives. True negatives are not applied here since the background can
be a large part of the image. To definewhether two regions arematched or not, the commonly
used intersection over union (IoU), also known as the Jaccard overlap, is applied:

I oU = area(P) ∩ area(GT )

area(P) ∪ area(GT )
(4.1)

where P is the predicted region, and GT is the ground truth region. In a widely used setting,
the IoU threshold is set to 0.5, meaning if the IoU of a predicted region and a ground truth
region is greater than or equal to 0.5, the predicted region is marked as matched and thus a
true positive, otherwise it is a false positive.

11 https://github.com/Megvii-BaseDetection/4K-Face.
12 https://ufdd.info.
13 https://flyywh.github.io/CVPRW2019LowLight/.
14 https://en.wikipedia.org/wiki/Confusion_matrix.

https://github.com/Megvii-BaseDetection/4K-Face
https://ufdd.info
https://flyywh.github.io/CVPRW2019LowLight/
https://en.wikipedia.org/wiki/Confusion_matrix
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After determining true or false positives for each detection, the next step is to calculate
the precision and recall from the detection result list sorted by score in descending order to
plot the precision-against-recall curve. A granular confidence gap can be defined to sample
more precision and recall, but for a simple explanation, we define the gap as a detection
result. In nth sampling, we calculate the precision and recall from the top-n detection results:

Precisionn = T Pn
T Pn + FPn

(4.2)

Recalln = T Pn
T Pn + FNn

(4.3)

where T Pn , FPn and FNn are true positives, false positives, and false negatives from the
top-n results, respectively. Let us say we have 1,000 detection results; then, we have 1,000
pairs of (recalli , precisioni ) which are enough for plotting the curve.

We can compute the area under the precision-against-recall curve, which is AP, to repre-
sent the overall performance of a face detector. Under the single IoU threshold setting of 0.5
in WIDER Face evaluation, the top AP for the hard test subset of WIDER reached 0.924. In
the WIDER Face Challenge 2019 which uses the same data as the WIDER Face dataset but
evaluates face detectors in 10 IoU thresholds of 0.50:0.05:0.95, the top average AP reaches
0.5756.

4.5.3 Results on Accuracy

To understand the progress in recent years on face detection, the results of different datasets
are collected from their official homepages. Because of space limitations, only the results
from the two most popular datasets are listed. They are Fig. 4.8 for FDDB [21] and Fig. 4.9
for WIDER Face [62]. The FDDB results from 2004 to 2022 are listed. The current ROC
curves are much better than those in the past. This means that the detection accuracy is much
higher than in the past. The true positive rate is reaching 1.0. If you look into the samples
in FDDB, you can find there are some tiny and blurred faces in the ground truth data.
Sometimes, it is hard to decide whether they should be faces, even by humans. Therefore,
we can say that the current detectors achieve perfect accuracy on FDDB, and almost all
faces have been detected.

The WIDER face is newer, larger, and more challenging than FDDB. Most recent face
detectors have been tested with it. From Fig. 4.9, it can be found that the accuracy is also
very high even on the hard set. The improvement in mAP is not so obvious now. Similar to
FDDB, the mAP is almost saturated.

We must note that the current benchmarks, regardless of FDDB, WIDER, or others, only
evaluate the accuracy of detection and do not evaluate efficiency. If two detectors achieve
similar mAP, but the computational cost of one is just half of another, surely we will think



4 Face Detection 123

Fig. 4.8 The discrete ROC curves on FDDB for published methods from the result page of FDDB
http://vis-www.cs.umass.edu/fddb/results.html in December 2022

(a) WIDER Face Validation Set

(b) WIDER Face Test Set

Fig. 4.9 The results on the validation set and the test sets of WIDER Face. The figures are from the
WIDER face homepage http://shuoyang1213.me/WIDERFACE/ in December 2022

http://vis-www.cs.umass.edu/fddb/results.html
http://shuoyang1213.me/WIDERFACE/
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the detector with a half computational cost is better than another. Since the accuracy metric
is almost saturated, it is time to include efficiency in the evaluation.

4.6 Evaluation of the Computational Cost

Deep learning techniques have brought momentous improvement to face detection and can
detect faces more robustly in unconstrained environments. Most of the recent works train
and test their models on WIDER Face [62]. As shown in Fig. 4.2, we can find a large AP
leap from 2016 to 2017. However, the line has been flat since 2017. If we look deep into the
official releasing code of recent works, it can be easily found that newer models tend to use
larger scales and a wider range of scales as shown in Table 4.4. These test scales are usually
not mentioned in the papers but can lead to a non-negligible great increase in computational
cost just for slightly boosting the AP. We may ask a question: Is the AP improved by a better
algorithm or the usage of a wider range of test scales?

To evaluate different FLOPs of different face detectors, we implement FLOPs calculator
based on PyTorch, which accelerates the calculation of FLOPs by dismissing any calculation
related to the value of tensors, while only computing the sizes of tensors and FLOPs. This
calculator can also allow us to use the code of defining models from authors with minor
changes, which reduces the statistics workload. We released our source code at https://
github.com/fengyuentau/PyTorch-FLOPs. The details of the calculation of FLOPs can be
found in [11].

Table 4.4 Test scales used by open-source one-stage face detectors [4, 20, 25, 31, 41, 51, 69]. Note
that the double-checkmarks denote the image flipping vertically in addition to the image at the current
scale. SSH shrinks and enlarges images to several preset fixed sizes. Since S3FD, two adaptive test
scales are used to save GPU memory, one of which is “S” for adaptive shrinking, the other of which
is “E” for recursively adaptive enlarging. Scale “F” denotes enlarging the image to the preset largest
size

Model Publication Test scales (ratio)

0.25 0.5 0.75 1 1.25 1.5 1.75 2.0 2.25 S E F

HR CVPR’17 � � �
S3FD ICCV’17 � � � �
PyramidBox ECCV’18 � � � � � � � � �
SRN AAAI’19 � � � � � �
DSFD CVPR’19 � � � � � � � �
CSP CVPR’19 � � � � � � � � � � � � � � � � � �

Test scales (resize longer side)

100 300 500 600 700 800 900 1000 1100 1200 1400 1600

SSH ICCV’17 � � � �
SHF WACV’20 � � � � �
RetinaFace CVPR’20 � � � � �

https://github.com/fengyuentau/PyTorch-FLOPs
https://github.com/fengyuentau/PyTorch-FLOPs
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Fig. 4.10 The FLOPs versus multi-scale AP of WIDER Face validation set. Seven models from the
WIDER Face result page are listed, which are HR [20], SSH [41], S3FD [69], PyramidBox [51],
SRN [4], DSFD [25], and CSP [31]. (The TFLOPs for some speed-focusing face detectors are listed
in Table 4.9 because the TFLOPs are in a much smaller scale and cannot fit in this figure.)

4.6.1 FLOPsVersus AP inMulti-scale Test

The multi-scale test metric is to test a model with a set derived from an image at the original
and different scales (with an aspect ratio fixed). The detection results of different scales
are then merged and applied with the non-maximum suppression (NMS), so as to suppress
the overlapped bounding boxes and reduce false positives. Based on the training data and
scheme, a comfort zone of a model is determined, which is a range of scales of faces that can
be detected. The multi-scale test metric can improve a model’s AP by re-scaling out-of-zone
faces back into the comfort zone. However, since we cannot determine which of the faces
in the test set are out-of-zone, we have to apply re-scaling to every image in the set. It leads
to a multiplied increase in FLOPs per image.

Figures 4.10 and 4.11 show the multi-scale test AP and FLOPs of different models on the
validation and test sets of the WIDER Face dataset, respectively. We can find a clear trend
in the two figures. The FLOPs are increasing and the AP is improving in the sequence of
methods HR [20], SSH [41], S3FD [69], PyramidBox [51], SRN [4], and CSP [31]. There
are two methods that do not follow the trend. The first one is DSFD [25] which has more
than three times of FLOPs than SRN and CSP, but the AP is similar to those of SRN and
CSP. It means DSFD has unreasonably high computational costs. The second detector is
RetinaFace [9] which gained the best AP but the computational cost is much lower than
most other methods.

The two figures (Figs. 4.10 and 4.11) give us a clear view of different face detection
models and can guide us to understand different models deeper.
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Fig. 4.11 The FLOPs versus multi-scale test AP of WIDER Face test set. Seven models from the
WIDER Face result page are listed, which are HR [20], SSH [41], S3FD [69], PyramidBox [51],
SRN [4], DSFD [25], and CSP [31]

4.6.2 FLOPsVersus AP in Single-Scale Test

FLOPs can sharply increase in two ways: fundamentally increasing through introducing
more complex modules to the network, and through multi-scale testing. As Table 4.4 shows,
these models are all tested on various scales. However, why models are tested on these
various scales is seldom discussed. How much contribution on AP can one scale bring? Are
any scales not necessary?

Single-scale test on a single model. Table 4.5 shows the AP contribution of different
scales. The easy subset in WIDER Face [62] contains a large margin of faces of regular size
and some large faces, as a result of which shrinking images can help improve the AP. We
can observe that APhard gains the most from scales 1, 1.25 and 1, 1.5 , but not for scale
1, 1.75. Together with FLOPs, we can also observe an increase to the peak at scale 1, 1.25
and then a sharp drop for larger scales. The reason is that a threshold for the largest size of
images is set to avoid exceeding the GPU memory. This means that not all 1.75x resized
images were sent to a detector in the experiments.

Table 4.6 shows howmuch the AP and FLOPs will decrease if a model is tested without a
scale. As the missing scale becomes larger, the decrease of APeasy decreases. However, this
pattern does not apply to APmedium and APhard . The reason is that the enlarged images will
be skipped if their size goes beyond the preset limit, so as to avoid exceeding GPUmemory.
The larger the scale is, the fewer images will be re-scaled and tested. The drop of FLOPs
greatly decreases on a scale of 1.75. This is because the PyramidBox pretrained model is
mainly trained on scale 1.

The two Tables 4.5 and 4.6 imply that APeasy is the most sensitive to scales 0.25,
APmedium is the most sensitive to scale 0.25 and 1, and APhard is the most sensitive to
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Table 4.5 How different scales impact the AP of PyramidBox [51]. We use Scale= 1 as the baseline
and then try adding different scales one by one to test how AP is impacted by different scales

Test scales APeasy APmedium APhard TFLOPs

0.25 0.75 1 1.25 1.5 1.75

� 0.947 0.936 0.875 1.37

� � 0.954(+0.007) 0.939(+0.003) 0.872(−0.003) 1.45(+0.008)

� � 0.952(+0.005) 0.940(+0.004) 0.874(−0.001) 2.14(+0.77)

� � 0.948(+0.001) 0.938(+0.002) 0.884(+0.009) 2.72(+1.35)

� � 0.947(+0.000) 0.937(+0.001) 0.881(+0.006) 2.46(+1.09)

� � 0.946(−0.001) 0.936(+0.000) 0.874(−0.001) 1.63(+0.26)

Table 4.6 How much AP and FLOPs will decrease if a scale is removed. The detector PyramidBox
is employed

Test scales APeasy APmedium APhard TFLOPs

0.25 0.75 1 1.25 1.5 1.75

� � � � � � 0.957 0.945 0.886 4.94

� � � � � 0.949(−0.008) 0.940(−0.005) 0.884(−0.002) 4.85(−0.009)

� � � � � 0.954(−0.003) 0.942(−0.003) 0.885(−0.001) 4.16(−0.780)

� � � � � 0.955(−0.002) 0.940(−0.005) 0.850(−0.013) 3.58(−1.360)

� � � � � 0.957(+0.000) 0.944(−0.001) 0.880(−0.006) 3.58(−1.360)

� � � � � 0.958(+0.001) 0.945(+0.000) 0.884(−0.002) 3.84(−1.100)

� � � � � 0.957(+0.000) 0.945(+0.000) 0.886(+0.000) 4.67(−0.270)

scale 1. Note that this is highly related to the training scale. If the model is trained differ-
ently, the conclusion may change accordingly.

Single-scale test on multiple models.
Table 4.7 shows the AP and FLOPs of different models on scale 1. The large overall

leap is brought by PyramidBox [51], which mainly introduces the FPN [27] module to fuse
features from two adjacent scales and the context enhancing module from SSH [41]. The
computational cost of PyramidBox is 2X compared with SSH but less than 1/2 of DSFD.
However, the APs achieved by PyramidBox and DSFD are comparable.

If some benchmarks can evaluate FLOPs or some other similar efficiency measurements,
different face detectors can compare more fairly. It will also promote face detection research
to a better stage.
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Table 4.7 AP and FLOPs of different models on scale 1

Model APeasy APmedium APhard TFLOPs

RetinaFace 0.952 0.942 0.776 0.198

S3FD 0.924 0.906 0.816 0.571

CSP 0.948 0.942 0.774 0.571

SSH 0.925 0.909 0.731 0.587

PyramidBox 0.947 0.936 0.875 1.387

DSFD 0.949 0.936 0.845 1.532

Table 4.8 The results of some state-of-the-art open-source detectors tested with a 720P image con-
taining several faces at scale = 1.0 only. We average the FLOPs (AVG TFLOPs) and latency (AVG
latency) by running the test for each model 100 times. Note that “Post-Proc” denotes post-processing
stages, such as decoding from anchors, NMS, and so on. For this stage, we adopt the original pro-
cessing code of each model

Model AVG
TFLOPs

AVG latency (ms)

Forward
(GPU)

Forward
(CPU)

Post-Proc

RetinaFace 0.201 131.60 809.24 8.74 (GPU)

CSP 0.579 154.55 1955.20 27.74 (CPU)

SRN 1.138 204.77 2933.16 8.71 (GPU)

DSFD 1.559 219.63 3671.46 76.32 (CPU)

4.6.3 FLOPsVersus Latency

To compare the twomeasurements, we convert existing models to the Open Neural Network
Exchange (ONNX) format and run them using ONNX Runtime15 for fair comparisons.
Due to the different model formats, we only managed to convert RetinaFace [9], SRN [4],
DSFD [25], and CSP [31] to ONNX format. The results are listed in Table 4.8. Thosemodels
are evaluated using anNVIDIAQUADRORTX6000with CUDA10.2, and an INTELXeon
Gold 6132 CPU @ 2.60 GHz. The GPU contains 4,609 CUDA parallel-processing cores
and 24GB of memory.

We can observe that both FLOPs and forward latency increase from RetinaFace [9] to
DSFD [25]. Note that although the average FLOPs of RetinaFace are just one-fifth of SRN’s,
the forward latency of RetinaFace is almost half of SRN’s. It implies that FLOPs are not
linearly correlated to latency due to the differences in implementation, hardware settings,

15 https://github.com/microsoft/onnxruntime.

https://github.com/microsoft/onnxruntime
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memory efficiency, and others. The reason why the post-processing latency of DSFD and
CSP sharply increases is that they do not use GPU-accelerated NMS as others do.

4.7 Speed-Focusing Face Detectors

For the face detectors introduced in the previous sections, the main target is to reach a
better AP. Their computational costs are heavy and normally in the magnitude of TFLOPs.
It is unrealistic to deploy those heavy models to a face-related system. There are some
other open-source face detectors whose target is to make face detection run in real time for
practical applications. Their computational costs are in the magnitude of those of GFLOPs
or 10 GFLOPs. Their computational cost is much lighter than the heavy ones. Here, we
categorize them as speed-focusing face detectors. We collect some popular face detectors
and evaluate them in terms of network architectures, AP, FLOPs, and efficiency. They are
FaceBoxes [68], YuNet [19], LFFD [16], and ULFG [29].

FaceBoxes [68] is one of the first one-stage deep learning-based models to achieve
real-time face detection. FaceBoxes rapidly downsamples feature maps to a stride 32 with
two convolution layers with large kernels. Inception blocks [50] are introduced to enhanced
featuremaps at a stride of 32. Following themulti-scalemechanism fromSSD[30], FaceBoes
detects on layers inception3, conv3_2, and conv4_2 for faces at different scales,
resulting in an AP of 0.960 on FDDB [21] and 20 FPS on an INTEL E5-2660v3 CPU at
2.60 GHz.

YuNet [19] adopts a light MobileNet [18] as the backbone. Compared to FaceBoxes,
YuNet hasmore convolution layers on each stride to have fine-grained features and detects on
the extra layer of stride 16, which improves the recall of small faces. The evaluation results
of the model on the WIDER Face [62] validation set are 0.892 (Easy), 0.883 (Medium),
and 0.811 (Hard). The main and well-known repository, libfacedetection [46], takes YuNet
as the detection model and offers pure C++ implementation without dependence on DL
frameworks, resulting from 156.47 FPS for 640 × 480 images to 3198.63 FPS for 128 × 96
images on an Intel i7-7820XCPU@3.60GHz according to the information at https://github.
com/ShiqiYu/libfacedetection in December 2022.

LFFD [16] introduces residual blocks for feature extraction, and proposes receptive fields
as the natural anchors. The faster version LFFD-v2 managed to achieve 0.875 (Easy), 0.863
(Medium), and 0.754 (Hard) on the WIDER Face validation set while running at 472 FPS
using CUDA 10.0 and an NVIDIA RTX 2080Ti GPU.

ULFG [29] adds even more convolution layers on each stride, taking the advantage of
depth-wise convolution, which is friendly to edge devices in terms of FLOPs and forward
latency. As reported, the slim version of ULFG has an AP of 0.770 (Easy), 0.671 (Medium),
and 0.395 (Hard) on the WIDER Face validation set, and can run at 105 FPS with an input
resolution of 320 × 240 on an ARM A72 at 1.5 GHz.

https://github.com/ShiqiYu/libfacedetection
https://github.com/ShiqiYu/libfacedetection
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Table 4.9 Some popular speed-focusing open-source face detectors. Note that “AVG GFLOPs” are
computed on WIDER Face validation set in a single-scale test where only scale = 1.0. The latencies
are measured on a CPU

Model #CONV
layers

#Params
(×106)

AVG
GFLOPs

WIDER face val set Latency (ms)

APeasy APmedium APhard Forward Post-Proc

FaceBoxes
[68]

33 1.013 1.541 0.845 0.777 0.404 16.52 7.16

ULFG-slim-
320 [29]

42 0.390 2.000 0.652 0.646 0.520 19.03 2.37

ULFG-slim-
640 [29]

0.810 0.794 0.630

ULFG-RFB-
320 [29]

52 0.401 2.426 0.683 0.678 0.571 21.27 1.90

ULFG-RFB-
640 [29]

0.816 0.802 0.663

YuNet [19] 41 0.055 2.790 0.892 0.883 0.811 11.7 4.6

LFFD-
v2 [16]

45 1.520 37.805 0.875 0.863 0.752 178.47 6.70

LFFD-
v1 [16]

65 2.282 55.555 0.910 0.880 0.778 229.35 10.08

These lightweightmodels are developed using various frameworks and tested on different
hardware. For a fair comparison, we export these models from their original frameworks to
ONNX and test usingONNXRuntime on an INTEL i7-5930KCPU at 3.50GHz. Results are
shown in Table 4.9. We can observe that more CONV layers do not lead to more parameters
(FacesBoxes and ULFG series) and more FLOPs (YuNet and ULFG series). This is mainly
because of the extensive usage of depth-wise convolution in ULFG. Additionally, note
that more FLOPs do not lead to more forward latency due to depth-wise convolution. The
post-processing latency across different face detectors seems inconsistent with the forward
latency, and we verified that this is caused by different numbers of bounding boxes sent to
NMS and the different implementations of NMS (Python-based or Cython-based).

4.8 Conclusions and Discussions

Face detection is one of the most important and popular topics yet still challenging in
computer vision. Deep learning has brought remarkable breakthroughs for face detectors.
Face detection is more robust and accurate even in unconstrained real-world environments.
In this chapter, recent deep learning-based face detectors and benchmarks are introduced.
From the evaluations of accuracy and efficiency on different deep face detectors, we can
reach a very high accuracy if we do not consider the computational cost. However, there
should be a simple and beautiful solution for face detection since it is simpler than generic
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object detection. The research on face detection can focus on the topics introduced in the
following topics in the future.

Superfast Face Detection. There is no definition for superfast face detection. Ideally,
a superfast face detector should be able to run in real time on low-cost edge devices even
when the input image is 1080P. Empirically speaking, we would like to expect it to be less
than 100M FLOPs with a 1080P image as input. For real-world applications, efficiency is
one of the key issues. Efficient face detectors can help to save both energy and the cost
of hardware. They can also improve the responsiveness of edge devices, such as CCTV
cameras and mobile phones.

Detecting Faces in the Long-tailed Distribution. Face samples can be regarded as a
long-tailed distribution. Most face detectors are trained for the dominant part of the distri-
bution. We have already had enough samples for faces with variances in illumination, pose,
scale, occlusion, blur, and distortion in theWIDER Face dataset. But what about other faces
like the old and damaged ones? As people get old, there are many wrinkles on their faces.
People who suffer from illnesses or accidents may have damaged faces, such as burn scars
on the faces. Face detection is not only a technical problem but also a humanitarian problem.
This technology should serve all the people, not only the dominant part of the population.
Ideally, face detectors should be able to detect all kinds of faces. However, in most face
datasets and benchmarks, most faces are from young people and do not cover all people.

The final goal of face detection is to detect faces with very high accuracy and high effi-
ciency. Therefore, the algorithms can be deployed tomany kinds of edge devices and central-
ized servers to improve the perception capability of computers. There still is a considerable
gap to that goal. Face detectors can achieve good accuracy but still require considerable
computation. Improving efficiency should be the next step.
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5Facial Landmark Localization

Xiangyu Zhu, Zhenhua Feng, and Hailin Shi

5.1 Introduction

Facial landmark localization aims to detect a sparse set of facial fiducial points on a human
face, some of which include “eye corner”, “nose tip”, and “chin center”. In the pipeline
of face analysis, landmark detectors take the input of a face image and the bounding box
provided by face detection, and output a set of coordinates of the predefined landmarks,
which is illustrated in Fig. 5.1. It provides a fine-grained description of the face topology,
such as facial features locations and face region contours, which is essential for many
face analysis tasks, e.g., recognition [32], animation [33], attributes classification [34], and
face editing [35]. These applications usually run on lightweight devices in uncontrolled
environments, requiring landmark detectors to be accurate, robust, and computationally
efficient, all at the same time.

Over the past few decades, there have been significant developments in facial landmark
detection. The early works consider landmark localization as the process of moving and
deforming a face model to an image, and they construct a statistical facial model to model
the shape and albedo variations of human faces. The most prominent algorithms include
Active Shape Model (ASM) [42], Active Appearance Model (AAM) [43], and Constrained
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Fig. 5.1 Facial landmark localization

LocalModel (CLM) [44], bywhich the faces in controlled environments (normal lighting and
frontal poses) can be well handled. However, these methods deteriorate greatly when facing
enormous challenges in the wild, such as large poses, extreme illuminations, low resolution,
and partial occlusions. The next wave of methods is based on cascaded regression [45, 88,
89], which cascades a list of weak regressors to reduce the alignment error progressively.
For example, the Supervised Descent Method (SDM) [88] updates the landmark locations
by several iterations of regressions. In each iteration, a regressor takes the input of the
appearance features (e.g., SIFT) around landmarks, and estimates a landmark update to
approach the ground-truth locations. The Ensemble of Regression Trees (ERT) [45] learns
an ensemble of regression trees to regress the landmarks from a sparse subset of intensity
values, so as to handle partial or uncertain labels. One of themost popular landmark detectors
Dlib [46] implements ERT as its landmark detector due to its high speed of 1 millisecond
per face.

Following the great success of deep learning in computer vision [47], researchers started
to predict facial landmarks by deep convolutional neural networks. In general, deep learning-
based landmark detectors can be divided into coordinate-based and heatmap-based, illus-
trated in Fig. 5.2, depending on the detection head of network architecture. Coordinate-
based methods output a vector consisting of 2D coordinates of landmarks. On the contrary,
heatmap-based methods output one heatmap for each landmark, where the intensity value
of the heatmap indicates the probability that this landmark locates in this position. It is com-
monly agreed [38, 39] that heatmap-based methods detect more accurate landmarks, but are
computationally expensive and sensitive to outliers. In contrast, coordinate-based methods
are fast and robust, but have sub-optimal accuracy.

In recent years, 3D landmark localization has attracted increasing attention due to its
additional geometry information and superiority in handling large poses [40]. However,
localizing 3D landmarks is more challenging than 2D landmarks because recovering depth
from a monocular image is an ill-posed problem. This requires the model to build a strong
3D face prior from large-scale 3D data in order to accurately detect and locate the facial
landmarks in 3D space. Unfortunately, acquiring 3D faces is expensive, and labeling 3D
landmarks is also tedious. A feasible solution is to fit a 3DMorphable Model (3DMM) [41]
by a neural network [40] and sample the 3D landmarks from the fitted 3D model. Another
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Fig. 5.2 Coordinate-based methods and heatmap-based methods

one is utilizing a fully convolutional network to regress the 3D heatmaps, on which the
coordinates of the largest probabilities are sampled as 3D landmarks [51, 52].

5.2 Coordinate Regression

As deep learning has become the mainstream method for facial landmark localization, this
section focuses on recent advances in deep learning-based coordinate regression approaches.
Given an input face image, coordinate regression-based methods predict the 2D coordinates
of a set of predefined facial landmarks directly from the deep features extracted by a backbone
network, as shown in Fig. 5.3.

5.2.1 Coordinate Regression Framework

The task of coordinate regression-based facial landmark localization is to find a nonlinear
mapping function (usually a deep CNN model):

...

         Input Image Backbone Network 2D Coordinates

Fig.5.3 Coordinate regression-based facial landmark localization. The input is an RGB face image,
and the output is a vector consisting of the 2D coordinates of all the facial landmarks
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� : I → s, (5.1)

that outputs the 2D coordinates vector s ∈ R
2L of L landmarks for a given facial image

I ∈ R
H×W×3. In general, the input image is cropped by using a bounding box obtained by a

face detector in a full-stack facial image/video analysis pipeline. The 2D coordinate vector
s = [x1, ..., xL , y1, ..., yL ]T consists of the coordinates of L predefined landmarks, where
(xl , yl) are the X- and Y-coordinates of the lth landmark.

To obtain the above mapping function, a deep neural network can be used, which is
formulated as a compositional function:

� = (φ1 ◦ ... ◦ φM )(I), (5.2)

with M sub-functions, and each sub-function (φ) represents a specific network layer, e.g.,
convolutional layer and nonlinear activation layer. Most existing deep learning-based facial
landmark localization approaches use CNN as the backbone with a regression output
layer [24–26].

Given a set of labeled training samples� = {Ii , si }Ni=1, the network training aims to find
the best set of the parameters � so that to minimize:

N∑

i=1

loss(�(Ii ), si ), (5.3)

where loss() is a predefined loss function that measures the difference between the predicted
and ground-truth coordinates over all the training samples. To optimize the above objective
function, a variety of optimization methods, such as Stochastic Gradient Descent (SGD) and
AdamW, can be used for network training.

5.2.2 Network Architectures

As shown in Fig. 5.3, the input for a coordinate regression-based facial landmark localiza-
tion model is usually an image enclosing the whole face region. Then a backbone CNN
network can be used for feature extraction and fully connected layers are used for regressing
the landmark coordinates. With the development of deep learning, different backbone net-
works have been explored and evaluated for accurate and robust landmark localization. For
example, Feng et al. [38] evaluated different backbone networks, including VGG, ResNet,
MobileNet, etc., for efficient and high-performance facial landmark localization. As face
landmarking is a key element in a full-stack facial image/video analysis system, the design
of a lightweight network is crucial for real-time applications. For instance, Guo et al. [18]
developed a light framework that is only 2.1MB and runs at 140 fps on a mobile device. Gao
et al. [19] proposed EfficientFAN that applies deep knowledge transfer via a teacher-student
network for efficient and effective network training. Feng et al. [38] compared different
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designs of network architectures and evaluated their inference speed on different devices,
including GPU, CPU, and portable devices.

Instead of the whole face image, shape- or landmark-related local patches have also been
widely used as the input of neural networks [24, 83]. To use local patches, one can apply
CNN-based feature extraction to the local patches centered at each landmark and for fine-
grained landmark prediction or update [83]. The advantage of using the whole face region,
in which the only input of the network is a cropped face image, is that it does not require
the initialization of facial landmarks. In contrast, to use local patches, a system usually
requires initial estimates of facial landmarks for a given image. This can be achieved by
either using the mean-shape landmarks [83] or the output of another network that predicts
coarse landmarks [24, 27, 61].

The accuracy of landmark localization can be degraded by in-plane face rotations and
inaccurate bounding boxes output by a face detector. To address these issues, a widely used
strategy is to cascade multiple networks to form a coarse-to-fine structure. For example,
Huang et al. [28] proposed to use a global network to obtain coarse facial landmarks for
transforming a face to the canonical view and then applied multiple networks trained on
different facial parts for landmark refinement. Similarly, both Yang et al. [29] and Deng et
al. [30] proposed to train a network that predicts a small number of facial landmarks (5 or
19) to transform the face to a canonical view. It should be noted that the first network can be
trained on a large-scale dataset so it performswell for unconstrained faceswith in-plane head
rotation, scale, and translation. With the first stage, the subsequent networks that predict all
the landmarks can be trained with the input of normalized faces.

Feng et al. [38] also proposed a two-stage network for facial landmark localization,
as shown in Fig. 5.4. The coarse network is trained on a dataset with very heavy data
augmentation by randomly rotating an original training image between [−180◦, 180◦] and
perturbing the bounding box with 20% of the original bounding box size. Such a trained
network is able to perform well for faces with large in-plane head rotations and low-quality

...
Coarse
CNN  

...

Fine-Grained 
CNN  

Transform 

Inverse 
Transform 

Fig. 5.4 A two-stage coarse-to-fine facial landmark localization framework
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bounding boxes. For training the second network, each training sample is fed to the first
network to obtain its coarse facial landmarks for geometric normalization. To be specific, two
anchor points (blue points in Fig. 5.4) are computed to perform the rigid transformation,
where one anchor is the mean of the four inner eye and eyebrow corners and the other
one is the chin landmark. Afterward, the normalized training data is lightly augmented by
randomly rotating the image between [−10◦, 10◦] and perturbing the bounding box with
10%of the bounding box size. The aim is to address the issues caused by inaccurate landmark
localization of the first network. Finally, a second network is trained on the normalized-and-
lightly-augmented dataset for further performance boosting in localization accuracy. The
joint use of these two networks in a coarse-to-fine fashion is instrumental in enhancing the
generalization capacity and accuracy.

5.2.3 Loss Functions

Another important element for high-performance coordinates regression is the design of a
proper loss function.Most existing regression-based facial landmark localization approaches
with deep neural networks are based on the L2 loss function. Given a training image I and
a network �, we can predict the facial landmarks as a vector s′ = �(I). The loss function
is defined as:

loss(s, s′) = 1

2L

2L∑

i=1

f (si − s′
i ), (5.4)

where s is the ground-truth facial landmark coordinates and si is its i th element. For f (x)
in the above equation, the L2 loss is defined as:

fL2(x) = 1

2
x2. (5.5)

However, it is well known that the L2 loss function is sensitive to outliers, which has
been noted in connection with many existing studies, such as the bounding box regression
problem in face detection [31]. To address this issue, L1 and smooth L1 loss functions are
widely used for robust regression. The L1 loss is defined as:

fL1(x) = |x |. (5.6)

The smooth L1 loss is defined piecewise as:

fsmL1(x) =
{ 1

2 x
2 if |x | < 1

|x | − 1
2 otherwise

, (5.7)

which is quadratic for small values and linear for large values [31].More specifically, smooth
L1 uses fL2(x) for x ∈ (−1, 1) and shifts to fL1(x) elsewhere. Figure 5.5 depicts the plots
of these three loss functions.
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Fig. 5.5 Plots of the L2, L1
and smooth L1 loss functions
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However, outliers are not the only subset of points which deserve special consideration.
Feng et al. [38] argued that the behavior of the loss function at points exhibiting small-
medium errors is just as crucial to finding a good solution to the landmark localization task.
Based on a more detailed analysis, they proposed a new loss function, namely Rectified
Wing (RWing) loss, for coordinate regression-based landmark localization. Similar to the
original Wing loss function, RWing is also defined piecewise:

RWing(x) =
⎧
⎨

⎩

0 if |x | < r
w ln(1 + (|x | − r)/ε) if r ≤ |x | < w

|x | − C otherwise
, (5.8)

where the non-negative parameter r sets the range of rectified region to (−r , r) for very small
values. The aim is to remove the impact of noise labels onnetwork convergence. For a training
samplewith small-medium range errors in [r , w), RWing uses amodified logarithm function,
where ε limits the curvature of the nonlinear region and C = w − w ln(1 + (w − r)/ε) is a
constant that smoothly links the linear and nonlinear parts. Note that one should not set ε to a
very small value because this would make the training of a network very unstable and cause
the exploding gradient problem for small errors. In fact, the nonlinear part of the RWing loss
function just simply takes a part of the curve of ln(x) and scales it along both the X-axis
and Y-axis. Also, RWing applies translation along the Y-axis to allow RWing(±r) = 0 and
to impose continuity on the loss function at ±w. In Fig. 5.6, some examples of the RWing
loss with different hyper parameters are demonstrated.

5.3 Heatmap Regression

Another main category of the state-of-the-art facial landmark localization methods is
heatmap regression. Different from coordinate regression, heatmap regression outputs a
heatmap for each facial landmark. In the heatmap, the intensity value of a pixel in a heatmap
indicates the probability that its location is the predicted position of the corresponding
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Fig. 5.6 The Rectified Wing loss function plotted with different hyper parameters, where r and w

limit the range of the nonlinear part and ε controls the curvature. By design, the impact of the samples
with small- and medium-range errors is amplified, and the impact of the samples with very small
errors is ignored

...

         Input Image Encoder-Decoder Heatmaps

...

...

Fig. 5.7 Heatmap regression-based facial landmark localization. The input is a face image and the
output are L 2D heatmaps, each for one predefined facial landmark. The backbone network usually
has an encoder-decoder architecture

landmark. The task of heatmap regression-based facial landmark localization is to find a
nonlinear mapping function:

� : I → H, (5.9)

that outputs L 2D heatmaps H ∈ R
H×W×L for a given image I ∈ R

H×W×3. As shown
in Fig. 5.7, heatmap regression usually uses an encoder-decoder architecture for heatmap
generation. For network training, typical loss functions used for heatmap generation include
MSE and L1.
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Fig. 5.8 A typical architecture of a stacked hourglass network

5.3.1 Network Architectures

As aforementioned, heatmap regression usually applies an encoder-decoder architecture for
high-performance facial landmark localization. The most popular backbone network used
for heatmap regression might be the stacked hourglass network [29, 30, 55, 68]. The key to
the success of a stacked hourglass network is the use of multiple hourglass networks with
residual connections, as shown in Fig. 5.8. On the one hand, the use of residual connections
in each hourglass network maintains multi-scale facial features for fine-grained heatmap
generation. On the other hand, stacking multiple hourglass networks improves the overall
network capacity, so as to improve the quality of a generated heatmap. Besides the stacked
hourglass network, another two popular network architectures used for heatmap regression
are HRNet [75] and U-Net [77]. Similar to hourglass, both HRNet and U-Net try to find an
effective way of using multi-scale features rather than the single use of a deep high-level
semantic feature map for heatmap generation.

To reduce false alarms of a generated 2D heatmap, Wu et al. [22] proposed a distance-
aware softmax function that facilitates the training of a dual-path network. Lan et al. [79]
further investigated the issue of quantization error in heatmap regression, and proposed
a heatmap-in-heatmap method for improving the prediction accuracy of facial landmarks.
Instead of using a Gaussian map for each facial landmark,Wu et al. [68] proposed to create a
boundary heatmap mask for feature map fusion and demonstrated its merits in robust facial
landmark localization.

5.3.2 Loss Function

Similar to coordinate regression, the design of a proper loss function is crucial for heatmap
regression-based facial landmark localization.Most of the existing heatmap regressionmeth-
ods use MSE or L1 loss for heatmap generation via an encoder-decoder network. However,
a model trained with MSE or L1 loss tends to predict blurry and dilated heatmaps with
low intensity on foreground pixels compared to the ground-truth ones. To address this issue,
Wang et al. [76] proposed an adaptiveWing loss function for heatmap regression. In contrast



146 X.Zhu et al.

to the original Wing loss [20], the adaptive Wing loss is a tailored version for heatmap gen-
eration. The adaptive Wing loss is able to adapt its shape to different types of ground-truth
heatmap pixels. This adaptability penalizes loss more on foreground pixels while less on
background pixels, hence improving the quality of a generated heatmap and the performance
of the final landmark localization task in terms of accuracy.

To be specific, the adaptive Wing loss function is defined as:

AWing(y, ŷ) =
{

w ln(1 + | y−ŷ
ε

|α−y) if |y − ŷ| < θ

A|y − ŷ| − C otherwise
, (5.10)

where y and ŷ are the intensities of the pixels on the ground truth and predicted heatmaps,
respectively. w, θ , ε and α are positive values, A = w(1/(1 + (θ/ε)(α−y)))(α − y)
((θ/ε)(α−y−1))(1/ε) and C = (θ A − w ln(1 + (θ/ε)α−y)) are designed to link different
parts of the loss function continuously and smoothly at |y − ŷ| = θ . Unlike the Wing loss,
which uses w as the threshold, the adaptive Wing loss introduces a new variable θ as the
threshold to switch between linear and nonlinear parts. For heatmap regression, a deep net-
work usually regresses a value between 0 and 1, so the adaptive Wing loss sets the threshold
in this range. When |y − ŷ| < θ , adaptive Wing considers the error to be small and thus
needs stronger influence. More importantly, this new loss function adopts an exponential
term α − y, which is used to adapt the shape of the loss function to y and makes the loss
function smooth at the origin.

It should be noted that adaptive Wing loss is able to adapt its curvature to the ground-
truth pixel values. This adaptive property reduces small errors on foreground pixels for
accurate landmark localization, while tolerating small errors on background pixels for better
convergence of a network.

5.4 Training Strategies

5.4.1 Data Augmentation

For a deep learning-based facial landmark localization method, a key to the success of net-
work training is big labeled training data. However, it is a difficult and tedious task to man-
ually label a large-scale dataset with facial landmarks. To mitigate this issue, effective data
augmentation has become an essential alternative. Existing data augmentation approaches
in facial landmark localization usually inject geometric and textural variations into training
images. These augmentation approaches are efficient to implement and thus can be easily
performed online for network training.

To investigate the impact of these data augmentation methods on the performance of a
facial landmark localization model, Feng et al. [26] introduced different data augmenta-
tion approaches and performed a systematic analysis of their effectiveness in the context of
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(a) input

(b) Gaussian Blur (c) salt & pepper noise (d) colour jetting (e) occlusion

(f) flip (g) bbox perturbation (h) rotation (i) shear

Fig. 5.9 Different geometric and textural data augmentation approaches for facial landmark local-
ization. “bbox” refers to “bounding box”

deep-learning-based facial landmark localization. Feng et al. divided the existing data aug-
mentation techniques into two categories: textural and geometric augmentation, as shown
in Fig. 5.9. Textural data augmentation approaches include Gaussian blur, salt and pepper
noise, color jetting, and random occlusion. Geometric data augmentation consists of hori-
zontal image flip, bounding box perturbation, rotation and shear transformation. According
to the experimental results, all data augmentation approaches improve the accuracy of the
baseline model. However, the key finding is that the geometric data augmentation methods
are more effective than the textural data augmentation methods for performance boosting.
Furthermore, the joint use of all data augmentation approaches performs better than only
using a single augmentation method.

In addition, Feng et al. [26] argued that, by applying random textural and geometric
variations to the original labeled training images, some augmented samples may be harder
and more effective for deep network training. However, some augmented samples are less
effective. To select the most effective augmented training samples, they proposed a Hard
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Augmented Example Mining (HAEM) method for effective sample mining. In essence,
HAEM selects N hard samples from each mini-batch those which exhibit the largest losses
but excludes the one of dominant loss. The main reason for this conservative method is that
some of the samples generated by a random data augmentation methodmight be too difficult
to train networks. Such samples become “outliers” that could disturb the convergence of the
network training. Thus in each mini-batch, HAEM identifies N + 1 hardest samples and
discards the hardest one to define the hard sample set.

5.4.2 Pose-Based Data Balancing

Existing facial landmark localization methods have achieved good performance for faces
in the wild. However, extreme pose variations are still very challenging. To mitigate this
problem, Feng et al. [20] proposed a simple but very effective Pose-based Data Balancing
(PDB) strategy. PDB argues that the difficulty for accurately localizing faces with large
poses is mainly due to data imbalance. This is a well-known problem in many computer
vision applications [21].

To perform pose-based data balancing, PDB applies Principal Component Analysis
(PCA) to the aligned shapes and projects them to a one dimensional space defined by
the shape eigenvector (pose space) controlling pose variations. To be more specific, for a
training dataset {si }Ni=1 with N samples, where si ∈ R

2L is the i th training shape vector con-
sisting of the 2D coordinates of all the L landmarks, the use of Procrustes Analysis aligns
all the training shapes to a reference shape, i.e. the mean shape, using rigid transformations.
Then PDB approximates any training shape or a new shape, s, using a statistical linear shape
model:

s ≈ s̄ +
Ns∑

j=1

p j s∗j , (5.11)

where s̄ = 1
N

∑N
i=1 si is themean shape over all the training samples, s∗j is the j th eigenvector

obtained by applying PCA to all the aligned training shapes and p j is the coefficient of the
j th shape eigenvector. Among those shape eigenvectors, we can find an eigenvector, usually
the first one, that controls the yaw rotation of a face. We denote this eigenvector as ŝ. Then
we can obtain the pose coefficient of each training sample si as:

p̂i = ŝT (si − s̄). (5.12)

The distribution of the pose coefficients of all the AFLW training samples is shown in
Fig. 5.10. According to the Fig. 5.10, it can be seen that the AFLW dataset is not well-
balanced in terms of pose variation.

With the pose coefficients of all the training samples, PDB first categorizes the training
dataset into K subsets. Then it balances the training data by duplicating the samples falling
into the subsets of lower cardinality. To be more specific, the number of training samples in
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Fig. 5.10 Distribution of the head poses of the AFLW training set

the kth subset is denoted as Bk , and the maximum size of the K subsets is denoted as B∗.
To balance the whole training dataset in terms of pose variation, PDB adds more training
samples to the kth subset by randomly sampling B∗ − Bk samples from the original kth
subset. Then all the subsets have the size of B∗ and the total number of training samples
is increased from

∑K
k=1 Bk to K B∗. It should be noted that pose-based data balancing is

performed before network training by randomly duplicating some training samples of each
subset of lower occupancy. After pose-based data balancing, the training samples of each
mini-batch are randomly sampled from the balanced training dataset for network training. As
the samples with different poses have the same probability to be sampled for a mini-batch,
the network training is pose-balanced.

5.5 Landmark Localization in Specific Scenarios

5.5.1 3D Landmark Localization

3D landmark localization aims to locate the 3D coordinates, including 2D positions and
depth, of landmarks. The 2D landmark setting assumes that each landmark can be detected by
its visual patterns. However, when faces deviate from the frontal view, the contour landmarks
become invisible due to self-occlusion. In medium poses, this problem can be addressed by
changing the semantic positions of contour landmarks to the silhouette, which is termed
landmark marching [62]. However, in large poses where half of the face is occluded, some
landmarks are inevitably invisible. In this case, the 3D landmark setting is employed tomake
the semanticmeanings of landmarks consistent, and the face shape can be robustly recovered.
As shown in Fig. 5.11, 3D landmarks are always located in their semantic positions, and
they should be detected even if they are self-occluded.

In recent years, 3D face alignment has achieved satisfying performance. The methods
can be divided into two categories: model-based methods and non-model-based methods.
The former performs the 3D face alignment by fitting a 3D Morphable Model (3DMM),
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Fig. 5.11 Examples of 3D landmark localization. The blue/red ones indicate visible/invisible land-
marks

Fig. 5.12 The overview of 3DDFA. At kth iteration, 3DDFA takes the images and the projected
normalized coordinate code (PNCC) generated by pk as inputs and uses a convolutional neural
network to predict the parameter update �pk

which provides a strong prior of face topology. The latter extracts features from the image
and directly regresses that to the 3D landmarks by deep neural networks.

5.5.1.1 3D Dense Face Alignment (3DDFA)
Estimating depth information from amonocular image is an ill-posed problem, and a feasible
solution to realize 3D face alignment is introducing a strong3D face prior. The3DDenseFace
Alignment (3DDFA) is a typical model-based method, which fits a 3DMM by a cascaded
convolutional neural network to recover the 3D dense shape. Since the 3DMM is topology-
unified, the 3D landmarks can be easily indexed after 3D shape recovery. An overview of
3DDFA is shown in Fig. 5.12. Specifically, the 3D face shape is described as:

S = S + Aidαid + Aexpαexp, (5.13)

where S is the 3D face shape, S is the mean shape, Aid is the principle axes for identity,
and Aexp is the principle axes for expression, αid and αexp are the identity and expression
parameters that need to be estimated. To obtain the 2D positions of the 3D vertices, the 3D
face is projected to the image plane by the weak perspective projection:

V (p) = f ∗ Pr ∗ R ∗ (S + Aidαid + Aexpαexp) + t2d , (5.14)

where f is the scalar parameter, Pr is the orthographic projection matrix

(
1 0 0
0 1 0

)
,R is the

rotation matrix derived from the rotation angles pitch, yaw, roll, and t2d is the translation
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Fig. 5.13 The illustration of the Normalized Coordinate Code (NCC) and the Projected Normal-
ized Coordinate Code (PNCC). NCC denotes the position as its texture (NCCx = R,NCCy =
G,NCCz = B) and PNCC is generated by rendering the 3D face with NCC as its colormap

vector. Parameters for shape recovery are collected as p = [ f , pitch, yaw, roll, t2d , αid ,

αexp]T , and the purpose of 3DDFA is to estimate p from the input image.
3DDFA is a cascaded-regression-based method that employs several networks to update

the parameters step by step. A specially designed feature Projected Normalized Coordinate
Code (PNCC) is proposed to reflect the fitting accuracy, which is formulated as:

NCCd = Sd − min(Sd)

max(Sd) − min(Sd)
(d = x, y, z),

PNCC = Z-Buffer(V (p),NCC), (5.15)

where S is the mean shape of 3DMM, Z-Buffer(ν, τ ) is the render operation that renders
3D mesh ν colored by τ to an image. PNCC represents the 2D locations of the visible 3D
vertices on the image plane. Note that both NCC and PNCC have three channels for x, y, z,
which is similar to RGB, and they can be shown in color as in Fig. 5.13.

At the kth iteration, 3DDFA constructs PNCC by the current parameter pk and concate-
nates it with the image as input. Then, a neural network is adopted to predict the parameter
update �pk :

�pk = Netk(I, PNCC(pk)). (5.16)

Afterward, the parameter for the k + 1 iteration is updated: pk+1 = pk + �pk , and another
network is adopted to further update the parameters until convergence. By incorporating 3D
prior, 3DDFA localizes the invisible landmarks in large poses, achieving the-state-of-the-
art performance. However, it is limited by the computation cost since it cascades several
networks to progressively update the fitting result. To deploy 3DDFAon lightweight devices,
3DDFAv2 [63] employs a mobilenet [64] to directly regress the target parameters and also
achieves satisfactory performance.
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Fig. 5.14 a The backbone of the Face Alignment Network (FAN). It consists of stacked Hourglass
networks [55] in which the bottleneck blocks are replaced with the residual block of [56]. b The
illustration of FAN for 3D face alignment. The network takes the images and their corresponding 2D
landmark heatmaps as input to regress the heatmaps of the projected 3D landmarks, which are then
concatenated with the image to regress the depth values of landmarks

5.5.1.2 Face Alignment Network (FAN)
Face Alignment Network (FAN) [52] is a non-model-based method for 3D face alignment,
which trains a neural network to regress the landmark heatmaps. FAN constructs a strong
backbone to localize 3D landmarks, shown in Fig. 5.14a. Specifically, FAN consists of four
stacked hourglass networks [55], and the bottleneck blocks in each hourglass are replaced
with the hierarchical, parallel, and multi-scale residual block [56] to further improve the
performance. Given an input image, FAN utilizes the network to regress the landmark
heatmaps, where each channel of the heatmap is a 2DGaussian centered at the corresponding
landmark’s location with a standard deviation of one pixel.

To realize the regression of 3D positions, FAN designs a guided-by-2D-landmarks net-
work to convert 2D landmarks to 3D landmarks, which bridges the performance gap between
the saturating 2D landmark localization and the challenging 3D landmark localization. The
overview of FAN for 3D landmark localization is shown in Fig. 5.14b. Specifically, given
an RGB image and their corresponding 2D landmark heatmaps as input, FAN first regresses
the heatmaps of the projected 3D landmarks, obtaining the x, y of 3D landmarks. Then, the
projected 3D landmark heatmaps are combined with the input image and sent to a followed
network to regress the depth value of each landmark, obtaining the full x, y, z coordinates
of 3D landmarks.
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Fig. 5.15 The pipeline of the MediaPipe. Given an input image, the face region is first cropped by
the face detector and then sent to the feature extractor. After that, the model is split into several
sub-models to predict the global landmarks and important local landmarks including eyes and lips

5.5.1.3 MediaPipe
MediaPipe [60] is a widely used pipeline for 2D and 3D landmark localization. It is proposed
to meet the real-time application requirements for face localization such as AR make-up,
eye tracking, AR puppeteering, etc. Different from the cascaded framework,MediaPipe uses
a single model to achieve comparable performance. The pipeline of MediaPipe is shown
in Fig. 5.15. The network first extracts the global feature map from the cropped images,
and then the network is split into several sub-networks. One sub-network predicts the 3D
face mesh, including 3D landmarks, and outputs the regions of interest (eyes and lips).
The remaining two sub-networks are employed to estimate the local landmarks of eyes
and lips, respectively. The output of MediaPipe is a sparse mesh composed of 468 points.
Through the lightweight architecture [61] and the region-specific heads for meaningful
regions, MediaPipe has good efficiency and achieves comparable performance compared
with the cascaded methods, realizing the real-time on-device inference.

5.5.1.4 3D Landmark Data
One of the main challenges of 3D landmark localization is the lack of data. Acquiring high-
precision 3D face models requires expensive devices and a fully controlled environment,
making large-scale data collection infeasible. To overcome this bottleneck, current methods
usually label 2D projections of 3D landmarks as an alternative solution. However, it is still
laborious since the self-occluded parts have to be guessed by intuition. In recent years,
300W-LP [40, 85], AFLW2000-3D [40, 85], and Menpo-3D [84] have been popular data
sets for building 3D landmark localization systems. In addition to hand annotation, training
data can be generated by virtual synthesis. Face Profiling [40, 85] proposes to recover a
textured 3D mesh from a 2D face image and rotate the 3D mesh to given rotation angles,
which can be rendered to generate virtual data, shown in Fig. 5.16. Through face profiling,
not only the face samples in large poses (yaw angle up to 90◦) can be obtained, but also the
dataset can be augmented to any desired scale.
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Fig. 5.16 The face profiling process

5.5.2 Landmark Localization onMasked Face

Since the outbreak of the worldwide pandemic COVID-19, facial landmark localization
has encountered the great challenge of mask occlusion. First, the collection of masked face
data is costly and difficult, especially during the spread of COVID-19. Second, the masked
facial image suffers from severe occlusion, making the landmarks more difficult to detect.
Taking the 106-point landmark setting as an example, there are around 27 nose and mouth
points occluded by the facial mask (Fig. 5.18), which brings not only additional difficulty to
landmark detection, but also adverse uncertainty to the ground-truth labeling. These issues
cause serious harm to the deep-learning-based landmark localization that relies on labeled
data.

It can be perceived that most of the issues lie in themasked face data. Therefore, a feasible
and straightforward solution is synthesizing photo-realistic masked face images frommask-
free ones, so as to overcome the problems of data collection and labeling. One popular
approach [14] , as shown in Fig. 5.17, is composed of three steps, i.e., 3D reconstruction,
mask segmentation, and re-rendering of the blended result. Given the source masked face
and the target mask-free face, their 3D shapes are first recovered by a 3D face reconstruction
method (such as PRNet [53]) to warp the image pixels to the UV space to generate the
UV texture. Second, the mask area in the source image is detected by a facial segmentation
method [90], which is also warped to the UV space to get a UVmask. Finally, the target UV
texture is covered by the UV mask, and the synthesized target texture is re-rendered to the
original 2D plane.

There are two benefits of this practice. First, a large number of masked face images can
be efficiently produced with geometrically-reasonable and photo-realistic masks, and the
mask styles are fully controlled. Second, once the target image has annotated landmarks, the
synthesized one does not have to be labeled again. It can directly inherit the ground-truth
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Fig. 5.17 Adding virtual mask to face images by 3D reconstruction and face segmentation

(a) Synthesized Mask (b) Real Mask

Fig. 5.18 Examples of synthesized and real masked face images [1]

landmarks for training and testing (Fig. 5.18a).With the synthesizedmasked face images, the
mask-robust landmark detectionmodel can be built in the similar manner as in the mask-free
condition.

5.5.3 Joint Face Detection and Landmark Localization

The joint detection of face boxes and landmarks has been studied since the early ages
when deep learning begins to thrive in biometrics. The initial motivation of joint detection
is to boost face detection itself by incorporating landmarks to handle certain hard cases,
e.g., large pose, severe occlusion, and heavy cosmetics [5, 6]. Afterward, the community



156 X.Zhu et al.

Fig. 5.19 The typical framework of joint detection of face and landmark

pays increasing attention to merging the two tasks as one. The advantages are three-fold:
First, the two highly correlated tasks benefit each other when the detector is trained by the
annotations from both sides. Second, the unified style brings better efficiency to the whole
pipeline of face-related applications, as the two detection tasks can be accomplished by a
single lightweight model. Finally, the joint model can be conveniently applied inmany tasks,
including face recognition, simplifying the implementation in practice. Despite the obvious
advantages of the multi-task framework, building such a system requires more expensive
training data with labels of multiple face attributes, improving the cost of data annotations.
Networks. The typical framework of joint face and landmark detection is shown in Fig. 5.19.
The input image contains human faces that occur with arbitrary pose, occlusion, illumina-
tion, cosmetics, resolution, etc. The backbone extracts an effective feature from the input
image and feeds it into the multi-task head. The multi-task head outputs the joint detection
results, including at least three items, i.e., face classification, face bounding box coordi-
nates, and landmark coordinates. Beyond typical tasks, some methods also predict the head
pose, gender [8], and 3D reconstruction [11] simultaneously. The major backbones include
FPN [10], Cascaded-CNN [7], multi-scale fusion within rapidly digested CNN [9], YOLO-
vX style [3], etc. The former two make full use of hierarchical features and predict fine
results, and the latter two have excellent efficiency for CPU-real-time applications.
Learning objectives. The framework should be trained with multiple objectives to per-
form joint predictions. Equation (5.17) is the typical loss formulation for multiple objective
training. L f ace−cls is the cross-entropy loss for face classification, which predicts the con-
fidence of whether the candidate is a human face. Lbbox−reg is defined as the L2 or smooth
L1 distance between the coordinates of the predicted bounding box and the ground truth,
supervising the model to learn the bounding box locations. Similarly, Llm−reg supervises
the model to predict the landmark coordinates in the same way.

L = α1β1L f ace−cls + α2β2λLbbox−reg + α3β3λLlm−reg, (5.17)

where {α1, α2, α3} ∈ R are the weights for balancing the training toward three objectives,
{β1, β2, β3} ∈ {0, 1} are binary indicators that activate the supervision if the corresponding
annotation presents in the training sample, and λ ∈ {0, 1} is applied to activate the supervi-
sion of bounding box and landmark if the candidate’s ground truth is human face [9]. It is
worth noting that the incorporation of β enables the training on partially annotated datasets.
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Datasets. The dataset most commonly used for joint detection is the WIDER FACE [13]
dataset with the supplementary annotations [11]. The initial purpose of WIDER FACE is to
train and evaluate face detection models. The supplementary annotation provides five-point
landmarks on each face, enabling the usage for the joint detection task. Owing to the wide
utilization of this dataset, most joint detection models predict five-point landmarks, which
are sufficient for face alignment in most cases. Besides, some models [8, 30] trained by the
300W [57] dataset predict 68 landmarks for joint detection.

5.6 Evaluations of the State of the Arts

In this section, we introduce how to evaluate the performance of a landmark localization
method, including various datasets and evaluation metrics. The evaluation results of repre-
sentative methods on different datasets are also collected and demonstrated.

5.6.1 Datasets

In recent years, many datasets have been collected for training and testing of 2D facial
landmark localization, including COFW [67], COFW-68 [72], 300W [65], 300W-LP [85],
WFLW [68], Menpo-2D [83], AFLW [66], AFLW-19 [86], AFLW-68 [87], MERL-RAV
[77] and WFLW-68 [39], which are listed in Table 5.1. We introduce some representative
datasets as follows:

Table 5.1 An overview of 2D facial landmark datasets. “Train” and “Test” are the number of samples
in the training set and the test set, respectively. “Landmark Num.” represents the number of annotated
landmarks

Dataset Year Train Test Landmark Num.

AFLW [66] 2011 20, 000 4, 386 21

300W [65] 2013 3, 148 689 68

COFW [67] 2013 1, 345 507 29

COFW-68 [72] 2014 – 507 68

300W-LP [85] 2016 61, 225 – 68

Menpo-2D [83] 2016 7, 564 7, 281 68/39

AFLW-19 [86] 2016 20, 000 4, 386 19

WFLW [68] 2018 7, 500 2, 500 98

AFLW-68 [87] 2019 20, 000 4, 386 68

MERL-RAV [77] 2020 15, 449 3, 865 68

WFLW-68 [39] 2021 7, 500 2, 500 68



158 X.Zhu et al.

300W contains 3, 837 images, some images may have more than one face. Each face is
annotated with 68 facial landmarks. The 3, 148 training images are from the full set of AFW
[69] (337 images), the training part of LFPW [70] (811 images), and HELEN [71] (2, 000
images). The test set is divided into a common test set and a challenging set. The common
set with 554 images comes from the testing part of LFPW (224 images) and HELEN (330
images). The challenging set with 135 images is from the full set of IBUG [65]. 300W-
LP [85] augments the pose variations of 300W by the face profiling technique and generates
a large data set with 61, 225 samples, much of which are in profile.

COFW contains 1, 007 imageswith 29 annotated landmarks. The training set with 1, 345
samples is the combination of 845 LFPW samples and 500 COFW samples. The test set
with 507 samples has two cases. They are annotated with 29 landmarks (the same as the
training set) or 68 landmarks, and the latter is called COFW-68 [72]. Most faces in COFW
have large variations in occlusion.

AFLW contains 25, 993 faces with at most 21 visible facial landmarks annotated, but
excludes the annotations of invisible landmarks. A protocol [86] is built on the original
AFLW and divides the dataset into 20, 000 training samples and 4, 386 test samples. The
dataset has large pose variations, especially has thousands of faces in profile. AFLW-19 [86]
builds a 19-landmark annotation by removing the 2 ear landmarks. AFLW-68 [87] follows
the configuration in 300W and re-annotates the images with 68 facial landmarks.

Menpo-2D has a training set with 7, 564 images, including 5, 658 front faces and 1, 906
profile faces, and a test set with 7, 281 images, including 5, 335 front faces and 1, 946
profile faces. There are two settings for different poses. The front faces are annotated by 68
landmarks, and the profile faces are annotated by 39 landmarks.

WFLW contains 7, 500 images for training and 2, 500 images for testing. Each face in
WFLW is annotated with 98 landmarks and some attributes such as occlusion, make-up,
expression and blur. WFLW-68 [39] converts the original 98 landmarks to 68 landmarks for
convenient evaluation.

5.6.2 EvaluationMetric

There are three commonly utilized metrics to evaluate the precision of landmark localiza-
tion, including Normalized Mean Error (NME), Failure Rate (FR) and Cumulative Error
Distribution (CED).
NormalizedMean Error (NME) is one of the most widely used metrics in face alignment,
which is defined as:

NME = 1

M

M∑

i=1

||Pi − Pi
∗||2

d
, (5.18)

where {Pi } is the predicted landmark coordinates, {Pi
∗} is the ground-truth coordinates,M is

the total number of landmarks, and d is the distance between outer eye corners (inter-ocular)
[39, 68, 75, 79, 82]) or pupil centers (inter-pupils [76, 80]). It can be seen that the error is
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Fig. 5.20 An example of CED
curve from [40]. In the curve, x
is NME and y is the proportion
of samples in the test set whose
NMEs are less than x

normalized by d to reduce the deviation caused by face scale and image size. In some cases,
the image size [39] or face box size [77] is also used as the normalization factor d. A smaller
NME indicates better performance.
Failure Rate (FR) is the percentage of samples whose NMEs are higher than a certain
threshold f , denoted as FRf ( f is usually set to 0.1) [57, 68, 92]. A smaller FR means better
performance.
Cumulative Error Distribution (CED) is defined as a curve (x, y), where x indicatesNME
and y is the proportion of samples in the test set whose NMEs are less than x . Figure 5.20
shows an example ofCEDcurve,whichprovides amore detailed summaryof landmark local-
ization performance. Based on CED, theArea Under the Curve (AUC) can be obtained by
the area enclosed between the CED curve and the x-axis, whose integral interval is x = 0
to a threshold x = f , denoted as AUCf . A larger AUC means better performance.

5.6.3 Comparison of the State of the Arts

We demonstrate the performance of some state-of-the-art methods from 2018 to 2022 on
commonly used datasets, including LAB [68], SAN [73], HG-HSLE [74], AWing [76],
DeCaFA [78], RWing [38], HRNet [75], LUVLi [77], SDL [81], PIPNet [39], HIH [79],
ADNet [80], and SLPT [82]. It is worth noting that the reported results should not be
compared directly because the model sizes and training data are different.
300W: Table 5.2 summarizes the results on the most commonly used dataset 300W, with
three test subsets of “common”, “challenging”, and “full”. The NME of the 68 facial land-
marks is calculated to measure the performance. All the results are collected from the
corresponding papers.
COFW: Table 5.3 summarizes the results on the COFW and COFW-68, which mainly
measure the robustness to occlusion. There are two protocols, the within-dataset protocol
(COFW) and cross-dataset protocol (COFW-68). For the within-dataset protocol, the model
is trained with 1, 345 images and validated with 507 images on COFW. The NME and FR0.1
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Table 5.2 Performance comparison on 300W, “Common”, “Challenge”, and “Full” represent com-
mon set, challenging set, and full set of 300W, respectively. “Backbone” represents the model archi-
tecture used by each method

Method Year Backbone NME(%, inter-ocular)

Full Common Challenge

LAB [68] 2018 ResNet-18 3.49 2.98 5.19

SAN [73] 2018 ITN-CPM 3.98 3.34 6.60

HG-HSLE [74] 2019 Hourglass 3.28 2.85 5.03

AWing [76] 2019 Hourglass 3.07 2.72 4.52

DeCaFA [78] 2019 Cascaded U-net 3.39 2.93 5.26

HRNet [75] 2020 HRNetV2-W18 3.32 2.87 5.15

LUVLi [77] 2020 DU-Net 3.23 2.76 5.16

SDL [81] 2020 DA-Graph 3.04 2.62 4.77

PIPNet [39] 2021 ResNet-101 3.19 2.78 4.89

HIH [79] 2021 2 Stacked HGs 3.33 2.93 5.00

ADNet [80] 2021 Hourglass 2.93 2.53 4.58

SLPT [82] 2022 HRNetW18C-lite 3.17 2.75 4.90

of the 29 landmarks are utilized for comparison. For the cross-dataset protocol, the training
set includes the complete 300W dataset (3, 837 images), and the test set is COFW-68 (507
images). The NME and FR0.1 of the 68 landmarks are reported. All the results are collected
from the corresponding papers.
WFLW: Table 5.4 summarizes the results on WFLW. The test set is divided into six subsets
to evaluate themodels in various specific scenarios, which are pose (326 images), expression
(314 images), illumination (698 images), make-up (206 images), occlusion (736 images),
and blur (773 images). The three metrics of NME, FR0.1 and AUC0.1 of the 98 landmarks
are employed to demonstrate the stability of landmark localization. The results of SAN are
from the supplemental material of [82]. The results of LUVLi are from the supplemental
materials of [77]. The results of SLPT are from the supplemental materials of [82]. For
HRNet, the NME is from [75], and the FR0.1 and AUC0.1 are from [81]. The other results
are from the corresponding papers.
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Table 5.3 Performance comparison on COFW and COFW-68. The threshold of Failure Rate (FR)
and Area Under the Curve (AUC) are set to 0.1

Method Year Backbone COFW COFW-68

Inter-Ocular Inter-Pupil Inter-Ocular

NME(%) FR0.1(%) NME(%) FR0.1(%) NME(%) FR0.1(%)

LAB [68] 2018 ResNet-18 3.92 0.39 – – 4.62 2.17

AWing [76] 2019 Hourglass – – 4.94 0.99

RWing
[38]

2020 CNN-6&8 – – 4.80 – – –

HRNet
[75]

2020 HRNetV2-W18 3.45 0.19 – – – –

SDL [81] 2020 DA-Graph – – – – 4.22 0.39

PIPNet
[39]

2021 ResNet-101 3.08 – – – 4.23 –

HIH [79] 2021 2 Stacked HGs 3.28 0.00 – – – –

ADNet
[80]

2021 Hourglass – – 4.68 0.59 – –

SLPT [82] 2022 HRNetW18C-lite 3.32 0.00 4.79 1.18 4.10 0.59

5.7 Conclusion

Landmark localization has been the cornerstone of many widely used applications. For
example, face recognition utilizes landmarks to align faces, face AR applications use land-
marks to enclose eyes and lips, and face animation fits 3D face models by landmarks. In
this chapter, we have discussed typical methods of landmark localization, including coordi-
nate regression and heatmap regression, and some special landmark localization scenarios.
Although these strategies have made great progress and enabled robust localization in most
cases, there are still many challenging problems remaining to be addressed in advanced
applications, including faces in profile, large-region occlusion, temporal consistency, and
pixel-level accuracy. With the development of face applications, the benchmark of land-
marks on accuracy, robustness, and computation cost becomes higher and higher and more
sophisticated landmark localization strategies are needed.
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6Facial Attribute Analysis

JunWan, Zichang Tan, and Ajian Liu

6.1 Introduction

Facial attributes indicate the intuitive semantic descriptions of a human face like gender, race,
expression, and so on. In the past fewyears, automated facial attribute analysis has become an
active field in the area of biometric recognition due to its wide range of possible applications,
such as face verification [5, 59], face identification [63, 80], or surveillance [110], just to
mention a few. According to the tasks and applications, faces can be described by different
attributes (e.g., age, gender, ethnicity, and eyeglass) [75, 94], which can be recognized by
automated techniques. We can categorize these attributes into two aspects:

• Binary versus Fine-grained/Non-binary Types. According to the number of values
each attribute can take, facial attributes can be divided into binary and fine-grained (or
non-binary) types. The latter indicates that the facial attributes need to be described by
more than two values. For instance, binary facial attributes generally include gender,
wearing eyeglasses/hats, etc., whereas age, ethnicity, and facial expression (or emotion)
are typical fine-grained attributes.

• Local versus Global Types.An attribute can also be categorized in terms of the region of
the face in which the attribute can be found. Local attributes can thus be inferred locally
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Fig.6.1 Face attribute analysis with four basic categories. a Global & Binary, Local & Binary, Local
& Fine-grained, and Global & Fine-grained, b the corresponding samples of these four types

from parts of faces (e.g., eyeglass, mustache, big nose, etc.), while global attributes regard
the face as a whole (e.g., age, gender, ethnicity, etc.).

Therefore, as shown in Fig. 6.1, we can distinguish four basic types of facial attributes
according to the above definition. A global face attribute of the binary type is gender, whereas
attributes like mustache, mask, eyeglass, sunglasses, and big nose belong to the second type
(locally binary). Attributes such as eye, mustache shape, and hair style, from the local faces
can be grouped into local fine-grained types.Meanwhile, age and ethnicity pertain to globally
fine-gained types.

Generally, automatic facial attribute recognition is an important task in facial attribute
analysis. We can roughly divide the facial attribute recognition into the following tasks:
facial age estimation, gender and ethnicity recognition, facial expression recognition, and
joint learning of multiple attributes (e.g., smiling, eyeglass, long hair, and so on). For facial
age estimation, it aims to estimate a person’s age by a given face. Although the topic has
been studied for dozens of years, accurate age estimation is still a challenging task due to
the complex randomness in facial aging (e.g., various genes and work and living environ-
ment). Besides, facial expression can be regarded as an intuitive signal to reflect people’s
psychological activities, and therefore, facial expression recognition has attracted increasing
attention in recent years. Facial expression recognition is also a challenging task due to the
ambiguity between different expressions. Moreover, gender and ethnicity recognition plays
an important role in video surveillance. Compared with facial age estimation and facial
expression recognition, gender and ethnicity recognition are simpler because the categories
of gender, and ethnicity are clearly defined (e.g., male vs. female). Moreover, in real-world
applications, there are usually dozens of attributes needed to be analyzed at the same time.
Many studies focus on how to formulate a multi-task learning framework to jointly learn
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multiple attributes together. Joint learning of multiple attributes allows knowledge transfer
among different attributes. On the other hand, the multi-task learning network could predict
all attributes at once, where the calculation is saved to some extent.

In addition to facial attribute recognition, facial attribute manipulation is an important
topic in facial attribute analysis. Facial attribute manipulation aims to synthesize a new
facial image by modifying some facial attributes, including changing, adding or removing
the desired attributes (e.g., changing the hair style, adding the eyeglass, and removing one’s
beard). Current manipulation methods are generally based on generative models like Gen-
erative Adversarial Networks (GANs) [31], where a generator and a discriminator play a
mini-max game against each other.

