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Abstract The agriculture industry has evolved significantly over the last 50 years. 
Technology developments have led to larger, quicker, and more productive farm 
equipment, enabling the more efficient cultivation of larger areas. Additionally, 
improved irrigation, fertilizers, and seed have helped farmers to increase crops. New 
technologies such as artificial intelligence, analytics, networked sensors, and others 
may increase yields even further, improve the efficiency of water and other inputs, 
and promote sustainability and resilience in cattle rearing and agricultural output. 
Implementing such cutting-edge technologies is known as agriculture 4.0. But, 
without a solid infrastructure for connectivity, none of this is practical. If connection 
is successfully implemented in the industry, agriculture may add $500 billion in 
value to the global GDP by 2030. This would lead to an increase of 7–9% over the 
anticipated total and greatly relieve the pressure currently imposed on farmers. It is 
one of just seven industries that will raise global GDP by $2 to $3 trillion over the 
next 10 years because of better connectivity. World population is expected to grow 
to 9.6 billion by 2050 that lead to significant increase in the demand for food. On the 
other hand, the availability of natural resources like freshwater and productive arable 
land is getting constrained year after year. Nearly 821 million people still suffer from 
hunger. Digital agriculture, also known as smart farming or e-agriculture, is the use 
of tools to collect, store, analyze, and disseminate electronic data and/or information 
in agriculture. 
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The present emphasis is on reducing water, energy, and material use in agriculture 
as access to water and material resources becomes more challenging due to climate 
change and population expansion. Controlled environment agriculture (CEA) can 
be used to grow vegetables and high-value commodities in any environment with 
outstanding water, soil, and fertilizer efficiency, since local production reduces 
transportation costs. Contrary to conventional field agriculture, CEA offers more 
effective nutrient usage while using up to 80% less land and nearly 90% less 
water. Keeping in view of the population progression, declining land resources, and 
climate vagaries, there is a need to develop selection methods with more accuracy 
and precision. The advancement of artificial intelligence (AI) in the past decade 
has offered great potential to augment the climate smart agriculture. Protected 
agriculture, as against open-field farming, offers a more conducive and manageable 
environment for crop growth through greenhouse technology, which is somewhat 
unrestricted by the natural environment and encourages the intensive and effective 
use of agricultural resources. Remote sensing (RS) is a diagnostic tool that can act 
as an early warning system. Due to recent developments in sensor technologies, 
data management, and data analytics, the agricultural community now has access 
to a number of RS choices. All digital technologies that can be used in agriculture 
to improve yield, plant protection and enhance nutritional quality are summarized 
here. 

Keywords Digital agriculture · Vertical farming · Controlled environment 
agriculture · Sensors · IoT · Big data · Block chain · Supply chain · Robotics · 
Remote sensing 

1 Introduction 

The agriculture industry has changed significantly over the last 50 years. Technol-
ogy developments have led to larger, quicker, and more productive farm equipment, 
enabling the more efficient cultivation of larger areas. Additionally, improved 
irrigation, fertilizers, and seed have helped farmers to increase crops. A new 
revolution in agriculture is currently taking place, one that is being fueled by 
connectivity and data (Mehrabi et al. 2021; Himesh et al. 2018). New technologies, 
such as artificial intelligence, analytics, networked sensors, and others, may increase 
yields even further, improve the efficiency of water and other inputs, and promote 
sustainability and resilience in cattle rearing and agricultural output (Javaid et al. 
2022). Implementing such cutting-edge technologies is known as agriculture 4.0. 
(da Silveira and Amaral 2022). But, without a solid infrastructure for connectivity, 
none of this is practical. If connection is successfully implemented in the industry, 
agriculture may add $500 billion in value to the global GDP by 2030. This would 
lead to an increase of 7–9% over the anticipated total and greatly relieve the pressure 
currently imposed on farmers. It is one of just seven industries that will raise global 
GDP by $2 to $3 trillion over the next 10 years because of better connectivity 
(Goedde et al. 2020).



Digital Agriculture for the Years to Come 3

World agriculture is facing multiple challenges. World population is expected 
to grow to 9.6 billion by 2050 that lead to significant increase in the demand for 
food (Trendov et al. 2019). On the other hand, the availability of natural resources 
like freshwater and productive arable land is getting constrained year after year. 
Nearly 821 million people still suffer from hunger (FAO 2018). The agri-food 
sector remains critical for livelihoods. There are more than 570 million smallholder 
farms worldwide (Lowder et al. 2016). As per ILOSTAT, agriculture and food 
production accounts for 28% of the entire global workforce (ILOSTAT 2019). If 
the UN Sustainable Development Goal of “world with zero hunger” by 2030 has 
to be achieved, then more productive, efficient, sustainable, inclusive, transparent, 
and resilient food systems are prerequisites (FAO 2017). This calls for urgent 
transformations in the agri-food system. 

By 2030, the world’s water supply won’t be able to meet the demand, and 
rising costs for energy, labor, and nutrients are already placing pressure on profit 
margins. Before it can support large-scale agriculture once more, a fifth of the 
world’s arable land needs to be repaired extensively. The need for more ethical and 
sustainable agricultural practices, such as stricter guidelines for farm animal care 
and reduced chemical and water use, is also being pushed by mounting societal and 
environmental concerns. Environmental challenges include global warming and the 
financial toll of extreme weather (Ebi et al. 2021). It is under such circumstances 
the digital agriculture stems promise (Lajoie-O’Malley et al. 2020). 

Digital agriculture, also known as smart farming or e-agriculture, is the use of 
tools to collect, store, analyze, and disseminate electronic data and/or information 
in agriculture (Shepherd et al. 2018). Digital technologies are being quickly 
incorporated into agriculture. Big technology companies, small local enterprises, 
and governments are designing and funding a variety of solutions aimed at creating 
the “smart” farmer, from self-driving tractors to soil disease-detecting drones, from 
milking robots to farm management apps (Pauschinger and Klauser 2022). The use 
of “smart” technologies (Chugh et al. 2021) and “big data” (Protopop and Shanoyan 
2016) as software-driven systems in agricultural production sites is sometimes 
referred to as “smart farming.” 

1.1 Facets of Digital Agriculture 

Over the years, international agriculture experienced three main stages: primi-
tive agriculture stage, traditional agriculture stage, and modern agriculture stage. 
Primitive agriculture undertook easy work by stoneware. Traditional agriculture 
stage produced tools made of iron and wood. During modern agriculture, advanced 
machines are used wherein agricultural economy ushered new heights. Current agri-
culture realizes information through digitalization. Digital agriculture is agriculture 
driven by digits. It integrates data collection, data transmission, data processing, 
digital control machinery, network, and automation (Bacco et al. 2019; Ingram 
and Mayne 2020). These processes are coordinated by cloud computing with its



4 P. M. Priyadarshan et al.

arms like breeding informatics, analytics, mobile services, digital services, GIS, 
UAVs, and Internet of things (IoT) (Fig. 1). By definition, digital agriculture (DA) 
is the integration of new and advanced technologies to enrich the farmer and other 
stakeholders within the agriculture value chain to enhance food production. Today 
the term “agricultural digitalization” refers to the process of integrating advanced 
digital technologies like artificial intelligence, big data, robotics, unmanned aviation 
systems, sensors, and communication net-works, all connected through the Internet 
of Things into the farm production system (Lioutas et al. 2021; MacPherson et al. 
2022). 

Fig. 1 Various facets of DA. Cloud computing is the delivery of computing services – including 
servers, storage, databases, networking, software, analytics, and intelligence over the Internet 
(“the cloud”) to offer faster innovation, flexible resources, and economies of scale. Breeding 
bioinformatics: A modern breeding program with advanced phenotyping and genotyping tech-
nologies has the potential to create vast amounts of data. Breeding bioinformatics manages and 
converts this data into valuable information in a time-sensitive manner. Data analytics: is the 
process of exploring and analyzing large datasets to find hidden patterns, unseen trends, discover 
correlations, and derive valuable insights to make predictions. It improves the speed and efficiency 
of your agriculture. Mobile devices (smart phones): is equipped with various sensors are opening 
new opportunities for rural farmers who previously had limited access to up-to-date agricultural 
information like market, weather, and crop disease news. Digital services: refers to the electronic 
transfer of information including data and content across numerous platforms and devices like web 
or mobile. Geographic information system (GIS): is a computer system that analyzes and displays 
geographically referenced information. It uses data that is attached to a unique location. GIS is 
being merged with unmanned aerial vehicles (UAVs) to plan, construct, and implement various 
agricultural practices. The Internet of Things (IoT): describes the network of physical objects 
(“things”) that are embedded with sensors, software, and other technologies for the purpose of 
connecting and exchanging data with other devices and systems over the Internet
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The world’s agri-food system is increasingly subject to constraints, especially 
since it relies on a number of nonrenewable resources that are becoming scarcer 
(fresh water, phosphorus, oil, cultivable soil, etc.). This system will soon exert 
its impact over climate change, both directly (extreme weather events, drought, 
etc.) and indirectly (melting glaciers, proliferation and spread of harmful species 
of organisms and diseases, rising sea levels) (UNESCO 2019). The collapse of 
biodiversity in seeds, pollinators, crop auxiliaries, etc. are looming large that 
endangers many ecosystems (FAO 2019a, b). Conflicts over the use of land and 
water will also increase with the use of biomass for energy and the implementation 
of afforestation/reforestation programs to capture CO2. This is also known as 
“negative emissions” technique that now substantiates all IPCC scenarios limiting 
the temperature increase to 2 ◦C. In addition, the yield of cereals deemed critical 
for food security as their yields seem to have reached a plateau (Maurel et al. 2022) 
(see Iddio et al. 2019 for a comprehensive review). 

