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Preface 

The world population is increasing at dramatic propulsion and the arable land is 
decreasing at a faster pace. The looming climate change is expected to reduce 
total yield of crops by 15–20% and poses a formidable task to increase food 
production. Plant breeding has contributed significantly to sustainable food pro-
duction by recombining the desired genes in new cultivars from the available 
gene pool. However, the yield potential of crops has plateaued threatening globally 
sustainable food production and feeding ever-growing population worldwide facing 
climatic changes. In addition, global warming may become disastrous to agriculture 
production and food supply chain, especially with the appearance of new insects, 
pests, and diseases, and some existing ones may disappear. New plant breeding 
technologies like transgenics, molecular-marker-assisted breeding, mutagenesis, 
and genome editing could contribute to sustaining crop production. 

Agriculture that developed 12,000 years ago changed the way humans lived, 
switching from nomadic hunter-gatherer life styles to permanent settlements and 
farming. Agriculture went through three stages: traditional agriculture, technologi-
cally dynamic agriculture with low capital technology, and technologically dynamic 
agriculture with high capital technology. Currently, emerging digital technologies 
have the potential to be game-changers for traditional agricultural practices. These 
changes are popularly known as “Agriculture 4.0,” indicating its role as the fourth 
major agricultural revolution. The World Economic Forum announced that the 
“Fourth Industrial Revolution” that includes agriculture will unfurl throughout the 
twenty-first century. Hence, the year 2000 marks the beginning of Agriculture 4.0. 
Digital agriculture (DA) is coming of age and has the motto to make farming prof-
itable and sustainable through using information-cum-communication technologies 
and data science, ensuring safe and nutritious food affordable to all. The world’s 
first entirely machine-operated crop was harvested in 2017, at an experimental farm 
run by researchers from Harper Adams University, in Edgmond village, UK. About 
5 tons of spring barley was harvested from the world’s first robotically tended 
farm. Everything including sowing, fertilizing, collecting samples, and harvesting 
was done by autonomous vehicles on the farm. This was a milestone in digital 
agriculture, many times described as “smart farming,” or “e-agriculture.”
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DA originated from vertical farming and controlled environment agriculture 
(CEA). CEA uses advanced computer-based technologies of physically collecting 
information that is converted into a computer-readable language. This leads to 
the development of tools and sensors integrated into the Internet of Things (IoT) 
environment. Such innovations can enhance real-time analysis, machine learning, 
and artificial intelligence to enable the management of massive amounts of data, 
also known as big data. Artificial intelligence (AI) has greater potential in automated 
irrigation, soil sensing, weed management, and biocontrol or biostimulant applica-
tions spraying to enhance the productivity in digital sustainable farming for better 
economic benefits. Linear AI programming and yield mapping through machine 
learning help to uncover patterns hidden within large-scale data sets that can be 
used for crop planning and monitoring, production, and resource allocation. Light 
quality and intensity, and CO2 levels directly affect photosynthesis, transpiration, 
water uptake, flowering, germination, internodal growth, etc. within the plant. These 
attributes along with fertigation are crucial to have an effective and economically 
controlled environment. Intelligent sensors, combined with visual data streams from 
drones, use AI to detect areas most infected with pests. e-Agriculture is emerging 
as a global community practice where people from all over the world exchange 
information, ideas, and resources on sustainable agriculture and rural development. 

Some of the technologies predominantly used in DA are robotics, IoT and 
sensors, artificial intelligence (AI), drones, data analytics, remote sensing, and cloud 
connectivity. Robots can milk cows, pick strawberries, cut papayas and represent a 
global market share of over $5 billion. IoT and sensors have the ability to evaluate 
the environment inside the farm or the uptake of moisture from the soil in real 
time. AI already has a market value of $11.4 billion. AI competes with extension 
agents, farming experts, consultants, and professional expertise. More likely, AI will 
alter how those professions should function. Drones have the ability to go where 
humans can’t and see things not readily observed from the ground which creates 
real insights into pest protection, fertilizer and herbicide application, irrigation, 
and harvest timing. Through data analytics, the world will store 175 zettabytes 
of data by 2025. Every step in agriculture like crop selection, cultivation method, 
harvesting, and supply chain management can be optimized by data analytics. 
Remote sensing is being used for mapping soil properties, classification of crop 
species, detection of crop water stress, monitoring of weeds and crop diseases, 
and mapping of crop yield, in addition to sensing climate change. DA can assist 
governments to improve their policy making and decisions to improve socio-
economic, environmental, sustainable, and climate research applications to enhance 
the productivity and efficiency of a given system. 

In this book, apart from introductory chapters, there are four sections dealing 
with vertical farming and nurseries, IoT (Internet of Things) in agriculture, digital 
agriculture roles in speed breeding/fast-forward breeding, precision agriculture 
technologies, and predictive agriculture. Soilless smart agriculture systems, various 
aspects of vertical farming, intelligent nutrient controlling systems, remote sensing 
in precision agriculture and climate change, satellite imagery and crop modelling 
applications of UAVs/drones, image-based plant phenotyping, smart IoT sensors
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and data science, digital yield predictions, crop phenomics and high-throughput 
phenotyping, speed breeding for crop improvement, digital agriculture and for 
protection against pests and diseases, sensors of plant health data analytics in 
agriculture, data science and artificial intelligence, sensing systems for precision 
agriculture, AI and machine learning models, predictive analytics and crop mod-
elling for future climate change adaptation are some of the chapters. All chapters 
are thoroughly reviewed and revised before publication. We strongly believe this 
book will be beneficial to researchers, students, policy makers, agriculturists, and 
professionals working in high tech agro-industries. 

We wish to profusely acknowledge Springer Nature for publishing this needy and 
timely book. 

Kottayam, Kerala, India P. M. Priyadarshan 
Helsinki, Finland Shri Mohan Jain 
Mumbai, India Suprasanna Penna 
Al-Ahsa, Saudi Arabia Jameel M. Al-Khayri
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Digital Agriculture for the Years to Come 

P. M. Priyadarshan, Suprasanna Penna, Shri Mohan Jain , 
and Jameel M. Al-Khayri 

Abstract The agriculture industry has evolved significantly over the last 50 years. 
Technology developments have led to larger, quicker, and more productive farm 
equipment, enabling the more efficient cultivation of larger areas. Additionally, 
improved irrigation, fertilizers, and seed have helped farmers to increase crops. New 
technologies such as artificial intelligence, analytics, networked sensors, and others 
may increase yields even further, improve the efficiency of water and other inputs, 
and promote sustainability and resilience in cattle rearing and agricultural output. 
Implementing such cutting-edge technologies is known as agriculture 4.0. But, 
without a solid infrastructure for connectivity, none of this is practical. If connection 
is successfully implemented in the industry, agriculture may add $500 billion in 
value to the global GDP by 2030. This would lead to an increase of 7–9% over the 
anticipated total and greatly relieve the pressure currently imposed on farmers. It is 
one of just seven industries that will raise global GDP by $2 to $3 trillion over the 
next 10 years because of better connectivity. World population is expected to grow 
to 9.6 billion by 2050 that lead to significant increase in the demand for food. On the 
other hand, the availability of natural resources like freshwater and productive arable 
land is getting constrained year after year. Nearly 821 million people still suffer from 
hunger. Digital agriculture, also known as smart farming or e-agriculture, is the use 
of tools to collect, store, analyze, and disseminate electronic data and/or information 
in agriculture. 
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The present emphasis is on reducing water, energy, and material use in agriculture 
as access to water and material resources becomes more challenging due to climate 
change and population expansion. Controlled environment agriculture (CEA) can 
be used to grow vegetables and high-value commodities in any environment with 
outstanding water, soil, and fertilizer efficiency, since local production reduces 
transportation costs. Contrary to conventional field agriculture, CEA offers more 
effective nutrient usage while using up to 80% less land and nearly 90% less 
water. Keeping in view of the population progression, declining land resources, and 
climate vagaries, there is a need to develop selection methods with more accuracy 
and precision. The advancement of artificial intelligence (AI) in the past decade 
has offered great potential to augment the climate smart agriculture. Protected 
agriculture, as against open-field farming, offers a more conducive and manageable 
environment for crop growth through greenhouse technology, which is somewhat 
unrestricted by the natural environment and encourages the intensive and effective 
use of agricultural resources. Remote sensing (RS) is a diagnostic tool that can act 
as an early warning system. Due to recent developments in sensor technologies, 
data management, and data analytics, the agricultural community now has access 
to a number of RS choices. All digital technologies that can be used in agriculture 
to improve yield, plant protection and enhance nutritional quality are summarized 
here. 

Keywords Digital agriculture · Vertical farming · Controlled environment 
agriculture · Sensors · IoT · Big data · Block chain · Supply chain · Robotics · 
Remote sensing 

1 Introduction 

The agriculture industry has changed significantly over the last 50 years. Technol-
ogy developments have led to larger, quicker, and more productive farm equipment, 
enabling the more efficient cultivation of larger areas. Additionally, improved 
irrigation, fertilizers, and seed have helped farmers to increase crops. A new 
revolution in agriculture is currently taking place, one that is being fueled by 
connectivity and data (Mehrabi et al. 2021; Himesh et al. 2018). New technologies, 
such as artificial intelligence, analytics, networked sensors, and others, may increase 
yields even further, improve the efficiency of water and other inputs, and promote 
sustainability and resilience in cattle rearing and agricultural output (Javaid et al. 
2022). Implementing such cutting-edge technologies is known as agriculture 4.0. 
(da Silveira and Amaral 2022). But, without a solid infrastructure for connectivity, 
none of this is practical. If connection is successfully implemented in the industry, 
agriculture may add $500 billion in value to the global GDP by 2030. This would 
lead to an increase of 7–9% over the anticipated total and greatly relieve the pressure 
currently imposed on farmers. It is one of just seven industries that will raise global 
GDP by $2 to $3 trillion over the next 10 years because of better connectivity 
(Goedde et al. 2020).
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World agriculture is facing multiple challenges. World population is expected 
to grow to 9.6 billion by 2050 that lead to significant increase in the demand for 
food (Trendov et al. 2019). On the other hand, the availability of natural resources 
like freshwater and productive arable land is getting constrained year after year. 
Nearly 821 million people still suffer from hunger (FAO 2018). The agri-food 
sector remains critical for livelihoods. There are more than 570 million smallholder 
farms worldwide (Lowder et al. 2016). As per ILOSTAT, agriculture and food 
production accounts for 28% of the entire global workforce (ILOSTAT 2019). If 
the UN Sustainable Development Goal of “world with zero hunger” by 2030 has 
to be achieved, then more productive, efficient, sustainable, inclusive, transparent, 
and resilient food systems are prerequisites (FAO 2017). This calls for urgent 
transformations in the agri-food system. 

By 2030, the world’s water supply won’t be able to meet the demand, and 
rising costs for energy, labor, and nutrients are already placing pressure on profit 
margins. Before it can support large-scale agriculture once more, a fifth of the 
world’s arable land needs to be repaired extensively. The need for more ethical and 
sustainable agricultural practices, such as stricter guidelines for farm animal care 
and reduced chemical and water use, is also being pushed by mounting societal and 
environmental concerns. Environmental challenges include global warming and the 
financial toll of extreme weather (Ebi et al. 2021). It is under such circumstances 
the digital agriculture stems promise (Lajoie-O’Malley et al. 2020). 

Digital agriculture, also known as smart farming or e-agriculture, is the use of 
tools to collect, store, analyze, and disseminate electronic data and/or information 
in agriculture (Shepherd et al. 2018). Digital technologies are being quickly 
incorporated into agriculture. Big technology companies, small local enterprises, 
and governments are designing and funding a variety of solutions aimed at creating 
the “smart” farmer, from self-driving tractors to soil disease-detecting drones, from 
milking robots to farm management apps (Pauschinger and Klauser 2022). The use 
of “smart” technologies (Chugh et al. 2021) and “big data” (Protopop and Shanoyan 
2016) as software-driven systems in agricultural production sites is sometimes 
referred to as “smart farming.” 

1.1 Facets of Digital Agriculture 

Over the years, international agriculture experienced three main stages: primi-
tive agriculture stage, traditional agriculture stage, and modern agriculture stage. 
Primitive agriculture undertook easy work by stoneware. Traditional agriculture 
stage produced tools made of iron and wood. During modern agriculture, advanced 
machines are used wherein agricultural economy ushered new heights. Current agri-
culture realizes information through digitalization. Digital agriculture is agriculture 
driven by digits. It integrates data collection, data transmission, data processing, 
digital control machinery, network, and automation (Bacco et al. 2019; Ingram 
and Mayne 2020). These processes are coordinated by cloud computing with its
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arms like breeding informatics, analytics, mobile services, digital services, GIS, 
UAVs, and Internet of things (IoT) (Fig. 1). By definition, digital agriculture (DA) 
is the integration of new and advanced technologies to enrich the farmer and other 
stakeholders within the agriculture value chain to enhance food production. Today 
the term “agricultural digitalization” refers to the process of integrating advanced 
digital technologies like artificial intelligence, big data, robotics, unmanned aviation 
systems, sensors, and communication net-works, all connected through the Internet 
of Things into the farm production system (Lioutas et al. 2021; MacPherson et al. 
2022). 

Fig. 1 Various facets of DA. Cloud computing is the delivery of computing services – including 
servers, storage, databases, networking, software, analytics, and intelligence over the Internet 
(“the cloud”) to offer faster innovation, flexible resources, and economies of scale. Breeding 
bioinformatics: A modern breeding program with advanced phenotyping and genotyping tech-
nologies has the potential to create vast amounts of data. Breeding bioinformatics manages and 
converts this data into valuable information in a time-sensitive manner. Data analytics: is the 
process of exploring and analyzing large datasets to find hidden patterns, unseen trends, discover 
correlations, and derive valuable insights to make predictions. It improves the speed and efficiency 
of your agriculture. Mobile devices (smart phones): is equipped with various sensors are opening 
new opportunities for rural farmers who previously had limited access to up-to-date agricultural 
information like market, weather, and crop disease news. Digital services: refers to the electronic 
transfer of information including data and content across numerous platforms and devices like web 
or mobile. Geographic information system (GIS): is a computer system that analyzes and displays 
geographically referenced information. It uses data that is attached to a unique location. GIS is 
being merged with unmanned aerial vehicles (UAVs) to plan, construct, and implement various 
agricultural practices. The Internet of Things (IoT): describes the network of physical objects 
(“things”) that are embedded with sensors, software, and other technologies for the purpose of 
connecting and exchanging data with other devices and systems over the Internet
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The world’s agri-food system is increasingly subject to constraints, especially 
since it relies on a number of nonrenewable resources that are becoming scarcer 
(fresh water, phosphorus, oil, cultivable soil, etc.). This system will soon exert 
its impact over climate change, both directly (extreme weather events, drought, 
etc.) and indirectly (melting glaciers, proliferation and spread of harmful species 
of organisms and diseases, rising sea levels) (UNESCO 2019). The collapse of 
biodiversity in seeds, pollinators, crop auxiliaries, etc. are looming large that 
endangers many ecosystems (FAO 2019a, b). Conflicts over the use of land and 
water will also increase with the use of biomass for energy and the implementation 
of afforestation/reforestation programs to capture CO2. This is also known as 
“negative emissions” technique that now substantiates all IPCC scenarios limiting 
the temperature increase to 2 ◦C. In addition, the yield of cereals deemed critical 
for food security as their yields seem to have reached a plateau (Maurel et al. 2022) 
(see Iddio et al. 2019 for a comprehensive review). 

In many parts of the world, climate change has caused many irregular and 
extreme weather events (Li et al. 2021). Different parts of the world have begun 
experiencing intense drought, hurricanes and storms, and floods as a result of global 
warming (FAO 2021). Additionally, agricultural production success varies based on 
the complex environmental effects of global warming and climate change, both in 
the short and long term (Hatfield et al. 2011). Extreme heat, extreme cold, wetness, 
and dryness all have a deleterious impact on plants (Hatfield and Prueger 2015; 
FAO 2019a, b). Trade conflicts, epidemic and vegetative diseases, rising seed and 
fertilizer prices and wages, flash floods, heatwaves, and other weather variations 
all have a negative impact on agriculture. However, as evidenced by agriculture’s 
contributions to greenhouse gas emissions, water pollution, and biodiversity loss 
(Springmann et al. 2018), major agricultural systems are on largely unsustainable 
trajectories. Countries must create policies and programs in a sustainable manner if 
they are to overcome these obstacles and satisfy future demands. The best ways 
to achieve sustainable agricultural development are to continue the process of 
innovation using contemporary genetic and information technologies to increase 
agricultural productivity while balancing economic, environmental, and social 
outcomes related to food and agricultural systems (Basso and Antle 2020). 

Industrial agriculture has a substantial negative impact on the ecosystem as a 
result of human activity, which today controls almost all biogeochemical cycles on 
Earth (Park et al. 2016). Production from industrial agriculture is expected to rise 
by 100–110% between 2005 and 2030, which calls for substantial inputs of finite 
resources like fresh water, soil with sufficient sunlight, and nonrenewable nutrients 
(e.g., phosphorus) (Cordell et al. 2012). The degradation of soils, aquifer depletion, 
saltwater-intrusion, runoff and eutrophication, and emissions (e.g., CO2, N2O, etc.), 
contributing to global warming and resource scarcity are all effects of modern 
intensive agriculture (Cohen et al. 2022). In particular, this is because farmers 
frequently lack sufficient measuring, modeling, and dynamic control mechanisms to 
optimize inputs for plant growth (Dawson and Hilton 2011). Moreover, losses from 
farm to fork in the form of food waste can reach as high as 40% due to extended 
supply chains (Cohen et al. 2022).
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The present emphasis is on reducing water, energy, and material use in agriculture 
as access to water and material resources becomes more challenging due to climate 
change and population expansion (Cohen et al. 2022). Regional decentralized con-
trolled environment agriculture is one suggestion for enhancing the sustainability 
of vegetable production. The benefit of this is that practitioners can precisely 
control environmental effects, including nutrient application, water use efficiency, 
and lighting. Hydroponics or soilless culture feeds nutrients and water directly to 
the plant by employing recirculation (where the substrate is reused in the system 
until the nutrients are exhausted) or flow-through substrates (Silberbush et al. 2005). 
Controlled environment agriculture (CEA) can be used to grow vegetables and high-
value commodities in any environment with outstanding water, soil, and fertilizer 
efficiency, since local production reduces transportation costs (Van Ginkel et al. 
2017). Contrary to conventional field agriculture, CEA offers more effective nutrient 
usage while using up to 80% less land and nearly 90% less water (Carmassi et al. 
2007). 

In order to manage soil, climate, and genetic resources at the field and landscape 
scales, digital agriculture uses a collection of geospatial and digital information 
technologies that integrate sensors, analytics, and automation (Basso and Antle 
2020). Big data, the Internet of Things (IoT), augmented reality, robotics, sensors, 
3D printing, system integration, ubiquitous connectivity, artificial intelligence, 
machine learning, digital twins, and blockchain are just a few of the technologies 
that make up digitalization (Alm et al. 2016) (Table 1), which is anticipated to 
fundamentally alter daily life (Klerkx et al. 2019, food, fiber, and bioenergy supply 
chains and systems) and agricultural productivity processes. According to Rotz et 
al. (2019), the early indications of transition are already apparent. 

Several concepts have emerged with digitalization in agricultural production 
systems, value chains and more broadly food systems. These include smart farming, 
precision agriculture or precision farming, decision agriculture, digital agriculture, 
agriculture 4.0, or what is referred to in French as Agriculture Numérique (i.e., 
numerical agriculture) (Rose and Chilvers 2018; Klerkx et al. 2019). On-farm 
management duties that take into account location, weather, behavior, phytosanitary 
status, consumption, energy use, prices, and economic data are all included in 
digitalization. This is done with the aid of sensors, equipment, drones, and satellites. 
Through ongoing monitoring or targeted big data science inquiries, the data so 
acquired is then utilized to understand the past, anticipate the future, and make 
more timely or correct judgments (Ingram and Maye 2020). These developments 
have mostly concentrated on deploying technologies for enhancing post-farmgate 
operations, postharvest quality monitoring, and real-time traceability (Rutten et al. 
2013; Wolfert et al. 2017). This claim is supported by a variety of reviews on 
subjects such precision farming, big data analysis, drones, artificial intelligence, 
robots, 3D printing, and the Internet of Things (IoT), as well as their potential to 
enhance agricultural production systems, value chains, and food systems (Bertoglio 
et al. 2021). For instance, yield stability maps show regions that have consistently 
high production throughout time, regions with poor productivity, and other regions 
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Table 1 Technologies used in digital agriculture 

Robotics Agricultural robots are for increasing production yields. From drones to 
autonomous tractors to robotic arms, the technology is being deployed in 
creative and innovative applications. Some of the most common robots are 
the following: harvesting and picking, weed control, autonomous mowing, 
pruning, seeding, spraying and thinning, phenotyping, sorting and packing, 
and utility platforms. Robots can achieve to improve the size of yields and 
reduce waste from crops being left in the field 

IoT and 
sensors 

The Internet of Things is utility of Internet for various operational purposes. 
IoT becomes operational through sensors. Sensors are devices that detect and 
respond to changes in an environment. Inputs can come from a variety of 
sources such as light, temperature, motion, and pressure. Sensors provide 
valuable information through a network, and they can share data with other 
managerial information systems. The sensor attains a physical parameter and 
converts it into a signal suitable for processing (e.g., electrical, mechanical, 
optical). The output of the sensor is a signal which is converted to a 
human-readable form, like changes in characteristics, changes in resistance, 
capacitance, impedance, etc. 

Artificial 
intelligence 
(AI) 

In contrast to the intelligence exhibited by humans or other animals, artificial 
intelligence (AI) refers to the perception, synthesis, and inference of 
information made by computers. The term “intelligence” refers to the 
capacity for knowledge, reasoning, abstraction, and inference of meaning 

Deep learning 
(DL) 

It is simply a neural network with three or more layers and is a subset of 
machine learning. These neural networks make an effort to mimic how the 
human brain functions; however, they fall far short of being able to match it, 
enabling it to “learn” from vast volumes of data. Additional hidden layers 
can help to optimize and refine for accuracy even if a neural network with 
only one layer can still make approximation predictions 

Drones and 
satellites 

While drones record data in real time, they lack the hard drives necessary to 
store the vast amounts of digital data that satellites are designed to hold until 
they can be recovered and used. In order to provide more accurate 
measurements on a particular location, drones can also use GPS 

Extended 
reality and the 
metaverse 

Extended reality (XR) enables users to constantly access internet content 
thanks to the metaverse, which also makes considerable use of 3D visuals. 
From augmented reality (AR) to mixed reality (MR) to virtual reality (VR), 
XR technologies cover a broad range of immersive technologies 

Virtual reality 
(VR) 

With images and things that seem real, a virtual reality (VR) environment 
gives the user the impression that they are completely engrossed in their 
surroundings. A virtual reality headset, helmet, or other equipment is used to 
view this environment 

Block chain A blockchain is a type of distributed database or ledger – one of today’s top 
tech trends – which means the power to update a blockchain is distributed 
between the nodes, or participants, of a public or private computer network. 
This is known as distributed ledger technology, or DLT 

Data analytics Analyzing data collections to identify trends and make judgments about the 
information they contain is known as data analytics (DA). Data analytics is 
increasingly carried out with the use of specialized hardware and software 

Cloud 
connectivity 

The capacity to connect two resources within a cloud, across clouds, and 
with on-premises data centers is referred to as cloud networking. A cloud 
service provider must offer the following three main forms of connectivity: 
site-to-cloud, the connection between cloud resources, and on-premises 
hardware 



8 P. M. Priyadarshan et al. 

Fig. 2 DA in agricultural systems. DA can be used to design and implement sustainable 
agricultural systems at farm and landscape scales. With the use of stability maps, DA can help 
redesign fields or subareas within fields that are unprofitable or environmentally unsustainable and 
sustainably intensify high-yield areas of the field knowing that these can respond to more inputs. 
(Courtesy: Bruno Basso, Michigan State University; Nature Sustainability, doi: https://doi.org/ 
10.1038/s41893-020-0510-0) 

that have yields that fluctuate over time. Stability maps can be used by DA to 
redesign unprofitable or environmentally unsustainable fields or portions of fields, 
as well as sustainably intensify culture in high-yield regions that respond to more 
inputs (Fig. 2). 

1.2 Controlled Environment Agriculture (CEA) 

Controlled-environment agriculture (CEA), which deals with sophisticated horticul-
tural practices and technological advancements, first gained popularity in the 1960s 


 29283 40042 a 29283 40042
a
 


Digital Agriculture for the Years to Come 9 

Fig. 3 Arable land per capita from 1960 to 2050. (FAO 2011) 

(Hodges et al. 1968). Controlled environments (CEs) promote production efficiency, 
optimize plant yield, and enhance product quality by providing predictions on how 
plants will appear in their surroundings. The market has recently seen a rise in 
demand for locally sourced food. According to Eaves and Eaves (2018), this is 
accomplished through CEA, which covers small- (in-home production or indoor 
gardens), medium- (community gardens), or large-scale commercial operations. 
The ability to alter production environments to increase plant quality and output, 
lengthen growing seasons, and allow crop production under unfavorable climatic 
conditions (e.g., wind, rain, extremely high temperatures, and inadequate light) 
is a fundamental advantage of CEA. The two most prevalent types of CEs used 
in urban agriculture (UA) are greenhouses and plant factories (PFs). Due to 
the decreasing amount of arable land, such systems are unavoidable (Fig. 3). 
Controlling greenhouses presents a particular difficulty, because it calls for systems 
that can adapt to the microclimatic factors and constantly shifting environmental 
circumstances. The expense of heating and cooling greenhouses can account for 70– 
85% of the overall operating cost in northern latitudes and harsh climates (Engler 
and Krarti 2021). 

1.2.1 CEA Facilities 

All CEA facilities are included under the general term “urban agriculture” (UA). 
CEA, on the other hand, is merely a portion of UA as a whole that has conditioned 
spaces. There are many different kinds of CEA facilities, including greenhouses, 
plant factories, rooftop gardens, and vertical farms. The market for indoor farming 
was estimated to be worth 38.7 billion USD in 2022 and may rise to 96.6 billion 
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by 2032. The market share now owned by Europe is the greatest, but due to 
their geographic constraints and economic development, India, China, Mexico, 
and Singapore are experiencing significant expansion (Specht et al. 2013). At the 
moment, greenhouses hold 70% of the market. The common CEAs include vertical 
farms, rooftop gardens, planned factories with artificial lighting, hydroponics, and 
aquaponics. 

Scissor lifts, ladders, stairs, or stacked A-frames are frequently used in vertical 
farms (VFs) to raise crops vertically (Beacham 2019). In comparison to traditional 
farming, VFs can stack these plant beds to boost agricultural yields by 10–100 times 
(Fig. 4). The annual growth of VFs is so exacting that it reported using almost twice 
as much water as traditional farming (Tong et al. 2016) while growing at a rate that 
was nearly two times as fast. Building rooftop gardens (RTGs) requires minimal to 
no structural upgrades. RTGs are marketed as energy-efficient building components, 
because they can lower both the winter and summer heating and cooling loads. If 
implemented on a number of buildings, greening the roofs could also aid in reducing 
the impacts of urban heat islands (Fig. 5). 

The advantages of RTGs are used in many building integrated agriculture (BIA) 
applications to produce energy-efficient CEAs (Benis et al. 2017; van Delden et 
al. 2021). Artificial lighting plant factories (PFALs) are often referred to as closed 
plant production systems (CPPS), which are totally sealed off from the outside 

Fig. 4 Vertical farming 
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Fig. 5 RTGs (rooftop garden)
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Fig. 6 Hydroponics 

(Kozai 2019). They are often built in a building that resembles an airtight warehouse, 
with rows of tall, stacked plant beds that are illuminated artificially. Comparing the 
profitability of growing leafy vegetables in a greenhouse with a PFAL, the latter has 
an internal rate of return that can reach 35% (Eaves and Eaves 2018; Avgoustaki 
and Xydis 2020). There is some crossover between different CEA facilities, as a 
completely insulated VF or RTG could also be considered to be a PFAL (Zhuang et 
al. 2022). 

Hydroponic crop cultivation has a number of potential advantages, including 
as separation from soil- or water-borne problems (such as nematodes, salinity, or 
heavy metals). Control over water and nutrient uptake has improved. The topic has 
received positive reviews (Raviv et al. 2019; Jones Jr 2014). Crops grown utilizing 
soilless culture are frequently cultivated in troughs, bags, or containers to facilitate 
effective management of the root zone (Fig. 6). In their list of typical nutrient 
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sources for soilless cultivation, Raviv et al. (2019) mention raw irrigation water, 
fertilizers that are frequently incorporated into a substrate, substrate components, 
and a provision to modify the pH of the substrate. A thorough description of 
management techniques for soilless culture systems is given by Nelson (2012). 

Nutrient-film technique (NFT), deep-water culture (DWC; also known as deep-
flow method, raft, raceway, or floating hydroponics, among other names), and 
aggregate culture are hydroponic systems that are frequently employed in UA 
(Gómez et al. 2019). Crops grown in slanted troughs with a thin film of nutrient 
solution flowing over the roots (either constantly or sporadically) constitute NFT. 
Roots are continuously submerged in a nutritional solution in DWC systems. In 
aggregate culture, crops are grown in containers or on substrates that have been 
bagged, with drip systems used to apply nutritional solutions. For leafy greens 
and herbs, NFT and DWC systems are frequently employed. Aggregate culture 
is recommended for long-term fruiting crops including strawberry (Fragaria x 
ananassa), cucumber (Cucumis sativus), sweet pepper (Capsicum annuum), and 
tomato (Lycopersicon esculentum) (Gómez et al. 2019). 

For soilless culture, substrate selection is a critical. Primary substrate compo-
nents consists of >40% of the substrate volume. They are organic materials with 
low bulk density and high water-holding capacity like peatmoss and coconut coir 
fiber (Argo and Fisher 2002; Gómez et al. 2019). On the other hand, secondary 
components that consist of <40% substrate volume include expanded minerals like 
perlite, vermiculite, clays, sand, and composts that increase drainage and cation 
exchange capacity to increase aeration and nutrient retention (see Raviv et al. 2019 
for a review). 

1.2.2 Optimal Growth Conditions 

The CEA sector struggles to attain economic viability due to ineffective microcli-
mate and rootzone-environment management and excessive prices. Microclimate 
control, comprising light, temperature, ventilation, CO2, and humidity, is crucial for 
producing uniform, high-quantity, and high-quality crops (Ojo and Zahid 2022). 
The focus of the most recent 10 years’ research has been on the establishment 
of intelligent systems in CEA facilities, such as nutrient solution management 
for hydroponic farms and cloud-based microenvironment monitoring and control 
systems (Michael et al. 2021). According to Monteiro et al. (2018), artificial 
intelligence (AI) algorithms have also opened up new possibilities for intelligent 
predictions and self-learning. A subset of machine learning called deep learning 
(DL), which has a large presence in many contemporary technologies, has attracted 
a lot of interest in recent years. 

In order to automate watering in vertical stack farms and microclimate control, 
computer vision and deep learning algorithms have been used (Ruscio et al. 2019). 
This has made it easier for growers to carry out quantitative assessments for high-
level decision-making. A tiny indoor farm of less than 1500 ft2 requires three 
personnel to complete manual CEA, which is labor-intensive. However, intelligent 
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automation may be able to overcome these issues employing optical sensors coupled 
with DL-based prediction models (Namuduri et al. 2020). Several sensors, including 
cameras and LiDAR, are used to detect targets (Mendez et al. 2021). 

1.2.3 Optimal Growth Environment and Automation 

The crop quality and yield can be impacted by a number of indoor circumstances 
(Gibson 2018; Engler and Krarti 2021). The reported literature indicates four 
primary elements as being essential to creating ideal indoor growing settings: 

• Temperature 
• Humidity and transpiration 
• Chemical balances 
• Photosynthetic photon flux (PPF) 

Temperature Temperature influences the timing of plant growth events such as 
maturation, flowering, and fruiting, and seeding is temperature-influenced in most 
plants (Kozai et al. 2019). For example, warmer temperatures speed up the process 
until flowering occurs at ideal levels. Below this threshold temperature, flowering 
progresses slowly and eventually stops completely at the ceiling temperature (Engler 
and Krarti 2021). Stressing plants at the end of their life is standard procedure for 
all flowering and fruiting plants. Stresses are modulated to mimic the challenges 
that plants face in the wild before they die, including imposing drought conditions, 
reducing temperature and nitrogen levels. Graamans et al. (2018) estimated the 
growth rate of lettuce and found that the optimum temperature for photosynthesis 
is between 20 and 25 ◦C, the optimum for respiration is between 30 and 35 ◦C, 
and the optimum dry matter production is between 16 and 17 ◦C (Graamans et al. 
2018). LEDs are commonly used in CEA applications. It emits far less far-infrared 
radiation and is more energy efficient than traditional high-pressure sodium lamps 
used in greenhouses. Therefore, LEDs can help keep plants at the right temperature 
(Kozai et al. 2019). 

Humidity and Transpiration Plant transpiration is hampered by the high relative 
humidity at the CEA facility. Vapor pressure deficit (VPD) is used to determine 
how much water can be contained in the air around a leaf, depending on its 
surface characteristics and a given temperature. The ideal VPD range for many 
plants is between 0.8 kPa and 0.95 kPa (Kozai et al. 2019). Reduced VPD 
prevents transpiration, which leads to water storage by the plant, promotes the 
growth of fungus, and finally reduces output (Linker et al. 2011). Yet, higher VPD 
needs higher water consumption, potential loads, and heating, ventilation, and air 
conditioning (HVAC) requirements. Plant stomata have the capacity to completely 
close, stopping transpiration (Engler and Krarti 2021). Stomata, which are openings 
in the plant wall, are used for respiration. Stomata can detect changes in light, 
temperature, humidity, and CO2 concentration. The amount of water transpired is 
influenced by the root-shoot ratio, VPD, leaf area, and surface characteristics (Kozai 
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et al. 2019; Bramley et al. 2022). Deep roots enable a plant to store more water for 
transpiration by the shoot. In plants, larger leaves often absorb more water than 
smaller leaves. Plants with thick cuticles, thick cell walls, sunken stomata, or hairs 
can reduce the rate of transpiration in order to raise the boundary layer between the 
stomata and the sensible heat of the flowing air (Passioura and Angus 2010). It is 
assured that CO2 and water vapor will diffuse into the plant’s leaves by maintaining 
a horizontal airflow rate of 0.3–0.5 m/s. The ideal airflow for some plants, such 
as tomato seedlings, is 0.7 m/s, but generally speaking, airflows up to 1.0 m/s can 
unduly stress the plant. Additionally, natural convection caused by ventilation can 
stop overheating in the top rows of a CEA plant (Kozai et al. 2019). 

Chemical Balances Improved rates of nutrient intake, photosynthetic assimilation, 
and product nutritional value are all strongly associated with CO2 enrichment 
(Vanhove et al. 2011). Due to cost constraints, persistently gloomy weather, or 
high ventilation rates in hot regions, CO2 enrichment might only be practical for 
a small number of CEA sites (Li et al. 2018a, b). The production of biomass 
and amino acids in lettuce is said to be enhanced by a CO2 concentration of 
1000 ppm, monochromatic LED, and appropriate nutrient distribution (Miyagi et al. 
2017). Increasing nitrogen concentrations in recirculating hydroponic systems from 
100 mg/L to 400 mg/L increases lettuce yields by 0.8 kg m−2 in the fall, 2.6 kg m−2 

in the winter, and 2.3 kg m−2 in the spring (Djidonou and Leskovar 2019). For CEA 
facilities, tracer gases are utilized to measure air exchange rates. N2O or SF6 are 
frequently utilized tracer gases in construction sites and CEA facilities. Moreover, 
CO2 cannot be utilized in CEA facilities, since it can be absorbed by plants, despite 
the fact that it is employed as a tracer gas in other sectors. These gases’ resulting 
energy balance can be used to forecast the right ventilation rates, which would save 
operational expenses. The use of H2O as a tracer gas is now the subject of research 
(Engler and Krarti 2021). 

Photosynthetic Photon Flux (PPF) The photoperiod, or duration of the night, which 
characterizes the growth season for a specific latitude, determines flowering. While 
exposed to light, plants absorb CO2; when it is dark, they retain it. The level of CO2 
within a CEA facility is impacted by this pattern naturally (Li et al. 2018a, b). For a 
number of reasons, LEDs are preferable to incandescent, fluorescent, and HID bulbs. 
According to Graamans et al. (2018), LEDs installed in plant factories are often set 
at 52%, with the remaining 48% of power being distributed as sensible heat to aid 
in plants’ evapotranspiration. The suggested growing parameters for CEA facilities 
are available Table 2. 

Automation Automation in CEA or protected agriculture can be achieved through 
the implementation of the Internet of Things (IoT) (Shi et al. 2019a, b). A network 
of physical items that are equipped with sensors, software, and other technologies is 
known as the Internet of Things (IoT). These “things” are able to share real-time data 
with other linked devices and systems through networks because they are connected 
to the Internet. 
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With the development of agricultural sensor, wireless communication, cloud 
computing, machine learning, and big data technologies, IoT technology has grown 
and is progressively being promoted and used in the field of protected agriculture 
(Kamilaris and Prenafeta-Boldú 2018). It is playing an important role in many 
areas of protected agriculture due to its capacity to help farmers check soil quality, 
climatic change, and the health of animals and plants (Shi et al. 2019a, b). In the 
event that environmental variables alter above the predetermined threshold, IoT 
will automatically send an alert message to the administrator demanding that the 
hidden threat be eliminated. Additionally, according to Liu et al. (2018), it has the 
capacity to alter environmental factors like temperature, humidity, carbon dioxide 
concentration, and illumination in real time. 

Additionally, the IoT system’s cameras can capture crop diseases and insect pests 
in the greenhouse in real time, helping farmers to spot problems and put preventative 
measures into place (Ma et al. 2015). GPS, radio frequency identification (RFID), 
and other location-based sensors enable tracking and visual monitoring of produce 
during storage and transportation. Supermarket managers use their computer or 
smartphone to monitor and forecast product status and demand in order to get 
things on the shelves. Users and customers can obtain details on the variety, origin, 
processing, and other features of agricultural products by utilizing a QR code, 
barcode, etc. With the use of IoT for protected agriculture, a rural community may 
be constructed that is knowledgeable, connected, advanced, and adaptable. Cheap 
embedded devices can improve how people engage with the physical world. For 
further information on IoT, read the section on technology in DA. Big data, cloud 
computing, and edge computing can all provide insightful analysis and information 
that can be used to make decisions (Shi et al. 2019a, b; Quy et al. 2022). 

1.3 Challenges Facing Food Production and Food Supply 
Chain 

The food sector is crucial in providing the fundamentals and needs to support a 
range of human behaviors and activities (Cooper and Ellram 1993). In order for the 
food to reach the ultimate consumers by the due date, it must be stored, delivered, 
and retailed after it has been produced or harvested. According to reports, around 
1.3 billion tons (or about one-third) of the food produced each year is abandoned or 
wasted (Manning et al. 2006). Around 1 billion tons of food are wasted each year, 
with two-thirds of that occurring in the supply chain during harvest, shipping, and 
storage (Fritz and Schiefer 2008). Consider fruit and vegetables as an example. Due 
to inefficient and ineffective food supply chain management (FSCM), 492 million 
tons of such perishable food were wasted globally in 2011 (Gustavsson et al. 2011). 
FSCM is important to save our food as a result (see Zhong et al. 2017 for a review). 

The food supply chain has quickly evolved in recent decades, spreading inter-
nationally and engaging many more partners, making the supply chain longer and 
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more sophisticated than before. Today’s consumers expect exotic delicacies, fresh 
on their plates, year-round. As if things weren’t already challenging enough, the 
multiyear COVID pandemic shutdown in 2020 put even more strain on supply 
chains by closing down numerous restaurant and food service supply chains and 
raising the stakes for retail chains and direct-to-consumer food delivery (Huang et 
al. 2021). 

1.3.1 Blockchain Technology 

Blockchain technology, a sophisticated database system, permits open information 
exchange inside a business network. In a blockchain database, data is held in blocks 
that are linked together in a chain. The data is still constant in time, since the 
chain cannot be deleted or changed without network agreement. You can set up an 
unchangeable or immutable ledger using blockchain technology to manage orders, 
payments, accounts, and other transactions. The system’s built-in capabilities, 
which also prevent unauthorized transaction submissions, make it possible to see 
these transactions as a whole. 

1.3.2 e-Commerce Software 

A stand-alone program or software suite called e-commerce software gives the 
ability to sell your goods and services online. The front end, which is your website, 
makes it simple for customers to make purchases, while the back end allows you to 
streamline all of your procedures from inventory to sales. 

Each style of e-commerce software is available and can be customized to meet 
your objectives and financial constraints. Although it’s not a rule, the sort of e-
commerce website software you use usually depends on the size of your company. 
Software-as-a-Service, Platform-as-a-Service, or an on-premise platform that gives 
you control over the server and software used to offer your e-commerce website are 
all options for your e-commerce needs. 

1.4 Climate Smart Agriculture 

Climate change has imposed several adversaries to the planet ecosystem through 
erratic environmental fluctuations in temperature, rain pattern, and drought occur-
rence (IPCC 2018). The continuous changing scenario not only disturbs the crop 
growth and production but also affects the food security and the incidence of 
diseases (Chakraborty and Newton 2011). It has been unequivocally demonstrated 
that the climate change has set an impact on all the pathogen, host, and plant 
environment (Singh et al. 2023). Since agricultural productivity is crucially affected 
by plant diseases, the fluctuating climatic environment has led to different disease 
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related modalities, such as distribution pattern, resurgence, widespread infestation, 
and new pathotypes (Velásquez et al. 2018). Cases like intense Ascochyta blight in 
chickpea occurred due to infrequent late rainfall resulting in yield and quality losses 
(Addisu et al. 2023), and the shift in rainfall pattern due to an El Nino event has 
damaged lentil crop due to rust infestation in Ethiopia (Pathak et al. 2018). 

Since the dawn of agriculture, there have been technological developments, 
which have paved the way for improvement of crop plants and refining the crop 
cultivation and management. Plant breeding has witnessed genetic and agronomic 
interventions to enhance the pace and accuracy of plant selection (Wijerathna-Yapa 
and Pathirana 2022). Keeping in view of the population progression, declining land 
resources, and climate vagaries, there is a need to develop selection methods with 
more accuracy and precision. The advancement of artificial intelligence (AI) in the 
past decade has offered great potential to augment the climate smart agriculture. AI 
technology through the use of high-throughput genomics and phenomics methods 
can quicken the course of breeding new plant varieties (Khan et al. 2022; Harfouche 
et al. 2019). The machine learning tools have found their application in marker-
assisted selection, genomic prediction, and genomic selection (Esposito et al. 2020; 
Reinoso-Peláez et al. 2022). The tools including ML, deep learning, and predictive 
analysis can help in the analysis of complex, huge agricultural datasets to extract 
useful information about traits, and their associations of plant responses to stress 
conditions (Tong and Nikoloski 2021; Crane-Droesch 2018). Genomic technologies 
together with high-throughput phenotyping provide the trait related information to 
researchers to guide and notify the breeding methods to adopt for climate-smart 
breeding (Marsh et al. 2021). AI plays a vital role in integrating and handling the 
huge data by conducting association studies to identify genomic targets associated 
with disease response traits (Khan et al. 2022). Breeders can use the data for 
management of crop plants for their adaption to stresses and introgression through 
the use of genomic selection or genome editing tools (Harfouche et al. 2019). 

Plant diseases inflict severe losses on plant productivity and affect global food 
security. It has been demonstrated that the changing climatic factors worsen the 
conditions for resurgence of plant and crop diseases. This warrants the need of a 
greater understanding of the changing climate effects on crop plants in a spatial 
and temporal manner under realistic field scenario. The intervention of information 
technologies such as the Internet of Things (IoT), remote sensing, unmanned aerial 
vehicles, and artificial intelligence has revolutionized the agriculture (Gao et al. 
2020). These digital technologies have been pivotal in generating huge amount 
of data to aid the understanding of crop breeding for several applications, such as 
prediction of yield, weed and pest/disease detection and forecast, risk management, 
food safety, and spoilage inhibition. Kreuze et al. (2022) suggested the use of image 
detection from smartphones or unmanned aerial vehicles for monitoring of pest 
and disease and data handling for modeling, predictions, and forecasting regarding 
climate change in root, tuber crops, and banana. 

The deep learning tools have also found their place in agriculture, for weather 
forecast (Schultz et al. 2021). Neural networks are regularly used in the context 
of plant diseases, such as epidemiology or remote sensing (Zhang et al. 2005; 
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Selvaraj et al. 2019). In case of powdery mildew disease, UV-B light has shown 
good application for disease management in grapes and strawberry (Onofre et al. 
2021; Meyer et al. 2021). Application of pesticides on crops like grapes can be 
very well done using robotics systems (Oberti et al. 2016). Disease phenotyping 
often plays a crucial role in field grown plants, for example, in potato in the context 
of potato blight, efficient phenomics-assisted screening has been used for disease 
resistance (Gold et al. 2020). The deep learning and machine learning are also used 
to precisely categorize breeding germplasm for resistance to potato late blight (Gold 
et al. 2020), Rice hoja blanca virus (Delgado et al. 2019), and banana Xanthomonas 
wilt (Selvaraj et al. 2020). There have been several studies indicating that it is 
possible to go for early, nondestructive prediction of the onset of disease based on 
primary symptoms such as mild and small lesions by using imaging spectroscopy 
(Gold 2021). 

1.5 Technologies in DA 

The phrase “Internet of Things” was first coined in 1999 by computer scientist 
Kevin Ashton. While working at Procter & Gamble, Ashton promoted the use of 
radio frequency identification (RFID) chips to track products as they move through 
a supply chain. A five-layer IoT architecture was created by Shi et al. (2019a, b) 
based on the realities of protected agriculture and the expertise of other academics. 
In Fig. 7, these levels are succinctly proposed as a five-layer system. 

• Perception layer: This layer is made up of various sensors, terminal devices, 
farm machinery, wireless sensor networks (WSN), RFID tags and readers, etc. 
Common sensors include machines, wireless sensor networks (WSN), RFID 
tags and readers, and other objects. Common sensors include those that collect 
data on the environment, plants and animals and other agriculturally related 
sensors. These sensors can offer temperature, humidity, and wind speed data 
to agriculture. Data on variables, including temperature, humidity, wind speed, 
plant diseases, insect infestations, and animal vital signs, can all be collected with 
these sensors. Information has been acquired about plant diseases, insect pests, 
and animal vital signs. The gathered data is simply analyzed by the embedded 
device and uploaded to a higher layer through the network for additional 
processing and analysis. 

• Network layer: The infrastructure of the Internet of Things is made up of a 
converged network that consists of the Internet and various other communication 
networks. The transmission medium network is made up of the Internet and 
other communication networks. For the transmission, the medium can be either 
wired technology, such as CAN bus and RS485 bus, or wireless technology, 
such as Bluetooth, LoRa, and NB-IoT, as well as wireless technology, such 
as Zigbee. Agricultural data is also transmitted across the network layer using 
Bluetooth, LoRa, Zigbee, and NB-IoT. The network layer not only transmits 
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Fig. 7 Structure of IoT in protected agriculture. (After Shi et al. 2019a, b; courtesy: Sensors; doi: 
https://doi.org/10.3390/s19081833) 

different kinds of related information gathered by the perception layer to the 
higher layer, but it also sends control agricultural related information gathered 
by the perception layer to the higher layer and commands from the application 
layer to the perception layer, causing the related network layer devices to act 
appropriately. 

• Middleware layer: IoT may provide a range of services to fit a range of 
devices. Because each device’s technical requirements (CPU, power source, 
communication module, and system) are unique from the others, heterogeneity 
issues can occur. Different devices are unable to connect to and communicate 
with one another as a result. The middleware layer’s aggregation, filtering, and 
processing cause heterogeneity issues. The middleware layer collects, filters, and 
processes data from IoT devices, greatly lowering processing time and cost while 
providing developers with a more flexible tool to build their applications. It also 
simplifies the processes for introducing new hardware and software, facilitating 
its faster integration with existing systems and boosting IoT compatibility. 
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• Common platform layer: The organization, decision-making, summary, and 
statistics of agricultural data, as well as the creation of diagnostic analysis, 
forecasting, and early warning systems, are all responsibilities of the common 
platform layer. Machine learning, big data, edge computing, cloud computing, 
fog computing, diagnostic reasoning, and early warning and prediction are 
all part of this layer. An algorithm, extra commonly used core processing 
technologies, and its business model are all included in this layer. 

• Application layer: The value and utility of the Internet of Things are most clearly 
seen at here, the highest level of the architecture. This layer includes a number 
of intelligent platforms or systems for environmental monitoring and control 
of plants and animals, early warning and management of diseases and insect 
pests, and traceability of the safety of agricultural products. These systems can 
all improve production efficiency and save money and time. 

1.5.1 Crucial Technologies of IoT 

Sensor Technology In order to collect data about the environment, plants, and 
animals, sensors are crucial and one of the technological barriers in the development 
of the Internet of Things (Shi et al. 2019a, b). Around 6000 research and production 
groups, including well-known companies like Honeywell, Foxboro, ENDEVCO, 
Bell & Howell, and Solartron, are now working on sensor research, representing 
more than 40 different countries. The three most often used types of agricultural 
sensors are physical property type sensors, biosensors, and micro-electromechanical 
system (MEMS) sensors. The majority of temperature, humidity, and gas sensors 
fall under the category of physical property sensors, which convert signals by 
physically altering the material’s sensitivity. The biosensor (Li et al. 2018a, b) 
is primarily used to detect pesticide residue, heavy metal ions, antibiotic residue, 
and toxic gas and includes enzyme sensors (Zheng et al. 2015), microbial sensors, 
adaptive sensors (Jiao et al. 2018), etc. It transmits information based on the 
organism’s reaction to the outside environment. The MEMS sensor is a standout 
among the most recent research and development efforts in the area of dependable, 
affordable, and compact sensors (Negara et al. 2014). There could be hundreds, 
thousands, or even millions of nodes in a sensor network. The cost of each node 
needs to be kept to around $1 in order for the sensor network to be practicable; 
however, it is now as high as $80 (Shi et al. 2019a, b). 

Data Transmission Technology When compared to conventional transmission 
technologies like fieldbus, wireless communication technology offers advantages, 
including inexpensive construction and maintenance costs, low-power consumption, 
and great extensibility. In order to develop their WSN for environmental monitoring 
(Kumar and Hancke 2014), autonomous irrigation (Rajalakshmi and Mahalakshmi 
2016), and remote control (Revathi and Sivakumaran 2016), the majority of 
scientists, enterprises, and producers currently employ it. The heterogeneity of 
the IoT has been slightly increased as a result of businesses and research groups 
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developing their own wireless devices. Additionally, interference between wireless 
signals from several protocols that use the same band, such as Bluetooth, Wi-Fi, 
and ZigBee, is possible (Čolaković and Hadžialić 2018). Given its high power 
consumption and quick connection, Wi-Fi is a viable option for the deployment 
of sensor networks at fixed locations. Since Bluetooth has a small communication 
range, exceptional security, and high power consumption, it is perfect for short-
term, close-range networking. ZigBee offers the advantages of low consumption, 
low cost, and self-organization, because each node can serve as a relay station for 
data transmission between close-by nodes. As a result, it makes for the ideal long-
distance, large-range sensor networking and enables simple coverage expansion. 

WSN The WSN is a multi-hop self-organizing network system created via wireless 
communication in order to cooperatively sense, gather, and process various data 
about the observed item in the network coverage area (Srbinovska et al. 2015; 
Ferentinos et al. 2017). It is made up of a number of sensor nodes, the majority 
of which are battery-operated. It can be divided into terrestrial WSN and wireless 
subterranean sensor networks (WUSN). Lower frequency wireless solutions are 
preferred for agricultural sensors, which are often buried in the ground, because of 
WUSN’s low attenuation. In comparison to terrestrial WSN, WUSN also consumes 
more energy and has larger antennas (Ojha et al. 2015). IoT may no longer require 
a mesh-style WSN with power-based routing, where one node forwards packets of 
other nodes, as low-power wide-area network (LPWAN) technology develops. 

Cloud Computing Cloud computing is the on-demand provision of computer 
system resources, particularly data storage (in the form of cloud storage) and 
processing power, without the user’s active involvement. Cloud computing is a 
result of distributed computing, parallel computing, and network computing. A 
variety of hardware, infrastructure, platform, software, and storage services are 
offered for IoT applications via this Internet-based computing system. A system for 
dynamically assigning, deploying, monitoring, and reallocating pools of virtualized 
computing and storage resources is at the heart of it (Hashem et al. 2015). This 
system enables users to access compute, data storage, and platform services that 
adhere to quality-of-service criteria. This will have a significant impact on the 
expansion of IoT in agriculture. First, cloud computing has made it possible for 
farmers to store text, pictures, videos, and other types of agricultural data using 
inexpensive data storage services, which has considerably reduced the cost of 
storage for agricultural businesses (Nativi et al. 2015). Second, relying on farmers’ 
technical expertise to make decisions using this raw data is challenging. Cloud 
computing is the only technology that can support intelligent large-scale data 
processing systems (Ferrández-Pastor et al. 2016). Third, using cloud computing 
can create a safe environment for developing different IoT applications, such as 
monitoring agricultural activities (Botta et al. 2016). 

Edge Computing Edge computing, as defined by Satyanarayanan (2017), is a new 
computing model that makes advantage of calculations at the network’s edge. Any 
computer and network resources between the data source and the cloud computing 
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center path are referred to as the edge of edge computing. Cloud services are 
represented by the edge’s downlink data, IoT services are represented by the edge’s 
uplink data, and both are represented by the edge’s uplink data. Edge hormone, 
which shifts some of the computing activities to the network edge device, can 
improve data transmission performance, guarantee real-time processing, and lower 
the computational load on the cloud computing center. Because processing occurs 
close to the source rather than in the cloud, edge computing also provides greater 
data security (Shi et al. 2019a, b). 

Machine Learning A sophisticated method known as machine learning (ML) 
allows computers to learn new knowledge, continuously improve their performance, 
and reach perfection. Theoretical, algorithmic, and practical advances in machine 
learning have been made recently (Biamonte et al. 2017), and it has been combined 
with other agricultural technologies to optimize crop output while reducing input 
costs (Shi et al. 2019a, b). The main machine learning methods include naive 
Bayes, discriminant analysis, K-nearest neighbor, support vector machines (SVM), 
K-means clustering, fuzzy clustering, gaussian mixture models, artificial neural 
networks (ANN), deep learning (Ojo and Zahid 2022), decision tree algorithm, 
and others (Edwards-Murphy et al. 2016). A theoretical framework for agricultural 
decision-making is provided by ML, which can make accurate predictions, reveal 
the internal linkages between jumbled, modelless, and complex agricultural data 
and discover these relationships. Machine learning technologies are useful for 
intelligent irrigation planning, crop breeding, disease detection, pest and disease 
prediction, and agricultural expert systems (Russell and Norvig 2018). For instance, 
historical farming data may be examined using machine learning technology, along 
with crop productivity under varied climatic conditions and the inheritance of a 
particular phenotype. Furthermore, by utilizing ML technology, it is feasible to 
look at association rules and then develop a probability model to identify the genes 
that are most likely to be involved in the expression of a particular desired trait 
in the plant (Montesinos-López et al. 2019). This can help the breeding specialist 
create a breeding experiment that will be effective. The method used three processes 
to identify the maturity of a single intact tomato using machine learning: pixel-
based segmentation, blob-based segmentation, and individual fruit detection. Using 
criteria including color, shape, texture, and size, decision trees were built in the first 
two steps and then utilized to segment photos. The different fruit of each tomato 
was finally automatically identified using the X-means clustering technique. Their 
method has a precision of 0.88 and a recall of 0.80, per the results of the tomato 
detection picture test (Kyosuke et al. 2014). 

Big Data Protected agriculture generates millions of dynamic, intricate, and geo-
graphical data points, including soil databases, greenhouse environment data, 
animal vaccination records, and government investment data. Contrary to relational 
data structures, which logically express themselves using two-dimensional tables, 
agricultural data is more unstructured and contains many hypermedia elements, 
including expert experience, knowledge, and agricultural models in the form of text, 
charts, pictures, animations, and voice/video. The four characteristics that best sum 
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Fig. 8 Big data technology 

up how “big” these data are volume, velocity, diversity, and honesty (Zhou et al. 
2016). Big data technology can find new knowledge, discover hidden connections 
within a data collection, and provide data support for subsequent processes. This 
is done by employing information mining and other techniques. The methods that 
are most frequently used to deal with big data technology are image processing, 
modeling and simulation, machine learning, statistical analysis, and geographic 
information systems (GIS) (Kamilaris et al. 2017) (Fig. 8). 

1.5.2 IoT and Plant Management 

By using greenhouse technology, which is partially uncontrolled by the natural 
environment and promotes the intense and efficient use of agricultural resources, 
protected agriculture, as opposed to open-field farming, offers a more favorable 
and manageable environment for crop growth. Numerous studies have shown that 
building and testing various monitoring and control systems to alter greenhouse 
environmental parameters, like air temperature and humidity, light intensity, and 
CO2 concentration, are both technically feasible and economically viable (Sreekan-
tha and Kavya 2017). At the early phases of IoT development, the environmental 
data are simply processed and frequently provided in sheet and plot form (Mat et al. 
2016). 
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Fig. 9 Conceptual image of IoT-based agricultural solutions 

With the development of cloud computing, ML, etc., IoT solutions may easily 
achieve smart data processing and analysis at low cost and in a straightforward 
manner (Elijah et al. 2018). Deng et al. (2018) built a closed-loop control system 
in a factory that makes salad-growing plants based on the kinetic model. Zamora-
Izquierdo et al. (2019) developed a low-cost smart agricultural Internet of Things 
infrastructure based on edge and cloud computing for soilless culture greenhouses. 
There were three parts to the platform: local, edge, and cloud. While the edge 
component handled primary management responsibilities and might improve the 
stability of these systems, the local component dealt with data collecting and 
automatic control via cyber-physical systems. Data analyses were performed by 
the cloud component. When compared to a standard open control, the platform 
conserved more than 30% more water (Liao et al. 2017). According to Zamora-
Izquierdo et al. (2019), an online watering system for hydroponic greenhouse 
crops increased water and fertilizer use efficiency by 100%. Liao et al. installed 
an IoT-based system in an orchid greenhouse to monitor environmental factors 
and the growth status of Phalaenopsis. The suggested method might provide high 
spatiotemporal resolution quantitative data to flower growers and aid in the future 
improvement of phalaenopsis farming practices (Katsoulas et al. 2017). For a 
conceptual representation of IoT-based agricultural solutions, see Fig. 9. 

Crop growth is greatly threatened by diseases and insect pests, and conventional 
technology and chemical prevention have several drawbacks and harmful effects 
(Larsen et al. 2019). Because of the development of IoT, crop disease and pest 
control now have more intelligent and effective solutions. Numerous IoT sensor 
types may collect information about location, greenhouse environment state, crop 
development, and pest situation anywhere in real time, helping farmers to keep an 
eye on agricultural pests and diseases. Following transmission to cloud data centers, 
the raw data and photos are processed and evaluated using a range of models and 
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algorithms based on different diseases and pests (Pixia and Xiangdong 2013). The 
following services are often provided to farms by these cloud computing facilities: 
disease or pest detection, disaster warning and warning of approaching calamities, 
and expert system-recommended governance activities. The diagnosis and early 
warning of agricultural illnesses, as well as online monitoring, should therefore be 
the main areas of future research. 

