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Abstract Many national and international institutions recognize that novel agri-
culture paradigms are needed to address the current challenges of adaptation to 
and mitigation of climate change. In this sense, digital agriculture and, specif-
ically, satellite images in precision farming allow efficient monitoring of crops 
to ameliorate the management impacts to the environment. These data allow 
estimating yields or fertilization requirements, as well as water-related aspects, such 
as evapotranspiration and crops hydric status. In this chapter, I aim to describe 
satellite imagery applications in precision agriculture, and I present the nature of 
remotely sensed data, the types of satellites, and data access, management, and 
processing in the case of precision farming applications. Landsat 9, Sentinel-2, 
as well as other commercial satellites orbiting the Earth are described as feature 
relevant characteristics for agriculture monitoring, especially regarding the visible, 
near-infrared, and red-edge parts of the spectrum, which can be related to biomass, 
canopy vigor, or chlorophyll content and subsequently be matched with agronomic 
features. Regarding data access and coverage, openly accessible datasets and 
commercial satellites are discussed. Moreover, data management and processing 
have also been presented in regard to the limitations that processing and analyzing 
such large amounts of data (i.e., images from vast agricultural regions on a daily 
basis) has and the potential of cloud computing and processing. I conclude that 
in industrial agriculture settings, openly accessible satellite imagery can contribute 
significantly to an overview the status of crops, guide specific and timely actions, 
and reduce production losses and the impacts on the environment. Satellite imagery 
has a spatial dimension that can be used at the field to regional level. The assessment 
of agricultural performance can also be matched to several agroecological and 
environmental levels; however, satellite imagery in precision farming has several 
limitations and knowledge gaps in its application in heterogenous and agricultural 
landscapes with small-scale fields. 
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1 Introduction 

Since agriculture started thousands of years ago, humans have shaped the Earth 
by producing agricultural landscapes in most of the habitats that we live in today 
(Blondel 2006). Rice terraces in Asia, high-yielding maize hydroponic islands 
in Mexico (Chinampas), or Mediterranean agroforestry systems have traditionally 
articulated local agricultural landscapes. The technique and the geographic milieu 
simultaneously change with human’s actions (Santos 2000), and so happens cur-
rently with a technique that has gone beyond using local resources and species for 
farming and has become a global highly technological and productive activity, such 
as many others in society. Since the mid-twentieth century, the “Green Revolution” 
transformed traditional agriculture into an industrial system by providing high 
yielding genotypes, fertilizers, and other chemically derived products, as well as 
improved machinery for sowing and harvesting. This turning point changed the 
agricultural paradigm in most areas of the world by improving agricultural yields 
and reducing the human labor force needed. Yet, the current industrial production 
system is recognized as a major source of global pollution, and its sustainability is 
discussed. 

The current industrial farming practices, characterized by a generalized use 
of chemical fertilizers and pesticides together with fossil-fueled machinery, have 
caused a tremendous negative impact to the environment. Agriculture is responsible 
for 21.2% of global anthropogenic greenhouse gas emissions when including land-
use changes (Tubiello et al. 2015). Hence, a significant contribution to climate 
change and temperature increases is related with agriculture, and many national 
and international institutions recognize that novel agriculture paradigms are needed 
to address the current challenges of adaptation to and mitigation of climate change 
(Rhodes 2016). In this sense, remote sensing data used in precision framing, such as 
that obtained with satellite technologies, allow an efficient monitoring of crops by 
acquiring satellite data. These data allow monitoring yields (Segarra et al. 2020b; 
Wolanin et al. 2019) or fertilization needs (Nutini et al. 2018), as well as water-
related aspects, such as evapotranspiration and irrigation needs (Rozenstein et al. 
2018) to ameliorate the agricultural management impacts to the environment. Many 
satellites orbiting the Earth have relevant characteristics for agriculture monitoring 
(Segarra et al. 2020a), especially regarding the visible, near-infrared, and red-edge 
parts of the spectrum, which can be related to biomass, canopy vigor, or chlorophyll 
content (Gitelson and Merzlyak 1996). These plants’ physiological features can 
be related to agronomic characteristics of crops and drive management decisions. 
This information is central for crops production, irrigation planification, and yield 
stability. The role of remote sensing and spatial analysis in adaptation to and 
mitigation of climate change is certainly relevant (Yang et al. 2013); however,
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there are still scale and knowledge gaps which need to advance to find adequate 
management strategies when following these remotely sensed data in precision 
farming. 