In many parts of the world, climate change has caused many irregular and 
extreme weather events (Li et al. 2021). Different parts of the world have begun 
experiencing intense drought, hurricanes and storms, and floods as a result of global 
warming (FAO 2021). Additionally, agricultural production success varies based on 
the complex environmental effects of global warming and climate change, both in 
the short and long term (Hatfield et al. 2011). Extreme heat, extreme cold, wetness, 
and dryness all have a deleterious impact on plants (Hatfield and Prueger 2015; 
FAO 2019a, b). Trade conflicts, epidemic and vegetative diseases, rising seed and 
fertilizer prices and wages, flash floods, heatwaves, and other weather variations 
all have a negative impact on agriculture. However, as evidenced by agriculture’s 
contributions to greenhouse gas emissions, water pollution, and biodiversity loss 
(Springmann et al. 2018), major agricultural systems are on largely unsustainable 
trajectories. Countries must create policies and programs in a sustainable manner if 
they are to overcome these obstacles and satisfy future demands. The best ways 
to achieve sustainable agricultural development are to continue the process of 
innovation using contemporary genetic and information technologies to increase 
agricultural productivity while balancing economic, environmental, and social 
outcomes related to food and agricultural systems (Basso and Antle 2020). 

Industrial agriculture has a substantial negative impact on the ecosystem as a 
result of human activity, which today controls almost all biogeochemical cycles on 
Earth (Park et al. 2016). Production from industrial agriculture is expected to rise 
by 100–110% between 2005 and 2030, which calls for substantial inputs of finite 
resources like fresh water, soil with sufficient sunlight, and nonrenewable nutrients 
(e.g., phosphorus) (Cordell et al. 2012). The degradation of soils, aquifer depletion, 
saltwater-intrusion, runoff and eutrophication, and emissions (e.g., CO2, N2O, etc.), 
contributing to global warming and resource scarcity are all effects of modern 
intensive agriculture (Cohen et al. 2022). In particular, this is because farmers 
frequently lack sufficient measuring, modeling, and dynamic control mechanisms to 
optimize inputs for plant growth (Dawson and Hilton 2011). Moreover, losses from 
farm to fork in the form of food waste can reach as high as 40% due to extended 
supply chains (Cohen et al. 2022).
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The present emphasis is on reducing water, energy, and material use in agriculture 
as access to water and material resources becomes more challenging due to climate 
change and population expansion (Cohen et al. 2022). Regional decentralized con-
trolled environment agriculture is one suggestion for enhancing the sustainability 
of vegetable production. The benefit of this is that practitioners can precisely 
control environmental effects, including nutrient application, water use efficiency, 
and lighting. Hydroponics or soilless culture feeds nutrients and water directly to 
the plant by employing recirculation (where the substrate is reused in the system 
until the nutrients are exhausted) or flow-through substrates (Silberbush et al. 2005). 
Controlled environment agriculture (CEA) can be used to grow vegetables and high-
value commodities in any environment with outstanding water, soil, and fertilizer 
efficiency, since local production reduces transportation costs (Van Ginkel et al. 
2017). Contrary to conventional field agriculture, CEA offers more effective nutrient 
usage while using up to 80% less land and nearly 90% less water (Carmassi et al. 
2007). 

In order to manage soil, climate, and genetic resources at the field and landscape 
scales, digital agriculture uses a collection of geospatial and digital information 
technologies that integrate sensors, analytics, and automation (Basso and Antle 
2020). Big data, the Internet of Things (IoT), augmented reality, robotics, sensors, 
3D printing, system integration, ubiquitous connectivity, artificial intelligence, 
machine learning, digital twins, and blockchain are just a few of the technologies 
that make up digitalization (Alm et al. 2016) (Table 1), which is anticipated to 
fundamentally alter daily life (Klerkx et al. 2019, food, fiber, and bioenergy supply 
chains and systems) and agricultural productivity processes. According to Rotz et 
al. (2019), the early indications of transition are already apparent. 

Several concepts have emerged with digitalization in agricultural production 
systems, value chains and more broadly food systems. These include smart farming, 
precision agriculture or precision farming, decision agriculture, digital agriculture, 
agriculture 4.0, or what is referred to in French as Agriculture Numérique (i.e., 
numerical agriculture) (Rose and Chilvers 2018; Klerkx et al. 2019). On-farm 
management duties that take into account location, weather, behavior, phytosanitary 
status, consumption, energy use, prices, and economic data are all included in 
digitalization. This is done with the aid of sensors, equipment, drones, and satellites. 
Through ongoing monitoring or targeted big data science inquiries, the data so 
acquired is then utilized to understand the past, anticipate the future, and make 
more timely or correct judgments (Ingram and Maye 2020). These developments 
have mostly concentrated on deploying technologies for enhancing post-farmgate 
operations, postharvest quality monitoring, and real-time traceability (Rutten et al. 
2013; Wolfert et al. 2017). This claim is supported by a variety of reviews on 
subjects such precision farming, big data analysis, drones, artificial intelligence, 
robots, 3D printing, and the Internet of Things (IoT), as well as their potential to 
enhance agricultural production systems, value chains, and food systems (Bertoglio 
et al. 2021). For instance, yield stability maps show regions that have consistently 
high production throughout time, regions with poor productivity, and other regions 
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Table 1 Technologies used in digital agriculture 

Robotics Agricultural robots are for increasing production yields. From drones to 
autonomous tractors to robotic arms, the technology is being deployed in 
creative and innovative applications. Some of the most common robots are 
the following: harvesting and picking, weed control, autonomous mowing, 
pruning, seeding, spraying and thinning, phenotyping, sorting and packing, 
and utility platforms. Robots can achieve to improve the size of yields and 
reduce waste from crops being left in the field 

IoT and 
sensors 

The Internet of Things is utility of Internet for various operational purposes. 
IoT becomes operational through sensors. Sensors are devices that detect and 
respond to changes in an environment. Inputs can come from a variety of 
sources such as light, temperature, motion, and pressure. Sensors provide 
valuable information through a network, and they can share data with other 
managerial information systems. The sensor attains a physical parameter and 
converts it into a signal suitable for processing (e.g., electrical, mechanical, 
optical). The output of the sensor is a signal which is converted to a 
human-readable form, like changes in characteristics, changes in resistance, 
capacitance, impedance, etc. 

Artificial 
intelligence 
(AI) 

In contrast to the intelligence exhibited by humans or other animals, artificial 
intelligence (AI) refers to the perception, synthesis, and inference of 
information made by computers. The term “intelligence” refers to the 
capacity for knowledge, reasoning, abstraction, and inference of meaning 

Deep learning 
(DL) 

It is simply a neural network with three or more layers and is a subset of 
machine learning. These neural networks make an effort to mimic how the 
human brain functions; however, they fall far short of being able to match it, 
enabling it to “learn” from vast volumes of data. Additional hidden layers 
can help to optimize and refine for accuracy even if a neural network with 
only one layer can still make approximation predictions 

Drones and 
satellites 

While drones record data in real time, they lack the hard drives necessary to 
store the vast amounts of digital data that satellites are designed to hold until 
they can be recovered and used. In order to provide more accurate 
measurements on a particular location, drones can also use GPS 

Extended 
reality and the 
metaverse 

Extended reality (XR) enables users to constantly access internet content 
thanks to the metaverse, which also makes considerable use of 3D visuals. 
From augmented reality (AR) to mixed reality (MR) to virtual reality (VR), 
XR technologies cover a broad range of immersive technologies 

Virtual reality 
(VR) 

With images and things that seem real, a virtual reality (VR) environment 
gives the user the impression that they are completely engrossed in their 
surroundings. A virtual reality headset, helmet, or other equipment is used to 
view this environment 

Block chain A blockchain is a type of distributed database or ledger – one of today’s top 
tech trends – which means the power to update a blockchain is distributed 
between the nodes, or participants, of a public or private computer network. 
This is known as distributed ledger technology, or DLT 

Data analytics Analyzing data collections to identify trends and make judgments about the 
information they contain is known as data analytics (DA). Data analytics is 
increasingly carried out with the use of specialized hardware and software 

Cloud 
connectivity 

The capacity to connect two resources within a cloud, across clouds, and 
with on-premises data centers is referred to as cloud networking. A cloud 
service provider must offer the following three main forms of connectivity: 
site-to-cloud, the connection between cloud resources, and on-premises 
hardware 
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Fig. 2 DA in agricultural systems. DA can be used to design and implement sustainable 
agricultural systems at farm and landscape scales. With the use of stability maps, DA can help 
redesign fields or subareas within fields that are unprofitable or environmentally unsustainable and 
sustainably intensify high-yield areas of the field knowing that these can respond to more inputs. 
(Courtesy: Bruno Basso, Michigan State University; Nature Sustainability, doi: https://doi.org/ 
10.1038/s41893-020-0510-0) 

that have yields that fluctuate over time. Stability maps can be used by DA to 
redesign unprofitable or environmentally unsustainable fields or portions of fields, 
as well as sustainably intensify culture in high-yield regions that respond to more 
inputs (Fig. 2). 

