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Preface

The world population is increasing at dramatic propulsion and the arable land is
decreasing at a faster pace. The looming climate change is expected to reduce
total yield of crops by 15-20% and poses a formidable task to increase food
production. Plant breeding has contributed significantly to sustainable food pro-
duction by recombining the desired genes in new cultivars from the available
gene pool. However, the yield potential of crops has plateaued threatening globally
sustainable food production and feeding ever-growing population worldwide facing
climatic changes. In addition, global warming may become disastrous to agriculture
production and food supply chain, especially with the appearance of new insects,
pests, and diseases, and some existing ones may disappear. New plant breeding
technologies like transgenics, molecular-marker-assisted breeding, mutagenesis,
and genome editing could contribute to sustaining crop production.

Agriculture that developed 12,000 years ago changed the way humans lived,
switching from nomadic hunter-gatherer life styles to permanent settlements and
farming. Agriculture went through three stages: traditional agriculture, technologi-
cally dynamic agriculture with low capital technology, and technologically dynamic
agriculture with high capital technology. Currently, emerging digital technologies
have the potential to be game-changers for traditional agricultural practices. These
changes are popularly known as “Agriculture 4.0,” indicating its role as the fourth
major agricultural revolution. The World Economic Forum announced that the
“Fourth Industrial Revolution” that includes agriculture will unfurl throughout the
twenty-first century. Hence, the year 2000 marks the beginning of Agriculture 4.0.
Digital agriculture (DA) is coming of age and has the motto to make farming prof-
itable and sustainable through using information-cum-communication technologies
and data science, ensuring safe and nutritious food affordable to all. The world’s
first entirely machine-operated crop was harvested in 2017, at an experimental farm
run by researchers from Harper Adams University, in Edgmond village, UK. About
5 tons of spring barley was harvested from the world’s first robotically tended
farm. Everything including sowing, fertilizing, collecting samples, and harvesting
was done by autonomous vehicles on the farm. This was a milestone in digital
agriculture, many times described as “smart farming,” or “e-agriculture.”
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DA originated from vertical farming and controlled environment agriculture
(CEA). CEA uses advanced computer-based technologies of physically collecting
information that is converted into a computer-readable language. This leads to
the development of tools and sensors integrated into the Internet of Things (IoT)
environment. Such innovations can enhance real-time analysis, machine learning,
and artificial intelligence to enable the management of massive amounts of data,
also known as big data. Artificial intelligence (AI) has greater potential in automated
irrigation, soil sensing, weed management, and biocontrol or biostimulant applica-
tions spraying to enhance the productivity in digital sustainable farming for better
economic benefits. Linear Al programming and yield mapping through machine
learning help to uncover patterns hidden within large-scale data sets that can be
used for crop planning and monitoring, production, and resource allocation. Light
quality and intensity, and CO» levels directly affect photosynthesis, transpiration,
water uptake, flowering, germination, internodal growth, etc. within the plant. These
attributes along with fertigation are crucial to have an effective and economically
controlled environment. Intelligent sensors, combined with visual data streams from
drones, use Al to detect areas most infected with pests. e-Agriculture is emerging
as a global community practice where people from all over the world exchange
information, ideas, and resources on sustainable agriculture and rural development.

Some of the technologies predominantly used in DA are robotics, IoT and
sensors, artificial intelligence (AI), drones, data analytics, remote sensing, and cloud
connectivity. Robots can milk cows, pick strawberries, cut papayas and represent a
global market share of over $5 billion. IoT and sensors have the ability to evaluate
the environment inside the farm or the uptake of moisture from the soil in real
time. Al already has a market value of $11.4 billion. AI competes with extension
agents, farming experts, consultants, and professional expertise. More likely, Al will
alter how those professions should function. Drones have the ability to go where
humans can’t and see things not readily observed from the ground which creates
real insights into pest protection, fertilizer and herbicide application, irrigation,
and harvest timing. Through data analytics, the world will store 175 zettabytes
of data by 2025. Every step in agriculture like crop selection, cultivation method,
harvesting, and supply chain management can be optimized by data analytics.
Remote sensing is being used for mapping soil properties, classification of crop
species, detection of crop water stress, monitoring of weeds and crop diseases,
and mapping of crop yield, in addition to sensing climate change. DA can assist
governments to improve their policy making and decisions to improve socio-
economic, environmental, sustainable, and climate research applications to enhance
the productivity and efficiency of a given system.

In this book, apart from introductory chapters, there are four sections dealing
with vertical farming and nurseries, IoT (Internet of Things) in agriculture, digital
agriculture roles in speed breeding/fast-forward breeding, precision agriculture
technologies, and predictive agriculture. Soilless smart agriculture systems, various
aspects of vertical farming, intelligent nutrient controlling systems, remote sensing
in precision agriculture and climate change, satellite imagery and crop modelling
applications of UAVs/drones, image-based plant phenotyping, smart IoT sensors
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and data science, digital yield predictions, crop phenomics and high-throughput
phenotyping, speed breeding for crop improvement, digital agriculture and for
protection against pests and diseases, sensors of plant health data analytics in
agriculture, data science and artificial intelligence, sensing systems for precision
agriculture, Al and machine learning models, predictive analytics and crop mod-
elling for future climate change adaptation are some of the chapters. All chapters
are thoroughly reviewed and revised before publication. We strongly believe this
book will be beneficial to researchers, students, policy makers, agriculturists, and
professionals working in high tech agro-industries.

We wish to profusely acknowledge Springer Nature for publishing this needy and
timely book.

Kottayam, Kerala, India P. M. Priyadarshan
Helsinki, Finland Shri Mohan Jain
Mumbai, India Suprasanna Penna

Al-Ahsa, Saudi Arabia Jameel M. Al-Khayri
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Abstract The agriculture industry has evolved significantly over the last 50 years.
Technology developments have led to larger, quicker, and more productive farm
equipment, enabling the more efficient cultivation of larger areas. Additionally,
improved irrigation, fertilizers, and seed have helped farmers to increase crops. New
technologies such as artificial intelligence, analytics, networked sensors, and others
may increase yields even further, improve the efficiency of water and other inputs,
and promote sustainability and resilience in cattle rearing and agricultural output.
Implementing such cutting-edge technologies is known as agriculture 4.0. But,
without a solid infrastructure for connectivity, none of this is practical. If connection
is successfully implemented in the industry, agriculture may add $500 billion in
value to the global GDP by 2030. This would lead to an increase of 7-9% over the
anticipated total and greatly relieve the pressure currently imposed on farmers. It is
one of just seven industries that will raise global GDP by $2 to $3 trillion over the
next 10 years because of better connectivity. World population is expected to grow
to 9.6 billion by 2050 that lead to significant increase in the demand for food. On the
other hand, the availability of natural resources like freshwater and productive arable
land is getting constrained year after year. Nearly 821 million people still suffer from
hunger. Digital agriculture, also known as smart farming or e-agriculture, is the use
of tools to collect, store, analyze, and disseminate electronic data and/or information
in agriculture.
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The present emphasis is on reducing water, energy, and material use in agriculture
as access to water and material resources becomes more challenging due to climate
change and population expansion. Controlled environment agriculture (CEA) can
be used to grow vegetables and high-value commodities in any environment with
outstanding water, soil, and fertilizer efficiency, since local production reduces
transportation costs. Contrary to conventional field agriculture, CEA offers more
effective nutrient usage while using up to 80% less land and nearly 90% less
water. Keeping in view of the population progression, declining land resources, and
climate vagaries, there is a need to develop selection methods with more accuracy
and precision. The advancement of artificial intelligence (Al) in the past decade
has offered great potential to augment the climate smart agriculture. Protected
agriculture, as against open-field farming, offers a more conducive and manageable
environment for crop growth through greenhouse technology, which is somewhat
unrestricted by the natural environment and encourages the intensive and effective
use of agricultural resources. Remote sensing (RS) is a diagnostic tool that can act
as an early warning system. Due to recent developments in sensor technologies,
data management, and data analytics, the agricultural community now has access
to a number of RS choices. All digital technologies that can be used in agriculture
to improve yield, plant protection and enhance nutritional quality are summarized
here.

Keywords Digital agriculture - Vertical farming - Controlled environment
agriculture - Sensors - IoT - Big data - Block chain - Supply chain - Robotics -
Remote sensing

1 Introduction

The agriculture industry has changed significantly over the last 50 years. Technol-
ogy developments have led to larger, quicker, and more productive farm equipment,
enabling the more efficient cultivation of larger areas. Additionally, improved
irrigation, fertilizers, and seed have helped farmers to increase crops. A new
revolution in agriculture is currently taking place, one that is being fueled by
connectivity and data (Mehrabi et al. 2021; Himesh et al. 2018). New technologies,
such as artificial intelligence, analytics, networked sensors, and others, may increase
yields even further, improve the efficiency of water and other inputs, and promote
sustainability and resilience in cattle rearing and agricultural output (Javaid et al.
2022). Implementing such cutting-edge technologies is known as agriculture 4.0.
(da Silveira and Amaral 2022). But, without a solid infrastructure for connectivity,
none of this is practical. If connection is successfully implemented in the industry,
agriculture may add $500 billion in value to the global GDP by 2030. This would
lead to an increase of 7-9% over the anticipated total and greatly relieve the pressure
currently imposed on farmers. It is one of just seven industries that will raise global
GDP by $2 to $3 trillion over the next 10 years because of better connectivity
(Goedde et al. 2020).



Digital Agriculture for the Years to Come 3

World agriculture is facing multiple challenges. World population is expected
to grow to 9.6 billion by 2050 that lead to significant increase in the demand for
food (Trendov et al. 2019). On the other hand, the availability of natural resources
like freshwater and productive arable land is getting constrained year after year.
Nearly 821 million people still suffer from hunger (FAO 2018). The agri-food
sector remains critical for livelihoods. There are more than 570 million smallholder
farms worldwide (Lowder et al. 2016). As per ILOSTAT, agriculture and food
production accounts for 28% of the entire global workforce (ILOSTAT 2019). If
the UN Sustainable Development Goal of “world with zero hunger” by 2030 has
to be achieved, then more productive, efficient, sustainable, inclusive, transparent,
and resilient food systems are prerequisites (FAO 2017). This calls for urgent
transformations in the agri-food system.

By 2030, the world’s water supply won’t be able to meet the demand, and
rising costs for energy, labor, and nutrients are already placing pressure on profit
margins. Before it can support large-scale agriculture once more, a fifth of the
world’s arable land needs to be repaired extensively. The need for more ethical and
sustainable agricultural practices, such as stricter guidelines for farm animal care
and reduced chemical and water use, is also being pushed by mounting societal and
environmental concerns. Environmental challenges include global warming and the
financial toll of extreme weather (Ebi et al. 2021). It is under such circumstances
the digital agriculture stems promise (Lajoie-O’Malley et al. 2020).

Digital agriculture, also known as smart farming or e-agriculture, is the use of
tools to collect, store, analyze, and disseminate electronic data and/or information
in agriculture (Shepherd et al. 2018). Digital technologies are being quickly
incorporated into agriculture. Big technology companies, small local enterprises,
and governments are designing and funding a variety of solutions aimed at creating
the “smart” farmer, from self-driving tractors to soil disease-detecting drones, from
milking robots to farm management apps (Pauschinger and Klauser 2022). The use
of “smart” technologies (Chugh et al. 2021) and “big data” (Protopop and Shanoyan
2016) as software-driven systems in agricultural production sites is sometimes
referred to as “smart farming.”

1.1 Facets of Digital Agriculture

Over the years, international agriculture experienced three main stages: primi-
tive agriculture stage, traditional agriculture stage, and modern agriculture stage.
Primitive agriculture undertook easy work by stoneware. Traditional agriculture
stage produced tools made of iron and wood. During modern agriculture, advanced
machines are used wherein agricultural economy ushered new heights. Current agri-
culture realizes information through digitalization. Digital agriculture is agriculture
driven by digits. It integrates data collection, data transmission, data processing,
digital control machinery, network, and automation (Bacco et al. 2019; Ingram
and Mayne 2020). These processes are coordinated by cloud computing with its
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arms like breeding informatics, analytics, mobile services, digital services, GIS,
UAVs, and Internet of things (IoT) (Fig. 1). By definition, digital agriculture (DA)
is the integration of new and advanced technologies to enrich the farmer and other
stakeholders within the agriculture value chain to enhance food production. Today
the term ““agricultural digitalization” refers to the process of integrating advanced
digital technologies like artificial intelligence, big data, robotics, unmanned aviation
systems, sensors, and communication net-works, all connected through the Internet
of Things into the farm production system (Lioutas et al. 2021; MacPherson et al.
2022).

DATA ANALYTICS
turn vast data into
information knowledge

BREEDING
INFORMATICS
Allow real-time data gathering
and information dissemination

Accelerates research
development for

MOBILE DEVICES
Eenetic gain 4

Cloud computing

enables data storage and real-time

reporting across value chain DIGITAL SERVICES

THINGS (IoT)
brings together diverse
sources of information and | 8
support delivery of farmer- | &5
specific information

Promote rapid cycle innovation
enable targeted provision of
farmer-preferred products and
services

Provides a spatial and temporal
dimension to information

Fig. 1 Various facets of DA. Cloud computing is the delivery of computing services — including
servers, storage, databases, networking, software, analytics, and intelligence over the Internet
(“the cloud”) to offer faster innovation, flexible resources, and economies of scale. Breeding
bioinformatics: A modern breeding program with advanced phenotyping and genotyping tech-
nologies has the potential to create vast amounts of data. Breeding bioinformatics manages and
converts this data into valuable information in a time-sensitive manner. Data analytics: is the
process of exploring and analyzing large datasets to find hidden patterns, unseen trends, discover
correlations, and derive valuable insights to make predictions. It improves the speed and efficiency
of your agriculture. Mobile devices (smart phones): is equipped with various sensors are opening
new opportunities for rural farmers who previously had limited access to up-to-date agricultural
information like market, weather, and crop disease news. Digital services: refers to the electronic
transfer of information including data and content across numerous platforms and devices like web
or mobile. Geographic information system (GIS): is a computer system that analyzes and displays
geographically referenced information. It uses data that is attached to a unique location. GIS is
being merged with unmanned aerial vehicles (UAVs) to plan, construct, and implement various
agricultural practices. The Internet of Things (IoT): describes the network of physical objects
(“things”) that are embedded with sensors, software, and other technologies for the purpose of
connecting and exchanging data with other devices and systems over the Internet
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The world’s agri-food system is increasingly subject to constraints, especially
since it relies on a number of nonrenewable resources that are becoming scarcer
(fresh water, phosphorus, oil, cultivable soil, etc.). This system will soon exert
its impact over climate change, both directly (extreme weather events, drought,
etc.) and indirectly (melting glaciers, proliferation and spread of harmful species
of organisms and diseases, rising sea levels) (UNESCO 2019). The collapse of
biodiversity in seeds, pollinators, crop auxiliaries, etc. are looming large that
endangers many ecosystems (FAO 2019a, b). Conflicts over the use of land and
water will also increase with the use of biomass for energy and the implementation
of afforestation/reforestation programs to capture CO;. This is also known as
“negative emissions” technique that now substantiates all IPCC scenarios limiting
the temperature increase to 2 °C. In addition, the yield of cereals deemed critical
for food security as their yields seem to have reached a plateau (Maurel et al. 2022)
(see Iddio et al. 2019 for a comprehensive review).

In many parts of the world, climate change has caused many irregular and
extreme weather events (Li et al. 2021). Different parts of the world have begun
experiencing intense drought, hurricanes and storms, and floods as a result of global
warming (FAO 2021). Additionally, agricultural production success varies based on
the complex environmental effects of global warming and climate change, both in
the short and long term (Hatfield et al. 2011). Extreme heat, extreme cold, wetness,
and dryness all have a deleterious impact on plants (Hatfield and Prueger 2015;
FAO 2019a, b). Trade conflicts, epidemic and vegetative diseases, rising seed and
fertilizer prices and wages, flash floods, heatwaves, and other weather variations
all have a negative impact on agriculture. However, as evidenced by agriculture’s
contributions to greenhouse gas emissions, water pollution, and biodiversity loss
(Springmann et al. 2018), major agricultural systems are on largely unsustainable
trajectories. Countries must create policies and programs in a sustainable manner if
they are to overcome these obstacles and satisfy future demands. The best ways
to achieve sustainable agricultural development are to continue the process of
innovation using contemporary genetic and information technologies to increase
agricultural productivity while balancing economic, environmental, and social
outcomes related to food and agricultural systems (Basso and Antle 2020).

Industrial agriculture has a substantial negative impact on the ecosystem as a
result of human activity, which today controls almost all biogeochemical cycles on
Earth (Park et al. 2016). Production from industrial agriculture is expected to rise
by 100-110% between 2005 and 2030, which calls for substantial inputs of finite
resources like fresh water, soil with sufficient sunlight, and nonrenewable nutrients
(e.g., phosphorus) (Cordell et al. 2012). The degradation of soils, aquifer depletion,
saltwater-intrusion, runoff and eutrophication, and emissions (e.g., CO2, N, O, etc.),
contributing to global warming and resource scarcity are all effects of modern
intensive agriculture (Cohen et al. 2022). In particular, this is because farmers
frequently lack sufficient measuring, modeling, and dynamic control mechanisms to
optimize inputs for plant growth (Dawson and Hilton 2011). Moreover, losses from
farm to fork in the form of food waste can reach as high as 40% due to extended
supply chains (Cohen et al. 2022).
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The present emphasis is on reducing water, energy, and material use in agriculture
as access to water and material resources becomes more challenging due to climate
change and population expansion (Cohen et al. 2022). Regional decentralized con-
trolled environment agriculture is one suggestion for enhancing the sustainability
of vegetable production. The benefit of this is that practitioners can precisely
control environmental effects, including nutrient application, water use efficiency,
and lighting. Hydroponics or soilless culture feeds nutrients and water directly to
the plant by employing recirculation (where the substrate is reused in the system
until the nutrients are exhausted) or flow-through substrates (Silberbush et al. 2005).
Controlled environment agriculture (CEA) can be used to grow vegetables and high-
value commodities in any environment with outstanding water, soil, and fertilizer
efficiency, since local production reduces transportation costs (Van Ginkel et al.
2017). Contrary to conventional field agriculture, CEA offers more effective nutrient
usage while using up to 80% less land and nearly 90% less water (Carmassi et al.
2007).

In order to manage soil, climate, and genetic resources at the field and landscape
scales, digital agriculture uses a collection of geospatial and digital information
technologies that integrate sensors, analytics, and automation (Basso and Antle
2020). Big data, the Internet of Things (IoT), augmented reality, robotics, sensors,
3D printing, system integration, ubiquitous connectivity, artificial intelligence,
machine learning, digital twins, and blockchain are just a few of the technologies
that make up digitalization (Alm et al. 2016) (Table 1), which is anticipated to
fundamentally alter daily life (Klerkx et al. 2019, food, fiber, and bioenergy supply
chains and systems) and agricultural productivity processes. According to Rotz et
al. (2019), the early indications of transition are already apparent.

Several concepts have emerged with digitalization in agricultural production
systems, value chains and more broadly food systems. These include smart farming,
precision agriculture or precision farming, decision agriculture, digital agriculture,
agriculture 4.0, or what is referred to in French as Agriculture Numérique (i.e.,
numerical agriculture) (Rose and Chilvers 2018; Klerkx et al. 2019). On-farm
management duties that take into account location, weather, behavior, phytosanitary
status, consumption, energy use, prices, and economic data are all included in
digitalization. This is done with the aid of sensors, equipment, drones, and satellites.
Through ongoing monitoring or targeted big data science inquiries, the data so
acquired is then utilized to understand the past, anticipate the future, and make
more timely or correct judgments (Ingram and Maye 2020). These developments
have mostly concentrated on deploying technologies for enhancing post-farmgate
operations, postharvest quality monitoring, and real-time traceability (Rutten et al.
2013; Wolfert et al. 2017). This claim is supported by a variety of reviews on
subjects such precision farming, big data analysis, drones, artificial intelligence,
robots, 3D printing, and the Internet of Things (IoT), as well as their potential to
enhance agricultural production systems, value chains, and food systems (Bertoglio
et al. 2021). For instance, yield stability maps show regions that have consistently
high production throughout time, regions with poor productivity, and other regions
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Table 1 Technologies used in digital agriculture

Robotics

ToT and
Sensors

Artificial
intelligence
(AD

Deep learning
(DL)

Drones and
satellites

Extended
reality and the
metaverse

Virtual reality

(VR)

Block chain

Data analytics

Cloud
connectivity

Agricultural robots are for increasing production yields. From drones to
autonomous tractors to robotic arms, the technology is being deployed in
creative and innovative applications. Some of the most common robots are
the following: harvesting and picking, weed control, autonomous mowing,
pruning, seeding, spraying and thinning, phenotyping, sorting and packing,
and utility platforms. Robots can achieve to improve the size of yields and
reduce waste from crops being left in the field

The Internet of Things is utility of Internet for various operational purposes.
IoT becomes operational through sensors. Sensors are devices that detect and
respond to changes in an environment. Inputs can come from a variety of
sources such as light, temperature, motion, and pressure. Sensors provide
valuable information through a network, and they can share data with other
managerial information systems. The sensor attains a physical parameter and
converts it into a signal suitable for processing (e.g., electrical, mechanical,
optical). The output of the sensor is a signal which is converted to a
human-readable form, like changes in characteristics, changes in resistance,
capacitance, impedance, etc.

In contrast to the intelligence exhibited by humans or other animals, artificial
intelligence (AI) refers to the perception, synthesis, and inference of
information made by computers. The term “intelligence” refers to the
capacity for knowledge, reasoning, abstraction, and inference of meaning

It is simply a neural network with three or more layers and is a subset of
machine learning. These neural networks make an effort to mimic how the
human brain functions; however, they fall far short of being able to match it,
enabling it to “learn” from vast volumes of data. Additional hidden layers
can help to optimize and refine for accuracy even if a neural network with
only one layer can still make approximation predictions

While drones record data in real time, they lack the hard drives necessary to
store the vast amounts of digital data that satellites are designed to hold until
they can be recovered and used. In order to provide more accurate
measurements on a particular location, drones can also use GPS

Extended reality (XR) enables users to constantly access internet content
thanks to the metaverse, which also makes considerable use of 3D visuals.
From augmented reality (AR) to mixed reality (MR) to virtual reality (VR),
XR technologies cover a broad range of immersive technologies

With images and things that seem real, a virtual reality (VR) environment
gives the user the impression that they are completely engrossed in their
surroundings. A virtual reality headset, helmet, or other equipment is used to
view this environment

A blockchain is a type of distributed database or ledger — one of today’s top
tech trends — which means the power to update a blockchain is distributed
between the nodes, or participants, of a public or private computer network.
This is known as distributed ledger technology, or DLT

Analyzing data collections to identify trends and make judgments about the
information they contain is known as data analytics (DA). Data analytics is
increasingly carried out with the use of specialized hardware and software
The capacity to connect two resources within a cloud, across clouds, and
with on-premises data centers is referred to as cloud networking. A cloud
service provider must offer the following three main forms of connectivity:
site-to-cloud, the connection between cloud resources, and on-premises
hardware
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Fig. 2 DA in agricultural systems. DA can be used to design and implement sustainable
agricultural systems at farm and landscape scales. With the use of stability maps, DA can help
redesign fields or subareas within fields that are unprofitable or environmentally unsustainable and
sustainably intensify high-yield areas of the field knowing that these can respond to more inputs.
(Courtesy: Bruno Basso, Michigan State University; Nature Sustainability, doi: https://doi.org/
10.1038/s41893-020-0510-0)

that have yields that fluctuate over time. Stability maps can be used by DA to
redesign unprofitable or environmentally unsustainable fields or portions of fields,
as well as sustainably intensify culture in high-yield regions that respond to more
inputs (Fig. 2).

1.2 Controlled Environment Agriculture (CEA)

Controlled-environment agriculture (CEA), which deals with sophisticated horticul-
tural practices and technological advancements, first gained popularity in the 1960s
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Fig. 3 Arable land per capita from 1960 to 2050. (FAO 2011)

(Hodges et al. 1968). Controlled environments (CEs) promote production efficiency,
optimize plant yield, and enhance product quality by providing predictions on how
plants will appear in their surroundings. The market has recently seen a rise in
demand for locally sourced food. According to Eaves and Eaves (2018), this is
accomplished through CEA, which covers small- (in-home production or indoor
gardens), medium- (community gardens), or large-scale commercial operations.
The ability to alter production environments to increase plant quality and output,
lengthen growing seasons, and allow crop production under unfavorable climatic
conditions (e.g., wind, rain, extremely high temperatures, and inadequate light)
is a fundamental advantage of CEA. The two most prevalent types of CEs used
in urban agriculture (UA) are greenhouses and plant factories (PFs). Due to
the decreasing amount of arable land, such systems are unavoidable (Fig. 3).
Controlling greenhouses presents a particular difficulty, because it calls for systems
that can adapt to the microclimatic factors and constantly shifting environmental
circumstances. The expense of heating and cooling greenhouses can account for 70—
85% of the overall operating cost in northern latitudes and harsh climates (Engler
and Krarti 2021).

1.2.1 CEA Facilities

All CEA facilities are included under the general term “urban agriculture” (UA).
CEA, on the other hand, is merely a portion of UA as a whole that has conditioned
spaces. There are many different kinds of CEA facilities, including greenhouses,
plant factories, rooftop gardens, and vertical farms. The market for indoor farming
was estimated to be worth 38.7 billion USD in 2022 and may rise to 96.6 billion
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by 2032. The market share now owned by Europe is the greatest, but due to
their geographic constraints and economic development, India, China, Mexico,
and Singapore are experiencing significant expansion (Specht et al. 2013). At the
moment, greenhouses hold 70% of the market. The common CEAs include vertical
farms, rooftop gardens, planned factories with artificial lighting, hydroponics, and
aquaponics.

Scissor lifts, ladders, stairs, or stacked A-frames are frequently used in vertical
farms (VFs) to raise crops vertically (Beacham 2019). In comparison to traditional
farming, VFs can stack these plant beds to boost agricultural yields by 10-100 times
(Fig. 4). The annual growth of VFs is so exacting that it reported using almost twice
as much water as traditional farming (Tong et al. 2016) while growing at a rate that
was nearly two times as fast. Building rooftop gardens (RTGs) requires minimal to
no structural upgrades. RTGs are marketed as energy-efficient building components,
because they can lower both the winter and summer heating and cooling loads. If
implemented on a number of buildings, greening the roofs could also aid in reducing
the impacts of urban heat islands (Fig. 5).

The advantages of RTGs are used in many building integrated agriculture (BIA)
applications to produce energy-efficient CEAs (Benis et al. 2017; van Delden et
al. 2021). Artificial lighting plant factories (PFALs) are often referred to as closed
plant production systems (CPPS), which are totally sealed off from the outside

'Vertical farming'

Clean energy

Rain water tank

~/ Aeroponic and

-m hydroponic crops

Irrigation system

Artificial light

Rain water.

Fish tank generates
nutrients from waste

Fig. 4 Vertical farming
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Fig. 5 RTGs (rooftop garden)
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Fig. 6 Hydroponics

(Kozai 2019). They are often built in a building that resembles an airtight warehouse,
with rows of tall, stacked plant beds that are illuminated artificially. Comparing the
profitability of growing leafy vegetables in a greenhouse with a PFAL, the latter has
an internal rate of return that can reach 35% (Eaves and Eaves 2018; Avgoustaki
and Xydis 2020). There is some crossover between different CEA facilities, as a
completely insulated VF or RTG could also be considered to be a PFAL (Zhuang et
al. 2022).

Hydroponic crop cultivation has a number of potential advantages, including
as separation from soil- or water-borne problems (such as nematodes, salinity, or
heavy metals). Control over water and nutrient uptake has improved. The topic has
received positive reviews (Raviv et al. 2019; Jones Jr 2014). Crops grown utilizing
soilless culture are frequently cultivated in troughs, bags, or containers to facilitate
effective management of the root zone (Fig. 6). In their list of typical nutrient
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sources for soilless cultivation, Raviv et al. (2019) mention raw irrigation water,
fertilizers that are frequently incorporated into a substrate, substrate components,
and a provision to modify the pH of the substrate. A thorough description of
management techniques for soilless culture systems is given by Nelson (2012).

Nutrient-film technique (NFT), deep-water culture (DWC; also known as deep-
flow method, raft, raceway, or floating hydroponics, among other names), and
aggregate culture are hydroponic systems that are frequently employed in UA
(Goémez et al. 2019). Crops grown in slanted troughs with a thin film of nutrient
solution flowing over the roots (either constantly or sporadically) constitute NFT.
Roots are continuously submerged in a nutritional solution in DWC systems. In
aggregate culture, crops are grown in containers or on substrates that have been
bagged, with drip systems used to apply nutritional solutions. For leafy greens
and herbs, NFT and DWC systems are frequently employed. Aggregate culture
is recommended for long-term fruiting crops including strawberry (Fragaria x
ananassa), cucumber (Cucumis sativus), sweet pepper (Capsicum annuum), and
tomato (Lycopersicon esculentum) (Gémez et al. 2019).

For soilless culture, substrate selection is a critical. Primary substrate compo-
nents consists of >40% of the substrate volume. They are organic materials with
low bulk density and high water-holding capacity like peatmoss and coconut coir
fiber (Argo and Fisher 2002; Gémez et al. 2019). On the other hand, secondary
components that consist of <40% substrate volume include expanded minerals like
perlite, vermiculite, clays, sand, and composts that increase drainage and cation
exchange capacity to increase aeration and nutrient retention (see Raviv et al. 2019
for a review).

1.2.2 Optimal Growth Conditions

The CEA sector struggles to attain economic viability due to ineffective microcli-
mate and rootzone-environment management and excessive prices. Microclimate
control, comprising light, temperature, ventilation, CO», and humidity, is crucial for
producing uniform, high-quantity, and high-quality crops (Ojo and Zahid 2022).
The focus of the most recent 10 years’ research has been on the establishment
of intelligent systems in CEA facilities, such as nutrient solution management
for hydroponic farms and cloud-based microenvironment monitoring and control
systems (Michael et al. 2021). According to Monteiro et al. (2018), artificial
intelligence (AI) algorithms have also opened up new possibilities for intelligent
predictions and self-learning. A subset of machine learning called deep learning
(DL), which has a large presence in many contemporary technologies, has attracted
a lot of interest in recent years.

In order to automate watering in vertical stack farms and microclimate control,
computer vision and deep learning algorithms have been used (Ruscio et al. 2019).
This has made it easier for growers to carry out quantitative assessments for high-
level decision-making. A tiny indoor farm of less than 1500 ft*> requires three
personnel to complete manual CEA, which is labor-intensive. However, intelligent
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automation may be able to overcome these issues employing optical sensors coupled
with DL-based prediction models (Namuduri et al. 2020). Several sensors, including
cameras and LiDAR, are used to detect targets (Mendez et al. 2021).

1.2.3 Optimal Growth Environment and Automation

The crop quality and yield can be impacted by a number of indoor circumstances
(Gibson 2018; Engler and Krarti 2021). The reported literature indicates four
primary elements as being essential to creating ideal indoor growing settings:

e Temperature

¢ Humidity and transpiration

* Chemical balances

¢ Photosynthetic photon flux (PPF)

Temperature Temperature influences the timing of plant growth events such as
maturation, flowering, and fruiting, and seeding is temperature-influenced in most
plants (Kozai et al. 2019). For example, warmer temperatures speed up the process
until flowering occurs at ideal levels. Below this threshold temperature, flowering
progresses slowly and eventually stops completely at the ceiling temperature (Engler
and Krarti 2021). Stressing plants at the end of their life is standard procedure for
all flowering and fruiting plants. Stresses are modulated to mimic the challenges
that plants face in the wild before they die, including imposing drought conditions,
reducing temperature and nitrogen levels. Graamans et al. (2018) estimated the
growth rate of lettuce and found that the optimum temperature for photosynthesis
is between 20 and 25 °C, the optimum for respiration is between 30 and 35 °C,
and the optimum dry matter production is between 16 and 17 °C (Graamans et al.
2018). LEDs are commonly used in CEA applications. It emits far less far-infrared
radiation and is more energy efficient than traditional high-pressure sodium lamps
used in greenhouses. Therefore, LEDs can help keep plants at the right temperature
(Kozai et al. 2019).

Humidity and Transpiration Plant transpiration is hampered by the high relative
humidity at the CEA facility. Vapor pressure deficit (VPD) is used to determine
how much water can be contained in the air around a leaf, depending on its
surface characteristics and a given temperature. The ideal VPD range for many
plants is between 0.8 kPa and 0.95 kPa (Kozai et al. 2019). Reduced VPD
prevents transpiration, which leads to water storage by the plant, promotes the
growth of fungus, and finally reduces output (Linker et al. 2011). Yet, higher VPD
needs higher water consumption, potential loads, and heating, ventilation, and air
conditioning (HVAC) requirements. Plant stomata have the capacity to completely
close, stopping transpiration (Engler and Krarti 2021). Stomata, which are openings
in the plant wall, are used for respiration. Stomata can detect changes in light,
temperature, humidity, and CO; concentration. The amount of water transpired is
influenced by the root-shoot ratio, VPD, leaf area, and surface characteristics (Kozai
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et al. 2019; Bramley et al. 2022). Deep roots enable a plant to store more water for
transpiration by the shoot. In plants, larger leaves often absorb more water than
smaller leaves. Plants with thick cuticles, thick cell walls, sunken stomata, or hairs
can reduce the rate of transpiration in order to raise the boundary layer between the
stomata and the sensible heat of the flowing air (Passioura and Angus 2010). It is
assured that CO, and water vapor will diffuse into the plant’s leaves by maintaining
a horizontal airflow rate of 0.3-0.5 m/s. The ideal airflow for some plants, such
as tomato seedlings, is 0.7 m/s, but generally speaking, airflows up to 1.0 m/s can
unduly stress the plant. Additionally, natural convection caused by ventilation can
stop overheating in the top rows of a CEA plant (Kozai et al. 2019).

Chemical Balances Improved rates of nutrient intake, photosynthetic assimilation,
and product nutritional value are all strongly associated with CO, enrichment
(Vanhove et al. 2011). Due to cost constraints, persistently gloomy weather, or
high ventilation rates in hot regions, CO, enrichment might only be practical for
a small number of CEA sites (Li et al. 2018a, b). The production of biomass
and amino acids in lettuce is said to be enhanced by a CO;, concentration of
1000 ppm, monochromatic LED, and appropriate nutrient distribution (Miyagi et al.
2017). Increasing nitrogen concentrations in recirculating hydroponic systems from
100 mg/L to 400 mg/L increases lettuce yields by 0.8 kg m~2 in the fall, 2.6 kg m~2
in the winter, and 2.3 kg m~2 in the spring (Djidonou and Leskovar 2019). For CEA
facilities, tracer gases are utilized to measure air exchange rates. NoO or SF¢ are
frequently utilized tracer gases in construction sites and CEA facilities. Moreover,
CO, cannot be utilized in CEA facilities, since it can be absorbed by plants, despite
the fact that it is employed as a tracer gas in other sectors. These gases’ resulting
energy balance can be used to forecast the right ventilation rates, which would save
operational expenses. The use of H,O as a tracer gas is now the subject of research
(Engler and Krarti 2021).

Photosynthetic Photon Flux (PPF) The photoperiod, or duration of the night, which
characterizes the growth season for a specific latitude, determines flowering. While
exposed to light, plants absorb CO;; when it is dark, they retain it. The level of CO;
within a CEA facility is impacted by this pattern naturally (Li et al. 2018a, b). For a
number of reasons, LEDs are preferable to incandescent, fluorescent, and HID bulbs.
According to Graamans et al. (2018), LEDs installed in plant factories are often set
at 52%, with the remaining 48% of power being distributed as sensible heat to aid
in plants’ evapotranspiration. The suggested growing parameters for CEA facilities
are available Table 2.

Automation Automation in CEA or protected agriculture can be achieved through
the implementation of the Internet of Things (IoT) (Shi et al. 2019a, b). A network
of physical items that are equipped with sensors, software, and other technologies is
known as the Internet of Things (IoT). These “things” are able to share real-time data
with other linked devices and systems through networks because they are connected
to the Internet.



P. M. Priyadarshan et al.

16

$9-0¢

c9-¢¢

08-0L

09-0¢

Kjarrea uo
Surpuadop 17-1
Kjarrea

uo Surpuadap
06-0S

06
0¢

(sAep) porrad
uoneAnnd

wdd 00s-0s+

wdd 009-0s+

wdd 0011-008
(mo]

S[oA9[ D daoy 03
sinoy J1od sa3ueyd
e o1-9) wdd 08

wdd 008-00S

wdd 00z1-008

wdd 0001

wdd 00z 1-008

oAy 1
‘paes 4 81

yol

Suomopy

ycl
oAy g1

Yyl

Yol

Yyl

Yyl

yoI

uonenudu0d ) | porradojoyd

ddd 00S-0<t
an[q 961 pai

%68 Panjew Jdd 0S¢
¢sage)s A11eo Jdd 001

ddd 009-00¥%

ddd 001—¢S
Kyarrea uo Surpuadap

ddd 009-00¢
an[q %S P %HS8

wiu ()G 12 JYS1[ on[q

%EE WU 079 18 1 %L9

ddd 006

ddd 00¢
Kysuop Sunysry

Oysw) 00 *(Kep) 0’1
£9AnEIOZA () WSIU) 610

‘(Aep) 0'T ‘Surpaas ¢—¢

(ust) 6170 “(£ep) 69°0
OWSIU) G0 *(Kep)

G9°() ‘3urssans G¢' 197
‘Surremoy ST 1-0'1
£2A1R1a89A G6°0—08°0

8°0-9°0

0M31) 6¢°0 “(Aep) S0

(Wsw) 640 (£ep) 9°0

SuLromoy (' 1-S8°0
{9ATIEIIZA §°(0-69°0
$6'0—S8°0

ddA

(Sutramop)
Do 91:(y31u)

%S9-GS Do LT “(£eP) Do 1T

%08-SL

3urssans 9,69—G¢
‘SuLRMOl %009

0A1RIOZA 9 G/—G9

[B9PI ST %08
‘Suruuid jo skep ¢
19138 9,09 03 dop

ue)) 'uo A[Ie? 9,68

%08

%08-0L
Surromop 103
%SL=S9

‘2ANEIOTOA 968G/

%0L=09

(ys) D, 0T
{(Kep) D, ST-1T

Do 0€—CC

Do ¥C8TI

(ys) D, LI
{(Kep) Do 1¢

(ys) D, S1
{(Kep) D, 0T

Do 1€-6T
(ysw) D, 7T
(Kep) D, ST

HY | (Q,) emmyeraduwiay,

s1addog

sIoquInon)

siqeuue))
SWooIYsNUI
aeIys

SuoaI3
-OIOTIAl

sqIoH

ojewo],

QonyIe]
doxp

$d010 JUSIYIP JOF SUOIPUOD JOOPUI [BP] T J[qEL



17

Digital Agriculture for the Years to Come

98011 120T*sTl/9101°01/310°10p//:5dNy :10p *(10T) BIEry pue I9[3uy ‘woiy padopy

001 wdd oot qyzl ddd 008 | (ySmu) 68°0 ‘(Aep) SO'T %0L Do LTET o1y

sjue[dsuen

0t—0¢ wdd 001 491 Add 002001 820 %06 agereae D, ¢7 | Aueqonig
(ySu) (s D, 61

06 wdd 0001 49T ddd 00€ (ysm) 00 <(£ep) 0°'T | %00T “(Aep) %S9 ‘(Kep) D, 0E | SeLISqMENS

(sAep) pourad | wonenueouod Q) | porredojoyd Kyisuop Sunysry ddA HY | Qo) amjerodway, doxp

uoneAnn)




 33764 53158 a 33764
53158 a
 

18 P. M. Priyadarshan et al.

With the development of agricultural sensor, wireless communication, cloud
computing, machine learning, and big data technologies, [oT technology has grown
and is progressively being promoted and used in the field of protected agriculture
(Kamilaris and Prenafeta-Boldud 2018). It is playing an important role in many
areas of protected agriculture due to its capacity to help farmers check soil quality,
climatic change, and the health of animals and plants (Shi et al. 2019a, b). In the
event that environmental variables alter above the predetermined threshold, IoT
will automatically send an alert message to the administrator demanding that the
hidden threat be eliminated. Additionally, according to Liu et al. (2018), it has the
capacity to alter environmental factors like temperature, humidity, carbon dioxide
concentration, and illumination in real time.

Additionally, the IoT system’s cameras can capture crop diseases and insect pests
in the greenhouse in real time, helping farmers to spot problems and put preventative
measures into place (Ma et al. 2015). GPS, radio frequency identification (RFID),
and other location-based sensors enable tracking and visual monitoring of produce
during storage and transportation. Supermarket managers use their computer or
smartphone to monitor and forecast product status and demand in order to get
things on the shelves. Users and customers can obtain details on the variety, origin,
processing, and other features of agricultural products by utilizing a QR code,
barcode, etc. With the use of IoT for protected agriculture, a rural community may
be constructed that is knowledgeable, connected, advanced, and adaptable. Cheap
embedded devices can improve how people engage with the physical world. For
further information on IoT, read the section on technology in DA. Big data, cloud
computing, and edge computing can all provide insightful analysis and information
that can be used to make decisions (Shi et al. 2019a, b; Quy et al. 2022).