Precision farming is an agricultural management paradigm which is based on 
observing, measuring, and responding to crops’ temporal and spatial variability 
with the aim to improve agricultural production sustainability (Cisternas et al. 
2020; Zhang et al. 2002). Hence, this paradigm goes beyond the classical “Green 
Revolution” framework, and the use of agricultural inputs is optimized regarding 
crop demands and its impacts to the agro-environment. The multispectral sensors 
mounted on board of satellites have resolution features (Adams and Gillespie 2006) 
which can be used to determine crops’ physiological and agronomic characteristics. 
The temporal and spatial variability of crops is central for its monitoring in precision 
farming, and it suits satellites resolution features. Satellites have a temporal 
resolution in the sense that an orbiting satellite has a specific period in which it 
returns to the same geographic area after orbiting the Earth, and the revisit time 
is central to follow the emergence of crops or features related to phenology and 
the evolution of the crop. Moreover, the spatial resolution of satellites is central 
to precision farming as agriculture fields and landscapes are generally heterogenous 
and meet singularities within the field that can be observed if the spatial resolution of 
the satellite is enough to differentiate certain objects. The spectral resolution refers 
to the number of bands and the width, namely, the parts of the reflected spectrum that 
satellite sensors can capture and the spectral resolution allows monitoring different 
physiological characteristics of the plant. Finally, the radiometric resolution refers 
to how much information the satellite sensors can capture. All these sensor features 
are central for understanding the corresponding plants’ agronomic and physiological 
characteristics. 

This chapter presents satellite imagery use in precision farming, namely, it is 
focused on understanding the nature of satellite data and match it with farming. 
Moreover, we present how data can be accessed and different data management 
approaches. Finally, we discuss the advantages and limitations of using satellite 
data for agriculture and the implications it has regarding global sustainability 
and planetary boundaries. This chapter mainly focuses on passive remote sensing, 
comprehending optical and thermal spheres. Active remote sensing, those sensors 
using radar and other active technologies are presented but do not occupy a central 
part of this section, reviews on the use of active sensors in agriculture can be found 
elsewhere (McNairn and Shang 2016). The novelty of remote sensing applications 
in agriculture at multiple levels (Weiss et al. 2020) or for specific satellites such 
as Sentinel-2 (Segarra et al. 2020a) have been addressed in the last years with 
increasing interest. In this chapter, I present a general overview of satellite data 
applications in agriculture and how these data can be accessed and managed to 
finally discuss the advantages and limitations of satellites application in agriculture 
regarding the multiscale framework of digital agriculture for a sustainable food 
production.
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2 Satellite Data and Farming 

Satellite remote sensing is a technological field which senses Earth surfaces using 
multispectral, hyperspectral, and other instruments mounted on satellites orbiting 
the Earth. These Earth observation systems are available as a diverse array of 
sensors and, in regard of the source of illumination used on the sensed objects, 
can be divided between passive and active sensors. Passive sensors, such as optical 
and thermal systems, rely on reflected sunlight or emitted thermal energy. Passive 
multispectral sensors can acquire data beyond the visible wavelengths (i.e., infrared 
and thermal wavelengths) across the electromagnetic spectrum (Lechner et al. 
2020). Earth surfaces reflect and absorb sunlight at different wavelengths; these 
differences in spectral reflectance properties (i.e., spectral signatures) work as 
distinct fingerprints to differentiate surface types (Shaw and Burke 2003) which 
allow, for instance, identifying different crop types. Active sensors, meanwhile, 
emit a pulse and measure the backscatter reflecting to the sensor. Such sensors can 
penetrate clouds and operate at night. Active sensors such as SAR (synthetic aper-
ture radar) on board of Sentinel-1 can differentiate crops features according to their 
surface roughness and the three-dimensional structure of the targets (d’Andrimont 
et al. 2021; Ndikumana et al. 2018). Other active sensors such as LiDAR (light 
detection and ranging or laser imaging, detection, and ranging) systems emit a pulse 
from lasers and measure distance to a target and the reflected light; differences 
in laser return times and wavelengths can then be used for making digital three-
dimensional representations of the target (Lechner et al. 2020). Satellites from the 
European Space Agency (ESA), such as ADM-Aeolus, has a LiDAR mounted on 
board, although its use is not focused on agriculture. Meanwhile, NASA (National 
Aeronautics and Space Administration) has several satellites with LiDAR such as 
ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2), which is used to monitor 
vegetation across the globe and determine vegetation structure, also with some 
potential applications for farming (Brown et al. 2023); in 2019, ICESat-2 data was 
made available (Martino et al. 2019). 