The source of all IoT data is sensing. The agri-food industry produces a 
significant amount of heterogeneous datasets with the help of many IoT devices, 
both in terms of content, structure, and storage type (Lokers et al. 2016). According 
to Ahmed et al. (2019), big data frequently demonstrates heterogeneity, variety, 
unstructuredness, noise, and excessive redundancy. Such enormous datasets require 
sophisticated methods for data curation and storage, as well as time-consuming 
statistical methods and programing models to extract relevant data. The knowledge 
required to understand the state of the (agri-food) system is produced through the 
preprocessing and conditioning of raw data. By employing sophisticated algorithms, 
observing the system’s performance in respect to the desired outcomes, and allow-
ing the system to make independent localized judgments and take the necessary 
actions, a system can be created capable of doing so. An IoT system is deemed 
“intelligent” when it reaches this level of independence, which permits autonomy in 
sensing, decision-making, and actuation (Misra et al. 2022). 

1.5.3 AI in Digital Agriculture 

The imitation of human intelligence functions by machines, especially computer 
systems, is artificial intelligence. Vendors have been rushing to highlight how AI 
is used in their goods and services as AI buzz has grown. Frequently, what they 
classify as AI is just a part of the technology, like machine learning. For the creation 
and training of machine learning algorithms, AI requires a foundation of specialized 
hardware and software. Python, R, Java, C++, and Julia all offer characteristics 
that are well-liked by AI engineers, yet no one programing language is exclusively 
associated with AI. 

In commercial IT, the phrases artificial intelligence (AI), machine learning (ML), 
and deep learning (DL) are frequently used interchangeably (van Dijk et al. 2021) 
(Fig. 10a). However, there are differences. The 1950s saw the invention of the term 
“AI,” which describes devices that mimic human intelligence. As new technologies 
are created, it encompasses a set of skills that is constantly changing. Machine 
learning and deep learning are examples of technologies that fall under the category 
of AI (Madakam et al. 2022). With the aid of machine learning, software programs 
may predict outcomes more accurately without having to be expressly programed 
to do so. In order to forecast new output values, machine learning algorithms use 
historical data as input. The availability of big datasets for training increased the 
effectiveness of this strategy significantly. Deep learning, a branch of machine 
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Fig. 10 (a) The phrases artificial intelligence (AI), machine learning (ML), and deep learning 
(DL) are frequently used interchangeably. (b) AI-based technologies assisting to increase effi-
ciency across all fields 

learning, is based on our knowledge of the anatomy of the human brain. Recent 
developments in AI, such as self-driving cars and ChatGPT, are underpinned by 
deep learning’s usage of artificial neural networks’ structure. 
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In addition to managing the challenges faced by various industries, including the 
various fields in the agricultural sector, such as crop yield, irrigation, soil content 
sensing, crop monitoring, weeding, and crop establishment, AI-based technologies 
also help to increase efficiency across all fields (Kim et al. 2008) (Fig. 10b). 
In order to supply high-value AI applications in the aforementioned industry, 
agricultural robots are constructed (Talaviya et al. 2020). The agricultural industry 
is experiencing a problem as a result of the rising worldwide population. AI has the 
ability to provide a crucial remedy. AI-based technical advancements have allowed 
farmers to increase output while using less input, improve output quality, and ensure 
a quicker go-to-market for the produced crops. Farmers were using 75 million linked 
devices in 2020 (Talaviya et al. 2020). The typical farm is anticipated to produce an 
average of 4.1 million data points per day by 2050. 

Over the past few decades, the agriculture production systems have had a great 
deal of difficulty due to changes in the climate, rising production costs, declining 
water supplies for irrigation, and an overall decline in farm labor (Jung et al. 
2021). In addition, the COVID-19 pandemic poses a threat to the disruption of 
supply chains and food production. Such elements pose a risk to the environment’s 
sustainability as well as the continuity of the current and future food supply chain. 
To keep ahead of the ongoing effects of climate change, significant inventions are 
constantly required (Talaviya et al. 2020). The obvious challenge here is how to 
produce enough food to feed the world’s expanding population. The various ways 
in which AI has contributed in the agricultural sector are as follows: 

Image Perception and Recognition 
According to Lee et al. (2017), there has been an increase in interest in autonomous 
UAVs recently. Some of these applications include recognition and surveillance, 
human body detection and geolocation, search and rescue, and the detection of 
forest fires (Tomic et al. 2012). Drones or unmanned aerial vehicles (UAVs) 
are becoming more and more popular because of their adaptability and amazing 
imaging technology, which ranges from delivery to photography, the ability to be 
piloted with a remote controller, and the devices’ dexterity in the air, which allows 
us to do a lot with these devices. 

Workforce and Skills 
Artificial intelligence enables farmers to compile vast amounts of data from 
public and government websites, analyze it all, and give farmers answers to many 
ambiguous problems (Panpatte 2018). It also gives us a smarter way of irrigation, 
which increases the farmers’ yield. A combination of technology and biological 
talents will be used in farming in the near future as a result of artificial intelligence, 
which will not only improve quality for all farmers but also reduce their losses and 
workloads. According to the UN, by 2050, two-thirds of the world’s population 
would be living in cities, necessitating a reduction in the load on farmers (Talaviya 
et al. 2020). AI in agriculture can be used to automate many operations, reduce risks, 
and give farmers with relatively simple and effective farming. 
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Increase the Output 
Variety selection and seed quality determine the maximum performance level for all 
plants (Ferguson et al. 1991). Emerging technologies have aided in crop selection 
and even improved the selection of hybrid seed options that are most suited to 
farmer demands. It has been implemented by studying how the seeds react to varied 
weather conditions and soil kinds. Plant diseases can be reduced by gathering this 
information. We can now meet market trends, yearly outcomes, and customer needs, 
allowing farmers to maximize agricultural returns more efficiently. 

Farmers’ Chatbots 
The conversational virtual assistants that automate conversations with users are 
known as chatbots. With the use of machine learning and artificial intelligence-
powered chatbots, we can now understand natural language and communicate with 
users more personally. Agriculture has made use of this facility by supporting the 
farmers in receiving answers to their unanswered queries, for offering them counsel, 
and for providing other recommendations as well. They are mostly equipped for 
retail, travel, and media. 

Machines that are used on farms to hoe and harvest crops, perform weeding, use 
drones to spray weeds and pesticides, and gadgets used in automatic milking are 
a few examples of AI-based agricultural technologies (Ryan et al. 2021). Robotics 
have assisted in an 80% reduction in the amount of herbicides sprayed on crops 
(Revanth 2019). According to studies, this optimization can reduce pesticide and 
herbicide costs by 90% while also protecting the environment from the negative 
consequences of chemical use (Revanth 2019). Drone-captured images of crops can 
be utilized for a variety of purposes, including nutrient deficiency monitoring, farm 
animal health monitoring, and agricultural cultivation optimization (Marvin et al. 
2021). 

On the basis of a given dataset, machine learning (ML) creates algorithms 
that learn to carry out particular tasks. It is a branch of artificial intelligence 
that is extensively employed in both academia and business. Between supervised 
and uncontrolled learning, there are significant differences. A predictive model is 
improved through supervised learning by setting its parameters to perform well on 
labeled training data, which consists of inputs and known outcomes. The generated 
models can then forecast new test data that hasn’t yet been seen. On the other 
hand, unsupervised learning looks for patterns in unlabeled data. It is more difficult 
to quantify the performance of an unsupervised model compared to supervised 
methods (van Dijk et al. 2021). 

1.5.4 DL, Genomics and Breeding 

As was previously stated, there are two basic categories of ML problems: supervised 
and unsupervised. The goal of supervised learning is to create a model that 
associates predictors with target variables, such as histone marks, such as DNA 
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sequences. Target variables might be either continuous (regression) or categorical 
(classification). The prediction of regulatory and nonregulatory regions in the maize 
genome (Mejia-Guerra and Buckler 2019), the prediction of mRNA expression 
levels (Washburn et al. 2019), sequence tagging in rice (Do et al. 2018), plant stress 
phenotyping (Ghosal et al. 2018), and the prediction of macronutrient deficiencies in 
tomatoes (Tran et al. 2019) are a few examples of supervised learning applications. 
The issue becomes unsupervised if there is no information about the outcome in the 
data collection (Wang et al. 2020). 

In order to solve complicated biological challenges, deep learning has been 
utilized in the fields of genomics, transcriptomics, proteomics, metabolomics, and 
systems biology (Xu and Jackson 2019). Numerous studies demonstrated that 
DNA shape significantly influences the specificity of transcription factor (TF) 
DNA-binding (Lai et al. 2019). Chromatin accessibility assays (like MNase-seq, 
DNase-seq, and FAIRE) and other genomic assays (such microarray and RNA-seq 
expression) are only a few of the many data types that are available. The same is 
true for transcription factor (TF) binding, which can be studied using ChIP-seq 
data, gene expression profiles, DNA affinity purification sequencing (DAP-seq), 
and ampDAP-seq, which uses amplified and consequently demethylated DNA as 
substrates and histone modifications (Zampieri et al. 2019). 

Several deep learning techniques were created to model TF DNA-binding 
specificity and analyze these enormous datasets (Wang et al. 2020). Several deep 
learning-based techniques have been developed to predict in vivo TF binding. 
For instance, DeepBind can learn several motifs to forecast the binding sites of 
proteins that bind DNA and RNA (Alipanahi et al. 2015). Cell-specific TF binding is 
predicted by TFImpute (Qin and Feng 2017). In DeepSEA (Zhou and Troyanskaya 
2015), DeFine (Wang et al. 2018), and DFIM (Greenside et al. 2018), the impacts 
of functional noncoding variations were assessed. DRNApred was created (Yan and 
Kurgan 2017) to distinguish between residues that bind to DNA and those that bind 
to RNA. 

It is difficult to pinpoint the important genomic regulatory regions in species 
like maize, which have a large number of repeated elements and broad intergenic 
areas. In order to overcome these difficulties, techniques like k-mer grammars, 
which are based on natural language processing, have been employed to precisely 
and cheaply annotate regulatory areas in maize lines. Modeling transcription factor 
binding locations has benefited significantly from machine learning techniques. 
Several facets of plant biology have shown the effectiveness of machine learning 
models. For better in vivo transcription binding sites (TFBSs) prediction, they can be 
trained using several types of sequencing data, either separately or in combination, 
and they can also further integrate additional data, such as DNase I hypersensitivity 
data. 
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1.6 Remote Sensing Technologies 

The agricultural community now has a diagnostic tool thanks to remote sensing 
(RS) technology that may serve as an early warning system. This enables quick 
action to stop any problems before they spread widely and negatively impact crop 
productivity. The agricultural community now has access to a variety of RS options 
as a result of recent advancements in sensor technologies, data management, and 
data analytics. However, the agriculture business has not yet fully utilized RS 
technologies due to knowledge gaps about their sufficiency, suitability, and techno-
economic viability. The use of RS technologies in agricultural production has 
increased significantly over the past 20 years, while use of unmanned aerial systems 
(UASs) has increased significantly since 2015. The region that produced the most 
research articles concerning UASs was Europe (34% of the total), followed by the 
USA (20%) and China (11%) (Khanal et al. 2020). Prior RS research tended to 
concentrate more on soil moisture and crop health monitoring during the growing 
season and less on issues like soil compaction, subsurface drainage, and crop grain 
quality monitoring. 

Modern technology have always been used by agricultural research experts as 
they look for new methods to incorporate them into agricultural systems. Dynamic 
crop simulation models have proven helpful tools for integrating various agriculture 
system components and enabling us to investigate how those components operate 
within the system. Because of its ability to utilize huge data, which is now more 
readily available through the use of unmanned aircraft systems (UASs), it is 
currently attracting a lot of attention within the agriculture disciplines (Jung et al. 
2021). By enabling advanced analytics for managing agricultural systems, UAS 
offers a previously unheard-of-chance to increase production systems’ resilience 
and efficiency (Lezoche et al. 2020). 

1.7 Precision Agriculture Technologies for Crop Production 

Precision agriculture (PA) enables the agro-management by using advanced technol-
ogy sensor and analysis tools. PA employs a huge volume of data and information 
to progress the use of agricultural resources, yields, and the quality of crops (Singh 
et al. 2020) and drought-related decisions in agriculture (Rhee and Im 2017). The 
changing weather and its effect on ecosystem threaten crop production and food 
security for the present and future generations. Machine learning approaches have 
been applied for the management of agri-related factors such as water availability, 
soil fertility, environment and diseases/pests (Priya and Ramesh 2019). Smart, 
digital agriculture can also benefit from the integration of the IoT devices, smart 
systems, and sensors to enable farmer’s agri-practices (Chehri et al. 2020). Among 
the PA applications, remote sensors, GPS, GIS, and yield maps are among the most 
in use (Cisternas et al. 2020). Other tools that have shown great interest for PA 
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include UAVs and WSNs for diverse functions including aerial crop monitoring and 
smart spraying tasks (Radoglou-Grammatikis et al. 2020). 

PA ensembles a huge amount of information about the crop status or crop health 
in the growing season at high spatial resolution. Independently of the data source, 
the most crucial objective of PA is to provide support to farmers in managing 
their farming practices. Several agro-related variables, such as soil condition, 
plant health, fertilizer and pesticide effect, irrigation, and crop yield, have to be 
efficiently managed to realize higher yield and better crop growth under natural and 
environmentally challenging conditions (Abdullahi and Sheriff 2017). Monitoring 
all the above with precision is important for rational use of farming resources and 
their management (Wu et al. 2022). Remote sensing methods like satellite- and 
UAV-based hyperspectral imaging offer solutions as biophysical indicator maps 
during the various stages of crop growth cycle and seasons (Bégué et al. 2018; Wu  
et al. 2022) besides soil and plant health. Other tools like AI and ML have also been 
useful in precision agriculture for prediction and appraisal of crop yield, detection 
of diseases, and weeds (Liakos et al. 2018) (Figs. 11 and 12). 

1.8 Conclusion and Recommendations 

The use of big data in food production, along with the implementation of the 
Internet of Things (IoT), blockchain technology, artificial intelligence (AI), machine 
learning, cloud computing, as well as unmanned aerial vehicles (UAVs), and 

Fig. 11 Diverse applications of precision agriculture 
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Fig. 12 Crop yield prediction methods. (a) regression method; (b) biomass and harvest index; 
(c) crop growth model; (d) data-driven models. (Courtesy: Wu et al. 2022; doi: https://doi.org/ 
10.1093/nsr/nwac290) 

robotics, is referred to as framework of digital agriculture. The components of the 
digital agriculture framework are as follows: 

• Basic information databases pertaining to agriculture: These databases include 
essential information about farmland, genetic resources, weather patterns, social 
and economic contexts, etc. that is pertinent to agricultural activities. 

• A method for acquiring data that can be used to update databases and keep track 
of agricultural activities in real time (or almost real time). This system is made 
up of digital data collectors that are tasked with collecting information from 
aerial or satellite-based sensors, above- and below-ground sensors, and data on 
the weather, plants, and soil. 

• Digital network transmission system: This system is a sort of media that enables 
the distribution of commands and the gathering of data. 

• System for central processing in order to control the functioning of digital 
agricultural machinery, cyber physical system (CPS) assesses all the information 
amassed and develops feasible judgments using GIS, agricultural models, and 
expert systems. 

• Digitized agricultural machinery (DAM): This category comprises tools for 
harvesting, seeding, and managing fertilizer and water. As digital agricultural 
machinery performs CPS commands and returns processing results either directly 
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Fig. 13 Framework of digital agriculture (Radio frequency identification (RFID) refers to a 
wireless system comprised of two components: tags and readers. The reader is a device that has 
one or more antennas that emit radio waves and receive signals back from the RFID tag) 

or through a real-time (quasi real-time) information collecting system, it uses 
digital networks, GPS, and GIS to assist it (see Rijswijk et al. 2021 for details). 

The framework for digital agriculture is shown in Fig. 13. Each component is 
connected by a common data interface. A computerized agricultural system that 
uses core information databases to set the planting schedule for a year also monitors 
crop growth vigor and provides data on soil structure, water content, disease, 
weather, and other important elements. Digital agriculture technology is used to 
carry out a series of operations, such as planting, controlling water or fertilizer, 
harvesting, and sending the data back to CPS. CPS does thorough information 
analysis before making decisions. The whole analysis’ report is then produced by 
CPS. The interconnected development of each component is underlined in digital 
agriculture. The foundation for digital agriculture can only be laid when all the 
parts are perfectly connected and advance at the same time. The phrase “digital 
agriculture” cannot be used to describe a single element or a group of elements that 
are developing separately. 
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Agriculture and Food Security in the Era 
of Climate Change 

Karla Gasparini, Diego Dias Rafael, Lázaro Eustáquio Pereira Peres, 
Dimas Mendes Ribeiro, and Agustin Zsögön 

Abstract Climate change is an ongoing threat worldwide, concerning food security 
in developing countries but also affecting crop productivity even in well-developed 
regions. These continuous changes in the climate have a multidimensional and 
complex impact on food availability and population health, leading to an urge for a 
science-based approach that can simultaneously take advantage of the new imposed 
environmental conditions for food productivity and security. 

In this context, elevated atmospheric CO2 (eCO2) arises as a flagship in climate 
change conditions, and despite showing a positive influence on the photosynthesis 
rate of many C3 species, the C4 species response is relatively small, also occasioning 
a decrease in proteins, vitamins, and micronutrients content in both metabolisms 
under certain conditions, reducing nutritional quality. Temperature oscillation also 
influences crop productivity with complex interactions through ambient CO2 con-
centration, water availability, and nutrient availability. In the concern of temperature, 
high day temperature (HDT) and high night temperature (HNT) affect productivity 
in different ways, making it detrimental to understand how and which crops 
are affected by each or both temperature variations and in which developmental 
stage crops are most affected. Furthermore, crop improvement and smart land 
management are crucial to alleviate the ubiquitous climate change events. 
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1 Introduction 

The transition to agriculture and sedentary food production is closely linked to 
climate events. The switch from gathering food in the wild to farming was probably 
triggered by climate constraints. This long period during the Pleistocene was 
characterized by progressively colder and dryer weather, marked by extreme climate 
events (Alley 2000). The concomitant origin of sedentary, farming societies in as 
many as ten geographically independent areas of the world coincides with the start 
of the currently ongoing interglacial cycle (the Holocene) around 12,000 years ago. 
The onset of relatively warmer temperatures and the increase in local rainfall likely 
played a role in the appearance of the first agricultural societies (Ferrio et al. 2011). 
Since then, stable climate has been the norm, and a new glacial cycle is not expected 
for the next 50,000 years (Ganopolski et al. 2016). Notably, climate anomalies like 
the Iron Age Cold Epoch (900–300 BCE), the Roman Warm Period (250 BCE to 
400 CE), and the Little Ice Age (1550–1700 CE) led to disruptions in food supply 
and alterations in demographic trends (Bevan et al. 2017). However, these events 
were localized phenomena, in contrast to the unprecedented global increase in 
temperature starting in the early twentieth century (Neukom et al. 2019). This novel 
climatic pattern threatens the sustainable intensification of agriculture required to 
support the growing population in the coming decades. 

The impact of climate change on extant crops could be compared to the novel 
conditions experienced by early crops when radiating from their respective centers 
of origin (Fig. 1). There are many examples, of which soybean (Glycine max) 
is probably one of the most representative, where the latitudinal range of a crop 

Fig. 1 Centers of origin of crops responsible for the main sources of protein and carbohydrate 
worldwide
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has been expanded via genetic changes in photoperiodic response, duration of 
growth cycle, and time to maturity. Crops of the Compositae family like lettuce 
(Lactuca sativa) were also selected to avoid precocious flowering in tropical 
environments. However, the classic example in this regard is the transfer of potato 
(Solanum tuberosum) to Europe from South America, which was selected to initiate 
tuberization in long-day conditions, as opposed to its natural short-day tuberization 
response. Similarly, another native South American species, the tomato (Solanum 
lycopersicum), suffered a profound alteration in its circadian clock machinery and 
a reduction of heterostyly to adapt to the more extreme oscillations in photoperiod 
and the lack of natural pollinators in its new environment in Europe, respectively. 

2 Elevated CO2 and Its Impacts on Food Security 

As the world population continues to increase, crop production must intensify 
proportionally to ensure food security in the coming decades, while remaining 
sustainable by reducing its environmental impact. However, climate change poses 
a serious challenge to achieve these goals (Giller et al. 2021). Crop growth and 
yield depends on a combination of factors such as plant genotype, temperature, 
precipitation, sunlight, nutrient availability, and atmospheric CO2 concentration 
(Sharon and Siobhan 2016). In this context, elevated atmospheric CO2 (eCO2) has 
the potential to positively alter the rate of photosynthesis for many C3 species, 
which may lead to increased growth and crop yield (Dong et al. 2019; Poorter et 
al. 2022) (Fig. 2). On the other hand, the response of C4 crops such as maize (Zea 
mays) and sorghum (Sorghum bicolor) to eCO2 exposure is expected to be relatively 
small compared to C3 crops like rice (Oryza spp.) and wheat (Triticum aestivum) 

Fig. 2 Schematic model summarizing the effects of high CO2 on crop physiology and yield
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(Leakey et al. 2006). Despite improving C3 crop yields, eCO2 in isolation (i.e., 
without concomitant alterations in air relative humidity or temperature) decreases 
the concentrations of protein, vitamins, and micronutrients essential for humans in 
edible parts of crops, negatively impacting food security (Myers et al. 2014; Zhu et 
al. 2018) (Fig. 2). Such losses in nutritional quality represent an extra challenge for 
agriculture to provide enough nutrition for a population that is rapidly expanding 
(Nelson et al. 2018). Moreover, crop responses to increases in atmospheric CO2 are 
related to nutrient availability (Jin et al. 2019). In other words, the additional carbon 
acquired through photosynthesis in response to eCO2 can only result in increased 
crop yield if plant nutrition is adequate. These deficiencies of plants grown at eCO2 
in using photosynthetic carbon gain under nutrient-limited conditions are of serious 
concern. It is apparent that the eCO2 effect on crop productivity may be reduced 
in low-income countries, where the availability of fertilizers is a limiting factor 
in agricultural production. Hence, countries that depend on agriculture for a large 
share of their income are at risk of more food insecurity. In this context, a deeper 
understanding of how eCO2 regulates crop yield and nutritional quality is required 
to ensure food security over the coming decades. 

In response to eCO2, cereal crops increase grain number and grain biomass, 
which is often associated with reduction in nutritional quality of crops (Dong 
et al. 2019). There are sufficient data to indicate that eCO2 leads to a decrease on 
concentrations of Zn and Fe in staple crops like wheat, rice, potato, and legumes 
(Loladze 2014; Myers et al. 2014; Zhu et al. 2018). The fertilization effects of eCO2 
associated with incidence of climate impacts on grain mineral concentrations are 
projected to decrease the global availability of Zn by 14.6% and Fe by 13.6% in 
2050 (Beach et al. 2019). The losses in grain mineral concentrations in response 
to eCO2 may be attributed to the lower absorption and/or translocation to grains as 
well as yield dilution and concentration effect (Ujiie et al. 2019; Jin et al. 2019) (Fig. 
2). In this context, the effect of eCO2 on concentrations of Zn and Fe may therefore 
cause a nutritional deficit in these key nutrients for a large segment of the world’s 
population. The reduction on concentration of Zn and Fe in the edible portion of 
crops due to increased atmospheric CO2 concentrations could lead to a reduction 
of 125 million disability-adjusted life-years globally over the period 2015–2050 
(Weyant et al. 2018). 

The impact of eCO2 on dietary patterns will be strongest in regions like 
Southeast Asia and Africa, where populations already have a burden of disease 
associated with deficits in intake of Zn and Fe (Weyant et al. 2018). Thus, efforts 
to enhance crop yields in response to eCO2 must be coupled with attempts to 
understand and manipulate the balance between mineral uptake by the root system, 
distribution, and partition to the grains to maximize its use for storage. Research 
on wheat illustrates the importance of considering these questions in attempting 
to increase grain nutritional quality. The endosperm-specific expression of the 
VACUOLAR IRON TRANSPORTER gene combined with constitutive expression 
of the NICOTIANAMINE SYNTHASE gene increased grain Zn concentration and 
altered the redistribution of Fe within the grain, which led to an increase in 
Fe in wheat flour (Harrington et al. 2022). However, for the full potential for
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wheat improvement to be realized, this focus on grain nutritional quality must be 
accompanied by increased understanding of how climate change could affect grain 
mineral concentrations. This consideration raises a multitude of new and complex 
questions about the integration of carbon assimilation, quantity, and nutritional 
quality of crops. 

Protein concentration of cereals (the ratio of grain protein amount to grain yield) 
is an important trait affecting the market value and nutritional value of grain (Geyer 
et al. 2022). The predicted changes in atmospheric CO2 concentration alone can 
increase the total amount of protein in grain of C3 crops such as rice and wheat, but 
also decrease its concentration (Myers et al. 2014). Although the precise mechanism 
behind this remarkable effect remains uncertain, decreased protein concentration 
under eCO2 conditions can be attributed to higher starch accumulation and lower 
assimilation of nitrate into organic nitrogen compounds (Bloom et al. 2014) (Fig. 
2). It is also likely that eCO2 decreases the concentration of available N in the 
soil, contributing to the lower N concentration in vegetative tissues and probably 
reduction grain protein concentration (Jin et al. 2019). The effects of increases 
in atmospheric CO2 are thus predicted to decrease global availability of dietary 
protein by 4.1% (Loladze 2014), which can disproportionately affect countries that 
already have high levels of nutritional deficiency. Additionally, the negative effect 
on protein concentration under eCO2 could lead to a decrease on S availability for 
human because plant proteins are the important source of the S-containing amino 
acid methionine (Tcherkez et al. 2020). Thus, breeders and biotechnologists need 
to identify plant traits that can be targeted to improve nutritional quality of crops in 
relation to increasing atmospheric CO2 concentration. 

It should also be contemplated that atmospheric CO2 concentration is not just the 
source of carbon for photosynthetic organisms, but a long-wave-radiation trapping 
gas, with consequences for global temperature and precipitation patterns, climatic 
variables that affect yields and nutritional quality of crops. The interactions between 
eCO2 and other variables (e.g., temperature and precipitation patterns) lead to 
effects on agricultural productivity and global nutrient availability that are not 
easily predictable from the studies of the individual components. This has major 
consequences for discussion of how, and to what extent, yields and nutritional 
quality of crops can be optimized in a changing environment. 

Taken together, research into growth and yield regulatory processes under 
influence of eCO2 conditions indicates that the increase in CO2 alone may improve 
the energy efficiency of plant metabolism of C3 crops and thus more fixed carbon 
could be allocated to grain, increasing yield. These responses, however, have 
the unintended effect of reducing grain nutritional quality. The challenge is to 
understand how the grain nutritional quality is coordinated with the availability of 
photosynthate under eCO2 environments at the levels of single cells and whole 
plants. Moreover, the regulation of gene expression and signaling cascades that 
regulate many mineral transporters in response to eCO2 conditions remain to be 
elicited. These are steps toward learning how an increase in the levels of photo-
synthetic carbon modifies plant carbon-to-nutrient ratios, which in turn may lead 
to the development of a sustainable production under eCO2 conditions. However,
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one needs to be cautious that there are other biophysical conditions, especially 
temperature and precipitation, interacting with eCO2 and the nutritional value of 
the crop. This reinforces the complexity of developing models to predict the impact 
of CO2 conditions on global food security in the context of climate change. 

3 Temperature Changes 

The global average surface temperature increased 0.6 ◦C during the twentieth 
century and, according to the most recent forecasts, is expected to increase 2.6 ◦C 
by the end of the century, compared to the preindustrial era. Increased temperature 
and more frequent heatwaves will have a strong impact on agriculture in tropical 
regions but also in some temperate countries (Fig. 2). Globally, 31% of agricultural 
areas are considered as “high risk” of heat stress in the twenty-first century. 
Climate risks could thus lead to food shortages, massive migrations, and other 
societal disruptions. The full impact of temperature increase on crops is an area 
of intense ongoing research, as the final effects depend on complex interactions 
with ambient CO2 concentration and water and nutrient availability (Moore et al. 
2021). Particularly worrisome is the increasing occurrence of simultaneous stresses, 
for instance, high temperature and drought. Water scarcity will impinge strongly 
on agricultural output. Climate models project that rising temperatures will lead to 
changes in rainfall patterns that exacerbate existing trends, that is, dry regions will 
get drier and wet areas will become wetter (Bathiany et al. 2018). TheMediterranean 
basin, for instance, is particularly susceptible to drought, so a large share of the 
agricultural output in countries of Southern Europe and North Africa is expected to 
be affected. Entire agriculture-based industries, like wine production in Spain, could 
be disrupted (Droulia and Charalampopoulos 2021). 

Many open questions are still the subject of intense research to provide new 
knowledge that can help mitigate the effects of temperature extremes. First, the 
physiological impact of a steady increase in temperature will differ from that of 
discrete, extreme temperature events (e.g., heat waves, unseasonable frosts). What 
are the genetic networks controlling the responses to each one and how much 
overlap (if any) is there between them? 

As mentioned above, increasing temperatures resulting from climate change 
drastically impact crop production around the globe. High temperatures affect crop 
yields by direct and indirect effects, causing water stress through reduction of soil 
water and increased atmospheric water demand (Lobell et al. 2013), leading to 
stomatal closure to avoid dehydration thereby impairing CO2 uptake, and enhanced 
root growth, both causing reduction of shoot biomass. Considering the same crop, 
optimum temperatures differ at different growth stages, and changes in temperature 
conditions can happen at any developmental stage at field conditions. 

High day temperature (HDT) refers to higher than optimum temperatures during 
daytime for crop development. In rice (Oryza sativa L.), HDT during vegetative 
stage affect tiller formation and continuous stress exposure during boot stage
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impacts directly on spikelet meristem differentiation, and during reproductive stage 
increases spikelet fertility, and continuous stress exposure during seed development 
impacts grain weight (Xu et al. 2020). Photosynthesis is the rate-limiting factor pref-
erentially inhibited by HDT, with great decrease in the photoassimilate production 
due to great reduction in leaf carbohydrate content due to photorespiration (Dusenge 
et al. 2019). HDT also affects molecular pathways with the purpose to avoid, 
scape, and tolerate stressful conditions. For example, EXTRA GLUME 1 (EG1)  
encodes a predominantly mitochondria-localized lipase that functions upstream 
of floral identity genes in rice (OsMADS1, OsMADS6, and OsG1) to promote  
floral development sturdiness under HDT (Zhang et al. 2016). Tomato (Solanum 
lycopersicum L.) is one of the main crops in which yield losses have been massively 
reported when heat stress takes place during the reproductive phase. Tomato fruit 
number per truss and fruit weight is directly affected by HDT, ranging from a few 
days (when pollen development or fruit set is disturbed) to a whole developmental 
period (Sato et al. 2006). In potato (Solanum tuberosum), HDT decreased tuber 
yield (~18.1%) by reducing photoassimilates, which was probably attributed to 
decreased photosynthetic efficiency through a feedback inhibition (Kim and Lee 
2019). Moreover, night temperature appears to be increasing at a faster pace than 
day’s causing harmful effect on crop growth, development, and yields due to a 
reduced diurnal temperature range (Bahuguna and Jagadish 2015). 

High night temperature (HNT) occurs when there is an uneven temperature 
increase, with larger increase of night’s compared to day temperatures 
(Schaarschmidt et al. 2021). Reduction of grain yield was reported after HNT 
exposure, and it seems that disturbed translocation of photoassimilates was the 
main cause (Wu et al. 2017), also affecting pollen viability in rice (Yang et al. 
2017) and decreased spikelet fertility, grains per spike, grain size, and quicker 
grain filler period in wheat (Narayanan et al. 2016). Quality parameters were 
also altered after HNT, as grain length, grain width, and grain area. All together 
shows that HNT has more deleterious effect on grain quality compared to HDT 
(Fahad et al. 2016; Schaarschmidt et al. 2021), although the impact on yield 
decrease and quality is directly related with the HNT tolerance of the species. 
This can be assumed since HNT affects gene regulation, metabolic pathways, 
and hormone metabolism. Glaubitz et al. (2017) performed transcriptomic and 
metabolomic analysis on leaves from six rice cultivars under HNT. An overlap 
of six significantly differentially expressed genes was pinpointed in five cultivars 
and were all upregulated, encoding proteins involved in transcription regulation 
(helix-loop-helix proteins), signal transduction (protein kinase), protein-protein 
interactions (TIFY domain containing protein), and biosynthesis of polyphenols 
(phenylalanine ammonia-lyase). Metabolites profile revealed involvement of 4-
amino-butanoic acid (GABA) signaling, providing a link to the TCA cycle in 
sensitive cultivars and of myo-inositol as precursor for inositol phosphates also 
linking jasmonates signaling to the HNT response mainly in tolerant cultivars. In 
potato, during tuber initiation, HNT delayed tuber development, thus altering tuber 
mass distribution by reducing the yield proportion (~53.7%) and lowering early
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harvest index (16.1%), causing yield loss (~17.2%) without photosynthesis damage 
(Kim and Lee 2019). 

Considering the aforementioned detrimental effects of heat stress on crop 
production, some points need to be elucidated: (1) how and which crops are 
differentially affected by HDT and HNT stresses, (2) the anatomical-molecular-
physiological mechanisms related with yield consistency and impairment (tolerance 
and susceptibility), (3) which developmental stages are most affected by heat stress 
for each crop, and (4) benefits and challenges in the development of new heat 
tolerant varieties throughout molecular pathways (Xu et al. 2020). 

4 Adapting Agriculture to Uncertain Climate 

Even though climate is hard to predict, the current consensus from many indepen-
dent studies (Lehmann and Rillig 2014; Mazdiyasni and AghaKouchak 2015; Bigot 
et al. 2018; Anderson and Song 2020; Grossiord et al. 2020; Zandalinas et al. 2021) 
indicates that the mean surface temperature will increase steadily over the current 
century. The latest IPCC report states that at least half of the increase in global 
mean temperature between 1951 and 2010 has been likely caused by anthropogenic 
greenhouse gases: CO2 levels have risen from 250 ppm to over 400 ppm over the 
period. Agriculture itself has led to considerable detrimental effects: the destruction 
of tropical forests releases a trillion tons of carbon per year, an eighth of all 
anthropogenic CO2 emissions (Friedlingstein et al. 2010). It is anticipated that, if 
unchecked, global warming will lead to altered distribution of rainfalls, exacerbating 
flooding in some areas and drought in others. Expected adverse effects on crop 
growth include decreased seed germination, increased incidence of plant disease, 
and herbivory (Lobell and Gourdji 2012; Taiz  2013; Wheeler and Von Braun 2013). 
Climate change models have furthermore suggested the increased incidence of 
extreme climatic events (Otto 2015), which are likely to have devastating impact 
on crop yields. 

Climate extremes, such as drought or heat stress, can lead to harvest failures 
and threaten the livelihood of agricultural producers and the food security of 
communities. Improving the understanding of their impacts on maize production 
is crucial to enhance the resilience of the global food system. Climate factors, 
including mean climate and climate extremes, explain 16–39% of the variance 
of yield anomalies (YA), with 10–31% of the explained variance attributable to 
climate conditions. YA related more closely with temperature extremes than with 
precipitation-related factors (Vogel et al. 2019). The forecast for future scenarios 
is a loss of climatic suitability for maize in sub-Saharan Africa and Latin America 
regions but accompanied by an expansion in the northern hemisphere, particularly 
in Europe. The relative change in climatically suitable areas for future maize 
production was estimated for the top five producers. Production in 2050 is expected 
to increase 8% for the USA and 4% for China and to decrease 5% for Brazil, 
2% for Argentina, and 11% for Mexico. The incidence of low temperature and



Agriculture and Food Security in the Era of Climate Change 55

waterlogging, presently common in Europe and Asia, is projected to diminish, 
whereas heat stress in Africa and drought stress in South America are projected 
to increase (Ramirez-Cabral et al. 2017). 

In 2010, FAO introduced the concept of “climate-smart agriculture” to cope 
with future threats to food security and climate change. One of the key drivers 
of “climate-responsible” intensification of agriculture is diversification. However, 
conservation of agro-biodiversity is not an end in itself. Conservation must be 
strongly linked to utilization, either actual or potential. 

Changing highly engrained dietary habits is probably more challenging than 
breeding new crops and creating resilient agricultural systems (Fanzo et al. 2013). 
However, past experiences show that it is possible through a combination of 
policy and individual endeavor. As recently as 300 years ago, European peasants 
were reluctant to grow potatoes for a variety of reasons including superstition, 
resemblance with poisonous nightshade, or simply taste preferences (McNeill 
1999). Today, Europe is responsible for 30% of the total production of potato 
worldwide, and Germany, France, the Netherlands, and Poland are among the top 
10 world producers. The first commercial orchard of kiwifruit (Actinidia deliciosa) 
was established in New Zealand in the 1930s. Today, the total world production 
is well over four million tonnes per year and could expand and diversify through 
the exploitation of closely related species: A. arguta (already grown in low scale 
in Europe and in the USA), A. kolomikta (high in vitamin C and adapted to colder 
areas), or A. eriantha (high in vitamin C) (Ferguson 2013). 

Genomic analyses are widening to capture the large-scale range of ecological 
variation of crops. They now include wild species, landraces, and cultivars, and 
they aim at identifying relevant genetic signatures for valuable agronomic traits. 
This is a fundamental first step, which in an ideal pipeline should be followed by 
physiological characterization and agronomic field assays. 
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Soilless Smart Agriculture Systems for 
Future Climate 
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Abstract Global warming will have a negative impact on agricultural land in 
underdeveloped nations, as the land warms up more rapidly and easily than water. 
By the 2080s, the demand for food is predicted to triple due to an increase in global 
population and affluence. Climate smart agriculture (CSA) is an integrated method 
of managing landscapes that address the interrelated problems of food security 
and climate change. Smart agriculture systems use sensors and monitoring tools to 
gather information on variables such as temperature, humidity, water levels, and 
fertilizer levels. Robotic systems for planting, harvesting, and weeding can also 
be part of smart agriculture systems, such as automated watering and fertilizing 
systems. Soilless smart agriculture technologies can be carried out in a controlled 
setting and are more resistant to adverse weather, reducing the carbon footprint 
of food production. A controlled environment, like a greenhouse, can be used 
for year-round production and shelter from harsh weather. Soilless agriculture 
is an adaptation to climate change, as it is more resistant to adverse weather 
and uses less water than conventional agriculture. Urban agriculture is becoming 
increasingly important, as people are relocating to cities and demand for food 
production is rising. It is important to consider the environmental and social impact 
of these methods, such as energy consumption for a controlled environment, and 
ensure they are sustainable in the long run. In this chapter, we have summarized 
the methodologies and enabling technologies for indoor soilless smart agriculture 
systems (ISSAS) considering both global and Indian scenarios. 
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1 Introduction 

Global warming will have a negative impact on agricultural land in underdeveloped 
nations compared to industrialized nations, since the land warms up more rapidly 
and easily than water. Crops can be impacted by climate change in two ways: (1) 
increased soil evaporation and (2) higher temperatures that alter plants’ ability to 
absorb and utilize moisture. By the 2080s, the demand for food is predicted to triple 
due to an increase in global population and affluence (Cline 2008). As a result, 
the supply and demand equation is unstable, and climate change would make it 
significantly worse. 

The need for a larger emphasis on climate change adaptation in agriculture is 
becoming more urgent. Few studies evaluate the adoption rates and propensity 
for the effectiveness of potential response tactics. A broader risk-management 
framework that takes climate unpredictability and market dynamics into account 
will be needed to support further adaptation activities. Science must change as well 
by continuously evaluating the need for new research and improving managerial 
techniques (Howden et al. 2007). 

Additionally, climate change can lead to increase in migration, poverty, etc. 
Therefore, the concept of climate smart agriculture (CSA) has been conceptual-
ized, which is an integrated method of managing landscapes that addresses the 
interrelated problems of food security and climate change. It includes farming, 
raising cattle, managing forests, and managing fisheries. The World Bank (Cline 
2008) has specified three outcomes of CSA: (1) increased productivity by producing 
more and better food to enhance earnings and improve nutrition security, especially 
for the 75% of the world’s poor who reside in rural regions and mostly depend 
on agriculture; (2) improved resilience in terms of lower susceptibility to pests, 
diseases, drought, and other climate-related hazards and shocks and increase ability 
to adapt and develop in the face of longer-term pressures, such shortened seasons 
and unpredictable weather patterns; (3) lessened emissions by striving for lower 
emissions per calorie or kilogram of food produced, limiting agricultural deforesta-
tion, and finding techniques to remove carbon dioxide from the environment. 

Despite the fact that CSA is marketed as a multidisciplinary idea, persistent 
biases toward scientific and technical challenges still influence how researchers view 
CSA on a worldwide scale. To find CSA solutions, there is enough technical advice 
and scientific support, but the literature on social, management, and economic issues 
is underdeveloped. In particular, there is a shortage of research to support better 
coherence, coordination, and integration of the CSA pillars in the areas of gender, 
markets, broader landscape features, and decision-making. The many CSA pillars 
have significant overlaps and divergences. Trade-offs would be necessary if multiple 
orientations were pursued, and these trade-offs might favor one CSA pillar over 
another (Chandra et al. 2018). 

Smallholder farmers can benefit most from optimal combinations of adaptation 
and mitigation initiatives by contributing to their socioeconomic development.
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Development has had a significant influence on CSA discussions (Chandra et al. 
2018). 

The food and agriculture industry both contributes significantly to climate change 
and is particularly susceptible to its worst effects. Complex and contentious political 
processes are at play as new governance agendas are implemented, and much is at 
stake. This unique forum brings together a collection of presentations that highlight 
three overlapping themes that are at the heart of these disputes in order to unravel 
these concerns (Clapp et al. 2018). 

The confluence of food and agriculture with climate change has offered a forum 
for discussing new solutions and rehashing old debates. We may observe how 
debates in agrarian studies over land rights, control over agricultural technologies, 
access to them, governance of fisheries and marine resources, trade liberalization, 
and food sovereignty are once more at the forefront (Clapp et al. 2018). 

Eleven case studies are used to examine scaling-up strategies based on value 
chains and private sector involvement, agro-advisory services, and policy engage-
ment (Westermann et al. 2018). The case studies highlighted several challenges: 
estimating the costs and benefits of different scaling activities, integrating knowl-
edge across multiple levels, and addressing equity issues. Results showed that these 
different strategies exhibit different characteristics. One is the issue of estimating 
the costs and benefits of different scaling activities. While it may be envisaged 
that strategies for scaling up based on value chains, ICT/agro-advisory services 
and policy engagement could be highly cost-effective, more rigorous information 
is needed, and this warrants further work. A second challenge is that of integrating 
knowledge across multiple levels. This is not only just the challenge of moving 
from successful small-scale projects to informing and implementing policy with 
broad reach; it also requires devolving action from national levels to local levels 
(or scaling down) to ensure that interventions are appropriately contextualized and 
locally viable. The third challenge is that of addressing equity considerations in 
scaling up CSA interventions (Westermann et al. 2018). 

The use of technology to increase the productivity and efficiency of agricultural 
activities is referred to as “smart agriculture systems.” Sensors and monitoring tools 
are frequently used in these systems to gather information on variables, including 
temperature, humidity, water levels, and fertilizer levels. The growing conditions are 
then adjusted in real-time to maximize plant development and production using the 
data collected. Robotic systems for planting, harvesting, and weeding can also be a 
part of smart agriculture systems, as can automated watering and fertilizing systems 
(Oliveira et al. 2021). 

Future food production could be efficient and sustainable thanks to soilless 
smart agriculture technologies, especially in light of the world’s changing climate 
(Banerjee et al. 2022). Soilless smart agricultural systems have the potential to be 
a crucial instrument for coping with and lessening the effects of climate change in 
terms of the future climate. The demand for food will rise as the world’s population 
expands. The key benefits from soilless agriculture could be envisaged as below:
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Climate Adaptation The demand for food will rise as the world’s population con-
tinues to rise. Additionally, it is anticipated that climate change would bring about 
more extreme weather events like droughts and floods, which could be detrimental 
to traditional agriculture (Altieri et al. 2015). However, soilless agriculture methods 
can be carried out in a controlled setting and are often more resistant to adverse 
weather. For instance, indoor hydroponics and aeroponics operations can shield 
plants from harsh weather conditions, including heatwaves, cold snaps, and heavy 
rain (Rayhana et al. 2020). 

Efficiency in Water Use Conventional agriculture can use a lot of water. This can 
be a serious issue in locations where water is already in short supply. However, 
soilless agriculture uses a lot less water than conventional agriculture (Eigenbrod 
and Gruda 2015). For instance, only the water that is absorbed by the plants is 
wasted in hydroponic systems where the water is recycled. In arid areas, where 
traditional agriculture would be impossible, soilless agriculture technologies can be 
used (Schröder and Lieth 2002). 

Reduced Carbon Footprint Food production’s carbon impact is a significant envi-
ronmental concern. A large amount of the world’s greenhouse gas emissions 
is caused by traditional agriculture (Bozchalui et al. 2015). However, soilless 
agriculture methods utilize substantially fewer chemical inputs than conventional 
agriculture, such as fertilizers and pesticides, which can assist in lowering the carbon 
footprint of food production (Eigenbrod and Gruda 2015). The ability to precisely 
manage the nutrient levels, pH, and water supply for the plants, resulting in higher 
development and yields, is one of the key benefits of soilless agriculture (Lakhiar et 
al. 2018). 

Urban Agriculture People are relocating to cities in greater numbers as urbaniza-
tion continues to rise. The demand for food production in urban areas is rising along 
with the population. In urban locations, where traditional agriculture is not feasible, 
it is possible to grow food using methods of soilless agriculture, such as vertical 
farming (Goldstein 2018). This can give urban people with fresh, locally grown 
vegetables while lowering the carbon footprint of food transportation (Goodman 
and Minner 2019). A controlled environment, like a greenhouse, can also be used for 
soilless agriculture, enabling year-round production and shelter from harsh weather 
(Goodman and Minner 2019; Rayhana et al. 2020). 

Additionally, it is also important to consider the environmental and social impact 
of these methods, for example, energy consumption for controlled environment, and 
to ensure that they are sustainable in the long run. 

According to the United Nations, by 2030, India is expected to have 1.5 billion 
people, making it the most populated nation on earth (UN DESA 2022). India’s 
population is expanding quickly, and it is anticipated that demand for food will 
rise sharply over the next few years. But there are also serious obstacles to India’s 
food security. Around 20% of children under the age of five are underweight, and 
14.5% of the population is undernourished. India’s agriculture is anticipated to be 
significantly impacted by climate change. According to predictions made by the
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Intergovernmental Panel on Climate Change (IPCC), India would likely experience 
an increase in the frequency and severity of extreme weather events like droughts 
and floods as a result of climate change (Anderson et al. 2020). 

In order to understand the impacts of climate change and the requirements 
for food production in developing countries in the context of soilless agriculture 
techniques, we have taken India into consideration. India is experiencing a severe 
water problem in terms of its water supplies. India’s water storage has fallen to a 
disconcertingly low 28% of its maximum capacity, according to the Central Water 
Commission (Sikka et al. 2022). The ancient agricultural practices in India are up 
against several difficulties due to the growing population and water shortage. In this 
situation, soilless agriculture techniques, like hydroponics, aeroponics, aquaponics, 
and vertical farming, have a critical role to play in supplying food and coping with 
climate change. But the use of soilless farming techniques in India is still in its 
infancy, and there are still a number of obstacles to overcome, including a lack of 
knowledge, a lack of technical know-how, and high start-up expenses. 

This chapter reviews the research of researchers from various parts of the world 
related to vertical farming, greenhouse farming, precision farming, climate control, 
fertilizer optimization, crop planning, soilless agriculture methods, agriculture in 
LED light, etc., taking into account both global and Indian scenarios. It then 
discusses the components and enabling technologies of indoor soilless smart 
agriculture systems (ISSAS) and their related challenges. 

2 Soilless Smart Agriculture Systems (SSAS) 

Soilless smart agriculture systems (SSAS) can be both indoors and outdoors, 
depending on the type of system and the crops being grown. However, indoor 
systems are more commonly used for SSAS due to their many advantages, such 
as climate control, better disease and pest management, and year-round production. 
On the other hand, outdoor SSAS are typically used for larger-scale agricultural 
operations such as field crops or orchards. Outdoor SSAS are often referred to as 
precision agriculture, as they use data and technology to optimize crop yields and 
minimize environmental impact. Hydroponics, aeroponics, aquaponics, and vertical 
farming are some of the popularly known methods of soilless agriculture techniques 
that have the potential to significantly influence future climatic conditions. Hydro-
ponics, aeroponics, and aquaponics are the three soilless agriculture methods that 
could be used in vertical farming, but they are not exclusive to it. The primary 
advantage of vertical farming is that it allows for efficient use of space, making 
it ideal for urban areas where land is limited. Figure 1 illustrates three popular 
soilless agriculture methods like hydroponics, aquaponics, and aeroponics, which 
are recognized as viable alternatives to traditional farming worldwide. 

Broadly, in some literature “smart indoor factories” and “smart indoor farms” 
have been used to refer to any indoor growing system that incorporates some level 
of technology or automation, while “soilless smart agriculture systems” specifically



66 R. R. Singh and A. J. Hati

Fig. 1 Features of three popular soilless farming methods: hydroponics, aquaponics, and aeropon-
ics 

refers to growing systems that do not use soil and rely on advanced technology 
and data analytics to optimize plant growth. In order to make it more precise 
to the readers and to have a clear understanding of the growing systems being 
discussed, we propose to use the term “indoor soilless smart agriculture systems 
(ISSAS)” henceforth in this chapter, which highlights the environmental benefits of 
soilless growing techniques and precise control over growing conditions, as well 
as the potential for promoting sustainable agriculture. Finally, it emphasizes the 
innovative nature of technology and its potential for transforming the way we grow 
food. We will now concentrate on various ISSAS approaches and technology in the 
discussions that follow. 

2.1 Hydroponics, Aquaponics, and Aeroponics 

Hydroponics uses mineral nutrient solutions in water to grow plants without 
using soil. As a means of effective and sustainable food production, it is gaining 
popularity. Plant growing beds and a reservoir of plant nutrient solution make 
up the majority of hydroponics systems. Compared to conventional gardening 
techniques, this soilless farming method produces more while using about 20 
times less water (AlShrouf 2017). Romeo et al. (2018) justified that in comparison 
to traditional open field farms and greenhouse cultivations, the hydroponic farm 
performs better. Vertical hydroponic farming can outperform the two conventional 
kinds of agriculture if the source of the electrical input is carbon neutral, such as 
wind energy.
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Sharma et al. (2018) discussed various hydroponic structures, such as wick, 
ebb and flow, drip, deep water culture and nutrient film technique (NFT) systems, 
their operations, benefits and limitations, performance of different crops, and 
water conservation and found that NFT technique has been used commercially for 
successful production of leafy as well as other vegetables with 70–90% savings of 
water. In another study, Sambo et al. (2019) state that soilless cultivation requires 
specific knowledge and skills to manage aspects such as NO3− management and 
crop quality increase. New technologies such as nanoparticles and PGPRs are being 
studied, but better knowledge of the processes underpinning the acquisition of 
nutrients and their allocation in the different tissues is essential. A decoupling of 
hardware component management from software components will require a service 
center specialized in smart agriculture. 

Hydroponic systems have advantages over field culture systems, such as reuse of 
water, ease in controlling external factors, and a reduction in traditional farming 
practices, but have limitations such as high setup cost, rapid pathogen spread, 
and a need for specialized management knowledge (Lee and Lee 2015). Low-cost 
techniques are essential for successful implementation of commercial hydroponic 
technology, which should also try optimization techniques to reduce plant diseases 
and enhance food quality and quantity. 

Aquaponics combines hydroponics and aquaculture (fish farming), producing 
fish and vegetables in a closed-loop water system. By utilizing the nutrients from the 
fish waste as a source for nutrients, the plants help to purify the water for the fish. 
It creates a closed-loop ecosystem by utilizing the waste from one component as a 
resource for another. A mix of aquaculture and hydroponics, aquaponics collects 
nutrients from an aquaculture tank rather than from an outside source. Due to 
their ability to reuse water resources, aquaponics systems use 90% less water than 
conventional techniques. In order to successfully adopt aquaponics, producers need 
to start with catfish and then shift to a high-value fish species for niche markets 
(Bosma et al. 2017). It was concluded that by producing 1250 kg fish, 6000 kg 
lettuce, and 300 kg tomato per year would have a net-benefit-cost Ratio of 1.3 after 
20 years. 

Aeroponics involves misting plant roots with a nutrient solution. As the plants 
grow in an atmosphere of air or mist, their roots are suspended in the air. Aeroponics, 
which is regarded as a more advanced form of hydroponics, is known for its high 
yields and effective use of water and fertilizer. Plants in aeroponics systems are 
suspended in the air, and nutrients are delivered to the roots of the plants using a 
spray system. When compared to conventional systems, the systems use 95% less 
water and take up less space. In an aeroponics system, plants exhibit a rapid growth. 
If the supply of water and nutrients is managed while taking the plants’ needs into 
account, aeroponics systems are inexpensive and offer higher growth rates. 

Aeroponics is an innovative and appropriate technology that has the potential 
to cultivate plants in large quantities, tree saplings associated with soil microorgan-
isms, and reforestation of degraded land in humid regions. It is an indoor horticulture 
practice that reduces labor cost, consumes less water, fertilizer usage, pesticide and 
herbicides usage, and maximize plant yield by 45% to 75% (Lakhiar et al. 2018).
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The system is an environmentally friendly and economically efficient plant growing 
system that requires a high level of proficiency and advanced equipment to operate 
and control. 

The evaluation, assessment, and utilization of aeroponics system for commercial 
plant developing purpose should focus on root research, nutrient concentration, 
plant spacing, and pest/disease control. Artificial lighting should be used to grow 
the plant. Aeroponics is a highly specialized cultivation system that can be used in 
developing countries of the Third World to accommodate intensive food production 
in areas without fresh water and fertile soils. Future research will focus on 
understanding why aeroponic cultivation is more productive than hydroponic or 
soil cultivation, understanding root developmental architecture, understanding the 
relationship between aeroponic fertilization and daily cycles, identifying aerosol 
generation technology, and establishing experimental and analytical frameworks for 
comparison of vertical farming technologies (Eldridge et al. 2020). 

The aforementioned three soilless agricultural methods, when combined with 
smart sensing and control, will increase output while using fewer resources in 
indoor conditions, proving the necessity of CSAs or indoor soilless smart agriculture 
systems (ISSAS). Table 1 summarizes some notable research works on three popular 
ISSAS: hydroponics, aquaponics, and aeroponics. 

2.2 Vertical Farming 

Vertical farming and nurseries (both controlled and uncontrolled environments) for 
agro-climate regulation through minimal dependence on external input and reduced 
land footprint. Vertical farming involves growing crops in vertically stacked layers, 
usually in a controlled environment such as a greenhouse or a warehouse. This 
type of ISSAS is becoming increasingly popular, because it allows for high-density 
crop production and efficient use of space, making it ideal for urban areas where 
land is limited. Some examples of indoor ISSAS are hydroponics, aeroponics, and 
aquaponics. 

Vertical farming is a concept that encompasses a range of technologies and 
methods used to grow crops in a vertical arrangement. This can be done using 
hydroponic, aeroponic, or other soilless techniques, but it can also be done using 
traditional soil-based methods. The primary advantage of vertical farming is that 
it allows for efficient use of space, making it ideal for urban areas where land is 
limited. 

With this technique, plants are grown in a controlled environment in layers. 
This makes it possible for plants to grow at a considerably higher density than 
in conventional horizontal farming. The exact control of the growing conditions 
made possible by the controlled environment also results in increased yields and 
less consumption of water and other resources. 

Indoor vertical farming is a growing field, with several types of vertical con-
struction, big rooms, little containers, and huge greenhouse farms. Kalantari et al. 
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Table 1 Summary of notable research works on three popular ISSAS: hydroponics, aquaponics, 
and aeroponics 

Article Broad area Methodology adopted 
SSAS type/ 
adoptability 

Technological 
bene-
fits/drawbacks 

Nalwade 
(2017) 

Hydroponics 
farming 
techniques 

Automated water delivery and 
required pH and electrical 
conductivity (EC) maintenance. 
When using the root-dipping 
technique, plants are immersed in 
the manure mixture. It is used 
once and then replaced, as 
opposed to circulating manure 
blend 

Yes/majorly 
indoors 

Automatic 
maintenance 
of pH and EC 

Nishimura 
et al. (2017) 

Sensor design 
for 
hydroponics 
farming 

A new hardware module senses 
and measures water level and 
nutrient concentration 

Yes/majorly 
indoors 

Measurement 
accuracy is 
impacted by 
the sensor 
cable’s 
instability in 
water 

Kaewwiset 
and 
Yooyativong 
(2017) and  
Fuangthong 
and 
Pramokchon 
(2018) 

Maintaining 
EC and pH of 
hydroponics 
solution 

Fuzzy logic and linear regression 
algorithms are utilized to 
calculate the amount of nitric 
acid needed to fill the 
hydroponics reservoir and 
maintain the desired EC and pH 
levels 

Yes/majorly 
indoors 

The accuracy 
for regulating 
pH and EC 
using linear 
regression is 
95% and 
80.8%, 
respectively 

Eridani et 
al. (2018) 

Automatic 
nutrition level 
controlling of 
hydroponics 
solution 

Proximity sensor for detecting 
water level, total dissolved solids 
(TDS) sensor for measurement of 
EC of nutrient solution. 
Automatic nutrient controlling 
using nutrient film technique 

Yes/majorly 
indoors 

TDS sensor 
gives 97.8% 
accuracy 

Kyaw and 
Ng (2017) 

Smart 
aquaponics 
system 

Through a cloud server, the 
processing unit is connected to 
mobile and Web applications for 
the control of water quality, light 
intensity, and fish feeding 

Yes/majorly 
indoors 

The user can 
remotely 
control the 
parameters 

Lopes et al. 
(2017) 

Fish farming: 
automatic 
biomass 
estimation 

The structured light vision 
system, which utilizes a camera 
and laser, is used to create 3D 
models of fish 

Yes/majorly 
indoors 

Estimating 
fish growth is 
possible 

Idris and 
Sani (2012) 
and Sani et 
al. (2017) 

Monitoring 
and control of 
aeroponics 
farming 
system 

This system regulates the 
delivery of nutrients, the caliber 
of the growing medium, pH, 
temperature, and humidity. In 
order to improve the efficiency of 
resource utilization, an ultrasonic 
mist producer and fan are 
employed for spraying after a set 
period of time 

Yes/majorly 
indoors 

Efficient 
utilization of 
the available 
water and 
nutrients 
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(2017) found that an automated plant factory equipped with optimized light emitting 
diode (LED) lighting, renewable energy sources, smart water management systems, 
crop planning and management systems, artificial climate control systems, soil and 
fertilizer management systems, and smart data collection and management systems 
can significantly impact the agriculture sector. Vertical greenery systems are indoor 
agricultural systems integrated with vertical buildings that reduce average energy 
consumption in buildings and contribute to the sustainable growth of populous cities 
by generating fresh air and reducing the temperature of the environment (Singh et 
al. 2017). Suparwoko and Taufani’s (2017) performed analysis of the green building 
concept for Sleman, Indonesia, found that this innovative approach to urban farming 
not only boosts agricultural productivity but also lessens the shortage of arable land. 