1.3 Challenges Facing Food Production and Food Supply
Chain

The food sector is crucial in providing the fundamentals and needs to support a
range of human behaviors and activities (Cooper and Ellram 1993). In order for the
food to reach the ultimate consumers by the due date, it must be stored, delivered,
and retailed after it has been produced or harvested. According to reports, around
1.3 billion tons (or about one-third) of the food produced each year is abandoned or
wasted (Manning et al. 2006). Around 1 billion tons of food are wasted each year,
with two-thirds of that occurring in the supply chain during harvest, shipping, and
storage (Fritz and Schiefer 2008). Consider fruit and vegetables as an example. Due
to inefficient and ineffective food supply chain management (FSCM), 492 million
tons of such perishable food were wasted globally in 2011 (Gustavsson et al. 2011).
FSCM is important to save our food as a result (see Zhong et al. 2017 for a review).

The food supply chain has quickly evolved in recent decades, spreading inter-
nationally and engaging many more partners, making the supply chain longer and
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more sophisticated than before. Today’s consumers expect exotic delicacies, fresh
on their plates, year-round. As if things weren’t already challenging enough, the
multiyear COVID pandemic shutdown in 2020 put even more strain on supply
chains by closing down numerous restaurant and food service supply chains and
raising the stakes for retail chains and direct-to-consumer food delivery (Huang et
al. 2021).

1.3.1 Blockchain Technology

Blockchain technology, a sophisticated database system, permits open information
exchange inside a business network. In a blockchain database, data is held in blocks
that are linked together in a chain. The data is still constant in time, since the
chain cannot be deleted or changed without network agreement. You can set up an
unchangeable or immutable ledger using blockchain technology to manage orders,
payments, accounts, and other transactions. The system’s built-in capabilities,
which also prevent unauthorized transaction submissions, make it possible to see
these transactions as a whole.

1.3.2 e-Commerce Software

A stand-alone program or software suite called e-commerce software gives the
ability to sell your goods and services online. The front end, which is your website,
makes it simple for customers to make purchases, while the back end allows you to
streamline all of your procedures from inventory to sales.

Each style of e-commerce software is available and can be customized to meet
your objectives and financial constraints. Although it’s not a rule, the sort of e-
commerce website software you use usually depends on the size of your company.
Software-as-a-Service, Platform-as-a-Service, or an on-premise platform that gives
you control over the server and software used to offer your e-commerce website are
all options for your e-commerce needs.

1.4 Climate Smart Agriculture

Climate change has imposed several adversaries to the planet ecosystem through
erratic environmental fluctuations in temperature, rain pattern, and drought occur-
rence (IPCC 2018). The continuous changing scenario not only disturbs the crop
growth and production but also affects the food security and the incidence of
diseases (Chakraborty and Newton 2011). It has been unequivocally demonstrated
that the climate change has set an impact on all the pathogen, host, and plant
environment (Singh et al. 2023). Since agricultural productivity is crucially affected
by plant diseases, the fluctuating climatic environment has led to different disease
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related modalities, such as distribution pattern, resurgence, widespread infestation,
and new pathotypes (Veldsquez et al. 2018). Cases like intense Ascochyta blight in
chickpea occurred due to infrequent late rainfall resulting in yield and quality losses
(Addisu et al. 2023), and the shift in rainfall pattern due to an El Nino event has
damaged lentil crop due to rust infestation in Ethiopia (Pathak et al. 2018).

Since the dawn of agriculture, there have been technological developments,
which have paved the way for improvement of crop plants and refining the crop
cultivation and management. Plant breeding has witnessed genetic and agronomic
interventions to enhance the pace and accuracy of plant selection (Wijerathna-Yapa
and Pathirana 2022). Keeping in view of the population progression, declining land
resources, and climate vagaries, there is a need to develop selection methods with
more accuracy and precision. The advancement of artificial intelligence (Al) in the
past decade has offered great potential to augment the climate smart agriculture. Al
technology through the use of high-throughput genomics and phenomics methods
can quicken the course of breeding new plant varieties (Khan et al. 2022; Harfouche
et al. 2019). The machine learning tools have found their application in marker-
assisted selection, genomic prediction, and genomic selection (Esposito et al. 2020;
Reinoso-Peléez et al. 2022). The tools including ML, deep learning, and predictive
analysis can help in the analysis of complex, huge agricultural datasets to extract
useful information about traits, and their associations of plant responses to stress
conditions (Tong and Nikoloski 2021; Crane-Droesch 2018). Genomic technologies
together with high-throughput phenotyping provide the trait related information to
researchers to guide and notify the breeding methods to adopt for climate-smart
breeding (Marsh et al. 2021). Al plays a vital role in integrating and handling the
huge data by conducting association studies to identify genomic targets associated
with disease response traits (Khan et al. 2022). Breeders can use the data for
management of crop plants for their adaption to stresses and introgression through
the use of genomic selection or genome editing tools (Harfouche et al. 2019).

Plant diseases inflict severe losses on plant productivity and affect global food
security. It has been demonstrated that the changing climatic factors worsen the
conditions for resurgence of plant and crop diseases. This warrants the need of a
greater understanding of the changing climate effects on crop plants in a spatial
and temporal manner under realistic field scenario. The intervention of information
technologies such as the Internet of Things (IoT), remote sensing, unmanned aerial
vehicles, and artificial intelligence has revolutionized the agriculture (Gao et al.
2020). These digital technologies have been pivotal in generating huge amount
of data to aid the understanding of crop breeding for several applications, such as
prediction of yield, weed and pest/disease detection and forecast, risk management,
food safety, and spoilage inhibition. Kreuze et al. (2022) suggested the use of image
detection from smartphones or unmanned aerial vehicles for monitoring of pest
and disease and data handling for modeling, predictions, and forecasting regarding
climate change in root, tuber crops, and banana.

The deep learning tools have also found their place in agriculture, for weather
forecast (Schultz et al. 2021). Neural networks are regularly used in the context
of plant diseases, such as epidemiology or remote sensing (Zhang et al. 2005;
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Selvaraj et al. 2019). In case of powdery mildew disease, UV-B light has shown
good application for disease management in grapes and strawberry (Onofre et al.
2021; Meyer et al. 2021). Application of pesticides on crops like grapes can be
very well done using robotics systems (Oberti et al. 2016). Disease phenotyping
often plays a crucial role in field grown plants, for example, in potato in the context
of potato blight, efficient phenomics-assisted screening has been used for disease
resistance (Gold et al. 2020). The deep learning and machine learning are also used
to precisely categorize breeding germplasm for resistance to potato late blight (Gold
et al. 2020), Rice hoja blanca virus (Delgado et al. 2019), and banana Xanthomonas
wilt (Selvaraj et al. 2020). There have been several studies indicating that it is
possible to go for early, nondestructive prediction of the onset of disease based on
primary symptoms such as mild and small lesions by using imaging spectroscopy
(Gold 2021).

1.5 Technologies in DA

The phrase “Internet of Things” was first coined in 1999 by computer scientist
Kevin Ashton. While working at Procter & Gamble, Ashton promoted the use of
radio frequency identification (RFID) chips to track products as they move through
a supply chain. A five-layer IoT architecture was created by Shi et al. (2019a, b)
based on the realities of protected agriculture and the expertise of other academics.
In Fig. 7, these levels are succinctly proposed as a five-layer system.

e Perception layer: This layer is made up of various sensors, terminal devices,
farm machinery, wireless sensor networks (WSN), RFID tags and readers, etc.
Common sensors include machines, wireless sensor networks (WSN), RFID
tags and readers, and other objects. Common sensors include those that collect
data on the environment, plants and animals and other agriculturally related
sensors. These sensors can offer temperature, humidity, and wind speed data
to agriculture. Data on variables, including temperature, humidity, wind speed,
plant diseases, insect infestations, and animal vital signs, can all be collected with
these sensors. Information has been acquired about plant diseases, insect pests,
and animal vital signs. The gathered data is simply analyzed by the embedded
device and uploaded to a higher layer through the network for additional
processing and analysis.

e Network layer: The infrastructure of the Internet of Things is made up of a
converged network that consists of the Internet and various other communication
networks. The transmission medium network is made up of the Internet and
other communication networks. For the transmission, the medium can be either
wired technology, such as CAN bus and RS485 bus, or wireless technology,
such as Bluetooth, LoRa, and NB-IoT, as well as wireless technology, such
as Zigbee. Agricultural data is also transmitted across the network layer using
Bluetooth, LoRa, Zigbee, and NB-IoT. The network layer not only transmits
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Fig. 7 Structure of IoT in protected agriculture. (After Shi et al. 2019a, b; courtesy: Sensors; doi:
https://doi.org/10.3390/s19081833)

different kinds of related information gathered by the perception layer to the
higher layer, but it also sends control agricultural related information gathered
by the perception layer to the higher layer and commands from the application
layer to the perception layer, causing the related network layer devices to act
appropriately.

e Middleware layer: IoT may provide a range of services to fit a range of
devices. Because each device’s technical requirements (CPU, power source,
communication module, and system) are unique from the others, heterogeneity
issues can occur. Different devices are unable to connect to and communicate
with one another as a result. The middleware layer’s aggregation, filtering, and
processing cause heterogeneity issues. The middleware layer collects, filters, and
processes data from IoT devices, greatly lowering processing time and cost while
providing developers with a more flexible tool to build their applications. It also
simplifies the processes for introducing new hardware and software, facilitating
its faster integration with existing systems and boosting IoT compatibility.
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e Common platform layer: The organization, decision-making, summary, and
statistics of agricultural data, as well as the creation of diagnostic analysis,
forecasting, and early warning systems, are all responsibilities of the common
platform layer. Machine learning, big data, edge computing, cloud computing,
fog computing, diagnostic reasoning, and early warning and prediction are
all part of this layer. An algorithm, extra commonly used core processing
technologies, and its business model are all included in this layer.

* Application layer: The value and utility of the Internet of Things are most clearly
seen at here, the highest level of the architecture. This layer includes a number
of intelligent platforms or systems for environmental monitoring and control
of plants and animals, early warning and management of diseases and insect
pests, and traceability of the safety of agricultural products. These systems can
all improve production efficiency and save money and time.

1.5.1 Crucial Technologies of IoT

Sensor Technology In order to collect data about the environment, plants, and
animals, sensors are crucial and one of the technological barriers in the development
of the Internet of Things (Shi et al. 2019a, b). Around 6000 research and production
groups, including well-known companies like Honeywell, Foxboro, ENDEVCO,
Bell & Howell, and Solartron, are now working on sensor research, representing
more than 40 different countries. The three most often used types of agricultural
sensors are physical property type sensors, biosensors, and micro-electromechanical
system (MEMS) sensors. The majority of temperature, humidity, and gas sensors
fall under the category of physical property sensors, which convert signals by
physically altering the material’s sensitivity. The biosensor (Li et al. 2018a, b)
is primarily used to detect pesticide residue, heavy metal ions, antibiotic residue,
and toxic gas and includes enzyme sensors (Zheng et al. 2015), microbial sensors,
adaptive sensors (Jiao et al. 2018), etc. It transmits information based on the
organism’s reaction to the outside environment. The MEMS sensor is a standout
among the most recent research and development efforts in the area of dependable,
affordable, and compact sensors (Negara et al. 2014). There could be hundreds,
thousands, or even millions of nodes in a sensor network. The cost of each node
needs to be kept to around $1 in order for the sensor network to be practicable;
however, it is now as high as $80 (Shi et al. 2019a, b).

Data Transmission Technology When compared to conventional transmission
technologies like fieldbus, wireless communication technology offers advantages,
including inexpensive construction and maintenance costs, low-power consumption,
and great extensibility. In order to develop their WSN for environmental monitoring
(Kumar and Hancke 2014), autonomous irrigation (Rajalakshmi and Mahalakshmi
2016), and remote control (Revathi and Sivakumaran 2016), the majority of
scientists, enterprises, and producers currently employ it. The heterogeneity of
the IoT has been slightly increased as a result of businesses and research groups
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developing their own wireless devices. Additionally, interference between wireless
signals from several protocols that use the same band, such as Bluetooth, Wi-Fi,
and ZigBee, is possible (Colakovi¢ and HadZiali¢ 2018). Given its high power
consumption and quick connection, Wi-Fi is a viable option for the deployment
of sensor networks at fixed locations. Since Bluetooth has a small communication
range, exceptional security, and high power consumption, it is perfect for short-
term, close-range networking. ZigBee offers the advantages of low consumption,
low cost, and self-organization, because each node can serve as a relay station for
data transmission between close-by nodes. As a result, it makes for the ideal long-
distance, large-range sensor networking and enables simple coverage expansion.

WSN The WSN is a multi-hop self-organizing network system created via wireless
communication in order to cooperatively sense, gather, and process various data
about the observed item in the network coverage area (Srbinovska et al. 2015;
Ferentinos et al. 2017). It is made up of a number of sensor nodes, the majority
of which are battery-operated. It can be divided into terrestrial WSN and wireless
subterranean sensor networks (WUSN). Lower frequency wireless solutions are
preferred for agricultural sensors, which are often buried in the ground, because of
WUSN’s low attenuation. In comparison to terrestrial WSN, WUSN also consumes
more energy and has larger antennas (Ojha et al. 2015). IoT may no longer require
a mesh-style WSN with power-based routing, where one node forwards packets of
other nodes, as low-power wide-area network (LPWAN) technology develops.

Cloud Computing Cloud computing is the on-demand provision of computer
system resources, particularly data storage (in the form of cloud storage) and
processing power, without the user’s active involvement. Cloud computing is a
result of distributed computing, parallel computing, and network computing. A
variety of hardware, infrastructure, platform, software, and storage services are
offered for IoT applications via this Internet-based computing system. A system for
dynamically assigning, deploying, monitoring, and reallocating pools of virtualized
computing and storage resources is at the heart of it (Hashem et al. 2015). This
system enables users to access compute, data storage, and platform services that
adhere to quality-of-service criteria. This will have a significant impact on the
expansion of IoT in agriculture. First, cloud computing has made it possible for
farmers to store text, pictures, videos, and other types of agricultural data using
inexpensive data storage services, which has considerably reduced the cost of
storage for agricultural businesses (Nativi et al. 2015). Second, relying on farmers’
technical expertise to make decisions using this raw data is challenging. Cloud
computing is the only technology that can support intelligent large-scale data
processing systems (Ferrdndez-Pastor et al. 2016). Third, using cloud computing
can create a safe environment for developing different IoT applications, such as
monitoring agricultural activities (Botta et al. 2016).

Edge Computing Edge computing, as defined by Satyanarayanan (2017), is a new
computing model that makes advantage of calculations at the network’s edge. Any
computer and network resources between the data source and the cloud computing
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center path are referred to as the edge of edge computing. Cloud services are
represented by the edge’s downlink data, IoT services are represented by the edge’s
uplink data, and both are represented by the edge’s uplink data. Edge hormone,
which shifts some of the computing activities to the network edge device, can
improve data transmission performance, guarantee real-time processing, and lower
the computational load on the cloud computing center. Because processing occurs
close to the source rather than in the cloud, edge computing also provides greater
data security (Shi et al. 2019a, b).

Machine Learning A sophisticated method known as machine learning (ML)
allows computers to learn new knowledge, continuously improve their performance,
and reach perfection. Theoretical, algorithmic, and practical advances in machine
learning have been made recently (Biamonte et al. 2017), and it has been combined
with other agricultural technologies to optimize crop output while reducing input
costs (Shi et al. 2019a, b). The main machine learning methods include naive
Bayes, discriminant analysis, K-nearest neighbor, support vector machines (SVM),
K-means clustering, fuzzy clustering, gaussian mixture models, artificial neural
networks (ANN), deep learning (Ojo and Zahid 2022), decision tree algorithm,
and others (Edwards-Murphy et al. 2016). A theoretical framework for agricultural
decision-making is provided by ML, which can make accurate predictions, reveal
the internal linkages between jumbled, modelless, and complex agricultural data
and discover these relationships. Machine learning technologies are useful for
intelligent irrigation planning, crop breeding, disease detection, pest and disease
prediction, and agricultural expert systems (Russell and Norvig 2018). For instance,
historical farming data may be examined using machine learning technology, along
with crop productivity under varied climatic conditions and the inheritance of a
particular phenotype. Furthermore, by utilizing ML technology, it is feasible to
look at association rules and then develop a probability model to identify the genes
that are most likely to be involved in the expression of a particular desired trait
in the plant (Montesinos-L6pez et al. 2019). This can help the breeding specialist
create a breeding experiment that will be effective. The method used three processes
to identify the maturity of a single intact tomato using machine learning: pixel-
based segmentation, blob-based segmentation, and individual fruit detection. Using
criteria including color, shape, texture, and size, decision trees were built in the first
two steps and then utilized to segment photos. The different fruit of each tomato
was finally automatically identified using the X-means clustering technique. Their
method has a precision of 0.88 and a recall of 0.80, per the results of the tomato
detection picture test (Kyosuke et al. 2014).

Big Data Protected agriculture generates millions of dynamic, intricate, and geo-
graphical data points, including soil databases, greenhouse environment data,
animal vaccination records, and government investment data. Contrary to relational
data structures, which logically express themselves using two-dimensional tables,
agricultural data is more unstructured and contains many hypermedia elements,
including expert experience, knowledge, and agricultural models in the form of text,
charts, pictures, animations, and voice/video. The four characteristics that best sum
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up how “big” these data are volume, velocity, diversity, and honesty (Zhou et al.
2016). Big data technology can find new knowledge, discover hidden connections
within a data collection, and provide data support for subsequent processes. This
is done by employing information mining and other techniques. The methods that
are most frequently used to deal with big data technology are image processing,
modeling and simulation, machine learning, statistical analysis, and geographic
information systems (GIS) (Kamilaris et al. 2017) (Fig. 8).

1.5.2 IoT and Plant Management

By using greenhouse technology, which is partially uncontrolled by the natural
environment and promotes the intense and efficient use of agricultural resources,
protected agriculture, as opposed to open-field farming, offers a more favorable
and manageable environment for crop growth. Numerous studies have shown that
building and testing various monitoring and control systems to alter greenhouse
environmental parameters, like air temperature and humidity, light intensity, and
CO; concentration, are both technically feasible and economically viable (Sreekan-
tha and Kavya 2017). At the early phases of IoT development, the environmental
data are simply processed and frequently provided in sheet and plot form (Mat et al.
2016).
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Soil

With the development of cloud computing, ML, etc., IoT solutions may easily
achieve smart data processing and analysis at low cost and in a straightforward
manner (Elijah et al. 2018). Deng et al. (2018) built a closed-loop control system
in a factory that makes salad-growing plants based on the kinetic model. Zamora-
Izquierdo et al. (2019) developed a low-cost smart agricultural Internet of Things
infrastructure based on edge and cloud computing for soilless culture greenhouses.
There were three parts to the platform: local, edge, and cloud. While the edge
component handled primary management responsibilities and might improve the
stability of these systems, the local component dealt with data collecting and
automatic control via cyber-physical systems. Data analyses were performed by
the cloud component. When compared to a standard open control, the platform
conserved more than 30% more water (Liao et al. 2017). According to Zamora-
Izquierdo et al. (2019), an online watering system for hydroponic greenhouse
crops increased water and fertilizer use efficiency by 100%. Liao et al. installed
an IoT-based system in an orchid greenhouse to monitor environmental factors
and the growth status of Phalaenopsis. The suggested method might provide high
spatiotemporal resolution quantitative data to flower growers and aid in the future
improvement of phalaenopsis farming practices (Katsoulas et al. 2017). For a
conceptual representation of IoT-based agricultural solutions, see Fig. 9.

Crop growth is greatly threatened by diseases and insect pests, and conventional
technology and chemical prevention have several drawbacks and harmful effects
(Larsen et al. 2019). Because of the development of IoT, crop disease and pest
control now have more intelligent and effective solutions. Numerous IoT sensor
types may collect information about location, greenhouse environment state, crop
development, and pest situation anywhere in real time, helping farmers to keep an
eye on agricultural pests and diseases. Following transmission to cloud data centers,
the raw data and photos are processed and evaluated using a range of models and
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algorithms based on different diseases and pests (Pixia and Xiangdong 2013). The
following services are often provided to farms by these cloud computing facilities:
disease or pest detection, disaster warning and warning of approaching calamities,
and expert system-recommended governance activities. The diagnosis and early
warning of agricultural illnesses, as well as online monitoring, should therefore be
the main areas of future research.

The source of all IoT data is sensing. The agri-food industry produces a
significant amount of heterogeneous datasets with the help of many IoT devices,
both in terms of content, structure, and storage type (Lokers et al. 2016). According
to Ahmed et al. (2019), big data frequently demonstrates heterogeneity, variety,
unstructuredness, noise, and excessive redundancy. Such enormous datasets require
sophisticated methods for data curation and storage, as well as time-consuming
statistical methods and programing models to extract relevant data. The knowledge
required to understand the state of the (agri-food) system is produced through the
preprocessing and conditioning of raw data. By employing sophisticated algorithms,
observing the system’s performance in respect to the desired outcomes, and allow-
ing the system to make independent localized judgments and take the necessary
actions, a system can be created capable of doing so. An IoT system is deemed
“intelligent” when it reaches this level of independence, which permits autonomy in
sensing, decision-making, and actuation (Misra et al. 2022).

1.5.3 Al in Digital Agriculture

The imitation of human intelligence functions by machines, especially computer
systems, is artificial intelligence. Vendors have been rushing to highlight how Al
is used in their goods and services as Al buzz has grown. Frequently, what they
classify as Al is just a part of the technology, like machine learning. For the creation
and training of machine learning algorithms, Al requires a foundation of specialized
hardware and software. Python, R, Java, C*T, and Julia all offer characteristics
that are well-liked by Al engineers, yet no one programing language is exclusively
associated with Al

In commercial IT, the phrases artificial intelligence (AI), machine learning (ML),
and deep learning (DL) are frequently used interchangeably (van Dijk et al. 2021)
(Fig. 10a). However, there are differences. The 1950s saw the invention of the term
“Al,” which describes devices that mimic human intelligence. As new technologies
are created, it encompasses a set of skills that is constantly changing. Machine
learning and deep learning are examples of technologies that fall under the category
of Al (Madakam et al. 2022). With the aid of machine learning, software programs
may predict outcomes more accurately without having to be expressly programed
to do so. In order to forecast new output values, machine learning algorithms use
historical data as input. The availability of big datasets for training increased the
effectiveness of this strategy significantly. Deep learning, a branch of machine



Digital Agriculture for the Years to Come 29

Artificial Intelligence

Machine learning

Deep learning

b Prediction

Predicting the best time
to sow seeds

Agriculture robots |

Crop yield prediction >
and price forecasts Crop and soil and
monitoring:
Monitoring soil to
detect nutrient

deficiences

Intelligent spraying

Al in agriculture

Disease diagnosis
Intelligent sensors

I Predictive insights ret.!l.!cing the use of
pesticides by detecting
affected areas
Forecasting
Forecasting market to

obtain maximum profit

Fig. 10 (a) The phrases artificial intelligence (AI), machine learning (ML), and deep learning
(DL) are frequently used interchangeably. (b) Al-based technologies assisting to increase effi-
ciency across all fields

learning, is based on our knowledge of the anatomy of the human brain. Recent
developments in Al, such as self-driving cars and ChatGPT, are underpinned by
deep learning’s usage of artificial neural networks’ structure.



30 P. M. Priyadarshan et al.

In addition to managing the challenges faced by various industries, including the
various fields in the agricultural sector, such as crop yield, irrigation, soil content
sensing, crop monitoring, weeding, and crop establishment, Al-based technologies
also help to increase efficiency across all fields (Kim et al. 2008) (Fig. 10b).
In order to supply high-value AI applications in the aforementioned industry,
agricultural robots are constructed (Talaviya et al. 2020). The agricultural industry
is experiencing a problem as a result of the rising worldwide population. Al has the
ability to provide a crucial remedy. Al-based technical advancements have allowed
farmers to increase output while using less input, improve output quality, and ensure
a quicker go-to-market for the produced crops. Farmers were using 75 million linked
devices in 2020 (Talaviya et al. 2020). The typical farm is anticipated to produce an
average of 4.1 million data points per day by 2050.

Over the past few decades, the agriculture production systems have had a great
deal of difficulty due to changes in the climate, rising production costs, declining
water supplies for irrigation, and an overall decline in farm labor (Jung et al.
2021). In addition, the COVID-19 pandemic poses a threat to the disruption of
supply chains and food production. Such elements pose a risk to the environment’s
sustainability as well as the continuity of the current and future food supply chain.
To keep ahead of the ongoing effects of climate change, significant inventions are
constantly required (Talaviya et al. 2020). The obvious challenge here is how to
produce enough food to feed the world’s expanding population. The various ways
in which AT has contributed in the agricultural sector are as follows:

Image Perception and Recognition

According to Lee et al. (2017), there has been an increase in interest in autonomous
UAVs recently. Some of these applications include recognition and surveillance,
human body detection and geolocation, search and rescue, and the detection of
forest fires (Tomic et al. 2012). Drones or unmanned aerial vehicles (UAVs)
are becoming more and more popular because of their adaptability and amazing
imaging technology, which ranges from delivery to photography, the ability to be
piloted with a remote controller, and the devices’ dexterity in the air, which allows
us to do a lot with these devices.

Workforce and Skills

Artificial intelligence enables farmers to compile vast amounts of data from
public and government websites, analyze it all, and give farmers answers to many
ambiguous problems (Panpatte 2018). It also gives us a smarter way of irrigation,
which increases the farmers’ yield. A combination of technology and biological
talents will be used in farming in the near future as a result of artificial intelligence,
which will not only improve quality for all farmers but also reduce their losses and
workloads. According to the UN, by 2050, two-thirds of the world’s population
would be living in cities, necessitating a reduction in the load on farmers (Talaviya
etal. 2020). Al in agriculture can be used to automate many operations, reduce risks,
and give farmers with relatively simple and effective farming.
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Increase the Output

Variety selection and seed quality determine the maximum performance level for all
plants (Ferguson et al. 1991). Emerging technologies have aided in crop selection
and even improved the selection of hybrid seed options that are most suited to
farmer demands. It has been implemented by studying how the seeds react to varied
weather conditions and soil kinds. Plant diseases can be reduced by gathering this
information. We can now meet market trends, yearly outcomes, and customer needs,
allowing farmers to maximize agricultural returns more efficiently.

Farmers’ Chatbots

The conversational virtual assistants that automate conversations with users are
known as chatbots. With the use of machine learning and artificial intelligence-
powered chatbots, we can now understand natural language and communicate with
users more personally. Agriculture has made use of this facility by supporting the
farmers in receiving answers to their unanswered queries, for offering them counsel,
and for providing other recommendations as well. They are mostly equipped for
retail, travel, and media.

Machines that are used on farms to hoe and harvest crops, perform weeding, use
drones to spray weeds and pesticides, and gadgets used in automatic milking are
a few examples of Al-based agricultural technologies (Ryan et al. 2021). Robotics
have assisted in an 80% reduction in the amount of herbicides sprayed on crops
(Revanth 2019). According to studies, this optimization can reduce pesticide and
herbicide costs by 90% while also protecting the environment from the negative
consequences of chemical use (Revanth 2019). Drone-captured images of crops can
be utilized for a variety of purposes, including nutrient deficiency monitoring, farm
animal health monitoring, and agricultural cultivation optimization (Marvin et al.
2021).

On the basis of a given dataset, machine learning (ML) creates algorithms
that learn to carry out particular tasks. It is a branch of artificial intelligence
that is extensively employed in both academia and business. Between supervised
and uncontrolled learning, there are significant differences. A predictive model is
improved through supervised learning by setting its parameters to perform well on
labeled training data, which consists of inputs and known outcomes. The generated
models can then forecast new test data that hasn’t yet been seen. On the other
hand, unsupervised learning looks for patterns in unlabeled data. It is more difficult
to quantify the performance of an unsupervised model compared to supervised
methods (van Dijk et al. 2021).

1.54 DL, Genomics and Breeding

As was previously stated, there are two basic categories of ML problems: supervised
and unsupervised. The goal of supervised learning is to create a model that
associates predictors with target variables, such as histone marks, such as DNA
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sequences. Target variables might be either continuous (regression) or categorical
(classification). The prediction of regulatory and nonregulatory regions in the maize
genome (Mejia-Guerra and Buckler 2019), the prediction of mRNA expression
levels (Washburn et al. 2019), sequence tagging in rice (Do et al. 2018), plant stress
phenotyping (Ghosal et al. 2018), and the prediction of macronutrient deficiencies in
tomatoes (Tran et al. 2019) are a few examples of supervised learning applications.
The issue becomes unsupervised if there is no information about the outcome in the
data collection (Wang et al. 2020).

In order to solve complicated biological challenges, deep learning has been
utilized in the fields of genomics, transcriptomics, proteomics, metabolomics, and
systems biology (Xu and Jackson 2019). Numerous studies demonstrated that
DNA shape significantly influences the specificity of transcription factor (TF)
DNA-binding (Lai et al. 2019). Chromatin accessibility assays (like MNase-seq,
DNase-seq, and FAIRE) and other genomic assays (such microarray and RNA-seq
expression) are only a few of the many data types that are available. The same is
true for transcription factor (TF) binding, which can be studied using ChIP-seq
data, gene expression profiles, DNA affinity purification sequencing (DAP-seq),
and ampDAP-seq, which uses amplified and consequently demethylated DNA as
substrates and histone modifications (Zampieri et al. 2019).

Several deep learning techniques were created to model TF DNA-binding
specificity and analyze these enormous datasets (Wang et al. 2020). Several deep
learning-based techniques have been developed to predict in vivo TF binding.
For instance, DeepBind can learn several motifs to forecast the binding sites of
proteins that bind DNA and RNA (Alipanahi et al. 2015). Cell-specific TF binding is
predicted by TFImpute (Qin and Feng 2017). In DeepSEA (Zhou and Troyanskaya
2015), DeFine (Wang et al. 2018), and DFIM (Greenside et al. 2018), the impacts
of functional noncoding variations were assessed. DRNApred was created (Yan and
Kurgan 2017) to distinguish between residues that bind to DNA and those that bind
to RNA.

It is difficult to pinpoint the important genomic regulatory regions in species
like maize, which have a large number of repeated elements and broad intergenic
areas. In order to overcome these difficulties, techniques like k-mer grammars,
which are based on natural language processing, have been employed to precisely
and cheaply annotate regulatory areas in maize lines. Modeling transcription factor
binding locations has benefited significantly from machine learning techniques.
Several facets of plant biology have shown the effectiveness of machine learning
models. For better in vivo transcription binding sites (TFBSs) prediction, they can be
trained using several types of sequencing data, either separately or in combination,
and they can also further integrate additional data, such as DNase I hypersensitivity
data.
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1.6 Remote Sensing Technologies

The agricultural community now has a diagnostic tool thanks to remote sensing
(RS) technology that may serve as an early warning system. This enables quick
action to stop any problems before they spread widely and negatively impact crop
productivity. The agricultural community now has access to a variety of RS options
as a result of recent advancements in sensor technologies, data management, and
data analytics. However, the agriculture business has not yet fully utilized RS
technologies due to knowledge gaps about their sufficiency, suitability, and techno-
economic viability. The use of RS technologies in agricultural production has
increased significantly over the past 20 years, while use of unmanned aerial systems
(UASs) has increased significantly since 2015. The region that produced the most
research articles concerning UASs was Europe (34% of the total), followed by the
USA (20%) and China (11%) (Khanal et al. 2020). Prior RS research tended to
concentrate more on soil moisture and crop health monitoring during the growing
season and less on issues like soil compaction, subsurface drainage, and crop grain
quality monitoring.

Modern technology have always been used by agricultural research experts as
they look for new methods to incorporate them into agricultural systems. Dynamic
crop simulation models have proven helpful tools for integrating various agriculture
system components and enabling us to investigate how those components operate
within the system. Because of its ability to utilize huge data, which is now more
readily available through the use of unmanned aircraft systems (UASs), it is
currently attracting a lot of attention within the agriculture disciplines (Jung et al.
2021). By enabling advanced analytics for managing agricultural systems, UAS
offers a previously unheard-of-chance to increase production systems’ resilience
and efficiency (Lezoche et al. 2020).

1.7 Precision Agriculture Technologies for Crop Production

Precision agriculture (PA) enables the agro-management by using advanced technol-
ogy sensor and analysis tools. PA employs a huge volume of data and information
to progress the use of agricultural resources, yields, and the quality of crops (Singh
et al. 2020) and drought-related decisions in agriculture (Rhee and Im 2017). The
changing weather and its effect on ecosystem threaten crop production and food
security for the present and future generations. Machine learning approaches have
been applied for the management of agri-related factors such as water availability,
soil fertility, environment and diseases/pests (Priya and Ramesh 2019). Smart,
digital agriculture can also benefit from the integration of the IoT devices, smart
systems, and sensors to enable farmer’s agri-practices (Chehri et al. 2020). Among
the PA applications, remote sensors, GPS, GIS, and yield maps are among the most
in use (Cisternas et al. 2020). Other tools that have shown great interest for PA
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include UAVs and WSNss for diverse functions including aerial crop monitoring and
smart spraying tasks (Radoglou-Grammatikis et al. 2020).

PA ensembles a huge amount of information about the crop status or crop health
in the growing season at high spatial resolution. Independently of the data source,
the most crucial objective of PA is to provide support to farmers in managing
their farming practices. Several agro-related variables, such as soil condition,
plant health, fertilizer and pesticide effect, irrigation, and crop yield, have to be
efficiently managed to realize higher yield and better crop growth under natural and
environmentally challenging conditions (Abdullahi and Sheriff 2017). Monitoring
all the above with precision is important for rational use of farming resources and
their management (Wu et al. 2022). Remote sensing methods like satellite- and
UAV-based hyperspectral imaging offer solutions as biophysical indicator maps
during the various stages of crop growth cycle and seasons (Bégué et al. 2018; Wu
et al. 2022) besides soil and plant health. Other tools like Al and ML have also been
useful in precision agriculture for prediction and appraisal of crop yield, detection
of diseases, and weeds (Liakos et al. 2018) (Figs. 11 and 12).

1.8 Conclusion and Recommendations

The use of big data in food production, along with the implementation of the
Internet of Things (IoT), blockchain technology, artificial intelligence (AI), machine
learning, cloud computing, as well as unmanned aerial vehicles (UAVs), and
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management
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conditions
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and activity of
personnel
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Fig. 11 Diverse applications of precision agriculture
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Fig. 12 Crop yield prediction methods. (a) regression method; (b) biomass and harvest index;
(c) crop growth model; (d) data-driven models. (Courtesy: Wu et al. 2022; doi: https://doi.org/
10.1093/nsr/nwac290)

robotics, is referred to as framework of digital agriculture. The components of the
digital agriculture framework are as follows:

* Basic information databases pertaining to agriculture: These databases include
essential information about farmland, genetic resources, weather patterns, social
and economic contexts, etc. that is pertinent to agricultural activities.

* A method for acquiring data that can be used to update databases and keep track
of agricultural activities in real time (or almost real time). This system is made
up of digital data collectors that are tasked with collecting information from
aerial or satellite-based sensors, above- and below-ground sensors, and data on
the weather, plants, and soil.

» Digital network transmission system: This system is a sort of media that enables
the distribution of commands and the gathering of data.

* System for central processing in order to control the functioning of digital
agricultural machinery, cyber physical system (CPS) assesses all the information
amassed and develops feasible judgments using GIS, agricultural models, and
expert systems.

» Digitized agricultural machinery (DAM): This category comprises tools for
harvesting, seeding, and managing fertilizer and water. As digital agricultural
machinery performs CPS commands and returns processing results either directly
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Fig. 13 Framework of digital agriculture (Radio frequency identification (RFID) refers to a
wireless system comprised of two components: tags and readers. The reader is a device that has
one or more antennas that emit radio waves and receive signals back from the RFID tag)

or through a real-time (quasi real-time) information collecting system, it uses
digital networks, GPS, and GIS to assist it (see Rijswijk et al. 2021 for details).

The framework for digital agriculture is shown in Fig. 13. Each component is
connected by a common data interface. A computerized agricultural system that
uses core information databases to set the planting schedule for a year also monitors
crop growth vigor and provides data on soil structure, water content, disease,
weather, and other important elements. Digital agriculture technology is used to
carry out a series of operations, such as planting, controlling water or fertilizer,
harvesting, and sending the data back to CPS. CPS does thorough information
analysis before making decisions. The whole analysis’ report is then produced by
CPS. The interconnected development of each component is underlined in digital
agriculture. The foundation for digital agriculture can only be laid when all the
parts are perfectly connected and advance at the same time. The phrase “digital
agriculture” cannot be used to describe a single element or a group of elements that
are developing separately.
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Dimas Mendes Ribeiro, and Agustin Zs6gon

Abstract Climate change is an ongoing threat worldwide, concerning food security
in developing countries but also affecting crop productivity even in well-developed
regions. These continuous changes in the climate have a multidimensional and
complex impact on food availability and population health, leading to an urge for a
science-based approach that can simultaneously take advantage of the new imposed
environmental conditions for food productivity and security.

In this context, elevated atmospheric CO, (eCO») arises as a flagship in climate
change conditions, and despite showing a positive influence on the photosynthesis
rate of many C3 species, the C4 species response is relatively small, also occasioning
a decrease in proteins, vitamins, and micronutrients content in both metabolisms
under certain conditions, reducing nutritional quality. Temperature oscillation also
influences crop productivity with complex interactions through ambient CO, con-
centration, water availability, and nutrient availability. In the concern of temperature,
high day temperature (HDT) and high night temperature (HNT) affect productivity
in different ways, making it detrimental to understand how and which crops
are affected by each or both temperature variations and in which developmental
stage crops are most affected. Furthermore, crop improvement and smart land
management are crucial to alleviate the ubiquitous climate change events.
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1 Introduction

The transition to agriculture and sedentary food production is closely linked to
climate events. The switch from gathering food in the wild to farming was probably
triggered by climate constraints. This long period during the Pleistocene was
characterized by progressively colder and dryer weather, marked by extreme climate
events (Alley 2000). The concomitant origin of sedentary, farming societies in as
many as ten geographically independent areas of the world coincides with the start
of the currently ongoing interglacial cycle (the Holocene) around 12,000 years ago.
The onset of relatively warmer temperatures and the increase in local rainfall likely
played a role in the appearance of the first agricultural societies (Ferrio et al. 2011).
Since then, stable climate has been the norm, and a new glacial cycle is not expected
for the next 50,000 years (Ganopolski et al. 2016). Notably, climate anomalies like
the Iron Age Cold Epoch (900-300 BCE), the Roman Warm Period (250 BCE to
400 CE), and the Little Ice Age (1550-1700 CE) led to disruptions in food supply
and alterations in demographic trends (Bevan et al. 2017). However, these events
were localized phenomena, in contrast to the unprecedented global increase in
temperature starting in the early twentieth century (Neukom et al. 2019). This novel
climatic pattern threatens the sustainable intensification of agriculture required to
support the growing population in the coming decades.

The impact of climate change on extant crops could be compared to the novel
conditions experienced by early crops when radiating from their respective centers
of origin (Fig. 1). There are many examples, of which soybean (Glycine max)
is probably one of the most representative, where the latitudinal range of a crop
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Fig. 1 Centers of origin of crops responsible for the main sources of protein and carbohydrate
worldwide
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has been expanded via genetic changes in photoperiodic response, duration of
growth cycle, and time to maturity. Crops of the Compositae family like lettuce
(Lactuca sativa) were also selected to avoid precocious flowering in tropical
environments. However, the classic example in this regard is the transfer of potato
(Solanum tuberosum) to Europe from South America, which was selected to initiate
tuberization in long-day conditions, as opposed to its natural short-day tuberization
response. Similarly, another native South American species, the tomato (Solanum
lycopersicum), suffered a profound alteration in its circadian clock machinery and
a reduction of heterostyly to adapt to the more extreme oscillations in photoperiod
and the lack of natural pollinators in its new environment in Europe, respectively.

2 Elevated CO; and Its Impacts on Food Security

As the world population continues to increase, crop production must intensify
proportionally to ensure food security in the coming decades, while remaining
sustainable by reducing its environmental impact. However, climate change poses
a serious challenge to achieve these goals (Giller et al. 2021). Crop growth and
yield depends on a combination of factors such as plant genotype, temperature,
precipitation, sunlight, nutrient availability, and atmospheric CO, concentration
(Sharon and Siobhan 2016). In this context, elevated atmospheric CO, (eCO») has
the potential to positively alter the rate of photosynthesis for many C3 species,
which may lead to increased growth and crop yield (Dong et al. 2019; Poorter et
al. 2022) (Fig. 2). On the other hand, the response of C4 crops such as maize (Zea
mays) and sorghum (Sorghum bicolor) to eCO; exposure is expected to be relatively
small compared to C3 crops like rice (Oryza spp.) and wheat (Triticum aestivum)
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Fig. 2 Schematic model summarizing the effects of high CO; on crop physiology and yield



50 K. Gasparini et al.

(Leakey et al. 2006). Despite improving C3 crop yields, eCO; in isolation (i.e.,
without concomitant alterations in air relative humidity or temperature) decreases
the concentrations of protein, vitamins, and micronutrients essential for humans in
edible parts of crops, negatively impacting food security (Myers et al. 2014; Zhu et
al. 2018) (Fig. 2). Such losses in nutritional quality represent an extra challenge for
agriculture to provide enough nutrition for a population that is rapidly expanding
(Nelson et al. 2018). Moreover, crop responses to increases in atmospheric CO; are
related to nutrient availability (Jin et al. 2019). In other words, the additional carbon
acquired through photosynthesis in response to eCO; can only result in increased
crop yield if plant nutrition is adequate. These deficiencies of plants grown at eCO;
in using photosynthetic carbon gain under nutrient-limited conditions are of serious
concern. It is apparent that the eCO; effect on crop productivity may be reduced
in low-income countries, where the availability of fertilizers is a limiting factor
in agricultural production. Hence, countries that depend on agriculture for a large
share of their income are at risk of more food insecurity. In this context, a deeper
understanding of how eCO; regulates crop yield and nutritional quality is required
to ensure food security over the coming decades.