The success of deep learningmainly depends on three factors:model, data, and computing
ability. In addition to reviewing the model algorithms of face attribute recognition and
manipulation, the development of data is also a focus in this survey. In the era of deep
learning, data is the guarantee of model performance. In recent years, a large number of
databases have emerged in the field of face attribute analysis, and with the development of
deep learning, the database has become larger and larger, like CACD [11] and MIVIA [32].
Moreover, due to the wide attention paid to face attribute analysis in recent years, many
competitions have been held to promote the development of the field. For example, Chalearn
held two consecutive age estimation competitions in 2015 and 2016. These competitions
have greatly promoted the development of relevant fields on facial attribute analysis.

In this chapter, we present a comprehensive survey on facial attribute analysis as shown
in Fig. 6.2. The distinguishing insights of this survey are as follows:

• We present a comprehensive review on facial attribute recognition, including facial age
estimation, gender and ethnicity recognition, and the works of multi-task learning for
facial attribute recognition.

• We summarize the existing datasets for facial attribute analysis. The characteristics of
each dataset and the differences among them are analyzed and discussed.

• We introduce the recent competition in facial attribute analysis, and further analyze its
challenges and future development trends.

Fig. 6.2 We present a comprehensive survey in some hot subtopics of facial attribute analysis
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6.2 Facial Age Estimation

Facial age estimation (FAE) refers to predicting a person’s age (accumulated years after
birth) from his/her face image. It has received a lot of attention due to its wide range of
applications, such as video surveillance, image retrieval, and human–computer interaction.
On the one hand, the accuracy of FAE is typically limited by the factors of other facial
attribute analysis tasks, including pose, facial expression, illumination, occlusion, makeup,
and hairstyle. On the other hand, the FAE task also faces three unique challenges:
• Facial aging is uncontrollable. No one can accurately predict the aging process.
• Facial aging patterns are personalized. Each person has a different aging process.
• Facial aging patterns are temporal. Facial changes at a particular time only affect future

appearance and not before.

These unique challenges make FAE a difficult and challenging task. In recent decades,
FAE has been extensively studied to find out the aging process and patterns. The initial
methodologies for age estimation from face images were based on hand-crafted features
of facial geometry or skin wrinkles [60]. Later, some papers were published for accurate
age prediction. Geng et al. [30] proposed the AGing pattErn Subspace (AGES) approach to
model the aging pattern and achieved mean absolute error (MAE) of about 6.22 years on
FG-NET database [61]. Methods based on manifold learning [24, 25, 35] for age estimation
were proposed as well. These methods learned low-dimensional feature representations
via manifold learning to fit a regression function for age prediction. For instance, Guo
et al. [35] proposed an age manifold learning scheme to extract facial features, then used
a locally adjusted robust regressor (LARR) to estimate the age accurately, reducing the
MAE to 5.07 years on FG-NET. Meanwhile, some local features have also become popular
for age estimation, such as Gabor [28], Local Binary Patterns (LBP) [34], or Biologically-
Inspired Features (BIF) [39]. After features were extracted with the previous local image
descriptors, classification or regression methods were used for age estimation, including
BIF+SVM [39] and BIF+Canonical Correlation Analysis (CCA) [38]. The use of hand-
crafted methods for representing faces and extracting features has the advantage of shaping
systems with less complexity. However, as mentioned earlier, the existence of FAE’s unique
challenges predisposes these hand-crafted approaches to inevitably lead to the loss of critical
information and a dramatic increase in labor costs.

Later, the hand-crafted-based approaches were replaced by deep learning techniques.
The process of feature extraction and selection is the primary distinction between them.
The process is implemented manually in hand-crafted approaches, while deep learning
techniques automate it and eliminate the need for human intervention. The summary of
published methods in facial age estimation is shown in Table 6.1 where we group published
literature into four basic categories: regression-based, classification-based, ranking-based,
and label distribution learning-based methods.
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Table 6.1 A summary of published methods on facial age estimation from a face image

Publication Age estimation algorithm Age database #images(training; testing) Accuracy

Cai et al. [6] Regression Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 3.63
years;

Agustsson
et al. [2]

Regression Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 3.00
years;

Li et al. [66] Regression Morph II (public) S1, S2,
S3 2 for training, 1 for
testing

Morph II
MAE: 3.15
years;

Wan
et al. [111]

Regression Morph II (public)
80%/20%;
training/testing CACD
(public) 150 celebrities
for training 50 celebrities
for testing

Morph II
MAE: 3.30
years; CACD
MAE: 5.24
years;

Zhang
et al. [127]

Regression Morph II (public)
80%/20%;
training/testing ChaLearn
LAP 2015 (public) 2,476
for training 1,136 for
validation 1,079 for
testing

Morph II
MAE: 2.36
years;
ChaLearn
LAP 2015
MAE: 3.137
years;

Feng
et al. [23]

Ranking Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 4.59
years;

Niu
et al. [87]

Ranking Morph II (public)
80%/20%;
training/testing AFAD
(public) 80%/20%;
training/testing

Morph II
MAE: 3.27
years; AFAD
MAE: 3.34
years;

Chen
et al. [12]

Ranking Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 2.96
years;

Zeng
et al. [124]

Ranking Morph II (public)
80%/20%;
training/testing ChaLearn
LAP 2015 (public) 2,476
for training 1,136 for
validation 1,079 for
testing

Morph II
MAE: 1.74
years;
ChaLearn
LAP 2015
ε-error: 0.232;

Rodríguez
et al. [97]

Classification Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 2.56
years;

(continued)
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Table 6.1 (continued)

Publication Age estimation algorithm Age database #images(training; testing) Accuracy

Tan
et al. [103]

Classification Morph II (public)
80%/20%;
training/testing FG-NET
(public) LOPO

Morph II
MAE: 2.52
years; FG-NET
MAE: 2.96
years;

Rothe
et al. [99]

Classification Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 2.68
years;

Pan
et al. [88]

Classification Morph II (public)
80%/20%;
training/testing FG-NET
(public) LOPO

Morph II
MAE: 2.16
years; FG-NET
MAE: 2.68
years;

Gao
et al. [26]

LDL Morph II (public)
80%/20%;
training/testing ChaLearn
LAP 2015 (public) 2,476
for training 1,136 for
validation 1,079 for
testing

Morph II
MAE: 2.42
years;
ChaLearn
LAP 2015
MAE: 3.51
years ε-error:
0.31;

Gao
et al. [27]

LDL Morph II (public)
80%/20%;
training/testing ChaLearn
LAP 2015 (public) 2,476
for training 1,136 for
validation 1,079 for
testing

Morph II
MAE: 1.97
years;
ChaLearn
LAP 2015
MAE: 3.13
years ε-error:
0.272;

Akbari
et al. [3]

LDL Morph II (public)
80%/20%;
training/testing

Morph II
MAE: 1.80
years;

Deng
et al. [17]

LDL Morph II (public)
80%/20%;
training/testing FG-NET
(public) LOPO ChaLearn
LAP 2015 (public) 2,476
for training 1,136 for
validation 1,079 for
testing

Morph II
MAE: 2.15
years; FG-NET
MAE: 2.16
years;
ChaLearn
LAP 2015
MAE: 2.915
years ε-error:
0.243;
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6.2.1 Regression-BasedMethods

The most intuitive way of estimating facial age is to regard it as a regression problem.
Specifically, regression-based methods treat age as a continuous value and solve the age
estimation problem by finding a regressor that maps the face representation space to the
age value space. The first attempt to use CNN for age estimation was proposed by Yang
et al. [120]. They built an age regressor and trained it from scratch. By performing feature
extraction and regression output on the faces in the images, the model outputs the predicted
age and maintains the consistency of the prediction. However, the performance of facial age
estimation is inferior to that obtained by BIF [39]. To further reduce the distance between the
regression output and the age labels, Yi et al. [122] first used a mean square error as the loss
function, and the regression output will be directly regarded as the predicted age values in the
testing phase. Compared with BIF [39], the proposed method has a deeper structure, and the
parameters are learned instead of hand-crafted, which leads to a performance improvement.

Cai et al. [6] used another regression model based on the Gaussian process and exploited
the possibility of using low-dimensional representations combined with manifold learning
to represent age patterns. Moreover, Guo et al. [37] obtained the age regressor by kernel
partial least squares. Zhang et al. [29] proposed a multi-task warped Gaussian model for
personalized aging patterns. Yan et al. put forward a patch-based regression framework for
addressing the human age problem based on Gaussian mixture models.

However, only using a single regressor is susceptible to interference from noisy samples.
In order to reduce the impact of noisy data, ARN [2] suggests utilizing multiple regression
networks and obtaining the final predicted age by weighted summation in Fig. 6.3, where
the series of weights comes from the similarity between the sample and multiple anchor
points. Then, Wan et al. [111] designed five cascading structural frameworks to improve
the performance of age estimation. Guided by the auxiliary demographic information, their
frameworks are capable of extracting discriminative features for ages, which are then com-
bined with the Gaussian process regression to further boost the performance.

In addition, Li et al. [66] proposed a new method to indirectly learn the faces of adjacent
ages by using the cumulative hidden layer of AlexNet for feature extraction, which alleviates
the problem of sample imbalance to some extent. Inspired by the fine-grained classification,

Fig. 6.3 Process of anchored
regression network. (Image
comes from [2])
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Zhao et al. [127] proposed to incorporate the LSTM networks to focus on the local age-
sensitive regions. Compared with the original convolutional networks, the proposed LSTM
network is light-weighted and easy to train. Besides, thanks to the combination of global and
local features, their method performs well on in-the-wild images. In summary, the practice
of treating age as a continuous value can explore the continuity of facial aging to some
extent, but it is still difficult to fully explore the continuity of facial aging because most
current databases only have integer values for age labels. This limitation is also reflected in
the fact that only a very few regression-based methods can achieve comparable performance
with other facial age estimation approaches.

6.2.2 Classification-BasedMethods

The classification-based methods formulate the FAE as a multi-class classification problem
and treat different ages or age groups as independent classes. During the training stage, these
approaches try to learn discriminative features using the well-known cross-entropy (CE)
loss function. After extracting the aging features, the person’s age is inferred by learning
the classifier followed by the feature extractor.

Levi and Hassner [65] used a shallow CNN architecture, which contains three convo-
lutional layers and two fully connected layers, to classify the Adience dataset into eight
age groups. They compromised between the complexity and performance of the network to
reduce the chance of over-fitting. Malli et al. [7] estimated apparent ages with age grouping
to account for multiple labels per image. However, this work needs an ensemble of models
to further predict the exact age, which seems relatively tedious. Zhu et al. [132] first used an
age group classifier to obtain a coarse age range of the face image and then multiple local
age estimators to predict the exact age. Later, Tan et al. [103] proposed to transform the
age estimation problem into a series of binary classification problems, where each classifier
determines whether the face image belongs to the corresponding group or not.

In 2015, Rothe et al. [99] proposed Deep EXpectation (DEX) and became the winner of
the Chalearn LAP 2015 age estimation contest. The pipeline of DEX is shown in Fig. 6.4.
Specifically, DEX first performs face detection and face cropping on the input faces and then
inputs them to the model for classification. Finally, the predicted scores from the classifier
output are calculated as the predicted age expectation and used as the final age prediction.
Subsequently, Pan et al. [88] proposed a mean-variance loss function based on which to
reduce the variance of the predicted scores and fit them to the true age labels. To obtain
more details about specific regions of the face, Rodríguez et al. [97] introduced the attention
mechanism to extract more detailed features from the face, thus reducing the complexity of
the task and discarding irrelevant information.
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Fig. 6.4 Pipeline of DEX method for age estimation (Image comes from [99])

6.2.3 Ranking-BasedMethods

Classification-based methods treated the problem of age estimation as a multi-class clas-
sification, and assumed that the labels of each category are uncorrelated and independent.
However, the age labels are strongly correlated as an ordered set with a strong correlation for
facial aging. To capture the relative correlation among the neighboring age labels, ranking-
based methods suggest formulating facial age estimation as an ordinal problem by ranking
faces from young to old.

Instead of using a regressor to output a scalar as the predicted age,OR-CNN [87] proposed
to employ multiple binary classifiers after training samples through the network, converting
age estimation into a binary classification for determining whether it is greater than a par-
ticular age. Specifically, it assumed that there is an encoding vector vn , where each element
represents whether the age of a face is older than a specific age value. Given a age yn , the
k-th element in vn can be denoted as:

vkn =
{

1 i f (yn > k)

0 otherwise,
(6.1)

where the symbol k ∈ [0, ..., K ] indicates an age index and K is the maximum age. Then a
softmax layer is applied to obtain the output for each binary classifier and the cross-entropy
loss is adopted as the loss function. During the testing stage, the predicted age is obtained
by aggregating the predictions from all classifiers:

ŷn = 1 +
K∑

k=1

v̂kn, (6.2)

where v̂kn stands for the prediction made by the k-th binary classifier. The architecture of the
OR-CNN is shown in Fig. 6.5. Based on [87], Ranking-CNN [12] provides a tighter error
bound for age ranking and leads to lower estimate errors. To better improve the discrimi-
nation of the different ages, ODFL [71] introduces a weighted ranking method to exploit
the ranking-preserving age difference information in the learned feature space to further
reinforce the model.
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Fig. 6.5 Architecture of the OR-CNN. (Image comes from [87])

Moreover, soft-ranking [124] also treats age estimation as a ranking problem, which
incorporates the two important properties of ages, i.e., the ordinal property and the correlation
between adjacent ages to provide richer supervision to the networks. In soft-ranking, the
ground-truth age encoding vector pn for n-th image at age yn can be denoted as:

pkn = 1

2
+ 1

2
er f

(
k − yn√

2σ

)
, (6.3)

where

er f (x) = 2√
π

∫ x

0
e−t2 dt . (6.4)

It is obvious that when k is bigger than yn , pkn is bigger than 0.5, and vice versa. Different
from other ranking-base methods, the way of obtaining the prediction age in soft-ranking
can be denoted as:

ŷn = argmin
k

abs( p̂k0n − p̂k1n ), (6.5)

where abs(·) returns the absolute value and the obtained k is used as the final prediction.
However, although these ranking-based approaches can capture the sequential information
of the aging process to some extent and enhance the age estimation accuracy, they suffer
from a lack of scalability. Therefore, label distribution learning-basedmethods are proposed.

6.2.4 Label Distribution Learning-BasedMethods

Several works [17, 26, 27] extend the classification-based approach and suggest the use
of a learning framework in which the semantic similarity among age labels is taken into
account during the training phase to address the aforementioned problem. These methods
convert each age label into a vector, i.e., label distribution, in which each value expresses
how similar a face image is to the corresponding age label. Specifically, the corresponding
label distribution will be set as a typical Gaussian distribution with a mean of the ground-
truth label. Assume the sample is denoted as (x, y)where x denotes the image and y denotes
the corresponding age label. The k-th element of the label distribution is denoted as:
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zk = 1√
2πσ

exp

(
− (k − y)2

2σ 2

)
, (6.6)

where σ is the standard deviation and is usually set to 1 or 2. The symbol k ∈ [0, ..., K ]
indicates an age index and K is the maximum age. Generally, K is set to 100 for considering
the ages from 0 to 100 years.

Given an input image x , the prediction distribution produced by deep neural networks is
defined as p, where the k-th element pk represents the probability of classifying the input
image to age k. In the training stage, the Kullback–Leibler (KL) divergence is the common
choice of the loss function in the label distribution learning (LDL) framework to measure
the discrepancy between the model’s output p and ground-truth label distribution z [26].
The formula can be represented as:

�kl(z, p) =
K∑

k=0

zklog
zk

pk
. (6.7)

Toobtain a specific age prediction, an expectation refinement is employed according to the
work [99]. Specifically, the predicted age is denoted as: ŷ = ∑K

k=0 k · pk . The expectation
refinement takes the expectation of the output distribution as the final predicted age, which
could enhance the stability and reliability of the prediction. A follow-up work [27] propose
to regularize the KL divergence with an �1 distance to further adopted to narrow the gap
between the predicted age ŷ and the ground-truth label y, which is defined as follows:

�er (y, ŷ) = |y − ŷ|, (6.8)

where | · | denotes �1 distance. In the end, the whole loss of training an age estimator with
a label distribution and a �1 regularization can be denoted as:

�all = �kl(z, p) + �er (y, ŷ). (6.9)

Based on this, Akbari et al. [3] proposed the use of a flatter loss function in label distribu-
tion learning, which improves the generalization and robustness of the age estimation task
in cross-dataset scenarios. However, most previous approaches strongly assume that each
category has enough instances to outline its data distribution, which does not correspond to
the reality of the dataset. This assumption leads to models that tend to bias the predictions
of age categories in the presence of sparse training samples. To mitigate the impact of data
imbalance, [17] proposed a progressive margin loss to improve the discrepancy between the
intra-class variance and the inter-class variance. The core of PML contains two components:
the ordinal margin for exploration of the correlated relationship of the age labels and the
variational margin for minimizing the adverse effect on the tailed classes caused by the head
classes.
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6.3 Gender and Ethnicity Recognition

Gender and ethnicity recognition is an old research subject, which has been studied for many
years. In the 1990s, Brunelli and Poggio extracted a set of geometrical features automatically
from frontal faces and trained two competing HyperBF networks to perform gender recogni-
tion [91]. Owing to the limited number of face images (20 females, 20 males), the proposed
HypeerBF networks only obtained an average accuracy of 79% at that time. Then, Erno and
Roope [78] evaluated gender classification with automatically detected and aligned faces,
showing that the best classification resultswere achievedwith a SVMclassifier. Besides, they
provided a comprehensive study and comparisons under the same experimental setups using
state-of-the-art gender classification methods [79]. The common problem of the above stud-
ies is that face images were acquired under controlled conditions (e.g., FERET dataset [90]).
However, in real applications, gender classification needs to be performed in unconstrained
scenarios, where significant appearance variations make the problem harder (i.e., facial
expressions, illumination changes, head pose variations, makeup, etc.).

For the above reasons, gender recognition in thewild ismuchmore challenging compared
with constrained environments, and some works [29, 58, 59, 100] attempted to address this
problem. Shakhnarovich et al. [100] collected over 3,500 face images from the web and
obtained an accuracy of 79% using Harr-like features and Adaboost. Then, Gao et al. [29]
proposed the probabilistic boosting tree with Harr-like features for gender recognition on
10,100 real-life faces, and achieved 95.5% accuracy. Later, Kumar et al. [58, 59] investigated
face verification using many binary attribute classifiers which included gender information.
Zhang et al. [128] proposed a CNN method for facial gender and smile classification in an
unconstrained environment. Compared with the previous works, the proposed method [128]
considered more attributes (namely age, gender, ethnicity, and facial expression) in a unified
framework. Likewise, the proposed method [128] is robust to the presence of unlabeled
observations. Inspired by VGGNet [102], Dhomne et al. [18] designed successive convo-
lutional blocks to automatically extract features from faces and perform gender classifica-
tion. Then, Zhou et al. [130] suggested considering face recognition and gender classifi-
cation in a unified framework. However, their proposed approach is indeed two decoupled
networks, lacking a mechanism to promote each other. Although the above methods take
advantage of deep learning, they all use pre-trained CNNwithout considering the difference
between domains, which cannot entirely excavate the capacity of CNN.Consequently,Mittal
et al. [81] introduced transfer learning by utilizing two-stage training to progressivelymodify
theweights of the backbone and classification head. The results prove that their approach [81]
outperforms other previous methods on four benchmarks.

Similar to gender recognition, traditional facial ethnicity classification methods mainly
include feature extraction and recognition. In the work of Hosoi et al. [49], Gabor wavelet
transformation and retina sampling were combined to extract key facial features, and then
SVM was used for ethnicity classification. Yang et al. [121] presented a method that used
local binary pattern histogram (LBPH) features in the ordinary ethnicity classification
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problem. Then, Guo andMu [36] studied large-scale ethnicity estimation under variations of
age and gender onMORPH II dataset [94]. The above studies have achieved impressive accu-
racy in ethnicity classification. However, they are still hard to use in real applications. More
recently, due to the progress in deep learning techniques, some researchers [112] applied
deep CNNs to classify ethnicity from facial images and achieved promising performance.
Acien et al. [1] employed VGGFace [89] and Resnet50 [46] to perform race recognition
and reached an accuracy over 95%. Further on, [82] studied gender and ethnicity recogni-
tion in night-time images from diverse viewing distances. Similar to [112], they proposed a
CNN architecture for the task and attained high accuracy. Meanwhile, [1, 82] both proved
that using soft biometric traits like gender, ethnicity, and skin color is conducive to face
recognition.

6.4 Multi-task Learning for Facial Attribute Estimation

Apart from the above studies, which focus on estimating a single facial attribute, there
are some works formulating the multi-task learning (MTL) framework for facial attribute
analysis. In a departure from single-task learning (STL), MTL-based methods aim to learn
one model to predict multiple face attributes simultaneously, which was first proposed in
the 1990s [16]. The authors used part of the knowledge learned from using one task to
facilitate the learning of the other related work. Since then, a series of approaches have been
successively proposed in the literature.

Recently, biologically inspired deep learning has shown great potential for learning a
compact and discriminative feature, which perfectly matches the needs of MTL. In [122],
Yi et al. used CNN to extract features from multi-scale face patches, and then the features
were concatenated together as the shared feature for different facial attributes (age, gender,
and race). To deal with the highly skewed class distribution in the large-scale attribute
datasets, Huang et al. [50] suggest maintaining both inter-cluster and inter-class margins to
reduce the class imbalance in the neighboring class. While in [43], Hand et al. proposed
an alternative idea to cope with the data imbalance problem in multi-task scenarios, which
selectively learning with domain adaptive batch resample methods for multi-label attribute
prediction. In [20], A Multi-Task Restricted Boltzmann Machine (MT-RBM) was proposed
to learn the shared features for multiple binary attribute classification. In [129], the authors
proposed to use features extracted by FaceNet and VGG-16 as input to each SVM classifier
for each attribute, thus estimating 40 facial attributes in the CelebA and LFWA databases.
In [41], Han et al. proposed to learn both attribute correlation and attribute heterogeneity
in a CNN, which allows shared feature learning for all the attributes and category-specific
feature learning for heterogeneous attributes. Considering the fact that many facial attributes
describe local properties, Kalayeh et al. [53] suggested using semantic segmentation to guide
the attention of the attribute prediction to the regions where different attributes naturally
show up. In [77], a similar idea of introducing segmentation to assist facial attributes was
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applied for detecting the attributes in partially occluded faces. By utilizing GAN, He et
al. [45] generated abstraction images as complementary features and used them for facial
part localization. To fully exploit the high correlation between face attributes and label
information, [8] proposed to construct a Partially Shared Multi-task Convolutional Neural
Network for multi-task facial attribute prediction (Table6.2).

In summary, multi-task learning for facial attribute estimation takes the entire facial
image as input and focuses on exploring the relationships between different attributes, thus
improving the recognition performance of a single attribute. Existing approaches model the
correlation between different attributes by designing various elaborate network structures.
The key to this idea is to learn shared features at the low level and attribute-specific features
at the high level. Because of this, FAE methods usually face two main problems: the first
is how to assign different layers to learn corresponding attribute features with different
characteristics, and the second is how to customize the network to learn more discriminative
features by mining the correlations between attributes. It is evident from contemporary
research that manual attribute grouping has become a common scheme in FAE.We hope that
in future work, automatic attribute grouping strategies will attract more attention, which can
adaptively learn the appropriate grouping classification criteria and adjust to the performance
of the model during training (Table6.3).

6.5 Face Attribute Editing

Face attribute manipulation is also called facial attribute editing, which includes modifying
single or multiple attributes of a face image while the other attributes of the image are not
affected, i.e., to generate a new face with desired attributes while preserving other details.
With the development of deep convolutional neural networks and generative models, this
technology has been widely used in many fields, including data augmentation, facial beauty,
and cartoon animated faces. Face attributemanipulation technology is a double-edged sword.
On the one hand, it is widely deployed in FaceApp products. Customers can use it to try a
wider range of content changes, such as makeup, wearing glasses, changing hair styles, etc.;
On the other hand, it has become a sharp weapon for lawbreakers to steal users’ privacy and
property.

Facial attribute editing is shown in Fig. 6.6a. Given a face, its purpose is to change gender,
wear glasses, change hair color, remove hair, add a beard, etc., while keeping other facial
details unchanged. This process is usually completed in Fig. 6.6b by the trained face attribute
editing model and the specified attribute vector parameters. According to [10], the facial
attributes are generally classified from the following aspects: local or global attributes, such
as glasses or age; categorical or binary attributes, such as hair color or gender; continuous
or discrete, such as smile or age; identity-relevant or identity-irrelevant, such as skin color
or expression. No matter what classification, previous work [85] roughly classifies face
attributes into seven categories: Face Parts, Global Attributes, Makeup, Expression, Pose,
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Table 6.3 Description and summary of face attribute editing methods based on generation counter-
measure network

Year Con./Jour. Name Method Key points of the method

2018 ECCV ELEGANT [116] Manipulation
in Latent
Space

All the attributes are encoded in
a disentangled manner in the
latent space

2018 ACM SG-GAN [125] Manipulation
in Latent
Space

Adopts a one-input multi-output
architecture to reduce the
dependence on training labels

2020 ECCV LEED [114] Manipulation
in Latent
Space

Its core idea is to decouple the
identity and expression
attributes in the face to the
expression manifold

2021 CVPR ISF-GAN [73] Manipulation
in Latent
Space

ISF encodes the style code w as
w∗ in the latent space

2021 Graphics
and Visual
Computing

FaceShapeGene [117] Manipulation
in Latent
Space

It encodes the shape information
of the face part into separate
chunks in the latent space,
which can realize the free
combination of part-wise latent
chunks of different faces

2021 CVPR L2M-GAN [119] Manipulation
in Latent
Space

It is trained end-to-end with
GAN and for editing both local
and global attributes is latent
space

2017 TIP AttGAN [48] Conditional
Decoder

It imposes an attribute
classification constraint to
accurately achieve “change what
you want”, and a reconstruction
learning to dimensionally
achieve “only change what you
want”

2019 CVPR STGAN [72] Conditional
Decoder

It selectively takes the difference
between the target and source
attribute vectors as input

2019 ICCV RelGAN [113] Conditional
Decoder

It contains a G conditions on an
input image and relative
attributes and performs facial
attribute transfer

2020 ECCV Ling et al. [70] Conditional
Decoder

Its generator (G) conditions on
an input image and relative
action units to generate an image
with target expression

(continued)
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Table 6.3 (continued)

Year Con./Jour. Name Method Key points of the method

2020 ICME EGGAN [104] Conditional
Decoder

It utilizes latent codes and
continuous expression labels as
input to generate fine-grained
expressions

2021 CVPR PIRenderer [93] Conditional
Decoder

It can fine-grained mimic
accurate movements according
to intuitive modifications which
are semantically meaningful and
fully disentangled parameters

2017 ICCV CycleGAN [131] Image-to-
image
translation

It translates an image from a
source domain to a target
domain in the absence of paired
training examples

2018 CVPR StarGAN [14] Image-to-
image
translation

It allows simultaneous training
of multiple datasets with
different domains within a
single model

2019 CVPR StyleGAN [54] Image-to-
image
translation

It is an alternative architecture
for GANs, borrowing from style
transfer

2020 ECCV StyleGANv2 [123] Image-to-
image
translation

It unites unconditional image
generation and paired
image-to-image GANs to distill
a particular image manipulation
in latent code

2020 CVPR StarGANv2 [15] Image-to-
image
translation

It further increases the diversity
of images translated to the target
domain, and supports multiple
target domains

2021 CVPR pSp [96] Image-to-
image
translation

It introduces a new encoder
architecture that can directly
generates a series of style
vectors, forming the extended
W+ latent space

2021 CVPR Lipstick [84] Image-to-
image
translation

It extends the definition of
makeup, and combines
color-matching and pattern
addition

2022 CVPR TransEditor [118] Image-to-
image
translation

It highlights the importance of
interaction in a dual-space GAN
for more controllable editing

(continued)
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Table 6.3 (continued)

Year Con./Jour. Name Method Key points of the method

2018 ECCV GANimation [92] Mask-guide It contains Action Units (AU)
annotations, which generates
photo-realistic conditioned color
masks

2019 CVPR FReeNet [126] Landmarks-
guided

It adopts a Unified Landmark
Converter (ULC) to convert
expression in a latent land mark
space

2020 CVPR EF-GAN [115] Mask-guide It aims to remove artifacts and
blurs by performing progressive
facial expression editing with
local expression focuses

2020 CVPR MaskGAN [62] Mask-guide In designs the semantic masks
serve as a suitable intermediate
representation for flexible face
manipulation

2021 TIFS A3GAN [74] Mask-guide It introduces a face parsing maps
to help the generator distinguish
image regions

2021 WACV FACEGAN [107] Landmarks-
guided

It contains an Action Unit (AU)
to transfer the facial motion
from the driving face, which are
independent of the facial
structure preventing the identity
leak

Accessories, and Image Attributes. In this section, we review the mainstream face attribute
editing methods, which can be divided into encoder-decoder structures, image-to-image
translation, and photo-guided architectures. In the following, wewill introduce facial editing
methods from these three aspects.

6.5.1 Encoder-Decoder Structures

In the encoder-decoder structure, the input image is first mapped into a latent space by the
encoder; then, the original attributes are modified on the latent space with a manipulation
method (such as in Fig. 6.7a) or a conditional decoder (such as in Fig. 6.7b); Finally, the
desired attributes are generated from each point of the latent space based on the decoder.
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Fig. 6.6 Facial attribute editing. a Examples of attribute editings applied to a face image. b The
overall structure of a face attribute editing model. This figure is from [85]

Fig. 6.7 A general framework based on encoder-decoder structures. This figure is from [85]

Manipulation in Latent Space. There are three challenging difficulties in face attribute
editing: (1) Generating images by the given exemplars; (2) Editing multiple face attributes
at the same time; and (3) Generating high-quality edited images. ELEGANT [116] can
receive two images with opposite attributes as input, and implement attribute editing
through given exemplars; encode all attributes to the latent space in a disentangled way to
realize the function of editingmultiple attributes at the same time; employ residual image and
multi-scale discriminator to improve the resolution and quality of the generated image. The
method of editing attributes in latent space usually first uses a pair of images with opposite
attributes as network input, and then maps attribute-related information to the predefined
region of the latent space. Finally, the transfer of face attributes from exemplar to input
sample is completed by exchanging their attribute- related feature regions. Instead of using
input image restrictions with opposite attributes, MulGAN [40] directly uses attribute label
constraints in the predefined latent space. It contains three main components: a generator, a
discriminator, and an attribute classifier. In which the attribute classification loss ensures that
the model extracts attribute-related information into predefined attribute areas. This allows
multiple attributes to be transferred at the same time.

Nitzan et al. [86] decouple identity attributes via latent space mapping. Their approach
aims to represent data in a disentangled manner using available pre-trained models with
minimal supervision. Specifically, the identity image Iid and attribute image Iattr are first
encoded by Eid and Eattr , respectively; then the concatenated features are mapped from
the mapping network M to W ; and finally, the edited image is generated by a pre-trained
generator G. This process is completed under the constraints of a series of losses, including
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adversarial loss Ladv , identity loss Lid , reconstruction loss Lrec, and landmark loss Llnd .
The advantages of this method are as follows: (1) The disentangled data representation can
be combinedwith the advanced generator, such as StyleGAN; (2) High quality edited images
can be generated by using rich and expressive latent space; (3) The available pre-trained
models can reduce the training burden. However, there are several shortcomings: (1) The
domain-invariant part cannot be well preserved; (2) The multiple domains cannot be well
handled; (3) The multi-modal translations cannot be performed at the same time. Also,
using available pre-trained unconditional generators, ISF-GAN [73] achieves multi-modal
and multi-domain image-to-image translation. In detail, given the attribute label d and a
randomly sampled noise z, the Implicit Style Function (ISF) first encodes the style code w

as w∗. In this way, the image generated by generator G can be specified by attribute label d,
while other attributes remain unchanged. Similar to [86], G is a pre-trained model (such as
StyleGAN). At the same time, a new discriminator is introduced to distinguish the real and
fake samples and classifies the image attributes. Previous methods usually focus on editing
predefined facial attributes, while ignoring the control of the geometric shape of the facial
part. This is due to the previous method using discrete attribute labels instead of continuous
geometric parameters.

In order to alleviate the dependence on labeled data, SG-GAN [125] adopts a one-input
multi-output architecture, and sparsely group learning strategy reduces the dependence on
training labels. Further, LEED [114] edits the facial expressions of the front and profile faces
in a disentangled way and does not rely on expression labels at all. Specifically, its core idea
is to decouple the identity and expression attributes in the face to the expression manifold,
where the neutral face captures the identity attributes, and the displacement between the
neutral image and expressive image captures the expression attributes. FaceShapeGene [117]
encodes the shape information of the face part into separate chunks in the latent space, which
can realize the free combination of part-wise latent chunks of different faces to transfer the
specified facial part shape. Due to the well-defined local support regions of attributes, the
existing models are better at handling a local attribute than a global one. At the same time,
a fixed pre-trained GAN cannot be trained end-to-end with the attribute editing network.
L2M-GAN [119] is a latent space factorization model, which is trained end-to-end with
GAN and is effective for editing both local and global attributes.

There are lots of other models adopting a similar idea in latent space to manipulate facial
attributes. PuppetGAN [109] is a cross-domain image manipulation model; RSGAN [83]
is a system integrating face swapping, attribute editing and random face parts synthesis;
LADN [33] is an adversarial disentangling network for facial makeup and de-makeup;
S2GAN [47] is an effective method to simulate the natural aging process. Other works
are to find a direction vector in latent space, which applies the desired attribute changes
to the corresponding image, such as DFI [108], Facelet-Bank [13], StyleRig [105], and
InterFaceGAN [101].
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Manipulation with Conditional Decoder The early methods try to establish a latent rep-
resentation independent of attributes, and then further edit the attributes. However, this
excessive attribute independent constraint not only limits the capacity of the latent repre-
sentation, but also leads to the generation of over-smooth and distorted images. Instead of
imposing constraints on the latent representation, AttGAN [48] imposes an attribute classifi-
cation constraint to accurately achieve “change what you want” by just ensuring the correct
change of desired attributes, and a reconstruction learning to dimensionally achieve “only
change what you want” by preserving attribute-excluding details. Considering that a specific
editing task is definitely only related to the changed attributes, not all the target attributes,
STGAN [72] selectively takes the difference between the target and source attribute vectors
as input.

The previous methods edit face images under discrete emotional labels or absolute condi-
tions,while the editing effect is poor for changing condition-irrelevant regions or fine-grained
editing. Ling et al. [70] replace continuous absolute conditions with relative conditions, such
as relative action units. Then, a generator is built based on U-Net to generate high-quality
attribute editing images throughmulti-scale fusionmechanism. Especially different from the
latent editing method, generator (G) conditions on an input image and relative action units
to generate images with target expression. Further, RelGAN [113] uses relative attributes to
describe the desired change on selected attributes, which can modify interested attributes in
a fine-grained way, while leaving other attributes unchanged. RelGAN [113] consists of a
single generatorG and three discriminators D. In whichG conditions on an input image and
relative attributes, and performs facial attribute transfer or interpolation. PIRenderer [93]
can fine-grained mimic accurate movements according to intuitive modifications which are
semantically meaningful and fully disentangled parameters. EGGAN [104] utilizes latent
codes and continuous expression labels as input to generate fine-grained expressions. When
given the source latent code and the target expression label, EGGAN [104] generates a new
image with the target expression in a conditional manner.

6.5.2 Image-to-ImageTranslation

Some work completes the attribute editing task in the way of image domain translation,
where the specific attributes of the source image are edited as the attributes of the target
image. The image-to-image translation methods regard different values of specific attributes
as different domains (modalities) and do not require the condition (attribute) vector as an
input of the generator.

CycleGAN [131] aims to solve the problem of paired training data will not be available,
which translates an image from a source domain to a target domain in the absence of paired
training examples. This process is completed by an inverse mapping and a cycle consistency
loss. StarGAN [14] aims to solve the problem of poor scalability of existing methods when
dealingwithmore than twodomains,which allows simultaneous training ofmultiple datasets
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with different domains within a single model. StarGAN generated images of higher visual
quality, owing to the generalization capability behind the multi-task learning setting and
the utilization of all available labels from multiple datasets with mask vector setting. On
this basis, StarGANv2 [15] further increases the diversity of images translated to the target
domain, and supports multiple target domains.

StyleGAN [54, 55] cannot obtain plausible editing results with high controllability, espe-
cially for complex attributes. StyleGANv2 [123] unites unconditional image generation
and paired image-to-image GANs to distill a particular image manipulation in latent code,
which results in both fast inference and impressive quality than StyleGAN [54]. Based on
the Transformer framework, TransEditor [118] highlights the importance of interaction in
a dual-space GAN for more controllable editing. Previous methods suffer from three lim-
itations: (1) incapability of generating image by exemplars; (2) being unable to transfer
multiple face attributes simultaneously; (3) low quality of generated images, such as low
resolution or artifacts. Pixel2style2pixel (pSp) [96] introduce a new encoder architecture
that can directly generate a series of style vectors, forming the extended W+ latent space.
In which the styles are fed into a pre-trained StyleGAN [54] generator.

In addition, there are other image translation frameworks with similar ideas to implement
attribute editing. ByeGlassesGAN [64] is a multi-task framework to automatically detect
eyeglass areas and remove them from a face image. DosGAN [69] utilizes domain infor-
mation as explicit supervision for unconditional or conditional image-to-image translation.
Lipstick [84] extends the definition of makeup and combines color matching and pattern
addition through color transfer branch and pattern transfer branch.

6.5.3 Mask/Landmarks-Guided Architectures

In recent years, face attribute editing methods based on mask and face landmarks have
attracted more and more researchers’ attention. GANimation [92] is a GAN conditioning
schemebasedonActionUnits (AU) annotations,whichgenerates photo-realistic conditioned
color masks. A3GAN [74] is an Attribute-Aware Attentive face aging model to improve
the quality of low-level image content and naturalize high-level semantic information. In
particular, a face parsing maps is designed to help the generator distinguish image regions.
Cascade EF-GAN [115] aims to remove artifacts and blurs around expression-intensive
regions by performing progressive facial expression editing with local expression focuses.
MaskGAN [62] aims to improve the degree of freedom for users to interactively manipulate
images. In which the semantic masks serve as a suitable intermediate representation for
flexible face manipulation.

Recent works have demonstrated high-quality results by combining the facial landmark.
FReeNet [126] is a multi-identity face reenactment framework to edit facial expressions,
which adopts a Unified Landmark Converter (ULC) to convert expression in a latent land-
mark space. The face reenactment is task of one person’s identity is taken from the source
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image and the facial motion from the driving image. However, different identities will cause
the driver facial structure to leak into the output, affecting the reenactment result. FACE-
GAN [107] contains an Action Unit (AU) to transfer the facial motion from the driving face,
which is independent of the facial structure preventing the identity leak.

6.6 Recent Competitions

In recent years, academia and industry have cooperated closely and launched a series of
competitions related to face attributes, which havemade great contributions to the promotion
of face attribute recognition, face attribute forgery detection, and other fields. Next, we will
introduce some recent competitions.

Deepfake Detection Challenge@CVPR 20201 Deepfake is a technology that uses deep
neural networks to digitally edit facial attributes. This facial attribute editing technique could
have a significant impact on people’s confirmation of the authenticity of online information.
These content generation and attribute editing techniques may affect the quality of online
information and the protection of human rights, especially given that deepfakes can be
maliciously used for misinformation, manipulation, or misleading others.

The partnership of AWS, Facebook, Microsoft, AI Media Integrity Steering Committee,
and academia came together to create the Deepfake Detection Challenge (DFDC) [19]. The
goal of the challenge is to inspire researchers around the world to build innovative new
technologies to help detect deepfake images and videos of faces (Fig. 6.8).

Challenge participants must submit their code to an online black box environment for
testing. Open proposals are eligible for challenge prizes as long as they adhere to the terms of
the open-source license. All submissions will be evaluated in the same manner. The results
will be displayed on the leaderboard.

Guess The Age@CAIP 20212 In Guess the Age 2021, the goal of the contestants is
to train a deep neural network for age estimation from face images, resulting in the best
performance in terms of accuracy and regularity on a private test set. Contestants must
adhere to two main restrictions: (1) only samples from the training set provided by the
sponsor, namely the MIVIA Age dataset; (2) only a single neural network can be used, and
the method of network ensemble cannot be used. The MIVIA dataset consists of 575,073
images of more than 9,000 identities, from different ages; in particular, they are drawn from
theVGGFace2 [9] dataset and annotatedwith age through knowledge distillation techniques,
making the dataset very heterogeneous in terms of face size, lighting conditions, facial pose,
gender, and ethnicity. Each image of the dataset contains a cropped face. An example image
is shown in Fig. 6.9.

1 https://www.kaggle.com/c/deepfake-detection-challenge.
2 https://gta2021.unisa.it/#instructions.

https://www.kaggle.com/c/deepfake-detection-challenge
https://gta2021.unisa.it/#instructions
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Fig. 6.8 Some example face swaps from the DFDC. The left is a real face image, and the right is
a virtual generated fake image. Participants need to use an algorithm to accurately identify the fake
image. Dataset [19]

Fig.6.9 Given a picture in the GTA competition, the contestant needs to submit a model to estimate
the corresponding age
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The competition restricts the use of the MIVIA Age Dataset and limits the competition
to methods based on a single neural network. Participants are free to propose new DCNN
architectures or define innovative training procedures for standard DCNN architectures.

Before the registration deadline, 20 teams from all over the world officially sent their
applications: 9 teams from Europe, 5 teams from Asia, 4 teams from North America, 1 team
from South America, and 1 team from Africa. All requests came from academia, except for
one from a company. In the end, the top three teams are: BTWG [4], CIVALab [106], and
GoF.

BTWG used EfficientNetV2-M as the backbone network, performed face recognition
pre-training on MS-celeb-1M, and divided the learning process into two steps: feature rep-
resentation learning and classifier learning. In the data preprocessing stage, the team per-
formed data augmentation on the training set by applying RandAugment and represented
each age label as a Gaussian distribution. Then, in the representation learning step, they
achieve good performance by using a custom loss function that combines KL divergence
(label distribution loss) and L1 loss for regularization. Finally, in the classification stage, the
team fine-tunes the fully connected layers using only the balanced version of the training
set by employing a modified MSE loss function.

Image Forgery Detection Challenge@CVPR 20223 Image forgery technology refers
to a collection of image processing techniques based on deep learning, such as image edit-
ing, image synthesis, image generation, etc. In recent years, the misuse of image forgery
techniques has attracted a great deal of public attention. In real-world face authentication
scenarios, hackers use image forgery techniques to edit face attributes to attack digital iden-
tity accounts. Therefore, with the widespread application of face recognition today, image
forgery detection is an important technology for the security of artificial intelligence systems.

Unlike existing published image forgery detection datasets downloaded directly from
YouTubeor producedonly by a fewpopular image forgery software, the dataset namedMulti-
Forgery Detection Challenge (Multi-FDC) [19] covers more real Scene and extensive image
forgery techniques such as face swapping, reenactment, attribute editing, full compositing,
artificial PS, etc. This challenge aims to encourage researchers around the world to develop
innovative and general techniques to protect a wider variety of real-world image forgery
from simultaneous attacks.

This competition attracted 674 teams from all over the world with around 2000 valid
submission counts. There are 106 teams on the final validation set leaderboard and 68 teams
on the final test set leaderboard. The top 10 teams were invited to the final stage, and in stage
3, 6 teams actually participated in the final stage.

In this multi-forgery detection challenge, the sponsor formulates the problem of multi-
forgery detection. During the challenge, some successful attempts can be seen, such as
unreasonable data validity, simulation of unseen types of forgery, multiple models as induc-
tive biases, etc. On the other hand, it can be noticed that the explicit modeling of unseen
forgery types and the architectural design of the forgery detection task are more or less miss-

3 https://tianchi.aliyun.com/competition/entrance/531954/introduction.

https://tianchi.aliyun.com/competition/entrance/531954/introduction
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Table 6.4 Summary of face attribute datasets

Datasets Images Number of attributes Binary Fine-gained Global Local

CelebA [76] 202,599 40 � � �
LFWA [51] 13,233 73 � � �
MORPH II [95] 55,132 3 � � �
Adience [21] 16,300 2 � � �
PCSO [42] 181,545 3 � � �
ChaLearn LAP
2016 [22]

5,713 3 � � �

CACD [11] 163,446 1 � �
VGGFace2 [9] 3.31 M 2 � �

ing. From the competition, some promising future directions in the field of image forgery
detection can also be seen. Large-scale and diverse datasets, robustness to unseen forgery
types, and fast adaptation to certain forgery types are promising directions that can be further
explored.

6.7 Datasets

In this chapter, we summarize the commonly used face attribute datasets in recent years,
and mark the dataset images in Binary, Fine-grained, Global, Local, as shown in Table 6.4.
In addition, the digital editing of face attributes has also become a research hotspot in
recent years. Today, with the widespread popularity of face recognition, the digital editing
technology of face attributes has brought great challenges to account security. Therefore,
we also summarize some currently commonly used deepfake detection datasets as shown in
Table 6.5.

Next, we will select some representative datasets according to the following categories:
facial attribute analysis and deepfake detection.

6.7.1 Face Attribute Datesets

MORPH [95] is a longitudinal face database, which can be used for face modeling, photo-
realistic animation, face recognition, etc. It provides a huge amount of publicly available
longitudinal images. The dataset is divided into commercial and academic versions. The
academic version includes 55,134 pictures of 13,000 people. The photo collection spans
from 2003 to 2007. The age of the characters is 16–77 years old, and the average age is 33
years old (Fig. 6.10).
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Table 6.5 Summary of deepfake detection datasets

Datasets Real videos Fake videos Total videos Year

UADFV [67] 49 49 98 2018

DeepfakeTIMIT [57] 320 320 640 2018

FF-DF [98] 1,000 1,000 2,000 2019

DFDC [19] 1,131 4,113 5,244 2019

Celeb-DF [68] 590 5,639 6,229 2020

DeepFake
MNIST+ [52]

10000 10000 20000 2021

FakeAVCeleb [56] 500 19,500 20,000 2022

Fig. 6.10 Example images of
MORPH dataset. The samples
are all collected in the prison,
and they are characterized by
standardization and accurate
labeling. However, the
environment is relatively
closed, and there is no rich
diversity of data collected from
wild

The MORPH II dataset is currently one of the most popular age estimation datasets.
MORPH II is also a cross-temporal dataset that includes pictures of the same person at
different ages. In addition to age, the MORPH II dataset also records other information
about people, such as gender, race, whether they wear glasses, etc.

CACD (Cross-Age Celebrity Dataset) [11] is a large-scale dataset for face recognition
and retrieval across ages, containing 163,446 images of 2,000 celebrities from the Internet.

It used celebrity names and years (2004–2013) to collect images from search engines as
keywords, by simply subtracting the year of birth from the year the photo was taken, as an
annotated age of the images, ranging from 14 to 62 years old (Fig. 6.11).

LFW (Labeled Faces in the Wild) [51] is a database organized by the Computer Vision
Laboratory of the University of Massachusetts, Amherst, and is mainly used to study face
recognition problems in unrestricted situations. The LFW database mainly collects images
from the Internet, not closed labs. The face pictures provided are all derived from natural
scenes in life, so the recognition difficulty will increase, especially due to the influence
of multiple poses, lighting, expressions, age, occlusion, and other factors, even the photos
of the same person are very different. And some photos may show more than one face. It
contains a total of more than 13,233 face images, a total of 5,749 people, each image is
identified with the name of the corresponding person, of which 1,680 people correspond to
more than one image, that is, about 1,680 people contain more than two faces. For these
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Fig. 6.11 Examples of face
images across age in CACD.
The top row numbers are the
birth years of the celebrities,
and left column numbers
indicate the years in which the
images were taken. Images in
the same column are of the
same celebrity. [11]

multi-face images, only the face of the center coordinate is selected as the target, and other
areas are regarded as background interference. The size of each picture is 250 × 250, most
of which are color images, but there are also a few black and white face pictures. In the LFW
database, some faces have poor lighting conditions, extreme poses, severe occlusions, and
low resolution, so it is difficult to identify them. And many groups are not well represented,
such as the elderly and children over the age of 80 are very few, there are no babies, the
proportion of women is low, and there are many ethnic samples with rare or no samples.

Celeb A (CelebFaces Attribute) [76] is opened by the Chinese University of Hong Kong,
which contains 202,599 face pictures of 10,177 celebrities, including 118,165 female face
pictures and 138,704 male face pictures. Each picture is marked with features, including
the face bbox, 5 face feature point coordinates, and 40 attribute markers, such as whether
to wear glasses, long or short hair, nose, lips, hair color, gender, and other characteristics.
The images in this dataset cover large pose variations and background clutter. With a lot of
diversity, a lot of volume and rich annotations (Fig. 6.12).

6.7.2 Deepfake Detection Datasets

DFDC’s data volume is as high as 472GB, including 119,197 videos, each video is 10 s long,
but the frame rate varies from 15 to 30 fps, and the resolution also varies from 320 × 240 to
3840× 2160. Among the training videos, 19,197 videos are real footage of about 430 actors,
and the remaining 100,000 videos are fake face videos generated from real videos. Fake face
generation uses DeepFakes, GAN-based, and some non-learned methods, so that the dataset
contains as many fake face videos as possible. The video in this dataset contains sound,
which is not available in most datasets at present, but there is no annotation information for
sound. At present, the SOTA score loss is around 0.42, the AUC in the domain is 91.33%,
and there is still some room for improvement.

Celeb-DF is currently widely used, and the v2 version is an extension of the v1 version.
The v1 version contains 408 raw videos captured from YouTube and 795 DeepFake videos
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Fig.6.12 Example images of CelebA dataset [76]. CelebA has rich face attributes, such as eyeglass,
bangs, smiling, and mustache

generated from real videos. The v2 version expands the video to 590 and 563 respectively.
According to literature research, the current SOTA has not exceeded 0.7.

6.8 Conclusions

In the past years, facial attribute analysis has made great progress, especially after the
emergence of deep learning technologies, where many new technologies and databases
have been proposed, and the performance has been greatly improved. In this survey, we
have carried out a detailed review on facial attribute analysis. At first, we have reviewed
the advances and challenges in facial attribute recognition, including facial age estimation,
gender and ethnicity recognition, facial expression recognition, and multi-task learning for
the recognition of multiple attributes. Then, we have reviewed the works in facial attribute
manipulation, including manipulation methods and manipulation detection methods. We
also have reviewed the great developments of facial attribute datasets and the competitions
of facial attribute analysis in the past years. Although significant progress has been made
in facial attribute analysis, there are still some challenges, which will be the future research
directions:
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• Accurate facial age estimation is still challenging although its accuracy has been largely
improved in the past years. In the future, age estimation will be a long-term research
issue, especially studying how to train a high accuracy model for age estimation.

• Multi-task learning is a trend for facial attribute recognition and will continue drawing
attention in the coming years. The existing facial attribute datasets usually only contain
a few attributes. How to collect a large attribute database with comprehensive attribute
annotations will be a problem worthy of attention.

• Joint learning of digital (i.e., deepfake) and physical attacks (video-replay, 3D facial
mask) detection is a new future direction, which is meaningful in real applications.
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7Face Presentation Attack Detection

Zitong Yu,Chenxu Zhao, and Zhen Lei

7.1 Introduction

Face recognition technology has been widely used in daily interactive applications such as
checking-in and mobile payment due to its convenience and high accuracy. However, its
vulnerability to presentation attacks (PAs) limits its reliable use in ultra-secure application
scenarios. A presentation attack defined in ISO standard [60] is as a presentation to the bio-
metric data capture subsystemwith the goal of interferingwith the operation of the biometric
system. Specifically, PAs range from simple 2D prints, replays and more sophisticated 3D
masks and partial masks. To defend the face recognition systems against PAs, both academia
and industry have paid extensive attention to developing face presentation attack detection
(PAD) [81] technology (or namely “face anti-spoofing (FAS)”).
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During the initial phase, commercial PAD systems are usually designed based on strong
prior knowledge of obvious andmacro liveness cues such as eye-blinking [34], face and head
movement [67] (e.g., nodding and smiling), and gaze tracking [2]. They assume that the 2D
print attacks are static and lack of interactive dynamic cues. Despite easy development and
deployment, these methods suffer from high false acceptance errors when presented with
replayed face videos or partial wearable 3D masks that mimic the interactive liveness cues.
To eliminate the requirement of interactive dynamics and explore more intrinsic and micro
features for face PAD, plenty of traditional handcrafted feature-based methods [9, 30, 37]
are proposed for face PAD. On the one hand, according to the evidence that PAs degraded
static/dynamic texture details and spoof artifacts (e.g., moiré pattern), classical handcrafted
texture descriptors (e.g., LBP [9] andHOG [30]), image quality assessmentmetrics [21], and
micro motion [63] features are designed for extracting effective spoofing patterns from vari-
ous color spaces (e.g., RGB,HSV, andYCbCr). On the other hand, considering that 3Dmask
attacks might contain realistic textural appearance but no quasi-periodic live physiological
cues, facial video-based remote physiological signals (e.g., rPPG [75, 78]) measurement
technique is introduced for 3D high-fidelity mask attack detection.

Subsequently, with the development of deep learning for computer vision and release of
large-scale and diverse face PAD datasets [25, 47, 89], plenty of end-to-end deep learning-
based methods [3, 46, 74, 76, 80, 84, 87] are proposed for face PAD. Similar to many binary
classification tasks (e.g., gender classification), many works [23, 27, 29, 35, 36, 73] treat
face PAD as a binary bonafide/PA classification problem, and thus utilize a simple binary
cross-entropy loss for model learning. Recently, researchers found that binary cross-entropy
loss cannot provide explicit task-aware supervision signals and the models supervised by
this loss easily learn unfaithful patterns [46] (e.g., bezel and background). To alleviate this
issue, more and more recent works focus on leveraging auxiliary pixel-wise supervision [3,
23, 46, 76, 83] to providemore fine-grained context-aware supervision signals. For example,
according to the geometric discrepancy between bonafide with facial depth and flat 2D PAs,
pseudo-depth labels [3, 46] are designed to force the model to learn local geometric cues
for bonafide/PA discrimination. Similarly, pixel-wise auxiliary supervisions with reflection
maps [76] and binary mask label [23, 47] benefit models by describing the local physical
cues on the pixel/patch level.

In real-world scenarios, different domain conditions (e.g., illumination, face resolution,
and sensor noise) influence the face PAD system a lot. For instance, a well-designed and
-trained deep PAD model on images with normal illumination and high face resolutions
might perform poorly under low-light and low-resolution scenarios due to their large dis-
tribution gaps. Therefore, learning more generalizable and robust features against unseen
domain shifts is vital for practical applications. To this end, domain adaptation [33] and
generalization [28, 57, 69] methods are introduced to enhance the generalization capability
of deep face PADmodels. The former leverages the knowledge from target domain to bridge
the gap between source and target domains, while the latter helps PAD models learn gener-
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alized feature representation from multiple source domains directly without any access to
target data.

The structure of this chapter is as follows. Section 7.2 introduces the research background,
including presentation attacks, pipeline for face PAD, and existing datasets. Section 7.3
reviews the handcrafted feature-based and deep learning-based methods for face PAD.
Section 7.4 provides experimental results and analysis. Section 7.5 discusses the practi-
cal face PAD-based industrial applications. Finally, Section 7.6 summarizes the conclusions
and lists some future challenges.

7.2 Background

In this section, we will first introduce the common face PAs and general face PAD pipeline
in face recognition system. Then, mainstream camera sensors for face PAD are presented.
Finally, existing face PAD datasets are summarized.

7.2.1 Face Presentation Attacks

Face presentation attacks usually mislead the real-world automatic face recognition (AFR)
systems via presenting face upon physical mediums (e.g., a photograph, a video, or a 3D
mask) of a targeted or obfuscated person in front of the imaging sensors. Some representative
PA types are illustrated in Fig. 7.1. According to the intention of whether the attackers would
mimic targeted identities or hide their own identities, face PAs [49] can be divided into two
categories: (1) impersonation, which spoofs the AFR systems to be recognized as someone
else via copying a genuine user’s facial attributes to presentation instruments such as photo,
electronic screen, and 3D mask; and (2) obfuscation, which decorates the face to hide or
remove the attacker’s own identity via wearing glasses/wig or with makeup/tattoo.

PAs are broadly classified into 2D and 3D attacks according to the geometric depth.
Common 2D PAs usually contain print and replay attacks such as flat/wrapped printed
photos, eye/mouth-cut photos, and replay of face videos on electronic screens. Compared
with traditional 2D PAs, 3D presentation attacks such as 3D face masks and mannequins

Fig. 7.1 Visualization of different types of face presentation attacks [26]
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are more realistic in terms of color, texture, and geometry structure, which can be made
of different materials, e.g., paper, resin, plaster, plastic, silicon, and latex. According to
the proportion of covered facial region, PAs can be also divided into whole and partial
attacks. Compared with common PAs covering the whole face, a few partial attacks are only
presented on partial facial regions. For example, attackers would cut out the eye regions from
the print face photo to spoof the eye blinking-based PAD systemwhile funny eyeglasses with
adversarial patterns would be worn over the eye region to attack the face PAD algorithms.
Compared with attacks on whole face, partial attacks are more obscure and challenging to
defend.

7.2.2 Face PAD Pipeline in Face Recognition Systems

The pipeline of face PAD in automatic face recognition systems (AFR) is illustrated in
Fig. 7.2. There are parallel and serial schemes for integrating face PAD with AFR systems.
For the parallel scheme, the detected faces can be passed over the face PAD and AFR
modules to obtain the respective predicted scores, which are then used for parallel fusion.
The combined newfinal score is used to determinewhether the sample comes from a genuine
user or not. The parallel scheme is suitable to be deployed in multi-core or multi-thread
systems with good parallel computation specifications to perform PAD and face recognition
simultaneously. Besides, the parallel scheme leaves the space for robust fusion strategies
design with PAD and AFR outputs. As for serial scheme, detected faces are first forwarded
to PAD module to reject the PAs, and only the filtered bonafide faces can be forwarded into
the face recognition phase. Despite delayed PAD time for the subsequent AFR of bonafide
access attempts, the serial scheme avoids extra work in the AFRmodule for the case of PAs,
since the PAs have already been detected in an early stage.

Fig. 7.2 Typical face PAD pipeline. Face PAD could be integrated with face recognition systems in
(left) parallel or (right) serial scheme for reliable face ID matching
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7.2.3 Camera Sensors for Face PAD

Commercial RGB camera-based face PAD has been widely used in daily face recognition
applications like mobile unlocking due to its satisfactory security and low hardware cost.
Besides visible RGB modality, depth and near-infrared (NIR) modalities are also widely
used in practical PAD deployment with acceptable costs. As for the depth camera, accurate
3D depth geometric surface of the captured face can be measured, which is very appropri-
ate for flat 2D PAD without rich 3D facial cues. Two representative types of depth sensors
are Time of Flight (TOF) and 3D Structured Light (SL). Compared with SL, TOF is not
only more robust to environmental conditions such as distance and outdoor lighting but also
more expensive. Depth cameraswith TOF or SL are usually embedded inmainstreammobile
phone platforms (e.g., iPhone, Samsung, OPPO, and Huawei) to benefit the RGB–Depth-
based face PAD. And, for NIR cameras [61], they contain complementary spectrums besides
RGB,which explicitly capturematerial-aware reflection discrepancy between bonafide faces
and PAs but are sensitive to long distance. In addition, RGB–NIR integration hardware mod-
ules are also popular in access control systems due to their high performance–price ratio.
In real-world deployment with high-security needs, integrating with all three modalities
(RGB–NIR–Depth) usually provides the most robust performance in terms of environmen-
tal conditions (lighting and distance) and attack types (print, replay, and 3D mask). The
characteristics of different sensors for face PAD are compared in Table 7.1. Visualization of
typical bonafide and PA samples with RGB, depth, and NIR modalities are given in Fig. 7.9.

Table 7.1 Comparisonwith camera sensors for face PADunder two environments (lighting condition
and distance) and three PA types (print, replay, and 3Dmask). “NIR”, “TOF”, “SL” are short for “Near
Infrared”, “Time of Flight”, “Structured Light”, respectively

Sensor Cost Environment Attack type

Lighting Distance Print Replay 3D Mask

RGB Cheap Poor Good Medium Medium Medium

Depth
(TOF)

Medium Good Good Good Good Poor

Depth (SL) Cheap Medium Poor Good Good Poor

NIR Cheap Good Poor Good Good Medium

RGB-NIR Medium Good Medium Good Good Good

RGB-Depth Medium Medium Medium Good Good Medium

RGB-NIR-
Depth

Expensive Good Good Good Good Good
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7.2.4 Face PAD Datasets

In the past decade, a few face PAD datasets have been established for training new PAD
techniques and evaluating their performance against domain shifts and PA types. Detailed
statistics and descriptions of publicly available unimodal and multimodal face PAD datasets
are summarized in Tables 7.2 and 7.3, respectively.

In terms of RGB-based unimodal face PAD datasets shown in Table 7.2, there are only
five public datasets [13, 51, 62, 71, 90] at the early stage from years 2010 to 2015. Due to the
immature 3D mask manufacturing process with high cost at that time, these datasets only
contain 2D PAs (i.e., print and replay attacks) and limited subjects (no more than 50), which
have insufficient data scale and attack diversity for generalizable face PAD training and
evaluation. Subsequently, there are two main trends for unimodal dataset development: (1)
larger-scale subjects and data amount. For example, the recently released datasets CelebA-
Spoof [89] and HiFiMask [40] contain more than 600000 images and 50000 videos, respec-
tively. Besides, MSU USSA [50] and CelebA-Spoof [89] record more than 1000 and 10000
subjects, respectively. (2) diverse attack types. In addition to common 2D print and replay
attacks, more sophisticated 3D attacks and novel partial attacks are considered in recent face
PAD datasets. For instance, there are high-fidelity 3D mask attacks made of different kinds
of materials (e.g., 3D print, plaster, resin) in HKBU-MARs V2 [43] and HiFiMask [40]. As
shown in shown in Table 7.3, similar trends of larger-scale subjects and data amount as well
as attack types can be found in the development of multimodal face PAD datasets. Moreover,
it can be observed that more kinds of modalities are collected in recent face PAD datasets.
For example, HQ-WMCA [26] and PADISI-Face [56] contain five modalities (RGB, Depth,
NIR, short-wave infrared (SWIR), and Thermal).

7.3 Methodology

To determine the liveness of user’s faces during the identity verification procedure, inter-
active face PAD methods are usually adopted. However, such interactive instructions (e.g.,
eye-blinking, facial expression, head movement, and vocal repeating) require users’ long-
termparticipation,which is unfriendly and inconvenient. Thanks to the recent software-based
methods designed with rich face PAD cues, the silent face PAD system could automatically
and quickly detect the PAs without any user interactions. In this section, we summarize the
classical handcrafted PAD feature-based and recent deep learning-based methods for silent
face PAD.
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Table 7.2 A summary of unimodal face PAD datasets. “#Sub.”, “I”, and “V” are short for “Subjects”,
“images”, and “videos”, respectively

Dataset & Reference Year #Bonafide/PA #Sub. Attack types

NUAA [62] 2010 5105/7509(I) 15 Print(flat, wrapped)

YALE_Recaptured [51] 2011 640/1920(I) 10 Print(flat)

CASIA-MFSD [90] 2012 150/450(V) 50 Print(flat, wrapped, cut),
Replay(tablet)

REPLAY-ATTACK
[13]

2012 200/1000(V) 50 Print(flat), Replay(tablet, phone)

MSU-MFSD [71] 2014 70/210(V) 35 Print(flat), Replay(tablet, phone)

REPLAY-Mobile [15] 2016 390/640(V) 40 Print(flat), Replay(monitor)

HKBU-MARs V2
[43]

2016 504/504(V) 12 Mask(hard resin) from Thatsmyface
and REAL-f

MSU USSA [50] 2016 1140/9120(I) 1140 Print(flat), Replay(laptop, tablet,
phone)

OULU-NPU [10] 2017 720/2880(V) 55 Print(flat), Replay(phone)

Rose-Youtu [33] 2018 500/2850(V) 20 Print(flat), Replay(monitor, laptop),
Mask(paper, crop-paper)

SiW [46] 2018 1320/3300(V) 165 Print(flat, wrapped), Replay(phone,
tablet, monitor)

WFFD [27] 2019 2300/2300(I)
140/145(V)

745 Waxworks(wax)

SiW-M [47] 2019 660/968(V) 493 Print(flat), Replay, Mask(hard resin,
plastic, silicone, paper,
Mannequin), Makeup(cosmetics,
impersonation, Obfuscation),
Partial(glasses, cut paper)

Swax [64] 2020 Total 1812(I)
110(V)

55 Waxworks(wax)

CelebA-Spoof [89] 2020 156384/469153(I) 10177 Print(flat, wrapped),
Replay(monitor, tablet, phone),
Mask(paper)

CASIA-SURF
3DMask [83]

2020 288/864(V) 48 Mask(mannequin with 3D print)

HiFiMask [40] 2021 13650/40950(V) 75 Mask(transparent, plaster, resin)

7.3.1 Handcrafted Feature-Based Face PAD

According to the features properties, we introduce the handcrafted feature-based face PAD
approaches based on five main cues, i.e., structural material, image quality, texture, micro
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motion, and physiological signals. The handcrafted features are usually cascaded with a
support vector machine (SVM) or a multi-layer perception (MLP) for binary classification
to distinguish bonafide faces from PAs.

Structural Material-Based Approaches. In real-world cases, PAs are always broadcasted
by physical presentation attack instruments (PAIs) (e.g., paper, glass screen, and resinmask),
which have obvious material properties different from human facial skin. Such differences
can be explicitly described as meaningful spoofing cues (e.g., structural depth and specular
reflection) for face PAD. In order to obtain the 3D structure or material of the face, the most
direct way is to use a binocular/depth or SWIR camera. However, as a single RGB camera is
themost common hardware configuration in practical applications, lots of face PAD research
works still focus on 3D and material cue estimation based on the monocular RGB camera.
On one hand, based on the assumption that 2D PAs on paper and screen are usually flat
and without depth information, Wang et al. [68] proposed to recover the sparse 3D shape of
face images to detect various 2D attacks. On the other hand, the illumination and reflection
discrepancy of the structural materials between human facial skin and 2D PAs are used as
important spoof cues. Kim et al. [16] utilized the illumination diffusion cues based on the
fact that illumination from 2D surfaces of 2D attacks diffuses slower and has a more uniform
intensity distribution than 3D surfaces. Besides, Wen et al. [71] proposed to calculate the
statistical features based on the percentage of the specular reflection components from face
image to detect the screen replay attacks. The methods based on the structural material cues
have great rationality to detect the 2D PAs theoretically. However, estimating depth and
material information from a monocular RGB camera is an ill-conditioned problem, and the
computational complexity of these methods is high.

Image Quality-Based Approaches. As the spoof faces are usually broadcasted of the real
face from specific physical PAIs, the corresponding face image quality might be degraded
due to the color distortion and instrument artifacts, which can be utilized as a significant
cue for face PAD. Galbally et al. [21] adopted 25 (21 full-reference and 4 non-reference)
image quality assessment (IQA)metrics for face liveness detection.Wen et al. [71] employed
three kinds of different IQA features (blurriness, color moment, and color difference) for
face PAD, which can effectively represent the intrinsic distortion of spoof images. Image
quality-based methods are effective for screen-replayed faces, low-quality printed faces,
and rough 3D mask spoof face detection. However, high-quality printed faces as well as
high-fidelity 3D mask faces would result in high false acceptance rates for these methods.

Texture-Based Approaches. Due to the PAI properties, textural details in spoof faces
are usually coarse and smoothed. In contrast, bonafide faces captured via cameras directly
keep more fine-grained local texture cues. Based on this evidence, many texture-based
approaches have been developed for face PAD. Specifically, several classical local texture
descriptors such as local binary pattern (LBP) [48] and histogram of oriented gradients
(HOG) [30] are used to capture fine-grained texture features from face images. Based on the
observation that texture features in the HSV color space are more invariant across different



218 Z.Yu et al.

environments, Boulkenafet et al. [9] proposed to extract LBP-based color texture features
from HSV space, which is efficient and generalizable. However, the texture-based methods
rely on high-resolution input to distinguish subtle texture differences between bonafide
and spoofing faces. If the image quality is not good enough, it will result in a high false
rejection rate. In addition, due to the diversity of image acquisition conditions and spoofing
instruments, extracted texture patterns are also variant, which degrades its generalizability
under complex real-world scenarios.

Micro Motion-Based Approaches. Liveness detection by capturing the user’s short-term
micro motion characteristics without interaction is feasible as facial dynamics (e.g., expres-
sion and head movement) or dynamic textures from live and spoof samples are distin-
guishable. Tirunagari et al. [63] proposed to temporally magnify the facial motion first,
and then extract two kinds of dynamic features including the histogram of oriented optical
flow (HOOF) and Local Binary Pattern histograms from Three Orthogonal Planes (LBP-
TOP) for face PAD. However, motion magnification usually brings external noises, which
influences the robustness of the subsequent feature representation. Instead of motion mag-
nification, Siddiqui et al. [59] employed dynamic mode decomposition to select the most
reliable dynamic mode for facial motion feature extraction. However, the micro motion-
based methods are not effective for wrapped/shaking paper attack and video replay attacks
due to interference of undesired dynamics. These methods assume that there is a clear non-
rigid motion discrepancy between bonafide and PAs, but in fact such micro motion is quite
difficult to describe and represent explicitly.