Remote sensing satellite sensors feature a trade-off between the spatial, temporal, 
and spectral resolutions (Shen et al. 2016). Spatial resolution refers to the pixel size, 
which is very relevant as the spatial dimension allows differentiating objects within 
the Earth surface. The temporal resolution is the frequency with which satellite 
images of the same area are taken, that is, the time it takes for the sensor to revisit 
the same location on Earth. This depends on the features of the satellite and the 
mission itself; while some satellites are single devices, others are a constellation of 
them, such as Sentinel-2 A+B which is a constellation of two twin satellites (A and 
B) and therefore synchronically orbit the Earth increasing temporal resolution with 
relevant applications in precision farming (Segarra et al. 2020a). Spectral resolution 
is also relevant, and optical sensors vary in terms of the number of bands (and the 
widths of those bands) from which data are captured. The spectral resolution allows 
to extract more accurate information on the sensed surface as several parts of the
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Fig. 1 Crop reflectance signature with the bands available for the satellite sensors (Landsat 
9, Sentinel-2, and PlanetScope). The spectral regions are indicated, and the agronomic and 
physiological traits described in relation with its application in agriculture and plant monitoring 

reflected spectrum can be detected. As an example, Sentinel-1 SAR has a six-day 
revisit period at a high spatial resolution of about 20 m. 

In Fig. 1, the spectral signature of a crop is shown together with satellites 
Sentinel-2, Landsat 9, and PlanetScope. The physiological characteristics of the 
crop vegetation cover are appreciated in the reflectance spectrum in the sense that 
in the visible green parts of the spectrum the electromagnetic radiation is reflected, 
while in the blue and red areas the reflectance is inferior as the absorption of sunlight 
by the chlorophylls to carry out the photosynthetic activity happens in these regions 
of the spectrum. Moreover, in the area between red and near infrared, the so-called 
red edge, the reflectance increases greatly as in wavelengths over 700 nm the energy 
of the photon is not sufficient to synthesize organic molecules (Taiz and Zeiger 
2015), and it is hence highly reflected. The differences between photosynthetic 
active regions (between 400 and 700 nm) and the near infrared allows understanding 
the status of the vegetation cover, the biomass, and the photosynthetic activity. 
It is the case of the widely used vegetation index NDVI (normalized difference
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vegetation index) (Rouse Jr. et al. 1974) which takes advantage of the physiological 
characteristics of the plant and the interaction with light to calculate a biomass 
indicator using the red a near-infrared bands of a multispectral instrument. The 
visible and near-infrared parts of the spectrum are related with the leaf pigments and 
plant cell structure. While shortwave infrared and thermal infrared are related with 
leaf biochemical and plant water content (Fig. 1). As observed in Fig. 1, the  three  
satellites presented have several bands which can sense several parts throughout the 
reflectance spectrum and can be related to physiological characteristics of plants. 
The spectral resolution allows monitoring specific characteristics of the crops. 