1.2 Controlled Environment Agriculture (CEA) 

Controlled-environment agriculture (CEA), which deals with sophisticated horticul-
tural practices and technological advancements, first gained popularity in the 1960s 
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Fig. 3 Arable land per capita from 1960 to 2050. (FAO 2011) 

(Hodges et al. 1968). Controlled environments (CEs) promote production efficiency, 
optimize plant yield, and enhance product quality by providing predictions on how 
plants will appear in their surroundings. The market has recently seen a rise in 
demand for locally sourced food. According to Eaves and Eaves (2018), this is 
accomplished through CEA, which covers small- (in-home production or indoor 
gardens), medium- (community gardens), or large-scale commercial operations. 
The ability to alter production environments to increase plant quality and output, 
lengthen growing seasons, and allow crop production under unfavorable climatic 
conditions (e.g., wind, rain, extremely high temperatures, and inadequate light) 
is a fundamental advantage of CEA. The two most prevalent types of CEs used 
in urban agriculture (UA) are greenhouses and plant factories (PFs). Due to 
the decreasing amount of arable land, such systems are unavoidable (Fig. 3). 
Controlling greenhouses presents a particular difficulty, because it calls for systems 
that can adapt to the microclimatic factors and constantly shifting environmental 
circumstances. The expense of heating and cooling greenhouses can account for 70– 
85% of the overall operating cost in northern latitudes and harsh climates (Engler 
and Krarti 2021). 

1.2.1 CEA Facilities 

All CEA facilities are included under the general term “urban agriculture” (UA). 
CEA, on the other hand, is merely a portion of UA as a whole that has conditioned 
spaces. There are many different kinds of CEA facilities, including greenhouses, 
plant factories, rooftop gardens, and vertical farms. The market for indoor farming 
was estimated to be worth 38.7 billion USD in 2022 and may rise to 96.6 billion 
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by 2032. The market share now owned by Europe is the greatest, but due to 
their geographic constraints and economic development, India, China, Mexico, 
and Singapore are experiencing significant expansion (Specht et al. 2013). At the 
moment, greenhouses hold 70% of the market. The common CEAs include vertical 
farms, rooftop gardens, planned factories with artificial lighting, hydroponics, and 
aquaponics. 

Scissor lifts, ladders, stairs, or stacked A-frames are frequently used in vertical 
farms (VFs) to raise crops vertically (Beacham 2019). In comparison to traditional 
farming, VFs can stack these plant beds to boost agricultural yields by 10–100 times 
(Fig. 4). The annual growth of VFs is so exacting that it reported using almost twice 
as much water as traditional farming (Tong et al. 2016) while growing at a rate that 
was nearly two times as fast. Building rooftop gardens (RTGs) requires minimal to 
no structural upgrades. RTGs are marketed as energy-efficient building components, 
because they can lower both the winter and summer heating and cooling loads. If 
implemented on a number of buildings, greening the roofs could also aid in reducing 
the impacts of urban heat islands (Fig. 5). 

The advantages of RTGs are used in many building integrated agriculture (BIA) 
applications to produce energy-efficient CEAs (Benis et al. 2017; van Delden et 
al. 2021). Artificial lighting plant factories (PFALs) are often referred to as closed 
plant production systems (CPPS), which are totally sealed off from the outside 

Fig. 4 Vertical farming 
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Fig. 5 RTGs (rooftop garden)
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Fig. 6 Hydroponics 

(Kozai 2019). They are often built in a building that resembles an airtight warehouse, 
with rows of tall, stacked plant beds that are illuminated artificially. Comparing the 
profitability of growing leafy vegetables in a greenhouse with a PFAL, the latter has 
an internal rate of return that can reach 35% (Eaves and Eaves 2018; Avgoustaki 
and Xydis 2020). There is some crossover between different CEA facilities, as a 
completely insulated VF or RTG could also be considered to be a PFAL (Zhuang et 
al. 2022). 

Hydroponic crop cultivation has a number of potential advantages, including 
as separation from soil- or water-borne problems (such as nematodes, salinity, or 
heavy metals). Control over water and nutrient uptake has improved. The topic has 
received positive reviews (Raviv et al. 2019; Jones Jr 2014). Crops grown utilizing 
soilless culture are frequently cultivated in troughs, bags, or containers to facilitate 
effective management of the root zone (Fig. 6). In their list of typical nutrient 
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sources for soilless cultivation, Raviv et al. (2019) mention raw irrigation water, 
fertilizers that are frequently incorporated into a substrate, substrate components, 
and a provision to modify the pH of the substrate. A thorough description of 
management techniques for soilless culture systems is given by Nelson (2012). 

Nutrient-film technique (NFT), deep-water culture (DWC; also known as deep-
flow method, raft, raceway, or floating hydroponics, among other names), and 
aggregate culture are hydroponic systems that are frequently employed in UA 
(Gómez et al. 2019). Crops grown in slanted troughs with a thin film of nutrient 
solution flowing over the roots (either constantly or sporadically) constitute NFT. 
Roots are continuously submerged in a nutritional solution in DWC systems. In 
aggregate culture, crops are grown in containers or on substrates that have been 
bagged, with drip systems used to apply nutritional solutions. For leafy greens 
and herbs, NFT and DWC systems are frequently employed. Aggregate culture 
is recommended for long-term fruiting crops including strawberry (Fragaria x 
ananassa), cucumber (Cucumis sativus), sweet pepper (Capsicum annuum), and 
tomato (Lycopersicon esculentum) (Gómez et al. 2019). 

For soilless culture, substrate selection is a critical. Primary substrate compo-
nents consists of >40% of the substrate volume. They are organic materials with 
low bulk density and high water-holding capacity like peatmoss and coconut coir 
fiber (Argo and Fisher 2002; Gómez et al. 2019). On the other hand, secondary 
components that consist of <40% substrate volume include expanded minerals like 
perlite, vermiculite, clays, sand, and composts that increase drainage and cation 
exchange capacity to increase aeration and nutrient retention (see Raviv et al. 2019 
for a review). 

1.2.2 Optimal Growth Conditions 

The CEA sector struggles to attain economic viability due to ineffective microcli-
mate and rootzone-environment management and excessive prices. Microclimate 
control, comprising light, temperature, ventilation, CO2, and humidity, is crucial for 
producing uniform, high-quantity, and high-quality crops (Ojo and Zahid 2022). 
The focus of the most recent 10 years’ research has been on the establishment 
of intelligent systems in CEA facilities, such as nutrient solution management 
for hydroponic farms and cloud-based microenvironment monitoring and control 
systems (Michael et al. 2021). According to Monteiro et al. (2018), artificial 
intelligence (AI) algorithms have also opened up new possibilities for intelligent 
predictions and self-learning. A subset of machine learning called deep learning 
(DL), which has a large presence in many contemporary technologies, has attracted 
a lot of interest in recent years. 

In order to automate watering in vertical stack farms and microclimate control, 
computer vision and deep learning algorithms have been used (Ruscio et al. 2019). 
This has made it easier for growers to carry out quantitative assessments for high-
level decision-making. A tiny indoor farm of less than 1500 ft2 requires three 
personnel to complete manual CEA, which is labor-intensive. However, intelligent 
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automation may be able to overcome these issues employing optical sensors coupled 
with DL-based prediction models (Namuduri et al. 2020). Several sensors, including 
cameras and LiDAR, are used to detect targets (Mendez et al. 2021). 

1.2.3 Optimal Growth Environment and Automation 

The crop quality and yield can be impacted by a number of indoor circumstances 
(Gibson 2018; Engler and Krarti 2021). The reported literature indicates four 
primary elements as being essential to creating ideal indoor growing settings: 

• Temperature 
• Humidity and transpiration 
• Chemical balances 
• Photosynthetic photon flux (PPF) 

Temperature Temperature influences the timing of plant growth events such as 
maturation, flowering, and fruiting, and seeding is temperature-influenced in most 
plants (Kozai et al. 2019). For example, warmer temperatures speed up the process 
until flowering occurs at ideal levels. Below this threshold temperature, flowering 
progresses slowly and eventually stops completely at the ceiling temperature (Engler 
and Krarti 2021). Stressing plants at the end of their life is standard procedure for 
all flowering and fruiting plants. Stresses are modulated to mimic the challenges 
that plants face in the wild before they die, including imposing drought conditions, 
reducing temperature and nitrogen levels. Graamans et al. (2018) estimated the 
growth rate of lettuce and found that the optimum temperature for photosynthesis 
is between 20 and 25 ◦C, the optimum for respiration is between 30 and 35 ◦C, 
and the optimum dry matter production is between 16 and 17 ◦C (Graamans et al. 
2018). LEDs are commonly used in CEA applications. It emits far less far-infrared 
radiation and is more energy efficient than traditional high-pressure sodium lamps 
used in greenhouses. Therefore, LEDs can help keep plants at the right temperature 
(Kozai et al. 2019). 