Remote Photoplethysmograph-Based Approaches. Physiological signal is another
important living body signal, and it is also an intrinsic cue for distinguishing live faces from
artificial materials. In recent years, remote photoplethysmograph (rPPG) technology [79]
has developed quickly, which aims at measuring blood pulse flow by modeling the subtle
skin color changes caused by the heartbeat. Due to the low transmittance characteristics of
artificial materials, rPPG signals from the live faces are usually periodic, but more noisy
on the PAs such as 3D mask and printed paper. Therefore, rPPG signals are suitable for
face liveness detection. Li et al. [37] analyzed the live/spoof rPPG cues via calculating the
statistics of the rPPG frequency responses. Different from the method of spectrum analy-
sis using long-term observation of rPPG signals in the frequency domain, Liu et al. [41]
proposed to leverage the temporal similarity of facial rPPG signals for fast 3D mask attack
detection, which can be within one second by analyzing the time-domain waveform of the
rPPG signal. However, rPPG cues are sensitive to the headmotion, light condition, and video
quality. Another disadvantage is that the replayed video attack on electronic screen might
still contain weak periodic rPPG signals.
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7.3.2 Deep Learning-Based Face PAD

With the data-driven deep learning fashion in computer vision, deep neural networks have
also been widely used in face PAD. Here we highlight some traditional deep learning
approaches with cross-entropy and pixel-wise supervision first, and then introduce domain
generalized deep learning methods.

TraditionalDeepLearningApproacheswithCross-Entropy Supervision. As face PAD
can be intuitively treated as a binary (bonafide vs. PA) or multi-class (e.g., bonafide, print,
replay, mask) classification task, numerous deep learning methods are directly supervised
with cross-entropy (CE) loss. Given an extracted face input X , deep PAD features F can be
represented via forwarding the deep models �, and then the cascaded classification heads
make the binary predictions Y , which are supervised by the binary cross-entropy (BCE) loss

LBCE = −(Ygt log(�(X)) + (1 − Ygt )log(1 − �(X))), (7.1)

where Ygt is the ground truth (Ygt = 0 for PAs and YGT = 1 for bonafide. Supervised with
BCE loss, Yang et al. [73] proposed the first end-to-end deep face PADmethod using shallow
convolutional neural networks (CNN) for bonafide/PA feature representation. Through the
stacked convolution layers, CNN is able to capture the semantic spoof cues (e.g., hand-hold
contour of the printed paper). However, training CNN from scratch easily leads to overfitting
in the face PAD task due to the limited data amount and coarse supervision signals from
BCE loss. To alleviate these issues, on the one hand, some recent researches [12, 24] usually
finetune the ImageNet-pretrained models (e.g., ResNet18 and vision transformer) with BCE
loss for face PAD. Transferring the well-trained model parameters on large-scale generic
object classification task to downstream face PAD data is relatively easier andmore efficient.
On the other hand, a few works modify BCE loss into a multi-class CE version to provide
CNNswithmore fine-grained and discriminative supervision signals.Xu et al. [72] rephrased
face PAD as a fine-grained classification problem and propose to supervise deep model with
multi-class (e.g., bonafide, print, and replay) CE loss. In this way, the intrinsic properties
from bonafide as well as particular attack types could be explicitly represented. However,
models supervised with multi-class CE loss still suffer from unsatisfactory convergence
due to the class imbalance. Another issue is that these supervision signals with only global
constraints might cause face PAD models to easily overfit to unfaithful patterns but neglect
vital local spoof patterns.

Traditional Deep Learning Approaches with Pixel-wise Supervision. Compared with
bonafide faces, PAs usually have discrepant physical properties in local responses. For
example, 2D PAs such as plain printed paper and electronic screen are without local geo-
metric facial depth information while the bonafide is in reverse. Motivated by this evidence,
some recent works [3, 70, 84] adopt pixel-wise pseudo-depth labels (see the fourth col-
umn in Fig. 7.4) to guide the deep models, enforcing them to predict the genuine depth for
the bonafide samples while zero maps for the PAs. To leverage the multi-level features for
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Fig.7.3 The multi-scale architecture of DepthNet [46] with vanilla convolutions (“Conv” for short)
and CDCN [84] with CDC. Inside the blue block are the convolutional filters with 3 × 3 kernel size
and their feature dimensionalities

accurate facial depth estimation,Atoumet al. [3] proposed themulti-scale fully convolutional
network, namely “DepthNet”. With supervision using pseudo-depth labels, the DepthNet
is able to predict holistic depth maps for bonafide faces while coarse zero maps for 2D
PAs as explainable decision evidence. To further improve the fine-grained intrinsic feature
representation capacity, Yu et al. [84] proposed a novel deep operator called central differ-
ence convolution (CDC), which can replace vanilla convolutions in DepthNet without extra
learnable parameters to form the CDCN architecture (see Fig. 7.3 for detailed structures).
Specifically, the CDC operator can be formulated as:

y(p0) = θ ·
∑

pn∈R

w(pn) · (x(p0 + pn) − x(p0))

︸ ︷︷ ︸
Central Di f f erence Convolution

+(1 − θ) ·
∑

pn∈R

w(pn) · x(p0 + pn)

︸ ︷︷ ︸
Vanilla Convolution

,

(7.2)
where x , y, and w denote the input features, output features, and learnable convolutional
weights, respectively. p0 denotes the current location on both input and output feature
maps while pn enumerates the locations in neighbor region R. The hyperparameter θ ∈
[0, 1] is the trade-off of contributions between intensity-level and gradient-level information.
DepthNet with vanilla convolution is a special case of CDCN with CDC when θ = 0, i.e.,
aggregating local intensity informationwithout gradientmessage. CDCN is favored in pixel-
wise supervision framework and widely used in the deep face PAD community due to its
excellent representation capacities of both low-level detailed and high-level semantic cues.

Considering the costly generation of the pseudo-depth maps as well as the meaningless
use for 3D face PAs with realistic depth, binary mask label [23] (see the second column in
Fig. 7.4) is easier to obtain andmore generalizable to all PAs. Specifically, binary supervision
would be provided for the deep embedding features at each spatial position corresponding
to the bonafide/PA distributions in each original patch (e.g., 16 × 16). With binary mask
supervision, the models are able to localize the PAs in the corresponding patches, which
is attack-type-agnostic and spatially interpretable. There are also other auxiliary pixel-wise
supervisions such as pseudo-reflection map [76] and 3D point cloud map [38] (see the
third and last columns of Fig. 7.4, respectively). The former provides physical material
reflection cues while the latter contains dense 3D geometric cues. To further learn more
intrinsic material-related features, multi-head supervision is developed in [76] to supervise
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Fig. 7.4 Visualization of pixel-wise supervision signals [77] including binary mask label [23],
pseudo-reflection maps [76], pseudo-depth labels [84] and 3D point cloud maps [38] for face PAD

PAD models with multiple pixel-wise labels (i.e., pseudo-depth, binary mask, and pseudo-
reflection) simultaneously. The corresponding pixel-wise loss functions can be formulated
as

Ldepth = 1

H × W

∑

i∈H , j∈W

∥∥D(i, j) − Dgt(i, j)
∥∥2
2 , (7.3)

Lre f lection = 1

H × W × C

∑

i∈H , j∈W ,c∈C

∥∥R(i, j,c) − Rgt(i, j,c)
∥∥2
2 , (7.4)

Lbinarymask = 1

H × W

∑

i∈H , j∈W
−(Bgt(i, j)log(B(i, j)) + (1 − Bgt(i, j))log(1 − B(i, j))),

(7.5)
where Dgt , Rgt , and Bgt denote ground truth depth map, reflection map, and binary mask
map, respectively. H , W , and C mean the height, width, and channels of the maps, respec-
tively. Overall, pixel-wise auxiliary supervision benefits the physically meaningful and
explainable representation learning. However, the pseudo-auxiliary labels are usually gen-
erated coarsely without human annotations, which are sometimes inaccurate and noisy for
partial attacks. For example, the binary mask for FunnyEye glasses attacks should cover the
eye regions instead of the whole face).

Generalized Deep Learning Approaches to Unseen Domains. There might be unde-
sired external conditional changes (e.g., in illumination and sensor quality) in real-world
deployment. Traditional end-to-end deep learning-based face PADmethods easily overfit to
the feature distribution of training data from seen domains and are sensitive to the domain
shifts between unseen target domains and seen source domains. In the field of face PAD,
“domain shifts” usually indicate the PA-irrelated external environmental changes and actu-
ally influence the appearance quality. To alleviate this issue, more recent works focus on
enhancing the domain generalization capacity of the face PAD models. On the one hand,
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some works [28, 57] design domain-aware adversarial constraints to force the PAD mod-
els to learn domain-irrelative features from multiple source domains. They assume that the
domain-irrelative features contain intrinsic bonafide/PA cues across all seen domains thus
might generalize well on unseen domains. On the other hand, a few works [54, 83] utilize
domain-aware meta-learning to learn the domain generalized feature space. Specifically,
faces from partial source domains are used as query set while those from remained non-
overlap domains as support set, which mimics the unseen domains and minimizes their risks
at the training phase. To alternatively force the meta-learner to perform well on support sets
(domains), the learned models have robust generalization capacity. Domain generalization
helps the FAS model learn generalized feature representation from multiple source domains
directly without any access to target data, which is more practical for real-world deployment.
Despite generalization capacity enhancement for unseen domains, it would deteriorate the
discrimination capability for PAD under the seen scenarios to some extent.

7.4 Experimental Results

Here, evaluation results of handcrafted feature-based and deep learning-based approaches
on four face PAD datasets (i.e., OULU-NPU [10], CASIA-MFSD [90], Replay-Attack [13],
and MSU-MFSD [71]) are compared and analyzed. Specifically, OULU-NPU is used for
intra-dataset testings while all four datasets (see Fig. 7.5 for typical examples) are used for
cross-dataset testings under serious domain shifts.

Fig.7.5 Visualization of the bonafide and PAs from four face PAD datasets. It can be seen that serious
domain shifts (e.g., face resolution and illumination) occur among these datasets
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7.4.1 EvaluationMetrics

As face PAD systems usually focus on the concept of bonafide and PA acceptance and rejec-
tion, two basic metrics False Rejection Rate (FRR) and False Acceptance Rate (FAR) [20]
are widely used. The ratio of incorrectly accepted spoofing attacks defines FAR, whereas
FRR stands for the ratio of incorrectly rejected live accesses [14]. The most commonly used
metrics in both intra- and cross-testing scenarios are Half Total Error Rate (HTER) [14],
Equal Error Rate (EER), andAreaUnder theCurve (AUC). HTER is found out by calculating
the average of FRR (ratio of incorrectly rejected bonafide score) and FAR (ratio of incor-
rectly accepted PA). EER is a specific value of HTER at which FAR and FRR have equal
values. AUC represents the degree of separability between bonafide and spoofings. Recently,
AttackPresentationClassificationErrorRate (APCER), BonafidePresentationClassification
Error Rate (BPCER), and Average Classification Error Rate (ACER) suggested in ISO/IEC
DIS 30107- 3:2017 standard [6] are also used for intra-dataset testings [10, 46]. BPCER
and APCER measure bonafide and attack classification error rates, respectively. ACER is
calculated as the mean of BPCER and APCER, evaluating the reliability of intra-dataset
performance.

7.4.2 Intra-dataset Testings

Intra-dataset testing protocol has been widely used in most face PAD datasets to evaluate the
model’s discrimination ability for PA detection under scenarios with slight domain shift. As
the training and testing data are sampled from the same datasets, they share similar domain
distribution in terms of the recording environment, subject behavior, etc. The most classical
intra-dataset testing protocols are the four sub-protocols of OULU-NPU dataset [10]. Pro-
tocol 1 is used to evaluate the generalization performance of the face PAD algorithms under
different lighting and background scenarios. Protocol 2 evaluates the PAD performance
under unseen PAIs. In Protocol 3, the models are alternatively trained on videos recorded
by five smartphones while videos by the remaining smartphone are used for evaluation.
Protocol 4 mixes the scenarios of the first three protocols to simulate real-world scenarios,
and aims to evaluate the performance of face PAD methods in the integrated scenarios. The
performance comparison of recent face PADmethods is shown in Table 7.4. Benefitted from
the powerful representation capacity of neural networks with a data-driven fashion, most
deep learningmethods (except DeepPixBiS [23]) outperform the handcrafted features-based
method GRADIANT [23]. With the task-aware pixel-wise supervisions, some deep models
such as CDCN [84], FAS-SGTD [70], Disentangled [86], MT-FAS [53], DC-CDN [82], and
NAS-FAS [83] have reached satisfied performance (<5% ACER) on the most challenging
Protocol 4 with mixed domain shifts in terms of external environment, attack mediums and
recording cameras.
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7.4.3 Cross-Dataset Testings

This protocol focuses on cross-dataset level domain generalization ability measurement,
which usually trains models on one or several datasets (source domains) and then tests on
unseen datasets (shifted target domain). We summarize recent deep face PAD approaches
on two favorite cross-dataset testings [57, 84] on four benchmark datasets (i.e., OULU-
NPU (O) [10], CASIA-MFSD (C) [90], Replay-Attack (I) [13], and MSU-MFSD (M) [71])
in Table 7.5. As illustrated in Fig. 7.5, there are serious domain shifts among these four
datasets in terms of resolution, illumination, sensor noise, etc. When trained on Replay-
Attack and tested on CASIA-MFSD, most handcrafted feature-based methods as well as
traditional deepmodels performpoorly (>20%HTER)due to the serious lighting and camera
resolution variations. In contrast,when trainedonmultiple source datasets (i.e.,OULU-NPU,
MSU-MFSD, andReplay-Attack), domaingeneralization-basedmethods achieve acceptable
performance on CASIA-MFSD (especially SSDG [28] and SSAN [69] with 10.44% and
10.00%HTER, respectively). Overall, introducing more training data from diverse domains
might benefit and stabilize the generalized feature learning.

7.5 Applications

In this section, we will concentrate on describing face presentation attack detection in dif-
ferent industry applications, including the attributes of the scenarios, sensors, protocols, and
approaches.

7.5.1 Online Identity Verification Scenario

As illustrated in Fig. 7.6, this scenario refers to the online face recognition authentication
process by customers through their mobile devices or PCs. Face PAD in the online identity
verification scenario aims to force the algorithm to discriminate spoofing faces from the
criminals. Criminals attempt to obtain the authentication result of the attacked individual
via spoofing faces. After obtaining the authentication result, they can steal the money or
information from the accessed account. The architectures of this scenario are:

• The system requires a high level of security indicating the face PAD algorithm is required
to reach a higher performance.

• The application runs on the client side, and most of the devices are mobile phones. Thus,
the algorithm needs to reach strong hardware compatibility.

• The criminals’ attack conditions are more relaxed due to the relatively private application
environment. Alternatively, the attack cost is cheap, and repeated attempts can be made.
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Fig.7.6 The online identity verification scenario. The customer completes an identity authentication
process online through themobile APP. During this process, it is usually required to make cooperative
actions according to the system prompts

• A variety of devices and unpredictable novel PAs keep evolving and unknown PAs may
be presented to them. Data-driven models may give unpredictable results when faced
with out-of-distribution samples.

• Customers could cooperate to a certain extent.
• Only one face is allowed in one operation process, and multiple faces will be regarded

as illegal operations.

Sensors in this scenario are usually diverse due to the customers’ diverse mobile devices.
In order to achieve satisfactory compatibility for the diverse hardware,wepreferRGBmodal-
ity because most hardware devices support this modality. However, approaches designed
with the single RGB modality usually have weak feature representation compared with
multimodal inputs. To bridge this gap, large-scale training data would be collected to cover
as many PAs and domains as possible.

Approaches in this scenario always treat the face PAD problem as a binary classification
task [35], and utilize binary cross-entropy loss to optimize the model. Domain adaptation
and generalization approaches [28, 32, 65] can also be applied in this scenario. For example,
meta-learning [44, 45, 66]-based methods can be adopted to improve the model’s gener-
alization capacity on unseen attacks and domains. To enhance model robustness, in this
scenario, the face PAD system usually receives additional dynamic information by requir-
ing the customers to cooperate to complete the facial actions [34, 67] or by changing the
color of the screen [85] (see Fig.7.7 for visualization). This interactive instructions is also
called Liveness Detection.
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Fig. 7.7 Color verification code. During one verification process, verifying whether the reflective
color matches the color verification code, in which the background presents high-brightness images
of different colors, provides additional dimensional knowledge for the face PAD algorithm

Protocols and Evaluations. For better evaluation under this scenario, we need to build a
sufficiently large dataset and a sufficiently rigorous testing protocol. Considering that the
attacker in this scenario can repeatedly attack the system in a private environment, we need
to ensure that the PAD algorithm can reach a high true positive rate for PAs and decrease the
false negative rate based on all bonafide samples being correctly detected. To further verify
this goal, the Receiver Operating Characteristic (ROC) curve [5] is proposed to evaluate the
face PAD method on the large-scale dataset. In the ROC, we pursue a lower false positive
rate and higher true negative rate under the same false positive rate.

Related Applications. In this scenario, there are some typical applications with similar
characteristics, such as the FaceID of mobile devices. In contrast, mobile phone manufac-
turers can select more sensors, some of which have multiple modalities and could improve
the security level.

7.5.2 Offline Payment Scenario

As illustrated in Fig. 7.8, this scenario refers to the process in which the customer utilizes
the fixed face recognition instrument for offline identity authentication or payment. Face
PAD approach aims to secure the face recognition system from malicious PAs including 3D
masks. This scenario has the following diverse characteristics:

• Offline payment scenarios will directly involve money transactions, which require the
system to dedicate a very high-security level that also needs the face anti-spoofing algo-
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Fig.7.8 The offline payment scenario. The customer completes a face recognition payment process
through an industry-specificmachinewith a fixed offline location. Such specialmachines are generally
equipped with multi-modalities sensors

rithm performance to reach a higher level. With respect to this, a single RGB modality
is almost incapable.

• The application also runs on the client side. However, the carrier equipment of the system
is generally a standardized industry-specific machine, and multimodal cameras can be
equipped. The domain in this scenario is relatively simple due to the device’s fixed sensor
and fixed location.

• The criminals’ attack conditions are constrained due to the relatively public application
environment and fixed device location. Generally, there will be staff or other customers
on site. For attackers, the attack cost increases as the numbers of repeated attempts are
reduced.

• In this scenario, the most significant challenge to the system comes from the 3D high-
fidelity masks and head models, because equipping multimodal cameras effectively
defends the common planar PAs such as print, replay, and paper mask.

• Customers are only required to do limited cooperation.
• Only one face is allowed in one operation process, and multiple faces will be regarded

as illegal operations.

Sensors in this scenario prefer to choose multimodal cameras, such as RGB and NIR
binocular camera or RGB, NIR and Depth structured light camera [22] or TOF camera [18].
The combination of NIR and Depth modalities aims to effectively defend against planar
attacks such as print and replay. As illustrated in Fig. 7.9, the 2D planar PAs cannot perform
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Fig. 7.9 Imaging of bonafide and spoofing faces in RGB, NIR, and Depth multimodal sensors. In
contrast, the 2D planar PAs show significantly different patterns in imaging NIR and Depth

face imaging in these two modalities. Combined with the RGB modality, it can defend
against some 3D forms of attack, such as 3D high-fidelity masks.

Approaches in this scenario treated the face PAD problem as a typical multimodal fusion
task.Withmulti-modal inputs, mainstreammethods extract complementarymultimodal fea-
tures using feature-level fusion strategies.As there is redundancy acrossmultimodal features,
direct feature concatenation easily results in high-dimensional features and overfitting. To
alleviate this, Zhang et al. [88] proposed the SD-Net to utilize a feature re-weighting mech-
anism to select the informative and discard the redundant channel features among RGB,
depth, and NIR modalities. However, even if the features of the three modalities are com-
bined, some spoofing faces are still challenging to discriminate, such as 3D high-fidelity
masks. To further boost the multi-modal performance, Liu et al. [39] proposed a large-scale
3D high-fidelity mask dataset and the contrastive context-aware learning, which is able to
leverage rich contexts accurately among pairs of bonafide and high-fidelity mask attack.

Protocols and Evaluations. A sufficiently large-scale dataset as well as rigorous testing
protocols should be established to evaluate the algorithm for this scenario. Considering that
the system in this scenario requires a very high-security level, we need to ensure that the
algorithm can reach a high true positive rate for the spoofing faces and decrease the false
negative rate based on all positive samples being correctly detected. ROC curve [5] is utilized
to evaluate the face PAD method on the large-scale dataset. In the ROC, we pursue a lower
false positive rate and higher true negative rate under the same false positive rate.

Related Applications. In this scenario, there are some typical applications with similar
characteristics, such as face access control in the buildings. Face access control has rela-
tively low requirements on the system’s security level, and different sensors can be selected
according to the actual condition and cost.
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Mask

Mask

Real

Real

RealReplay Print

Print

Fig.7.10 The surveillance scenario. There will bemultiple faces involved in the surveillance camera.
In addition to regular faces, there will be criminals wearing high-fidelity masks and faces that belong
to noise in the background of posters, advertisements, etc

7.5.3 Surveillance Scenario

As illustrated in Fig. 7.10, this scenario refers to the process of the customer unconsciously
passing through the surveillance camera framing area. Compared with the above two sce-
narios, the function of the face anti-spoofing module in the surveillance scenario is quite
different. The PAs in this scenario aremainly divided into two categories. One is the criminal
who wears a mask and mixes in the crowd trying to escape the surveillance. The other is
the PAs shown on the screen or demonstrated on the billboard in the background of the
surveillance. For the monitoring system, the first category is an attack behavior, and the
second category is a noise. This scenario has the following diverse characteristics:

• According to the properties of the above-mentioned two categories of face PAs, the face
PAD approach in this scenario aims to caution against abnormal behavior and remove
background noise, so it means nothing to the system that requires a very high-security
level.

• The application can run on the cloud side. Because this is surveillance or a similar
scenario, the sensors deployed are mostly surveillance cameras.

• The imaging in this scenario is a kind of long-range monitoring. In the long-range moni-
toring, the features of each low-resolution face are relatively sparse, which increases the
difficulty for the face PAD algorithm. Alternatively, in order to be caught by the surveil-
lance cameras as less as possible, the criminals will pass through the acquisition area



7 Face Presentation Attack Detection 233

of the cameras as quickly as possible. In other words, the number of repeated attacks is
reduced.

• In long-range camera monitoring, the most challenging problem in this scenario is
whether the face PAD algorithm could effectively discriminate bonafide faces, 3D high-
fidelity masks, and print/replay in the background.

• The customers are completely passive and not required to cooperate.
• The number of faces is no longer a limitation toward the system.

Sensors deployed in this scenario are mostly surveillance cameras [55]. The images are
captured by the cameras with long imaging distance and wide imaging range. Multiple faces
emerge in the viewfinder at the same time and at different distances. It also includes faces
on screens and posters. Some of these sensors also contain multimodal modules, and these
multimodal cameras (such as NIR) can mainly deal with dark light environments. In fact,
due to the long distance, it is challenging to capture rich spoofing cues. Alternatively, in this
scenario, only the RGB modality can provide adequate embedding knowledge.

Approaches in this scenario formulate a long-distance face PAD problem. To the best of
our knowledge, this issue is less studied in the current face PAD community, and we still do
not have a standardized, well-defined benchmark.

Protocols and Evaluations. To better evaluate the algorithm for this scenario, we need to
establish a sufficiently large-scale dataset as well as generalized protocols. Considering that
the system in this scenario does not require a very high-security level, we firstly ensure that
the algorithm can reach a high true negative rate and bonafide faces will not be misidentified,
in case it makes the system repeatedly alarm. Based on this foundation, we will continue
to decrease the false negative rate. To further verify this goal, the ROC curve [5] is utilized
to evaluate the face PAD method on the large-scale dataset. In the ROC, we pursue a lower
false negative rate and higher true positive rate under the same false negative rate.

Related Applications. In this scenario, there are some typical applications with similar
characteristics, such as the passenger flow monitoring in the market. In contrast, face PAD
approaches in this type of system only require excluding the face on the poster or screen.

7.6 Conclusion and Future Challenge

In this chapter, a comprehensive review of the research and practical applications related
to face PAD are carried out. On the one hand, handcrafted feature- and deep learning-
based approaches based on unimodal or multimodal cameras can all detect face PAs to a
certain extent without rigorous interaction. It is still hard to say which feature performs
better in different application scenarios. For example, traditional rPPG-based methods are
good at 3D mask attack detection in unimodal RGB scenarios while appearance-based
deep learning methods perform well on 2D face PAD. Extensive experiments and practical
applications have proved that (1) combining multiple features can achieve better face PAD
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results; and (2) task-aware prior knowledge (e.g., pixel-wise supervision), advanced learning
paradigms (e.g., domain generalization) andmultimodal inputs (e.g., RGB–NIR–Depth) can
benefit the discrimination, generalization, and interpretability of facePADalgorithms.On the
other hand, hardware cost of multimodal sensors (e.g., RGB+Depth+NIR is more expensive
and costs more spatial spaces than RGB+Depth or RGB+NIR) and practical application
requirements (e.g., distance and real-time efficiency) need to be comprehensively considered
for real-world deployment under different application scenarios.

FacePADhas achieved rapid improvement over the past fewyears due to advanced camera
sensors and well-designed algorithms. However, face PAD is still an unsolved problem
in terms of task-oriented challenges such as subtle spoof pattern representation, complex
real-world domain gaps, and rapidly iterative novel attacks as well as novel application
scenarios like long-range monitoring for surveillance. Here, we list the two limitations of
the current development. On one side, the evaluation under saturating and unpractical testing
benchmarks/protocols cannot really reflect the effectiveness of the methods for real-world
applications. For example, most datasets are recorded in controlled lab environments but
rarely considering the real-world offline payment and surveillance scenarios. Thus, it is
urgent to establish more large-scale practical application-oriented benchmarks to bridge the
gaps between academia and industry. On the other side, most existing works train and adapt
deep face PAD models with huge stored source face data in fixed scenarios, and neglect (1)
the privacy and biometric sensitivity issue; and (2) the continuous adaptation for emerging
domains and attacks. To design source-free continuous learning face PAD algorithms might
be potential for domain-robust real-world deployment and dynamic updating against novel
attacks.
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8Face Feature Embedding

Yuge Huang, Jianqing Xu, and Shouhong Ding

8.1 Introduction

A facial feature typically represents the original image in an embedding space, where the
distance between embeddings is used to measure face similarity. To implement face verifi-
cation and recognition at scale, it is indispensable to have a discriminative face embedding
in which faces of the same person have small distances and faces of different people have
large distances. Once such embedding is obtained, face verification involves thresholding the
distance between the two embeddings, and face recognition becomes a k-Nearest Neighbor
(k-NN) classification problem that takes feature embeddings as inputs rather than original
images.

Traditional methods attempt to utilize handcrafted features as facial embeddings. The
previous works (i.e., Kanade’s work [30] in the early 70s) focused on the investigation of
geometrical relationships, including distances and angles between facial landmarks (such
as eyes, mouths, etc.). Later, numerous methods have been proposed to explore a variety
of features for face recognition, such as Gabor [58], SIFT [5], and Local Binary Patterns
[1, 2]. However, such features are susceptible to variants of pose and illumination, failing
to produce satisfactory performance in practical applications. In recent years, the revival
of Convolutional Neural Networks (CNN) has achieved remarkable results in deep face
recognition, owing to vast amounts of training data [6, 87], efficient network architectures
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[8, 37], and the application of an appropriate loss functions [9, 72]. Besides, CNNs learn the
embeddings of deep facial features through the training process, and these facial embeddings
have a great discriminative power.

This chapter aims to review previous works on these three aspects in obtaining a dis-
criminative face feature embedding. The remaining of the chapter is structured as follows.
Section 8.2 reviews various loss functions for general deep face recognition. Sections 8.3
and 8.4 cover the commonly-used neural network architectures and large-scale training
datasets, respectively. Section 8.5 provides an overview of several prevalent topics in deep
face recognition, including long tail, noise-tolerant, uncertainty learning, and cross-variation
face recognition. Section 8.6 presents three distinct loss functions, each designed for a spe-
cific purpose in deep face recognition: general face embedding learning, cross-variation face
recognition, and uncertainty estimation. Finally, Sect. 8.7 draws a conclusion of this chapter.

8.2 Loss Function

A primary challenge for deep face recognition is to design an appropriate loss function
that enhances the discriminative power of the face feature embedding. The initial deep
learning approaches for face recognition like DeepFace [66] and DeepID [59] train the
CNNs using a cross-entropy-based softmax loss function, which is commonly employed in
object recognition [18, 34]. This loss function can be formulated as follows:

L = − log
N∑

i=1

eWyi xi+byi
∑c

j=1 e
Wj xi+b j

, (8.1)

where N is the batch size, xi ∈ Rd is the feature embedding of i-th sample that belongs
to the yi class, Wj ∈ Rd is the j-th column of the weight W ∈ Rd×c and b j is the bias
term. c and d represent the number of classes (identities) and the size of feature embedding,
respectively. Nonetheless, researchers [42, 62] find that the learned features with the original
softmax are not discriminative enough for the practical face recognition problem, because
the testing identities are usually disjoint from the training set. Thereby, various extensions
of loss functions have been proposed to increase the discriminative power of face feature
embedding. These loss functions can be generally divided into two groups: softmax-based
classification losses and metric learning losses. Softmax-based classification techniques
typically enhance the discriminative power of the original softmax by incorporating amargin
penalty or mining strategy into the softmax formulation. Metric learning methods aim to
directly learn a mapping from face images to a compact Euclidean space, where inter-person
distance is increased and intra-person distance is decreased. In practice,many studies usually
combine the advantages of the aforementioned learning procedures to train the network.
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Fig. 8.1 General pipeline of softmax-based classification methods. At the training stage, the
embedding layer is followed by a fully connected classification layer. The whole network is trained
by a softmax-based classification loss function in an end-to-end manner. At the testing stage, the
classification layer is discarded andonly the face embeddings are used to performdistance calculations
or KNN classification for face verification or identification

8.2.1 Softmax-Based Classification Loss Function

The general pipeline of softmax-based methods is depicted in Fig. 8.1. In the training phase,
these methods add a fully connected classification layer after the embedding layer and
then train the entire network end-to-end to obtain face feature embeddings. In the testing
phase, the classification layer is discarded and only the face embeddings are used to perform
distance calculations or KNN classification for face verification or identification.

The initial efforts to improve the original softmax function start with introducing the
norm constraints. As demonstrated in [48], face feature embeddings trained with a softmax
loss have a tendency to overfit high-quality data and fail to correctly classify faces acquired
under challenging conditions. To overcome this disadvantage, L2-softmax [48] adds an
L2-constraint to the feature embeddings, which restricts them to lie on a hypersphere with
a fixed radius. DeepVisage [17] shares a similar philosophy but uses a particular case of
batch normalization to normalize the feature descriptor. Instead of directly utilizing the
hard normalization operation, Ring loss [86] employs soft normalization, where it gradually
learns to constrain the norm to the scaled unit circle. NormFace [71] and CoCo loss [43]
further apply L2 normalization constraint on both face embeddings and classification layer
weights. Consequently, the original softmax can be modified as follows:

L = − log
es(cos θyi )

es(cos θyi ) + ∑n
j=1, j �=yi

es(cos θ j )
. (8.2)

where the cosθ j is derived from the inner productWj xi when the individualweight is normal-
ized to ‖Wj‖ = 1 and the face feature is normalized and re-scaled to s. Despite the softmax
loss function reformulated by normalization improves face recognition performance, there
is still a performance gap for practical applications. Thus, in addition to feature or weight
normalization, margin-based or mining-based loss functions became increasingly popular.
These variants share the following general loss formulation:



242 Y. Huang et al.

L = − log
eT (cos θyi )

eT (cos θyi )+
∑n

j=1, j �=yi
eN (t,cos θ j )

,

(8.3)

where the functions T (cos θyi ) and N (t, cos θ j ) define the positive and negative cosine
similarities, respectively.

8.2.1.1 Margin-Based Loss Function
L-softmax [41] first introduces a multiplicative margin penalty into the original softmax
loss by letting T (cos θyi ) = ‖Wyi ‖‖xi‖cos(mθyi ), where m is the multiplicative margin.
Sphereface [42] simplifies this function further by normalizing the weights; specifically,
T (cos θyi ) = ‖xi‖cos(mθyi ). However, themultiplicative angular margin in cos(mθyi )must
be computed using a series of approximations, resulting in an unstable convergence during
training. Thus, they propose a hybrid loss function that incorporates the original softmax
loss to alleviate the convergence issue in practice. CosFace [72] and AM-Softmax [70] intro-
duce an additivemargin penalty on the cosine space T (cos θyi ) = scos(θyi ) + m, improving
the convergence stability and discriminative power of face feature embeddings. Then, Arc-
Face [9] introduces an additive angular margin penalty T (cos θyi ) = scos(θyi + m) that
corresponds to the geodesic distance margin penalty on a hypersphere manifold.

Although these margin-based loss functions are simple to implement and achieve better
performance than the original softmax, several problems persist. For example, two crucial
hyperparameters, s andm, which are essential for training stability and final recognition per-
formance, must be manually selected. Face samples of varying image quality share the same
fixed hyperparameter values. To address the first issue, AdaCos [81] deeply analyzes the
effects of the hyperparameters s and m in the margin-based softmax loss functions from the
perspective of classification probability and proposes a hyperparameter-free cosine-based
loss function. P2SGrad [82] investigates cosine softmax losses by analyzing their gradients
and proposes a probability-to-similarity gradient that uses cosine similarity rather than clas-
sification probability for updating neural network parameters. To address the second issue,
certain studies [32, 45] incorporate face image quality into margin-based loss functions,
thereby preventing the learned face feature embedding from overfit to low-quality samples.
Specifically, MagFace [45] employs a magnitude-aware margin to pull easy samples to
class centers while pushing difficult samples away. The positive cosine similarity is defined
as T (cos θyi ) = scos(θyi + m(ai )), where ai represents the magnitude of each feature and
m(ai ) is a strictly increasing convex function. AdaFace [32] assigns different importance to
different samples based on their image quality, thereby avoiding the overemphasis of uniden-
tifiable images while concentrating on challenging yet recognizable samples. The positive
cosine similarity is defined as T (cos θyi ) = scos(θyi + gangle) − gadd , where gangle and
gadd are the functions of ‖ẑi‖ and ẑi is a normalized image quality in a batch.
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Table 8.1 The decision boundaries of softmax-based loss functions under the binary classification
case

Loss Decision boundary

L-softmax ‖Wyi ‖cos(mθyi ) = ‖Wj‖cos(mθ j )

NormFace cos θyi = cos θ j

SphereFace cos(mθyi ) = cos θ j

CosFace cos θyi − m = cos θ j

ArcFace cos(θyi + m) = cos θ j

MagFace cos(θyi + m(ai )) = cos θ j

AdaFace cos(θyi − m · ‖ẑi‖) − (m · ‖ẑi‖ + m) = cos θ j

MV-Arc-Softmax cos(θyi + m) = cos θ j (easy)

cos(θyi + m) = t cos θ j + t − 1 (hard)

CurricularFace cos(θyi + m) = cos θ j (easy)

cos(θyi + m) = (t + cos θ j ) cos θ j (hard)

8.2.1.2 Mining-Based Loss Function
A hard sample mining strategy is essential for enhancing the discriminative ability of face
feature embeddings, as hard samples are more informative and thus more discriminatory
than easy samples. Althoughmining-based loss functions such as Focal loss [38] and Online
Hard Sample Mining [56] are widely used in object detection, they are rarely employed in
face recognition. In face recognition, hard mining can be subdivided into hard-positive
and hard-negative mining. Hard-positive refers to faces that are visually dissimilar to the
same individual, whereas hard negative refers to faces that are visually similar to different
identities [19].

Recent studies [26, 74] introduce the hard-negativemining strategy into themargin-based
loss functions to enhance face feature embedding from the negative view. They both define
misclassified samples as hard samples. To emphasize hard samples, MV-Arc-Softmax [74]
re-weights the negative logits with an extra margin penalty. CurricularFace [26] employs
the Curriculum Learning (CL) strategy to concentrate on simple samples during the initial
training phase and hard samples later on. Table 8.1 provides a summary of the decision
boundaries of the softmax-based loss functions in the case of binary classification.

8.2.2 Metric Learning Loss Function

The objective of metric learning is to learn a distance function. As depicted in Fig. 8.2,
the core concept of metric learning is bringing together similar samples and pushing apart
dissimilar samples in a feature space. The contrastive loss [23, 61, 62] and the triplet loss [52]
are the commonly used metric learning-based loss functions. The contrastive function can
be formulated as follows:
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Fig.8.2 General pipeline of metric learning methods. The face embedding is learned by bringing
together similar samples and pushing apart dissimilar samples in a feature space

L =
{
max(0, ‖ f (xi ) − f (x j )‖ − ε+), yi = y j

max(0, ε− − ‖ f (xi ) − f (x j )‖), yi �= y j
(8.4)

where yi = y j denotes f (xi ) and f (x j ) is a positive pair, yi �= y j denotes a negative pair,
f (·) is the feature embedding function, and ε+ and ε− are the positive and negative margins,
respectively.DDML[23] only uses the contrastive loss,while theDeepID series ofworks [61,
62] combine the contrastive and softmax loss to learn a discriminative representation. In
contrast to the contrastive loss that considers the absolute distances of the matching pairs
and non-matching pairs, the triplet loss considers the relative difference of the distances
between them. The formula of the triplet loss is as follows:

L =
N∑

i=1

[‖ f (xai ) − f (x p
i )‖ − ‖ f (xai ) − f (xni )‖ + ε

]
+ (8.5)

where ε is the margin, xai denotes the anchor sample, x p
i and xni refer to the positive sam-

ple and negative sample, respectively. FaceNet [52] is the first work to directly optimize
the embedding only using the triplet loss. Following FaceNet, several works [50, 51] also
adopt the triplet loss as the training supervision. Due to the fact that contrastive loss and
triplet loss only consider one negative sample at a time, they are susceptible to combina-
torial explosion when dealing with massive amounts of training data containing numerous
negative pairs. Even though equipped with a hard sample mining strategy, they occasionally
encounter training instability due to the selection of training samples. Center loss [76] and
its variant [77] are simple alternatives to improve the original softmax loss. Center loss
learns a center for each class and penalizes the distances between the deep features and the
corresponding class centers. It is formulated as follows:

L = ‖ f (xi ) − cyi ‖ (8.6)

where f (xi ) is the face feature embedding belonging to the yi -th class and cyi is the learned
class center for class yi .
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By observing that the class center learned using the center loss is identical to the classi-
fication weight of the last layer using the softmax loss function, we may gain a unified
understanding of the softmax classification loss function and the metric learning func-
tion. Softmax-based loss functions can be viewed as prototype learning and use sample-
to-prototype comparisons between training samples and class-wise prototypes stored in the
final classification layer. In contrast, metric learning loss functions compare samples to
one another. Softmax-based and metric learning-based loss functions can be connected if
the prototype is likewise considered a sample. Several loss functions that unify these two
core paradigms are proposed based on this observation. Circle loss [63] presents a unified
formula for learning pair-wise and class-wise deep features simultaneously. VPL [11] rep-
resents each class as a distribution to simulate sample-to-sample comparison within the
classification framework.

8.3 Network Architectures

The advanced feature learning capability of deep convolutional networks contributes in part
to the rapid development of deep face recognition. This section summarizes the prevalent
network architectures for deep face recognition. These networks can be split into three
categories based on their design intent: general, specialized, and mobile networks.

8.3.1 General Networks

Face recognition is typically modeled as a visual classification task. Therefore, the state-
of-the-art classification networks can be easily used as feature extraction backbones for
face recognition. In the ImageNet2012 challenge, the solution utilizing AlexNet [34] as its
backbone outperforms the conventional approach by a large margin, allowing researchers to
glimpse the potential of convolutional networks for the first time. VGGNet [57] improves
AlexNet with a deeper network structure and a smaller 3 × 3 convolution kernel, demon-
strating that a deeper structure can enhance a network’s expressive ability. GoogLeNet [64]
proposes the structure of Inception as the basic unit of the network to further improve the
performance. VGGNet and GoogLeNet are afterward employed as the backbone for the face
recognition works, i.e., VGGface [47] and FaceNet [52] respectively, achieving remarkable
performance on the standard face benchmarks. Afterward, ResNet [18] with the residual
structure as the basic unit is proposed. The network solves training difficulty when the con-
volutional network’s depth increases. As a general-purpose backbone network, ResNet is
widely used in various tasks of computer vision. Consequently, works such as ArcFace [9]
and CurricularFace [26] employ a variant of ResNet as the backbone network for feature
extraction. Theseworks have achieved remarkable results on various face recognition testing
sets, greatly promoting the research progress in the field of face recognition. To obtain more
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discriminative face embeddings, DenseNet [25] presents a network structure with Dense
Block as the basic unit. This structure integrates and mixes the characteristics of differ-
ent layers, further mitigating the influence of gradient dispersion during network training.
Meanwhile, SENet [22] and AttentionNet [46] are proposed to extract key features. The
resulting features can be used as fundamental network components for face recognition.

8.3.2 Specialized Networks

Several network structures are specially designed to accommodate the characteristics of
face recognition tasks. The primary objective of these networks is to ensure that the
extracted features have to contain pertinent semantic information. GroupFace [33] intro-
duces a face recognition architecture consisting of K fully connected layers and proposes a
self-distributed grouping method to effectively supervise multiple latent group-aware rep-
resentations. AFRN [31] utilizes a feature-pair relational network to capture the relations
between two local appearance patches. Certain works [12, 60, 62] divide face images into
multiple patches and employ separate networks to extract patch embeddings. The features
extracted by each network are then combined into the face’s final feature embedding. FAN-
Face [78] achieves feature integration through a new proposed layer that combines the face
landmark network and the face feature extraction network to guide the face feature extraction
with face landmark information.

8.3.3 Mobile Networks

Although networks with hundreds of layers and millions of parameters achieve great recog-
nition accuracy, it is impossible to deploy these networks on a large number of mobile and
embedded devices. To solve the issue, many mobile networks are provided in order to strike
a compromise between network inference speed and recognition precision. SqeezeNet [28]
proposes to replace 3 × 3 convolution with 1 × 1 convolution, whereas the MobileNet
series [20, 21, 49] replace the conventional convolution with a depth-wise separable con-
volution. MobileFaceNet [8] applies the MobileNet idea to the development of a mobile
network for face recognition. Later, alternative networks for image recognition tasks have
emerged. For instance, ShuffleNet [80] proposes channel shuffle, while EfficientNet [67]
investigates the expansion of depth, breadth, and resolution during the network architec-
ture design. RepVGG [13] proposes a re-parameterization technique to produce a simple
architecture that is friendly to GPUs and dedicated inference chips. These networks have
demonstrated their efficacy in the object recognition task, and it is worthwhile to investigate
their applicability in deep face recognition.
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8.4 Large-Scale Training Datasets

Large-scale training datasets are essential for learning discriminative enough face embed-
dings. This section discusses the publicly available large-scale training datasets for face
recognition, summarized in Table 8.2.
CASIA-WebFace [79]: CASIA-WebFace is the first public dataset commonly used for deep
face recognition training. The dataset contains 500Kphotos of 10Kcelebrities collected from
the IMDbwebsite. It is semi-automatically cleaned via tag-constrained similarity clustering.
Specifically, the authors start with each celebrity’s main photo and those photos that contain
only one face.Then faces are gradually added to the dataset constrainedby feature similarities
and name tags.
CelebA [44]: CelebA is a large-scale face attributes dataset with over 200K photos of
celebrities, and each is annotated with 40 attributes. Images in this dataset cover large pose
variations and background clutter. Besides, CelebA has large diversities, large quantities,
and rich annotations, including 10, 177 identities, 202, 599 number of face images, and 5
landmark locations, 40 binary attributes annotations per image. The dataset can be employed
as the training and test sets for the following computer vision tasks: face attribute recognition,
face recognition, face detection, landmark (or facial part) localization, face editing, and face
synthesis.
UMDFace [4]: UMDFace is a face dataset containing two parts: static images and video
frames. The static image part contains 367, 888 face annotations for 8, 277 subjects divided
into 3 batches. The annotations contain human-curated bounding boxes for faces and esti-
mated pose (yaw, pitch, and roll), locations of twenty-one keypoints, and gender information
generated by a pre-trained neural network. The video frame part contains 3, 735, 476 anno-
tated video frames extracted from a total of 22, 075 for 3, 107 subjects. The annotations

Table 8.2 Public large-scale training datasets for face recognition

Dataset Year #Identities #Images Source Description

CASIA 2014 10575 494414 IMDb First published large-scale face
dataset

CelebA 2015 10,177 202,599 Search engine Rich annotations of attributes and
identities

UMDFace 2015 8277 367K Search engine Still images and video frames;
abundant variation of facial pose

MS1M 2016 100K 10M Search engine Large-scale public dataset of
celebrity faces; noisy

VGGFace2 2017 9131 3.31M Search engine Head part of long tail; cross pose,
age and ethnicity

IMDB 2018 57K 1.7M IMDB Large-scale noise-controlled dataset

Glint360K 2021 360K 17M Search engine Large-scale and cleaned dataset

WebFace260M 2021 4M 260M Search engine Largest public dataset of celebrity
faces
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contain the estimated pose (yaw, pitch, and roll), locations of twenty-one keypoints, and
gender information generated by a pre-trained neural network.
MS1M [16]: MS-Celeb-1M is a large-scale face recognition dataset consisting of 100K
identities with around 100 facial photos per identity. The initial identification labels are
automatically extracted from web sites. Consequently, the original dataset contains a sub-
stantial amount of noise. Deng et al. [9] improve this dataset semi-automatically and offer
MS1MV2 and MS1MV3 as noise-cleaned variants. This original MS1M dataset has been
withdrawn and should no longer be used.
VGGFace2 [6]:VGGFace2 ismade of around 3.31million images divided into 9131 classes,
each representing a different identity. There are twodivides of the dataset: one for training and
another for testing. The latter contains around 170000 images divided into 500 identities and
all the other images belong to the remaining 8631 classes available for training. To construct
the datasets, the authors focused their efforts on reaching a very low label noise and a high
pose and age diversity.
IMDb [69]: IMDb is a large-scale noise-controlled dataset for face recognition research.
The dataset contains about 1.7 million faces, 59K identities, which are manually cleaned
from 2.0 million raw images. All images are derived from the IMDb website.
Glint360K [3]: An et al. [3] merged CASIA, MS1MV2, and Celeb500K face datasets, and
cleaned the mixed dataset to form a new face training dataset called Glint360K. This dataset
contains 17 million images of 360K individuals.
WebFace260M [87]: WebFace260M is a newmillion-scale face benchmark constructed for
the research community to close the data gap behind the industry. It provides a noisy version
containing 4M identities and 260M faces and high-quality training data with 42M images
of 2M identities cleaned by an automatic cleaning method.

8.5 Specific Face Recognition Topics

In addition to the loss function, network architecture, and training dataset, several problems
still need to be solved to obtain a good face embedding in various scenarios. This section
discusses several specific research topics in deep face recognition, including long tail, cross-
variation, noise-robust, and uncertainty learning.

8.5.1 Long-Tail Learning

Most large-scale face datasets exhibit long-tailed distribution. That is, only a limited number
of classes (persons) frequently appear, while most of the other classes have spare exam-
ples [83]. A native solution to this issue is simply cutting the tailed data and only keeping
identities with enough examples [47]. The flaw of such a disposal strategy, however, is that
information within these data may be omitted. Thus, several methods are proposed for incor-
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porating such complementary knowledge into rich classes in order to improve the overall
performance of face recognition. Range loss [83] and MML [75] investigate the hybrid
approach that combines the softmax and metric learning loss functions in order to utilize
long-tailed data. In particular, Range loss minimizes the k largest range’s mean values in
one class and maximizes the shortest inter-class distance within one batch. MML increases
the margin between these overly close class center pairs by establishing a minimum margin
for all class center pairs. An alternative solution is to integrate the adaptive margin into the
margin-based softmax loss function. AdaptiveFace [40] uses an adaptive margin to make
the model learn a particular margin for each class for adaptively squeezing its intra-class
variations. Fair loss [39] learns an appropriate adaptive margin by Deep Q-learning for each
class.

8.5.2 Cross-Variation Face Recognition

In real-world applications of face recognition, a primary challenge is to handle the diverse
variation in pose, resolution, race and illumination, etc. Thus, it is essential to improve the
generalization ability of face feature embedding across diverse variation factors. There are
usually two schemes: variation-specific and generic methods to recognize these hard sam-
ples with large variations. Variation-specific methods are usually designed for a particular
task. For instance, to achieve pose-invariant face recognition, either handcrafted or learned
features are extracted to enhance robustness against pose while remaining discriminative to
the identities [65]. To address resolution-invariant face recognition, a unified feature space
is learned in [53] for mapping Low-Resolution (LR) and High-Resolution (HR) images.
However, the aforementioned methods were specifically designed for the respective varia-
tions, therefore, their ability to generalize from one variation to another is limited. Different
from variation-specific methods, generic methods focus on improving the discriminative
power of face embeddings under cross variations. URFace [55] presents a framework for
learning universal representations with significant variations unseen in the training data. It
divides the feature embedding into multiple sub-embeddings corresponding to a number of
semantically significant variations, such as low resolution, occlusion, and head pose, and
then trains each sub-embedding with synthetic data. DDL [27] utilizes a distillation loss to
improve the discriminative ability of face embedding on samples with large variations.

8.5.3 Noise-Robust Learning

Due to the data source and collectionmethods, label noise is inevitable in large-scale datasets
for face recognition. This work [69] sheds light on the influences of data noise for the
face recognition task and demonstrates that margin-based methods are more susceptible to
massive label noise. To solve the problem, certain studies [9, 69, 85] aim to clean the noise
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data manually or algorithmically. For example, Deng et al. [9] refine the originalMS1M, and
Wang et al. [69] manually construct a noise-controlled IMDb-Face dataset. Zhang et al. [85]
propose an automatic noise cleansing framework using two cascaded graph convolutional
networks, which perform the global-to-local discrimination to select valuable data in a noisy
environment.

Due to the expense of accurate manual annotations, an embedding learning of noise-
robust face has garnered considerable interest. Hu et al. [24] present a noise-tolerant loss
function by computing time-varying weights for samples based on the angle distribution.
Wang et al. [73] introduced a co-mining strategy that uses the loss values as the cue to detect
noisy labels and re-weights the predicted clean faces to make them dominate the model
training. AMC [84] is a meta learning-based noise-cleaning algorithm that learns the data
distribution to be cleaned and makes automatic adjustments based on class differences. Sub-
center ArcFace [10] relaxes the intra-class constraint of ArcFace to improve the robustness
against label noise. Specifically, it adopts K sub-centers for each class, and the training
sample only needs to be close to any of the K positive sub-centers as opposed to a single
positive center. The recentwork PartialFC [3] alleviates the influence of the noise by random-
sampling a subset of negative class centers to compute the margin-based softmax loss. Even
though some progress has been made, it remains a challenging research topic to learn a
discriminative feature embedding under noise.

8.5.4 Uncertainty Learning

In deep face recognition, embedding techniques with margin-based softmax loss functions
have proven to be highly effective. The manifold spaces exploited by these approaches are
spherical.However, thesemodels rely ondeterministic embeddings andhence suffer from the
feature ambiguity dilemma. Whereby, low-quality or noisy images are mapped into poorly
learned regions of representation space, leading to inaccuracies. To overcome this challenge,
PFE [54] and DUL [7] leverage probabilistic modeling to model face images with a multi-
variate independent Gaussian distribution instead of a pointmass. As a result, one anticipates
that the related Gaussian covariance will indicate the degree to find the ambiguous facial
feature, serving as a measure of uncertainty. These methods are modeled in Gaussian statis-
tics and simultaneously output multiple Gaussian statistical variables. SCF [36] presents a
framework for face confidence learning in spherical space. Mathematically, it extends von
Mises-Fisher density to its r -radius counterpart and derives a new closed-form optimiza-
tion objective. Theoretically, the suggested probabilistic approach improves interpretability,
leading to principled feature pooling.
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8.6 Specific Loss Functions for Deep Face Recognition

This section introduces three specific loss functions for deep face recognition. Specifically,
Sect. 8.6.1 presents a softmax-based classification loss function termed CurricularFace for
discriminative face feature learning. Section 8.6.2 presents a general loss function termed
DDL to handle hard face samples with diverse variations in real-world face recognition
applications. Section 8.6.3 presents a von Mises-Fisher density-based loss function termed
SCF for face confidence learning in spherical space.

8.6.1 Adaptive Curricular Learning Loss (CurricularFace)

In the past margin-based softmax loss functions, the mining strategy was disregarded. Con-
sequently, the difficulty of each sample is not exploited, leading to convergence issues when
employing a large margin on small backbones, e.g., MobileFaceNet [8]. Also, previous
mining-based loss functions over-emphasize hard samples in the early training stage, hin-
dering the model from convergence. Taking ArcFace and MV-Arc-Softmax as examples,
ArcFace introduces a fixed margin T (cos θyi ) = cos(θyi + m) from the perspective of the
positive cosine similarity. MV-Arc-Softmax introduces an additional margin from the per-
spective of negative cosine similarity for hard samples. As illustrated in Fig. 8.3, the decision
condition of ArcFace shifts from cos θyi = cos θ j (i.e., blue line) to cos(θyi + m) = cos θ j

(red line) for each sample, and the decision boundary of MV-Arc-Softmax becomes
cos(θyi + m) = t cos θ j + t − 1 (green line). Conversely, the adaptive curriculum learning
loss, the first attempt to introduce adaptive curriculum learning into deep face recogni-
tion, adjusts the weights of hard samples in different training stages. The decision condi-
tion becomes cos(θyi + m) = (t + cos θ j ) cos θ j (purple line). During training, the decision
boundary for hard samples changes from one purple line (early stage) to another (later
stage), which emphasizes easy samples first and hard samples later.

Fig. 8.3 Blue line, red line, green line and purple line denote the decision boundary of Softmax,
ArcFace, MV-Arc-Softmax, and CurricularFace, respectively. m denotes the angular margin added
by ArcFace. d denotes the additional margin of MV-Arc-Softmax and CurricularFace. In MV-Arc-
Softmax, d = (t − 1) cos θ j + t − 1. In CurricularFace, d = (t + cos θ j − 1) cos θ j
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8.6.1.1 Loss Function Formulation
The formulation of this loss function is contained in the general form 8.3, where positive
and negative cosine similarity functions are defined as follows:

T (cos θyi ) = cos(θyi + m), (8.7)

N (t, cosθ j ) =
{
cos θ j , T (cos θyi ) − cos θ j ≥ 0

cos θ j (t + cos θ j ), T (cos θyi ) − cos θ j < 0.
(8.8)

It should be noted that the positive cosine similarity can adopt any margin-based loss func-
tions andArcFace is adopted as an example. As shown in Fig. 8.4, themodulation coefficient
I (t, θ j ) of hard sample negative cosine similarity depends on both the values of t and θ j .
At the early training stage, learning from easy samples is beneficial for model convergence.
Thus, t should be close to zero and I (·) = t + cos θ j is smaller than 1.Moreover, theweights
of hard samples are reduced and easy samples are emphasized relatively. As training goes
on, the model gradually focuses on the hard samples, i.e., the value of t should increase
and I (·) is larger than 1. Therefore, the hard samples are emphasized with larger weights.
Moreover, within the same training stage, I (·) is monotonically decreasing with θ j so that
a harder sample can be assigned with a larger coefficient according to its difficulty. The

Hard Hard

Early Stage

Later Stage

Harder Harder

Fig. 8.4 Different training strategies for modulating negative cosine similarities of hard samples
(i.e., the misclassified samples) in ArcFace [9], MV-Arc-Softmax [74], and CurricularFace. Left:
The modulation coefficients I (t, cos θ j ) for negative cosine similarities of hard samples in different
methods, where t is an adaptively estimated parameter and θ j denotes the angle between the hard
sample and the non-ground truth j-class center. Right: The corresponding hard samples’ negative
cosine similarities N (t, cos θ j ) = I (t, cos θ j ) cos θ j + c after modulation, where c indicates a con-
stant. On one hand, during early training stages (e.g., t is close to 0), the hard sample’s negative cosine
similarities are usually reduced and this leads to a smaller loss for the hard sample than the original
one. Therefore, easier samples are relatively emphasized; during later training stages (e.g., t is close
to 1), the hard sample’s negative cosine similarities are enhanced and thus leads to larger hard sample
loss. On the other hand, in the same training stage, the hard samples’ negative cosine similarities
are modulated with cos θ j . Specifically, the smaller the angle θ j is, the larger the modulation
coefficient should be
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value of the parameter t is automatically estimated, otherwise it may require lots of effort
for manual tuning.

8.6.1.2 Optimization
CurricularFace can be easily optimized by the conventional stochastic gradient descent.
Assuming that xi denotes the deep feature of i-th sample belonging to the yi class, the
function input is the logit f j , where j denotes the j-th class. In the forwarding process,
when j = yi , it is the same as the ArcFace, i.e., f j = sT (cos θyi ), T (cos θyi ) = cos(θyi +
m). When j �= yi , it has two cases. If xi is an easy sample, it is the same as the original
softmax, i.e., f j = s cos θ j . Otherwise, it will be modulated as f j = sN (t, cos θ j ), where
N (t, cos θ j ) = (t + cos θ j ) cos θ j . In the backward propagation process, the gradients w.r.t.
xi and Wj can also be divided into three cases and computed as follows:

∂L

∂xi
=

⎧
⎪⎪⎨

⎪⎪⎩

∂L
∂ fyi

(s
sin(θyi +m)

sin θyi
)Wyi , j = yi

∂L
∂ f j

sW j , j �= yi , easy
∂L
∂ f j

s(2 cos θ j + t)Wj j �= yi , hard

∂L

∂Wj
=

⎧
⎪⎪⎨

⎪⎪⎩

∂L
∂ fyi

(s
sin(θyi +m)

sin θyi
)xi , j = yi

∂L
∂ f j

sxi , j �= yi , easy
∂L
∂ f j

s(2 cos θ j + t)xi j �= yi , hard

(8.9)

Based on the above formulations, the gradient modulation coefficients of hard samples
are determined by M(·) = 2 cos θ j + t , which consists of two parts, the negative cosine
similarity cos θ j and the value of t . As shown in Fig. 8.5, on the one hand, the coefficients
increasewith the adaptive estimation of t (described in the next subsection) to emphasize hard
samples. On the other hand, these coefficients are assigned different importance according
to their corresponding difficulty (cos θ j ). Therefore, the values of M in Fig. 8.5 are plotted
as a range at each training iteration. However, the coefficients are fixed to be 1 and a constant
t in ArcFace and MV-Arc-Softmax, respectively.

8.6.1.3 Adaptive Estimation of t
It is critical to determine appropriate values of t in different training stages. Ideally, the
value of t can indicate the model training stages. Empirically, the average of positive cosine
similarities is a good indicator. However, mini-batch statistic-based methods usually face
an issue: when much extreme data is sampled in one mini-batch, the statistics can be vastly
noisy and the estimation will be unstable. ExponentialMoving Average (EMA) is a common
solution to address this issue [35]. Specifically, let r (k) be the average of the positive cosine
similarities of the k-th batch and be formulated as r (k) = ∑

i cos θyi , the value of t can be
defined as follows:
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Fig. 8.5 The adaptive
parameter t (red line) and
gradient modulation
coefficients M of
CurricularFace (green area)
and MV-Arc-Softmax (blue
line) in training. Since the
number of mined hard samples
reduces as training progresses,
the green area, i.e., the range of
M values, is relatively smooth
in the early stage and exhibits
burrs in later stage

Algorithm 8.1: CurricularFace
Input: The deep feature of i-th sample xi with its label yi , last fully connected layer

parameters W , cosine similarity cos θ j of two vectors, embedding network parameters
�, learning rate λ, and margin m

iteration number k ← 0, parameter t ← 0, m ← 0.5;
while not converged do

if cos(θyi + m) ≥ cos θ j then
N (t, cos θ j ) = cos θ j ;

else
N (t, cos θ j ) = (t(k) + cos θ j ) cos θ j ;

end
T (cos θyi ) = cos(θyi + m);
Compute the loss L by Eq. 8.11;
Compute the gradients of xi and Wj by Eq. 8.9;

Update the parameters W and � by: W (k+1) = W (k) − λ(k) ∂L
∂W ,

�(k+1) = �(k) − λ(k) ∂L
∂xi

∂xi
∂�(k) ;

k ← k + 1;
Update the parameter t by Eq. 8.10;

end
Output: W , �.

t(k) = αr (k) + (1 − α)t(k−1), (8.10)

where t0 = 0, α is the momentum parameter and set to 0.99. With the EMA, the hyperpa-
rameter tuning is avoided and the modulation coefficients of hard sample negative cosine
similarities I (·) can be adaptive to the current training stage. To sum up, the loss function
of CurricularFace is formulated as follows:

L = − log
es cos(θyi +m)

es cos(θyi +m) + ∑n
j=1, j �=yi

esN (t (k),cos θ j )
, (8.11)
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where N (t (k), cos θ j ) is defined in Eq. 8.8. The entire training process is summarized in
Algorithm 8.1.

8.6.2 Distribution Distillation Loss (DDL)

Face images with significant variations are usually far away from the easy ones in the fea-
ture space and are much more challenging to tackle. This section refers to such samples
as hard samples. DDL is a loss function proposed to narrow the performance gap between
the easy and hard samples. It is generic and can be applied to diverse variations to improve
face recognition in hard samples by leveraging the best of both the variation-specific and
generic methods. Specifically, it first adopts current SotA face classifiers as the baseline
(e.g., Arcface) to construct the initial similarity distributions between teacher and student
according to the difficulties of samples, respectively, and then directly optimizes the simi-
larity distributions to improve the performance on hard samples. Figure 8.6 illustrates the
framework of DDL. The training set is first separated into two parts, i.e., E for easy sam-
ples and H for hard samples to form the teacher and student distributions, respectively. To
ensure a good teacher distribution, the state-of-the-art face recognition model [9] is used as
the initialization. The extracted features are subsequently used to construct the positive and
negative pairs (Sect. 8.6.2.1), which are further utilized to estimate the similarity distribu-
tions (Sect. 8.6.2.2). Finally, based on the similarity distributions, the DDL is utilized for
training the classifier (Sect. 8.6.2.3).

…

…

Positive Pairs

Different IDs

Positive Pairs

Different IDs

Embedded batch

Teacher

Student

Similarity Distribution

ConvNet

Fig. 8.6 Illustration of DDL. The b positive pairs (i.e., 2b samples) and b samples with different
identities are sampled for both the teacher PE and student PH distributions. {(s+Ei , s

−
Ei )|i = 1, ..., b}

indicates the b positive and negative pairs from PE respectively to estimate the teacher distribution.
{(s+Hi

, s−Hi
)|i = 1, ..., b} also indicates b positive and negative pairs from PH to estimate the student

distribution
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8.6.2.1 Sampling Strategy from PE and PH
Given two types of input data from both PE and PH , each mini-batch consists of four parts,
two kinds of positive pairs (i.e., (x1, x2) ∼ PE and (x1, x2) ∼ PH ), and two kinds of samples
with different identities (i.e., x ∼ PE and x ∼ PH ).
Positive Pairs. The positive pairs are constructed offline in advance, and each pair consists
of two samples with the same identity. As shown in Fig. 8.6, samples of each positive pair
are arranged in order. After embedding data into a high-dimensional feature space by a deep
network F , the similarity of a positive pair s+ can be obtained as follows:

s+i =< F (xposi1),F (xposi2 ) >, i = 1, ..., b (8.12)

where xposi1 , xposi2 are the samples of one positive pair. Note that positive pairs with simi-
larity less than 0 are usually outliers, which are deleted as a practical setting since the main
goal is not to specifically handle noise.
Negative Pairs.Different from the positive pairs, negative pairs are constructed online from
the samples with different identities via hard-negative mining. To be specific, the negative
pairs with the largest similarities are selected and the similarity of a negative pair s− is
defined as:

s−i = max
j

(
{s−i j =< F (

xnegi
)
,F (xneg j ) > | j = 1, ..., b}

)
, (8.13)

where xnegi , xneg j are from different subjects. Once the similarities of positive and negative
pairs are constructed, the corresponding distributions can be estimated, which is described
in the next subsection.

8.6.2.2 Similarity Distribution Estimation
The process of similarity distribution estimation is similar to [68], which is performed
in a simple and piece-wise differentiable manner using 1D histograms with soft assign-
ment. Specifically, two samples xi , x j from the same person form a positive pair, and
the corresponding label is denoted as mi j = +1. In contrast, two samples from different
persons form a negative pair, and the label is denoted as mi j = −1. Then, two sample
setsS+ = {s+ = 〈F (xi ),F (x j )〉|mi j = +1} andS− = {s− = 〈F (xi ),F (x j )〉|mi j = −1}
corresponding to the similarities of positive and negative pairs are obtained, respectively.
Let p+ and p− denote the two probability distributions of S+ and S−, respectively. As in
cosine distance-based methods [9], the similarity of each pair is bounded to [−1, 1], and
this type of one-dimensional distribution can be estimated by fitting simple histograms with
uniformly spaced bins. Assuming R-dimensional histograms H+and H−, with the nodes
t1 = −1, t2, · · · , tR = 1 uniformly filling [−1, 1] with the step 
 = 2

R−1 , the value h
+
r of

the histogram H+ at each bin is as follows:

h+
r = 1

|S+|
∑

(i, j):mi j=+1

δi, j,r , (8.14)
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where (i, j) spans all the positive pairs. The weights δi, j,r are chosen by an exponential
function as:

δi, j,r = exp(−γ (si j − tr )
2), (8.15)

where γ denotes the spread parameter of Gaussian kernel function, and tr denotes the r th
node of histograms. The estimation of H− proceeds analogously.

8.6.2.3 Loss Function Formulation
To minimize the performance disparity between easy and hard samples, two loss terms are
employed. These terms constrain the similarity distribution of the hard samples, also known
as the student distribution, to closely resemble the similarity distribution of the easy samples,
referred to as the teacher distribution.
KL Divergence Loss. The teacher distribution consists of two similarity distributions of
both positive and negative pairs, denoted as P+ and P−, respectively. Similarly, the student
distribution also consists of two similarity distributions, denoted as Q+ and Q−. The KL
divergence is adopted to constrain the similarity between the student and teacher distribu-
tions, which is defined as follows:

LK L = λ1DK L(P+||Q+) + λ2DK L(P−||Q−)

= λ1
∑

s

P+(s) log
P+(s)

Q+(s)
︸ ︷︷ ︸

K L loss on pos. pairs

+ λ2
∑

s

P−(s) log
P−(s)

Q−(s)
︸ ︷︷ ︸

K L loss on neg. pairs

, (8.16)

where λ1, λ2 are the weight parameters.
Order Loss. Only using KL loss does not guarantee good performance. In fact, the teacher
distribution may choose to approach the student distribution, leading to more confusion
regions between the distributions of positive and negative pairs. This is the opposite of the
objective (see Fig. 8.7). To address this problem, a simple yet effective term named order loss
is proposed to minimize the distances between the expectations of similarity distributions

Teacher Student

Only KL loss:

KL + order loss:

Fig. 8.7 Illustration of the effects of the order loss. Similarity distributions are constructed by
Arcface on SCface [15], in which 2 kinds of order distances are formed from both the teacher and
student distributions according to Eq. 8.17
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from the negative and positive pairs to control the overlap. The order loss can be formulated
as follows:

Lorder = −λ3
∑

(i, j)∈(p,q)

(E[S+
i ] − E[S−

j ]), (8.17)

where S+
p and S−

p denote the similarities of positive and negative pairs of the teacher dis-
tribution; S+

q and S−
q denote the similarities of positive and negative pairs of the student

distribution; and λ3 is the weight parameter.

8.6.3 Sphere Confidence Face (SCF)

Uncertainty estimation of face recognition features can reduce the impact of low-quality
pictures such as exaggerated expressions, large gestures, and blurring on the accuracy of
face recognition. PFE uses Gaussian distribution to model face features for estimating the
uncertainty. Unlike PFE defined in the Euclidean space, Sphere Confidence Face (SCF)
for face confidence learning in an r-radius spherical space captures the most likely feature
representation and obtains its local concentration value on spheres.

8.6.3.1 r-Radius vonMises-Fisher Distribution
Recent advances in face recognition (e.g., ArcFace and CosFace) suggest that spherical
space ismore suitable than Euclidean space for feature learning. The SCF adopts and extends
this concept to probabilistic confidence modeling. Specifically, given a face image x from
input space X, the conditional latent distribution is modeled as a von Mises-Fisher (vMF)
distribution [14] defined on a d-dimensional unit sphere Sd−1 ⊂ R

d ,

p(z′|x) = Cd(κx) exp

(
κxμ

T
x z

′
)

, (8.18)

Cd(κx) = κ
d/2−1
x

(2π)d/2Id/2−1(κx)
, (8.19)

where z′, μx ∈ S
d−1, κx ≥ 0 (subscripts indicate statistical dependencies on x) and Iα

denotes the modified Bessel function of the first kind at order α. μx and κx are the mean
direction and concentration parameters, respectively. The greater the value of κx, the higher
the concentration around the mean direction μx. The distribution is unimodal for κx > 0,
and it degenerates to uniform on the sphere for κx = 0.

Then, it is further extended to r -radius vMF, which is defined over the support of an
r -radius sphere rSd−1. Formally, for any z ∈ rSd−1, there exists a one-to-one correspon-
dence between z′ and z such that z = rz′. Then, the r -radius vMF density (denoted as
r -vMF(μx, κx)) can be obtained using the change-of-variable formula:
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p(z|x) = p(z′|x)
∣∣∣∣det

(
∂z′

∂z

)∣∣∣∣ = Cd(κx)

rd
exp

(
κx

r
μT
x z

)
. (8.20)

8.6.3.2 Loss Function Formulation
State-of-the-art deterministic embeddings defined in spherical spaces, such as ArcFace and
CosFace, are essentiallyDirac delta p(z|x) = δ(z − f (x)), where f : X → rSd−1 is a deter-
ministic mapping. According to the following definition, the Dirac delta can be extended
into spherical space.

Definition 8.1 (Spherical Dirac delta). A probability density p(z) on the support of an r -
radius sphere rSd−1 is spherical Dirac delta δ(z − z0) (for some fixed z0 ∈ rSd−1), if and
only if the following three conditions hold:

δ(z − z0) =
{
0 z �= z0
∞ z = z0

;
∫

rSd−1
δ(z − z0)dz = 1;

∫

rSd−1
δ(z − z0)φ(z)dz = φ(z0).