In response to eCO», cereal crops increase grain number and grain biomass,
which is often associated with reduction in nutritional quality of crops (Dong
et al. 2019). There are sufficient data to indicate that eCO, leads to a decrease on
concentrations of Zn and Fe in staple crops like wheat, rice, potato, and legumes
(Loladze 2014; Myers et al. 2014; Zhu et al. 2018). The fertilization effects of eCO;
associated with incidence of climate impacts on grain mineral concentrations are
projected to decrease the global availability of Zn by 14.6% and Fe by 13.6% in
2050 (Beach et al. 2019). The losses in grain mineral concentrations in response
to eCO, may be attributed to the lower absorption and/or translocation to grains as
well as yield dilution and concentration effect (Ujiie et al. 2019; Jin et al. 2019) (Fig.
2). In this context, the effect of eCO, on concentrations of Zn and Fe may therefore
cause a nutritional deficit in these key nutrients for a large segment of the world’s
population. The reduction on concentration of Zn and Fe in the edible portion of
crops due to increased atmospheric CO; concentrations could lead to a reduction
of 125 million disability-adjusted life-years globally over the period 2015-2050
(Weyant et al. 2018).

The impact of eCO; on dietary patterns will be strongest in regions like
Southeast Asia and Africa, where populations already have a burden of disease
associated with deficits in intake of Zn and Fe (Weyant et al. 2018). Thus, efforts
to enhance crop yields in response to eCO, must be coupled with attempts to
understand and manipulate the balance between mineral uptake by the root system,
distribution, and partition to the grains to maximize its use for storage. Research
on wheat illustrates the importance of considering these questions in attempting
to increase grain nutritional quality. The endosperm-specific expression of the
VACUOLAR IRON TRANSPORTER gene combined with constitutive expression
of the NICOTIANAMINE SYNTHASE gene increased grain Zn concentration and
altered the redistribution of Fe within the grain, which led to an increase in
Fe in wheat flour (Harrington et al. 2022). However, for the full potential for
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wheat improvement to be realized, this focus on grain nutritional quality must be
accompanied by increased understanding of how climate change could affect grain
mineral concentrations. This consideration raises a multitude of new and complex
questions about the integration of carbon assimilation, quantity, and nutritional
quality of crops.

Protein concentration of cereals (the ratio of grain protein amount to grain yield)
is an important trait affecting the market value and nutritional value of grain (Geyer
et al. 2022). The predicted changes in atmospheric CO» concentration alone can
increase the total amount of protein in grain of C3 crops such as rice and wheat, but
also decrease its concentration (Myers et al. 2014). Although the precise mechanism
behind this remarkable effect remains uncertain, decreased protein concentration
under eCO; conditions can be attributed to higher starch accumulation and lower
assimilation of nitrate into organic nitrogen compounds (Bloom et al. 2014) (Fig.
2). It is also likely that eCO; decreases the concentration of available N in the
soil, contributing to the lower N concentration in vegetative tissues and probably
reduction grain protein concentration (Jin et al. 2019). The effects of increases
in atmospheric CO, are thus predicted to decrease global availability of dietary
protein by 4.1% (Loladze 2014), which can disproportionately affect countries that
already have high levels of nutritional deficiency. Additionally, the negative effect
on protein concentration under eCO, could lead to a decrease on S availability for
human because plant proteins are the important source of the S-containing amino
acid methionine (Tcherkez et al. 2020). Thus, breeders and biotechnologists need
to identify plant traits that can be targeted to improve nutritional quality of crops in
relation to increasing atmospheric CO; concentration.

It should also be contemplated that atmospheric CO, concentration is not just the
source of carbon for photosynthetic organisms, but a long-wave-radiation trapping
gas, with consequences for global temperature and precipitation patterns, climatic
variables that affect yields and nutritional quality of crops. The interactions between
eCO; and other variables (e.g., temperature and precipitation patterns) lead to
effects on agricultural productivity and global nutrient availability that are not
easily predictable from the studies of the individual components. This has major
consequences for discussion of how, and to what extent, yields and nutritional
quality of crops can be optimized in a changing environment.

Taken together, research into growth and yield regulatory processes under
influence of eCO; conditions indicates that the increase in CO; alone may improve
the energy efficiency of plant metabolism of C3 crops and thus more fixed carbon
could be allocated to grain, increasing yield. These responses, however, have
the unintended effect of reducing grain nutritional quality. The challenge is to
understand how the grain nutritional quality is coordinated with the availability of
photosynthate under eCO, environments at the levels of single cells and whole
plants. Moreover, the regulation of gene expression and signaling cascades that
regulate many mineral transporters in response to eCO; conditions remain to be
elicited. These are steps toward learning how an increase in the levels of photo-
synthetic carbon modifies plant carbon-to-nutrient ratios, which in turn may lead
to the development of a sustainable production under eCO, conditions. However,
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one needs to be cautious that there are other biophysical conditions, especially
temperature and precipitation, interacting with eCO; and the nutritional value of
the crop. This reinforces the complexity of developing models to predict the impact
of CO; conditions on global food security in the context of climate change.

3 Temperature Changes

The global average surface temperature increased 0.6 °C during the twentieth
century and, according to the most recent forecasts, is expected to increase 2.6 °C
by the end of the century, compared to the preindustrial era. Increased temperature
and more frequent heatwaves will have a strong impact on agriculture in tropical
regions but also in some temperate countries (Fig. 2). Globally, 31% of agricultural
areas are considered as “high risk” of heat stress in the twenty-first century.
Climate risks could thus lead to food shortages, massive migrations, and other
societal disruptions. The full impact of temperature increase on crops is an area
of intense ongoing research, as the final effects depend on complex interactions
with ambient CO, concentration and water and nutrient availability (Moore et al.
2021). Particularly worrisome is the increasing occurrence of simultaneous stresses,
for instance, high temperature and drought. Water scarcity will impinge strongly
on agricultural output. Climate models project that rising temperatures will lead to
changes in rainfall patterns that exacerbate existing trends, that is, dry regions will
get drier and wet areas will become wetter (Bathiany et al. 2018). The Mediterranean
basin, for instance, is particularly susceptible to drought, so a large share of the
agricultural output in countries of Southern Europe and North Africa is expected to
be affected. Entire agriculture-based industries, like wine production in Spain, could
be disrupted (Droulia and Charalampopoulos 2021).

Many open questions are still the subject of intense research to provide new
knowledge that can help mitigate the effects of temperature extremes. First, the
physiological impact of a steady increase in temperature will differ from that of
discrete, extreme temperature events (e.g., heat waves, unseasonable frosts). What
are the genetic networks controlling the responses to each one and how much
overlap (if any) is there between them?

As mentioned above, increasing temperatures resulting from climate change
drastically impact crop production around the globe. High temperatures affect crop
yields by direct and indirect effects, causing water stress through reduction of soil
water and increased atmospheric water demand (Lobell et al. 2013), leading to
stomatal closure to avoid dehydration thereby impairing CO, uptake, and enhanced
root growth, both causing reduction of shoot biomass. Considering the same crop,
optimum temperatures differ at different growth stages, and changes in temperature
conditions can happen at any developmental stage at field conditions.

High day temperature (HDT) refers to higher than optimum temperatures during
daytime for crop development. In rice (Oryza sativa L.), HDT during vegetative
stage affect tiller formation and continuous stress exposure during boot stage
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impacts directly on spikelet meristem differentiation, and during reproductive stage
increases spikelet fertility, and continuous stress exposure during seed development
impacts grain weight (Xu et al. 2020). Photosynthesis is the rate-limiting factor pref-
erentially inhibited by HDT, with great decrease in the photoassimilate production
due to great reduction in leaf carbohydrate content due to photorespiration (Dusenge
et al. 2019). HDT also affects molecular pathways with the purpose to avoid,
scape, and tolerate stressful conditions. For example, EXTRA GLUME 1 (EG1)
encodes a predominantly mitochondria-localized lipase that functions upstream
of floral identity genes in rice (OsMADSI, OsMADS6, and OsGl) to promote
floral development sturdiness under HDT (Zhang et al. 2016). Tomato (Solanum
lycopersicum L.) is one of the main crops in which yield losses have been massively
reported when heat stress takes place during the reproductive phase. Tomato fruit
number per truss and fruit weight is directly affected by HDT, ranging from a few
days (when pollen development or fruit set is disturbed) to a whole developmental
period (Sato et al. 2006). In potato (Solanum tuberosum), HDT decreased tuber
yield (~18.1%) by reducing photoassimilates, which was probably attributed to
decreased photosynthetic efficiency through a feedback inhibition (Kim and Lee
2019). Moreover, night temperature appears to be increasing at a faster pace than
day’s causing harmful effect on crop growth, development, and yields due to a
reduced diurnal temperature range (Bahuguna and Jagadish 2015).

High night temperature (HNT) occurs when there is an uneven temperature
increase, with larger increase of night’s compared to day temperatures
(Schaarschmidt et al. 2021). Reduction of grain yield was reported after HNT
exposure, and it seems that disturbed translocation of photoassimilates was the
main cause (Wu et al. 2017), also affecting pollen viability in rice (Yang et al.
2017) and decreased spikelet fertility, grains per spike, grain size, and quicker
grain filler period in wheat (Narayanan et al. 2016). Quality parameters were
also altered after HNT, as grain length, grain width, and grain area. All together
shows that HNT has more deleterious effect on grain quality compared to HDT
(Fahad et al. 2016; Schaarschmidt et al. 2021), although the impact on yield
decrease and quality is directly related with the HNT tolerance of the species.
This can be assumed since HNT affects gene regulation, metabolic pathways,
and hormone metabolism. Glaubitz et al. (2017) performed transcriptomic and
metabolomic analysis on leaves from six rice cultivars under HNT. An overlap
of six significantly differentially expressed genes was pinpointed in five cultivars
and were all upregulated, encoding proteins involved in transcription regulation
(helix-loop-helix proteins), signal transduction (protein kinase), protein-protein
interactions (TIFY domain containing protein), and biosynthesis of polyphenols
(phenylalanine ammonia-lyase). Metabolites profile revealed involvement of 4-
amino-butanoic acid (GABA) signaling, providing a link to the TCA cycle in
sensitive cultivars and of myo-inositol as precursor for inositol phosphates also
linking jasmonates signaling to the HNT response mainly in tolerant cultivars. In
potato, during tuber initiation, HNT delayed tuber development, thus altering tuber
mass distribution by reducing the yield proportion (~53.7%) and lowering early
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harvest index (16.1%), causing yield loss (~17.2%) without photosynthesis damage
(Kim and Lee 2019).

Considering the aforementioned detrimental effects of heat stress on crop
production, some points need to be elucidated: (1) how and which crops are
differentially affected by HDT and HNT stresses, (2) the anatomical-molecular-
physiological mechanisms related with yield consistency and impairment (tolerance
and susceptibility), (3) which developmental stages are most affected by heat stress
for each crop, and (4) benefits and challenges in the development of new heat
tolerant varieties throughout molecular pathways (Xu et al. 2020).

4 Adapting Agriculture to Uncertain Climate

Even though climate is hard to predict, the current consensus from many indepen-
dent studies (Lehmann and Rillig 2014; Mazdiyasni and AghaKouchak 2015; Bigot
et al. 2018; Anderson and Song 2020; Grossiord et al. 2020; Zandalinas et al. 2021)
indicates that the mean surface temperature will increase steadily over the current
century. The latest IPCC report states that at least half of the increase in global
mean temperature between 1951 and 2010 has been likely caused by anthropogenic
greenhouse gases: CO; levels have risen from 250 ppm to over 400 ppm over the
period. Agriculture itself has led to considerable detrimental effects: the destruction
of tropical forests releases a trillion tons of carbon per year, an eighth of all
anthropogenic CO, emissions (Friedlingstein et al. 2010). It is anticipated that, if
unchecked, global warming will lead to altered distribution of rainfalls, exacerbating
flooding in some areas and drought in others. Expected adverse effects on crop
growth include decreased seed germination, increased incidence of plant disease,
and herbivory (Lobell and Gourdji 2012; Taiz 2013; Wheeler and Von Braun 2013).
Climate change models have furthermore suggested the increased incidence of
extreme climatic events (Otto 2015), which are likely to have devastating impact
on crop yields.

Climate extremes, such as drought or heat stress, can lead to harvest failures
and threaten the livelihood of agricultural producers and the food security of
communities. Improving the understanding of their impacts on maize production
is crucial to enhance the resilience of the global food system. Climate factors,
including mean climate and climate extremes, explain 16-39% of the variance
of yield anomalies (YA), with 10-31% of the explained variance attributable to
climate conditions. YA related more closely with temperature extremes than with
precipitation-related factors (Vogel et al. 2019). The forecast for future scenarios
is a loss of climatic suitability for maize in sub-Saharan Africa and Latin America
regions but accompanied by an expansion in the northern hemisphere, particularly
in Europe. The relative change in climatically suitable areas for future maize
production was estimated for the top five producers. Production in 2050 is expected
to increase 8% for the USA and 4% for China and to decrease 5% for Brazil,
2% for Argentina, and 11% for Mexico. The incidence of low temperature and
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waterlogging, presently common in Europe and Asia, is projected to diminish,
whereas heat stress in Africa and drought stress in South America are projected
to increase (Ramirez-Cabral et al. 2017).

In 2010, FAO introduced the concept of “climate-smart agriculture” to cope
with future threats to food security and climate change. One of the key drivers
of “climate-responsible” intensification of agriculture is diversification. However,
conservation of agro-biodiversity is not an end in itself. Conservation must be
strongly linked to utilization, either actual or potential.

Changing highly engrained dietary habits is probably more challenging than
breeding new crops and creating resilient agricultural systems (Fanzo et al. 2013).
However, past experiences show that it is possible through a combination of
policy and individual endeavor. As recently as 300 years ago, European peasants
were reluctant to grow potatoes for a variety of reasons including superstition,
resemblance with poisonous nightshade, or simply taste preferences (McNeill
1999). Today, Europe is responsible for 30% of the total production of potato
worldwide, and Germany, France, the Netherlands, and Poland are among the top
10 world producers. The first commercial orchard of kiwifruit (Actinidia deliciosa)
was established in New Zealand in the 1930s. Today, the total world production
is well over four million tonnes per year and could expand and diversify through
the exploitation of closely related species: A. arguta (already grown in low scale
in Europe and in the USA), A. kolomikta (high in vitamin C and adapted to colder
areas), or A. eriantha (high in vitamin C) (Ferguson 2013).

Genomic analyses are widening to capture the large-scale range of ecological
variation of crops. They now include wild species, landraces, and cultivars, and
they aim at identifying relevant genetic signatures for valuable agronomic traits.
This is a fundamental first step, which in an ideal pipeline should be followed by
physiological characterization and agronomic field assays.
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Abstract Global warming will have a negative impact on agricultural land in
underdeveloped nations, as the land warms up more rapidly and easily than water.
By the 2080s, the demand for food is predicted to triple due to an increase in global
population and affluence. Climate smart agriculture (CSA) is an integrated method
of managing landscapes that address the interrelated problems of food security
and climate change. Smart agriculture systems use sensors and monitoring tools to
gather information on variables such as temperature, humidity, water levels, and
fertilizer levels. Robotic systems for planting, harvesting, and weeding can also
be part of smart agriculture systems, such as automated watering and fertilizing
systems. Soilless smart agriculture technologies can be carried out in a controlled
setting and are more resistant to adverse weather, reducing the carbon footprint
of food production. A controlled environment, like a greenhouse, can be used
for year-round production and shelter from harsh weather. Soilless agriculture
is an adaptation to climate change, as it is more resistant to adverse weather
and uses less water than conventional agriculture. Urban agriculture is becoming
increasingly important, as people are relocating to cities and demand for food
production is rising. It is important to consider the environmental and social impact
of these methods, such as energy consumption for a controlled environment, and
ensure they are sustainable in the long run. In this chapter, we have summarized
the methodologies and enabling technologies for indoor soilless smart agriculture
systems (ISSAS) considering both global and Indian scenarios.
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1 Introduction

Global warming will have a negative impact on agricultural land in underdeveloped
nations compared to industrialized nations, since the land warms up more rapidly
and easily than water. Crops can be impacted by climate change in two ways: (1)
increased soil evaporation and (2) higher temperatures that alter plants’ ability to
absorb and utilize moisture. By the 2080s, the demand for food is predicted to triple
due to an increase in global population and affluence (Cline 2008). As a result,
the supply and demand equation is unstable, and climate change would make it
significantly worse.

The need for a larger emphasis on climate change adaptation in agriculture is
becoming more urgent. Few studies evaluate the adoption rates and propensity
for the effectiveness of potential response tactics. A broader risk-management
framework that takes climate unpredictability and market dynamics into account
will be needed to support further adaptation activities. Science must change as well
by continuously evaluating the need for new research and improving managerial
techniques (Howden et al. 2007).

Additionally, climate change can lead to increase in migration, poverty, etc.
Therefore, the concept of climate smart agriculture (CSA) has been conceptual-
ized, which is an integrated method of managing landscapes that addresses the
interrelated problems of food security and climate change. It includes farming,
raising cattle, managing forests, and managing fisheries. The World Bank (Cline
2008) has specified three outcomes of CSA: (1) increased productivity by producing
more and better food to enhance earnings and improve nutrition security, especially
for the 75% of the world’s poor who reside in rural regions and mostly depend
on agriculture; (2) improved resilience in terms of lower susceptibility to pests,
diseases, drought, and other climate-related hazards and shocks and increase ability
to adapt and develop in the face of longer-term pressures, such shortened seasons
and unpredictable weather patterns; (3) lessened emissions by striving for lower
emissions per calorie or kilogram of food produced, limiting agricultural deforesta-
tion, and finding techniques to remove carbon dioxide from the environment.

Despite the fact that CSA is marketed as a multidisciplinary idea, persistent
biases toward scientific and technical challenges still influence how researchers view
CSA on a worldwide scale. To find CSA solutions, there is enough technical advice
and scientific support, but the literature on social, management, and economic issues
is underdeveloped. In particular, there is a shortage of research to support better
coherence, coordination, and integration of the CSA pillars in the areas of gender,
markets, broader landscape features, and decision-making. The many CSA pillars
have significant overlaps and divergences. Trade-offs would be necessary if multiple
orientations were pursued, and these trade-offs might favor one CSA pillar over
another (Chandra et al. 2018).

Smallholder farmers can benefit most from optimal combinations of adaptation
and mitigation initiatives by contributing to their socioeconomic development.
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Development has had a significant influence on CSA discussions (Chandra et al.
2018).

The food and agriculture industry both contributes significantly to climate change
and is particularly susceptible to its worst effects. Complex and contentious political
processes are at play as new governance agendas are implemented, and much is at
stake. This unique forum brings together a collection of presentations that highlight
three overlapping themes that are at the heart of these disputes in order to unravel
these concerns (Clapp et al. 2018).

The confluence of food and agriculture with climate change has offered a forum
for discussing new solutions and rehashing old debates. We may observe how
debates in agrarian studies over land rights, control over agricultural technologies,
access to them, governance of fisheries and marine resources, trade liberalization,
and food sovereignty are once more at the forefront (Clapp et al. 2018).

Eleven case studies are used to examine scaling-up strategies based on value
chains and private sector involvement, agro-advisory services, and policy engage-
ment (Westermann et al. 2018). The case studies highlighted several challenges:
estimating the costs and benefits of different scaling activities, integrating knowl-
edge across multiple levels, and addressing equity issues. Results showed that these
different strategies exhibit different characteristics. One is the issue of estimating
the costs and benefits of different scaling activities. While it may be envisaged
that strategies for scaling up based on value chains, ICT/agro-advisory services
and policy engagement could be highly cost-effective, more rigorous information
is needed, and this warrants further work. A second challenge is that of integrating
knowledge across multiple levels. This is not only just the challenge of moving
from successful small-scale projects to informing and implementing policy with
broad reach; it also requires devolving action from national levels to local levels
(or scaling down) to ensure that interventions are appropriately contextualized and
locally viable. The third challenge is that of addressing equity considerations in
scaling up CSA interventions (Westermann et al. 2018).

The use of technology to increase the productivity and efficiency of agricultural
activities is referred to as “smart agriculture systems.” Sensors and monitoring tools
are frequently used in these systems to gather information on variables, including
temperature, humidity, water levels, and fertilizer levels. The growing conditions are
then adjusted in real-time to maximize plant development and production using the
data collected. Robotic systems for planting, harvesting, and weeding can also be a
part of smart agriculture systems, as can automated watering and fertilizing systems
(Oliveira et al. 2021).

Future food production could be efficient and sustainable thanks to soilless
smart agriculture technologies, especially in light of the world’s changing climate
(Banerjee et al. 2022). Soilless smart agricultural systems have the potential to be
a crucial instrument for coping with and lessening the effects of climate change in
terms of the future climate. The demand for food will rise as the world’s population
expands. The key benefits from soilless agriculture could be envisaged as below:
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Climate Adaptation The demand for food will rise as the world’s population con-
tinues to rise. Additionally, it is anticipated that climate change would bring about
more extreme weather events like droughts and floods, which could be detrimental
to traditional agriculture (Altieri et al. 2015). However, soilless agriculture methods
can be carried out in a controlled setting and are often more resistant to adverse
weather. For instance, indoor hydroponics and aeroponics operations can shield
plants from harsh weather conditions, including heatwaves, cold snaps, and heavy
rain (Rayhana et al. 2020).

Efficiency in Water Use Conventional agriculture can use a lot of water. This can
be a serious issue in locations where water is already in short supply. However,
soilless agriculture uses a lot less water than conventional agriculture (Eigenbrod
and Gruda 2015). For instance, only the water that is absorbed by the plants is
wasted in hydroponic systems where the water is recycled. In arid areas, where
traditional agriculture would be impossible, soilless agriculture technologies can be
used (Schroder and Lieth 2002).

Reduced Carbon Footprint Food production’s carbon impact is a significant envi-
ronmental concern. A large amount of the world’s greenhouse gas emissions
is caused by traditional agriculture (Bozchalui et al. 2015). However, soilless
agriculture methods utilize substantially fewer chemical inputs than conventional
agriculture, such as fertilizers and pesticides, which can assist in lowering the carbon
footprint of food production (Eigenbrod and Gruda 2015). The ability to precisely
manage the nutrient levels, pH, and water supply for the plants, resulting in higher
development and yields, is one of the key benefits of soilless agriculture (Lakhiar et
al. 2018).

Urban Agriculture People are relocating to cities in greater numbers as urbaniza-
tion continues to rise. The demand for food production in urban areas is rising along
with the population. In urban locations, where traditional agriculture is not feasible,
it is possible to grow food using methods of soilless agriculture, such as vertical
farming (Goldstein 2018). This can give urban people with fresh, locally grown
vegetables while lowering the carbon footprint of food transportation (Goodman
and Minner 2019). A controlled environment, like a greenhouse, can also be used for
soilless agriculture, enabling year-round production and shelter from harsh weather
(Goodman and Minner 2019; Rayhana et al. 2020).

Additionally, it is also important to consider the environmental and social impact
of these methods, for example, energy consumption for controlled environment, and
to ensure that they are sustainable in the long run.

According to the United Nations, by 2030, India is expected to have 1.5 billion
people, making it the most populated nation on earth (UN DESA 2022). India’s
population is expanding quickly, and it is anticipated that demand for food will
rise sharply over the next few years. But there are also serious obstacles to India’s
food security. Around 20% of children under the age of five are underweight, and
14.5% of the population is undernourished. India’s agriculture is anticipated to be
significantly impacted by climate change. According to predictions made by the
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Intergovernmental Panel on Climate Change (IPCC), India would likely experience
an increase in the frequency and severity of extreme weather events like droughts
and floods as a result of climate change (Anderson et al. 2020).

In order to understand the impacts of climate change and the requirements
for food production in developing countries in the context of soilless agriculture
techniques, we have taken India into consideration. India is experiencing a severe
water problem in terms of its water supplies. India’s water storage has fallen to a
disconcertingly low 28% of its maximum capacity, according to the Central Water
Commission (Sikka et al. 2022). The ancient agricultural practices in India are up
against several difficulties due to the growing population and water shortage. In this
situation, soilless agriculture techniques, like hydroponics, aeroponics, aquaponics,
and vertical farming, have a critical role to play in supplying food and coping with
climate change. But the use of soilless farming techniques in India is still in its
infancy, and there are still a number of obstacles to overcome, including a lack of
knowledge, a lack of technical know-how, and high start-up expenses.

This chapter reviews the research of researchers from various parts of the world
related to vertical farming, greenhouse farming, precision farming, climate control,
fertilizer optimization, crop planning, soilless agriculture methods, agriculture in
LED light, etc., taking into account both global and Indian scenarios. It then
discusses the components and enabling technologies of indoor soilless smart
agriculture systems (ISSAS) and their related challenges.

2 Soilless Smart Agriculture Systems (SSAS)

Soilless smart agriculture systems (SSAS) can be both indoors and outdoors,
depending on the type of system and the crops being grown. However, indoor
systems are more commonly used for SSAS due to their many advantages, such
as climate control, better disease and pest management, and year-round production.
On the other hand, outdoor SSAS are typically used for larger-scale agricultural
operations such as field crops or orchards. Outdoor SSAS are often referred to as
precision agriculture, as they use data and technology to optimize crop yields and
minimize environmental impact. Hydroponics, aeroponics, aquaponics, and vertical
farming are some of the popularly known methods of soilless agriculture techniques
that have the potential to significantly influence future climatic conditions. Hydro-
ponics, aeroponics, and aquaponics are the three soilless agriculture methods that
could be used in vertical farming, but they are not exclusive to it. The primary
advantage of vertical farming is that it allows for efficient use of space, making
it ideal for urban areas where land is limited. Figure 1 illustrates three popular
soilless agriculture methods like hydroponics, aquaponics, and aeroponics, which
are recognized as viable alternatives to traditional farming worldwide.

Broadly, in some literature “smart indoor factories” and “‘smart indoor farms”
have been used to refer to any indoor growing system that incorporates some level
of technology or automation, while “soilless smart agriculture systems” specifically
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Soilless Agriculture
v ‘ v

Hvdroponics Agquaponics Aeroponics
Properties: Properties: Properties:
¥ Crops are cultivated by using ¥ An integration of aquaculture v Plant roots are sprayed with
water enriched with nutrients. and hydroponic farming. nutrient solution.
v Soil based insects, bacteria v" Waste of fish culture are v Lesser amount of water is
and fungus are not active in used as nutrients required.
hydroponic system. v" Harmful glasses, chemicals v Reduces the use of
v Problems of variation of soil and acids are filtered out. fertilizers, pesticidesand
temperature, oxygen, moisture ¥ Problems of soil-based nutrients.
level are eliminated. farming are eliminated here.
v" Reduces the use of fertilizers, v" Reduce the use of fertilizers
pesticides and nutrients. and pesticides and nutrients

Fig. 1 Features of three popular soilless farming methods: hydroponics, aquaponics, and aeropon-
ics

refers to growing systems that do not use soil and rely on advanced technology
and data analytics to optimize plant growth. In order to make it more precise
to the readers and to have a clear understanding of the growing systems being
discussed, we propose to use the term “indoor soilless smart agriculture systems
(ISSAS)” henceforth in this chapter, which highlights the environmental benefits of
soilless growing techniques and precise control over growing conditions, as well
as the potential for promoting sustainable agriculture. Finally, it emphasizes the
innovative nature of technology and its potential for transforming the way we grow
food. We will now concentrate on various ISSAS approaches and technology in the
discussions that follow.

2.1 Hydroponics, Aquaponics, and Aeroponics

Hydroponics uses mineral nutrient solutions in water to grow plants without
using soil. As a means of effective and sustainable food production, it is gaining
popularity. Plant growing beds and a reservoir of plant nutrient solution make
up the majority of hydroponics systems. Compared to conventional gardening
techniques, this soilless farming method produces more while using about 20
times less water (AlShrouf 2017). Romeo et al. (2018) justified that in comparison
to traditional open field farms and greenhouse cultivations, the hydroponic farm
performs better. Vertical hydroponic farming can outperform the two conventional
kinds of agriculture if the source of the electrical input is carbon neutral, such as
wind energy.
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Sharma et al. (2018) discussed various hydroponic structures, such as wick,
ebb and flow, drip, deep water culture and nutrient film technique (NFT) systems,
their operations, benefits and limitations, performance of different crops, and
water conservation and found that NFT technique has been used commercially for
successful production of leafy as well as other vegetables with 70-90% savings of
water. In another study, Sambo et al. (2019) state that soilless cultivation requires
specific knowledge and skills to manage aspects such as NO3— management and
crop quality increase. New technologies such as nanoparticles and PGPRs are being
studied, but better knowledge of the processes underpinning the acquisition of
nutrients and their allocation in the different tissues is essential. A decoupling of
hardware component management from software components will require a service
center specialized in smart agriculture.

Hydroponic systems have advantages over field culture systems, such as reuse of
water, ease in controlling external factors, and a reduction in traditional farming
practices, but have limitations such as high setup cost, rapid pathogen spread,
and a need for specialized management knowledge (Lee and Lee 2015). Low-cost
techniques are essential for successful implementation of commercial hydroponic
technology, which should also try optimization techniques to reduce plant diseases
and enhance food quality and quantity.

Aquaponics combines hydroponics and aquaculture (fish farming), producing
fish and vegetables in a closed-loop water system. By utilizing the nutrients from the
fish waste as a source for nutrients, the plants help to purify the water for the fish.
It creates a closed-loop ecosystem by utilizing the waste from one component as a
resource for another. A mix of aquaculture and hydroponics, aquaponics collects
nutrients from an aquaculture tank rather than from an outside source. Due to
their ability to reuse water resources, aquaponics systems use 90% less water than
conventional techniques. In order to successfully adopt aquaponics, producers need
to start with catfish and then shift to a high-value fish species for niche markets
(Bosma et al. 2017). It was concluded that by producing 1250 kg fish, 6000 kg
lettuce, and 300 kg tomato per year would have a net-benefit-cost Ratio of 1.3 after
20 years.

Aeroponics involves misting plant roots with a nutrient solution. As the plants
grow in an atmosphere of air or mist, their roots are suspended in the air. Aeroponics,
which is regarded as a more advanced form of hydroponics, is known for its high
yields and effective use of water and fertilizer. Plants in aeroponics systems are
suspended in the air, and nutrients are delivered to the roots of the plants using a
spray system. When compared to conventional systems, the systems use 95% less
water and take up less space. In an aeroponics system, plants exhibit a rapid growth.
If the supply of water and nutrients is managed while taking the plants’ needs into
account, aeroponics systems are inexpensive and offer higher growth rates.

Aeroponics is an innovative and appropriate technology that has the potential
to cultivate plants in large quantities, tree saplings associated with soil microorgan-
isms, and reforestation of degraded land in humid regions. It is an indoor horticulture
practice that reduces labor cost, consumes less water, fertilizer usage, pesticide and
herbicides usage, and maximize plant yield by 45% to 75% (Lakhiar et al. 2018).
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The system is an environmentally friendly and economically efficient plant growing
system that requires a high level of proficiency and advanced equipment to operate
and control.

The evaluation, assessment, and utilization of aeroponics system for commercial
plant developing purpose should focus on root research, nutrient concentration,
plant spacing, and pest/disease control. Artificial lighting should be used to grow
the plant. Aeroponics is a highly specialized cultivation system that can be used in
developing countries of the Third World to accommodate intensive food production
in areas without fresh water and fertile soils. Future research will focus on
understanding why aeroponic cultivation is more productive than hydroponic or
soil cultivation, understanding root developmental architecture, understanding the
relationship between aeroponic fertilization and daily cycles, identifying aerosol
generation technology, and establishing experimental and analytical frameworks for
comparison of vertical farming technologies (Eldridge et al. 2020).

The aforementioned three soilless agricultural methods, when combined with
smart sensing and control, will increase output while using fewer resources in
indoor conditions, proving the necessity of CSAs or indoor soilless smart agriculture
systems (ISSAS). Table 1 summarizes some notable research works on three popular
ISSAS: hydroponics, aquaponics, and aeroponics.

2.2 Vertical Farming

Vertical farming and nurseries (both controlled and uncontrolled environments) for
agro-climate regulation through minimal dependence on external input and reduced
land footprint. Vertical farming involves growing crops in vertically stacked layers,
usually in a controlled environment such as a greenhouse or a warehouse. This
type of ISSAS is becoming increasingly popular, because it allows for high-density
crop production and efficient use of space, making it ideal for urban areas where
land is limited. Some examples of indoor ISSAS are hydroponics, aeroponics, and
aquaponics.

Vertical farming is a concept that encompasses a range of technologies and
methods used to grow crops in a vertical arrangement. This can be done using
hydroponic, aeroponic, or other soilless techniques, but it can also be done using
traditional soil-based methods. The primary advantage of vertical farming is that
it allows for efficient use of space, making it ideal for urban areas where land is
limited.

With this technique, plants are grown in a controlled environment in layers.
This makes it possible for plants to grow at a considerably higher density than
in conventional horizontal farming. The exact control of the growing conditions
made possible by the controlled environment also results in increased yields and
less consumption of water and other resources.

Indoor vertical farming is a growing field, with several types of vertical con-
struction, big rooms, little containers, and huge greenhouse farms. Kalantari et al.
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Table 1 Summary of notable research works on three popular ISSAS: hydroponics, aquaponics,
and aeroponics

Technological
SSAS type/ | bene-
Article Broad area Methodology adopted adoptability | fits/drawbacks
Nalwade Hydroponics | Automated water delivery and Yes/majorly | Automatic
(2017) farming required pH and electrical indoors maintenance
techniques conductivity (EC) maintenance. of pH and EC
When using the root-dipping
technique, plants are immersed in
the manure mixture. It is used
once and then replaced, as
opposed to circulating manure
blend
Nishimura | Sensor design | A new hardware module senses | Yes/majorly | Measurement
etal. (2017) | for and measures water level and indoors accuracy is
hydroponics | nutrient concentration impacted by
farming the sensor
cable’s
instability in
water
Kaewwiset | Maintaining | Fuzzy logic and linear regression | Yes/majorly | The accuracy
and EC and pH of | algorithms are utilized to indoors for regulating
Yooyativong | hydroponics | calculate the amount of nitric pH and EC
(2017) and | solution acid needed to fill the using linear
Fuangthong hydroponics reservoir and regression is
and maintain the desired EC and pH 95% and
Pramokchon levels 80.8%,
(2018) respectively
Eridaniet | Automatic Proximity sensor for detecting Yes/majorly | TDS sensor
al. (2018) nutrition level | water level, total dissolved solids | indoors gives 97.8%
controlling of | (TDS) sensor for measurement of accuracy
hydroponics | EC of nutrient solution.
solution Automatic nutrient controlling
using nutrient film technique
Kyaw and | Smart Through a cloud server, the Yes/majorly | The user can
Ng (2017) | aquaponics processing unit is connected to | indoors remotely
system mobile and Web applications for control the
the control of water quality, light parameters
intensity, and fish feeding
Lopes et al. | Fish farming: | The structured light vision Yes/majorly | Estimating
(2017) automatic system, which utilizes a camera | indoors fish growth is
biomass and laser, is used to create 3D possible
estimation models of fish
Idris and Monitoring This system regulates the Yes/majorly | Efficient
Sani (2012) | and control of | delivery of nutrients, the caliber | indoors utilization of
and Sani et | aeroponics of the growing medium, pH, the available
al. (2017) farming temperature, and humidity. In water and
system order to improve the efficiency of nutrients

resource utilization, an ultrasonic
mist producer and fan are
employed for spraying after a set
period of time
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(2017) found that an automated plant factory equipped with optimized light emitting
diode (LED) lighting, renewable energy sources, smart water management systems,
crop planning and management systems, artificial climate control systems, soil and
fertilizer management systems, and smart data collection and management systems
can significantly impact the agriculture sector. Vertical greenery systems are indoor
agricultural systems integrated with vertical buildings that reduce average energy
consumption in buildings and contribute to the sustainable growth of populous cities
by generating fresh air and reducing the temperature of the environment (Singh et
al. 2017). Suparwoko and Taufani’s (2017) performed analysis of the green building
concept for Sleman, Indonesia, found that this innovative approach to urban farming
not only boosts agricultural productivity but also lessens the shortage of arable land.

2.3 Other Soilless Methods

Some of the other soilless techniques are listed below, albeit they are outside the
purview of this chapter, in addition to the characteristics of common indoor soilless
smart agricultural systems shown in Fig. 2.

Substrate-based Systems Supporting the roots of the plants using a solid medium,
such as peat moss, perlite, or rockwool.

Drip Irrigation Using a network of tubes and emitters to provide water and
nutrients to plant roots is known as drip irrigation.

Ebb and Flow Ebb and flow is the process of flooding and draining a growth tray
with nutritional solution utilizing a series of pumps and timers.

| Indoor Soilless Smart Agricultural

v v v v
| Smart Vertical Farm | | Smart _ Home-Grown || Smart Container Farm | Smart __Farm __ with
Features: Svstem Features: Features: Greenhouse Features:
v Large farms ¥ Small or large farms. ¥ Small farms. v Enclosed and
v Part of a vertical ¥ Enclosed and opaque/ ¥ Enclosed and opaque / | transparent place of
building or all of it is transparent house. transparent container. farming.
used for farming ¥ Artificial lighting and ¥ Artificial lighting and || v Smart control of
¥ Artificial lighting and | | smart control of | smart control of climate climate and
smart  control  of climate and nutritional and nutritional nutritional
climate and nutritional parameters parameters parameters.
parameters. ¥ Large farms
¥ Enclosed and
opaque/transparent
building.

Fig. 2 Features of Prevalent Indoor Soilless Smart Agricultural Systems
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NFT (Nutrient Film Technique) Utilizing a stream of water that is shallow and
contains all the dissolved nutrients necessary for plant growth is known as NFT
(nutrient film technique).

3 Indoor Soilless Smart Agriculture Systems (ISSAS):
Methodologies

Some of the key methodologies used in ISSAS include artificial climate control,
crop planning, plant disease detection, artificial lighting, and smart nutrition man-
agement. These techniques are designed to optimize plant growth and maximize
crop yields while minimizing environmental impact. Artificial climate control
involves creating and maintaining the ideal temperature, humidity, and other
environmental conditions for plant growth. Crop planning involves using data and
analytics to plan the timing and location of crop planting and harvesting, based
on factors, such as weather patterns and market demand. Plant disease detection
involves using sensors and other technology to detect and diagnose plant diseases
early, allowing for prompt treatment and prevention of crop losses. Artificial lighting
can be used to supplement natural light in indoor ISSAS, providing the optimal
light spectrum and intensity for plant growth. Finally, smart nutrition management
involves carefully monitoring and adjusting the nutrient levels in the growing
medium to ensure that plants receive the right balance of essential nutrients for
optimal growth.

There are a few other methodologies that are commonly used in soilless smart
agriculture systems, including:

Automated Irrigation Systems These systems use sensors and software to monitor
soil moisture levels and automatically adjust watering schedules to ensure that plants
receive the right amount of water.

Remote Monitoring and Control This involves using sensors and cameras to mon-
itor plant growth and environmental conditions and remotely controlling various
aspects of the growing environment, such as temperature and lighting.

Data Analytics and Machine Learning By collecting and analyzing large amounts
of data on plant growth, environmental conditions, and other factors, farmers can
use machine learning algorithms to optimize crop production and minimize resource
inputs.

Integrated Pest Management This involves using a combination of biological,
chemical, and cultural methods to manage pests and diseases in an environmentally
sustainable way.

Overall, these methodologies are essential for achieving the full potential of
soilless smart agriculture systems. By integrating these technologies and techniques,
farmers can produce high-quality crops with higher yields, lower resource inputs,
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and reduced environmental impact but with maximum efficiency, making them a
promising technology for the future of agriculture.

3.1 Artificial Climate Control

Climate smart agriculture (CSA) technologies are being used to cope with harsh
biophysical conditions, such as flood, drought, soil erosion, heavy precipitation,
etc. ISSAS do not experience adverse weather conditions, so CSA technologies can
be used to regulate the indoor climate (Morton et al. 2017; Khatri-Chhetri et al.
2017; Mwongera et al. 2017). Popa and Ciocarlie (2011) created a distributed smart
indoor climate control system that connects data-gathering nodes, servers, clients,
and actuators over the Internet. Microclimatic factors are controlled using a variety
of techniques, such as adaptive control of outdoor climate, proportional integral
derivative (PID)-based control, fuzzy logic-based control, artificial neural network
(ANN)-based management system, and neuro-fuzzy-based control (Ardabili et al.
2016; Afram et al. 2017).