Humidity and Transpiration Plant transpiration is hampered by the high relative 
humidity at the CEA facility. Vapor pressure deficit (VPD) is used to determine 
how much water can be contained in the air around a leaf, depending on its 
surface characteristics and a given temperature. The ideal VPD range for many 
plants is between 0.8 kPa and 0.95 kPa (Kozai et al. 2019). Reduced VPD 
prevents transpiration, which leads to water storage by the plant, promotes the 
growth of fungus, and finally reduces output (Linker et al. 2011). Yet, higher VPD 
needs higher water consumption, potential loads, and heating, ventilation, and air 
conditioning (HVAC) requirements. Plant stomata have the capacity to completely 
close, stopping transpiration (Engler and Krarti 2021). Stomata, which are openings 
in the plant wall, are used for respiration. Stomata can detect changes in light, 
temperature, humidity, and CO2 concentration. The amount of water transpired is 
influenced by the root-shoot ratio, VPD, leaf area, and surface characteristics (Kozai 
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et al. 2019; Bramley et al. 2022). Deep roots enable a plant to store more water for 
transpiration by the shoot. In plants, larger leaves often absorb more water than 
smaller leaves. Plants with thick cuticles, thick cell walls, sunken stomata, or hairs 
can reduce the rate of transpiration in order to raise the boundary layer between the 
stomata and the sensible heat of the flowing air (Passioura and Angus 2010). It is 
assured that CO2 and water vapor will diffuse into the plant’s leaves by maintaining 
a horizontal airflow rate of 0.3–0.5 m/s. The ideal airflow for some plants, such 
as tomato seedlings, is 0.7 m/s, but generally speaking, airflows up to 1.0 m/s can 
unduly stress the plant. Additionally, natural convection caused by ventilation can 
stop overheating in the top rows of a CEA plant (Kozai et al. 2019). 

Chemical Balances Improved rates of nutrient intake, photosynthetic assimilation, 
and product nutritional value are all strongly associated with CO2 enrichment 
(Vanhove et al. 2011). Due to cost constraints, persistently gloomy weather, or 
high ventilation rates in hot regions, CO2 enrichment might only be practical for 
a small number of CEA sites (Li et al. 2018a, b). The production of biomass 
and amino acids in lettuce is said to be enhanced by a CO2 concentration of 
1000 ppm, monochromatic LED, and appropriate nutrient distribution (Miyagi et al. 
2017). Increasing nitrogen concentrations in recirculating hydroponic systems from 
100 mg/L to 400 mg/L increases lettuce yields by 0.8 kg m−2 in the fall, 2.6 kg m−2 

in the winter, and 2.3 kg m−2 in the spring (Djidonou and Leskovar 2019). For CEA 
facilities, tracer gases are utilized to measure air exchange rates. N2O or SF6 are 
frequently utilized tracer gases in construction sites and CEA facilities. Moreover, 
CO2 cannot be utilized in CEA facilities, since it can be absorbed by plants, despite 
the fact that it is employed as a tracer gas in other sectors. These gases’ resulting 
energy balance can be used to forecast the right ventilation rates, which would save 
operational expenses. The use of H2O as a tracer gas is now the subject of research 
(Engler and Krarti 2021). 

Photosynthetic Photon Flux (PPF) The photoperiod, or duration of the night, which 
characterizes the growth season for a specific latitude, determines flowering. While 
exposed to light, plants absorb CO2; when it is dark, they retain it. The level of CO2 
within a CEA facility is impacted by this pattern naturally (Li et al. 2018a, b). For a 
number of reasons, LEDs are preferable to incandescent, fluorescent, and HID bulbs. 
According to Graamans et al. (2018), LEDs installed in plant factories are often set 
at 52%, with the remaining 48% of power being distributed as sensible heat to aid 
in plants’ evapotranspiration. The suggested growing parameters for CEA facilities 
are available Table 2. 

Automation Automation in CEA or protected agriculture can be achieved through 
the implementation of the Internet of Things (IoT) (Shi et al. 2019a, b). A network 
of physical items that are equipped with sensors, software, and other technologies is 
known as the Internet of Things (IoT). These “things” are able to share real-time data 
with other linked devices and systems through networks because they are connected 
to the Internet. 
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With the development of agricultural sensor, wireless communication, cloud 
computing, machine learning, and big data technologies, IoT technology has grown 
and is progressively being promoted and used in the field of protected agriculture 
(Kamilaris and Prenafeta-Boldú 2018). It is playing an important role in many 
areas of protected agriculture due to its capacity to help farmers check soil quality, 
climatic change, and the health of animals and plants (Shi et al. 2019a, b). In the 
event that environmental variables alter above the predetermined threshold, IoT 
will automatically send an alert message to the administrator demanding that the 
hidden threat be eliminated. Additionally, according to Liu et al. (2018), it has the 
capacity to alter environmental factors like temperature, humidity, carbon dioxide 
concentration, and illumination in real time. 

Additionally, the IoT system’s cameras can capture crop diseases and insect pests 
in the greenhouse in real time, helping farmers to spot problems and put preventative 
measures into place (Ma et al. 2015). GPS, radio frequency identification (RFID), 
and other location-based sensors enable tracking and visual monitoring of produce 
during storage and transportation. Supermarket managers use their computer or 
smartphone to monitor and forecast product status and demand in order to get 
things on the shelves. Users and customers can obtain details on the variety, origin, 
processing, and other features of agricultural products by utilizing a QR code, 
barcode, etc. With the use of IoT for protected agriculture, a rural community may 
be constructed that is knowledgeable, connected, advanced, and adaptable. Cheap 
embedded devices can improve how people engage with the physical world. For 
further information on IoT, read the section on technology in DA. Big data, cloud 
computing, and edge computing can all provide insightful analysis and information 
that can be used to make decisions (Shi et al. 2019a, b; Quy et al. 2022). 

1.3 Challenges Facing Food Production and Food Supply 
Chain 

The food sector is crucial in providing the fundamentals and needs to support a 
range of human behaviors and activities (Cooper and Ellram 1993). In order for the 
food to reach the ultimate consumers by the due date, it must be stored, delivered, 
and retailed after it has been produced or harvested. According to reports, around 
1.3 billion tons (or about one-third) of the food produced each year is abandoned or 
wasted (Manning et al. 2006). Around 1 billion tons of food are wasted each year, 
with two-thirds of that occurring in the supply chain during harvest, shipping, and 
storage (Fritz and Schiefer 2008). Consider fruit and vegetables as an example. Due 
to inefficient and ineffective food supply chain management (FSCM), 492 million 
tons of such perishable food were wasted globally in 2011 (Gustavsson et al. 2011). 
FSCM is important to save our food as a result (see Zhong et al. 2017 for a review). 

The food supply chain has quickly evolved in recent decades, spreading inter-
nationally and engaging many more partners, making the supply chain longer and 
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more sophisticated than before. Today’s consumers expect exotic delicacies, fresh 
on their plates, year-round. As if things weren’t already challenging enough, the 
multiyear COVID pandemic shutdown in 2020 put even more strain on supply 
chains by closing down numerous restaurant and food service supply chains and 
raising the stakes for retail chains and direct-to-consumer food delivery (Huang et 
al. 2021). 

1.3.1 Blockchain Technology 

Blockchain technology, a sophisticated database system, permits open information 
exchange inside a business network. In a blockchain database, data is held in blocks 
that are linked together in a chain. The data is still constant in time, since the 
chain cannot be deleted or changed without network agreement. You can set up an 
unchangeable or immutable ledger using blockchain technology to manage orders, 
payments, accounts, and other transactions. The system’s built-in capabilities, 
which also prevent unauthorized transaction submissions, make it possible to see 
these transactions as a whole. 

1.3.2 e-Commerce Software 

A stand-alone program or software suite called e-commerce software gives the 
ability to sell your goods and services online. The front end, which is your website, 
makes it simple for customers to make purchases, while the back end allows you to 
streamline all of your procedures from inventory to sales. 

Each style of e-commerce software is available and can be customized to meet 
your objectives and financial constraints. Although it’s not a rule, the sort of e-
commerce website software you use usually depends on the size of your company. 
Software-as-a-Service, Platform-as-a-Service, or an on-premise platform that gives 
you control over the server and software used to offer your e-commerce website are 
all options for your e-commerce needs. 