By utilizing the definition, a new training objective can be established. Deep face recog-
nition classifiers typically map the spherical feature space rSd−1 to a label space L via a
linear mapping parameterized by a matrixW ∈ R

n×d , where n is the number of face identi-
ties. Let wx∈c denote the classifier weight given a face image x belonging to class c, which
can be easily obtained from any given pre-trained model by extracting the cth row of W.
By virtue of these classifier weights, a conventional deterministic embedding as a spherical
Dirac delta can act as a desired latent prior over the sphere, and the training objective can
be defined as the KL divergence between the spherical Dirac delta and the model distri-
bution p(z|x). Specifically, the objective is to minimize Ex[DKL(q(z|x)||p(z|x))], where
q(z|x) = δ(z − wx∈c) and p(z|x) is modeled as r -radius vMF parameterized by μ(x) and
κ(x) (||μ(x)||2 = 1 and κ(x) > 0; here dependencies on x are shown in functional forms in
place of subscripts. The formulation is shown as follows:

min
p

Ex
[
DKL(q(z|x)||p(z|x))] = Ex

[
−

(∫

rSd−1
q(z|x) log p(z|x)dz

)
− Hq(z|x)(z)

]
.

(8.21)
Note that minimizing Eq. 8.21with regard to p is equivalent tominimizing the cross-entropy
between q and p with regard to μ and κ conditional on x. Therefore, the optimization
objective can be defined as the minimization of Ex[L(μ(x), κ(x))] over all μ and κ , where
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Fig. 8.8 A 2D toy example of training SCF. SCF learns a mapping from the input space X to an
r -radius spherical space, rS1 ⊂ R

2. The latent code of each image is assumed to obey a conditional
distribution, i.e., z|x ∼ r -vMF

(
μx, κx

)
, whereμx and κx are parameterized by neural networks. Each

identity has a class template wx∈c that induces a spherical Dirac delta, for c = 1, 2, 3. Optimization
proceeds by minimizing DKL

(
δ
(
z − wx∈c

)‖r -vMF
(
μx, κx

))
. Experiments are carried out using a

subset of MS1MV2 containing three identities. There are mislabeled samples for the third identity
which hamper training otherwise. SCF learns to assign low confidence to such samples in an adaptive
manner

L(μ(x), κ(x)) = −
∫

rSd−1
q(z|x) log p(z|x)dz

= −κ(x)
r

μ(x)Twx∈c −
(
d

2
− 1

)
log κ(x)

+ log(Id/2−1(κ(x))) + d

2
log 2πr2.

(8.22)

Figure 8.8 showcases a 2D toy example of training SCF. The detailed explanations can be
found in the figure caption.

8.6.3.3 Theoretical Perspective
In contrast to PFE which maximizes the expectation of the mutual likelihood score of
genuine pairs, the SCF framework minimizes the KL divergence between spherical Dirac
delta and r -radius vMF by virtue of classifier weights. This is a reasonable choice that can
be justified theoretically by Theorem 8.1. Intuitively, regularization to the spherical Dirac
delta δ encourages the latents that are closer to their corresponding classifier weights to have
larger concentration values (thus higher confidence); and vice versa (see Theorem 8.2).

Theorem 8.1 An r-radius vMF density r-vMF(μ, κ) tends to a spherical Dirac delta δ(z −
rμ), as κ → ∞.
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Proof By leveraging the asymptotic expansion of the modified Bessel function of the first
kind: for any complex number z with large |z| and | arg z| < π/2,

Iα(z) ∼ ez√
2π z

(
1 +

∞∑

N=1

(−1)N

N !(8z)N
N∏

n=1

(
4α2 − (2n − 1)2

)
)

, (8.23)

when κ → ∞, Id/2−1(κ) ∼ eκ/
√
2πκ . Then, these theoretical results (Theorem 8.1) can

be readily shown with this fact given. �

Theorem 8.2 The quantity cos 〈μ(x),wx∈c〉 is a strictly increasing function of κ∗ in the
interval (0, +∞), where κ∗ = argminκ L(μ, κ).

Proof Taking partial derivative of the loss function L(μ, κ) with regard to κ and setting it
to zero yields the equality

∂L
∂κ

:= 0 =⇒ cos 〈μ(x),wx∈c〉 = Id/2(κ
∗)

Id/2−1(κ∗)
, (8.24)

where κ∗ = argminκ L(μ, κ). Then, for any u > v ≥ 0 and κ > 0, define Fuv(κ) :=
Iu(κ)/Iv(κ). According to [29], the following properties of Fuv(κ) can be obtained:

lim
κ→0

Fuv(κ) = 0, lim
κ→∞ Fuv(κ) = 1. (8.25)

Furthermore, 0 < Fuv(κ) < 1 and its derivative is always positive in the interval (0, +∞),
i.e., F ′

uv(κ) > 0, which concludes the proof. �

Theorem 8.2 suggests that the closer μ gets to wx∈c the higher the value of κ∗ is. For
models trained with softmax-based loss, the smaller the angle betweenμ and its class center
wx∈c is, the more confident prediction the model has. Given only one face image during the
testing phase, predicting its class center for the unknown subject is an ill-posed problem. This
framework circumvents this difficulty by predicting its kappa confidence, a mathematical
measure of how close the test face image is to its unknown class center.

8.6.3.4 Feature Pooling with Confidence
In cases where one subject has multiple face images (observations), it is desirable to obtain
one single compact representation from multiple ones before performing face verification
using cosine distance. Given two subjects A and B, eachwithmultiple images {x·

(m)} (“·” can
be either A or B), the proposed model predicts their statistics μ·

(m) and κ ·
(m). Theorem 8.2

suggests that the proposed framework allows a natural interpretation of κ∗ to be a measure
of confidence (the inverse of uncertainty). This leads to a principled feature pooling:
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Fig. 8.9 Left: the function plot of the inverse of Eq. 8.24. Bottom right: the empirical correlation
between cosine value cos 〈μ(x),wx∈c〉 and concentration value κ . Top right: marginalized empirical
densities of cosine value on two backbones

zA =
∑

m κ A
(m)μ

A
(m)∑

m κ A
(m)

, zB =
∑

m κB
(m)μ

B
(m)∑

m κB
(m)

, (8.26)

where zA and zB are pooled features for A and B, respectively. Then, cosine distance is
utilized to measure the similarity, i.e., cos〈zA, zB〉. As illustrated in Fig. 8.9 (right), there
is a strong correlation between the cosine value cos 〈μ(x),wx∈c〉 and the concentration
parameter κ . The closer the angular distance between μ(x) and wx∈c is, the higher the
concentration value (confidence) becomes. This corroborates Theorem 1, indicating that the
confidence model indeed learns the latent distribution that is unimodal vMF for each single
class and forms a mixture of vMFs overall, which confirms the hypothesis in SCF.

8.7 Conclusions

In this chapter, we provide a complete review of the critical factors for obtaining a discrimi-
native face feature embedding, including loss functions, network structures, and commonly
used large public training datasets. In addition, we briefly introduce specific topics related to
deep face feature embedding. These include long tail learning, noise-robust learning, uncer-
tainty learning, and cross-variation face recognition. Deep face recognition has dramatically
improved SOTA’s performance and fostered the development of successful real-world appli-
cations by leveraging large-scale annotated data and innovative deep learning techniques. To
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further improve deep facial feature embeddings, however, several remaining issues should
be resolved. For example, it is vital to evaluate and boost the trustworthiness of the recog-
nition system with the wild application of the face recognition system. Thus, research on
improving the fairness, interpretability, security, and privacy of face feature embedding is
essential. Although a large amount of labeled data is already available, data from actual
application scenes is still required for training to improve the recognition performance of
the corresponding scenes. Labeling the face data of these scenes is a time-consuming and
labor-intensive task. Thus, exploring effectiveways to utilize these unlabeled data to enhance
face recognition is a promising research direction.
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9Video-Based Face Recognition

Anirudh Nanduri, Jingxiao Zheng, and Rama Chellappa

9.1 Introduction

Video-based face recognition is an active research topic because of a wide range of applica-
tions including visual surveillance, access control, video content analysis, etc. Compared to
still face recognition, video-based face recognition is more challenging due to a much larger
amount of data to be processed and significant intra/inter-class variations caused by motion
blur, low video quality, occlusion, frequent scene changes, and unconstrained acquisition
conditions.

To develop the next generation of unconstrained video-based face recognition systems,
two datasets have been recently introduced, IARPA Benchmark B (IJB-B) [54] and IARPA
Janus Surveillance Video Benchmark (IJB-S) [23], acquired under more challenging sce-
narios, compared to the Multiple Biometric Grand Challenge (MBGC) dataset [30] and the
Face and Ocular Challenge Series (FOCS) dataset [32] which were collected in relatively
controlled conditions. IJB-B and IJB-S datasets were captured in unconstrained settings and
contain faces with much more intra/inter-class variations on pose, illumination, occlusion,
video quality, scale, etc.
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The IJB-B dataset is a template-based dataset that contains 1845 subjects with 11,754
images, 55,025 frames, and 7,011 videos where a template consists of a varying number of
still images and video frames from different sources. These images and videos are totally
unconstrained, with large variations in pose, illumination, image quality, etc. Samples from
this dataset are shown in Fig. 9.1. In addition, the dataset comes with protocols for 1-to-1
template-based face verification, 1-to-N template-based open-set face identification, and 1-
to-N open-set video face identification. For the video face identification protocol, the gallery
is a set of still-image templates. The probe is a set of videos (e.g., news videos), each of
which contains multiple shots with multiple people and one bounding box annotation to
specify the subject of interest. Probes of videos are searched among galleries of still images.
Since the videos are composed of multiple shots, it is challenging to detect and associate the
faces for the subject of interest across shots due to large appearance changes. In addition,
how to efficiently leverage information frommultiple frames is another challenge, especially
when the frames are noisy.

Similar to the IJB-B dataset, the IJB-S dataset is also an unconstrained video dataset
focusing on real-world visual surveillance scenarios. It consists of 202 subjects from 1421
images and 398 surveillance videos, with 15,881,408 bounding box annotations. Samples of
frames from IJB-S are shown in Fig. 9.2. Three open-set identification protocols accompany
this dataset for surveillance video-based face recognitionwhere each video in these protocols
is captured from a static surveillance camera and contains single or multiple subjects: (1) in
surveillance-to-single protocol, probes collected from surveillance videos are searched in
galleries consisting of one single high-resolution still-image; (2) in surveillance-to-booking
protocol, same probes are searched among galleries consisting of seven high-resolution

Fig. 9.1 Example frames of a multiple-shot probe video in the IJB-B dataset. The target annotation
is in the red box and face detection results from the face detector are in green boxes
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Fig. 9.2 Example frames of two single-shot probe videos in the IJB-S dataset

still face images covering frontal and profile poses. Probe templates in (1) and (2) should
be detected and constructed by the recognition system itself; (3) in the most challenging
surveillance-to-surveillance protocol, both gallery and probe templates are from videos,
which implies that probe templates need to be compared with relatively low-quality gallery
templates.

From these datasets, we summarize the four common challenges in video-based face
recognition as follows:

1. For video-based face recognition, test data are from videos where each video contains
tens of thousands of frames and each frame may have several faces. This makes the
scalability of video-based face recognition a challenging problem. In order to make the
face recognition system to be operationally effective, each component of the system
should be fast, especially face detection, which is often the bottleneck in recognition.

2. Since faces are mostly from unconstrained videos, they have significant variations in
pose, expression, illumination, blur, occlusion, and video quality. Thus, any face repre-
sentations we design must be robust to these variations and to errors in face detection
and association steps.
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3. Faces with the same identity across different video frames need to be grouped by a
reliable face association method. Face recognition performance will degrade if faces
with different identities are grouped together. Videos in the IJB-B dataset are acquired
from multiple shots involving scene and view changes, while most videos in IJB-S are
low-quality remote surveillance videos. These conditions increase the difficulty of face
association.

4. Since each video contains a different number of faces for each identity, the next challenge
is how to efficiently aggregate a varying-length set of features from the same identity
into a fixed-size or unified representation. Exploiting the correlation information in a set
of faces generally results in better performance than using only a single face.

In this chapter, we mainly focus on the second and fourth challenges. After face asso-
ciation, video faces from the same identities are associated into sets and the correlation
between samples in the same set can be leveraged to improve the face recognition perfor-
mance. For video-based face recognition, a temporal deep learning model such as Recurrent
Neural Network (RNN) can be applied to yield a fixed-size encoded face representation.
However, large-scale labeled training data is needed to learn robust representations, which
is very expensive to collect in the context of the video-based recognition problem. This
is also true for the adaptive pooling method [28, 57] for image set-based face recognition
problems. For IJB-B and IJB-S datasets, the lack of large-scale training data makes it chal-
lenging to train an RNN-based method. Also, RNN can only work on sequential data, while
faces associated from videos are sometimes without a certain order. On the contrary, repre-
sentative and discriminative models based on manifolds and subspaces have also received
attention for image set-based face recognition [50, 52]. These methods model sets of image
samples as manifolds or subspaces and use appropriate similarity metrics for set-based iden-
tification and verification. One of the main advantages of subspace-based methods is that
different from the sample mean, the subspace representation encodes the correlation infor-
mation between samples. In low-quality videos, faces have significant variations due to blur,
extreme poses, and low resolution. Exploiting the correlation between samples by subspaces
will help to learn a more robust representation to capture these variations. Also, a fixed-size
representation is learned from an arbitrary number of video frames.

To summarize, we describe an automatic system by integrating deep learning components
to overcome the challenges in unconstrained video-based face recognition. The proposed
system first detects faces and facial landmarks using two state-of-the-art DCNN face detec-
tors, the Single Shot Detector (SSD) for faces [6] and the Deep Pyramid Single Shot Face
Detector (DPSSD) [38].Next,we extract deep features from the detected faces using state-of-
the-art DCNNs [38] for face recognition. SORT [4] and TFA [5] are used for face association
in single-shot/multiple-shot videos respectively. Finally, in the proposed face recognition
system,we learn a subspace representation from each video template andmatch pairs of tem-
plates using principal angles-based subspace-to-subspace similarity metric on the learned
subspace representations. An overview of the proposed system is shown in Fig. 9.3.
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Fig. 9.3 Overview of the proposed system

We present the results of our face recognition system on the challenging IJB-B and IJB-S
datasets, as well as MBGC and FOCS datasets. The results demonstrate that the proposed
system achieves improved performance over other deep learning-based baselines and state-
of-the-art approaches.

9.2 RelatedWork

9.2.1 Pre Deep LearningMethods

Frame-BasedFusion:An immediate possible utilization of temporal information for video-
based face recognition is to fuse the results obtained by a 2D face recognition algorithm on
each frame of the sequence. The video sequence can be seen as an unordered set of images
to be used for both training and testing phases. During testing one can use the sequence
as a set of probes, each of them providing a decision regarding the identity of the person.
Appropriate fusion techniques can then be applied to provide the final identity. Perhaps the
most frequently used fusion strategy in this case is majority voting [26, 45].

In [35], Park et al. adopt threematchers for frame-level face recognition: FaceVACS,PCA,
and correlation. They use the sum rule (withmin-max normalization) to fuse results obtained
from the threematchers and themaximumrule to fuse results of individual frames. In [25], the
concept of identity surface is proposed to represent the hyper-surface formed by projecting
face patterns of an individual to the feature vector space parameterized with respect to
pose. This surface is learned from gallery videos. In the testing stage, model trajectories
are synthesized on the identity surfaces of enrolled subjects after the pose parameters of the
probe video have been estimated. Every point on the trajectory corresponds to a frame of the
video and trajectory distance is defined as aweighted sumof point-wise distances. Themodel
trajectory that yields the minimum distance to the probe video’s trajectory gives the final
identification result. Based on the result that images live approximately in a bilinear space
of motion and illumination variables, Xu et al. estimate these parameters for each frame of
a probe video sequence with a registered 3D generic face model [56]. They then replace the
generic model with a person-specificmodel of each subject in the gallery to synthesize video
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sequences with the estimated illumination and motion parameters. Frame-wise comparison
is conducted between the synthesized videos and the probe video. A synthesized video is
considered as a winner if one of its frames yields the smallest distance across all frames and
all the subjects in the gallery.

Ensemble Matching: Without recourse to modeling temporal dynamics, one can con-
sider a video as an ensemble of images. Several methods have focused on utilizing image-
ensembles for object and face recognition [1, 14, 16, 41]. For example, it was shown by
Jacobs et al. that the illumination cone of a convex Lambertian surface can be approximated
by a 9-dimensional linear subspace [3]. Motivated by this, the set of face images of the
same person under varying illumination conditions is frequently modeled as a linear sub-
space of 9-dimensions. In such applications, an object ‘category’ consists of image sets of
several ‘instances’. A common approach in such applications is to approximate the image
space of a single face/object under these variations as a linear subspace. A simplistic model
for object appearance variations is then a mixture of subspaces. Zhou and Chellappa study
the problem of measuring similarity between two ensembles by projecting the data into a
Reproducing Kernel Hilbert Space (RKHS). The ensemble distance is then characterized
as the probabilistic distance (Chernoff distance, Bhattacharyya distance, Kullback–Leibler
(KL) divergence, etc.) in RKHS.

AppearanceModeling:Most face recognition approaches rely on amodel of appearance
for each individual subject. The simplest appearance model is a static image of the person.
Such appearance models are rather limited in utility in video-based face recognition tasks
where subjects may be imaged under varying viewpoints, illuminations, expressions, etc.
Thus, instead of using a static image as an appearance model, a sufficiently long video that
encompasses several variations in facial appearance can lend itself to building more robust
appearance models. Several methods have been proposed for extracting more descriptive
appearance models from videos. For example, a facial video is considered as a sequence
of images sampled from an “appearance manifold”. In principle, the appearance manifold
of a subject contains all possible appearances of the subject. In practice, the appearance
manifold for each person is estimated from training data of videos. For ease of estimation,
the appearance manifold is considered to be a collection of affine subspaces, where each
subspace encodes a set of similar appearances of the subject. Temporal variations of appear-
ances in a given video sequence are then modeled as transitions between the appearance
subspaces. Thismethod is robust to large appearance changes if sufficient 3D view variations
and illumination variations are available in the training set. Further, the tracking problem
can be integrated into this framework by searching for a bounding box on the test image that
minimizes the distance of the cropped region to the learned appearance manifold.

Basri and Jacobs [3] represent the appearance variations due to shape and illumination on
human faces, using the assumption that the ‘shape-illuminationmanifold’ of all possible illu-
minations and head poses is generic for human faces. This means that the shape-illumination
manifold can be estimated using a set of subjects exclusive of the test set. They show that the
effects of face shape and illumination can be learned using Probabilistic PCA from a small,
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unlabeled set of video sequences of faces in randomly varying lighting conditions. Given a
novel sequence, the learned model is used to decompose the face appearance manifold into
albedo and shape-illumination manifolds, producing the classification decision using robust
likelihood estimation.

Wang et al. [52] proposed a Manifold-to-Manifold Distance (MMD) for face recognition
based on image sets. In [51], the proposed approach models the image set with its second-
order statistic for image set classification.

Chen et al. [9] and [10] proposed a video-based face recognition algorithm using sparse
representations and dictionary learning. They used the identity information (face, body,
and motion) in multiple frames and the accompanying dynamic signature to recognize
people in unconstrained videos. Their approach is based on video-dictionaries for face and
body. Video-dictionaries are a generalization of sparse representation and dictionaries for
still images. They design the video-dictionaries to implicitly encode temporal, pose, and
illumination information. In addition, the video-dictionaries are learned for both face and
body, which enables the algorithm to encode both identity cues. To increase the ability to
learn nonlinearities, they further apply kernel methods for learning dictionaries. Zheng et
al. [60] proposed a hybrid dictionary learning and matching approach for video-based face
recognition.

9.2.2 Deep Learning BasedMethods

Face Recognition: Taigman et al. [49] learned a DCNN model on the frontalized faces
generated from 3D shape models built from the face dataset. Sun et al. [46, 47] achieved
results surpassing human performance for face verification on the LFW dataset [21]. Schroff
et al. [44] adopted the GoogLeNet trained for object recognition to face recognition and
trained on a large-scale unaligned face dataset. Parkhi et al. [36] achieved impressive results
using a very deep convolutional network based on VGGNet for face verification. Ding et
al. [12] proposed a trunk-branch ensemble CNN model for video-based face recognition.
Chen et al. [7] trained a 10-layer CNN on CASIAWebFace dataset [59] followed by the JB
metric and achieved state-of-the-art performance on the IJB-A [24] dataset. Chen et al. [8]
further extended [7] and designed an end-to-end system for unconstrained face recognition
and reported a very good performance on IJB-A, JANUS CS2, LFW, and YouTubeFaces
[55] datasets. In order to tackle the training bottleneck for the face recognition network,
Ranjan et al. [37] proposed the crystal loss to train the network on very large-scale training
data. Zheng et al. [61] achieved good performance on video face datasets including IJB-B
[54] and IJB-S [23]. Deng et al. [11] introduced sub-center Additive Angular Margin Loss
(ArcFace) loss which significantly increases the discriminative power of the model and also
makes it less susceptible to label noise by encouraging one dominant sub-class that contains
the majority of clean faces and non-dominant sub-classes that include hard/noisy faces.
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Video Face Recognition: Most deep-learning-based video face recognition methods
extract the features from each frame and take a weighted average of them. [14, 16, 29, 58]
use attention weights or quality scores to aggregate the features. Some methods like [27, 31,
42] model the spatio-temporal information with an attention mechanism to find the focus
of video frames. [34, 41] propose synthesizing representative face images from a video
sequence.

9.3 Method

For each video, we first detect faces from video frames and align them using the detected
fiducial points. Deep features are then extracted for each detected face using our DCNN
models for face recognition. Based on different scenarios, we use face association or face
tracking to construct face templates with unique identities. For videos with multiple shots,
we use the face association technique TFA [5] to collect faces from the same identities across
shots. For single-shot videos, we use the face tracking algorithm SORT introduced in [4]
to generate tracklets of faces. After templates are constructed, in order to aggregate face
representations in videos, subspaces are learned using quality-aware principal component
analysis. Subspaces alongwith quality-aware exemplars of templates are used to produce the
similarity scores between video pairs by a quality-aware principal angle-based subspace-to-
subspace similarity metric. In the following sections, we discuss the proposed video-based
face recognition system in detail.

9.3.1 Face/Fiducial Detection

The first step in our face recognition pipeline is to detect faces in images (usually for
galleries) and videos. We use two DCNN-based detectors in our pipeline based on different
distributions of input.

For regular images and video frames, faces are relatively bigger and with higher resolu-
tion. We use SSD trained with the WIDER face dataset as our face detector [6]. For small
and remote faces in surveillance videos, we use DPSSD [38] for face detection. DPSSD is
fast and capable of detecting tiny faces, which is very suitable for face detection in videos.

After raw face detection bounding boxes are generated using either SSD or DPSSD
detectors, we use All-in-One Face [40] for fiducial localization. It is followed by a seven-
point face alignment step based on the similarity transform on all the detected faces.

9.3.2 Deep Feature Representation

After faces are detected and aligned, we use the DCNN models to represent each detected
face. The models are state-of-the-art networks with different architectures for face recogni-
tion. Different architectures provide different error patterns during testing. After fusing the
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results from different models, we achieve performance better than a single model. Design
details of these networks along with their training details are described in Sect. 9.4.2.

9.3.3 Face Association

In previous steps, we obtain raw face detection bounding boxes using our detectors. Features
for the detected bounding boxes are extracted using face recognition networks. The next
important step in our face recognition pipeline is to combine the detected bounding boxes
from the same identity to construct templates for good face recognition results.

For single-shot videos,whichmeans the bounding boxes of a certain identitywill probably
be contiguous, we rely on SORT [4] to build the tracklets for each identity. For multi-shot
videos, it is challenging to continue tracking across different scenes. In the proposed system,
we use [5] to adaptively update the face associations through one-shot SVMs.

9.3.4 Model Learning:Deep Subspace Representation

After deep features are extracted for each face template, since each template contains a
varying number of faces, these features are further encoded into a fixed-size and unified
representation for efficient face recognition.

The simplest representation of a set of samples is the sample mean. However, video
templates contain faces with different quality and large variations in illumination, blur,
and pose. Since average pooling treats all the samples equally, the outliers may deteriorate
the discriminative power of the representation. Different from other feature aggregation
approaches that require a large amount of extra training data which are not available for
datasets like IJB-B and IJB-S,we propose a subspace representation for video face templates.

9.3.4.1 Subspace Learning fromDeep Representations
A d-dimensional subspace S can be uniquely defined by an orthonormal basis P ∈ R

D×d ,
where D is the dimension of features. Given face features from a video sequenceY ∈ R

D×N ,
where N is the sequence length, P can be found by optimizing:

minimize
P,X

‖Y − PX‖2F s.t . PTP = I (9.1)

which is the reconstruction error of features Y in the subspace S. It is exactly the principal
component analysis (PCA) problem and can be easily solved by eigenvalue decomposi-
tion. Let YYT = U�UT be the eigenvalue decomposition, where U = [

u1, u2, · · · , uD
]

are eigenvectors and � = diag{λ1, λ2, . . . , λD} with λ1 ≥ λ2 ≥ · · · ≥ λD are the corre-
sponding eigenvalues, we have P = [

u1, u2, · · · , ud
]
consisting of the first d basis in U.

We use Sub to denote this basic subspace learning algorithm (9.1).
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9.3.4.2 Quality-Aware Subspace Learning fromDeep Representations
In a face template fromvideos, faces contain large variations in pose, illumination, occlusion,
etc. Even in a tracklet, faces have different poses because of head movement, or being
occluded in some frames because of the interaction with the environment. When learning
the subspace, treating the frames equally is not an optimal solution. In our system, the
detection score for each face bounding box provided by the face detector can be used as a
good indicator of the face quality, as shown in [37]. Hence, following the quality pooling
proposed in [37], we propose quality-aware subspace learning based on detection scores.
The learning problem is modified (9.1) as

minimize
P,X

N∑

i=1

d̃i‖yi − Pxi‖22 s.t . PTP = I (9.2)

where d̃i = so f tmax(qli ) is the normalized detection score of face i , q is the temperature
parameter and

li = min(
1

2
log

di
1 − di

, t) (9.3)

which is upper bounded by threshold t to avoid extreme values when the detection score is
close to 1.

Let Ỹ = [√
d1y1, · · · ,

√
dNyN

]
be the normalized feature set, and the corresponding

eigenvalue decomposition be ỸỸT = Ũ�̃ŨT . We have

PD = [
ũ1, ũ2, · · · , ũd

]
(9.4)

which consists of the first d bases in Ũ. The new subspace is therefore learned by treat-
ing samples differently according to their quality. This quality-aware learning algorithm is
denoted as QSub.

9.3.5 Matching: Subspace-to-Subspace Similarity for Videos

After subspace representations are learned for video templates, inspired by a manifold-
to-manifold distance [52], we measure the similarity between two video templates of faces
using a subspace-to-subspace similaritymetric. In this part,wefirst introduce thewidely used
metric based on principal angles. Then we propose several weighted subspace-to-subspace
metrics which take the importance of basis directions into consideration.

9.3.5.1 Principal Angles and ProjectionMetric
One of the most used subspace-to-subspace similarities is based on principal angles. The
principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π

2 between two linear subspaces S1 and S2 can
be computed by Singular Value Decomposition (SVD).
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Let P1 ∈ R
D×d1 , P2 ∈ R

D×d2 , denoting the orthonormal basis of S1 and S2, respec-
tively. The SVD is PT

1 P2 = Q12�QT
21, where � = diag{σ1, σ2, . . . , σr }. Q12 and Q21 are

orthonormal matrices. The singular values σ1, σ2, . . . , σr are exactly the cosine of the prin-
cipal angles as cos θk = σk, k = 1, 2, . . . , r .

Projection metric [13] is a popular similarity metric based on principal angles:

sPM (S1, S2) =
√√
√√1

r

r∑

k=1

cos2 θk (9.5)

Since ‖PT
1 P2‖2F = ‖Q12�QT

21‖2F = ‖�‖2F = ∑r
k=1 σ 2

k = ∑r
k=1 cos

2 θk , we have

sPM (S1, S2) = sPM (P1,P2) =
√
1

r
‖PT

1 P2‖2F (9.6)

and there is no need to explicitly compute the SVD. We use PM to denote this similarity
metric (9.6).

9.3.5.2 Exemplars and Basic Subspace-to-Subspace Similarity
Existing face recognition systems usually use cosine similarity between exemplars to mea-
sure the similarity between templates. The exemplar of a template is defined as its sample
mean, as e = 1

L

∑L
i=1 yi , where yi are samples in the template. Exemplars mainly capture

the average and global representation of the template. On the other hand, the projection
metric we introduced above measures the similarity between two subspaces, which models
the correlation between samples. Hence, in the proposed system, we make use of both of
them by fusing their similarity scores as the subspace-to-subspace similarity between two
video sequences.

Suppose subspaces P1 ∈ R
D×d1 and P2 ∈ R

D×d2 are learned from a pair of video
templates Y1 ∈ R

D×L1 and Y2 ∈ R
D×L2 in deep features respectively, by either Sub or

QSub methods introduced in Sect. 9.3.4. Their exemplars are e1 = 1
L1

∑L1
i=1 y1i and e2 =

1
L2

∑L2
i=1 y2i respectively. Combining the orthonormal bases and exemplars, the subspace-

to-subspace similarity can be computed as

s(Y1,Y2) = sCos(Y1,Y2) + λsPM (P1,P2)

= eT1 e2
‖e1‖2‖e2‖2 + λ

√
1

r
‖PT

1 P2‖2F (9.7)

where sCos(Y1,Y2) is the cosine similarity between exemplars, denoted as Cos, and
sPM (P1,P2) is computed by (9.6). Since the DCNN features aremore robust if we keep their
signs, instead of using s2Cos(Y1,Y2) as in [52] where the sign information is lost, we use
sCos(Y1,Y2) in our formulation. Accordingly, we also take the square root of the principal
angle term to keep the scale consistent. λ here is a hyperparameter that balances the cosine
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similarity and principal angle similarity. If Pi ’s are learned by Sub, we denote the whole
similarity metric (including exemplars computing and subspace learning) asCos+Sub-PM.
If Pi ’s are learned by the proposed QSub, we denote the similarity as Cos+QSub-PM.

9.3.5.3 Quality-Aware Exemplars
In either Cos+Sub-PM or Cos+QSub-PM we are still using simple average pooling to
compute the exemplars. But as discussed in Sect. 9.3.4, templates consist of faces of different
quality. Treating them equally in pooling will let low-quality faces deteriorate the global
representation of the template. Therefore, we propose to use the same normalized detection
score as in Sect. 9.3.4 to compute the quality-aware exemplars by eD = 1

L

∑L
i=1 d̃iyi , where

d̃i = so f tmax(qli ) and li are computed by (9.3). Then, the cosine similarity between the
quality-aware exemplars is

sQCos(Y1,Y2) = eTD1eD2

‖eD1‖2‖eD2‖2 (9.8)

and we denote it as QCos. Using the new cosine similarity, the similarity becomes

s(Y1,Y2) = sQCos(Y1,Y2) + λsPM (P1,P2) (9.9)

If Pi ’s are learned by QSub, the similarity is further denoted by QCos+QSub-PM.

9.3.5.4 Variance-Aware ProjectionMetric
As previously discussed, the projection metric SPM (S1, S2) is the square root of the mean
square of principle angles between two subspaces and it treats each basis direction in each
subspace equally. But these basis vectors are actually eigenvectors of an eigenvalue decom-
position problem. Different basis vectors correspond to different eigenvalues, which repre-
sent the variance of data in the corresponding direction. Obviously, those basis directions
with larger variances contain more information than those with smaller variances. There-
fore, based on the variance of each basis direction, we propose a variance-aware projection
metric:

sV PM (P1,P2) =
√
1

r
‖P̃T

1 P̃2‖2F (9.10)

where

P̃i = 1

tr(log(�i ))
Pi log(�i ) (9.11)

�i is a diagonal matrix whose diagonals are eigenvalues corresponding to eigenvectors in
Pi . 1

tr(log(�i ))
is the normalization factor.We use the logarithm of variance to weigh different

basis directions in a subspace. This similarity metric is inspired by the Log-Euclidean dis-
tance used for image set classification in [51]. Empirically, we use max(0, log(�i )) instead
of log(�i ) to avoid negative weights. We use VPM to denote this similarity metric (9.10).
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9.3.5.5 Quality-Aware Subspace-to-Subspace Similarity
By combining the quality-aware subspace learning, quality-aware exemplars and variance-
aware projection metric, we propose the quality-aware subspace-to-subspace similarity
between two video templates as

s(Y1,Y2) = sQCos(Y1,Y2) + λsV PM (PD1,PD2) (9.12)

where sQCos is defined in (9.8),PDi ’s are learned by (9.4) and sV PM is defined in (9.10). This
similarity metric is denoted asQCos+QSub-VPM. Comparisons of the proposed similarity
metrics and other baselines on several challenging datasets are discussed in Sect. 9.4.

9.4 Experiments

In this section, we report video-based face recognition results for the proposed system on
two challenging video face datasets, IARPA Janus Benchmark B (IJB-B) and IARPA Janus
Surveillance Video Benchmark (IJB-S), and compare themwith other baseline methods.We
also provide results on Multiple Biometric Grand Challenge (MBGC), and Face and Ocular
Challenge Series (FOCS) datasets, to demonstrate the effectiveness of the proposed system.
We introduce the details of datasets, protocols, and our training and testing procedures in
the following sections.

9.4.1 Datasets

IARPA Janus Benchmark B (IJB-B): IJB-B dataset is an unconstrained face recognition
dataset. It contains 1845 subjects with 11,754 images, 55,025 frames, and 7,011 multiple-
shot videos. IJB-B is a template-based dataset where a template consists of a varying number
of still images or video frames fromdifferent sources.A template can be either an image-only,
video-frame-only, or mixed-media template. Sample frames from this dataset are shown in
Fig. 9.1.

In this work, we only focus on the 1:N video protocol of IJB-B. It is an open-set 1:N
identification protocol where each given probe is collected from a video and is searched
among all gallery faces. Gallery candidates are ranked according to their similarity scores
to the probes. Top-K rank accuracy and True Positive Identification Rate (TPIR) over False
Positive Identification Rate(FPIR) are used to evaluate the performance. The gallery tem-
plates are separated into two splits,G1 andG2, all consisting of still images. For each video,
we are given the frame index with a face bounding box of the first occurrence of the target
subject, as shown in Fig. 9.1. Based on this anchor, all the faces in that video with the same
identity should be collected to construct the probes. The identity of the first occurrence
bounding box will be considered as the template identity for evaluation.
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IARPA Janus Surveillance Video Benchmark (IJB-S): Similar to IJB-B, the IJB-S
dataset is also a template-based, unconstrained video face recognition dataset. It contains
faces in two separate domains: high-resolution still images for galleries and low-quality,
remotely captured surveillance videos for probes. It consists of 202 subjects from 1421
images and 398 single-shot surveillance videos. The number of subjects is small compared
to IJB-B, but it is evenmore challenging due to the low-quality nature of surveillance videos.

Based on the choices of galleries and probes, we are interested in three different surveil-
lance video-based face recognition protocols: surveillance-to-single protocol, surveillance-
to-booking protocol, and surveillance-to-surveillance protocol. These are all open-set 1:N
protocolswhere each probe is searched among the given galleries. Like IJB-B, the probe tem-
plates are collected from videos, but no annotations are provided. Thus raw face detections
are grouped to construct templates with the same identities.

Galleries consist of only single frontal high-resolution images for surveillance-to-single
protocol. Galleries are constructed by both frontal andmultiple-pose high-resolution images
for surveillance-to-booking protocol. For the most challenging surveillance-to-surveillance
protocol, galleries are collected from surveillance videos as well, with given bounding
boxes. In all three protocols, gallery templates are split into two splits, G1 and G2. During
evaluation, the detected faces in videos are first matched to the ground truth bounding boxes
to find their corresponding identity information. The majority of identities that appear in
each template will be considered as the identity of the template and will be used for further
identification evaluation. Example frames are shown in Fig. 9.2. Notice the remote faces are
of very low quality.

Multiple BiometricGrandChallenge (MBGC):TheMBGCVersion 1 dataset contains
399 walking (frontal face) and 371 activity (profile face) video sequences from 146 people.
Figure 9.4 shows some sample frames from different walking and activity videos. In the
testing protocol, verification is specified by two sets: target and query. The protocol requires
the algorithm to match each target sequence with all query sequences. Three verification
experiments are defined: walking-vs-walking (WW), activity-vs-activity (AA), and activity-
vs-walking (AW).

Face and Ocular Challenge Series (FOCS): The video challenge of FOCS is designed
for frontal and non-frontal video sequence matching. The FOCS UT Dallas dataset contains
510 walking (frontal face) and 506 activity (non-frontal face) video sequences of 295 sub-
jects with a frame size of 720×480 pixels. Like MBGC, FOCS specifies three verification
protocols: walking-vs-walking, activity-vs-walking, and activity-vs-activity. In these exper-
iments, 481 walking videos and 477 activity videos are chosen as query videos. The size of
target sets ranges from 109 to 135 video sequences. Sample video frames from this dataset
are shown in Fig. 9.4.

IJB-MDF: The IARPA JANUS BenchmarkMulti-domain Face (IJB-MDF) dataset con-
sists of images and videos of 251 subjects captured using a variety of cameras corresponding
to visible, short-, mid-, and long-wave infrared and long-range surveillance domains. There
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(a) MBGC Walking (b) MBGC Activity

(c) FOCS Walking (d) FOCS Activity

Fig. 9.4 Examples of MBGC and FOCS datasets

are 1,757 visible enrollment images, 40,597 short-wave infrared (SWIR) enrollment images,
and over 800 videos spanning 161 hours.

9.4.2 Implementation Details

In this section, we discuss the implementation details for each dataset respectively.

9.4.2.1 IJB-B
For the IJB-B dataset, we employ the SSD face detector [6] to extract the face bounding
boxes in all images and video frames. We employ the facial landmark branch of All-in-One
Face [40] for fiducial detection on every detected bounding box and apply facial alignment
based on these fiducials using the seven-point similarity transform.

The aligned faces are further represented using three networks proposed in [39]. We
denote them as Network A, Network B, and Network C. Network A modifies the ResNet-
101 [20] architecture. It has an input size of dimensions 224 × 224 and adds an extra fully
connected layer after the last convolutional layer to reduce the feature dimensionality to
512. Also, it replaces the original softmax loss with the crystal loss [37] for more stable
training. Network B uses the Inception-ResNet-v2 [48] model as the base network. Similar
to Network A, an additional fully-connected layer is added for dimensionality reduction.
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Fig. 9.5 Verification results on MBGC and FOCS datasets

Naive softmax followed by cross-entropy loss is used for this network. Network C is based
on the face recognition branch in the All-in-One Face architecture [40]. The branch consists
of seven convolutional layers followed by three fully-connected layers.

Network A and Network C are trained on the MSCeleb-1M dataset [19] which contains
3.7 million images from 57,440 subjects. Network B is trained on the union of three datasets
called the Universe dataset: 3.7 million still images from the MSCeleb-1M dataset, 300,000
still images from the UMDFaces dataset [2], and about 1.8 million video frames from the
UMDFaces Video dataset. For each network, we further reduce its dimensionality to 128 by
triplet probabilistic embedding (TPE) [43] trained on the UMDFaces dataset.
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For face association, we follow the details in [5]. Then, features from associated bound-
ing boxes are used to construct the probe templates. We use quality-aware pooling for both
gallery and probe templates to calculate their exemplars (QCos) where t = 7 and q = 0.3
are used for detection score normalization. Subspaces are built by applying the quality-aware
subspace learning method (QSub) on each template and taking the top three eigenvectors
with the largest corresponding eigenvalues. When fusing the cosine similarity and variance-
aware projection similarity metric (VPM), we use λ = 1 so two similarity scores are fused
equally. We compute the subspace-to-subspace similarity score for each network indepen-
dently and combine the similarity scores from three networks by score-level fusion. We also
implement baseline methods using combinations of exemplars from vanilla average pooling
(Cos), subspaces learned by regular PCA (Sub), and projection similarity metric (PM).

9.4.2.2 IJB-S
For the IJB-S dataset, we employ the multi-scale face detector DPSSD to detect faces in
surveillance videos. We only keep face bounding boxes with detection scores greater than
0.4771, to reduce the number of false detections. We use the facial landmark branch of All-
in-One Face [40] as the fiducial detector. Face alignment is performed using the seven-point
similarity transform.

Different from IJB-B, since IJB-S does not specify the subject of interest, we are required
to localize and associate all the faces for different subjects to yield the probe sets. Since IJB-S
videos are single-shot, we use SORT [4] to track every face appearing in the videos. Faces
in the same tracklet are grouped to create a probe template. Since some faces in surveillance
videos are of extremepose, blur, and low resolution, to improveprecision, tracklets consisting
of such faces should be rejected during the recognition stage. By observation, we find that
most of the short tracklets are of low quality and not reliable. The average of the detection
score provided by DPSSD is also used as an indicator of the quality of the tracklet. On the
other hand,we alsowant to take the performance of face detection into consideration to strike
a balance between recall and precision. Thus in our experiments, we use two configurations
for tracklets filtering: (1) We keep those tracklets with lengths greater than or equal to 25
and an average detection score greater than or equal to 0.9 to reject low-quality tracklets and
focus on precision. It is referred to as with Filtering. (2) Following the settings in [23], we
produce results without any tracklets filtering and focusing on both precision and recall. It
is referred to as without Filtering.

Because of the remote acquisition scenario and the presence of blurred probes in the
IJB-S dataset, we retrain Network A with the same crystal loss but on the Universe dataset
used by Network B. We denote it as Network D. We also retrain Network B with the crystal
loss [37] on the same training data. We denote it as Network E. As a combination of high-
capacity network and large-scale training data, Networks D and E are more powerful than
Networks A, B, and C. As before, we reduce feature dimensionality to 128 using the TPE
trained on the UMDFaces dataset.
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In IJB-S, subspace learning and matching parts are the same as IJB-B except that we
combine the similarity score by score-level fusion from Network D and E. Notice that for
the surveillance-to-surveillance protocol, we only use single Network D for representation
as Network E is ineffective for low-quality gallery faces in this protocol.

9.4.2.3 MBGC and FOCS
For MBGC and FOCS datasets, we use All-in-One Face for both face detection and facial
landmark localization. The MBGC and FOCS datasets contain only one person in a video
in general. Hence, for each frame, we directly use the face bounding box with the highest
detection score as the target face. Similar to IJB-S, bounding boxes are filtered based on
detection scores. From the detected faces, deep features are extracted using Network D.
Since MBGC and FOCS datasets do not provide training data, we also use the TPE trained
on the UMDFaces dataset to reduce feature dimensionality to 128. For MBGC and FOCS,
subspace learning and matching parts are the same as IJB-B and IJB-S.

9.4.3 Evaluation Results

In the following section, we first show some face association results on IJB-B and IJB-S
datasets. Then we compare the performance of the proposed face recognition system with
several baseline methods. For each dataset, all the baseline methods listed below use deep
features extracted from the same network and with the same face detector.

• Cos: We compute the cosine similarity scores directly from the exemplars with average
pooling.

• QCos: We compute the cosine similarity scores from the exemplars with quality-aware
average pooling.

• Cos+Sub-PM: Subspace-to-subspace similarity is computed by fusing the plain cosine
similarity and plain projection metric, and subspaces are learned by plain PCA.

• QCos+Sub-PM: Subspace-to-subspace similarity is computed by fusing the quality-
aware cosine similarity and plain projection metric, and subspaces are learned by plain
PCA.

• QCos+QSub-PM: Subspace-to-subspace similarity is computed by fusing the quality-
aware cosine similarity and plain projectionmetric, and subspaces are learned by quality-
aware subspace learning.

• QCos+QSub-VPM: Subspace-to-subspace similarity is computed by fusing the quality-
aware cosine similarity and variance-aware projection metric, and subspaces are learned
by quality-aware subspace learning.

IJB-B: Figures 9.6 and 9.7 show some examples of our face association results using TFA
in IJB-B dataset. Table 9.1 shows the Top-K Accuracy results for IJB-B video protocol.
In this dataset, besides the baselines, our method is compared with original results in [5]
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Fig. 9.6 Examples of face association results by TFA on IJB-B. The target annotation is in the red
box, and the associated faces of the target subject are in magenta-colored boxes

corresponding to different iteration numbers. The results shown are the average of the two
galleries. Notice that our proposed system and [5] use the same face association method,
but we have different networks and feature representation techniques.
IJB-S: Figure 9.8 shows some examples of our face association results using SORT in IJB-
S dataset. Tables 9.2, 9.3 and 9.4 show the results for IJB-S surveillance-to-single proto-
col, surveillance-to-booking protocol and surveillance-to-surveillance protocol respectively.
Notice that under thewithFiltering configuration,weuse the regular top-Kaverage accuracy
for evaluation. Under the without Filtering configuration, we use the End-to-End Retrieval
Rate (EERR) metric proposed in [23] for evaluation. For surveillance-to-surveillance pro-
tocol, we show results for two different network configurations as well. We also implement
state-of-the-art network ArcFace [11] on IJB-S and compare it with our method. Results
from ArcFace are shown with the prefix Arc-.
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Fig.9.7 Associated faces by TFA corresponding to examples in Fig. 9.6. Face images are in the order
of the confidence of face association

Two recent works [15, 17] have reported results on the IJB-S dataset. These works mainly
focused on face recognition and not detection so they built video templates by matching
their detections with ground truth bounding boxes provided by the protocols and evaluated
their methods using identification accuracy and not EERR metric. Our system focuses on
detection, association, and recognition. Therefore after detection, we associate faces across
the video frames to build templates without utilizing any ground truth information and
evaluate our system using both identification accuracy and EERR metric. Since these two
template-building procedures are so different, a direct comparison is not meaningful.
MBGC: The verification results for the MBGC dataset are shown in Table 9.5 and Fig. 9.5.
We compare our method with the baseline algorithms,Hybrid [60] and [9] using either raw
pixels as DFRVpx (reported in their paper) or deep features as DFRVdeep (our implemen-
tation). We also report the results of the proposed method applied to the ArcFace features
with the prefix Arc-. Figure 9.5 does not include all the baselines, for a clearer view. The
result of [9] is not in the table because the authors did not provide exact numbers in their
paper.
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Table 9.1 1:N Search Top-K Average Accuracy and TPIR/FPIR of IJB-B video search protocol

Methods Rank = 1 Rank = 2 Rank = 5 Rank =
10

Rank =
20

Rank =
50

FPIR =
0.1

FPIR =
0.01

[5] with
Iteration 0

55.94% – 68.40% 72.89% – 83.71% 44.60% 28.73%

[5] with
Iteration 3

61.01% – 73.39% 77.90% – 87.62% 49.73% 34.11%

[5] with
Iteration 5

61.00% – 73.46% 77.94% – 87.69% 49.78% 33.93%

Cos 78.37% 81.35% 84.39% 86.29% 88.30% 90.82% 73.15% 52.19%

QCos 78.43% 81.41% 84.40% 86.33% 88.34% 90.88% 73.19% 52.47%

Cos+Sub-PM 77.99% 81.45% 84.68% 86.75% 88.96% 91.91% 72.31% 38.44%

QCos+Sub-
PM

78.02% 81.46% 84.76% 86.72% 88.97% 91.91% 72.38% 38.88%

QCos+QSub-
PM

78.04% 81.47% 84.73% 86.72% 88.97% 91.93% 72.39% 38.91%

QCos+QSub-
VPM

78.93% 81.99% 84.96% 87.03% 89.24% 92.02% 71.26% 47.35%

Fig. 9.8 Associated faces using SORT in IJB-S. Face images are in their temporal order. Notice the
low-quality faces at the boundaries of tracklets since the tracker cannot reliably track anymore

FOCS:The verification results of FOCS dataset are shown in Table 9.5 and Fig. 9.5. O’Toole
et al. [33] evaluated the human performance on this dataset. In the figures,Human refers to
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Table 9.2 1:N Search results of IJB-S surveillance-to-single protocol. Using both Network D and E
for representation

Methods Top-K average accuracy with filtering EERR metric without filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos
[11]

52.03% 56.83% 63.16% 69.05% 76.13% 88.95% 24.45% 26.54% 29.35% 32.33% 36.38% 44.81%

Arc-
QCos+QSub-
PM

60.92% 65.06% 70.45% 75.19% 80.69% 90.29% 28.73% 30.44% 32.98% 35.40% 38.70% 45.46%

Cos 64.86% 70.87% 77.09% 81.53% 86.11% 93.24% 29.62% 32.34% 35.60% 38.36% 41.53% 46.78%

QCos 65.42% 71.34% 77.37% 81.78% 86.25% 93.29% 29.94% 32.60% 35.85% 38.52% 41.70% 46.78%

Cos+Sub-
PM

69.52% 75.15% 80.41% 84.14% 87.83% 94.27% 32.22% 34.70% 37.66% 39.91% 42.65% 47.54%

QCos+Sub-
PM

69.65% 75.26% 80.43% 84.22% 87.81% 94.25% 32.27% 34.73% 37.66% 39.91% 42.67% 47.54%

QCos+QSub-
PM

69.82% 75.38% 80.54% 84.36% 87.91% 94.34% 32.43% 34.89% 37.74% 40.01% 42.77% 47.60%

QCos+QSub-
VPM

69.43% 75.24% 80.34% 84.14% 87.86% 94.28% 32.19% 34.75% 37.68% 39.88% 42.56% 47.50%

Table 9.3 1:N Search results of IJB-S surveillance-to-booking protocol. Using both Network D and
E for representation

Methods Top-K average accuracy with filtering EERR metric without filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos
[11]

54.59% 59.12% 65.43% 71.05% 77.84% 89.16% 25.38% 27.58% 30.59% 33.42% 37.60% 45.05%

Arc-
QCos+QSub-
VPM

60.86% 65.36% 71.30% 76.15% 81.63% 90.70% 28.66% 30.64% 33.43% 36.11% 39.57% 45.70%

Cos 66.48% 71.98% 77.80% 82.25% 86.56% 93.41% 30.38% 32.91% 36.15% 38.77% 41.86% 46.79%

QCos 66.94% 72.41% 78.04% 82.37% 86.63% 93.43% 30.66% 33.17% 36.28% 38.84% 41.88% 46.84%

Cos+Sub-
PM

69.39% 74.55% 80.06% 83.91% 87.87% 94.34% 32.02% 34.42% 37.59% 39.97% 42.64% 47.58%

QCos+Sub-
PM

69.57% 74.78% 80.06% 83.89% 87.94% 94.33% 32.16% 34.61% 37.62% 39.99% 42.71% 47.57%

QCos+QSub-
PM

69.67% 74.85% 80.25% 84.10% 88.04% 94.22% 32.28% 34.77% 37.76% 40.11% 42.76% 47.57%

QCos+QSub-
VPM

69.86% 75.07% 80.36% 84.32% 88.07% 94.33% 32.44% 34.93% 37.80% 40.14% 42.72% 47.58%

human performance with all bodies of target subjects seen, and Human_Face refers to the
performance that only faces of the target subjects are seen. Here besides baseline algorithms
and Hybrid [60], we also compare our method with [9] in either raw pixels as DFRVpx

(reported in their paper) or deep features asDFRVdeep (our implementation).We also report
the results using ArcFace features. Similarly, the results of [9] and human performance are
not in the table since they did not provide exact numbers.
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Table 9.4 1:N Search results of IJB-S surveillance-to-surveillance protocol. D stands for only using
Network D for representation. D+E stands for using both Network D and E for representation

Methods Top-K average accuracy with filtering EERR metric without filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos [11] 8.68% 12.58% 18.79% 26.66% 39.22% 68.19% 4.98% 7.17% 10.86% 15.42% 22.34% 37.68%

Arc-
QCos+QSub-
PM

8.64% 12.57% 18.84% 26.86% 39.78% 68.21% 5.26% 7.44% 11.31% 15.90% 22.68% 37.83%

Cos(D+E) 9.24% 12.51% 19.36% 25.99% 32.95% 52.95% 4.74% 6.62% 10.70% 14.88% 19.29% 30.64%

QCos+QSub-
VPM(D+E)

9.56% 13.03% 19.65% 27.15% 35.39% 56.02% 4.77% 6.78% 10.88% 15.52% 20.51% 32.16%

Cos(D) 8.54% 11.99% 19.60% 28.00% 37.71% 59.44% 4.42% 6.15% 10.84% 15.73% 21.14% 33.21%

QCos(D) 8.62% 12.11% 19.62% 28.14% 37.78% 59.21% 4.46% 6.20% 10.80% 15.81% 21.06% 33.17%

Cos+Sub-
PM(D)

8.19% 11.79% 19.56% 28.62% 39.77% 63.15% 4.26% 6.25% 10.79% 16.18% 22.48% 34.82%

QCos+Sub-
PM(D)

8.24% 11.82% 19.68% 28.68% 39.68% 62.96% 4.27% 6.25% 10.92% 16.18% 22.39% 34.69%

QCos+QSub-
PM(D)

8.33% 11.88% 19.82% 28.65% 39.78% 62.79% 4.33% 6.21% 10.96% 16.19% 22.48% 34.69%

QCos+QSub-
VPM(D)

8.66% 12.27% 19.91% 29.03% 40.20% 63.20% 4.30% 6.30% 10.99% 16.23% 22.50% 34.76%

Table 9.5 Verification results on MBGC and FOCS datasets

Methods MBGC FOCS

WW AW AA WW AW AA

FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1 FAR=0.01 FAR=0.1

Arc-Cos [11] 84.40% 92.20% 53.88% 75.00% 32.47% 66.49% 98.18% 99.09% 48.61% 69.44% 48.36% 78.87%

Arc-
QCos+QSub-
PM

85.32% 92.20% 55.58% 75.00% 32.99% 64.43% 98.64% 99.09% 52.31% 74.07% 50.23% 79.81%

DFRVdeep
[9]

78.90% 95.87% 43.69% 71.36% 33.51% 64.95% 87.73% 96.36% 42.13% 78.70% 56.81% 84.51%

Hybrid [60] 77.06% 94.04% 48.06% 79.37% 42.53% 71.39% 95.00% 97.73% 47.69% 79.63% 50.23% 80.75%

Cos 77.52% 92.66% 45.87% 76.94% 43.30% 71.65% 94.09% 96.36% 50.46% 81.48% 57.75% 83.57%

QCos 77.52% 92.66% 47.57% 76.94% 43.30% 71.13% 95.91% 99.09% 53.70% 80.09% 58.22% 83.57%

Cos+Sub-PM 77.98% 94.95% 47.57% 79.13% 41.24% 72.68% 91.82% 97.27% 49.07% 83.33% 54.93% 85.45%

QCos+Sub-
PM

77.98% 94.95% 48.30% 78.64% 41.75% 73.71% 95.91% 98.64% 52.78% 82.87% 55.40% 85.92%

QCos+QSub-
PM

77.52% 94.95% 48.54% 78.64% 41.75% 73.20% 95.91% 99.09% 52.31% 81.02% 55.87% 85.92%

QCos+QSub-
VPM

77.06% 94.95% 48.06% 78.16% 41.24% 72.68% 95.91% 99.09% 53.70% 81.94% 56.34% 85.92%

9.4.4 Cross-Spectral Video FaceVerification

In this section, we present some results on the IARPA JANUS Benchmark Multi-domain
Face (IJB-MDF) [22] dataset. The domains in the IJB-MDF dataset are labeled as below:

• (0) visible enrollment
• (1) visible surveillance
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• (2) visible gopro
• (3) visible 500m
• (4) visible 400m
• (5) visible 300m
• (6) visible 500m 400m walking
• (11) swir enrollment nofilter
• (12) swir enrollment 1150
• (13) swir enrollment 1350
• (14) swir enrollment 1550
• (15) swir 15m
• (16) swir 30m

There are a total of 251 subjects. Domains 1, 2, 3, 4, 5, 6, 15, and 16 consist of videos
only, while the enrollment domains (0, 11, 12, 13, and 14) consist of still images taken in a
constrained setting. Instead of performing an end-to-end evaluation, we are more interested
in observing how well a feature extractor (trained on visible images) adapts to these new
domains. As such, to simplify the task, we use the ground truth provided with the dataset
to obtain the start and end time stamps for non-empty frames in the videos and extract all
the relevant frames. The videos are captured at a frame rate of 20fps. Table 9.6 shows the
distribution of the frames with respect to various domains.

We select domains 3, 4, 5, and 6 for the task of cross-spectral face recognition of remote
faces. The quality of faces is sub-par with a lot of blur and lack of detail in the face. We
employ the SCRFD [18] algorithm to detect faces from the video frames. The recall at a
score-threshold of 0.5 is about 95%.

Table 9.6 IJB-MDF data distribution

Domain Num videos Num frames Approx size of
frame

Name of domain

1 358 191,971 19MB Visible
Surveillance

2 24 39,263 7 MB Visible GoPro

3 31 56,024 6 MB Visible 500m

4 34 61,446 4 MB Visible 400m

5 34 61,442 1 MB Visible 300m

6 26 24,194 7 MB Visible 500m
400m walking

15 42 56,406 250 KB SWIR 15m

16 42 50,368 350 KB SWIR 30m
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Table 9.7 Verification performance with SCRFD, AdaptiveWingLoss and ArcFace loss

Domain Rank 1 Rank 2 Rank 5 Rank 10

(3) Visible 500m 20.8% 25.5% 33.2% 41.8%

(4) Visible 400m 95.0% 97.1% 98.6% 99.1%

(5) Visible 300m 98.5% 99.3% 99.7% 99.9%

(6) Visible 500m
400m walking

57.8% 64.4% 71.6% 77.5%

(3, 4, 5, 6)
together

76.9% 79.5% 82.5% 85.1%

We use the AdaptiveWingLoss [53] algorithm on the cropped faces to detect the face key
points. Then we perform face alignment and use the resulting images for feature extraction.
For these experiments, we use a model trained on visible data (using ArcFace loss [11]) to
extract features from the remote frames and evaluate face verification performance between
the remote frames (probe set) and the visible enrollment images (gallery set).

Using only the frames that match the ground truth frames (removing false positives), the
verification performance is shown in Table 9.7.

We can see from the results that the model adapts well to videos at 300m and 400m, but
there is a definite drop in performance as we go from 400m to 500m.

9.4.5 Discussions

For the IJB-B dataset, we can see that the proposed system performs consistently better than
all the results in [5] and the baseline Cos on identification accuracy. For open-set metric
TPIR/FPIR, the proposed quality-aware cosine similarity achieves better results, but the
proposed subspace similaritymetric still performs better than [5] with a largemargin. For the
IJB-S dataset, we have similar observations: the proposed systemwith subspace-to-subspace
similarity metric performs better than Cos on surveillance-to-single and surveillance-to-
booking protocols, by a relatively large margin. It also achieves better accuracy than Cos
on the surveillance-to-surveillance protocol. We notice that the fusion of Network D and
E does not work well on surveillance-to-surveillance protocol, especially at higher rank
accuracy. Such observations are consistent under both tracklets filtering configurations and
their corresponding metrics: with Filtering with Top-K average accuracy and without
Filtering with the EERR metric. The proposed system also outperforms ArcFace with a
larger margin in surveillance-to-single and surveillance-to-booking protocols of IJB-S. For
MBGC and FOCS datasets, from the tables and plots we can see that in general, the proposed
approach performs better than Cos baseline, DFRVdeep, DFRVpx and Hybrid.
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Fig. 9.9 Visualization of example templates in IJB-S. Each sample is a dot in the plot with its first
two principal components as the coordinates. Samples with di ≥ 0.7 are in blue dots and the rest
samples are in red dots.Gray line and black line are the projection of the first subspace basis learned
by Sub and QSub respectively

Figure 9.9 shows the visualization of two templates in IJB-S dataset in PCA-subspace,
which illustrates the advantage of the proposed subspace learning method. In the plot,
each dot corresponds to a sample in the template, where x- and y-axes correspond to the
first two principal components of the samples, learned from each template respectively.
Relatively high-quality detections with detection scores greater than or equal to 0.7 are
represented by blue dots. Relatively low-quality detections with detection scores less than
0.7 are represented by red dots. The projections of the first subspace bases learned by Sub
and the proposed QSub onto the PCA-subspace are gray and black straight lines in the
plot, respectively. From the plot, we can see that, with quality-aware subspace learning, the
subspaces learned by the proposed method put more weight on the high-quality sample. It
fits the high-quality samples better than the low-quality ones. But the plain PCA takes each
sample into account equally, which is harmful to the representation of the template.

We also compare our system with other baseline methods as part of an ablation study,
from baseline cosine similarity Cos to the proposed quality-aware subspace-to-subspace
similarity QCos+QSub-VPM. As we gradually modify the method by including quality-
aware cosine similarity QCos, quality-aware subspace learning QSub, and variance-aware
projection metricVPM, we can see the performance also gradually improves, especially for
IJB-B and IJB-S datasets.

From the results above, we observe the following:

• The proposed system performs the best in general, which shows the effectiveness of
(1) learning subspace as template representation, (2) matching video pairs using the
subspace-to-subspace similarity metric and (3) utilizing quality and variance information
to compute exemplars, learn subspaces and measure similarity.
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• QCos generally performs better than Cos, which shows that quality-aware exemplars
weigh the samples according to their quality and better represent the image sets than
plain average exemplars.

• In most of the cases, Cos+Sub-PM achieve higher performance than Cos. It implies
that a subspace can utilize the correlation information between samples and is a good
complementary representation of exemplars as global information.

• QCos+QSub-PM performs better than QCos+Sub-PM in general. It shows that similar
to QCos, we can learn more representative subspaces based on the quality of samples.

• QCos+QSub-VPM works better than QCos+QSub-PM in most of the experiments. It
implies that by considering the variances of bases in the subspaces, VPM similarity is
more robust to variations in the image sets.

• The improvement of the proposed system over the compared algorithms is consistent
under both with filtering and without filering configurations on the IJB-S dataset. It
shows that our method is effective for both high-quality and low-quality tracklets in
surveillance videos.

• For IJB-S, the performance on surveillance-to-surveillance protocol is in general lower
than the performance on other protocols. This is because the gallery templates of this
protocol are constructed from low-quality surveillance videos, while the remaining two
protocols have galleries from high-resolution still images.

• The fusion of Network D and E does not perform as well as single Network D on
surveillance-to-surveillance protocol, especially at higher rank accuracy. It is probably
because of the low-quality galleries in this protocol which Network E cannot represent
well.

• On IJB-S, the proposed method performs better than state-of-the-art network ArcFace
[11] in general, especially on surveillance-to-single and surveillance-to-booking proto-
cols, which shows the discriminative power of the features from the proposed networks.
ArcFace still performs better on surveillance-to-surveillance protocol. But the results
also show that using the quality-aware subspace-to-subspace similarity improves the
performance for ArcFace features as well.

• On MBGC and FOCS, ArcFace performs better in the walking-vs-walking protocol but
Network D outperforms ArcFace on more challenging protocols like activity-vs-activity.
Also, by applying the proposed subspace-to-subspace similarity on both features, the
performance consistently improves, which shows its effectiveness on different datasets
and using different features.

• For the FOCS dataset, the performance of our system surpasses the human performance,
which again demonstrates the effectiveness of the proposed system.
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9.5 Concluding Remarks

In this chapter, we proposed an automatic face recognition system for unconstrained video-
based face recognition tasks. The proposed system learns subspaces to represent video
faces and matches video pairs by subspace-to-subspace similarity metrics. We evaluated
our system on four video datasets and the experimental results demonstrate the superior
performance of the proposed system.
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10Face Recognition with Synthetic Data

Haibo Qiu, Baosheng Yu,Dihong Gong, Zhifeng Li,Wei Liu,
and Dacheng Tao

10.1 Introduction

In the last few years, face recognition has achieved extraordinary progress in a wide range
of challenging problems including pose-robust face recognition [5, 24, 63], matching faces
across ages [15, 17, 56, 60], across modalities [13, 14, 16, 30, 31], and occlusions [40,
49, 71]. Among these progresses, not only the very deep neural networks [22, 25, 29, 48]
and sophisticated design of loss functions [10, 23, 32, 57, 61], but also large-scale training
datasets [20, 26, 27] play important roles. However, it has turned out to be very difficult to
further boost the performance of face recognition with the increasing number of training
images collected from the Internet, especially due to the severe label noise and privacy
issues [20, 55, 59]. For example, several large-scale face recognition datasets are struggling
with the consent of all involved person/identities, or even have to close the access of face
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Fig. 10.1 Examples of real/synthetic face images. The first row indicates real face images from
CASIA-WebFace, and the second row shows synthetic face images generated byDiscoFaceGAN [11]
with the proposed identity mixup module

data from the website [20]. Meanwhile, many face training datasets also suffer from the
long-tailed problem, i.e., head classes with a large number of samples and tail classes with
a few number of samples [34, 37, 72]. To utilize these datasets for face recognition, people
need to carefully design the network architectures and/or loss functions to alleviate the
degradation on model generalizability brought by the long-tailed problem. Furthermore, the
above-mentioned issues alsomake it difficult for people to explore the influences of different
attributes (e.g., expression, pose, and illumination).

Recently, face synthesis using GANs [18] and 3DMM [3] have received increasing atten-
tion from the computer vision community, and existing methods usually focus on generating
high-quality identity-preserving face images [2, 47, 65]. Some synthetic and real face images
are demonstrated in Fig. 10.1. However, the problem of face recognition using synthetic face
images has not beenwell-investigated [28, 53]. Specifically, Trigueros et al. [53] investigated
the feasibility of data augmentation with photo-realistic synthetic images. Kortylewski et
al. [28] further explored the pose-varying synthetic images to reduce the negative effects
of dataset bias. Lately, disentangled face generation has become popular [11], which can
provide the precise control of targeted face properties such as identity, pose, expression, and
illumination, thus making it possible for us to systematically explore the impacts of facial
properties on face recognition. Specifically, with a controllable face synthesis model, we
are then capable of (1) collecting large-scale face images of non-existing identities without
the risk of privacy issues; (2) exploring the impacts of different face dataset properties,
such as the depth (the number of samples per identity) and the width (the number of iden-
tities); (3) analyzing the influences of different facial attributes (e.g., expression, pose, and
illumination).

Despite the success of face synthesis, there is usually a significant performance gap
between the models trained on synthetic and real face datasets. Through the empirical anal-
ysis, we find that (1) the poor intra-class variations in synthetic face images and (2) the
domain gap between synthetic and real face datasets are the main reasons for the perfor-
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mance degradation. To address the above issues, we introduce identity mixup (IM) into the
disentangled face generator to enlarge the intra-class variations of generated face images.
Specifically, we use a convex combination of the coefficients from two different identities
to form a new intermediate identity coefficient for synthetic face generation. Experimental
results in Sect. 10.4 show that the identity mixup significantly improves the performance of
the model trained on synthetic face images. Furthermore, we observe a significant domain
gap via cross-domain evaluation: (1) training on synthetic face images and testing on real
face images; (2) training on real face images and testing on synthetic face images (see more
details in Sect. 10.3.2). Therefore, we further introduce the domain mixup (DM) to alleviate
the domain gap, i.e., by using a convex combination of images from a large-scale synthetic
dataset and a relatively small number of real face images during training. With the proposed
identity mixup and domain mixup, we achieve a significant improvement over the vanilla
SynFace, further pushing the boundary of face recognition performance using synthetic data.

The remainder of this chapter is structured as follows. Section 10.2 reviews existing visual
tasks using synthetic data and summarizes the recent advancements on face synthesis and
face recognition. Section 10.3 introduces a typical pipeline for deep face recognition with
synthetic face images. Specifically, vanilla deep face recognition is introduced in Sect. 10.3.1
and the performance gap between the models trained on real and synthetic face images
is described in Sect. 10.3.2. We show that the above-mentioned performance gap can be
narrowed by enlarging the intra-class variations via identity mixup in Sect. 10.3.3; and
leveraging a few real face images for domain adaption via domain mixup in Sect. 10.3.4.
Lastly, in Sect. 10.4, (1) we discuss the impacts of synthetic datasets with different properties
for face recognition, e.g., depth (the number of samples per identity) and width (the number
of identities), and reveal that the width plays a more important role; (2) we systematically
analyze the influences of different facial attributes on face recognition (e.g., facial pose,
expression, and illumination).

10.2 RelatedWork

In this section, we first briefly introduce visual tasks using synthetic data. Then recent face
synthesis and recognition methods are reviewed. Lastly, we discuss the mixup and its vari-
ants to indicate their relationships and differences between the proposed identity mixup and
domain mixup.

Synthetic Data. Synthetic data for computer vision tasks has been widely explored, e.g.,
crowd counting [58], vehicle re-identification [52], semantic segmentation [6, 44, 45], 3D
face reconstruction [43] and face recognition [28, 53]. According to the motivation, existing
methods can be categorized into three groups: (1) It is time-consuming and expensive to
collect and annotate large-scale training data [6, 43–45]; (2) It can be used to further improve
the model trained on a real dataset [28, 53]; (3) It can be used to systematically analyze the
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impacts of different dataset attributes [28]. Among these works, [28] is the most related
one to our work, while it only discusses the impacts of different head poses. Apart from
facial attributes (e.g., pose, expression, and illumination), we also explore the impacts of
the width and the depth of training dataset. Furthermore, we introduce identity mixup (IM)
and domain mixup (DM) to increase the intra-class variations and narrow down the domain
gap, leading to a significant improvement.