Field vegetation cover and greenness are crop traits which can be sensed 
with visible and near infrared spectral information obtained from multispectral 
instruments (Gracia-Romero et al. 2017). In this sense, this data can be used to 
detect plant stress (both biotic and abiotic), to assess the canopy cover as well as to 
understand growth dynamics or phenology. Moreover, the chlorophyll content can 
be monitored with mainly green and red-edge bands, specially the red-edge band is 
very relevant to monitor chlorophyll content which can also be used as a proxy for 
the nitrogen status of the plant (Segarra et al. 2022b). The photosynthesis activity 
of the crop is directly linked to the yield as it is the source of organic matter for 
the plant (Sanchez-Bragado et al. 2014); hence, understanding this activity through 
satellite imagery allows developing yield estimation models which can be useful 
for both prediction of final yield and guiding management action to stabilize the 
potential final yield. The shortwave infrared and the thermal infrared are especially 
relevant regarding the water status of the plant (Guan et al. 2017). The water that the 
plant needs to grow can be monitored with the evapotranspiration which is a balance 
of the water transpired through the plants’ stomata during photosynthesis plus the 
evaporation of the water in the plant and soil surfaces within the agricultural fields 
in this case. 

Generally, as shown in Table 1, the spatial resolution of thermal bands obtained 
from satellites is coarse. Sentinel-3 provides 1 km spatial resolution thermal data, 
while Landsat 9 provides 100 m resolution thermal bands. These resolutions do not 
provide sufficient precise information to understand at the field level, for instance, 
the water status of a crop and drive the management decision of the farmer, namely, 
applying the precision farming framework in the case of irrigation. However, the 
combination of other satellite spectral information such as higher-resolution 10 
to 20 m Sentinel-2 bands allows fine-scaling some thermal remotely sensed data 
and obtain higher-resolution evapotranspiration products such as Sen-ET (https:// 
www.esa-sen4et.org/) which resamples 1 km pixels into 20 m by combining it with 
Sentinel-2 higher-resolution images. A few decades ago, estimates of crop water 
demand from Landsat satellite data (Allen et al. 2005) were already addressed, 
however, for a regional level. The combination of thermal and multispectral 
visible and near-infrared satellite-based imagery to empirically solve surface energy 
balance equations and provide estimates of crop actual evapotranspiration from 
fractional vegetation cover and latent heat flux is almost operational currently for 
precision agriculture with the 20 m evapotranspiration grids available through the 
Sen-ET plugin from the ESA.

https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
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Table 1 Satellite missions, data type, and characteristics 

Sensor 
type Satellite name Data type 

Revisit capability and spatial 
resolution 

Passive Sentinel-2 A+B Visible and multispectral Every five days, pixels of 10 to 
20 m size (archives since 2015) 

Sentinel-3 Thermal 1 km of spatial resolution 
Landsat 8 and 9 Visible, thermal, and 

multispectral 
Every 15 days pixels of 15 to 30 m 
size, thermal 100 m (archives since 
2013) 

Landsat 1, 2, 3, 4, 5, 
6, 7, 8 and 9 

Visible, thermal, and 
multispectral 

Archives available since 1972, 
ongoing active missions Landsat 8 
and 9 

PlanetScope Visible and multispectral Scenes taken daily, high-resolution 
images below 5 m 

WorldView-3 Visible and multispectral Scenes taken daily, spatial 
resolution of 0.34 to 4.1 m 

Pléiades 1A/1B Visible and near infrared Scenes taken daily, spatial 
resolution of 0.5 m 

Amazônia-1 Visible and near infra-red Every five days, pixels of 60 m 
Cartosat Visible Every five days, archives available 