The ideal indoor environmental state is achieved by monitoring and maintaining
key factors in a predetermined range (Wicaksono et al. 2018). A self-tuning PID
controller has been used to keep temperature and humidity within a preset range
(Heidari and Khodadadi 2017; Janprom et al. 2017). A fuzzy immune PID controller
provides greater dynamic performance (Revathi et al. 2017). To simulate the heating
requirements of greenhouses, Ahamed et al. (2018) suggested a quasi-steady state
thermal model.

Indoor farming is characterized by heat transmission by conduction and con-
vection, air exchange, heat exchange through the floor and perimeter, and evap-
otranspiration. The nature of greenhouse ventilation rate and other microclimatic
factors is nonlinear and non-affine, so fuzzy logic systems are used to simulate the
system’s unknowable dynamics and monitor the system’s output parameters. Indoor
environments can also use a dynamic climate model of greenhouses to calculate the
climatic state (Su and Xu 2015; Taki et al. 2016).

The Kalman filter eliminates sensor noise and processes noise to reduce inac-
curacy and smooths a climate control system’s control signals (Shi et al. 2012).
Particle swarm optimization (PSO)-based nonlinear model predictive control (MPC)
algorithms can maximize the objective function while using the least amount of
energy (Zou et al. 2010). Multi-objective evolutionary algorithms (MOEAs) seek
for control signals in the solution space (Member 2010).

Researchers have used thermal modelling to better understand how different
internal designs and building materials affect a building’s microclimate (Kisilewicz
2015). Phase change materials (PCM) are often used in light-weight buildings to
prevent an abrupt change in the outer environment from having an impact on the
indoor climate (Li et al. 2015a, b).

Green wall planting is an economical technique that serves as both an air filter
and a cooling insulator. Buildings use green wall vegetation, micro pot plants, or
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pocket plants as three types of green wall planting to protect the inside environment
from the effects of external heat (Lee and Chuang 2017). Plant walls improve indoor
microclimate by lowering particulates and stabilizing carbon dioxide levels (Liu et
al. 2018). Natural nighttime ventilation in desert regions lowers the energy needed
for cooling, and researchers have created a thermo-aerodynamic numerical model
of natural night ventilation that may also be used for indoor farming (Hamdani et
al. 2017). The design and installation of sensing and actuating components, air
conditioning, ventilation, thermal insulation, and the best automation algorithms
are difficult, but ISSAS can be monitored and controlled effectively by gathering
pertinent farm data from distant areas. Table 2 summarizes some of the notable
research works on enabling technologies for artificial climate control.

3.2 Crop Planning

Crops grown by farmers include food crops (rice, wheat, maize, pulses, vegetables,
fruits, etc.), plantation crops (cotton, coffee, tea, cocoa, oil seeds), horticulture crops
(fruits, vegetables, spices, beverages, nuts, etc.), forage crops (barley, grass, alfalfa,
etc.), and manure crops (beans, red clover, lupin, winter tare, etc.). These crops
are grown in various seasons based on the availability of irrigation water, land,
weather, and fertilizer use. An optimized cropping pattern that takes into account
all the relevant elements would help to increase productivity (Saranya and Amudha
2017).

Indoor farming is only possible indoors due to soil type, nutrients, water
resources, fertilizers, pesticides, harvesting techniques, and economic profitability.
Machine learning approaches make it easier to find a cropping pattern while taking
into account all the relevant constraints (Kumar et al. 2015).

Machine learning techniques include artificial neural networks (ANN), informa-
tion fuzzy networks (IFN), decision trees, regression analysis, clustering techniques,
principal component analysis (PCA), Bayesian belief networks, time series analysis,
Markov chain models, etc. ANN is a type of supervised learning technology that
makes predictions about the future based on training models created from training
data. IFN, a supervised learning algorithm, builds a fuzzy network. Regression
analysis uses statistical techniques to determine the relationship between various
variables. Clustering is an unsupervised machine learning process that divides the
dataset into groups. PCA identifies uncorrelated variables, and Bayesian networks
express conditional dependencies of variables using a graphical and probabilistic
model. A probabilistic mathematical model called the Markov chain model deter-
mines output based on prior knowledge (Mishra et al. 2016).

Cropping pattern prediction is an optimization issue that is subject to several
restrictions. Piecewise genetic algorithm (PWGA) is used to identify the best
solution for the crop pattern and water allocation problem. To prevent a water
disaster, crop patterns must be optimized based on water resource availability.
Particle swarm optimization (PSO), simulated annealing (SA), and other meta-
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Table 2 Summary of notable research works on enabling technologies for artificial climate

control

Article

Popa and
Ciocarlie
(2011)

Wicaksono et
al. (2018)

Heidari and
Khodadadi
(2017) and
Revathi et al.
(2017)
Ahamed et al.
(2018) and
Taki et al.
(2016)

Su et al.
(2016)

Su and Xu
(2015)

Broad area

Distributed
smart system
for
monitoring
and control of
indoor
temperature
Smart
temperature
control of
poultry farm

Climate
control of
green house

A study of
heating
requirements
and energy
consumption
of
greenhouses
Climate
control and
dealing with
actuator
saturation
problem
Simulation of
greenhouse
climate model

Adopted methodology

LPC 2148 microcontroller
based on AR7TDMI-S-based
core, ENC28J60 Ethernet
controller communicating with
microcontroller using IEEE
802.3 compliant SPI (serial
peripheral interface) interface
Temperature and humidity
sensor, WSN and IEEE
802.15.4 protocol for

communication

Fuzzy logic-based proportional
integral derivative controller
used for the purpose of

actuation

Heat transfer model considering
heat loss due to plant
evapotranspiration and
environmental heat gain etc.

Fuzzy logic system (FLS) for
estimation of unknown
nonlinear parameters of the

control system

Modeling of convection,
condensation, ventilation,
transpiration, photosynthesis,
respiration, etc., using algebraic
fitting technique

SSAS type/
adoptability
Indoor.
Adoptable in
all forms of
indoor
farming

Broiler

poultry farms.

Adoptable in
all forms of
indoor
farming
Greenhouse.
Adoptable in
all forms of
indoor
farming
Greenhouse.
Adoptable in
all forms of
indoor
farming

Greenhouse.
Adoptable in
all forms of
indoor
farming

Greenhouse.
Adoptable in
all forms of
indoor
farming

Technological
bene-
fits/drawbacks

Fast data
transfers and
affordable
infrastructure

Low error
percentage in
sensing.
1.51% is the
highest error
value

The fuzzy
logic-based
controller has
self-tuning
capabilities
Applicable for
commercial
greenhouses

Successfully
tested to
estimate the
ventilation
rate

Temperature,
humidity and
carbon
dioxide
content can be
predicted

(continued)
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Table 2 (continued)

Technological
SSAS type/ | bene-

Article Broad area Adopted methodology adoptability | fits/drawbacks
Shi et al. Climate Extended Kalman filter Greenhouse. | Useful for
(2012) control of algorithm is used to estimate Adoptable in | control
greenhouses | the control states and filter out | all forms of | systems with
the noises indoor nonlinear
farming system
dynamics
Zou et al. Green house | Internal temperature is Greenhouse. | Energy
(2010) climate controlled using particle swam | Adoptable in | consumption
control optimization (PSO)with the all forms of | is reduced
help of solar radiation, wind indoor
speed, outside temperature, farming
ventilation, etc. parameters
Kisilewicz Controlling of | EnergyPlus software for Vertical Contribute to
(2015), Liet | indoor building energy simulation, buildings. reduce urban
al. (2015a, b), | climate for lightweight buildings Adoptable heat effect
Lee and buildings constructed with phase change | mainly in the
Chuang material (PCM) to reduce the vertical farm
(2017) and room temperature and heat flux | buildings
Liu et al. inside the room, smart plant
(2018) wall, etc.

heuristic algorithms can be employed to tackle the multi crop planning (MCP)
problem (Bou-Fakhreddine et al. 2016). The best cropping strategy for managing
the water resource can be determined using a multi-objective fuzzy stochastic model
based on GA (Dutta et al. 2016). When four popular evolutionary algorithms (EA)
are compared to find the best crop pattern when there is a limited amount of normal
and sufficient water resources, PSO, DE, and EP perform better than GA (Pant et al.
2010).

The Lingo software tool was used to develop an optimum crop pattern for various
seasons in a case study of the Rajolibanda Diversion Scheme area in Mahabubnagar,
Andhra Pradesh, India (Rani 2012). Trials were conducted on a variety of crops to
determine the pattern that yielded the greatest profit. Linear programming was used
to optimize the cropping pattern in three locations of Egypt to maximize the annual
profit while controlling the limitations of the available water and land resources
(Osama et al. 2017). In India’s Karnataka state’s Markandeya command region, the
cropping strategy was adjusted using linear programming to achieve the greatest
profit to make the best use of irrigation water (Shreedhar et al. 2015; Chowdhury
and Chakrabarty 2015).

The most popular methods for predicting agricultural yield are fuzzy logic,
multiple linear regression, artificial neural networks, and adaptive neuro-fuzzy
inference system (ANFIS). The accuracy of the projected outcome is examined
using RMSE, mean square error (MSE), and correlation coefficient approaches.
ANFIS is more accurate than other approaches due to its ability to take into account
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all relevant internal and external elements (Yuvaraj and Dolui 2021). Machine
learning and optimization methods have been used to optimize the cropping pattern
of ISSAS. Designing an effective decision-making module can help produce an
optimal cropping pattern, boosting productivity while guaranteeing the viability of
the farm. Some of the notable research works on enabling technologies for crop
planning have been summarized in Table 3.

3.3 Detection of Plant Diseases

Plant diseases are caused by the host plant being vulnerable to a specific disease or
illness, the presence of plant diseases in the host plant, and the environment, which
helps plant pathogens thrive and produce spores. To increase output, ISSAS produce
artificial climates to promote the development and spread of plant disease spores.

Intelligent computer vision-based periodic monitoring of plants can lead to
early detection of plant illnesses, allowing for the earliest implementation of
curative therapies. Plants can be monitored using cameras installed on robotic
platforms or incorporated into other systems, and sick plants can be identified by
looking at the photos. This can be accomplished using both RGB and NIR (near-
infrared spectroscopy)-based cameras. In comparison to NIR-based detection, the
performance of the RGB camera is better (Schor et al. 2016). An integrated system
that combines machine vision and the Internet of Things can be used to detect crop
infections early and apply prompt cures (Tanmayee 2017). Drones, also known as
unmanned aerial vehicles (UAVs), have been adopted for smart agricultural tasks.
Using UAV for plant disease diagnosis and other tasks in an indoor agricultural
environment would be an intriguing idea (Castelao Tetila et al. 2017).

The research on plant diseases and the algorithms used to detect them is covered
in this part. One example is the intelligent classification of damage in sugarcane
billets and correlation of it with sugarcane germination using computer vision
technology (Alencastre-Miranda et al. 2018). Infections, like powdery mildew (PM)
and tomato spotted wilt virus (TSWV), have been determined using algorithms
like principal component analysis (PCA), neural network, support vector machines
(SVM), etc. Plants with PM and TSWYV infections can be found with a high degree
of accuracy using PCA. Spots on the leaves of field crops, forages, and vegetables
are caused by the fungus Septoria, while wheat is impacted by yellow rust. SVM-
based classification algorithms are more effective than artificial neural network
(ANN) at detecting Septoria and yellow rust (Han et al. 2015).

Baquero et al. (2015) used the nearest neighbor algorithm to identify the six
prevalent diseases of tomato plants, including early blight, chlorosis, sooty molds,
powdery mildew, necrosis, and white fly. Early blight damages stems, fruits, and
leaves and causes defoliation and sunscald. Color descriptors such as CSD, CLD,
and SCD are used to identify regions of interest (ROIs). A 1-NN classifier is used to
distinguish between healthy and diseased plants, and image segmentation is used to
extract pertinent characteristics (Molina et al. 2015). Careful picture segmentation
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Table 3 Summary of notable research works on enabling technologies for crop planning

Article

Saranya and
Amudha
(2017)

Kumar et al.
(2015)

Ghasemi et al.
(2016)

Bou-
Fakhreddine
et al. (2016),
Pant et al.
(2010), Rani
(2012),
Osama et al.
(2017),
Shreedhar et
al. (2015) and
Chowdhury
and
Chakrabarty
(2015)

Dutta et al.
(2016)

Broad area

Crop planning
optimization
research and
review

Crop
selection to
maximize
crop yield

Crop pattern
optimization

Crop planning
under deficit
irrigation
situation

Optimization
of crop
pattern
subjected to
total supplied
water in an
agricultural
farm

Adopted methodology

Crop planning based on
various factors, i.e.,
irrigation, land, labor, soil,
climate, transportation,
fertilizers and pesticides,
weed, etc.

Proposed crop selection
method (CSM) algorithm
based on predicted yield,
sowing time and days of
plantation

Piecewise genetic algorithm
(PWGA) is used to find the
optimal crop pattern. A
ground water model is used
to solve the water allocation
problem

Simulated annealing (SA),
particle swam optimization
(PSO), and linear
programming (LP) are used
to maximize profit when
water supply is not enough.
Evolutionary algorithm, such
as genetic algorithms (GA),
particle swarm optimization
(PSO), differential evolution
(DE), and

evolutionary programming
(EP), is used for
optimization

Genetic algorithm and fuzzy
stochastic programming are
used in this process

SSAS type/
adoptability
Outdoor. Crop
planning based
on labor, soil,
transportation,
fertilizers,
pesticides, and
weed are
relevant for
indoor farming
Outdoor. Crop
planning based
on soil type,
water density,
and crop type is
relevant for
indoor farming.
Outdoor. Water
allocation
solutions can the
adopted in the
scope of indoor
farming

Outdoor.
Adoptable in all
forms of indoor
farming

Outdoor.
Adoptable in all
forms of indoor
farming

Technological
bene-
fits/drawbacks

Role of
bioinspired
optimization
algorithm
discussed

Overall crop
yield rate is
increased

Piecewise
genetic
algorithm
(PWGA)
deals with
nonlinearity
and handles
large number
of variables
involved
Agriculture
with low
water
availability

Increase of
irrigated area
with fixed
water supply
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is required to identify the pertinent image segment required to classify the plant
diseases (Singh and Misra 2017). An optimization approach like the genetic
algorithm (GA) is used to eliminate duplicate features and complexity (Ghyar and
Birajdar 2018). Researchers have proposed a convolutional neural network-based
method to classify an image dataset of 3750 images into six classes, i.e., healthy
plant, early blight, late blight, yellow leaf curl virus, spider mite damage, and
bacterial spot (Golhani et al. 2018; Bhatt et al. 2017). This method uses the learning
capabilities of neural networks (NN) to make it one of the successful classifiers
of hyper spectral images. A fuzzy logic-based classification algorithm has been
effectively tested to distinguish between iron-deficient or infected strawberry leaves
and healthy strawberry leaves, which mimics the abilities of experienced farmers to
categorize sick crops (Ghyar and Birajdar 2018).

A Web-based tool was used to identify diseased pomegranates (Bhange and
Hingoliwala 2015). The collected photos were used to extract features based on
color, morphology, and color coherence vector. The training dataset was first
clustered using the K-means approach before being fed into the support vector
machine (SVM). Many bacterial and fungal diseases, including bacterial blight,
fruit spot, fruit rot, leaf spot, etc., can infect pomegranate plants. Noise filtering
strategy would improve classification accuracy. The rotating kernel transform
(RKT) features, its modified versions, or other directional features correctly reflect
the picture information, since the input images of leaves, fruits, and stems include
edge information and directional statistics (Ullagaddi and Raju 2017). Mobile image
capture is a low-cost and low-energy method of taking pictures with mobile phones,
but its inability to capture fine details present in an image (Prasad et al. 2014).

Plant diseases are caused by plant pathogens’ ability to survive in favorable
environmental circumstances, so it is important to understand how environmental
factors and plant diseases are related. Beta regression models can be used to
determine the relationship between environmental factors, such as temperature,
humidity, leaf wetness, etc., and plant infection (Shivling et al. 2016). A successful
model will aid in the prediction of various plant diseases and notify farmers to
consider essential treatments. Computer vision approaches are used to enhance the
utility of decision-making modules and IoT infrastructure. A number of research
works have been summarized in Table 4 on enabling technologies for plant disease
detection.

3.4 Artificial Lighting

Researchers have conducted tests to determine a different energy source for indoor
farming environments, particularly for vertical farming infrastructure. The primary
artificial lighting sources are fluorescent lamps, high-intensity discharge (HID)
lamps, and light emitting diodes (LED). LEDs are less expensive, produce less heat,
and offer the highest levels of photosynthetically active radiation (PAR) efficiency
(Darko et al. 2014). Olle and Virile (2013) investigated how green vegetables and a
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few other plants responded to artificial LED light in terms of metabolism, growth,
and photosynthesis. The results showed that plants need red and blue light for
photosynthesis, with far red light having greater effects on photomorphogenetic
processes and plant growth. Plants typically respond physiologically to the colors
green and yellow, but the red and blue portions of efficient light spectrum for
artificial farming are larger (Urrestarazu 2018).

The experiment was carried out in four different LED lighting environments to
observe the effects of LED irradiance on tomato plantlets. Results showed that the
maximum photosynthetic rate was recorded under lighting conditions with a red
to blue ratio of 10:1, but the highest growth in plant height was observed under
conditions with 100% red LED (Naznin and Lefsrud 2014). Another experiment
with Brassica chinensis showed that continuous light therapy outperformed pulsed
light treatment (Harun et al. 2016). The basic metrics that are recorded and
compared to gauge the overall growth of the plants are leaf count, plant height,
fresh weight, dry weight, moisture content, and chlorophyll content.

Pepper plants exhibit improved morphology when environmental elements, such
as temperature, carbon dioxide level, humidity, water cycle, and photosynthetic
photon flux density value (PPFD), are regulated (Liang et al. 2018). The Osaka
Prefecture University in Japan used an artificial hybrid LED light source (i.e.,
mixtures of red, blue, white, and far infrared rays) and report their optimal pulse
width modulation duty cycle, light intensity, and frequency of luminance (Sugano
2015). Hop crops are typically radiation-sensitive, so a specially created LED
lighting system with two channels (red and blue) may manage the radiant flux of
the channels to create a supportive atmosphere (Tavares et al. 2018). Commercial
LED lighting modules implement a control mechanism to optimize electrical energy
consumption and boost photosynthesis rate (Almeida et al. 2014). Exposure to red
and blue LEDs causes the enrichment of carotenoids and chlorophyll a and b, which
increases photosynthesis (Wojciechowska et al. 2013).

Artificial illumination combined with continuous lighting can improve pho-
tosynthesis rates and overall plant growth. Only the most useful portion of the
light spectrum should be used, and pulsed red and blue lighting produces the
best photosynthetic rate. More research is needed to develop novel systems that
maximize the use of light energy while saving electrical energy. In Table 5, we
summarize some notable research works on enabling technologies for artificial
lighting.

3.5 Smart Nutrition Management

In the context of soilless smart agriculture systems in an indoor setup, smart
nutrition management involves using technology and data to optimize plant growth
and nutrient uptake in the absence of traditional soil-based growing methods. This
can include using hydroponic or aeroponic systems to grow plants in nutrient-rich
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water or mist, as well as using sensors and automation to monitor and adjust nutrient
levels in real time.

One advantage of soilless smart agriculture systems is that they allow for greater
control over plant nutrition, since growers can precisely monitor and adjust nutrient
levels to meet the specific needs of each crop. This can help to minimize nutrient
waste and reduce the environmental impact of agriculture while also producing
higher yields and healthier plants. In addition, smart agriculture systems can help
to reduce labor costs and improve efficiency, since growers can use data and
automation to optimize growing conditions and minimize the risk of crop failure.

Overall, smart nutrition management is a critical component of soilless smart
agriculture systems in an indoor setup, since it allows growers to optimize plant
growth and nutrient uptake in the absence of traditional soil-based growing methods.
By using technology and data to monitor and adjust nutrient levels in real time,
growers can produce healthier plants, higher yields, and more sustainable agricul-
ture practices.

Nitrogen, phosphorus, and potassium are essential for plant growth, while
secondary nutrients such as sulfur, calcium, and magnesium are needed (Gruhn et
al. 2000). To determine soil fertility, pH, electrical conductivity, organic carbon,
primary and secondary nutrients, soil texture, density, water-retention capacity, etc.
can be measured (Kumar et al. 2017).

The management of plant nutrition includes the balanced and ideal application of
fertilizer. Imam et al. have used an integrated artificial neural network (ANN) and
bidirectional improved particle swarm optimization to optimize the fertilizer dose
(Cholissodin et al. 2017). To teach farmers how to utilize fertilizers most effectively,
OFRA created the fertilizer optimization tool (FOT) for 65 agroecological zones
(AEZs) and 14 crops (Macharia et al. 2016). The farm output would increase if
intelligent indoor farms included smart nutrition management.

4 Enabling Technologies for Indoor Soilless Smart
Agriculture Systems

Indoor soilless smart agriculture systems are a promising solution for sustainable
and efficient food production, using sensors, automation, and artificial intelligence
to monitor and optimize plant growth in a controlled environment. This chapter
will explore the latest developments in enabling technologies for these systems,
including their benefits, challenges, and potential applications.

4.1 ISSAS Generic Architecture

A typical indoor soilless smart agriculture system (ISSAS), as shown in Fig. 3a,
might include a farming bed connected to a number of sensing components to
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Fig. 3 Typical architecture of a standalone indoor soilless smart agriculture systems. (1: solar
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gather pertinent data (such as information about the moisture condition of the
soil, lighting conditions, water level, temperature, and humidity), as well as short-
range and long-range communication channels for relaying the data to processing
components for local processing and to cloud computing platforms for long-term
analysis, respectively. The lighting, temperature, humidity, pH, water levels, etc. are
all controlled by an advanced decision-making module. For quick visualization and
actuation, a mobile device with a mobile application is also employed.

The core components of ISSAS are thought to be data management and analytics.
As shown in Fig. 4 for a typical aeroponic SSAS, data is gathered, prepared,
analyzed, and then provided to the predictive model to determine the next course of
action. In this method, the necessary nutrients, water, etc. are misted onto the plant
roots. A crucial component of the ISSAS is artificial smart lighting. In order to boost
the production of plants, a formula of precise spectrum and intensity of lighting is
created using a combination of LED lights. The plants flourish more than they would
in a traditional agricultural farm thanks to careful micro- and macronutrient feeding.
The typical life cycle of many dangerous pests is disrupted by the smart regulation
of microclimatic features and controlled smart growth methods, resulting in a higher
yield. In terms of energy requirements, it is a standalone solar off-grid system.
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Fig. 4 Dataflow architecture of a typical aeroponic ISSAS

The underlying architecture of these ISSAS can be scaled vertically or horizontally
without modifying.

After examining the data produced by ISSAS, the intelligent decision-making
module makes intelligent decisions and starts the actuation process. Its architecture,
which is capable of learning from prior data, is shown in Fig. 5. It has access to both
original sensor-generated data and supplementary databases for the soil, climate,
and other pertinent domains. In most cases, obtained data are not ordered, thus
preprocessing is done on them before characteristics are extracted. A forecasting
model is constructed and optimized using extracted information. By evaluating real-
time data gathered from monitoring climate conditions, soil, plant nutrition, plant
development, and plant health-related aspects, the validated forecasting model aids
in making dynamic and intelligent judgments.

Wireless sensor networks installed in the farm assist in the monitoring process.
Primary data, or sensor data, are gathered periodically. Plant growth and related
factors are recorded using camera sensors. The gathered data provides an under-
standing of the current stage of the plant life cycle, which is then fed into the
forecasting module to produce optimum actuations. The data is afterwards saved
in local and cloud servers. Algorithms based on artificial intelligence are crucial
for data analysis and forecasting model construction. The architecture also gains a
particular capability for remotely controlling sensing and actuating devices, thanks
to cloud-based control. The end-user application provides users with only the most
pertinent and important indicators. The graphical user interface offered by the Web
server enables the user to visualize the state of the plant or factory and also provides
alerts in the event of a technical issue. As part of the analysis of the data, the user’s
contribution is also a crucial factor.
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Fig. 5 Architecture of smart decision-making module

4.2 Internet of Things

One of the most relevant definitions of Internet of Things (IoT) have been given by
Gubbi et al. (2013) as “Interconnection of sensing and actuating devices providing
the ability to share information across platforms through a unified framework,
developing a common operating picture for enabling innovative applications. This is
achieved by seamless ubiquitous sensing, data analytics and information represen-
tation with Cloud computing as the unifying framework.” The Internet of Things
(IoT) offers a wide range of uses, including smart agriculture, smart environments,
personal and home monitoring, and enterprise. Four primary elements make up
the IoT ecosystem in smart agriculture: IoT devices, communication technologies,
Internet, data storage, and processing (Elijah et al. 2018).

ISSAS use a data importation frontend, software module for administration and
decision-making, and a cloud-based actuation module (Tan 2016; O’Grady and
O’Hare 2017). Using any one of the following communication protocol standards:
IEEE 802.15.4 (low-rate Wireless personal area network), IEEE 802.11 (wireless
local area network standard for Wi-Fi communication), IEEE 802.15.1 (wireless
personal A), a centralized wireless sensor network-based monitoring system collects
temperature, humidity, light, pressure, leaf area index, and other necessary data for
data collection and importation at predetermined intervals (Buratti et al. 2009).

In order to support farmers during the life cycle of crops, as discussed by
Maddikunta et al. (2021) among the sensing elements are the following: (a) Smart
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location sensors and GPS receivers are employed to pinpoint various places and sites
in agricultural fields to apply fertilizer, water, and treat weeds. (b) Electrochemical
sensors detect specific ions in soil to determine pH and nutrient levels, as well
as fertilizer use. (¢) Mechanical sensors use load cells to measure soil resistance
for irrigation and intervention analysis. (d) Airflow sensors determine soil air
permeability, which can be used to determine soil characteristics such as soil type,
structure, compaction, and signature. (e¢) Sound sensor detects soil texture and is
used for indoor and outdoor cultivation. (f) Soil moisture sensor that is dielectric
determines the soil’s dielectric constant necessary for calculating the soil moisture
level. And (g) optical sensors are mostly used in unmanned aerial vehicles (UAVs) to
measure reflectance in the near-infrared and record images with remarkable spatial
resolution. Multispectral sensors are crucial because they enable researchers to
conduct precise analysis and generate insights on plant vigor, canopy cover, leaf,
and several other plant elements. Crop fluorescence is monitored using thermal
infrared sensors, which integrate at least two wavelengths to assess statistical
factors. Chlorophyll content, the absorption of blue and red light, and the emission
of green light are all closely related to the amount of light energy. Majority of the
sensors listed from (a) to (g) are suitable for outdoor and indoor farming.

The Internet of Things (IoT) and cloud services platform work together to
provide Web services for connected ICT components (Karim et al. 2017), such
as a Google Web Toolkit-based greenhouse monitoring and management system
(Wang et al. 2018). Researchers have applied IoT to indoor farming, such as creating
a remote-controlled water delivery system based on the state of the plants’ soil
moisture (Bin Ismail and Thamrin 2018).

IoT has the potential to revolutionize conventional farming, but its cost, adoption
of long-range communication protocols, cost, and other issues will prevent it from
being economically viable. Cost is the biggest challenge for ISSAS due to their
constrained space. Summary of research and enabling technologies related to IoT in
indoor farming is listed Table 6.

4.3 Big Data and Data Modeling

Big Data is data with high volume, velocity, and variety, and one of its primary
sources is wireless sensor networks. It is used in farm management through
connected processes such as data collection, storage, transport, transformation,
analytics, and marketing. Cloud-based data warehouses are popular, because they
are quick to access, are inexpensive, and don’t require farms to buy any gear.

The Hadoop Distributed File System (HDFS) is a distributed file system is
known for its excellent fault tolerance performance and ease of installation on
inexpensive hardware (Wolfert et al. 2017). Precision agricultural systems by taking
intelligent decisions by using Global Positioning Systems (GPS), data-gathering
sensors, contemporary communication technologies, variable rate technology, geo-
mapping, and automated machineries have revolutionized agriculture. Big data is



Soilless Smart Agriculture Systems for Future Climate

Table 6 Summary of notable research works on enabling technologies for IoT

89

Technological

SSAS type/ Benefits/
Article Broad area Adopted methodology adoptability | Drawbacks
Tan (2016) | Smart decision | A cloud-based software Precision Application
support system | architecture agricul- specific smart
for precision ture/yes, decision
agriculture indoor farms
Pahuja et al. | Monitoring and | Fuzzy logic-based controller, Green house/ | Online
(2013) control of IEEE 802.15.4- and yes, indoor monitoring
climate using XMesh-based networking, farms and control
wireless sensor | RS-485-based actuator, and facility
network customized application
software
Akkag and | Agricultural IEEE 802.15.4 compliant Green Monitoring
Sokullu monitoring 2.4 GHz MicaZ mote modules | house/yes, from remote
(2017) system for low-power WSN, MIB 250 | indoor farms | location
service support platform data
analysis and management
Lietal. Design of leaf | Leaf area index estimation Outdoor Estimation of
(2015) area sensor using WSN and computer condition/yes, | growth of the
vision indoor farms | plants
Wang et al. | Monitoring and | Software architecture based on | Green User can
(2018) control of Google Web toolkit house/yes, access using
environment indoor farms | Android app

essential for ensuring knowledge and information continue to move through the
agricultural value chain (AVC) (Pham and Stack 2018). The agricultural decision-
making process is defined by a hierarchy of facts, information, knowledge, and
wisdom, with wisdom at the top of the list (Lokers et al. 2016).

Wireless sensor networks (WSNs), remote sensing (RS) technology, and
unmanned aerial vehicles (UAVs) are used to gather information about various
spatial and temporal variables of agricultural fields (Zhang et al. 2018a, b). WSNs-
based data collection can be implemented in ISSAS, and Web services architectures,
such as SOAP and REST, are used to communicate between multiple applications
across the World Wide Web (Vitolo et al. 2015).

The agriculture sector generates a vast volume of data from numerous sources,
making it important to model it to gain a better understanding (Rodriguez et
al. 2017). The higher-order singular value decomposition (HOSVD) is a method
suggested by researchers from around the world to extract the core value by
removing undesirable data dimensions (Sabarina and Priya 2015).

Researchers use data analysis and modelling tools like AgBiz Logic and TOA-
MD to quantify the economic, social, environmental, and other effects associated
with the agricultural farm. To project the effects of climate change on the agri-
cultural sector, the Agricultural Model Intercomparison and Improvement Project
(AgMIP) models crop, economic, and climatic data (Antle et al. 2017). Wolfert
et al. (2017) explored a variety of issues related to managing Big Data in smart
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Fig. 6 Process flow of data analysis using machine learning

farming, including data ownership, data quality, intelligent processing and analytics,
sustainable integration of Big Data sources, alluring business models, and platform
openness.

ISSAS are designed to maximize the benefits for small and medium-scale farmers
by providing intelligent processing of high-quality data, identification of data
sources, platform independence, business models, and security. IoT and Big Data
can work together to provide a smart model that makes use of all the information
collected due to their shared characteristics (Capalbo et al. 2017). Summary of
research and enabling technologies related to big data and data modeling in ISSAS
is listed Table 7.

4.4 Machine Learning in Smart Agriculture

Machine learning is a subset of artificial intelligence (Al). It constructs a forecasting
model to anticipate future results by learning from the patterns in the data already
available. Raw data is gathered from a variety of sources and preprocessed before
being split into training, testing, and validation sets. A forecasting model is
created using the attributes taken from historical data. Machine learning is a useful
technique in today’s data-centric smart agriculture for analysis of yield prediction,
crop health condition monitoring, water control management, soil management, etc.
(Liakos et al. 2018). In machine learning, the flow of data analysis and various
processes have been presented in Fig. 6.

Data on climate characteristics (Veenadhari et al. 2014), soil quality (Cunha et al.
2018), and production from prior years (Shakoor et al. 2017; Rahman et al. 2014)
must be gathered to forecast agricultural productivity in intelligent indoor farms.
This can be done using soil data, interior microclimate data, and photographs of
plants at various phases of their life cycles.



91

Soilless Smart Agriculture Systems for Future Climate

suLIej [eIn)noLge woiy
Q0UIRJUI AFpa[mouy pue
Sul[[opou Bjep QA
pue ‘paziue3Io-f[om
‘paoueyuy

€Jep JO sjunowre
31q 3uno9[[0o uayMm
A310u9 pue own Juraeg
SyoBqMEIP/SIJoUaq
[eo130[0Uyd,

ssauIsnq [eImnotI3e 10j [00) [ednA[euR :ZIg3y
wyjLose

uononpal AJfeuoIsuswip ejep :qASOHI
o3en3ue|

SurwwresSoxd uoyAd Sursn oo1a10s Fursseoord
qop Jo uonejuawddur 10A10S :SdMAJ

wo)sAs Jjuoweeurw Aseqeiep

[euone[a1 221nos-uado pue 9213 1 JOS2131s0d
a8en3ue] Surwwresdoxd uoyyAd

woiy o3enue] Jurwwer3old Y 03 doejIAUI 1ZAJY
Korjod mou oy} J0J [00} JUSWISSISSE

joedwr 003 (esnradxa Ajfiqeure)sns o3
sjuowInIsur Juswssasse joedwt Suryur)) FSIVIT
SIOP[OYaYe)s JUQIQJJIP Suoe UOIdUU0D Y}
ure[dxa 0} pasn :(DAV) UIBYD dnjeA AIM[nousy

suIej [eInnoLge juowoSeURW ULIR)
Joopur aeds-a5Ie[ 10§ 10 eiep oFeurw 0) (SunayIew pue ‘sonkreue
J[qerdopy armynoride ‘uonjewLIojsuel) ‘IoJsuen) ‘a3eiols ‘arjded ejep
[EUOTIUSAUOD) | “*9°T) SONIATIOR JO 20uanbas 0} sI0Jal :uTeyd Ble(]
SWLIE] JOOPUL UT Pasi UOTIIJ[[0D BILP 0] Pasn
NSM J0} 9[qerdopy | are (SAY[)) SO[OIY2A [ELIOE pouUBWIUN PUB SN'SA
sopou Jo AJisuap "UONIOJ[[09 BIRP JUDIOLYJI ASIoUD 0]
USTy M NSM Aoy | wioSe (Dgag) Suteyes juardyje eep Sig
Aniqeidope K3ojopoyeuwr paydopy

JEEISEN AN

Q0UAIOS
[eImnoLse
ur eleq
SNSM
y3noxyp
uono[[0d
eiep Sig
BOIR pROIG

(L102) Te 30 oqredeD pue (L107) T8
199Uy “(107) AL pue vuLeqes
“(L107) 'Te 30 zon3upoy (S102) ¢

19 O[ONA *(9107) T8 32 $19Y0T (8107)
Yorig pue weyd (L107) Te 30 MFI0M

(q ‘e8107)
‘Te 0 Sueyy pue (L107) 'Te 10 Tuey

JronIy

eep 51q 10§ sarSojouyoe) SUIqeUS U0 SYIOM [YOIBISAI 9[qEIOU JO ATewwung / d[qeL



92 R. R. Singh and A. J. Hati

Machine learning techniques are used in crop health monitoring, plant phenotyp-
ing, and soil fertility grading. SVM, Bayesian network, neural network, regression,
and other techniques are used to anticipate crop pests (Kim et al. 2014). Images
from a farm field are taken using cameras and evaluated using a machine learning
algorithm to determine the nutritional shortage in plants (Merchant et al. 2018;
Shah et al. 2018). DeepPheno is a concept that uses deep learning to examine the
phenology of plants, and images and sensor data are analyzed in stress phenotyping
(Yalcin 2018). The quality of agricultural output is largely determined by our
understanding of the soil, so machine learning approaches are applied in many
applications. In some of the interrelated domains associated to ISSAS, such as
weed identification (Zhang et al. 2018a, b), soil sensor design (Luciani et al. 2019),
production quality assessment (Chokey and Jain 2019), etc., machine learning may
also be used.

Machine learning algorithms support decision-making by analyzing data from
sensors for crop suggestion, yield prediction, disease detection, and control mech-
anisms for artificial lighting, nutrition management, climate control, and optimal
water use. ISSAS aid in the monitoring and gathering of data related to the plant life
cycle and activate the required control mechanisms. Research in these areas has to be
expanded to increase crop output. Summary of research and enabling technologies
related to machine learning in ISSAS is listed Table 8.

4.5 Plant Phenotyping

Plant phenotyping is the process of measuring and analyzing plant traits, or phe-
notypes, in order to better understand plant growth, development, and response to
environmental factors. There are several categories of plant phenotyping, including
morphological, physiological, and molecular phenotyping.

Morphological phenotyping involves measuring physical characteristics of
plants, such as leaf size, stem diameter, and root length. Physiological phenotyping
involves measuring the function and activity of different plant organs and systems,
such as photosynthesis, water use efficiency, and nutrient uptake. Molecular
phenotyping involves analyzing the expression and activity of specific genes and
proteins within plant cells.

In order to effectively measure and analyze plant phenotypes, researchers use a
variety of parameters and modeling approaches. Some common parameters used in
plant phenotyping include growth rate, biomass accumulation, and nutrient content.
Researchers may also use imaging techniques, such as fluorescence microscopy or
hyperspectral imaging, to visualize and quantify plant traits at a high resolution.

In addition, researchers may use modeling approaches, such as mathematical
models or machine learning algorithms, to better understand and predict plant
growth and development. These models can help to identify key factors that
influence plant phenotypes, as well as predict how plants will respond to different
environmental conditions and stressors. A correlation of various steps consisting of
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A —> Recognition and Identification

B > Stress Modelling

C -> Growth Modelling

D --= Yield Traits Modelling

E —>Species Recognition

F --> Plant Parts ldentification

G —> Health Condition Identification

H —> Water and Nutrition Stress Modelling
| —> Plant Disease detection

J > Bio-mass Measurement

K —> Morphological Traits, Height Measurement and Leaf counting
L -> Germination Rate Measurement

M = Yield Quantity Estimation

N -= Yield Quality estimation and Defect Detection

Computer vision based plant phenotyping

Fig. 7 Computer vision-based plant phenotyping

recognition and identification, modelling of stress, growth, and yield traits needed
in computer vision-based plant phenotyping has been presented in Fig. 7.

Overall, plant phenotyping is a critical tool for understanding plant biology and
developing more efficient and sustainable agricultural practices. By measuring and
analyzing plant phenotypes, researchers can better understand how plants respond
to different environmental factors, as well as identify traits that are important for
crop yield, quality, and resistance to pests and diseases. Table 9 elaborates the
plant phenotyping categories, parameters, and modelling approaches employed in
computer vision-based plant phenotyping.

5 Challenges for Indian Farmers

India remains an agriculture-based country. About 53% of its total workforce,
which is approximately 243 million citizens, is employed in agricultural sector. As
shown in Table 10, India is one of the primary contributors in world’s agricultural
production.

According to recent statistics though almost half of the workforce works in
farming sector, contribution of Indian agriculture to its gross domestic product
(GDP) has reduced from 54% in 1950-1951 to 15.4% in 2015-2016 (Fig. 8). The
agricultural yield, which is defined as the production per unit land area, is lower
in India compared to other primary agricultural producer such as the USA, China,
and Brazil (Deshpande 2017). However, several factors are responsible, which are
adversely affecting the yield and productivity of Indian agriculture. Some of the
primary reasons are as follows.
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Table 9 Plant phenotyping: categories, parameters, and modelling approaches

SINo | Category

1 Pre-phenotyping
task

2 Plant growth and
development

3 Plant stress
phenotyping

4 Plant yield rate
and post
harvesting

Table 10 India’s
contribution to world’s
agricultural production

Task details: exploring
phenotyping parameters

Plant species recognition

Plant organ counting

Modelling of plant morphological
changes

Dynamic modelling of plant height

Understandings of root
architectural traits

Determining plant imbibition and
germination rates
Plant biomass identification

Health condition identification

Plant disease detection
Water stress identification

Nitrogen stress identification
Root health condition
identification

Flowering rate and time

Yield traits identification

Determination of chemical

composition of fruit and vegetable

Detection of defect in fruits and
vegetables

SI. No | Crops

1 Pulse |25
2 Rice 22
3 Wheat | 13
4 Cotton |25

5.1 Small Land Holding

Computer vision-based
approach

Image classification

Semantic segmentation and
object detection

Object detection, semantic
segmentation, and regression

Object detection and regression
method

Semantic segmentation method

Object detection, semantic
segmentation, and regression

Semantic segmentation method
and regression method

Image classification and
semantic segmentation

Semantic segmentation

Object detection and semantic
segmentation method

Object detection and semantic
segmentation method

Image classification and
semantic segmentation

Object detection and regression

Object detection, semantic
segmentation, and regression

Regression method

Object detection and semantic
segmentation method

Percentage contribution of total production

In the past few decade, marginal (<1 hectare) and small land (in between 1 and 2
hectare) holding have significantly increased in India. From 1971 to 2011, marginal
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Percentage share in 1950-51
9 ! Percentage share in 2013-14
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Fig. 8 Sector-wise percentage share of India’s GDP in 1950-1951 and in 2013-2014

land holdings have increased 2.58 times (Deshpande 2017). Recently, it has been
reported that more than 80% of Indian farmers are marginal or small land holders
(Gopalakrishnan and Thorat 2015). As most of the farmers with small and marginal
land holding do not have any legal lease agreement, they are not eligible for
insurance, subsidies, and beneficial govt. schemes.