Face Synthesis. With the great success of GANs [1, 7, 18, 35, 36, 39, 42], face synthe-
sis has received increasing attention and several methods have been proposed to generate
identity-preserving face images [2, 47, 65]. Specifically, FF-GAN [65] utilizes 3D priors
(e.g., 3DMM [3]) for high-quality face frontalization. Bao et al.[2] first disentangled iden-
tity/attributes from the face image, and then recombined different identities/attributes for
identity-preserving face synthesis. FaceID-GAN [47] aims to generate identity-preserving
faces by using a classifier (C) as the third player, competing with the generator (G) and
cooperating with the discriminator (D). However, unlike exploring the identity-preserving
property, generating face images from multiple disentangled latent spaces (i.e., different
facial attributes) has not been well-investigated. Recently, DiscoFaceGAN [11] introduces
a novel disentangled learning scheme for face image generation via an imitative-contrastive
paradigm using 3D priors. Thus, it further enables a precise control of targeted face prop-
erties such as unknown identities, pose, expression, and illumination, yielding the flexible
and high-quality face image generation.

Deep Face Recognition.Recent face recognition methods mainly focus on delivering novel
loss functions for robust face recognition in the wild. The main idea is to maximize the
inter-class variations and minimize the intra-class variations. For example, (1) contrastive
loss [8, 21] and triplet loss [23, 66] are usually utilized to increase the Euclidean margin for
better feature embedding; (2) center loss [61] aims to learn a center for each identity and then
minimizes the center-aware intra-class variations; (3) Large-margin softmax loss [32, 33]
and its variants such as CosFace [57] and ArcFace [10] improve the feature discrimination
by adding marginal constraints to each identity.

Mixup. Mixup [68] uses the convex combinations of two data samples as a new sample
for training, regularizing deep neural networks to favor a simple linear behavior in-between
training samples. Vanilla mixup is usually employed on image pixels, while the generated
data samples are not consistent with the real images, e.g., a mixup of two face images in the
pixel level does not always form a proper new face image. Inspired by this, we introduce
identity mixup to face generator via the identity coefficients, where a convex combination of
two identities forms a new identity in the disentangled latent space. With the proposed iden-
tity mixup, we are also able to generate high-fidelity face images correspondingly. Recently,
several mixup variants have been proposed to perform feature-level interpolation [19, 50,
51, 54], while [62] further leverages domain mixup to perform adversarial domain adap-
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tation. Inspired by this, we perform domain adaption via domain mixup between real and
synthetic face images, while the main difference is that [62] uses the mixup ratio to guide
the model training, but we utilize the identity labels of both synthetic and real face images
as the supervision for face recognition.

10.3 Method

In this section, we introduce face recognition with synthetic data, i.e., SynFace, and the
overall pipeline is illustrated in Fig. 10.2. We first introduce deep face recognition using
margin-based softmax loss functions. We then explore the performance gap between the
models trained on synthetic and real datasets (SynFace and RealFace). Lastly, we introduce
(1) identity mixup to enlarge the intra-class variations and (2) domain mixup to mitigate the
domain gap between synthetic and real faces images.

10.3.1 Deep Face Recognition

With the great success of deep neural networks, deep learning-based embedding learning
has become the mainstream technology for face recognition to maximize the inter-class
variations and minimize the intra-class variations [8, 21, 23, 33]. Recently, margin-based
softmax loss functions have been very popular in face recognition due to their simplicity
and excellent performance, which explicitly explore the margin penalty between inter- and
intra-class variations via a reformulation of softmax-based loss function [10, 32, 57, 67].
Similar to [10], we use a unified formulation for margin-based softmax loss functions as
follows:

Fig. 10.2 An overview of the proposed SynFace. Firstly, the identity mixup is introduced into Dis-
coFaceGAN [11] to form the Mixup Face Generator, which can generate face images with different
identities and their intermediate states. Next, the synthetic face images are cooperating with a few
real face images via domain mixup to alleviate the domain gap. Then, the feature extractor takes the
mixed face images as input and extracts the corresponding features. The extracted features are either
utilized to calculate the margin-based softmax loss (where W1,W2 are the center weight vectors
for two different classes and x is the feature vector) for model training, or employed as the face
representations to perform face identification and verification tasks
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Lmargin = − 1

N

N∑

i=1

log
es·δ

es·δ + ∑n
j �=yi e

s cos θ j
, (10.1)

where δ = cos(m1θyi + m2) − m3,m1,2,3 are margins, N is the number of training samples,
θ j indicates the angle between the weight Wj and the feature xi , yi represents the ground-
truth class, and s is the scale factor. Specifically, for SphereFace [32], ArcFace [10] and
CosFace [57], we have the coefficients (m1, 0, 0), (0,m2, 0), and (0, 0,m3), respectively,
and we use ArcFace [10] as our baseline.

10.3.2 SynFaceVersus RealFace

To explore the performance gap between SynFace and RealFace, as well as the underlying
causes, we perform experiments on real-world face datasets and synthetic face datasets
generated byDiscoFaceGAN [11]. Specifically, for real-world face datasets, we use CASIA-
WebFace [64] for training and LFW [26] for testing. For the fair comparison, we generate
the synthetic version of the LFW dataset, Syn-LFW, using the same parameters (the number
of samples, the number of identities, distributions of expression, pose, and illumination). For
synthetic training data, we generate 10K different identities with 50 samples per identity
to form a comparable training dataset to CASIA-WebFace (containing 494,414 images
from 10,575 subjects) and we refer to it as Syn_10K_50. More details of synthetic dataset
construction can be found in Sect. 10.4.1. With both synthetic and real face images, we
then perform the cross-domain evaluation as follows. We train two face recognition models
on CASIA-WebFace and Syn_10K_50, and test them on LFW and Syn-LFW, respectively.
As shown in Table 10.1, there is a clear performance gap (88.98% versus 99.18%) when
testing on LFW. Meanwhile, SynFace outperforms RealFace on Syn-LFW (99.98% versus
98.85%). These observations suggest that the domain gap between synthetic and real face
images contributes to the performance gap between SynFace and RealFace.

We compare the face images between Syn_10K_50 and CASIA-WebFace, and find that
the synthetic face images usually lack the intra-class variations, which may be one of the
reasons for the performance degradation (please refer to the supplementary materials for
more illuminations). Furthermore, we also visualize the distributions of feature embeddings
by using multidimensional scaling (MDS [4]) to convert the 512-dimensional feature vector

Table 10.1 The cross-domain evaluation of SynFace and RealFace using the metric of face verifi-
cation accuracy (%)

Method Training dataset LFW Syn-LFW

RealFace CASIA-WebFace 99.18 98.85

SynFace Syn_10K_50 88.98 99.98
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Fig. 10.3 Visualization of the feature distributions (using MDS [4]) for the samples from three
different synthetic datasets (Syn1, Syn2, and Syn3) and CASIA-WebFace, which are illustrated by
the cyan triangles, blue square, red circle, and green pentagon, respectively. Note that the intra-class
variations of Syn1, Syn2, and Syn3 are increasing, which lead to the consistent improvements on
accuracy (88.75% → 89.47% → 90.95%). Best viewed in color

into 2D space. As shown in Fig. 10.3, we randomly select 50 samples from two different
classes of Syn_10K_50 andCASIA-WebFace, respectively. In particular, we observe that the
cyan triangles have a much more compact distribution than the green pentagons, suggesting
the poor intra-class variations in Syn_10K_50.

10.3.3 SynFace with Identity Mixup

To increase the intra-class variations of synthetic face images, we incorporate the identity
mixup into DiscoFaceGAN [11] to form a new face generator for face recognition, i.e., the
Mixup Face Generator, which is capable of generating different identities and their interme-
diate states. In this subsection, we first briefly discuss the mechanism of DiscoFaceGAN,
andwe then introduce how to incorporate the proposed identitymixup into the face generator.

FaceGeneration. DiscoFaceGAN [11] can provide the disentangled, precisely-controllable
latent representations for the identity of non-existing people, expression, pose, and illumi-
nation to generated face images. Specifically, it generates realistic face images x from
random noise z, which consists of five independent variables zi ∈ R

Ni , and each of them
follows a standard normal distribution. The above five independent variables indicate inde-
pendent factors for face generation: identity, expression, illumination, pose, and random
noise accounting for other properties such as the background. Let λ

.= [α, β, γ, θ ] denote
the latent factors, where α, β, γ and θ indicate the identity, expression, illumination, and
pose coefficient, respectively. Four simple VAEs [9] of α, β, γ , and θ are then trained for
z-space to λ-space mapping, which enables training the generator to imitate the rendered
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faces from 3DMM [3]. The pipeline of generating a face image is to (1) first randomly
sample latent variables from the standard normal distribution, (2) then feed them into the
trained VAEs to obtain α, β, γ and θ coefficients, and (3) synthesize the corresponding face
image by the generator using these coefficients.

IdentityMixup (IM). Inspired by the reenactment of face images [69],we propose to enlarge
the intra-class variations by interpolating two different identities as a new intermediate
one with changing the label correspondingly. Recalling that the coefficient α controls the
identity characteristic, we thus interpolate two different identity coefficients to generate a
new intermediate identity coefficient. Mathematically, it can be formulated as follows:

α = ϕ · α1 + (1 − ϕ) · α2,

η = ϕ · η1 + (1 − ϕ) · η2,
(10.2)

where α1, α2 are two random identity coefficients from λ-space, and η1, η2 are the corre-
sponding class labels. Note that the weighted ratio ϕ is randomly sampled from the linear
space which varies from 0.0 to 1.0 with interval being 0.05 (i.e., np.linspace(0.0, 1.0, 21)).
Comparing to the vanillamixup [68]which is employed at the pixel level, the proposedmixup
is operating on the identity coefficient latent space, denoted as identity mixup (IM), which
enlarges the intra-class variations by linearly interpolating different identities, forming the
Mixup Face Generator. However, both of them can regularize the model to favor the simple
linear behavior in-between training samples.

As illustrated inFig. 10.2, the pipeline ofMixupFaceGenerator is first randomly sampling
two different identity latent variables from the standard normal distribution, and then feeding
them to the trained VAEs to obtain α1, α2 coefficients. The mixed identity coefficient α is
obtained by identitymixupwithα1, α2 according to Eq. (10.2), the corresponding face image
is finally synthesized by the generator with α, μ coefficients (where μ

.= [β, γ, θ ]). We also
visualize two groups of identity interpolation with identity mixup in Fig. 10.4. As we can
see, one identity gradually and smoothly transforms to another identity as the weighted ratio
ϕ varies from 0 to 1. Besides, it is obvious that the face images generated with intermediate
identity coefficients are also high-quality.

To evaluate the identity mixup for enlarging the intra-class variations, as illustrated in
Fig. 10.3, we visualize the feature embedding distributions of the same class in three syn-
thetic datasets (containing 5K different identities with 50 samples per identity) with dif-
ferent levels of identity mixup (IM) by using multidimensional scaling (MDS [4]). Note
that Syn1, Syn2, and Syn3 represent the weighted ratio ϕ is 1.0 (i.e., no IM), 0.8 and ran-
domly sampled from the linear space which varies from 0.6 to 1.0 with the interval being
0.05 (i.e., np.linspace(0.6, 1.0, 11)). It is clear that the cyan triangles (Syn1) have the
smallest variations , while the red circles (Syn3) have the largest one, and the blue squares
(Syn2) are in the middle position. Accordingly, the accuracy is in an increasing trend (i.e.,
88.75% → 89.47% → 90.95%). Besides, 88.98% (as in Table 10.1) is boosted to 91.97%
(as in Table 10.2) after utilizing identity mixup. In particular, when the baseline is weaker,
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Fig.10.4 Examples of an identity gradually and smoothly varying to another identity as the weighted
ratio ϕ varies from 0 to 1

the improvement brought by identity mixup is larger, which is shown in Table 10.3 and
Fig. 10.7.

In addition to identitymixup in the trainingprocess,we alsomake an attempt of employing
identity mixup on the synthetic testing dataset to evaluate the model’s robustness on the
identity coefficient noises. Specifically, both RealFace (trained on CASIA-WebFace) and
SynFace_IM (trained on Syn_10K_50 with identity mixup) are evaluated on five different
synthetic testing datasets, as illustrated in Fig. 10.5. Note that Syn-LFW is the synthetic
version of the LFW dataset, while Syn-LFW-R (with R ∈ [0.6, 0.7, 0.8, 0.9]) indicates
employing the identity mixup with the weighted ratio R during the generation of Syn-LFW.
Specifically, we mix the primary class with a random secondary class using the ratio R
according to Eq. (10.2), but we keep the original label unchanged. Apparently, when R is
smaller (i.e., the weight of the primary class is smaller), the corresponding testing dataset
is more difficult to recognize because the secondary class impacts the identity information
more heavily.

From the results of Fig. 10.5, we can find that our SynFace_IM achieves nearly perfect
accuracy when R is larger than 0.6 and also obtains an impressive 97.30% result which
remarkably outperforms the 87.83% accuracy by RealFace when R is 0.6. On the other
hand, the accuracy of RealFace drops significantly on Syn-LFW-R when R becomes small,
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Fig.10.5 Face verification accuracy comparison between RealFace and SynFace_IM (i.e., SynFace
with Identity Mixup) on five different synthetic testing datasets. Syn-LFW is the synthetic version
of the LFW dataset, while Syn-LFW-R (with R ∈ [0.6, 0.7, 0.8, 0.9]) indicates introducing identity
mixup with ratio R into Syn-LFW

which suggests that the domain gap between real and synthetic face data is still large even
after employing the identity mixup. Another interesting conclusion is that the current state-
of-the-art face recognition model (i.e., RealFace) cannot handle the identity mixup attack.
In other words, if a face image is mixup with another identity, the model cannot recognize
it well. However, the proposed SynFace with identity mixup can nearly keep the accuracy
under the identity mixup attack.We prefer to explore how to make the RealFace handle such
an attack in future work.

10.3.4 SynFace with DomainMixup

The lack of intra-class variation is an observable cause of the domain gap between synthetic
and real faces, and SynFace can be significantly improved by the proposed identity mixup.
To further narrow the performance gap between SynFace and RealFace, we introduce the
domain mixup as a general domain adaptation method to alleviate the domain gap for face
recognition. Specifically, we utilize large-scale synthetic face images with a small number
of real-world face images with labels as the training data. When training, we performmixup
within a mini-batch of synthetic images and a mini-batch of real images, where the labels
are changed accordingly as the supervision. Mathematically, the domain mixup can be
formulated as follows:

X = ψ · XS + (1 − ψ) · XR,

Y = ψ · YS + (1 − ψ) · YR,
(10.3)

where XS, XR indicate the synthetic and real face images, respectively, and YS, YR indi-
cate their corresponding labels. Note that ψ is the mixup ratio which is randomly sam-
pled from the linear space distribution from 0.0 to 1.0 with the interval being 0.05
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Table 10.2 Face verification accuracies (%) of models trained on synthetic, real and mixed datasets
on LFW. R_ID means the number of real identities

Method R_ID Samples per R_ID Accuracy

Syn_10K_50 0 0 91.97

Real_1K_10 1K 10 87.50

Mix_1K_10 1K 10 92.28

Real_1K_20 1K 20 92.53

Mix_1K_20 1K 20 95.05

Real_2K_10 2K 10 91.22

Mix_2K_10 2K 10 95.78

(i.e., np.linspace(0.0, 1.0, 21)). For the large-scale synthetic data, we synthesize the
Syn_10K_50 dataset that has 10K different identities with 50 samples per identity. For
a small set of real-world data, we utilize the first 2K identities of CASIA-WebFace. The
experimental results are shown in Table 10.2. Specifically, the first row, Syn_10K_50, indi-
cating the baselinemethodwithout using any real face images, achieves the accuracy 91.97%
using identity mixup. “Real_N_S” means the use of only real images, N identities with S
samples per identity during training, while “Mix_N_S” indicates a mixture of N real identi-
ties with S samples per identity with Syn_10K_50 during training. Both identity mixup and
domain mixup are employed on all the ‘Mix_N_S” datasets. As demonstrated in Table 10.2,
domain mixup brings a significant and consistent improvement over the baseline methods
under different settings. For example, Mix_2K_10 obtains 95.78% accuracy, which signifi-
cantly surpasses 91.97% achieved by Syn_10K_50 and 91.22% achieved by Real_2K_10.
We conjecture that mixupwith the real images can bring the real-world appearance attributes
(e.g., blur and illumination) to synthetic images, which alleviate the domain gap. If we con-
tinue to increase the number of real images for training, e.g., Mix_2K_20, the performance
can be further boosted from 95.78% to 97.65%.

10.4 Experiments

With the introduced Mixup Face Generator, we are able to generate large-scale face images
with controllable facial attributes, including the identity, pose, expression, illumination, and
other dataset characteristics such as the depth and the width. In this section, we perform an
empirical analysis using synthetic face images. Specifically, we first introduce the datasets
(Sect. 10.4.1) and the implementation details (Sect. 10.4.2). Then the long-tailed problem is
mitigated by employing the balanced synthetic face dataset and identitymixup (Sect. 10.4.3).
Lastly, we analyze the impacts of depth, width (Sect. 10.4.4), and different facial attributes
(Sect. 10.4.5).
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10.4.1 Datasets

• Real Datasets.We employ the CASIA-WebFace [64] and LFW [26] for training and test-
ing, respectively. TheCASIA-WebFace dataset contains around 500,000web images, i.e.,
494,414 images from 10,575 subjects. The LFW dataset is a widely used benchmark for
face verification, which contains 13,233 face images from 5,749 identities. Following the
protocol in [10], we report the verification accuracy on 6,000 testing image pairs.

• Synthetic Datasets.We first generate a synthetic version of LFW, in which all synthetic
face images share the same properties with LFW images, e.g., expression, illumination,
and pose. Specifically, for each image in LFW, we first use the 3D face reconstruc-
tion network in [12] to obtain the attribute coefficients μ

.= [β, γ, θ ], which indicate
the expression, illumination and pose coefficient, respectively. We then adopt the Disco-
FaceGAN [11] to generate the face images according to these attribute coefficients with a
random identity coefficient. Finally, we obtain a new dataset and refer to it as Syn-LFW,
which has the same statistics as LFWwith unknown identities (non-existing people). For
the synthetic training dataset (e.g., Syn_10K_50), we construct it by randomly sampling
latent variables from the standard normal distribution for identity, expression, pose, and
illumination coefficients, respectively, leading to the same person with different expres-
sions, poses, and illuminations in the same class. Note that the identities of Syn-LFW do
not have the overlap with any synthetic training datasets.

10.4.2 Implementation Details

We use the MTCNN [70] to detect face bounding boxes and five facial landmarks (two
eyes, nose and two mouth corners). All face images are then cropped, aligned (similarity
transformation), and resized to 112 × 96 pixel as illustrated in Fig. 10.1. Similar to [10, 57],
we normalize the pixel values (in [0, 255]) in RGB images to [−1.0, 1.0] for training and
testing. To balance the trade-off between the performance and computational complexity,
we adopt the variant of ResNet [22], LResNet50E-IR, as our backbone framework, which is
devised in ArcFace [10]. All models are implemented with PyTorch [38] and trained from
scratch using Eight NVIDIA Tesla V100 GPUs. We use the additive angular margin loss
defined in Eq. (10.1), i.e., with (m1,m2,m3) = (0, 0.5, 0) and s = 30. If not mentioned,
we always set the batch size to 512. We use SGD with a momentum of 0.9 and a weight
decay of 0.0005. The learning rate starts from 0.1 and is divided by 10 at the 24, 30, and 36
epochs, with 40 epochs in total.
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10.4.3 Long-Tailed Face Recognition

Experimental Setup. To explore the long-tailed problem, we construct multiple synthetic
datasets with the purpose that each dataset has the same number of identities (2K) and total
images (100K) but different degrees of unbalance. Face images are generated using the
equation:

N = [N1, N2, N3, N4, N5],
I D = [400, 400, 400, 400, 400], (10.4)

where I D indicates the number of identities in each of the five groups, and N means the
number of samples of the five groups. For example, if N = [30, 40, 50, 60, 70], the cor-
responding synthetic dataset has 400 identities with 30 samples per identity, and the rest
1600 identities with 40, 50, 60, 70 samples per identity, respectively. We construct three
different synthetic datasets by assigning N to be [2, 2, 6, 40, 200], [4, 16, 30, 80, 120] and
[50, 50, 50, 50, 50], which are denoted as “2K_UB1”, “2K_UB2” and “2K_50”, respec-
tively. The detailed construction process can be found in Sect. 10.4.1. Note that all the three
datasets have averaged 50 samples per identity, while the first two have unbalanced distribu-
tions with the standard deviations 76.35 and 43.52, and the last one is the perfectly balanced
dataset.

Empirical Analysis. We train face recognition models on the above three different syn-
thetic datasets and the experimental results are illustrated in Fig. 10.6. We see that the model
trained on the “2K_UB1” achieves the worst performance (83.80%), suggesting that the
long-tailed problem or the unbalanced distribution leads to the degradation of the model
performance. Comparing with the models trained on “2K_UB1” and “2K_UB2”, we dis-
cover that decreasing the degree of unbalance leads to the improvement on the performance.
Finally, when the model is trained on “2K_50”, i.e., the perfectly balanced dataset, the
accuracy is significantly improved to 86.18%. Therefore, with balanced synthetic data, the
long-tailed problem can be intrinsically avoided. Besides, introducing the identity mixup
for training can consistently and significantly improve the performance over all the settings.

10.4.4 Effectiveness of “Depth” and “Width”

Experimental Setup.We synthesize multiple-face datasets with different widths (the num-
ber of identities) and depths (the number of samples per identity). Let “N_S” denote the
synthetic dataset containing N identities with S samples per identity, e.g., 1K_50 indicates
the dataset having 1K different identities and 50 samples per identity. Obviously, N and S
represent the dataset’s width and depth, respectively. The details of dataset construction can
be found in Sect. 10.4.1.
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Fig. 10.6 Face verification accuracies (%) on LFW using the training datasets with decreasing
imbalance, i.e., “2K_UB1”, “2K_UB2”, and “2K_50”, where we assign N defined in Eq. (4) as
[2, 2, 6, 40, 200], [4, 16, 30, 80, 120], and [50, 50, 50, 50, 50], respectively. w/ IM and w/o IM indi-
cate whether identity mixup (IM) is used during training

Empirical Analysis.We train the same face recognition model on these synthetic datasets,
and the experimental results (both w/wo identity mixup) are shown in Table 10.3. Firstly, we
analyze the influence of thewidth of the dataset by comparing the results of (a), (b), (c), (i).
From (a) to (c), we see that the accuracy dramatically increases from 83.85% to 88.75%.
However, the improvement is marginal from (c) to (i), which implies that the syn-
thetic data may suffer from the lack of inter-class variations. Observing the results of
(d), (e), ( f ), (g), (h), (i), we conclude that the accuracy significantly improves with
the increasing of dataset depth, but it is quickly saturated when the depth is larger than 20,
which is in line with the observation on real data made by Schroff et al. [46]. Lastly, we
see that (a) and (e) have the same number of total images (50K), while (a) outperforms
(e) with a large margin, i.e., 4.37%, which reveals that the dataset width plays as the more
important role than the dataset depth in term of the final face recognition accuracy. Similar
observation can be found by comparing (b) and ( f ). Importantly, employing the identity
mixup (IM) for training consistently improves the performance over all the datasets, which
confirms the effectiveness of IM. The best accuracy 91.97% brought by IM significantly
outperforms the original 88.98%.

10.4.5 Impacts of Different Facial Attributes

Experimental Setup. We explore the impacts of different facial attributes for face recog-
nition (i.e., expression, pose, and illumination) by controlling face generation process. We
construct four synthetic datasets that have 5K identities and 50 samples per identity. The
difference between the four datasets is the distribution of different facial attributes. Specif-
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Table 10.3 Face verification accuracies (%) on LFW [64]. “N_S” implies that the corresponding
dataset has N identities with S samples per identity, i.e., N and S indicate the width and depth. LFW
(w/ IM) means employing the identity mixup (IM) for training

Method ID Samples LFW LFW(w/ IM)

(a) 1K_50 1K 50 83.85 87.53

(b) 2K_50 2K 50 86.18 89.28

(c) 5K_50 5K 50 88.75 90.95

(d) 10K_2 10K 2 78.85 80.30

(e) 10K_5 10K 5 88.22 88.32

( f ) 10K_10 10K 10 89.48 90.28

(g) 10K_20 10K 20 89.90 90.87

(h) 10K_30 10K 30 89.73 91.17

(i) 10K_50 10K 50 88.98 91.97

Fig. 10.7 Face verification accuracies (%) on LFW using the training datasets with variations in
different facial attributes. Specifically, “Expression”, “Pose”, and “Illumination” indicate that we
separately introduce variations in expression, pose, and illuminationwhile keeping the other attributes
unchanged. w/ IM and w/o IM indicate whether identity mixup (IM) is used during training

ically, the first dataset is referred to as “Non”, since it fixes all the facial attributes. The
rest three datasets are referred to as “Expression”, “Pose”, and “Illumination”, respectively,
which indicates the only changed attribute while keeping other attributes unchanged.

Empirical Analysis.As shown in Fig. 10.7, “Non” and “Expression” achieve the worst two
performances 74.55% and 73.72%, respectively. Specifically, we find that “Expression” is
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limited to poor diversity, i.e., the generated face images mainly have the expression of “smil-
ing” (see more demo images in the supplementary materials). Hence, there is basically only
one valid sample per identity for “Non” and “Expression”, causing the poor performances.
Experimental results on “Pose” and “Illumination” demonstrate significant improvements
over “Non”, possibly due to their more diverse distributions and the testing dataset (i.e.,
LFW) also has similar pose and illumination. Lastly, we find that all of four settings are
significantly improved with the proposed identity mixup, especially for “Non”. A possible
reason is that identity mixup can be regarded as a strong data augmentation method for face
recognition, reducing the influences of different facial attributes on the final recognition
accuracy.

10.5 Conclusion

In this chapter,we explored the potentials of synthetic data for face recognition, i.e., SynFace.
We performed a systematically empirical analysis and provided novel insights on how to
efficiently utilize synthetic face images for face recognition: (1) enlarging the intra-class
variations of synthetic data consistently improves the performance, which can be achieved
by the proposed identity mixup; (2) both the depth and width of the training synthetic dataset
have significant influences on the performance, while the saturation first appears on the depth
dimension, i.e., increasing the number of identities (width) ismore important; (3) the impacts
of different attributes vary from pose, illumination, and expression, i.e., changing pose and
illumination brings significant improvements, while the generated face images suffer from a
poor diversity on expression; (4) a small subset of real-world face images can greatly boost
the performance of SynFace via the proposed domain mixup.
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11Uncertainty-Aware Face Recognition

Yichun Shi and Anil K. Jain

11.1 Introduction

Deep learning-based face recognition systems are mainly based on embedding methods,
where facial features are compared in a latent semantic space. However, in a fully uncon-
strained face setting, the facial features could be ambiguous or may not even be present
in the input face, leading to noisy representations that harm both the training and testing
phases. In this chapter, we introduce a new type of face representation, namely probabilistic
embeddings, that explicitly models the feature uncertainties in the face representations. In
contrast to deterministic embeddings, which embeds each input face image/template as a
point in the feature space, probabilistic embeddings represent each input as a probabilistic
distribution and hence additionally model the data uncertainty. This type of representation
has been shown to be (1) preferable for matching low-quality face images during testing,
(2) robust against noisy data during training, and (3) good at estimating input quality for
template feature fusion and input filtering.

11.2 Background:Uncertainty-Aware Deep Learning

To improve the robustness and interpretability of discriminant Deep Neural Networks
(DNNs), deep uncertainty learning is getting more attention [4, 12, 13]. There are two main
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types of uncertainty: model uncertainty and data uncertainty. Model uncertainty refers to
the uncertainty of model parameters given the training data and can be reduced by collecting
additional training data [4, 12, 21, 23]. Data uncertainty accounts for the uncertainty in out-
put whose primary source is the inherent noise in input data and hence cannot be eliminated
with more training data [13]. The uncertainty studied in this chapter can be categorized as
data uncertainty. Although techniques have been developed for estimating data uncertainty
in different tasks, including classification and regression [13], they are not suitable for face
embeddings since the target space is not well-defined by given labels. That is, although we
are given the identity labels, they cannot directly serve as target vectors in the latent fea-
ture space. Variational Autoencoders [15] can also be regarded as a method for estimating
uncertainty, but it mainly serves a generation purpose. Specific to face recognition, some
studies [5, 14, 37] have leveraged the model uncertainty for analysis and learning of face
representations. In contrast, in this chapter, we mainly focus on data uncertainty in face
recognition and how to represent such uncertainty in face embeddings.

11.3 Probabilistic Face Embeddings (PFE)

When humans are asked to describe a face image, they not only give the description of
the facial attributes, but also the confidence associated with them. For example, if the eyes
are blurred in the image, a person will keep the eye size as uncertain information and
focus on other features. Furthermore, if the image is completely corrupted and no attributes
can be discerned, the subject may respond that he/her cannot identify this face. This kind of
uncertainty (or confidence) estimation is common and important in human decision-making.

On the other hand, the representations used in state-of-the-art face recognition systems
are generally confidence-agnostic. These methods depend on an embedding model (e.g.,
Deep Neural Networks) to give a deterministic point representation for each face image in
the latent feature space [3, 19, 25, 30, 31]. A point in the latent space represents the model’s
estimation of the facial features in the given image. If the error in the estimation is somehow
bounded, the distance between two points can effectively measure the semantic similarity
between the corresponding face images. But given a low-quality input, where the expected
facial features are ambiguous or absent in the image, a large shift in the embedded points is
inevitable, leading to false recognition (Fig. 11.1a).

Given that face recognition systems have already achieved high recognition accuracies on
relatively constrained face recognition benchmarks, e.g., LFW [9] andYTF [33], wheremost
facial attributes can be clearly observed, recent face recognition challenges havemoved on to
more unconstrained scenarios, including surveillance videos [10, 17, 22]. In these tasks, any
type and degree of variation could exist in the face image, where most of the desired facial
features learned by the representationmodel could be absent. Given this lack of information,
it is unlikely to find a feature set that could always match these faces accurately. Hence, the
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Fig. 11.1 Difference between deterministic face embeddings and probabilistic face embeddings
(PFEs). Deterministic embeddings represent every face as a point in the latent space without regard
to its feature ambiguity. Probabilistic face embedding (PFE) gives a distributional estimation of
features in the latent space instead. Best viewed in color

state-of-the-art face recognition systems, which obtained over 99% accuracy on LFW, have
suffered from a large performance drop on IARPA Janus benchmarks [10, 17, 22].

To address the above problems, Probabilistic Face Embeddings (PFEs) [27] give a distri-
butional estimation instead of a point estimation in the latent space for each input face image
(Fig. 11.1b). The mean of the distribution can be interpreted as the most likely latent feature
values, while the span of the distribution represents the uncertainty of these estimations.
PFE can address the unconstrained face recognition problem in a two-fold way: (1) During
matching (face comparison), PFE penalizes uncertain features (dimensions) and pays more
attention to more confident features. (2) For low-quality inputs, the confidence estimated
by PFE can be used to reject the input or actively ask for human assistance to avoid false
recognition. Besides, a natural solution can be derived to aggregate the PFE representations
of a set of face images into a new distribution with lower uncertainty to increase recognition
performance.

11.3.1 Limitations of Deterministic Embeddings

In this section, we explain the problems of deterministic face embeddings from both theo-
retical and empirical views. Let X denote the image space and Z denote the latent feature
space of D dimensions. An ideal latent spaceZ should only encode identity-salient features
and be disentangled from identity-irrelevant features. As such, each identity should have
a unique intrinsic code z ∈ Z that best represents this person and each face image x ∈ X
is an observation sampled from p(x|z). The process of training face embeddings can be
viewed as a joint process of searching for such a latent space Z and learning the inverse
mapping p(z|x). For deterministic embeddings, the inverse mapping is a Dirac delta func-
tion p(z|x) = δ(z − f (x)), where f is the embedding function. Clearly, for any space Z,
given the possibility of noises in x, it is unrealistic to recover the exact z and the embedded
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point of a low-quality input would inevitably shift away from its intrinsic z (no matter how
much training data we have).

The question is whether this shift could be bounded such that we still have smaller
intra-class distances compared to inter-class distances. However, this is unrealistic for fully
unconstrained face recognition and we conduct an experiment to illustrate this. Let us start
with a simple example: given a pair of identical images, a deterministic embedding will
always map them to the same point, and therefore, the distance between them will always
be 0, even if these images do not contain a face. This implies that “a pair of images being
similar or even the same does not necessarily mean the probability of their belonging to the
same person is high”.

To demonstrate this, we conduct an experiment by manually degrading the high-quality
images and visualizing their similarity scores. We randomly select a high-quality image of
each subject from the LFW dataset [9] and manually insert Gaussian blur, occlusion, and
randomGaussian noise into the faces. In particular, we linearly increase the size of Gaussian
kernel, occlusion ratio, and the standard deviation of the noise to control the degradation
degree.At each degradation level,we extract the feature vectorswith a 64-layerCNN,1 which
is comparable to state-of-the-art face recognition systems. The features are normalized to
a hyperspherical embedding space. Then, two types of cosine similarities are reported: (1)
similarity between pairs of original images and their respective degraded image, and (2)
similarity between degraded images of different identities. As shown in Fig. 11.2, for all
three types of degradation, the genuine similarity scores decrease to 0, while the impostor
similarity scores converge to 1.0! These indicate two types of errors that can be expected
in a fully unconstrained scenario even when the model is very confident (very high/low
similarity scores):

1. False accept of impostor low-quality pairs and
2. False reject of genuine cross-quality pairs.

To confirm this, we test the model on the IJB-A dataset by finding impostor/genuine image
pairs with the highest/lowest scores, respectively. The situation is exactly as we hypothe-
sized (See Fig. 11.3). We call this Feature Ambiguity Dilemma which is observed when the
deterministic embeddings are forced to estimate the features of ambiguous faces. The exper-
iment also implies that there exists a dark space where the ambiguous inputs are mapped to
and the distance metric is distorted.

11.3.2 Contidional Gaussian Distributions as Probabilistic Embeddings

To address the aforementioned problem caused by data uncertainty, Probabilistic Face
Embeddings (PFEs) encode the uncertainty into the face representation and take it into

1 Trained on Ms-Celeb-1M [6] with AM-Softmax [29].
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Fig. 11.2 Illustration of feature ambiguity dilemma. The plots show the cosine similarity on LFW
dataset with different degrees of degradation. Blue lines show the similarity between original images
and their respective degraded versions. Red lines show the similarity between impostor pairs of
degraded images. The shading indicates the standard deviation. With larger degrees of degradation,
the model becomes more confident (very high/low scores) in a wrong way

Fig.11.3 Example genuine pairs from IJB-A dataset estimated with the lowest similarity scores and
impostor pairs with the highest similarity scores (among all possible pairs) by a 64-layer CNNmodel.
The genuine pairs mostly consist of one high-quality and one low-quality image, while the impostor
pairs are all low-quality images. Note that these pairs are not templates in the verification protocol

account during matching. Specifically, instead of building a model that gives a point estima-
tion in the latent space, we estimate a distribution p(z|x) in the latent space to represent the
potential appearance of a person’s face.2 In particular, the original PFE uses a multivariate
Gaussian distribution:

p(z|xi ) = N(z; μi , σ
2
i I) (11.1)

whereμi and σ i are both a D-dimensional vector predicted by the network from the i th input
image xi . Here we only consider a diagonal covariance matrix to reduce the complexity of
the face representation. This representation should have the following properties:

1. The center μ should encode the most likely facial features of the input image.
2. The uncertainty σ should encode the model’s confidence along each feature dimension.

2 Following the notations in Sect. 11.3.1.
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11.3.3 FaceMatching with PFEs

Given the PFE representations of a pair of images (xi , x j ), we can directly measure
the “likelihood” of them belonging to the same person (sharing the same latent code):
p(zi = z j ), where zi ∼ p(z|xi ) and z j ∼ p(z|x j ). Specifically,

p(zi = z j ) =
∫

p(zi |xi )p(z j |x j )δ(zi − z j )dzi dz j . (11.2)

In practice, we would like to use the log-likelihood instead, whose solution is given by:

s(xi , x j ) = log p(zi = z j )

= − 1

2

D∑
l=1

(
(μ

(l)
i − μ

(l)
j )2

σ
2(l)
i + σ

2(l)
j

+ log(σ 2(l)
i + σ

2(l)
j ))

− const,

(11.3)

where const = D
2 log 2π , μ(l)

i refers to the lth dimension of μi and similarly for σ
(l)
i .

This symmetric measure can be viewed as the expectation of the likelihood of one input’s
latent code conditioned on the other, that is

s(xi , x j ) = log
∫

p(z|xi )p(z|x j )dz

= logEz∼p(z|xi )[p(z|x j )]
= logEz∼p(z|x j )[p(z|xi )].

(11.4)

As such, we call itmutual likelihood score (MLS). Different from KL-divergence, this score
is unbounded and cannot be seen as a distance metric. It can be shown that the squared
Euclidean distance is equivalent to a special case of MLS when all the uncertainties are
assumed to be the same:

Property 11.1 If σ
(l)
i is a fixed number for all data xi and dimensions l, MLS is equivalent

to a scaled and shifted negative squared Euclidean distance.

Further, when the uncertainties are allowed to be different, we note that MLS has some
interesting properties that make it different from a distance metric:

1. Attentionmechanism: the first term in the bracket in Eq. (11.3) can be seen as a weighted
distance that assigns larger weights to less uncertain dimensions.
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2. Penaltymechanism: the second term in the bracket in Eq. (11.3) can be seen as a penalty
term that penalizes dimensions that have high uncertainties.

3. If either input xi or x j has large uncertainties, MLS will be low (because of penalty)
irrespective of the distance between their mean.

4. Only if both inputs have small uncertainties and their means are close to each other, MLS
could be very high.

The last two properties imply that PFE could solve the feature ambiguity dilemma if the
network can effectively estimate σ i .

11.3.4 Template Feature Fusion with PFEs

In many cases, we have a template (set) of face images, for which we need to build a compact
representation for matching. With PFEs, a conjugate formula can be derived for representa-
tion fusion (Fig. 11.4). Let {x1, x2, . . . , xn} be a series of observations (face images) from
the same identity and p(z|x1, x2, . . . , xn) be the posterior distribution after the nth obser-
vation. Then, assuming all the observations are conditionally independent (given the latent
code z). It can be shown that:

p(z|x1, x2, . . . , xn) = α
p(z|xn)
p(z)

p(z|x1, x2, . . . , xn−1), (11.5)

where α is a normalization factor. To simplify the notations, let us only consider the one-
dimensional case below; the solution can be easily extended to the multivariate case.

(a) (b)

Fig. 11.4 Fusion with PFEs. a Illustration of the fusion process as a directed graphical model. b
Given the Gaussian representations of faces (from the same identity), the fusion process outputs a
new Gaussian distribution in the latent space with a more precise mean and lower uncertainty
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If p(z) is assumed to be a non-informative prior, i.e., p(z) is a Gaussian distribution
whose variance approaches ∞, the posterior distribution in Eq. (11.5) is a new Gaussian
distribution with lower uncertainty (See supplementarymaterial). Further, given a set of face
images {x1, x2, . . . , xn}, the parameters of the fused representation can be directly given by:

μ̂n =
n∑

i=1

σ̂ 2
n

σ 2
i

μi , (11.6)

1

σ̂ 2
n

=
n∑

i=1

1

σ 2
i

. (11.7)

In practice, because the conditional independence assumption is usually not true, e.g.,
video frames include a large amount of redundancy, Eq. (11.7) will be biased by the number
of images in the set. Therefore, we take the dimension-wise minimum to obtain the new
uncertainty.

Relationship to Quality-aware Pooling

If we consider a case where all the dimensions share the same uncertainty σi for i th input
and let the quality value qi = 1

σ 2
i
be the output of the network. Then Eq. (11.6) can be written

as

μ̂n =
∑n

i=1 qiμi∑n
j q j

. (11.8)

If we do not use the uncertainty after fusion, the algorithm will be the same as recent
quality-aware aggregation methods for set-to-set face recognition [20, 34, 35].

11.3.5 Learning Uncertainty

Note that any deterministic embedding f , if properly optimized, can indeed satisfy the
properties of PFEs: (1) the embedding space is a disentangled identity-salient latent space
and (2) f (x) represents the most likely features of the given input in the latent space. As
such, in this work, we consider a stage-wise training strategy: given a pre-trained embedding
model f , we fix its parameters, take μ(x) = f (x), and optimize an additional uncertainty
module to estimate σ (x). When the uncertainty module is trained on the same dataset of the
embeddingmodel, this stage-wise training strategy allows us to have a more fair comparison
between PFE and the original embedding f (x) than an end-to-end learning strategy.
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The uncertainty module is a network with two fully-connected layers which share the
same input as the bottleneck layer.3 The optimization criteria are to maximize the mutual
likelihood score of all genuine pairs (xi , x j ). Formally, the loss function to minimize is

L = 1

|P|
∑

(i, j)∈P
−s(xi , x j ) (11.9)

where P is the set of all genuine pairs and s is defined in Eq. (11.3). In practice, the
loss function is optimized within each mini-batch. Intuitively, this loss function can be
understood as an alternative to maximizing p(z|x): if the latent distributions of all possible
genuine pairs have a large overlap, the latent target z should have a large likelihood p(z|x)
for any corresponding x. Notice that because μ(x) is fixed, the optimization wouldn’t lead
to the collapse of all the μ(x) to a single point.

11.3.6 Experimentals

In this section, we test the PFE method on standard face recognition protocols to compare
with deterministic embeddings. Then we conduct qualitative analysis to gain more insight
into how PFE behaves.

To comprehensively evaluate the efficacy of PFEs, we conduct the experiments on 7
benchmarks, including the well-known LFW [9], YTF [33], MegaFace [11], and four
other more unconstrained benchmarks:

CFP [26] contains 7,000 frontal/profile face photos of 500 subjects. We only test on
the frontal-profile (FP) protocol, which includes 7,000 pairs of frontal-profile faces. IJB-
A [17] is a template-based benchmark, containing 25,813 faces images of 500 subjects. Each
template includes a set of still photos or video frames. Compared with previous benchmarks,
the faces in IJB-A have larger variations and present a more unconstrained scenario. IJB-
C [22] is an extension of IJB-Awith 140,740 faces images of 3,531 subjects. The verification
protocol of IJB-C includes more impostor pairs so we can compute True Accept Rates
(TAR) at lower False Accept Rates (FAR). IJB-S [10] is a surveillance video benchmark
containing 350 surveillance videos spanning 30 hours in total, 5,656 enrollment images, and
202 enrollment videos of 202 subjects. Many faces in this dataset are of extreme pose or
low quality, making it one of the most challenging face recognition benchmarks.

3 Bottleneck layer refers to the layer which outputs the original face embedding.
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Table 11.1 Results of models trained on CASIA-WebFace. “Original” refers to the deterministic
embeddings. The better performance among each base model is shown in bold numbers. “PFE” uses
a mutual likelihood score for matching. IJB-A results are verification rates at FAR=0.1%

Base model Representation LFW YTF CFP-FP IJB-A

Softmax + Center
Loss [31]

Original 98.93 94.74 93.84 78.16

PFE 99.27 95.42 94.51 80.83

Triplet [25] Original 97.65 93.36 89.76 60.82

PFE 98.45 93.96 90.04 61.00

A-Softmax [19] Original 99.15 94.80 92.41 78.54

PFE 99.32 94.94 93.37 82.58

AM-Softmax [29] Original 99.28 95.64 94.77 84.69

PFE 99.55 95.92 95.06 87.58

We use the CASIA-WebFace [36] and a cleaned version4 ofMS-Celeb-1M [6] as training
data, from which we remove the subjects that are also included in the test datasets. In
particular, 84 and 4,182 subjects were removed from CASIA-WebFace and MS-Celeb-1M,
respectively.

11.3.6.1 Experiments on Different Base Embeddings
Since PFEworks by converting existing deterministic embeddings, we want to evaluate how
it works with different base embeddings, i.e., face representations trained with different
loss functions. In particular, we implement the following state-of-the-art loss functions:
Softmax+Center Loss [31], Triplet Loss [25], A-Softmax [19] and AM-Softmax [29]. To
be aligned with previous work [19, 30], we train a 64-layer residual network [19] with each
of these loss functions on the CASIA-WebFace dataset as base models. All the features
are �2-normalized to a hyper-spherical embedding space. Then we train the uncertainty
module for each base model on the CASIA-WebFace again for 3,000 steps. We evaluate the
performance on four benchmarks: LFW [9], YTF [33], CFP-FP [26] and IJB-A [17], which
present different challenges in face recognition. The results are shown in Table 11.1. The
PFE improves over the original representation in all cases, indicating that it is robust with
different embeddings and testing scenarios.

4 https://github.com/inlmouse/MS-Celeb-1M_WashList.

https://github.com/inlmouse/MS-Celeb-1M_WashList
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11.3.6.2 Using Uncertainty for Feature Fusion andMatching
To evaluate the effect of PFE on state-of-the-art face recognition networks, we use a different
base model, which is a 64-layer network trained with AM-Softmax on the MS-Celeb-1M
dataset. Then we fix the parameters and train the uncertainty module on the same dataset
for 12,000 steps. In the following experiments, we compare 3 methods:

• Baseline only uses the original features of the 64-layer deterministic embedding along
with cosine similarity for matching. Average pooling is used in the case of template/video
benchmarks.

• PFEfuse uses the uncertainty estimation σ in PFE and Eq. (11.6) to aggregate the features
of templates but uses cosine similarity for matching. If the uncertainty module could
estimate the feature uncertainty effectively, fusion with σ should be able to outperform
average pooling by assigning larger weights to confident features.

• PFEfuse+match uses σ both for fusion and matching (with mutual likelihood scores).
Templates/videos are fused based on Eqs. (11.6) and (11.7).

In Table 11.2, we show the results on four relatively easier benchmarks: LFW, YTF,
CFP, and MegaFace. Although the accuracy on LFW and YTF is nearly saturated, PFE
still improves the performance of the original representation. CFP involves more large pose
faces compared to LFW and YTF, and therefore, we observe a larger improvement on this
benchmark. Note that MegaFace is a biased dataset: because all the probes are high-quality
images from FaceScrub, the positive pairs in MegaFace are both high-quality images, while
the negative pairs only contain at most one low-quality image.5 Therefore, neither of the
two types of the error caused by the feature ambiguity dilemma (Sect. 11.3.1) will show
up in MegaFace and it naturally favors deterministic embeddings. However, the PFE still
maintains the performance in this case. We also note that such a bias, namely the target
gallery images being of higher quality than the rest of the gallery, would not exist in real-
world applications.

Table 11.2 Results of the baseline and PFE trained on MS-Celeb-1M and state-of-the-art methods
on LFW, YTF and MegaFace. The MegaFace verification rates are computed at FAR=0.0001%. “-”
indicates that the author did report the performance on the corresponding protocol

Method Training data LFW YTF CFP-FP MF1 MF1

Rank1 Veri.

Baseline 4.4M 99.70 97.18 92.78 79.43 92.93

PFEfuse 4.4M – 97.32 – – –

PFEfuse+match 4.4M 99.82 97.36 93.34 78.95 92.51

5 The negative pairs of MegaFace in the verification protocol only include those between probes and
distractors.
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Table 11.3 Results of the baseline and PFE model trained on MS-Celeb-1M and state-of-the-art
methods on IJB-A and IJB-C

Method Training data IJB-A (TAR@FAR) IJB-C (TAR@FAR)

0.1% 1% 0.001% 0.01% 0.1% 1%

Baseline 4.4M 93.30 ± 1.29 96.15 ± 0.71 70.10 85.37 93.61 96.91

PFEfuse 4.4M 94.59 ± 0.72 95.92 ± 0.73 83.14 92.38 95.47 97.36

PFEfuse+match 4.4M 95.25 ± 0.89 97.50 ± 0.43 89.64 93.25 95.49 97.17

Table 11.4 Performance comparison on three protocols of IJB-S. The performance is reported in
terms of rank retrieval (closed-set) and TPIR@FPIR (open-set) instead of the media-normalized
version [10]. The numbers “1%” in the second row refers to the FPIR

Method Training
data

Surv-to-Single Surv-to-Booking Surv-to-Surv

Rank-1 Rank-5 1% Rank-1 Rank-5 1% Rank-1 Rank-5 1%

Baseline 4.4M 50.00 59.07 7.22 47.54 56.14 14.75 9.40 17.52 0.06

PFEfuse 4.4M 53.44 61.40 10.53 55.45 63.17 16.70 8.18 14.52 0.09

PFEfuse+match 4.4M 50.16 58.33 31.88 53.60 61.75 35.99 9.20 20.82 0.84

In Table 11.3, we show the results on two more challenging datasets: IJB-A and IJB-
C. The images in these unconstrained datasets present larger variations in pose, occlusion,
etc., and facial features could be more ambiguous. From the results, we can see that PFE
achieves a more significant improvement on these benchmarks. In particular, on IJB-C at
FAR= 0.001%,PFE reduces the error rate by 64%. In addition, both of these twobenchmarks
are evaluated in terms of face templates, which requires a good feature fusion strategy. The
results of “PFEfuse” indicates that fusing the original features with the learned uncertainty
also helps the performance compared to the common average pooling strategy.

In Table 11.4, we report the results on three protocols of the latest benchmark, IJB-S.
Again, PFE is able to improve performance in most cases. Notice that the gallery templates
in the “Surveillance-to-still” and “Surveillance-to-booking” all include high-quality frontal
mugshots, which present little feature ambiguity. Therefore, we only see a slight perfor-
mance gap in these two protocols. But in themost challenging “surveillance-to-surveillance”
protocol, larger improvement can be achieved by using uncertainty for matching. Besides,
PFEfuse+match improves the performance significantly on all the open-set protocols, which
indicates that MLS has more impact on the absolute pairwise score than the relative ranking.
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11.3.7 Qualitative Analysis

Why and when does PFE improve performance?

We first repeat the same experiments in Sect. 11.3.1 using the PFE representation and MLS.
The same network is used as the base model here. As one can see in Fig. 11.5, although
the scores of low-quality impostor pairs are still increasing, they converge to a point that is
lower than themajority of genuine scores. Similarly, the scores of cross-quality genuine pairs
converge to a point that is higher than the majority of impostor scores. This means the two
types of errors discussed in Sect. 11.3.1 could be solved by PFE. This is further confirmed
by the IJB-A results in Fig. 11.6. Figure 11.7 shows the distribution of estimated uncertainty
on LFW, IJB-A, and IJB-S. As one can see, the “variance” of uncertainty increases in the
following order: LFW < IJB-A < IJB-S. Compared with the performance in Sect. 11.3.6.2,
we can see that PFE tends to achieve larger performance improvement on datasets with more
diverse image quality.

What does DNN see and not see?

To answer this question, we train a decoder network on the original embedding, then apply
it to PFE by sampling z from the estimated distribution p(z|x) of given x. For a high-quality
image (Fig. 11.8 Row 1), the reconstructed images tend to be very consistent without much
variation, implying the model is very certain about the facial features in these images. In
contrast, for a lower-quality input (Fig. 11.8 Row 2), a larger variation can be observed
from the reconstructed images. In particular, attributes that can be clearly discerned from
the image (e.g., thick eye-brow) are still consistent while attributes that cannot (e.g., eye
shape) be discerned have larger variation. As for a mis-detected image (Fig. 11.8 Row 3),
significant variation can be observed in the reconstructed images: the model does not see
any salient feature in the given image.

(a) Gaussian Blur (b) Occlusion (c) Random Noise

Fig.11.5 Repeated experiments on feature ambiguity dilemmawithPFE.The samemodel inFig. 11.2
is used as the base model and is converted to a PFE by training an uncertainty module. No additional
training data or data augmentation is used for training
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Fig. 11.6 Example genuine pairs from IJB-A dataset estimated with the lowest mutual likelihood
scores and impostor pairs with the highest scores by the PFE version of the same 64-layer CNN
model in Sect. 11.3.1. In comparison to Fig. 11.3, most images here are high-quality ones with clear
features, which can mislead the model to be confident in a wrong way. Note that these pairs are not
templates in the verification protocol

Fig.11.7 Distribution of estimated uncertainty on different datasets. Here, “Uncertainty” refers to the
harmonic mean of σ across all feature dimensions. Note that the estimated uncertainty is proportional
to the complexity of the datasets. Best viewed in color

11.3.8 Risk-Controlled Face Recognition

In many scenarios, wemay expect a higher performance than our system is able to achieve or
wemaywant to make sure the system’s performance can be controlled when facing complex
application scenarios. Therefore, we would expect the model to reject input images if it is
not confident. A common solution for this is to filter the images with a quality assessment
tool. We show that PFE provides a natural solution for this task. We take all the images from
LFW and IJB-A datasets for image-level face verification (We do not follow the original
protocols here). The system is allowed to “filter out” a proportion of all images to maintain
better performance. We then report the TAR@FAR= 0.001% against the “Filter Out Rate”.
We consider two criteria for filtering: (1) the detection score of MTCNN [32] and (2) a
confidence value predicted by PFE uncertainty module. Here the confidence for i th sample
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Fig.11.8 Visualization results on a high-quality, a low-quality and amis-detected image from IJB-A.
For each input, 5 images are reconstructed by a pre-trained decoder using the mean and 4 randomly
sampled z vectors from the estimated distribution p(z|x)

is defined as the inverse of harmonic mean of σ i across all dimensions. For fairness, both
methods use the original deterministic embedding representations and cosine similarity for
matching. To avoid saturated results, we use the model trained on CASIA-WebFace with
AM-Softmax. The results are shown in Fig. 11.10. As one can see, the predicted confidence
value is a better indicator of the potential recognition accuracy of the input image. This is
an expected result since PFE is trained under supervision for the particular model while an
external quality estimator is unaware of the kind of features used for matching by the model.
Example images with high/low confidence/quality scores are shown in Fig. 11.9.

Fig. 11.9 Example images from LFW and IJB-A that are estimated with the highest (H) confi-
dence/quality scores and the lowest (L) scores by PFE and MTCNN face detector
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(a) LFW (b) IJB-A

Fig. 11.10 Comparison of verification performance on LFW and IJB-A (not the original protocol)
by filtering a proportion of images using different quality criteria

11.4 Learning Representations with Data Uncertainty

The probabilistic face embeddings (PFEs) extend point-wise estimation of deep face features
to distributional estimations by representing each face image as aGaussian distribution in the
feature space. In particular, themeanof the distribution is fixed as the original pre-trained face
features while the variance is learned in a second stage. Therefore, later works have extended
probabilistic embeddings to simultaneously learn the feature (mean) and the uncertainty
(variance) of the Gaussian distribution, known as Data Uncertainty Learning (DUL) of
face representations [2]. Two kinds of uncertainty learning methods were introduced by
Chang et al.: one classification-based method and one regression-based. It is shown that
compared with conventional representation learning methods, uncertainty-based learning is
more robust against noisy training samples and improves the recognition performance on
unconstrained face datasets.

11.4.1 Classification-Based DUL

Recall that in probabilistic face embeddings, each face image is represented as a Gaussian
distribution in the feature space p(zi |xi ) = N(zi ; μi , σ

2
i I), where themeanμi represents the

identity features while the σ represents the uncertainties. The idea of classification-based
DUL is to stochastically sample feature points from this distribution in a classification-
based representation learning framework. This sampling process is differentiable with the
re-parameterization trick as introduced in [16]:

si = μi + εσ i , ε ∼ N(0; I). (11.10)
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Here ε is random noise sampled from a standard Gaussian distribution. This new features si
can then be injected into other loss functions for learning face representations. For example,
in the case of vanilla softmax cross-entropy loss, it would be:

Lso f tmax = − 1

N
�i log

ew
T
yi
si

�cew
T
c si

. (11.11)

To avoid the uncertainty σ i from collapsing into Infinitesimal numbers, a regulariza-
tion term is introduced during optimization. Specifically, as in the variational information
bottleneck [1], a Kullback–Leibler divergence (KLD) is used as the regularization term:

LK L = K L[N(zi |μi ; σ 2
i I)|N(ε|0, I)]

= − 1

2
(1 + log σ 2

i − μ2
i − σ 2

i ).
(11.12)

Overall, the loss function for classification-based uncertainty learning would be
Lcls = Lso f tmax + LK L .

11.4.2 Regression-Based DUL

Unlike the classification-based DUL, which converts the feature extraction process into a
sampling process without altering the representation of target labels, regression-based DUL
aims to represent each target label as a continuous vector in the feature space. And then the
uncertainty learning problem can be formulated as a regression problem.

Let W ∈ R
D×C be the weight matrix of a pre-trained classification model. The weight

vector wi ∈ W can be treated as a proxy representation vector of the i th class. The
regression-based uncertainty learning aims to maximize the following log-likelihood:

ln p(wc|xi∈c, θ) = − (wc − μi )
2

2σ 2
i

− 1

2
ln σ 2

i − 1

2
ln 2π. (11.13)

Since the log form of the overall likelihood is the sum of log-likelihood of each individual
sample, the regression loss is given by:

Lrgs = 1

2N
�i�l∈D[− (w(l)

yi − μ
(l)
i )2

2σ (l)2
i

− 1

2
ln σ

(l)2
i − 1

2
ln 2π], (11.14)

where D and l refers to the dimensionality of the embeddings and lth dimension, respectively.
Here, similar to the classification-based uncertainty learning, the regression loss function
ELcls , ELrgs has a balancing effect that prevents the uncertainty estimations from being
either too big or too small.



338 Y. Shi and A.K. Jain

11.4.3 Experiments

In this section, we show the experimental results of DUL as well as its comparisons with
PFE. The baseline models are trained on ResNet [7] with SE-blocks [8]. MS-Celeb-1M
datasets [6] with 3,648,176 images of 79,891 subjects are used as the training set. All the
results are originally reported in [2]. The PFE module is also re-implemented by Chang et
al..

11.4.3.1 Comparisons with Baseline and PFE
To test the performance of DUL, Chang et al.experimented with three different classification
loss functions, namely AM-Softmax [29], ArcFace [3], and L2-Softmax[24]. Then, corre-
sponding models are trained for all these base models using PFE and DUL. The results are
shown in Table 11.5. Note that DUL uses cosine similarity and average pooling for all the
protocols. By incorporating uncertainties into the representation learning stage, DUL is able
to achieve comparable or better performance than PFE on all protocols.

11.4.3.2 Training on Noisy Samples
As pointed out by Chang et al. [2], introducing data uncertainty into the learning stage
is also able to improve the robustness of the model against the noisy training examples.
To conduct the experiment, they pollute the original MS-Celeb-1M dataset with Gaussian

Table11.5 Results ofmodels trained onMS-Celeb-1M. “Original” refers to the deterministic embed-
dings. The better performance among each base model is shown in bold numbers. “PFE” uses mutual
likelihood score for matching while DUL uses cosine similarity and average pooling “MF” refers to
the rank 1 retrieval rate on MegaFace and IJB-C refers to the TPR@FPR metric

Base model Representation LFW CFP-FP MF(R1) YTF IJB-C

0.001% 0.01%

AM-Softmax [29] Original 99.63 96.85 97.11 96.09 75.43 88.65

PFE 99.68 94.57 97.18 96.12 86.24 92.11

DULcls 99.71 97.28 97.30 96.46 88.25 92.78

DULrgs 99.66 97.61 96.85 96.28 87.02 91.84

ArcFace [3] Original 99.64 96.77 97.08 96.06 73.80 88.78

PFE 99.68 95.34 96.55 96.32 86.69 92.28

DULcls 99.76 97.01 97.22 96.20 87.22 92.43

DULrgs 99.66 97.11 96.83 96.38 86.21 91.03

L2-Softmax [24] Original 99.60 95.87 90.34 95.89 77.60 86.19

PFE 99.66 86.45 90.64 95.98 79.33 87.28

DULcls 99.63 97.24 93.19 96.56 79.90 87.80

DULrgs 99.66 96.35 89.66 96.08 74.46 83.23
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Table 11.6 Comparison of baseline model and DULcls/rgs trained on noisy MS-Celeb-1M

Percent Model MegaFace LFW YTF IJB-C

0.001% 0.01% 0.1%

0% baseline 97.11 99.63 96.09 75.32 88.65 94.73

10% baseline 96.64 99.63 96.16 64.96 86.00 94.82

PFE 97.02 99.63 96.10 83.39 91.33 95.54

DULcls 96.88 99.75 96.44 88.04 93.21 95.96

DULrgs 96.05 99.71 96.46 84.74 91.56 95.30

20% baseline 96.20 99.61 96.00 43.52 80.48 94.22

PFE 96.90 99.61 95.86 82.03 90.89 95.38

DULcls 96.37 99.71 96.68 89.01 93.24 95.97

DULrgs 95.51 99.66 96.64 81.10 90.91 95.27

30% baseline 95.72 99.60 95.45 31.51 76.09 93.11

PFE 96.82 99.61 96.12 80.92 90.31 95.29

DULcls 95.86 99.73 96.38 86.05 91.80 95.02

DULrgs 94.96 99.66 96.66 81.54 91.20 95.32

40% baseline 95.14 99.56 95.51 39.69 77.12 93.73

PFE 96.59 99.59 95.94 77.72 89.46 94.82

DULcls 95.33 99.66 96.54 84.15 92.60 95.85

DULrgs 94.28 99.58 96.68 78.13 87.64 94.67

blur as noise and observe the performance trend along with the percentage of data being
polluted. As shown in Table 11.6, DUL turns out to be the most robust against noisy training
samples.We note that a similar observation is reported by Shi et al. [28]. In their work, Shi et
al.reformulates the scaling factor in the softmax loss as an uncertainty term and shows that
considering data uncertainty enables the model to learn from stronger and more diverse data
augmentations.

11.5 Non-Gaussian Probabilistic Embeddings

In probabilistic face embeddings and aforementioned uncertainty-aware face representation
learning, each input face image/template is represented as aGaussian distribution in the latent
feature space. Although practically this approach has achieved success in unconstrained face
recognition, there remains a question of whether a Gaussian distribution is the best choice
for the probabilistic representation. In fact, in most modern deep face recognition systems,
the face representations are distributed on a unit hypersphere. Although we can regularize
the mean of the projected Gaussian distribution onto this hypersphere, the samples from the
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distribution will still fall off the spherical manifold. Thus, to solve the issue, Li et al.have
proposed Spherical Confidence Learning for Face Recognition [18], where non-Gaussian
probabilistic embeddings are used to represent input data.

11.5.1 r-radius von-Mises Fisher Distribution

Typically, data points on a hypersphere can be modeled by a von-Mises Fisher (vMF)
Distribution. Specifically for probabilistic embeddings, given an input face image data x, a
conditional von-Mises Fisher Distribution on d dimensional unit sphere Sd−1 ⊂ R

d is given
by:

p(z′|x) = Cd(κx) exp(κxμ
T
x z

′), (11.15)

Cd(κx) = κ
d/2−1
x

(2π)d/2Id/2−1(κbx )
, (11.16)

where z′, μx ∈ S
d−1, κx ≥ 0 (subscripts indicate statistical dependencies on x) and Iα

denotes the modified Bessel function of the first kind at order α:

Iα = �inf
m=0

1

m!�(m + α + 1)
(
x

2
)2m+α. (11.17)

The parametersμx and κx are themean direction and concentration parameters, respectively.
The greater the value κx, the higher the concentration around the mean μx. The model
degenerates to a uniform sphere for κx = 0. Li et al. [18] further extended the distribution
into a r -radius vMF that is defined over the support of an r -radius sphere rSd−1. Formally,
for any z ∈ rSd−1, there exists a one-to-one correspondence between z′ and z such that
z = rz′. Then, the r-radius vMF density (denoted as r -vMF(μx, κx)) can be obtained by:

p(z|x) = Cd(κx)

rd−1 exp(κxμ
T
x z

′) (11.18)

11.5.2 Spherical Confidence Face (SCF)

Modern deep face recognition networks are usually trained with a classifier loss, where the
weight vectors in the last classification represent one the of target classes. Here, letwx denote
the weight vector of the target class c of a sample image x ∈ c. In SCF, q(z|x) = δ(z − wx)

is used to represent class c, where δ is the Dirac delta function. The loss function is thus to
minimize the KL-divergence between q(z|x) and p(z|x), which is equivalent to the cross
entropy:
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LSCF = −
∫
rSd−1

(z|x) log p(z|x)dz

= − κ(x)
r

μ(x)Twx∈c − (
d

2
− 1) log κ(x)

+ log(Id/2−1(κ(x))) + d

2
log 2πr2.

(11.19)

Similar to PFE, this loss function is applied to learn confidence scores with fixed determin-
istic embeddings μ(x) as backbones. However, by using the class representations, the loss
function can be trained without sampling data pairs. As shown by Li et al. [18], data points
that are closer to their target representation wx tend to have higher confidence κx.

11.5.3 Feature Comparison

SCF also uses theMutual Likelihood Score (MLS) as the comparison function between face
images/templates. Unlike the original PFE, this MLS is defined over the aforementioned
r -radius vMFs:

s(xi , x j ) = log
∫ ∫

rSd−1×rSd−1
p(zi |xi )p(z j |x j )δ(zi − z j )dzi dz j

= logCd(κi ) + logCd(κ j ) − logCd(κ̃) − d log r ,
(11.20)

where κ̃ = ‖p‖2, p = (κiμi + κ jμ j ). We refer the readers to [18] for detailed derivations.

11.5.4 Feature Pooling

Similar to Gaussian PFE, the spherical confidence of r -radius vMF can be used for feature
pooling. Given two sets of images xi ∈ A and x j ∈ B, the fused representation is:

zA = �xi∈Aκiμi

�xi∈Aκi
, zB = �x j∈Bκ jμ j

�x j∈Bκ j
. (11.21)

The similarity between the two sets is thenmeasured by the cosine similarity cos< zA, zB >.

11.5.5 Experiments

In this section, we show the experimental results of SCF aswell as its comparisons with PFE.
ResNet100 and ResNet34 [7] are employed as deterministic embedding backbones. For both
SCF and PFE, the mean direction module μ is initialized by deterministic embeddings and
fixed throughout the training. MS1MV2 is used as the training set. The PFE module is also
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Table 11.7 Comparison of baseline models, PFE and SCF on MS1MV2 dataset using ResNet100
as the backbone network. For IJB-C, “0.001%” and “0.01%” refer to the False Accept Rate in the
verification protocol. ForMegaFace, ID refers to “Identification”,while “Ver” refers to the verification
(TAR@FAR=0.0001%)

Method LFW CFP-FP AgeDB MegaFace IJB-C

ID Ver 0.001% 0.01%

CosFace 99.78 98.45 98.03 80.56 96.56 93.86 95.95

+ PFE 99.80 98.56 98.15 80.44 96.49 94.09 96.04

+ SCF-G 99.79 98.54 98.14 80.57 96.61 94.15 96.02

+ SCF 99.80 98.59 98.26 80.93 96.90 94.78 96.22

ArcFace 99.77 98.27 98.28 81.03 96.98 93.15 95.60

+ PFE 99.78 98.33 98.21 80.53 96.43 92.95 95.32

+ SCF-G 99.79 98.31 98.23 81.23 97.11 93.85 95.33

+ SCF 99.82 98.40 98.30 81.40 97.15 94.04 96.09

re-implemented by Li et al.. Besides the spherical version of SCF, they also implemented a
Gaussian version, denoted as SCF-G for comparison.

An overview of the comparison results from Li et al. [18] is shown in Table 11.7. Note
that they also report the performance on many other benchmarks while we only select the
representative ones here. A ResNet100 is used as the backbone for all these datasets. Two
backbone networks are trained with CosFace [30] and ArcFace [3], respectively, as the
deterministic embeddings for initialization. In the first row of each part, the performance of
the original backbones are reported. The following rows (PFE, SCF-G, and SCF) report the
performance of different variants of probabilistic embeddings. According to the results, the
SCF loss function also works when it is applied to the Gaussian probabilistic embeddings.
Furthermore, SCF constantly outperforms PFE and SCF-G because it better aligns with
the feature distribution of the backbone embeddings. In the original paper, the authors also
observed that SCF leads to less improvement on deeper networks than on shallower networks
(ResNet34), and they hypothesize that this is because deeper embeddings already exhibit
high separability and less ambiguous samples lie on the classification boundaries.

Li et al.also conducted an experiment of risk-controlled face recognition experiment,
where a certain number of face images can be filtered out during face verification on IJB-A,
IJB-B, and IJB-C. The results are shown in Fig. 11.11. It can be seen that both PFE and
SCF-G outperform face detector (MTCNN) as quality indicator for input face images. SCF
further outperforms its Gaussian counterpart on the task by taking the non-Gaussianity of
the feature distribution into consideration.
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Fig. 11.11 Experiments of
risk-controlled face recognition
on IJB-A, IJB-B, and IJB-C

11.6 Summary

In this chapter, we introduced the motivation of data uncertainty estimation in deep face
recognition systems as well as its applications. From a probabilistic perspective, traditional
deep face embeddings can be viewed as deterministic face embeddings, which do not take
intrinsic data uncertainty of image samples into account. And therefore they will inevitably
fail on ambiguous samples that are hardly recognizable. To solve the issue, Probabilistic Face
Embedding (PFE) is introduced to represent each face image/template as a Gaussian distri-
bution in the feature space. The variances of these distributions are then used as uncertainty
estimation for feature comparison, feature pooling, and quality assessment. Data Uncer-
tainty Learning (DUL) further extends the uncertainty estimation into the learning stage of
backbone neural networks and improves their robustness against noisy training samples.
Spherical Gaussian Face (SCF) extends SCF to von-Mises Fisher distributions to model the
uncertainty on a spherical feature space, which better aligns with the feature distribution of
most current deep face recognition systems.
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12Reducing Bias in Face Recognition

Sixue Gong, Xiaoming Liu, and Anil K. Jain

12.1 The Bias in Face Recognition

In this chapter, we estimate the demographic bias in FR (Face Recognition) algorithms and
introduce two methods to mitigate the demographic impact on FR performance. The goal of
this research is to learn a fair face representation, where the faces of every group could be
equally well-represented. Specifically, we explore de-biasing approaches by designing two
different network architectures using deep learning. Meanwhile, we evaluate the model’s
demographic bias on various datasets to show how much bias is mitigated in our attempt at
improving the fairness of face representations extracted from CNNs.