since 2005 with Cartosat-1, 
current Cartosat-3 has a 0.25 m 
spatial resolution 

Active Sentinel-1 SAR (radar) Every six days, 20 m of spatial 
resolution 

ICESat-2 LiDAR 1 km spatial resolution and 90-day 
revisit time 

For the case of grain yield or nitrogen status monitoring, the applicability of 
satellite data in precision farming is more advanced. In this sense, some studies 
have addressed the use of Sentinel-2 images to map grain yield within field 
variability at 10 to 20 m resolution (Cavalaris et al. 2021; Hunt et al. 2019; 
Segarra et al. 2022a). These products take advantage of the several elements used 
in the digital agriculture paradigm such as geolocated combine harvesters, which 
allow obtaining the harvested grain, for instance, with a geolocated reference. In 
contrast with obtaining single field values on the yield, or carrying out crop cuts 
by researchers, the combination of these technological advances allows creating 
high-resolution within-field performance maps. Moreover, beyond the performance 
maps themselves, the spectral data obtained from satellites and its relationship with 
physiological characteristics of the plant can determine the logic behind higher and 
lower yielding areas within a field. Whether the water status, the emergence of the 
crop, or the nitrogen status, just to mention some, are the reasons behind having 
lower-yielding areas in a field, they can be understood by linking the reflectance 
characteristics with the actual understanding of the plant physiology, either by using 
vegetation indices as proxies or biophysical variables obtained from more complex 
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radiative transfer models such as those developed by (Weiss and Baret 2016) in the  
case of Sentinel-2 images. 

Hence, the capacity of satellite data is not limited to generate within field actual 
agronomic grain yield or nitrogen status maps but can moreover be used to assess 
the physiological features of the plant hindering the specific limitation of the crop 
to subsequently guide specific management decisions. The vast dimension and 
potentialities for the use of satellite imagery for precision agriculture could be 
totally deployed when hyperspectral openly available satellite data can be accessed 
for agricultural monitoring. At UAV (unmanned aerial vehicle) and aircraft level, 
such hyperspectral data have been used in biotic stress monitoring in olive groves 
(Poblete et al. 2021) or grain nitrogen status monitoring in wheat (Zhao et al. 
2019). However, these demonstrations of the potentialities of remote sensing do not 
represent the operationality of precision farming. Mainly due to the lack of general 
availability of data and the intrinsic cost of many of these devices which make it 
operationally unlikely for most farmers to use them. However, on the scientific basis 
and future application, these pathways are of pivotal interest. 

Beside hyperspectral instruments, which are in the frontier regarding agricultural 
applications, high-resolution multispectral instruments on board of commercial 
satellites capture images with potential applications in precision farming. As shown 
in Table 1, PlanetScope, WorldView-3, or Pléiades 1A/1B provide daily high-
resolution images. Pléiades 1A/1B are a constellation of two satellites which have 
very-high optical resolution (0.5 m resolution); the satellites have four bands: the 
red–green–blue (RGB) visible bands and near infrared. Meanwhile, Worldview-
3 multispectral instrument collects images at 0.31 m panchromatic (RGB) and 
1.24 m in the eight near infrared bands, 3.7 m in the eight shortwave near infrared 
bands, and a 30 m resolution in the clouds, aerosols, vapors, ice, and snow bands. 
WorldView-3 has bands for enhanced multispectral analysis (coastal blue, yellow, 
and red edge) designed to improve segmentation and classification of land features, 
such as agricultural production. In this sense, several authors have used WorldView 
high-resolution images in agriculture monitoring, such as for segmenting olive tree 
crowns (Solano et al. 2019) or macadamia trees (Johansen et al. 2020), which needs 
a resolution that Sentinel-2 and Landsat 9 do not have. PlanetScope multispectral 
instruments, on board of the three orbiting satellites that constitute the constellation, 
operate currently in eight bands: red edge, red, green (2), yellow, blue, coastal 
blue, and near infrared. A PlanetScope RGB scene is shown in Fig. 2 together 
with a Sentinel-2 RGB scene; as observed, the delineation of the agricultural fields 
has a higher resolution in the PlanetScope image (below 5 m spatial resolution) 
than in the Sentinel-2 images (10 m spatial resolution). In both cases, nonetheless, 
the agricultural fields can be clearly observed. Even within-field variability can be 
visually assessed in the case of the RGB scene, other parts of the spectrum, in the 
case of these two satellites shown, cannot be sensed with the current sensors or the 
resolution is too coarse, as discussed, for example, in the case of thermal bands 
before. Regarding the findings of (Skakun et al. 2021), by comparing several spatial 
resolution of satellite imagery, they observed that spatial resolution of below 3 m is 
critical to explaining 100% of the within-field yield variability for corn and soybean. 
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Fig. 2 RGB composites of Sentinel-2 and PlanetsScope scenes at different spatial resolution (10 m 
and 5 m, respectively), coordinates of the scene (N 10.215075 E -71.943003; decimal degree 
WGS84) 

The results also showed that moving to coarser resolution data of 10 m, 20 m, 
and 30 m reduced the explained variability to 86%, 72%, and 59%, respectively. 
I continue by analyzing data accessibility, management, and processing for the case 
of satellite imagery for precision farming. 