5.2 Scarcity of Water

In India, only 40.6% of the food grains are cultivated with the help of irrigation
water (ADB Report 2016). Irrigation water uses almost 83% of the total available
water of India. As per the prediction of researchers agricultural sector used 688
Billion Cubic Meter (BCM) of water in 2010, which will increase to 1072 BCM by
2050 (Sonekar 2017). Due to inefficient use of irrigation water, low availability of
per capita water resources and too much dependency on rainwater Indian agriculture
faces a scarcity of water throughout the year.

5.3 Natural Disasters

Every year natural calamities like floods, draught, landslides, storms, and hails cause
heavy losses to crops (Gupta et al. 2020). The poor farmers with no access to
banking insurance system face irreparable damages.

5.4 Quality of Soil

Due to increase of food production and repeated use of agricultural lands, nutrient
level and water level of soil have decreased, affecting the growth and production



Soilless Smart Agriculture Systems for Future Climate 97

of the plants. One of the effects of soil degradation is soil erosion, which directly
affects the agricultural production (Gupta 2013).

5.5 [Improper Use of Fertilizers

Due to lack of knowledge, farmers use fertilizers in improper ratio, which leads to
declined soil fertility and loss in crop production. Nitrogen (N), Phosphorus (P) and
Potassium (K) are the major nutrient elements that are required for the crops. Indian
farmers fail to maintain the recommended ratio of NPK while using fertilizers. This
leads to loss of soil fertility.

5.6 Imbalanced Use of Pesticides

Imbalanced and unregulated use of pesticide is harmful for agricultural products.
Due to absence of any effective regulatory authority to control the manufacture,
purchase, and sell of pesticides in India, low-quality pesticides are present in the
market. Due to lack of knowledge, farmers use them without following any pest-
management system causing damage to the production of the crops.

5.7 Lack of Good Quality Seeds

Small- and marginal-scale farmers cannot afford high-quality seed. There is also
limited access to good-quality seed and necessary research innovations for better-
ment of seed qualities.

5.8 Lack of Smart Machineries

Agricultural machineries are used to reduce human labor in agriculture. Machines
are mainly used in threshing, harvesting, and irrigation activities. Most of the small
and marginal farmers have not yet adopted automated techniques of farming due to
economic reason, which reduces the agricultural production in India.
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5.9 Poor Postharvesting Activities

Due to poor transportation, packaging, and storage facilities, food are wasted at
different stages of post harvesting activities.

5.10 Absence of Minimum Support Price and Price Deficiency
System

Minimum support price (MSP) is the price at which govt. buys crops produced
from the farmers. In price deficiency system, govt. compensates the farmers in case
market price of crops falls below the MSP. Though NITI Aayog has recommended
price deficiency system for Indian farmers, presently no such existing system is
there in place (Deshpande 2017).

6 ISSAS: The Game Changer in Global and Indian
Perspective

The USA, Japan, and some of the countries of Middle East and Europe have
embraced indoor farming as a consistent and sustainable source of food supplier,
making it one of the fastest growing industries in urban areas. Smart indoor
farming techniques as of today have not been adopted in India on a larger scale.
If simultaneously implemented in India with its conventional outdoor farming, the
overall agricultural production will increase, providing the required food security to
its citizen in the upcoming years.

The reasons for which indoor farming has the potential to become a new
dimension of Indian agriculture are as follows:

6.1 Efficient Supplier of Food

ISSAS are efficient producer of food and uses lower amount of land compared
to outdoor farming. Farming in smart indoor environment is sustainable as it uses
water, nutrients, and human labor in an optimized way (Al-Kodmany 2018).
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6.2 To Deal with Climate Change in India

In past few decades, the world has witnessed the effect of climate change in
agricultural production. Many of the Indian states have witnessed climate change
of varied nature. The last century’s summer monsoon rainfall in India showed no
significant trend, with three subdivisions showing a decreasing trend and eight
subdivisions showing significant increasing trends (Venkateswarlu and Rao 2013).
Projected change in temperature in India is shown in Fig. 9a. The conventional
farming lands are one of the main sources of greenhouse gasses, which cause global
warming and climate change. The primary greenhouse gasses, which are generated
during farming are methane (CHy), nitrous oxide (N20O), and carbon-dioxide (CO»).
Table 11 enlists the main sources of these greenhouse gasses (Pathak et al. 2014).
Climate change directly affects the yield and agricultural production (Shah and
Srivastava 2017), photosynthesis rate, and fertility of the farming land (Karmakar
et al. 2016). Sometimes natural disasters, like floods, drought, etc., are caused
by climate changes (Mall et al. 2007). As indoor farms grow crops in closed
environment, climate change and natural disasters do not affect directly to their

in $ Billion

ddi=| —

2020 2050 2080 2013-14 2014-15 2015-16

Fig. 9 (a) Projected change in mean temperature (in °C) in India in the upcoming years during
annual, Rabi, and Kharif seasons; (b) increase in cost involvement for importing food grain in
India. (Source: Venkateswarlu and Rao 2013)

Table 11 Primary greenhouse gasses and their sources

Greenhouse

SI. No. | gasses Sources in the farming field

1 CH4 Microbial decomposition of organic matter, agricultural field
submerged in water, organic manure, and crop residues while
getting burnt

2 CO, Biological decomposition of organic matters present in soil,
burning of agricultural residues, agricultural operations which
uses fuel

3 NO, Aerobic microbial oxidation of ammonium nitrate, fertilizers,
manure, sewage sludge, minerals containing nitrogen.
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production. If plants are grown in smart and climate-controlled environment, it also
avoids generation of greenhouse gasses.

6.3 An Answer to Changing Demographic Pattern of India

According to the estimation of United Nations, by 2050 about 80% of the world’s
population would be living in cities and urban areas. India is an exception to this,
as in India the figure is 55% (Agarwal and Sinha 2017). To meet the increasing
demand of food, Indian cities need to grow food in indoor environment. This will
help to deal with the threat on Indian food security concern in the upcoming years.

6.4 Quality and Quantity Come Together

In ISSAS the crops are grown in controlled environment, where pesticides, nutrients,
fertilizers, water, and other resources are used efficiently to get the optimal output.
Moreover, in case of any health degradation of crops, preventive measures could
be taken immediately. As a result, smart indoor farming environment grows crops
better in quality and higher in quantity compared to conventional farming. The
United States Department of Agriculture (USDA) reports the production of lettuce
increases almost 11 times in controlled indoor environment when compared to
conventional farming environment (Higgins et al. 2016).

6.5 Economic Benefit and Scope in India

The govt. of India provides food grains, such as wheat, rice and coarse cereals,
etc., at subsidized price to almost 68% of its population, so that all citizens get
enough access to food. Moreover, to meet the demand of the food of its people,
the agricultural imports have increased in India over past few decades (Deshpande
2017). The agricultural import statistics of India shows rice, wheat, pulses, and other
cereals are among the major food grains, which are imported regularly from other
countries. Figure 9b represents the cost involvement for importing this food grains.

Indoor farming has the potential to reduce Indian agricultural import signifi-
cantly. Though all the crops cannot be grown at indoor environment, according
to researchers, a wide varieties of greens, hops, strawberries, vine crops, flowers,
herbs, micro greens, vegetables, fruits, cannabis, commodities, forestry seedlings,
etc. can be grown indoor (Higgins et al. 2016).

As most of the ISSAS are situated in urban and city areas, the crops thus
produced can directly be sold to the local market, reducing the transport cost. This
may save the overall costs up to 60% (Al-Kodmany 2018).
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6.6 To Maintain Better Balance in Ecosystem

In Brazil, 1,812,992 sq. km of farmland has been converted to farmland in the past
50 years (Al-Kodmany 2018). To avoid deforestation in India and maintain the
ecological balance, a new source of food for the people of urban and city area is
required. Controlled indoor farming can restore the biodiversity in urban and city
areas.

7 Discussion and Concluding Remarks

About 1.26 billion of Indian population is suffering from nutritional and health
challenges. Approximately 38.7% of the children and 15% of the total population
are reported to be malnourished. The International Food Policy Research Institute
(IFPRI) in its report of Global Hunger Index, 2018, has ranked India 103 out of
119 countries (Grebmer et al. 2018). These indicate strong presence of hunger
and undernourishment in India. Moreover, with the current growth rate, India’s
population will reach 1.6 billion by 2050, generating more requirement of food
(Ritchie et al. 2018). Even in global scenario due to increase of human population,
the consumptions of food and biofuel have also increased, resulting in the increase
in the demand for agricultural production by 60% to 110% (Ray et al. 2013).

As reflected in the Fig. 10, net area sown has remained almost same in India over
a period of approximately 50 years. Indoor farming can help to grow Indian agricul-

-~ 1960-61 -——2008-09

Fig. 10 Land use categories of India and changes in its percentage share over the years
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ture further. The nonarable lands, the lands which have been declared as wastelands
due to their climatic constraints or anthropogenic limitations, abandoned buildings,
closed rooms, garden areas, and rooftops can be used for indoor framing. In India,
114.01 million hectare lands are degraded and wastelands (Balasubramanian 2016).
A part of these wastelands can be used to build up cost-efficient infrastructure for
indoor farming. Hence, India has a huge potential to take ISSAS forward if its
research scopes are explored by the researchers.

Indoor soilless smart agriculture system development and deployment is a new
area of research in India. There exist several research opportunities in this field
that will add new dimensions to it to make it more efficient and sustainable.
ISSAS require much attention on how it can be made more cost-effective so that
poor farmers can afford this technique with minimum investment. An improved
and secure architecture with a better hardware software ecosystem and better
interoperability technique would increase the efficiency of the smart management
system. Researchers also need to explore how self-learning capabilities can be
incorporated in the architecture with the help of machine learning and other data
analysis algorithms. With the self-learning capabilities, it can learn from plant life
cycle data and initiate smart actuation accordingly. Creation of artificial climate
in the indoor environment is another challenge in this field. Optimized use of
water, nutrition, energy, and other resources to avoid resource crisis is an important
dimension of research exploration. The challenges of energy crisis need to be
addressed using energy harvesting techniques. Finally, how a standalone ISSAS
can provide a sustainable solution and how it can be implemented simultaneously
with conventional farming are the research questions that need to be answered.
Considering the above requirements and the feasibility analysis, the architecture
of a standalone smart indoor farm presented in Fig. 3 is justified.

In this chapter, we discussed the literature on soilless smart agriculture systems
mostly in indoor setup, the key methodologies and enabling technologies, the chal-
lenges faced, and the need for secure, open platform-based standards, identification
and deployment of communication standards, and intelligent processing algorithms
for smart indoor farming activities. A rough estimate of cost analysis of soilless
agriculture systems has been presented in Table 12, based on the information
available in various published works included in this chapter, which hints that cost is
amajor concern for small- and medium-scale farmers due to the high cost of IoT and
cloud infrastructure, energy requirements, water scarcity, and proper management.
To make such farms more affordable with a profitable output, more research is
needed. Research is needed to design and develop better data analysis algorithms
and decision-making systems in order to develop a sustainable model for small and
marginal farmers in India and other low-income countries.
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Table 12 Cost analysis of soilless agriculture systems

Heading level
Hydroponics

Aeroponics

Aquaponics

Vertical
farming

Globally

A small-scale home hydroponics
system can cost around $500-$1000,
while a commercial-scale hydroponics
system can cost around
$50,000-$5,00,000 or more

A small-scale home aeroponics system
can cost around $1000-$2000, while a
commercial-scale aeroponics system
can cost around $100,000-$1,000,000
or more

A small-scale home aquaponics system
can cost around $2000-$5000, while a
commercial-scale aquaponics system
can cost around $50,000-$5,00,000 or
more

A small-scale vertical farm can cost
around $500,000-$1,000,000, while a
commercial-scale vertical farm can
cost around $10,000,000-$50,000,000
or more

References
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Indian

A small-scale home hydroponics
system can cost around INR
30,000-INR 50,000, while a
commercial-scale hydroponics system
can cost around INR 5,00,000-INR
50,00,000 or more

A small-scale home aeroponics system
can cost around INR 50,000-INR
1,00,000, while a commercial-scale
aeroponics system can cost around INR
10,00,000-INR 1,00,00,000 or more

A small-scale home aquaponics system
can cost around INR 1,00,000-INR
2,50,000, while a commercial-scale
aquaponics system can cost around
INR 25,00,000-INR 2,50,00,000 or
more

A small-scale vertical farm can cost
around INR 3,50,00,000-INR
7,00,00,000, while a commercial-scale
vertical farm can cost around INR
70,00,00,000-INR 3,50,00,00,000 or
more
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Intelligent Nutrient Controlling System )
for Precision Urban Agriculture Qe

Nico Surantha and Vito Vincentdo

Abstract Urban agriculture has gained significant attention in recent years due
to its potential to address various challenges, such as food security, urbanization,
and climate change. However, urban farming method requires special treatment for
controlling the water temperature, water level, and acidity (pH) of nutrient solutions.
The emergence of the Internet of Things (IoT) has enabled the integration of sensors
and devices with the physical world, leading to the emergence of intelligent systems
that can be applied in various domains, including urban agriculture. Integrating loT
technologies with urban agriculture makes it possible to create intelligent systems
that can monitor and control different aspects of the production process in real-time.
In this chapter, we conduct a review about intelligent nutrient-controlling system
for precision urban agriculture. Specifically, this chapter discusses about the latest
development of intelligent system, the IoT architecture, and the future challenge of
intelligent nutrient-controlling system.

Keywords Urban agriculture - Internet of Things - Nutrient control systems -
Hydroponics - Artificial intelligence

1 Introduction

Urban agriculture, defined as the practice of growing food in urban areas, has gained
significant attention in recent years due to its potential to address various challenges,
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such as food security, urbanization, and climate change. However, the efficiency
of urban agriculture depends on several factors, including the use of advanced
technologies that can optimize production processes, reduce resource consumption,
and improve crop yields (D’Ostuni et al. 2022). The proliferation of the Internet of
Things (IoT) has enabled the integration of sensors and devices with the physical
world, leading to the emergence of intelligent systems that can be applied in
various domains, including urban agriculture. Integrating IoT technologies with
urban agriculture makes it possible to create intelligent systems that can monitor
and control different aspects of the production process in real time (Herman 2020).
In this context, intelligent IoT systems can enhance the efficiency and sustainability
of urban agriculture by providing real-time data and insights for decision-making,
automating tasks, and optimizing resource usage (Xu et al. 2022).

In recent years, there has been an increasing interest in the application of IoT
in urban agriculture, and numerous studies have been conducted to explore the
potential benefits of this technology. Researchers have investigated various aspects
of IoT technology in urban agriculture, including sensors, data analytics, and
automation. One study was conducted by Herman et al. (2019) explored the use
of IoT technology in hydroponic systems to monitor and control nutrient and water
levels. Ouafiq et al. (2021) developed an intelligent system for urban agriculture
that combines IoT, big data, and artificial intelligence to optimize resource use and
improve crop yield. Stevens et al. (2018) proposed a smart agricultural tool called
as MicroCEA that can be controlled via a mobile application. Parameters monitored
in the hydroponic system created are LED lights, air humidity, CO; level in the air,
air temperature, pH level in water, and EC level in water.

Another study by Vianny et al. (2022) investigated the use of IoT in precision
irrigation systems to optimize water usage and reduce waste. In addition to
improving resource management, [oT can also help farmers detect and prevent
diseases in their crops. A study by Cruz et al. (2022) used IoT technology to
monitor the growth of strawberries and detect early signs of disease. Similarly,
Puengsungwan et al. (2020) used IoT sensors to detect plant stress caused by
environmental factors such as temperature and humidity.

IoT technology can also facilitate the integration of urban agriculture into the
food supply chain. A study by Onwude et al. (2020) used IoT sensors to monitor
the freshness of produce during transportation, while another study by Kamble
et al. (2020) used IoT technology to track the origin and quality of vegetables
in urban farms. However, the implementation of IoT in urban agriculture also
presents challenges such as the cost of sensors and data management. A study by
Podder et al. (2021) explored the use of edge computing to reduce the cost and
improve the efficiency of IoT in urban agriculture. Another study by Chaganti et al.
(2022) investigated the use of blockchain technology to improve the security and
transparency of data in IoT systems. These studies demonstrate that integrating loT
technology in urban agriculture can revolutionize the field and promote sustainable
and efficient agriculture practices. They demonstrated IoT technology’s various
benefits and challenges in urban agriculture, and further research is needed to realize
its potential fully.
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This paper presents an overview of the potential benefits of integrating IoT
technologies with urban agriculture for nutrient controlling system. Urban farming
method requires special treatment for controlling the water temperature, water
level, and acidity (pH) of nutrient solutions. Nutritional solutions for hydroponic
systems are aqueous solutions containing inorganic ions, especially from salts which
are important elements for plants which are tall (Trejo-Téllez and Gémez-Merino
2012). Plants need frequent watering and fertilization (Charumathi et al. 2017).
To be able to produce plants that are good in the harvest period, these treatments
and regular must be done every day. The checks carried out include checking the
water content in the installation, the nutrients contained, the dose of the pH, the
temperature and humidity of the air, etc., which must meet the specified standards.
If one of these elements does not meet the right dose, the plant will not grow as
expected. Therefore, regular checks must be done every day. Due to the need for
regular checks, the hydroponic method becomes inefficient because it requires a
long time and high costs for maintenance (Lochan Mishra and Jain 2015). This
also impacts on the selling price of hydroponic plants; the plants become more
expensive. While hydroponic method is a solution to the problem of limited land, it
also requires complicated care, making it not efficient for agriculture.

This paper is organized as follow. The literature review of latest development in
an intelligent system for nutrient-controlling systems is discussed in Sect. 2. The
general [oT system architecture is discussed in Sect. 3. The future challenge of
research and implementation of intelligent nutrient-controlling system is discussed
in Sect. 4. Finally, the conclusion is presented in Sect. 5.

2 Intelligent Nutrient Control Systems

Intelligent nutrient control systems have been increasingly applied in urban agricul-
ture to improve plant growth and yield while reducing waste and environmental
impact. These systems utilize sensors and automation to monitor and regulate
nutrient levels in the soil or hydroponic solutions, while data analytics and machine
learning algorithms are used to optimize nutrient delivery and minimize resource
usage. In this section, some research on intelligent nutrient control system in urban
farming is discussed.

Herman et al. (2020) proposed a hydroculture system that is monitored using
sensors and controlled by a microcontroller especially 8266 and actuators. The
sensors used include pH, electrical conductivity, humidity, and temperature levels to
see the current conditions in the hydroculture. The data from sensor then analyzed
with Sugeno fuzzy logic method to automatically regulate the water and nutrient
pump. The results of the study had significant differences in leaf width and plant
height in lettuce and bok choy plants.

Mebhra et al. (2018) proposed the implementation of deep neural networks (DNN)
in deep water culture (DWC) hydroponic. The DWC hydroponic technique is the
most straightforward hydroponic technique. It only uses a water reservoir, and
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the plants are directly on top of the water reservoir. The input parameters for the
DNN are PPM, water level, temperature, light intensity, and humidity. The input
parameters are fitted with models that have been trained in the cloud and will
provide a classification of actions to regulate the hydroponic system environment.
The system’s output can only classify which actuator needs to be turned on or off.

Alipio et al. (2019) used the nutrient film technique (NFT) hydroponic systems.
NFT is a hydroponic technique that continuously circulates dissolved nutrients from
the water reservoir to the growing media using a pump. The dissolved nutrients
are flowed through the gutter and pass through all the roots of the plants. The
study uses a Bayesian network that acts as the system’s brain to automatically
regulate the water reservoir’'s pH and EC. pH, EC, humidity, light intensity,
and water temperature are the Bayesian network input parameters. The Bayesian
network processes the sensors’ data to give the proper action needed to regulate the
hydroponic system environment. The detected data and respective output are sent to
the cloud so the user can monitor it.

Adidrana et al. (2019) proposed an NFT (nutrient film technique) hydroponic
nutrition control system using the KNN method and IoT. This control system
expected to provide accurate calculation results to command the microcontroller
to turn on or off the nutrition controllers more than one at a time, such as pH down,
pH up, AB nutrition, and filter pump. KNN (k-nearest neighbor) algorithm uses
for predicting the classification of nutrient conditions, so the system can provide
information on nutrition conditions to the user. pH and TDS values controlled using
pH (up and down) solution, nutrients (A and B) to increase the TDS value, and
nutrient filter to reduce the TDS value obtained from the pH sensor and TDS sensor.

Atmaja et al. proposed a multistep fuzzy logic method for NFT hydroponics
system in making decisions for parameter adjustments in the hydroponic system.
The multistep fuzzy logic is proposed to be able activating relay within the same
time. After the relay was activated at the same time, it is possible there are
some calibrations needed to tune the mixed solution to add a difference into the
hydroponics main system. The calculation result data is sent via the ESP8266 and
NRF24L01 modules. With the results of the evaluation of the multistep fuzzy logic
method, it is in accordance with the expectations of the created fuzzy rule. From
the real-time data transmission method, the success of sending data is 30% from
the ESP82166 and 75% of the NRF24L01 with a shortage of the NRF24L.01 data
loss. For the relay, activation can be accommodated with dynamic programming. As
for multistep fuzzy logic, hydroponics was tested to reach optimal water condition
for kale crops, resulting in an average 12.8 iterations of calibration from condition
where researches add water only from the start.

From the all the research that has been explained in this section, the researchers
tried to address the difficulty in fostering urban farming that requires a precision
water and nutrition intake. From their research results, it is evident that machine
learning or deep learning method can be used to analyze the data from sensor
and automatically regulate the nutrient pump. Therefore, the plants can receive
nutritional intake according to their needs and will grow more optimally (Table 1).
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Table 1 Intelligent nutrient control systems

No Publication Proposed technique Results
1 Herman et al. Sugeno fuzzy logic to control Proposed system shows better
(2020) pH, nutrient, and temperature plant growth in terms of length
and width of the leaves and
plant’s height
2 Mehra et al. Deep neural networks (DNN) Plant growth in hydroponics is
(2018) in deep water culture (DWC) far better in terms of height
hydroponic compared to the traditional soil
growth
3 Alipio et al. Bayesian network to detect and | The prediction model obtained
(2019) regulate humidity, sunlight, 84.53% accuracy after model
water temperature, pH level, validation, and the yielded
and electrical conductivity crops on the automatic control
was 66.67% higher than the
manual control
4 Adidrana et al. KNN (k-nearest neighbor) Achieves 93.3% accuracy
(2019) algorithm to predict the
classification of nutrient
conditions
5 Atmaja et al. Multistep fuzzy logic method To reach optimal water

(2022)

for NFT hydroponics system

3 IoT System Architecture

condition for kale crops
resulting in average 12.8
iterations calibration from
condition where researches add
water only from the start

This section discusses the general architecture of an intelligent nutrient control
system. Generally, as shown in Fig. 1, the system consists of three sections: the
sensor layer, the actuator layer, and the data processing layer. A detail explanation
of each layer is presented in Sects. 3.1, 3.2, and 3.3.

3.1 Sensor Layer

Intelligent nutrient control systems use sensors to monitor and control nutrient levels
in plants or aquaculture systems. The sensors commonly used include pH sensors,
electrical conductivity (EC) sensors, dissolved oxygen (DO) sensors, temperature
sensors, soil moisture sensors, and nutrient sensors, such as ammonium, nitrate, and
potassium sensors.

pH sensors are commonly used in intelligent nutrient control systems for urban
farming to monitor and maintain the acidity or alkalinity of the nutrient solution
(Herman 2019; Adidrana and Surantha 2019). In hydroponic or aeroponic systems,
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Fig. 1 General System Architecture

plants receive nutrients directly from a nutrient solution rather than from soil, so it is
important to ensure that the pH of the solution is within the optimal range for plant
growth. The optimal pH range depends on the plant species and can range from
around 5.5 to 6.5 for most leafy greens and to around 6.5 to 7.5 for tomatoes and
cucumbers (Goddek et al. 2020). pH sensors can be used to continuously monitor the
pH of the nutrient solution and provide real-time feedback to an automated nutrient
control system. The system can adjust the pH by adding acid or base solutions to
maintain the desired pH range. This helps to ensure that the plants have access to
the nutrients they need and can grow optimally. pH sensors can also be used to
diagnose problems such as nutrient imbalances, which can cause the pH to drift
outside of the optimal range. Overall, pH sensors are an essential component of an
intelligent nutrient control system for urban farming to ensure optimal plant growth
and health.

EC sensors are commonly used in intelligent nutrient control systems for urban
farming to measure the concentration of nutrients in the hydroponic solution
(Yolanda et al. 2016). In urban farming, where space is often limited, hydroponic
systems are used to grow plants without soil in a nutrient-rich water solution. The
EC sensor measures the electrical conductivity of the solution, which is directly
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related to the concentration of dissolved salts in the solution. By measuring the
EC, the system can determine the nutrient concentration of the solution and make
adjustments to ensure that the plants are receiving the proper nutrients for optimal
growth. In addition to nutrient monitoring, EC sensors can also be used to monitor
the overall health of the hydroponic system (Lochan Mishra et al. 2007). For
example, if the EC is too high, it may indicate that there is a buildup of salts in
the solution, which can be harmful to the plants. Similarly, if the EC is too low, it
may indicate that the plants are not receiving enough nutrients.

DO sensors measure the amount of oxygen dissolved in the nutrient solution,
which is critical to the health of the plants (Deepthi et al. 2021). If the oxygen level
is too low, it can lead to root rot, which can kill the plants. If the oxygen level is
too high, it can create an environment that promotes the growth of harmful bacteria.
DO sensors can detect changes in oxygen levels and alert the system to adjust the
oxygen supply to maintain optimal levels (Kyaw and Ng 2017). This ensures that the
plants receive the right amount of oxygen to grow and remain healthy. Overall, DO
sensors play an important role in maintaining the health and productivity of plants
in urban farming systems.

Temperature sensors are an essential component of intelligent nutrient control
systems in urban farming (Joseph Balinado 2016). These sensors measure the
temperature of the nutrient solution, which is critical for plant growth and health.
Temperature affects plant metabolism, nutrient uptake, and the growth rate of plants.
For example, if the temperature is too high, it can lead to lower oxygen levels
in the nutrient solution, which can harm plant roots. On the other hand, if the
temperature is too low, it can slow down plant growth and reduce nutrient uptake. By
monitoring the temperature of the nutrient solution, the intelligent nutrient control
system can adjust other parameters such as pH and nutrient levels to optimize plant
growth and health. Additionally, temperature sensors can also be used to monitor the
temperature in the growing environment (Alipio et al. 2017), which is important for
controlling the microclimate and preventing heat stress or cold damage to plants.
Overall, temperature sensors play a critical role in maintaining optimal growing
conditions and maximizing yield in urban farming systems.

Nutrient sensors such as ammonium, nitrate, and potassium sensors can be used
in intelligent nutrient control systems for urban farming to monitor the nutrient
levels in hydroponic or aeroponic systems (John and Mahalingam 2021). These
sensors can detect the concentration of specific nutrients in the solution and provide
real-time data that can be used to adjust the nutrient levels. For example, ammonium
sensors can detect the concentration of ammonium ions in the solution, which
is important for plants as a source of nitrogen. Nitrate sensors can detect the
concentration of nitrate ions in the solution, which is also important for plants as
a source of nitrogen. Potassium sensors can detect the concentration of potassium
ions in the solution, which is essential for plant growth and development (Silva et
al. 2022). By using these nutrient sensors in combination with other sensors such
as pH sensors and EC sensors, an intelligent nutrient control system can adjust the
nutrient levels in real-time to ensure that the plants are getting the optimal amount of
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nutrients for growth and development. This can lead to increased yield and improved
quality of produce in urban farming systems.

Finally, soil moisture sensors are commonly used in intelligent nutrient control
systems for urban farming to help optimize plant growth and nutrient uptake
(Hostalrich et al. 2022). These sensors provide real-time data on the moisture
levels in the soil, allowing farmers to adjust their watering schedule and fertilizer
application to meet the needs of the plants. Integrating soil moisture sensors with
other sensors, such as pH, EC, DO, temperature, and nutrient sensors, can create a
more comprehensive system for intelligent nutrient control. By combining data from
multiple sensors, farmers can better understand the overall health of their plants and
adjust their nutrient levels accordingly (Janani et al. 2022). The summary of sensor
used in intelligent nutrient control system is presented in Table 2.

3.2 Actuator Layer

Actuators are an important component of an intelligent nutrient control system
for urban farming. They are used to control the delivery of nutrients, water, and
other inputs to plants in hydroponic or aeroponic systems. The three main types of
actuators used in these systems are pumps, solenoid valves, and dosing systems.
Pumps are commonly used in nutrient control systems to deliver nutrient
solutions to plants (Safira et al. 2022). Peristaltic pumps are often used because
they are precise and have a low risk of contamination. The system can control them

Table 2 Sensor used in intelligent nutrient control system

No. Sensor type Function References

1 pH sensors Measure acidity or alkalinity of | Herman (2020), Adidrana and
nutrient solution Surantha (2019) and Yolanda
et al. (2016)
2 EC sensors Measure concentration of Adidrana and Surantha (2019),
nutrients in the solution Yolanda et al. (2016) and
Lochan Mishra et al. (2007)
3 DO sensors Measure oxygen concentration | Deepthi et al. (2021) and Kyaw
in the water and Ng (2017)
4 Temperature Measure the temperature of Adidrana and Surantha (2019),
Sensors nutrient solution and Joseph Balinado (2016) and
temperature of plant Alipio et al. (2017)
environment
5 Specific nutrient | Measure levels of specific John and Mahalingam (2021)
sensors nutrients in the solution and Silva et al. (2022)
(ammonium,
nitrate, and
potassium)

Soil moisture
sensors

Measure moisture levels in the
soil

Hostalrich et al. (2022) and
Janani et al. (2022)
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to deliver precise amounts of nutrient solution to the plants based on the real-time
data collected from the sensors (Rico 2020).

Solenoid valves are used to control the flow of water and nutrient solutions in
hydroponic and aeroponic systems (Xu et al. 2020). These valves can be controlled
electronically, allowing for precise control of the amount of solution delivered to
each plant. They are often used in combination with pumps to deliver nutrient
solutions to plants (Iswanto and Ma’ Arif 2020).

Dosing systems are used to deliver precise amounts of nutrients to the plants.
They can be used to mix and deliver nutrient solutions based on the real-time
data collected from the sensors (Lennard and Ward 2019). Some dosing systems
are automated, allowing for precise control of the nutrient delivery to each plant
(Hosseini et al. 2021).

In summary, pumps, solenoid valves, and dosing systems are the primary types
of actuators used in intelligent nutrient control systems for urban farming. These
actuators allow for precise control of the delivery of nutrients, water, and other
inputs to plants based on real-time data collected from sensors. By using these
actuators, urban farmers can optimize plant growth and development, leading to
increased yields and improved quality of produce. The summary of actuators used
in intelligent nutrient control system is presented in Table 3.

3.3 Data Processing Layer

Intelligent nutrient control systems for urban farming often incorporate microcon-
trollers and cloud computing technology to automate and remotely monitor the
growing environment. Microcontrollers and cloud computing are used for data
analytics process and data storage for the plant monitoring systems.
Microcontrollers such as Arduino (Ibrahim et al. 2015) and Raspberry Pi (Crisna-
pati et al. 2017) can be used in intelligent nutrient control systems for urban farming.
These microcontrollers can be programmed to read data from various sensors, such
as pH, EC, dissolved oxygen, and nutrient sensors, and adjust the nutrient levels
in real-time based on the data. The microcontrollers can also be used to control
other components in the system such as pumps, valves, and lights. This allows

Table 3 The summary of actuator used in intelligent nutrient control system

No. Sensor type Function References

1 Pumps Deliver nutrient solutions to Safira et al. (2022) and Rico
plants (2020)

2 Solenoid valves | Control the flow of water and Xu et al. (2020) and Iswanto
nutrient solutions and Ma’ Arif (2020)

3 Dosing systems | To mix and deliver nutrient Lennard and Ward (2019) and

solutions based on the real-time | Hosseini et al. (2021)
data collected from the sensors
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for precise and automated control of the nutrient solution, leading to increased
yield and improved produce quality in urban farming systems. Additionally, these
microcontrollers are cost-effective and easily accessible, making them a popular
choice for small-scale urban farming operations.

FPGAs (Field Programmable Gate Arrays) can also be used in intelligent nutrient
control systems for urban farming to process the data from various sensors and
control the nutrient delivery system (Oukaira et al. 2021). FPGAs are also highly
customizable and can be reprogrammed to accommodate system changes or add
new sensors or control functions. Additionally, FPGAs can operate at high speeds
with low latency, making them ideal for real-time control in urban farming systems
where quick response times are essential (Kumar et al. 2020).

Cloud computing technology enables the remote monitoring and control of the
growing environment from a smartphone, tablet, or computer. This allows farmers
to monitor and adjust the growing environment from anywhere, at any time, which
is especially important for urban farming where space and time are often limited.
Cloud computing can also be used to store and analyze data from sensors, providing
insights into the performance of the growing system and allowing for continuous
optimization.

Microsoft Azure is an example of a cloud computing platform used for intelligent
nutrient control systems. Microsoft Azure offers IoT Hub and Time Series Insights,
which allow farmers to connect and monitor sensors in real time and analyze
historical data to make informed decisions about nutrient control (Rahul et al.
2022). The platform also offers machine learning tools, which can be used to
optimize nutrient control and predict plant growth based on historical data. Another
example of a cloud computing platform used for intelligent nutrient control systems
is AWS IoT. AWS IoT offers a suite of services, including IoT Core, which enables
farmers to connect sensors and devices, and IoT Analytics, which provides real-
time analysis of sensor data (Ponnusamy et al. 2021; Philimon et al. 2022). The
platform also offers machine learning tools such as SageMaker, which can be used
to predict plant growth and optimize nutrient levels based on historical data (Shaif
2021). Additionally, AWS Greengrass allows for local compute and analytics at the
edge, enabling farmers to quickly respond to changes in nutrient levels in real time
(Tawalbeh et al. 2020).

Blynk and Growlink are two examples of software platforms that can be used
to create intelligent nutrient control systems for urban farming. Blynk is an IoT
(Internet of Things) platform that allows users to build custom apps to control and
monitor various devices, including sensors and actuators (Herman 2020). Growlink,
on the other hand, is a software platform specifically designed for agriculture
and hydroponics systems (Srivastava and Das 2022). By integrating Blynk or
Growlink with various sensors such as pH, EC, temperature, and nutrient sensors, an
intelligent nutrient control system can be created for urban farming. These systems
can monitor and adjust nutrient levels in real time, based on the data collected from
the sensors. The platforms also allow for remote monitoring and control of the
system, which can save time and increase efficiency for urban farmers. Overall,
Blynk and Growlink offer user-friendly and customizable solutions for creating
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Table 4 Data processing layer

No Technology Example of technology References
1 Microcontroller/ | Arduino Joseph Balinado (2016) and
edge device Ibrahim et al. (2015)
Raspberry-Pi Atmaja and Surantha (2022)
and Crisnapati et al. (2017)
FPGA Oukaira et al. (2021) and
Kumar et al. (2020)
2 Cloud Microsoft Azure: IoT hubs and | Rahul et al. (2022)
computing time-series insight
platform
AWS IoT: IoT Core, Ponnusamy et al. (2021),

SageMaker, AWS Greengrass Philimon et al. (2022), Shaif
(2021), and Tawalbeh et al.

(2020)
Blynk Herman (2020)
Growlink Srivastava and Das (2022)

intelligent nutrient control systems for urban farming. By using these platforms
in combination with various sensors, urban farmers can optimize the growth and
quality of their crops while also saving time and resources.

In combination, microcontrollers and cloud computing technology provide a
powerful tool for intelligent nutrient control in urban farming. By automating
nutrient delivery and environmental control and remotely monitoring and adjusting
the growing environment, farmers can optimize plant growth and productivity while
reducing labor costs and environmental impact. Additionally, the use of cloud
computing allows for real-time analysis and optimization of the growing system,
leading to increased efficiency and improved crop yield (Table 4).

4 Future Challenges

The future of intelligent nutrient control systems for urban farming faces several
challenges. In this section, we identify several potential challenges for research in
this field.

4.1 Integration of Sensors and Controls System

One of the key challenges is integrating multiple sensors and control systems to
optimize nutrient delivery to plants. With increasing technological advancements,
more sensors and control systems are becoming available, making it difficult to
select the most effective and efficient systems for a particular urban farming
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environment (Hostalrich et al. 2022). Therefore, there is a need to develop integrated
systems that can work together seamlessly to optimize plant growth.

On the other hand, as more sensors and actuators are added to the system,
the interactions between them become more complicated, making it difficult to
optimize nutrient delivery to the plants (Herman 2020). For example, a system
that includes sensors for measuring pH, EC, ammonium, nitrate, and potassium
levels and actuators for adjusting the nutrient delivery system can generate a vast
amount of data that needs to be processed in real time. The system needs to be
able to analyze this data and make decisions about when and how to adjust the
nutrient delivery system to maintain optimal nutrient levels. In addition, there may
be interactions between the sensors and actuators that need to be considered. For
example, changes in pH levels can affect the availability of certain nutrients to
the plants, which may require adjustments to the nutrient delivery system (Herman
2019). This requires a system that can integrate the data from multiple sensors and
actuators and make decisions based on the overall state of the system.

4.2 Data Analytics and Machine Learning for Predicting
Nutrient Control

There is a need for more advanced data analytics and machine learning algorithms to
analyze the vast amounts of data generated by the sensors in real time. This requires
developing advanced algorithms that can identify trends and patterns in the data
to make more accurate predictions about plant growth and nutrient requirements
(Mehra et al. 2018). Another challenge is the need to develop algorithms that can
accurately predict plant growth and nutrient requirements. This requires training the
algorithms with large amounts of data from a variety of environmental conditions,
plant species, and nutrient solutions (Deren et al. 2021). The algorithms need to
be able to identify patterns and trends in the data to make accurate predictions.
Additionally, machine learning algorithms need to be able to adapt to changes in
the system, such as the addition of new sensors or changes in the nutrient solution.
Developing algorithms that can learn and adapt to changes in the system is essential
for maintaining the optimal nutrient delivery to the plants (Atmaja and Surantha
2022).

4.3 Sustainable and Eco-Friendly Nutrient Delivery Systems

Another challenge is the development of more sustainable and eco-friendly nutrient
delivery systems. One challenge is reducing water consumption, as many nutrient
delivery systems require large amounts of water. This can be achieved by using
recirculating systems that reuse water or by using systems that capture and reuse
rainwater or other alternative water sources (Bisaga et al. 2019). Implementing these
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systems can significantly reduce water consumption and improve the sustainability
of the nutrient delivery system.

Another challenge is reducing energy consumption, as many nutrient delivery
systems require energy to pump and circulate the nutrient solution. Using solar
or wind power to generate energy for the system can reduce the environmental
impact of the system and lower energy costs. Additionally, optimizing the timing
and frequency of nutrient delivery can reduce the amount of energy required to
operate the system.

Another challenge is minimizing waste, as many nutrient delivery systems
generate nutrient-rich runoff that can be harmful to the environment if not properly
managed. Implementing systems that capture and reuse this runoff can significantly
reduce waste and improve the sustainability of the nutrient delivery system.

Finally, there is a need to develop nutrient solutions that are more sustainable
and environmentally friendly. Currently, many nutrient solutions use synthetic
fertilizers that can be harmful to the environment (Havlin 2020). Developing more
sustainable and organic nutrient solutions can improve the nutrient delivery system’s
sustainability and the quality of the produce grown in the system.

4.4 More Affordable and Accessible Intelligent Nutrient
Control Systems

Finally, there is a need to develop intelligent nutrient control systems that are
more affordable and accessible to urban farmers. One challenge is the cost of the
sensors and control systems used in these systems. Many of the sensors and control
systems can be expensive, making them inaccessible to small-scale urban farmers
with limited resources. Therefore, there is a need to develop more affordable sensors
and control systems that can be easily integrated into urban farming environments.

Another challenge is the need for specialized knowledge to operate these
systems. Many of the current systems require advanced technical knowledge to
operate, which can be a barrier for small-scale urban farmers who may not have
the necessary skills or training (Atmaja and Surantha 2022). Therefore, there is a
need to develop more user-friendly systems that are easy to operate and require
minimal technical knowledge.

Additionally, there is a need to develop open-source systems that can be
customized and modified by urban farmers to meet their specific needs. Open-source
systems can be more affordable and accessible because they allow users to modify
and customize the system using readily available and low-cost components.