1.4 Climate Smart Agriculture 

Climate change has imposed several adversaries to the planet ecosystem through 
erratic environmental fluctuations in temperature, rain pattern, and drought occur-
rence (IPCC 2018). The continuous changing scenario not only disturbs the crop 
growth and production but also affects the food security and the incidence of 
diseases (Chakraborty and Newton 2011). It has been unequivocally demonstrated 
that the climate change has set an impact on all the pathogen, host, and plant 
environment (Singh et al. 2023). Since agricultural productivity is crucially affected 
by plant diseases, the fluctuating climatic environment has led to different disease 
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related modalities, such as distribution pattern, resurgence, widespread infestation, 
and new pathotypes (Velásquez et al. 2018). Cases like intense Ascochyta blight in 
chickpea occurred due to infrequent late rainfall resulting in yield and quality losses 
(Addisu et al. 2023), and the shift in rainfall pattern due to an El Nino event has 
damaged lentil crop due to rust infestation in Ethiopia (Pathak et al. 2018). 

Since the dawn of agriculture, there have been technological developments, 
which have paved the way for improvement of crop plants and refining the crop 
cultivation and management. Plant breeding has witnessed genetic and agronomic 
interventions to enhance the pace and accuracy of plant selection (Wijerathna-Yapa 
and Pathirana 2022). Keeping in view of the population progression, declining land 
resources, and climate vagaries, there is a need to develop selection methods with 
more accuracy and precision. The advancement of artificial intelligence (AI) in the 
past decade has offered great potential to augment the climate smart agriculture. AI 
technology through the use of high-throughput genomics and phenomics methods 
can quicken the course of breeding new plant varieties (Khan et al. 2022; Harfouche 
et al. 2019). The machine learning tools have found their application in marker-
assisted selection, genomic prediction, and genomic selection (Esposito et al. 2020; 
Reinoso-Peláez et al. 2022). The tools including ML, deep learning, and predictive 
analysis can help in the analysis of complex, huge agricultural datasets to extract 
useful information about traits, and their associations of plant responses to stress 
conditions (Tong and Nikoloski 2021; Crane-Droesch 2018). Genomic technologies 
together with high-throughput phenotyping provide the trait related information to 
researchers to guide and notify the breeding methods to adopt for climate-smart 
breeding (Marsh et al. 2021). AI plays a vital role in integrating and handling the 
huge data by conducting association studies to identify genomic targets associated 
with disease response traits (Khan et al. 2022). Breeders can use the data for 
management of crop plants for their adaption to stresses and introgression through 
the use of genomic selection or genome editing tools (Harfouche et al. 2019). 

Plant diseases inflict severe losses on plant productivity and affect global food 
security. It has been demonstrated that the changing climatic factors worsen the 
conditions for resurgence of plant and crop diseases. This warrants the need of a 
greater understanding of the changing climate effects on crop plants in a spatial 
and temporal manner under realistic field scenario. The intervention of information 
technologies such as the Internet of Things (IoT), remote sensing, unmanned aerial 
vehicles, and artificial intelligence has revolutionized the agriculture (Gao et al. 
2020). These digital technologies have been pivotal in generating huge amount 
of data to aid the understanding of crop breeding for several applications, such as 
prediction of yield, weed and pest/disease detection and forecast, risk management, 
food safety, and spoilage inhibition. Kreuze et al. (2022) suggested the use of image 
detection from smartphones or unmanned aerial vehicles for monitoring of pest 
and disease and data handling for modeling, predictions, and forecasting regarding 
climate change in root, tuber crops, and banana. 

The deep learning tools have also found their place in agriculture, for weather 
forecast (Schultz et al. 2021). Neural networks are regularly used in the context 
of plant diseases, such as epidemiology or remote sensing (Zhang et al. 2005; 
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Selvaraj et al. 2019). In case of powdery mildew disease, UV-B light has shown 
good application for disease management in grapes and strawberry (Onofre et al. 
2021; Meyer et al. 2021). Application of pesticides on crops like grapes can be 
very well done using robotics systems (Oberti et al. 2016). Disease phenotyping 
often plays a crucial role in field grown plants, for example, in potato in the context 
of potato blight, efficient phenomics-assisted screening has been used for disease 
resistance (Gold et al. 2020). The deep learning and machine learning are also used 
to precisely categorize breeding germplasm for resistance to potato late blight (Gold 
et al. 2020), Rice hoja blanca virus (Delgado et al. 2019), and banana Xanthomonas 
wilt (Selvaraj et al. 2020). There have been several studies indicating that it is 
possible to go for early, nondestructive prediction of the onset of disease based on 
primary symptoms such as mild and small lesions by using imaging spectroscopy 
(Gold 2021). 

1.5 Technologies in DA 

The phrase “Internet of Things” was first coined in 1999 by computer scientist 
Kevin Ashton. While working at Procter & Gamble, Ashton promoted the use of 
radio frequency identification (RFID) chips to track products as they move through 
a supply chain. A five-layer IoT architecture was created by Shi et al. (2019a, b) 
based on the realities of protected agriculture and the expertise of other academics. 
In Fig. 7, these levels are succinctly proposed as a five-layer system. 

• Perception layer: This layer is made up of various sensors, terminal devices, 
farm machinery, wireless sensor networks (WSN), RFID tags and readers, etc. 
Common sensors include machines, wireless sensor networks (WSN), RFID 
tags and readers, and other objects. Common sensors include those that collect 
data on the environment, plants and animals and other agriculturally related 
sensors. These sensors can offer temperature, humidity, and wind speed data 
to agriculture. Data on variables, including temperature, humidity, wind speed, 
plant diseases, insect infestations, and animal vital signs, can all be collected with 
these sensors. Information has been acquired about plant diseases, insect pests, 
and animal vital signs. The gathered data is simply analyzed by the embedded 
device and uploaded to a higher layer through the network for additional 
processing and analysis. 

• Network layer: The infrastructure of the Internet of Things is made up of a 
converged network that consists of the Internet and various other communication 
networks. The transmission medium network is made up of the Internet and 
other communication networks. For the transmission, the medium can be either 
wired technology, such as CAN bus and RS485 bus, or wireless technology, 
such as Bluetooth, LoRa, and NB-IoT, as well as wireless technology, such 
as Zigbee. Agricultural data is also transmitted across the network layer using 
Bluetooth, LoRa, Zigbee, and NB-IoT. The network layer not only transmits 
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Fig. 7 Structure of IoT in protected agriculture. (After Shi et al. 2019a, b; courtesy: Sensors; doi: 
https://doi.org/10.3390/s19081833) 

different kinds of related information gathered by the perception layer to the 
higher layer, but it also sends control agricultural related information gathered 
by the perception layer to the higher layer and commands from the application 
layer to the perception layer, causing the related network layer devices to act 
appropriately. 

• Middleware layer: IoT may provide a range of services to fit a range of 
devices. Because each device’s technical requirements (CPU, power source, 
communication module, and system) are unique from the others, heterogeneity 
issues can occur. Different devices are unable to connect to and communicate 
with one another as a result. The middleware layer’s aggregation, filtering, and 
processing cause heterogeneity issues. The middleware layer collects, filters, and 
processes data from IoT devices, greatly lowering processing time and cost while 
providing developers with a more flexible tool to build their applications. It also 
simplifies the processes for introducing new hardware and software, facilitating 
its faster integration with existing systems and boosting IoT compatibility. 
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• Common platform layer: The organization, decision-making, summary, and 
statistics of agricultural data, as well as the creation of diagnostic analysis, 
forecasting, and early warning systems, are all responsibilities of the common 
platform layer. Machine learning, big data, edge computing, cloud computing, 
fog computing, diagnostic reasoning, and early warning and prediction are 
all part of this layer. An algorithm, extra commonly used core processing 
technologies, and its business model are all included in this layer. 

• Application layer: The value and utility of the Internet of Things are most clearly 
seen at here, the highest level of the architecture. This layer includes a number 
of intelligent platforms or systems for environmental monitoring and control 
of plants and animals, early warning and management of diseases and insect 
pests, and traceability of the safety of agricultural products. These systems can 
all improve production efficiency and save money and time. 

1.5.1 Crucial Technologies of IoT 

Sensor Technology In order to collect data about the environment, plants, and 
animals, sensors are crucial and one of the technological barriers in the development 
of the Internet of Things (Shi et al. 2019a, b). Around 6000 research and production 
groups, including well-known companies like Honeywell, Foxboro, ENDEVCO, 
Bell & Howell, and Solartron, are now working on sensor research, representing 
more than 40 different countries. The three most often used types of agricultural 
sensors are physical property type sensors, biosensors, and micro-electromechanical 
system (MEMS) sensors. The majority of temperature, humidity, and gas sensors 
fall under the category of physical property sensors, which convert signals by 
physically altering the material’s sensitivity. The biosensor (Li et al. 2018a, b) 
is primarily used to detect pesticide residue, heavy metal ions, antibiotic residue, 
and toxic gas and includes enzyme sensors (Zheng et al. 2015), microbial sensors, 
adaptive sensors (Jiao et al. 2018), etc. It transmits information based on the 
organism’s reaction to the outside environment. The MEMS sensor is a standout 
among the most recent research and development efforts in the area of dependable, 
affordable, and compact sensors (Negara et al. 2014). There could be hundreds, 
thousands, or even millions of nodes in a sensor network. The cost of each node 
needs to be kept to around $1 in order for the sensor network to be practicable; 
however, it is now as high as $80 (Shi et al. 2019a, b). 