3 Data Access, Management, and Processing 

The access to satellite data is an important aspect to consider. Some missions such as 
those from NASA and ESA provide accessibility to archives when logging in with 
a user, as well as other mission with limited satellite data availability and coverage 
such as Brazilian and Indian space missions. In Table 2, the accessibility to several 
satellites is presented. The Copernicus mission archives can be accessed through 
the Copernicus Open Access Hub (https://scihub.copernicus.eu/); this provides 
complete, free, and open access to Sentinel-1, Sentinel-2, and Sentinel-3 products. 
On the Copernicus Open Access Hub, a user-friendly platform allows defining 
the regions of interests and downloading the satellite imagery directly from the 
previous year and on demand from previous years as data need to be restored 
from the archives. Regarding NASA, on the US Geological Survey site (https:// 
earthexplorer.usgs.gov/), Landsat archives are available since 1972 until the current 
ongoing active missions Landsat 8 and 9. Moreover, other satellites such as MODIS 
(Moderate Resolution Imaging Spectroradiometer) are available but their spatial 
resolution is not suitable for the case of precision farming, and it is rather used in 
ecosystems monitoring. Other missions from NASA such as LiDAR ICESat-2 can 
be accessed elsewhere (https://openaltimetry.org/data/icesat2/), albeit its processing 
needs more complex transformations and its use is not specifically intended to 
agriculture as its spatial resolution of 1 km is limiting. Commercial satellites 
have their own platforms where scenes can be purchased and downloaded. In 
Table 2, the access of several satellites is described. The European Union provides 

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
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Table 2 Access to satellite data 

Satellite name Access and coverage References 

Sentinel-2 A+B Publicly accessible (European 
Commission and European 
Space Agency), global 

https://scihub.copernicus.eu/ 

Sentinel-3 
Sentinel-1 
Landsat 8 and 9 Publicly accessible (NASA, 

USA), global 
https://earthexplorer.usgs.gov/ 

Landsat 1, 2, 3, 4, 5, 6, 
7, 8 and 9 
PlanetScope Private, global on-demand https://www.planet.com/nicfi/ 
WorldView-2,3,4 Private, global on-demand https://www.maxar.com/worldview-

legion 
Amazônia-1 Publicly accessible (Brazilian 

Space Agency), global 
theoretically but on the catalog 
only scenes in South America 
are available 

http://www2.dgi.inpe.br/catalogo/ 
explore 

Cartosat Publicly accessible (Indian 
Space Research Organization), 
scenes only cover India 
subcontinent 

https://bhuvan-
app3.nrsc.gov.in/data/download/ 
index.php 

access to some scenes already purchased for European programs and to archives of 
PlanetScope and WorldView; however, it is only intended for research institutions 
and innovative projects, which need to be justified ( https://earth.esa.int/eogateway/ 
catalog/worldview-3-full-archive-and-tasking). 

The accessibility to these data is central for precision farming. In this sense, 
besides some exceptions made in research or conservation initiatives, private 
satellites such as WorldView-3 or PlanetScope offer expensive services that capture 
high-resolution images on demand. For most farmers on Earth, cooperatives, and 
even small to middle companies, these data are far from their economic capacities. 
Hence, by understanding that precision farming involves observing, measuring, 
and responding to crops’ temporal and spatial variability and sustainability, one 
recognizes the importance of open accessibility to satellite data in this agriculture 
paradigm. Moreover, as most research institutions cannot afford these images and 
the research carried out with these data is not always reproducible (due to copyrights 
on the data and paywalls to access it), the potentialities of high-resolution satellite 
imagery in precision farming cannot be fully deployed. 