Finally, there is a need to develop training and support programs for urban
farmers to help them implement and operate these systems. Many urban farmers
may not have the necessary technical knowledge or experience to operate these
systems, so providing training and support can help ensure the success of the
system and improve the accessibility of intelligent nutrient control systems for urban
farming.
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5 Conclusion

The proliferation of IoT and Al leads to the emergence of intelligent system that can
be used to improve various aspect in urban farming. One of the main application of
IoT in urban farming is for the automatic nutrient controlling system. Urban farming
method requires special treatment for controlling the water temperature, water
level, and acidity (pH) of nutrient solutions. The intelligent system will help the
beginner urban farmer grow the plants optimally. In this chapter, we have discussed
some of the algorithms developed for intelligent nutrient controlling. We have also
discussed the general architecture of IoT system and its detail component. Finally,
we discuss the potential challenge of research and implementation of intelligent
nutrient systems in society. With this study, hopefully there are more research to be
done to improve the feasibility of intelligent nutrient system in urban farming.
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Abstract Medicinal plants have been used in traditional medicine, health food
supplements, rituals, and for health care purposes for thousands of years. According
to the Food and Agriculture Organization of the United Nations (FAO), the
worldwide production of medicinal and aromatic plants is estimated to be 330
million tons for a total area of 77 million ha. Nowadays, the sector of medicinal
plants is subject to inconstancy, and issues about the yield, quality, and efficacy of
plant extracts have been reported. The present review describes the current status
of medicinal plants worldwide, including a detailed description of the sector in
France. The suitability of vertical farming for the production of medicinal plants
is discussed, and its advantages and drawbacks are presented. Indoor cultivation
in a controlled environment requires appropriate adjustment of abiotic factors to
optimize biomass and secondary metabolite contents. Light quantity and quality,
nutrient solution, temperature, and CO, concentration are presented in relation with
their impact on plants and on the production of the targeted phytocompound. A
case-study on the technic feasibility and economic viability of producing a plant-
based drug in a vertical container is presented, including plant cultivation and drug
extraction steps. Based on the costs related directly to the production activity, it
provides a rapid estimate of the direct production cost of each step. The largest
contributor to cultivation costs is labor, averaging 48%, followed by energy (20%)
and investment cost (20%). The largest contributor to extraction and purification
costs is the operating and maintenance cost of equipment (47%), followed by energy
cost (31%) and labor cost (16%). The largest contributor to the whole plant-based
drug production process, from plant cultivation to drug production, is the research
and development cost (98—67%), followed by cultivation and extraction costs (1—
24%) and drug manufacturing costs (1-8%), depending on the number of containers,
i.e., on the productivity of the cultivation and extraction steps.
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1 Introduction: Vertical Farming and Medicinal Plants

1.1 Current Challenges of Agriculture

Agriculture currently faces many challenges and difficulties in terms of environ-
mental performances. Although the Organization for Economic Cooperation and
Development (OECD) points out that agricultural nitrogen and phosphorous nutrient
surpluses in the OECD countries steadily declined between 1990 and 2009, farmed
soils still contain an average surplus of 63 kg/ha of nitrogen and 6 kg/ha of
phosphorous. These levels remain very high as to their potential to cause surface,
groundwater and coastal water pollutions (OECD 2013). In most European member
states, agriculture is responsible for over a third of the total nutrient discharge
into surface and coastal waters (OECD 2013). Agriculture is also the major user
of pesticides, with 70% of the mean pesticide sales in OECD countries related to
agriculture. As a result, agricultural soils are major reservoirs of pesticides that
affect soil microbial communities and represent sources of water and air pollutants
(Tao et al. 2008; OECD 2013; Hvézdova et al. 2018; Dou et al. 2020a, b). Almost a
third of OECD member countries is affected by moderate to severe water-related soil
erosion, while far fewer countries are suffering from wind-related erosion (OECD
2013). Erosion due to agricultural practices can be mainly attributed to continued
cultivation on fragile and marginal soils, overgrazing of pasture, or unsuited farming
and tillage practices (Bullock 2005; OECD 2013; Gebrehiwot 2022; Hassan et
al. 2022). The mean energy consumption related to agriculture between 2008
and 2010 was low — 1.6% — but the sector is vulnerable to changes in crude
oil prices, and sensitive to dramatic changes (OECD 2013). Although the OECD
indicates that the agriculture sector reduced its water withdrawals over the past
decade, agriculture remains a major user of water accounting for an average 44%
of total water withdrawals (OECD 2013). Biodiversity as measured from farmland
bird populations has been declining continuously in almost all countries over the
1990-2010 period (OECD 2013). The main reason is the considerable use of land
and water resources on which wild species are highly dependent (OECD 2013).
Agricultural intensification in recent decades has resulted in reduced crop diversity
and losses of plant species (Storkey et al. 2012; Meyer et al. 2013; Abeli et al. 2022).
Figure 1 shows the pressure exerted by agriculture in several sectors.

The value of primary agriculture round the world can be partly understood by
looking at trade statistics from worldwide databases. Although trade data are never
complete and products are categorized differently, they give a global picture of the
importance of primary agriculture and the share of medicinal plants within primary
agriculture. Customs nomenclature referring to primary agriculture includes several
codes: 07 “Edible vegetables and certain roots and tubers,” 08 “Edible fruit and nuts;
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Part of nitrates in surface
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Part of phosphorous in surface
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Fig. 1 Overview of the pressure exerted by agriculture in several sectors: water pollutants, energy
consumption, water withdrawal, pesticide sales, land area, biodiversity, and water and wind erosion
risk (OECD 2013). Each sector is represented on a 100% basis, in which the share of primary
agriculture is indicated *Mean based on a limited number of OECD countries **The number
of OECD countries monitoring pesticides in water systems is limited. However, data for Austria
reveals that the development of pesticide sales is closely related to level of pesticides detected in
surface waters ***Mean average annual percentage change

Part of water withdrawals

\

Part of Energy consumption
1.6%

Part of pesticides sales 70%**

Part of arable land with a wind 3
erosion risk 7% s

Part of arable land with a water
erosion risk 13.7%

Part of land area 36%

Firmland birds index change -11.37%***

peel of citrus fruit or melons,” 09 “Coffee, tea, maté and spices,” 10 “Cereals,” and
12 “Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruit; industrial
or medicinal plants; straw and fodder,” Table 1 shows the exported value of primary
agriculture and the relative significance of nomenclature 1211 corresponding to
“Plants and parts of plants, incl. seeds and fruits, of a kind used primarily in
perfumery, medicaments or for insecticidal, fungicidal or similar purposes, fresh
or dried, whether or not cut, crushed or powdered,” It shows that the export value of
medicinal plants represents a small percentage of primary agriculture (about 0.7%)
but is constantly growing.

In 2019, the total exported quantities of code 1211 represented 731,606 tons
and 2,892,682 euros. The exported value of code 1211 per ton was about ten times
higher than those of rice (code 1006), cereals (code 1001), and potato (code 0701)
and about three times higher than that of tomatoes (code 0702), showing that this
category has a high added value.

1.2 The Current Status of Medicinal Plants

The Current Status of Medicinal Plants Round the World

Medicinal plants, including medicinal herbs, have long been used round the world.
The use of medicinal plants is one of the oldest forms of treatment, coming from
ancestral and empirical uses, that still plays a significant role in Africa and Asia
(World Health Assembly 2003). The World Health Organization (WHO) reports
that at least half of the world population do not receive the healthcare services they



132 F. Bafort and M. H. Jijakli

Table 1 World total export value (€) of codes 07-08-09-10-12, world total export value (€) of
code 1211, percentage of code 1211 in the total of codes 07-08-09-10-12, and annual export value
growth of code 1211 from 2018 to 2021 (International Trade Center, no date)

World total export Percentage of code

value of primary World total 1211 in the total

agriculture codes export value of | export value of Annual export
Year |07-08-09-10-12 (€) |code 1211 (€) | primary agriculture | growth of code 1211
2021 | 483,564,488 3,310,966 0.6847% 5.26% (2020-2021)
2020 | 431,281,779 3,145,490 0.7293% 8.74% (2019-2020)
2019 | 410,466,532 2,892,682 0.7047% 6.15% (2018-2019)
2018 | 387,958,090 2,725,045 0.7024% -

Codes: 07, “Edible vegetables and certain roots and tubers”; 08, “Edible fruit and nuts; peel of
citrus fruit or melons”; 09, “Coffee, tea, maté and spices”; 10, “Cereals”; 12, “Oil seeds and
oleaginous fruits; miscellaneous grains, seeds and fruit; industrial or medicinal plants; straw and
fodder”; 1211, “Plants and parts of plants, incl. seeds and fruits, of a kind used primarily in
perfumery, medicaments or for insecticidal, fungicidal or similar purposes, fresh or dried, whether
or not cut, crushed or powdered”

need and that about 80% are using traditional medicines to meet their healthcare
needs (World Health Assembly 2003; World Health Organization 2022). One way of
understanding the importance of the medicinal plant market at the level of a country
is to look at the number of national research institutes dedicated to traditional and
complementary medicines, which are fully or partially funded by the governments
and indicate strong national policy support. The WHO report on traditional and
complementary medicine shows that the highest number of countries reporting a
national research institute were in the South-East Asia Region (64%), followed by
the African Region (62%), the Eastern Mediterranean Region (48%), the Western
Pacific Region (33%), the Region of the Americas (26%), and the European Region
(21%) (Fig. 2) (WHO 2019). The regions with the highest percentage correspond
to countries, where medicinal plants strongly belong to the traditional healthcare
system (Pan et al. 2014; Howes et al. 2020).

The trade database shows that India and China are the major providers of
medicinal plants round the world with 24.1 and 10.6% of the total export value in
2021 (Fig. 3), followed by Germany (6%), the USA (4.4%), Egypt (4.3%), Canada
(4.1%), Spain (2.8%), Poland (2.6%), Korea (2.3%), and Mexico, Vietnam, France,
all three at 1.8%. All other countries are below 1.8% and represent 33% of the total
world exports.

Current Status of the Medicinal Plant Sector in Europe

In Europe, medicinal and aromatic plants are cultivated on more than 200,000 ha,
most of which are located in France (52,000 ha), Poland (30,000 ha), Spain
(27,800 ha), Bulgaria (16,800 ha), Germany (13,000 ha), Croatia (8500 ha), the
Czech Republic (7225 ha), Italy (7191 ha), Greece (6800 ha), and Austria (4136 ha)
(EIP-AGRI 2020). The export market of customs code 1211 in Europe in 2021
was dominated by Germany (26%), Spain (12%), Poland (12%), and France (8%),
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Fig. 2 Percentages of national research institutes for traditional and complementary medicines
or herbal medicines in six regions of the planet. Each region is represented by N countries. The
percentages represent the numbers of countries having a national research institute in a specific
region. (WHO, 2019)
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Fig. 3 Main exporter countries of medicinal plants in 2021. Export values in 2021 expressed as
percentages, according to the trade database from the International Trade Center (no date). Export
values were calculated from custom nomenclature 1211 “Plants and parts of plants, incl. seeds and
fruits, of a kind used primarily in perfumery, medicaments or for insecticidal, fungicidal or similar
purposes, fresh or dried, whether or not cut, crushed or powdered”
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followed by Austria (5%), Italy and Bulgaria (4% each) (International Trade Center,
no date). The current state of medicinal and aromatic plants in France is further
studied in the following subchapter.

The French Perfume, Aromatic, and Medicinal Plant Sector (FranceAgriMer
2020, 2021)

The French perfume, aromatic, and medicinal plant sector includes the cultivation
and regular picking of more than 300 species and more than 1000 products of
marketed perfume, aromatic, and medicinal products. In 2021, this sector covered an
area of 67,513 ha for 6527 producers. This area has been constantly increasing since
the 2000s and has grown by more than 32% over the last 5 years. Perfume plants
represent the largest surface area in the sector with 37,897 ha in 2021 and three
predominant species: lavandin and lavender (33,094 ha) and clary sage (3400 ha).
The farms have multiple profiles ranging from industrial cultivation to very small
farms in disadvantaged areas. The sector had the strongest surface area growth in
absolute value (>33%) between 2017 and 2021. Aromatic plants were grown on
9644 ha in 2021. The main species were coriander, parsley, thyme, fennel, mint,
dill, tarragon, marjoram, oregano, basil, rosemary, and chives. This sector strongly
grew (>66%) between 2017 and 2021. The medicinal plant sector includes the
largest number of species (more than 150 species including poppy, chamomile,
milk thistle, lemon balm, etc.). Its surfaces decreased by 4% to 19,972 ha in 2021
compared to 2020 (20,712 ha), but altogether increased by 19% between 2017 and
2021. Poppy (Papaver somniferum var. nigrum) and ginkgo biloba are exclusively
produced under contract with the pharmaceutical industry. In 2021, the total area of
the perfume, aromatic, and medicinal plant sector was 67,513 ha and represented
less than 1% of French agricultural land, subdivided as follows:

* 56% for perfume plants (37,234 ha for lavender and lavandin areas, i.e., nearly
49%)

* 30% for medicinal plants

e 14.3% for aromatic plants

In 2020, medicinal plants had a turnover value of 3659 k€ for a volume of 385
tons. The main volume was reached by birch, followed by Roman chamomile and
rose geranium (Table 2), but lemon balm ranked first in market value, followed by
beech wood and birch (Table 2).

In the medicinal plant category, most of the commercial value relates to essential
oils (355 k€) for an extremely low volume (154 kg). Lemon balm essential oil was
sold between 2000 and 2600 €/kg in 2020, and thyme was the most representative
aromatic plant (PA) in market value with a turnover of 630 k€. In 2020, the
marketing value of “dry” products represented 44% of all aromatic plants. It was
29% for fresh products (including frozen ones) and 25% for essential oils (Fig.
4). The market shares of dried plants predominated over all medicinal plants with
36%, followed by “fresh/frozen” processed plants (31%). The market share of
essential oils was 27%, and the remaining 6% included hydrolates, oily macerates,
and stabilized extracts (Fig. 4). This shows that dried plants had the main market
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Table 2 Major medicinal plants produced in France. Surfaces (ha), market volumes (t), market
values (k€), and main uses

Betula s.1.

Chamaemelum
nobile

Pelargonium
‘rosat’

Filipendula
ulmaria
Aloysia
citrodora

Centaurea
cyanus

Calendula
officinalis

Melissa
officinalis

Arnica
montana

Leontopodium
alpinum
Vitis vinifera

Gentiana lutea

Fagus s.1.
Ribes nigrum

Thymus

2021 Surfaces
(ha)
/

362 (2017)

22 (2017)

260

/

603 (perfume
and essential
oil)

955 (aromatic
plant)

2020 Market
volume (tons)

21

14

14

10

3-10 (harvest)

1600
(harvest-2017)
/

30
(bud-harvest-
perfume and
essential plant)
60
(leaf-harvest-
medicinal
plant)

328 (aromatic
plant)

2020 Market
value (k€)
202

60

88
100

55

404

66

78

87

91

300

1443 (perfume

and essential
plant)

630 (aromatic
plant)

Main form

Concentrated bud macerates,
sap, traditional health syrup
Essential oil, tea, floral
water, health food
supplement, extract
Essential oil, mother
tincture, tea, concentrated
bud macerates

Tea, health food supplement,
hydroalcoholic extract

Tea, essential oil, extract,
mother tincture

Floral water, tea, extract,
hydrolat

Extract, tea, hydroalcoholic
extract, mother tincture, oily
macerate

Essential oil, health food
supplement, extract, tea,
hydrolat

Mother tincture, oily
macerate, extract, vegetable
oil

Flower extract, flower
essence

Health food supplement,
water extract

Extract, tea, mother tincture,
health food supplement
Concentrated bud macerates
Concentrated bud macerates,
health food supplement,
extract, mother-tincture,
macerate

Essential oil, healthy
traditional syrup,
concentrated bud macerates,
health food supplement

(continued)
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Table 2 (continued)
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2021 Surfaces | 2020 Market | 2020 Market
(ha) volume (tons) | value (k€) Main form
Salvia 204 (aromatic | 60 (aromatic | 153 (aromatic | Essential oil, concentrated
rosmarinus plant) plant) plant) bud macerates, health food
supplement, extract, tea
Silybum 300 / / Health food supplement,
marianum extract
Cynara 250 / / Health food supplement, tea,
cardunculus extract
Angelica 179 / / Mother-tincture, extract,
archangelica health food supplement,
essential oil
Plantago afra |74 / / Seed, health food
L. supplement
Lavandula L. | 33,094 140 / Essential oil, health food
(Lavander — supplement
essential oil)
2000
(Lavandin —
essential oil)
Papaver 10,000 / / License with a
(estimation) pharmaceutical company —
derivatives for the
production of alkaloids

Source: FranceAgriMer (2020, 2021)

Others _— Others .
(hydrolate, Medicinal plants (hydrolate, Aromatic plants
oily macerate, stabilized
stabilized extract)
extract) 2%

6%

@

Fig. 4 Share of the marketing value of medicinal plants and aromatic plants according to the type
of processing in France in 2020. (FranceAgriMer 2021)

value in both the medicinal and aromatic plant markets, followed by fresh plants
and essential oils.
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The use of medicinal plants is increasing in industrialized countries; the per-
centages of the population that had used a plant-based medicine at least once were
70% in Canada, 49% in France, 48% in Australia, 42% in the United States of
America, and 31% in Belgium (World Health Assembly 2003). The global market
value of herbal products is predicted to grow to US$ 5 trillion by 2050 (Pan et al.
2014). The increasing demand for medicinal plants has serious consequences such
as overharvesting, quality inconsistencies, and uncertain efficacy (World Health
Assembly, 2003; Howes et al. 2020; Zobayed 2020; Singh et al. 2022).

Overharvesting of medicinal plants has a major impact on biodiversity; for
example, (1) Asian Taxus brevifolia Nutt., T. chinensis, T. mairei, and T. contorta
Giff. populations harvested for paclitaxel extraction have undergone significant
population reductions, (2) Encephalartos woodii Sander is extinct in the wild, (3)
about 80% of Ethiopian medicinal plants are harvested from the wild with serious
threats on their preservation, or (4) Arnica montana L. has been overexploited in
Europe for its anti-inflammatory properties and shows decreasing populations; it is
now included in the red list of several European countries (Balabanova and Vitkova
2010; Howes et al. 2020; Vera et al. 2020).

Medicinal plants are mainly harvested from wild plants (Zobayed 2020). Under
field cultivation, some methods have had a negative impact on the environment. For
example, field cultivation of Panax ginseng Meyer in Asia led to deforestation and
soil microbial diversity losses in farmlands, which in turn brought about serious
soil-borne diseases affecting the quality and yield of P. ginseng (Tong et al. 2021).
The quality of medicinal plants is subject to inconstancies, and issues about the
quality and efficacy of plant extracts have been reported (World Health Assembly
2003). Outdoor plants are exposed to variations of their growing conditions in
water content, temperature, light characteristics (photoperiod, intensity, ozone and
UV radiation), and soil characteristics. All these parameters vary according to
the season, annual climate changes, and location and impact the plant contents
in specific metabolites. Moreover, open-field harvesting is often seasonal and
conditions the annual yield. Issues related to quality, efficacy, microbial and
pollutant contamination, and contamination with misidentified plant species are
often reported (World Health Assembly 2003; Zobayed 2020).

1.3 General Interest of Vertical Farming

Vertical farming consists in growing vegetables in vertically/horizontally stacked
layers made of hydroponic or aeroponic soilless crop units mounted in (1) an
indoor closed production system with artificial light, where environmental factors
(airflow, temperature, CO;, humidity and nutrients) are completely controlled, or
(2) a greenhouse with vertically stacked layers, in semi-closed production systems,
possibly adding artificial light to natural sunlight.

Vertical farming could contribute to answer some challenges of outdoor agricul-
ture:
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 First of all, yields in vertical farming are widely described as being significantly
higher than in conventional agriculture, because they combine three factors: (1)
the yield per square meter is increased thanks to a reduced land footprint resulting
from the vertical succession of crop production units, (2) the photosynthetic rate
is better as a result of a constant and ideal combination of environmental factors,
and (3) production is possible all year round (Banerjee and Adenaeuer 2014;
Barbosa et al. 2015; Avgoustaki and Xydis 2020a, b). The yield depends on the
number of plants per square meter and on the maximizing of the vertical indoor
space, which implies plants no taller than 30 cm, such as leafy greens, herbs,
transplants, and medicinal plants (Kozai and Niu 2020).

* Secondly, water use is significantly lowered, because plants are grown hydro-
ponically, irrigation water is supplied in a closed loop, and drought events are
absent — climate is stable (Barbosa et al. 2015; Benke and Tomkins 2017,
Graamans et al. 2017, 2018; Kalantari et al. 2018; Avgoustaki and Xydis 2020a).

o Thirdly, pesticide use is dramatically lowered, because exposure to the outdoor
environment is reduced, although the risk of pest contamination cannot be
completely excluded (Cowan et al. 2022). Moreover, if a pest appears, it is likely
to spread exponentially because of the interconnected irrigation system and the
high plant density.

* Fourthly, nitrogen and phosphorous nutrient losses in soil and aquatic sources
are reduced, because the nutrient solutions are recirculated in a closed-loop
system (Cowan et al. 2022). However, the recycling of the nutrient solution is
not complete: nutrient imbalance gradually appears, and the nutrient solution has
to be replaced unless a dynamically managed system is used (Silberbush and
Ben-Asher 2001; Zeidler et al. 2017; Michael et al. 2021; Cowan et al. 2022).

 Finally, farmland use is reduced because crop production is soilless, the crop
system is multilayered and can be implemented in urban areas and hostile places,
such as desert, tundra, polluted and cold regions (Cowan et al. 2022).

However, several challenges are reported for vertical farming:

* Vertical farming requires energy, hence a carbon footprint. More electricity is
required than in open-field and greenhouse farming; these high energy expenses
are mainly linked to lighting and air and hydric management (Zeidler et al.
2017; Graamans et al. 2018; Sparks and Stwalley III 2018; Avgoustaki and Xydis
2020a; Bafort et al. 2022; Cowan et al. 2022).

* Other difficulties are the global cost to start vertical farming, linked to high start-
up costs, high property costs in urban areas, high labor requirements, and the low
market price of leafy-green crops challenging its viability (Zeidler et al. 2017;
Bafort et al. 2022).

* The use of mineral nutrients has a big impact on soil resources and ecology.
Other nutrient sources should be considered. Organic nutrient sources are
often described, e.g., manures, bulky organic manures, or organic fertilizers.
Most organic nutrient sources, including waste materials, have widely varying
compositions and often only a low concentration of variably available nutrients
and need to be processed before use (Szekely and Jijakli 2022).
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* Plastic is largely used in hydroponics: the materials used for hydroponic culture
(nutrient film technique, ebb-and-flow systems, deep water systems, aeroponics
systems, and drip irrigation systems) are mainly plasticware. Efforts to decrease
the use of plastic in hydroponics materials should be done.

e Rockwool is mainly used as a substrate in hydroponics. However, it has low
durability as it has to be discarded after one or two cultivation cycles and requires
high energy during its manufacturing process (Bar-Tal et al. 2019). To increase
the durability of rockwool, its reuse has been developed as raw material for
horticultural and insulation applications and in brick production in European
countries, but this reuse network is not well developed yet (Bar-Tal et al. 2019).
Clay beads are characterized by a very good long-term stability that allows
for their reuse. Reuse induces increased costs because workforce and water are
needed to rinse and clean the clay beads. Coco fiber is natural and recyclable, but
its use in deep-water systems causes filtering problems, because coco fibers are
degraded rapidly, so that more labor work needed to clean the filtering system
very regularly (Bafort et al. 2022). As a consequence, the use of ecological
hydroponic media should be emphasized.

Figure 5 summarizes the main challenges of outdoor farming and vertical
farming.

1.4 Interest of Vertical Farming for Growing Medicinal Plants

The economic viability of leafy vegetable cultivation in indoor vertical farms with
artificial lighting is complex, in particular on the European market because of
their low market price, and high start-up, energy, and labor costs. In the United
States, only 50% of container farms and 27% of indoor vertical farms reported
operating profitability after 7 years of existence (Agrilyst 2017). Several studies
on leafy greens in container farms reported that production costs were too high
for them to be viable (Sparks and Stwalley III 2018; Debusschere and Boekhout
2021; Bafort et al. 2022). The selling prices in a simulated multilayer vertical
farm — two layers containing four levels of lettuce each and two layers containing
18 rows of tomato each — were calculated to be 5.81 €/kg for an annual yield of 8§10
tons for lettuce and 9.94 €/kg for an annual yield of 215 tons for tomato, making
profitability impossible (Zeidler et al. 2017). In Europe, several cases of bankruptcy
of vertical farms have been reported, confirming the difficulty for vertical farming to
be economically feasible (Sijmonsma 2019; VerticalFarmDaily.com 2021; Perreau
2022). Diversification by cultivating high-added-value plants, such as medicinal
plants, could be less challenging economically. The economic approach of vertical
farming of medicinal plants is discussed in Sect. 3.

Vertical farming is particularly suitable for producing medicinal plants. The
stability of the environment makes it possible to increase stable and predictable
yields and provide a stable quality with regular and high concentrations in phy-
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Fig. 5 Schematic overview of the current challenges of traditional farming and vertical farming.
Please note that many forms of greenhouses exist, from plastic tunnels to fully automated
greenhouses with complementary lighting devices

tochemicals, without soil contamination by microbes or pollutants (Goto 2012;
Zobayed 2020). However, high biomass is contradictory with high concentrations
in secondary metabolites, and a combination of these two criteria both important
to reach economic viability is difficult to reach. Biomass increases are obtained by
an ideal combination of abiotic factors — the most important variables are light, the
water status, and the CO; concentration — so that photosynthesis is promoted and the
production of primary metabolites such as starch and sucrose is promoted. Primary
metabolites (lipids, proteins, and carbohydrates) are critical for plant growth and
development. Plant growth is closely related to photosynthesis and respiration, and
more than 90% of the crop biomass is derived from photosynthesis (Yamori 2020).
Based on primary metabolites, plants metabolize various molecules with complex
structural compositions called secondary metabolites (Naik and Al-Khayri 2016;
Twaij and Hasan 2022). When plants encounter abiotic or biotic stresses, secondary
metabolites are synthesized to communicate and act as a defense mechanism (Naik
and Al-Khayri 2016; Dadhich et al. 2022). Plant secondary metabolites are usually
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* Ideal factors

* Plant growth is
promoted

long period

Fig. 6 Schematic overview of a two-step production principle allowing medicinal crop production
with a significant biomass yield and an increased content in phytomolecules. The plant illustrated
in the figure is Euphorbia peplus for its ingenol-mebutate content

classified in four major groups: (1) phenolics; (2) terpenes, saponins, and steroids;
(3) nitrogen-containing compounds (such as alkaloids); and (4) glycosides (Hussein
and El-Anssary 2018; Twaij and Hasan 2022). Following their specific presence
and concentration, they characterize the medicinal property of the plant and its
interest for the healthcare and pharmaceutic sector. However, the stress-induced
enhancement of secondary metabolites alters plant development and growth (Itoh
2018; Dadhich et al. 2022). The enhancement of biomass is antagonistic with the
enhancement of secondary metabolite production. Therefore, a dynamic two-step
production of medicinal compounds has been proposed (Itoh 2018; Zobayed 2020)
(Fig. 6).

2 Abiotic Factors Affecting the Quality of a Medicinal Crop

The environmental factors that play a role on plant photosynthesis and respiration
also have an impact on plant growth and the accumulation of crop biomass. Ensuring
the best environmental factors in a closed and controlled environment allows for a
stable, maximized yield of high-quality plants, while stressing them may reallocate
carbon to secondary metabolite production. Secondary metabolites are described
as nonessential molecules for plant growth and biomass accumulation but are
crucial for their interaction and adaptation to environmental fluctuations. Producing
secondary metabolites is costly for plants because it requires primary metabolites,
enzymes, cofactors, and energy. Secondary metabolites do not all have the same
cost: terpenoids require less photosynthetically-produced carbon than alkaloids
do (Gulmon and Mooney 1986; Cipollini et al. 2017). Plants’ environments are
usually classified in three main categories: (1) adverse biotic factors, such as fungi,
bacteria, viruses, herbivores, and competing plants; (2) favorable biotic factors,
such as symbiotic microorganisms, pollinators, seed dispersers, and plant-to-plant
communication; and (3) abiotic factors, such as light, water availability, minerals
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availability, soil fertilization, temperature, and, in closed environment, the CO; level
(Yang et al. 2018). There is a general consensus that abiotic factors can significantly
affect the accumulation of secondary metabolites and in turn the medicinal value
of the plant. Therefore, it is crucial to correctly manage those factors during the
production process.

2.1 Light

Light affects plants in two ways — as an energy source and as an information medium
(Dou and Niu 2020). The energy of light is transmitted by the photons, and about
10% of sunlight are converted into chemical energy — carbohydrates — through
photosynthesis, while the remaining 90% are converted into heat energy (Dou and
Niu 2020). The absorption of light for photosynthesis is initiated by photosynthetic
pigments — chlorophylls and carotenoids; chlorophylls strongly absorb red and blue
light, and carotenoids strongly absorb blue light (Yamori 2020). Chloroplasts and
whole leaves absorb most of the light, including green light (Yamori 2020). Plant
photoreceptors measure the light composition variations and trigger plant responses
independently from photosynthesis, as in photoperiodism and photomorphogenesis,
and regulate the expression of genes associated with cell division and enlargement
(Dou and Niu 2020). Five classes of photoreceptors have been described. They allow
plants to perceive a broad spectrum of light from ultraviolet to far-red wavelengths
and to regulate multiple physiological and metabolomic responses (Fig. 8).

2.1.1 Effect of the Quantity of Light

In controlled environments, artificial light is usually constant without the sea-
sonal variation in intensity, duration, and spectrum of natural sunlight to which
plant growth is subjected under natural conditions. The daily light integral (DLI)
describes the total amount of photosynthetically active photons that are delivered to
a specific area over a 24-hour period; it usually has a linear relationship with crop
yield in controlled environments (Dou et al. 2018). The effects of three DLI levels of
8.64,14.4, and 28.8 mol m—2 d~! under a 16-h photoperiod were tested on the shoot
biomass and the accumulation of a diterpene — ingenol-mebutate — by the medicinal
plant Euphorbia peplus (Bafort et al. 2022). Increasing DLIs had a positive effect
on yield, with shoot fresh biomass rises of 111% and 212% compared to the values
obtained with a DLI of 8.64 mol m~2 d~! (Fig. 7). The same trend was observed
for shoot dry biomass. The calculated positive correlation was relatively low. It was
attributed to the low homogeneity of the yield, which varied dramatically with the
position of the plant in the vertical container, especially under the lowest DLI. In
the same study, the content in ingenol-mebutate of E. peplus was not modified with
the DLI level.
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Fig. 7 Correlations and p-values between the shoot fresh biomass (a), the shoot dried biomass (b),
and the daily light integral (DLI) of Euphorbia peplus grown at different DLI levels (8.64, 14.4,
and 28.8 mol m~2 d~!) in a vertical container farm for 47 days. (Bafort et al. 2022)

In a completely closed and controlled environment, the DLI is modulated in two
ways: (1) by adjusting the light intensity and (2) by adjusting the photoperiod.

Several studies have addressed the role of the DLI on yields and secondary
metabolite contents by acting on the light intensity (photosynthetic photon flux
density; PPFD) or on the photoperiod, or on both (Table 3). Basil (Ocimum
basilicum L.) and lettuce (Lactuca sativa) are ideal crops for vertical farming,
because they are well adapted to closed controlled and soilless environments, have
short cultivation cycles and a limited height. Therefore, they have been extensively
studied to determine the effect of environmental factors. The plant biomass is
generally proportional to the DLI within a certain range (Dou and Niu 2020; Xu
et al. 2021). Increasing the DLI increased the shoot fresh biomass yield of O.
basilicum L., because of a higher photosynthetic rate and a linear accumulation
of anthocyanins, phenols, and flavonoids per plant (Dou et al. 2018). However, the
positive biomass correlation of basil with the DLI was also found cultivar dependent.
For example, the Ararat variety had the largest weight at a DLI of 6.34, while the
Yerevan sapphire variety reached its best yield at a DLI of 9.79 (Kondrat’Ev et al.
2021). A fixed DLI of 12.9 did not cause the yield of basil to vary, whatever the
photoperiod-PPFD combination (Dou and Niu 2020). Red perilla shoot dry weight
increased with the DLI but not in a linear manner, because light utilization efficiency
decreased with increased PPFD (Yoshida et al. 2022). Anthocyanins accumulated
per dry weight unit with higher DLI, but the essential oil perillaldehyde did not
(Yoshida et al. 2022).

The effect of an extended photoperiod has been studied. Compared to DLIs of
5.8, 8.6, and 11.6, basil and lettuce growth were improved under a DLI of 14.4 corre-
sponding to a PPFD of 250 umol m~2 s~! under a 16 h photoperiod, and so were the
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Table 3 Effect of the light quantity on plant growth and on secondary metabolite accumulation

Plant species

Ocimum
basilicum L.

Ocimum
basilicum L.

Ocimum
basilicum L.

Ocimum
basilicum L.
Lactuca sativa
L

Lactuca sativa
L.

Daily light
integral
(molm~2d~1)
4.61 (80 PPFD;
16 h)

6.34 (110
PPFD; 16 h)
8.06 (140
PPFD; 16 h)
9.79 (170
PPFD; 16 h)
9.3 (160 PPFD;
16 h)

11.5 (200
PPFD; 16 h)
12.9 (224
PPFD; 16 h)
16.5 (290
PPFD; 16 h)
17.8 (310
PPFD; 16 h)
12.9 ((298
PPFD; 12 h)
12.9 (256
PPFD; 14 h)
12.9 (224
PPFD; 16 h)
12.9 (199
PPFD; 14 h)
12.9 (179
PPFD; 20 h)

5.8 (100 PPFD;
16 h)

8.6 (150 PPFD;
16 h)

11.5 (200
PPFD; 16 h)
14.4 (250
PPFD; 16 h)
17.3 (300
PPFD; 16 h)
8.64 (150
PPFD;16 h)
8.64 (200
PPFD; 12 h)
9.04 (2x3h at
100 PPFD and
6 h at 300
PPFD)

Effect on plant
growth

Highest yield with

DLI = 6.34, 8.06 and

9.79, depending on
the basil cultivar

Higher DLIs
increased yield, but
no significant
differences in yield
between DLIs of
12.9,16.5 and 17.8

No yield differences
between photoperiod
and PPFD variation
with a fixed DLI of
12.9

Highest yield with
DLI = 14.4

Better yield obtained
with longer
photoperiod and
multi-segment light
intensity

Effect on secondary
metabolite content

Not studied

Higher DLIs
increased the total
anthocyanin,
phenolic and
flavonoid contents
per plant

Not studied

Higher antioxidant
capacity, phenolics
and flavonoids in L.
sativa at

DLI = 14.4

Not studied

Reference

Kondrat’Ev
et al.
(2021)

Dou et al.
(2018)

Dou and
Niu (2020)

Pennisi et
al. (2020)

Mao et al.
(2019)

(continued)
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Table 3 (continued)

Plant species

Perilla
frutescens L.

Catharanthus
roseus (L.)

Ophiorrhiza
pumila

Tropaeolum
majus L.

Stevia
rebaudiana

Daily light
integral
(molm~2d-1)
2.88 (50 PPFD;
16 h)

5.76 (100
PPFD; 16 h)
11.52 (200
PPFD; 16 h)
23.04 (400
PPFD; 16 h)
4.32 (75 PPFD;
16 h)

8.64 (150
PPFD; 16 h)
17.28 (300
PPFD; 16 h)
34.56 (600
PPFD; 16 h)

2.16 (50 PPFD;
12 h)

2.9 (100 PPFD;
8h)

4.32 (100
PPFD; 12 h)
5.8 (100 PPFD;
16 h)

6.48 (150
PPFD; 12 h)

17.3 (300
PPFD; 16 h)
17.3 (200
PPFD; 24 h)
25.9 (300
PPFD; 24 h)
34.6 (400
PPFD; 24 h)

7.2 (249 PPFD;
8h)

7.2 (165 PPFD;
12 h)

7.2 (125 PPFD;
16 h)

7.2 (125 PPFD;
16 h
intermittent)

Effect on plant
growth

Increased yield with
increased DLI

Best fresh total leaf
weight obtained with

DLI = 17.28
Best yield with
DLI=5.8

Linear increase in
total biomass with
DLI.

At same DLI (17.3),
better shoot yield
with increased
photoperiod.

Highest yield with
constant longer
photoperiod

Effect on secondary
metabolite content

Perillaldehyde
content per unit of
dry weight similar
whatever the DLI.
Anthocyanin
content per unit of
dry weight
increased with DLI
Highest vindoline
and catharanthine
contents with

DLI = 8.64

Highest
camptothecin
content with
DLI=5.8

Antioxidant
capacity and total
phenolic content
increased with
increased DLI

Highest yield of
stevioside and
rebaudioside A per
plant under 16 h
photoperiod but
higher rebaudioside
A concentration
under 8 h
photoperiod

145

Reference

Yoshida et
al. (2022)

Fukuyama
etal.
(2015)

Lee et al.
(2020)

Xu et al.
(2021)

Rengasamy
etal.
(2022)

(continued)
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Table 3 (continued)

Daily light
integral Effect on plant Effect on secondary
Plant species (molm~2d-1) growth metabolite content Reference
Nasturtium 11.52 (266 Highest yield under Highest total Lam et al.
officinale L PPFD; 12 h) 20 h photoperiod glucosinolate (2021)
11.52 (200 content per plant
PPFD; 16 h) shoot under 20 h
11.52 (160 photoperiod
PPFD; 20 h)
11.52 (133
PPFD; 24 h)
Amaranthus 14 (250.8 Highest yield under High DLI with Lanoue et
tricolor, PPFD; 16 h) DLI = 21 with constant lighting al. (2022)
Brassica 14 (166.6 constant lighting and high DLI
oleracea var. PPFD; 24 h) Increased A.
viridis, 21 (376.9 tricolor and B.
Ocimum PPFD; 16 h) oleracea var. viridis
basilicum 21 (247.6 phenolic,
PPFD; 24 h) anthocyanin and
antioxidant
contents.
Unaffected
secondary
metabolite
concentrations in
basil

water, energy, and light use efficiencies (Pennisi et al. 2020). Secondary metabolites
also accumulated in lettuce at a DLI of 14.4 (Pennisi et al. 2020). An extended pho-
toperiod (16 h) under a low light intensity (PPFD = 100 pmol m2s71) promoted
chlorophyll accumulation and improved the root/shoot ratio, helping lettuce to
absorb enough light energy and improve its growth under low light conditions (Mao
et al. 2019). Lettuce increased its photosynthetic capacity significantly under multi-
segment lighting, which simulated circadian rhythms and resulted in an increased
yield (Mao et al. 2019).

Shade plants such as Ophiorrhiza pumila have a low saturation point and
showed better biomass yield and camptothecin accumulation under a low PPFD
(100 wmol m~2 s~!) and a long photoperiod (16 h) (Lee et al. 2020a, b). Mid-
shade plants such as Catharanthus roseus showed an increased yield up to a certain
level of DLI (17.28), but a higher DLI led to the inhibition of growth (Fukuyama et
al. 2015). In the same plant, vindoline and catharanthine accumulation were greatest
under a lower DLI (8.64) (Fukuyama et al. 2015). An extended photoperiod strategy
can also be well adapted to tropical countries, where natural weather conditions and
the day-neutral photoperiod restrict field growth of some plants. For example, stevia
plant productivity and quality were enhanced under a long and constant photoperiod
(16 h) at a low light intensity (PPFD = 125 pumol m2s7h (Rengasamy et al. 2022).
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The effect of continuous lighting (24 h) has also been studied. Tropaeolum majus
L. showed a linear increase in dry weight with the DLI under continuous lighting
with DLIs ranging from 17.3 (PPFD = 200 pmol m~2 s~ to 34.6 mol m2
d~! (PPFD = 400 pmol m~2 s~!) (Xu et al. 2021). The increased yield resulted
in reversible photoinhibition during plant growth and in an adaptive process to
protect the photosynthetic apparatus from light stress (Xu et al. 2021). With a
fixed DLI of 17.3, secondary metabolite production was increased under continuous
lighting compared to a higher light intensity and a shorter photoperiod (Xu et al.
2021). Continuous lighting and a higher DLI — hence higher light intensities —
maintained the secondary metabolite content (Xu et al. 2021). The productivity
and quality of four microgreens were tested under two DLIs and constant lighting
or a long photoperiod (16 h) (Lanoue et al. 2022). For each fixed DLI, the yield
was better under constant lighting and maximized at the highest DLI (Lanoue et al.
2022). Interestingly, higher energy-use-efficiencies of lighting were observed under
constant light, and a reduced electricity cost per unit of fresh biomass was measured
(Lanoue et al. 2022). The nutritional quality of amaranth and collard greens was also
improved at high DLIs, without or with constant lighting, and unchanged in basil
(Lanoue et al. 2022). However, constant lighting and a low DLI — i.e., a low light
intensity — can impact plant growth negatively. Nasturtium officinale L. growth was
decreased under constant lighting and a low light intensity (133 wmol m~2 s~ 1)
because of reduced net photosynthesis and stomatal conductance (Lam et al.
2021). On the contrary, the total glucosinolate concentrations were highest in those
conditions, but the total glucosinolate content per shoot dry weight was reduced,
because of the markedly reduced biomass (Lam et al. 2021). Continuous lighting
can also induce negative effects on sensitive plants, e.g., leaf chlorosis, growth
inhibition, and leaf necrosis that may result from photo-oxidative damage (Xu
et al. 2021). The hypothesis is that continuous-lighting-tolerant plants have high
antioxidant contents that protect them (Xu et al. 2021). For example, continuous
lighting induced higher chlorogenic acid content in lettuce plants that could protect
them against high levels of reactive oxidative species generated by physiological
stresses (Shimomura et al. 2020). On the contrary, basil growth under continuous
lighting induced physiological stress, such as chlorosis, stunting, and leaf necrosis
(Sipos et al. 2021).