2.3 Other Soilless Methods 

Some of the other soilless techniques are listed below, albeit they are outside the 
purview of this chapter, in addition to the characteristics of common indoor soilless 
smart agricultural systems shown in Fig. 2. 

Substrate-based Systems Supporting the roots of the plants using a solid medium, 
such as peat moss, perlite, or rockwool. 

Drip Irrigation Using a network of tubes and emitters to provide water and 
nutrients to plant roots is known as drip irrigation. 

Ebb and Flow Ebb and flow is the process of flooding and draining a growth tray 
with nutritional solution utilizing a series of pumps and timers. 

Fig. 2 Features of Prevalent Indoor Soilless Smart Agricultural Systems 
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NFT (Nutrient Film Technique) Utilizing a stream of water that is shallow and 
contains all the dissolved nutrients necessary for plant growth is known as NFT 
(nutrient film technique). 

3 Indoor Soilless Smart Agriculture Systems (ISSAS): 
Methodologies 

Some of the key methodologies used in ISSAS include artificial climate control, 
crop planning, plant disease detection, artificial lighting, and smart nutrition man-
agement. These techniques are designed to optimize plant growth and maximize 
crop yields while minimizing environmental impact. Artificial climate control 
involves creating and maintaining the ideal temperature, humidity, and other 
environmental conditions for plant growth. Crop planning involves using data and 
analytics to plan the timing and location of crop planting and harvesting, based 
on factors, such as weather patterns and market demand. Plant disease detection 
involves using sensors and other technology to detect and diagnose plant diseases 
early, allowing for prompt treatment and prevention of crop losses. Artificial lighting 
can be used to supplement natural light in indoor ISSAS, providing the optimal 
light spectrum and intensity for plant growth. Finally, smart nutrition management 
involves carefully monitoring and adjusting the nutrient levels in the growing 
medium to ensure that plants receive the right balance of essential nutrients for 
optimal growth. 

There are a few other methodologies that are commonly used in soilless smart 
agriculture systems, including: 

Automated Irrigation Systems These systems use sensors and software to monitor 
soil moisture levels and automatically adjust watering schedules to ensure that plants 
receive the right amount of water. 

Remote Monitoring and Control This involves using sensors and cameras to mon-
itor plant growth and environmental conditions and remotely controlling various 
aspects of the growing environment, such as temperature and lighting. 

Data Analytics and Machine Learning By collecting and analyzing large amounts 
of data on plant growth, environmental conditions, and other factors, farmers can 
use machine learning algorithms to optimize crop production and minimize resource 
inputs. 

Integrated Pest Management This involves using a combination of biological, 
chemical, and cultural methods to manage pests and diseases in an environmentally 
sustainable way. 

Overall, these methodologies are essential for achieving the full potential of 
soilless smart agriculture systems. By integrating these technologies and techniques, 
farmers can produce high-quality crops with higher yields, lower resource inputs, 
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and reduced environmental impact but with maximum efficiency, making them a 
promising technology for the future of agriculture. 

3.1 Artificial Climate Control 

Climate smart agriculture (CSA) technologies are being used to cope with harsh 
biophysical conditions, such as flood, drought, soil erosion, heavy precipitation, 
etc. ISSAS do not experience adverse weather conditions, so CSA technologies can 
be used to regulate the indoor climate (Morton et al. 2017; Khatri-Chhetri et al. 
2017; Mwongera et al. 2017). Popa and Ciocarlie (2011) created a distributed smart 
indoor climate control system that connects data-gathering nodes, servers, clients, 
and actuators over the Internet. Microclimatic factors are controlled using a variety 
of techniques, such as adaptive control of outdoor climate, proportional integral 
derivative (PID)-based control, fuzzy logic-based control, artificial neural network 
(ANN)-based management system, and neuro-fuzzy-based control (Ardabili et al. 
2016; Afram et al. 2017). 

The ideal indoor environmental state is achieved by monitoring and maintaining 
key factors in a predetermined range (Wicaksono et al. 2018). A self-tuning PID 
controller has been used to keep temperature and humidity within a preset range 
(Heidari and Khodadadi 2017; Janprom et al. 2017). A fuzzy immune PID controller 
provides greater dynamic performance (Revathi et al. 2017). To simulate the heating 
requirements of greenhouses, Ahamed et al. (2018) suggested a quasi-steady state 
thermal model. 

Indoor farming is characterized by heat transmission by conduction and con-
vection, air exchange, heat exchange through the floor and perimeter, and evap-
otranspiration. The nature of greenhouse ventilation rate and other microclimatic 
factors is nonlinear and non-affine, so fuzzy logic systems are used to simulate the 
system’s unknowable dynamics and monitor the system’s output parameters. Indoor 
environments can also use a dynamic climate model of greenhouses to calculate the 
climatic state (Su and Xu 2015; Taki et al. 2016). 

The Kalman filter eliminates sensor noise and processes noise to reduce inac-
curacy and smooths a climate control system’s control signals (Shi et al. 2012). 
Particle swarm optimization (PSO)-based nonlinear model predictive control (MPC) 
algorithms can maximize the objective function while using the least amount of 
energy (Zou et al. 2010). Multi-objective evolutionary algorithms (MOEAs) seek 
for control signals in the solution space (Member 2010). 

Researchers have used thermal modelling to better understand how different 
internal designs and building materials affect a building’s microclimate (Kisilewicz 
2015). Phase change materials (PCM) are often used in light-weight buildings to 
prevent an abrupt change in the outer environment from having an impact on the 
indoor climate (Li et al. 2015a, b). 

Green wall planting is an economical technique that serves as both an air filter 
and a cooling insulator. Buildings use green wall vegetation, micro pot plants, or 
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pocket plants as three types of green wall planting to protect the inside environment 
from the effects of external heat (Lee and Chuang 2017). Plant walls improve indoor 
microclimate by lowering particulates and stabilizing carbon dioxide levels (Liu et 
al. 2018). Natural nighttime ventilation in desert regions lowers the energy needed 
for cooling, and researchers have created a thermo-aerodynamic numerical model 
of natural night ventilation that may also be used for indoor farming (Hamdani et 
al. 2017). The design and installation of sensing and actuating components, air 
conditioning, ventilation, thermal insulation, and the best automation algorithms 
are difficult, but ISSAS can be monitored and controlled effectively by gathering 
pertinent farm data from distant areas. Table 2 summarizes some of the notable 
research works on enabling technologies for artificial climate control. 

3.2 Crop Planning 

Crops grown by farmers include food crops (rice, wheat, maize, pulses, vegetables, 
fruits, etc.), plantation crops (cotton, coffee, tea, cocoa, oil seeds), horticulture crops 
(fruits, vegetables, spices, beverages, nuts, etc.), forage crops (barley, grass, alfalfa, 
etc.), and manure crops (beans, red clover, lupin, winter tare, etc.). These crops 
are grown in various seasons based on the availability of irrigation water, land, 
weather, and fertilizer use. An optimized cropping pattern that takes into account 
all the relevant elements would help to increase productivity (Saranya and Amudha 
2017). 

Indoor farming is only possible indoors due to soil type, nutrients, water 
resources, fertilizers, pesticides, harvesting techniques, and economic profitability. 
Machine learning approaches make it easier to find a cropping pattern while taking 
into account all the relevant constraints (Kumar et al. 2015). 

Machine learning techniques include artificial neural networks (ANN), informa-
tion fuzzy networks (IFN), decision trees, regression analysis, clustering techniques, 
principal component analysis (PCA), Bayesian belief networks, time series analysis, 
Markov chain models, etc. ANN is a type of supervised learning technology that 
makes predictions about the future based on training models created from training 
data. IFN, a supervised learning algorithm, builds a fuzzy network. Regression 
analysis uses statistical techniques to determine the relationship between various 
variables. Clustering is an unsupervised machine learning process that divides the 
dataset into groups. PCA identifies uncorrelated variables, and Bayesian networks 
express conditional dependencies of variables using a graphical and probabilistic 
model. A probabilistic mathematical model called the Markov chain model deter-
mines output based on prior knowledge (Mishra et al. 2016). 

Cropping pattern prediction is an optimization issue that is subject to several 
restrictions. Piecewise genetic algorithm (PWGA) is used to identify the best 
solution for the crop pattern and water allocation problem. To prevent a water 
disaster, crop patterns must be optimized based on water resource availability. 
Particle swarm optimization (PSO), simulated annealing (SA), and other meta-
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Table 2 Summary of notable research works on enabling technologies for artificial climate 
control 

Article Broad area Adopted methodology 
SSAS type/ 
adoptability 

Technological 
bene-
fits/drawbacks 

Popa and 
Ciocarlie 
(2011) 

Distributed 
smart system 
for 
monitoring 
and control of 
indoor 
temperature 

LPC 2148 microcontroller 
based on AR7TDMI-S-based 
core, ENC28J60 Ethernet 
controller communicating with 
microcontroller using IEEE 
802.3 compliant SPI (serial 
peripheral interface) interface 

Indoor. 
Adoptable in 
all forms of 
indoor 
farming 

Fast data 
transfers and 
affordable 
infrastructure 

Wicaksono et 
al. (2018) 

Smart 
temperature 
control of 
poultry farm 

Temperature and humidity 
sensor, WSN and IEEE 
802.15.4 protocol for 
communication 

Broiler 
poultry farms. 
Adoptable in 
all forms of 
indoor 
farming 

Low error 
percentage in 
sensing. 
1.51% is the 
highest error 
value 

Heidari and 
Khodadadi 
(2017) and  
Revathi et al. 
(2017) 

Climate 
control of 
green house 

Fuzzy logic-based proportional 
integral derivative controller 
used for the purpose of 
actuation 

Greenhouse. 
Adoptable in 
all forms of 
indoor 
farming 

The fuzzy 
logic-based 
controller has 
self-tuning 
capabilities 

Ahamed et al. 
(2018) and  
Taki et al. 
(2016) 

A study of 
heating 
requirements 
and energy 
consumption 
of 
greenhouses 

Heat transfer model considering 
heat loss due to plant 
evapotranspiration and 
environmental heat gain etc. 

Greenhouse. 
Adoptable in 
all forms of 
indoor 
farming 

Applicable for 
commercial 
greenhouses 

Su et al. 
(2016) 

Climate 
control and 
dealing with 
actuator 
saturation 
problem 

Fuzzy logic system (FLS) for 
estimation of unknown 
nonlinear parameters of the 
control system 

Greenhouse. 
Adoptable in 
all forms of 
indoor 
farming 

Successfully 
tested to 
estimate the 
ventilation 
rate 

Su and Xu 
(2015) 

Simulation of 
greenhouse 
climate model 

Modeling of convection, 
condensation, ventilation, 
transpiration, photosynthesis, 
respiration, etc., using algebraic 
fitting technique 

Greenhouse. 
Adoptable in 
all forms of 
indoor 
farming 

Temperature, 
humidity and 
carbon 
dioxide 
content can be 
predicted 

(continued) 
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Table 2 (continued) 

Article Broad area Adopted methodology 
SSAS type/ 
adoptability 

Technological 
bene-
fits/drawbacks 

Shi et al. 
(2012) 

Climate 
control of 
greenhouses 

Extended Kalman filter 
algorithm is used to estimate 
the control states and filter out 
the noises 

Greenhouse. 
Adoptable in 
all forms of 
indoor 
farming 

Useful for 
control 
systems with 
nonlinear 
system 
dynamics 

Zou et al. 
(2010) 

Green house 
climate 
control 

Internal temperature is 
controlled using particle swam 
optimization (PSO)with the 
help of solar radiation, wind 
speed, outside temperature, 
ventilation, etc. parameters 

Greenhouse. 
Adoptable in 
all forms of 
indoor 
farming 

Energy 
consumption 
is reduced 

Kisilewicz 
(2015), Li et 
al. (2015a, b), 
Lee and 
Chuang 
(2017) and  
Liu et al. 
(2018) 

Controlling of 
indoor 
climate for 
buildings 

EnergyPlus software for 
building energy simulation, 
lightweight buildings 
constructed with phase change 
material (PCM) to reduce the 
room temperature and heat flux 
inside the room, smart plant 
wall, etc. 

Vertical 
buildings. 
Adoptable 
mainly in the 
vertical farm 
buildings 

Contribute to 
reduce urban 
heat effect 

heuristic algorithms can be employed to tackle the multi crop planning (MCP) 
problem (Bou-Fakhreddine et al. 2016). The best cropping strategy for managing 
the water resource can be determined using a multi-objective fuzzy stochastic model 
based on GA (Dutta et al. 2016). When four popular evolutionary algorithms (EA) 
are compared to find the best crop pattern when there is a limited amount of normal 
and sufficient water resources, PSO, DE, and EP perform better than GA (Pant et al. 
2010). 

The Lingo software tool was used to develop an optimum crop pattern for various 
seasons in a case study of the Rajolibanda Diversion Scheme area in Mahabubnagar, 
Andhra Pradesh, India (Rani 2012). Trials were conducted on a variety of crops to 
determine the pattern that yielded the greatest profit. Linear programming was used 
to optimize the cropping pattern in three locations of Egypt to maximize the annual 
profit while controlling the limitations of the available water and land resources 
(Osama et al. 2017). In India’s Karnataka state’s Markandeya command region, the 
cropping strategy was adjusted using linear programming to achieve the greatest 
profit to make the best use of irrigation water (Shreedhar et al. 2015; Chowdhury 
and Chakrabarty 2015). 

The most popular methods for predicting agricultural yield are fuzzy logic, 
multiple linear regression, artificial neural networks, and adaptive neuro-fuzzy 
inference system (ANFIS). The accuracy of the projected outcome is examined 
using RMSE, mean square error (MSE), and correlation coefficient approaches. 
ANFIS is more accurate than other approaches due to its ability to take into account 
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all relevant internal and external elements (Yuvaraj and Dolui 2021). Machine 
learning and optimization methods have been used to optimize the cropping pattern 
of ISSAS. Designing an effective decision-making module can help produce an 
optimal cropping pattern, boosting productivity while guaranteeing the viability of 
the farm. Some of the notable research works on enabling technologies for crop 
planning have been summarized in Table 3. 

3.3 Detection of Plant Diseases 

Plant diseases are caused by the host plant being vulnerable to a specific disease or 
illness, the presence of plant diseases in the host plant, and the environment, which 
helps plant pathogens thrive and produce spores. To increase output, ISSAS produce 
artificial climates to promote the development and spread of plant disease spores. 

Intelligent computer vision-based periodic monitoring of plants can lead to 
early detection of plant illnesses, allowing for the earliest implementation of 
curative therapies. Plants can be monitored using cameras installed on robotic 
platforms or incorporated into other systems, and sick plants can be identified by 
looking at the photos. This can be accomplished using both RGB and NIR (near-
infrared spectroscopy)-based cameras. In comparison to NIR-based detection, the 
performance of the RGB camera is better (Schor et al. 2016). An integrated system 
that combines machine vision and the Internet of Things can be used to detect crop 
infections early and apply prompt cures (Tanmayee 2017). Drones, also known as 
unmanned aerial vehicles (UAVs), have been adopted for smart agricultural tasks. 
Using UAV for plant disease diagnosis and other tasks in an indoor agricultural 
environment would be an intriguing idea (Castelao Tetila et al. 2017). 

The research on plant diseases and the algorithms used to detect them is covered 
in this part. One example is the intelligent classification of damage in sugarcane 
billets and correlation of it with sugarcane germination using computer vision 
technology (Alencastre-Miranda et al. 2018). Infections, like powdery mildew (PM) 
and tomato spotted wilt virus (TSWV), have been determined using algorithms 
like principal component analysis (PCA), neural network, support vector machines 
(SVM), etc. Plants with PM and TSWV infections can be found with a high degree 
of accuracy using PCA. Spots on the leaves of field crops, forages, and vegetables 
are caused by the fungus Septoria, while wheat is impacted by yellow rust. SVM-
based classification algorithms are more effective than artificial neural network 
(ANN) at detecting Septoria and yellow rust (Han et al. 2015). 

Baquero et al. (2015) used the nearest neighbor algorithm to identify the six 
prevalent diseases of tomato plants, including early blight, chlorosis, sooty molds, 
powdery mildew, necrosis, and white fly. Early blight damages stems, fruits, and 
leaves and causes defoliation and sunscald. Color descriptors such as CSD, CLD, 
and SCD are used to identify regions of interest (ROIs). A 1-NN classifier is used to 
distinguish between healthy and diseased plants, and image segmentation is used to 
extract pertinent characteristics (Molina et al. 2015). Careful picture segmentation 
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Table 3 Summary of notable research works on enabling technologies for crop planning 

Article Broad area Adopted methodology 
SSAS type/ 
adoptability 

Technological 
bene-
fits/drawbacks 

Saranya and 
Amudha 
(2017) 

Crop planning 
optimization 
research and 
review 

Crop planning based on 
various factors, i.e., 
irrigation, land, labor, soil, 
climate, transportation, 
fertilizers and pesticides, 
weed, etc. 

Outdoor. Crop 
planning based 
on labor, soil, 
transportation, 
fertilizers, 
pesticides, and 
weed are 
relevant for 
indoor farming 

Role of 
bioinspired 
optimization 
algorithm 
discussed 

Kumar et al. 
(2015) 

Crop 
selection to 
maximize 
crop yield 

Proposed crop selection 
method (CSM) algorithm 
based on predicted yield, 
sowing time and days of 
plantation 

Outdoor. Crop 
planning based 
on soil type, 
water density, 
and crop type is  
relevant for 
indoor farming. 

Overall crop 
yield rate is 
increased 

Ghasemi et al. 
(2016) 

Crop pattern 
optimization 

Piecewise genetic algorithm 
(PWGA) is used to find the 
optimal crop pattern. A 
ground water model is used 
to solve the water allocation 
problem 

Outdoor. Water 
allocation 
solutions can the 
adopted in the 
scope of indoor 
farming 

Piecewise 
genetic 
algorithm 
(PWGA) 
deals with 
nonlinearity 
and handles 
large number 
of variables 
involved 

Bou-
Fakhreddine 
et al. (2016), 
Pant et al. 
(2010), Rani 
(2012), 
Osama et al. 
(2017), 
Shreedhar et 
al. (2015) and  
Chowdhury 
and 
Chakrabarty 
(2015) 

Crop planning 
under deficit 
irrigation 
situation 

Simulated annealing (SA), 
particle swam optimization 
(PSO), and linear 
programming (LP) are used 
to maximize profit when 
water supply is not enough. 
Evolutionary algorithm, such 
as genetic algorithms (GA), 
particle swarm optimization 
(PSO), differential evolution 
(DE), and 
evolutionary programming 
(EP), is used for 
optimization 

Outdoor. 
Adoptable in all 
forms of indoor 
farming 

Agriculture 
with low 
water 
availability 

Dutta et al. 
(2016) 

Optimization 
of crop 
pattern 
subjected to 
total supplied 
water in an 
agricultural 
farm 

Genetic algorithm and fuzzy 
stochastic programming are 
used in this process 

Outdoor. 
Adoptable in all 
forms of indoor 
farming 

Increase of 
irrigated area 
with fixed 
water supply 
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is required to identify the pertinent image segment required to classify the plant 
diseases (Singh and Misra 2017). An optimization approach like the genetic 
algorithm (GA) is used to eliminate duplicate features and complexity (Ghyar and 
Birajdar 2018). Researchers have proposed a convolutional neural network-based 
method to classify an image dataset of 3750 images into six classes, i.e., healthy 
plant, early blight, late blight, yellow leaf curl virus, spider mite damage, and 
bacterial spot (Golhani et al. 2018; Bhatt et al.  2017). This method uses the learning 
capabilities of neural networks (NN) to make it one of the successful classifiers 
of hyper spectral images. A fuzzy logic-based classification algorithm has been 
effectively tested to distinguish between iron-deficient or infected strawberry leaves 
and healthy strawberry leaves, which mimics the abilities of experienced farmers to 
categorize sick crops (Ghyar and Birajdar 2018). 

A Web-based tool was used to identify diseased pomegranates (Bhange and 
Hingoliwala 2015). The collected photos were used to extract features based on 
color, morphology, and color coherence vector. The training dataset was first 
clustered using the K-means approach before being fed into the support vector 
machine (SVM). Many bacterial and fungal diseases, including bacterial blight, 
fruit spot, fruit rot, leaf spot, etc., can infect pomegranate plants. Noise filtering 
strategy would improve classification accuracy. The rotating kernel transform 
(RKT) features, its modified versions, or other directional features correctly reflect 
the picture information, since the input images of leaves, fruits, and stems include 
edge information and directional statistics (Ullagaddi and Raju 2017). Mobile image 
capture is a low-cost and low-energy method of taking pictures with mobile phones, 
but its inability to capture fine details present in an image (Prasad et al. 2014). 

Plant diseases are caused by plant pathogens’ ability to survive in favorable 
environmental circumstances, so it is important to understand how environmental 
factors and plant diseases are related. Beta regression models can be used to 
determine the relationship between environmental factors, such as temperature, 
humidity, leaf wetness, etc., and plant infection (Shivling et al. 2016). A successful 
model will aid in the prediction of various plant diseases and notify farmers to 
consider essential treatments. Computer vision approaches are used to enhance the 
utility of decision-making modules and IoT infrastructure. A number of research 
works have been summarized in Table 4 on enabling technologies for plant disease 
detection. 

3.4 Artificial Lighting 

Researchers have conducted tests to determine a different energy source for indoor 
farming environments, particularly for vertical farming infrastructure. The primary 
artificial lighting sources are fluorescent lamps, high-intensity discharge (HID) 
lamps, and light emitting diodes (LED). LEDs are less expensive, produce less heat, 
and offer the highest levels of photosynthetically active radiation (PAR) efficiency 
(Darko et al. 2014). Olle and Virile (2013) investigated how green vegetables and a 
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few other plants responded to artificial LED light in terms of metabolism, growth, 
and photosynthesis. The results showed that plants need red and blue light for 
photosynthesis, with far red light having greater effects on photomorphogenetic 
processes and plant growth. Plants typically respond physiologically to the colors 
green and yellow, but the red and blue portions of efficient light spectrum for 
artificial farming are larger (Urrestarazu 2018). 

The experiment was carried out in four different LED lighting environments to 
observe the effects of LED irradiance on tomato plantlets. Results showed that the 
maximum photosynthetic rate was recorded under lighting conditions with a red 
to blue ratio of 10:1, but the highest growth in plant height was observed under 
conditions with 100% red LED (Naznin and Lefsrud 2014). Another experiment 
with Brassica chinensis showed that continuous light therapy outperformed pulsed 
light treatment (Harun et al. 2016). The basic metrics that are recorded and 
compared to gauge the overall growth of the plants are leaf count, plant height, 
fresh weight, dry weight, moisture content, and chlorophyll content. 

Pepper plants exhibit improved morphology when environmental elements, such 
as temperature, carbon dioxide level, humidity, water cycle, and photosynthetic 
photon flux density value (PPFD), are regulated (Liang et al. 2018). The Osaka 
Prefecture University in Japan used an artificial hybrid LED light source (i.e., 
mixtures of red, blue, white, and far infrared rays) and report their optimal pulse 
width modulation duty cycle, light intensity, and frequency of luminance (Sugano 
2015). Hop crops are typically radiation-sensitive, so a specially created LED 
lighting system with two channels (red and blue) may manage the radiant flux of 
the channels to create a supportive atmosphere (Tavares et al. 2018). Commercial 
LED lighting modules implement a control mechanism to optimize electrical energy 
consumption and boost photosynthesis rate (Almeida et al. 2014). Exposure to red 
and blue LEDs causes the enrichment of carotenoids and chlorophyll a and b, which 
increases photosynthesis (Wojciechowska et al. 2013). 

Artificial illumination combined with continuous lighting can improve pho-
tosynthesis rates and overall plant growth. Only the most useful portion of the 
light spectrum should be used, and pulsed red and blue lighting produces the 
best photosynthetic rate. More research is needed to develop novel systems that 
maximize the use of light energy while saving electrical energy. In Table 5, we  
summarize some notable research works on enabling technologies for artificial 
lighting. 

3.5 Smart Nutrition Management 

In the context of soilless smart agriculture systems in an indoor setup, smart 
nutrition management involves using technology and data to optimize plant growth 
and nutrient uptake in the absence of traditional soil-based growing methods. This 
can include using hydroponic or aeroponic systems to grow plants in nutrient-rich 
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water or mist, as well as using sensors and automation to monitor and adjust nutrient 
levels in real time. 

One advantage of soilless smart agriculture systems is that they allow for greater 
control over plant nutrition, since growers can precisely monitor and adjust nutrient 
levels to meet the specific needs of each crop. This can help to minimize nutrient 
waste and reduce the environmental impact of agriculture while also producing 
higher yields and healthier plants. In addition, smart agriculture systems can help 
to reduce labor costs and improve efficiency, since growers can use data and 
automation to optimize growing conditions and minimize the risk of crop failure. 

Overall, smart nutrition management is a critical component of soilless smart 
agriculture systems in an indoor setup, since it allows growers to optimize plant 
growth and nutrient uptake in the absence of traditional soil-based growing methods. 
By using technology and data to monitor and adjust nutrient levels in real time, 
growers can produce healthier plants, higher yields, and more sustainable agricul-
ture practices. 

Nitrogen, phosphorus, and potassium are essential for plant growth, while 
secondary nutrients such as sulfur, calcium, and magnesium are needed (Gruhn et 
al. 2000). To determine soil fertility, pH, electrical conductivity, organic carbon, 
primary and secondary nutrients, soil texture, density, water-retention capacity, etc. 
can be measured (Kumar et al. 2017). 

The management of plant nutrition includes the balanced and ideal application of 
fertilizer. Imam et al. have used an integrated artificial neural network (ANN) and 
bidirectional improved particle swarm optimization to optimize the fertilizer dose 
(Cholissodin et al. 2017). To teach farmers how to utilize fertilizers most effectively, 
OFRA created the fertilizer optimization tool (FOT) for 65 agroecological zones 
(AEZs) and 14 crops (Macharia et al. 2016). The farm output would increase if 
intelligent indoor farms included smart nutrition management. 

4 Enabling Technologies for Indoor Soilless Smart 
Agriculture Systems 

Indoor soilless smart agriculture systems are a promising solution for sustainable 
and efficient food production, using sensors, automation, and artificial intelligence 
to monitor and optimize plant growth in a controlled environment. This chapter 
will explore the latest developments in enabling technologies for these systems, 
including their benefits, challenges, and potential applications. 

4.1 ISSAS Generic Architecture 

A typical indoor soilless smart agriculture system (ISSAS), as shown in Fig. 3a, 
might include a farming bed connected to a number of sensing components to 
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Fig. 3 Typical architecture of a standalone indoor soilless smart agriculture systems. (1: solar 
panel, 2: charge controller, 3: battery, 4: inverter, 5: external load, 6: temperature and humidity 
sensor, 7: pH sensor, 8: airflow sensor, 9: soil moisture sensor, 10: electrical conductivity sensor, 
11: sensors and devices, 12: gateway, 13: wide-area network, 14: data storage, processing, and 
cloud server, 15: user application) 

gather pertinent data (such as information about the moisture condition of the 
soil, lighting conditions, water level, temperature, and humidity), as well as short-
range and long-range communication channels for relaying the data to processing 
components for local processing and to cloud computing platforms for long-term 
analysis, respectively. The lighting, temperature, humidity, pH, water levels, etc. are 
all controlled by an advanced decision-making module. For quick visualization and 
actuation, a mobile device with a mobile application is also employed. 

The core components of ISSAS are thought to be data management and analytics. 
As shown in Fig.  4 for a typical aeroponic SSAS, data is gathered, prepared, 
analyzed, and then provided to the predictive model to determine the next course of 
action. In this method, the necessary nutrients, water, etc. are misted onto the plant 
roots. A crucial component of the ISSAS is artificial smart lighting. In order to boost 
the production of plants, a formula of precise spectrum and intensity of lighting is 
created using a combination of LED lights. The plants flourish more than they would 
in a traditional agricultural farm thanks to careful micro- and macronutrient feeding. 
The typical life cycle of many dangerous pests is disrupted by the smart regulation 
of microclimatic features and controlled smart growth methods, resulting in a higher 
yield. In terms of energy requirements, it is a standalone solar off-grid system. 
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Fig. 4 Dataflow architecture of a typical aeroponic ISSAS 

The underlying architecture of these ISSAS can be scaled vertically or horizontally 
without modifying. 

After examining the data produced by ISSAS, the intelligent decision-making 
module makes intelligent decisions and starts the actuation process. Its architecture, 
which is capable of learning from prior data, is shown in Fig. 5. It has access to both 
original sensor-generated data and supplementary databases for the soil, climate, 
and other pertinent domains. In most cases, obtained data are not ordered, thus 
preprocessing is done on them before characteristics are extracted. A forecasting 
model is constructed and optimized using extracted information. By evaluating real-
time data gathered from monitoring climate conditions, soil, plant nutrition, plant 
development, and plant health-related aspects, the validated forecasting model aids 
in making dynamic and intelligent judgments. 

Wireless sensor networks installed in the farm assist in the monitoring process. 
Primary data, or sensor data, are gathered periodically. Plant growth and related 
factors are recorded using camera sensors. The gathered data provides an under-
standing of the current stage of the plant life cycle, which is then fed into the 
forecasting module to produce optimum actuations. The data is afterwards saved 
in local and cloud servers. Algorithms based on artificial intelligence are crucial 
for data analysis and forecasting model construction. The architecture also gains a 
particular capability for remotely controlling sensing and actuating devices, thanks 
to cloud-based control. The end-user application provides users with only the most 
pertinent and important indicators. The graphical user interface offered by the Web 
server enables the user to visualize the state of the plant or factory and also provides 
alerts in the event of a technical issue. As part of the analysis of the data, the user’s 
contribution is also a crucial factor. 
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Fig. 5 Architecture of smart decision-making module 

4.2 Internet of Things 

One of the most relevant definitions of Internet of Things (IoT) have been given by 
Gubbi et al. (2013) as “Interconnection of sensing and actuating devices providing 
the ability to share information across platforms through a unified framework, 
developing a common operating picture for enabling innovative applications. This is 
achieved by seamless ubiquitous sensing, data analytics and information represen-
tation with Cloud computing as the unifying framework.” The Internet of Things 
(IoT) offers a wide range of uses, including smart agriculture, smart environments, 
personal and home monitoring, and enterprise. Four primary elements make up 
the IoT ecosystem in smart agriculture: IoT devices, communication technologies, 
Internet, data storage, and processing (Elijah et al. 2018). 

ISSAS use a data importation frontend, software module for administration and 
decision-making, and a cloud-based actuation module (Tan 2016; O’Grady and 
O’Hare 2017). Using any one of the following communication protocol standards: 
IEEE 802.15.4 (low-rate Wireless personal area network), IEEE 802.11 (wireless 
local area network standard for Wi-Fi communication), IEEE 802.15.1 (wireless 
personal A), a centralized wireless sensor network-based monitoring system collects 
temperature, humidity, light, pressure, leaf area index, and other necessary data for 
data collection and importation at predetermined intervals (Buratti et al. 2009). 

In order to support farmers during the life cycle of crops, as discussed by 
Maddikunta et al. (2021) among the sensing elements are the following: (a) Smart 
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location sensors and GPS receivers are employed to pinpoint various places and sites 
in agricultural fields to apply fertilizer, water, and treat weeds. (b) Electrochemical 
sensors detect specific ions in soil to determine pH and nutrient levels, as well 
as fertilizer use. (c) Mechanical sensors use load cells to measure soil resistance 
for irrigation and intervention analysis. (d) Airflow sensors determine soil air 
permeability, which can be used to determine soil characteristics such as soil type, 
structure, compaction, and signature. (e) Sound sensor detects soil texture and is 
used for indoor and outdoor cultivation. (f) Soil moisture sensor that is dielectric 
determines the soil’s dielectric constant necessary for calculating the soil moisture 
level. And (g) optical sensors are mostly used in unmanned aerial vehicles (UAVs) to 
measure reflectance in the near-infrared and record images with remarkable spatial 
resolution. Multispectral sensors are crucial because they enable researchers to 
conduct precise analysis and generate insights on plant vigor, canopy cover, leaf, 
and several other plant elements. Crop fluorescence is monitored using thermal 
infrared sensors, which integrate at least two wavelengths to assess statistical 
factors. Chlorophyll content, the absorption of blue and red light, and the emission 
of green light are all closely related to the amount of light energy. Majority of the 
sensors listed from (a) to (g) are suitable for outdoor and indoor farming. 

The Internet of Things (IoT) and cloud services platform work together to 
provide Web services for connected ICT components (Karim et al. 2017), such 
as a Google Web Toolkit-based greenhouse monitoring and management system 
(Wang et al. 2018). Researchers have applied IoT to indoor farming, such as creating 
a remote-controlled water delivery system based on the state of the plants’ soil 
moisture (Bin Ismail and Thamrin 2018). 

IoT has the potential to revolutionize conventional farming, but its cost, adoption 
of long-range communication protocols, cost, and other issues will prevent it from 
being economically viable. Cost is the biggest challenge for ISSAS due to their 
constrained space. Summary of research and enabling technologies related to IoT in 
indoor farming is listed Table 6. 

4.3 Big Data and Data Modeling 

Big Data is data with high volume, velocity, and variety, and one of its primary 
sources is wireless sensor networks. It is used in farm management through 
connected processes such as data collection, storage, transport, transformation, 
analytics, and marketing. Cloud-based data warehouses are popular, because they 
are quick to access, are inexpensive, and don’t require farms to buy any gear. 

The Hadoop Distributed File System (HDFS) is a distributed file system is 
known for its excellent fault tolerance performance and ease of installation on 
inexpensive hardware (Wolfert et al. 2017). Precision agricultural systems by taking 
intelligent decisions by using Global Positioning Systems (GPS), data-gathering 
sensors, contemporary communication technologies, variable rate technology, geo-
mapping, and automated machineries have revolutionized agriculture. Big data is 
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Table 6 Summary of notable research works on enabling technologies for IoT 

Article Broad area Adopted methodology 
SSAS type/ 
adoptability 

Technological 
Benefits/ 
Drawbacks 

Tan (2016) Smart decision 
support system 
for precision 
agriculture 

A cloud-based software 
architecture 

Precision 
agricul-
ture/yes, 
indoor farms 

Application 
specific smart 
decision 

Pahuja et al. 
(2013) 

Monitoring and 
control of 
climate using 
wireless sensor 
network 

Fuzzy logic-based controller, 
IEEE 802.15.4- and 
XMesh-based networking, 
RS-485-based actuator, and 
customized application 
software 

Green house/ 
yes, indoor 
farms 

Online 
monitoring 
and control 
facility 

Akkaş and  
Sokullu 
(2017) 

Agricultural 
monitoring 
system 

IEEE 802.15.4 compliant 
2.4 GHz MicaZ mote modules 
for low-power WSN, MIB 250 
service support platform data 
analysis and management 

Green 
house/yes, 
indoor farms 

Monitoring 
from remote 
location 

Li et al. 
(2015) 

Design of leaf 
area sensor 

Leaf area index estimation 
using WSN and computer 
vision 

Outdoor 
condition/yes, 
indoor farms 

Estimation of 
growth of the 
plants 

Wang et al. 
(2018) 

Monitoring and 
control of 
environment 

Software architecture based on 
Google Web toolkit 

Green 
house/yes, 
indoor farms 

User can 
access using 
Android app 

essential for ensuring knowledge and information continue to move through the 
agricultural value chain (AVC) (Pham and Stack 2018). The agricultural decision-
making process is defined by a hierarchy of facts, information, knowledge, and 
wisdom, with wisdom at the top of the list (Lokers et al. 2016). 

Wireless sensor networks (WSNs), remote sensing (RS) technology, and 
unmanned aerial vehicles (UAVs) are used to gather information about various 
spatial and temporal variables of agricultural fields (Zhang et al. 2018a, b). WSNs-
based data collection can be implemented in ISSAS, and Web services architectures, 
such as SOAP and REST, are used to communicate between multiple applications 
across the World Wide Web (Vitolo et al. 2015). 

The agriculture sector generates a vast volume of data from numerous sources, 
making it important to model it to gain a better understanding (Rodriguez et 
al. 2017). The higher-order singular value decomposition (HOSVD) is a method 
suggested by researchers from around the world to extract the core value by 
removing undesirable data dimensions (Sabarina and Priya 2015). 

Researchers use data analysis and modelling tools like AgBiz Logic and TOA-
MD to quantify the economic, social, environmental, and other effects associated 
with the agricultural farm. To project the effects of climate change on the agri-
cultural sector, the Agricultural Model Intercomparison and Improvement Project 
(AgMIP) models crop, economic, and climatic data (Antle et al. 2017). Wolfert 
et al. (2017) explored a variety of issues related to managing Big Data in smart 
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Fig. 6 Process flow of data analysis using machine learning 

farming, including data ownership, data quality, intelligent processing and analytics, 
sustainable integration of Big Data sources, alluring business models, and platform 
openness. 

ISSAS are designed to maximize the benefits for small and medium-scale farmers 
by providing intelligent processing of high-quality data, identification of data 
sources, platform independence, business models, and security. IoT and Big Data 
can work together to provide a smart model that makes use of all the information 
collected due to their shared characteristics (Capalbo et al. 2017). Summary of 
research and enabling technologies related to big data and data modeling in ISSAS 
is listed Table 7. 

4.4 Machine Learning in Smart Agriculture 

Machine learning is a subset of artificial intelligence (AI). It constructs a forecasting 
model to anticipate future results by learning from the patterns in the data already 
available. Raw data is gathered from a variety of sources and preprocessed before 
being split into training, testing, and validation sets. A forecasting model is 
created using the attributes taken from historical data. Machine learning is a useful 
technique in today’s data-centric smart agriculture for analysis of yield prediction, 
crop health condition monitoring, water control management, soil management, etc. 
(Liakos et al. 2018). In machine learning, the flow of data analysis and various 
processes have been presented in Fig. 6. 

Data on climate characteristics (Veenadhari et al. 2014), soil quality (Cunha et al. 
2018), and production from prior years (Shakoor et al. 2017; Rahman et al. 2014) 
must be gathered to forecast agricultural productivity in intelligent indoor farms. 
This can be done using soil data, interior microclimate data, and photographs of 
plants at various phases of their life cycles. 
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Machine learning techniques are used in crop health monitoring, plant phenotyp-
ing, and soil fertility grading. SVM, Bayesian network, neural network, regression, 
and other techniques are used to anticipate crop pests (Kim et al. 2014). Images 
from a farm field are taken using cameras and evaluated using a machine learning 
algorithm to determine the nutritional shortage in plants (Merchant et al. 2018; 
Shah et al. 2018). DeepPheno is a concept that uses deep learning to examine the 
phenology of plants, and images and sensor data are analyzed in stress phenotyping 
(Yalcin 2018). The quality of agricultural output is largely determined by our 
understanding of the soil, so machine learning approaches are applied in many 
applications. In some of the interrelated domains associated to ISSAS, such as 
weed identification (Zhang et al. 2018a, b), soil sensor design (Luciani et al. 2019), 
production quality assessment (Chokey and Jain 2019), etc., machine learning may 
also be used. 

Machine learning algorithms support decision-making by analyzing data from 
sensors for crop suggestion, yield prediction, disease detection, and control mech-
anisms for artificial lighting, nutrition management, climate control, and optimal 
water use. ISSAS aid in the monitoring and gathering of data related to the plant life 
cycle and activate the required control mechanisms. Research in these areas has to be 
expanded to increase crop output. Summary of research and enabling technologies 
related to machine learning in ISSAS is listed Table 8. 

4.5 Plant Phenotyping 

Plant phenotyping is the process of measuring and analyzing plant traits, or phe-
notypes, in order to better understand plant growth, development, and response to 
environmental factors. There are several categories of plant phenotyping, including 
morphological, physiological, and molecular phenotyping. 

Morphological phenotyping involves measuring physical characteristics of 
plants, such as leaf size, stem diameter, and root length. Physiological phenotyping 
involves measuring the function and activity of different plant organs and systems, 
such as photosynthesis, water use efficiency, and nutrient uptake. Molecular 
phenotyping involves analyzing the expression and activity of specific genes and 
proteins within plant cells. 

In order to effectively measure and analyze plant phenotypes, researchers use a 
variety of parameters and modeling approaches. Some common parameters used in 
plant phenotyping include growth rate, biomass accumulation, and nutrient content. 
Researchers may also use imaging techniques, such as fluorescence microscopy or 
hyperspectral imaging, to visualize and quantify plant traits at a high resolution. 

In addition, researchers may use modeling approaches, such as mathematical 
models or machine learning algorithms, to better understand and predict plant 
growth and development. These models can help to identify key factors that 
influence plant phenotypes, as well as predict how plants will respond to different 
environmental conditions and stressors. A correlation of various steps consisting of 
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Fig. 7 Computer vision-based plant phenotyping 

recognition and identification, modelling of stress, growth, and yield traits needed 
in computer vision-based plant phenotyping has been presented in Fig. 7. 

Overall, plant phenotyping is a critical tool for understanding plant biology and 
developing more efficient and sustainable agricultural practices. By measuring and 
analyzing plant phenotypes, researchers can better understand how plants respond 
to different environmental factors, as well as identify traits that are important for 
crop yield, quality, and resistance to pests and diseases. Table 9 elaborates the 
plant phenotyping categories, parameters, and modelling approaches employed in 
computer vision-based plant phenotyping. 

5 Challenges for Indian Farmers 

India remains an agriculture-based country. About 53% of its total workforce, 
which is approximately 243 million citizens, is employed in agricultural sector. As 
shown in Table 10, India is one of the primary contributors in world’s agricultural 
production. 

According to recent statistics though almost half of the workforce works in 
farming sector, contribution of Indian agriculture to its gross domestic product 
(GDP) has reduced from 54% in 1950–1951 to 15.4% in 2015–2016 (Fig. 8). The 
agricultural yield, which is defined as the production per unit land area, is lower 
in India compared to other primary agricultural producer such as the USA, China, 
and Brazil (Deshpande 2017). However, several factors are responsible, which are 
adversely affecting the yield and productivity of Indian agriculture. Some of the 
primary reasons are as follows. 
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Table 9 Plant phenotyping: categories, parameters, and modelling approaches 

Sl No Category 
Task details: exploring 
phenotyping parameters 

Computer vision-based 
approach 

1 Pre-phenotyping 
task 

Plant species recognition Image classification 

2 Plant growth and 
development 

Plant organ counting Semantic segmentation and 
object detection 

Modelling of plant morphological 
changes 

Object detection, semantic 
segmentation, and regression 

Dynamic modelling of plant height Object detection and regression 
method 

Understandings of root 
architectural traits 

Semantic segmentation method 

Determining plant imbibition and 
germination rates 

Object detection, semantic 
segmentation, and regression 

Plant biomass identification Semantic segmentation method 
and regression method 

3 Plant stress 
phenotyping 

Health condition identification Image classification and 
semantic segmentation 

Plant disease detection Semantic segmentation 
Water stress identification Object detection and semantic 

segmentation method 
Nitrogen stress identification Object detection and semantic 

segmentation method 
Root health condition 
identification 

Image classification and 
semantic segmentation 

4 Plant yield rate 
and post 
harvesting 

Flowering rate and time Object detection and regression 

Yield traits identification Object detection, semantic 
segmentation, and regression 

Determination of chemical 
composition of fruit and vegetable 

Regression method 

Detection of defect in fruits and 
vegetables 

Object detection and semantic 
segmentation method 

Table 10 India’s 
contribution to world’s 
agricultural production 

Sl. No Crops Percentage contribution of total production 

1 Pulse 25 
2 Rice 22 
3 Wheat 13 
4 Cotton 25 

5.1 Small Land Holding 

In the past few decade, marginal (<1 hectare) and small land (in between 1 and 2 
hectare) holding have significantly increased in India. From 1971 to 2011, marginal 
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18.2 

24.77 

Agriculture & 
allied sector 

Percentage share in 1950-51 
Percentage share in 2013-14 

Industry sector 

Service sector 

Agriculture & 
allied sector 

Industry sector 

Service sector 

57.03 

18.2 

24.7757.03 

Fig. 8 Sector-wise percentage share of India’s GDP in 1950–1951 and in 2013–2014 

land holdings have increased 2.58 times (Deshpande 2017). Recently, it has been 
reported that more than 80% of Indian farmers are marginal or small land holders 
(Gopalakrishnan and Thorat 2015). As most of the farmers with small and marginal 
land holding do not have any legal lease agreement, they are not eligible for 
insurance, subsidies, and beneficial govt. schemes. 

5.2 Scarcity of Water 

In India, only 40.6% of the food grains are cultivated with the help of irrigation 
water (ADB Report 2016). Irrigation water uses almost 83% of the total available 
water of India. As per the prediction of researchers agricultural sector used 688 
Billion Cubic Meter (BCM) of water in 2010, which will increase to 1072 BCM by 
2050 (Sonekar 2017). Due to inefficient use of irrigation water, low availability of 
per capita water resources and too much dependency on rainwater Indian agriculture 
faces a scarcity of water throughout the year. 

5.3 Natural Disasters 

Every year natural calamities like floods, draught, landslides, storms, and hails cause 
heavy losses to crops (Gupta et al. 2020). The poor farmers with no access to 
banking insurance system face irreparable damages. 

5.4 Quality of Soil 

Due to increase of food production and repeated use of agricultural lands, nutrient 
level and water level of soil have decreased, affecting the growth and production 
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of the plants. One of the effects of soil degradation is soil erosion, which directly 
affects the agricultural production (Gupta 2013). 

5.5 Improper Use of Fertilizers 

Due to lack of knowledge, farmers use fertilizers in improper ratio, which leads to 
declined soil fertility and loss in crop production. Nitrogen (N), Phosphorus (P) and 
Potassium (K) are the major nutrient elements that are required for the crops. Indian 
farmers fail to maintain the recommended ratio of NPK while using fertilizers. This 
leads to loss of soil fertility. 

5.6 Imbalanced Use of Pesticides 

Imbalanced and unregulated use of pesticide is harmful for agricultural products. 
Due to absence of any effective regulatory authority to control the manufacture, 
purchase, and sell of pesticides in India, low-quality pesticides are present in the 
market. Due to lack of knowledge, farmers use them without following any pest-
management system causing damage to the production of the crops. 

5.7 Lack of Good Quality Seeds 

Small- and marginal-scale farmers cannot afford high-quality seed. There is also 
limited access to good-quality seed and necessary research innovations for better-
ment of seed qualities. 

5.8 Lack of Smart Machineries 

Agricultural machineries are used to reduce human labor in agriculture. Machines 
are mainly used in threshing, harvesting, and irrigation activities. Most of the small 
and marginal farmers have not yet adopted automated techniques of farming due to 
economic reason, which reduces the agricultural production in India. 
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5.9 Poor Postharvesting Activities 

Due to poor transportation, packaging, and storage facilities, food are wasted at 
different stages of post harvesting activities. 

5.10 Absence of Minimum Support Price and Price Deficiency 
System 

Minimum support price (MSP) is the price at which govt. buys crops produced 
from the farmers. In price deficiency system, govt. compensates the farmers in case 
market price of crops falls below the MSP. Though NITI Aayog has recommended 
price deficiency system for Indian farmers, presently no such existing system is 
there in place (Deshpande 2017). 

6 ISSAS: The Game Changer in Global and Indian 
Perspective 

The USA, Japan, and some of the countries of Middle East and Europe have 
embraced indoor farming as a consistent and sustainable source of food supplier, 
making it one of the fastest growing industries in urban areas. Smart indoor 
farming techniques as of today have not been adopted in India on a larger scale. 
If simultaneously implemented in India with its conventional outdoor farming, the 
overall agricultural production will increase, providing the required food security to 
its citizen in the upcoming years. 

The reasons for which indoor farming has the potential to become a new 
dimension of Indian agriculture are as follows: 

6.1 Efficient Supplier of Food 

ISSAS are efficient producer of food and uses lower amount of land compared 
to outdoor farming. Farming in smart indoor environment is sustainable as it uses 
water, nutrients, and human labor in an optimized way (Al-Kodmany 2018). 
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6.2 To Deal with Climate Change in India 

In past few decades, the world has witnessed the effect of climate change in 
agricultural production. Many of the Indian states have witnessed climate change 
of varied nature. The last century’s summer monsoon rainfall in India showed no 
significant trend, with three subdivisions showing a decreasing trend and eight 
subdivisions showing significant increasing trends (Venkateswarlu and Rao 2013). 
Projected change in temperature in India is shown in Fig. 9a. The conventional 
farming lands are one of the main sources of greenhouse gasses, which cause global 
warming and climate change. The primary greenhouse gasses, which are generated 
during farming are methane (CH4), nitrous oxide (N2O), and carbon-dioxide (CO2). 
Table 11 enlists the main sources of these greenhouse gasses (Pathak et al. 2014). 

Climate change directly affects the yield and agricultural production (Shah and 
Srivastava 2017), photosynthesis rate, and fertility of the farming land (Karmakar 
et al. 2016). Sometimes natural disasters, like floods, drought, etc., are caused 
by climate changes (Mall et al. 2007). As indoor farms grow crops in closed 
environment, climate change and natural disasters do not affect directly to their 

Fig. 9 (a) Projected change in mean temperature (in ◦C) in India in the upcoming years during 
annual, Rabi, and Kharif seasons; (b) increase in cost involvement for importing food grain in 
India. (Source: Venkateswarlu and Rao 2013) 

Table 11 Primary greenhouse gasses and their sources 

Sl. No. 
Greenhouse 
gasses Sources in the farming field 

1 CH4 Microbial decomposition of organic matter, agricultural field 
submerged in water, organic manure, and crop residues while 
getting burnt 

2 CO2 Biological decomposition of organic matters present in soil, 
burning of agricultural residues, agricultural operations which 
uses fuel 

3 NO2 Aerobic microbial oxidation of ammonium nitrate, fertilizers, 
manure, sewage sludge, minerals containing nitrogen. 
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production. If plants are grown in smart and climate-controlled environment, it also 
avoids generation of greenhouse gasses. 

6.3 An Answer to Changing Demographic Pattern of India 

According to the estimation of United Nations, by 2050 about 80% of the world’s 
population would be living in cities and urban areas. India is an exception to this, 
as in India the figure is 55% (Agarwal and Sinha 2017). To meet the increasing 
demand of food, Indian cities need to grow food in indoor environment. This will 
help to deal with the threat on Indian food security concern in the upcoming years. 

6.4 Quality and Quantity Come Together 

In ISSAS the crops are grown in controlled environment, where pesticides, nutrients, 
fertilizers, water, and other resources are used efficiently to get the optimal output. 
Moreover, in case of any health degradation of crops, preventive measures could 
be taken immediately. As a result, smart indoor farming environment grows crops 
better in quality and higher in quantity compared to conventional farming. The 
United States Department of Agriculture (USDA) reports the production of lettuce 
increases almost 11 times in controlled indoor environment when compared to 
conventional farming environment (Higgins et al. 2016). 

6.5 Economic Benefit and Scope in India 

The govt. of India provides food grains, such as wheat, rice and coarse cereals, 
etc., at subsidized price to almost 68% of its population, so that all citizens get 
enough access to food. Moreover, to meet the demand of the food of its people, 
the agricultural imports have increased in India over past few decades (Deshpande 
2017). The agricultural import statistics of India shows rice, wheat, pulses, and other 
cereals are among the major food grains, which are imported regularly from other 
countries. Figure 9b represents the cost involvement for importing this food grains. 

Indoor farming has the potential to reduce Indian agricultural import signifi-
cantly. Though all the crops cannot be grown at indoor environment, according 
to researchers, a wide varieties of greens, hops, strawberries, vine crops, flowers, 
herbs, micro greens, vegetables, fruits, cannabis, commodities, forestry seedlings, 
etc. can be grown indoor (Higgins et al. 2016). 

As most of the ISSAS are situated in urban and city areas, the crops thus 
produced can directly be sold to the local market, reducing the transport cost. This 
may save the overall costs up to 60% (Al-Kodmany 2018). 



Soilless Smart Agriculture Systems for Future Climate 101 

6.6 To Maintain Better Balance in Ecosystem 

In Brazil, 1,812,992 sq. km of farmland has been converted to farmland in the past 
50 years (Al-Kodmany 2018). To avoid deforestation in India and maintain the 
ecological balance, a new source of food for the people of urban and city area is 
required. Controlled indoor farming can restore the biodiversity in urban and city 
areas. 

7 Discussion and Concluding Remarks 

About 1.26 billion of Indian population is suffering from nutritional and health 
challenges. Approximately 38.7% of the children and 15% of the total population 
are reported to be malnourished. The International Food Policy Research Institute 
(IFPRI) in its report of Global Hunger Index, 2018, has ranked India 103 out of 
119 countries (Grebmer et al. 2018). These indicate strong presence of hunger 
and undernourishment in India. Moreover, with the current growth rate, India’s 
population will reach 1.6 billion by 2050, generating more requirement of food 
(Ritchie et al. 2018). Even in global scenario due to increase of human population, 
the consumptions of food and biofuel have also increased, resulting in the increase 
in the demand for agricultural production by 60% to 110% (Ray et al. 2013). 

As reflected in the Fig. 10, net area sown has remained almost same in India over 
a period of approximately 50 years. Indoor farming can help to grow Indian agricul-

Fig. 10 Land use categories of India and changes in its percentage share over the years 
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ture further. The nonarable lands, the lands which have been declared as wastelands 
due to their climatic constraints or anthropogenic limitations, abandoned buildings, 
closed rooms, garden areas, and rooftops can be used for indoor framing. In India, 
114.01 million hectare lands are degraded and wastelands (Balasubramanian 2016). 
A part of these wastelands can be used to build up cost-efficient infrastructure for 
indoor farming. Hence, India has a huge potential to take ISSAS forward if its 
research scopes are explored by the researchers. 

Indoor soilless smart agriculture system development and deployment is a new 
area of research in India. There exist several research opportunities in this field 
that will add new dimensions to it to make it more efficient and sustainable. 
ISSAS require much attention on how it can be made more cost-effective so that 
poor farmers can afford this technique with minimum investment. An improved 
and secure architecture with a better hardware software ecosystem and better 
interoperability technique would increase the efficiency of the smart management 
system. Researchers also need to explore how self-learning capabilities can be 
incorporated in the architecture with the help of machine learning and other data 
analysis algorithms. With the self-learning capabilities, it can learn from plant life 
cycle data and initiate smart actuation accordingly. Creation of artificial climate 
in the indoor environment is another challenge in this field. Optimized use of 
water, nutrition, energy, and other resources to avoid resource crisis is an important 
dimension of research exploration. The challenges of energy crisis need to be 
addressed using energy harvesting techniques. Finally, how a standalone ISSAS 
can provide a sustainable solution and how it can be implemented simultaneously 
with conventional farming are the research questions that need to be answered. 
Considering the above requirements and the feasibility analysis, the architecture 
of a standalone smart indoor farm presented in Fig. 3 is justified. 

In this chapter, we discussed the literature on soilless smart agriculture systems 
mostly in indoor setup, the key methodologies and enabling technologies, the chal-
lenges faced, and the need for secure, open platform-based standards, identification 
and deployment of communication standards, and intelligent processing algorithms 
for smart indoor farming activities. A rough estimate of cost analysis of soilless 
agriculture systems has been presented in Table 12, based on the information 
available in various published works included in this chapter, which hints that cost is 
a major concern for small- and medium-scale farmers due to the high cost of IoT and 
cloud infrastructure, energy requirements, water scarcity, and proper management. 
To make such farms more affordable with a profitable output, more research is 
needed. Research is needed to design and develop better data analysis algorithms 
and decision-making systems in order to develop a sustainable model for small and 
marginal farmers in India and other low-income countries. 
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Table 12 Cost analysis of soilless agriculture systems 

Heading level Globally Indian 

Hydroponics A small-scale home hydroponics 
system can cost around $500–$1000, 
while a commercial-scale hydroponics 
system can cost around 
$50,000–$5,00,000 or more 

A small-scale home hydroponics 
system can cost around INR 
30,000–INR 50,000, while a 
commercial-scale hydroponics system 
can cost around INR 5,00,000–INR 
50,00,000 or more 

Aeroponics A small-scale home aeroponics system 
can cost around $1000–$2000, while a 
commercial-scale aeroponics system 
can cost around $100,000–$1,000,000 
or more 

A small-scale home aeroponics system 
can cost around INR 50,000–INR 
1,00,000, while a commercial-scale 
aeroponics system can cost around INR 
10,00,000–INR 1,00,00,000 or more 

Aquaponics A small-scale home aquaponics system 
can cost around $2000–$5000, while a 
commercial-scale aquaponics system 
can cost around $50,000–$5,00,000 or 
more 

A small-scale home aquaponics system 
can cost around INR 1,00,000–INR 
2,50,000, while a commercial-scale 
aquaponics system can cost around 
INR 25,00,000–INR 2,50,00,000 or 
more 

Vertical 
farming 

A small-scale vertical farm can cost 
around $500,000–$1,000,000, while a 
commercial-scale vertical farm can 
cost around $10,000,000–$50,000,000 
or more 

A small-scale vertical farm can cost 
around INR 3,50,00,000–INR 
7,00,00,000, while a commercial-scale 
vertical farm can cost around INR 
70,00,00,000–INR 3,50,00,00,000 or 
more 

References 

ADB Report (2016) Agriculture and natural resources sector program in India: a back-
ground paper and desk review. https://www.adb.org/sites/default/files/linked-documents/12-
India-Agriculture-and-Natural-Resources.pdf. Online accessed 30 Aug 2018 

Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K (2017) Artificial neural network (ANN) based 
model predictive control (MPC) and optimization of HVAC systems: a state of the art review 
and case study of a residential HVAC system. Energ Buildings 141:96–113 

Agarwal HP, Sinha R (2017) Urban farming-A sustainable model for Indian cities. Int J Emerg 
Technol 8(1):236–242 

Ahamed MS, Guo H, Tanino K (2018) A quasi-steady state model for predicting the heating 
requirements of conventional greenhouses in cold regions. Inf Process Agric 5:33–46. https:// 
doi.org/10.1016/j.inpa.2017.12.003 
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Intelligent Nutrient Controlling System 
for Precision Urban Agriculture 

Nico Surantha and Vito Vincentdo 

Abstract Urban agriculture has gained significant attention in recent years due 
to its potential to address various challenges, such as food security, urbanization, 
and climate change. However, urban farming method requires special treatment for 
controlling the water temperature, water level, and acidity (pH) of nutrient solutions. 
The emergence of the Internet of Things (IoT) has enabled the integration of sensors 
and devices with the physical world, leading to the emergence of intelligent systems 
that can be applied in various domains, including urban agriculture. Integrating IoT 
technologies with urban agriculture makes it possible to create intelligent systems 
that can monitor and control different aspects of the production process in real-time. 
In this chapter, we conduct a review about intelligent nutrient-controlling system 
for precision urban agriculture. Specifically, this chapter discusses about the latest 
development of intelligent system, the IoT architecture, and the future challenge of 
intelligent nutrient-controlling system. 