Data Transmission Technology When compared to conventional transmission 
technologies like fieldbus, wireless communication technology offers advantages, 
including inexpensive construction and maintenance costs, low-power consumption, 
and great extensibility. In order to develop their WSN for environmental monitoring 
(Kumar and Hancke 2014), autonomous irrigation (Rajalakshmi and Mahalakshmi 
2016), and remote control (Revathi and Sivakumaran 2016), the majority of 
scientists, enterprises, and producers currently employ it. The heterogeneity of 
the IoT has been slightly increased as a result of businesses and research groups 
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developing their own wireless devices. Additionally, interference between wireless 
signals from several protocols that use the same band, such as Bluetooth, Wi-Fi, 
and ZigBee, is possible (Čolaković and Hadžialić 2018). Given its high power 
consumption and quick connection, Wi-Fi is a viable option for the deployment 
of sensor networks at fixed locations. Since Bluetooth has a small communication 
range, exceptional security, and high power consumption, it is perfect for short-
term, close-range networking. ZigBee offers the advantages of low consumption, 
low cost, and self-organization, because each node can serve as a relay station for 
data transmission between close-by nodes. As a result, it makes for the ideal long-
distance, large-range sensor networking and enables simple coverage expansion. 

WSN The WSN is a multi-hop self-organizing network system created via wireless 
communication in order to cooperatively sense, gather, and process various data 
about the observed item in the network coverage area (Srbinovska et al. 2015; 
Ferentinos et al. 2017). It is made up of a number of sensor nodes, the majority 
of which are battery-operated. It can be divided into terrestrial WSN and wireless 
subterranean sensor networks (WUSN). Lower frequency wireless solutions are 
preferred for agricultural sensors, which are often buried in the ground, because of 
WUSN’s low attenuation. In comparison to terrestrial WSN, WUSN also consumes 
more energy and has larger antennas (Ojha et al. 2015). IoT may no longer require 
a mesh-style WSN with power-based routing, where one node forwards packets of 
other nodes, as low-power wide-area network (LPWAN) technology develops. 

Cloud Computing Cloud computing is the on-demand provision of computer 
system resources, particularly data storage (in the form of cloud storage) and 
processing power, without the user’s active involvement. Cloud computing is a 
result of distributed computing, parallel computing, and network computing. A 
variety of hardware, infrastructure, platform, software, and storage services are 
offered for IoT applications via this Internet-based computing system. A system for 
dynamically assigning, deploying, monitoring, and reallocating pools of virtualized 
computing and storage resources is at the heart of it (Hashem et al. 2015). This 
system enables users to access compute, data storage, and platform services that 
adhere to quality-of-service criteria. This will have a significant impact on the 
expansion of IoT in agriculture. First, cloud computing has made it possible for 
farmers to store text, pictures, videos, and other types of agricultural data using 
inexpensive data storage services, which has considerably reduced the cost of 
storage for agricultural businesses (Nativi et al. 2015). Second, relying on farmers’ 
technical expertise to make decisions using this raw data is challenging. Cloud 
computing is the only technology that can support intelligent large-scale data 
processing systems (Ferrández-Pastor et al. 2016). Third, using cloud computing 
can create a safe environment for developing different IoT applications, such as 
monitoring agricultural activities (Botta et al. 2016). 

Edge Computing Edge computing, as defined by Satyanarayanan (2017), is a new 
computing model that makes advantage of calculations at the network’s edge. Any 
computer and network resources between the data source and the cloud computing 
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center path are referred to as the edge of edge computing. Cloud services are 
represented by the edge’s downlink data, IoT services are represented by the edge’s 
uplink data, and both are represented by the edge’s uplink data. Edge hormone, 
which shifts some of the computing activities to the network edge device, can 
improve data transmission performance, guarantee real-time processing, and lower 
the computational load on the cloud computing center. Because processing occurs 
close to the source rather than in the cloud, edge computing also provides greater 
data security (Shi et al. 2019a, b). 

Machine Learning A sophisticated method known as machine learning (ML) 
allows computers to learn new knowledge, continuously improve their performance, 
and reach perfection. Theoretical, algorithmic, and practical advances in machine 
learning have been made recently (Biamonte et al. 2017), and it has been combined 
with other agricultural technologies to optimize crop output while reducing input 
costs (Shi et al. 2019a, b). The main machine learning methods include naive 
Bayes, discriminant analysis, K-nearest neighbor, support vector machines (SVM), 
K-means clustering, fuzzy clustering, gaussian mixture models, artificial neural 
networks (ANN), deep learning (Ojo and Zahid 2022), decision tree algorithm, 
and others (Edwards-Murphy et al. 2016). A theoretical framework for agricultural 
decision-making is provided by ML, which can make accurate predictions, reveal 
the internal linkages between jumbled, modelless, and complex agricultural data 
and discover these relationships. Machine learning technologies are useful for 
intelligent irrigation planning, crop breeding, disease detection, pest and disease 
prediction, and agricultural expert systems (Russell and Norvig 2018). For instance, 
historical farming data may be examined using machine learning technology, along 
with crop productivity under varied climatic conditions and the inheritance of a 
particular phenotype. Furthermore, by utilizing ML technology, it is feasible to 
look at association rules and then develop a probability model to identify the genes 
that are most likely to be involved in the expression of a particular desired trait 
in the plant (Montesinos-López et al. 2019). This can help the breeding specialist 
create a breeding experiment that will be effective. The method used three processes 
to identify the maturity of a single intact tomato using machine learning: pixel-
based segmentation, blob-based segmentation, and individual fruit detection. Using 
criteria including color, shape, texture, and size, decision trees were built in the first 
two steps and then utilized to segment photos. The different fruit of each tomato 
was finally automatically identified using the X-means clustering technique. Their 
method has a precision of 0.88 and a recall of 0.80, per the results of the tomato 
detection picture test (Kyosuke et al. 2014). 

Big Data Protected agriculture generates millions of dynamic, intricate, and geo-
graphical data points, including soil databases, greenhouse environment data, 
animal vaccination records, and government investment data. Contrary to relational 
data structures, which logically express themselves using two-dimensional tables, 
agricultural data is more unstructured and contains many hypermedia elements, 
including expert experience, knowledge, and agricultural models in the form of text, 
charts, pictures, animations, and voice/video. The four characteristics that best sum 
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Fig. 8 Big data technology 

up how “big” these data are volume, velocity, diversity, and honesty (Zhou et al. 
2016). Big data technology can find new knowledge, discover hidden connections 
within a data collection, and provide data support for subsequent processes. This 
is done by employing information mining and other techniques. The methods that 
are most frequently used to deal with big data technology are image processing, 
modeling and simulation, machine learning, statistical analysis, and geographic 
information systems (GIS) (Kamilaris et al. 2017) (Fig. 8). 

1.5.2 IoT and Plant Management 

By using greenhouse technology, which is partially uncontrolled by the natural 
environment and promotes the intense and efficient use of agricultural resources, 
protected agriculture, as opposed to open-field farming, offers a more favorable 
and manageable environment for crop growth. Numerous studies have shown that 
building and testing various monitoring and control systems to alter greenhouse 
environmental parameters, like air temperature and humidity, light intensity, and 
CO2 concentration, are both technically feasible and economically viable (Sreekan-
tha and Kavya 2017). At the early phases of IoT development, the environmental 
data are simply processed and frequently provided in sheet and plot form (Mat et al. 
2016). 
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Fig. 9 Conceptual image of IoT-based agricultural solutions 

With the development of cloud computing, ML, etc., IoT solutions may easily 
achieve smart data processing and analysis at low cost and in a straightforward 
manner (Elijah et al. 2018). Deng et al. (2018) built a closed-loop control system 
in a factory that makes salad-growing plants based on the kinetic model. Zamora-
Izquierdo et al. (2019) developed a low-cost smart agricultural Internet of Things 
infrastructure based on edge and cloud computing for soilless culture greenhouses. 
There were three parts to the platform: local, edge, and cloud. While the edge 
component handled primary management responsibilities and might improve the 
stability of these systems, the local component dealt with data collecting and 
automatic control via cyber-physical systems. Data analyses were performed by 
the cloud component. When compared to a standard open control, the platform 
conserved more than 30% more water (Liao et al. 2017). According to Zamora-
Izquierdo et al. (2019), an online watering system for hydroponic greenhouse 
crops increased water and fertilizer use efficiency by 100%. Liao et al. installed 
an IoT-based system in an orchid greenhouse to monitor environmental factors 
and the growth status of Phalaenopsis. The suggested method might provide high 
spatiotemporal resolution quantitative data to flower growers and aid in the future 
improvement of phalaenopsis farming practices (Katsoulas et al. 2017). For a 
conceptual representation of IoT-based agricultural solutions, see Fig. 9. 