In the first method, we present a de-biasing adversarial network (DebFace) that learns to
extract disentangled feature representations for both unbiased face recognition and demo-
graphics estimation. The proposed network consists of one identity classifier and three
demographic classifiers (for gender, age, and race) that are trained to distinguish identity
and demographic attributes, respectively. Adversarial learning is adopted to minimize corre-
lation among feature factors so as to abate bias influence from other factors. We also design
a scheme to combine demographics with identity features to strengthen the robustness of
face representation in different demographic groups.

The second method, group adaptive classifier (GAC), learns to mitigate bias by using
adaptive convolution kernels and attentionmechanisms on faces based on their demographic
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attributes. The adaptive module comprises kernel masks and channel-wise attention maps
for each demographic group so as to activate different facial regions for identification,
leading to more discriminative features pertinent to their demographics. We also introduce
an automated adaptation strategy which determines whether to apply adaptation to a certain
layer by iteratively computing the dissimilarity among demographic-adaptive parameters,
thereby increasing the efficiency of the adaptation learning.

The experimental results on benchmark face datasets (e.g., RFW [92], LFW [39], IJB-
A [47] and IJB-C [63]) show that our approach is able to reduce bias in face recognition on
various demographic groups as well as maintain the competitive performance.

12.2 Fairness Learning and De-biasing Algorithms

We start by reviewing recent advances in fairness learning and de-biasing algorithms. Previ-
ous efforts on fairness techniques are proposed to prevent machine learningmodels from uti-
lizing statistical bias in training data, including adversarial training [3, 34, 62, 95], subgroup
constraint optimization [43, 96, 114], data pre-processing (e.g., weighted sampling [28], and
data transformation [6]), and algorithm post-processing [45, 69]. For example, Alexander et
al. [4] develop an algorithm to mitigate the hidden biases within training data to uncover
deep learning bias. Another example of promising approaches in fair representations is to
preserve all discerning information about the data attributes or task-related attributes but
eliminate the prejudicial effects from sensitive factors by adversarial training [16, 32, 65,
79, 107]. Locatello et al. [58] show the feature disentanglement is consistently correlated
with increasing fairness of general purpose representations by analyzing 12, 600 SOTA
models.

In the FR community, the biased performance of FR algorithms is not only an issue
of current DNN-based models but also in prior-DNN era. For example, Klare et al. [46]
propose to train classifiers separately on each demographic group to reduce bias from hand-
crafted face representations. In the DNN era, however, the data-driven FR models inherit
most of their bias from large-scale face datasets with highly-imbalanced distribution [103,
109]. Several efforts have been made to address data bias in FR. The work of [8] presents
multiple data-driven factors (e.g., image quality and population statistics) for assessing bias
in FR algorithms. The study in [84] also shows the correlation of image quality and FR bias.
Dooley et al. [23] construct an improved face dataset with better quality and use it to study
bias in FR via comparing various algorithms by human reviewers.

To mitigate data bias in FR, center-based feature transfer learning [103] and large margin
feature augmentation [93] are proposed to augment features of under-represented identities
and equalize identity distribution. These studies mainly focus on bias from insufficient
identity samples, but ignore the influence of demographic imbalance on the dataset. In
contrast, the studies in [70, 92] address the demographic bias in FR by leveraging unlabeled
faces to improve the performance in groups with fewer samples. Wang et al. [91] collect a
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race-balanced face dataset and propose skewness-aware reinforcement learning to mitigate
racial bias in FR. What is noteworthy is that a balanced dataset does not necessarily benefit
the bias mitigation in FR [30]. Another approach to data bias is to utilize synthetic face
data, such as the fully annotated face images synthesized by [49], and the face images
via transformation on racial characteristics constructed by Yucer et al. [104]. They later
introduce an alternative methodology on race bias using face phenotype attributes [105].

Apart from data pre-processing, an alternative direction is feature post-processing. For
instance, gender bias is mitigated by transforming a pre-trained deep face representation by
minimizing the intra-class variance on each gender group via von Mises-Fisher loss [14].
Another adds-on framework is proposed to improve the accuracy of a given face represen-
tation while reducing its bias in performance via triplet loss whose triplets are carefully
sampled based on sensitive factors [75]. Unlike prior work, we design a GAC framework
to customize the classifier for each demographic group, which, if successful, would lead to
mitigated bias. This framework is presented in the following Sect. 12.5.

Inspired by adversarial training in machine learning, a gender-neutral face representation
is proposed to reduce the gender information present in face embeddings extracted from
any well-trained FR network [20]. Our second de-biasing framework, DebFace, leverages a
similar idea, which disentangles face representations to de-bias both FR and demographic
attribute estimation. Section 12.4 discusses DebFace in more details.

12.3 ProblemDefinition

We now give a specific definition of the problem addressed in this chapter. The ultimate
goal of unbiased face recognition is that, given a face recognition system, there is no statis-
tically significant difference among the performance in different categories of face images.
Despite the research on pose-invariant face recognition that aims for equal performance on
all poses [86, 102], we believe that it is inappropriate to define variations like pose, illu-
mination, or resolution, as the categories. These are instantaneous image-related variations
with intrinsic bias. For instance, large-pose or low-resolution faces are inherently harder to
be recognized than frontal-view high-resolution faces.

Instead, wewould like to define subject-related properties such as demographic attributes
as the categories. A face recognition system is biased if it performs worse on certain demo-
graphic cohorts. For practical applications, it is important to consider what demographic
biases may exist, and whether these are intrinsic biases across demographic cohorts or
algorithmic biases derived from the algorithm itself. This motivates us to analyze the demo-
graphic influence on face recognition performance and strive to reduce algorithmic bias for
face recognition systems. One may achieve this by training on a dataset containing uniform
samples over the cohort space. However, the demographic distribution of a dataset is often
imbalanced and underrepresents demographic minorities while overrepresenting majorities.
Naively re-sampling a balanced training dataset may still induce bias since the diversity of
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latent variables is different across cohorts and the instances cannot be treated fairly during
training. To mitigate demographic bias, we propose two face de-biasing frameworks that
reduce demographic bias over face identity features while maintaining the overall verifica-
tion performance in the meantime.

12.4 Jointly De-biasing Face Recognition and Demographic
Attribute Estimation

In this section, we introduce another framework to address the influence of demographic
bias on face recognition. With the technique of adversarial learning, we attack this issue
from a different perspective. Specifically, we assume that if the face representation does not
carry discriminative information of demographic attributes, it would be unbiased in terms of
demographics.Given this assumption, one commonway to removedemographic information
from face representations is to perform feature disentanglement via adversarial learning
(Fig. 12.1b). That is, the classifier of demographic attributes can be used to encourage the
identity representation to not carry demographic information. However, one issue of this
common approach is that the demographic classifier itself could be biased (e.g., the race
classifier could be biased on gender), and hence it will act differently while disentangling
faces of different cohorts. This is clearly undesirable as it leads to demographic biased
identity representation.

To resolve the chicken-and-egg problem, we propose to jointly learn unbiased representa-
tions for both the identity and demographic attributes. Specifically, starting from amulti-task
learning framework that learns disentangled feature representations of gender, age, race, and
identity, respectively, we request the classifier of each task to act as adversarial supervision
for the other tasks (e.g., the dash arrows in Fig. 12.1c). These four classifiers help each other
to achieve better feature disentanglement, resulting in unbiased feature representations for
both the identity and demographic attributes. As shown in Fig. 12.1, our framework is in
sharp contrast to both multi-task learning and adversarial learning.

Moreover, since the features are disentangled into the demographic and identity, our face
representations also contribute to privacy-preserving applications. It is worth noticing that
such identity representations contain little demographic information,which could undermine

(a) Multi-task learning (b) Adversarial learning (c) DebFace

Fig. 12.1 Methods to learn different tasks simultaneously. Solid lines are typical feature flow in
CNN, while dash lines are adversarial losses
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the recognition competence since demographic features are part of identity-related facial
appearance. To retain the recognition accuracy on demographic biased face datasets, we
propose another network that combines the demographic features with the demographic-
free identity features to generate a new identity representation for face recognition.

The key contributions and findings of this work are:
� A thorough analysis of deep learning-based face recognition performance on three

different demographics: (i) gender, (ii) age, and (iii) race.
� A de-biasing face recognition framework, called DebFace, that generates disentan-

gled representations for both identity and demographics recognition while jointly removing
discriminative information from other counterparts.

� The identity representation from DebFace (DebFace-ID) shows lower bias on different
demographic cohorts and also achieves SOTA face verification results on demographic-
unbiased face recognition.

� The demographic attribute estimations via DebFace are less biased across other demo-
graphic cohorts.

� Combining ID with demographics results in more discriminative features for face
recognition on biased datasets.

12.4.1 Adversarial Learning and Disentangled Representation

We first review previous work related to adversarial learning and representation disentan-
glement. Adversarial learning [73] has been well explored in many computer vision appli-
cations. For example, Generative Adversarial Networks (GANs) [26] employ adversarial
learning to train a generator by competingwith a discriminator that distinguishes real images
from synthetic ones. Adversarial learning has also been applied to domain adaptation [60,
83, 87, 88]. An issue of current interest is to learn interpretable representations with seman-
tic meaning [100]. Many studies have been learning factors of variations in the data by
supervised learning [55–57, 85, 86], or semi-supervised/unsupervised learning [44, 59, 66,
113], referred to as disentangled representation. For supervised disentangled feature learn-
ing, adversarial networks are utilized to extract features that only contain discriminative
information of a target task. For face recognition, Liu et al. [57] propose a disentangled
representation by training an adversarial autoencoder to extract features that can capture
identity discrimination and its complementary knowledge. In contrast, our proposed Deb-
Face differs from prior works in that each branch of the multi-task network acts as both a
generator to its branch and discriminators to other branches (Fig. 12.1c).
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12.4.2 Methodology

12.4.2.1 AlgorithmDesign
The proposed network takes advantage of the relationship between demographics and face
identities. On the one hand, demographic characteristics are highly correlated with face
features. On the other hand, demographic attributes are heterogeneous in terms of data
type and semantics [31]. Being male, for example, does not necessarily indicate a specific
age or race of an individual. Accordingly, we present a framework that jointly generates
demographic features and identity features from a single face image by considering both the
aforementioned attribute correlation and attribute heterogeneity in a DNN.

While ourmain goal is tomitigate demographic bias from face representation, we observe
that demographic estimations are biased as well (see Fig. 12.5). How can we remove the bias
of face recognition when demographic estimations themselves are biased? Cook et al. [15]
investigated this effect and found the performance of face recognition is affected bymultiple
demographic covariates. We propose a de-biasing network, DebFace, that disentangles the
representation into gender (DebFace-G), age (DebFace-A), race (DebFace-R), and identity
(DebFace-ID), to decrease bias of both face recognition and demographic estimations. Using
adversarial learning, the proposed method is capable of jointly learning multiple discrimi-
native representations while ensuring that each classifier cannot distinguish among classes
through non-corresponding representations.

Though less biased, DebFace-ID loses demographic cues that are useful for identifica-
tion. In particular, race and gender are two critical components that constitute face patterns.
Hence, we desire to incorporate race and gender with DebFace-ID to obtain a more inte-
grated face representation. We employ a light-weight fully-connected network to aggregate
the representations into a face representation (DemoID) with the same dimensionality as
DebFace-ID.

Fig. 12.2 Overview of the proposed De-biasing face (DebFace) network. DebFace is composed of
three major blocks, i.e., a shared feature encoding block, a feature disentangling block, and a feature
aggregation block. The solid arrows represent the forward inference, and the dashed arrows stand for
adversarial training. During inference, either DebFace-ID (i.e., fI D) or DemoID can be used for face
matching given the desired trade-off between biasness and accuracy
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12.4.2.2 Network Architecture
Figure 12.2 gives an overview of the proposed DebFace network. It consists of four com-
ponents: the shared image-to-feature encoder EImg , the four attribute classifiers (including
gender CG , age CA, race CR , and identity CI D), the distribution classifier CDistr , and
the feature aggregation network EFeat . We assume access to N labeled training samples
{(x(i), y(i)

g , y(i)
a , y(i)

r , y(i)
id )}Ni=1. Our approach takes an image x(i) as the input of EImg . The

encoder projects x(i) to its feature representation EImg(x(i)). The feature representation

is then decoupled into four D-dimensional feature vectors, gender f (i)g , age f (i)a , race f (i)r ,

and identity f (i)I D , respectively. Next, each attribute classifier operates on the corresponding
feature vector to correctly classify the target attribute by optimizing parameters of both
EImg and the respective classifier C∗. For a demographic attribute with K categories, the
learning objectiveLCDemo(x, yDemo; EImg,CDemo) is the standard cross-entropy loss func-
tion. For the n−identity classification, we adopt AM-Softmax [89] as the objective func-
tionLCI D (x, yid; EImg,CI D). To de-bias all of the feature representations, adversarial loss
LAdv(x, yDemo, yid; EImg,CDemo,CI D) is applied to the above four classifiers such that
each of them will not be able to predict correct labels when operating irrelevant feature vec-
tors. Specifically, given a classifier, the remaining three attribute feature vectors are imposed
on it and attempt to mislead the classifier by only optimizing the parameters of EImg . To
further improve the disentanglement, we also reduce the mutual information among the
attribute features by introducing a distribution classifier CDistr . CDistr is trained to identify
whether an input representation is sampled from the joint distribution p(fg, fa, fr , fI D) or
the multiplication of margin distributions p(fg)p(fa)p(fr )p(fI D) via a binary cross-entropy
lossLCDistr (x, yDistr ; EImg,CDistr ), where yDistr is the distribution label. Similar to adver-
sarial loss, a factorization objective function LFact (x, yDistr ; EImg,CDistr ) is utilized to
restrain the CDistr from distinguishing the real distribution and thus minimizes the mutual
information of the four attribute representations. Both adversarial loss and factorization loss
are detailed in Sect. 12.4.2.3. Altogether, DebFace endeavors to minimize the joint loss:

L(x, yDemo,yid , yDistr ; EImg,CDemo,CI D,CDistr ) =
LCDemo(x, yDemo; EImg,CDemo)

+ LCI D (x, yid; EImg,CI D)

+ LCDistr (x, yDistr ; EImg,CDistr )

+ λLAdv(x, yDemo, yid; EImg,CDemo,CI D)

+ νLFact (x, yDistr ; EImg,CDistr ),

(12.1)

whereλ and ν are hyper-parameters determining howmuch the representation is decomposed
and decorrelated in each training iteration.

The discriminative demographic features in DebFace-ID are weakened by removing
demographic information. Fortunately, our de-biasing network preserves all pertinent demo-
graphic features in a disentangled way. Basically, we train another multi-layer perceptron
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(MLP) EFeat to aggregate DebFace-ID and the demographic embeddings into a unified face
representation DemoID. Since age generally does not pertain to a person’s identity, we only
consider gender and race as the identity-informative attributes. The aggregated embedding,
fDemoI D = E f eat (fI D, fg, fr ), is supervised by an identity-based triplet loss:

LEFeat = 1

M

M∑

i=1

[‖f (i)DemoI Da − f (i)DemoI Dp‖22 − ‖f (i)DemoI Da − f (i)DemoI Dn‖22 + α]+, (12.2)

where {f (i)DemoI Da , f
(i)
DemoI Dp , f

(i)
DemoI Dn } is the i th triplet consisting of an anchor, a positive,

and a negative DemoID representation, M is the number of hard triplets in a mini-batch.
[x]+ = max(0, x), and α is the margin.

12.4.2.3 Adversarial Training and Disentanglement
As discussed in Sect. 12.4.2.2, the adversarial loss aims to minimize the task-independent
information semantically, while the factorization loss strives to dwindle the interfering infor-
mation statistically. We employ both losses to disentangle the representation extracted by
EImg . We introduce the adversarial loss as a means to learn a representation that is invari-
ant in terms of certain attributes, where a classifier trained on it cannot correctly classify
those attributes using that representation. We take one of the attributes, e.g., gender, as
an example to illustrate the adversarial objective. First of all, for a demographic represen-
tation fDemo, we learn a gender classifier on fDemo by optimizing the classification loss
LCG (x, yDemo; EImg,CG). Secondly, for the same gender classifier, we intend to maximize
the chaos of the predicted distribution [41]. It is well known that a uniform distribution
has the highest entropy and presents the most randomness. Hence, we train the classifier to
predict the probability distribution as close as possible to a uniform distribution over the
category space by minimizing the cross-entropy:

LG
Adv(x, yDemo, yid ; EImg,CG) = −

KG∑

k=1

1

KG
·
(
log

eCG (fDemo)k

∑KG
j=1 e

CG (fDemo) j
+ log

eCG (fI D)k

∑KG
j=1 e

CG (fI D) j

)
,

(12.3)

where KG is the number of categories in gender,1 and the ground-truth label is no longer
an one-hot vector, but a KG -dimensional vector with all elements being 1

KG
. The above

loss function corresponds to the dash lines in Fig. 12.2. It strives for gender-invariance by
finding a representation that makes the gender classifier CG perform poorly. We minimize
the adversarial loss by only updating parameters in EImg .

We further decorrelate the representations by reducing the mutual information across
attributes. By definition, the mutual information is the relative entropy (KL divergence)

1 In our case, KG = 2, i.e., male and female.
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between the joint distribution and the product distribution. To increase uncorrelation, we
add a distribution classifier CDistr that is trained to simply perform a binary classification
usingLCDistr (x, yDistr ; EImg,CDistr ) on samples fDistr from both the joint distribution and
dot product distribution. Similar to adversarial learning, we factorize the representations by
tricking the classifier via the same samples so that the predictions are close to random
guesses,

LFact (x, yDistr ; EImg,CDistr ) = −
2∑

i=1

1

2
log

eCDistr (fDistr )i

∑2
j=1 e

CDistr (fDistr ) j
. (12.4)

In each mini-batch, we consider EImg(x) as samples of the joint distribution
p(fg, fa, fr , fI D). We randomly shuffle feature vectors of each attribute, and re-concatenate
them into 4D-dimension, which are approximated as samples of the product distribution
p(fg)p(fa)p(fr )p(fI D). During factorization, we only update EImg to minimize mutual
information between decomposed features.

12.4.3 Experiments

12.4.3.1 Datasets and Pre-processing
We utilize 15 total face datasets in this work, for learning the demographic estimation
models, the baseline face recognition model, DebFace model as well as their evaluation. To
be specific, CACD [10], IMDB [71], UTKFace [112], AgeDB [64], AFAD [67], AAF [13],
FG-NET [1], RFW [92], IMFDB-CVIT [76], Asian-DeepGlint [2], and PCSO [17] are the
datasets for training and testing demographic estimation models; and MS-Celeb-1M [29],
LFW [39], IJB-A [47], and IJB-C [63] are for learning and evaluating face verification
models. Table 12.1 reports the statistics of training and testing datasets involved in all the
experiments of both GAC and DebFace, including the total number of face images, the total
number of subjects (identities), and whether the dataset contains the annotation of gender,
age, race, or identity (ID). All faces are detected by MTCNN [108]. Each face image is
cropped and resized to 112 × 112 pixels using a similarity transformation based on the
detected landmarks.2

12.4.3.2 Implementation Details
DebFace is trained on a cleaned version of MS-Celeb-1M [18], using the ArcFace archi-
tecture [18] with 50 layers for the encoder EImg . Since there are no demographic labels
in MS-Celeb-1M, we first train three demographic attribute estimation models for gender,
age, and race, respectively. For age estimation, the model is trained on the combination of
CACD, IMDB, UTKFace, AgeDB, AFAD, and AAF datasets. The gender estimation model

2 https://yanweifu.github.io/FG_NET_data.

https://yanweifu.github.io/FG_NET_data
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Table 12.1 Statistics of training and testing datasets used in the paper

Dataset # Of
images

# Of
subjects

Contains the label of

Gender Age Race ID

CACD [10] 163, 446 2, 000 No Yes No Yes

IMDB [71] 460, 723 20, 284 Yes Yes No Yes

UTKFace [112] 24, 106 – Yes Yes Yes No

AgeDB [64] 16, 488 567 Yes Yes No Yes

AFAD [67] 165, 515 – Yes Yes Yesa No

AAF [13] 13, 322 13, 322 Yes Yes No Yes

FG-NET 1, 002 82 No Yes No Yes

RFW [92] 665, 807 – No No Yes Partial

BUPT-
Balancedface [91]

1, 251, 430 28, 000 No No Yes Yes

IMFDB-
CVIT [76]

34, 512 100 Yes Age
Groups

Yes∗ Yes

Asian-
DeepGlint [2]

2, 830, 146 93, 979 No No Yesa Yes

MS-Celeb-
1M [29]

5, 822, 653 85, 742 No No No Yes

PCSO [17] 1, 447, 607 5, 749 Yes Yes Yes Yes

LFW [39] 13, 233 5, 749 No No No Yes

IJB-A [47] 25, 813 500 Yes Yes Skin Tone Yes

IJB-C [63] 31, 334 3, 531 Yes Yes Skin Tone Yes

a East Asian
* Indian

is trained on the same datasets except CACD which contains no gender labels. We combine
AFAD, RFW, IMFDB-CVIT, and PCSO for race estimation training. All three models use
ResNet [33] with 34 layers for age, 18 layers for gender and race. We discuss the evaluation
results of the demographic attribute estimation models in Sect. 12.6.

We predict the demographic labels of MS-Celeb-1M with the well-trained demographic
models. Our DebFace is then trained on the re-labeled MS-Celeb-1M using SGD with a
momentum of 0.9, a weight decay of 0.01, and a batch size of 256. The learning rate
starts from 0.1 and drops to 0.0001 following the schedule at 8, 13, and 15 epochs. The
dimensionality of the embedding layer of EImg is 4 × 512, i.e., each attribute representation
(gender, age, race, ID) is a 512-dim vector. We keep the hyper-parameter setting of AM-
Softmax as [18]: s = 64 and m = 0.5. The feature aggregation network EFeat comprises
of two linear residual units with P-ReLU and BatchNorm in between. EFeat is trained on
MS-Celeb-1M by SGD with a learning rate of 0.01. The triplet loss margin α is 1.0. The
disentangled features of gender, race, and identity are concatenated as a 3 × 512-dim vector,
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which is inputted into EFeat . The network is then trained to output a 512-dim representation
for face recognition on biased datasets.

12.4.3.3 De-biasing FaceVerification
Baseline:We compare DebFace-ID with a regular face representation model which has the
same architecture as the shared feature encoder of DebFace. Referred to as BaseFace, this
baseline model is also trained on MS-Celeb-1M, with the representation dimension of 512.

To show the efficacy of DebFace-ID on bias mitigation, we evaluate the verification per-
formance of DebFace-ID and BaseFace on faces from each demographic cohort. There are
48 total cohorts given the combination of demographic attributes including 2 gender (male,
female), 4 race3 (Black, White, East Asian, Indian), and 6 age group (0 − 12, 13 − 18,
19 − 34, 35 − 44, 45 − 54, 55 − 100). We combine CACD, AgeDB, CVIT, and a subset of
Asian-DeepGlint as the testing set. Overlapped identities among these datasets are removed.
IMDB is excluded from the testing set due to its massive number of wrong ID labels. For
datasets without certain demographic labels, we simply use the corresponding models to
predict the labels. We report the Area Under the Curve (AUC) of the Receiver Operat-
ing Characteristics (ROC). We define the degree of bias, termed biasness, as the standard
deviation of performance across cohorts.

Figure 12.3 shows the face verification results of BaseFace and DebFace-ID on each
cohort. That is, for a particular face representation (e.g., DebFace-ID), we report its AUC
on each cohort by putting the number in the corresponding cell. From these heatmaps,
we observe that both DebFace-ID and BaseFace present bias in face verification, where
the performance on some cohorts is significantly worse, especially the cohorts of Indian
female and elderly people. Compared to BaseFace, DebFace-ID suggests less bias and the
difference ofAUC is smaller, where the heatmap exhibits smoother edges. Figure 12.4 shows
the performance of face verification on 12 demographic cohorts. Both DebFace-ID and
BaseFace present similar relative accuracies across cohorts. For example, both algorithms

(a) BaseFace (b) DebFace-ID

Fig.12.3 Face Verification AUC (%) on each demographic cohort. The cohorts are chosen based on
the three attributes, i.e., gender, age, and race. To fit the results into a 2Dplot, we show the performance
of male and female separately. Due to the limited number of face images in some cohorts, their results
are gray cells

3 To clarify, we consider two race groups, Black and White; and two ethnicity groups, East Asian
and Indian. The word race denotes both race and ethnicity here.
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(a) Gender (b) Age (c) Race

Fig. 12.4 The overall performance of face verification AUC (%) on gender, age, and race

(a) BaseGender (b) DebFace-G (c) BaseAge (d) DebFace-A (e) BaseRace (f) DebFace-R

Fig. 12.5 Classification accuracy (%) of demographic attribute estimations on faces of different
cohorts, by DebFace and the baselines. For simplicity, we use DebFace-G, DebFace-A, and DebFace-
R to represent the gender, age, and race classifier of DebFace

perform worse on the younger age cohorts than on adults; and the performance on the
Indian is significantly lower than on the other races. DebFace-ID decreases the bias by
gaining discriminative face features for cohorts with less images in spite of the reduction in
the performance on cohorts with more samples.

12.4.3.4 De-biasing Demographic Attribute Estimation
Baseline: We further explore the bias of demographic attribute estimation and compare
demographic attribute classifiers of DebFace with baseline estimation models. We train
three demographic estimation models, namely, gender estimation (BaseGender), age esti-
mation (BaseAge), and race estimation (BaseRace), on the same training set as DebFace.
For fairness, all three models have the same architecture as the shared layers of DebFace.

We combine the four datasetsmentioned in Sect. 12.4.3.3with IMDB as the global testing
set. As all demographic estimations are treated as classification problems, the classification
accuracy is used as the performance metric. As shown in Fig. 12.5, all demographic attribute
estimations present significant bias. For gender estimation, both algorithmsperformworse on
the White and Black cohorts than on East Asian and Indian. In addition, the performance on
young children is significantly worse than on adults. In general, the race estimation models
perform better on the male cohort than on female. Compared to gender, race estimation
shows a higher bias in terms of age. Both baseline methods and DebFace perform worse on
cohorts in age between 13 and 44 than in other age groups.
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Table 12.2 Biasness of face recognition and demographic attribute estimation

Method Face verification Demographic estimation

All Gender Age Race Gender Age Race

Baseline 6.83 0.50 3.13 5.49 12.38 10.83 14.58

DebFace 5.07 0.15 1.83 3.70 10.22 7.61 10.00

Similar to race, age estimation still achieves better performance on male than on female.
Moreover, the white cohort shows dominant advantages over other races in age estimation.
In spite of the existing bias in demographic attribute estimations, the proposed DebFace
is still able to mitigate bias derived from algorithms. Compared to Fig. 12.5a, c, e, cells
in Fig. 12.5b, d, f present more uniform colors. We summarize the biasness of DebFace
and baseline models for both face recognition and demographic attribute estimations in
Table 12.2. In general, we observe DebFace substantially reduces biasness for both tasks.
For the task with larger biasness, the reduction of biasness is larger.

12.4.3.5 Analysis of Disentanglement
We notice that DebFace still suffers from unequal performance in different demographic
groups. It is because there are other latent variables besides the demographics, such as
image quality or capture conditions that could lead to biased performance. Such variables

(a) BaseFace (b) DebFace-ID (c) BaseFace

(d) DebFace-ID (e) BaseFace (f) DebFace-ID

Fig.12.6 The distribution of face identity representations of BaseFace andDebFace. Both collections
of feature vectors are extracted from images of the same dataset. Different colors and shapes represent
different demographic attributes. Zoom in for details
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Fig. 12.7 Reconstructed Images using Face and Demographic Representations. The first row is the
original face images. From the second row to the bottom, the face images are reconstructed from (2)
BaseFace; (3) DebFace-ID; (4) DebFace-G; (5) DebFace-R; (6) DebFace-A. Zoom in for details

are difficult to control in pre-collected large face datasets. In the framework of DebFace,
it is also related to the degree of feature disentanglement. fully disentangling is supposed
to completely remove the factors of bias from demographic information. To illustrate the
feature disentanglement of DebFace, we show the demographic discriminative ability of face
representations by using these features to estimate gender, age, and race. Specifically, we first
extract identity features of images from the testing set in Sect. 12.4.3.1 and split them into
training and testing sets. Given demographic labels, the face features are fed into a two-layer
fully-connected network, learning to classify one of the demographic attributes. Table 12.3
reports the demographic classification accuracy on the testing set. For all three demographic
estimations, DebFace-ID presents much lower accuracies than BaseFace, indicating the
decline of demographic information in DebFace-ID.We also plot the distribution of identity
representations in the feature space of BaseFace and DebFace-ID. From the testing set in
Sect. 12.4.3.3, we randomly select 50 subjects in each demographic group and one image
of each subject. BaseFace and DebFace-ID are extracted from the selected image set and
are then projected from 512-dim to 2-dim by t-SNE. Figure 12.6 shows their t-SNE feature
distributions. We observe that BaseFace presents clear demographic clusters, while the
demographic clusters of DebFace-ID, as a result of disentanglement, mostly overlap with
each other.

To visualize the disentangled feature representations of DebFace, we train a decoder
that reconstructs face images from the representations. Four face decoders are trained sepa-
rately for each disentangled component, i.e., gender, age, race, and ID. In addition, we train
another decoder to reconstruct faces from BaseFace for comparison. As shown in Fig. 12.7,
both BaseFace and DebFace-ID maintain the identified features of the original faces, while
DebFace-ID presents less demographic characteristics. No race or age, but gender features
can be observed on faces reconstructed fromDebFace-G. Meanwhile, we can still recognize
race and age attributes on faces generated from DebFace-R and DebFace-A.
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Table 12.3 Demographic classification accuracy (%) by face features

Method Gender Race Age

BaseFace 95.27 89.82 78.14

DebFace-ID 73.36 61.79 49.91

Table 12.4 Face verification accuracy (%) on RFW dataset

Method Gender Race Age

BaseFace 95.27 89.82 78.14

DebFace-ID 73.36 61.79 49.91

12.4.3.6 FaceVerification on Public Testing Datasets
We report the performance of three different settings, using (1) BaseFace, the same baseline
in Sect. 12.4.3.3, (2) DebFace-ID, and (3) the fused representation DemoID. Table 12.5
reports face verification results on three public benchmarks: LFW, IJB-A, and IJB-C. On
LFW, DemoID outperforms BaseFace while maintaining similar accuracy compared to
SOTA algorithms. On IJB-A/C, DemoID outperforms all prior works except PFE [77].
Although DebFace-ID shows lower discrimination, TAR at lower FAR on IJB-C is higher
than that of BaseFace. To evaluate DebFace on a racially balanced testing dataset RFW [92]
and compare with the work [91], we train a DebFace model on BUPT-Balancedface [91]
dataset. The new model is trained to reduce racial bias by disentangling ID and race.
Table 12.4 reports the verification results on RFW.While DebFace-ID gives a slightly lower
face verification accuracy, it improves the biasness over [91].

We observe that DebFace-ID is less discriminative than BaseFace, or DemoID, since
demographics are essential components of face features. To understand the deterioration
of DebFace, we analyze the effect of demographic heterogeneity on face verification by
showing the tendency for one demographic group to experience a false accept error rela-

Table 12.5 Verification Performance on LFW, IJB-A, and IJB-C

Method LFW (%) Method IJB-A (%) IJB-C @ FAR (%)

0.1% FAR 0.001% 0.01% 0.1%

DeepFace+ [82] 97.35 Yin et al. [101] 73.9 ± 4.2 – – 69.3

CosFace [90] 99.73 Cao et al. [7] 90.4 ± 1.4 74.7 84.0 91.0

ArcFace [18] 99.83 Multicolumn [98] 92.0 ± 1.3 77.1 86.2 92.7

PFE [77] 99.82 PFE [77] 95.3 ± 0.9 89.6 93.3 95.5

BaseFace 99.38 BaseFace 90.2 ± 1.1 80.2 88.0 92.9

DebFace-ID 98.97 DebFace-ID 87.6 ± 0.9 82.0 88.1 89.5

DemoID 99.50 DemoID 92.2 ± 0.8 83.2 89.4 92.9
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(a) BaseFace: Race (b) DebFace-ID: Race (c) BaseFace: Age (d) DebFace-ID: Age

Fig. 12.8 The percentage of false accepted cross race or age pairs at 1% FAR

tive to another group. For any two demographic cohorts, we check the number of falsely
accepted pairs that are from different groups at 1%FAR. Figure 12.8 shows the percentage of
such falsely accepted demographic-heterogeneous pairs. Compared to BaseFace, DebFace
exhibitsmore cross-demographic pairs that are falsely accepted, resulting in the performance
decline on demographically biased datasets. Due to the demographic information reduction,
DebFace-ID is more susceptible to errors between demographic groups. In the sense of
de-biasing, it is preferable to decouple demographic information from identity features.
However, if we prefer to maintain the overall performance across all demographics, we can
still aggregate all the relevant information. It is an application-dependent trade-off between
accuracy and de-biasing. DebFace balances the accuracy vs. bias trade-off by generating
both debiased identity and debiased demographic representations, which may be aggregated
into DemoID if bias is less of a concern.

12.4.3.7 Distributions of Scores
We follow the work of [36] that investigates the effect of demographic homogeneity and
heterogeneity on face recognition. We first randomly select images from CACD, AgeDB,
CVIT, and Asian-DeepGlint datasets, and extract the corresponding feature vectors by using
the models of BaseFace and DebFace, respectively. Given their demographic attributes, we
put those images into separate groups depending on whether their gender, age, and race are
the same or not. For each group, a fixed false alarm rate (the percentage of the face pairs
from the same subjects being falsely verified as from different subjects) is set to 1%. Among
the falsely verified pairs, we plot the top 10th percentile scores of the negative face pairs (a
pair of face images that are from different subjects) given their demographic attributes. As
shown in Fig. 12.9a, b, we observe that the similarities of DebFace are higher than those of
BaseFace. One of the possible reasons is that the demographic information is disentangled
from the identity features of DebFace, increasing the overall pair-wise similarities between
faces of different identities. In terms of de-biasing, DebFace also reflects smaller differences
in the score distributionwith respect to the homogeneity and heterogeneity of demographics.
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(a) BaseFace (b) DebFace

Fig. 12.9 BaseFace and DebFace distributions of the similarity scores of the imposter pairs across
homogeneous versus heterogeneous gender, age, and race categories

12.5 Mitigating Face Recognition Bias via Group Adaptive Classifier

In spite of the effectiveness of DebFace in mitigating demographic bias, it degenerates the
overall recognition performance as well. This motivates us to find anther solution to this
problem such that the biasness can be reduced without impairing the average recognition
performance. In this section, we introduce our second approach to mitigate face recognition
bias via group adaptive classifier (GAC). The main idea of GAC is to optimize the face
representation learning on every demographic group in a single network, despite demo-
graphically imbalanced training data. Conceptually, we may categorize face features into
two types of patterns: general pattern is shared by all faces; differential pattern is relevant
to demographic attributes. When the differential pattern of one specific demographic group
dominates training data, the network learns to predict identities mainly based on that pattern
as it is more convenient to minimize the loss than using other patterns, thus bringing bias
toward faces of that specific group. One solution is to give the network more capacity to
broaden its scope for multiple face patterns from different demographic groups. An unbiased
FR model shall rely on not only unique patterns for recognition of different groups, but also
general patterns of all faces for improved generalizability. Accordingly, in Fig. 12.10, we
propose GAC to explicitly learn these different feature patterns. GAC includes twomodules:
the adaptive layer and the automation module. The adaptive layer in GAC comprises adap-
tive convolution kernels and channel-wise attention maps where each kernel and attention
map tackle faces in one demographic group. We also introduce a new objective function to
GAC, which diminishes the variation of average intra-class distance between demographic
groups.

Prior works on dynamic CNNs introduce adaptive convolutions to either every layer [42,
94, 99] or manually specified layers [35, 61, 81]. In contrast, this work proposes an automa-
tionmodule to choosewhich layers to apply adaptations.Asweobserve, not all convolutional
layers require adaptive kernels for bias mitigation (see Fig. 12.16a). At any layer of GAC,
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Fig. 12.10 a Our proposed group adaptive classifier (GAC) automatically chooses between non-
adaptive (“N”) and adaptive (“A”) layer in a multi-layer network, where the latter uses demographic-
group-specific kernel and attention. b Compared to the baseline with the 50-layer ArcFace backbone,
GAC improves face verification accuracy in most groups of RFW dataset [92], especially under-
represented groups, leading to mitigated FR bias. GAC reduces biasness from 1.11 to 0.60

only kernels expressing high dissimilarity are considered as demographic-adaptive kernels.
For those with low dissimilarity, their average kernel is shared by all input images in that
layer. Thus, the proposed network progressively learns to select the optimal structure for
the demographic-adaptive learning. This enables that both non-adaptive layers with shared
kernels and adaptive layers are jointly learned in a unified network.

Contributions of this work are summarized as: (1) A new face recognition algorithm
that reduces demographic bias and increases the robustness of representations for faces in
every demographic group by adopting adaptive convolutions and attention techniques; (2)
A new adaptation mechanism that automatically determines the layers to employ dynamic
kernels and attention maps; (3) The proposed method achieves SOTA performance on a
demographic-balanced dataset and three benchmarks.

12.5.1 Adaptive Neural Networks

Since the main technique applied in GAC is adaptive neural network, we first review recent
work related to adaptive learning. Three types of CNN-based adaptive learning techniques
are related to our work: adaptive architectures, adaptive kernels, and attention mechanisms.
Adaptive architectures design new performance-based neural functions or structures, e.g.,
neuron selection hidden layers [38], and automatic CNN expansion for FR [111]. As CNN
advances many AI fields, prior works propose dynamic kernels to realize content-adaptive
convolutions. Li et al. [50] propose a shape-driven kernel for facial trait recognition where
each landmark-centered patch has a unique kernel. A convolution fusion strategy for graph
neural networks is introduced by [24] where a set of varying-size filters are used per layer.
Theworks of [22] and [51] use a kernel selection scheme to automatically adjust the receptive
field size based on inputs. To better suit input data, [21] splits training data into clusters and
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Fig. 12.11 A comparison of approaches in adaptive CNNs

learns an exclusive kernel per cluster. Li et al. [52] introduce an adaptive CNN for object
detection that transfers pre-trained CNNs to a target domain by selecting useful kernels
per layer. Alternatively, one may feed input images or features into a kernel function to
dynamically generate convolution kernels [40, 48, 80, 106]. Despite its effectiveness, such
individual adaptationmay not be suitable given the diversity of faces in demographic groups.
Our work is most related to the side information adaptive convolution [42], where in each
layer a sub-network inputs auxiliary information to generate filter weights. We mainly differ
in that GAC automatically learns where to use adaptive kernels in a multi-layer CNN (see
Fig. 12.11a, c), thus more efficient and capable of applying to a deeper CNN.

As the human perception process naturally selects the most pertinent piece of informa-
tion, attention mechanisms are designed for a variety of tasks, e.g., detection [110], recogni-
tion [12], image captioning [11], tracking [9], pose estimation [81], and segmentation [61].
Typically, attention weights are estimated by feeding images or feature maps into a shared
network, composed of convolutional and pooling layers [5, 12, 53, 78] or multi-layer per-
ceptron (MLP) [37, 54, 72, 97]. Apart from feature-based attention, Hou et al. [35] propose
a correlation-guided cross-attention map for few-shot classification where the correlation
between the class feature and query feature generates the attentionweights. Thework of [99]
introduces a cross-channel communication block to encourage information exchange across
channels at the convolutional layer. To accelerate the channel interaction, Wang et al. [94]
propose a 1D convolution across channels for attention prediction. Different from prior
work, our attention maps are constructed by demographic information (see Fig. 12.11b, c),
which improves the robustness of face representations in every demographic group.

12.5.2 Methodology

12.5.2.1 Overview
Our goal is to train a FR network that is impartial to individuals in different demographic
groups. Unlike image-related variations, e.g., large-poses, or low-resolution faces which
are harder to be recognized, demographic attributes are subject-related properties with no
apparent impact over recognizability of identity, at least from a layman’s perspective. Thus,
an unbiased FR system should be able to obtain equally salient features for faces across
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Fig.12.12 Overview of the proposedGAC formitigating FR bias. GAC contains twomajormodules:
the adaptive layer and the automation module. The adaptive layer consists of adaptive kernels and
attention maps. The automation module is employed to decide whether a layer should be adaptive or
not

demographic groups. However, due to imbalanced demographic distributions and inherent
face differences between groups, it was shown that certain groups achieve higher perfor-
mance even with hand-crafted features [46]. Thus, it is impractical to extract features from
different demographic groups that exhibit equal discriminability. Despite such disparity, a
FR algorithm can still be designed to mitigate the difference in performance.

To this end, we propose a CNN-based group adaptive classifier that utilizes dynamic
kernels and attention maps to boost FR performance in all demographic groups considered
here. Specifically, GAC has twomainmodules, an adaptive layer and an automationmodule.
In an adaptive layer, face images or feature maps are convolved with a unique kernel for each
demographic group, and multiplied with adaptive attention maps to obtain demographic-
differential features for faces in a certain group.The automationmodule determines the layers
of the network that adaptive kernels and attention maps should be applied to. As shown in
Fig. 12.12, given an aligned face, and its identity label yI D , a pre-trained demographic
classifier first estimates its demographic attribute yDemo. With yDemo, the image is then
fed into a recognition network with multiple demographic-adaptive layers to estimate its
identity. In the following, we present these two modules.

12.5.2.2 Adaptive Layer
Adaptive Convolution. For a standard convolution in CNN, an image or feature map from the
previous layer X ∈ R

c×hX×wX
is convolved with a single kernel matrix K ∈ R

k×c×hK×wK
,

where c is the number of input channels, k the number of filters, hX and wX the input size,
and hK and wK the filter size. Such an operation shares the kernel with every input going
through the layer, and is thus agnostic to demographic content, resulting in limited capacity
to represent minority groups. To mitigate the bias in convolution, we introduce a trainable
matrix of kernel masks KM ∈ R

n×c×hK×wK
, where n is the number of demographic groups.

In the forward pass, the demographic label yDemo and kernel matrix KM are fed into the
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adaptive convolutional layer to generate demographic-adaptive filters. Let Ki ∈ R
c×hK×wK

denote the i th channel of the shared filter. The i th channel of adaptive filter for group yDemo

is:
K yDemo
i = Ki

⊗
KM
yDemo

, (12.5)

where KM
yDemo

∈ R
c×hK×wK

is the yDemo
th kernel mask for group yDemo, and

⊗
denotes

element-wisemultiplication. Then the i th channel of the output featuremap is given by Zi =
f (X ∗ K yDemo

i ), where * denotes convolution, and f (·) is activation. Unlike conventional
convolution, samples in every demographic group have a unique kernel K yDemo .

Adaptive Attention. Each channel filter in a CNN plays an important role in every dimen-
sion of the final representation, which can be viewed as a semantic pattern detector [11]. In
the adaptive convolution, however, the values of a kernel mask are broadcast along the chan-
nel dimension, indicating that the weight selection is spatially varied but channel-wise joint.
Hence, we introduce a channel-wise attention mechanism to enhance the face features that
are demographic-adaptive. First, a trainable matrix of channel attention maps M ∈ R

n×k

is initialized in every adaptive attention layer. Given yDemo and the current feature map
Z ∈ R

k×hZ×wZ
, where hZ and wZ are the height and width of Z , the i th channel of the new

feature map is calculated by

Z yDemo
i = Sigmoid(MyDemoi ) · Zi , (12.6)

where MyDemoi is the entry in the yDemo
th row of M for the demographic group yDemo at

i th column. In contrast to the adaptive convolution, elements of each demographic attention
map MyDemo diverge in a channel-wise manner, while the single attention weight MyDemoi is

spatially shared by the entire matrix Zi ∈ R
hZ×wZ

. The two adaptive matrices, KM and M ,
are jointly tuned with all the other parameters supervised by the classification loss.

Unlike dynamic CNNs [42] where additional networks are engaged to produce input-
variant kernel or attentionmap, our adaptiveness is yielded by a simple thresholding function
directly pointing to the demographic group with no auxiliary networks. Although the kernel
network in [42] can generate continuous kernels without enlarging the parameter space,
further encoding is required if the side inputs for kernel network are discrete variables. Our
approach, in contrast, divides kernels into clusters so that the branch parameter learning
can stick to a specific group without interference from individual uncertainties, making it
suitable for discrete domain adaptation. Furthermore, the adaptive kernel masks in GAC are
more efficient in terms of the number of additional parameters. Compared to a non-adaptive
layer, the number of additional parameters of GAC is n × c × hK × wK , while that of [42]
is s × k × c × hK × wK if the kernel network is a one-layer MLP, where s is the dimension
of input side information. Thus, for one adaptive layer, [42] has s×k

n times more parameters
than ours, which can be substantial given the typical large value of k, the number of filters.
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12.5.2.3 AutomationModule
Though faces in different demographic groups are adaptively processed by various kernels
and attention maps, it is inefficient to use such adaptations in every layer of a deep CNN.
To relieve the burden of unnecessary parameters and avoid empirical trimming, we adopt
a similarity fusion process to automatically determine the adaptive layers. Since the same
fusion scheme can be applied to both types of adaptation, we take the adaptive convolution
as an example to illustrate this automatic scheme.

First, a matrix composed of n kernel masks is initialized in every convolutional layer.
As training continues, each kernel mask is updated independently to reduce classification
loss for each demographic group. Second, we reshape the kernel masks into 1D vectorsV =
[v1, v2, . . . , vn],wherevi ∈ R

l , l = c × wK × hK is the kernelmaskof the i th demographic
group.Next, we compute theCosine similarity between two kernel vectors, θi j = vi‖vi‖ · v j

‖v j‖ ,
where 1 ≤ i, j ≤ n. The average similarity of all pair-wise similarities is obtained by θ =

2
n(n−1)

∑
i
∑

j θi j , i �= j . If the dissimilarity−θ is lower than a pre-defined threshold τ , the
kernel parameters in this layer reveal the demographic-agnostic property. Hence, we merge
the n kernels into a single kernel by averaging along the group dimension. By definition,
a lower τ implies more adaptive layers. Given an array of {−θi }t (t is the total number of
convolutional layers), we first sort the elements from the smallest to the highest, and this
way, layers whose −θi values are larger than τ will be adaptive. Thus, when τ decreases,
more layerswill be adaptive. In the subsequent training, this single kernel can still be updated
separately for each demographic group, as the kernel may become demographic-adaptive in
later epochs. We monitor the similarity trend of the adaptive kernels in each layer until θ is
stable.

12.5.2.4 De-biasing Objective Function
Apart from the objective function for face identity classification, we also adopt a regress loss
function to narrow the gap of the intra-class distance between demographic groups. Let g(·)
denote the inference function of GAC, and Ii jg is the i th image of subject j in group g. Then,
the feature representation of image Ii jg is given by ri jg = g(Ii jg,w), where w denotes the
GACparameters. Assuming the feature distribution of each subject is aGaussian distribution
with an identity covariance matrix (hyper-sphere), we utilize the average Euclidean distance
to every subject center as the intra-class distance of each subject. In particular, we first
compute the center point of each identity-sphere:

µ jg = 1

N

N∑

i=1

g(Ii jg,w), (12.7)

where N is the total number of face images of subject j . The average intra-class distance of
subject j is as follows:
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Dist jg = 1

N

N∑

i=1

(ri jg − µ jg)
T (ri jg − µ jg). (12.8)

We then compute the intra-class distance for all subjects in group g as Distg =
1
Q

∑Q
j=1 Dist jg , where Q is the number of total subjects in group g. This allows us to

lower the difference of intra-class distance by

Lbias = λ

Q × n

n∑

g=1

Q∑

j=1

∣∣∣∣∣∣
Dist jg − 1

n

n∑

g=1

Distg

∣∣∣∣∣∣
, (12.9)

where λ is the coefficient for the de-biasing objective.

12.5.3 Experiments

Datasets Our bias study uses RFW dataset [92] for testing and BUPT-Balancedface
dataset [91] for training. RFW consists of faces in four race/ethnic groups: White, Black,
East Asian, and South Asian.4 Each group contains∼10K images of 3K individuals for face
verification. BUPT-Balancedface contains 1.3M images of 28K celebrities and is approx-
imately race-balanced with 7K identities per race. Other than race, we also study gender
bias. We combine IMDB [71], UTKFace [112], AgeDB [64], AAF [13], AFAD [67] to train
a gender classifier, which estimates gender of faces in RFW and BUPT-Balancedface. The
statistics of the datasets are reported in Table 12.1. All face images are cropped and resized
to 112 × 112 pixels via landmarks detected by RetinaFace [19].
Implementation Details We train a baseline network and GAC on BUPT-Balancedface,
using the 50-layer ArcFace architecture [18]. The classification loss is an additive Cosine
margin in Cosface [90], with the scale and margin respectively as s = 64 and m = 0.5.
Training is optimized by SGD with a batch size 256. The learning rate starts from 0.1 and
drops to 0.0001 following the schedule at 8, 13, 15 epochs for the baseline, and 5, 17, 19
epochs for GAC. We set λ = 0.1 for the intra-distance de-biasing. τ = −0.2 is chosen for
automatic adaptation inGAC.Our FRmodels are trained to extract a 512-dim representation.
Our demographic classifier uses a 18-layer ResNet [33]. Comparing GAC and the baseline,
the average feature extraction speed per image on Nvidia 1080Ti GPU is 1.4ms and 1.1ms,
and the number of model parameters is 44.0M and 43.6M, respectively.
Performance Metrics The common group fairness criteria like demographic parity dis-
tance [58] are improper to evaluate the fairness of learnt representations, since they are
designed to measure the independence properties of random variables. However, in FR the
sensitive demographic characteristics are tied to identities, making these two variables cor-

4 RFW [92] uses Caucasian, African, Asian, and Indian to name demographic groups.We adopt these
groups and accordingly rename toWhite, Black, EastAsian, and SouthAsian for clearer race/ethnicity
definition.
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related. The NIST report uses false negative and false positive for each demographic group
to measure the fairness [27]. Instead of plotting false negative vs. false positives, we adopt a
compact quantitative metric, i.e., the standard deviation (STD) of the performance in differ-
ent demographic groups, previously introduced in [25, 91] and called “biasness.” As bias is
considered as systematic error of the estimated values compared to the actual values, here,
we assume the average performance to be the actual value. For each demographic group, its
biasness is the error between the average and the performance on the demographic group.
The overall biasness is the expectation of all group errors, which is the STD of performance
across groups. We also report average accuracy (Avg) to show the overall FR performance.

12.5.3.1 Results on RFW Protocol
We follow RFW face verification protocol with 6K pairs per race/ethnicity. The models are
trained on BUPT-Balancedface with ground-truth race and identity labels.
Compare with SOTA.We compare the GACwith four SOTA algorithms on RFW protocol,
namely, ACNN [42], RL-RBN [91], PFE [77], and DebFace [25]. Since the approach in
ACNN [42] is related to GAC, we re-implement it and apply to the bias mitigation problem.
First, we train a race classifier with the cross-entropy loss on BUPT-Balancedface. Then the
softmax output of our race classifier is fed to a filter manifold network (FMN) to generate
adaptive filter weights. Here, FMN is a two-layer MLP with a ReLU in between. Similar
to GAC, race probabilities are considered as auxiliary information for face representation
learning. We also compare with the SOTA approach PFE [77] by training it on BUPT-
Balancedface. As shown in Table 12.6, GAC is superior to SOTAw.r.t. average performance
and feature fairness. Compared to kernel masks in GAC, the FMN in ACNN [42] contains
more trainable parameters. Applying it to each convolutional layer is prone to overfitting. In
fact, the layers that are adaptive inGAC (τ = −0.2) are set to be the FMN-based convolution
in ACNN. As the race data is a four-element input in our case, using extra kernel networks
adds complexity to the FR network, which degrades the verification performance. Even
though PFE performs the best on standard benchmarks (Table 12.15), it still exhibits high
biasness. Our GAC outperforms PFE on RFW in both biasness and average performance.
Compared to DebFace [25], in which demographic attributes are disentangled from the
identity representations, GAC achieves higher verification performance by optimizing the
classification for each demographic group, with a lower biasness as well.

To further present the superiority of GAC over the baseline model in terms of bias, we
plot Receiver Operating Characteristic (ROC) curves to show the values of True Acceptance
Rate (TAR) at various values of False Acceptance Rate (FAR). Figure 12.13 shows the ROC
performance ofGAC and the baselinemodel onRFW.We see that the curves of demographic
groups generated by GAC present smaller gaps in TAR at every FAR, which demonstrates
the de-biasing capability of GAC. Figure 12.14 shows pairs of false positives (two faces
falsely verified as the same identity) and false negatives in RFW dataset.
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Table 12.6 Performance comparison with SOTA on the RFW protocol [92]. The results marked by
(*) are directly copied from [91]

Method White Black East Asian South
Asian

Avg (↑) STD (↓)

RL-RBN [91] 96.27 95.00 94.82 94.68 95.19 0.63

ACNN [42] 96.12 94.00 93.67 94.55 94.58 0.94

PFE [77] 96.38 95.17 94.27 94.60 95.11 0.93

ArcFace [18] 96.18∗ 94.67∗ 93.72∗ 93.98∗ 94.64 0.96

CosFace [90] 95.12∗ 93.93∗ 92.98∗ 92.93∗ 93.74 0.89

DebFace [25] 95.95 93.67 94.33 94.78 94.68 0.83

GAC 96.20 94.77 94.87 94.98 95.21 0.58

(a) Baseline (b) GAC

Fig. 12.13 ROC of a baseline and b GAC evaluated on all pairs of RFW

Fig. 12.14 8 false positive and
false negative pairs on RFW
given by the baseline but
successfully verified by GAC

False Nega ve False Posi ve

South 
Asian

East 
Asian

Black

White

Ablation on Adaptive Strategies. To investigate the efficacy of our network design, we
conduct three ablation studies: adaptive mechanisms, number of convolutional layers, and
demographic information. For adaptive mechanisms, since deep feature maps contain both
spatial and channel-wise information, we study the relationship among adaptive kernels,
spatial and channel-wise attentions, and their impact on bias mitigation. We also study
the impact of τ in our automation module. Apart from the baseline and GAC, we ablate
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Table 12.7 Ablation of adaptive strategies on the RFW protocol [92]

Method White Black East Asian South
Asian

Avg (↑) STD (↓)

Baseline 96.18 93.98 93.72 94.67 94.64 1.11

GAC-Channel 95.95 93.67 94.33 94.78 94.68 0.83

GAC-Kernel 96.23 94.40 94.27 94.80 94.93 0.78

GAC-Spatial 95.97 93.20 93.67 93.93 94.19 1.06

GAC-CS 96.22 93.95 94.32 95.12 94.65 0.87

GAC-CSK 96.18 93.58 94.28 94.83 94.72 0.95

GAC-(τ = 0) 96.18 93.97 93.88 94.77 94.70 0.92

GAC-(τ = −0.1) 96.25 94.25 94.83 94.72 95.01 0.75

GAC-(τ = −0.2) 96.20 94.77 94.87 94.98 95.21 0.58

eight variants: (1) GAC-Channel: channel-wise attention for race-differential feature; (2)
GAC-Kernel: adaptive convolution with race-specific kernels; (3) GAC-Spatial: only spatial
attention is added to baseline; (4) GAC-CS: both channel-wise and spatial attention; (5)
GAC-CSK: combine adaptive convolution with spatial and channel-wise attention; (6,7,8)
GAC-(τ = ∗): set τ to ∗.

From Table 12.7, we make several observations: (1) the baseline model is the most biased
across race groups. (2) spatial attention mitigates the race bias at the cost of verification
accuracy and is less effective on learning fair features than other adaptive techniques. This
is probably because spatial contents, especially local layout information, only reside at
earlier CNN layers, where the spatial dimensions are gradually decreased by the latter
convolutions and poolings. Thus, semantic details like demographic attributes are hardly
encoded spatially. (3) Compared to GAC, combining adaptive kernels with both spatial
and channel-wise attention increases the number of parameters, lowering the performance.
(4) As τ determines the number of adaptive layers in GAC, it has a great impact on the
performance. A small τ may increase redundant adaptive layers, while the adaptation layers
may lack in capacity if too large.
Ablation onDepths andDemographicLabels.Both the adaptive layers and de-biasing loss
in GAC can be applied to CNN in any depth. In this ablation, we train both the baseline and
GAC (λ = 0.1, τ = −0.2) in ArcFace architecture with three different numbers of layers:
34, 50, and 100. As the training of GAC relies on demographic information, the error and
bias in demographic labels might impact the bias reduction of GAC. Thus, we also ablate
with different demographic information, (1) ground-truth: the race/ethnicity labels provided
by RFW; (2) estimated: the labels predicted by a pre-trained race estimation model; (3)
random: the demographic label randomly assigned to each face.
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Table 12.8 Ablation of CNN depths and demographics on RFW protocol [92]

Method White Black East Asian South
Asian

Avg (↑) STD (↓)

Number of layers

ArcFace-34 96.13 93.15 92.85 93.03 93.78 1.36

GAC-ArcFace-34 96.02 94.12 94.10 94.22 94.62 0.81

ArcFace-50 96.18 93.98 93.72 94.67 94.64 1.11

GAC-ArcFace-50 96.20 94.77 94.87 94.98 95.21 0.58

ArcFace-100 96.23 93.83 94.27 94.80 94.78 0.91

GAC-ArcFace-100 96.43 94.53 94.90 95.03 95.22 0.72

Race/Ethnicity labels

Ground-truth 96.20 94.77 94.87 94.98 95.21 0.58

Estimated 96.27 94.40 94.32 94.77 94.94 0.79

Random 95.95 93.10 94.18 94.82 94.50 1.03

As shown in Table 12.8, compared to the baselines, GAC successfully reduces the STD
at different number of layers. We see that the model with least number of layers presents the
most bias, and the bias reduction by GAC is the most as well. The noise and bias in demo-
graphic labels do, however, impair the performance of GAC. With estimated demographics,
the biasness is higher than that of the model with ground-truth supervision. Meanwhile, the
model trained with random demographics has the highest biasness. Even so, using estimated
attributes during testing still improves fairness in face recognition compared to baseline. This
indicates the efficacy of GAC even in the absence of ground-truth labels.
Ablation on λ. We use λ to control the weight of de-biasing loss. Table 12.9 reports the
results of GAC trained with different values of λ. When λ = 0, de-biasing loss is removed in
training. The results indicate a larger λ leads to lower biasness at the cost of overall accuracy.
Ablation on Automation Module

Here, we also ablate GAC with two variants to show the efficiency of its automation
module: (i) Ada-All, i.e., all the convolutional layers are adaptive and (ii) Ada-8, i.e., the
same 8 layers as GAC are set to be adaptive starting from the beginning of the training
process, with no automation module (our best GAC model has 8 adaptive layers). As in
Table 12.11, with automation module, GAC achieves higher average accuracy and lower
biasness than the other two models.

12.5.3.2 Results on Gender and Race Groups
Wenow extend demographic attributes to both gender and race. First, we train two classifiers
that predict gender and race/ethnicity of a face image. The classification accuracy of gender
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Table 12.9 Ablations on λ on RFW protocol (%)

λ White Black East Asian South Asian Avg (↑) STD (↓)
0 96.23 94.65 94.93 95.12 95.23 0.60

0.1 96.20 94.77 94.87 94.98 95.21 0.58

0.5 94.89 94.00 93.67 94.55 94.28 0.47

Table 12.10 Verification Accuracy (%) of 5-fold cross-validation on 8 groups of RFW [92]

Method Gender White Black East Asian South Asian Avg (↑) STD (↓)
Baseline Male 97.49 ± 0.08 96.94 ± 0.26 97.29 ± 0.09 97.03 ± 0.13 96.96 ± 0.03 0.69 ± 0.04

Female 97.19 ± 0.10 97.93 ± 0.11 95.71 ± 0.11 96.01 ± 0.08

AL+Manual Male 98.57 ± 0.10 98.05 ± 0.17 98.50 ± 0.12 98.36 ± 0.02 98.09 ± 0.05 0.66 ± 0.07

Female 98.12 ± 0.18 98.97 ± 0.13 96.83 ± 0.19 97.33 ± 0.13

GAC Male 98.75 ± 0.04 98.18 ± 0.20 98.55 ± 0.07 98.31 ± 0.12 98.19 ± 0.06 0.56 ± 0.05

Female 98.26 ± 0.16 98.80 ± 0.15 97.09 ± 0.12 97.56 ± 0.10

Table 12.11 Ablations on the automation module on RFW protocol (%)

Method White Black East Asian South Asian Avg (↑) STD (↓)
Ada-All 93.22 90.95 91.32 92.12 91.90 0.87

Ada-8 96.25 94.40 94.35 95.12 95.03 0.77

GAC 96.20 94.77 94.87 94.98 95.21 0.58

and race/ethnicity is 85% and 81%,5 respectively. Then, these fixed classifiers are affiliated
with GAC to provide demographic information for learning adaptive kernels and attention
maps. We merge BUPT-Balancedface and RFW, and split the subjects into 5 sets for each
of 8 demographic groups. In 5-fold cross-validation, each time a model is trained on 4 sets
and tested on the remaining set. Table 12.12 reports the statistics of each data fold for the
cross-validation experiment on BUPT-Balancedface and RFW datasets.

Here we demonstrate the efficacy of the automation module for GAC. We compare it to
the scheme of manually designing (AL+Manual) that adds adaptive kernels and attention
maps to a subset of layers. Specifically, the first block in every residual unit is chosen to be
the adaptive convolution layer, and channel-wise attentions are applied to the feature map
outputted by the last block in each residual unit. As we use 4 residual units and each block
has 2 convolutional layers, the manual scheme involves 8 adaptive convolutional layers and

5 This seemingly low accuracy is mainly due to the large dataset we assembled for training and
testing gender/race classifiers. Our demographic classifier has been shown to perform comparably as
SOTA on common benchmarks. While demographic estimation errors impact the training, testing,
and evaluation of bias mitigation algorithms, the evaluation is of the most concern as demographic
label errors may greatly impact the biasness calculation. Thus, future development may include either
manually cleaning the labels, or designing a biasness metric robust to label errors.
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Table 12.12 Statistics of dataset folds in the cross-validation experiment

Fold White (#) Black (#) East Asian (#) South Asian (#)

Subjects Images Subjects Images Subjects Images Subjects Images

1 1, 991 68, 159 1, 999 67, 880 1, 898 67, 104 1, 996 57, 628

2 1, 991 67, 499 1, 999 65, 736 1, 898 66, 258 1, 996 57, 159

3 1, 991 66, 091 1, 999 65, 670 1, 898 67, 696 1, 996 56, 247

4 1, 991 66, 333 1, 999 67, 757 1, 898 65, 341 1, 996 57, 665

5 1, 994 68, 597 1, 999 67, 747 1, 898 68, 763 2, 000 56, 703

Table 12.13 Verification (%) on gender groups of IJB-C (TAR @ 0.1% FAR)

Model Male Female Avg (↑) STD (↓)
Baseline 89.72 79.57 84.64 5.08

GAC 88.25 83.74 86.00 2.26

4 groups of channel-wise attention maps. As in Table 12.10, automatic adaptation is more
effective in enhancing the discriminability and fairness of face representations. Figure 12.16a
shows the dissimilarity of kernel masks in the convolutional layers changes during training
epochs under three thresholds τ . A lower τ results in more adaptive layers. We see the layers
that are determined to be adaptive do vary across both layers (vertically) and training time
(horizontally), which shows the importance of our automatic mechanism.

Since IJB-C also provides gender labels, we evaluate our GAC-gender model (see
Sect. 4.2 of the main paper) on IJB-C as well. Specifically, we compute the verification
TAR at 0.1% FAR on the pairs of female faces and male faces, respectively. Table 12.13
reports the TAR@0.1% FAR on gender groups of IJB-C. The biasness of GAC is still lower
than the baseline for different gender groups of IJB-C.

12.5.3.3 Analysis on Intrinsic Bias and Data Bias
For all the algorithms listed in Table 12.1 of the main paper, the performance is higher in
White group than those in the other three groups, even though all the models are trained
on a demographic-balanced dataset, BUPT-Balancedface [91]. In this section, we further
investigate the intrinsic bias of face recognition between demographic groups and the impact
of the data bias in the training set. Are non-White faces inherently difficult to be recognized
for existing algorithms? Or, are face images in BUPT-Balancedface (the training set) and
RFW [92] (testing set) biased toward the White group?

To this end, we train our GAC network using training sets with different race/ethnicity
distributions and evaluate them on RFW. In total, we conduct four experiments, in which
we gradually reduce the total number of subjects in the White group from the BUPT-
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Table 12.14 Verification accuracy (%) on the RFW protocol [92] with varying race/ethnicity distri-
bution in the training set

Training Ratio White Black East Asian South
Asian

Avg (↑) STD (↓)

7 : 7 : 7 : 7 96.20 94.77 94.87 94.98 95.21 0.58

5 : 7 : 7 : 7 96.53 94.67 94.55 95.40 95.29 0.79

3.5 : 7 : 7 : 7 96.48 94.52 94.45 95.32 95.19 0.82

1 : 7 : 7 : 7 95.45 94.28 94.47 95.13 94.83 0.48

0 : 7 : 7 : 7 92.63 92.27 92.32 93.37 92.65 0.44

Balancedface dataset. To construct a new training set, subjects from the non-White groups
in BUPT-Balancedface remain the same, while a subset of subjects is randomly picked from
theWhite group. As a result, the ratios between non-White groups are consistently the same,
and the ratios of White, Black, East Asian, South Asian are {5 : 7 : 7 : 7}, {3.5 : 7 : 7 : 7},
{1 : 7 : 7 : 7}, {0 : 7 : 7 : 7} in the four experiments, respectively. In the last setting, we
completely remove White from the training set.

Table 12.14 reports the face verification accuracy of models trained with different
race/ethnicity distributions on RFW. For comparison, we also put our results on the bal-
anced dataset here (with ratio {7 : 7 : 7 : 7}), where all images in BUPT-Balancedface are
used for training. From the given results, we see several observations: (1) It shows that the
White group still outperforms the non-White groups for the first three experiments. Even
without any White subjects in the training set, the accuracy on the White testing set is still
higher than those on the testing images in Black and East Asian groups. This suggests that
White faces are either intrinsically easier to be verified or face images in the White group
of RFW are less challenging. (2) With the decline in the total number of White subjects, the
average performance declines as well. In fact, for all these groups, the performance suffers
from the decrease in the number ofWhite faces. This indicates that face images in theWhite
groups are helpful to boost the face recognition performance for both White and non-White
faces. In other words, faces from the White group benefit the representation learning of
global patterns for face recognition in general. (3) Opposite to our intuition, the biasness is
lower with less number of White faces, while the data bias is actually increased by adding
the imbalance to the training set.

12.5.3.4 Results on Standard Benchmark Datasets
While our GAC mitigates bias, we also hope it can perform well on standard benchmarks.
Therefore, we evaluate GAC on standard benchmarks without considering demographic
impacts, including LFW [39], IJB-A [47], and IJB-C [63]. These datasets exhibit an imbal-
anced distribution in demographics. For a fair comparison with SOTA, instead of using
ground-truth demographics, we train GAC on Ms-Celeb-1M [29] with the demographic
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Table 12.15 Verification performance on LFW, IJB-A, and IJB-C. [Key: Best, Second, Third Best]

Method LFW (%) Method IJB-A (%) IJB-C @ FAR (%)

0.1% FAR 0.001% 0.01% 0.1%

DeepFace+ [82] 97.35 Yin et al. [101] 73.9 ± 4.2 – – 69.3

CosFace [90] 99.73 Cao et al. [7] 90.4 ± 1.4 74.7 84.0 91.0

ArcFace [18] 99.83 Multicolumn [98] 92.0 ± 1.3 77.1 86.2 92.7

PFE [77] 99.82 PFE [77] 95.3 ± 0.9 89.6 93.3 95.5

Baseline 99.75 Baseline 90.2 ± 1.1 80.2 88.0 92.9

GAC 99.78 GAC 91.3 ± 1.2 83.5 89.2 93.7

attributes estimated by the classifier pre-trained in Sect. 12.5.3.2. As in Table 12.15, GAC
outperforms the baseline and performs comparable to SOTA.

12.5.3.5 Visualization and Analysis on Bias of FR
Visualization To understand the adaptive kernels in GAC, we visualize the feature maps at
an adaptive layer for faces of various demographics, via a Pytorch visualization tool [68].We
visualize important face regions pertaining to the FR decision by using a gradient-weighted
class activation mapping (Grad-CAM) [74]. Grad-CAM uses the gradients back from the
final layer corresponding to an input identity, and guides the target feature map to highlight
import regions for identity predicting. Figure 12.15 shows that, compared to the baseline,
the salient regions of GAC demonstrate more diversity on faces from different groups. This
illustrates the variability of network parameters in GAC across different groups.
Bias via Local Geometry In addition to STD, we explain the bias phenomenon via the
local geometry of a given face representation in each demographic group. We assume that
the statistics of neighbors of a given point (representation) reflects certain properties of its
manifold (local geometry). Thus, we illustrate the pair-wise correlation of face representa-

(a) Average similarities under different (b) Pair-wise correlation

Fig. 12.15 The first row shows the average faces of different groups in RFW. The next two rows
show gradient-weighted class activation heatmaps [74] at the 43th convolutional layer of the GAC
and baseline. The higher diversity of heatmaps in GAC shows the variability of parameters in GAC
across groups
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Fig. 12.16 a For each of the three τ in automatic adaptation, we show the average similarities of
pair-wise demographic kernel masks, i.e., θ , at 1-48 layers (y-axis), and 1-15K training steps (x-
axis). The number of adaptive layers in three cases, i.e.,

∑48
1 (θ > τ) at 15K th step, are 12, 8, and 2,

respectively. bWith two race groups (White, Black in PCSO [46]) and two models (baseline, GAC),
for each of the four combinations, we compute pair-wise correlation of face representations using
any two of 1K subjects in the same race, and plot the histogram of correlations. GAC reduces the
difference/bias of two distributions

Table 12.16 Distribution of ratios between minimum inter-class distance and maximum intra-class
distance of face features in 4 race groups of RFW. GAC exhibits higher ratios, and more similar
distributions to the reference

Race Mean StaD Relative entropy

Baseline GAC Baseline GAC Baseline GAC

White 1.15 1.17 0.30 0.31 0.0 0.0

Black 1.07 1.10 0.27 0.28 0.61 0.43

East Asian 1.08 1.10 0.31 0.32 0.65 0.58

South Asian 1.15 1.18 0.31 0.32 0.19 0.13

tions. To minimize variations caused by other variables, we use constrained frontal faces of
a mug shot dataset, PCSO [46]. We randomly select 1K White and 1K Black subjects from
PCSO, and compute their pair-wise correlation within each race. In Fig. 12.16b, Base-White
representations show lower inter-class correlation than Base-Black, i.e., faces in the White
group are over-represented by the baseline than the Black group. In contrast, GAC-White
and GAC-Black show more similarity in their correlation histograms.