Keywords Urban agriculture · Internet of Things · Nutrient control systems · 
Hydroponics · Artificial intelligence 

1 Introduction 

Urban agriculture, defined as the practice of growing food in urban areas, has gained 
significant attention in recent years due to its potential to address various challenges, 
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such as food security, urbanization, and climate change. However, the efficiency 
of urban agriculture depends on several factors, including the use of advanced 
technologies that can optimize production processes, reduce resource consumption, 
and improve crop yields (D’Ostuni et al. 2022). The proliferation of the Internet of 
Things (IoT) has enabled the integration of sensors and devices with the physical 
world, leading to the emergence of intelligent systems that can be applied in 
various domains, including urban agriculture. Integrating IoT technologies with 
urban agriculture makes it possible to create intelligent systems that can monitor 
and control different aspects of the production process in real time (Herman 2020). 
In this context, intelligent IoT systems can enhance the efficiency and sustainability 
of urban agriculture by providing real-time data and insights for decision-making, 
automating tasks, and optimizing resource usage (Xu et al. 2022). 

In recent years, there has been an increasing interest in the application of IoT 
in urban agriculture, and numerous studies have been conducted to explore the 
potential benefits of this technology. Researchers have investigated various aspects 
of IoT technology in urban agriculture, including sensors, data analytics, and 
automation. One study was conducted by Herman et al. (2019) explored the use 
of IoT technology in hydroponic systems to monitor and control nutrient and water 
levels. Ouafiq et al. (2021) developed an intelligent system for urban agriculture 
that combines IoT, big data, and artificial intelligence to optimize resource use and 
improve crop yield. Stevens et al. (2018) proposed a smart agricultural tool called 
as MicroCEA that can be controlled via a mobile application. Parameters monitored 
in the hydroponic system created are LED lights, air humidity, CO2 level in the air, 
air temperature, pH level in water, and EC level in water. 

Another study by Vianny et al. (2022) investigated the use of IoT in precision 
irrigation systems to optimize water usage and reduce waste. In addition to 
improving resource management, IoT can also help farmers detect and prevent 
diseases in their crops. A study by Cruz et al. (2022) used IoT technology to 
monitor the growth of strawberries and detect early signs of disease. Similarly, 
Puengsungwan et al. (2020) used IoT sensors to detect plant stress caused by 
environmental factors such as temperature and humidity. 

IoT technology can also facilitate the integration of urban agriculture into the 
food supply chain. A study by Onwude et al. (2020) used IoT sensors to monitor 
the freshness of produce during transportation, while another study by Kamble 
et al. (2020) used IoT technology to track the origin and quality of vegetables 
in urban farms. However, the implementation of IoT in urban agriculture also 
presents challenges such as the cost of sensors and data management. A study by 
Podder et al. (2021) explored the use of edge computing to reduce the cost and 
improve the efficiency of IoT in urban agriculture. Another study by Chaganti et al. 
(2022) investigated the use of blockchain technology to improve the security and 
transparency of data in IoT systems. These studies demonstrate that integrating IoT 
technology in urban agriculture can revolutionize the field and promote sustainable 
and efficient agriculture practices. They demonstrated IoT technology’s various 
benefits and challenges in urban agriculture, and further research is needed to realize 
its potential fully.
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This paper presents an overview of the potential benefits of integrating IoT 
technologies with urban agriculture for nutrient controlling system. Urban farming 
method requires special treatment for controlling the water temperature, water 
level, and acidity (pH) of nutrient solutions. Nutritional solutions for hydroponic 
systems are aqueous solutions containing inorganic ions, especially from salts which 
are important elements for plants which are tall (Trejo-Téllez and Gómez-Merino 
2012). Plants need frequent watering and fertilization (Charumathi et al. 2017). 
To be able to produce plants that are good in the harvest period, these treatments 
and regular must be done every day. The checks carried out include checking the 
water content in the installation, the nutrients contained, the dose of the pH, the 
temperature and humidity of the air, etc., which must meet the specified standards. 
If one of these elements does not meet the right dose, the plant will not grow as 
expected. Therefore, regular checks must be done every day. Due to the need for 
regular checks, the hydroponic method becomes inefficient because it requires a 
long time and high costs for maintenance (Lochan Mishra and Jain 2015). This 
also impacts on the selling price of hydroponic plants; the plants become more 
expensive. While hydroponic method is a solution to the problem of limited land, it 
also requires complicated care, making it not efficient for agriculture. 

This paper is organized as follow. The literature review of latest development in 
an intelligent system for nutrient-controlling systems is discussed in Sect. 2. The  
general IoT system architecture is discussed in Sect. 3. The future challenge of 
research and implementation of intelligent nutrient-controlling system is discussed 
in Sect. 4. Finally, the conclusion is presented in Sect. 5. 

2 Intelligent Nutrient Control Systems 

Intelligent nutrient control systems have been increasingly applied in urban agricul-
ture to improve plant growth and yield while reducing waste and environmental 
impact. These systems utilize sensors and automation to monitor and regulate 
nutrient levels in the soil or hydroponic solutions, while data analytics and machine 
learning algorithms are used to optimize nutrient delivery and minimize resource 
usage. In this section, some research on intelligent nutrient control system in urban 
farming is discussed. 

Herman et al. (2020) proposed a hydroculture system that is monitored using 
sensors and controlled by a microcontroller especially 8266 and actuators. The 
sensors used include pH, electrical conductivity, humidity, and temperature levels to 
see the current conditions in the hydroculture. The data from sensor then analyzed 
with Sugeno fuzzy logic method to automatically regulate the water and nutrient 
pump. The results of the study had significant differences in leaf width and plant 
height in lettuce and bok choy plants. 

Mehra et al. (2018) proposed the implementation of deep neural networks (DNN) 
in deep water culture (DWC) hydroponic. The DWC hydroponic technique is the 
most straightforward hydroponic technique. It only uses a water reservoir, and
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the plants are directly on top of the water reservoir. The input parameters for the 
DNN are PPM, water level, temperature, light intensity, and humidity. The input 
parameters are fitted with models that have been trained in the cloud and will 
provide a classification of actions to regulate the hydroponic system environment. 
The system’s output can only classify which actuator needs to be turned on or off. 

Alipio et al. (2019) used the nutrient film technique (NFT) hydroponic systems. 
NFT is a hydroponic technique that continuously circulates dissolved nutrients from 
the water reservoir to the growing media using a pump. The dissolved nutrients 
are flowed through the gutter and pass through all the roots of the plants. The 
study uses a Bayesian network that acts as the system’s brain to automatically 
regulate the water reservoir’s pH and EC. pH, EC, humidity, light intensity, 
and water temperature are the Bayesian network input parameters. The Bayesian 
network processes the sensors’ data to give the proper action needed to regulate the 
hydroponic system environment. The detected data and respective output are sent to 
the cloud so the user can monitor it. 

Adidrana et al. (2019) proposed an NFT (nutrient film technique) hydroponic 
nutrition control system using the KNN method and IoT. This control system 
expected to provide accurate calculation results to command the microcontroller 
to turn on or off the nutrition controllers more than one at a time, such as pH down, 
pH up, AB nutrition, and filter pump. KNN (k-nearest neighbor) algorithm uses 
for predicting the classification of nutrient conditions, so the system can provide 
information on nutrition conditions to the user. pH and TDS values controlled using 
pH (up and down) solution, nutrients (A and B) to increase the TDS value, and 
nutrient filter to reduce the TDS value obtained from the pH sensor and TDS sensor. 

Atmaja et al. proposed a multistep fuzzy logic method for NFT hydroponics 
system in making decisions for parameter adjustments in the hydroponic system. 
The multistep fuzzy logic is proposed to be able activating relay within the same 
time. After the relay was activated at the same time, it is possible there are 
some calibrations needed to tune the mixed solution to add a difference into the 
hydroponics main system. The calculation result data is sent via the ESP8266 and 
NRF24L01 modules. With the results of the evaluation of the multistep fuzzy logic 
method, it is in accordance with the expectations of the created fuzzy rule. From 
the real-time data transmission method, the success of sending data is 30% from 
the ESP82166 and 75% of the NRF24L01 with a shortage of the NRF24L01 data 
loss. For the relay, activation can be accommodated with dynamic programming. As 
for multistep fuzzy logic, hydroponics was tested to reach optimal water condition 
for kale crops, resulting in an average 12.8 iterations of calibration from condition 
where researches add water only from the start. 

From the all the research that has been explained in this section, the researchers 
tried to address the difficulty in fostering urban farming that requires a precision 
water and nutrition intake. From their research results, it is evident that machine 
learning or deep learning method can be used to analyze the data from sensor 
and automatically regulate the nutrient pump. Therefore, the plants can receive 
nutritional intake according to their needs and will grow more optimally (Table 1).
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Table 1 Intelligent nutrient control systems 

No Publication Proposed technique Results 

1 Herman et al. 
(2020) 

Sugeno fuzzy logic to control 
pH, nutrient, and temperature 

Proposed system shows better 
plant growth in terms of length 
and width of the leaves and 
plant’s height 

2 Mehra et al. 
(2018) 

Deep neural networks (DNN) 
in deep water culture (DWC) 
hydroponic 

Plant growth in hydroponics is 
far better in terms of height 
compared to the traditional soil 
growth 

3 Alipio et al. 
(2019) 

Bayesian network to detect and 
regulate humidity, sunlight, 
water temperature, pH level, 
and electrical conductivity 

The prediction model obtained 
84.53% accuracy after model 
validation, and the yielded 
crops on the automatic control 
was 66.67% higher than the 
manual control 

4 Adidrana et al. 
(2019) 

KNN (k-nearest neighbor) 
algorithm to predict the 
classification of nutrient 
conditions 

Achieves 93.3% accuracy 

5 Atmaja et al. 
(2022) 

Multistep fuzzy logic method 
for NFT hydroponics system 

To reach optimal water 
condition for kale crops 
resulting in average 12.8 
iterations calibration from 
condition where researches add 
water only from the start 

3 IoT System Architecture 

This section discusses the general architecture of an intelligent nutrient control 
system. Generally, as shown in Fig. 1, the system consists of three sections: the 
sensor layer, the actuator layer, and the data processing layer. A detail explanation 
of each layer is presented in Sects. 3.1, 3.2, and 3.3. 

3.1 Sensor Layer 

Intelligent nutrient control systems use sensors to monitor and control nutrient levels 
in plants or aquaculture systems. The sensors commonly used include pH sensors, 
electrical conductivity (EC) sensors, dissolved oxygen (DO) sensors, temperature 
sensors, soil moisture sensors, and nutrient sensors, such as ammonium, nitrate, and 
potassium sensors. 

pH sensors are commonly used in intelligent nutrient control systems for urban 
farming to monitor and maintain the acidity or alkalinity of the nutrient solution 
(Herman 2019; Adidrana and Surantha 2019). In hydroponic or aeroponic systems, 
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Data processing layer 
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Cloud Server 

Arduino UNO 

Sensor Layer 

Actuator layer 

Device layer 

Fig. 1 General System Architecture 

plants receive nutrients directly from a nutrient solution rather than from soil, so it is 
important to ensure that the pH of the solution is within the optimal range for plant 
growth. The optimal pH range depends on the plant species and can range from 
around 5.5 to 6.5 for most leafy greens and to around 6.5 to 7.5 for tomatoes and 
cucumbers (Goddek et al. 2020). pH sensors can be used to continuously monitor the 
pH of the nutrient solution and provide real-time feedback to an automated nutrient 
control system. The system can adjust the pH by adding acid or base solutions to 
maintain the desired pH range. This helps to ensure that the plants have access to 
the nutrients they need and can grow optimally. pH sensors can also be used to 
diagnose problems such as nutrient imbalances, which can cause the pH to drift 
outside of the optimal range. Overall, pH sensors are an essential component of an 
intelligent nutrient control system for urban farming to ensure optimal plant growth 
and health. 

EC sensors are commonly used in intelligent nutrient control systems for urban 
farming to measure the concentration of nutrients in the hydroponic solution 
(Yolanda et al. 2016). In urban farming, where space is often limited, hydroponic 
systems are used to grow plants without soil in a nutrient-rich water solution. The 
EC sensor measures the electrical conductivity of the solution, which is directly 
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related to the concentration of dissolved salts in the solution. By measuring the 
EC, the system can determine the nutrient concentration of the solution and make 
adjustments to ensure that the plants are receiving the proper nutrients for optimal 
growth. In addition to nutrient monitoring, EC sensors can also be used to monitor 
the overall health of the hydroponic system (Lochan Mishra et al. 2007). For 
example, if the EC is too high, it may indicate that there is a buildup of salts in 
the solution, which can be harmful to the plants. Similarly, if the EC is too low, it 
may indicate that the plants are not receiving enough nutrients. 

DO sensors measure the amount of oxygen dissolved in the nutrient solution, 
which is critical to the health of the plants (Deepthi et al. 2021). If the oxygen level 
is too low, it can lead to root rot, which can kill the plants. If the oxygen level is 
too high, it can create an environment that promotes the growth of harmful bacteria. 
DO sensors can detect changes in oxygen levels and alert the system to adjust the 
oxygen supply to maintain optimal levels (Kyaw and Ng 2017). This ensures that the 
plants receive the right amount of oxygen to grow and remain healthy. Overall, DO 
sensors play an important role in maintaining the health and productivity of plants 
in urban farming systems. 

Temperature sensors are an essential component of intelligent nutrient control 
systems in urban farming (Joseph Balinado 2016). These sensors measure the 
temperature of the nutrient solution, which is critical for plant growth and health. 
Temperature affects plant metabolism, nutrient uptake, and the growth rate of plants. 
For example, if the temperature is too high, it can lead to lower oxygen levels 
in the nutrient solution, which can harm plant roots. On the other hand, if the 
temperature is too low, it can slow down plant growth and reduce nutrient uptake. By 
monitoring the temperature of the nutrient solution, the intelligent nutrient control 
system can adjust other parameters such as pH and nutrient levels to optimize plant 
growth and health. Additionally, temperature sensors can also be used to monitor the 
temperature in the growing environment (Alipio et al. 2017), which is important for 
controlling the microclimate and preventing heat stress or cold damage to plants. 
Overall, temperature sensors play a critical role in maintaining optimal growing 
conditions and maximizing yield in urban farming systems. 

Nutrient sensors such as ammonium, nitrate, and potassium sensors can be used 
in intelligent nutrient control systems for urban farming to monitor the nutrient 
levels in hydroponic or aeroponic systems (John and Mahalingam 2021). These 
sensors can detect the concentration of specific nutrients in the solution and provide 
real-time data that can be used to adjust the nutrient levels. For example, ammonium 
sensors can detect the concentration of ammonium ions in the solution, which 
is important for plants as a source of nitrogen. Nitrate sensors can detect the 
concentration of nitrate ions in the solution, which is also important for plants as 
a source of nitrogen. Potassium sensors can detect the concentration of potassium 
ions in the solution, which is essential for plant growth and development (Silva et 
al. 2022). By using these nutrient sensors in combination with other sensors such 
as pH sensors and EC sensors, an intelligent nutrient control system can adjust the 
nutrient levels in real-time to ensure that the plants are getting the optimal amount of 
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nutrients for growth and development. This can lead to increased yield and improved 
quality of produce in urban farming systems. 

Finally, soil moisture sensors are commonly used in intelligent nutrient control 
systems for urban farming to help optimize plant growth and nutrient uptake 
(Hostalrich et al. 2022). These sensors provide real-time data on the moisture 
levels in the soil, allowing farmers to adjust their watering schedule and fertilizer 
application to meet the needs of the plants. Integrating soil moisture sensors with 
other sensors, such as pH, EC, DO, temperature, and nutrient sensors, can create a 
more comprehensive system for intelligent nutrient control. By combining data from 
multiple sensors, farmers can better understand the overall health of their plants and 
adjust their nutrient levels accordingly (Janani et al. 2022). The summary of sensor 
used in intelligent nutrient control system is presented in Table 2. 

3.2 Actuator Layer 

Actuators are an important component of an intelligent nutrient control system 
for urban farming. They are used to control the delivery of nutrients, water, and 
other inputs to plants in hydroponic or aeroponic systems. The three main types of 
actuators used in these systems are pumps, solenoid valves, and dosing systems. 

Pumps are commonly used in nutrient control systems to deliver nutrient 
solutions to plants (Safira et al. 2022). Peristaltic pumps are often used because 
they are precise and have a low risk of contamination. The system can control them 

Table 2 Sensor used in intelligent nutrient control system 

No. Sensor type Function References 

1 pH sensors Measure acidity or alkalinity of 
nutrient solution 

Herman (2020), Adidrana and 
Surantha (2019) and Yolanda 
et al. (2016) 

2 EC sensors Measure concentration of 
nutrients in the solution 

Adidrana and Surantha (2019), 
Yolanda et al. (2016) and  
Lochan Mishra et al. (2007) 

3 DO sensors Measure oxygen concentration 
in the water 

Deepthi et al.  (2021) and  Kyaw  
and Ng (2017) 

4 Temperature 
sensors 

Measure the temperature of 
nutrient solution and 
temperature of plant 
environment 

Adidrana and Surantha (2019), 
Joseph Balinado (2016) and  
Alipio et al. (2017) 

5 Specific nutrient 
sensors 
(ammonium, 
nitrate, and 
potassium) 

Measure levels of specific 
nutrients in the solution 

John and Mahalingam (2021) 
and Silva et al. (2022) 

6 Soil moisture 
sensors 

Measure moisture levels in the 
soil 

Hostalrich et al. (2022) and  
Janani et al. (2022) 
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to deliver precise amounts of nutrient solution to the plants based on the real-time 
data collected from the sensors (Rico 2020). 

Solenoid valves are used to control the flow of water and nutrient solutions in 
hydroponic and aeroponic systems (Xu et al. 2020). These valves can be controlled 
electronically, allowing for precise control of the amount of solution delivered to 
each plant. They are often used in combination with pumps to deliver nutrient 
solutions to plants (Iswanto and Ma’Arif 2020). 

Dosing systems are used to deliver precise amounts of nutrients to the plants. 
They can be used to mix and deliver nutrient solutions based on the real-time 
data collected from the sensors (Lennard and Ward 2019). Some dosing systems 
are automated, allowing for precise control of the nutrient delivery to each plant 
(Hosseini et al.  2021). 

In summary, pumps, solenoid valves, and dosing systems are the primary types 
of actuators used in intelligent nutrient control systems for urban farming. These 
actuators allow for precise control of the delivery of nutrients, water, and other 
inputs to plants based on real-time data collected from sensors. By using these 
actuators, urban farmers can optimize plant growth and development, leading to 
increased yields and improved quality of produce. The summary of actuators used 
in intelligent nutrient control system is presented in Table 3. 

3.3 Data Processing Layer 

Intelligent nutrient control systems for urban farming often incorporate microcon-
trollers and cloud computing technology to automate and remotely monitor the 
growing environment. Microcontrollers and cloud computing are used for data 
analytics process and data storage for the plant monitoring systems. 

Microcontrollers such as Arduino (Ibrahim et al. 2015) and Raspberry Pi (Crisna-
pati et al.  2017) can be used in intelligent nutrient control systems for urban farming. 
These microcontrollers can be programmed to read data from various sensors, such 
as pH, EC, dissolved oxygen, and nutrient sensors, and adjust the nutrient levels 
in real-time based on the data. The microcontrollers can also be used to control 
other components in the system such as pumps, valves, and lights. This allows 

Table 3 The summary of actuator used in intelligent nutrient control system 

No. Sensor type Function References 

1 Pumps Deliver nutrient solutions to 
plants 

Safira et al. (2022) and  Rico  
(2020) 

2 Solenoid valves Control the flow of water and 
nutrient solutions 

Xu et al. (2020) and Iswanto 
and Ma’Arif (2020) 

3 Dosing systems To mix and deliver nutrient 
solutions based on the real-time 
data collected from the sensors 

Lennard and Ward (2019) and  
Hosseini et al.  (2021) 
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for precise and automated control of the nutrient solution, leading to increased 
yield and improved produce quality in urban farming systems. Additionally, these 
microcontrollers are cost-effective and easily accessible, making them a popular 
choice for small-scale urban farming operations. 

FPGAs (Field Programmable Gate Arrays) can also be used in intelligent nutrient 
control systems for urban farming to process the data from various sensors and 
control the nutrient delivery system (Oukaira et al. 2021). FPGAs are also highly 
customizable and can be reprogrammed to accommodate system changes or add 
new sensors or control functions. Additionally, FPGAs can operate at high speeds 
with low latency, making them ideal for real-time control in urban farming systems 
where quick response times are essential (Kumar et al. 2020). 

Cloud computing technology enables the remote monitoring and control of the 
growing environment from a smartphone, tablet, or computer. This allows farmers 
to monitor and adjust the growing environment from anywhere, at any time, which 
is especially important for urban farming where space and time are often limited. 
Cloud computing can also be used to store and analyze data from sensors, providing 
insights into the performance of the growing system and allowing for continuous 
optimization. 

Microsoft Azure is an example of a cloud computing platform used for intelligent 
nutrient control systems. Microsoft Azure offers IoT Hub and Time Series Insights, 
which allow farmers to connect and monitor sensors in real time and analyze 
historical data to make informed decisions about nutrient control (Rahul et al. 
2022). The platform also offers machine learning tools, which can be used to 
optimize nutrient control and predict plant growth based on historical data. Another 
example of a cloud computing platform used for intelligent nutrient control systems 
is AWS IoT. AWS IoT offers a suite of services, including IoT Core, which enables 
farmers to connect sensors and devices, and IoT Analytics, which provides real-
time analysis of sensor data (Ponnusamy et al. 2021; Philimon et al. 2022). The 
platform also offers machine learning tools such as SageMaker, which can be used 
to predict plant growth and optimize nutrient levels based on historical data (Shaif 
2021). Additionally, AWS Greengrass allows for local compute and analytics at the 
edge, enabling farmers to quickly respond to changes in nutrient levels in real time 
(Tawalbeh et al. 2020). 

Blynk and Growlink are two examples of software platforms that can be used 
to create intelligent nutrient control systems for urban farming. Blynk is an IoT 
(Internet of Things) platform that allows users to build custom apps to control and 
monitor various devices, including sensors and actuators (Herman 2020). Growlink, 
on the other hand, is a software platform specifically designed for agriculture 
and hydroponics systems (Srivastava and Das 2022). By integrating Blynk or 
Growlink with various sensors such as pH, EC, temperature, and nutrient sensors, an 
intelligent nutrient control system can be created for urban farming. These systems 
can monitor and adjust nutrient levels in real time, based on the data collected from 
the sensors. The platforms also allow for remote monitoring and control of the 
system, which can save time and increase efficiency for urban farmers. Overall, 
Blynk and Growlink offer user-friendly and customizable solutions for creating 
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Table 4 Data processing layer 

No Technology Example of technology References 

1 Microcontroller/ 
edge device 

Arduino Joseph Balinado (2016) and  
Ibrahim et al. (2015) 

Raspberry-Pi Atmaja and Surantha (2022) 
and Crisnapati et al. (2017) 

FPGA Oukaira et al. (2021) and  
Kumar et al. (2020) 

2 Cloud 
computing 
platform 

Microsoft Azure: IoT hubs and 
time-series insight 

Rahul et al. (2022) 

AWS IoT: IoT Core, 
SageMaker, AWS Greengrass 

Ponnusamy et al. (2021), 
Philimon et al. (2022), Shaif 
(2021), and Tawalbeh et al. 
(2020) 

Blynk Herman (2020) 
Growlink Srivastava and Das (2022) 

intelligent nutrient control systems for urban farming. By using these platforms 
in combination with various sensors, urban farmers can optimize the growth and 
quality of their crops while also saving time and resources. 

In combination, microcontrollers and cloud computing technology provide a 
powerful tool for intelligent nutrient control in urban farming. By automating 
nutrient delivery and environmental control and remotely monitoring and adjusting 
the growing environment, farmers can optimize plant growth and productivity while 
reducing labor costs and environmental impact. Additionally, the use of cloud 
computing allows for real-time analysis and optimization of the growing system, 
leading to increased efficiency and improved crop yield (Table 4). 

4 Future Challenges 

The future of intelligent nutrient control systems for urban farming faces several 
challenges. In this section, we identify several potential challenges for research in 
this field. 

4.1 Integration of Sensors and Controls System 

One of the key challenges is integrating multiple sensors and control systems to 
optimize nutrient delivery to plants. With increasing technological advancements, 
more sensors and control systems are becoming available, making it difficult to 
select the most effective and efficient systems for a particular urban farming 
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environment (Hostalrich et al. 2022). Therefore, there is a need to develop integrated 
systems that can work together seamlessly to optimize plant growth. 

On the other hand, as more sensors and actuators are added to the system, 
the interactions between them become more complicated, making it difficult to 
optimize nutrient delivery to the plants (Herman 2020). For example, a system 
that includes sensors for measuring pH, EC, ammonium, nitrate, and potassium 
levels and actuators for adjusting the nutrient delivery system can generate a vast 
amount of data that needs to be processed in real time. The system needs to be 
able to analyze this data and make decisions about when and how to adjust the 
nutrient delivery system to maintain optimal nutrient levels. In addition, there may 
be interactions between the sensors and actuators that need to be considered. For 
example, changes in pH levels can affect the availability of certain nutrients to 
the plants, which may require adjustments to the nutrient delivery system (Herman 
2019). This requires a system that can integrate the data from multiple sensors and 
actuators and make decisions based on the overall state of the system. 

4.2 Data Analytics and Machine Learning for Predicting 
Nutrient Control 

There is a need for more advanced data analytics and machine learning algorithms to 
analyze the vast amounts of data generated by the sensors in real time. This requires 
developing advanced algorithms that can identify trends and patterns in the data 
to make more accurate predictions about plant growth and nutrient requirements 
(Mehra et al. 2018). Another challenge is the need to develop algorithms that can 
accurately predict plant growth and nutrient requirements. This requires training the 
algorithms with large amounts of data from a variety of environmental conditions, 
plant species, and nutrient solutions (Deren et al. 2021). The algorithms need to 
be able to identify patterns and trends in the data to make accurate predictions. 
Additionally, machine learning algorithms need to be able to adapt to changes in 
the system, such as the addition of new sensors or changes in the nutrient solution. 
Developing algorithms that can learn and adapt to changes in the system is essential 
for maintaining the optimal nutrient delivery to the plants (Atmaja and Surantha 
2022). 

4.3 Sustainable and Eco-Friendly Nutrient Delivery Systems 

Another challenge is the development of more sustainable and eco-friendly nutrient 
delivery systems. One challenge is reducing water consumption, as many nutrient 
delivery systems require large amounts of water. This can be achieved by using 
recirculating systems that reuse water or by using systems that capture and reuse 
rainwater or other alternative water sources (Bisaga et al. 2019). Implementing these 
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systems can significantly reduce water consumption and improve the sustainability 
of the nutrient delivery system. 

Another challenge is reducing energy consumption, as many nutrient delivery 
systems require energy to pump and circulate the nutrient solution. Using solar 
or wind power to generate energy for the system can reduce the environmental 
impact of the system and lower energy costs. Additionally, optimizing the timing 
and frequency of nutrient delivery can reduce the amount of energy required to 
operate the system. 

Another challenge is minimizing waste, as many nutrient delivery systems 
generate nutrient-rich runoff that can be harmful to the environment if not properly 
managed. Implementing systems that capture and reuse this runoff can significantly 
reduce waste and improve the sustainability of the nutrient delivery system. 

Finally, there is a need to develop nutrient solutions that are more sustainable 
and environmentally friendly. Currently, many nutrient solutions use synthetic 
fertilizers that can be harmful to the environment (Havlin 2020). Developing more 
sustainable and organic nutrient solutions can improve the nutrient delivery system’s 
sustainability and the quality of the produce grown in the system. 

4.4 More Affordable and Accessible Intelligent Nutrient 
Control Systems 

Finally, there is a need to develop intelligent nutrient control systems that are 
more affordable and accessible to urban farmers. One challenge is the cost of the 
sensors and control systems used in these systems. Many of the sensors and control 
systems can be expensive, making them inaccessible to small-scale urban farmers 
with limited resources. Therefore, there is a need to develop more affordable sensors 
and control systems that can be easily integrated into urban farming environments. 

Another challenge is the need for specialized knowledge to operate these 
systems. Many of the current systems require advanced technical knowledge to 
operate, which can be a barrier for small-scale urban farmers who may not have 
the necessary skills or training (Atmaja and Surantha 2022). Therefore, there is a 
need to develop more user-friendly systems that are easy to operate and require 
minimal technical knowledge. 

Additionally, there is a need to develop open-source systems that can be 
customized and modified by urban farmers to meet their specific needs. Open-source 
systems can be more affordable and accessible because they allow users to modify 
and customize the system using readily available and low-cost components. 

Finally, there is a need to develop training and support programs for urban 
farmers to help them implement and operate these systems. Many urban farmers 
may not have the necessary technical knowledge or experience to operate these 
systems, so providing training and support can help ensure the success of the 
system and improve the accessibility of intelligent nutrient control systems for urban 
farming. 
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5 Conclusion 

The proliferation of IoT and AI leads to the emergence of intelligent system that can 
be used to improve various aspect in urban farming. One of the main application of 
IoT in urban farming is for the automatic nutrient controlling system. Urban farming 
method requires special treatment for controlling the water temperature, water 
level, and acidity (pH) of nutrient solutions. The intelligent system will help the 
beginner urban farmer grow the plants optimally. In this chapter, we have discussed 
some of the algorithms developed for intelligent nutrient controlling. We have also 
discussed the general architecture of IoT system and its detail component. Finally, 
we discuss the potential challenge of research and implementation of intelligent 
nutrient systems in society. With this study, hopefully there are more research to be 
done to improve the feasibility of intelligent nutrient system in urban farming. 
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Vertical Farming of Medicinal Plants

Françoise Bafort and M. Haïssam Jijakli

Abstract Medicinal plants have been used in traditional medicine, health food
supplements, rituals, and for health care purposes for thousands of years. According
to the Food and Agriculture Organization of the United Nations (FAO), the
worldwide production of medicinal and aromatic plants is estimated to be 330
million tons for a total area of 77 million ha. Nowadays, the sector of medicinal
plants is subject to inconstancy, and issues about the yield, quality, and efficacy of
plant extracts have been reported. The present review describes the current status
of medicinal plants worldwide, including a detailed description of the sector in
France. The suitability of vertical farming for the production of medicinal plants
is discussed, and its advantages and drawbacks are presented. Indoor cultivation
in a controlled environment requires appropriate adjustment of abiotic factors to
optimize biomass and secondary metabolite contents. Light quantity and quality,
nutrient solution, temperature, and CO2 concentration are presented in relation with
their impact on plants and on the production of the targeted phytocompound. A
case-study on the technic feasibility and economic viability of producing a plant-
based drug in a vertical container is presented, including plant cultivation and drug
extraction steps. Based on the costs related directly to the production activity, it
provides a rapid estimate of the direct production cost of each step. The largest
contributor to cultivation costs is labor, averaging 48%, followed by energy (20%)
and investment cost (20%). The largest contributor to extraction and purification
costs is the operating and maintenance cost of equipment (47%), followed by energy
cost (31%) and labor cost (16%). The largest contributor to the whole plant-based
drug production process, from plant cultivation to drug production, is the research
and development cost (98–67%), followed by cultivation and extraction costs (1–
24%) and drug manufacturing costs (1–8%), depending on the number of containers,
i.e., on the productivity of the cultivation and extraction steps.
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Keywords Vertical farming · Economic viability · Medicinal plant · Indoor
cultivation · Controlled-environment cultivation · Quality of medicinal plants

1 Introduction: Vertical Farming and Medicinal Plants

1.1 Current Challenges of Agriculture

Agriculture currently faces many challenges and difficulties in terms of environ-
mental performances. Although the Organization for Economic Cooperation and
Development (OECD) points out that agricultural nitrogen and phosphorous nutrient
surpluses in the OECD countries steadily declined between 1990 and 2009, farmed
soils still contain an average surplus of 63 kg/ha of nitrogen and 6 kg/ha of
phosphorous. These levels remain very high as to their potential to cause surface,
groundwater and coastal water pollutions (OECD 2013). In most European member
states, agriculture is responsible for over a third of the total nutrient discharge
into surface and coastal waters (OECD 2013). Agriculture is also the major user
of pesticides, with 70% of the mean pesticide sales in OECD countries related to
agriculture. As a result, agricultural soils are major reservoirs of pesticides that
affect soil microbial communities and represent sources of water and air pollutants
(Tao et al. 2008; OECD 2013; Hvězdová et al. 2018; Dou et al. 2020a, b). Almost a
third of OECDmember countries is affected by moderate to severe water-related soil
erosion, while far fewer countries are suffering from wind-related erosion (OECD
2013). Erosion due to agricultural practices can be mainly attributed to continued
cultivation on fragile and marginal soils, overgrazing of pasture, or unsuited farming
and tillage practices (Bullock 2005; OECD 2013; Gebrehiwot 2022; Hassan et
al. 2022). The mean energy consumption related to agriculture between 2008
and 2010 was low – 1.6% – but the sector is vulnerable to changes in crude
oil prices, and sensitive to dramatic changes (OECD 2013). Although the OECD
indicates that the agriculture sector reduced its water withdrawals over the past
decade, agriculture remains a major user of water accounting for an average 44%
of total water withdrawals (OECD 2013). Biodiversity as measured from farmland
bird populations has been declining continuously in almost all countries over the
1990–2010 period (OECD 2013). The main reason is the considerable use of land
and water resources on which wild species are highly dependent (OECD 2013).
Agricultural intensification in recent decades has resulted in reduced crop diversity
and losses of plant species (Storkey et al. 2012; Meyer et al. 2013; Abeli et al. 2022).
Figure 1 shows the pressure exerted by agriculture in several sectors.

The value of primary agriculture round the world can be partly understood by
looking at trade statistics from worldwide databases. Although trade data are never
complete and products are categorized differently, they give a global picture of the
importance of primary agriculture and the share of medicinal plants within primary
agriculture. Customs nomenclature referring to primary agriculture includes several
codes: 07 “Edible vegetables and certain roots and tubers,” 08 “Edible fruit and nuts;
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Fig. 1 Overview of the pressure exerted by agriculture in several sectors: water pollutants, energy
consumption, water withdrawal, pesticide sales, land area, biodiversity, and water and wind erosion
risk (OECD 2013). Each sector is represented on a 100% basis, in which the share of primary
agriculture is indicated *Mean based on a limited number of OECD countries **The number
of OECD countries monitoring pesticides in water systems is limited. However, data for Austria
reveals that the development of pesticide sales is closely related to level of pesticides detected in
surface waters ***Mean average annual percentage change

peel of citrus fruit or melons,” 09 “Coffee, tea, maté and spices,” 10 “Cereals,” and
12 “Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruit; industrial
or medicinal plants; straw and fodder,” Table 1 shows the exported value of primary
agriculture and the relative significance of nomenclature 1211 corresponding to
“Plants and parts of plants, incl. seeds and fruits, of a kind used primarily in
perfumery, medicaments or for insecticidal, fungicidal or similar purposes, fresh
or dried, whether or not cut, crushed or powdered,” It shows that the export value of
medicinal plants represents a small percentage of primary agriculture (about 0.7%)
but is constantly growing.

In 2019, the total exported quantities of code 1211 represented 731,606 tons
and 2,892,682 euros. The exported value of code 1211 per ton was about ten times
higher than those of rice (code 1006), cereals (code 1001), and potato (code 0701)
and about three times higher than that of tomatoes (code 0702), showing that this
category has a high added value.

1.2 The Current Status of Medicinal Plants

The Current Status of Medicinal Plants Round the World
Medicinal plants, including medicinal herbs, have long been used round the world.
The use of medicinal plants is one of the oldest forms of treatment, coming from
ancestral and empirical uses, that still plays a significant role in Africa and Asia
(World Health Assembly 2003). The World Health Organization (WHO) reports
that at least half of the world population do not receive the healthcare services they
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Table 1 World total export value (AC) of codes 07-08-09-10-12, world total export value (AC) of
code 1211, percentage of code 1211 in the total of codes 07-08-09-10-12, and annual export value
growth of code 1211 from 2018 to 2021 (International Trade Center, no date)

Year

World total export
value of primary
agriculture codes
07-08-09-10-12 (AC)

World total
export value of
code 1211 (AC)

Percentage of code
1211 in the total
export value of
primary agriculture

Annual export
growth of code 1211

2021 483,564,488 3,310,966 0.6847% 5.26% (2020–2021)
2020 431,281,779 3,145,490 0.7293% 8.74% (2019–2020)
2019 410,466,532 2,892,682 0.7047% 6.15% (2018–2019)
2018 387,958,090 2,725,045 0.7024% –

Codes: 07, “Edible vegetables and certain roots and tubers”; 08, “Edible fruit and nuts; peel of
citrus fruit or melons”; 09, “Coffee, tea, maté and spices”; 10, “Cereals”; 12, “Oil seeds and
oleaginous fruits; miscellaneous grains, seeds and fruit; industrial or medicinal plants; straw and
fodder”; 1211, “Plants and parts of plants, incl. seeds and fruits, of a kind used primarily in
perfumery, medicaments or for insecticidal, fungicidal or similar purposes, fresh or dried, whether
or not cut, crushed or powdered”

need and that about 80% are using traditional medicines to meet their healthcare
needs (World Health Assembly 2003; World Health Organization 2022). One way of
understanding the importance of the medicinal plant market at the level of a country
is to look at the number of national research institutes dedicated to traditional and
complementary medicines, which are fully or partially funded by the governments
and indicate strong national policy support. The WHO report on traditional and
complementary medicine shows that the highest number of countries reporting a
national research institute were in the South-East Asia Region (64%), followed by
the African Region (62%), the Eastern Mediterranean Region (48%), the Western
Pacific Region (33%), the Region of the Americas (26%), and the European Region
(21%) (Fig. 2) (WHO 2019). The regions with the highest percentage correspond
to countries, where medicinal plants strongly belong to the traditional healthcare
system (Pan et al. 2014; Howes et al. 2020).

The trade database shows that India and China are the major providers of
medicinal plants round the world with 24.1 and 10.6% of the total export value in
2021 (Fig. 3), followed by Germany (6%), the USA (4.4%), Egypt (4.3%), Canada
(4.1%), Spain (2.8%), Poland (2.6%), Korea (2.3%), and Mexico, Vietnam, France,
all three at 1.8%. All other countries are below 1.8% and represent 33% of the total
world exports.

Current Status of the Medicinal Plant Sector in Europe
In Europe, medicinal and aromatic plants are cultivated on more than 200,000 ha,
most of which are located in France (52,000 ha), Poland (30,000 ha), Spain
(27,800 ha), Bulgaria (16,800 ha), Germany (13,000 ha), Croatia (8500 ha), the
Czech Republic (7225 ha), Italy (7191 ha), Greece (6800 ha), and Austria (4136 ha)
(EIP-AGRI 2020). The export market of customs code 1211 in Europe in 2021
was dominated by Germany (26%), Spain (12%), Poland (12%), and France (8%),
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Fig. 2 Percentages of national research institutes for traditional and complementary medicines
or herbal medicines in six regions of the planet. Each region is represented by N countries. The
percentages represent the numbers of countries having a national research institute in a specific
region. (WHO, 2019)

Fig. 3 Main exporter countries of medicinal plants in 2021. Export values in 2021 expressed as
percentages, according to the trade database from the International Trade Center (no date). Export
values were calculated from custom nomenclature 1211 “Plants and parts of plants, incl. seeds and
fruits, of a kind used primarily in perfumery, medicaments or for insecticidal, fungicidal or similar
purposes, fresh or dried, whether or not cut, crushed or powdered”
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followed by Austria (5%), Italy and Bulgaria (4% each) (International Trade Center,
no date). The current state of medicinal and aromatic plants in France is further
studied in the following subchapter.

The French Perfume, Aromatic, and Medicinal Plant Sector (FranceAgriMer
2020, 2021)
The French perfume, aromatic, and medicinal plant sector includes the cultivation
and regular picking of more than 300 species and more than 1000 products of
marketed perfume, aromatic, and medicinal products. In 2021, this sector covered an
area of 67,513 ha for 6527 producers. This area has been constantly increasing since
the 2000s and has grown by more than 32% over the last 5 years. Perfume plants
represent the largest surface area in the sector with 37,897 ha in 2021 and three
predominant species: lavandin and lavender (33,094 ha) and clary sage (3400 ha).
The farms have multiple profiles ranging from industrial cultivation to very small
farms in disadvantaged areas. The sector had the strongest surface area growth in
absolute value (>33%) between 2017 and 2021. Aromatic plants were grown on
9644 ha in 2021. The main species were coriander, parsley, thyme, fennel, mint,
dill, tarragon, marjoram, oregano, basil, rosemary, and chives. This sector strongly
grew (>66%) between 2017 and 2021. The medicinal plant sector includes the
largest number of species (more than 150 species including poppy, chamomile,
milk thistle, lemon balm, etc.). Its surfaces decreased by 4% to 19,972 ha in 2021
compared to 2020 (20,712 ha), but altogether increased by 19% between 2017 and
2021. Poppy (Papaver somniferum var. nigrum) and ginkgo biloba are exclusively
produced under contract with the pharmaceutical industry. In 2021, the total area of
the perfume, aromatic, and medicinal plant sector was 67,513 ha and represented
less than 1% of French agricultural land, subdivided as follows:

• 56% for perfume plants (37,234 ha for lavender and lavandin areas, i.e., nearly
49%)

• 30% for medicinal plants
• 14.3% for aromatic plants

In 2020, medicinal plants had a turnover value of 3659 kAC for a volume of 385
tons. The main volume was reached by birch, followed by Roman chamomile and
rose geranium (Table 2), but lemon balm ranked first in market value, followed by
beech wood and birch (Table 2).

In the medicinal plant category, most of the commercial value relates to essential
oils (355 kAC) for an extremely low volume (154 kg). Lemon balm essential oil was
sold between 2000 and 2600 AC/kg in 2020, and thyme was the most representative
aromatic plant (PA) in market value with a turnover of 630 kAC. In 2020, the
marketing value of “dry” products represented 44% of all aromatic plants. It was
29% for fresh products (including frozen ones) and 25% for essential oils (Fig.
4). The market shares of dried plants predominated over all medicinal plants with
36%, followed by “fresh/frozen” processed plants (31%). The market share of
essential oils was 27%, and the remaining 6% included hydrolates, oily macerates,
and stabilized extracts (Fig. 4). This shows that dried plants had the main market
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Table 2 Major medicinal plants produced in France. Surfaces (ha), market volumes (t), market
values (kAC), and main uses

2021 Surfaces
(ha)

2020 Market
volume (tons)

2020 Market
value (kAC) Main form

Betula s.l. / 21 202 Concentrated bud macerates,
sap, traditional health syrup

Chamaemelum
nobile

362 (2017) 14 60 Essential oil, tea, floral
water, health food
supplement, extract

Pelargonium
‘rosat’

/ 14 / Essential oil, mother
tincture, tea, concentrated
bud macerates

Filipendula
ulmaria

/ 10 88 Tea, health food supplement,
hydroalcoholic extract

Aloysia
citrodora

/ 9 100 Tea, essential oil, extract,
mother tincture

Centaurea
cyanus

22 (2017) 9 55 Floral water, tea, extract,
hydrolat

Calendula
officinalis

/ 8 / Extract, tea, hydroalcoholic
extract, mother tincture, oily
macerate

Melissa
officinalis

260 8 404 Essential oil, health food
supplement, extract, tea,
hydrolat

Arnica
montana

/ 3–10 (harvest) 66 Mother tincture, oily
macerate, extract, vegetable
oil

Leontopodium
alpinum

/ / 78 Flower extract, flower
essence

Vitis vinifera / / 87 Health food supplement,
water extract

Gentiana lutea / 1600
(harvest-2017)

91 Extract, tea, mother tincture,
health food supplement

Fagus s.l. / / 300 Concentrated bud macerates
Ribes nigrum 603 (perfume

and essential
oil)

30
(bud-harvest-
perfume and
essential plant)
60
(leaf-harvest-
medicinal
plant)

1443 (perfume
and essential
plant)

Concentrated bud macerates,
health food supplement,
extract, mother-tincture,
macerate

Thymus 955 (aromatic
plant)

328 (aromatic
plant)

630 (aromatic
plant)

Essential oil, healthy
traditional syrup,
concentrated bud macerates,
health food supplement

(continued)



136 F. Bafort and M. H. Jijakli

Table 2 (continued)

2021 Surfaces
(ha)

2020 Market
volume (tons)

2020 Market
value (kAC) Main form

Salvia
rosmarinus

204 (aromatic
plant)

60 (aromatic
plant)

153 (aromatic
plant)

Essential oil, concentrated
bud macerates, health food
supplement, extract, tea

Silybum
marianum

300 / / Health food supplement,
extract

Cynara
cardunculus

250 / / Health food supplement, tea,
extract

Angelica
archangelica

179 / / Mother-tincture, extract,
health food supplement,
essential oil

Plantago afra
L.

74 / / Seed, health food
supplement

Lavandula L. 33,094 140
(Lavander –
essential oil)
2000
(Lavandin –
essential oil)

/ Essential oil, health food
supplement

Papaver 10,000
(estimation)

/ / License with a
pharmaceutical company –
derivatives for the
production of alkaloids

Source: FranceAgriMer (2020, 2021)

Fig. 4 Share of the marketing value of medicinal plants and aromatic plants according to the type
of processing in France in 2020. (FranceAgriMer 2021)

value in both the medicinal and aromatic plant markets, followed by fresh plants
and essential oils.
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The use of medicinal plants is increasing in industrialized countries; the per-
centages of the population that had used a plant-based medicine at least once were
70% in Canada, 49% in France, 48% in Australia, 42% in the United States of
America, and 31% in Belgium (World Health Assembly 2003). The global market
value of herbal products is predicted to grow to US$ 5 trillion by 2050 (Pan et al.
2014). The increasing demand for medicinal plants has serious consequences such
as overharvesting, quality inconsistencies, and uncertain efficacy (World Health
Assembly, 2003; Howes et al. 2020; Zobayed 2020; Singh et al. 2022).

Overharvesting of medicinal plants has a major impact on biodiversity; for
example, (1) Asian Taxus brevifolia Nutt., T. chinensis, T. mairei, and T. contorta
Giff. populations harvested for paclitaxel extraction have undergone significant
population reductions, (2) Encephalartos woodii Sander is extinct in the wild, (3)
about 80% of Ethiopian medicinal plants are harvested from the wild with serious
threats on their preservation, or (4) Arnica montana L. has been overexploited in
Europe for its anti-inflammatory properties and shows decreasing populations; it is
now included in the red list of several European countries (Balabanova and Vitkova
2010; Howes et al. 2020; Vera et al. 2020).

Medicinal plants are mainly harvested from wild plants (Zobayed 2020). Under
field cultivation, some methods have had a negative impact on the environment. For
example, field cultivation of Panax ginseng Meyer in Asia led to deforestation and
soil microbial diversity losses in farmlands, which in turn brought about serious
soil-borne diseases affecting the quality and yield of P. ginseng (Tong et al. 2021).
The quality of medicinal plants is subject to inconstancies, and issues about the
quality and efficacy of plant extracts have been reported (World Health Assembly
2003). Outdoor plants are exposed to variations of their growing conditions in
water content, temperature, light characteristics (photoperiod, intensity, ozone and
UV radiation), and soil characteristics. All these parameters vary according to
the season, annual climate changes, and location and impact the plant contents
in specific metabolites. Moreover, open-field harvesting is often seasonal and
conditions the annual yield. Issues related to quality, efficacy, microbial and
pollutant contamination, and contamination with misidentified plant species are
often reported (World Health Assembly 2003; Zobayed 2020).

1.3 General Interest of Vertical Farming

Vertical farming consists in growing vegetables in vertically/horizontally stacked
layers made of hydroponic or aeroponic soilless crop units mounted in (1) an
indoor closed production system with artificial light, where environmental factors
(airflow, temperature, CO2, humidity and nutrients) are completely controlled, or
(2) a greenhouse with vertically stacked layers, in semi-closed production systems,
possibly adding artificial light to natural sunlight.

Vertical farming could contribute to answer some challenges of outdoor agricul-
ture:
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• First of all, yields in vertical farming are widely described as being significantly
higher than in conventional agriculture, because they combine three factors: (1)
the yield per square meter is increased thanks to a reduced land footprint resulting
from the vertical succession of crop production units, (2) the photosynthetic rate
is better as a result of a constant and ideal combination of environmental factors,
and (3) production is possible all year round (Banerjee and Adenaeuer 2014;
Barbosa et al. 2015; Avgoustaki and Xydis 2020a, b). The yield depends on the
number of plants per square meter and on the maximizing of the vertical indoor
space, which implies plants no taller than 30 cm, such as leafy greens, herbs,
transplants, and medicinal plants (Kozai and Niu 2020).

• Secondly, water use is significantly lowered, because plants are grown hydro-
ponically, irrigation water is supplied in a closed loop, and drought events are
absent – climate is stable (Barbosa et al. 2015; Benke and Tomkins 2017;
Graamans et al. 2017, 2018; Kalantari et al. 2018; Avgoustaki and Xydis 2020a).

• Thirdly, pesticide use is dramatically lowered, because exposure to the outdoor
environment is reduced, although the risk of pest contamination cannot be
completely excluded (Cowan et al. 2022). Moreover, if a pest appears, it is likely
to spread exponentially because of the interconnected irrigation system and the
high plant density.

• Fourthly, nitrogen and phosphorous nutrient losses in soil and aquatic sources
are reduced, because the nutrient solutions are recirculated in a closed-loop
system (Cowan et al. 2022). However, the recycling of the nutrient solution is
not complete: nutrient imbalance gradually appears, and the nutrient solution has
to be replaced unless a dynamically managed system is used (Silberbush and
Ben-Asher 2001; Zeidler et al. 2017; Michael et al. 2021; Cowan et al. 2022).

• Finally, farmland use is reduced because crop production is soilless, the crop
system is multilayered and can be implemented in urban areas and hostile places,
such as desert, tundra, polluted and cold regions (Cowan et al. 2022).

However, several challenges are reported for vertical farming:

• Vertical farming requires energy, hence a carbon footprint. More electricity is
required than in open-field and greenhouse farming; these high energy expenses
are mainly linked to lighting and air and hydric management (Zeidler et al.
2017; Graamans et al. 2018; Sparks and Stwalley III 2018; Avgoustaki and Xydis
2020a; Bafort et al. 2022; Cowan et al. 2022).

• Other difficulties are the global cost to start vertical farming, linked to high start-
up costs, high property costs in urban areas, high labor requirements, and the low
market price of leafy-green crops challenging its viability (Zeidler et al. 2017;
Bafort et al. 2022).

• The use of mineral nutrients has a big impact on soil resources and ecology.
Other nutrient sources should be considered. Organic nutrient sources are
often described, e.g., manures, bulky organic manures, or organic fertilizers.
Most organic nutrient sources, including waste materials, have widely varying
compositions and often only a low concentration of variably available nutrients
and need to be processed before use (Szekely and Jijakli 2022).
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• Plastic is largely used in hydroponics: the materials used for hydroponic culture
(nutrient film technique, ebb-and-flow systems, deep water systems, aeroponics
systems, and drip irrigation systems) are mainly plasticware. Efforts to decrease
the use of plastic in hydroponics materials should be done.

• Rockwool is mainly used as a substrate in hydroponics. However, it has low
durability as it has to be discarded after one or two cultivation cycles and requires
high energy during its manufacturing process (Bar-Tal et al. 2019). To increase
the durability of rockwool, its reuse has been developed as raw material for
horticultural and insulation applications and in brick production in European
countries, but this reuse network is not well developed yet (Bar-Tal et al. 2019).
Clay beads are characterized by a very good long-term stability that allows
for their reuse. Reuse induces increased costs because workforce and water are
needed to rinse and clean the clay beads. Coco fiber is natural and recyclable, but
its use in deep-water systems causes filtering problems, because coco fibers are
degraded rapidly, so that more labor work needed to clean the filtering system
very regularly (Bafort et al. 2022). As a consequence, the use of ecological
hydroponic media should be emphasized.

Figure 5 summarizes the main challenges of outdoor farming and vertical
farming.

1.4 Interest of Vertical Farming for Growing Medicinal Plants

The economic viability of leafy vegetable cultivation in indoor vertical farms with
artificial lighting is complex, in particular on the European market because of
their low market price, and high start-up, energy, and labor costs. In the United
States, only 50% of container farms and 27% of indoor vertical farms reported
operating profitability after 7 years of existence (Agrilyst 2017). Several studies
on leafy greens in container farms reported that production costs were too high
for them to be viable (Sparks and Stwalley III 2018; Debusschere and Boekhout
2021; Bafort et al. 2022). The selling prices in a simulated multilayer vertical
farm – two layers containing four levels of lettuce each and two layers containing
18 rows of tomato each – were calculated to be 5.81 AC/kg for an annual yield of 810
tons for lettuce and 9.94 AC/kg for an annual yield of 215 tons for tomato, making
profitability impossible (Zeidler et al. 2017). In Europe, several cases of bankruptcy
of vertical farms have been reported, confirming the difficulty for vertical farming to
be economically feasible (Sijmonsma 2019; VerticalFarmDaily.com 2021; Perreau
2022). Diversification by cultivating high-added-value plants, such as medicinal
plants, could be less challenging economically. The economic approach of vertical
farming of medicinal plants is discussed in Sect. 3.

Vertical farming is particularly suitable for producing medicinal plants. The
stability of the environment makes it possible to increase stable and predictable
yields and provide a stable quality with regular and high concentrations in phy-
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Fig. 5 Schematic overview of the current challenges of traditional farming and vertical farming.
Please note that many forms of greenhouses exist, from plastic tunnels to fully automated
greenhouses with complementary lighting devices

tochemicals, without soil contamination by microbes or pollutants (Goto 2012;
Zobayed 2020). However, high biomass is contradictory with high concentrations
in secondary metabolites, and a combination of these two criteria both important
to reach economic viability is difficult to reach. Biomass increases are obtained by
an ideal combination of abiotic factors – the most important variables are light, the
water status, and the CO2 concentration – so that photosynthesis is promoted and the
production of primary metabolites such as starch and sucrose is promoted. Primary
metabolites (lipids, proteins, and carbohydrates) are critical for plant growth and
development. Plant growth is closely related to photosynthesis and respiration, and
more than 90% of the crop biomass is derived from photosynthesis (Yamori 2020).
Based on primary metabolites, plants metabolize various molecules with complex
structural compositions called secondary metabolites (Naik and Al-Khayri 2016;
Twaij and Hasan 2022). When plants encounter abiotic or biotic stresses, secondary
metabolites are synthesized to communicate and act as a defense mechanism (Naik
and Al-Khayri 2016; Dadhich et al. 2022). Plant secondary metabolites are usually
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Fig. 6 Schematic overview of a two-step production principle allowing medicinal crop production
with a significant biomass yield and an increased content in phytomolecules. The plant illustrated
in the figure is Euphorbia peplus for its ingenol-mebutate content

classified in four major groups: (1) phenolics; (2) terpenes, saponins, and steroids;
(3) nitrogen-containing compounds (such as alkaloids); and (4) glycosides (Hussein
and El-Anssary 2018; Twaij and Hasan 2022). Following their specific presence
and concentration, they characterize the medicinal property of the plant and its
interest for the healthcare and pharmaceutic sector. However, the stress-induced
enhancement of secondary metabolites alters plant development and growth (Itoh
2018; Dadhich et al. 2022). The enhancement of biomass is antagonistic with the
enhancement of secondary metabolite production. Therefore, a dynamic two-step
production of medicinal compounds has been proposed (Itoh 2018; Zobayed 2020)
(Fig. 6).

2 Abiotic Factors Affecting the Quality of a Medicinal Crop

The environmental factors that play a role on plant photosynthesis and respiration
also have an impact on plant growth and the accumulation of crop biomass. Ensuring
the best environmental factors in a closed and controlled environment allows for a
stable, maximized yield of high-quality plants, while stressing them may reallocate
carbon to secondary metabolite production. Secondary metabolites are described
as nonessential molecules for plant growth and biomass accumulation but are
crucial for their interaction and adaptation to environmental fluctuations. Producing
secondary metabolites is costly for plants because it requires primary metabolites,
enzymes, cofactors, and energy. Secondary metabolites do not all have the same
cost: terpenoids require less photosynthetically-produced carbon than alkaloids
do (Gulmon and Mooney 1986; Cipollini et al. 2017). Plants’ environments are
usually classified in three main categories: (1) adverse biotic factors, such as fungi,
bacteria, viruses, herbivores, and competing plants; (2) favorable biotic factors,
such as symbiotic microorganisms, pollinators, seed dispersers, and plant-to-plant
communication; and (3) abiotic factors, such as light, water availability, minerals
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availability, soil fertilization, temperature, and, in closed environment, the CO2 level
(Yang et al. 2018). There is a general consensus that abiotic factors can significantly
affect the accumulation of secondary metabolites and in turn the medicinal value
of the plant. Therefore, it is crucial to correctly manage those factors during the
production process.

2.1 Light

Light affects plants in two ways – as an energy source and as an information medium
(Dou and Niu 2020). The energy of light is transmitted by the photons, and about
10% of sunlight are converted into chemical energy – carbohydrates – through
photosynthesis, while the remaining 90% are converted into heat energy (Dou and
Niu 2020). The absorption of light for photosynthesis is initiated by photosynthetic
pigments – chlorophylls and carotenoids; chlorophylls strongly absorb red and blue
light, and carotenoids strongly absorb blue light (Yamori 2020). Chloroplasts and
whole leaves absorb most of the light, including green light (Yamori 2020). Plant
photoreceptors measure the light composition variations and trigger plant responses
independently from photosynthesis, as in photoperiodism and photomorphogenesis,
and regulate the expression of genes associated with cell division and enlargement
(Dou and Niu 2020). Five classes of photoreceptors have been described. They allow
plants to perceive a broad spectrum of light from ultraviolet to far-red wavelengths
and to regulate multiple physiological and metabolomic responses (Fig. 8).

2.1.1 Effect of the Quantity of Light

In controlled environments, artificial light is usually constant without the sea-
sonal variation in intensity, duration, and spectrum of natural sunlight to which
plant growth is subjected under natural conditions. The daily light integral (DLI)
describes the total amount of photosynthetically active photons that are delivered to
a specific area over a 24-hour period; it usually has a linear relationship with crop
yield in controlled environments (Dou et al. 2018). The effects of three DLI levels of
8.64, 14.4, and 28.8 mol m−2 d−1 under a 16-h photoperiod were tested on the shoot
biomass and the accumulation of a diterpene – ingenol-mebutate – by the medicinal
plant Euphorbia peplus (Bafort et al. 2022). Increasing DLIs had a positive effect
on yield, with shoot fresh biomass rises of 111% and 212% compared to the values
obtained with a DLI of 8.64 mol m−2 d−1 (Fig. 7). The same trend was observed
for shoot dry biomass. The calculated positive correlation was relatively low. It was
attributed to the low homogeneity of the yield, which varied dramatically with the
position of the plant in the vertical container, especially under the lowest DLI. In
the same study, the content in ingenol-mebutate of E. peplus was not modified with
the DLI level.
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Fig. 7 Correlations and p-values between the shoot fresh biomass (a), the shoot dried biomass (b),
and the daily light integral (DLI) of Euphorbia peplus grown at different DLI levels (8.64, 14.4,
and 28.8 mol m−2 d−1) in a vertical container farm for 47 days. (Bafort et al. 2022)

In a completely closed and controlled environment, the DLI is modulated in two
ways: (1) by adjusting the light intensity and (2) by adjusting the photoperiod.