Crop growth is greatly threatened by diseases and insect pests, and conventional 
technology and chemical prevention have several drawbacks and harmful effects 
(Larsen et al. 2019). Because of the development of IoT, crop disease and pest 
control now have more intelligent and effective solutions. Numerous IoT sensor 
types may collect information about location, greenhouse environment state, crop 
development, and pest situation anywhere in real time, helping farmers to keep an 
eye on agricultural pests and diseases. Following transmission to cloud data centers, 
the raw data and photos are processed and evaluated using a range of models and 
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algorithms based on different diseases and pests (Pixia and Xiangdong 2013). The 
following services are often provided to farms by these cloud computing facilities: 
disease or pest detection, disaster warning and warning of approaching calamities, 
and expert system-recommended governance activities. The diagnosis and early 
warning of agricultural illnesses, as well as online monitoring, should therefore be 
the main areas of future research. 

The source of all IoT data is sensing. The agri-food industry produces a 
significant amount of heterogeneous datasets with the help of many IoT devices, 
both in terms of content, structure, and storage type (Lokers et al. 2016). According 
to Ahmed et al. (2019), big data frequently demonstrates heterogeneity, variety, 
unstructuredness, noise, and excessive redundancy. Such enormous datasets require 
sophisticated methods for data curation and storage, as well as time-consuming 
statistical methods and programing models to extract relevant data. The knowledge 
required to understand the state of the (agri-food) system is produced through the 
preprocessing and conditioning of raw data. By employing sophisticated algorithms, 
observing the system’s performance in respect to the desired outcomes, and allow-
ing the system to make independent localized judgments and take the necessary 
actions, a system can be created capable of doing so. An IoT system is deemed 
“intelligent” when it reaches this level of independence, which permits autonomy in 
sensing, decision-making, and actuation (Misra et al. 2022). 

1.5.3 AI in Digital Agriculture 

The imitation of human intelligence functions by machines, especially computer 
systems, is artificial intelligence. Vendors have been rushing to highlight how AI 
is used in their goods and services as AI buzz has grown. Frequently, what they 
classify as AI is just a part of the technology, like machine learning. For the creation 
and training of machine learning algorithms, AI requires a foundation of specialized 
hardware and software. Python, R, Java, C++, and Julia all offer characteristics 
that are well-liked by AI engineers, yet no one programing language is exclusively 
associated with AI. 

In commercial IT, the phrases artificial intelligence (AI), machine learning (ML), 
and deep learning (DL) are frequently used interchangeably (van Dijk et al. 2021) 
(Fig. 10a). However, there are differences. The 1950s saw the invention of the term 
“AI,” which describes devices that mimic human intelligence. As new technologies 
are created, it encompasses a set of skills that is constantly changing. Machine 
learning and deep learning are examples of technologies that fall under the category 
of AI (Madakam et al. 2022). With the aid of machine learning, software programs 
may predict outcomes more accurately without having to be expressly programed 
to do so. In order to forecast new output values, machine learning algorithms use 
historical data as input. The availability of big datasets for training increased the 
effectiveness of this strategy significantly. Deep learning, a branch of machine 
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Fig. 10 (a) The phrases artificial intelligence (AI), machine learning (ML), and deep learning 
(DL) are frequently used interchangeably. (b) AI-based technologies assisting to increase effi-
ciency across all fields 

learning, is based on our knowledge of the anatomy of the human brain. Recent 
developments in AI, such as self-driving cars and ChatGPT, are underpinned by 
deep learning’s usage of artificial neural networks’ structure. 
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In addition to managing the challenges faced by various industries, including the 
various fields in the agricultural sector, such as crop yield, irrigation, soil content 
sensing, crop monitoring, weeding, and crop establishment, AI-based technologies 
also help to increase efficiency across all fields (Kim et al. 2008) (Fig. 10b). 
In order to supply high-value AI applications in the aforementioned industry, 
agricultural robots are constructed (Talaviya et al. 2020). The agricultural industry 
is experiencing a problem as a result of the rising worldwide population. AI has the 
ability to provide a crucial remedy. AI-based technical advancements have allowed 
farmers to increase output while using less input, improve output quality, and ensure 
a quicker go-to-market for the produced crops. Farmers were using 75 million linked 
devices in 2020 (Talaviya et al. 2020). The typical farm is anticipated to produce an 
average of 4.1 million data points per day by 2050. 

Over the past few decades, the agriculture production systems have had a great 
deal of difficulty due to changes in the climate, rising production costs, declining 
water supplies for irrigation, and an overall decline in farm labor (Jung et al. 
2021). In addition, the COVID-19 pandemic poses a threat to the disruption of 
supply chains and food production. Such elements pose a risk to the environment’s 
sustainability as well as the continuity of the current and future food supply chain. 
To keep ahead of the ongoing effects of climate change, significant inventions are 
constantly required (Talaviya et al. 2020). The obvious challenge here is how to 
produce enough food to feed the world’s expanding population. The various ways 
in which AI has contributed in the agricultural sector are as follows: 

Image Perception and Recognition 
According to Lee et al. (2017), there has been an increase in interest in autonomous 
UAVs recently. Some of these applications include recognition and surveillance, 
human body detection and geolocation, search and rescue, and the detection of 
forest fires (Tomic et al. 2012). Drones or unmanned aerial vehicles (UAVs) 
are becoming more and more popular because of their adaptability and amazing 
imaging technology, which ranges from delivery to photography, the ability to be 
piloted with a remote controller, and the devices’ dexterity in the air, which allows 
us to do a lot with these devices. 

Workforce and Skills 
Artificial intelligence enables farmers to compile vast amounts of data from 
public and government websites, analyze it all, and give farmers answers to many 
ambiguous problems (Panpatte 2018). It also gives us a smarter way of irrigation, 
which increases the farmers’ yield. A combination of technology and biological 
talents will be used in farming in the near future as a result of artificial intelligence, 
which will not only improve quality for all farmers but also reduce their losses and 
workloads. According to the UN, by 2050, two-thirds of the world’s population 
would be living in cities, necessitating a reduction in the load on farmers (Talaviya 
et al. 2020). AI in agriculture can be used to automate many operations, reduce risks, 
and give farmers with relatively simple and effective farming. 
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Increase the Output 
Variety selection and seed quality determine the maximum performance level for all 
plants (Ferguson et al. 1991). Emerging technologies have aided in crop selection 
and even improved the selection of hybrid seed options that are most suited to 
farmer demands. It has been implemented by studying how the seeds react to varied 
weather conditions and soil kinds. Plant diseases can be reduced by gathering this 
information. We can now meet market trends, yearly outcomes, and customer needs, 
allowing farmers to maximize agricultural returns more efficiently. 

Farmers’ Chatbots 
The conversational virtual assistants that automate conversations with users are 
known as chatbots. With the use of machine learning and artificial intelligence-
powered chatbots, we can now understand natural language and communicate with 
users more personally. Agriculture has made use of this facility by supporting the 
farmers in receiving answers to their unanswered queries, for offering them counsel, 
and for providing other recommendations as well. They are mostly equipped for 
retail, travel, and media. 

Machines that are used on farms to hoe and harvest crops, perform weeding, use 
drones to spray weeds and pesticides, and gadgets used in automatic milking are 
a few examples of AI-based agricultural technologies (Ryan et al. 2021). Robotics 
have assisted in an 80% reduction in the amount of herbicides sprayed on crops 
(Revanth 2019). According to studies, this optimization can reduce pesticide and 
herbicide costs by 90% while also protecting the environment from the negative 
consequences of chemical use (Revanth 2019). Drone-captured images of crops can 
be utilized for a variety of purposes, including nutrient deficiency monitoring, farm 
animal health monitoring, and agricultural cultivation optimization (Marvin et al. 
2021). 

On the basis of a given dataset, machine learning (ML) creates algorithms 
that learn to carry out particular tasks. It is a branch of artificial intelligence 
that is extensively employed in both academia and business. Between supervised 
and uncontrolled learning, there are significant differences. A predictive model is 
improved through supervised learning by setting its parameters to perform well on 
labeled training data, which consists of inputs and known outcomes. The generated 
models can then forecast new test data that hasn’t yet been seen. On the other 
hand, unsupervised learning looks for patterns in unlabeled data. It is more difficult 
to quantify the performance of an unsupervised model compared to supervised 
methods (van Dijk et al. 2021). 