As PCSO has few Asian subjects, we use RFW for another examination of the local
geometry in 4 groups. That is, after normalizing the representations, we compute the pair-
wise Euclidean distance and measure the ratio between the minimum distance of inter-
subjects pairs and the maximum distance of intra-subject pairs. We compute the mean and
standard deviation (StaD) of ratio distributions in 4 groups, by two models. Also, we gauge
the relative entropy to measure the deviation of distributions from each other. For simplicity,
we choose White group as the reference distribution. As shown in Table 12.16, while GAC
has minor improvement over baseline in the mean, it gives smaller relative entropy in the
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Table 12.17 Network complexity and inference time

Model Input resolution # Parameters (M) MACs (G) Inference (ms)

Baseline 112 × 112 43.58 5.96 1.1

GAC 112 × 112 44.00 9.82 1.4

Table 12.18 Gender distribution of the datasets for gender estimation

Dataset # Of images

Male Female

Training 321,590 229,000

Testing 15,715 10,835

other 3 groups, indicating that the ratio distributions of other races in GAC are more similar,
i.e., less biased, to the reference distribution. These results demonstrate the capability of
GAC to increase the fairness of face representations.

12.5.3.6 Network Complexity and FLOPs
Table 12.17 summarizes the network complexity of GAC and the baseline in terms of the
number of parameters, multiplier–accumulator, and inference times. While we agree the
number of parameters will increase with the number of demographic categories, it will not
necessarily increase the inference time, which is more important for real-time applications.

12.6 Demographic Estimation

We train three demographic estimationmodels to annotate age, gender, and race information
of the face images inBUPT-Balancedface andMS-Celeb-1M for trainingGACandDebFace.
For all three models, we randomly sample equal numbers of images from each class and set
the batch size to 300. The training process ends after 35K th iteration. All hyper-parameters
are chosen by evaluations on a separate validation set. Below, we give the details of model
learning and estimation performance of each demographic.

Gender:We combine IMDB, UTKFace, AgeDB, AFAD, and AAF datasets for learning
the gender estimation model. Similar to age, 90% of the images in the combined datasets are
used for training, and the remaining 10% are used for validation. Table 12.18 reports the total
number of female and male face images in the training and testing set. More images belong
to male faces in both training and testing set. Figure 12.17b shows the gender estimation
performance on the validation set. The performance on male images is slightly better than
that on female images.
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(a) Age (b) Gender (c) Race

Fig.12.17 Demographic Attribute Classification Accuracy on each group. The red dashed line refers
to the average accuracy on all images in the testing set

Table 12.19 Race distribution of the datasets for race estimation

Dataset # Of images

White Black East Asian Indian

Training 468,139 150,585 162,075 78,260

Testing 9,469 4,115 3,336 3,748

Table 12.20 Age distribution of the datasets for age estimation

Dataset # Of images in the age group

0–12 13–18 19–34 35–44 45–54 55–100

Training 9,539 29,135 353,901 171,328 93,506 59,599

Testing 1,085 2,681 13,848 8,414 5,479 4,690

Race:We combine AFAD, RFW, IMFDB-CVIT, and PCSO datasets for training the race
estimation model. UTKFace is used as validation set. Table 12.19 reports the total number
of images in each race category of the training and testing set. Similar to age and gender, the
performance of race estimation is highly correlated to the race distribution in the training
set. Most of the images are within the White group, while the Indian group has the least
number of images. Therefore, the performance on White faces is much higher than that on
Indian faces.

Age: We combine CACD, IMDB, UTKFace, AgeDB, AFAD, and AAF datasets for
learning the age estimation model. 90% of the images in the combined datasets are used for
training, and the remaining 10% are used for validation. Table 12.20 reports the total number
of images in each age group of the training and testing set, respectively. Figure 12.17a shows
the age estimation performance on the validation set. The majority of the images come from
the age 19 to 34 group. Therefore, the age estimation performs the best on this group. The
performance on the young children and middle to old age group is significantly worse than
the majority group.
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It is clear that all the demographic models present biased performance with respect to
different cohorts. These demographic models are used to label the BUPT-Balancedface and
MS-Celeb-1M for training GAC and DebFace. Thus, in addition to the bias from the dataset
itself, we also add label bias to it. Since DebFace employs supervised feature disentangle-
ment, we only strive to reduce the data bias instead of the label bias.

12.7 Conclusion

This chapter tackles the issue of demographic bias in FR by learning fair face representa-
tions. We present two de-biasing FR networks, GAC and DebFace, to mitigate demographic
bias in FR. In particular, GAC is proposed to improve the robustness of representations for
every demographic group considered here. Both adaptive convolution kernels and channel-
wise attention maps are introduced to GAC.We further add an automatic adaptation module
to determine whether to use adaptations in a given layer. Our findings suggest that faces
can be better represented by using layers adaptive to different demographic groups, lead-
ing to more balanced performance gains for all groups. Unlike GAC, DebFace mitigates
mutual bias across identities and demographic attributes recognition by adversarially learn-
ing the disentangled representation for gender, race, and age estimation, and face recognition
simultaneously. We empirically demonstrate that DebFace can reduce bias not only in face
recognition but in demographic attribute estimation as well.
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13Adversarial Attacks on Face Recognition

Xiao Yang and Jun Zhu

13.1 Introduction

Face recognition is becoming a prevailing authentication solution in numerous biomet-
ric applications thanks to the rapid development of deep neural networks (DNNs) [18,
37, 39]. Empowered by the excellent performance of DNNs, face recognition models are
widely deployed in various safety-critical scenarios ranging from finance/payment to auto-
mated surveillance systems. Despite its booming development, recent research in adversarial
machine learning has revealed that face recognition models based on DNNs are highly vul-
nerable to adversarial examples [14, 40], which are maliciously generated to mislead a target
model. Therefore, it will lead to serious consequences or security problems in real-world
applications, such as deceiving the payment system in vending machines [13] and unlocking
a mobile phone or car [41].

Extensive efforts have been devoted to crafting adversarial examples (i.e., adversarial
attacks) on face recognition models, which can be conducive to evaluating model robust-
ness [42, 51]. Adversarial attacks in the digital world [11, 35, 49, 51] add minimal perturba-
tions to face images in the digital space, aiming to evade being recognized or to impersonate
another identity. Some commercial face recognition APIs can also be attacked by adver-
sarial examples in the black-box manner [11]. Besides, adversarial attacks in the physical
space are characterized by adding adversarial patches that can be carefully attached to faces.
These patches are subsequently captured by a camera and fed into a face recognition model
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to mislead the prediction. Some studies have shown the success of physical attacks against
state-of-the-art face recognitionmodelswith regard to different attack types, such as eyeglass
frames [34, 35, 44], hats [23], and stickers [16, 36].

In this chapter, we first briefly introduce the threat model on face recognition. Next,
we describe some typical adversarial attacks on face recognition in both digital space and
physical space, respectively. Besides, we present the methods related to adversarial defenses
on face recognition, including input transformation and adversarial training. Furthermore,
some positive applications of adversarial attacks are considered, such as making adversarial
perturbations overlaid on facial images so that the original identities can be concealed
without sacrificing the visual quality. Lastly, we elaborately discuss the growing future
and unresolved problems of adversarial attacks on face recognition.

13.2 Threat Model

Face recognition usually focuses on solving the two sub-tasks: (1) face verification that
distinguishes whether a pair of facial images belong to the same identity [14]; and (2)
face identification that predicts the identity of a test facial image. We mainly consider face
verification in this chapter, since the setting can be naturally extended to face identification.

In face verification, the feature distance between a pair of images {x1, x2} ⊂ X can be
calculated as

D f (x1, x2) = ‖ f (x1) − f (x2)‖22, (13.1)

where f extracts a normalized feature representation in R
d for an input face image. Note

that this definition is consistent with the commonly used cosine similarity metric. Then the
prediction of face verification can be formulated as

C(x1, x2) = I(D f (x1, x2) < δ), (13.2)

where I is the indicator function, and δ is a threshold. When C(x1, x2) = 1, the two images
are recognized as the same identity, otherwise different identities (Fig. 13.1).

Fig. 13.1 Demonstration of the adversarial attack on face recognition. Given a pair of face images,
the attacker can craft adversarial examples to achieve the dodging or impersonation attack with small
perturbations for misleading the prediction of face recognition (FR) system
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13.2.1 Adversary’s Goals

There are generally two types of attacks with different goals for face verification, namely,
dodging attack and impersonation attack, as detailed below.

Dodging attacks. In a dodging attack, an adversary seeks to make one face misidentified
for misleading a face recognition system. In general, dodging attacks are of great interest in
bypassing a face recognition system in surveillance. Formally, given a pair of face images x
and xr with the same identity, the adversary aims to modify x to craft an adversarial image
xadv that cannot be recognized by the model, i.e., to make C(xadv, xr ) = 0.

Impersonation attacks. Impersonation attacks focus on generating an adversarial exam-
ple that can be identified as another target identity, which is generally more difficult than
dodging attacks. One attacker can try to camouflage his/her face to be identified as an autho-
rized user for fooling the face authentication systems. Formally, given a pair of face images
x and xr with two different identities, the adversary will generate an adversarial image xadv

that is recognized as the target identity of xr , i.e., to make C(xadv, xr ) = 1.

13.2.2 Adversary’s Capabilities

The adversary’s capability can be very different due to budget constraints, such as the per-
turbation budget in the digital space and the area budget for printing adversarial patches [34,
35] in the physical world.

Digital space.Adversarial examples in the digital space are usually assumed to be indis-
tinguishable from the original ones from visual observations [14, 40], and the adversary can
only introduce small modifications to the inputs. Recent research has widely adopted the
�p additive perturbation setting, where the adversary has the ability to add a small pertur-
bation measured by the �p norms (e.g., p = ∞ or p = 2) to the original input. To achieve
the adversary’s goal, an adversary can optimize the feature distance between the adversarial
image xadv and the counterpart face image xr , meanwhile keeping a small distance between
xadv and x in the input space.

For dodging attacks, an adversarial image can be crafted by maximizing the distance
between x′ and xr in the feature space as

xadv = argmax
x′:‖x′−x‖p≤ε

D f (x′, xr ), (13.3)

where ε is a small constant that characterizes the level of perturbation. By solving prob-
lem (13.3), the face recognition model will be likely to mistakenly identify xadv and xr as
different identities (as their feature distance can be larger than a predefined threshold δ).

For impersonation attacks, the adversary can similarly formulate the problem by mini-
mizing the distance between x′ and xr as
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xadv = argmin
x′:‖x′−x‖p≤ε

D f (x′, xr ). (13.4)

Thus, the feature representation of xadv will resemble that of xr , such that they are recognized
as the same identity by the face recognition model.

Physical space. Adversarial examples in the physical space are usually required physi-
cally wearable for real human faces. They are thus realized by first generating adversarial
perturbations confined to a specific region in the digital space and then printing adversarial
patches (e.g., eyeglass frames, hats, etc).

For dodging attacks, an adversarial patch can be generated by maximizing the distance
between x′ and xr in the confined region as

xadv = argmaxD f (x′, xr ),
s.t. ‖M � x′ − M � x‖p ≤ ε, (1 − M) � x′ = (1 − M) � x, (13.5)

whereM ∈ {0, 1}d is a binarymask,� is the element-wise dot product, andd is the dimension
of the face image. By solving the constrained problem (13.5), the face recognition model
can misidentify them as different identities by only modifying a confined region. Similarly,
the definition can be extended to the impersonation attack by changing the optimization
direction from problem (13.5).

13.2.3 Adversary’s Knowledge

An adversary can have different levels of knowledge of the target face recognition models
to craft adversarial examples, including white-box and black-box attacks. In the white-
box case, the adversary can obtain accurate knowledge of detailed information from the
target face recognition model, including architectures, parameters, and gradients of the loss
regarding the input. In the black-box scenario, there are two general types including query-
based attacks [7, 11] and transfer-based attacks [9]. The former attack leverages plenty of
query feedback from the target model to generate adversarial examples. The latter directly
relies on the transferability of adversarial examples, which assumes the availability of a
substitute model based on which the adversarial examples can be generated.

13.3 Digital Adversarial Attacks

In this section, we introduce some attack methods in the digital space under both white-box
and black-box (transfer-based and query-based) settings.
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13.3.1 White-Box Attacks

We first summarize some typical white-box adversarial attack methods that are adopted
for evaluating the robustness of face recognition models. And we only introduce these
methods for dodging attacks as a default, since the extension to impersonation attacks is
straightforward.

Fast Gradient Sign Method (FGSM) [14] crafts an adversarial example given a pair of
images x and xr with the same identity under the �∞ norm as

xadv = x + ε · sign(∇xD f (x, xr )), (13.6)

where ∇xD f is the gradient of the feature distance w.r.t. x, and sign(·) is the sign function
to make the perturbation meet the �∞ norm bound. It can be extended to an �2 attack as

xadv = x + ε · ∇xD f (x, xr )

‖∇xD f (x, xr )‖2 . (13.7)

Basic Iterative Method (BIM) [24] iteratively takes multiple gradient updates based on
FGSM as

xadv
t+1 = clipx,ε

(
xadv
t + α · sign(∇xD f (xadv

t , xr ))
)
, (13.8)

where clipx,ε projects the adversarial example to satisfy the �∞ constraint and α is a small
step size. It can also be extended to an �2 attack similar to FGSM. The projected gradient
descent (PGD) [26] can be also viewed as a variant of BIM by adopting random starts.

Carlini & Wagner’s Method (C&W) [6] is a powerful optimization-based attack
method. It takes a Lagrangian form of the constrained optimization problem and adopts
Adam [22] for optimization, which is quite effective for �2 attacks. However, the direct
extension of the C&W method to face recognition is problematic since C&W used the loss
function defined on the logits of the classification models. A suitable attack objective func-
tion was presented in [51] for face recognition systems. Specifically, for dodging attacks,
the optimization problem can be formulated as

xadv = argmin
x′

{‖x′ − x‖22 + c · max(δ − D f (x′, xr ), 0)
}
, (13.9)

where c is a parameter to balance the two loss terms, whose optimal value is discovered by
binary search. Besides, δ is the threshold of the face verification model in Eq. (13.2).

13.3.2 Transfer-Based Black-Box Attacks

Under this black-box setting, the attackers have no access to the parameters of gradients
of the model being attacked. Instead, adversarial examples are first generated by using the
attack methods against a substitute face recognition model and then transferred to attack the
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black-box models. Therefore, the transferability of the attack examples is a key factor in the
success of such attack methods. Some representative attack methods are presented below.

Momentum Iterative Method (MIM) [9] proposes to improve the transferability of
adversarial examples by integrating a momentum term into BIM as

gt+1 = μ · gt + ∇xD f (xadv
t , xr )

‖∇xD f (xadv
t , xr )‖1

;

xadv
t+1 = clipx,ε(x

adv
t + α · sign(gt+1)).

(13.10)

By integrating the momentum term into the iterative process of the white-box attacks, this
method can stabilize the update directions and avoid the local optima by input diversity.

Diverse Inputs Method (DIM) [46] relies on a stochastic transformation function to
generate transferable adversarial examples at each iteration, which can be denoted as

xadv
t+1 = clipx,ε

(
xadv
t + α · sign(∇xD f (T (xadv

t ; p), xr ))), (13.11)

where T (xadv
t ; p) refers to some transformation to diversify the input with a probability p.

Thus, they are incorporated into the attack process to create hard and diverse input patterns,
which obtain higher success rates for black-box models and maintain similar success rates
for white-box models.

Translation-Invariant Method (TIM) [10] proposes a translation-invariant attack
method to generate more transferable adversarial examples against the defense models.
Thus, the translation-invariant method can be integrated into BIM by convolving the gradi-
ent with the predefined kernel W as

xadv
t+1 = clipx,ε

(
xadv
t + α · sign(W ∗ ∇xD f (xadv

t , xr ))
)
. (13.12)

By optimizing the objective in Eq. (13.12), TIM can mitigate the effect of different discrim-
inative regions between models. The crafted adversarial examples are less sensitive to the
white-boxmodel, meanwhile enhancing the transferability of adversarial examples by gradi-
ent diversity. Therefore, TIM can better achieve evading the defense models by transferable
adversarial examples.

Landmark-Guided Cutout (LGC) [51] proposes to leverage the special characteristics
of a face recognition model to improve the black-box transferability of adversarial exam-
ples. LGC builds on an observation that the existing face recognition models have different
attention maps for predictions, as illustrated in Fig. 13.2. Therefore, the crafted adversarial
examples will rely on the discriminative local area of the substitute model, making it hard
to transfer to the other models with different discriminative areas. The iterative procedure
of LGC can be denoted as
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Fig.13.2 The illustration of the attentionmaps highlighting the discriminative regions of the different
models from [51]

gt+1 = μ · gt + ∇xD f (Mt � xadv
t , xr )

‖∇xD f (Mt � xadv
t , xr )‖1

;

xadv
t+1 = clipx,ε(x

adv
t + α · sign(gt+1)),

(13.13)

where Mt ∈ {0, 1}d is a binary mask, � is the element-wise dot product, and d is the
dimension of the face image. In the t-th iteration, after initializing the values of Mt as
1, some randomly sampled fixed-size small square regions are set to 0 to form Mt . By
optimizing the object in Eq. (13.13), an adversary can occlude units from prominent input
regions of the images, making the network focus on less prominent regions and obtain more
transferable adversarial examples.

13.3.3 Query-Based Black-Box Attacks

Although the white-box access to the model is unavailable in the black-box setting, query-
basedmethods [11, 21] generally require a large number of queries to generate an adversarial
example with a minimum perturbation or converge to a large perturbation with few queries.
Dong et al. [11] proposed the Evolutionary Attack method, which adopted a query-based
black-box setting for attacking a real-world face recognition system. This method models
the local geometry of the search directions and reduces the dimension of the search space.
Specifically, the objective of an impersonation attack can be achieved by solving the black-
box optimization problem as

min
x′ D f

(
x′, x

)
, s.t. Ĉ (

f
(
x′)) = 1, (13.14)

where Ĉ(·) is an adversarial criterion that takes 1 if the attack requirement is satisfied and 0
otherwise. To achieve this, they adopted a valuable and straightforward variant of the covari-
ance matrix adaptation evaluation strategy (CMA-ES) [17] for black-box optimization. To
accelerate this algorithm, they proposed to model the local geometry of the search direc-
tions for appropriately sampling the random noise. Besides, the characteristics of the digital
faces were incorporated to reduce the dimensions of search space. Experimental results also
demonstrated that the proposed method can achieve faster convergence and smaller distor-
tions against the state-of-the-art face recognition models, compared with other methods in
both dodging and impersonation settings.
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13.3.4 Universal Adversarial Attacks

The aforementioned methods (e.g., FGSM and MIM) compute image-specific adversar-
ial perturbations by performing gradient updates iteratively. Different from image-specific
attacks, image-agnostic attacks belong to image-independent (universal) methods. The first
pipeline is to learn a universal perturbation by iterative optimization. For instance, UAP [29]
proposes to mislead a model by adding a learned universal noise vector. Another pipeline
of attacks introduces a learned universal function (generative model) [38, 48] on the data
distribution independent of specific instances. Generally, the training objectives of the gen-
erative modelGθ seek to minimize the training error on the perturbed image of the generator
for achieving an impersonation attack as

min
θ

Ex∼X[D f
(
x + Gθ (x), xr

)], s.t. ‖Gθ (x)‖∞ ≤ ε, (13.15)

which adopts an end-to-end training paradigmwith the goal of generating adversarial images
to mislead the face recognition model. By solving problem (13.15), this method can obtain
a generative model by minimizing the distance of x and xr in the training dataset. Once the
parameter θ of the generator Gθ is trained completely, the adversarial example xadv can be
crafted by xadv = x + Gθ (x) for any given face image x, which only requires an inference
for this face image x. Note that universal adversarial attacks can promote more general and
transferable adversarial examples [30, 48] since the universal perturbation or function can
alleviate the data-specific overfitting problem by training on an unlabeled dataset.

13.4 Physical Adversarial Attacks

We now introduce physical adversarial attacks that aim to deceive face recognition models
in the physical world [3, 14, 40]. Therefore, a specific characteristic of physical adversarial
examples is making them physically wearable for real human faces. Next, we describe two
common attack types for effectively achieving physical adversarial attacks, i.e., patch-based
and light-based ones.

13.4.1 Patch-Based Physical Attacks

Patch-based physical adversarial examples are usually realized byfirst generating adversarial
perturbations confined to a specific region in the digital space and then printing adversarial
patches (e.g., eyeglass frames, hats, etc). Some volunteers will be subsequently asked to
attach them and test the attack performance against face recognition models under a specific
environment.
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Attacker Victim

Eyeglasses AdvHat

Patch

Fig.13.3 Some physically realizable adversarial patches of the eyeglass frame [35] and hat [23] with
the aim of misleading face recognition models

Fig. 13.4 Some other physically realizable adversarial patches of the stickers and masks from [42]
with the aim of misleading face recognition models

Some research has explored the case that the adversarial perturbations are confined to
a specifically designed confined region, as illustrated in Figs. 13.3 and 13.4. This can be
achieved by setting a binary mask M ∈ {0, 1}d , and d is the dimension of the face images.
The procedure can make the adversarial perturbations confined in the pixels where the value
of the mask is 1, which can be denoted as

xadv
t+1 = projD

(
xadv
t + α · M � sign(∇xD f (xadv

t , xr ))
)
, (13.16)

where D = {x : ‖M � x − M � xr‖∞ ≤ ε}. By iteratively performing this updating rule,
the attackers can obtain the final adversarial patches. Once crafted in the whole attack
generation pipeline, the adversarial patches will be posted on the attack to mislead the
black-box face recognition system. The expectation over transformationmethod [2] has been
proposed to make the physical adversarial patches robust under diverse physical variations.
To further boost the black-box transferability of adversarial patches,Xiao et al. [44] proposed
to regularize the adversarial patch by optimizing it on a low-dimensional manifold. By
optimizing the adversarial perturbations on the latent space of a pre-trained generativemodel,
the adversarial perturbations exhibit strong semantic patterns inherent to the face image,
meanwhile obtaining an excellent performance on the black-box transferability.

To generate a physically realizable adversarial patch for fooling face recognition models,
Sharif et al. [35] proposed the mask type of Eyeglasses. Specifically, they first introduced
a readily available digital replica of eyeglass frames and utilized a printer to print the front
plane of the eyeglass frames on paper. The color was iteratively updated through the gra-
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dient descent method to generate adversarial perturbations. Consequently, the adversarial
frames can evade the recognition model by only occupying about 6.5% of the whole face
image pixels. Figure 13.3 also illustrates an impersonation attack by wearing 2D-printing
or 3D-printing glass frames. Besides, AdvHat [23] adopted the mask type of Hat to achieve
an impersonation attack. They proposed to simulate the off-plane bending as a parabolic
transformation in the 3D space which maps each point of the sticker to the new point.
Furthermore, the 3D affine transformation was applied to the sticker to simulate the cor-
responding pitch rotation based on the obtained coordinates. To preserve the smoothness
of adversarial perturbations, the optimization was iteratively updated by minimizing total
variation (TV) [28] as

TV(n) =
∑

i, j

((
ni, j − ni+1, j

)2 + (
ni, j − ni, j+1

)2)1/2
, (13.17)

where ni, j denotes a pixel in n at coordinate {i, j}. The objective will be lower if the
values of adjacent pixels are closer to each other, meaning that the perturbation is smoother.
Therefore, the smoothness of the adversarial examples will be promoted and the physical
realizability is also improved.

Although AdvHat considered simple geometric transformations of the patch, it would
inevitably result in unsatisfying performance when fitting the patch to the real 3D face due
to the deformation. Yang et al. [50] proposed a 3D-aware attack method—Face3DAdv to
craft robust adversarial patches, which can naturally stitch a patch onto the face to make the
adversarial patch more versatile and realistic by fully leveraging the recent advances in 3D
face modeling, as illustrated in Fig. 13.5. Moreover, Face3DAdv also exploited profitable
3D face transformations and realistic physical variations based on the 3D simulator. Exper-
iments also showed obvious improvements over the previous 2D attack methods against
different face recognition models in diverse physical conditions of 3D transformations,
lighting variations, etc.

Respirator HatEyeglass Eyeglass Eyeglass Frame

Fig.13.5 The 3D adversarial examples are derived from different physically realizable attacks from
Yang et al. [50]
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13.4.2 Light-Based Physical Attacks

An adversary can first generate a digital adversarial pattern using one or more face images
of the target identity. Rather than printing 2D or 3D adversarial patches, Nguyen et al.
proposed the adversarial light projection attack [31] on face recognition systems. There
are two steps in the generation phase: (1) calibrate the camera-projector setup based on
the specific environment and calculate the adversarial pattern in the digital domain for
dodging or impersonation attacks; (2) project the computed digital adversarial pattern onto
the adversary’s face using the projector to attack the deployed face recognition system.

Specifically, the adversarial pattern in the digital domain for dodging attacks can be
represented as

xadv
t+1 = clipx,ε

(
xadv
t + α · sign(∇xD f (T (xadv

t ), xr ))
)
, (13.18)

where T (·) refers to some transformation operations to diversify the input. After the gen-
eration, this method will also consider two calibration steps integral to the effectiveness of
the physical attack. First, the position calibration aims to ensure that the adversarial pattern
crafted in the digital domain can be projected onto the appropriate region of the attacker
while conducting the attack. Second, the color calibration focuses on the reproduction of
digital adversarial examples with high fidelity by the projector. Some light-based physical
adversarial examples are presented in Fig. 13.6, which can achieve white-box and black-box
impersonation attacks against different recognition models.

Besides, Zhou et al. proposed a novel infrared-based technique capable of stealthily
morphing one’s facial features to impersonate a different individual. Meanwhile, they also
developed a new algorithm to search for adversarial examples under the constraints of the
limitations of commercial-off-the-shelf LEDs. Experimentally, a large-scale study on the
LFW dataset was conducted, which showed the attack success rates of over 70%.

(a) White-box Impersonation Attack (b) Black-box Impersonation Attack

Adversarial Target Adversarial Target

Fig. 13.6 Some examples of white-box and black-box impersonation attacks from [31]. The face
image with adversarial light projected in the physical domain will make the face recognition model
predict the targeted identity
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13.5 Adversarial Defense for Face Recognition

Adversarial attacks raise a large amount of security issues to face recognition systems in
diverse settings. Extensive research has also concentrated onmaking face recognitionmodels
robust to various adversarial attacks. The defense strategies can be generally divided into
two categories: (1) input transformation: modifying the altered input throughout testing; and
(2) adversarial training: injecting adversarial examples into training data.

13.5.1 Input Transformation

Some defenses can transform the inputs before feeding them into deep neural networks,
including JPEG compression [12] and bit-depth reduction [47], and total variance mini-
mization [15]. Besides, some works chose to add randomness into the input [45] for miti-
gating adversarial effects. Therefore, these input transformation methods can be naturally
incorporated into the face recognition models for adversarial defenses in the testing phase.
A pipeline of the randomization-based defense mechanism is also illustrated in Fig. 13.7.
However, these methods generally rely on vanishing gradients or random gradients to pro-
hibit adversarial attacks. Some works [1, 19] demonstrated that these input transformation
methods can be defeated by adopting adaptive attacks.

13.5.2 Adversarial Training

One of the most effective methods of defending adversarial attacks is adversarial training [5,
25, 52], where the authors proposed to generate adversarial examples online and augment

Fig.13.7 A pipeline of the randomization-based defense mechanism from [45], including randomly
resizing, padding, and selecting images
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Fig. 13.8 Distance distributions of both same and different pairs on the LFW dataset [20] under
normal training and adversarial training from [51]. The cyan lines refer to the thresholds

them into the training data in a mixed manner, i.e., each mini-batch of training data consists
of a mixture of clean and adversarial samples. PGD-AT [27], as the most popular one,
formulates the adversarial training procedure as a min-max problem. Therefore, adversarial
training methods in face recognition can be formulated as a two-stage framework:

min
ω,W

1

n

n∑

i=1

max
ηi∈S

L( f (xi + ηi ), yi ,W), (13.19)

where f (·) is the feature extractor with parameters ω, the matrix W = (W1, ...,WC ) is the
weight matrix for the task with C labels, L is a cross-entropy loss, and S = {η : ‖η‖∞ ≤
ε} is a set of allowed points around x with the perturbation ε. Adversarial examples are
crafted in the inner maximization, and model parameters are optimized by solving the outer
minimization. Thus they are iteratively executed in training until model parameters ω and
W converge. The project gradient descent method (PGD) [27] has been generally applied
in the inner optimization, which is denoted by taking multiple steps as

ηt+1
i =

∏

S

(
ηti + α · sign(∇xL( f (x + ηti ), yi ,W))

)
, (13.20)

where ηi is the adversarial perturbation at the t-th step, α is the step size and
∏

(·) is a
projection function in S. Since the problems of inner maximization and outer minimization
are mutually coupled, they are iteratively completed in the training phase until the model
parameters converge. Among the defense methods studied in [51], adversarial training is
still the most robust method, which presents consistent performance on different face loss
constraints. Besides, adversarial training still results in a reduction of natural accuracy,which
also accords with the performance of the general image classification (Fig. 13.8).



400 X.Yang and J. Zhu

To defend physically realizable attacks on face recognition systems, Wu et al. [43] pro-
posed to adopt adversarial training with the rectangular occlusion attacks. Specifically, rect-
angular occlusion attacks are introduced by locating a small adversarially crafted rectan-
gle among a collection of possible regions in a face image. Plenty of experiments also
demonstrated that the proposed defense method can effectively improve the robustness
against the eyeglass frame attack for VGG-based face recognition system [32].

13.6 Positive Applications of Adversarial Attacks

With the growing ubiquity of deep neural networks, face recognition systems are increasingly
applied by private companies, government agencies, and commercial surveillance services.
These systems can typically deal with personal data by scraping social profiles from user
images. As a byproduct, they also increase the potential risks for privacy leakage of personal
information. Therefore, it is imperative to provide users with an effective method to protect
private information from being unconsciously identified. Recent research has found that
adversarial examples can mislead a face recognition system [14, 35, 40, 51] by overlaying
adversarial perturbations on the original images, thus becoming an appealing mechanism to
apply an adversarial perturbation to conceal one’s identity.

Fawkes [33] was developed to prevent social media images from being used by unau-
thorized facial recognition systems based on adversarial attacks, which fooled unauthorized
facial recognition models by introducing adversarial examples into training data. Based on
this, users can add imperceptible pixel-level changes to their own photos before releasing
them. When used to train face recognition models, these images produce the models that
effectivelymake natural images of the usermisidentified. Experimentally, a 95+%protection
success rate was provided by Fawkes against various face recognition models.

LowKey [8] designed a black-box adversarial attack on facial recognition models, which
moved the feature space representations of gallery faces. Experimentally, LowKeyconducted
the evaluations on a large collection of images and identities. As a comparison, Fawkes
assumed that face recognition practitioners trained their models on each individual’s data
and performed evaluations on small datasets. Experimental results also demonstrated the
effective performance of LowKey against commercial black-box APIs, including Amazon
Recognition and Microsoft Azure Face.

Recent TIP-IM [49] involved some novel considerations for preventing identity leakage
against unauthorized recognition systems from the user’s perspective, such as targeted pro-
tection, natural outputs, black-box face systems, and unknown gallery sets. Besides, they
proposed to generate an adversarial identitymask,wheremulti-target sets are introducedwith
a well-matched optimizationmechanism to guarantee black-box effectiveness. Furthermore,
maximum mean discrepancy (MMD) [4] was introduced as an effective non-parametric and
differentiable metric for naturalness, which can be capable of comparing two data distribu-
tions and evaluating the imperceptibility of the generated images. Figure 13.9 also presented
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= 0.00 = 2.00 = 2.25 = 2.50 = 2.75
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= 1.75

Fig.13.9 Some examples of face identity protection based on adversarial attacks with different coef-
ficients from [49]. Green hook refers to success, which also implies a trade-off between effectiveness
and naturalness

a trade-off between effectiveness and naturalness. As the coefficient increases, the visual
quality of the generated images gets better based on different metrics. Therefore, it can be
seen that, to an extent, TIP-IM can control the degree of the generated protected images
when conditioning on different hyper-parameters.

13.7 Discussion

With the evolution of new technologies regarding adversarial attacks, many works have
achieved impressive performance on attack or defense against face recognition models.
However, some problems still remain largely open and are calling for further investigation
to develop robust face recognition models.

First, one problem is how to craft effective physical adversarial patches for achieving
impersonation attacks against commercial face recognition services, which usually incorpo-
rate strong defensivemechanismswith face anti-spoofing. Such attack strategies are valuable
to test the robustness of commercial systems. Since a 3D texture-based patch does not change
the depth of a face image, it may be more conducive to passing commercial defense ser-
vices steadily. Therefore, a 3D texture-based attack may be a feasible solution regarding
effectiveness and imperceptibility against commercial face recognition services.

Besides, although the adversarial perturbations generated by the existing methods have a
small intensity change, theymay still sacrifice the visual quality for human perception due to
the artifacts. Thus, future technologies should also consider visually natural characteristics
from the corresponding original ones, otherwise, it may introduce undesirable appearances
as a result.

Furthermore, the existing adversarial attacks are remarkably demonstrated to be image-
specific, and image-agnostic (universal) attacks against face recognition models are still
worth considering. Universal adversarial attacks have the ability to craft universal adversar-
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ial perturbations given one face target, meanwhile generating strong transferable patterns.
Therefore, universal attacks should be an essential concern in future research.

Lastly, adversarial training is becoming the most robust method among the defensive
strategies, which can adaptively integrate with different loss functions from face recogni-
tion for seeking robust performance. However, adversarial training still results in a reduc-
tion of natural accuracy and high training cost in face recognition. These matters inhibit the
researchers from designing practical defensive techniques in automatic face recognition
systems. Therefore, future works will be encouraged to propose efficient and practical
defenses against various confined attacks on face recognition.
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14Heterogeneous Face Recognition

Decheng Liu,NannanWang, and Xinbo Gao

14.1 Introduction

Face recognition is one of themost important applications in computer vision. This is because
face recognition could achieve efficient and convenient identity verification in uncontrolled
scenarios. With the development of deep learning models in image processing, superior
recognition accuracy has been achieved recently [6, 59]. However, real face images are
captured through different sources, such as sketch artists and infrared imaging devices,
called heterogeneous faces. Furthermore, matching face images in different modalities,
which is referred to as heterogeneous face recognition (HFR), is now attracting growing
attention in both biometrics research and industry.

For example, face sketches are desired in criminal investigations when the frontal photos
or videos of suspects are not available. The police need to generate face sketches by hand or
specific software according to the descriptions of eyewitnesses. Actually, the earliest face
sketch is created in Spring and Autumn and Warring States Periods of China. The king of
Chu forces the army to catchWuZixu according to the hand-drawn portrait sketch (as shown
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(a) The biography of Wu Zixu (in Spring and 
Autumn and Warring States Period of China)

(b) The biography of Mapleton (in 1880s)

Fig. 14.1 The examples of face sketches application in the history

in Fig. 14.1a). Additionally, the first police composite face sketch to appear on a “Wanted”
poster in a newspaper, which shows the hand-drawn sketch of murder called Mapleton in
1881 (as shown in Fig. 14.1b).Nowadays, face sketches are also usually generated by specific
software [38]. It is because the police artists always needmuch time to draw sketches by hand,
but these composite sketches are directly combined by choosing suitable face components,
which indeed takes less time.

The cross-spectrum face images are also important for heterogeneous face recognition.
As shown in Fig. 14.2, the spectrogram shows the range of visible light is 400 nm to 700
nm, and the range of near-infrared and thermal infrared is higher than 700 nm. As we all
know, near-infrared images (NIR) are usually acquired in poor illumination environment,
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(a) The near infrared (NIR) face camera 
and the capture environment.

(b) Thermal infrared (TIR) imaging 
reflects radiation emitted by objects. 

Fig. 14.2 The illustration of spectrogram and other spectrum images (like NIR and TIR)
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which is inherently less sensitive to light influence. Matching the probe NIR to the gallery,
visual face images has raised more concerns recently. Similarly, the thermal infrared (TIR)
faces are captured by specific TIR camera, which could effectively reflect radiation emitted
by objects.

Overall, traditional homogeneous face recognition methods perform poorly in most het-
erogeneous face scenarios due to the large discrepancy between face images in different
modalities. Thus, heterogeneous face analysis is still an important and challenging problem
in law enforcement. In addition, there still exists a strong request to learn more meaningful
and interpretable representations of heterogeneous faces.

14.1.1 Literature Review

In this section, we give a comprehensive literature review about HFR algorithms. Due to the
great discrepancies, conventional homogeneous face recognition methods perform poorly
by directly identifying the probe image from gallery images in most HFR scenarios. Exist-
ing approaches can be generally grouped into three categories: synthesis-based methods,
common space projection-based methods, and feature descriptor-based methods. Here we
first show the basic procedures of these three kinds of methods. (1) Feature descriptor-based
methods [8, 10, 22, 23, 71] first represent face images with local feature descriptors. These
encoded descriptors can then be utilized for recognition. However, most existing methods of
this category represent an image ignoring the special spatial structure of faces, which is cru-
cial for face recognition in reality. (2) Synthesis-based methods [11, 28, 34, 55, 61, 64] first
transform the heterogeneous face images into the same modality. Once the synthesized pho-
tos are generated from non-photograph images or vice versa, conventional face recognition
algorithms can be applied directly. However, the synthesis process is actually more difficult
than recognition and the performance of these methods heavily depends on the fidelity of
the synthesized images. (3) Common space projection-based methods [19, 25, 30, 42, 43,
51] attempt to project face images in different modalities into a common subspace where
the discrepancy is minimized. Then heterogeneous face images can be matched directly in
this common subspace.However, the projection procedure generally causes the information
loss which decreases the recognition performance. With the development of deep learn-
ing, researchers pay more attention to the synthesis-based and common space-based HFR
algorithms.

14.1.1.1 Synthesis-BasedMethods
The aim of synthesis basedHFR is to synthesize differentmodality images first, and then rec-
ognize identity. The illustration of different categories in synthesis based heterogeneous face
methods is shown in Fig. 14.3. Existing synthesis-based HFR can be divided into exemplar-
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Synthesis based Methods

Data-Driven Model-Driven

Sparse Representation Graphical Model Linear Nonlinear

CNN

GAN

ResNet
Sparse Coefficients

Photo patches
A list of weights 

for sketch patches

Fig. 14.3 The illustration of different categories in synthesi-based heterogeneous face methods

based methods (also called data-driven-based methods) and regression-based methods (also
called model-driven-based methods).

Exemplar-based methods can be further roughly categorized into sparse representation
based methods and graphic model based methods. Note that more category descriptions can
be found in [47, 75]. Tang andWang [56] pioneered the exemplar-based approach by comput-
ing a global eigen transformation for synthesizing face sketches from face photos. However,
whole face photos and face sketches cannot be simply explained by a linear transforma-
tion, especially when the hair region is considered. [35] presented a patch-based approach
with the idea of locally linear approximating global nonlinear. It represents each target
sketch patch by a linear combination of some candidate sketch patches in the training set
using locally linear embedding (LLE). The drawback is that each patch was independently
synthesized and thus compatible relationship between the neighboring image patches was
neglected. In order to tackle this problem, [60] employed multiscale Markov Random Field
(MRF) to introduce probabilistic relationships between neighboring image patches. Their
method synthesizes a face sketch by selecting the “best” candidate patches that maximize
the a posteriori estimation of their MRF model. The weakness is that it can not synthesize
new patches that do not exist in the training set and its optimization is NP hard. Zhou et
al. [73] presented a Markov Weight Fields (MWF) model to improve the aforementioned
problem by introducing the linear combination into the MRF. Wang et al. [58] proposed a
Bayesian framework that provided an interpretation to existing face sketch synthesis meth-
ods from a probabilistic graphical view. Sparse representation [67] was also applied to face
sketch synthesis to compute the weight combination. Wang et al. [63] proposed to adap-
tively determine the number of nearest neighbors by sparse representation and [12] presented
a sparse-representation-based enhancement strategy to enhance the quality of the synthe-
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sized photos and sketches. Most of the exemplar-based methods have high computational
complexity. To solve this problem, [53] proposed a real-time face sketch synthesis method
by considering face sketch synthesis as an image denoising problem with the aid of GPU.
Wang et al. [57] employ offline random sampling in place of online K-NN search to improve
the efficiency of neighbor selection. Locality constraint is introduced to model the distinct
correlations between the test patch and random sampled patches.

Regression-based methods have won more and more attention recently profiting from
its real-time speed and end-to-end property. Chang et al. [4] adopted kernel ridge regression
to synthesize face sketch patches from face photos. Zhang et al. [70] proposed to use support
vector regression to express the high-frequencymappings between photo patches and sketch
patches. Zhu and Wang [74] adopted a divide and conquer strategy. Photo-sketch patch
pairs are firstly divided into many different clusters, each of which is equipped with a ridge
regression model to learn the mapping between photo patches and sketch patches. CNN
has greatly promoted the development of the nonlinear regression model [67]. Zhang et al.
[69] adopted a fully convolutional network (FCN) to directly model the complex nonlinear
mapping between face photos and sketches. Liu et al. [32] proposed the novel iterative local
re-ranking algorithm to process diverse synthesis faces, which are generated by different
attributes clues. More deep learning based synthesis methods description are shown in [75].
Most of this kind of methods are inspired by the deep generative model architectures.

14.1.1.2 Feature Descriptor-BasedMethods
Klare et al. [23] proposed a local feature-based discriminant analysis (LFDA) framework
through scale invariant feature transform (SIFT) feature [39] and multi-scale local binary
pattern (MLBP) features [45]. A face descriptor based on coupled information-theoretic
encoding was designed for matching face sketches with photos by Zhang et al. [71]. The
coupled information-theoretic projection tree was introduced and was further extended to
the randomized forest with different sampling patterns. Another face descriptor called local
radon binary pattern (LRBP) was proposed in [8]. The face images were projected onto the
radon space and encoded by local binary patterns (LBP). A histogram of averaged oriented
gradients (HAOG) face descriptor was proposed to reduce the modality difference [10]. Lei
et al. [26] proposed a discriminant image filter learningmethod that benefitted fromLBP like
face representation for matching NIR to VIS face images. Alex et al. [1] proposed a local
difference of Gaussian binary pattern (LDoGBP) for face recognition across modalities.
Bhatt et al. [3] proposed a discriminative approach for matching forensic sketches to mug
shots employing multi-scale circular Weber’s local descriptor (MCWLD) and an evolution-
ary memetic optimization algorithm. Klare and Jain [22] represented heterogeneous face
images through their nonlinear kernel similarities to a collection of prototype face images.
Liao et al. [29] firstly utilized a difference of Gaussian filter for matching heterogeneous
images. Considering the fact that many law enforcement agencies employ facial composite
software to create composite sketches, Han et al. [13] proposed a component-based approach
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for matching composite sketches to mug shot photos. Liu et al. [37] further fuse different
face components discriminative information to boost recognition performance.

With the development of deep learning, deep feature extraction-based methods have
drawn more and more attention. Mittal et al. [44] presented a transfer learning-based rep-
resentation method. Lu et al. [40] proposed an unsupervised feature learning method that
learns features from raw pixels.Wu et al. [66] utilized the nuclear norm constraint to increase
the correlation between two modalities. The Wasserstein distance is utilized to learn invari-
ant features for NIR-VIS face recognition [15]. This kind of method would be utilized with
high computational complexity. Note that more algorithms descriptions of feature-based
HFR could be found in [31, 47].

14.1.1.3 Common Space-BasedMethods
In order to minimize the intra-modality differences, Lin and Tang [30] proposed a com-
mon discriminant feature extraction (CDFE) approach to map heterogeneous features into
a common feature space. The canonical correlation analysis (CCA) was applied to learn the
correlation between NIR and VIS face images by Yi et al. [68]. Lei and Li [25] proposed
a subspace learning framework for heterogeneous face matching, which is called coupled
spectral regression (CSR). They later improved the CSR by learning the projections based
on all samples from all modalities [27]. Sharma and Jacobs [51] used partial least squares
(PLS) to linearlymap images fromdifferentmodalities to a common linear subspace. A cross
modal metric learning (CMML) algorithm was proposed by Mignon and Jurie [43] to learn
a discriminative latent space. Both the positive and negative constraints were considered
in metric learning procedure. Kan et al. [19] proposed a multi-view discriminant analysis
(MvDA) method to obtain a discriminant common space for recognition. The correlations
from both inter-view and intra-view were exploited.

Nowadays, the deep learning model could also be regarded as the nonlinear common
space projection in the field. Sharma and Jacobs [52] proposed the partial least squares
algorithm to learn the linear mapping between different face modalities. A multi-view dis-
criminant analysis (MvDA) method [20] was proposed to exploit both inter-view and intra-
view correlations of heterogeneous face images. He et al. [14] proposed an invariant deep
representation approach to map different modalities of images into a common space. Liu
et al. [38] directly utilized the deep learning model as the mapping function, which is also
integrated with the extra semantic attribute information. Yet the projection procedure may
lose some discriminative information.

14.2 Feature Descriptor-Based HFR

Asmentioned in the above section, the feature descriptor-basedmethods aim to extract robust
face feature descriptors according to the property of heterogeneous faces. Considering this
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kind of HFR algorithm always focuses on the capture specific cross-modality characteristics
in the image level, these feature descriptor-based methods would not directly choose deep
learning network as the feature extraction. Although feature descriptor-based HFR consume
much computational resources, they achieve good performance in recognition task with
good generalization, even in cross-datasets evaluation experiments.

To further state details of feature descriptor-based methods, we choose the representa-
tive HFR to show more details here. The graphical representation-based HFR (G-HFR) is
proposed by researchers in Xidian University [47]. The framework of G-HFR is shown in
Fig. 14.4. The key components are the suitable heterogeneous face representation extrac-
tion and similarity score. Here we take face sketch-photo recognition as an example to
describe the proposed method, which could be easily extend to other HFR scenarios. To
effectively represent the cross-modality spatial information in both sketches and photos,
the representation dataset composed of face sketch-photo pairs is constructed to extract the
graphical features of the gallery and probe images. For convenience of descriptions, we
denote the representation dataset with M face sketch-photo pairs {(s1, p1), · · · , (sM , pM )},
we first divide each face image into N overlapping patches. The probe sketch t and the
gallery photos {g1, · · · , gL} are also divided into N overlapping patches. Here L denotes
the number of photos in the gallery. For a probe sketch patch yi (i = 1, 2, · · · , N ), we can
find K nearest sketch patches from the sketches in the representation dataset within the
search region around the location of yi . The probe sketch patch yi can then be regarded as a
linear combination of the K nearest sketch patches {yi,1, · · · , yi,K } weighted by a column

Similarity 
Score

Probe Sketch

Representation 
Dataset

Gallery Photo Heterogeneous Face Representation

Fig. 14.4 Overview of the proposed graphical representation-based heterogeneous face recognition
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vectorwyi = (wyi,1 , · · · , wyi,K )T . As shown in Fig. 14.4, these learned weight vectorwyi is
regarded as the extracted feature of the probe sketch patch yi . Similarly, for a gallery photo
patch xli from the l-th gallery photo gl , where l = 1, 2, · · · , L , we can also find K nearest
photo patches from the photos in the representation dataset and reconstruct the photo patch
by a linear combination of these K nearest photo patches weighted bywxli

. Thus, the weight

vector wxli
is regarded as the extracted feature of the gallery photo patch xli . More details

could be shown in [47]. Once effective graphic face features are extracted, how to calculate
similarities becomes important for the performance evaluation. The following subsection
shows the designed similarity measurement.

14.2.1 Graphical Representation

Here we introduce algorithm details of the graphical representation extraction. The Markov
network is utilized tomodel all patches from a probe sketch or from gallery photos (as shown
in Fig. 14.5).

The joint probability of the probe sketch patches and the weights is defined as,

p(wy1 , · · · ,wyN , y1, · · · , yN )

=
∏

i

�(f(yi ), f(wyi ))
∏

(i, j)∈�

�(wyi ,wy j ),
(14.1)

where (i, j) ∈ � denotes that the i-th probe sketch patch and the j-th probe sketch patch
are adjacent. � represents the edge set in the sketch layer of the Markov networks. f(yi )
means the feature extracted from the probe sketch patch yi and f(wyi ) denotes the linear
combination of features extracted from neighboring sketch patches in the representation
dataset, i.e. f(wyi ) = ∑K

k=1 wyi,k f(yi,k). �(f(yi ), f(wyi )) is the local evidence function,
and �(wyi ,wy j ) is the neighboring compatibility function.

Fig. 14.5 The illustration of
the graphical representation in
the introduced G-HFR method
[47]

Sketch patches
A list of weights

for sketch patches
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The local evidence function �(f(yi ), f(wyi )) is defined as,

�(f(yi ), f(wyi ))

∝ exp{−‖f(yi ) −
K∑

k=1

wyi,k f(yi,k)‖2/2δ2�}. (14.2)

The rationale behind the local evidence function is that
∑K

k=1 wyi,k f(yi,k) should be
similar to f(yi ). Then the weight vector wyi is regarded as a representation of the probe
sketch patch yi .

The neighboring compatibility function �(wyi ,wy j ) is defined as,

�(wyi ,wy j )

∝ exp{−‖
K∑

k=1

wyi,ko
j
i,k −

K∑

k=1

wy j,ko
i
j,k‖2/2δ2�}, (14.3)

where o j
i,k represents the vector consisting of intensity values extracted from the overlapping

area (between the i-th probe sketch patch and the j-th probe sketch patch) in the k-th nearest
sketch patch of the i-th probe sketch patch. The neighboring compatibility function is utilized
to guarantee that neighboring patches have compatible overlaps. The details of maximizing
the joint probability function (14.1) are shown in [47].

14.2.2 Similarity Metric

The suitable similarity measurement is designed for the mentioned graphic heterogeneous
face features. Here we denote the extracted features of the sketch and photo asWt andWgl .
Then, the similarity score of each coupled patch pair is calculated. Researchers find the
characteristics of the proposed graphical representation, i.e., two graphical representations
corresponding to the same position in coupled heterogeneous face images share similar
semantic meanings. For example, wyi,z and wxli,z

represent the weights of the sketch patch

and photo patch from the z-th (z = 1, 2, · · · , M) sketch-photo pair in the representation
dataset. Thus, the weights, which share the same neighbors in the extracted features, are
used to calculate similarity scores.

As shown in Fig. 14.6, the similarity score between the probe sketch patch yi and the
gallery photo patch xli is calculated as the sum of the weights sharing the same nearest
neighbors.

s(yi , xli ) = 0.5
M∑

z=1

nz(wyi,z + wxli,z
), (14.4)
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Fig. 14.6 The illustration of
the similarity metric in G-HFR
algorithm [47]

Weight      0.3    0.2    0.2    0.2    0.1

Index         10      5      20     25     40 

Weight      0.3   0.25   0.2   0.15   0.1

Index         25      4     10     55      20 

where

nz =
{
1, wyi,z > 0 and wxli,z

> 0

0, otherwise.

The average of the similarity scores on all patch positions can be regarded as
the final similarity score between the probe sketch and the gallery photo. For better
understanding, we give an example in Fig. 14.6. When the weights and the indexes
are given for probe sketch and gallery photo, the similarity score is calculated by
Score = 0.5 × (0.2 + 0.1 + 0.3 + 0.2 + 0.3 + 0.2) = 0.65.

14.3 Face Synthesis-Based HFR

Face synthesis-based methods are also an important branch of HFR. This kind of HFR
often consists of two necessary steps: (1) synthesizing different modality faces into the
same modality images; (2) recognizing the synthesis of homogeneous face identities. The
advantage of synthesis-based HFR is that the model inference is visualized because the
quality of synthesis faces could affect the following recognition performance. Thus, the
goal of synthesis-based HFR is to synthesize high-quality face images.

Here we choose the representative heterogeneous face synthesis method and roughly
describe the algorithm details. The probabilistic graphical model-based face synthesis
method (DPGM) is proposed [75] to generate high-quality reconstructed images, even in
poor light variations and cluttered backgrounds. The framework is shown in Fig. 14.7. The
key components are as follows: (1) deep patch representation extraction; (2) candidate patch
selection; (3) deep graphical representation learning. Firstly, the deep learning model is
utilized to extract deep patch representations for test photos and all training sketches. And
then, the patch selection strategy is designed to select candidate sketch patches for each
test photo patch. The deep graphical representation learning is introduced to obtain the best
weights for sketch patch reconstruction. Finally, each reconstructed sketch patch is obtained
by weighted recombining the candidate sketch patches.
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Training
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Sketches
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Deep Graphical Feature Learning

Deep Feature Extraction

Fig.14.7 The overall framework of the introduced probabilistic graphicalmodel-based face synthesis
method [75]

14.3.1 Deep Patch Representation Extraction

With the development of deep generative model, researchers naturally want to choose deep
learning model to extract better face representations. Here the training dataset includes M
face photo-sketch pairs and a test photo t . The deep collaborative networks are trained
with M face photo-sketch pairs. The aim of the deep collaborative networks is to learn two
opposite mappings:G : photo → sketch and F : sketch → photo. Researchers hope that
the learned model can help us map the test photo and training sketches into uniform deep
image representations. The more details of the network architecture are shown are [75].

Assuming ti is the i-th test photo patch, where i = 1, 2, ..., N . The designed deep patch
representation of the test photo patch can be represented as the linear combination of feature
maps weighted by vector ui , which is denoted as,

D(ti ) =
L∑

l=1

ui,ldl(ti ), (14.5)

where dl(ti ) refers to l-th feature map of patch ti . ui,l denotes the weight of l-th feature map,
l = 1, 2, ..., L , and

∑L
l=1 ui,l = 1. Note that the weights for deep patch representation at

different locations in photo patches are different, and each feature map has a uniform initial
weight.
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14.3.2 Candidate Patch Selection

The test photo patch is denoted as ti and its deep patch representation is denoted as D(ti ).
The aim is to find K training sketch patches {yi,1, yi,2, ..., yi,K } that most like ti according
to the Euclidean distance of representation within the search region around the location of
ti as the candidate sketch patches for reconstruction. Once the deep representation model
is trained, we could directly map the test photo patch and training sketch patches into deep
patch representations. Figure 14.8 shows the difference between the matching strategy of
DPGM and other former methods. More accurate candidate sketch patches can be selected
directly and better weight combination for sketch patch reconstruction can be obtained.

Thus, the target sketch patch yi can be synthesized by the linear combination of
K candidate sketch patches weighted by the K -dimensional vector wi :

yi =
K∑

k=1

wi,kyi,k, (14.6)

where wi,k denotes the weight of the k-th candidate sketch and
∑K

k=1 wi,k = 1.

+ +

Training Set

+

Training Set

Fig. 14.8 Difference between the matching strategy of DPGM and other similar related algorithm
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14.3.3 Deep Graphical Representation Learning

Similar with [47], researches also introduce the graphical model to model the distribution
over theweights for deep patch representation and the distribution over theweights for sketch
patch reconstruction. Given the observed variables ti , the model need to infer weights for
deep patch representation ui and weights for sketch patch reconstruction wi . ui determines
the representation ability of deep patch representation. Note that our reconstruction method
is conducted at patch level and what we ultimately needed is optimal reconstruction weights
for candidate sketch patches at different spatial locations. The joint probability of ui , wi ,
and ti ∀i ∈ {1, ..., N }, is formulated as:

p(t1, ..., tN , u1, ..., uN ,w1, ...,wN )

∝
N∏

i=1

�(ti , ui ,wi )
∏

(i, j)∈�

�(wi ,w j )

N∏

i=1

ϒ(ui ),
(14.7)

where �(ti , ui ,wi ) is the local evidence function:

�(ti , ui ,wi )

= exp{−
L∑

l=1

ui,l‖dl(ti ) −
K∑

k=1

wi,kdl(yi,k)‖2/2δ2D}. (14.8)

and �(wi ,w j ) is the neighboring compatibility function:

�(wi ,w j )

= exp{−‖
K∑

k=1

wi,ko
j
i,k −

K∑

k=1

w j,koij,k‖2/2δ2S}.
(14.9)

and ϒ(ui ) is the regularization function:

ϒ(ui ) = exp{−λ‖ui‖2}. (14.10)

Here dl(ti ) means the l-th feature map of patch ti and dl(yi,k) means the l-th feature map of

k-th candidate patch. (i, j) ∈ �means the i-th and j-th patches are neighbors. o j
i,k represents

the overlapping area between the candidate sketch patch yi,k and the j-th patch. λ balances
the regularization term with the other two terms. The posterior probability can be written
as:

p(u1, ..., uN ,w1, ...,wN |t1, ..., tN )

= 1

Z
p(t1, ..., tN , u1, ..., uN ,w1, ...,wN ),

(14.11)

where Z = p(t1, ..., tN ) is a normalization term. The details of maximizing the posterior
probability are shown in [75].
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14.4 Common Space-Based HFR

In this section, we introduce the common space-based HFR methods. As mentioned
above, the common space based HFR is developed rapidly due the superior performance
of deep learning. Due to the different data distributions of heterogeneous face images,
traditional face recognition couldn’t be directly applied to identify heterogeneous faces.
Thus, the common space based algorithm aims to design the mapping function to project
faces of different modalities into a common space to reduce modality gap. Nowadays, more
and more researchers find the deep learning model could be utilized to learn the cross-
modality mapping nonlinear function.

To expound the algorithm details more clearly, we introduce one representative HFR
method here. The heterogeneous face interpretable representation method (HFIDR) is pro-
posed [31] to learn the suitable mapping function for projecting input heterogeneous faces.
As known to all, face sketches are generated according to the description of eyewitnesses
when photos of the suspect are limited. Thus, these indeed exist shape exaggerations and
distortions in face sketches compared with photos. However, humans can easily recognize
the identity according to a distortional sketch, rather than learning from enough sketches.
Inspired by the specific generation procedure, researchers aim to learn the latent identity
information in heterogeneous faces. Furthermore, the interpretable disentangled face repre-
sentation is designed where each dimension could contain reasonable meaning and acquire
latent identity information. The framework of HFIDR is shown in Fig. 14.9. It is noted that
we take face sketches recognition and synthesis as an example to describe the proposed
method, which would be generalized to other heterogeneous face scenarios.

14.4.1 Network Architecture

The input face sketches and photos are separately denoted as {si }Ni=1 and {p j }Nj=1, where N
is the number of face images. Given one input sketch si and photo p j , we constrain these
two images belong to different identities. Note that the proposed interpretable representation
should contain the modality part, the identity part and the redundant part. More explanations
are described in [31]. Here the modality part v mod ∈ RN mod is an one-hot vector. N mod

refers to the number of different modalities of heterogeneous face images. The encoder
model Genc is utilized to encode the identity information vid ∈ RNid , which represents
the heterogeneous face identity relevant information. Therefore, the designed interpretable
disentangled representations are separately denoted as follows:

zsi = [vsmod , viid , vnoise], (14.12)

z p j = [v p
mod , v

j
id , vnoise]. (14.13)
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Shared

Encoder

Encoder

Decoder

Fig. 14.9 Overview of the introduced heterogeneous face interpretable disentangled representation
method [31]

Later, researchers choose the exchange strategy to force the encodermodel learn the latent
modality-invariant identity information. Thus, these two new recombined representations
are denoted by zs j and z pi ,

zs j = [vsmod , v
j
id , vnoise], (14.14)

z pi = [v p
mod , viid , vnoise]. (14.15)

The decoder model Gdec generates two reconstructed images and the following two recom-
bined images. Inspired by the adversarial training strategy [18], researchers additionally
design two symmetry discriminators to improve synthesis quality. The first conditional dis-
criminator Ds learns to classify between fake tuples (input photo p j and synthesized sketch
ŝ j ) and real tuples (input photo p j and reference sketch s j ). On the contrary, the other
conditional discriminator Dp learns to classify between fake tuples (input sketch si and
synthesized photo p̂i ) and real tuples (input sketch si and reference photo pi ). The gener-
ator Genc and Gdec learn to fool these discriminators. More details of these discriminators
architectures are shown in [31].

14.4.2 Loss Function

Here we introduce the designed loss function when training HFIDR model. The reconstruc-
tion loss is used to reconstruct face sketches and photos as follows:
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Lrecon = E[∥∥si − Gdec(zsi )
∥∥ + ∥∥s j − Gdec(zs j )

∥∥

+ ∥∥pi − Gdec(z pi )
∥∥ + ∥∥p j − Gdec(z p j )

∥∥]. (14.16)

For improve the synthesis performance, these two adversarial losses are formulated as

Ls
adv(Genc,Gdec,Dp) = E[log(Ds(p j , s j ))]

+ E[log(1 − Ds(p j ,Gdec(zs j )))],
(14.17)

L p
adv(Genc,Gdec,Dp) = E[log(Dp(si , pi ))]

+ E[log(1 − Dp(si ,Gdec(z pi )))],
(14.18)

where Ls
adv forces the synthesized sketch ŝ j to be closer to the distribution of face sketches,

and L p
adv forces the synthesized photo p̂i to be closer to the distribution of face photos.

Additionally, the simple softmax loss is employed to recognize different identities, which
is formulated as

Lid = E[−log(p(yi |Gdec(zsi ))) − log(p(yi |Gdec(z pi )))

− log(p(y j |Gdec(zs j ))) − log(p(y j |Gdec(z p j )))],
(14.19)

where yi,y j ∈ {yk}Mk=1. M denotes the number of face identities. Synthesized face images
Gdec(zsi ) and Gdec(z pi ) belong to the identity class yi , synthesized images Gdec(zs j ) and
Gdec(z p j ) belong to the identity class y j . Similarly, we also utilize simple binary classifier
to distinguish different modalities as follows:

L mod = E[−log(p(ms |Gdec(zsi ))) − log(p(ms |Gdec(zs j )))

− log(p(mp|Gdec(z pi ))) − log(p(mp|Gdec(z p j )))],
(14.20)

where ms,mp ∈ {0, 1}. Here p(ms |Gdec(zsi )) and p(ms |Gdec(zs j )) is the predicted
probabilities of modalities of generated images are sketches, p(mp|Gdec(z pi )) and
p(mp|Gdec(z p j )) is the predicted probabilities ofmodalities of generated images are photos.

The final total objective function is weighted of four mentioned loss terms:

Ltotal = λrecon Lrecon + λadv(L
s
adv + L p

adv)

+ λid Lid + λ mod L mod ,
(14.21)

where parameters λrecon , λadv , λid , and λmod balance the contribution of four loss terms.
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14.5 Experiments

14.5.1 Databases

In this subsection, we would introduce some typical public heterogeneous face datasets.
Example face images are shown in Fig. 14.10. It noted that recent works mainly focus on
recognize face sketches andNIR faces. However, HFRmethods can be easily extend in other
heterogeneous face scenarios.

The CUHK Face Sketch FERET (CUFSF) Database [72] contains 1194 subjects, with
photos from the FERET database and face sketches are drawn by the artist. To mimic the
real-world scenarios, the photos have more illumination variations and the sketches have
more shape exaggerations in the CUFSF sketch database. The 500 sketch-photo pairs are
selected as training set, and the rest pairs serve as the testing set.

PRIP Viewed Software-Generated Composite Database (PRIP-VSGC) [24] contains 123
subjects, with photos from the AR database [41] and composite sketches created using
FACES [7] and Identi-Kit [17]. The composite sketches are created with facial composite
software kits which synthesize a sketch by selecting a collection of facial components from
candidate patterns. The 123 composite sketches generated using Identi-Kit software.

For NIR-VIS face images analysis, we conduct experiments on the Oulu-CASIA NIR-
VIS database [5]. Oulu-CASIA NIR-VIS database contains 80 subjects, with 50 subjects
fromOulu University and 30 subjects fromCASIA. Each subject comprises six expressions.
All images are aligned and cropped to 128x128 by five facial landmarks, which is the same
with [65]. With the same protocol [65], we randomly select 20 subjects as the training set
and 20 subjects as the testing set. Note that there exist 96 images for each subject, with 48
NIR images and 48 VIS images. In the test stage, we use the VIS images of 20 subjects as
the gallery set and the NIR images of these subjects as the probe set.

The CASIA NIR-VIS 2.0 dataset is the challenging NIR-VIS dataset, with large cross-
modality variations. This dataset contains 725 subjects, and these images are organized into

(a) (b) (c) (d)

Fig. 14.10 The illustration of heterogeneous face databases. a the CUHK face sketch FERET
(CUFSF) database. b PRIP-VSGC composite sketch database. c the Oulu CASIANIR-VIS database.
d the CASIA NIR-VIS 2.0 database
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Table 14.1 Recognition accuracies of the State-of-the-Art methods, the introduced HFIDR method
and G-HFR method on the CUFSF sketch database

Algorithm Accuracy (%) Synthesis task

Fisherface [2] 28.82 No

PLS [52] 51.00 No

P-RS [21] 83.95 No

LRBP [9] 91.12 No

VGG [46] 39.65 No

MvDA [20] 55.50 No

SeetaFace [36] 16.57 No

G-HFR [47] 96.04 No

SGR-DA [48] 96.97 No

HFIDR [31] 99.39 Yes

two views. View 1 is used for parameter tuning and view 2 is used for evaluation. We follow
the protocols in [65] and evaluate our method with 10-fold experiments.

14.5.2 Heterogeneous Face Recognition Results

We compare the introduced HFIDR method (in Sect. 14.4) and G-HFR method (in Sect.
14.2) with representative related methods on the CUFSF sketch database as shown in Table
14.1. The two conventional face recognition methods (VGG and SeetaFace) achieve poor
recognition performance because of the largemodality discrepancy. The two common space-
based methods (PLS and MvDA) only achieve 51.00% and 55.50% at rank-1. The rest
modality invariant feature based methods can achieve better recognition performance. The
HFIDR could further achieve 99.39% at rank-1, which indicates the discriminative latent
identity information could be effectively captured.

As shown in Table 14.2, the DVR [65] method reduces the modality discrepancy and
separately achieves 99.30% and 100% at rank-1 when the backbone is LigthCNN-9 and
LightCNN-29. On the Oulu-CASIA NIR-VIS dataset, the mentioned HFDIR could achieve
rank-1 accuracy of 100% with the help of the interpretable disentangled representation
structure, even utilize the Lightcnn-9 as the encoder backbone. The experimental results
demonstrate the effectiveness and robustness of the introduced method (details in Sect.
14.4) on extracting modality invariant identity information.
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Table 14.2 Recognition accuracies of the State-of-the-Art methods, the introduced HFIDR method
on the Oulu-CASIA NIR-VIS Database

Algorithm Accuracy (%) Synthesis task

KDSR [16] 66.90 No

P-RS [21] 62.20 No

H2(LBP3) [50] 70.80 No

TRIVET [33] 92.20 No

IDR [14] 94.30 No

ADFL [54] 95.50 No

CDL [66] 94.30 No

W-CNN [15] 98.00 No

DVR(LightCNN-9) [65] 99.30 No

DVR(LightCNN-29) [65] 100.00 No

HFIDR(LightCNN-9) [31] 100.00 Yes

HFIDR(LightCNN-29) [31] 100.00 Yes

Table 14.3 Recognition accuracies of the State-of-the-Art methods, the introduced HFIDR method
on the CASIA NIR-VIS 2.0 Database

Algorithm Accuracy (%) Synthesis task

KDSR [16] 37.50 No

H2(LBP3) [50] 43.80 No

HFR-CNN [49] 85.90 No

TRIVET [33] 95.70 No

IDR [14] 97.30 No

ADFL [54] 98.20 No

CDL [66] 98.60 No

W-CNN [15] 98.70 No

DVR(LightCNN-9) [65] 99.10 No

DVR(LightCNN-29) [65] 99.70 No

HFIDR(LightCNN-9) [31] 87.48 Yes

HFIDR(LightCNN-29) [31] 98.64 Yes

On the CASIA NIR-VIS 2.0 dataset, the introduced HFIDR could achieve 87.48% on
LighCNN-9, and 98.64% on LightCNN-29 at rank-1. It is because that HFIDR is more suit-
able for pairwise heterogeneous face scenarios [38], while there exist large intra-class cross-
modality variations, like lighting, expression and pose, and unpaired data on the CASIA
NIR-VIS 2.0 database. Additionally, experimental results demonstrated larger and more
robust network can achieve better performance (Table 14.3).
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14.5.3 Heterogeneous Face Synthesis Results

In this section,wemainly show the comparison experimental results of the introducedDPGM
algorithm (in Sect. 14.3). The qualitative evaluation and quantitative evaluation experiments
are conducted with related face synthesis methods for further analysis.

Qualitative evaluation The structural similarity index metric (SSIM) [62] is deployed to
objectively evaluate the visually perceptual quality of the synthesized sketches by different
methods on CUFS database and CUFSF database. The reference image is the original sketch
drawn by artists while the distorted image is the synthesized sketch. The statistics of average
SSIM scores on the CUFS database and the CUFSF database are shown in Fig. 14.11. The
horizontal axis labels represent the SSIM score from 0 to 1. The vertical axis means the
percentage of synthesized sketch, whose SSIM scores are not smaller than the score marked
on the horizontal axis. Table 14.4 gives the average SSIM score on the CUFS database and
the CUFSF database.