Several studies have addressed the role of the DLI on yields and secondary
metabolite contents by acting on the light intensity (photosynthetic photon flux
density; PPFD) or on the photoperiod, or on both (Table 3). Basil (Ocimum
basilicum L.) and lettuce (Lactuca sativa) are ideal crops for vertical farming,
because they are well adapted to closed controlled and soilless environments, have
short cultivation cycles and a limited height. Therefore, they have been extensively
studied to determine the effect of environmental factors. The plant biomass is
generally proportional to the DLI within a certain range (Dou and Niu 2020; Xu
et al. 2021). Increasing the DLI increased the shoot fresh biomass yield of O.
basilicum L., because of a higher photosynthetic rate and a linear accumulation
of anthocyanins, phenols, and flavonoids per plant (Dou et al. 2018). However, the
positive biomass correlation of basil with the DLI was also found cultivar dependent.
For example, the Ararat variety had the largest weight at a DLI of 6.34, while the
Yerevan sapphire variety reached its best yield at a DLI of 9.79 (Kondrat’Ev et al.
2021). A fixed DLI of 12.9 did not cause the yield of basil to vary, whatever the
photoperiod-PPFD combination (Dou and Niu 2020). Red perilla shoot dry weight
increased with the DLI but not in a linear manner, because light utilization efficiency
decreased with increased PPFD (Yoshida et al. 2022). Anthocyanins accumulated
per dry weight unit with higher DLI, but the essential oil perillaldehyde did not
(Yoshida et al. 2022).

The effect of an extended photoperiod has been studied. Compared to DLIs of
5.8, 8.6, and 11.6, basil and lettuce growth were improved under a DLI of 14.4 corre-
sponding to a PPFD of 250μmol m−2 s−1 under a 16 h photoperiod, and so were the
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Table 3 Effect of the light quantity on plant growth and on secondary metabolite accumulation

Plant species

Daily light
integral
(mol m−2 d−1)

Effect on plant
growth

Effect on secondary
metabolite content Reference

Ocimum
basilicum L.

4.61 (80 PPFD;
16 h)
6.34 (110
PPFD; 16 h)
8.06 (140
PPFD; 16 h)
9.79 (170
PPFD; 16 h)

Highest yield with
DLI = 6.34, 8.06 and
9.79, depending on
the basil cultivar

Not studied Kondrat’Ev
et al.
(2021)

Ocimum
basilicum L.

9.3 (160 PPFD;
16 h)
11.5 (200
PPFD; 16 h)
12.9 (224
PPFD; 16 h)
16.5 (290
PPFD; 16 h)
17.8 (310
PPFD; 16 h)

Higher DLIs
increased yield, but
no significant
differences in yield
between DLIs of
12.9, 16.5 and 17.8

Higher DLIs
increased the total
anthocyanin,
phenolic and
flavonoid contents
per plant

Dou et al.
(2018)

Ocimum
basilicum L.

12.9 ((298
PPFD; 12 h)
12.9 (256
PPFD; 14 h)
12.9 (224
PPFD; 16 h)
12.9 (199
PPFD; 14 h)
12.9 (179
PPFD; 20 h)

No yield differences
between photoperiod
and PPFD variation
with a fixed DLI of
12.9

Not studied Dou and
Niu (2020)

Ocimum
basilicum L.
Lactuca sativa
L

5.8 (100 PPFD;
16 h)
8.6 (150 PPFD;
16 h)
11.5 (200
PPFD; 16 h)
14.4 (250
PPFD; 16 h)
17.3 (300
PPFD; 16 h)

Highest yield with
DLI = 14.4

Higher antioxidant
capacity, phenolics
and flavonoids in L.
sativa at
DLI = 14.4

Pennisi et
al. (2020)

Lactuca sativa
L.

8.64 (150
PPFD;16 h)
8.64 (200
PPFD; 12 h)
9.04 (2x3h at
100 PPFD and
6 h at 300
PPFD)

Better yield obtained
with longer
photoperiod and
multi-segment light
intensity

Not studied Mao et al.
(2019)

(continued)
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Table 3 (continued)

Plant species

Daily light
integral
(mol m−2 d−1)

Effect on plant
growth

Effect on secondary
metabolite content Reference

Perilla
frutescens L.

2.88 (50 PPFD;
16 h)
5.76 (100
PPFD; 16 h)
11.52 (200
PPFD; 16 h)
23.04 (400
PPFD; 16 h)

Increased yield with
increased DLI

Perillaldehyde
content per unit of
dry weight similar
whatever the DLI.
Anthocyanin
content per unit of
dry weight
increased with DLI

Yoshida et
al. (2022)

Catharanthus
roseus (L.)

4.32 (75 PPFD;
16 h)
8.64 (150
PPFD; 16 h)
17.28 (300
PPFD; 16 h)
34.56 (600
PPFD; 16 h)

Best fresh total leaf
weight obtained with
DLI = 17.28

Highest vindoline
and catharanthine
contents with
DLI = 8.64

Fukuyama
et al.
(2015)

Ophiorrhiza
pumila

2.16 (50 PPFD;
12 h)
2.9 (100 PPFD;
8 h)
4.32 (100
PPFD; 12 h)
5.8 (100 PPFD;
16 h)
6.48 (150
PPFD; 12 h)

Best yield with
DLI = 5.8

Highest
camptothecin
content with
DLI = 5.8

Lee et al.
(2020)

Tropaeolum
majus L.

17.3 (300
PPFD; 16 h)
17.3 (200
PPFD; 24 h)
25.9 (300
PPFD; 24 h)
34.6 (400
PPFD; 24 h)

Linear increase in
total biomass with
DLI.
At same DLI (17.3),
better shoot yield
with increased
photoperiod.

Antioxidant
capacity and total
phenolic content
increased with
increased DLI

Xu et al.
(2021)

Stevia
rebaudiana

7.2 (249 PPFD;
8 h)
7.2 (165 PPFD;
12 h)
7.2 (125 PPFD;
16 h)
7.2 (125 PPFD;
16 h
intermittent)

Highest yield with
constant longer
photoperiod

Highest yield of
stevioside and
rebaudioside A per
plant under 16 h
photoperiod but
higher rebaudioside
A concentration
under 8 h
photoperiod

Rengasamy
et al.
(2022)

(continued)
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Table 3 (continued)

Plant species

Daily light
integral
(mol m−2 d−1)

Effect on plant
growth

Effect on secondary
metabolite content Reference

Nasturtium
officinale L

11.52 (266
PPFD; 12 h)
11.52 (200
PPFD; 16 h)
11.52 (160
PPFD; 20 h)
11.52 (133
PPFD; 24 h)

Highest yield under
20 h photoperiod

Highest total
glucosinolate
content per plant
shoot under 20 h
photoperiod

Lam et al.
(2021)

Amaranthus
tricolor,
Brassica
oleracea var.
viridis,
Ocimum
basilicum

14 (250.8
PPFD; 16 h)
14 (166.6
PPFD; 24 h)
21 (376.9
PPFD; 16 h)
21 (247.6
PPFD; 24 h)

Highest yield under
DLI = 21 with
constant lighting

High DLI with
constant lighting
and high DLI
Increased A.
tricolor and B.
oleracea var. viridis
phenolic,
anthocyanin and
antioxidant
contents.
Unaffected
secondary
metabolite
concentrations in
basil

Lanoue et
al. (2022)

water, energy, and light use efficiencies (Pennisi et al. 2020). Secondary metabolites
also accumulated in lettuce at a DLI of 14.4 (Pennisi et al. 2020). An extended pho-
toperiod (16 h) under a low light intensity (PPFD = 100 μmol m−2 s−1) promoted
chlorophyll accumulation and improved the root/shoot ratio, helping lettuce to
absorb enough light energy and improve its growth under low light conditions (Mao
et al. 2019). Lettuce increased its photosynthetic capacity significantly under multi-
segment lighting, which simulated circadian rhythms and resulted in an increased
yield (Mao et al. 2019).

Shade plants such as Ophiorrhiza pumila have a low saturation point and
showed better biomass yield and camptothecin accumulation under a low PPFD
(100 μmol m−2 s−1) and a long photoperiod (16 h) (Lee et al. 2020a, b). Mid-
shade plants such as Catharanthus roseus showed an increased yield up to a certain
level of DLI (17.28), but a higher DLI led to the inhibition of growth (Fukuyama et
al. 2015). In the same plant, vindoline and catharanthine accumulation were greatest
under a lower DLI (8.64) (Fukuyama et al. 2015). An extended photoperiod strategy
can also be well adapted to tropical countries, where natural weather conditions and
the day-neutral photoperiod restrict field growth of some plants. For example, stevia
plant productivity and quality were enhanced under a long and constant photoperiod
(16 h) at a low light intensity (PPFD= 125μmol m−2 s−1) (Rengasamy et al. 2022).
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The effect of continuous lighting (24 h) has also been studied. Tropaeolum majus
L. showed a linear increase in dry weight with the DLI under continuous lighting
with DLIs ranging from 17.3 (PPFD = 200 μmol m−2 s−1) to 34.6 mol m−2

d−1 (PPFD = 400 μmol m−2 s−1) (Xu et al. 2021). The increased yield resulted
in reversible photoinhibition during plant growth and in an adaptive process to
protect the photosynthetic apparatus from light stress (Xu et al. 2021). With a
fixed DLI of 17.3, secondary metabolite production was increased under continuous
lighting compared to a higher light intensity and a shorter photoperiod (Xu et al.
2021). Continuous lighting and a higher DLI – hence higher light intensities –
maintained the secondary metabolite content (Xu et al. 2021). The productivity
and quality of four microgreens were tested under two DLIs and constant lighting
or a long photoperiod (16 h) (Lanoue et al. 2022). For each fixed DLI, the yield
was better under constant lighting and maximized at the highest DLI (Lanoue et al.
2022). Interestingly, higher energy-use-efficiencies of lighting were observed under
constant light, and a reduced electricity cost per unit of fresh biomass was measured
(Lanoue et al. 2022). The nutritional quality of amaranth and collard greens was also
improved at high DLIs, without or with constant lighting, and unchanged in basil
(Lanoue et al. 2022). However, constant lighting and a low DLI – i.e., a low light
intensity – can impact plant growth negatively. Nasturtium officinale L. growth was
decreased under constant lighting and a low light intensity (133 μmol m−2 s−1)
because of reduced net photosynthesis and stomatal conductance (Lam et al.
2021). On the contrary, the total glucosinolate concentrations were highest in those
conditions, but the total glucosinolate content per shoot dry weight was reduced,
because of the markedly reduced biomass (Lam et al. 2021). Continuous lighting
can also induce negative effects on sensitive plants, e.g., leaf chlorosis, growth
inhibition, and leaf necrosis that may result from photo-oxidative damage (Xu
et al. 2021). The hypothesis is that continuous-lighting-tolerant plants have high
antioxidant contents that protect them (Xu et al. 2021). For example, continuous
lighting induced higher chlorogenic acid content in lettuce plants that could protect
them against high levels of reactive oxidative species generated by physiological
stresses (Shimomura et al. 2020). On the contrary, basil growth under continuous
lighting induced physiological stress, such as chlorosis, stunting, and leaf necrosis
(Sipos et al. 2021).

2.1.2 Effect of the Quality of Light: Spectral Quality and UV Radiation

Spectral Quality The quality of light is perceived by photoreceptors, whose
reaction to light quality is species-specific. Therefore, the effect of light quality
should be considered separately for each plant species (Dou and Niu 2020; Karimi
et al. 2022). Light quality influences plant growth and the synthesis of bioactive
compounds (Yang et al. 2018; Dou and Niu 2020).

In general, red (R) and blue (B) lights are the most commonly used spectra in
indoor cultivation, because they correspond to the absorption peaks of chlorophylls
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Fig. 8 Representation of the main absorbance spectra and main functions of the five photoreceptor
classes. (From Christie et al., 2015; Dou, Niu and Gu, 2019; Appolloni et al. 2022; Paradiso and
Proietti 2022). UVR8 UV resistance locus 8

and to the main plant functions, as showed in Fig. 8 (Dou and Niu 2020; Appolloni
et al. 2022). Combined R&B lights are more efficient than monochromatic blue or
red lights for plant growth, which can induce physiological disorders in some plant
species (Dou and Niu 2020). Full-spectrum white light-emitting diodes (LEDs) have
recently been found efficient in indoor culture; they supply a full spectrum that
optimizes plant growth (Dou and Niu 2020). Green light is not fully absorbed by
chlorophyll and has long been considered less effective than red and blue lights
in promoting plant growth (Paradiso and Proietti 2022). Nowadays, it is admitted
that green light penetrates deeper into the plant canopy and may promote better
photosynthesis in the whole canopy (Paradiso and Proietti 2022). Inclusion of
green light in dichromatic red and blue LEDs impacted plant growth differently
depending on its proportion (Orlando et al., 2022a, b). A high proportion of green
light (25–44%) generated opposite responses to blue- or red-light-induced effects
and negatively affected sweet basil and microgreen quality (Kim et al. 2005; Zhang
and Folta 2012; Dou et al. 2019, 2020a, b). A low proportion of supplemental green
light – under 10% – to red and blue spectra did not affect the fresh or dried biomass
of several microgreens (Ying et al. 2020; Orlando et al. 2022a, b). However, 12–
24% green light addition to red and blue lights positively affected the biomass of
lettuce and kale and induced secondary metabolite accumulation in Crocus sativus
and lettuce plants (Kim et al. 2005; Bian et al. 2016; Meng et al. 2019; Orlando et
al. 2022a, b).

The effect of light spectra on the accumulation of phenolmetabolites in medicinal
plants has been investigated. Combined blue (38%) + red (62%) lights and
combined blue (38%) + green (12%) + red (50%) lights have been tested on C.
sativus tepal biomass and bioactive metabolite accumulation and compared with
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those obtained under greenhouse cultivation (Orlando et al. 2022a, b). The inclusion
of green light increased the total flavonoid content and the biomass remained unaf-
fected as compared to the greenhouse production. Therefore, cultivation under LEDs
may positively valorize C. sativus by-products. Blue LEDs, red LEDs, combined
blue (70%) + red (30%) LEDs, and white LEDs have been tested on the growth and
the phenolic compound production ofDracocephalum forrestii shoots (Weremczuk-
Jez̈yna et al. 2021). The best biomass values, shoot propagation, and secondary
metabolite production were obtained under blue LEDs. The enhancement of the
antioxidant capacity was positively correlated with the maximum total polyphenolic
acid content. Blue, red, and white LEDs were tested on the roots, stems, and
leaves of Scutellaria baicalensis seedlings for 2 weeks (Yeo et al. 2021). The roots
treated with white LEDs showed increased concentrations of the flavonoids baicalin,
baicalein, and wogonin and reduced concentrations of carbohydrates, suggesting the
need for energy to enhance the biosynthesis of phenolic compounds. The effects of
monochromatic red, blue, and green LEDs, several dichromatic red (60–90%) and
blue (40–10%) LEDs, and several trichromatic red (50–90%), green (10%), and blue
(40–0%) LEDs were tested on the growth and bioactive compound biosynthesis
of Crepidiastrum denticulatum (Park et al. 2020a, b). The total phenolic content
was similar among all treatments, but the antioxidant capacity and dry weight per
shoot were increased under the trichromatic red (80%) + green (10%) + blue (10%)
LEDs. The addition of far-red light to dichromatic blue (20%) and red (80%) LEDs
was tested on the growth and phenolic content of C. denticulatum (Bae et al. 2017).
Growth was increased under supplemental far-red irradiation, while the phenolic
content per unit dry weight remained unaffected by the different light treatments.

Several light combinations have been tested on the accumulation of bioactive
terpene/terpenoid compounds produced by medicinal plants. Six light treatments –
monochromatic red and blue LEDs and dichromatic red (80–20%) and blue (20–
80%) LEDs – were tested on Hypericum perforatum (Karimi et al. 2022). The
plants under the monochromatic red light showed an increased accumulation of
foliage, higher flower and root fresh and dry weights, and an increased percentage
of hypericin, pseudohypericin, and hyperforin in their flowers per square meter.
Red light stimulated the expression of genes related to H. perforatum flowering.
Enhanced accumulation of artemisinin and artemisinic acid and other terpenoids
in Artemisia annua and increased fresh leaf weight were measured under white
and blue spectra (Sankhuan et al. 2022). Moreover, crude extracts under the same
light treatment showed improved antimalarial anti-Plasmodium falciparum activity
compared to crude extract under monochromatic red light treatment and greenhouse
cultivation. Red light treatment decreased the level of terpenoid production and
induced distinct phytochemical profiles.

The effect of the light spectrum on alkaloid accumulation has been studied in
medicinal plants. Several light spectra were applied on embryogenic Fritillaria
cirrhosaD. Don calluses for 3 months to measure their effect on growth and alkaloid
production (Chen et al. 2020). Monochromatic red, blue, and far-red, warm, and cold
white lights and various combinations of red, blue, green, and far-red treatments
induced differential development and growth of F. cirrhosa. The maximum fresh
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weight was obtained under monochromatic red light, and the highest contents in
peimisine, peiminine, and peimine were recorded under the monochromatic red
light and infrared light. Picea abies seedlings were exposed to white light with 12%
or 45% added blue light (Kivimäenpää et al. 2021). The spectra with the highest
blue light content decreased the alkaloid, terpene, and terpenoid concentrations in
needles, although the contents in total flavonoids and acetophenones were increased.
Growth and the carbohydrate and pigment contents were unaffected, suggesting
carbon reallocation from alkaloid and terpenoid synthesis to flavonoid synthesis as
a response to increased blue light.

UV Radiation UV radiation induced multiple responses ranging from slowed down
photosynthesis to increased DNA repair, defense mechanisms, and specialized
metabolite production (Vanhaelewyn et al. 2020). Reactive species (ROS) in
response to UV-B radiation cause DNA damage, affect the plant metabolism, and
generate defense mechanisms such as the production of ROS-scavenging enzymes
and antioxidant compounds (Park et al., 2020a, b). Specialized metabolites are
synthesized, thanks to the reallocation of carbon toward the production of phenolics
(e.g., flavones, flavonols, anthocyanins), alkaloids, carotenoids, and glucosinolates
(Vanhaelewyn et al. 2020). Supplemental UV-B radiation typically decreases
biomass; therefore, using this light stress needs fine-tuning to achieve both good
yield and enhanced bioactive metabolites (Dou and Niu 2020).

UV-B radiation has been tested on C. denticulatum growth and its biosynthesis
of total carotenoids, phenolics, and terpenes (Park et al. 2020a, b). High-energy
UV-B light reduced the chlorophyll content and several sesquiterpene contents and
increased the total carotenoid, phenolic, and hydroxycinnamic acid contents, while
it decreased C. denticulatum growth. Moderate energy levels of UV-B radiation (0.1
and 0.25 Wm−2) increased the antioxidant capacity, the total hydroxycinnamic acid
content, and several sesquiterpenes without inhibiting growth and were considered
as a eustress (Park et al. 2020a, b). The effect UV-B light on the terpene content of
Panax ginseng C.A. Meyer has been tested (Choi et al. 2022). A low-energy dose
of 0.1 W m−2 for 1, 2, or 3 hours during the preharvest days did not modify the
total ginsenoside content. Several spectra – monochromatic blue and red and red
with high energy (5 W m−2) UV-A – were tested on the growth and the alkaloid
vinblastine content of C. roseus for 7 days (Fukuyama et al. 2017). The total leaf
dry weight was unaffected whatever the spectrum, while the vinblastine content
per dry weight unit was significantly increased after 3 days of UV-A treatment and
highest after 7 days of UV-A treatment. The effect of several UV-A energy levels
combined with red light revealed a positive correlation with the UV-A energy levels
on the leaf vinblastine content and a negative correlation on the leaf vindoline and
catharanthine contents (Fukuyama et al. 2017).
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2.1.3 Light Combined with Others Factors

The growth of a plant depends on many abiotic factors. The plant’s response may
differ when a single factor or several additional environmental factors are studied.
Therefore, checking the effects of multiple factors is an interesting approach. A
classic approach is the one-factor-at-a-time (OFAT) design, which makes only one
factor vary while the other variables are kept constant. Some limitations are that
the interactions between factors cannot be estimated, and the risk of obtaining
a false optimum is high when more than two factors are considered (Czitrom
1999). Another method is the design of experiments (DOE), for example, the
response surface methodology or the Box-Behnken experimental design, which
search for the factor level combination that gives the best answer (i.e., yield, content
in phytomolecules). In this case, multiple factors can be modified together, the
interactions among factors are estimated, and the response is optimized (Czitrom
1999).

Several studies have addressed the effect of multiple factors on plant growth and
phytomolecule production. Growth and bioactive metabolite production by red and
green Perilla were tested by making three levels of electrical conductivity (EC) and
three levels of PPFD vary (Lu et al. 2017). The concentration of perillaldehyde – a
terpene – was not affected by EC or light intensity in red perilla, but the content in
rosmarinic acid – a phenol – was highest under the highest light intensity and the
lowest EC and decreased significantly when ECwas increased. The shoot dry weight
was promoted by higher light intensities under mid and high EC. In green perilla, the
shoot dry weight increased with PPFD and EC, the perillaldehyde and rosmarinic
acid concentrations decreased with increased EC, and rosmarinic acid was promoted
by higher PPFD. Yield, anthocyanins, and soluble sugars were measured in Brassica
rapa var. Chinensis under several light intensities and nitrogen concentrations (Hao
et al. 2020). The yield was enhanced by the combination of a moderate PPFD
and a moderate nitrogen concentration, but anthocyanins were optimized under
high PPFD and nitrogen, and soluble sugars were promoted by the lowest nitrogen
concentration. This shows how difficult it is to obtain a unique optimum for all
parameters taken together. The optimal light intensity, temperature, and nutrients for
H. perforatum L. accumulation of bioactive compounds were investigated (Kuo et
al. 2020). Hyperforin and rutin were significantly affected by the light intensity and
temperature, but the nutrient concentration had little effect. Melatonin seemed to be
unaffected by the environmental factors considered in the study. The leaf biomass
was enhanced with light intensity, temperature, and nutrients. Based on the response
surface methodology, the optimal conditions for the yield of each specific metabolite
were calculated.

2.1.4 Toward Sustainability of the Use of the Light Resource

The need for more sustainable agriculture is important in indoor cultivation systems
where energy consumption is one of the major drawbacks. Artificial lighting
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represents a major share of the energy requirements. The energy and light use
efficiencies are two ways of measuring the energy costs of crop production in indoor
systems. Energy use efficiency (EUE) is expressed in grams of biomass produced
per kWh, and light use efficiency (LUE) is expressed in grams of biomass produced
by light integral. Both units are useful to find the optimal response of plant growth to
light intensity, and using them can show if higher light intensity – and higher energy
requirements – can bring enough yield gain to be expressed as increased light and
energy use efficiencies. The technological evolution of artificial lights has already
improved the EUE of lettuce cultivated under LED light (EUE = 40.6 g kWh−1)
compared with lettuce cultivated under fluorescent lamps (EUE = 15.9 g kWh−1)
(Zhang et al. 2018). With further technological developments and societal demand,
next-generation LEDs will improve energy supply and will allow for improved
sustainability. Moreover, the use of the right spectral composition can improve EUE,
as showed for indoor lettuce and basil cultivation (Pennisi et al. 2019a, b).

2.2 Nutrient Solutions

Nutrient solutions in soilless crop cultivation have to bring all the nutrients
necessary for plant growth. Nutrients are described as essential macroelements
and microelements, i.e., nutrients that cannot be replaced by another element,
whose absence induces deficiency symptoms. They are directly involved in the
plant metabolism (Tsukagoshi and Shinohara 2020). The nine macroelements are
used in relatively large amounts, and the eight microelements are required in small
amounts. Three macro-nutrients – carbon, oxygen, and hydrogen – are supplied
from atmospheric carbon dioxide and water and are not included in fertilizers.
However, enough dissolved oxygen has to be present in water for root respiration,
generally brought by air pumps or agitation of the nutrient solution. The remaining
macro-nutrients are nitrogen, phosphorous, potassium, calcium, magnesium, and
sulfur. Micronutrients are iron, boron, manganese, copper, zinc, molybdenum,
chlorine, and nickel. The main functions of each element are well-known and
summarized in Fig. 9 (Tsukagoshi and Shinohara 2020).

Typical formulas have been developed and commercialized for soilless applica-
tion and exist in a ready-to-use form. However, nutrient compositions should be
ideally tested according to the plant type, its growth stage, the substrate type, and
the targeted quality (Tsukagoshi and Shinohara 2020). Several ways of studying
the effect of nutrition on plant growth and secondary metabolite accumulation are
available. We selected four methodologies among them.

1. Tailor-made nutrient recipes have been developed and tested. Nitrogen, potas-
sium, and phosphorous supplies were modulated on two medicinal plants –
Lavandula angustifolia and Mentha spicata – to assess the yield and quality of
essential oils (Chrysargyris and Tzortzakis 2021). Lower camphor and higher
carvone contents were measured in L. angustifolia under nitrogen levels above
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Fig. 9 Schematic representation of an indoor soilless plant and the macro- and microelements to
be added to water to form a nutrient solution. The main functions of the nutrients are indicated
(Tsukagoshi and Shinohara 2020). The macronutrients carbon, hydrogen, and oxygen are supplied
by atmospheric carbon dioxide and water

200 mg L−1, both indicating increased oil quality. The carvone and limonene
contents ofM. spicatawere more sensitive to the nitrogen and potassium contents
than to the phosphorous content. A home-made nutrient solution was tested on
the growth, antioxidant level, and chicoric acid contents of C. denticulatum (Park
et al. 2016). Increased EC increased C. denticulatum biomass, total phenolic
content, chicoric acid content, and antioxidant capacity.

2. Testing several concentrations of typical formulas (e.g., Hoagland, Otsuka
composition, commercial fertilizers) by making EC or application rates vary.
Several concentrations of a ready-to-use fertilizer solution were tested on
the growth and alkaloid content of Mitragyna speciosa (Zhang et al. 2020).
Growth was promoted by increasing amounts of fertilizer, while the alkaloid
concentrations were highly variable. Lower and medium fertilizer rates promoted
the accumulation of several alkaloids, suggesting that nitrogen was reallocated to
secondary metabolite synthesis. The yield, total phenolic content, and antioxidant
capacity of O. basilicum L. were measured under several EC levels (Ren et al.
2022). Biomass was increased by medium to high EC, while the total phenolic
content and antioxidant capacity were increased at low EC. Two-step cultivation
was successfully applied, consisting in a first, long step under medium-high
EC that promoted a good yield of sweet basil, followed by a second, short
step just before harvest, when water (no fertilizer) or a low EC promoted total
phenolic accumulation and the antioxidant capacity. The effects of the nutrient
formula concentration and root temperature were tested on Ophiorrhiza pumila
growth and camptothecin accumulation (Lee et al. 2020a, b). Growth and the
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camptothecin content were best at a mid-high nutrient solution concentration.
Several root temperatures were applied at the best nutrient concentration, among
which 20 ◦C gave the optimum in yield and camptothecin content.

3. Applying NaCl stress. Salinity and nutritional stresses have been largely
described to modulate the biosynthesis of secondary metabolites. The impact
of salinity and the ammonium-to-total-nitrogen ratio were tested in closed
hydroponic cultivation of Solanum lycopersicum (Tzortzakis et al. 2022).
Salinity decreased plant growth and fruit yield but enhanced fruit quality, and
increased lycopene, β-carotene, and vitamin C at harvesting or during storage.
An appropriate ammonium-to-total-nitrogen ratio was suggested to reduce the
negative effects of NaCl on the nutritional status of plants by regulating the
pH in hydroponic systems. Several NaCl concentrations – 1.7, 25, 50, and
100 mM – were applied on Reichardia picroides (L.) Roth in hydroponic
cultivation (Maggini et al. 2021). After 6 weeks, salinity above 1.7 mM induced a
decreased yield but accumulation of anthocyanins, flavonol glycosides, and total
phenols and improved the antioxidant capacity. The effects of increasing NaCl
concentrations (1–40 mM) were tested in hydroponic and aquaponic cultivation
systems of the drug-type Cannabis sativa L. during the flowering period (Yep
et al. 2020). The cannabinoid contents decreased linearly with increasing NaCl
concentrations in both systems. Decreased yields in hydroponic systems have
been observed from NaCl concentrations above 5 mM. Forty mMwas phytotoxic
in hydroponics, but not in aquaponics, suggesting a potential NaCl tolerance
induced by aquaponics. The impacts of salinity, calcium chloride – that may
alleviate salt stress – and successive harvests were tested on two O. basilicum L.
cultivars (Ciriello et al. 2022). Moderate salinity in the presence or absence of
calcium chloride and high salinity in the presence of calcium chloride showed
improved nutritional quality with improved phenol concentrations and reduced
nitrate levels without affecting the eucalyptol content. In the green cultivar, the
yield decreased with increased salinity. Successive harvests increased the phenol
and vitamin C concentrations but reduced the eucalyptol content. The impact of
nutrient deficiency and salinity was tested on the soilless greenhouse cultivation
of the halophyte Crithmum maritimum (Castillo et al. 2022). Increasing salinity
induced reduced foliar accumulation of several terpenes and total lipids, while
nutrient deficiency increased the concentrations of some polyphenols. Salt
stresses were applied in soilless greenhouse cultivation of Schizonepeta tenuifolia
Briq. (Zhou et al. 2018). Salt treatments positively modulated the density of total
glandular trichomes on both leaf sides, while their relative contents in pulegone,
other monoterpenes, and sesquiterpene decreased significantly. On the other
hand, ketones, alkanes, and esters increased significantly in glandular trichomes
with increasing salt stress.

4. Adding a plant-growth-promoting rhizobacterium or a natural bioactive com-
pound. The impact of mineral nutrient supply (S or N) and rhizobacterium
inoculation on two O. basilicum L. cultivars was investigated (Kolega et al.
2020). Fortified nutrient solutions positively impacted the fresh biomass of both
cultivars, while inoculation with Azospirillum brasilense did not promote growth.
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Metabolomics analyses revealed that rhizobacterium inoculation modulated the
accumulation of more than 400 secondary metabolites, e.g., terpenoids, phenols,
alkaloids, and phenylpropanoids. The primary metabolism was also influenced,
with changes in the metabolism of fatty acids, carbohydrates, and amino
acids. However, the observed responses were rather cultivar-dependent than
following a generalized modification of the phytochemical profile. The effects
of natural bioactive products (NBP) – two from fermented plant extracts and
microorganisms; microorganisms; bioactive substances extracted from Ecklonia
maxima – on the growth and ginsenoside content of vertically and aeroponically
cultivated P. ginseng were tested (Kim et al. 2012). The effects on the root and
leaf ginsenoside content were treatment- and location- (upper or lower layer)
dependent. A biostimulant made of a plant-derived protein hydrolysate and saline
conditions were tested on soilless greenhouse production of L. sativa L. (Lucini
et al. 2015). Salt stress decreased the shoot and root dry biomass of lettuce,
but application of a biostimulant under salt stress increased fresh yield, dry
biomass, improved the plant nitrogen metabolism, and delayed photoinhibition
as compared to plants under salinity stress. Root and leaf application of the
biostimulant under salt stress induced changes in sterol and terpene composition.

Sustainable Nutrients in Vertical Farming
Mineral fertilizers are mainly used in hydroponics nutrient solutions. However,
exploiting these resources contributes to land degradation, water contamination,
excessive energy consumption, and air pollution (Szekely and Jijakli 2022). In
a perspective of sustainability and to meet the challenges of agriculture and
climate change worldwide, alternatives should be developed. The organic form
of hydroponics (called bioponics) recycles organic waste into a nutrient solution.
Several studies have showed positive effects on plant disease mitigation and crop
quality, notably with higher health-promoting compounds and/or lower nitrate levels
in leafy vegetables (Szekely and Jijakli 2022).

2.3 Temperature

Temperature stress induces many changes in the physiological, biochemical, and
metabolic processes and alters the production of bioactive compounds (Fig. 10).
Crops with cold or heat tolerance mechanisms better cope with temperature stress
(Hasanuzzaman et al. 2013). At low chilling temperature, enzymatic activities are
slowed down. In leaves, the balance between light harvesting by photosystem II
(PSII) and light utilization through metabolic enzymatic activity is disrupted, lead-
ing to photoinhibition and decreased photosynthetic activity (Miura and Furumoto
2013). The reduced activities of antioxidant enzymes result in the accumulation of
reactive oxygen species (ROS) (Hasanuzzaman et al. 2013). Adaptive mechanisms
have been described, such as promotion of the cyclic electron flow, regulation of
energy distribution, antioxidant activity inititation, and accumulation of osmotic
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Fig. 10 Representation of the main physiological modifications induced by cold or heat stress in
a hydroponically cultivated plant

regulators (soluble sugars and soluble proteins such like proline and betaine) (Li
et al. 2022). Under heat stress, the efficiency of photosynthesis declines, because
PSII activity, Rubisco activity, the photosynthetic pigment content, and the carbon
fixation capacity are reduced (Zhao et al. 2020). Other physiological changes
occur like altered cell membrane thermostability or oxidative damage (Zhao et al.
2020). Plants accumulate antioxidants (proline, glutathione, ascorbate, carotenoids),
and the activity of antioxidant enzymes is increased (Hasanuzzaman et al. 2013).
Another adaptive response may be a reduced chlorophyll content, as this decreases
the energy absorption linked to chlorophyll energy absorption and lowers leaf
heating (Mesa et al. 2022).

The response of Paspalum wettsteinii under heat stress treatments has been
investigated (Zhao et al. 2022). A metabolic analysis revealed that biosynthesis
of flavonoids and anthocyanins was both up- and downregulated under heat stress.
Heat and cold stresses were applied on S. lycopersicum L. (Mesa et al. 2022). Heat
stress decreased plant productivity and increased tocochromanols in the leaves and
ascorbic acid in the fruit. The effect of short low/high temperature treatments on
the root zone of Coriandrum sativum L. have been studied (Nguyen et al. 2020).
Short temperature treatments reduced fresh biomass, while carotenoids, phenolics,
chlorogenic acid, ascorbic acid, and the antioxidant capacity of the plants were
enhanced under the extreme temperature treatments (15 ◦C or 35 ◦C) for 6 days.

Terpene emission is generally controlled by temperature (Staudt and Bertin
1998; Tarvainen et al. 2005; Ibrahim et al. 2010; Yang et al. 2018). Augmenting
night temperature increased the terpene content of Betula pendula and Populus
tremula (Ibrahim et al. 2010). The influence of antagonistic successive stresses –
cold (4 ◦C, 30 min)/heat (from 25 ◦C to 60 ◦C within 5 min) and heat (from
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25 ◦C to 60 ◦C within 5 min)/cold (4 ◦C, 30 min) – on O. basilicum L. and Salvia
officinalis L. was tested (Copolovici et al. 2022). Terpene emissions were enhanced
in plants under successive stresses as compared to the control plants, while the
phenolic and flavonoid contents remained unaffected. The impact of temperature
stress on H. perforatum was investigated (Zobayed et al. 2005). The shoot contents
in hypericin, pseudohypericin, and hyperforin increased with high temperature
(35 ◦C). The effects of temperature on the growth and terpene production of
Platycodon grandiflorum A. DC in soil and soilless culture systems were measured
(Nguyen et al. 2022). Fresh weight was highest under soilless cultivation conditions
at 20 ◦C, and the shoot contents in platycodin D3, polygalcin D, and total saponin
were optimized at 20 ◦C and 25 ◦C.

The increase in metabolite production should be calculated along with CO2
emissions if temperature is increased or decreased in order to improve sustainability
and lower environmental costs.

2.4 CO2 Level

Increased levels of CO2 induced increased photosynthesis, mainly due to increased
Rubisco activity, which is not saturated at current atmospheric CO2 concentrations.
Increased photosynthesis results in better growth and yield. The photosynthetic
rate, the transpiration rate, stomatal conductance, and the leaf, stem, and root
carbon contents ofWithania somnifera (a medicinal plant native to India) increased
significantly in elevated CO2 conditions, and dry weight increased too (Sharma et al.
2018). Elevated CO2 levels improve water use efficiency and mitigate the negative
effects of drought stress (Li et al. 2018). Cucumber seedlings under drought stress
conditions and increased CO2 levels had a higher leaf water content, regulated the
cell osmotic pressure by accumulating carbohydrates, and accumulated secondary
metabolites (Li et al. 2018). Several studies were conducted under CO2 enrichment
to increase the medicinal properties of Labisia pumila, a medicinal plant found
in the Indochinese Peninsula. The total phenolic and flavonoid contents increased
under high CO2, together with a reduced chlorophyll content (Ibrahim and Jaafar
2011a). The enhanced secondary metabolite content could be due to reallocation of
phenylalanine from protein synthesis to secondary metabolite production (Ibrahim
and Jaafar 2011b). Under 1200 μmol mol−1 of CO2 enrichment, increased nitrogen
fertilization reduced the total phenolic and flavonoid contents (Ibrahim and Jaafar
2011b, 2017).

Combined light intensities and CO2 levels have been investigated. The cumu-
lated values of secondary metabolites and antioxidant activity were observed at
the lowest light intensity (PPFD = 225 μmol m−2 s−1) and the highest CO2
level (1200 μmol mol−1) (Ibrahim et al. 2014). The cytotoxicity of L. pumila
variety alata leaf extract toward cancer cells was strongest under elevated CO2
(1200 μmol mol−1) and low light intensity (PPFD = 300 μmol m−2 s−1), and the
concentrations of different phenolics and flavonoids, the total phenolic, flavonoid,
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and saponin contents were highest (Karimi et al. 2016). Some medicinal plants
showed a positive correlation of their secondary metabolite content with light
intensity and the CO2 concentration. For example, H. perforatum L. (a herb native
to Europe andWest Asia) showed increased hypericin and pseudohypericin contents
under a high CO2 level and increased light intensity (Mosaleeyanon et al. 2005).

The combination of temperature and CO2 concentrations has been investigated.
Gynostemma pentaphyllum (a herbal drug that grows in Asian countries) showed
increased biomass but a reduced total antioxidant capacity and reduced levels
of antioxidant compounds when cultivated under elevated CO2 and increased
temperature (Chang et al. 2016).

The impact of CO2 enrichment seems to be species- as well as growth-stage-
specific. If CO2 is increased, one should check that it is well absorbed by the plants
and that all the other conditions are optimal for the growth of the plant.

3 Economic Approach of Vertical Farming of Medicinal
Plants

Vertical farms are shortly defined as multilayer soilless crop production systems
including various ways of producing vegetables. “Vertical” refers to layers that
can be vertically or horizontally mounted and to crop production systems that
can be installed in closed or semi-closed structures. Semi-closed systems are
typically greenhouses with sunlight that can be supplemented with artificial light.
Indoor vertical farms are closed systems defined as plant factories using artificial
lighting (PFALs), e.g., a container or a closed building. PFALs are controlled
systems and are ideal for producing medicinal plants because the system ensures
stable high standards, constant quality, and constant quantity. However, PFALs use
intensive technology and are expensive because of expensive facilities and high
energy and labor costs. As discussed previously, vertical farming of leafy greens
is economically tricky in Europe, mainly due to high investment, energy, and labor
costs combined with low market prices for such commodities. Economic studies on
vertical farm construction, operation, and viability are lacking (Baumont de Oliveira
et al. 2022). Most economic feasibility studies are based on hypothetical case studies
and horticultural crop predictions, and none of them deals with medicinal plants.
Cultivating high-added-value plants is assumed to be less economically challenging.
However, no studies have been carried out on the whole process of making medic-
inal plant, from the indoor growing to the final product. The complete production
scheme of medicinal plants depends on the form and application of the final product
(Figs. 11 and 12). A medicinal plant product can be under various forms depending
on its use, e.g., infusion, decoction, paste, poultice, multi-metabolites extract, or
powder. The end-user’s choice involves a more or less complex production pattern.
The cultivation process has to target the yield and the metabolite content through
a fine-tuning of abiotic factors. If the final product is used fresh, the postharvest
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Fig. 11 Schematic representation of the two-step cultivation process of vertical medicinal plant
farming (a) and the possible postharvest plant treatments (b)

Fig. 12 Schematic representation of the various forms of herbal medicine
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treatments and cost will be limited, but shelf-life could also be limited. For a powder
formulation, a grinding and drying device will be necessary and can be acquired at
a limited cost. In the case of plant extracts, more equipment is necessary, from an
extraction device to a purification equipment, depending on the extract type and
purity. After extraction and/or purification, a new treatment (drying, freeze-drying
or dielectric drying) is often necessary to obtain a stable extract. Each supplementary
step adds cost and makes the economic balance more difficult to achieve. This
chapter analyzes the different steps of the production of a herbal medicine, from
vertical indoor cultivation to extraction, including the pharmaceutical process. It is
based on a case study on the agro-economic feasibility of cultivating a medicinal
plant – E. peplus – in a vertical container farm and extracting ingenol-mebutate.
The cultivation and extraction costs were based on experimental results, while
the development, gel production, and flat fees costs were hypotheses based on
the literature and consultation (Bafort et al. 2022). The economic feasibility of
producing an ingenol-mebutate-based pharmaceutical product was calculated with
Picato® gel, a prescription medicine containing ingenol-mebutate and used to treat
skin actinic keratosis. Data on another medicinal plant – Artemisia annua – is also
discussed (Bafort et al. 2023). The cost price is an economic term that refers to
all the costs supported by a company to produce goods or a service. The sum
has to include direct costs and indirect costs. Indirect costs are expenses that
are not directly linked to the production of the product or service (advertising,
rental of premises, salaries, etc.). Different calculation approaches exist, based
on variable cost prices, direct cost prices, coefficient methods, and activity-based
costing (Niessen and Chanteux 2005). Therefore, a company that offers different
products and services has to choose the right analysis in order to understand how
much a service or a product costs. In the paper, all the costs are related directly
to production. The case-study is useful to forecast an economical evaluation of
(i) cultivation and extraction process and (ii) pharmaceutical drug production. The
forecast calculation for the pharmaceutical market is based on assumptions and
general costs. The objective is to verify the economic viability of this type of model.

3.1 Cultivation Cost

Cultivation characteristics, such as the plant species, plant biomass, culture length,
plant density, surface area, and specific environmental factors, have a direct
influence on production costs. Several factors have been tested recently, such as
the surface area, the cultivation cycle length, and the light intensity (Bafort et al.
2022). The production cost is strongly related to the productivity of the cultivation
system, which can be described in different ways. Annual biomass – fresh or dried –
is one of them and can also be described partly by the mean fresh or dried biomass
per plant. The productivity of a cultivation system varies according to the following
factors:
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Fig. 13 Influence of plant density, surface area, and the length of the cultivation cycle on the
annual production yield. First column and bars, typical cultivation conditions of E. peplus in a
vertical container. Second to fourth columns and bars, simulation of Romaine lettuce cultivation
in a vertical container with a shorter cultivation cycle (i), an increased surface area (ii), and an
increased density of plants (iii)

(i) The cultivation cycle. For a fixed biomass per plant, Fig. 13 shows how the
annual biomass output depends on the cultivation cycle. If the cycle is short,
more cycles can be achieved per year and productivity is increased. The
cycle can be shortened by modifying abiotic factors. For example, reducing
vegetative growth of hemp (C. sativa) by modifying the photoperiod shortens
the cultivation cycle. Working with cuttings or in-vitro propagated plants
instead of seeds can also make the cycle shorter. Container farming of the
medicinal plant E. peplus, which has a cycle of 48.5 days, allows 7.2 cycles
per year, taking the time needed for harvesting and cleaning into account, and
gives an output of 1106 kg per year. Cultivating Romaine lettuce – a crop with
a shorter culture cycle (30 days) – increased the number of cycles per year and
increased annual biomass to 1745 kg.

(ii) The surface area. Small cultivation surface units decrease productivity. Figure
1 shows that for a same crop and under identical environmental conditions,
doubling the cultivating area enhanced annual productivity by 88.5%, from
1745 kg to 3285 kg.

(iii) The plant density. The plant density is a way of increasing the productivity
of a crop system. It can be improved by a specific design/improvement of
the production area. For example, cultivation on vertically stacked layers can
improve the plant density for some species, especially small plant. It will also
need light to be placed not only above the cultivation tray but also surrounding
the crop production layer. A greater plant density of lettuce from 30 to 40 plants
per m2 resulted in a 29.5% increase to reach 4255 kg of lettuce per year (Fig.
13).

(iv) The biomass per plant. Higher biomass results in higher annual productivity
and higher output of the medicinal product (dried leaves, infusion bags,
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Fig. 14 Fresh shoot biomass per plant, annual output, CapEx, OpEx (subdivided in staff cost,
energy cost, and other costs), total cost (CapEx + OpEx), and cost price of Euphorbia peplus
cultivation in a vertical container farm following several scenarios. The dotted box includes CapEx
and OpEx, the sum of which corresponds to the production cost price; the relative percentage of
each cost in the cost price is indicated above each bar. Scenario (i), cultivation under a PPFD
of 150 μmol−2 s−1 with a surface area of 30 m2; scenario (ii), cultivation under a PPFD of
150 μmol−2 s−1 with a surface area of 40 m2; scenario (iii), cultivation under a PPFD of
500 μmol−2 s−1 with a surface area of 30 m2; and scenario (iv), cultivation under a PPFD of
500 μmol−2 s−1 with a surface area of 40 m2. (Bafort et al. 2022)

poultice, etc.). The biomass per plant can be optimized by cultivation under
optimized environmental factors (Fig. 14) or by breeding or selecting high-
biomass varieties.

If all three factors – cultivation cycle length, surface area, and plant density – are
upgraded from the initial crop system, the annual production could sharply rise by
284% as the yield could increase from 1106 to 4255 kg (Fig. 13).

Production costs are influenced by several parameters, among others the pro-
ductivity of the cultivation system. Costs are divided in two items: (1) capital
expenditures (CapEx), long-term investment (e.g., equipment, property, buildings),
and (2) operating expenditures (OpEx), daily expenses necessary to keep the
business operational (e.g., labor, energy, water consumption, nutrients, seeds).
Figure 14 represents the production cost of the medicinal weed E. peplus in a vertical
indoor hydroponic container and shows the relationship between productivity and
the production cost (Bafort et al. 2022). At a low light intensity, E. peplus growth
was not optimized, and the mean biomass per plant reached 33 g. This resulted
in a low annual productivity, and costs were distributed across a small volume
of production. When the mean biomass per plant and the surface area increased,
through modification of the cultivation process, productivity increased too. If the
induced costs (e.g., for structural modifications, more powerful LEDs) increased
moderately, the production cost per kg of plant decreased. Figure 14 shows that if
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the surface area is increased by 33% by placing an additional layer in the container
under the same light intensity (scenarios (i) and (ii)), CapEx and OpEx increase
by 14%. As productivity is increased by 31.2%, the production cost is cut by 23AC
per kg. In scenario (iii), the environmental factors have been modified: an increased
light intensity results in a significant 209% rise of the mean biomass per plant as
compared with scenario (i). Although the total cost is higher due to increased energy
consumption and investment in upgraded LEDs, the total costs increase by only
9%, whereas annual production is increased by 212%, hence a 65% decrease of the
production cost. In this optimized plant environment, if the surface area dedicated
to production is increased by 10 m2 (scenario iv), the production cost is reduced
by 68% as compared to scenario (i). This shows the importance of optimizing
the technical cultural itinerary to maximize productivity, as investment, labor, and
energy costs are important.

The production cost of the vertical farming of another medicinal plant –
Artemisia annua L. – in a modified shipping container has been calculated (Fig.
15) (Bafort et al. 2023). A. annua is an annual herb native to Asia. It has been used
in traditional Asian medicine for treating and preventing fever and chills for many
centuries and has been widely used for treating malaria (Kim et al. 2015). Again,
the production cost of 1 kg of A. annua is closely related to the productivity of
the horticultural process, and the production cost can be significantly reduced if the
optimization of productivity does not increase costs too much. Higher-intensity LED

Fig. 15 Fresh shoot biomass per plant, CapEx, OpEx (subdivided in staff cost, energy cost, and
other costs), annual fresh shoot biomass output, total cost (CapEx + OpEx), and cost price of
Artemisia annua cultivation in a vertical container f arm following several scenarios. The dotted
box includes CapEx and OpEx, the sum of which corresponds to the production cost price; the
relative percentage of each cost in the cost price is indicated above each bar. Scenario (i), cultivation
under a PPFD of 500 μmol−2 s−1 with a CO2 concentration of 950 μmol−2 s−1; scenario (ii),
cultivation under a PPFD of 500 μmol−2 s−1 with a CO2 concentration of 1500 μmol−2 s−1;
scenario (iii), cultivation under a PPFD of 250 μmol−2 s−1 with a CO2 concentration of
950 μmol−2 s−1; and scenario (iv), cultivation under a PPFD of 500 μmol−2 s−1 with a CO2
concentration of 1500 μmol−2 s−1
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Fig. 16 Evaluation of the costs of extracting a diterpene from Euphorbia peplus. Estimated costs
of various facilities (drying, grinding, extraction pilot, evaporation, and purification), CapEx per
year at a 10% occupation rate and on a 20-year depreciation basis, OpEx per year (labor cost,
electricity cost, and other costs), and total expenses per year (CapEx + OpEx). The dotted box
includes CapEx and OpEx, the sum of which corresponds to the total cost (CapEx + OpEx); the
relative percentage of each cost in the total cost is indicated above each bar. (Bafort et al. 2022)

lamps increased the total cost by 7%, but their use increased productivity by 56.4%
so that the production cost per kg decreased significantly. Under the same light
intensity (PPFD = 500 μmol−2 s−1), increasing the CO2 concentration induced a
negative stress on A. annua and the mean fresh shoot biomass decreased, hence a
higher production cost per kg (Fig. 16).

The cultivation cost is a vital economic piece of data, and its calculation is a key
step for establishing the breakeven point of a product and a coherent selling price.
It does not include distribution, marketing, or storage costs. If the medicinal plant is
used fresh, such costs have to be added to calculate the cost price of the product and
evaluate profitability. If the plant has to be dried, the drying and grinding process, or
any necessary additional step (e.g., cleaning, cutting, sorting), have to be calculated
in the same manner as for the cultivation cost (OpEx and CapEx).

3.2 Extraction Cost

The cultivation of a medicinal plant is the first step of its production. Depending on
the final use of the plant (Fig. 11), the next steps after harvest can range from drying
to the manufacturing of a pharmaceutical specialty. The cost of terpene extraction
from the shoot biomass of a medicinal plant after vertical container cultivation has
been studied recently (Bafort et al. 2022). Cultivation of E. peplus in a container
farm resulted in a yearly output of 776 kg of fresh shoot biomass (Fig. 14). This
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output was divided into several batches of 103 kg each, representing a very low load
for industrial drying, grinding, extraction, evaporation, and purification devices,
which can handle much more biomass. To take the low level of occupation of the
devices into account, the occupation rate of the drying, extraction, and purification
devices was set to 10% with a depreciation rate of 20 years. Three extraction
methods were evaluated (ethyl acetate at 120 ◦C, ethyl acetate at room temperature,
and supercritical CO2), and their respective costs were calculated (Fig. 14). The
investment costs were similar for the drying, grinding, evaporation, and purification
facilities. However, the extraction method represented different investment costs
depending on the extraction technique. The cost was higher for supercritical CO2
extraction, and lower for ethyl acetate extraction at room temperature, which
induced the highest and lowest CapEx, respectively. The OpEx differed depending
on the extraction method. The method generating the highest operational cost was
the “ethyl acetate at 120 ◦C” method, followed by the “supercritical CO2” method,
and finally the “ethyl acetate at room temperature” method. The distribution of costs
differed between the extraction methods. With ethyl acetate at 120 ◦C, the largest
contributor to annual cost was the operating and maintenance cost of equipment
(“other costs” – 47%), followed by energy cost (31%) and labor cost (16%), while
CapEx only represented 6%. With supercritical CO2, the main costs were the “other
costs” (38%) together with electricity cost (36%), and with ethyl acetate at room
temperature, the major cost was “other costs” (72%), while electricity and labor
costs and CapEx were much lower (15–5%).

The production cost of a metabolite depends on the CapEx and OpEx of
the cultivation and extraction processes, but it is also strongly dependent on the
extraction yield (Fig. 17). Although extraction by ethyl acetate at 120 ◦C generated
the highest OpEx and CapEx, it also gave a significantly higher yield; as a result,
this diterpene extraction method was the cheapest, with a cost of 37.8 AC per
mg. The increased yield allowed reducing production costs by 34% and 19.5%
as compared to the “ethyl acetate at room temperature” and “supercritical CO2”
methods, respectively. This shows that production costs are related to multiple
factors and how important it is to evaluate the expenses and yield of each step
when producing medicinal plants and extracts. In the case study of ingenol-mebutate
production from E. peplus, the concentration of this metabolite in the plant was low
(about 60–70 mg per kg of plant shoot) (Bafort et al. 2022). The selection of the
appropriate cultivation method (i.e., a high light intensity and an increased surface
area) increased the extraction yield as compared to other studies (Hohmann et al.
2000). However, the plant content in ingenol-mebutate is constitutively low, so that
the extraction yield remained low too. Increasing the content in a specific metabolite
by appropriate abiotic factors such as high-temperature stress during the cultivation
process could increase the content in terpene and ultimately the extraction yield (see
also Chap. 2). Another possible way of reducing the cost of the production process
of a metabolite is to increase the surface area to augment the cultivation yield or
productivity.
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Fig. 17 Evaluation of the production cost of a diterpene extracted from a medicinal plant
cultivated in a vertical container farm following three extraction methods. (A) Cultivation,
extraction, and total cost following three extraction methods. EtAC 120 ◦C, ethyl acetate at 120 ◦C;
EtAc RT, ethyl acetate at room temperature; SC CO2, supercritical CO2. (B) Extraction yield and
production cost per mg of a diterpene following three extraction methods: EtAC 120 ◦C, ethyl
acetate at 120 ◦C; EtAc RT, ethyl acetate at room temperature; SC CO2, supercritical CO2. (Bafort
et al. 2022)

3.3 Pharmaceutical Drug Production Cost

Medicinal plants have secondary metabolites that can be of interest for pharmaceu-
tical applications as purified molecules. In this case, the use of the metabolite in
a pharmaceutical drug has to be approved by an official agency like the European
Medicines Agency. Approval requires significant development costs showing the
safety and efficacy of the drug and includes preclinical and clinical studies.
Estimating the average cost of developing a drug is difficult. It largely varies
according to studies, from US$ 92.0 million to US$ 884 million and even US$
1395 million (Morgan et al. 2011; DiMasi et al. 2016). Moreover, the clinical costs
of drug development vary, depending on the treatment category. They range from
US$ 312 million for analgesics/anesthetics to US$ 448 million for anti-infective
drugs (Morgan et al. 2011). Therefore, pharmaceutical use requires far more invest-
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ment than traditional para-pharmaceutical use (e.g., extracts (decoction, infusion,
poultice, etc.)). The extract will also need a pharmaceutical-grade certification and
will have to be manufactured in a “Good Manufactory Practices”-certified factory.
Cultivating a medicinal plant in a vertical indoor farm is particularly suited for
pharmaceutical or high-grade standard quality, because the process is completely
controlled and ensures large, regular, and predictable quantities and constant high-
quality metabolites. Moreover, the pharmaceutical use of the crop will give a higher
added value to the metabolite. Few studies have investigated the entire cost of
processing a medicinal plant from cultivation to the final pharmaceutical drug. The
economic feasibility of producing a medicinal molecule was calculated from E.
peplus annual biomass yield and ingenol-mebutate extraction yield (Bafort et al.
2022), based on a prescription medicine containing ingenol-mebutate and used to
treat precancerous skin lesions. Figure 18 shows the output, CapEx and OpEx of
E. peplus cultivation in a 40-m2 vertical container farm under high light intensity
producing 776 kg of fresh shoot crop per year, from which 3.73 gr of ingenol-
mebutate per year are extracted with ethyl acetate at 120 ◦C. This process gave
an output of 0.56 MAC with the selling of pharmaceutical gels containing 0.015%
and 0.05% of the metabolite. The development costs were estimated to be 300 MAC
(15 MAC per year) allocated over the term of a 20-year patent. Compared with this
very high investment cost, other OpEx appeared as a very low load: 0.14 MAC for
the cultivation and extraction costs and 0.12 MAC for gel manufacturing and flat

Fig. 18 Simulation of the production costs of a pharmaceutical gel based on ingenol-mebutate
extracted from vertical container farming of Euphorbia peplus. Vertical cultivation in one
container, 10 containers, or 40 containers and generated outputs, OpEx and CapEx. OpEx are
subdivided in development costs, cultivation and extraction costs, gel production costs, and flat
fees. The dotted box includes CapEx and OpEx, the sum of which corresponds to the total
production cost; the relative percentage of each cost in the total cost is indicated above each bar.
(Bafort et al. 2022)
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fees. The total cost – the sum of CapEx (pharmaceutical manufacturing building)
and OpEx – reached 15.3 MAC for 0.56 MAC of output. Therefore, the return time
on investment for a total annual cost was 27 years. By multiplying the cultivation
yield by 10 (by acquiring 10 vertical container farms), the extraction yield would
be multiplied by 10, with a total of 37.3 g of ingenol-mebutate manufactured per
year. This would raise the output to 5.6 MAC per year. The CapEx and OpEx costs,
except the development costs, would also be increased and would reach an annual
total of 17 MAC. Therefore, the return time on investment for a total annual cost
would be 3 years. Forty vertical container farms would be needed to reach a return
time on investment of 1 year, with an output of 22.5 MAC and a total annual cost of
about 22.3 MAC, without being sure that the demand would absorb such a production.
When looking at the distribution of costs of the whole plant-based drug production
process from plant cultivation to drug production, the largest contributor is the
R&D cost (98–67%), followed by cultivation and extraction costs (1–24%) and drug
manufacturing costs (1–8%), depending on the number of containers, i.e., on the
productivity of the cultivation and extraction steps.

Although the simulation of the profitability of the pharmaceutical gel showed
that economic feasibility was difficult to reach, some factors could rapidly increase
the profitability of ingenol-mebutate production. The improvement of the ingenol-
mebutate content in the plant by a more specific and adapted cultivation process
would increase the extraction yield rapidly. Furthermore, upcoming new plant
factory designs with increased growing surfaces and planting densities together with
digital agriculture will reduce the CapEx and OpEx and the cost per kg of crop, and
profitability will be less challenging.