2.1.2 Effect of the Quality of Light: Spectral Quality and UV Radiation

Spectral Quality The quality of light is perceived by photoreceptors, whose
reaction to light quality is species-specific. Therefore, the effect of light quality
should be considered separately for each plant species (Dou and Niu 2020; Karimi
et al. 2022). Light quality influences plant growth and the synthesis of bioactive
compounds (Yang et al. 2018; Dou and Niu 2020).

In general, red (R) and blue (B) lights are the most commonly used spectra in
indoor cultivation, because they correspond to the absorption peaks of chlorophylls
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and to the main plant functions, as showed in Fig. 8 (Dou and Niu 2020; Appolloni
et al. 2022). Combined R&B lights are more efficient than monochromatic blue or
red lights for plant growth, which can induce physiological disorders in some plant
species (Dou and Niu 2020). Full-spectrum white light-emitting diodes (LEDs) have
recently been found efficient in indoor culture; they supply a full spectrum that
optimizes plant growth (Dou and Niu 2020). Green light is not fully absorbed by
chlorophyll and has long been considered less effective than red and blue lights
in promoting plant growth (Paradiso and Proietti 2022). Nowadays, it is admitted
that green light penetrates deeper into the plant canopy and may promote better
photosynthesis in the whole canopy (Paradiso and Proietti 2022). Inclusion of
green light in dichromatic red and blue LEDs impacted plant growth differently
depending on its proportion (Orlando et al., 2022a, b). A high proportion of green
light (25-44%) generated opposite responses to blue- or red-light-induced effects
and negatively affected sweet basil and microgreen quality (Kim et al. 2005; Zhang
and Folta 2012; Dou et al. 2019, 2020a, b). A low proportion of supplemental green
light — under 10% — to red and blue spectra did not affect the fresh or dried biomass
of several microgreens (Ying et al. 2020; Orlando et al. 2022a, b). However, 12—
24% green light addition to red and blue lights positively affected the biomass of
lettuce and kale and induced secondary metabolite accumulation in Crocus sativus
and lettuce plants (Kim et al. 2005; Bian et al. 2016; Meng et al. 2019; Orlando et
al. 2022a, b).

The effect of light spectra on the accumulation of phenol metabolites in medicinal
plants has been investigated. Combined blue (38%) + red (62%) lights and
combined blue (38%) + green (12%) + red (50%) lights have been tested on C.
sativus tepal biomass and bioactive metabolite accumulation and compared with
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those obtained under greenhouse cultivation (Orlando et al. 2022a, b). The inclusion
of green light increased the total flavonoid content and the biomass remained unaf-
fected as compared to the greenhouse production. Therefore, cultivation under LEDs
may positively valorize C. sativus by-products. Blue LEDs, red LEDs, combined
blue (70%) + red (30%) LEDs, and white LEDs have been tested on the growth and
the phenolic compound production of Dracocephalum forrestii shoots (Weremczuk-
JeZyna et al. 2021). The best biomass values, shoot propagation, and secondary
metabolite production were obtained under blue LEDs. The enhancement of the
antioxidant capacity was positively correlated with the maximum total polyphenolic
acid content. Blue, red, and white LEDs were tested on the roots, stems, and
leaves of Scutellaria baicalensis seedlings for 2 weeks (Yeo et al. 2021). The roots
treated with white LEDs showed increased concentrations of the flavonoids baicalin,
baicalein, and wogonin and reduced concentrations of carbohydrates, suggesting the
need for energy to enhance the biosynthesis of phenolic compounds. The effects of
monochromatic red, blue, and green LEDs, several dichromatic red (60-90%) and
blue (40-10%) LEDs, and several trichromatic red (50-90%), green (10%), and blue
(40-0%) LEDs were tested on the growth and bioactive compound biosynthesis
of Crepidiastrum denticulatum (Park et al. 2020a, b). The total phenolic content
was similar among all treatments, but the antioxidant capacity and dry weight per
shoot were increased under the trichromatic red (80%) + green (10%) + blue (10%)
LEDs. The addition of far-red light to dichromatic blue (20%) and red (80%) LEDs
was tested on the growth and phenolic content of C. denticulatum (Bae et al. 2017).
Growth was increased under supplemental far-red irradiation, while the phenolic
content per unit dry weight remained unaffected by the different light treatments.

Several light combinations have been tested on the accumulation of bioactive
terpenelterpenoid compounds produced by medicinal plants. Six light treatments —
monochromatic red and blue LEDs and dichromatic red (80-20%) and blue (20—
80%) LEDs — were tested on Hypericum perforatum (Karimi et al. 2022). The
plants under the monochromatic red light showed an increased accumulation of
foliage, higher flower and root fresh and dry weights, and an increased percentage
of hypericin, pseudohypericin, and hyperforin in their flowers per square meter.
Red light stimulated the expression of genes related to H. perforatum flowering.
Enhanced accumulation of artemisinin and artemisinic acid and other terpenoids
in Artemisia annua and increased fresh leaf weight were measured under white
and blue spectra (Sankhuan et al. 2022). Moreover, crude extracts under the same
light treatment showed improved antimalarial anti-Plasmodium falciparum activity
compared to crude extract under monochromatic red light treatment and greenhouse
cultivation. Red light treatment decreased the level of terpenoid production and
induced distinct phytochemical profiles.

The effect of the light spectrum on alkaloid accumulation has been studied in
medicinal plants. Several light spectra were applied on embryogenic Fritillaria
cirrhosa D. Don calluses for 3 months to measure their effect on growth and alkaloid
production (Chen et al. 2020). Monochromatic red, blue, and far-red, warm, and cold
white lights and various combinations of red, blue, green, and far-red treatments
induced differential development and growth of F. cirrhosa. The maximum fresh
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weight was obtained under monochromatic red light, and the highest contents in
peimisine, peiminine, and peimine were recorded under the monochromatic red
light and infrared light. Picea abies seedlings were exposed to white light with 12%
or 45% added blue light (Kivimdenpad et al. 2021). The spectra with the highest
blue light content decreased the alkaloid, terpene, and terpenoid concentrations in
needles, although the contents in total flavonoids and acetophenones were increased.
Growth and the carbohydrate and pigment contents were unaffected, suggesting
carbon reallocation from alkaloid and terpenoid synthesis to flavonoid synthesis as
a response to increased blue light.

UV Radiation UV radiation induced multiple responses ranging from slowed down
photosynthesis to increased DNA repair, defense mechanisms, and specialized
metabolite production (Vanhaelewyn et al. 2020). Reactive species (ROS) in
response to UV-B radiation cause DNA damage, affect the plant metabolism, and
generate defense mechanisms such as the production of ROS-scavenging enzymes
and antioxidant compounds (Park et al., 2020a, b). Specialized metabolites are
synthesized, thanks to the reallocation of carbon toward the production of phenolics
(e.g., flavones, flavonols, anthocyanins), alkaloids, carotenoids, and glucosinolates
(Vanhaelewyn et al. 2020). Supplemental UV-B radiation typically decreases
biomass; therefore, using this light stress needs fine-tuning to achieve both good
yield and enhanced bioactive metabolites (Dou and Niu 2020).

UV-B radiation has been tested on C. denticulatum growth and its biosynthesis
of total carotenoids, phenolics, and terpenes (Park et al. 2020a, b). High-energy
UV-B light reduced the chlorophyll content and several sesquiterpene contents and
increased the total carotenoid, phenolic, and hydroxycinnamic acid contents, while
it decreased C. denticulatum growth. Moderate energy levels of UV-B radiation (0.1
and 0.25 W m~2) increased the antioxidant capacity, the total hydroxycinnamic acid
content, and several sesquiterpenes without inhibiting growth and were considered
as a eustress (Park et al. 2020a, b). The effect UV-B light on the terpene content of
Panax ginseng C.A. Meyer has been tested (Choi et al. 2022). A low-energy dose
of 0.1 W m~2 for 1, 2, or 3 hours during the preharvest days did not modify the
total ginsenoside content. Several spectra — monochromatic blue and red and red
with high energy (5 W m~2) UV-A — were tested on the growth and the alkaloid
vinblastine content of C. roseus for 7 days (Fukuyama et al. 2017). The total leaf
dry weight was unaffected whatever the spectrum, while the vinblastine content
per dry weight unit was significantly increased after 3 days of UV-A treatment and
highest after 7 days of UV-A treatment. The effect of several UV-A energy levels
combined with red light revealed a positive correlation with the UV-A energy levels
on the leaf vinblastine content and a negative correlation on the leaf vindoline and
catharanthine contents (Fukuyama et al. 2017).
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2.1.3 Light Combined with Others Factors

The growth of a plant depends on many abiotic factors. The plant’s response may
differ when a single factor or several additional environmental factors are studied.
Therefore, checking the effects of multiple factors is an interesting approach. A
classic approach is the one-factor-at-a-time (OFAT) design, which makes only one
factor vary while the other variables are kept constant. Some limitations are that
the interactions between factors cannot be estimated, and the risk of obtaining
a false optimum is high when more than two factors are considered (Czitrom
1999). Another method is the design of experiments (DOE), for example, the
response surface methodology or the Box-Behnken experimental design, which
search for the factor level combination that gives the best answer (i.e., yield, content
in phytomolecules). In this case, multiple factors can be modified together, the
interactions among factors are estimated, and the response is optimized (Czitrom
1999).

Several studies have addressed the effect of multiple factors on plant growth and
phytomolecule production. Growth and bioactive metabolite production by red and
green Perilla were tested by making three levels of electrical conductivity (EC) and
three levels of PPFD vary (Lu et al. 2017). The concentration of perillaldehyde — a
terpene — was not affected by EC or light intensity in red perilla, but the content in
rosmarinic acid — a phenol — was highest under the highest light intensity and the
lowest EC and decreased significantly when EC was increased. The shoot dry weight
was promoted by higher light intensities under mid and high EC. In green perilla, the
shoot dry weight increased with PPFD and EC, the perillaldehyde and rosmarinic
acid concentrations decreased with increased EC, and rosmarinic acid was promoted
by higher PPFD. Yield, anthocyanins, and soluble sugars were measured in Brassica
rapa var. Chinensis under several light intensities and nitrogen concentrations (Hao
et al. 2020). The yield was enhanced by the combination of a moderate PPFD
and a moderate nitrogen concentration, but anthocyanins were optimized under
high PPFD and nitrogen, and soluble sugars were promoted by the lowest nitrogen
concentration. This shows how difficult it is to obtain a unique optimum for all
parameters taken together. The optimal light intensity, temperature, and nutrients for
H. perforatum L. accumulation of bioactive compounds were investigated (Kuo et
al. 2020). Hyperforin and rutin were significantly affected by the light intensity and
temperature, but the nutrient concentration had little effect. Melatonin seemed to be
unaffected by the environmental factors considered in the study. The leaf biomass
was enhanced with light intensity, temperature, and nutrients. Based on the response
surface methodology, the optimal conditions for the yield of each specific metabolite
were calculated.

2.1.4 Toward Sustainability of the Use of the Light Resource

The need for more sustainable agriculture is important in indoor cultivation systems
where energy consumption is one of the major drawbacks. Artificial lighting
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represents a major share of the energy requirements. The energy and light use
efficiencies are two ways of measuring the energy costs of crop production in indoor
systems. Energy use efficiency (EUE) is expressed in grams of biomass produced
per kWh, and light use efficiency (LUE) is expressed in grams of biomass produced
by light integral. Both units are useful to find the optimal response of plant growth to
light intensity, and using them can show if higher light intensity — and higher energy
requirements — can bring enough yield gain to be expressed as increased light and
energy use efficiencies. The technological evolution of artificial lights has already
improved the EUE of lettuce cultivated under LED light (EUE = 40.6 g kWh™!)
compared with lettuce cultivated under fluorescent lamps (EUE = 15.9 g kWh™!)
(Zhang et al. 2018). With further technological developments and societal demand,
next-generation LEDs will improve energy supply and will allow for improved
sustainability. Moreover, the use of the right spectral composition can improve EUE,
as showed for indoor lettuce and basil cultivation (Pennisi et al. 2019a, b).

2.2 Nutrient Solutions

Nutrient solutions in soilless crop cultivation have to bring all the nutrients
necessary for plant growth. Nutrients are described as essential macroelements
and microelements, i.e., nutrients that cannot be replaced by another element,
whose absence induces deficiency symptoms. They are directly involved in the
plant metabolism (Tsukagoshi and Shinohara 2020). The nine macroelements are
used in relatively large amounts, and the eight microelements are required in small
amounts. Three macro-nutrients — carbon, oxygen, and hydrogen — are supplied
from atmospheric carbon dioxide and water and are not included in fertilizers.
However, enough dissolved oxygen has to be present in water for root respiration,
generally brought by air pumps or agitation of the nutrient solution. The remaining
macro-nutrients are nitrogen, phosphorous, potassium, calcium, magnesium, and
sulfur. Micronutrients are iron, boron, manganese, copper, zinc, molybdenum,
chlorine, and nickel. The main functions of each element are well-known and
summarized in Fig. 9 (Tsukagoshi and Shinohara 2020).

Typical formulas have been developed and commercialized for soilless applica-
tion and exist in a ready-to-use form. However, nutrient compositions should be
ideally tested according to the plant type, its growth stage, the substrate type, and
the targeted quality (Tsukagoshi and Shinohara 2020). Several ways of studying
the effect of nutrition on plant growth and secondary metabolite accumulation are
available. We selected four methodologies among them.

1. Tailor-made nutrient recipes have been developed and tested. Nitrogen, potas-
sium, and phosphorous supplies were modulated on two medicinal plants —
Lavandula angustifolia and Mentha spicata — to assess the yield and quality of
essential oils (Chrysargyris and Tzortzakis 2021). Lower camphor and higher
carvone contents were measured in L. angustifolia under nitrogen levels above
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Fig. 9 Schematic representation of an indoor soilless plant and the macro- and microelements to
be added to water to form a nutrient solution. The main functions of the nutrients are indicated
(Tsukagoshi and Shinohara 2020). The macronutrients carbon, hydrogen, and oxygen are supplied
by atmospheric carbon dioxide and water

200 mg L™!, both indicating increased oil quality. The carvone and limonene
contents of M. spicata were more sensitive to the nitrogen and potassium contents
than to the phosphorous content. A home-made nutrient solution was tested on
the growth, antioxidant level, and chicoric acid contents of C. denticulatum (Park
et al. 2016). Increased EC increased C. denticulatum biomass, total phenolic
content, chicoric acid content, and antioxidant capacity.

2. Testing several concentrations of typical formulas (e.g., Hoagland, Otsuka
composition, commercial fertilizers) by making EC or application rates vary.
Several concentrations of a ready-to-use fertilizer solution were tested on
the growth and alkaloid content of Mitragyna speciosa (Zhang et al. 2020).
Growth was promoted by increasing amounts of fertilizer, while the alkaloid
concentrations were highly variable. Lower and medium fertilizer rates promoted
the accumulation of several alkaloids, suggesting that nitrogen was reallocated to
secondary metabolite synthesis. The yield, total phenolic content, and antioxidant
capacity of O. basilicum L. were measured under several EC levels (Ren et al.
2022). Biomass was increased by medium to high EC, while the total phenolic
content and antioxidant capacity were increased at low EC. Two-step cultivation
was successfully applied, consisting in a first, long step under medium-high
EC that promoted a good yield of sweet basil, followed by a second, short
step just before harvest, when water (no fertilizer) or a low EC promoted total
phenolic accumulation and the antioxidant capacity. The effects of the nutrient
formula concentration and root temperature were tested on Ophiorrhiza pumila
growth and camptothecin accumulation (Lee et al. 2020a, b). Growth and the
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camptothecin content were best at a mid-high nutrient solution concentration.
Several root temperatures were applied at the best nutrient concentration, among
which 20 °C gave the optimum in yield and camptothecin content.

3. Applying NaCl stress. Salinity and nutritional stresses have been largely
described to modulate the biosynthesis of secondary metabolites. The impact
of salinity and the ammonium-to-total-nitrogen ratio were tested in closed
hydroponic cultivation of Solanum lycopersicum (Tzortzakis et al. 2022).
Salinity decreased plant growth and fruit yield but enhanced fruit quality, and
increased lycopene, B-carotene, and vitamin C at harvesting or during storage.
An appropriate ammonium-to-total-nitrogen ratio was suggested to reduce the
negative effects of NaCl on the nutritional status of plants by regulating the
pH in hydroponic systems. Several NaCl concentrations — 1.7, 25, 50, and
100 mM - were applied on Reichardia picroides (L.) Roth in hydroponic
cultivation (Maggini et al. 2021). After 6 weeks, salinity above 1.7 mM induced a
decreased yield but accumulation of anthocyanins, flavonol glycosides, and total
phenols and improved the antioxidant capacity. The effects of increasing NaCl
concentrations (1-40 mM) were tested in hydroponic and aquaponic cultivation
systems of the drug-type Cannabis sativa L. during the flowering period (Yep
et al. 2020). The cannabinoid contents decreased linearly with increasing NaCl
concentrations in both systems. Decreased yields in hydroponic systems have
been observed from NaCl concentrations above 5 mM. Forty mM was phytotoxic
in hydroponics, but not in aquaponics, suggesting a potential NaCl tolerance
induced by aquaponics. The impacts of salinity, calcium chloride — that may
alleviate salt stress — and successive harvests were tested on two O. basilicum L.
cultivars (Ciriello et al. 2022). Moderate salinity in the presence or absence of
calcium chloride and high salinity in the presence of calcium chloride showed
improved nutritional quality with improved phenol concentrations and reduced
nitrate levels without affecting the eucalyptol content. In the green cultivar, the
yield decreased with increased salinity. Successive harvests increased the phenol
and vitamin C concentrations but reduced the eucalyptol content. The impact of
nutrient deficiency and salinity was tested on the soilless greenhouse cultivation
of the halophyte Crithmum maritimum (Castillo et al. 2022). Increasing salinity
induced reduced foliar accumulation of several terpenes and total lipids, while
nutrient deficiency increased the concentrations of some polyphenols. Salt
stresses were applied in soilless greenhouse cultivation of Schizonepeta tenuifolia
Briq. (Zhou et al. 2018). Salt treatments positively modulated the density of total
glandular trichomes on both leaf sides, while their relative contents in pulegone,
other monoterpenes, and sesquiterpene decreased significantly. On the other
hand, ketones, alkanes, and esters increased significantly in glandular trichomes
with increasing salt stress.

4. Adding a plant-growth-promoting rhizobacterium or a natural bioactive com-
pound. The impact of mineral nutrient supply (S or N) and rhizobacterium
inoculation on two O. basilicum L. cultivars was investigated (Kolega et al.
2020). Fortified nutrient solutions positively impacted the fresh biomass of both
cultivars, while inoculation with Azospirillum brasilense did not promote growth.
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Metabolomics analyses revealed that rhizobacterium inoculation modulated the
accumulation of more than 400 secondary metabolites, e.g., terpenoids, phenols,
alkaloids, and phenylpropanoids. The primary metabolism was also influenced,
with changes in the metabolism of fatty acids, carbohydrates, and amino
acids. However, the observed responses were rather cultivar-dependent than
following a generalized modification of the phytochemical profile. The effects
of natural bioactive products (NBP) — two from fermented plant extracts and
microorganisms; microorganisms; bioactive substances extracted from Ecklonia
maxima — on the growth and ginsenoside content of vertically and aeroponically
cultivated P. ginseng were tested (Kim et al. 2012). The effects on the root and
leaf ginsenoside content were treatment- and location- (upper or lower layer)
dependent. A biostimulant made of a plant-derived protein hydrolysate and saline
conditions were tested on soilless greenhouse production of L. sativa L. (Lucini
et al. 2015). Salt stress decreased the shoot and root dry biomass of lettuce,
but application of a biostimulant under salt stress increased fresh yield, dry
biomass, improved the plant nitrogen metabolism, and delayed photoinhibition
as compared to plants under salinity stress. Root and leaf application of the
biostimulant under salt stress induced changes in sterol and terpene composition.

Sustainable Nutrients in Vertical Farming

Mineral fertilizers are mainly used in hydroponics nutrient solutions. However,
exploiting these resources contributes to land degradation, water contamination,
excessive energy consumption, and air pollution (Szekely and Jijakli 2022). In
a perspective of sustainability and to meet the challenges of agriculture and
climate change worldwide, alternatives should be developed. The organic form
of hydroponics (called bioponics) recycles organic waste into a nutrient solution.
Several studies have showed positive effects on plant disease mitigation and crop
quality, notably with higher health-promoting compounds and/or lower nitrate levels
in leafy vegetables (Szekely and Jijakli 2022).

2.3 Temperature

Temperature stress induces many changes in the physiological, biochemical, and
metabolic processes and alters the production of bioactive compounds (Fig. 10).
Crops with cold or heat tolerance mechanisms better cope with temperature stress
(Hasanuzzaman et al. 2013). At low chilling temperature, enzymatic activities are
slowed down. In leaves, the balance between light harvesting by photosystem II
(PSII) and light utilization through metabolic enzymatic activity is disrupted, lead-
ing to photoinhibition and decreased photosynthetic activity (Miura and Furumoto
2013). The reduced activities of antioxidant enzymes result in the accumulation of
reactive oxygen species (ROS) (Hasanuzzaman et al. 2013). Adaptive mechanisms
have been described, such as promotion of the cyclic electron flow, regulation of
energy distribution, antioxidant activity inititation, and accumulation of osmotic
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Fig. 10 Representation of the main physiological modifications induced by cold or heat stress in
a hydroponically cultivated plant

regulators (soluble sugars and soluble proteins such like proline and betaine) (Li
et al. 2022). Under heat stress, the efficiency of photosynthesis declines, because
PSII activity, Rubisco activity, the photosynthetic pigment content, and the carbon
fixation capacity are reduced (Zhao et al. 2020). Other physiological changes
occur like altered cell membrane thermostability or oxidative damage (Zhao et al.
2020). Plants accumulate antioxidants (proline, glutathione, ascorbate, carotenoids),
and the activity of antioxidant enzymes is increased (Hasanuzzaman et al. 2013).
Another adaptive response may be a reduced chlorophyll content, as this decreases
the energy absorption linked to chlorophyll energy absorption and lowers leaf
heating (Mesa et al. 2022).

The response of Paspalum wettsteinii under heat stress treatments has been
investigated (Zhao et al. 2022). A metabolic analysis revealed that biosynthesis
of flavonoids and anthocyanins was both up- and downregulated under heat stress.
Heat and cold stresses were applied on S. lycopersicum L. (Mesa et al. 2022). Heat
stress decreased plant productivity and increased tocochromanols in the leaves and
ascorbic acid in the fruit. The effect of short low/high temperature treatments on
the root zone of Coriandrum sativum L. have been studied (Nguyen et al. 2020).
Short temperature treatments reduced fresh biomass, while carotenoids, phenolics,
chlorogenic acid, ascorbic acid, and the antioxidant capacity of the plants were
enhanced under the extreme temperature treatments (15 °C or 35 °C) for 6 days.

Terpene emission is generally controlled by temperature (Staudt and Bertin
1998; Tarvainen et al. 2005; Ibrahim et al. 2010; Yang et al. 2018). Augmenting
night temperature increased the terpene content of Betula pendula and Populus
tremula (Ibrahim et al. 2010). The influence of antagonistic successive stresses —
cold (4 °C, 30 min)/heat (from 25 °C to 60 °C within 5 min) and heat (from
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25 °C to 60 °C within 5 min)/cold (4 °C, 30 min) — on O. basilicum L. and Salvia
officinalis L. was tested (Copolovici et al. 2022). Terpene emissions were enhanced
in plants under successive stresses as compared to the control plants, while the
phenolic and flavonoid contents remained unaffected. The impact of temperature
stress on H. perforatum was investigated (Zobayed et al. 2005). The shoot contents
in hypericin, pseudohypericin, and hyperforin increased with high temperature
(35 °C). The effects of temperature on the growth and terpene production of
Platycodon grandiflorum A. DC in soil and soilless culture systems were measured
(Nguyen et al. 2022). Fresh weight was highest under soilless cultivation conditions
at 20 °C, and the shoot contents in platycodin D3, polygalcin D, and total saponin
were optimized at 20 °C and 25 °C.

The increase in metabolite production should be calculated along with CO;
emissions if temperature is increased or decreased in order to improve sustainability
and lower environmental costs.

2.4 CO; Level

Increased levels of CO; induced increased photosynthesis, mainly due to increased
Rubisco activity, which is not saturated at current atmospheric CO, concentrations.
Increased photosynthesis results in better growth and yield. The photosynthetic
rate, the transpiration rate, stomatal conductance, and the leaf, stem, and root
carbon contents of Withania somnifera (a medicinal plant native to India) increased
significantly in elevated CO; conditions, and dry weight increased too (Sharma et al.
2018). Elevated CO, levels improve water use efficiency and mitigate the negative
effects of drought stress (Li et al. 2018). Cucumber seedlings under drought stress
conditions and increased CO, levels had a higher leaf water content, regulated the
cell osmotic pressure by accumulating carbohydrates, and accumulated secondary
metabolites (Li et al. 2018). Several studies were conducted under CO, enrichment
to increase the medicinal properties of Labisia pumila, a medicinal plant found
in the Indochinese Peninsula. The total phenolic and flavonoid contents increased
under high CO», together with a reduced chlorophyll content (Ibrahim and Jaafar
2011a). The enhanced secondary metabolite content could be due to reallocation of
phenylalanine from protein synthesis to secondary metabolite production (Ibrahim
and Jaafar 2011b). Under 1200 pwmol mol~! of CO, enrichment, increased nitrogen
fertilization reduced the total phenolic and flavonoid contents (Ibrahim and Jaafar
2011b, 2017).

Combined light intensities and CO, levels have been investigated. The cumu-
lated values of secondary metabolites and antioxidant activity were observed at
the lowest light intensity (PPFD = 225 wmol m~2 s~!) and the highest CO,
level (1200 pmol mol~!) (Ibrahim et al. 2014). The cytotoxicity of L. pumila
variety alata leaf extract toward cancer cells was strongest under elevated CO;
(1200 wmol mol~") and low light intensity (PPFD = 300 pumol m~2 s~ 1), and the
concentrations of different phenolics and flavonoids, the total phenolic, flavonoid,
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and saponin contents were highest (Karimi et al. 2016). Some medicinal plants
showed a positive correlation of their secondary metabolite content with light
intensity and the CO» concentration. For example, H. perforatum L. (a herb native
to Europe and West Asia) showed increased hypericin and pseudohypericin contents
under a high CO; level and increased light intensity (Mosaleeyanon et al. 2005).

The combination of temperature and CO; concentrations has been investigated.
Gynostemma pentaphyllum (a herbal drug that grows in Asian countries) showed
increased biomass but a reduced total antioxidant capacity and reduced levels
of antioxidant compounds when cultivated under elevated CO; and increased
temperature (Chang et al. 2016).

The impact of CO, enrichment seems to be species- as well as growth-stage-
specific. If CO; is increased, one should check that it is well absorbed by the plants
and that all the other conditions are optimal for the growth of the plant.

3 Economic Approach of Vertical Farming of Medicinal
Plants

Vertical farms are shortly defined as multilayer soilless crop production systems
including various ways of producing vegetables. “Vertical” refers to layers that
can be vertically or horizontally mounted and to crop production systems that
can be installed in closed or semi-closed structures. Semi-closed systems are
typically greenhouses with sunlight that can be supplemented with artificial light.
Indoor vertical farms are closed systems defined as plant factories using artificial
lighting (PFALs), e.g., a container or a closed building. PFALs are controlled
systems and are ideal for producing medicinal plants because the system ensures
stable high standards, constant quality, and constant quantity. However, PFALs use
intensive technology and are expensive because of expensive facilities and high
energy and labor costs. As discussed previously, vertical farming of leafy greens
is economically tricky in Europe, mainly due to high investment, energy, and labor
costs combined with low market prices for such commodities. Economic studies on
vertical farm construction, operation, and viability are lacking (Baumont de Oliveira
et al. 2022). Most economic feasibility studies are based on hypothetical case studies
and horticultural crop predictions, and none of them deals with medicinal plants.
Cultivating high-added-value plants is assumed to be less economically challenging.
However, no studies have been carried out on the whole process of making medic-
inal plant, from the indoor growing to the final product. The complete production
scheme of medicinal plants depends on the form and application of the final product
(Figs. 11 and 12). A medicinal plant product can be under various forms depending
on its use, e.g., infusion, decoction, paste, poultice, multi-metabolites extract, or
powder. The end-user’s choice involves a more or less complex production pattern.
The cultivation process has to target the yield and the metabolite content through
a fine-tuning of abiotic factors. If the final product is used fresh, the postharvest
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treatments and cost will be limited, but shelf-life could also be limited. For a powder
formulation, a grinding and drying device will be necessary and can be acquired at
a limited cost. In the case of plant extracts, more equipment is necessary, from an
extraction device to a purification equipment, depending on the extract type and
purity. After extraction and/or purification, a new treatment (drying, freeze-drying
or dielectric drying) is often necessary to obtain a stable extract. Each supplementary
step adds cost and makes the economic balance more difficult to achieve. This
chapter analyzes the different steps of the production of a herbal medicine, from
vertical indoor cultivation to extraction, including the pharmaceutical process. It is
based on a case study on the agro-economic feasibility of cultivating a medicinal
plant — E. peplus — in a vertical container farm and extracting ingenol-mebutate.
The cultivation and extraction costs were based on experimental results, while
the development, gel production, and flat fees costs were hypotheses based on
the literature and consultation (Bafort et al. 2022). The economic feasibility of
producing an ingenol-mebutate-based pharmaceutical product was calculated with
Picato® gel, a prescription medicine containing ingenol-mebutate and used to treat
skin actinic keratosis. Data on another medicinal plant — Artemisia annua — is also
discussed (Bafort et al. 2023). The cost price is an economic term that refers to
all the costs supported by a company to produce goods or a service. The sum
has to include direct costs and indirect costs. Indirect costs are expenses that
are not directly linked to the production of the product or service (advertising,
rental of premises, salaries, etc.). Different calculation approaches exist, based
on variable cost prices, direct cost prices, coefficient methods, and activity-based
costing (Niessen and Chanteux 2005). Therefore, a company that offers different
products and services has to choose the right analysis in order to understand how
much a service or a product costs. In the paper, all the costs are related directly
to production. The case-study is useful to forecast an economical evaluation of
(i) cultivation and extraction process and (ii) pharmaceutical drug production. The
forecast calculation for the pharmaceutical market is based on assumptions and
general costs. The objective is to verify the economic viability of this type of model.

3.1 Cultivation Cost

Cultivation characteristics, such as the plant species, plant biomass, culture length,
plant density, surface area, and specific environmental factors, have a direct
influence on production costs. Several factors have been tested recently, such as
the surface area, the cultivation cycle length, and the light intensity (Bafort et al.
2022). The production cost is strongly related to the productivity of the cultivation
system, which can be described in different ways. Annual biomass — fresh or dried —
is one of them and can also be described partly by the mean fresh or dried biomass
per plant. The productivity of a cultivation system varies according to the following
factors:
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Fig. 13 Influence of plant density, surface area, and the length of the cultivation cycle on the
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The cultivation cycle. For a fixed biomass per plant, Fig. 13 shows how the
annual biomass output depends on the cultivation cycle. If the cycle is short,
more cycles can be achieved per year and productivity is increased. The
cycle can be shortened by modifying abiotic factors. For example, reducing
vegetative growth of hemp (C. sativa) by modifying the photoperiod shortens
the cultivation cycle. Working with cuttings or in-vitro propagated plants
instead of seeds can also make the cycle shorter. Container farming of the
medicinal plant E. peplus, which has a cycle of 48.5 days, allows 7.2 cycles
per year, taking the time needed for harvesting and cleaning into account, and
gives an output of 1106 kg per year. Cultivating Romaine lettuce — a crop with
a shorter culture cycle (30 days) — increased the number of cycles per year and
increased annual biomass to 1745 kg.

The surface area. Small cultivation surface units decrease productivity. Figure
1 shows that for a same crop and under identical environmental conditions,
doubling the cultivating area enhanced annual productivity by 88.5%, from
1745 kg to 3285 kg.

The plant density. The plant density is a way of increasing the productivity
of a crop system. It can be improved by a specific design/improvement of
the production area. For example, cultivation on vertically stacked layers can
improve the plant density for some species, especially small plant. It will also
need light to be placed not only above the cultivation tray but also surrounding
the crop production layer. A greater plant density of lettuce from 30 to 40 plants
per m? resulted in a 29.5% increase to reach 4255 kg of lettuce per year (Fig.
13).

The biomass per plant. Higher biomass results in higher annual productivity
and higher output of the medicinal product (dried leaves, infusion bags,
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Fig. 14 Fresh shoot biomass per plant, annual output, CapEx, OpEx (subdivided in staff cost,
energy cost, and other costs), total cost (CapEx + OpEx), and cost price of Euphorbia peplus
cultivation in a vertical container farm following several scenarios. The dotted box includes CapEx
and OpEx, the sum of which corresponds to the production cost price; the relative percentage of
each cost in the cost price is indicated above each bar. Scenario (i), cultivation under a PPFD
of 150 pwmol~2 s~! with a surface area of 30 m?; scenario (ii), cultivation under a PPED of
150 pwmol~2 s~! with a surface area of 40 m?; scenario (iii), cultivation under a PPED of
500 pmol~2 s~! with a surface area of 30 m2; and scenario (iv), cultivation under a PPFD of
500 pwmol~2 s~! with a surface area of 40 m2. (Bafort et al. 2022)

poultice, etc.). The biomass per plant can be optimized by cultivation under
optimized environmental factors (Fig. 14) or by breeding or selecting high-
biomass varieties.

If all three factors — cultivation cycle length, surface area, and plant density — are
upgraded from the initial crop system, the annual production could sharply rise by
284% as the yield could increase from 1106 to 4255 kg (Fig. 13).

Production costs are influenced by several parameters, among others the pro-
ductivity of the cultivation system. Costs are divided in two items: (1) capital
expenditures (CapEx), long-term investment (e.g., equipment, property, buildings),
and (2) operating expenditures (OpEx), daily expenses necessary to keep the
business operational (e.g., labor, energy, water consumption, nutrients, seeds).
Figure 14 represents the production cost of the medicinal weed E. peplus in a vertical
indoor hydroponic container and shows the relationship between productivity and
the production cost (Bafort et al. 2022). At a low light intensity, E. peplus growth
was not optimized, and the mean biomass per plant reached 33 g. This resulted
in a low annual productivity, and costs were distributed across a small volume
of production. When the mean biomass per plant and the surface area increased,
through modification of the cultivation process, productivity increased too. If the
induced costs (e.g., for structural modifications, more powerful LEDs) increased
moderately, the production cost per kg of plant decreased. Figure 14 shows that if
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the surface area is increased by 33% by placing an additional layer in the container
under the same light intensity (scenarios (i) and (ii)), CapEx and OpEx increase
by 14%. As productivity is increased by 31.2%, the production cost is cut by 23€
per kg. In scenario (iii), the environmental factors have been modified: an increased
light intensity results in a significant 209% rise of the mean biomass per plant as
compared with scenario (i). Although the total cost is higher due to increased energy
consumption and investment in upgraded LEDs, the total costs increase by only
9%, whereas annual production is increased by 212%, hence a 65% decrease of the
production cost. In this optimized plant environment, if the surface area dedicated
to production is increased by 10 m? (scenario iv), the production cost is reduced
by 68% as compared to scenario (i). This shows the importance of optimizing
the technical cultural itinerary to maximize productivity, as investment, labor, and
energy costs are important.

The production cost of the vertical farming of another medicinal plant —
Artemisia annua L. — in a modified shipping container has been calculated (Fig.
15) (Bafort et al. 2023). A. annua is an annual herb native to Asia. It has been used
in traditional Asian medicine for treating and preventing fever and chills for many
centuries and has been widely used for treating malaria (Kim et al. 2015). Again,
the production cost of 1 kg of A. annua is closely related to the productivity of
the horticultural process, and the production cost can be significantly reduced if the
optimization of productivity does not increase costs too much. Higher-intensity LED
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Fig. 15 Fresh shoot biomass per plant, CapEx, OpEx (subdivided in staff cost, energy cost, and
other costs), annual fresh shoot biomass output, total cost (CapEx + OpEXx), and cost price of
Artemisia annua cultivation in a vertical container farm following several scenarios. The dotted
box includes CapEx and OpEx, the sum of which corresponds to the production cost price; the
relative percentage of each cost in the cost price is indicated above each bar. Scenario (i), cultivation
under a PPED of 500 pmol~2 s~! with a CO, concentration of 950 pwmol=2 s~!; scenario (ii),
cultivation under a PPFD of 500 wmol~2 s~! with a CO, concentration of 1500 pwmol=2 s !;
scenario (iii), cultivation under a PPFD of 250 pmol~2 s~! with a CO, concentration of
950 umol‘2 s~1: and scenario (iv), cultivation under a PPFD of 500 umol_2 s~! with a CO,

concentration of 1500 pwmol =2 s~!
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Fig. 16 Evaluation of the costs of extracting a diterpene from Euphorbia peplus. Estimated costs
of various facilities (drying, grinding, extraction pilot, evaporation, and purification), CapEx per
year at a 10% occupation rate and on a 20-year depreciation basis, OpEx per year (labor cost,
electricity cost, and other costs), and total expenses per year (CapEx + OpEx). The dotted box
includes CapEx and OpEXx, the sum of which corresponds to the total cost (CapEx + OpEXx); the
relative percentage of each cost in the total cost is indicated above each bar. (Bafort et al. 2022)

lamps increased the total cost by 7%, but their use increased productivity by 56.4%
so that the production cost per kg decreased significantly. Under the same light
intensity (PPFD = 500 pmol 2 s~ 1), increasing the CO, concentration induced a
negative stress on A. annua and the mean fresh shoot biomass decreased, hence a
higher production cost per kg (Fig. 16).

The cultivation cost is a vital economic piece of data, and its calculation is a key
step for establishing the breakeven point of a product and a coherent selling price.
It does not include distribution, marketing, or storage costs. If the medicinal plant is
used fresh, such costs have to be added to calculate the cost price of the product and
evaluate profitability. If the plant has to be dried, the drying and grinding process, or
any necessary additional step (e.g., cleaning, cutting, sorting), have to be calculated
in the same manner as for the cultivation cost (OpEx and CapEx).

3.2 Extraction Cost

The cultivation of a medicinal plant is the first step of its production. Depending on
the final use of the plant (Fig. 11), the next steps after harvest can range from drying
to the manufacturing of a pharmaceutical specialty. The cost of terpene extraction
from the shoot biomass of a medicinal plant after vertical container cultivation has
been studied recently (Bafort et al. 2022). Cultivation of E. peplus in a container
farm resulted in a yearly output of 776 kg of fresh shoot biomass (Fig. 14). This
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output was divided into several batches of 103 kg each, representing a very low load
for industrial drying, grinding, extraction, evaporation, and purification devices,
which can handle much more biomass. To take the low level of occupation of the
devices into account, the occupation rate of the drying, extraction, and purification
devices was set to 10% with a depreciation rate of 20 years. Three extraction
methods were evaluated (ethyl acetate at 120 °C, ethyl acetate at room temperature,
and supercritical CO,), and their respective costs were calculated (Fig. 14). The
investment costs were similar for the drying, grinding, evaporation, and purification
facilities. However, the extraction method represented different investment costs
depending on the extraction technique. The cost was higher for supercritical CO;
extraction, and lower for ethyl acetate extraction at room temperature, which
induced the highest and lowest CapEx, respectively. The OpEx differed depending
on the extraction method. The method generating the highest operational cost was
the “ethyl acetate at 120 °C” method, followed by the “supercritical CO,” method,
and finally the “ethyl acetate at room temperature” method. The distribution of costs
differed between the extraction methods. With ethyl acetate at 120 °C, the largest
contributor to annual cost was the operating and maintenance cost of equipment
(“other costs” — 47%), followed by energy cost (31%) and labor cost (16%), while
CapEx only represented 6%. With supercritical CO,, the main costs were the “other
costs” (38%) together with electricity cost (36%), and with ethyl acetate at room
temperature, the major cost was “other costs” (72%), while electricity and labor
costs and CapEx were much lower (15-5%).