1.5.4 DL, Genomics and Breeding 

As was previously stated, there are two basic categories of ML problems: supervised 
and unsupervised. The goal of supervised learning is to create a model that 
associates predictors with target variables, such as histone marks, such as DNA 
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sequences. Target variables might be either continuous (regression) or categorical 
(classification). The prediction of regulatory and nonregulatory regions in the maize 
genome (Mejia-Guerra and Buckler 2019), the prediction of mRNA expression 
levels (Washburn et al. 2019), sequence tagging in rice (Do et al. 2018), plant stress 
phenotyping (Ghosal et al. 2018), and the prediction of macronutrient deficiencies in 
tomatoes (Tran et al. 2019) are a few examples of supervised learning applications. 
The issue becomes unsupervised if there is no information about the outcome in the 
data collection (Wang et al. 2020). 

In order to solve complicated biological challenges, deep learning has been 
utilized in the fields of genomics, transcriptomics, proteomics, metabolomics, and 
systems biology (Xu and Jackson 2019). Numerous studies demonstrated that 
DNA shape significantly influences the specificity of transcription factor (TF) 
DNA-binding (Lai et al. 2019). Chromatin accessibility assays (like MNase-seq, 
DNase-seq, and FAIRE) and other genomic assays (such microarray and RNA-seq 
expression) are only a few of the many data types that are available. The same is 
true for transcription factor (TF) binding, which can be studied using ChIP-seq 
data, gene expression profiles, DNA affinity purification sequencing (DAP-seq), 
and ampDAP-seq, which uses amplified and consequently demethylated DNA as 
substrates and histone modifications (Zampieri et al. 2019). 

Several deep learning techniques were created to model TF DNA-binding 
specificity and analyze these enormous datasets (Wang et al. 2020). Several deep 
learning-based techniques have been developed to predict in vivo TF binding. 
For instance, DeepBind can learn several motifs to forecast the binding sites of 
proteins that bind DNA and RNA (Alipanahi et al. 2015). Cell-specific TF binding is 
predicted by TFImpute (Qin and Feng 2017). In DeepSEA (Zhou and Troyanskaya 
2015), DeFine (Wang et al. 2018), and DFIM (Greenside et al. 2018), the impacts 
of functional noncoding variations were assessed. DRNApred was created (Yan and 
Kurgan 2017) to distinguish between residues that bind to DNA and those that bind 
to RNA. 

It is difficult to pinpoint the important genomic regulatory regions in species 
like maize, which have a large number of repeated elements and broad intergenic 
areas. In order to overcome these difficulties, techniques like k-mer grammars, 
which are based on natural language processing, have been employed to precisely 
and cheaply annotate regulatory areas in maize lines. Modeling transcription factor 
binding locations has benefited significantly from machine learning techniques. 
Several facets of plant biology have shown the effectiveness of machine learning 
models. For better in vivo transcription binding sites (TFBSs) prediction, they can be 
trained using several types of sequencing data, either separately or in combination, 
and they can also further integrate additional data, such as DNase I hypersensitivity 
data. 
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1.6 Remote Sensing Technologies 

The agricultural community now has a diagnostic tool thanks to remote sensing 
(RS) technology that may serve as an early warning system. This enables quick 
action to stop any problems before they spread widely and negatively impact crop 
productivity. The agricultural community now has access to a variety of RS options 
as a result of recent advancements in sensor technologies, data management, and 
data analytics. However, the agriculture business has not yet fully utilized RS 
technologies due to knowledge gaps about their sufficiency, suitability, and techno-
economic viability. The use of RS technologies in agricultural production has 
increased significantly over the past 20 years, while use of unmanned aerial systems 
(UASs) has increased significantly since 2015. The region that produced the most 
research articles concerning UASs was Europe (34% of the total), followed by the 
USA (20%) and China (11%) (Khanal et al. 2020). Prior RS research tended to 
concentrate more on soil moisture and crop health monitoring during the growing 
season and less on issues like soil compaction, subsurface drainage, and crop grain 
quality monitoring. 

Modern technology have always been used by agricultural research experts as 
they look for new methods to incorporate them into agricultural systems. Dynamic 
crop simulation models have proven helpful tools for integrating various agriculture 
system components and enabling us to investigate how those components operate 
within the system. Because of its ability to utilize huge data, which is now more 
readily available through the use of unmanned aircraft systems (UASs), it is 
currently attracting a lot of attention within the agriculture disciplines (Jung et al. 
2021). By enabling advanced analytics for managing agricultural systems, UAS 
offers a previously unheard-of-chance to increase production systems’ resilience 
and efficiency (Lezoche et al. 2020). 

1.7 Precision Agriculture Technologies for Crop Production 

Precision agriculture (PA) enables the agro-management by using advanced technol-
ogy sensor and analysis tools. PA employs a huge volume of data and information 
to progress the use of agricultural resources, yields, and the quality of crops (Singh 
et al. 2020) and drought-related decisions in agriculture (Rhee and Im 2017). The 
changing weather and its effect on ecosystem threaten crop production and food 
security for the present and future generations. Machine learning approaches have 
been applied for the management of agri-related factors such as water availability, 
soil fertility, environment and diseases/pests (Priya and Ramesh 2019). Smart, 
digital agriculture can also benefit from the integration of the IoT devices, smart 
systems, and sensors to enable farmer’s agri-practices (Chehri et al. 2020). Among 
the PA applications, remote sensors, GPS, GIS, and yield maps are among the most 
in use (Cisternas et al. 2020). Other tools that have shown great interest for PA 
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include UAVs and WSNs for diverse functions including aerial crop monitoring and 
smart spraying tasks (Radoglou-Grammatikis et al. 2020). 

PA ensembles a huge amount of information about the crop status or crop health 
in the growing season at high spatial resolution. Independently of the data source, 
the most crucial objective of PA is to provide support to farmers in managing 
their farming practices. Several agro-related variables, such as soil condition, 
plant health, fertilizer and pesticide effect, irrigation, and crop yield, have to be 
efficiently managed to realize higher yield and better crop growth under natural and 
environmentally challenging conditions (Abdullahi and Sheriff 2017). Monitoring 
all the above with precision is important for rational use of farming resources and 
their management (Wu et al. 2022). Remote sensing methods like satellite- and 
UAV-based hyperspectral imaging offer solutions as biophysical indicator maps 
during the various stages of crop growth cycle and seasons (Bégué et al. 2018; Wu  
et al. 2022) besides soil and plant health. Other tools like AI and ML have also been 
useful in precision agriculture for prediction and appraisal of crop yield, detection 
of diseases, and weeds (Liakos et al. 2018) (Figs. 11 and 12). 

1.8 Conclusion and Recommendations 

The use of big data in food production, along with the implementation of the 
Internet of Things (IoT), blockchain technology, artificial intelligence (AI), machine 
learning, cloud computing, as well as unmanned aerial vehicles (UAVs), and 

Fig. 11 Diverse applications of precision agriculture 
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Fig. 12 Crop yield prediction methods. (a) regression method; (b) biomass and harvest index; 
(c) crop growth model; (d) data-driven models. (Courtesy: Wu et al. 2022; doi: https://doi.org/ 
10.1093/nsr/nwac290) 

robotics, is referred to as framework of digital agriculture. The components of the 
digital agriculture framework are as follows: 

• Basic information databases pertaining to agriculture: These databases include 
essential information about farmland, genetic resources, weather patterns, social 
and economic contexts, etc. that is pertinent to agricultural activities. 

• A method for acquiring data that can be used to update databases and keep track 
of agricultural activities in real time (or almost real time). This system is made 
up of digital data collectors that are tasked with collecting information from 
aerial or satellite-based sensors, above- and below-ground sensors, and data on 
the weather, plants, and soil. 

• Digital network transmission system: This system is a sort of media that enables 
the distribution of commands and the gathering of data. 

• System for central processing in order to control the functioning of digital 
agricultural machinery, cyber physical system (CPS) assesses all the information 
amassed and develops feasible judgments using GIS, agricultural models, and 
expert systems. 

• Digitized agricultural machinery (DAM): This category comprises tools for 
harvesting, seeding, and managing fertilizer and water. As digital agricultural 
machinery performs CPS commands and returns processing results either directly 
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Fig. 13 Framework of digital agriculture (Radio frequency identification (RFID) refers to a 
wireless system comprised of two components: tags and readers. The reader is a device that has 
one or more antennas that emit radio waves and receive signals back from the RFID tag) 

or through a real-time (quasi real-time) information collecting system, it uses 
digital networks, GPS, and GIS to assist it (see Rijswijk et al. 2021 for details). 

The framework for digital agriculture is shown in Fig. 13. Each component is 
connected by a common data interface. A computerized agricultural system that 
uses core information databases to set the planting schedule for a year also monitors 
crop growth vigor and provides data on soil structure, water content, disease, 
weather, and other important elements. Digital agriculture technology is used to 
carry out a series of operations, such as planting, controlling water or fertilizer, 
harvesting, and sending the data back to CPS. CPS does thorough information 
analysis before making decisions. The whole analysis’ report is then produced by 
CPS. The interconnected development of each component is underlined in digital 
agriculture. The foundation for digital agriculture can only be laid when all the 
parts are perfectly connected and advance at the same time. The phrase “digital 
agriculture” cannot be used to describe a single element or a group of elements that 
are developing separately. 
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