4 Conclusion

The sector of medicinal plants is complex because many forms exist, from freshly
cut plants to dried preparations through essential oils, macerates, creams, or
poultice, and various stakeholders are involved among whom consumers, herbalists,
retailers, funding agencies, processors, policymakers, and growers (WildMapsFit
2020). Production of medicinal plants includes various steps, depending on the
final use of the plant (Fig. 19) that make processing more or less complex. The
complexity of the process increases with the number of steps, and so does the cost,
but the added value of the product increases too.

The production of medicinal plants under a controlled environment offers new
opportunities (WildMapsFit 2020; Zobayed 2020):

• A greater number of botanically reliable products free of misidentified plants.
• A product uncontaminated by pollutants, pesticides, and microbes.
• A stable source of guaranteed raw material.
• Uniform and optimized biochemical profiles.
• Quantity and quality are predictable and guaranteed.
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Fig. 19 Manufacturing processes of medicinal plants. (Adapted from EIP-AGRI 2020)

• Relationships between producers and purchasers are enhanced, based on stable
and predictable production.

• Controlled postharvest handling.
• Quality control can be more easily implemented in such structures.
• Product certification or labeling.

Growers may in turn consider medicinal plant cultivation safer and more
profitable than traditional crops. However, growers need to carefully calculate the
economic viability of these production systems.

The demand for sustainability from consumers and regulators is increasing.
Actors in the value chain must respond to consumer expectations, e.g., raw material
sourcing, traceability, quality regulation, efficiency, and safety, while considering
sustainability in the cultivation process (WildMapsFit 2020).

Five factors of the crop cultivation process under a controlled environment
need to be optimized: (1) productivity (fresh or dried biomass per year) has to be
maximized, (2) the plant content in metabolites of interest has to be maximized,
(3) yields of postharvest processes (drying, extraction, purification, etc.) have to
be maximized, (4) the sustainability of the process (life cycle assessment, energy
use efficiency, light use efficiency, water use efficiency) has to be maximized, and
(5) costs have to be minimized. The cultivation practices need a fine-tuning of
environmental factors that should be specific to the crop and the metabolite of
interest as plant responses to abiotic factors are mainly species-specific. The use of
controlled environment cultivation systems can facilitate the development of safe,
steady cultures in quality and quantity and high-quality (para)pharmaceutical plant
products extracted from medicinal plants.
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Vertical Farms for Future Cities 

Kheir Al-Kodmany 

Abstract The Food and Agriculture Organization of the United Nations forecasts 
that by 2050 the global population will grow by nearly 2 billion persons. Conse-
quently, we must sustainably produce 70% more food (United Nations, Department 
of Economic and Social Affairs. https://www.un.org/development/desa/en/news/ 
population/2018-revision-of-world-urbanization-prospects.html). However, water 
supply and arable lands are shrinking. In recent years, the impacts of the vicious 
pandemic and climate change manifested by weather extremes have hurt agriculture 
and the entire food production systems. Further, “food miles,” referring to the 
distance that food travels from the place of production to the plate, is becoming 
an alarming problem. This chapter examines the potential of the vertical farm (VF) 
to support food security. It also discusses the challenges it faces. 

Keywords Food production · Carbon emissions · Climate change · Water 
resources · Food quality · Crop yields · Space efficiency 

1 Introduction 

1.1 Goals and Scope of the Study 

The goal of this chapter is to enlighten about recent developments in VF. It attempts 
to answer basic questions, including:

• What is a VF?
• Why should we integrate VF into our cities?
• What are the VF methods and technologies?
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• What are the salient VF projects?
• What are the VF implications for future cities? 

1.2 What Is a VF? 

The VF engages the vertical plane in growing plants and vegetation to optimize 
food production in a limited indoor space. Like libraries that stack books on 
shelves instead of spreading them on floors to save space, the VF does the same 
for agriculture. It stacks growing beds along tall technology-supported structures 
instead of spreading them over the ground, reaching maximum compactness and 
reducing footprint (Kah et al. 2019; Armanda et al. 2019). The VF utilizes 
specialized cultivation methods (hydroponics, aeroponics, and aquaponics) and 
advanced technologies (artificial intelligence, LEDs, and robots) to enhance the 
cultivation environment, improve food quality, and increase yields. It is suited to 
producing leafy and microgreens because they feature a high harvest index, fast 
growth rate, low photosynthetic energy demand, and compact shape. New VFs have 
demonstrated staggering capacities of growing thousands of crops in just a few 
hundred square feet (Al-Kodmany 2018). They occur in new or retrofitted buildings 
of various sizes and heights. Therefore, vertical farming is an environmentally 
friendly method to produce quality food with less space by engaging technology 
and the vertical dimension. 

1.3 Why VF? 

1.3.1 Food Security 

Food insecurity is becoming an acute problem. Over the coming decades, an 
expanding global population, a changing climate, environmental stressors, and 
rising food costs will substantially impact food security. While the increased 
urban population is placing a great demand on food, agronomists, ecologists, and 
geologists warn of soaring shortages of cropland. Indeed, the sprawling fringes of 
suburban developments continue taking over more farmland. Creative solutions and 
urban policies are urgently needed, including options for water conservation, land 
use efficiencies, and food production. Simply, as the food demand will be greater 
than the supply, our planet is growing hungrier for solutions. The VF offers a 
creative solution that merges food production and consumption in the same place to 
produce fresh food locally while reducing transportation and saving the environment 
(Armanda et al. 2019; Al-Kodmany 2018; Edmondson et al. 2020).
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1.3.2 Climate Change 

Climate change is a severe threat to food security. It has already decreased arable 
land. Manifesting in horrific events, such as storms, flooding, hurricane, and 
drought, it has damaged valuable agricultural production (Okeke et al. 2022). 
For instance, the 2011 drought in the USA damaged grain crops with a value 
estimated at $110 billion (Al-Kodmany 2018; Edmondson et al. 2020). Similarly, 
heat waves in California have resulted in significant loss of crops. Further, traditional 
farming demands enormous fossil fuels to conduct agricultural activities. The travel 
distances of food from production (farms) to consumption (cities) or the “food 
miles” have increased significantly. On average, food travels 1500 miles from 
the farm field to the consumer’s plate (Okeke et al. 2022; Llorach-Massana et 
al. 2016). Transporting food counts for 0.4 tons of carbon dioxide emissions per 
household yearly (Edmondson et al. 2020). Regrettably, the increased greenhouse 
gas emissions from food transport and fossil fuels-based agricultural activities have 
exacerbated climate change (Fig. 1). 

1.3.3 Urban Space and Density 

Urban agriculture suffers from finding space for farming. As the urban population 
grows, demand for urban increases, and it becomes difficult to find land in urban 
areas for urban agricultural activities. Further, land prices have been increasing, 

Fig. 1 Map showing the distances that the essential ingredients of a small strawberry yogurt can 
travel. (Adapted from Edmondson et al. 2020)
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making it unfordable for farming. VF may offer a solution by maximizing agricul-
tural work on a little lot. Harnessing the vertical dimension increases production 
many folds. 

VF facilitates compact urban agriculture, which supports compact urban living, 
a core element of sustainability. VF frees land to house more urban popula-
tion, services, and infrastructure. Researchers have critiqued urban agriculture for 
decreasing density, entailing longer commutes and travel time, and more significant 
fuel costs and carbon emissions. They explained that the increased gas utilization 
rising from moving a small percentage of farmland into urban areas would create an 
extra 1.77 tons of CO2 per household yearly (Engler and Krarti 2021). 

1.3.4 Human and Environmental Health 

Traditional farming inflicts harm on human health and the natural environment. The 
World Health Organization explains that 50% of the world’s farms use raw animal 
waste as fertilizer, which may contain diseases transmitted to crops. Traditional 
farms use pesticides and herbicides, which create polluting agricultural runoff. 
They cause erosion, contaminate soil, and generate excessive wastewater. When 
leftover fertilizer washes into water bodies (e.g., oceans, rivers, streams), a high 
concentration of nutrients is developed (called eutrophication), which could disturb 
the ecological equilibrium. Further, traditional farming uses far more water than 
high-tech VF, about one-tenth of that used in conventional agriculture, by offering 
precision irrigation and efficient scheduling. Agricultural activities use excessive 
freshwater – in most regions of the world, over 70% of freshwater is used for 
agriculture – competing with urban areas. The water crisis may worsen as climate 
change triggers warmer temperatures and causes more droughts (Okeke et al. 2022). 

1.3.5 The Ecosystem 

Some scholars argue that conventional agriculture has infringed upon natural 
ecosystems for ages. Dickson Despommier explained that traditional farming has 
damaged the ecological system more than anything else. For example, agricultural 
activities have severely reduced the Brazilian rainforest, with about two million 
hardwood forests being cleared for farmland (Al-Kodmany 2018). Despommier 
indicated that infringement on ecosystems is augmenting climate change. In this 
way, VF can mitigate traditional agricultural influence on the world’s ecosystems 
by reestablishing biodiversity and decreasing the harmful effects of climate change. 
Further, the VF eliminates fertilizer runoff, which can help restore coastal and river 
water, and increase wild fish stock.
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1.3.6 Economics 

Proponents of the VF argue that as technologies improve, its food prices will drop. 
Indeed, new VFs are embracing sophisticated technologies, automated systems, 
robots, artificial intelligence (AI), and advanced data models to offer competitive 
prices. Advanced VF will generate greater yields many folds, making it affordable 
to larger populations. Simultaneously, the soaring expenses of conventional farming 
rapidly reduce the cost gap. For example, when VFs are placed strategically in urban 
areas, they will sell products directly to the consumer, decreasing transportation 
costs and eliminating the middleman. In addition, VF can generate local employ-
ment and support the local economy. Abandoned urban buildings and disused 
warehouses can be converted into VFs to supply healthy food in neighborhoods 
where fresh produce is scarce. 

2 VF Methods 

Researchers have been advancing environmentally friendly methods of food pro-
duction. The following section highlights three main VF methods: hydroponics, 
aeroponics, and aquaponics. 

2.1 Hydroponics 

Hydroponics is a method of growing plants in water containing nutrients without 
soil. The term stems from the Greek words hydro and ponos, meaning “water 
doing labor” or “water works.” The hydroponics technique involves planting a 
seed in a tiny cub of sponge, and when the delicate roots poke after a week, it 
is transplanted into water-filled tanks containing a nutritious liquid with chemical 
fertilizers. Besides, oxygen and sunshine (or artificial light) are the only ingredients 
needed. The soilless hydroponics method can eliminate soil-related cultivation 
problems, such as bacteria that grow in soil, fungus, and insects. It is also low 
maintenance since it disengages weeding, tilling, kneeling, and dirt removal. The 
hydroponic method is less labor-intensive because it involves less space (Engler and 
Krarti 2021). It could also be cleaner than traditional methods, for it does not contain 
animal excreta. Furthermore, it offers an easier way to control nutrient levels, pH 
balance, oxygen level, moisture, and microorganisms. Therefore, the hydroponic 
method may result in higher-quality crops (Engler and Krarti 2021).
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2.2 Aeroponics 

Aeroponics is a soilless method that relies on air to deliver a high-pressured, 
nutrient-rich mist to the plant’s roots, which are suspended in the air. Aeroponics 
means “working air” and stems from the Greek words for air, “aer,” and labor, 
“ponos.” Therefore, aeroponics builds off that of hydroponic systems, in which 
exposed roots are held in a soilless growing medium. However, aeroponics does not 
require containers or grow trays to hold water because it uses nutritious mist instead 
of water. Further, the “misted” system delivers extra oxygen to roots, resulting 
in faster growth. Like hydroponics, the aeroponics method eliminates soil-related 
cultivation problems and is free of fertilizers or pesticides (Engler and Krarti 2021; 
Khan et al. 2020). Also, aeroponics does not need hydroponic tanks and uses much 
less water than hydroponics. Since it uses a minimal amount of water (95% less 
water than conventional farming), it is an efficient way of growing plants. Overall, 
the aeroponic method substantially saves water and space, making it superior to 
traditional farming practices. 

2.3 Aquaponics 

Aquaponics is a farming method that integrates an aquatic environment (where 
aquatic animals like snails and fishes live) into a hydroponics environment where 
plants grow. The combined system achieves symbiosis by using the nutrient-
rich waste from fish tanks as a fertilizer for the hydroponic production beds. 
Interestingly, while the plant roots filter the water for the fish, the fish provides 
fertilizer for the plants. As such, the hydroponic beds act as biofilters that remove 
acids, gases, and chemicals, such as phosphates, nitrates, and ammonia, from 
the water. Concurrently, the gravel beds provide habitats for nitrifying bacteria, 
augment nutrient cycling, and filter water. Consequently, the freshly cleansed water 
is recirculated into the fish tanks (Fig. 2). As such, aquaponics reduces or eliminates 
the need for chemicals and artificial fertilizers. It also offers two unique products: 
fresh vegetables and fish simultaneously (Benis and Ferrão 2018; Khot and Mueller 
2019; Sipos et al. 2020). 

Table 1 summarizes the aforementioned three methods. 

3 Vertical Farm Projects 

Vertical farming is sprouting rapidly. The following section highlights a dozen 
projects (Armanda et al. 2019; Sipos et al. 2020; Angotti 2015; Abbasi et al. 2022) 
in different parts of the world. 
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Fig. 2 Aquaponic method. (Adapted from Engler and Krarti 2021) 

3.1 Sky Greens, Singapore 

Singapore is a crowded small island with over five million inhabitants. With only 
250 acres of farmland, it generates only 7% of its food need. The remaining need 
is provided by importing food, ensuring high transportation costs. Consequently, 
Singapore has pioneered VF. One of its first commercial VF projects is Sky 
Greens. The ten-year-old project is a three-story building that contains translucent 
greenhouses to grow tropical leafy vegetables (e.g., Chinese cabbage, lettuce, xiao 
bai cai, spinach cai, bayam, cai xin, gai lan, kangkong, and nai bai) with a rate of ½ 
ton of fresh veggies daily. It uses various growing media, including soil-based and 
soilless hydroponics. Sky Gardens produce high-quality fresh food at competitive 
prices. In addition, it offers educational programs to expose students and residents 
to VF (Al-Kodmany 2018). 

3.2 Green Spirit Farms, New Buffalo, Michigan, USA 

Green Spirit Farms (GSF) company started with a modest building of about 3716 
m2 (40,000 ft2). It aimed at providing nongenetically modified organism (GMO) 
foods of greater demand (e.g., Brussel sprouts, lettuce, kale, arugula, peppers, basil, 
spinach, tomatoes, stevia, strawberries) at reasonable prices. The company has 
grown and opened VFs in Philadelphia, East Benton (Pennsylvania), Atlanta, the 
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Table 1 VF methods (compiled by author) 

Farming 
method Key characteristics Major benefits 

Common/applicable 
technologies 

Hydroponics Soilless-based, uses 
water as the growing 
medium 

Fosters quick plant 
growth; decreases even 
eliminates soil-related 
cultivation problems; 
reduces the use of 
pesticides or fertilizers. 

Computerized systems 
Laptops, cell phones, and 
tablets 
Food growing software and 
apps 
Remote control software and 
systems (farming-from-afar 
systems) 
Automated stacking, racking 
systems, tall towers, and 
moving belts 
Programmable LED lighting 
Renewable energy (wind 
turbines, solar panels, 
geothermal, etc.) 
Closed-loop systems, 
anaerobic digesters 
Programmable nutrient 
systems 
Water recirculating and 
recycling systems 
Climate control, HVAC 
systems 
Insect-killing systems 
Robots 
Rainwater collectors 

Aeroponics A variant of 
hydroponics involves 
spraying plant’s roots 
with mist or nutrient 
solutions. 

In addition to the benefits 
mentioned above, 
aeroponics requires less 
water. 

Aquaponics It integrates 
aquaculture (fish 
farming) with 
hydroponics. 

It creates symbiotic 
relationships between the 
plants and the fish by 
using the nutrient-rich 
waste from fish tanks to 
“fertigate” hydroponics 
production beds. The 
hydroponic bed cleans 
water for fish habitat. 

UK, and Canada. The East Benton is an extensive VF that contains 1715 vertical 
growing stations. It produces leafy vegetables, herbs, tomatoes, and peppers, the 
equivalent of 200 acres of farmland yearly (Al-Kodmany 2018). 
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3.3 FarmedHere, Illinois, USA 

Founded in 2011, FarmedHere is a company that has three locations in Illinois: 
Englewood, Flanagan, and Bedford Park. Given the generational demands for 
healthy and organic foods, the company has flourished, supplying 6% or more of 
the Chicagoland’s demand for premium green and culinary herbs. The company’s 
product is spreading in several grocery stores, including The Green Grocer, Whole 
Foods Market, Mariano’s Fresh Market, Trader Joe’s, and Meijer. Hyped as one 
of the largest VF in America, Bedford Park’s VF is about 8361 m2 (90,000 ft2), 
followed by Flanagan (929 m2 (10,000 ft2)) and Englewood (371 m2 (4000 ft2)). 
Bedford Park VF uses aquaponics and aeroponics systems and produces about 
136,078 kg (300,000 lb) of 453,592 kg of chemical, herbicide, and pesticide-free 
leafy greens yearly (Khot and Mueller 2019; Sipos et al. 2020). 

3.4 The Plant, Chicago, Illinois, USA 

The four-story, 8686 m2 (93,500 ft2) VF is a retrofitted warehouse. Aiming for 
zero energy, it uses an anaerobic digester that converts food waste into biogas 
that powers, heats, and cools the facility. Daily, the anaerobic digester catches the 
methane from tons of food waste and burns it to produce electricity and heat (Orsini 
et al. 2020). Completed in 2016, The Plant uses the facility as a food business 
incubator, research lab, and educational facility. It produces greens, mushrooms, and 
kombucha tea. The Plant VF closed-loop system works as follows. The anaerobic 
digester turns organic materials into biogas, which is channeled into a turbine 
generator that generates power. Kombucha tea brewery makes CO2 to the plants, 
while plants make oxygen to the kombucha tea brewery. Plants clean the water for 
the fish, while fish waste functions as fertilizer for plants. Sludge generated by the 
digester becomes algae duckweed that feeds the fish. Further, the turbine makes 
steam piped to the commercial kitchen, brewery, and entire building for heating and 
cooling (Al-Kodmany 2018). Notably, the kitchen generates kombucha tea, fish, 
fresh vegetables, food, and beer with no waste (Fig. 3). 

3.5 Green Girls, Memphis, Tennessee, USA 

Green Girls VF supplies local restaurants with year-round fresh, healthy food. 
The 60,000-ft2 facility responds to restaurants’ desire for microgreens that give 
meals intense flavor, texture, vivid color, and pizzazz. The goal of Green Girls is 
to make microgreens affordable, given their high market prices. The facility uses 
an automated hydroponics system, reducing laborers to only two. The system is 
efficient in using water; it uses one-tenth of what conventional farming uses. The 
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Fig. 3 The plant’s anaerobic digester system. (Al-Kodmany 2018) 

facility also uses LED lighting (Armanda et al. 2019; Engler and Krarti 2021). 
LED reduces the light’s seven waves to the essential two lights (red and blue) for 
photosynthesis, which entail energy saving (Al-Kodmany 2018). 

3.6 Gotham Greens, Brooklyn, New York, USA 

Gotham Greens is a 1394 m2 facility that sits atop a two-story building. Constructed 
in 2011, it uses controlled-environment agriculture (CEA) that enables high effi-
ciency, with a rate of eight times of a traditional farm of the same size. Gotham 
Greens grows 80–100 tons of lettuce, salad greens, and herbs. It uses thermal 
insulation, double-glazing, natural ventilation, high-efficiency pumps and fans, and 
on-site solar photovoltaics to reduce energy consumption. Its hydroponic system 
also uses water efficiently (Al-Kodmany 2018; Llorach-Massana et al. 2016; Abbasi 
et al. 2022). 

3.7 China National Cereals, Oils and Foodstuffs Corporation, 
Beijing, China 

Completed in 2015 and with an area of 80,000 m2, it is one of the largest VF in 
China. It features advanced hydroponic systems, temperature control, and artificial 
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lighting, and produces fresh, pesticide-free food at affordable prices. The VF idea is 
suitable for China, which faces rapid urbanization. It is expected that by 2035 more 
than one billion people will be living in urbanized areas (Abbasi et al. 2022). 

3.8 Vertical Urban Farm, Romainville, France 

It is a seven-story VF building made mainly from sustainable materials such as 
wood. It uses natural light solely, saving energy. In addition to commercial purposes, 
it is an educational facility that educates residents and students about vertical 
farming. The building’s ground floor contains a restaurant, shops, and a community 
garden (Abbasi et al. 2022). 

3.9 Pasona Headquarters, Tokyo, Japan 

Located in Tokyo, Japan, and designed by Kono Designs, Pasona Headquarters 
is a nine-story building that refurbished a 50-year-old building. The project was 
completed in 2010. The building integrates a rooftop garden and urban farming 
facilities that allow employees to grow and harvest their food at work. Interior 
spaces contain plants, fruits, vegetables, and rice. Interior partitions integrate lemon 
and passion fruit trees, tomato vines dangle from the ceiling; and beans sprout 
under benches. The building has a double-skin green facade with flowers and 
orange trees planted on small balconies. Outside, the office block is draped in green 
foliage. Ducts, pipes, and vertical shafts were relocated to the building’s perimeter 
to increase the ceiling’s height and to accommodate a climate control system that 
monitors humidity, temperature, and airflow to ensure the comfort and health of 
employees and greeneries (Armanda et al. 2019; Al-Kodmany 2018; Engler and 
Krarti 2021). 

3.10 Kameoka Plant, Kameoka, Kyoto, Japan 

Spread Company (one of Japan’s largest vertical farming companies) established the 
Kameoka Plant in 2007. It is a 2787 m2 (30,000 ft2) hydroponic indoor environment 
with 5295 m2 (57,000 ft2) of vertical grow space that produces a variety of lettuces 
safe from the nearby Fukushima nuclear plant. It is a nonautomated vertical farm 
that can deliver 21,000 heads of lettuce daily. This large-scale operation brought the 
yield rate to 97%, and the facility became profitable in 2013. Lately, the company 
has upgraded the facility by adding a highlight-efficient water filtering system and an 
environmental control system that monitors the temperature, humidity, CO2 levels, 
and light sources. Spread also plans to make tasks like raising seedlings, replanting, 
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and harvesting accomplished by machines and artificial intelligence (Monteagudo 
et al. 2020; Orsini et al. 2020). 

3.11 Techno Farm Keihanna, Keihanna, Kyoto, Japan 

Spread Company completed this project in 2018 and is considered one of its most 
advanced facilities. Located in Keihanna Technopolis, it is one of the world’s most 
automated vertical farms and utilizes the next-generation food production system 
Techno Farm™. Its automated cultivation system can produce 30,000 heads of 
lettuce daily and makes four kinds of leaf lettuce without pesticides. Inside the 
building, vegetation trays are stacked one after another, and a robotic arm performs 
planting. The irrigation and harvesting of this “AI farm” are almost entirely handled 
by robotic arms. White and purple specialized LED lights alternate to assist batches 
of crops in completing photosynthesis without interruption for 24 h. The facility 
recycles 90% of its water. With increased automation, it cuts down 50% of labor 
costs. Spread has incorporated more rigid standards for hygiene control of the 
cultivation environment and aims to gain the international certification of food safety 
standard “FSSC22000” (Al-Kodmany 2018). 

3.12 PlantLab, Den Bosch, Holland, The Netherlands 

PlantLab is a Dutch indoor farming pioneer. In 2010, it completed its earliest 
facilities in Holland. It is a three-story underground vertical farm. It uses advanced 
LED technology that calibrates light composition and intensity to precise needs, 
while eliminating the sunlight wavelengths that prevent plant growth. The farm 
features an automated system that monitors and controls several variables, including 
light intensity, light color, irrigation, nutritional value, humidity, CO2, air velocity, 
and air temperature. The high-tech farm reduces water use by 90% and produces a 
yield three times the amount of the average greenhouse. In 2020, PlantLab opened a 
new VF in Indianapolis, Indiana (Al-Kodmany 2018; Benis and Ferrão 2018; Abbasi 
et al. 2022). 

4 Discussion 

4.1 VF Benefits 

The VF has the potential to support food security in our cities. It offers a 
sustainable, safe food source. The VF is needed as the urban population increases, 
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and we continue to face food shortages, increases in transportation costs, and 
climate change. The increasing fuel costs, water shortages, and shrinking arable 
land make a case for the VF. The hydroponic and aeroponic methods are very 
efficient in using water as their irrigation systems target the plant roots, and the 
controlled environment reduces evaporation. Some VFs even collect and recycle 
the water condensed within the controlled environment. The VF may also use 
recycling wastewater systems (grey or black) and harness rainwater. This closed-
cycle approach decreases water consumption by 90–98%. Further, it has the added 
advantage of preventing nutrients and fertilizers from harming the land or being 
washed in rivers and streams (Pasha and Akash 2020). 

Overall, the VF can offer a sustained food production paradigm that supplies 
crops year-round without interruption caused by climate change, seasons, or adverse 
natural events (e.g., floods, drought, hurricanes). Crop production is protected 
from seasonal weather patterns that are highly vulnerable to disruption due to our 
challenging climate. Countries facing extreme climatic and agricultural conditions 
may find the VF a helpful solution. For example, some Middle Eastern countries 
(e.g., United Arab Emirates, Saudi Arabia, Kuwait, Oman, Qatar, and Bahrain) 
face three significant challenges to traditional agriculture, including hot climate, 
water scarcity, and infertile soil. Similarly, North European countries (e.g., Den-
mark, Finland, Ireland, Norway, Sweden, Iceland, and the United Kingdom) face 
challenges of little sunlight and freezing temperatures that damage crops. In a VF, 
temperature, water, and lighting can be enhanced to eliminate climatic risks and 
improve production rates. Also, the soil is not an issue because it is not the prime 
cultivation medium (Benis and Ferrão 2018; Walker and Buhler 2020). 

The VF could be useful in countries that import a significant portion of their 
foods (some of the Middle Eastern and North European countries mentioned 
earlier). For example, recently, Dubai opened Emirates Crop One. With over 
330,000 ft2 and the capacity to produce two million pounds of leafy greens annually, 
it is one of the world’s largest VFs. The facility is located near Al Maktoum 
International Airport at Dubai World Central and its major clients are airlines (Hall 
2020). On their flights, passengers will eat leafy greens, including arugula, lettuce, 
spinach, and mixed salad greens. This facility is Crop One’s second VF after the 
one in Millis, Massachusetts. 

Some literature suggests that the VF can consolidate some 700 acres of farmland 
into a big-box retail store. We can harvest 365 days a year and shorten the growth 
cycle to about ten days for many of the products, which is nearly a 700 increase 
in yield while saving a million gallons of water weekly and using 1% of land 
compared to traditional farming. MIRA’s facility near Tokyo can generate yields 
50–100 times greater than conventional crop farms. It uses AI and an extensive 
vertical and automated racking system to optimize space utilization. The VF space 
efficiency explains why it is spreading rapidly in countries like Japan and Singapore, 
where land is scarce (Abeliotis et al. 2016; Duncan et al. 2016). 

In addition to giving greater yields per space unit, VF features a faster production 
cycle. For example, the time needed to grow lettuce in a VF is about one-half of 
that in a traditional farm (Pasha and Akash 2020). Additionally, with an automated 
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system, the products are cleaner than that produced by conventional farms as they 
are not touched by a human hand. The product is clean enough that it does not need 
to be washed. There are no bugs, no pesticides, and no bird waste on it. 

Further, the prices of VF produce are not affected by weather conditions as 
in conventional farming. Grand schemes, like the one proposed by Studio NAB, 
could even see the vertical farming concept broadened to include fish and honey 
production while reconnecting consumers with the food production process and 
establishing sustainable jobs for the surrounding community. Today, unhealthy food 
dominates people’s diets. On average, people consume one-third of what they need 
of healthy food. The VF product offers high-nutrition food (Guineé et al. 2017). 

Additionally, VF’s high-tech, computer-based environment can make farming 
fun. Hence, the practice has enticed a technology-savvy younger generation, groom-
ing a new breed of farmers. Further, VF offers the impetus for developing innovative 
agricultural technologies. Finally, the VF could reconnect city dwellers with nature 
by engaging in farming activity. In summary, the VF supports sustainability’s three 
pillars, social, economic, and environmental, as illustrated in Table 2. 

4.2 Challenges 

With benefits come some challenges of the VF. Constructing VFs continues 
to be more expensive than building outdoor farms. The production costs have 
been rendered to be high due to high power consumption, expensive technology, 
and unaffordable startup costs. Replacing sunlight with artificial ones continues 
to require substantial power. Energy prices have been increasing. For example, 
recently, energy prices in the EU increased by nearly 58%. Two years ago, European 
VF spent around 25% of their operational costs on power, but that has increased to 
40% (Trouwborst et al. 2016). 

Also, with high power consumption, the VF may entail high carbon emissions, 
increasing its footprint. As such, the claim of reducing carbon emission via reducing 
food miles is offset by the high carbon emission resulting from the utility of lots of 
power. However, some VFs have been attempting to use renewable energy, such as 
solar power, to reduce reliance on fossil fuel-generated power. Future LED lighting 
will further decrease power use (Hall 2020). 

Another challenge concerns finding employees with proper education, skills, and 
expertise. This problem may ease as educational systems adapt to new needs and 
demands. Finally, the cost and availability of land for vertical farming in cities can 
prove challenging. In response, many VFs find their homes in repurposed shipping 
containers, former factories, and disused warehouses (Orsini et al. 2020). 

Further, most VFs grow leafy salad vegetables, e.g., shoots, herbs, and micro-
greens, because they produce fast under LEDs and have a brief shelf life and extra 
price point. However, with recent inflation, consumers might skip pricey VF herbs 
for cheaper choices. The inflation issue has been manifesting in the European food 
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Table 2 VF supports sustainability’s three pillars, including social, economic, and environmental 
(compiled by the author) 

# Benefit Environmental Social Economic 

1 Decreasing food 
miles (travel 
distances) 

Decreasing air 
pollution 

Enhancing air 
quality, which 
improves the 
environment and 
people’s health 
People receive 
“fresher” local food 

Decrease energy 
consumption, 
packaging, and fuel 
to transport food 

2 By using high-tech 
irrigation methods 
and recycling 
systems, VF reduces 
water consumption 
for food production 

Reducing surface 
water runoff of 
traditional farms 

Making potable 
water available to 
more people 

Reduce costs 

3 Recycling organic 
waste 

Save the environment 
by reducing needed 
landfills 

Improve food quality 
and, subsequently, 
consumers’ health 

Turn waste into an 
asset 

4 Generating local jobs Employees will work 
nearby, decreasing 
their travel and 
ecological footprint 

Create a local 
community of 
workers and 
connections with 
farmers 

Support the domestic 
economy and local 
employment 

5 Reducing the use of 
fertilizers, herbicides, 
and pesticides 

Improve the 
environmental 
well-being 

Improve food quality 
and, subsequently, 
consumers’ health 

Minimize costs 

6 Improve productivity Needs less space Reduce laborious 
work, and save time 
to do productive and 
socially rewarding 
activities 

Offer greater yields 

7 Avoid crop losses 
due to floods, 
droughts, hurricanes, 
overexposure to the 
sun, and inclement 
weather 

Reduce 
environmental 
damage and required 
cleanups of farms 
after damage 

Improve food 
security 

Avoiding economic 
loss 

8 Control 
product/produce 
regardless of seasons 

Produce food 
regardless to season 

Increase accessibility 
year-round and 
improve response to 
population demand 

Fuel economic 
activities year-round 

9 Using renewable 
energy 

Reducing fossil fuel Improve air quality Reduce costs 

10 Bringing nature 
closer to the city 

Increase biodiversity Enhance the health 
and psychological 
well-being 

Generate local jobs 

(continued) 
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Table 2 (continued) 

# Benefit Environmental Social Economic 

11 Promoting science 
and green technology 

Green technology 
reduces harm to the 
urban and natural 
environments 

Encourage seeking 
higher education and 
modern skills 

Offers new jobs in 
bioengineering, 
biochemistry, 
biotechnology, 
construction, and 
research and 
development 

12 Decreasing 
traditional farming 
activities and 
practices 

Preserving the 
natural ecological 
system 

Improve the health of 
citizens 

Saving money 
required to correct 
environmental 
damage 

13 Repurposing 
dilapidated buildings 

Enhance the 
environment 
Remove eye sores 
and stigma from 
neighborhoods 

Create opportunities 
for social interaction 

Revive economy 

market and the VF product may face competition from harvests that are grown in 
traditional farms or greenhouses (Abbasi et al. 2022; Carvalho and Folta 2014). 

4.3 Future Technologies and Data Models 

Increasingly advanced technologies are likely to make VF a more efficient method 
of food production. For example, LED technology has been improving while prices 
are dropping. Further, automation and use of robots and artificial intelligence (AI) 
will likely increase efficiency. Likewise, data modeling will better connect VF 
with the marketplace. For example, with data modeling, VF owners can accurately 
predict the output of each crop every day, year-round. The controlled microclimate 
environment and automation process help to do so. The amount of production 
can be scaled based on the market demand for each crop. The VF will increase 
production if the need increases for a particular crop. Conventionally, this has been 
a severe problem. Market demand may not match supply and using high-tech and 
data models may help solve the problem (Benis and Ferrão 2018; Forchino et al. 
2017). 

4.4 Education and Consumer Behavior 

People should be educated about food systems. They should be aware of “food 
miles” and learn about the carbon footprint of the different foods we consume. 
Overall, food that travels by airplane has a much greater footprint than food that is 
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shipped because an airplane produces more carbon emissions per pound. Research 
explains, “Food that flies can generate more than one hundred times the carbon 
emissions per kilometer of food that travels by ship.” For example, if I eat an 
avocado flown to the UK from Mexico, its transport emissions are much higher 
than if I eat a banana shipped from Colombia (Forchino et al. 2017). 

Furthermore, people should abandon bad habits of wasting food and overcon-
sumption to decrease demand for food production and travel. Avoiding food from 
going to waste is one of the most straightforward and decisive actions to save 
money and lower climate change footprint by decreasing greenhouse gas (GHG) 
emissions and conserving natural resources. Most humans do not realize how much 
food they throw away daily — from uneaten remnants to ruined produce to portions 
of fruits and vegetables that could be consumed or repurposed. A third of all food 
in the United States is wasted. In 2019, the EPA estimated that 96% of households’ 
wasted food went to landfills, combustion plants, or the sewer system. To reduce 
wasting food, people should be educated about the benefits of preventing wasted 
foods and the ways to do it by learning about shopping tips, storage ideas, cooking 
and preparation instructions, etc. (Kobayashi et al. 2014). 

Likewise, people may develop the habits of eating food that is in season and local 
and reduce consumption of refrigerated food as they demand cooling, reducing a 
significant source of carbon emissions. Also, seasonal and local foods often taste 
better than imported ones. 

4.5 Will the VF Help the Poor Population? 

Most, if not all, VF projects are happening in well-to-do countries, while developing 
countries continue to suffer from maximum food insecurity. Unfortunately, devel-
oping countries lack the financial resources, technologies, and expertise to build 
VFs. As such, VF applications may support food security in places where they are 
already better off than other countries. The VF model may empower the already 
powerful nations and leave the poor behind. In other words, it is likely to enlarge 
the gap in quality of life between the poor and rich countries (Armanda et al. 2019; 
Al-Kodmany 2018). 

5 Conclusion 

Food insecurity is a rising global problem. VF bears the substantial potential 
to supply quality food grown in a controlled and clean environment without 
pesticides and with minimal water. It can provide food year-round, closer to cities’ 
inhabitants (reducing food miles), and with marginal waste. It will become more 
needed as climate change predominates and available farmland per capita declines. 
However, VF faces challenges, mainly economics. The required construction and 
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operational costs, primarily energy costs, are significant. Also, it continues to offer 
limited choices of crops and does not serve the poor population. Nevertheless, as 
technologies improve production and increase yields, it is hoped that the costs will 
drop and its products will reach a wider segment of population. While VF still 
represents a tiny portion of the global food production industry, its benefits to our 
ever-expanding population could tilt the farming landscape by 90 degrees in the 
future. Innovation and automation will drive down costs, and future VF advances 
will likely make it mainstream to feed the increasing urban population. 
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Remote Sensing in Precision Agriculture 

U. Surendran, K. Ch. V. Nagakumar, and Manoj P. Samuel 

Abstract Agriculture plays a vital role in feeding the world’s growing population 
despite facing challenges such as dwindling arable land, water scarcity, changing 
climatic conditions, and the need for sustainable resource management. To address 
these challenges and to optimize agricultural productivity, the integration of remote 
sensing technologies has emerged as a transformative approach within the realm of 
precision agriculture. Remote sensing, encompassing satellite imagery, drones, and 
ground-based sensors, provides invaluable data and insights for informed decision-
making, resource allocation, and yield optimization. This chapter explores the 
significance of remote sensing applications in modern agriculture. Satellite imagery, 
acquired at various spatial and temporal scales, allows farmers, agronomists, 
and researchers to monitor crop health, identify areas of stress, and assess the 
impact of environmental factors. Drones equipped with high-resolution cameras and 
multispectral sensors enable localized data collection, facilitating detailed field-level 
analysis. Ground-based sensors complement these technologies by providing real-
time data on soil moisture, nutrient levels, and weather conditions. The integration 
of remote sensing data with geographic information systems (GIS) and data analyt-
ics tools empowers stakeholders to make precise interventions, leading to reduced 
resource wastage and increased efficiency. Through the identification of variability 
within fields, growers can implement site-specific management strategies, tailoring 
irrigation, fertilization, and pest control practices to the unique needs of each 
area. This targeted approach not only maximizes crop yield but also minimizes 
the environmental impact of agricultural operations. Furthermore, remote sensing 
fosters early detection of disease outbreaks, pest infestations, and nutrient defi-
ciencies. Timely interventions based on accurate and up-to-date information result 
in improved crop health and reduced reliance on chemical inputs. Additionally, 
remote sensing assists in monitoring land-use changes, assessing soil erosion, and 
promoting sustainable land management practices. To conclude, remote sensing 
applications are revolutionizing agriculture by enabling precise and data-driven 

U. Surendran (�) · K. Ch. V. Nagakumar · M. P. Samuel 
CWRDM, Kozhikode, Kerala, India 
e-mail: suren@cwrdm.org 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
P. M. Priyadarshan et al. (eds.), Digital Agriculture, 
https://doi.org/10.1007/978-3-031-43548-5_7

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43548-5protect T1	extunderscore 7&domain=pdf

 885 56845 a 885 56845
a
 
mailto:suren@cwrdm.org
mailto:suren@cwrdm.org


202 U. Surendran et al.

decision-making. By harnessing the power of satellite imagery, drones, and ground-
based sensors, the agricultural sector can achieve enhanced productivity, resource 
efficiency, and environmental sustainability. 

Keywords Remote sensing · Precision agriculture · Satellite imagery · Drones · 
Sensors · GIS · Agricultural productivity · Resource efficiency · Sustainability 

1 Introduction 

Remote sensing, which is both an art and a science, is the process of learning about 
the characteristics of the Earth’s surface without physically touching it (visible, 
infrared, and microwaves). Remote sensing systems are capable of providing con-
sistent, synoptic, multitemporal, and multispectral coverage (spatial and temporal 
resolution) and play an important role in providing variety of information. Satellites, 
planes, drones, and other advanced aerial technologies along with use of various 
sensors are able to perceive the reflected energy from the surface of the Earth. 
The advantage of this is that the data may be collected from areas which are not 
accessible. The principal component of this technology is the source of energy, 
which helps to illuminate the target. In general, this is based on the energy emitted or 
reflected from the target that will be captured, processed, analyzed and then use that 
information for the required applications. Each target responds differently to these 
wavelength regions thus helping in distinguishing different features like vegetation, 
soil, water, and other similar features. Electromagnetic radiation (EMR) is how the 
energy is present. 

The energy which moves in a harmonic wave pattern with the light velocity 
is known as electromagnetic energy. This EMR (energy) contains both magnetic 
and electrical field. In remote sensing, the two important characteristics used are 
wavelength and frequency of EMR. The length of a wave cycle, or the distance 
within a cycle between any two points, is referred to as the wavelength. Greek 
letter lambda (λ) is used to denote it. Typically, it is expressed in micrometer (mm, 
10−6 m) or as nanometer (nm, 10−9 m). Frequency denotes the number of wave 
crests that passes at a specific point in the specific time frame. It is expressed in hertz 
(Hz). The EMR spectrum ranges from nanometers to kilometers. Further, these units 
are divided as spectral bands. A typical EMR with different regions are depicted in 
Fig. 1. 

For more precise and accurate resource monitoring, combine remote sensing with 
on-the-ground observations. In a nutshell, the method of remote sensing can help 
in monitoring the Earth’s surface features by offering cost-effective geographical, 
temporal, synoptic, and repetitive data on the Earth’s surface (Justice et al. 2002). 
Based on the signal source, remote sensing is classified into two types, that is, (a) 
active and (b) passive. In the case of active remote sensing, the sensors will make 
use of their own energy for collecting the data (RADAR, LiDAR, and SONAR 
technologies); with respect to passive remote sensing, the sensors will use the
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Fig. 1 Electromagnetic spectrum 

energy from the sun, which is reflected. In recent decades, remote sensing is being 
used in a large number of field-level applications and helps to address the issues 
related to climate change, food security, land sustainability and other environmental 
issues, and many more. The extensive use and adoption of remotely sensed data and 
geospatial datasets is a result of GPS technologies, smartphones, and the mapping 
services provided by numerous mapping portals. 

Three forms of resolution are utilized in remote sensing: spectral, temporal, and 
spatial. The term “spatial resolution” describes the region that is the measure of 
the smallest object or feature that the sensor can detect, or the area imaged for the 
instantaneous field of view (IFOV) in the area of interest (ground) by the sensor, or 
the area denoted by each pixel. The length of time required to collect the datasets 
and return back to the same area (location) is known as the temporal resolution. 
This is dependent in significant part on the sensor platform’s orbital properties. For 
example, the Landsat satellite revolves the globe in every 16 days, whereas SPOT 
in every three days; hence, the same area can be revisited in the gap of 16 days 
in the case of Landsat and three days in the case of SPOT. The capacity of the 
sensor to specify narrower wavelength ranges is known as spectral resolution. The 
wavelength range for a given band is narrower as the spectral resolution is finer. 
For instance, the visible portion of the energy spectrum is recorded by band 1 
of the Landsat TM sensor between 0.45 and 0.52 m. The terms “coarse spectral 
resolution” and “fine spectral resolution” describe the width of the EMF spectrum’s 
intervals, respectively. For example, the panchromatic SPOT sensor is having a 
coarser spectral resolution, since it records the wavelength interval between 0.51 
and 0.73 μm in EMR. The capacity of an imaging system to distinguish very 
minute variations in energy is known as its radiometric resolution. A sensor’s 
sensitivity to detect minute variations in energy emitted or reflected increases with 
the radiometric resolution of the sensor. Table 1 shows few satellites and their 
resolution as examples.



204 U. Surendran et al. 

Table 1 Few satellites and their resolution data 

Resolution 

Satellite Sensor Spectral bands Spatial m 
Radiometric 
Bit 

Temporal 
day 

Launch 
Date 

Landsat 4 MSS 1 0.5–0.6 G 30 6 18 1982 
2 0.6–0.7 R 
3 0.7–0.8 NIR 
4 0.8–1.1 NIR 

Landsat 5 TM 1 0.45–0.52 B 30 
120-
TIR 

8 16 1984 

2 0.52–0.6 G 
3 0.6–0.7 R 
4 0.76–0.90 

NIR 
5 1.55–1.75 

SWIR1 
6 10.4–12.5 

TIR 
7 2.08–2.35 

SWIR2 
Landsat 7 ETM+ TIR 61 and 62 60 8 816 1999 
IRS 1D LISS III B2 0.52–0.59 G 23.5 7 24 1997 

B3 0.62–0.68 R 
B4 0.77–0.86 

NIR 
B5 1.55–1.70 

SWIR 
PAN 0.5–0.75 5.8 6 5 
WIFS B3 0.62–0.68 R 188 7 5 

B4 0.77–0.86 
NIR 

IRS P6 LISS III 23.5 7 24 2003 
AWIFS B2 0.52–0.59 G 56 10 5 

B3 0.62–0.68 R 
B4 0.77–0.86 

NIR 
B5 1.55–1.70 

SWIR 
LISS IV B2 0.52–0.59 G 5.8 7 

B3 0.62–0.68 R 
B4 0.77–0.86 

NIR 
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2 A Global Perspective on Remote Sensing (RS) Technologies 
in Agriculture 

In current scenario, remote sensing (RS) plays avital role in variety of applications 
in agriculture across the globe. Remote sensing research on crop canopies has 
revealed important information about the crop’s various agronomic characteristics. 
On July 23, 1972, NASA launched the Earth Resources Technology Satellite 
(ERTS), subsequently known as Landsat 1, which marked the beginning of the use 
of remote sensing in agriculture. At the early stages of remote sensing in agriculture, 
researchers were mainly focusing on the use of data for differentiation of land-
use/land cover types to identify different crops. However, in recent years, the use 
has been diversified for understanding different kinds of stress and also assess the 
plant biophysical properties including its health and crop productivity. After Landsat 
1, a series of Landsat satellites (Landsat 2–9) were launched in a continuous stream 
to deliver high-quality photos, which are crucial to agriculture. France and India 
both deployed the SPOT 1 and IRS-1A satellites in 1986 and 1988 for use in 
agriculture and natural resource management, respectively. Remote sensing is the 
preferred technology for monitoring the crop over conventional method, since it 
has the ability to provide recurrent information in a nondestructive way and will 
provide valuable information for precise agricultural applications (Adhikary et al. 
2022). Satellite-based remote sensing in agriculture is used for the estimation of 
crop area, forecasting, and production assessment of agricultural crops by different 
researchers. These RS satellites are helpful in characterizing the crop yield based 
on biophysical characters of crops, yield forecasting/estimation, crop phenological 
information, detection of stress situations (abiotic and biotic), characterization of 
soils for their properties, mapping of problem soils, crop and soil suitability, etc. 
Details of few Indian satellites used in agriculture applications are listed in Table 2. 

From a historical point of view, the spatial and temporal resolution of remote 
sensing data used in agriculture has improved throughout the years. The optical 
sensors’ resolution saw a significant upgrade, allowing for the measurement of more 
bands, including narrow bands. Numerous vegetation indices have been developed 
as a result, and automatic detection of invalid pixels such as clouds and shadows 
has been improved. The use of active sensors, such as SAR, which provides 
measurements independent of clouds, improving the regularity of image availability, 
or satellite sun-induced fluorescence, which could provide insightful data on the 
effectiveness of the photosynthetic process, was considered a significant shift in 
agriculture applications. 

Despite the rapid advancement of RS technologies, the majority of their use 
in the agricultural sector has been limited to specialized research, and very few 
applications have been created for farmers’ activities or for the end users. This is 
partially explained by the fact that the majority of RS applications in agriculture 
have only been carried out by RS professionals who lack field agronomy expertise. 
Basic understanding of RS usage should be widely disseminated among the many 
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Table 2 Remote sensing satellites of Indian Space Research Organization involved in agriculture 
applications 

Satellite type Satellite Objectives 

Multispectral 
imaging satellite 

Resourcesat-2 and 
Resourcesat-2A 

Multispectral satellite images for forecast of 
crop area and productivity, land, water, and 
natural resource inventory and management, 
and support on disaster management-related 
activities 

Cartography 
satellite 

Cartosat-1 High-resolution images for DEM (digital 
elevation model mapping),generation of 
cartographic maps, mapping of drainage and 
irrigation networks, contour and topographic 
maps 

Radar imaging RISAT-1 This will be helpful for imaging during 
monsoon seasons. It is for Kharif crop (June to 
November) during southwest and Rabi crop 
northeast monsoon seasons. Besides, this is 
being used for flood and natural disaster 
management 

Meteorological 
forecasting 

Kalpana-1 Comprehensive weather status reporting and 
forecasting 

Meteorological 
observation 

INSAT-3D and 
INSAT-3DR 

Meteorological observations including vertical 
(temperature and humidity) atmosphere 
weather forecasting and disaster warning 

agricultural disciplines in order to make the implementation of satellite RS more 
practicable on agricultural fields. 

In order to successfully apply spatial and temporal basic informative layers to 
a variety of fields, including flood plain mapping, hydrological modeling, surface 
energy flux, urban development, land-use changes, crop growth monitoring, and 
stress detection, remote sensing in conjunction with GIS is highly advantageous 
(Kingra et al. 2016). Nanosatellites and other spacecraft launched after 2000, 
including SuperView-1 (2018), GeoEye-1 (2008), Pleiades-1A (2011), WorldView-
3 (2014), and SkySat-2 (2014), capture multispectral images with a daily or 
sub-daily revisit period at a high spatial resolution of about 2 m. The development of 
narrow-band or hyperspectral sensors and an improvement in the spatial resolution 
of sensors installed on aircraft or satellites have advanced the use of remote sensing 
techniques and facilitated a more thorough investigation of crop classification. 
Agriculture monitoring has become less expensive and more effective because of 
the use of various types of sensors that deliver trustworthy data in a timely manner 
for a small fraction of the cost of conventional data collection methods. The future 
of agriculture is likely to be altered by the unprecedented affordability of UAVs. 
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3 Remote Sensing and Precision Agriculture 

Temperature and moisture sensors, robots, GPS technology, and aerial images and 
geospatial data, hyperspectral sensing, and many more cutting-edge technologies 
must all be integrated into the current agricultural environment. It should be coupled 
with advanced farming practices like precision agriculture. Such novel approaches 
help the farmers toward accessing effective production strategies, banking and 
financial services, and real-time market information. 

Precision agriculture (PA) is an agricultural management technique that makes 
use of technology to guarantee that the land and crops receive the precise care 
needed to maximize their yield. This agricultural management method is also 
known as site-specific crop management (SSCM) because it is based on the 
precise specifications and location. Precision agriculture is centered on information 
technology, with the framework being supported by (SSCM), geospatial techniques 
(RS and GIS) like GPS-based soil sampling, drones, robotics, sensors, and telem-
atics. The development of wireless sensor network-based applications for precision 
agriculture enables growth in efficiency of water use and fertilizer use efficiencies, 
maximizing the yield and profitability while reducing the negative impacts on the 
environment, in agricultural systems. The technological advancement is providing 
real-time information from the fields to farmers and will provide a solid platform 
for them to adjust strategies at any time, and even their scientific advancement 
is being linked to the user departments/universities/experts to provide real-time 
solutions to the problems. Precision agriculture is a cutting-edge approach that 
gathers data, processes, and analyses spatially and temporally before combining 
it with other data to make management decisions about the calculated variability 
of crops, soils, and climate, among other things, for better resource input use 
efficiency, crop productivity, quality, and profitability, as well as sustainability 
of agricultural production. Precision agriculture combines cutting-edge data and 
methods in the decision-making process to improve crop output while minimizing 
water and fertilizer losses and maximizing resource use. PA is utilized in all 
aspects of agriculture, including horticulture, fishery, pasture, and dairy–livestock 
management. 

Since the 1970s, satellite devices have been widely used for PA. There has been a 
sharp rise in the use of remote sensing technology for PA throughout the last decades 
due to the rapid development of this technology. Different sensing components used 
in the PA has been listed in Fig. 2. The use of remote sensing has been encouraged 
in numerous PA applications, including crop monitoring, irrigation management, 
nutrient application, disease and pest control, and yield prediction, as a result of the 
accessibility of high-resolution (spatial, spectral, and temporal) satellite pictures. 
A number of remote sensing-based PA technologies have already been adopted 
by commercial farmers such as the variable fertilizer rate application system by 
using handheld sensors such as the GreenSeeker and the Crop Circle, which are 
based on remote sensing. Since they are affordable and flexible, unmanned aerial 
vehicles (UAVs) have significantly increased their use over the past 10 years due to 
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Fig. 2 Image showing the components of PA sensing components 

their ability to acquire the high-resolution (cm-scale) images for PA purposes that 
are required. Several researchers and academicians are investigating cutting-edge 
methods to store, process, and analyze satellite data due to the availability of a large 
volume of satellite data, and they are experimenting with cutting-edge concepts 
like cloud computing and machine learning. It is essential to look into and build 
a user-friendly yet dependable workflow for the real-time application of remote 
sensing given the complexity of the image processing process and the amount of 
technical knowledge and ability required to be able to apply remote sensing in 
PA. The creation of precise yet user-friendly systems will probably lead to a wider 
adoption of remote sensing technologies in both commercial and noncommercial 
PA applications. 

4 Linking Remote Sensing Observations to Interest Variables 

Field data and remote sensing data can be integrated to estimate agriculture 
variables over vast areas. These estimations’ accuracy, for instance, depends on 
how effectively the field data can be correlated with satellite images and how well 
agricultural areas can be distinguished. Since it can be challenging to differentiate 
agricultural regions from other land cover classes in practice, estimates may be 
skewed as a result. For quite a while, it has been suggested to use remote sensing as 
a technique for calculating agricultural yield on a locality basis. 
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4.1 Remote Sensing and Production Agriculture 

Since there is uncertainty in using remotely sensed data to calculate crop yield 
(mostly due to an indirect relationship between remotely sensed data and crop 
state variables), crop models may be employed in conjunction with remote sensing. 
There are several techniques to incorporate remotely sensed data into models and 
various types of crop models (statistical, deterministic, and semiempirical) (forcing, 
recalibration, statistical correction). Understanding crop response to management 
strategies and environmental stresses for PA requires understanding of spatial 
variability in agricultural production. Crop biophysical indicators acquired from 
remote sensing, also known as vegetation indices, have a positive association with 
crop production and biomass measurements, suggesting a possibility for use in yield 
estimation. 

4.2 Pre Season Planning 

The cost of production, suitability of the land for the crop, marketability, manage-
ment, accessibility of the market, and availability of inputs all affect crop selection. 
It is possible to locate water sources and construct land suitability using satellite 
imagery analysis. This satellite and drone data can be used to determine general 
trends of land use, estimate crop growth, and more. By highlighting regions that 
need attention for planting development and probable disease outbreaks, remote 
sensing technology enhances crop production operations. Crop yield predictions, 
global monitoring of other agricultural processes, and tracking of significant 
changes in land usage can all be done via remote sensing. Agriculture can employ 
remote sensing to map the characteristics of soil to find areas with high productivity 
and hospitable soil. With the use of this data, farmers can determine which soil is 
ideal for which kind of crop. Remote sensing also aids in the monitoring of droughts. 
In order to mitigate drought, monitoring is crucial. Observing trends in weather 
patterns is necessary to determine how long droughts will persist and which places 
are at risk. The availability of sensors that offer real-time information on rainfall, 
soil moisture, streamflow, and groundwater levels has made drought monitoring 
easier. Flood mapping as well as its regular checking is accomplished by field 
surveys, remote sensing, or a combination of both. Additionally, remote sensing 
can be utilized to locate any potential development-blocking features like streams, 
marshes, and stones. When done properly, it gives a true picture of the land use and 
usable space. 
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4.3 Topography Mapping 

Topography is the primary component impacting productivity and soil nutrient 
concentration. As a result, slope can significantly limit production, especially 
in undrained or steep areas that have been eroded. Depending on whether the 
year is rainy or dry, flow buildup can also have a significant impact on yield. 
Topographical land features in some areas can account for as much as a mid-
double-digit percentage of yield variability. Because topography impacts how water 
moves across a place, agriculture is impacted by it. For instance, swiftly flowing 
downhill water may remove soil nutrients or leave crops too dry for optimum growth 
(depending on what type of crops are grown). Slow-moving water can provide 
moisture to plants for a longer period of time, but because it drags soil particles 
away, it also hastens erosion. Additionally, topography has an impact on agricultural 
output by regulating the amount of sunlight that reaches plants at various locations 
throughout an area. Flat areas frequently receive more sunlight than mountainous 
ones since there are fewer obstacles in the way of the sun’s rays that could prevent 
them from reaching leaves. A region’s topography significantly affects the types of 
agricultural activities that can be done there. It directly influences the amount of 
rainfall that different parts of a country will receive as well as the amount of water 
that is available to water crops. The ideal machinery and equipment for a farm can 
depend on the topography. For instance, farmers must use their own body power to 
complete tasks because hillsides are sometimes too steep for tractors. The farm’s 
labor requirements are influenced by topography. During the planting or harvesting 
season, moving about will not require much effort if the land is level and smooth, 
but if it is steep or uneven, movement will require more effort. The impact of 
topography on the amount of rain any region receives annually is another factor 
in the importance of topography in agriculture. More clouds are forming above 
adjacent mountains, dumping their water into those locations, making them wetter 
than other nearby areas; therefore, there will be more rain there than in a place with 
flat land. A digital elevation model (DEM) is a depiction of the topographic surface 
of the Earth devoid of any surface features like trees. Several sources, including 
topographic maps and high-resolution LiDAR data, are used to construct DEMs. 
Moreover, detailed analysis of DEM maps can reveal the slope and elevation of that 
area. 

4.4 Subsurface Tile Drain Mapping 

Buried perforated pipes used for subsurface drainage are designed to catch water 
below the surface of the Earth and send it to an outlet. Since the subsurface 
pipeline was built using clay or concrete slabs up to the 1970s, subsurface drainage 
is frequently referred to as “tile” drainage. Subsurface tile drainage has been 
frequently employed in agricultural fields in the Midwest to remove surplus water 
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from the soil using perforated tubes that are buried beneath the surface. Although 
it is essential for enabling agricultural activities in moist yet productive areas, this 
system also has a significant impact on the dynamics of water and nutrients, as 
well as the water quality in this area. Topographic depressions and tillage on the 
soil’s surface prevent standard optical image processing from reliably capturing 
the precise positions of subsurface tile drainage structures. These difficulties are 
overcome by using thermal imaging to locate a subsurface drainage pipe. The 
hypothesis states that the unique spatial distribution of soil moisture produced by 
tile drains may be the cause of the change in surface soil temperature between places 
close to and far from drainage pipes. 

4.5 Artificial Intelligence and RS 

The application of artificial intelligence (AI), machine learning (ML), and computer 
vision (CV) has been the most recent breakthrough for extracting precise and 
accurate data over wide areas from satellite imagery (CV). In several domains 
where gathering vast amounts of image data is necessary for pattern recognition 
and the development of computer-based algorithms, AI and ML models have 
achieved remarkable success. AI and ML can assist the user in comprehending the 
data gathered in order to quickly find answers to the specific issue at hand. The 
study of broad areas of interest, item classification, detecting and monitoring land 
use, data fusion, cloud removal, and spectral analysis of ecological changes from 
satellite photography can all be improved by AI. Deep learning and neural networks 
using computer vision models can help AI with data collecting, processing, and 
interpretation so that data users can manage data more quickly and effectively. 
There is pressure for increased agricultural production and accurate crop condi-
tion information globally due to increasing population. The world’s agricultural 
resources must be managed more effectively to accomplish these goals, especially 
in developing nations. AI, ML, and CV algorithms are used to extract spectral 
evaluated data from high-resolution, multispectral satellite photos. This data is then 
converted into management solutions for improved crop health and production 
targets. By leveraging image data gathered by satellites, fixed-wing aircraft, or 
unmanned aerial vehicles, artificial intelligence (AI) and geographic information 
systems (GIS) applications can assist farmers in doing crop forecasts and managing 
their agricultural production (UAV). To diagnose crop stress, waterlogging, control 
production yields, and grade trees, this data is gathered and processed to produce the 
NDVI and many other vegetation indicators. For people farmers and the agricultural 
industries, the capacity of AI and GIS to evaluate and visualize agricultural 
landscapes and workflows has proven to be quite useful. 