The production cost of a metabolite depends on the CapEx and OpEx of
the cultivation and extraction processes, but it is also strongly dependent on the
extraction yield (Fig. 17). Although extraction by ethyl acetate at 120 °C generated
the highest OpEx and CapEXx, it also gave a significantly higher yield; as a result,
this diterpene extraction method was the cheapest, with a cost of 37.8 € per
mg. The increased yield allowed reducing production costs by 34% and 19.5%
as compared to the “ethyl acetate at room temperature” and “‘supercritical CO;”
methods, respectively. This shows that production costs are related to multiple
factors and how important it is to evaluate the expenses and yield of each step
when producing medicinal plants and extracts. In the case study of ingenol-mebutate
production from E. peplus, the concentration of this metabolite in the plant was low
(about 60-70 mg per kg of plant shoot) (Bafort et al. 2022). The selection of the
appropriate cultivation method (i.e., a high light intensity and an increased surface
area) increased the extraction yield as compared to other studies (Hohmann et al.
2000). However, the plant content in ingenol-mebutate is constitutively low, so that
the extraction yield remained low too. Increasing the content in a specific metabolite
by appropriate abiotic factors such as high-temperature stress during the cultivation
process could increase the content in terpene and ultimately the extraction yield (see
also Chap. 2). Another possible way of reducing the cost of the production process
of a metabolite is to increase the surface area to augment the cultivation yield or
productivity.
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Fig. 17 Evaluation of the production cost of a diterpene extracted from a medicinal plant
cultivated in a vertical container farm following three extraction methods. (A) Cultivation,
extraction, and total cost following three extraction methods. EtAC 120 °C, ethyl acetate at 120 °C;
EtAc RT, ethyl acetate at room temperature; SC CO», supercritical CO,. (B) Extraction yield and
production cost per mg of a diterpene following three extraction methods: EtAC 120 °C, ethyl
acetate at 120 °C; EtAc RT, ethyl acetate at room temperature; SC CO,, supercritical CO,. (Bafort
et al. 2022)

3.3 Pharmaceutical Drug Production Cost

Medicinal plants have secondary metabolites that can be of interest for pharmaceu-
tical applications as purified molecules. In this case, the use of the metabolite in
a pharmaceutical drug has to be approved by an official agency like the European
Medicines Agency. Approval requires significant development costs showing the
safety and efficacy of the drug and includes preclinical and clinical studies.
Estimating the average cost of developing a drug is difficult. It largely varies
according to studies, from US$ 92.0 million to US$ 884 million and even US$
1395 million (Morgan et al. 2011; DiMasi et al. 2016). Moreover, the clinical costs
of drug development vary, depending on the treatment category. They range from
US$ 312 million for analgesics/anesthetics to US$ 448 million for anti-infective
drugs (Morgan et al. 2011). Therefore, pharmaceutical use requires far more invest-
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ment than traditional para-pharmaceutical use (e.g., extracts (decoction, infusion,
poultice, etc.)). The extract will also need a pharmaceutical-grade certification and
will have to be manufactured in a “Good Manufactory Practices”-certified factory.
Cultivating a medicinal plant in a vertical indoor farm is particularly suited for
pharmaceutical or high-grade standard quality, because the process is completely
controlled and ensures large, regular, and predictable quantities and constant high-
quality metabolites. Moreover, the pharmaceutical use of the crop will give a higher
added value to the metabolite. Few studies have investigated the entire cost of
processing a medicinal plant from cultivation to the final pharmaceutical drug. The
economic feasibility of producing a medicinal molecule was calculated from E.
peplus annual biomass yield and ingenol-mebutate extraction yield (Bafort et al.
2022), based on a prescription medicine containing ingenol-mebutate and used to
treat precancerous skin lesions. Figure 18 shows the output, CapEx and OpEx of
E. peplus cultivation in a 40-m? vertical container farm under high light intensity
producing 776 kg of fresh shoot crop per year, from which 3.73 gr of ingenol-
mebutate per year are extracted with ethyl acetate at 120 °C. This process gave
an output of 0.56 M€ with the selling of pharmaceutical gels containing 0.015%
and 0.05% of the metabolite. The development costs were estimated to be 300 M€
(15 M€ per year) allocated over the term of a 20-year patent. Compared with this
very high investment cost, other OpEx appeared as a very low load: 0.14 M€ for
the cultivation and extraction costs and 0.12 M€ for gel manufacturing and flat

= Output (€fyr) m Development costs (€/yr) = Cultivation & extraction cost (£fyr) Gel production cost & flat fees (€/yr)  ® OPEX + CAPEX [€/yr)

1 [OPEX + CAPEX)

5.6 MC

|
0.56 MC! D.14 ME M

H ) 0
—

1 container farm 10 container farms 40 container farms

Fig. 18 Simulation of the production costs of a pharmaceutical gel based on ingenol-mebutate
extracted from vertical container farming of Euphorbia peplus. Vertical cultivation in one
container, 10 containers, or 40 containers and generated outputs, OpEx and CapEx. OpEx are
subdivided in development costs, cultivation and extraction costs, gel production costs, and flat
fees. The dotted box includes CapEx and OpEx, the sum of which corresponds to the total
production cost; the relative percentage of each cost in the total cost is indicated above each bar.
(Bafort et al. 2022)
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fees. The total cost — the sum of CapEx (pharmaceutical manufacturing building)
and OpEx — reached 15.3 M€ for 0.56 M€ of output. Therefore, the return time
on investment for a total annual cost was 27 years. By multiplying the cultivation
yield by 10 (by acquiring 10 vertical container farms), the extraction yield would
be multiplied by 10, with a total of 37.3 g of ingenol-mebutate manufactured per
year. This would raise the output to 5.6 M€ per year. The CapEx and OpEx costs,
except the development costs, would also be increased and would reach an annual
total of 17 M€. Therefore, the return time on investment for a total annual cost
would be 3 years. Forty vertical container farms would be needed to reach a return
time on investment of 1 year, with an output of 22.5 M€ and a total annual cost of
about 22.3 M€, without being sure that the demand would absorb such a production.
When looking at the distribution of costs of the whole plant-based drug production
process from plant cultivation to drug production, the largest contributor is the
R&D cost (98—67%), followed by cultivation and extraction costs (1-24%) and drug
manufacturing costs (1-8%), depending on the number of containers, i.e., on the
productivity of the cultivation and extraction steps.

Although the simulation of the profitability of the pharmaceutical gel showed
that economic feasibility was difficult to reach, some factors could rapidly increase
the profitability of ingenol-mebutate production. The improvement of the ingenol-
mebutate content in the plant by a more specific and adapted cultivation process
would increase the extraction yield rapidly. Furthermore, upcoming new plant
factory designs with increased growing surfaces and planting densities together with
digital agriculture will reduce the CapEx and OpEx and the cost per kg of crop, and
profitability will be less challenging.

4 Conclusion

The sector of medicinal plants is complex because many forms exist, from freshly
cut plants to dried preparations through essential oils, macerates, creams, or
poultice, and various stakeholders are involved among whom consumers, herbalists,
retailers, funding agencies, processors, policymakers, and growers (WildMapsFit
2020). Production of medicinal plants includes various steps, depending on the
final use of the plant (Fig. 19) that make processing more or less complex. The
complexity of the process increases with the number of steps, and so does the cost,
but the added value of the product increases too.

The production of medicinal plants under a controlled environment offers new
opportunities (WildMapsFit 2020; Zobayed 2020):

* A greater number of botanically reliable products free of misidentified plants.
¢ A product uncontaminated by pollutants, pesticides, and microbes.

* A stable source of guaranteed raw material.

¢ Uniform and optimized biochemical profiles.

¢ Quantity and quality are predictable and guaranteed.
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Fig. 19 Manufacturing processes of medicinal plants. (Adapted from EIP-AGRI 2020)

* Relationships between producers and purchasers are enhanced, based on stable
and predictable production.

* Controlled postharvest handling.

¢ Quality control can be more easily implemented in such structures.

¢ Product certification or labeling.

Growers may in turn consider medicinal plant cultivation safer and more
profitable than traditional crops. However, growers need to carefully calculate the
economic viability of these production systems.

The demand for sustainability from consumers and regulators is increasing.
Actors in the value chain must respond to consumer expectations, e.g., raw material
sourcing, traceability, quality regulation, efficiency, and safety, while considering
sustainability in the cultivation process (WildMapsFit 2020).

Five factors of the crop cultivation process under a controlled environment
need to be optimized: (1) productivity (fresh or dried biomass per year) has to be
maximized, (2) the plant content in metabolites of interest has to be maximized,
(3) yields of postharvest processes (drying, extraction, purification, etc.) have to
be maximized, (4) the sustainability of the process (life cycle assessment, energy
use efficiency, light use efficiency, water use efficiency) has to be maximized, and
(5) costs have to be minimized. The cultivation practices need a fine-tuning of
environmental factors that should be specific to the crop and the metabolite of
interest as plant responses to abiotic factors are mainly species-specific. The use of
controlled environment cultivation systems can facilitate the development of safe,
steady cultures in quality and quantity and high-quality (para)pharmaceutical plant
products extracted from medicinal plants.

Funding This research work was funded by the European Union and the Walloon Region with
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Kheir Al-Kodmany

Abstract The Food and Agriculture Organization of the United Nations forecasts
that by 2050 the global population will grow by nearly 2 billion persons. Conse-
quently, we must sustainably produce 70% more food (United Nations, Department
of Economic and Social Affairs. https://www.un.org/development/desa/en/news/
population/2018-revision-of-world-urbanization-prospects.html). However, water
supply and arable lands are shrinking. In recent years, the impacts of the vicious
pandemic and climate change manifested by weather extremes have hurt agriculture
and the entire food production systems. Further, “food miles,” referring to the
distance that food travels from the place of production to the plate, is becoming
an alarming problem. This chapter examines the potential of the vertical farm (VF)
to support food security. It also discusses the challenges it faces.

Keywords Food production - Carbon emissions - Climate change - Water
resources - Food quality - Crop yields - Space efficiency

1 Introduction

1.1 Goals and Scope of the Study

The goal of this chapter is to enlighten about recent developments in VF. It attempts
to answer basic questions, including:

* Whatisa VF?
*  Why should we integrate VF into our cities?
* What are the VF methods and technologies?
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e What are the salient VF projects?
e What are the VF implications for future cities?

1.2 WhatIs a VF?

The VF engages the vertical plane in growing plants and vegetation to optimize
food production in a limited indoor space. Like libraries that stack books on
shelves instead of spreading them on floors to save space, the VF does the same
for agriculture. It stacks growing beds along tall technology-supported structures
instead of spreading them over the ground, reaching maximum compactness and
reducing footprint (Kah et al. 2019; Armanda et al. 2019). The VF utilizes
specialized cultivation methods (hydroponics, aeroponics, and aquaponics) and
advanced technologies (artificial intelligence, LEDs, and robots) to enhance the
cultivation environment, improve food quality, and increase yields. It is suited to
producing leafy and microgreens because they feature a high harvest index, fast
growth rate, low photosynthetic energy demand, and compact shape. New VFs have
demonstrated staggering capacities of growing thousands of crops in just a few
hundred square feet (Al-Kodmany 2018). They occur in new or retrofitted buildings
of various sizes and heights. Therefore, vertical farming is an environmentally
friendly method to produce quality food with less space by engaging technology
and the vertical dimension.

1.3 Why VF?
1.3.1 Food Security

Food insecurity is becoming an acute problem. Over the coming decades, an
expanding global population, a changing climate, environmental stressors, and
rising food costs will substantially impact food security. While the increased
urban population is placing a great demand on food, agronomists, ecologists, and
geologists warn of soaring shortages of cropland. Indeed, the sprawling fringes of
suburban developments continue taking over more farmland. Creative solutions and
urban policies are urgently needed, including options for water conservation, land
use efficiencies, and food production. Simply, as the food demand will be greater
than the supply, our planet is growing hungrier for solutions. The VF offers a
creative solution that merges food production and consumption in the same place to
produce fresh food locally while reducing transportation and saving the environment
(Armanda et al. 2019; Al-Kodmany 2018; Edmondson et al. 2020).



Vertical Farms for Future Cities 181

1.3.2 Climate Change

Climate change is a severe threat to food security. It has already decreased arable
land. Manifesting in horrific events, such as storms, flooding, hurricane, and
drought, it has damaged valuable agricultural production (Okeke et al. 2022).
For instance, the 2011 drought in the USA damaged grain crops with a value
estimated at $110 billion (Al-Kodmany 2018; Edmondson et al. 2020). Similarly,
heat waves in California have resulted in significant loss of crops. Further, traditional
farming demands enormous fossil fuels to conduct agricultural activities. The travel
distances of food from production (farms) to consumption (cities) or the “food
miles” have increased significantly. On average, food travels 1500 miles from
the farm field to the consumer’s plate (Okeke et al. 2022; Llorach-Massana et
al. 2016). Transporting food counts for 0.4 tons of carbon dioxide emissions per
household yearly (Edmondson et al. 2020). Regrettably, the increased greenhouse
gas emissions from food transport and fossil fuels-based agricultural activities have
exacerbated climate change (Fig. 1).

1.3.3 Urban Space and Density
Urban agriculture suffers from finding space for farming. As the urban population

grows, demand for urban increases, and it becomes difficult to find land in urban
areas for urban agricultural activities. Further, land prices have been increasing,
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Fig. 1 Map showing the distances that the essential ingredients of a small strawberry yogurt can
travel. (Adapted from Edmondson et al. 2020)
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making it unfordable for farming. VF may offer a solution by maximizing agricul-
tural work on a little lot. Harnessing the vertical dimension increases production
many folds.

VF facilitates compact urban agriculture, which supports compact urban living,
a core element of sustainability. VF frees land to house more urban popula-
tion, services, and infrastructure. Researchers have critiqued urban agriculture for
decreasing density, entailing longer commutes and travel time, and more significant
fuel costs and carbon emissions. They explained that the increased gas utilization
rising from moving a small percentage of farmland into urban areas would create an
extra 1.77 tons of CO, per household yearly (Engler and Krarti 2021).

1.3.4 Human and Environmental Health

Traditional farming inflicts harm on human health and the natural environment. The
World Health Organization explains that 50% of the world’s farms use raw animal
waste as fertilizer, which may contain diseases transmitted to crops. Traditional
farms use pesticides and herbicides, which create polluting agricultural runoff.
They cause erosion, contaminate soil, and generate excessive wastewater. When
leftover fertilizer washes into water bodies (e.g., oceans, rivers, streams), a high
concentration of nutrients is developed (called eutrophication), which could disturb
the ecological equilibrium. Further, traditional farming uses far more water than
high-tech VF, about one-tenth of that used in conventional agriculture, by offering
precision irrigation and efficient scheduling. Agricultural activities use excessive
freshwater — in most regions of the world, over 70% of freshwater is used for
agriculture — competing with urban areas. The water crisis may worsen as climate
change triggers warmer temperatures and causes more droughts (Okeke et al. 2022).

1.3.5 The Ecosystem

Some scholars argue that conventional agriculture has infringed upon natural
ecosystems for ages. Dickson Despommier explained that traditional farming has
damaged the ecological system more than anything else. For example, agricultural
activities have severely reduced the Brazilian rainforest, with about two million
hardwood forests being cleared for farmland (Al-Kodmany 2018). Despommier
indicated that infringement on ecosystems is augmenting climate change. In this
way, VF can mitigate traditional agricultural influence on the world’s ecosystems
by reestablishing biodiversity and decreasing the harmful effects of climate change.
Further, the VF eliminates fertilizer runoff, which can help restore coastal and river
water, and increase wild fish stock.
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1.3.6 Economics

Proponents of the VF argue that as technologies improve, its food prices will drop.
Indeed, new VFs are embracing sophisticated technologies, automated systems,
robots, artificial intelligence (AI), and advanced data models to offer competitive
prices. Advanced VF will generate greater yields many folds, making it affordable
to larger populations. Simultaneously, the soaring expenses of conventional farming
rapidly reduce the cost gap. For example, when VFs are placed strategically in urban
areas, they will sell products directly to the consumer, decreasing transportation
costs and eliminating the middleman. In addition, VF can generate local employ-
ment and support the local economy. Abandoned urban buildings and disused
warehouses can be converted into VFs to supply healthy food in neighborhoods
where fresh produce is scarce.

2 VF Methods

Researchers have been advancing environmentally friendly methods of food pro-
duction. The following section highlights three main VF methods: hydroponics,
aeroponics, and aquaponics.

2.1 Hydroponics

Hydroponics is a method of growing plants in water containing nutrients without
soil. The term stems from the Greek words hydro and ponos, meaning “water
doing labor” or “water works.” The hydroponics technique involves planting a
seed in a tiny cub of sponge, and when the delicate roots poke after a week, it
is transplanted into water-filled tanks containing a nutritious liquid with chemical
fertilizers. Besides, oxygen and sunshine (or artificial light) are the only ingredients
needed. The soilless hydroponics method can eliminate soil-related cultivation
problems, such as bacteria that grow in soil, fungus, and insects. It is also low
maintenance since it disengages weeding, tilling, kneeling, and dirt removal. The
hydroponic method is less labor-intensive because it involves less space (Engler and
Krarti 2021). It could also be cleaner than traditional methods, for it does not contain
animal excreta. Furthermore, it offers an easier way to control nutrient levels, pH
balance, oxygen level, moisture, and microorganisms. Therefore, the hydroponic
method may result in higher-quality crops (Engler and Krarti 2021).
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2.2 Aeroponics

Aeroponics is a soilless method that relies on air to deliver a high-pressured,
nutrient-rich mist to the plant’s roots, which are suspended in the air. Aeroponics
means “working air” and stems from the Greek words for air, “aer,” and labor,
“ponos.” Therefore, aeroponics builds off that of hydroponic systems, in which
exposed roots are held in a soilless growing medium. However, aeroponics does not
require containers or grow trays to hold water because it uses nutritious mist instead
of water. Further, the “misted” system delivers extra oxygen to roots, resulting
in faster growth. Like hydroponics, the aeroponics method eliminates soil-related
cultivation problems and is free of fertilizers or pesticides (Engler and Krarti 2021;
Khan et al. 2020). Also, aeroponics does not need hydroponic tanks and uses much
less water than hydroponics. Since it uses a minimal amount of water (95% less
water than conventional farming), it is an efficient way of growing plants. Overall,
the aeroponic method substantially saves water and space, making it superior to
traditional farming practices.

2.3 Agquaponics

Aquaponics is a farming method that integrates an aquatic environment (where
aquatic animals like snails and fishes live) into a hydroponics environment where
plants grow. The combined system achieves symbiosis by using the nutrient-
rich waste from fish tanks as a fertilizer for the hydroponic production beds.
Interestingly, while the plant roots filter the water for the fish, the fish provides
fertilizer for the plants. As such, the hydroponic beds act as biofilters that remove
acids, gases, and chemicals, such as phosphates, nitrates, and ammonia, from
the water. Concurrently, the gravel beds provide habitats for nitrifying bacteria,
augment nutrient cycling, and filter water. Consequently, the freshly cleansed water
is recirculated into the fish tanks (Fig. 2). As such, aquaponics reduces or eliminates
the need for chemicals and artificial fertilizers. It also offers two unique products:
fresh vegetables and fish simultaneously (Benis and Ferrdo 2018; Khot and Mueller
2019; Sipos et al. 2020).
Table 1 summarizes the aforementioned three methods.

3 Vertical Farm Projects

Vertical farming is sprouting rapidly. The following section highlights a dozen
projects (Armanda et al. 2019; Sipos et al. 2020; Angotti 2015; Abbasi et al. 2022)
in different parts of the world.
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Fig. 2 Aquaponic method. (Adapted from Engler and Krarti 2021)

3.1 Sky Greens, Singapore

Singapore is a crowded small island with over five million inhabitants. With only
250 acres of farmland, it generates only 7% of its food need. The remaining need
is provided by importing food, ensuring high transportation costs. Consequently,
Singapore has pioneered VF. One of its first commercial VF projects is Sky
Greens. The ten-year-old project is a three-story building that contains translucent
greenhouses to grow tropical leafy vegetables (e.g., Chinese cabbage, lettuce, xiao
bai cai, spinach cai, bayam, cai xin, gai lan, kangkong, and nai bai) with a rate of 2
ton of fresh veggies daily. It uses various growing media, including soil-based and
soilless hydroponics. Sky Gardens produce high-quality fresh food at competitive
prices. In addition, it offers educational programs to expose students and residents
to VF (Al-Kodmany 2018).

3.2 Green Spirit Farms, New Buffalo, Michigan, USA

Green Spirit Farms (GSF) company started with a modest building of about 3716
m? (40,000 ft?). It aimed at providing nongenetically modified organism (GMO)
foods of greater demand (e.g., Brussel sprouts, lettuce, kale, arugula, peppers, basil,
spinach, tomatoes, stevia, strawberries) at reasonable prices. The company has
grown and opened VFs in Philadelphia, East Benton (Pennsylvania), Atlanta, the
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Table 1 VF methods (compiled by author)

Farming

method Key characteristics

Hydroponics| Soilless-based, uses
water as the growing
medium

A variant of
hydroponics involves
spraying plant’s roots
with mist or nutrient
solutions.

Aeroponics

Aquaponics | It integrates
aquaculture (fish
farming) with

hydroponics.

Major benefits

Fosters quick plant
growth; decreases even
eliminates soil-related
cultivation problems;
reduces the use of
pesticides or fertilizers.

In addition to the benefits
mentioned above,
aeroponics requires less
water.

It creates symbiotic
relationships between the
plants and the fish by
using the nutrient-rich
waste from fish tanks to
“fertigate” hydroponics
production beds. The
hydroponic bed cleans
water for fish habitat.

K. Al-Kodmany

Common/applicable
technologies

Computerized systems
Laptops, cell phones, and
tablets

Food growing software and
apps

Remote control software and
systems (farming-from-afar
systems)

Automated stacking, racking
systems, tall towers, and
moving belts

Programmable LED lighting
Renewable energy (wind
turbines, solar panels,
geothermal, etc.)
Closed-loop systems,
anaerobic digesters
Programmable nutrient
systems

Water recirculating and
recycling systems

Climate control, HVAC
systems

Insect-killing systems
Robots

Rainwater collectors

UK, and Canada. The East Benton is an extensive VF that contains 1715 vertical
growing stations. It produces leafy vegetables, herbs, tomatoes, and peppers, the
equivalent of 200 acres of farmland yearly (Al-Kodmany 2018).
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3.3 FarmedHere, Illinois, USA

Founded in 2011, FarmedHere is a company that has three locations in Illinois:
Englewood, Flanagan, and Bedford Park. Given the generational demands for
healthy and organic foods, the company has flourished, supplying 6% or more of
the Chicagoland’s demand for premium green and culinary herbs. The company’s
product is spreading in several grocery stores, including The Green Grocer, Whole
Foods Market, Mariano’s Fresh Market, Trader Joe’s, and Meijer. Hyped as one
of the largest VF in America, Bedford Park’s VF is about 8361 m2 (90,000 ft2),
followed by Flanagan (929 m? (10,000 ft?)) and Englewood (371 m? (4000 ft%)).
Bedford Park VF uses aquaponics and aeroponics systems and produces about
136,078 kg (300,000 Ib) of 453,592 kg of chemical, herbicide, and pesticide-free
leafy greens yearly (Khot and Mueller 2019; Sipos et al. 2020).

3.4 The Plant, Chicago, Illinois, USA

The four-story, 8686 m? (93,500 ftz) VF is a retrofitted warehouse. Aiming for
zero energy, it uses an anaerobic digester that converts food waste into biogas
that powers, heats, and cools the facility. Daily, the anaerobic digester catches the
methane from tons of food waste and burns it to produce electricity and heat (Orsini
et al. 2020). Completed in 2016, The Plant uses the facility as a food business
incubator, research lab, and educational facility. It produces greens, mushrooms, and
kombucha tea. The Plant VF closed-loop system works as follows. The anaerobic
digester turns organic materials into biogas, which is channeled into a turbine
generator that generates power. Kombucha tea brewery makes CO, to the plants,
while plants make oxygen to the kombucha tea brewery. Plants clean the water for
the fish, while fish waste functions as fertilizer for plants. Sludge generated by the
digester becomes algae duckweed that feeds the fish. Further, the turbine makes
steam piped to the commercial kitchen, brewery, and entire building for heating and
cooling (Al-Kodmany 2018). Notably, the kitchen generates kombucha tea, fish,
fresh vegetables, food, and beer with no waste (Fig. 3).

3.5 Green Girls, Memphis, Tennessee, USA

Green Girls VF supplies local restaurants with year-round fresh, healthy food.
The 60,000-ft> facility responds to restaurants’ desire for microgreens that give
meals intense flavor, texture, vivid color, and pizzazz. The goal of Green Girls is
to make microgreens affordable, given their high market prices. The facility uses
an automated hydroponics system, reducing laborers to only two. The system is
efficient in using water; it uses one-tenth of what conventional farming uses. The
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Fig. 3 The plant’s anaerobic digester system. (Al-Kodmany 2018)

facility also uses LED lighting (Armanda et al. 2019; Engler and Krarti 2021).
LED reduces the light’s seven waves to the essential two lights (red and blue) for
photosynthesis, which entail energy saving (Al-Kodmany 2018).

3.6 Gotham Greens, Brooklyn, New York, USA

Gotham Greens is a 1394 m? facility that sits atop a two-story building. Constructed
in 2011, it uses controlled-environment agriculture (CEA) that enables high effi-
ciency, with a rate of eight times of a traditional farm of the same size. Gotham
Greens grows 80-100 tons of lettuce, salad greens, and herbs. It uses thermal
insulation, double-glazing, natural ventilation, high-efficiency pumps and fans, and
on-site solar photovoltaics to reduce energy consumption. Its hydroponic system
also uses water efficiently (Al-Kodmany 2018; Llorach-Massana et al. 2016; Abbasi
et al. 2022).

3.7 China National Cereals, Oils and Foodstuffs Corporation,
Beijing, China

Completed in 2015 and with an area of 80,000 m?, it is one of the largest VF in
China. It features advanced hydroponic systems, temperature control, and artificial
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lighting, and produces fresh, pesticide-free food at affordable prices. The VF idea is
suitable for China, which faces rapid urbanization. It is expected that by 2035 more
than one billion people will be living in urbanized areas (Abbasi et al. 2022).

3.8 Vertical Urban Farm, Romainville, France

It is a seven-story VF building made mainly from sustainable materials such as
wood. It uses natural light solely, saving energy. In addition to commercial purposes,
it is an educational facility that educates residents and students about vertical
farming. The building’s ground floor contains a restaurant, shops, and a community
garden (Abbasi et al. 2022).

3.9 Pasona Headquarters, Tokyo, Japan

Located in Tokyo, Japan, and designed by Kono Designs, Pasona Headquarters
is a nine-story building that refurbished a 50-year-old building. The project was
completed in 2010. The building integrates a rooftop garden and urban farming
facilities that allow employees to grow and harvest their food at work. Interior
spaces contain plants, fruits, vegetables, and rice. Interior partitions integrate lemon
and passion fruit trees, tomato vines dangle from the ceiling; and beans sprout
under benches. The building has a double-skin green facade with flowers and
orange trees planted on small balconies. Outside, the office block is draped in green
foliage. Ducts, pipes, and vertical shafts were relocated to the building’s perimeter
to increase the ceiling’s height and to accommodate a climate control system that
monitors humidity, temperature, and airflow to ensure the comfort and health of
employees and greeneries (Armanda et al. 2019; Al-Kodmany 2018; Engler and
Krarti 2021).

3.10 Kameoka Plant, Kameoka, Kyoto, Japan

Spread Company (one of Japan’s largest vertical farming companies) established the
Kameoka Plant in 2007. It is a 2787 m? (30,000 ft?) hydroponic indoor environment
with 5295 m? (57,000 ft?) of vertical grow space that produces a variety of lettuces
safe from the nearby Fukushima nuclear plant. It is a nonautomated vertical farm
that can deliver 21,000 heads of lettuce daily. This large-scale operation brought the
yield rate to 97%, and the facility became profitable in 2013. Lately, the company
has upgraded the facility by adding a highlight-efficient water filtering system and an
environmental control system that monitors the temperature, humidity, CO; levels,
and light sources. Spread also plans to make tasks like raising seedlings, replanting,
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and harvesting accomplished by machines and artificial intelligence (Monteagudo
et al. 2020; Orsini et al. 2020).

3.11 Techno Farm Keihanna, Keihanna, Kyoto, Japan

Spread Company completed this project in 2018 and is considered one of its most
advanced facilities. Located in Keihanna Technopolis, it is one of the world’s most
automated vertical farms and utilizes the next-generation food production system
Techno Farm'". Its automated cultivation system can produce 30,000 heads of
lettuce daily and makes four kinds of leaf lettuce without pesticides. Inside the
building, vegetation trays are stacked one after another, and a robotic arm performs
planting. The irrigation and harvesting of this “Al farm” are almost entirely handled
by robotic arms. White and purple specialized LED lights alternate to assist batches
of crops in completing photosynthesis without interruption for 24 h. The facility
recycles 90% of its water. With increased automation, it cuts down 50% of labor
costs. Spread has incorporated more rigid standards for hygiene control of the
cultivation environment and aims to gain the international certification of food safety
standard “FSSC22000” (Al-Kodmany 2018).

3.12 PlantLab, Den Bosch, Holland, The Netherlands

PlantLab is a Dutch indoor farming pioneer. In 2010, it completed its earliest
facilities in Holland. It is a three-story underground vertical farm. It uses advanced
LED technology that calibrates light composition and intensity to precise needs,
while eliminating the sunlight wavelengths that prevent plant growth. The farm
features an automated system that monitors and controls several variables, including
light intensity, light color, irrigation, nutritional value, humidity, CO,, air velocity,
and air temperature. The high-tech farm reduces water use by 90% and produces a
yield three times the amount of the average greenhouse. In 2020, PlantLab opened a
new VF in Indianapolis, Indiana (Al-Kodmany 2018; Benis and Ferrdo 2018; Abbasi
et al. 2022).

4 Discussion

4.1 VF Benefits

The VF has the potential to support food security in our cities. It offers a
sustainable, safe food source. The VF is needed as the urban population increases,



Vertical Farms for Future Cities 191

and we continue to face food shortages, increases in transportation costs, and
climate change. The increasing fuel costs, water shortages, and shrinking arable
land make a case for the VF. The hydroponic and aeroponic methods are very
efficient in using water as their irrigation systems target the plant roots, and the
controlled environment reduces evaporation. Some VFs even collect and recycle
the water condensed within the controlled environment. The VF may also use
recycling wastewater systems (grey or black) and harness rainwater. This closed-
cycle approach decreases water consumption by 90-98%. Further, it has the added
advantage of preventing nutrients and fertilizers from harming the land or being
washed in rivers and streams (Pasha and Akash 2020).

Overall, the VF can offer a sustained food production paradigm that supplies
crops year-round without interruption caused by climate change, seasons, or adverse
natural events (e.g., floods, drought, hurricanes). Crop production is protected
from seasonal weather patterns that are highly vulnerable to disruption due to our
challenging climate. Countries facing extreme climatic and agricultural conditions
may find the VF a helpful solution. For example, some Middle Eastern countries
(e.g., United Arab Emirates, Saudi Arabia, Kuwait, Oman, Qatar, and Bahrain)
face three significant challenges to traditional agriculture, including hot climate,
water scarcity, and infertile soil. Similarly, North European countries (e.g., Den-
mark, Finland, Ireland, Norway, Sweden, Iceland, and the United Kingdom) face
challenges of little sunlight and freezing temperatures that damage crops. In a VF,
temperature, water, and lighting can be enhanced to eliminate climatic risks and
improve production rates. Also, the soil is not an issue because it is not the prime
cultivation medium (Benis and Ferrdo 2018; Walker and Buhler 2020).

The VF could be useful in countries that import a significant portion of their
foods (some of the Middle Eastern and North European countries mentioned
earlier). For example, recently, Dubai opened Emirates Crop One. With over
330,000 ft> and the capacity to produce two million pounds of leafy greens annually,
it is one of the world’s largest VFs. The facility is located near Al Maktoum
International Airport at Dubai World Central and its major clients are airlines (Hall
2020). On their flights, passengers will eat leafy greens, including arugula, lettuce,
spinach, and mixed salad greens. This facility is Crop One’s second VF after the
one in Millis, Massachusetts.

Some literature suggests that the VF can consolidate some 700 acres of farmland
into a big-box retail store. We can harvest 365 days a year and shorten the growth
cycle to about ten days for many of the products, which is nearly a 700 increase
in yield while saving a million gallons of water weekly and using 1% of land
compared to traditional farming. MIRA’s facility near Tokyo can generate yields
50-100 times greater than conventional crop farms. It uses Al and an extensive
vertical and automated racking system to optimize space utilization. The VF space
efficiency explains why it is spreading rapidly in countries like Japan and Singapore,
where land is scarce (Abeliotis et al. 2016; Duncan et al. 2016).

In addition to giving greater yields per space unit, VF features a faster production
cycle. For example, the time needed to grow lettuce in a VF is about one-half of
that in a traditional farm (Pasha and Akash 2020). Additionally, with an automated
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system, the products are cleaner than that produced by conventional farms as they
are not touched by a human hand. The product is clean enough that it does not need
to be washed. There are no bugs, no pesticides, and no bird waste on it.

Further, the prices of VF produce are not affected by weather conditions as
in conventional farming. Grand schemes, like the one proposed by Studio NAB,
could even see the vertical farming concept broadened to include fish and honey
production while reconnecting consumers with the food production process and
establishing sustainable jobs for the surrounding community. Today, unhealthy food
dominates people’s diets. On average, people consume one-third of what they need
of healthy food. The VF product offers high-nutrition food (Guineé et al. 2017).

Additionally, VF’s high-tech, computer-based environment can make farming
fun. Hence, the practice has enticed a technology-savvy younger generation, groom-
ing a new breed of farmers. Further, VF offers the impetus for developing innovative
agricultural technologies. Finally, the VF could reconnect city dwellers with nature
by engaging in farming activity. In summary, the VF supports sustainability’s three
pillars, social, economic, and environmental, as illustrated in Table 2.

4.2 Challenges

With benefits come some challenges of the VF. Constructing VFs continues
to be more expensive than building outdoor farms. The production costs have
been rendered to be high due to high power consumption, expensive technology,
and unaffordable startup costs. Replacing sunlight with artificial ones continues
to require substantial power. Energy prices have been increasing. For example,
recently, energy prices in the EU increased by nearly 58%. Two years ago, European
VF spent around 25% of their operational costs on power, but that has increased to
40% (Trouwborst et al. 2016).

Also, with high power consumption, the VF may entail high carbon emissions,
increasing its footprint. As such, the claim of reducing carbon emission via reducing
food miles is offset by the high carbon emission resulting from the utility of lots of
power. However, some VFs have been attempting to use renewable energy, such as
solar power, to reduce reliance on fossil fuel-generated power. Future LED lighting
will further decrease power use (Hall 2020).

Another challenge concerns finding employees with proper education, skills, and
expertise. This problem may ease as educational systems adapt to new needs and
demands. Finally, the cost and availability of land for vertical farming in cities can
prove challenging. In response, many VFs find their homes in repurposed shipping
containers, former factories, and disused warehouses (Orsini et al. 2020).

Further, most VFs grow leafy salad vegetables, e.g., shoots, herbs, and micro-
greens, because they produce fast under LEDs and have a brief shelf life and extra
price point. However, with recent inflation, consumers might skip pricey VF herbs
for cheaper choices. The inflation issue has been manifesting in the European food
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Table 2 VF supports sustainability’s three pillars, including social, economic, and environmental
(compiled by the author)

#
1

Benefit

Decreasing food
miles (travel
distances)

By using high-tech
irrigation methods
and recycling
systems, VF reduces
water consumption
for food production
Recycling organic
waste

Generating local jobs

Reducing the use of
fertilizers, herbicides,
and pesticides

Improve productivity

Avoid crop losses
due to floods,
droughts, hurricanes,
overexposure to the
sun, and inclement
weather

Control
product/produce
regardless of seasons

Using renewable
energy

Bringing nature
closer to the city

Environmental

Decreasing air
pollution

Reducing surface
water runoff of
traditional farms

Save the environment
by reducing needed
landfills

Employees will work
nearby, decreasing
their travel and
ecological footprint

Improve the
environmental
well-being
Needs less space

Reduce
environmental
damage and required
cleanups of farms
after damage

Produce food
regardless to season

Reducing fossil fuel

Increase biodiversity

Social

Enhancing air
quality, which
improves the
environment and
people’s health
People receive
“fresher” local food
Making potable
water available to
more people

Improve food quality
and, subsequently,
consumers’ health
Create a local
community of
workers and
connections with
farmers

Improve food quality
and, subsequently,
consumers’ health
Reduce laborious
work, and save time
to do productive and
socially rewarding
activities

Improve food
security

Increase accessibility
year-round and
improve response to
population demand

Improve air quality

Enhance the health
and psychological
well-being

Economic

Decrease energy
consumption,
packaging, and fuel
to transport food

Reduce costs

Turn waste into an
asset

Support the domestic
economy and local
employment

Minimize costs

Offer greater yields

Avoiding economic
loss

Fuel economic
activities year-round

Reduce costs

Generate local jobs

(continued)
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K. Al-Kodmany

# | Benefit Environmental Social Economic
11 | Promoting science Green technology Encourage seeking Offers new jobs in
and green technology | reduces harm to the | higher education and | bioengineering,
urban and natural modern skills biochemistry,
environments biotechnology,
construction, and
research and
development
12 | Decreasing Preserving the Improve the health of | Saving money
traditional farming natural ecological citizens required to correct
activities and system environmental
practices damage
13 | Repurposing Enhance the Create opportunities | Revive economy
dilapidated buildings | environment for social interaction

Remove eye sores
and stigma from
neighborhoods

market and the VF product may face competition from harvests that are grown in
traditional farms or greenhouses (Abbasi et al. 2022; Carvalho and Folta 2014).

4.3 Future Technologies and Data Models

Increasingly advanced technologies are likely to make VF a more efficient method
of food production. For example, LED technology has been improving while prices
are dropping. Further, automation and use of robots and artificial intelligence (AI)
will likely increase efficiency. Likewise, data modeling will better connect VF
with the marketplace. For example, with data modeling, VF owners can accurately
predict the output of each crop every day, year-round. The controlled microclimate
environment and automation process help to do so. The amount of production
can be scaled based on the market demand for each crop. The VF will increase
production if the need increases for a particular crop. Conventionally, this has been
a severe problem. Market demand may not match supply and using high-tech and
data models may help solve the problem (Benis and Ferrdo 2018; Forchino et al.
2017).

4.4 Education and Consumer Behavior

People should be educated about food systems. They should be aware of “food
miles” and learn about the carbon footprint of the different foods we consume.
Overall, food that travels by airplane has a much greater footprint than food that is
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shipped because an airplane produces more carbon emissions per pound. Research
explains, “Food that flies can generate more than one hundred times the carbon
emissions per kilometer of food that travels by ship.” For example, if I eat an
avocado flown to the UK from Mexico, its transport emissions are much higher
than if I eat a banana shipped from Colombia (Forchino et al. 2017).

Furthermore, people should abandon bad habits of wasting food and overcon-
sumption to decrease demand for food production and travel. Avoiding food from
going to waste is one of the most straightforward and decisive actions to save
money and lower climate change footprint by decreasing greenhouse gas (GHG)
emissions and conserving natural resources. Most humans do not realize how much
food they throw away daily — from uneaten remnants to ruined produce to portions
of fruits and vegetables that could be consumed or repurposed. A third of all food
in the United States is wasted. In 2019, the EPA estimated that 96% of households’
wasted food went to landfills, combustion plants, or the sewer system. To reduce
wasting food, people should be educated about the benefits of preventing wasted
foods and the ways to do it by learning about shopping tips, storage ideas, cooking
and preparation instructions, etc. (Kobayashi et al. 2014).

Likewise, people may develop the habits of eating food that is in season and local
and reduce consumption of refrigerated food as they demand cooling, reducing a
significant source of carbon emissions. Also, seasonal and local foods often taste
better than imported ones.

4.5 Will the VF Help the Poor Population?

Most, if not all, VF projects are happening in well-to-do countries, while developing
countries continue to suffer from maximum food insecurity. Unfortunately, devel-
oping countries lack the financial resources, technologies, and expertise to build
VFs. As such, VF applications may support food security in places where they are
already better off than other countries. The VF model may empower the already
powerful nations and leave the poor behind. In other words, it is likely to enlarge
the gap in quality of life between the poor and rich countries (Armanda et al. 2019;
Al-Kodmany 2018).

5 Conclusion

Food insecurity is a rising global problem. VF bears the substantial potential
to supply quality food grown in a controlled and clean environment without
pesticides and with minimal water. It can provide food year-round, closer to cities’
inhabitants (reducing food miles), and with marginal waste. It will become more
needed as climate change predominates and available farmland per capita declines.
However, VF faces challenges, mainly economics. The required construction and
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operational costs, primarily energy costs, are significant. Also, it continues to offer
limited choices of crops and does not serve the poor population. Nevertheless, as
technologies improve production and increase yields, it is hoped that the costs will
drop and its products will reach a wider segment of population. While VF still
represents a tiny portion of the global food production industry, its benefits to our
ever-expanding population could tilt the farming landscape by 90 degrees in the
future. Innovation and automation will drive down costs, and future VF advances
will likely make it mainstream to feed the increasing urban population.
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IoT (Internet of Things) in Agriculture for
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Abstract Agriculture plays a vital role in feeding the world’s growing population
despite facing challenges such as dwindling arable land, water scarcity, changing
climatic conditions, and the need for sustainable resource management. To address
these challenges and to optimize agricultural productivity, the integration of remote
sensing technologies has emerged as a transformative approach within the realm of
precision agriculture. Remote sensing, encompassing satellite imagery, drones, and
ground-based sensors, provides invaluable data and insights for informed decision-
making, resource allocation, and yield optimization. This chapter explores the
significance of remote sensing applications in modern agriculture. Satellite imagery,
acquired at various spatial and temporal scales, allows farmers, agronomists,
and researchers to monitor crop health, identify areas of stress, and assess the
impact of environmental factors. Drones equipped with high-resolution cameras and
multispectral sensors enable localized data collection, facilitating detailed field-level
a