Quantitative evaluation Figure 14.12 shows some synthesized face sketches by differ-
ent exemplar based methods on the CUFS database. As can be seen, blurring appeared in
some dominant facial regions on the results from the LLE method, the MWF method, the
SSD method, the SFS method and the SFS-SVR method. Synthesized results of the MRF
method have some deformations and patch mismatch around the face region. Even the most
recently proposed algorithms such as the Bayesian method and the RSLCRmethod are exist
with aforementioned defects. The introduced DPGM method (in Sect. 14.3) performs well
whether in facial details or in the hair and background area. The DPGMmethod can generate
sketches with high visual quality and sharper edges.

Figure 14.13 shows some synthesized face sketches by different regression basedmethods
on the CUFS database. As can be seen, the results of FCN are very blurry due to the poor
representation ability of their network. Pix2pix model can generate images with sharper
textures which can improve the visual perception quality. The results of the introduced
DPGM method (in Sect. 14.3) tend to have high visual quality whether in normal or bad
environment conditions.
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Fig. 14.11 Statistics of SSIM scores on the CUFS database and the CUFSF database
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Table 14.4 Average SSIM score (%) on the CUFS database and the cufsf database

Methods CUFS (%) CUFSF (%)

PencilDrawing 42.07 30.33

LLE 52.58 41.76

MRF 51.32 37.24

MWF 53.93 42.99

SSD 54.20 44.09

SFS 51.90 42.11

SFS-SVR 50.59 40.62

Bayesian 55.43 44.54

RSLCR 55.72 44.96

FCN 52.14 36.22

pix2pix 49.39 36.65

NeuralStyle 39.50 30.89

FastNeuralStyle 47.41 34.27

CNNMRF 37.20 29.25

DGFL 56.45 45.62

DPGM 56.39 46.00

Photo LLE MRF MWF Bayesian DGFLSSD SFS SFS-SVR RSLCR DPGM

Fig. 14.12 Synthesized sketches on the CUFS database by examplar based methods (LLE, MRF,
MWF, SSD, SFS, SFS-SVR, Bayesian, RSLCR, DGFL) and the introduced DPGMmethod (in Sect.
14.3)
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Fig. 14.13 Synthesized
sketches on the CUFS database
by regression based methods
(FCN, pix2pix), the DGFL
method and the introduced
DPGM method (in Sect. 14.3)

Photo FCN DGFLpix2pix DPGM

Figure 14.14 shows some synthesized face sketches by different neural style transfer
methods on the CUFS database. Because of the lack of structure information, the results
generated by NeuralStyle possess extreme messy texture. By combining a Markov Random
Field (MRF) and a CNN, CNNMRF is able to preserve some structure information. The
results generated by FastNeuralStyle do not possess messy texture.

Figure 14.15 illustrates some face sketches synthesized by different methods on face
photos with extreme lighting variance. Since deep patch representation is more robust to
these noises than pixel intensity, the introducedDPGMmethod (in Sect. 14.3) can reconstruct
sketches with virtually no distortion. This advantage is of vital importance in real world
applications. More experimental results analysis can be found in [75].

14.6 Conclusion

Heterogeneous face recognition is still a challenging problem in biometric analysis and
computer vision. Firstly, we defined the HFR as the difficult task in real-world scenarios
and analyze existing problems. The comprehensive literature review is shown in Sect. 14.2.
We further describe the advantages and disadvantages of the mentioned three kinds of HFR
methods: (1) feature descriptor-based HFR; (2) synthesis-based HFR; (3) common space-
based HFR. To clarify algorithm details clearly, we further introduced three representative
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Photo Neural Style
Fast 

Neural Style CNNMRF DGFL DPGM

Fig. 14.14 Synthesized sketches on the CUFS database by nerual style transfer (NeuralStyle, Fast-
NeuralStyle, CNNMRF), the DGFL method and the introduced DPGM method (in Sect. 14.3)

Photo LLE MRF MWF Bayesian DGFLSSD SFS RSLCRSFS-SVR Neural Style
Fast 

Neural Style CNNMRFpix2pix DPGM

Fig. 14.15 Synthesized sketches of the photos with extreme lighting variance by different methods

HFR methods: the G-HFR method [47], the DPGM method [75] and the HFIDR method
[31].Moreover, experimental settings and results are also shown comparedwith other related
HFR methods in Sect. 14.5. Finally, we conclude this chapter by presenting some possible
future avenues of HFR task. (1) More robust HFR models should be carefully designed to
be suitable in multiple HFR scenarios: face sketch, NIR image, TIR image, low-resolution
image, etc. (2) The interpretable HFR model should be explored in the future. It is because
the HFR is often deployed in social security scenes, and how to generate the credible
identity recognition is an interesting topic. (3) Considering the specific generation of face
sketches, the visual human forgetting process should be explored and introduced in the HFR
framework. We think the combination of computer vision and cognitive psychology would
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provide a better research approach. (4) For cross-modality face synthesis tasks, researchers
shouldmakegenerated faces becomemore similar in identity-level, but not only in pixel-level.
We hope this chapter will inspire more related works, and heterogeneous face recognition
would draw more attention in the future.
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153D Face Recognition

Di Huang and Hongyu Yang

15.1 Introduction

The past decades have witnessed the tremendous efforts made on Face Analysis (FA). In
spite of great progress achieved so far within the field [1–5], faces recorded by 2D images
(or videos) are still not reliable enough as a biometric trait, especially in the presence of
illumination and pose changes. With the rapid development in 3D imaging systems, 3D (or
2.5D) scans have been expected as a major alternative to deal with the unsolved issues.

3D data convey exact geometry information of faces and are theoretically complementary
to 2D images/videos that capture texture clues. During the last ten years, 3D FA has received
increasing attention from both the academia and industry, along with the release of several
milestone benchmarks, such as FRGC [6], Bosphorus [7], BU-3DFE [8], and BU-4DFE
[9]. The investigations not only cover 3D shape based FA [10–13], but also include 3D+2D
multi-modal FA [14–16] and 3D aided 2DFA (i.e., heterogeneous or asymmetric 3D-2DFA)
[17, 18],1 involving in various applications, e.g., Face Recognition (FR), Facial Expression
Recognition (FER), Gender and Ethnicity Classification (GEC), Age Estimation (AE), etc.

Since the emergence of 3D FA, many hand-crafted approaches have been proposed with
consistent performance gains reported in public databases, handling the reputed difficul-
ties of expression variations as well as internal/external occlusions [19, 20]. Please refer to

1 We mainly focus on 3D shape based face analysis. Unless stated, all related work discussed
only makes use of 3D geometry clues.
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[21–23] for a number of comprehensive surveys. More recently, deep learning approaches
have dominated this community, which are developing in three major trends: (1) designing
more sophisticated deep neural networks for higher accuracies; (2) exploring more effective
solutions to consumer-grade depth sensors for better practicability; and (3) building more
powerful generic 3D face models to facilitate related applications. We elaborate these trends
and introduce some attempts by our team in the following.

Trend I: Deep learning models for 3D FA
In the era of deep learning, the studies on 3D FA are not as extensive as the ones in the
2D domain, thus limiting its pervasion. As stated in [24], the main reason lies in that top
deep learning models generally demand a huge amount of data, while 3D face acquisition
is not as easy as that of 2D images. Specifically, current successful deep models on 3D FA
are still Convolutional Neural Networks (CNN) based [25–29], where facial depth images
are generated from irregular point-clouds as input. This is either fulfilled by fine surface
registration on probe faces or rich pose augmentation on training faces. For the former, even
though more advanced alignment methods are available [30], frontalizing a given face scan
of an arbitrary pose is rather challenging, because uncertainty is incurred in partially missing
data by self-occlusions. For the latter, as it is unrealistic to synthesize training faces with
continuous viewpoint changes in the 3D space, the predefined discrete ones are probably
inconsistent to that of the probe, leading to errors. Both the facts indicate that the property
of rotation invariance of 3D data is not sufficiently exploited in those methods.

On the other side, point-cloud deep learning is widely investigated and shape character-
istics of surfaces are hierarchically encoded from disordered points. As well-known rep-
resentatives, PointNet [31], PointNet++ [32], PointCNN [33], etc., prove their abilities in
3D object detection, classification, and segmentation, which suggests the potential in more
tasks. Nevertheless, human faces are deformable and full of fine-grained geometric details,
much more complex than the general objects only with coarse-grained rigid shapes. This
makes it not straightforward to adapt vanilla geometry deep learning models to 3D FA,
which is also confirmed by the large margin for ameliorated accuracies of the preliminary
attempts [34].

Targeting the issues above, we propose a novel deep learning approach, namely Fast
and Light Manifold CNN (FLM-CNN), and demonstrate its effectiveness in 3D FER [35].
Considering that the representation ability of the point-cloud-based models is limited by
the MLP-based framework, we design the model according to that of the Manifold CNNs,
which applies patch-based operators to launch convolution calculation on manifold meshes.
Different from the existing manifold CNN models, such as Geodesic CNNs (GCNN) [36],
Anisotropic CNNs (ACNN) [37], and Mixture Model CNNs (MoNet) [38], FLM-CNN
adopts a human vision inspired pooling structure and a multi-scale encoding strategy to
enhance geometry representation, which highlights the differences of facial shapes between
individual expressions in an efficient manner. Moreover, we present a sampling tree-based
preprocessing method, and it greatly reduces memory cost without much information loss
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of original data, benefiting data augmentation. More importantly, thanks to the property of
manifold CNN features of being rotation-invariant, the proposed method displays a high
robustness to pose changes.

Trend II: Representation of depth images of consumer-grade sensors
The face models used in the state-of-the-art 3D FA systems are of high-quality as the ones
in FRGC [6], Bosphorus [7], etc., recorded by specialized equipments. In the early years,
the devices to capture such data, e.g., Minolta VIVID 910, may take dozens of seconds
for a single session, and during this period, faces are required to keep still, which makes
it unsuitable for on-line FA scenarios, especially when users are not so cooperative. Along
with the continuous revolution in both hardware and software, the following versions, e.g.,
3dMD and Artec3D, are able to provide dynamic flows of 3D face scans of a high resolution
at the rate of tens of frames per second. But they are at rather high prices, generally hundreds
or even thousands of times more expensive than 2D cameras. Moreover, they are usually
big in size and not convenient to operate and it thus leaves a hard problem to implement
systems based on them in practical conditions.

The recent advent of low-cost and real-time 3D scanning devices, such as Microsoft
Kinect and Intel Realsense, makes it possible to collect and exploit 3D data in our daily
life. Low-cost 3D data (or with the texture counterpart, i.e., RGB-D data) have received
increasing attention in the academia in various aspects, including action recognition [39],
object detection [40], scene classification [41], etc. In contrast to the aforementioned tasks,
FR using low-cost 3D data is more challenging, because the compromise between cost and
accuracy by such sensors makes data much more noisy, leading to serious loss of important
details. Some preliminary attempts have been made, and the best result is up to 100% [42],
indicating its feasibility to some extent. Nevertheless, the score is not sufficiently convincing,
because the subjects in the evaluation dataset are not many enough and only with limited
variations.

To address these issues, we build a large-scale database consisting of low-cost Kinect 3D
face videos, namelyLock3DFace, for 3DFR [43]. To the best of our knowledge,Lock3DFace
is currently one of the largest low-cost 3D face databases for public academic use. The 3D
samples are highly noisy and contain a diversity of variations in expression, pose, occlu-
sion, time lapse, and their corresponding texture and near infrared channels have changes in
lighting condition and radiation intensity, supporting the scenarios of 2D FR, near infrared
FR, multi-modal FR, and heterogeneous FR. We then present a lightweight and efficient
deep approach [44], namely, Led3D, to 3D FR using such low-quality depth images, for
both higher accuracy and higher efficiency. To achieve this, Led3D works in two ways, i.e.,
a new lightweight CNN architecture as well as bigger and finer training data. In particular,
to balance accuracy and efficiency, it focuses on an enhanced lightweight network rather
than stubbornly deepening the model. The backbone network contains only 4 convolutional
layers, and to make a high accuracy, we propose a Multi-Scale Feature Fusion (MSFF)
module and a Spatial Attention Vectorization (SAV) module. The former combines features
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at different levels in an efficient way, improving the representation of low-quality face data,
and the latter highlights important spatial facial clues when summarizing local features and
outperforms the widely used Global Average Pooling (GAP) for FR. Furthermore, to deal
with the problem of inadequate data in deep models, a preprocessing pipeline and a data
augmentation scheme for low-quality 3D face data are proposed, generating a finer and
bigger training set.

Trend III: Generic 3D face models for diverse applications
3D Morphable Face Models (3DMMs) are well-reputed statistical models, established by
learning techniques upon prior distributions of facial shapes and textures from a set of
samples with dense correspondence, aiming at rendering realistic faces of a high variety.
Since a morphable representation is unique across different downstream tasks where the
geometry and appearance are separately controllable, 3DMMs are pervasively exploited
in many face analysis applications. In 3DMMs, the most fundamental issue lies in the
way to generate latent morphable representations, and during the past two decades, along
with data improvement in scale, diversity, and quality [45–48], remarkable progresses have
been achieved. The methods are initially linear model based [49–51] and further extended
to multilinear model based [52–54], in which different modes are individually encoded.
Unfortunately, for the relatively limited representation ability of linearmodels, thesemethods
are not so competent at handling the cases with complicated variations, e.g., exaggerated
expressions. In the context of deep learning, a number of nonlinear model-based methods
have been investigated with the input of 2D images [55, 56] or 3D meshes [57–60] by
using CNNs or Graph Neural Networks (GNNs) for their strong representation power. They
indeed deliver some performance gains; however, restricted by the resolution of discrete
representing strategies on input data, facial priors are not sufficiently captured, incurring
loss of shape details.

Recently, several studies on Implicit Neural Representations (INRs) [61–64] have shown
that 3D geometries can be preciselymodeled by learning continuous deep implicit functions.
They describe an input observation as a low-dimensional shape embedding and estimate the
SignedDistance Function (SDF) or the occupancy value of a query point so that the surface of
an arbitrary resolution and topology can be defined by an isocontour. Due to the continuous
parameterization and consistent representation, INRs prove superior to the discrete voxels,
point-clouds and meshes, and report decent results in shape reconstruction [65–68] and
surface registration [69–71]. Such an advantage suggests an alternative to 3DMM that can
fulfill accurate correspondence andfine-grainedmodeling in a unifiednetwork.Nevertheless,
unlike the objects with apparent shape differences and limited non-rigid variations such
as indoor scenes and human bodies, all face surfaces look very similar but include more
complex deformations, where multiple identities and rich expressions deeply interweave
with each other, making current INR methods problematic in face modeling, as evidenced
by the preliminary attempt [72]. Another difficulty is that implicit functions primarily require
watertight input, which is not friendly to facial surfaces.
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To deal with the problems, we introduce a novel versatile 3D face morphable model,
namely ImFace, which substantially upgrades conventional 3DMMs by learning INRs [73].
To capture nonlinear facial geometry changes, ImFace builds separate INR sub-networks to
explicitly disentangle shape morphs into two deformation fields for identity and expression
respectively, and an improved auto-decoder embedding learning strategy is introduced to
extend the latent space of expressions to allow more diverse details. In this way, inter-
individual differences and fine-grained deformations can be accurately modeled, which
simultaneously takes into account the flexibility when applied to related tasks. Furthermore,
inspired by linear blend skinning [74], a Neural Blend-Field is presented to decompose the
entire facial deformation or geometry into semantically meaningful regions encoded by a set
of local implicit functions and adaptively blend them through a lightweight module, leading
tomore sophisticated representationswith reduced parameters. Besides, a newpreprocessing
pipeline is designed, which bypasses the need of watertight face data as in existing SDF-
based INR models and works well for various facial surfaces, i.e., either hardware-acquired
or artificially synthesized.

The remainder of this chapter detailedly introduces our solutions and experiments. Specif-
ically, Sect. 15.2 presents the fast and lightmanifoldCNNfor 3DFER.Section 15.3 describes
low-quality depth image-based 3D face analysis, including the Lock3DFace dataset and the
lightweight Led3D FR model. The nonlinear 3D morphable face model is displayed in
Sect. 15.4.

15.2 Fast and Light Manifold CNN-based 3D FER

3D FER has received persistently increasing attention during the last several decades. On
the one hand, expressions are the consequences of shape deformations produced by facial
muscle movements, which are better recorded in the 3D modality. On the other hand, 3D
FER is more tolerant to the unsolved challenging factors in 2D, possessing the invariance to
illumination variations and the convenience in pose correction. Here, we propose aManifold
CNN model-based approach (FLM-CNN) to 3D FER and we introduce it in the following.

15.2.1 Method

15.2.1.1 MoNet Revisit
In manifold CNNs, 3D shapes are modeled as 2D differentiable manifolds denoted by X .
Let f : X → R be the real functions defined on X . The major role of the patch operator is
to map the value of function f at the neighborhood of point x(x ∈ X) into a patch with a
regular shape so that convolution can be conducted on it. In the previous literature, the patch
operator acting on f at x is usually denoted as D(x) f , and we follow it in this study.
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MoNet is a general framework of manifold CNNs, where GCNN and ACNN can be
deemed as their particular instances. The patch operator is formulated as

Dj (x) f =
∑

y∈N(x)

ω j (u(x, y)) f (y), j = 1, 2, . . . , J (15.1)

where J denotes the dimensionality of the patch; N(x) denotes the neighborhood of x ;
and u(x, y) is any kind of local coordinate of y relative to x . ω is a weighting function to
interpolate the value of patch j , chosen as Gaussian kernels in [38]:

ω j (u) = exp(−1

2
(u − μ j )

T∑−1
j (u − μ j )), (15.2)

where μ j and
∑

j are the mean vector and covariance matrix of a Gaussian kernel, respec-
tively.

Based on (15.1) and (15.2), we can see that there are two major steps in MoNet (and all
manifold CNNs): one is computing the weighting function of the patch operator, ω j ; and
another is generating the patch, Dj (x) f . In the first stage, MoNet makes use of learnable
Gaussian kernels, which are more powerful than the fixed templates used in GCNN and
ACNN. However, the mixture model-based scheme is more complex and the weighting
function has to be repetitively computed in training, consuming much time. In the second
stage, manifold CNNs, e.g., GCNN,ACNN, andMonet need hugememorywhen generating
patches, and it is indeed a problem to large input data with thousands of points or more, e.g.,
3D face models acquired by scanners. The two issues hold back the application of MoNet
to 3D FER.

Therefore, we propose a novel manifold CNNmodel, namely FLM-CNN, which is faster
and lighter. Two improvements, i.e., human vision inspired weighting (in Sect. 15.2.1.2) as
well as sampling tree-based preprocessing (in Sect. 15.2.1.3), are presented to handle the
two limitations, respectively. The framework is shown in Fig. 15.1.

Fig. 15.1 Method Overview: a original face scan; b differential geometry quantities; c geodesic
distance based local polar coordinates; d sampling tree-based patch operator; and e FLM-CNN
structure. From Chen et al. [35], with permission
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Fig. 15.2 Comparison of different weighting schemes. From Chen et al. [35], with permission

15.2.1.2 HumanVision InspiredWeighting
The weighting function in MoNet contributes to generating more discriminative features,
but it consumes much more time in training, compared with the hand-crafted ones. In our
FLM-CNN, to speed up the training phase while keeping the features sufficiently distinctive,
we employ a human vision inspired weighting strategy, as it proves effective in a number of
studies, such as DAISY [75] and HSOG [76].

Specifically, our FLM-CNNadopts aGaussian-basedweighting function,where themean
and variance are designed to simulate the human vision mechanism. In such vision systems,
the receptive field is basically modeled as a set of concentric circles as in Fig. 15.2. The
information captured closer to the center is assigned bigger weights than that farther away,
emphasizing its importance. In this case, we set the mean and variance as

μρi = (
i − 0.5

Nρ − 0.5
)2ρ0, σ 2

ρi
= (

iρ0
2N 2

ρ

) (15.3)

μθ j = 2π j

Nθ

, σ 2
θ j

= (
π

2Nθ

)2 (15.4)

in the local geodesic polar coordinate system,where i = 1, 2, . . . , Nρ and j = 1, 2, . . . , Nθ .
There are Nρ and Nθ Gaussian kernels in radial and angular directions, respectively. μ and
σ 2 denote the mean and variance; and ρ0 denotes the radius of local geodesic disc (a local
neighborhood, explained in Sect. 15.2.1.5). From (15.3), we can see that μρi and σ 2

ρi
are not

uniform along the radial direction. Kernels closer to the center of the receptive field distribute
in a denser manner and have smaller variance. It guarantees that important information is
highlighted.

To achieve rotation invariance, the origin of the angular coordinate is required. We select
theminimumprincipal curvature direction as the origin as inACNN.Due to the bi-directional
property, we rotate the convolution kernel twice and hold the maximum. Formally, the
manifold convolution can be formulated as

( f ∗ g)(x) = max
�θ∈{0,π}

∫ 2π

0

∫ ρmax

0
g(ρ, θ + �θ)(D(x) f )(ρ, θ) dρ dθ (15.5)

where�θ is either 0 or π , and g denotes the parameters of convolution kernels to be trained.
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From Fig. 15.2, we can see the difference in the patch operator weighting between FLM-
CNN and some related counterparts in generalizations of convolution on the manifold.

15.2.1.3 Sampling Tree Based Preprocessing
Existing manifold CNNs mainly focus on shape correspondence which is a point-level
classification task. To the best of our knowledge, they have not been explored for object-
level classification as batches of large 3D point-clouds or meshes result in unaffordable
memory consumption. Besides, object-level classification is more challenging to manifold
CNNs since it is not straightforward to integrate unordered point-wise features into a global
one. Masci et al. [36] calculate the covariance matrix of the features of the last convolutional
layer as global representation, but such simple statistics causes inevitable loss of spatial and
characteristic information.

Regarding 2D CNNs, pooling layers play a significant role in reducing feature dimen-
sionality and enlarging receptive fields of trailing convolutional layers without increasing
the kernel size. Max-pooling is the most popular down-sampling way but it is not proper
for manifold CNNs, because patch operators need to be recalculated after down-sampling
which slows down training and increases memory usage. It suggests that down-sampling
should be applied in advance.

Random sampling gives an easy choice but it tends to drop important cues at the same
time, leading to performance decrease. Therefore we propose a sampling tree-based pre-
processing technique, to control memory cost and keep useful information. A sampling
tree is a hierarchical data structure that stores down-sampling point indices of a 3D scan.
Figure 15.1d shows an illustration of a sampling tree. The root node stores all the point
indices of the original 3D scan. All nodes except leaf ones split into some child nodes to
preserve the point indices sampled from their parent nodes. The point indices of child nodes
born from the same parent are expected to be complementary. They should be as distinct as
possible and their union should cover all the point indices of the parent node. The informa-
tion of a parent node can thus be completely and almost non-repeatedly transferred into its
child nodes. The numbers of point indices of the nodes at the same depth are suggested to be
equal, in which case we can conveniently execute batch training. The node splitting process
stops if the receptive field of the points of the deepest nodes is approximately equivalent to
that of a full 3D scan. Once the sampling tree is built, we produce a set of paths from the
root node to the leaf ones, and each path can be treated as a down-sampling strategy of the
3D scan in FLM-CNN. Thus, a 3D scan can be augmented into several depending on the
number of leaf nodes.

Before training, we calculated patch operators on every node except the root of the
sampling tree, and they are called Sampling Patch Operators (SPO) in this study. The SPO
of node ni acts on the point features of its parent node n pi and produces patch-based point
features of ni . In the discrete case, the SPO of ni can be expressed as
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(D(x) f )(ρ, θ) =
∑

y∈(N(x)∩n pi )

ωρ,θ (x, y) f (y), x ∈ ni (15.6)

where the weighting function of SPO is represented as an NρNθ Nni × Nnpi
sparse matrix.

For a 3D scan with N points, the size of the weighting function matrix of the original patch
operator is NρNθ Nni × Nnpi

, which can be thousands of times larger than SPOof leaf nodes.
Consequently, SPO helps to save much memory in training.

15.2.1.4 Implementation Details of FLM-CNN
Based on manifold convolution and SPOs, we construct FLM-CNN, and Fig. 15.3 shows
its architecture. There are five manifold convolutional layers, and each layer has three con-
volutional kernels of different scales, as in Google Inception [77], to achieve multi-scale
representation. We also add 1×1 convolutions (can be seen as a point-wise fully-connected
layer) before the last threemanifold convolutional layers, for computation reduction and rec-
tified linear activation [77]. Through the five convolutional layers, every sampling point in
the fifth layer can represent the whole 3D scan and can be used for classification. Two point-
wise fully-connected layers are in the following and the output of the last layer is activated
by the softmax function. Finally, FLM-CNN is trained byminimizing the cross-entropy loss.

In training, batch encapsulation of SPOs is not easy to launch. One reason lies in that
discrete SPOs are sparse matrices which have different quantities of non-zero values, and
another is that the SPO matrices of the first convolutional layer are of different sizes since
the root nodes store the original 3D scans which usually have different numbers of points.
In this case, we concatenate SPO matrices in the diagonal direction and concatenate feature
matrices along the vertical axis. Figure 15.4 demonstrates this operation. By sampling the
same number of points on nodes at the same depth, we guarantee that each SPO in the
same convolutional layer has the same number of rows. Therefore, SPOs can produce patch
features in the same shape, which can be fed into the subsequent convolutional layers in a
batch style.

Fig.15.3 Architecture of FLM-CNN.MC denotes themanifold convolutional layer, belowwhich are
kernel size and the radius of the local geodesic disc; and FC denotes the point-wise fully-connected
layer which can also be seen as a 1×1 convolutional layer. From Chen et al. [35], with permission
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Fig. 15.4 Illustration of batch
encapsulation of SPOs (Nnpi
of SPOs can be different from
each other). From Chen et al.
[35], with permission

15.2.1.5 Rotation-Invariant 3D FER
Thanks to the structure of FLM-CNN, it can be applied to 3D FER. Figure 15.1 shows an
overviewof the framework. Firstly,multiple order differential geometry quantities, including
original coordinates, normal vectors, and the shape index values [78] are taken as the input
data. Next, we locate the neighborhood of each point and compute the local polar coordinates
according to geodesic distance. Further, we build the sampling tree and generate SPOs of
3D faces. Finally, we construct FLM-CNN for 3D FER.

Coordinate System independent Differential Quantities. Coordinate, normal, and
shape index convey the original property of the given surface and its first and second-
order derivatives, and their joint use delivers a more comprehensive description of shape
characteristics of 3D faces. We follow the way to calculate them as in [29, 79, 80].

Among the three features, shape index is invariant to rotations, whose values range from
0 to 1 and uniquely represent local shapes; unfortunately, the values of original coordinates
and normal vectors are dependent on the coordinate system. To make the method insensitive
to pose changes, we adopt Principal Component Analysis (PCA) to generate surface specific
coordinates and normal vectors. For each surface, we build an intrinsic coordinate system
in which the basis vectors are first selected as the eigenvectors of the coordinate covariance
matrix and the original coordinates can then be decomposed using the intrinsic basis vec-
tors. The new coordinates are thus independent of extrinsic coordinate systems. For normal
vectors, the transformation process is the same.

Neighborhood and Local Polar Coordinates. For computation simplicity, we just con-
sider the neighborhood of each point. 3D face scans are scaled into a unit sphere, and a fixed
threshold ρ0 in terms of geodesic distance is set to locate the neighborhood. Geodesic dis-
tances are computed by a fast and exact discrete geodesic algorithm named Vertex-oriented
Triangle Propagation (VTP) [81]. VTP is based on wavefront propagation and works in a
continuous Dijkstra style. We stop it when the maximum geodesic distance of the visited
neighborhood reaches the fixed threshold. By VTP, we find the neighborhood of point x , a
geodesic disc expressed as N(x) = {y : dX (x, y) ≤ ρ0}, where ρ0 is called its radius.

Once we have the neighborhood, the next is to generate local polar coordinates. Based
on the geodesic distance of the neighborhood to x , we compute the radial coordinate, ρ.
Figure 15.5 illustrates the computation procedure of angular coordinates. The geodesic
path between the neighborhood and x can be recorded by VTP. All the geodesic paths go
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Fig. 15.5 Computation of
angular coordinates. From
Chen et al. [35], with
permission

through the 1-ring triangles of x , and the angular coordinate of the neighborhood is computed
according to the direction of the initial vector on the 1-ring triangles. Theminimum principal
curvature vector is then projected onto the 1-ring triangles along the normal vector of x and
the direction of the projection vector is treated as the origin. Thus we can compute the angle
between the initial vector and the origin. As seen in Fig. 15.5, the angular coordinate of y
can be computed as θ

′
y = β1 + α2 + β2. The sum of angles

∑6
i=1 αi is not necessarily equal

to 2π because of non-zero surface curvature at x , and the final angular coordinate of y is
scaled as θy = θ

′
y/

∑6
i=1 αi . The procedure for boundary points is similar by filling up some

triangles.
Sampling Tree and PatchOperator. For 3D facemodels, the sampling tree is generated,

and the SPOs of all the nodes are computed according to (15.6). The radius of the geodesic
disc, ρ0, can be viewed as the receptive field of the convolution kernel. In general, the
receptive field is small in shallow layers for local features and is large in deep layers for
global features. As a result, ρ0 is small for the nodes close to the root and large for the ones
close to the leaf.

15.2.2 Experiments

15.2.2.1 Protocols
We adopt the standard identity-independent protocols as in most previous studies so that
direct comparison can be made. Specifically, there are two protocols (P1 and P2), in both
of which 60 out of 100 subjects in BU-3DFE are considered, and the samples of the two
highest intensities with a total number of 720 (60×6×2) are used. In P1, we randomly select
60 persons and fix them during the whole experiment. In each round, we give a random
split for 10-fold cross-validation, where 648 samples of 54 persons (90%) are employed for
training (48 persons for model building and 6 persons for model selection) and 72 samples
of 6 persons (10%) for testing. In P2, the only difference lies in that 60 persons are randomly
chosen in every round. For both the two protocols, experiments are conducted 100 rounds
and the average score is reported as a stable accuracy.
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Table 15.1 Performance comparison with state-of-the-art methods on BU-3DFE (the scores marked
by * are the results achieved by combining shape and texture cues). From Chen et al. [35], with
permission

Method Landmarks Registration Model Accuracy (%)

P1 P2

Wang et al. (2006) [82] 64 Manu. No Hand-crafted 61.79 –

Soyel et al. (2007) [83] 11 Manu. No Hand-crafted 67.52 –

Tang et al. (2008) [84] 83 Manu. No Hand-crafted 74.51 –

Gong et al. (2009) [85] Not needed Yes Hand-crafted 76.22 –

Berretti et al. (2010) [86] 27 Manu. Yes Hand-crafted – 77.54

Lemaire et al. (2011) [87] 21 Auto. Yes Hand-crafted 75.76 –

Lemaire et al. (2013) [88] Not needed Yes Hand-crafted 76.61 –

Li et al. (2012) [89] Not needed Yes Hand-crafted – 80.14

Zeng et al. (2013) [90] 3 Auto. Yes Hand-crafted – 70.93

Yang et al. (2015) [79] Not needed Yes Hand-crafted 84.80 82.73

Azazi et al. (2015) [91] 11 Auto. Yes Hand-crafted – 85.81∗
Zhen et al. (2015) [80] 3 Auto. Yes Hand-crafted 84.50 83.20

Li et al. (2015) [92] 49 Auto. Yes Hand-crafted 82.70 –

Li et al. (2015) [93] Not needed Yes Deep 83.96 82.81

Oyedotun et al. (2017) [28] Not needed Yes Deep 84.72 –

Li et al. (2017) [29] Not needed Yes Deep 86.86∗ –

FLM-CNN Not needed No Deep 86.67 85.96

15.2.2.2 Results
Comparison.We compare our results with the state-of-the-art ones onBU-3DFE under both
the protocols, P1 and P2. The comparison is shown in Table 15.1, and we can see that our
method outperforms all the others that report the results in the 3D modality, including both
the hand-crafted and deep solutions. The result in [29] achieved under P1 seems superior to
ours, but it should be noted that this score is actually based on a combination of shape and
texture clues (they do not provide the 3D result separately), while FLM-CNN only uses the
shape information. Besides, ourmethod does not require any landmarks or global registration
which is necessary in the other counterparts. All the facts indicate the effectiveness of the
proposed method in 3D FER. Table 15.2 gives the confusion matrix using P1.
Robustness to Pose Variations. As BU-3DFE only contains frontal faces, we rotate the
samples to certain angles and remove the invisible triangles, to simulate self-occlusions.

To be specific, as in P1, we randomly select 60 persons, and the samples of the two
highest expression intensities are exploited. 54 persons are used to train our FLM-CNN,
and the other 6 persons are utilized for the test. Each test scan is synthesized to 16 poses
(Yaw and Pitch: −80◦, −60◦, −40◦, −20◦, 20◦, 40◦, 60◦, 80◦) to generate faces. Figure
15.6 visualizes rotated views and their corresponding frontal views. We report the results of
the 16 angles plus the original individually.
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Table 15.2 Confusion matrix using P1 on BU-3DFE. From Chen et al. [35], with permission

% AN DI FE HA SA SU

AN 85.28 3.89 1.94 0.56 8.33 0.00

DI 1.11 88.33 5.56 1.11 1.94 1.95

FE 1.39 7.50 76.94 7.50 2.50 4.17

HA 0.00 1.39 6.11 92.50 0.00 0.00

SA 13.33 1.11 3.61 0.00 80.56 1.39

SU 0.00 1.11 2.50 0.00 0.00 96.39

Fig. 15.6 Visualization of rotated faces: the first and third rows show faces rotated in the pitch and
yaw directions; and the second and fourth rows display the corresponding faces in the frontal view.
From Chen et al. [35], with permission

The accuracies of 17 poses (plus 0◦ are depicted in Fig. 15.7, and we can see that pose
changes indeed impose a negative impact on FER, since they cause data missing in some
facial parts that are probably important to expressions. This fact can be evidenced by the
consistent drop in accuracy as the pose angle in the yaw or pitch direction increases.

Besides, we also notice that the degradation by the angle changes in the yaw direction is
not as serious as that in pitch. The left and right face parts possess redundant information due
to their symmetric structure. Regarding the pitch case, we can see that the scores of the lower
face parts are generally better than those of the upper ones. Aswe know, the upper face region
(e.g., forehead and nose) is relatively rigid and the lower area (e.g., mouth) is relatively non-
rigid, and they present different clues in recognizing expressions. More importantly, thanks
to the property of being rotation-invariant, the proposed approach shows a good robustness
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Fig. 15.7 Results of pose changes on BU-3DFE

to such pose variations, and the results on the samples of moderate pose changes basically
remain stable. It clearly suggests that our approach has a promising potential to deal with
3D FER in more practical scenarios.
Computational Cost and Memory Usage. We reproduce MoNet according to [38] and
compare it with our FLM-CNN. The statistical data is obtained by TensorBoard. For sim-
plicity, bothMoNet andFLM-CNNare equippedwith two convolutional layers.We calculate
the original patch operator for MoNet and the SPO for FLM-CNN. Then, we train both of
them in 100 iterations with the batch size of 1. MoNet spends 124 seconds and occupies
3988MB memory, while FLM-CNN costs only around 1 second and 32MB.

It is worth noting that the version of FLM-CNN used in 3D FER is more complex, but
its time and memory costs are still under control (13 seconds and 804MB). In contrast, the
cost of the standard version of MoNet in [38], which contains three convolutional layers,
tends to be too heavy for this experiment. All of the time evaluation is achieved on a single
GPU (GeForce GTX TITAN X).

15.3 Low-Quality Depth Image Based 3D FR

Although 3D data provide solutions to deal with the unsolved issues, i.e., illumination and
pose variations in the 2D domain, those techniques still suffer from a very high hardware
cost, which impedes their practical application. Recently, with the rapid development in 3D
data acquisition, the devices have appeared which are able to capture dynamic 3D data in
the real time. Kinect is one of the representatives and has received increasing attentions
due to its personal affordable price and operation simplicity. In this section, we introduce
a large-scale database consisting of low-cost Kinect 3D face videos, namely Lock3DFace
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[43], for 3D face analysis. Moreover, Led3D, a 3D FR approach using low-quality data,
targeting an efficient and accurate deep learning solution, is described.

15.3.1 Lock3DFace: A Large-Scale Database of Low-Cost Kinect 3D Faces

Zhang et al. [43] present a large-scale dataset of low-cost Kinect faces, namely Lock3DFace,
aiming to thoroughly investigate low-cost 3D FR and comprehensively compare the
approaches. To the best of our knowledge, Lock3DFace is the largest database of low-cost
3D face models publicly available, which consists of 5,711 video samples with a diversity
of variations in expression, pose, occlusion, and time lapse, belonging to 509 individuals.
In each raw face record, the clues in the texture and near infrared modalities are also pro-
vided, supporting the scenarios of 2D FR, near infrared FR, multi-modal (RGB-D) FR, and
heterogeneous FR. In the subsequent, we introduce its details.

15.3.1.1 Data Acquisition
Lock3DFace is acquired using Kinect V2. Kinect V2 updates the 2D camera of the original
Kinect to a higher resolution one that can be used for color video recording. Moreover, it
has an increased field of view, thus reducing the amount of distance needed between the
user and the sensor for optimal configuration.

All the data are captured under a moderately controlled indoor environment with natural
light in the daytime. The participants are asked to sit in front of the Kinect sensor fixed on
the holder and are not allowed to move rapidly when the video is recording for 2-3 seconds.
Three types of modalities, i.e., color, depth, and infrared are collected in individual channels
at the same time. The color frames are recorded with the size of 1,920× 1,080, and the depth
and infrared frames are of the resolution of 512 × 424. There are in total 509 volunteers
who participate in the collection process. Among them, 377 are male and 122 are female,
and their ages distribute in the range of 16–36 years old. See Fig. 15.8 for more details. All
the major challenges in FR are considered, involving the changes in expression, pose, and
occlusion. The dataset contains two separate sessions with a long interval up to 7months. All
the 509 subjects join the first session, while 169 join the second session, thereby presenting
time lapse variations as well. Regarding an individual subject, in each session, at least two
video clips are made in the categories of neutral-frontal, expression, pose, and occlusion.

15.3.1.2 Challenges
To comprehensively evaluate FR methods, especially to simulate complex conditions in the
real world, volunteers are required to present different expressions, poses, and occlusions
in each session, forming five categories of frontal-neutral, expression, pose, occlusion, and
time. Some examples of an individual are demonstrated in Fig. 15.9, from which we can see
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Fig. 15.8 Data distribution of Lock3DFace of a gender and b age. From [43], with permission

Fig. 15.9 Sample illustration of different challenges in the database. From left to right, happiness,
anger, surprise, disgust, fear, neutral face, left face occluded by hand, mouth occluded by hand,
looking-up, looking-down, left face profile, and right face profile are displayed in order. Upper row:
RGB images; middle row: depth images; and bottom row: near infrared images which share the same
coordinate with the depth maps. From [43], with permission

that a large diversity of variations are included, and it is a distinct property of Lock3DFace.
Table 15.3 shows its data organization in terms of different variations.

15.3.1.3 Preprocessing
To improve the convenience of the researchers to work with Lock3DFace, along with the
database, a preprocessed version of the data is provided. On the one hand, some fiducial
points are manually marked on the first frame of each RGB and infrared facial video clip
respectively, and the corresponding ones on the depth map are then easily obtained due
to the point-to-point correspondence with the infrared map. These landmarks are a few
distinct anthropometric points shared by all human beings, including the nose tip, two inner
corners of eyes, and two corners of mouth. They offer the simplicity in face cropping, pose
correction, feature extraction, etc. in face analysis. Additionally, such points can be regarded
as ground-truth to evaluate the techniques of 3D facial landmarking on low-cost data.

On the other hand, the depth images captured by Kinect are very noisy, and unlike the
RGB data, they cannot be directly used for feature extraction in FR. Therefore, a pipeline
is provided to deal with the low-cost 3D data, including spike and outlier removing, hole
filling, and smoothing. Specifically, the phase-space method in [94] is employed to exclude
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Table 15.3 Data organization of the Lock3DFace database in terms of different challenges. From
[43], with permission

Variations Session-1 Session-2

Sub. Sample Sub. Sample

Neutral-frontal 1014 338

Expression 1287 338

Pose 509 1014 169 338

Occlusion 1004 338

Total 4319 1352

the spike. The values of some pixels on the depth map are sensed as 0 when they cannot
be precisely measured. To solve this problem, thresholding is applied, and a non-negative
threshold is set in order to remove those unmeasurable pixels, and the missing data can then
be filled using the cubic interpolation technique. To remove the noise, the bilateral filter [95]
is adopted, a simple, non-iterative method that has the property of edge-preserving, and
during smoothing, it retains the shape information as much as possible that is supposed to
contribute in FR.

15.3.2 Led3D:A Lightweight and Efficient DeepModel to Low-cost 3D FR

Lock3DFace is the first comprehensive dataset that is suitable for evaluating methods on 3D
FR using low-quality depth images, and it provides baseline results using Iterative Closet
Points (ICP). Later, Cui et al. [96] present a deep model-based baseline. They both illustrate
the feasibility of the identification on low-quality 3D face data. Unfortunately, very little
research has investigated this issue. In [44], Mu et al. present a lightweight and efficient
deep approach, namely Led3D, to bridge this gap.

15.3.2.1 An Efficient and Accurate Network
Led3D presents a CNN-based approach to improve the accuracy and efficiency. For fast
inference, the network has to be shallower, with a smaller number of parameters, leading
to lower memory cost. Thus, the backbone contains only 4 blocks which have 32, 64, 128,
and 256 convolution filters, respectively. Each block is composed of a convolution layer
with a kernel size of 3 × 3, a batch normalization layer, and a ReLU activation layer. As
shown in Fig. 15.10b, the blocks are very compact. To enhance the accuracy, a Multi-Scale
Feature Fusion (MSFF) module and a Spatial Attention Vectorization (SAV) module are
proposed. MSFF is used to fuse multi-scale features from each block for comprehensive
representation and SAV emphasizes important spatial information, both of which improve
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Fig. 15.10 a The architecture
of Led3D for 3D FR with
low-quality data, including a
Multi-Scale Feature Fusion
(MSFF) module and a Spatial
Attention Vectorization (SAV)
module; and b details of the
‘Block’ used in a. From Mu et
al. [44], with permission

the discriminative capacity of the resulting feature. A dropout layer between SAV and the
Fully-Connected (FC) layer is then applied, to overcome over-fitting. At the end of the
network, a Softmax layer is utilized with the cross-entropy loss to guide network training.
The whole architecture is shown in Fig. 15.10.

15.3.2.2 Multi-Scale Feature Fusion
CNN has a hierarchical architecture which is a stack of multiple convolutional layers. Indi-
vidual layers learn different information. It is natural to combine the features at different
layers for better representation. Led3D extracts the feature maps from each of the four
convolutional blocks, corresponding to information captured by different Receptive Fields
(RFs). All the feature maps are then down sampled to a fixed size by max-pooling for fast
processing, and they are further concatenated in the channel dimension. Furthermore, the
feature maps at different scales are integrated by another convolution layer consisting of
960 3 × 3 kernels (Block 5). In this way, a more discriminative feature can be efficiently
generated to represent the 3D face of a low-quality. In addition, during model training, the
convolution layers in the backbone are directed both by the successive layers as well as the
neighboring ones, which can speed up the convergence of the network.

15.3.2.3 Spatial AttentionVectorization
For the aligned faces, corresponding areas contain fixed facial components. In high-level
feature maps, each pixel encodes a specific area of the input image, and the area size is
dependent on the receptive field, thus including fixed semantic information. But the Global
Average Pooling (GAP) layer used in main-stream CNN architectures clearly ignores such
correspondence. Therefore, Led3D investigates another feature generation method which is
as efficient as GAP and keeps the spatial cues. In particular, a Spatial Attention Vectorization
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(SAV) module is proposed to replace GAP. SAV is implemented by adding an attention
weight map to each feature map. In this case, the contributions of pixels at different locations
can be separately emphasized in training, and the weights are then fixed for inference. In the
network, SAV is applied to the feature maps produced byMSFF, which previously integrates
both the low-level and high-level features. In SAV, there are 960 convolution filters related to
960 feature maps, whose kernel size is 8 × 8, the same as that of feature maps. After training
the model by massive faces, SAV sets corresponding weights for each feature map, taking
both the strength of abstract representation and spatial information of the input face into
account. Thus, the feature vector conveysmore discriminative cues thanGAP, benefiting FR.
Compared with the ones of the counterparts, the feature learned by Led3D is more compact
and separable.

15.3.2.4 Bigger Training Data
A data augmentation scheme is specifically proposed to improve the quantity. We also
consider a new scenario that probably appears in the real world, namely, 3D FR across
quality, where the gallery set includes high-quality data and the probe samples are of low-
quality, and discuss how to handle the data for this case.

Data Augmentation Since previous public databases of low-quality data are small and
CNNs are data hungry, we launch data augmentation techniques to generate more samples
for training Led3D. Apart from the widely used pose augmentation (out-of-plane rotation),
we propose two new schemes (shape jittering and shape scaling) to adapt to 3D FR on
low-quality data. The generated samples are shown in Fig. 15.11c.

1. Pose Generating. Given a point-cloud 3D face, faces with richer pose variations are
synthesized by adjusting the virtual camera parameters. We generate new facial point-
clouds in the range of [−60◦, 60◦] on yaw and [−40◦, 40◦] on pitch, with the interval of
20◦. For each generated face, we compute depth and normal images.

2. Shape Jittering. Low-quality faces (in Lock3DFace) usually have very rough surfaces.
Motivated by this, we add the Gaussian noise to augmented 3D faces to simulate such
changes. By properly controlling the noise level, we do not change the identity infor-
mation. The Gaussian noise we use has 0 mean and 2e-5 variance, on the normalized
point-clouds.We find that such parameters lead to significant performance enhancement.

3. Shape Scaling. When the faces are collected by 3D cameras, the distance between the
face and the camera is not fixed. Actually, there exist moderate changes on that distance,
and the cropped faces thus have varying sizes. To simulate this change, firstly, we binarize
the depth face to compute a mask image. Then, we zoom in the depth face image with
1.1 times. Finally, we render the new depth face, which is cropped from the enlarged one
via the mask.
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Fig. 15.11 Pipeline of data improvement: a facial surface refinement; b generation of Depth Map
Images (DMI) and Normal Map Images (NMI); c augmentation of 3D face samples; d generation
of low-quality data from high-quality ones; and e generation of low-quality and high-quality data of
virtual identities. From Mu et al. [44], with permission

Cross-quality Data Generation High-precision scanners capture high-quality 3D faces
with smooth surfaces, leading to better FR performance. However, such scanners are in big
volume and expensive, thus difficult to pervade for on-line scenarios. In comparison, low-
quality sensors aremore widely used. In the real world, a popular setting is: high-quality data
work as gallery and low-quality data are used as probes. To simulate this setting, we convert
the high-quality data (from FRGC v2 and Bospohrus in our case) with smooth surfaces to
low-quality ones with rough surfaces. Random disturbance is added on high-quality face
point-clouds to generate low-quality like depth maps.

Specifically, a 3D face and the disturbance can be represented as Fi = [xp, yp, z p] and
Di = [dp], respectively. Here i = 1, ..., N , p = 1, ..., P and Di ∼ N (0, 16); N is the num-
ber of 3D faces and P is the number of vertices of a 3D face. The generated low-quality like
face Fl

i = [xp, yp, zlp] can be obtained by zlp = z p + dp. Then, we use a maximum filter
with a kernel size of 3×3 on every generated face to amplify the effect of the disturbance.
Examples of generated low-quality faces from high-quality ones are shown in Fig. 15.11d.
Furthermore, we use the virtual ID generation method in [101] to generate new individuals
(identities) to increase the data size for cross-quality model training. The sample is shown
in Fig. 15.11e.

15.3.3 Experiments

15.3.3.1 Settings and Protocols
3D FR on Low-quality Data.All the depth face images (or normal face images) are resized
to 128×128, and to adapt to other counterpart networks, the input image is scaled to suitable
solutions. The models are pre-trained on the combination of FRGC v2 and Bosphorus, and
then fine-tuned on Lock3DFace.
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Cross-quality 3D FR. To explore this new scenario, experiments are performed on
Bosphorus. The training set contains the augmented high-quality normal face data, the
generated low-quality normal face data, and the synthesized virtual face data on FRGC v2,
with totally 122,150 faces of 1,000 identities. For test, the first faces of the neutral expression
in high-quality of all the 105 individuals are used as a gallery and the remaining ones are
processed into a low quality as probes.

15.3.3.2 Results
3D FR on Low-quality Data. Table 15.4 reports the rank-one accuracies of Led3D model
and four state-of-the-art CNNs on Lock3DFace, compared with the baseline method [43].
We can see that Led3D achieves the best average scores in all the settings, showing its
effectiveness. However, for the training data without augmentation, the scores of all the
CNNmethods on the subset (PS) are lower than Baseline [43] using ICP-based registration.
The reason lies in that the training data are not sufficient and do not contain faces with
pose variations. Once augmentation techniques are applied to training data, the accuracies
of CNN models are significantly improved on the test subsets.

Table 15.5 shows that Led3Doutperforms the state-of-the-artmethods, where the training
and testing data are separated by subjects. The results for Inception V2 are reported by [96].
They pre-train Inception V2 on their private dataset, which contains 845K faces of 747
identities. Unlike [96], Led3D is trained from scratch and evaluated on depth faces and
normal faces. The model reports an accuracy of 81.02% on depth faces, around 1.17%
higher than that in [96]. In addition, it achieves 84.22% by concatenating the feature of
depth and normal, suggesting that these two features have complementary information.

Cross-quality 3D FR. The results of cross-quality 3D FR are reported in Table 15.6.
Led3D achieves 91.27% accuracy for HL (high-quality in gallery and low-quality in probe)
and 90.7% for LL (low-quality in both gallery and probe), both of which are significantly
superior to the ones reached by InceptionV2, themajor counterpart used in [96]. It illustrates
that Led3D is also competent at recognizing 3D face across the change in data quality, where
its generalization ability is highlighted.

Runtime. The run-time of the four CNNs and Led3D are evaluated on Jetson TX2,
which is one of the fastest, most power-efficient embedded AI edge device. The run-time
is computed on a single inference using MXNet 1.2 and python 2.7. The device is set in
different power modes and computes in different processors. As shown in Table 15.7, the
Led3Dmodel runs at a speed of 136 FPS in the high-power mode, which is much faster than
MobileNetV2. If using theARMcore process, it also achieves 15 FPS, faster thanMobileNet
V2 as well. It verifies that Led3D is efficient and can be deployed on edge devices to achieve
real-time 3D FR using low-quality data.
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Table 15.4 Performance comparison in terms of rank-one score on Lock3DFace using different
training sets. From Mu et al. [44], with permission

Model Training
data

Evaluation
type

Test subset

FE OC PS TM AVG

Baseline [43] No augmen-
tation

Video based 74.12 28.57 18.63 13.17 34.53

VGG-16 [97] No augmen-
tation

Video based 74.49 27.19 8.97 7.61 34.55

ResNet-34 [98] 63.06 21.81 12.92 5.82 30.2

Inception V2 [99] 78.07 35.36 14.4 7.46 39.13

MobileNet V2
[100]

73.72 27.49 10.75 7.01 34.73

Led3D 79.78 36.95 12.33 19.85 41.65

VGG-16 [97] With aug-
mentation

Video based 79.63 36.95 21.7 12.84 42.8

ResNet-34 [98] 62.83 20.32 22.56 5.07 32.23

Inception V2 [99] 80.48 32.17 33.23 12.54 44.77

MobileNet V2
[100]

85.38 32.77 28.3 10.6 44.92

Led3D 86.94 48.01 37.67 26.12 54.28

FE: expression. PS: pose. OC: occlusion. TM: time.

Table 15.5 Performance in terms of rank-one recognition rate (%) of 3D FR using low-quality data
on Lock3DFace using the protocol in [96]

Test Inception V2 [96] Led3D

Subset Depth Depth Depth&Normal

NU 99.55 99.62 99.62

FE 98.03 97.62 98.17

PS 65.26 64.81 70.38

OC 81.62 68.93 78.10

TM 55.79 64.97 65.28

Total 79.85 81.02 84.22

15.4 Nonlinear 3DMorphable FaceModel

Zheng et al. [73] present a novel 3D morphable face model, namely ImFace, to learn a
nonlinear and continuous space with Implicit Neural Representations (INRs). As Fig. 15.12
shows, it builds two explicitly disentangled deformation fields to model complex shapes
associated with identities and expressions, respectively, and designs an improved learning
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Table 15.6 Performance of cross-quality 3D FR (HL: high-quality in gallery and low-quality in
probe; LL: low-quality in both gallery and probe). From Mu et al. [44], with permission

Model Bosphorus

HL LL

Inception V2 [99] 78.56 77.23

Led3D 91.27 90.70

Table 15.7 Comparison in terms of running speed (FPS) with four CNNs on Jetson TX2. Low-
Power Mode means the default setting of Max-Q, and High-Power Mode means the maximum clock
frequency setting of Max-N. From Mu et al. [44], with permission

Model Jetson TX2

Low-power mode High-power mode

GPU ARM GPU ARM

VGG-16 [97] 7.09 0.43 11.13 0.88

ResNet-34 [98] 8.44 0.58 13.08 1.14

Inception V2 [99] 24.33 2.90 39.02 5.16

MobileNet V2
[100]

35.41 3.16 60.41 5.62

Led3D 46.26 9.77 135.93 15.66

Template
Signed Distance Field

Expression
Deforma on Field

Iden ty
Deforma on Field

Fig.15.12 ImFace encodes complex face variations by two explicitly disentangled deformation fields
with respect to a template face, resulting in a morphable implicit representation for 3D face

strategy to extend embeddings of expressions to allow more diverse changes. A Neural
Blend-Field is further introduced to learn sophisticated details by adaptively blending a
series of local fields.
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15.4.1 Method

15.4.1.1 Disentangled INRs Network
The fundamental idea of INRs is to train a neural network tofit a continuous function f ,which
implicitly represents surfaces through level-sets. The function can be defined in various
formats, e.g., occupancies [62], Signed Distance Function (SDF) [61], or Unsigned Distance
Function (UDF) [102]. ImFace exploits a deep SDF conditioned on the latent embeddings
of both expression and identity for comprehensive face representations. It outputs the signed
distance s from a query point:

f : (p, zexp, zid) ∈ R
3 × R

dexp × R
did 
→ s ∈ R, (15.7)

where p ∈ R
3 is the coordinate of the query point in 3D space, zexp and zid denote the

expression and identity embeddings, respectively.
The goal of ImFace is to learn a neural network to parameterize f , making it satisfy

the genuine facial shape priors. As shown in Fig. 15.13, the proposed network for Imface
is composed of three sub-networks (Mini-Nets), which explicitly disentangles the learning
process of face shape morphs, ensuring that inter-individual differences and fine-grained
deformations can be accurately learned. In particular, the first two Mini-Nets learn separate
deformation fields associated with expression and identity-variation respectively, and the
Template Mini-Nets automatically learn a signed distance field of template face shape.
Along with the network design, an improved auto-decoder embedding learning strategy
is introduced, which extends the latent space of expressions to allow higher deformation
variety.

Template
Mini-Nets

Iden ty
Mini-Nets

Hyper Nets Hyper Nets

Add
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Mini-Net
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Fig.15.13 ImFace overview. The network consists of three sub-networks (Mini-Nets) to explicitly
disentangle shape morphs into separate deformation fields, where the Expression and Identity Mini-
Nets are associated with expression and identity deformations, respectively, and the Template Mini-
Nets learn the SDF of a template face space. From Zheng et al. [73], with permission
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All fields above are implemented by a shared Mini-Nets architecture, where the entire
facial deformation or geometry is further decomposed into semantically meaningful parts
and encoded by a set of local field functions, so that rich facial details can be well captured.
A lightweight module conditioned on the query point position, i.e., Fusion Network, is
stacked at the end of Mini-Nets to adaptively blend the local fields. As such, an elaborate
Neural Blend-Field is achieved. The three core components of ImFace work for different
purposes and correspondingly their structures are slightly changed.We briefly describe them
as follows:

Expression Mini-Nets (ExpNet) The facial deformations introduced by expressions are
represented by ExpNet E, which learns an observation-to-canonical warping for every face
scan:

E : (p, zexp, l) 
→ p′ ∈ R
3, (15.8)

l ∈ R
k×3 denotes k 3D landmarks on a observed face generated by a Landmark-Net η :

(zexp, zid) 
→ l, introduced to localize the query point p in the Neural Blend-Field. A point
p in the observation space is deformed byE to a new point p′ in the person-specific canonical
space, which represents faces with a neutral expression.

Identity Mini-Nets (IDNet) To model shape morphing among individuals, the IDNet I
further warps the canonical space to a template shape space shared by all faces:

I : (p′, zid , l ′) 
→ (p′′, δ) ∈ R
3 × R, (15.9)

where l ′ ∈ R
k×3 denotes k landmarks on the canonical face generated by another Landmark-

Net conditioned only on the identity embedding η′ : zid 
→ l ′, and p′′ is the deformed point
in the template space. To cope with the possible non-existent correspondences generated
during preprocessing, I additionally predicts a residual term δ ∈ R to correct the predicted
SDF value s0, similar to [69].

Template Mini-Nets (TempNet) TempNet T learns a signed distance field of the shared
template face:

T : (p′′, l ′′) 
→ s0 ∈ R, (15.10)

where l ′′ ∈ R
k×3 denotes k landmarks on the template face, which is averaged on the whole

training set, and s0 denotes uncorrected SDF value. The final SDF value of a query point is
calculated via s = s0 + δ, and the ImFace model can be ultimately formulated as

f (p) = T (Ip′′(E(p, zexp), zid )) + Iδ(E(p, zexp), zid ). (15.11)

15.4.1.2 Neural Blend-Field
TheMini-Nets have a common architecture shared across the sub-networksE,I, andT . It is
specifically designed to learn a continuous field functionψ : x ∈ R

3 
→ v to produce a Neu-
ral Blend-Field for sophisticated face representations. In particular, to overcome the limited
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shape expressivity of a single network, a face space is decomposed into a set of semantically
meaningful local regions, and their deformations or signed distance fields are individually
learned before blending. Such design is inspired by the recent INRs study [103] on the
human body, which introduces linear blend skinning algorithm [74] to enable the network
to learn from separate body parts transformation. In order to better represent detailed facial
surface, the constant transformation term in the original linear blend skinning algorithm is
replaced with ψn(x − ln), and Neural Blend-Field is defined as

v = ψ(x) =
k∑

n=1

wn(x)ψn(x − ln), (15.12)

where ln is a parameter that describes the n-th local region, wn(x) is the n-th blend weight,
and ψn(x − ln) is the corresponding local field. By such, the blending is performed on a
series of local fields, rather than calculating a weighted average of the output values v (such
as deformation) of some fixed positions, leading to amore powerful representation capability
in handling complicated local features.

Five landmarks located at outer eye corners, mouth corners, and nose tip are utilized to
describe the local regions (ln ∈ R

3)5n=1, and each is assigned a tiny MLP with sinusoidal
activations to generate the local field, denoted as ψn . To well capture high-frequency local
variations, sinusoidal positional encoding γ on the coordinate x − ln is leveraged. At the
end of Mini-Nets, a lightweight Fusion Network is introduced, which is implemented by a
3-layer MLP with softmax to predict the blend weights (wn ∈ R

+)5n=1, conditioned on the
absolute coordinate of input x.

Deformation Formulation The deformations is formulated with a SE(3) field (ω, v) ∈
R
6, where ω ∈ so(3) is a rotate vector representing the screw axis and the angle of rotation.

The deformed coordinates x′ can be calculated by eωx + t, where the rotation matrix eω

(exponential map form of Rodrigues’ formula) is written as

eω = I + sin ‖ω‖
‖ω‖ ω∧ + 1 − cos ‖ω‖

‖ω‖2 (ω∧)2, (15.13)

and the translation t is formulated as

t =
[
I + 1 − cos ‖ω‖

‖ω‖2 ω∧ + ‖ω‖ − sin ‖ω‖
‖ω‖3 (ω∧)2

]
v, (15.14)

where ω∧ denotes the skew-symmetric matrix of vector ω.
Hyper Nets To obtain a more compact and expressive latent space, a meta-learning

approach [104] is further introduced. In particular, a Hyper Net φn is implemented by an
MLP and predicts the instance-specific parameters for ExpNet E and IDNet I. It takes a
latent code z as input and generates the parameters for the neurons in a Mini-Netψn , so that
the learned face representations possess higher variety.
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15.4.1.3 Improved Expression Embedding Learning
The auto-decoder framework proposed by [61] has been widely adopted in INRs to jointly
learn embeddings and network parameters. Face modeling, ImFace improves the learning
strategy by treating each non-neutral face scan as a unique expression and generating a
specific embedding for it. In this way, the latent space is significantly extended, which
enables ExpNet to represent diverse and fine-grained details. Nevertheless, there exists a
potential failure mode in that the identity properties are tangled into expression space again,
and IDNet I collapses to an identity mapping. To tackle this challenge, the ExpNet E is
suppressed when the current training sample is a neutral face, written as

E(pnu, zexp, l) ≡ pnu, (15.15)

where pnu denotes a point from neutral face. By applying such learning strategy, IDNet and
TempNet jointly learn shape representations on neutral faces, and ExpNet focuses only on
expression deformations. Moreover, expression annotations are no longer required during
training.

15.4.1.4 Loss Functions
ImFace is trained with a series of loss functions to learn plausible face shape representations
as well as dense correspondence.

Reconstruction Loss The basic SDF loss is applied to learn implicit fields:

Li
sd f = λ1

∑

p∈�i

| f (p) − s̄| + λ2
∑

p∈�i

(1 − 〈∇ f (p), n̄〉), (15.16)

where s̄ and n̄ denote the ground-truth SDF values and the field gradients, respectively, �i

is the sampling space of the face scan i , and λ indicates the trade-off parameter.
Eikonal LossTo obtain reasonable fields throughout the network,multiple Eikonal losses

are used to enforce the L-2 norm of spatial gradients to be unit:

Li
eik =λ3

∑

p∈�i

(|‖∇ f (p)‖−1|+|‖∇T (I(p′))‖−1|), (15.17)

where Li
eik enables the network to satisfy Eikonal constraint [63] in the observation space

and canonical space simultaneously, which also contributes to a reasonable correspondence
along face deformations at all network stages.

Embedding Loss It regularizes the embeddings with a zero-mean Gaussian prior:

Li
emb = λ4

(
‖zexp‖2 + ‖zid‖2

)
. (15.18)

Landmark Generation Loss The l1-loss is used to learn the Landmark-Net η, η′, and
parameters l ′′:
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Li
lmkg =λ5

k∑

n=1

(
|ln − l̄ in| + |l ′n − l̄ ′n|

)
, (15.19)

where l̄ i denotes the k labeled landmarks on sample i , l̄ ′ denotes the landmarks on the
corresponding neutral face.

Landmark Consistency Loss This loss is exploited to guide the deformed 64 landmarks
to be located at the corresponding positions on the ground-truth neutral and template faces
for better correspondence performance:

Li
lmkc

=λ6

64∑

n=1

(
|E(ln) − l̄ ′n | + |I(E(ln)) − ¯l ′′n |

)
. (15.20)

Residual Constraint To avoid the situation that the residual item δ learns too much
template face information and further downgrades the morphable model, δ is penalized by

Li
res = λ7

∑

p∈�i

|δ(p)|. (15.21)

The total training loss is calculated on all face samples indexed by i , finally formulated
as

L =
∑

i

(Li
sd f + Li

eik + Li
emb + Li

lmkg
+ Li

lmkc
+ Li

res). (15.22)

In the testing phase, for each 3D face indexed by j , the following objective is minimized
to obtain its latent embeddings and the reconstructed 3D face:

argmin
zexp,zid

∑

j

(L j
sd f + L j

eik + L j
emb). (15.23)

15.4.2 Experiments

Extensive experiments are performed on the FaceScape [48] database for both subjective
and objective evaluations on ImFace.

15.4.2.1 Reconstruction
Qualitative Evaluation In the testing phase, ImFace is used to fit face scans by optimizing
Eq. (15.23). Figure 15.14 visualizes the reconstruction results achieved by different mod-
els, where each column corresponds to a test person with a non-neutral expression. The
results also include the unseen expressions during learning. In particular, i3DMM [72] is
the first deep implicit model for the human head, but it is less capable of capturing compli-
cated deformations and fine-grained shape details under a relatively intricate circumstance,
resulting in artifacts on the reconstructed faces. FLAME [47] is able to well present the
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Fig.15.14 Reconstruction comparison with i3DMM [72], FLAME [47], and FaceScape [48]. From
Zheng et al. [73], with permission

Table 15.8 Quantitative comparison with the state-of-the-art methods (†Lower is better; ¶Higher is
better)

Metrics Chamfer (mm) † F-score@0.001 ¶

i3DMM [72] 1.635 42.26

FLAME [47] 0.971 64.73

FaceScape [48] 0.929 67.09

ImFace 0.625 91.11

identity characteristics, but is not so competent at representing nonlinear deformations, that
it delivers stiff facial expressions. FaceScape [48] performs more favorably than FLAME
mainly due to high-quality training scans and that test faces are included by training set,
but it still cannot describe expression morphs precisely. Comparatively, ImFace reconstructs
faces with more accurate identity and expression properties, and it is able to capture subtle
and rich nonlinear facial muscle deformations such as frowns and pouts, which is achieved
by fewer latent parameters.

Quantitative Evaluation Symmetric Chamfer distance and F-score are used as metrics,
and the threshold of F-score is set to 0.001 for a strict comparison. The results are shown
in Table 15.8. As we can see, ImFace exceeds the compared counterparts by a large margin
under both metrics, which clearly validates its effectiveness.

15.4.2.2 Correspondence
In contrast to existing methods that generally requires accurate face registration, correspon-
dences can be automatically learned in INRs models, and the corresponding training critic
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Source Face

Cross Expression Correspondences

Cross Identity Correspondences

Fig. 15.15 Correspondence results. The leftmost source face is morphed into multiple expressions
(upper row) and identities (lower row). From Zheng et al. [73], with permission

is specially designed to enhance such a feature. This evaluation aims to check this point.
Given two 3D faces, ImFace is used to fit them and deform the densely sampled points to the
template space, so that point-to-point correspondences can be determined by nearest neigh-
bor search. Figure 15.15 visualizes the correspondences generated by ImFace, where color
patterns are manually painted on the shapes to better check the quality. It can be inspected
that tiny internal texture dispersion indeed occurs aroundmouth corners, it is mainly because
facial shape changes drastically in these local areas under different expressions. Neverthe-
less, ImFace is able to establish pleasing overall correspondences across various expressions
and identities.

15.4.2.3 Ablation Study
ImFace is built on the following core ideas: disentangled deformation fields, Neural Blend-
Field, and improved expression embedding learning. Therefore, ablation studies are per-
formed to experimentally verify the credit of the corresponding architecture designs and
learning strategy.

On Disentangled Deformation Fields To highlight the disentangled deformation learn-
ing process, a compared network that contains only one deformation field to learn face shape
morphs universally is built. Accordingly, zexp and zid are concatenated as the input of the
hyper net. Figure 15.16a provides a demonstration. In spite of some fine-grained details
brought by other designs, there exists a chaos on the reconstructed faces, especially for
the ones with dramatic expressions. The quantitative results in Table 15.9 also indicate the
significance of decoupled deformation learning.

On Neural Blend-Field The Neural Blend-Field in E, I, T is replaced with vanilla
MLPs of the same amount of parameters, which directly predict the global deformations
or SDF values of an entire face. As shown in Fig. 15.16b, a visible blur appears due to the
limited capability in learning high-frequency fine details. The quantitative evaluation results



15 3D Face Recognition 463

(a) w/o dist. (b) w/o blend (c) w/o extend. (d) ImFace (e) GT

Fig. 15.16 Qualitative ablation study results. From Zheng et al. [73], with permission

Table 15.9 Quantitative ablation study results. From Zheng et al. [73], with permission

Metrics Chamfer (mm) † F-score@0.001 ¶

Ours w/o dist. 0.772 82.70

Ours w/o blend 0.767 82.37

Ours w/o extend. 0.705 86.98

ImFace 0.625 91.11

in Table 15.9 also validate the necessity of Neural Blend-Field in learning sophisticated
representations.

On Improved Embedding Learning Strategy This strategy is introduced to learn
diverse and fine-grained facial deformations. As shown in Fig. 15.16c, when restricting
the number of expression embeddings to be the same with expression categories, the gener-
ated expressions tend to be average. Moreover, for exaggerated expressions, such as mouth
stretch, the compared model can hardly converge to a reasonable state.
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AAppendix A: Code and Data

This third edition, while inheriting the title of Handbook of Face Recognition, will be
composed of entirely new content describing the latest face recognition methodologies and
technologies in the deep neural network framework. The book presents a unified resource of
theory, algorithms, and implementations to bring students, researchers, and practitioners to
all aspects of face recognition. The book not only presents the latest developments inmethods
and algorithms but also provides code and data to allow for hands-on learning and developing
reproducible face recognition algorithms and systems by deep learning programming. The
code and data will be released in the Github and will be updated subsequently to keep the
materials up to date. The main face processing modules include

1. Face Detection
2. Facial Landmark Localization
3. Facial Attribute Analysis
4. Face Presentation Attack Detection
5. Face Feature Embedding
6. Video-based Face Recognition
7. Face Recognition with Synthetic Data
8. Uncertainty-aware Face Recognition
9. Reducing Bias in Face Recognition

10. Adversarial Attacks on Face Recognition
11. Heterogeneous Face Recognition
12. 3D Face Recognition
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