ICT in agriculture helps farmers in many nations by giving them crucial 
information on planting, crop protection, and enhancing soil fertility, allowing them 
to increase agricultural productivity. With the use of weather-related advisories and 
notifications, farmers may better plan for unpredictable occurrences like floods, 
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droughts, and even pest and disease outbreaks, minimizing crop loss. The Water 
Resources Information System developed by the states like Kerala and Karnataka 
help to get all details of weather, surface water, groundwater, reservoir operations, 
canal flow, soil moisture, water quality, and all other relevant and required informa-
tion on water in the state on a single platform. 

At a different scale, the application of IT in modern agriculture has also pro-
foundly changed farming and agriculture in industrialized nations. Big Data, Cloud 
Computing, ML, Deep Learning, Hierarchical Systems, and Internet of Things (IoT) 
have all had a significant impact on how effective current procedures are. Many 
farmers in the USA and Europe operate their farms remotely by employing drones, 
sensing technology, and other tools that collect essential information on the soil, air, 
crop health, and weather. 

One of the collaborative research projects called FATIMA (FArming Tools for 
external nutrient Inputs and water MAnagement) uses Earth observation data to 
monitor and manage agricultural resources more effectively and efficiently. The 
European Commission provided funding for the project through its Horizon 2020 
program for research and innovation. There are nine active participating nations in 
this multinational effort. In the experiment, pilot plots of several crops that have 
been traditionally grown were observed using satellite data from Landsat 8 and 
Sentinel-2 sources. Each harvest during the course of the project’s 3 years produced 
fresh information regarding anticipating crop water requirements (CWR) and crop 
yield unpredictability. 

Open ET is another example of using modern spatial tools for direct use of 
farmers. It offers conveniently available satellite-based evapotranspiration (ET) 
estimations for better water management in the Western United States. On the 
website openetdata.org, users can browse ET data in two different ways: at the field 
scale for millions of distinct fields or at the original quarter-acre resolution of the 
satellite data. 

4.6 Remote Sensing and Weather Forecasting 

A detector is placed far from a target while using remote sensing. The sensor might 
be a part of a radar or satellite system that keeps an eye on the weather and the ocean, 
or it might be attached to unmanned aerial vehicles. Images and data from distant 
sensors are used for weather monitoring and forecasting at all scales. For monitoring 
on coming fronts and storms (such as hurricanes and blizzards), imaging water (such 
as seas, lakes, rivers, soil moisture, vapor in the air, clouds, and snow cover), and 
calculating runoff and flood potential from thawing, remote sensing is used. 

Sensors collect a wide range of data from clouds because snow and dense clouds 
appear in photos as a bright white color. Without clouds in the sky, the land and 
sea appear dark gray in the photographs. The sun is the only source of visible light; 
hence, throughout the night when there is no sunlight, there are no visible satellite 
photographs available. The temperature reduction with altitude is thus measured by 
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the recorded radiation images, and it may be deduced that high clouds are cooler 
because of less radiation. The radiations emitted by the atmospheric water vapor 
are captured by sensors. This is because satellites do not receive radiation from 
low clouds. The amount of water vapor in the atmosphere typically determines 
how much radiation is detected at the remote sensor. High humidity makes the 
sensor have bright shades. Typically, weather radars measure Doppler winds and 
rain reflectivity. Weather radars can show variations in rainfall intensity because 
they capture photographs more frequently than meteorological satellites. In places 
that are prone to rain, they efficiently monitor any change in rainfall intensity. 
Quick scat satellites are specialized satellites that use remote sensors to measure 
scattered microwave signals from ocean waves and reduce near-surface wind speed 
and direction. This can be used to find oceanic cyclones. Weather radars have remote 
sensors with a unique, higher resolution than other satellites. As a result, they reveal 
very precise information about weather variations, particularly when it comes to 
rainfall. It can also calculate the direction of the wind and the temperature of the 
atmosphere as measured from space, enhancing weather predictions. 

4.7 Soil Moisture and Temperature Mapping 

The data made with microwave, SAR, optical, or thermal infrared (TIR) sensors are 
commonly used to determine soil moisture and temperature (Barrett and Petropoulos 
2012; Kerr et al.  2010). Moran et al. (2004) compared optical, and microwave 
attempts for measuring surface soil moisture. 

4.8 Soil Compaction Assessment 

Soil compaction has a detrimental influence on soil health and agricultural pro-
ductivity by reducing soil porosity, hydraulic conductivity, and nutrient availability. 
Farmers can reduce in-field compaction and related agriculture losses by improving 
their understanding of the temporal and spatial extents of soil compaction in a 
field. Traditionally, soil compaction has been measured using cone penetrometers, 
a laborious, time-consuming, and incomplete method due to the discrete nature of 
the data collected. Traditionally, soil compaction has been measured using cone 
penetrometers, a laborious, time-consuming, and incomplete method due to the 
discrete nature of the data collected. A study conducted by Kulkarni et al. (2010) 
examined the effect of soil compaction on canopy spectral reflectance and cotton 
yields in Arkansas using hyperspectral data. Using green normalized difference 
vegetation index (GNDVI) imagery, soil compaction can be assessed by comparing 
the green and near-infrared spectrum bands. Despite this, cone penetrometer data 
and NIR data failed to show a strong correlation, making compacted soil difficult 
to identify. There has been little research into the spatial aspect of soil compaction 
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throughout the year and its impact on soil hydraulic properties. There is currently 
no widely used method for measuring mechanical qualities in a field in order 
to estimate soil compaction. To assess soil compaction, more research into RS-
based assessments of soil properties and their integration with cutting-edge machine 
learning algorithms is needed. 

4.9 Crop Emergence and Density 

Crop emergence is the initial sign of crop success. Crop planting date, soil moisture, 
soil temperature, seed variety, and other elements all have an impact on crop 
emergence. Remote sensing data has been used to map the land surface phenology 
(LSP) at different spatial resolutions ranging from a few hundred meters to a few 
meters. The product green-up dates (or the start of the season) can be linked to 
crop emergence dates. According to earlier studies, crop emergence dates are often 
used to determine when remote sensing green-up dates are identified. Depending 
on the algorithm, the detection lag can range from a few days to a few weeks (Gao 
et al. 2017). Since 2001, LSP measures with a 500 m spatial resolution, including 
green-up dates, have been made available through the Moderate Resolution Imaging 
Spectroradiometer (MODIS) land cover dynamics data package (MCD12Q2). The 
within-season emergence (WISE) technique was developed and validated across the 
Beltsville Agricultural Research Center (BARC) experimental fields in Beltsville, 
MD, during the 2019 growing season, utilizing the Vegetation and Environment 
monitoring on a New Micro-Satellite (VENμS) time series (5-m, 2-day revisit). 
Findings demonstrate that, 2 weeks following crop emergence, WISE is capable 
of accurately detecting early crop growth stages at the subfield scale. The dates of 
remote sensing green-up were typically 4–5 days after crop emergence (Gao et al. 
2020). 

4.10 Monitoring Crops for Yield Optimizations and Crop Yield 
Forecasting 

To develop effective management plans for fieldwork and/or remedies, crop growth 
and yield must be monitored in order to understand how the crop responds to the 
environment and agronomic practices. Leaf area index (LAI) and biomass are both 
significant measures of the growth and health of a crop. LAI and biomass have been 
calculated using RS data for a number of crops, including row crops, orchards, and 
vine crops. Such research often uses a set of reference data to construct a regression 
or machine-learning-based approach to estimate LAI and/or biomass for a target 
field. These reference data can include measured LAI and accompanying vegetation 
indices. Yue et al. (2017) used a variety of spectral indicators along with observed 
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plant height to estimate biomass (R2 = 0.74) in several irrigation and nutrient 
treatment plots for winter wheat produced in China. There are two methods that have 
historically been used to estimate crop yields using RS data. Initially, crop models 
are used to estimate crop yield and biomass using biophysical factors acquired from 
remotely sensed data, such as the leaf area index. Second, connections between crop 
parameters/indices derived from remote sensing (e.g., NDVI, LAI) and observed 
crop yield and biomass are created in a typical agricultural field using statistical 
methods (e.g., regression). To map crop yield at a target crop field, one could utilize 
the developed regression model or empirical connection. Crop modeling is a data-
intensive technique that needs a lot of data for the model’s input parameters, weather 
data, and yield and biomass data. To investigate the connection between maize yield 
and biomass and spectral indicators obtained at the V12 stage, Maresma et al. (2016) 
used a regression-based method. Wide dynamic range vegetation index (WDRVI) 
and the red-based NDVI were found to have the strongest correlations with grain 
yields across a variety of fertilizer application rates. An improved estimate of crop 
biomass and yield is anticipated to result from spatial mapping of crop biophysical 
characteristics or indices over the course of a growing season as opposed to a single 
season-long snapshot. 

4.11 Agriculture for Ecosystem Services 

Agriculture ecosystems are vital to human health because they give us food, fodder, 
bioenergy, and medicines. These systems rely on the ecosystem services provided 
by natural ecosystems, including pollination, biological pest control, preservation 
of soil fertility and structure, nutrient cycling, and hydrological processes. Assess-
ments indicate that the importance of these ecological services to agriculture is 
significant and frequently under appreciated. On-farm management techniques can 
considerably enhance the ecosystem services provided by agriculture. In order to 
manage for increased provisioning services, farmers typically utilize inputs and 
management techniques to raise yields. Yet, same strategies can also enhance 
pollination, biological pest control, soil fertility and structure, water regulation, 
and biodiversity support. Pollinators or natural enemies may be able to obtain the 
resources they need from the agroecosystem’s habitat management (Tscharntke 
et al. 2005). Several studies have shown that perennial vegetation is essential 
for maintaining biodiversity in general and beneficial creatures in particular (e.g., 
Perfecto and Vandermeer 2008). There is proof that management techniques that 
emphasize crop diversification through the use of polycultures, cover crops, crop 
rotations, and agroforestry can decrease the amount of insect pests that specialize 
on a certain crop while simultaneously giving natural enemies a haven and an 
alternative prey source (Andow 1991). Similar strategies, such as minimal pesticide 
usage, no-till systems, and crop rotations with mass-flowering crops, may be 
advantageous for natural pollinators. 
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A range of farming techniques can successfully cut or balance out agricultural 
greenhouse gas (GHG) emissions. Animal waste emissions can be considerably 
reduced with good manure management. Agricultural output can reduce its CO2 
emissions by half by adopting biological nitrogen fixing by legumes rather than 
synthetic nitrogen fertilizers (Drinkwater and Snapp 2007). Perennialization and 
legume intensification in agroecosystems change internal cycling processes and 
increase N usage efficiency through the recoupling mechanisms discussed above. 
These circumstances allow for the reduction of chronic excess inorganic N addi-
tions, which are currently common, which lowers NOx and N2O emissions. 
Agriculture must boost soil’s potential to absorb and store carbon, known as carbon 
sequestration, in order to reduce greenhouse gas emissions (Lal 2008a, b). The net 
flux of CO2 between the land and the atmosphere is determined by the balance 
between carbon gains from plant growth and soil carbon sequestration and carbon 
losses from changing land use and land management practices. Crop rotations and 
cover crops, as well as soil conservation methods like conservation tillage and 
no-till agriculture, can particularly help reduce the decomposition of subsurface 
carbon. In general, water management and erosion control can sustain soil organic 
carbon (Lal 2008a). Soil carbon sequestration provides extra ecosystem advantages 
to agriculture by maintaining soil structure and fertility, strengthening soil quality, 
increasing the use efficiency of agronomic inputs, and improving water quality by 
filtering and denaturing contaminants (Lal 2008b; Smith et al. 2008).Crops can 
be grown on agricultural land in order to produce biofuel. Particularly, cellulosic 
biofuels have the potential to substitute for some fossil fuels and cut greenhouse 
gas emissions (Smith et al. 2008). While using fossil fuels raises the atmospheric 
concentration of carbon, correctly managed bioenergy crops reduce this by recycling 
carbon. Carbon is released into the atmosphere when bioenergy feedstocks are 
burned, but plants also absorb carbon as they develop. The use of solar energy 
instead of fossil fuels to generate electricity has the potential to reduce CO2, N2O, 
and NOx emission. 

Ecosystem services provided by agricultural systems are essential for human 
well-being. Other ecosystem services, such as those that facilitate provisioning and 
regulation, are also produced and used by them. Agroecosystems can maximize 
their provisioning services at the price of other ecosystem services, but with good 
management, these trade-offs can be considerably reduced or even eliminated. 
Techniques for managing agriculture are crucial for maximizing environmental 
benefits and minimizing adverse consequences. Climate change will make these 
problems worse despite recent advances in our ability to assess the worth of diverse 
ecosystem services related to agriculture and to consider ways to reduce trade-
offs and increase synergies. Future research must address these difficulties within 
geographically and temporally defined frameworks. 
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4.12 Nitrogen Stress Monitoring 

Application of fertilizer must be timely and appropriate to enhance crop growth and 
yields while minimizing environmental harm from nutrient losses to groundwater 
and surface water. In tractor-mounted systems, remote sensors are frequently fitted 
prior to the spray boom. In these systems, nitrogen (N) application rates are 
established based on estimated vegetation indices (such as NDVI). The nutrient 
applicator/spreader receives these application rates and uses them to apply fertilizer 
in real time. Using a variety of techniques, the measured vegetation indexes 
are converted into the proper N application rates. By comparing the measured 
vegetation indices in the target field with the reference vegetation index, which 
is often measured in a fertilized (N-rich) plot or strip that is representative of 
the target field, the nitrogen (N) application rates are frequently determined. 
In order to determine the in-season N requirements for many crops based on 
vegetation indices, numerous fertilizer rate calculation algorithms, including the 
nitrogen fertilizer optimization algorithm (Raun et al. 2005), have been developed 
and successfully integrated in these commercially available sensors (Scharf et al. 
2011). Notwithstanding its commercialization, farmers continue to use variable 
rate N-management technology based on proximal remote sensing at a low rate 
in many agricultural firms. Lack of strong data indicating the substantial economic 
benefits (crop yield and/or profitability), particularly in commercial farm settings, 
is preventing the broad use of these technologies (i.e., vast fields). To advance these 
remote sensing-based technologies and maximize their advantages, research is being 
conducted with UAVs and other remote sensors for a variety of crops in various 
climatic regions. Maresma et al. (2016) used images from a UAV to examine the 
suitability of several vegetation indicators and crop height in determining in-season 
fertilizer application rates for maize grown in Spain. 

4.13 Crop Disease Monitoring 

Diseases have the ability to drastically lower farm income and agricultural pro-
ductivity. A plant disease’s geographic distribution and early detection can be 
used to stop the disease’s spread and reduce output losses. The method of disease 
identification known as field scouting is labor-intensive, time-consuming, and prone 
to human error. Remote sensing could be used to efficiently monitor the condition, 
particularly in the early stages of infection development when it may be difficult 
to recognize the symptoms of sickness with field scouting. Many techniques, 
including RGB, multispectral, hyperspectral, thermal, and fluorescence imaging, 
have been used to detect illnesses in a variety of crops. In Italy, Di Gennaro et 
al. (2016) discovered a strong link between NDVI produced from UAV imageries 
and grapevine leaf stripe disease. Citrus canker may be identified with 96% 
accuracy even in its early stages of growth by Abdulridha et al. (2019) using a  
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machine learning method and vegetation indices obtained from hyperspectral UAV 
photos. When compared to commonly used vegetative indices (e.g., NDVI), the 
development of disease-specific spectral disease indicators (SDI) might increase 
the accuracy of disease diagnosis and distinction in actual field settings (Mahlein 
et al. 2013). Despite the fact that classification study into plant diseases has been 
conducted, additional effort is needed to develop disease identification techniques 
that are more accurate, automated, and reproducible in a range of environmental and 
field circumstances. 

4.14 Weed Identification and Classification 

Traditional weed control methods involve consistent herbicide spraying, which 
is inefficient and increases the risk of off-site chemical losses. Herbicide can be 
applied at a variable rate as needed to improve treatment effectiveness, lower input 
costs, and reduce environmental contamination. For site-specific weed treatment, 
remote sensing has frequently been employed to map weed patches in agricultural 
areas. Specific spectral signature and other phenological or morphological char-
acteristics of weeds distinguish them from crop plants. Over the past few years, 
categorizing images for weed mapping has shown to be a very accurate and effective 
process using machine learning approaches. For weed mapping, supervised and 
unsupervised classification are the two main types of image classification algorithms 
that are typically utilized. Despite the fact that each method has advantages and 
disadvantages of its own, supervised categorization takes more time and physical 
labor. 

UAVs have emerged as the most popular remote sensing platform for weed 
mapping and management because of their capacity to produce the 5 cm-scale 
resolution images necessary for weed detection and mapping. Huang et al. (2018) 
achieved up to 90% accuracy when mapping weeds in a Chinese rice field using the 
fully convolutional network method. Partel et al. (2019) developed a target weed 
sprayer for ground-sensor-based weed detection using deep learning neural network 
approach, which delivered 71% application accuracy in trial fields in Florida, USA. 
Given the technical knowledge needed to use sophisticated software and the intricate 
application processes, commercial adoption of these technologies is still difficult. 

4.15 Grain Quality Assessment 

To boost the sustainability of grain production at the regional level, there is a need 
for operational, dependable systems for crop monitoring during the whole growing 
season as well as for techniques for early yield and quality prediction of winter 
wheat grain. Using satellite data of the seasonal dynamics of the vegetation index 
NDVI, crop physiological states and crop size are evaluated. In a study, Eroshenko 
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et al. (2020) investigated the correlation between remote sensing data and indices of 
winter wheat quality for the Stavropol region. According to the analysis of the data, 
there is a maximum correlation coefficient of 0.83 between NDVI and the amount of 
grains in the second and third classes, with a minus sign denoting the grain creation 
phase. The winter wheat harvests’ vegetative index NDVI and quality indicators for 
the Stavropol region are most strongly correlated throughout the period between 10 
and 22 calendar weeks. 

4.16 Crop Residue Assessment 

By preserving a protective mulch on the soil’s surface and assisting in the reduction 
of soil temperature, erosion, nutrient loss, and evaporation, crop residue cover 
(CRC) maintenance can greatly enhance the environmental performance of cropping 
systems. Remote sensing methods can be used to locate crop residue, which can be 
used to monitor the application of conservation tillage strategies. Broad spectrum 
contrasts between shortwave infrared (SWIR) and near-infrared (NIR) reflectance 
as well as narrow contrasts looking at cellulose absorption in the SWIR have 
been utilized to quantify CRC using multispectral and hyperspectral data. The 
development of a viable operational use of remote sensing to map CRC and tillage 
intensity, however, still confronts hurdles. The need for scene-specific calibration, 
the impact of residue and soil moisture content on spectral features, the variety 
of residue and soil characteristics, and interference from vegetation are a few of 
these difficulties. Furthermore, there is a wide range of capabilities for nearby, 
airborne, and spaceborne sensors. Remote sensing of non-photosynthetic vegetation 
has the potential to improve rangeland management, our knowledge of vegetation 
dynamics, and the monitoring of carbon fluxes in the larger agricultural landscape. 
However, there are still scientific challenges that must be overcome before it can be 
used effectively in practice. 

4.17 Agriculture with Remote Sensing: Possibilities, Limits, 
and Problems 

Nearly every element of PA, from soil preparation to harvesting, has potential 
implications for remote sensing. PA has undergone a paradigm shift as a result of the 
widespread use of high-spatial-resolution, multi temporal satellite data, inexpensive 
UAVs, and widely accessible ground-based proximity sensors. Many cutting-edge 
methodologies have been utilized to examine the potential uses of remote sensing 
in PA, including empirical, regression, and different machine learning techniques. 
Similar to this, a number of vegetation indices, including disease control, weed map-
ping, variable fertilizer management, irrigation scheduling, and yield forecasting, 
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have been developed and assessed for their potential to help PA operations. There 
are numerous challenges that must be overcome before remote sensing technology 
may be widely used in both commercial and non-commercial agriculture. 

Even though the majority of satellite data are freely accessible, processing them 
for practical purposes may necessitate substantial technological know-how and skill. 
For instance, software experts and specialized skills are needed for image pre- and 
post-processing. Furthermore, many PA procedures, like the management of weeds 
and diseases, call for data with fine spatial resolution (cm-scale) and high spectral 
and temporal (e.g., daily) precision. Most satellite data that is made available to the 
public does not adhere to these standards. Additionally, many satellite photos might 
not be acceptable for usage on cloudy days or when there is irregular or changeable 
irradiance from the sun. 

Users and farmers may be required to pay for high-resolution satellite data, 
which might be prohibitively expensive, particularly for small farms. For small farm 
operations, a low-cost alternative may be provided by photos captured by UAVs 
(Candiago et al. 2015). The usage of UAVs and tractor-mounted sensors necessitates 
expert operators (such as drone licensing) and requires the use of specialized 
software for data analysis (Ali et al. 2017). The cutting-edge sensors deployed on 
some of the most recent satellite launches and unmanned aerial vehicles (UAVs) 
produce hyperspectral images that contain a wealth of data on crop biophysical 
parameters. However, these sensors (UAVs) are pricey, and picture processing is 
complex (Khanal et al. 2018). It is necessary to research and develop cutting-edge 
information and communication technologies, as well as chemometric and spectrum 
decomposition approaches, in order to produce and supply the useful information 
needed for PA applications. At the scale necessary for many PA applications, 
machine learning and other artificial intelligence techniques can provide spatially 
and temporally continuous information from real-time satellite data. (Reichstein et 
al. 2019). Such AI techniques can be complemented by hybrid methods, which use 
the information from physically based models to build methodologies helpful in PA 
decision-making (Weiss et al. 2020). 

Technology is now a crucial part of any commercial farm as agriculture evolution. 
New precision agriculture businesses are enabling farmers to maximize harvests by 
automating the control of every crop farming variable, including moisture levels, 
pest stress, soil conditions, and microclimates. By providing more exact techniques 
for planting and producing crops, precision agriculture aids farmers in increasing 
production and reducing costs. Precision agriculture-focused businesses have a 
fantastic chance to grow. The younger generation of farmers is lured to businesses 
that are faster and more flexible and that meticulously maximize agricultural 
productivity. 

India being a country leading in space technology has access to large quantity 
of such accurate geospatial data. Apart from this, we should also have field-level 
primary data. These data should be scouted, processed, and analyzed in such a 
way that some user-friendly products and deliverables are developed and made 
available to the farmers. These products can be in the form of a DSS, expert system, 
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mobile app, Web-based tool, url, GUI, or anything. In the end, it should make it 
possible for farmers and agribusinesses to carefully monitor crop cultivation inputs 
and practices, utilize natural resources and agrochemicals more effectively, and 
promptly adjust to changing environmental conditions. The Internet of Things (IoT), 
for example, has several uses in agriculture, ranging from tracing a product’s origin, 
its environmental impact, and its storage settings along the supply chain to real-
time monitoring of soil, plant, and animal health using in situ sensors. According 
to predictions, the Internet of Things (IoT) could transform into the “Internet of 
Action” by 2030. In the near future, traditional labor-intensive farming will be 
replaced by completely automated farming, where sensors and equipment based 
on built-in AI and data analytics capabilities are capable of self-optimizing and 
beginning activities on their own, without much human participation. The self-
managed precision farming systems with agrobots will also come to a reality soon. 

Although much research has been done on the use of remote sensing in PA, there 
are not many approaches or frameworks that have been shown to be trustworthy, 
reproducible, and effective over a wide range of meteorological, soil, crop, and 
management scenarios. The geographical, spectral, temporal picture resolution, 
atmospheric, climatic, and weather conditions, crop and field traits (such growth 
stage, land cover), and the analytic approach all have an impact on how accurate 
remote sensing systems are perfoming at the field level. For instance, there is a lot of 
uncertainty in PA decision-making since the precision of surface energy balancing 
methodologies for ET estimate varies greatly over time and space. To fully grasp the 
spatio temporal nature of uncertainty in calculating ET, soil moisture, disease stress, 
and other crop factors, more research is required. Crop condition and responses to 
site factors (such as soil and topography), management, and stresses (biotic and 
abiotic) are reflected in a crop’s spectral signature (e.g., diseases, weeds, nutrient, 
and water stress). In the real world, where numerous biotic and abiotic factors affect 
crop response or circumstances, a disease identification technique that performs 
well in a lab context may not perform as well. It is essential to investigate and 
develop a straightforward and reliable workflow for image preprocessing, analysis, 
and application in real time given the complexity of image processing methods 
and the amount of technical skill and ability required for application. There are 
still many challenges and constraints in the development of tools and frameworks 
that can facilitate end users’ access to satellite data for real-time applications. 
Remote sensing data will probably be used more frequently in commercial and 
non commercial PA activities as a result of the development of precise, user-
friendly technologies. However, it should be coupled with financial inclusion and 
risk management for farmers supported by better capacity building, empowerment, 
extension, and advisory services. 
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Sensing Climate Change Through Earth 
Observations: Perspectives at Global 
and National Level 

Girish S. Pujar, Alok Taori, Abhishek Chakraborty, and Tarik Mitran 

Abstract The window to mitigate and adapt to climate change is closing very 
fast for humanity. Unless drastic measures are introduced and implemented with 
unambiguous policy oversight, the Earth is going to witness irreversible damage 
to biophysical systems to the peril of life on this planet. Emphatic arguments on 
access of climate alerts to everyone, by the United Nations, highlight the need 
to build a comprehensive system observing the trinity of the ocean, land and 
atmosphere. Earth observation systems comprising remote sensing in increasingly 
innovative interactions of energy and matter offer unprecedented scope of watching 
phenomenon across spatial scales. Coupling these observations with substantiated 
process models gives insights into future scenarios at reasonable levels of confi-
dence. Current review attempts to comprehend remote sensing systems in place, 
for observing atmosphere followed by ocean and land phenomenon as well as 
the information systems, in Indian context, designed for application by varied 
users. Data and information derived by range of sensors on board Indian satellites 
are discussed, and latest understanding of vulnerability patterns in varied land 
cover contexts such as snow, water, crop, and forest is summarized for benefit of 
decisions across hierarchy of managing natural resources. However, a wide variety 
of phenomenon linked to climate change impact which could not be covered does 

G. S. Pujar (O) 
Rural Development and Watershed Monitoring Division, Remote Sensing Application Area 
National Remote Sensing Centre (ISRO), Hyderabad, India 
e-mail: pujar@nrsc.gov.in 

A. Taori 
Atmospheric Science Division, Earth and Climate Sciences Area, NRSC (ISRO), Hyderabad, 
India 

A. Chakraborty 
Agroecosystem and Modeling Division, Agricultural Sciences & Applications Group, Remote 
Sensing Applications Area, NRSC(ISRO), Hyderabad, India 

T. Mitran 
Soils & Land Resources Assessment Division, Soil Resources & Land Use Mapping Group, 
Remote Sensing Application Area, NRSC (ISRO), Hyderabad, India 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
P. M. Priyadarshan et al. (eds.), Digital Agriculture, 
https://doi.org/10.1007/978-3-031-43548-5_8

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43548-5protect T1	extunderscore 8&domain=pdf

 885 45222 a 885 45222
a
 
mailto:pujar@nrsc.gov.in
mailto:pujar@nrsc.gov.in
mailto:pujar@nrsc.gov.in


226 G. S. Pujar et al.

not exclude the scope of applying Earth observation technology far and wide. Global 
and national perspectives, hence, deliberated herewith correspond to the generic 
know-how of the current technological scope and application to mostly operational 
needs. 

1 Introduction 

Landmark report released by Intergovernmental Panel on Climate Change (IPCC) 
during February 2022 has clearly declared that the window to mitigate climate 
change is fast closing and stated “any further delay in concerted anticipatory global 
action on adaptation and mitigation will miss a brief and rapidly closing window 
of opportunity to secure a livable and sustainable future for all”. Further to it, 
report on mitigation (IPCC 2022) says that by 2030 it is possible to halve the 
emissions. Changing climate is marked by wide variety of global manifestations 
that can threaten life and diversity on Earth by inducing extreme droughts, rising 
sea levels, disappearing snow cover and ice caps, increased wildfires, heatwaves, 
storms, insect outbreaks, reducing farm yields, decreased accessibility to water 
and increased conflicts over natural resources. It is also coupled with indirect 
effects such as physical and mental health impacts, destroyed infrastructure, mass 
population displacement and possible widespread hunger. As per United Nations’ 
news release, greenhouse gas emissions generated by human activity have increased 
since 2010 ‘across all major sectors globally’ and global community is on pathway 
to warming of more than double the 1.5 ◦C limit that was agreed in Paris in 2015. 
Such a status warrants application of state-of-the-art sensors to detect, monitor, 
model and virtualize the geo-intelligence in space and time to develop alerts for 
every citizen in a manner that is easily connectable and extant. Conventional 
observations from ground network provide information up to a certain degree of 
detail but fail to provide spatial scale, which logically leads to application of space-
based sensors to collect critical information at desired frequency (Cracknell and 
Cracknell 2001). 

Climate change has been defined by the UN Framework Convention on Climate 
Change (UNFCCC) as ‘a change of climate which is attributed directly or indirectly 
to human activity that alters the composition of the global atmosphere and which 
is in addition to natural climate variability observed over comparable time periods’. 
The twin problems of climate change and associated extreme weather events are 
of grave concern under the present scenario of global warming. It is, however, 
not a new phenomenon as the presence of ice age was conclusively proven in the 
1840s. Natural processes like changes in the solar output, Earth’s orbit and volcanic 
eruptions may cause climate change. But over the past century, there has been a 
noticeable acceleration in climate change through global warming caused by the 
accumulation of greenhouse gases in the atmosphere due to anthropogenic activities. 
Failure to keep climate change in check can have a grim fallout, as witnessed 
~250 million years ago through the mass extinction of nearly 96% of marine and
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70% of terrestrial species due to runaway climate change triggered possibly by 
volcanic gas emissions. 

The fourth assessment report of the IPCC estimated an increase of 0.74 ◦C in  
global mean temperatures from 1906 to 2005. Global mean surface temperatures in 
2018 are higher than pre-industrial (1850) levels by nearly 1 ◦C. The year 2019 
is likely to be recorded as the hottest year globally with record-high maximum 
temperatures recorded over India and Europe. Compared against pre-industrial 
levels (circa 1850–1880), there has been an increase in global surface temperature 
by 0.85 ◦C, increase in ocean acidity by 26% and rise in global sea levels by 
3.3 mm year−1. The Antarctic ice sheet has decreased by 152 km3 between 2002 
and 2006, and the Arctic sea ice area is decreasing by 2.7% per decade. The top 
700 m ocean temperature has risen by 0.302 ◦F since 1969 resulting in thermal 
expansion, sea level rise and inundation of low-lying coastal areas. Climate change 
has overall had a negative effect on crop productivity and increasing frequency and 
intensity of extreme weather events such as heatwaves, heavy precipitation, cyclones 
and lightning. The elevation in ocean temperature and acidity are imposing adverse 
effects on marine ecosystem, driving the extinction of marine species and triggering 
frequent occurrence of storms. 

Most of the climate-related information has been conventionally derived from 
point-based measurements and they often sense spatial spread across entire Earth 
only as samples at best. Remote sensing offers scope to build continuous sur-
faces related to climate processes and enable continuous observations. Processes 
especially related to carbo dioxide, clouds, oceans, surface and air temperature, 
vegetation phenology and water surfaces determine the way climate change will 
be managed in future. Satellites serve an extremely pivotal role in this (Canadian 
Space Agency 2022). 

Diversity of information regarding ability to observe climate processes and 
concomitant changes using Earth observation approaches is humongous. Conveying 
the order, essence, utility and stakes inherent to this body of knowledge (NASA n.d.) 
is of paramount importance as of now, since mitigation and adaptation measures 
require content that is clear and decipherable. Across 1,20,000 articles published 
on climate change since 1960s, work on analysis of satellite-derived sea surface 
temperature in tandem with in situ observations (Reynolds 2002) stands out as 
eighth among the top ten most cited climate change articles (McSweeney 2015) 
Here, an attempt is made to comprehend the latest innovations in operation and 
proposed in near term horizon across the globe to observe climate and its change. 
Special emphasis will be laid on to the Indian scenario of observation and inputs to 
adaptation and mitigation. 

1.1 Scale of Vulnerability 

The US National Oceanic and Atmospheric Administration’s Geophysical Fluid 
Dynamics Laboratory applied several ocean–atmosphere coupled models to predict
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the cumulative effect of GHG emissions from different population, economic and 
energy use projections that may affect Earth and created future scenarios called 
‘Representative Concentration Pathways (RCPs)’ similar to earlier scenarios known 
as SRES level (Special Report on Emission Scenarios). RCPs are known by the 
radiative forcing characteristic of the global concentration of GHGs prevalent, such 
as for instance. 

RCP 4.5 indicates retention of 4.5 watts of energy by Earth’s atmosphere 
per sq.m. In this context, the Coupled Model Intercomparison Project (CMIP) 
is a collaborative framework designed to improve knowledge of climate change 
and facilitates concentration pathway modelling. Overall, the vulnerability of a 
development pathway is clearly brought out by these indicators, and pathways 
include scope to bring policy modulation to reduce the emissions (Fig. 1). 

Different RCPs are characterized by features and assumptions related to emis-
sions due to policy-driven actions. RCP 2.6 being a very low future emissions 
pathway has carbon dioxide remaining constant until early of this century, followed 
by a decline to turn negative by 2100. Assumption for the pathway is that fossil fuel 
witnesses sharp decline, more biofuel-derived from crop land and reduced methane 
emission by 40%. Low to moderate pathway of RCP 4.5 assumes slight increase 
in carbon emissions until mid-century, then declines, with stabilized methane 
emissions. Here, large-scale reforestation coupled with sharp decline in energy use 
is assumed, coupled with reduction in size of agricultural land to increase yield and 
lowered meat consumption with stricter climate policies. Very high future emission 
pathway of RCP 8.5 points to three times higher emission of carbon dioxide than 

Fig. 1 Intergovernmental 
Panel on Climate Change 
(IPCC) graph of future 
temperature change under 
alternative greenhouse gas 
emission scenarios. (McCarl 
et al. 2016) 
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present with large increase in methane output. Fossil fuels dominate over uptake of 
renewables with least implementation of strict climate policy (Climate information 
n.d.). 

Extremities projected include four different scenarios of warming at 1.5, 2, 3 and 
4 ◦C at 2100 with its impacts on nature (Fig. 2) and major Earth processes in relation 
with RCPs. Mildest of all with only 1.5 degree (as proposed in the Paris Agreement) 
will in fact has potential to induce minimum two months of drought and wildfires, 
suffered crop yields such as rice, maize, wheat and soybean with rising sea level 

Why is 1.5°C important? 

2°C3°C4°C 1.5°C 

Impacts for 2100Hundreds of years 
from now 

More frequent and 
extreme droughts 

High levels of 
food insecurity, 
development path 
reversed 

470-760 million 
people at risk; sea 
level rise of nearly 9 
meters 

Near-complete 
melting of the 
Greenland ice sheet; 
sea level rise of 7+ 
meters 

Fewer opportunities 
for infrastructure 
adaptation; sea level rise 
of 56cm 

Rising sea levels 
displace 46 million 
people; sea level rise 
of 48cm 

IMPACTS 
ON COASTS 

Half of all plant and 
animal species face 
local extinction 

Marine 
ecosystems 
may collapse 

Virtually all 
coral reef lost 

Coral reefs would decline 
by 70-90 percent 

IMPACTS 
ON NATURE 

Local fish species 
go extinct 

Agriculture yields 
fall rapidly 

Wheat, rice, maize 
and soybean 
production suffers 

IMPACTS 
ON FOOD 

10 months 
average drought 
97% more burned area 
in wildfires 

4 months 
average drought 
62% more burned 
area in wildfires 

2 months 
average drought 
41% more burned 
area in wildfires 

IMPACTS 
ON DROUGHT 
AND WILDFIRES 

Fig. 2 Scenarios of endangerments of life and support systems at key thresholds of global 
warming. (Adapted from UNEP, The Adaptation Gap Report 2021)
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. Sea level is likely to rise by 48 cm and coral reefs would decline by about 70– 
90%. As the warming goes higher to 2 degrees, wildfires may increase by 62%, 
with average droughts occurring 4 months a year and most of coral reefs being 
lost, with a 56 cm rise in the sea level. Other severe scenarios of global warming 
of 3 and 4 degrees at much distant future at century scale would be witnessing 10 
and more months of drought, with local fish going extinct and sea would be rising 
at 7–9 m. Marine ecosystems would be in total collapse and half of all plant and 
animal species face local extinction. Hence, controlling warming around 1.5 degree 
is critical to the survival of most of marine and terrestrial biodiversity, food systems 
as well as coastal habitation and economy. 

In the era of post-industrial revolution, there has been a steady increase in the 
concentration of greenhouse gases (GHGs) such as CO, CO2, CH4 and NO2 in the 
Earth’s atmosphere due to human activities. GHGs and aerosols affect the climate 
by altering the balance between the radiation received from the Sun and the radiation 
emitted by the Earth. Among the different GHGs, CO2 is of more importance due to 
its longer residence period in the atmosphere (~150 years) as compared to N2O 
(~114 years) and CH4 (~10–12 years). About 40% of emitted CO2 retained in 
the atmosphere, driving the warming of surface and adjoining atmosphere, while 
the oceans absorb about 30% leading to acidification of the oceans (ESA n.d.). 
Ironically, the rates of emission of GHGs are faster than their natural removal, 
causing net accumulation in the atmosphere. Change in land use and reduction 
of vegetation cover are compounding the problem leading to accelerated global 
warming. A study at NRSC revealed that annual Indian carbon budget for 2017 
has increased by 2% over 2016 levels, indicating the key role of human beings in 
carbon emissions (Sreenivas et al. 2022). 

1.2 Insights for Policymakers 

Efforts to check climate change have gained momentum globally; the Paris Agree-
ment of 2016 drafted by the United Nations aims to check the rise in global 
temperatures to 2 ◦C below pre-industrial levels. It is thus vital to continue studies 
of the climate and its variations, occurring as a result of natural and anthropogenic 
factors, to enable informed decision-making on mitigation/adaptation measures to 
face a changing climate. Policy measures to reduce the impact of climate change 
on the society and economy of a country as complex as India require consideration 
of wide range of factors (Chaturvedi et al. 2014). The trade-off regarding the gains 
and losses to be incurred by complying to immediate targets in terms of economy 
and poverty alleviation is difficult to manage at governance level. Significance of 
focusing on the co-benefits of managing climate change so as to address inclusion 
(Dubash et al. 2013) followed by consideration of aspirational strata of society 
living highly vulnerable lifestyles (Pandey et al. 2018) while devising mitigation 
and adaptation seems paramount. United Nations at COP 27 has unveiled an 
action plan to achieve ‘early warnings for all’, which would focus on gaining
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disaster risk knowledge, observations and forecasting, preparedness and response 
and communication of early warnings to all. In view of such ambitious global 
initiative, it is certainly essential that expertise involved in policymaking and its 
implementation needs to have well-informed choices for assessing vulnerability 
and adapt to it. India’s instances of disaster preparedness and handling several 
hydro-climatological extremes is of high quality and needs to be upscaled further 
using state-of-the-art technology such as space-based approach. The simplicity 
and alacrity of information availability as early warning and impact event should 
determine how fast the policy managers handle the climate change-related aspects 
deftly. Mere labyrinth of terminologies and hidden inferences should not defer the 
usage of information, since scientific penetration in India is yet to reach satisfactory 
levels. However, the hopeful part is that advent of information technology can 
deliver cascade of content in understandable manner through open-source tools such 
as ISRO Bhuvan. 

2 Earth Observation Scenario in India 

2.1 National-Level Datasets 

2.1.1 Climate Science and Information System 

Towards describing global warming and associated climate change, the Global 
Climate Observing System (GCOS) of the WMO (World Meteorological Orga-
nization) has identified 54 key parameters or essential climate variables (ECVs), 
necessary for characterizing the Earth’s climate, encompassing the domains of 
land, atmosphere and ocean. These parameters can objectively quantify the changes 
of the Earth’s ecosystems with space and time. Realizing the gravity of the 
situation and to address the lack of an accurate climate quality database from the 
Indian perspective, the Indian Space Research Organization (ISRO) has established 
‘National Information System for Climate and Environment Studies (NICES)’ at 
the National Remote Sensing Centre (NRSC), Hyderabad, in 2012 to generate long-
term, consistent and accurate database using satellite data (NRSC 2022). NICES 
(Fig. 3) is a multi-institutional endeavour from which currently 64 bio-/geophysical 
parameters are being generated and freely disseminated to stakeholders through 
web-enabled services. The objectives of NICES are the establishment of appropriate 
observational network, acquisition and processing of international and national 
missions’ data, generation of spatially and temporally blended climate products, 
establishment of supporting infrastructure and services and effective dissemination 
of data for scientific utilization of data towards impact assessment, adaptation, 
vulnerability and mitigation strategy. The historic database will help understand the 
impacts of climate variability on ecology and to quantify how different ecosystems 
have historically responded to climate change as well as the uncertainty in projected 
biophysical impact on biosphere and humanity.
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Fig. 3 Dissemination link interface for snow and glacial melt data download datewise, from 
Bhuvan NICES portal 

Endeavour also includes regional workshops to create awareness about the 
climate change and the innovative use of the climate database being generated 
at NRSC. Interest has been created among academia and different stakeholders 
to contribute in the building up of Indian national database on climate change 
studies. The collaboration in the form of projects will enable academic interface 
to share the domain expertise towards developing better understanding about 
Earth system sciences, new algorithms, calibration, validation and establishment 
of new sensor network across the nation. The dedicated team of the Earth and 
Climate Science Area (ECSA) of NRSC is engaged in studying the climate and 
its variability, empirical/process-based methods for estimation of climate variability 
impacts across multiple spatial–temporal scales, including emerging Earth observa-
tion technologies and distributed sensor networks, methods for forecasting impacts 
of climate variability on biosphere response and translating forecasts into useful 
decision support for the farmers and policymakers. 

2.1.2 Climate Science Activities 

As part of climate science-related experiments and campaigns, regular participation 
of the centre in major national and international cruises in deep oceans is assured, to 
collect the ocean biological, physical and chemical parameters which are otherwise 
absent or availability is restricted. This helps to understand anthropogenic impacts 
better. Climate science activities contribute for improved and value-enhanced 
datasets under NICES in the long run. 

Key areas of research findings cover areas related to measurement of carbon diox-
ide, methane, clouds, aerosols, cloud top temperature, land and ocean productivity 
and sea level. The 35th Indian Scientific Expedition to Antarctica in 2016 witnessed 
CO2 levels exceeding 400 ppm for the first time since international efforts to monitor 
CO2 levels gained momentum. Airborne measurements over different parts of the 
country help towards understanding the variation in greenhouse gases and aerosol
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parameters with height. State-of-the-art observatory for continuous measurements 
of greenhouse gases, aerosols, radiation and other meteorological since 2014 have 
been yielding reliable records to support climate change analysis and help validate 
satellite-based observations. 

Reduction in cloudiness during the past decade, over a belt extending from the 
Arabian Sea, southern and eastern parts of India to the Bay of Bengal and Northeast 
India, compared to increases up to 10% over the north-western parts has been 
observed in a preliminary study using satellite data. Declining cloud cover over 
the east coast is of concern in view of weakening of the summer monsoon and lower 
frequency of monsoonal depression over the Bay of Bengal, which may lead to 
lower precipitation. Results also indicated a decrease in planetary albedo following 
an increase in soil moisture and precipitable water vapour. The planetary albedo 
increases with increase in atmospheric aerosol concentrations. Remote sensing data 
over the past decade reveals that atmospheric aerosols are dominated by scattering 
type of aerosols which reflect solar radiation and thus cool the surface. An increasing 
trend in the amount of scattering aerosols over India was noticed during post-
monsoon and winter, while negative trends are seen in pre-monsoon and summer 
monsoon. 

Apart from aerosols, cloud top temperature assumes key role improving the 
regional climate change modelling, since it helps to characterize the cloud physical 
process. A mixture of light-absorbing and light-scattering aerosols contribute to 
atmospheric solar heating and surface cooling. The sum of the two climate forcing 
terms – the net aerosol forcing effect – is thought to be negative and may have 
masked as much as half of the global warming attributed to the recent rapid 
rise in greenhouse gases. However, the aerosol forcing effect remains largely 
underestimated (Ramanathan et al. 2007). On the other hand, it is also gradually 
being understood that transport determines trends in the aerosols (Prijith et al. 2018). 

Under the National Carbon Project (NCP) within the ambit of the ISRO 
Geosphere Biosphere Programme (IGBP), the GHGs dynamics have been studied 
and budget was estimated by means of a robust observational network across 
the country for continuous measurement of CO2. The findings reveal that during 
biomass burning, CO2 and CH4 have increased by ~2 and ~0.06%, respectively. 
Climate variability has been driving an increasing trend in vegetation cover and 
net primary productivity over crop/grass land-dominated northwestern and south-
central Peninsular India and a decreasing trend over forested regions of the 
North-East and Western Ghats. The Indian terrestrial ecosystem is currently acting 
as a net sink for CO2 at an average rate of 20 TgCyr−1. Carbon dioxide levels in 
the surface layer of the atmosphere are increasing at one-third the rate of increase in 
surface fluxes, implying most part of surface emissions is transported out from the 
surface layer of the atmosphere over India. 

Remote sensing of the ocean has observed distinct phytoplankton bloom and its 
seasonality in the northern Indian Ocean. The oceans cover more than 70% of the 
Earth’s surface and act as a major sink for atmospheric CO2 through the process 
of carbon sequestration by diverse microscopic organisms, called phytoplankton, 
which form the base of the food chain and play a crucial role in climate regulation
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and influence food security and ocean productivity. Initiatives were taken up to 
identify the carbon sinks and sources along the Indian coast which include small 
and important ecosystems such as Chilika Lake. Further, an annual increase in 
regional sea levels between 2 mm and 8 mm has been detected in the southern and 
northern tropical Indian Ocean using satellite gravity data. Changes in sea levels are 
influencing changes in shoreline along the Indian coast over the decades. 

2.1.3 Datasets in NICES 

This system focuses on serving range of products as essential climate variable 
(ECV) as well as geophysical product for the purpose of climate modelling 
and monitoring. An essential climate variable (ECV) is a physical, chemical or 
biological variable or a group of linked variables that critically contributes to the 
characterization of Earth’s climate (GCOS 2021). As per latest GCOS (Global 
Climate Observing System) norms, ECVs for three domains related to climate 
change are listed as being realized under NICES (Table 1). ECV may be sourced 
from the sensor or as a modelled product using assimilation of information from 
non-satellite sources as well as a determinant parameter from satellite data. The 
products are from domains of terrestrial, oceanographic and atmospheric sensors. 
Terrestrial products are derived in majority from IRS datasets from Resourcesat 
LISS III or AWiFS sensors and gridded for appropriate resolutions of 5 km and 
higher. Atmospheric products are derived from sensors on board Indian satellites 
such as INSAT 3D, 3DR, Kalpana as well as Suomi NPP, AVHRR and AURA. 
Oceanography-related products are either sourced or modelled. Data from both 
indigenous sensors such as Oceansat, SARAL and international sensors such as 
TMI, MODIS etc. Totally there are seven terrestrial ECVs and 29 geophysical 
products available, while ocean products consist 12 ECVs and 22 geophysical 
products in NICES. Atmospheric products consist of 3 ECVs and 2 geophysical 
products, respectively (Table 2). 

2.1.4 Features of Products 

Surface soil moisture plays key role in water and energy cycles and determines land 
atmosphere feedback. It a key component in the carbon dioxide exchange. This ECV 
is retrieved using brightness temperature data from Advanced Microwave Scanning 
Radiometer 2 (AMSR 2, on board GCOM-W-1) collected at 13.30 local time using 
10.65 and 36.5 G Hz channels. Using Land Parameter Retrieval Model surface soil 
moisture at 25 km resolution is prepared and disseminated once in 2 days for entire 
country. Soil carbon is generated at 5 × 5 km grid using spatial modelling approach 
involving data on soil types, land use and agroclimatic subregion. Net sown area 
as fractional product over same grid size is derived using multitemporal data for 
three seasons mapped using monthly data composites and has utility in mesoscale 
models. 
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Table 2 ECVs available with NICES (NRSC-ISRO) for user community 

Terrestrial products 
Sl no. Geophysical dataset Satellite/sensor Resolution 
ECV 
1.1 Land-use land cover (MM5 compatible) Resourcesat-2/AWiFS 30''/2'/5'
1.2 Land-use land cover (WRF compatible) Resourcesat-2/AWiFS 30''/2'/5'
2 Mean organic soil carbon density Resourcesat-2/AWiFS 5 km  
3 Surface soil moisture Aqua AMSR-E and 

GCOM-W1/AMSR2 
0.25◦ 

4 Snow cover fraction Resourcesat-2/AWiFS 3' × 3'
5 Average annual Forest fire density Aqua and Terra/MODIS 5 km  
6 Surface water bodies fraction Resourcesat-2,2A/AWiFS 3' × 3'
Geophysical products 
1 Albedo Oceansat-2/OCM-II 1 km  
3 NDVI 
2.1 NDVI Oceansat-2/OCM-II 8 km  
2.2 NDVI Oceansat-2/OCM-II 1 km  
2.3 Filtered NDVI Oceansat-2/OCM-II 1 km  
3 Vegetation fraction Oceansat-2/OCM-II 1 km  
4 Soil 
4.1 Mean inorganic soil carbon density Resourcesat-2/AWiFS 5 km  
4.2 Fraction soil depth Resourcesat-2/AWiFS 5 km  
4.3 Fraction soil textural class Resourcesat-2/AWiFS 5 km  
5 Land degradation (3 layers) 
5.1 Fraction water erosion Resourcesat-2/LISS-III 5 km  
5.2 Fraction wind erosion Resourcesat-2/LISS-III 5 km  
5.3 Fraction salt-affected Resourcesat-2/LISS-III 5 km  
6 Forest fire 
6.1 St. dev. of average annual forest fire density Aqua and Terra/MODIS 5 km  
6.2 Length of fire period Aqua and Terra/MODIS 5 km  
7 Forest cover fraction SOI/Landsat MMS and 

TM/Resourcesat-2/AWiFS 
5 km  

8 Forest types Resourcesat-2/AWiFS 5 km  
9 Net sown area 
9.1 Fractional net sown area Resourcesat-2/AWiFS 5 km  
9.2 Fractional kharif sown area Resourcesat-2/AWiFS 5 km  
9.3 Fractional rabi sown area Resourcesat-2/AWiFS 5 km  
9.4 Fractional fallow area Resourcesa-2/AWiFS 5 km  
15 Snow melt and freeze Oceansat-2/OSCAT 2.225 km 
16 Snow cover fraction Resourcesat-2/AWiFS 3' × 3'
17 Himalayan glacial lakes and water bodies Resourcesat-2/AWiFS 1:250 k 
18 Snow melt and freeze Oceansat-2/OSCAT 2.225 km 
19 Snow albedo Resourcesat-2/AWiFS 250 m 

(continued) 
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Table 2 (continued) 

Atmospheric products 
ECV 

1 Cloud fraction Kalpana/VHRR and 
INSAT-3D imager 

0.25◦ × 0.2◦ 

2 Cloud top temperature INSAT-3D 0.5◦ × 0.5◦ 

3 Lightning Ground network 0.1◦ × 0.1◦ 

Geophysical products 
1 Derived tropospheric ozone OMI and MLS/Aura 1◦ × 1◦ 

2 Planetary boundary layer height Suomi NPP/CrIS 0.25◦ × .25◦ 

Ocean products 
Sl no. Geophysical products Satellite/sensor Resolution 

ECV 
1 Ocean surface winds 
1.1 Ocean surface winds OSCAT/ScatSat-1 0.5◦ 

1.2 Ocean surface winds OSCAT/ScatSat-1 0.25◦ 

2 Wind stress 
2.1 Wind stress OSCAT/ScatSat-1 0.5◦ 

2.2 Wind stress OSCAT/ScatSat-1 0.25◦ 

3 Ocean surface currents Altika and ScatSat-1 0.25◦ 

4 Ocean chlorophyll 
4.1 Chlorophyll concentration (OC2 algorithm) 

(N.Indian Ocean, NInOc) 
Oceansat-2/OCM II 1 km  

4.2 Chlorophyll concentration (OC4 algorithm) 
(NInOc) 

Oceansat-2/OCM II 1 km  

4.3 Chlorophyll concentration (OC2 algorithm) Oceansat-2/OCM II 4 km  
4.4 Chlorophyll concentration (OC4 algorithm) Oceansat-2/OCM II 4 km  

Geophysical products 
1 Wind curl 
1.1 Wind curl OSCAT/ScatSat-1 0.5◦ 

1.2 Wind curl OSCAT/ScatSat-1 0.25◦ 

2 Sea level pressure Oceansat-2/OSCAT and 
ScatSat-1 

0.5◦ 

3 Ekman currents OSCAT/ScatSat-1 0.25◦ 

4 Sea surface height anomaly SARAL/Altika 0.25◦ 

5 Geostrophic currents SARAL/Altika 0.25◦ 

6 Eddy kinetic energy (EKE) Altimeter SSHA (AVISO) 0.25◦ 

7 Monthly mean sea level anomaly 
(MMSLA) 

Altimeter SSHA (AVISO) 1◦ 

8 Diffuse attenuation coefficient 
8.1 Diffuse attenuation coefficient at 490 nm 

(KD490) 
Oceansat-2/OCM II 1 km  

8.2 Diffuse attenuation coefficient at 490 nm 
(KD490) 

Oceansat-2/OCM II 4 km  

(continued) 
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Table 2 (continued) 

9 Total alkalinity (TA) Aquarius and MODIS 0.25◦ 

10 Dissolved inorganic carbon (DIC) Aquarius and MODIS 0.25◦ 

11 Co-tidal map 
11.1 K1O1 co-tidal map Model derived 2'
11.2 M2S2 co-tidal map Model derived 2'
12 Ocn heat content (OHC) and ocn. Mean 

temp (OMT) at different depths 
TMI/AMSR-2 SST and 
Altimeter SSHA 

0.25◦ 

13 Tropical cyclone heat potential TMI/AMSR-2 SST and 
Altimeter SSHA 

0.25◦ 

14 Ocean heat content of 700 m layer TMI/AMSR-2 SST and 
Altimeter SSHA 

0.25◦ 

15 Tropical cyclone heat potential forecast Model derived 0.5◦ 

16 Depth of 26 degree isotherm Model derived 0.5◦ 

Snow melt and freeze is a key parameter indicating several energy and water 
fluxes in the system in the form of delivering and removing heat as well as in run-off 
estimations (Fig. 3). Scatterometer data for different satellites is used to derive this 
parameter. Scatterometers operate on the principle of active microwave scanning 
using rotating sensors. 

Among ocean-related parameters, ocean surface winds drive heat exchange and 
momentum at ocean–atmosphere interface as well as provide key forcing of ocean 
circulation responsible for global carbon transport. Daily global gridded wind fields 
from two-day composite are generated using ascending and descending pass data 
from Oceansat scatterometer (OSCAT and SCATSAT). Ocean colour is key product 
indicating the photosynthetic potential of ocean and hence carbon sequestration 
efficiency. Chlorophyll-a is deduced from reflectance from OCM sensor on board 
Indian satellite Oceansat. It also has great application in potential fishing zone, blue 
economy. Daily ocean mean temperature and heat content is another key set of ECV, 
measured as kilojoules per sq. cm, which has significant bearing on climate change 
understanding since climate dynamics and interior thermodynamics are linked to it. 
In NRSC, this parameter is being modelled since 1998 till date using neural network 
techniques involving sea surface height anomaly and sea surface temperature 
from Tropical Rainfall Measuring Mission’s microwave imager. Monthly sea level 
anomaly is a key product from sensors on board TOPEX/Poseidon, ERS-1 or 
2, Envisat, Jason-1 and 2, HY-2 and SARAL/AltiKa and conveys the area of 
ocean water sinking and upwelling, connected to influences of climate change. 
Total alkalinity is buffering capacity of oceans, which acts as natural feedback of 
changing ocean pH, in turn connected to carbon dioxide enrichment of oceans. 
Dissolved inorganic carbon (DIC), an important sink of atmospheric CO2, in the 
form of carbonates and bicarbonates, is strong parameter and linked to gross 
primary production. Sea surface salinity from Aquarius and drifting buoys and sea 
surface temperature and chlorophyll from MODIS-A are used to generate these two 
products. 
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Cloud top temperature (CTT) and lightening are two critical variables derived 
using satellite and ground sensor network, respectively. Small change in abundance 
and distribution of clouds can change climate more than global factors of climate 
change. Continuous monitoring of clouds alone ensures their better representation 
in models. Data from INSAT 3D using thermal IR emission during day and night 
is used to prepare CTT. It has both research and operational utility. Lightening 
seems to indicate extreme events increasingly witnessed due to climate change and 
also due to production of nitrogen oxide that controls ozone formation strongly. 
This is detected using network of sensors having 50% overlap of event detection 
using algorithmic mapping (Taori et al. 2022, 2023). INSAT 3D imaging has been 
employed to characterize the diurnal variation of cloud top temperature (CTT) and 
delineation of cloud mask involving validation against radiosonde observations as 
well as inter-comparison against MODIS and CALIOP (Cloud-Aerosol Lidar with 
Orthogonal Polarization) derived products. Algorithmic retrieval provided about 
85% accuracy of estimation of cloud presence, wherein cloud detection algorithm 
employed nine different tests, in accordance with solar illumination, satellite angle 
and surface type conditions to generate pixel-resolution cloud mask (Lima et al. 
2019). 

2.2 MOSDAC (Meteorological and Oceanographic Satellite 
Data Archival Centre) 

Information system built as web enabled data dissemination system from the suite 
of Indian remote sensing satellites observing atmosphere and ocean processes 
through algorithmic retrieval. The Meteorological and Oceanographic Satellite Data 
Archival Centre (MOSDAC) is a data centre of Space Applications Centre (SAC) 
and has facility for satellite data reception, processing, analysis and dissemina-
tion. MOSDAC is operationally supplying Earth observation data from Indian 
meteorology and oceanography satellites, to cater to national and international 
research requirements. Degree of extant information served has high utilitarian 
value especially for extreme weather events as well as regular Earth system 
dynamics at global scale. It deals with information on cold waves, heatwaves, heavy 
rain, lightning and state of seas along with solar and wind energy related content. 
MOSDAC-LIVE is a web-enabled data and information visualization and analysis 
system of MOSDAC, SAC/ISRO. MOSDAC LIVE provides access to satellite data 
products and information products derived from satellite and model forecast in near 
real-time basis. Details of the missions in orbit brief the major satellite systems in 
place. 