Meanwhile, publicly accessible satellite data, such as Sentinel-2, features many 
studies and applications due to the open access nature of the data. Although the 
spatial resolution of 10 m cannot explain all the variability within an agricultural 
field, the resolution of the satellite makes it almost fully operational for its use in pre-
cision farming (especially in regions with standardized agricultural managements). 
Regarding its access, there are several ways to freely and openly download Sentinel-

https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
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2 imagery; one of them is the direct download of the imagery from ESA’s website, 
through Copernicus (https://scihub.copernicus.eu/dhus/#/home), as mentioned. Fur-
thermore, third-party tools for downloading the imagery are available. For instance, 
there is the US Geological Survey (USGS) (https://earthexplorer.usgs.gov/) which 
allows comprehensive searching and downloading of full-resolution Sentinel-2 
images as well as Landsat archives. On the open-source software QGIS, there are 
various plug-ins that take advantage of the ESA’s Application Programing Interface 
at the Copernicus Open Access Hub (https://scihub.copernicus.eu/apihub/). Further-
more, Google Earth Engine has daily updated copies of all the available Sentinel-2, 
Landsat, MODIS, and other accessible satellite data and provides both access to this 
data repository along with high processing capacity using their image processing 
servers. Many other similar tools and services exist on other software applications 
and web portals and are being developed continuously. 

National and international agencies such as ESA or NASA provide specific 
access tools, algorithms, and software in support of the use and processing of 
their satellites, such as the Sentinel-2 Toolbox within the Sentinel Application 
Platform (SNAP, https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2), which 
can be used for agriculture monitoring. Besides vegetation indices, more deter-
ministic biophysical parameters, such as LAI (leaf area index) or FAPAR (fraction 
of absorbed photosynthetically active radiation), can be calculated on SNAP with 
Sentinel-2 data following the algorithms developed by (Weiss and Baret 2016). Most 
of these algorithms ready for the user are developed with thousands of training 
and validation points and follow complex inverse radiative transfer models. The 
availability of these models already developed improved the capacities to take most 
from satellite information. 

Another key point is data processing. For most research teams, farmers, or local 
agricultural companies, the computing capacity to operate large datasets is limited, 
especially when requiring visual interpretation of imagery and heavy processing. 
In the next few years, data accessibility will likely be widespread, including 
images from high-resolution satellites with increasing processing capacity demands. 
Currently, data acquisition is no longer a major challenge with Landsat and Sentinel-
2 archives; instead, it is the capacity to process and analyze such large amounts of 
data (i.e., images from vast agricultural regions on a daily basis) that is becoming 
the bottleneck. In this sense, besides the features of satellites and the data that can 
be obtained, the large amount of data and its potential use has generated commercial 
analytically oriented initiatives such as Google Earth Engine (Gorelick et al. 2017) 
or EarthServer (Baumann et al. 2016) that process these data on high-capacity 
cloud servers. In this sense, RUS (Research and User Support) virtual machines 
from the ESA also offer high storage and processing capacities on cloud servers 
(unfortunately only accessible to European-based institutions). 

Besides the technological advancements in satellite remote sensing, a central 
aspect when working with its applications in agriculture is modelling crops devel-
opment and forecasting agronomic variables (i.e., yield, quality traits). Advanced 
models regarding artificial intelligence and machine learning, as a general frame, 
have shown considerable promise in agricultural remote sensing applications 
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(Chlingaryan et al. 2018). These computer algorithms are particularly useful for 
studying complex biological systems, as they can capture complex interactions 
among variables and find generalizable predictive patterns (Bzdok et al. 2018), 
which can eventually be useful in guiding agricultural management decisions and 
can take the most of the data obtained from the agricultural fields. The use of 
machine learning to retrieve crop performance has been considered one of the most 
important areas to develop associated with remote sensing and agriculture (Weiss et 
al. 2020). 

4 Advantages and Limitations of Satellites Use in Precision 
Farming 

The advantages of using publicly available satellite data for precision farming are 
multiple: having up-to-date crop-related data, having an overview of the status 
of crops, guiding specific and timely actions, reducing production losses and the 
impacts to the environment, and achieving a sustainable production. An example 
of satellite data potentialities being deployed in precision farming is the Belgian 
WatchITgrow platform (Curnel 2017). This platform uses Sentinel-2 data and 
algorithms developed by national research institutions in partnership with other 
administrations and farming enterprises to monitor potato production in Belgium at 
the field level. The farmers using the platform can access the information collected 
from the satellites and the products generated (potential yield maps, nitrogen status, 
etc.). Moreover, the data is secured for each user, and it is intended to improve 
the management of fields and is not sold to other enterprises. Namely, the data 
of the user always remain property of the user. The public agricultural institutions 
of the country and research institutes together with farmers and other agricultural 
enterprises can lead the creation of accessible platforms to guide specific precision 
farming management decision, such as in Belgium and the platform WatchITgrow 
to monitor potato production with Sentinel-2 data. 

Satellite data applications in precision farming present significant potentialities in 
standardized and relatively homogenous agricultural settings, such as those common 
in industrial agriculture. However, most farming activities in the Earth are carried 
out in relatively heterogenous agricultural landscapes, with polycultures, trees, 
and herbaceous crops being simultaneously grown within the field, and relatively 
small fields (Altieri and Nicholls 2017). In such agricultural settings, in contrast 
with middle-resolution satellites, high-resolution satellites can best capture the 
variability within the fields and give a significant overview of crops status to guide 
the management. It is true, however, that Sentinel-2 imagery has been used in 
assessing heterogenous and diverse agricultural landscapes, such as in the case of 
Mali (Lambert et al. 2018), with relatively promising results. Nonetheless, higher-
resolution WorldView scenes were also used to map trees within the field and clear 
pixels for an improved assessment of field’s main crop. 



Satellite Imagery in Precision Agriculture 337 

The current availability of satellite data, which has significant restrictions to 
high-resolution scenes, is an important limitation for heterogenous agricultural 
landscapes. Such landscapes are often located in low-income countries in which 
securing yield and optimizing the use of inputs is pivotal. Moreover, in these regions, 
the complexity of interactions in agricultural production makes it difficult to monitor 
many variables. For instance, in the case of monitoring biotic stresses at regional 
level and guiding specific field-level management approaches, Buchaillot et al. 
(2022) observed that PlanetScope high-resolution images offered greater benefits 
in contrast with Sentinel-2 imagery. However, the complexity on using these scenes 
is also presented, especially due to the polycultures and diverse management in 
the fields, as well as the heterogenous agricultural mosaic present in Southern 
and Eastern Africa. Therefore, in heterogeneous agricultural landscapes, precision 
farming has several limitations regarding the sensing of the actual crops in the field, 
the sizes of the fields, as well as the management approaches, and the resources 
that farmers have in order to address them. In this sense the multiscale approach 
of digital agriculture together with the understanding of agroecological dynamics 
(many retrievable with remote sensing data) together with high-resolution satellite 
data can support the application of precision farming in such agro-environments. 

5 Conclusion 

In summary, in this section, I have presented satellite imagery use in precision 
agriculture. After defining the nature of satellite multispectral data, I have linked 
it with plants physiological and agronomic characteristics for its application in 
precision farming. Moreover, several satellites have been presented, regarding 
data access and coverage, as well as their resolution features, which are pivotal 
to understanding the data needed for its application in precision farming. Data 
management and processing have also been presented in regard with the limitations 
that processing and analyzing such large amounts of data (i.e., images from vast 
agricultural regions on a daily basis) have. In this sense, high-processing capacity 
cloud servers, such as Google Earth Engine, have been introduced. 

I conclude that paywalls to high-resolution satellite data limit the application 
of precision farming in heterogenous agricultural landscapes, which are especially 
present in low-income countries. In contrast with the potentialities that satellite 
imagery uses in precision farming have in standardized agricultural settings, in 
heterogenous agro-environments, the variability of crops within field level is not 
easily retrievable with current publicly accessible data. Meanwhile, I conclude that 
in industrial agriculture settings, openly accessible satellite imagery can contribute 
significantly to overview the status of crops, guide specific and timely actions, and 
reduce production losses and the impacts to the environment. Satellite imagery 
has a spatial dimension which covers field to regional levels; moreover, the 
assessment of agricultural performance can be matched with several agroecological 
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and environmental levels. Hence, satellite imagery plays a pivotal role in the 
multiscale framework of digital agriculture for a sustainable food production. 
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