(i) INSTA 3D: Payload consists of an imager, sounder and communication 
sensors. Imager provides imaging of the Earth disc from geostationary 
altitude. This uses six spectral ranges of one visible (0.52–0.72 micrometres) 
and five infrared; 1.55–1.70 micrometer (SWIR), 3.80–4.00 micrometer 
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(MIR), 6.50–7.00 micrometer (water vapour), 10.2–11.2 micrometer (TIR-
1) and 11.5–12.5 micrometer (TIR-2) bands. The ground resolution at the 
sub-satellite point is nominally 1 km × 1 km for visible and SWIR bands, 
4 km  × 4 km for one MIR and both TIR bands and 8 km × 8 km for  WV  
band. It is an improved design of VHRR/2 (very-high-resolution radiometer) 
heritage instrument flown on the Kalpana-1 and INSAT-3A missions. 

(ii) INSAT 3DR: Continuation mission of INSAT 3D. 
(iii) Kalpana-1: Launched in 2002, this satellite has a very-high-resolution 

radiometer (VHRR)/2 which is a modified version of the VHRR heritage 
imagers flown on INSAT-2A, 2B and 2E. Sensors measures in in VIS, water 
vapour and TIR bands providing a spatial resolution of 2 km in VIS band and 
8 km for the rest. It is an indigenously developed sensor. 

(iv) INSAT-3A: Towards meteorological observation, it has a three-channel very-
high-resolution radiometer (VHRR) with 2 km resolution (VIS) and 8 km in 
thermal infrared and water vapour bands. In addition, a charge-coupled device 
camera operates in the visible and shortwave infrared bands providing a 
spatial resolution of 1 km as well. Apart from this, it has many communication 
channels meant for search and rescue operations, linking to stand-alone 
beacons and others. 

(v) Megha-Tropiques: This is an Indo–French joint mission for studying the 
water cycle and energy exchanges in the tropics, to understand the life cycle of 
convective systems. This provides information on condensed water in clouds, 
water vapour in the atmosphere, precipitation and evaporation using sensors 
Microwave Analysis and Detection of Rain and Atmospheric Structures 
(MADRAS), an imaging radiometer, Sounder for Probing Vertical Profiles 
of Humidity (SAPHIR), Scanner for Radiation Budget (ScaRaB) and Radio 
Occultation Sounder of Atmosphere (ROSA). 

(vi) SARAL/AltiKa: This is a joint CNES/ISRO system, which is part of global 
altimetry system and participates to the precise and accurate observations 
of ocean circulation and sea surface elevation. It is a Ka-band altimeter 
with enhanced bandwidth with improved resolution than Envisat satellite at 
vertical resolution of 0.3 m. 

(vii) Oceansat-2 and -3: Oceansat-2 and -3 are launched in 2009 and 2022, 
respectively. They measure ocean colour through an ocean colour monitor 
sensor in eight spectral channels at 360 m spatial resolution and help in 
understanding ocean productivity. Other sensors are Ku-band pencil beam 
scatterometer (SCAT) developed by ISRO and ROSA developed by the Italian 
Space Agency. Scatterometer provides a global ocean coverage and wind 
vector retrieval with a revisit time of 2 days. ROSA is a scientific payload 
for understanding ionosphere. 

(viii) ScatSat-1: This is a scatterometer system providing wind vectors using Ku-
band pencil beam scatterometer. It is an active microwave radar operating 
at 13.515 GHz providing a ground resolution cell of size 25 × 25 km. 
In vertical–vertical polarization (VV), it covers 920 km circle for scanning 
yielding 1840 km swath, while in horizontal– horizontal (HH) polarization, it 
covers 700 km circle with 1400 km swath. 
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Wide-ranging satellite imaging/senor-based information has been disseminated 
as tabulated in the following, keeping in view of the dynamic requirements of 
national and regional community based on satellite imaging and modelled products. 
Several of the products (Table 3) represented are from experimental level modelling 
processes and hence carry a disclaimer regarding their value in claims related to 
loss of life and property during the extreme event. However, the comprehensive 
record available on the portal makes it relevant for the alerts as societal requirements 
with regard to daily, seasonal, annual and episodic extremes and trends as well. 
The range addressed forecasts, nowcasts, alerts as well as ocean and meteorological 
applications. 

3 Global Framework of Earth Observation in Measuring 
the Climate Processes 

3.1 Remote Sensing of Atmospheric Components 

Atmospheric components that are in focus to understand as the system of elements 
connected with climate change comprise of measurement of temperature, rainfall, 
wind, composition of gases, clouds and aerosols. Since alteration of gases in the 
composition causes the entire essence of warming potential, the theme assumes 
primacy in causation and hence demands higher order of innovation in observing 
the subtlety at higher precision. Modelling efforts to represent the long-term 
interaction and relations to land surface processes require precision measurements 
of atmospheric processes. Earliest sensors observing atmosphere involved observing 
the phenomena that were physically discernible using earliest sensors capable 
of basis interaction of matter and light, especially from geostationary orbits, 
since it offered continuous watch capacity. Advances in sensor technology and 
complex interactions of atmospheric composition with narrower bandwidths of 
electromagnetic spectrum made intricate imaging and sounding possible to bring 
about unprecedented patterns. Sensitive active and passive microwave observations 
have made measuring winds possible, while innovations in translating interactions 
of various atmospheric chemistry elements with smallest windows of light at 
dimensions of Angstrom level could image gases such as carbon dioxide, nitrogen 
oxides and many other gases precisely. 

3.1.1 Precipitation 

Towards rainfall measurement, the Tropical Rainfall Measurement Mission has 
played a pivotal role in developing rainfall patterns using combination of active 
and passive microwave imaging deployed in non-sun-synchronous orbit at different 
parts of the day, by NASA and JAXA since 1997. This mission also involved 
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integration of information from other rainfall measuring satellites as well. Sensors 
on board included precipitation radar, microwave imager, VNIR scanner along with 
lightening imaging sensor and system to measure cloud and earth’s radiant energy. 
Precipitation radar measuring at 2 mm wavelength provided three-dimensional 
images of the clouds. Satellite provided near real-time monitoring of hurricanes 
and accurate estimates of rainfall accumulation over time. Harnessing the legacy 
of rainfall measurement mission, Global Precipitation Measurement Mission was 
launched in 2004 following the decommissioning of TRMM. GPM has only two 
sensors DPR (www.earthdata.nasa.gov/learn/articles/trmm-to-gpm) and GMI (GPM 
Microwave Imager). Dual-frequency precipitation radar (DPR) provides 3D profiles 
and intensity estimates of precipitation ranging from rain to snow employing 
dual frequency radar. Microwave Image (GMI) has additional frequency range 
than TRMM (4 more channels than 9 of TRMM) that allows measurement of 
precipitation intensity and type through all cloud layers using wider swath. GPM 
covers data approximately between 65 degree north and south latitudes, while 
TRMM collected between 35 degree limits and allows tracking of storms as they 
form in tropics and move to middle and high latitudes. GPM has a system called 
core observatory that calibrates data from constellation of other climate observing 
satellites by setting up a reference, from among 13 channels to each of these. 
Apart from the instrumentation, the initiative of IMERG (Integrated Multi-Satellite 
Retrievals for GPM) is focusing on harmonizing data retrievals from different 
satellites in to one dataset, especially matching TRMM data with GPM data, to 
build time series till 1998, through a consistent algorithm. 

Extreme weather event, as per IPCC guidelines, would normally be as rare 
as or rarer than the tenth or 90th percentile of a probability density function 
estimated from observations and may vary from place to place depending upon the 
resolution of observation. A study emphasized the potential of the ERDS IMERG 
half-hourly early run data, working at the global scale with a spatial resolution of 
0.1◦ × 0.1◦ (a satellite precipitation measurement) as the input for a near real-time 
extreme rainfall detection system. There has been an attempt to improve the extreme 
rainfall detection system using GPM IMERG data by employing varied aggregation 
intervals of rainfall events from 12 to 96 h aggregation. An aggregation at 24 h 
interval ensures a probability of detection (defined as the number of hits divided by 
the total number of observed events) greater than 80% (Mazzoglio et al. 2019). 

Tropical Rainfall Measurement Mission (TRMM) and Global Precipitation 
Mission (GPM) microwave sensors stand out as the advanced sensors providing 
three-dimensional estimate of rainfall systems across tropical belt using microwave 
imaging in various windows and look angles. A consistent long-term data records 
from both the sensors with a 13-month common operational period using WindSat, 
a polarimetric microwave radiometer. Such a record helps to ensure a consistent 
long-term precipitation record (Chen and Jones 2018). Indian summer monsoon is 
a unique phenomenon of Earth’s climate system and critical for the availability of 
freshwater for drinking and irrigation, agricultural production, power generation, 
water resources management and the overall economy of the country. Warming 
of the climate as evident from observations on increasing global average air 
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temperature (Jones and Moberg 2003) has considerable bearing on the Indian 
summer monsoon in terms of spatio-temporal distribution of precipitation (New et 
al. 2001). 

Changes in spatio-temporal pattern of rainfall and rainy days over the monsoon 
month/season were estimated using daily gridded rainfall data for the last 35 years 
(1971–2005) by Das et al. (2014). Positive trends of both rainfall and rainy days 
were found over the southern region of the Indian peninsula, covering coastal 
Andhra Pradesh and Rayalaseema. Marathwada, south interior Karnataka, Telan-
gana, Madhya Maharashtra. Significant negative trends in case of rainfall as well as 
rainy days during the monsoon season were found in the west coast (Kerala, coastal 
Karnataka), the eastern region (Jharkhand, Arunachal Pradesh) and western desert 
region (east and west Rajasthan). A significant decrease in rainfall either in monsoon 
months or season without any significant changes in the rainy days was reported in 
the northeastern region of India covering the sub-Himalayan West Bengal, Assam 
and Nagaland–Manipur–Mizoram–Tripura. On the other hand, significant negative 
trend of rainy days either over the monsoon months or season (negative changes 
in the rainfall distribution) was observed in the north and central regions of India 
covering Punjab, Haryana, west and east Uttar Pradesh, west and east Madhya 
Pradesh, Gujarat and Orissa. Statistically significant increasing trend of rainfall 
with decreasing trend of rainy days, indicating higher probability of high-intensity 
rainfall and flash floods, was reported in Uttarakhand and Himachal Pradesh and 
Jammu and Kashmir region. 

3.1.2 Greenhouse Gases 

India’s mean surface air temperature has increased significantly by about 0.4 ◦C 
over the past century. Carbon emissions from the energy sector amount to 71 MT 
a year, equivalent to all other sectors combined. From land-use data, a marginal 
net sequestration of 5.25 million tonnes of carbon occurred during 1986. Following 
the IPCC guidelines, methane emissions from rice and livestock are estimated at 
17.4 and 12.8 Tg yr-1, respectively. According to recent climate model projections, 
India may experience a further rise in temperature of 1 ◦C by the year 2050, about 
four times the rate of warming experienced over the past 100 years. About 70% of 
the electricity generation in India is from coal-based power stations. Altering this 
dependence significantly to reduce emissions would imply a substantial change in 
the present energy policy of India. There is great potential for improving energy 
efficiency and conservation. The adoption of cleaner coal technologies should 
be considered, as must the development of renewable, non-conventional energy 
sources. In all cases, serious institutional barriers and resource limitations need to 
be addressed. The scope for carbon sequestration is limited by land availability and 
other factors. It is argued that any response to global warming must be located firmly 
in the framework of sustainable development. India’s population growth, urbaniza-
tion trends, patterns of income distribution and increasing industrial production lead 
to increasing waste generation. Inappropriate waste management results in emission 
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Fig. 4 Availability of space-based information for GHG monitoring 

of greenhouse gases (GHG) constituting methane and nitrous oxide, contributing to 
global warming (Fig. 4). 

Globalization and liberalization policies of the government in the 90s have 
increased the number of road vehicles nearly 92.6% from 1980–81 to 2003– 
04. These vehicles mainly consume nonrenewable fossil fuels and are a major 
contributor of greenhouse gases, particularly CO2 emission. This paper focuses 
on the statewide road transport emissions (CO2, CH4, CO, NOx, N2O, SO2, PM  
and HC), using region specific mass emission factors for each type of vehicles. 
The country-level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are 
calculated for railways, shipping and airway, based on fuel types. In India, transport 
sector emits an estimated 258.10 Tg of CO2, of which 94.5% was contributed by 
road transport (2003–04). Among all the states and union territories, Maharashtra’s 
contribution is the largest, 28.85 Tg (11.8%) of CO2, followed by Tamil Nadu 26.41 
Tg (10.8%), Gujarat 23.31 Tg (9.6%), Uttar Pradesh 17.42 Tg (7.1%), Rajasthan 
15.17 Tg (6.22%) and Karnataka 15.09 Tg (6.19%). These six states account for 
51.8% of the CO2 emissions from road transport (Fig. 5). 

IPCC 2006 model estimated GHG emissions from waste sector across India 
considering a gross domestic product growth rate of 6.5% as 70.13 million tones 
CO2 eq in the year 2011, which is expected to rise 1.60 times by the year 2031. 
Emission mitigation options for waste sectors including diversion of organic waste 
from landfills towards treatment options, diversion of wastewater from domestic 
and commercial sectors towards sewer and further capturing and utilizing methane 
from landfills and effluent treatment units indicate a potential to lower the emissions 
to around 78.75 million tonnes CO2 eq in year 2031. There is an urgent need to 
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Fig. 5 Spatio-temporal variability of CO2 indicating the near continuous increase. Locations of 
ground-based monitoring of CO2 by NRSC, ISRO, are filled circles in map 

apply appropriate policy, political will, financial resources, capacity building and 
indigenous technology to reduce impact of our activities on global warming. 

The ‘Emissions Gap Report 2022: The Closing Window’ released ahead of 
the UN Climate Change Conference (COP 27) in Egypt said the international 
community is still falling far short of the Paris goals, with no credible pathway 
to limiting global temperature rise to 1.5 ◦C in place. To address climate change, 
countries adopted the Paris Agreement in 2015 to limit global temperature rise in 
this century to well below 2 ◦C, preferably to 1.5 ◦C, compared to pre-industrial 
levels. The report states that world average per capita GHG emissions including 
land use, land-use change and forestry were 6.3 tCO2e in 2020. The USA remains 
far above this level at 14 tCO2e,  followed by 13 tCO2e in the Russian Federation, 
9.7 tCO2e in China, about 7.5 tCO2e in Brazil and Indonesia and 7.2 tCO2e in  
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the European Union. India remains far below the world average at 2.4 tCO2e. On 
average, least developed countries emit 2.3 tCO2e per capita annually. 

3.1.3 Surface Temperature 

A global dataset of air temperature derived from integration of remote sensing data 
from MODIS and global station data illustrates the strength of remote sensing to 
overcome the limitation of the data surfaces prepared using only station data, which 
at times might represent several discrepancies (Hooker et al. 2018). Study used 
geographically weighted and climate space weighted regression approaches, where 
LST from MODIS is weighted using more than 3253 records between 2003 and 
2012 and Worldclim surfaces equivalent to MODIS data, respectively. Regressions 
are estimated using open-source approach and error part is provided along with the 
coefficients to provide continuous surfaces across land continuum. 

Land surface temperature and emissivity determine total long-wave radiation 
quantity from Earth surface, indicating climate variability, land cover change and 
energy balance between land and atmosphere. A long-term and consistent Earth 
system data record is essential for such parameter. Products based on MODIS 
(MOD21) and VIIRS (VNP21) sensors have overcome the issues in accuracy and 
consistency using temperature emissivity separation, as continuity with respect to 
earlier existing MYD21 and VNP21 products at 0.5 K temperature level and only 
1–2% difference of magnitude with respect to land validation sites using quartz sand 
and grasslands (Hulley et al. 2017). 

MODIS-based land surface temperature product was used to detect the hottest 
place on Earth at Lut Desert in Iran with a recorded temperature of 70.7 ◦C in 2018 
and diurnal variability has been studied. Improvements in estimation methods and 
high spatial resolution brought in clarity of estimations (Azarderakhsh et al. 2020). 

The spatial patterns of temporal trends in temperature and its extremes have been 
analysed over the homogeneous temperature regions of India using daily gridded 
temperature data for the period of 1969–2005 (Chakraborty et al. 2017). The study 
reported a general warming trend over India with notable spatio-temporal variations 
in terms of magnitude and direction. The magnitude and spatial extent of increasing 
trend (0.02–0.04 ◦C year−1) of minimum temperature was found to be higher than 
that of maximum temperature (0.01–0.02 ◦C year−1), and it is more pronounced 
during winter and pre-monsoon season. Dry and arid northwest region of India 
showed consistent positive trends of minimum temperature. The southern peninsula 
region of India was found to have significant positive trend of maximum temperature 
during the cooler months (November, December and January). Significant negative 
trend of minimum temperature over the eastern part of India was found during 
monsoon months, whereas same observations were made for maximum temperature 
over the northwest, north central and northeast regions. 
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3.1.4 Heatwaves 

Heatwave is a condition of weather when local temperatures cross 40 ◦C in plains, 
37 ◦C in coastal areas and 30 ◦C in hills according to the Indian Meteorological 
Division. Heatwave is declared on the day temperature crosses 4.5–6.4 degrees 
above normal. Severe heatwave sets in when rise is more than 6.4 degrees. The year 
2022 recorded 280 heatwave days from March 11 to March 18 across various states 
of India. Exceptionally unusual early heatwaves that swept India and Pakistan in 
2022 (Fig. 6) were made 30 times more likely due to direct impact of climate change 
(World Weather Attribution Network) through an analysis based on observations 

Fig. 6 Land surface temperature-based heatwave condition map of the Indian region on April 29, 
2022, based on Sentinel-3 SLSTR (www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_ 
type)/images) 

www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
www.esa.int/ESA_Multimedia/Missions/Sentinel-3/(result_type)/images
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from 20 models. Review of more than 400 peer-reviewed studies analysing weather 
extremes across the globe have asserted that of the 152 extreme heat events 
assessed by scientists, 93% found that climate change made the event or trend more 
likely or more severe (www.carbonbrief.org/mapped-how-climate-change-affects-
extreme-weather-around-the-world). 

Remotely sensed land surface temperature estimates are highly sensitive to 
characteristics of the measuring instrument. Spatial sampling as resolution and 
viewing geometries involving oblique or nadir view as well as to the algorithms and 
auxiliary data used in the retrievals affect the observations. Notably, assumptions 
about surface emissivity affect the estimates. Ability of land surface temperature 
(LST) retrieved from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) 
on board Meteosat Second Generation (MSG) to monitor heat extremes is harnessed 
for monitoring approach relying on monthly anomalies performed as departures 
from the median and the monthly number of hot days (NHD). Both of these factors 
were computed for satellite LST derived from MSG and MODIS, and for 2 m air 
temperature (T2m) from ERA5 reanalysis, using as threshold the 90th percentiles 
(Gouveia et al. 2022). Results of the study highlighted the suitability of MSG 
LST to study heat extremes alone or combined with dry and bright conditions. It 
prompts the potential of other climate data records from geostationary satellites to 
characterize these climate extremes, which may become norm in future events. 

Sentinel-3 with the sensor SLSTR (Sea and Land Surface Temperature Radiome-
ter) is designed to retrieve global coverage sea and land surface skin temperatures 
(with zero bias and an uncertainty of ±0.3 K) for a 5◦ × 5◦ latitude–longitude 
area. The temporal stability of measurements is 0.1 K/decade and has dual-view 
capability of both oblique and nadir views, with respective swaths of 1400 km and 
740 kms. Sensor observes Earth in visible, SWIR, MWIR and thermal IR regions. 
Imaging of Indian region heatwave condition, as illustrated on ESA portal, provides 
direct surface temperature as contrasted to the conventional air temperature and is 
an unprecedented depiction pointing to the enormity of the event. The uniform high 
range temperatures beyond 45◦ points to the severity of the event and occurred 
close to highest temperature record during March, in the past 120 years of air 
temperature measurement. Such an image sums up every aspect of alarm needed 
for all stakeholders alike. 

3.1.5 Snow, Ice and Glaciers 

Snow cover is one among the most sensitive parameters to changing climate 
since warm summers in upper latitudes and higher altitudes in India are inducing 
snowmelt in an increasing manner (Singh et al. 2022). Globally, spectacular retreat 
of glaciers is witnessed across all major physiographic regions characterized by 
terrains of frozen snow. Nothing illustrates the intensity of climate change than the 
increasing reduction in sea ice in June in the Arctic region. It has dropped by almost 
18% per decade over the last 30 years. Analysis revealed that Arctic is warming 
about three times faster than other regions. Arctic sea ice apparently has hit its tenth 
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lowest wintertime extent (Candanosa 2022). In February 2022, the Antarctic sea ice 
also has dropped to record low minimum extent. MODIS remote sensing data of 
snow cover from 2009 to 2014 were used to estimate snow cover percent in study 
conducted for Lidder watershed in upper Jhelum catchment. Supporting digital 
elevator model from ASTER sensor for the intended catchment was also used in the 
study. Snow melt run-off model was used to model and estimate streamflow in the 
snow regions daily. Measured degree day on a parameter day affects the discharge 
on the next day, while a critical temperature can trigger run-off from instant rain or 
snowfall. With the help of modelling, it was shown that a 2 ◦C temperature increase 
caused a 53% rise in catchment discharge (Kumar et al. 2022). 

Satellite remote sensing from optical and microwave sensors (MODIS and 
EnviSat ASAR) has been assimilated with meteorological point measurement from 
stations, numerical weather predictions in spatial and temporal scales. Snow maps 
from optical and microwave imaging reveal systematic differences which need to 
be compensated appropriately for use in snowmelt models (SRM). Intermittent 
availability of satellite images required that prognostic equations were applied to 
predict the daily snow cover extent to update the model. Snow characterization 
is done using normalized difference snow index that harnesses strong decline 
of reflectance of snow (1628–1652 nm) in middle-infrared spectral region to 
discriminate snow from most other natural surfaces and dense water clouds. MODIS 
band 3 (459–479 nm) performs better to differentiate shadow zones than band 4 
(545–565 nm) while calculating NDSI at 500 m spatial resolution. Clouds which 
are to be segregated precisely need spectral bands such as thermal emission in band 
31 (10.78–11.28 mm) and 35(13.78–14.08 mm) for high level clouds formations. 
Emission in band 31 discounted by emission/reflectance in band 21 (329–3.99 mm) 
for detecting low and medium level water clouds. Small convective clouds at low 
elevation missed by other classifiers can be detected by ratio of band 1 (620– 
670 mm) and band 6 (1628–1652 nm) (Nagler et al. 2008). 

During extended cloudy periods, optical data needs to be augmented with 
synthetic aperture radar (SAR) data, A SAR is a multimode C-band SAR system 
operating on systems such as European Space Agency’s Envisat that can provide 
spatial resolution of 30 m to 150 m depending on look angle configuration. SAR 
data can be used to monitor snow thawing since totally dry snow does not return 
any energy to sensor unless it has begun to melt. Apart from this, steep mountain 
slope suffer from layover effect and hence need to be compensated using reliable 
extrapolations from cover from similar altitudes, derived from DEMs. On the other 
hand, all slopes illuminated at local incidence angle of <17 were excluded as they 
fail to form clear signals of cover. This comprehensive study managed successfully 
to predict short-term snow hydrology based on the assembling of data from various 
sources, which enables better understanding of impacts of climate change. 

Most of Himalayan glaciers have been reported to have rates similar to glaciers 
in other parts of the globe, with an exception of stability of mass gain in Karakoram 
range (Bolch et al. 2012). Diversity of climate conditions and terrain extremities 
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within region may make projections of glacier dynamics speculative. Gains and 
losses of mass of glaciers as response function to climate change as manifestation 
in length and area are not easy to interpret as climate-related phenomenon. Satellite 
images with extensive seasonal snow or maps from them can be a serious source of 
uncertainty in glacial study. But due to several factors such as inaccessible terrain, 
political situations, in situ measurements of glacier being not fully possible, remote 
sensing provides a meaningful substitution albeit partially (Gaddam et al. 2022). 

Detailed analysis of 12 glaciers in Alakananda basin in the Himalayas using 
satellite-based inventory from 1968 to 2020 coupled with limited sampling of 
selected glacier has revealed critical facts about deglaciation and loss of spread. 
Images from 1968 to 2020 using Corona and Sentinel-2A satellite coupled with 
Landsat 7 and 8 data for intervening period were employed. Corona satellite 
employed film return technique wherein the physical film thrown from satellite 
in orbit was captured by aircraft during parachuted decent in atmosphere during 
the 1960s. This high-resolution (about 5 m) panchromatic data was geometrically 
rectified using Cartosat-1 ortho corrected data as well as digital elevation model. 
Snout and boundary position of glaciers weas validated using real-time kinematic 
GPS having an accuracy of ~1 cm (Remya et al. 2022). From 1968, the number of 
glaciers increased from 98 to 116 over 52-year period, while glacier area reduced 
from 742 (± 44.4) sq km to 683 (± 47.8) sq. km with annual average recession of 
11.75 (± 1.6) m over the entire basin. Significant deglaciation and fragmentation 
observed are augmented by increase in winter time temperature of 0.03 ◦C. 

Glacier thickness plays a major role in understanding future sea level rise by 
virtue of mass of water they hold and possible ablation. Flow models are used 
to estimate the thickness involving inputs from microwave remote sensing. Ice 
thickness of HMA (High-Mountain Asia) glaciers covering states of Himachal, 
Uttarakhand, Bhutan, Sikkim and Arunachal was estimated using DInSAR (Dif-
ferential Interferometry Synthetic Aperture Radar) approach (Nela et al. 2023). 
Two satellite passes separated by 14 days for ALOS-2/PALSAR sensor L-band 
backscatter data were processed to calculate the phase difference. Phase differences 
provide the velocity of the surface ice elements later computed into thickness by 
integrating into laminar flow law, which revealed about 100 m as mean thickness 
of ice over the entire study region. Retreat of Himalayan glaciers in (Satopanth and 
Bhagirath) India has been studied using IRS data and CORONA images of 1968 in 
association with MOD11A2-derived land surface temperature pattern for the period 
of 2000–2020 indicating significant warming trend. Significant negative trend in 
snow cover was witnessed. Image analysis clearly indicated retreat of 23.5 m and 
18.2 m from 1968 to 2017 in Satopanth and Bhagirath glaciers of Mana Basin in 
India. These two glaciers are converging to a single point. Studies show that in the 
altitude range of 3200–5600 m amsl signals of warming has been distinct in this part 
of Himalayas and there’s a possible impact on glacial retreat (Thapliyal et al. 2023) 
(Fig. 7). 
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Fig. 7 . Temporal trends in Satopanth glacier (SPG) and Bhagirathi Kharak glacier (BKG) 
juncture as observed in 1968 (Corona KH4 of 21 Nov ‘68) (a) followed by observation in 2017 
(Resourcesat-2, LISS IV of Nov. 21, 2017) (b). High-resolution Google Earth image (c) depicts  
clear recession of snouts at confluence 

3.2 Climate Change and Oceans 

Top five metres of ocean stores as much as energy of entire atmosphere and this has 
led to ocean warming which in turn has threatened habitat of coral mortally, melted 
sea and nearby land ice as well as led to increase in sea level. Oceans have absorbed 
90% of the heat generated in recent decades by anthropogenic causes of global 
warming. Very critical impacts of warming will be linked to ocean processes, since 
they contribute large surface of Earth and influence all the geophysical exchanges 
with atmosphere and land. Global trend on ocean heat illustrated here summarizes 
the severity of the situation in terms of rise in warmth of ocean (Fig. 8). 

3.2.1 Sea Surface Temperature 

Sea surface temperature is an important factor or physical variable that helps 
to understand global warming as a pivotal parameter. SST enables understand-
ing, quantification and prediction of complex interactions between ocean and 
atmosphere, since the energy movement patterns once the heat is absorbed by 
ocean trigger several climate-related events (Li et al. 2001). Daily SST maps for 
operational systems and climate modelling are normative now as a matured and 
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Fig. 8 Ocean heat above the average: seasonal (three-month) heat energy in the top half-mile 
of the ocean compared to the 1955–2006 average. Heat content in the global ocean has been 
consistently above-average (red bars) since the mid-1990s. This graph is based on data (0–700 m) 
from the NCEI Ocean Heat Content product collection (Lindsey and Dahlman 2020) 

sustained information service for wide ranging stakeholders (Fig. 9). Data streams 
of global networks such as Group for High Resolution SST and CEOS SST Virtual 
Constellation are harmonized through steps of sharing, indexation, processing, 
quality control, analysis and documentation to provide the products. A combination 
of low Earth orbit or geostationary thermal or near-infrared sensors or microwave 
imaging sensors along with in situ data from moored or drifting buoys, Argo 
floats are combined for comprehensive information as spatial datasets (O’Carrol 
et al. 2019) An exhaustive review of five decades (Minnet et al. 2019) of remote 
sensing sea surface temperature provides exhaustive insights into instruments, 
orbital platforms, data analysis approaches and way forward about this key area 
of climate change research. 

Climate data records which are essential for scientific communities towards 
many applications have been produced using integration of satellite data, model 
outputs and ground measurements. Satellite-derived radiances are evaluated for 
clear sky and sea water pixel for initial exclusion of false signals, by involving both 
observation and modelled rulesets about clear sky radiance and sea skin temperature 
effects. Skin SST and uncertainty estimated to provide quality flag was followed by 
estimation of daily depth SST. This estimation was converted into single sensor 
gridding, followed by multisensory analysis and then creation of gap-filled SST for 
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Fig. 9 Total sea level change between 1992 and 2019, based on data collected from the 
TOPEX/Poseidon, Jason-1, Jason-2 and Jason-3 satellites. Orange to red indicates 5 to 15 cm 
level increase and blues loss of height up to 15 cm (sealevel.jpl.nasa.gov/resources/1258/27-year-
sea-level-rise-topexjason) 

global level. In this approach, results from development of methods as well as testing 
were applied to get parameters for processing the reflectance data (Merchant et al. 
2019). Further, sea surface temperature (SST) and upper ocean heat content (OHC, 
upper 700 m) in the tropical Indian Ocean underwent rapid warming during 1950– 
2015, with the SSTs showing an average warming of about 1 ◦C. The SST and OHC 
trends are very likely to continue in the future, under different emission scenarios. 
Climate models project a rise in tropical Indian Ocean SST by 1.2–1.6 ◦C and 1.6– 
2.7 ◦C in the near (2040–2069) and far (2070–2099) futures. Indian Ocean warming 
seems to have resulted in decreasing trend in oxygen (O2) concentrations in the 
tropical Indian Ocean and declining trends in pH and marine phytoplankton over the 
western Indian Ocean. The observed trends in O2, pH and marine phytoplankton are 
projected to increase in the future with continued GHG emissions (Roxy 2020). 

Climate data record of SST over 35 years from 1981 to 2016 was developed from 
4 × 10 12 satellite measurements of thermal infrared radiance (TIR). Each pixel 
that represented SST estimates ranged between 1 and 45 sq. km depending upon 
the source being local pixel or GAC (global area coverage) pixel. And the good 
quality observations were 13 in number per each sq. km in this long-term analysis. 
TIR measurements were collected by two series of sensors, viz. 11 AVHRRs and 3 
ATSR (along-track scanning radiometer). SST as skin temperature determines the 
air–sea fluxes and controls the radiative cooling of the ocean as well as humidity of 
the air in contact with air–sea interface. Depending on the satellite passes at local 
time, data quality can vary which needs adjustment that influences the skin-to-depth 
temperatures (Merchant et al. 2019). 
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Tropical Indian Ocean is warming quite rapidly in comparison with the rest of 
tropical oceans (Roxy et al. 2015) and Arabian sea is warming since 1990s (D’Mello 
and Kumar 2018). Decline of oil sardine fishery in Southwest India (Shetye et al. 
2019) and coral bleaching and mortality in Lakshadweep Archipelago (Vineetha et 
al. 2018) point towards the negative ecological impact prevalent. Impact of rise in 
SST is evident as threat to thermosensitive reef building corals. Marine heatwaves 
caused by El Niño–Southern Oscillation has caused bleaching and mortality in 
tropical Indo-Pacific regions. Study using NOAA’s Coral ReefWatch satellite-based 
alert data on SST was tested for its efficacy as proxy for coral deaths. Parameters 
such as bleaching threshold (BT), positive SST anomaly (PA) and degree heating 
weeks (DHW) were calculated to assess thermal stress (Arora et al. 2022) for  the  
period of 2010–2019 which clearly brought out the massive mortality in the Gulf 
of Kachchh and Malvan in Gujarat and Maharashtra in India, respectively. Kachchh 
region experienced alert level 2 status (DHW > 8 ◦C, very warm sea) in 2020, while 
Malvan in 2010. 

3.2.2 Sea Surface Height 

Global mean sea level is a critical indicator of global warming and sea level rise. 
Satellite altimetry is the method of deriving the sea level and anomalies of sea 
surface heights. Sea surface height (SSH) and sea surface temperature (SST) are 
two most key indicators related to warming studies. Sea surface height (SSH) is 
the height of the sea surface above a reference ellipsoid. This is the direct product 
of satellite altimetry (Subrahmanyam and Robinson 2000; Vignudelli et al. 2019). 
Sea surface height values are provided along the satellites’ ground tracks or at 
regular grids interpolated from the values determined along the satellite tracks. 
An important usage of SSH is to derive the SSH anomaly which is the difference 
between the long-term average for different regions of the ocean and what is actually 
observed by satellites. Anomalies (SSHA and SSTA) in these patterns over decade 
or similar scale clearly define the vulnerability of global geophysical systems to 
warming. Between 1900 and 1990, it was analysed that sea level rose between 1.2 
mm and 1.7 mm per year on average. Alarmingly, it rose to about 3.2 mm/year 
by 2000, and the rate in 2016 is estimated at 3.4 mm per year (Kopp et al. 2016) 
revealing that seas rose about 14 cm, from 1900 to 2000. In the absence of human-
induced warming, sea levels would have remained at somewhere between a 3 cm 
fall and a 7 cm rise as per modelled estimates. Over 470–760 million residents in 
coastal cities will be inundated if a warming of 4 degree rise happens. 

Instruments to measure sea level rise exploit (Fig. 10) the principle of precise 
radars to measure backscattered signals from the ocean’s surface to determine the 
height of the ocean. Sensitivity of instruments is so high that even a level difference 
of 5 mm can be measured from a height of 10 km. The system is supported by laser 
station to provide precise position of the satellite using differential measurements as 
well as radiometer to measure water vapour level which influences the accuracy. 
Analysis involving geoid height at local point with satellite altitude and ocean 
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Fig. 10 Schematic showing the principle of satellite altimetry 

surface topography provides sea surface height. (ocean.si.edu/through-time/ancient-
seas/sea-level-rise). It involves study of radar return waveform analysis which can 
be influenced by the range of dynamic conditions prevalent during data acquisition. 
It involves complex method to correct humidity of troposphere, geometry of wave as 
well the geostrophic current-induced instability of the surface. Geostrophic currents 
are concurrently measured and included as part of the data model resulting from 
the measurements based on observations from moorings. Geostrophic currents are 
oceanic currents in which the pressure gradient force is balanced by the Coriolis 
effect. Direction of geostrophic flow is parallel to the isobars, with the high pressure 
to the right of the flow in the Northern Hemisphere and the high pressure to the left 
in the Southern Hemisphere (en.wikipedia.org/wiki/Geostrophic_current). 

SARAL/AltiKa is an innovative joint Indo–French backscatter sensor operating 
a first time Ka-band radar altimetry mission took the advantage of smaller footprint 
of about 100 sq. km compared with earlier footprints of 300 sq. km (Jason Series). 
Such a sensor has potential to provide much better assessment of sea surface height 
near coasts along with better spatial resolution due to 40 Hz frequency than earlier 
20 Hz (Verron et al. 2018). Significance of near coastal altimetry is critical due to the 
fact that physics and chemistry of these areas determine the impact on the coastal 
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ecosystems as well as economy. Another advanced sensor called SWOT (Surface 
Water and Ocean Topography) is also in pipeline to measure the topography using 
the principle of interferometry in Ka-band using along-track and cross-track scans 
so as to provide enhanced spatial resolution of the observations of SSH. This will be 
a technological leap in the sense of providing high-resolution topography far better 
than any existing sensor. 

Analysis of satellite-derived SSHA, sea surface temperature (SST) and ocean 
reanalysis data in the tropical Indian Ocean reveals that patterns of SSHA, SST, 
ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin 
and Rossby waves differ during strong and weak monsoon years thereby modulates 
the regional climatic processes (Bulusu and Robinson 2000; Rao et al. 2010, and 
references therein). It has been noticed that during strong monsoons positive SSH, 
SST and UOHC anomalies develop over large parts of northern Indian Ocean, 
whereas during weak monsoons much of the northern Indian Ocean is covered with 
negative anomalies. These patterns can be used as a standard tool for evaluating the 
performance of coupled and ocean models in simulating and forecasting strong and 
weak monsoons by climate modellers. Moreover, the rainfall pattern of central India 
is found to be significantly correlated with SSHA over the regions Arabian Sea and 
West central Indian Ocean and Bay of Bengal where SSHA is positively large during 
strong monsoons and in contrast weak monsoon with negative SSHA. 

On the other hand, the relationships between Indian Ocean SST and Asian 
monsoon rainfall have been subject of many studies (Rao et al. 1988; Li et al.  
2001; Vibhute et al. 2020). Studies suggest Indian monsoon rainfall has significant 
positive correlations with the Indian Ocean SST and moisture flux transport in the 
preceding winter and spring. The effect of this SST influence is quite different 
from the remote forcing of the Indian monsoon rainfall by the Eastern Pacific SST, 
which is more dominant on the El Niño–Southern Oscillation (ENSO, 3–7 year) 
timescale. More specifically, the SST anomalies are found to significantly correlate 
with the seasonal June to September over the Indian region (Rao et al. 1988). 
For the first time, it has been observed that heavy or deficient rainfall years over 
the Indian subcontinent are associated with large-scale coherent changes in SST 
over the northern Indian Ocean. Further, it has been observed that the correlation 
between SST and seasonal monsoonal rainfall undergoes changes in sign from 
significantly positive with pre-monsoon SST to negative over the post-monsoon 
months. Therefore, all these suggest a strong connection between the SSH, SST and 
Indian monsoon with the deployment of numerous Argos in recent times, and it is 
expected that our understanding of these complex air–sea interactions will become 
much better with strong implications in Earth system models. 
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4 Observing Climate Change Impacts on Vegetation and Soil 

4.1 Agriculture 

Global agricultural productivity has dropped due to climate change by 21% since 
1961; for some regions like Africa, Latin America and Caribbean region, it is much 
higher, while at the same time agriculture has both feedback and impact relations 
with climate change and hence can cause warming too. Greenhouse gas emissions 
from global agriculture was estimated to be 700 million metric tons in 2018 
(eos.com/blog/remote-sensing-to-face-ag-risks-due-to-climate-change). Estimation 
of changes of agriculturally relevant growing season parameters across the globe 
comprising of start of season and length of growing season in the primary regions 
of rainfed agriculture for 26 years showed district patterns. Study used AVHRR 
NDVI dataset containing 15-day maximum value composites at 8 km resolution for 
July 1981 to December 2006. Weather data also has been employed to understand 
their anomalies due to climate factors. Weather parameters were gridded to provide 
the accumulated growing degree days (AGDD) and humidity data derived from 
global land data assimilation system (GLADS) in the growing season analysis. 
This GLADS was 3-hourly gridded meteorological data synthesized by assimilating 
ground-based, remote sensing and surface climate reanalysis data (Brown et al. 
2012). Growing degree days computed by subtracting base temperature (5 c) from 
average daily temperature were summed up over the 18-month period to create 
AGDD and accumulated relative humidity (ARHUM). Validation of the patterns 
with field data was accomplished using crop statistics from the USA and Europe 
for major crops. Analysis of impact of phenological variation on production at 
the country level was enabled through this step. Analysis across global contexts 
demonstrated increasing importance of moisture conditions necessary for crops 
and other vegetation to harness the desirable higher temperature and growing 
seasons. Significant correlations were recorded in the study between the peak 
position measured in growing degree days and relative humidity with rainfed cereal 
production. This in turn indicated continued vulnerability of the agricultural system 
to local climate (Brown et al. 2012). 

Crops require certain amount of heat units in terms of growing degree days 
(GDDs), to reach different stages of growth. Warming climate has significantly 
changed the seasonal GDD patterns across India. Significantly high positive trend 
(2.3◦ days year−1) of  kharif degree days was found over the northwestern region. 
Significant positive trend of kharif degree days (1.2–1.8◦ days year−1) with 
moderate magnitude was observed over north central, northeast Indian Peninsula, 
East Coast and West Coast. On the other hand, significantly high positive trend of 
rabi season degree days (2–2.8◦ days year−1) was observed over northwest, East 
Coast and West Coast, whereas moderate positive trends (1.5–1.7◦ days year−1) 
were observed over northeast and Indian Peninsular region. Such large increase 
in the GDDs during the two major crop-growing seasons, i.e. kharif and rabi, 
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has significant ramifications on the crop phenology, crop duration, crop water use 
efficiency, dynamics of pest and diseases and crop yield. 

Substantial changes are observed in the annual frequency of occurrence of 
temperature extremes due to the warming trend over India. Cold extremes have 
been found to be decreasing significantly, whereas occurrences of hot extremes have 
increased significantly across India. Significant negative trend in occurrences of cold 
nights (−0.27 to −0.51 days year−1) was reported over large contiguous area of 
north and northeastern part covering Western Himalayas, northwest, north central, 
northeast and West Coast. On the other hand, hot nights showed an increasing trend 
(0.3–0.9 days year−1) over Western Himalayas, northwest and northeast. The annual 
frequencies of cold days showed a decreasing trend (−0.4 to−0.6 days year−1) over 
southern part of India (IP, EC, WC), while hot days did not show any significant 
trend. 

A comprehensive review of drought index used in monitoring meteorological, 
agricultural, hydrological and socioeconomic drought using database from Google 
Scholar, Scopus and ScienceDirect revealed presence of 111 drought indices of 
which 67 were devised using remote sensing data. Considering remote sensing-
based drought indices, 90% are employed for agricultural drought monitoring and 
10% for hydrological and meteorological drought monitoring. Advances in satellite 
technologies have been responsible for accelerated design of new drought indices 
and satellite observations have replaced traditional location specific data with 
acknowledged success. It was found that PDSI, SPI and NDVI indices were most 
popular in drought monitoring and had global representations. Integrated indices 
using both remote sensing and ancillary data have proved to be nonreliable. Scaled 
Drought Severity Index (SDSI) uses derivatives of vegetation, precipitation and 
temperature such as VCI, PCI and TCL combined on a scale of 0 to 1 vegetation–soil 
water deficit has distinction of combining parameters of precipitation soil moisture 
and potential evapotranspiration which can identify drought with grater accessory 
(Alahacoon and Edirisinghe 2022). 

Both the frequency and intensity of extreme weather and climate events in last 
decades have increased worldwide, causing unprecedented losses (Halsnæs et al. 
2018). Damage to agricultural crop due to increased extreme weather events is an 
important aspect of applying remote sensing for post event damage detection (Sosa 
et al. 2021) and possible recoveries in early crop stages. Hail, squalls and flood 
affect the crop intensely and damage substantial fractions due to reasons ranging 
from foliage destruction, rupture of major plant parts, damaged reproduction stages 
and total lodging of crops. Such events need to be assessed over large areas since 
insuring the crops against damage is an important economic activity involved in 
crop management. Both optical and microwave energies have been exploited at 
various resolutions to assess the damage. C-band microwave images at appropriate 
resolutions on board satellites such as Sentinel-1, RISAT and RADARSAT have 
ability to image during cloud-masked conditions and provide distinction of damaged 
parts clearly. The SAR sensors then measure amplitude and phase of wavelength 
coming back from surface. In a hailstorm impact study in Iowa, in 2016 and 
2017 were measured using VH (vertical–horizontal combination of polarization 
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Fig. 11 24 hr maximum estimated size of hail ending at 1200 UTC on June 18, 2016 (left), and 
hail damage swath in Northwest Iowa on June 30, 2016, Sentinel-1 VH dB image 

for forward and backscatter energy) combination of backscatter, which provided 
clear indication (Fig. 11) of the damaged crop area (Bell et al. 2018). The 
backscatter signals observed as time series data over cropping seasons indicated 
slight difference in dB values for damaged and intact crops, meaning instance based 
comparison is better. 

In a study exploring capability of Sentinel-2 optical imagery within a cloud 
computing platform, eight indices referring to both plant health and water content 
using various band combinations of near-infrared, shortwave infrared, green and red 
spectral regions were applied to assess the crop damage (Ha et al. 2022). Temporal 
profiles that helped derive area under curve for the performances of spectral indices 
over eight dates of imaging helped to estimate the damage, especially overcoming 
cloud-related issues. Apart from area under curve, simple differences in vegetation 
indices (NDVI and NDWI) between pre- and post event have also been quite 
effective. 

Machine learning-based method was standardized for applying microwave and 
spectral indices to evaluate the hailstorm damage so as to adopt an unsuper-
vised approach. Dual Polarization SAR Vegetation Index and Normalized Pigment 
Chlorophyll Ratio Index were found to be most sensitive to changes by damage. 
Time series and rates of change of these indices were used to derive variables in 
k-means method to develop homogenous damage zones, with a resultant accuracy 
of 87% (Sosa et al. 2021). 

Recent climate change impacts may aggravate crop production loss from frequent 
flooding. Damage of crops due to flood hazard has caused 57% of all the damages, 
between 2003 and 2013, induced by extreme events. A comprehensive review of 
flood-induced damage (Rahman and Di 2020) indicates three major categories of 
flood-based damage such as flood intensity-based approach, crop condition-based 
approach and model-based loss assessment. Remote sensing data from optical and 
microwave sensor play a vital role in each phase of flood crop damage assessment, 
which depends on information such as extent, depth and duration of flood followed 
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by condition of the crop affected using vegetation indices. In applying models of 
flooding, availability of good-quality digital elevation model, derived from laser, 
optical wavelengths or microwave backscatter as direct or interferometric, that has 
total hydrological compliance, is critical to assess the vulnerable pockets. Out of 
60 studies assessed, 43 studies were conducted post 2011, which may indicate both 
event intensification and improved technology access. 

One of the most important early indicators of the impact of climate change 
on ecosystem is the changes in crop phenology, i.e. recurring pattern of crop 
growth and development (White et al. 1997). Changes in crop phenology alters 
the global carbon water and nitrogen cycles, crop production, pollination window 
and diseases/pest distribution, leading to broad impacts on terrestrial ecosystems 
and human societies (Penuelas and Fiella 2001). Therefore, phenological study has 
recently become an important focus for ecological and climatic research (Menzel 
et al. 2001; Cleland et al. 2007; Chakraborty et al. 2014). Satellite-based study can 
reveal broad-scale phenological trends that would be difficult, if not impossible, to 
detect from the ground. Long-term satellite data, with proper standardization and 
calibration across the sensors, could provide continuous phenological information 
over large temporal range, with low cost even over inaccessible regions. 

Chakraborty et al. (2014) used satellite-based NDVI of 25 years (1982–2006) and 
detected significant shift in different crop phenology metrics, i.e. start of the growing 
season (SGS), seasonal NDVI amplitude (AMP) and seasonally integrated NDVI 
(SiNDVI), during kharif season (June to October) over Indian subcontinent. Pre-
occurrence of the SGS (0.1–0.7 days/year) was reported over large contiguous areas 
of Punjab, Haryana, West Uttar Pradesh, Marathwada, Vidarbha and Madhya Maha-
rashtra, whereas delay in the SGS (0.9–1.6 days/year) was found in Rayalaseema, 
Coastal Andhra Pradesh, Bihar, Gangetic West Bengal and sub-Himalayan West 
Bengal. Significant greening trend (increased SiNDVI) along with increase in the 
seasonal amplitude (AMP) was reported over Punjab, Haryana, West and East Uttar 
Pradesh, West and East Rajasthan, West and East Madhya Pradesh, Bihar, sub-
Himalayan West Bengal, Sourashtra and Kutch and Rayalaseema. On the other 
hand, Marathwada and Vidarbha showed increase in SiNDVI along with decrease 
in the AMP implying increase of the length of the growing period. Significant 
browning trends were reported in most of the south and eastern part of India 
covering Tamil Nadu, South Interior Karnataka, Coastal Andhra Pradesh, Madhya 
Maharashtra, Gujarat, Chhattisgarh, Jharkhand and Gangetic West Bengal. Such 
changes in the crop phenology may be driven by climatic or anthropogenic factors 
and can lead to the changes in crop calendar, cropping pattern, crop type, net sown 
area, etc. 

4.2 Climate Change Impact on Soils 

Soils provide ecosystem services and are essential to plant life as well as for 
sustainable agriculture. The relations between the atmosphere and soils in a climate 
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change scenario are essential to comprehend altered climate and its possible 
influence on soils. The changing climate may influence soil through alteration in 
soil moisture conditions, soil properties, specifically soil organic matter dynamics, 
soil temperature, CO2 levels, soil erosion, nutrients and alkalinity, soil organisms, 
etc. Hence, the study on the impact of climate changes on soil properties and 
the process needs to be more detailed. Many researchers have assessed impact of 
climate change on soil erosion in India. Gupta (2015) reported that due to climate 
changes soil annual loss may increase by 25.64 and 20.33% (in the A2 climate 
change scenario) and 25.3 and 23.38% (under the B2 climate change scenario), 
respectively, in 2050 and 2080 in the Indian Himalayan regions. Mondal et al. (2015) 
simulated the impact of climate change on future soil erosion over Narmada River 
basin of India and reported that average soil erosion would be 15.5 and 105.8% in 
the year 2050 and 2080, respectively. Besides, numerous studies have assessed the 
effects of climate change on the stocks, dynamics and distribution of soil organic 
carbon and have forecasted trends under various climate change scenarios, ranging 
from regional to global scale (Banger et al. 2015). The knowledge of how climate 
change affects soil carbon in India, however, is based on various process-oriented 
models (CENTURY, RothC, etc.) and digital mapping techniques (Falloon et al. 
2007; Bhattacharyya et al. 2007; Banger et al. 2015; Mitran et al. 2018). These 
models work well when combined with GCMs to calculate the effects of climate 
change. By combining the RothC model with the HadCM3LC climate change 
forecast, Falloon et al. (2007) evaluated the effects of climate change on carbon 
storage in India and found that soil carbon stocks would decline by 0.11 Pg from 
the baseline value of 8.62 Pg in 1860 by the end of the twenty-first century. In a study 
over the Indo–Gangetic plains of India, Bhattacharyya et al. (2007) similarly noted 
a declining trend in SOC stocks using Global Environment Facility Soil Organic 
Carbon (GEFSOC) modelling in conjunction with the empirical Intergovernmental 
Panel on Climate Change (IPCC) technique. According to Gupta (2015), using the 
CENTURY model and baseline data from 2010, the Indian Himalayan region’s 
soil C content will decrease by 11.6–19.2% (in the A2 climate change scenario) 
and 9.62–16.9% (under the B2 climate change scenario) by 2099 as a result of 
climate change. In order to forecast SOC changes in the semi-arid region of 
India, Mitran et al. (2018) employed satellite-derived indices and a geostatistical 
technique. They anticipated a decrease in soil carbon stock. Jain and Mitran (2020) 
anticipated a decline in total SOC stocks, ranging between 1.12–4.93 and 0.45– 
4.49 Tg, respectively, by 2050 and 2070 utilizing remote sensing-based indices and 
geostatistical modelling methods over a semi-arid region of India. 

4.3 Natural Vegetation 

Scale at which the forests are turning vulnerable, due to desiccating forces of drying 
climate during summers, across the globe is alarming and unprecedented. Recent 
spate of forest fire especially in temperate forests of the Northern Hemisphere is 
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threatening all downstream and downwind ecosystems including hitherto valuable 
human habitation. Vast extents of forest landscapes dried up and experienced 
infernos that threatened biodiversity as well as contributed massive amount of 
greenhouse gases to already precariously tipped global concentrations. Apart from 
this, extreme droughts in otherwise moist and wet habitats such as Amazon forests 
have induced forest mortality of a magnitude not even simulated by best models 
available. Resilience of global forests, which cover about 30% of Earth’s surface, 
is under severe threat especially in tropical, arid and temperate forests, with boreal 
forests being exception (Forzieri et al. 2022). 

Long-term vegetation responses using remote sensing reflectance on board 
global-scale sensors provide clear indication of the ecosystem behaviour such as 
regime shifts after perturbations in terms of leaf area index and species composition 
of net primary productivity (Schefferet et al. 2001; Nes et al. 2016). Global gross 
primary productivity (GPP) and net primary productivity (NPP) products from 
1981 to 2018 were estimated using multisource data, viz. fraction of absorbed 
photosynthetically active radiation (FPAR) and leaf area index (LAI) data from the 
global land surface satellite (GLASS) dataset and the light use efficiency (LUE) 
providing 0.05 degree GPP product. Average NPP declined in Asia and Amazon 
tropical forests and increased in African tropical rainforest due to mainly the climate 
change. Multisource analysis compared better than MOD17 and showed improved 
letter component. 

Clear understanding of climate change and carbon cycle long-term understanding 
of the vegetation productivity involving time series datasets are crucial. Gross 
primary productivity (GPP) and net primary productivity (NPP) products at 0.05◦ 

resolution (approximately 5 km grid) starting from 1981 till 2018 (Fig. 12) esti-
mated using a special NPP algorithm named MuSyQ (multisource data synergized 

Fig. 12 Global spatial pattern of the mean annual NPP from 1981 to 2018 derived from MuSyQ 
model that incorporates satellite-based inputs and field observations. (Wang et al. 2021) 
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quantitative). This model was based on the fraction of absorbed photosynthetically 
active radiation (FPAR) and leaf area index (LAI) data from the global land surface 
satellite (GLASS) dataset, the light use efficiency (LUE) from the parameterization 
approach with the clearness index (CI), the ERA-Interim meteorological data and 
other environmental factors. As a method integrated modelling performed better 
than standalone satellite-based product of MOD17 GPP product (MODIS based) 
and FLUXNET GPP (computed from flux tower network-based observation data) 
for major forest types such as evergreen broadleaf, deciduous broadleaf, wetlands, 
woody savannah, dense shrub land and crops. While RMSE of both modelled 
and MOD17 products remained similar at 214.6 gC/Sqm year, the relationship 
(R-square) was far higher in modelling (0.81 > 0.55), indicating the strength of 
integrated approach in assessment of GPP which is central to climate change 
assessment. Study brought out that NPP declined significantly in Asia and Amazon 
tropical rainforests and increased significantly in African tropical rainforest. Global 
NPP has shown a significant increasing trend, with an annual growth rate of 0.10 
PgC/year over the past 38 years. However, contribution of tropical rainforest NPP of 
Amazon, Africa and Asia to the global NPP dropped significantly, wherein except 
African forests other two forest regions witnessed total decline of NPP (Wang et 
al. 2021). Greening and browning trends of vegetation for entire Indian region 
and their responses to climatic (rainfall, temperature and others) and non-climatic 
(cropping area, irrigated area, fertilizer use) drivers have been studied for a span of 
35 years (1981–2015) for India (Parida et al. 2020) using 8 km bimonthly GIMMS-
based NDVI3g data along with precipitation (0.25◦), temperature (1◦), monthly 
solar radiation (0.5◦), soil moisture (0.5◦) and seasonal crop statistics. Analysis 
based on Theil–Sen trends showed that 47% of the nation showed prominent large-
scale greening, while in south peninsula warming trends have caused reduction in 
greening trends (both in kharif and rabi seasons) beyond year 2000. Vegetation 
over the Himalayas and Northeast India revealed a browning trend that seems to 
be related to temperature-induced moisture stress (Fig. 13). 

4.4 Forest Mortality 

Forests are last frontiers of ecological restoration in terms of habitats, biodiversity, 
water security and forest genetic resources for Earth’s future. Mortality of forests 
as induced by increasingly warm and dry climate across temperate and tropical 
systems is a point of great concern. Observing remote vegetation patterns using 
remote sensing has been a critical application in Earth observation, and multiple 
sources of spatial, temporal and spectral resolutions have been applied to derive 
the information from natural vegetation tracts of varied crown packing exhibiting 
characteristic annual and long-term phenological trends. Mortality experienced by 
forests at an unprecedented scale as well as stunting of trees being experienced 
across Europe, for instance (Newburger 2020), highlights the scale of vulnerability 
and hence needs state-of-the-art remote sensing observations for land surfaces. 
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Fig. 13 Grid point Mann–Kendall test for NDVI trends (Tau) for the whole period of 1982–2015 
based on annual means of NDVI3g data. Trends are statistically significant at p < 0.1  when  Tau is  
above ± 0.10. Croplands and forests are presented in (a, b) along with corresponding histograms 

Dried and dead forests are turning vulnerable to forest fire and often are bordered by 
populations already under attack by pests and diseases. It was reported that carbon 
dioxide storage that is lost because of invasive insects killing the trees every year 
in forests is equivalent to the emissions from five million vehicles (Fei et al. 2019); 
this forest age and height are getting reduced gradually and will continue to happen 
in future. 

Excessive forest mortality in Europe has been linked to drought using long-term 
canopy mortality maps from 1987 to 2016 by using relationships of mortality to 
water availability. Integrated climatic water balance from March to July fell below 
−1.6 standard deviation of its long-term average (Fig. 14). At continental level, 
about 500,000 ha of excess mortality was reported, which seems to be the precursor 
of further drought-related mortality (Senf et al. 2020). 

Remote sensing-based vulnerability to drought in recent past was correlated with 
long-term record from dendrochronological analysis, using tree ring growth (ring 
width index, RWI) in southern Sierra Nevada Mountains, near the epicentre of 
drought severity and mortality associated with the 2012–2015 California drought 
and concurrent outbreak of western pine beetle (Keen et al. 2022). It was analysed 
that widespread mortality was presaged by five decades (from time span ranging 
between 1900 and 2016) of increasing sensitivity of both tree growth and A13C 
to Palmer Drought Severity Index (PDSI). The sensitivity in fact constitutes early 
warning signal for mortality caused by direct and indirect effects of drought. 
Normalized Difference Moisture Index (NDMI) from Landsat between 2012 and 
2016 dry seasons was employed for sampling location of trees for stable isotope 
measurements. Drier sites showed increasing sensitivity of RWI to PDSI over the 
last century as well as higher mortality rates associated with drought level event 
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Fig. 14 Percent of the total 
forest canopy mortality 
attributable to drought-related 
excess forest canopy 
mortality between 1987 and 
2016 across Europe. Value of 
30 means that 30% of the 
total forest canopy mortality 
in this particular grid cell. 
(Senf et al. 2020) 

compared to wetter sites. Forest responses to continued climate warming can be 
forecasted employing forest modelling using remote sensing and dendrochronology. 

However, as far as climate change-driven forest loss is concerned, remote 
sensing tools still have limitations to detect the diffuse and gradual tree mortality 
(Hartmann et al. 2018) in contrast to the gregarious loss that can be confidently 
detected in case of land-use changes in forests and wildfire events. Though ground 
measurements sufficiently evidence the mortality due to climate, reflectance-based 
spatial models are difficult to be derived with higher confidence. Large-scale 
forest mortalities recorded in Thuringia, Germany, in 2018–19 were characterized 
using soil moisture index using satellite-based measurements, which revealed worst 
drought documented in the last 70 years. Mortality rates of Scots pine increased 
tenfold from <0.1% in 2018 to almost 1% to 2019. Exceptional drought could 
be assessed using images of September 2019 over more than 50% of the region 
(Hartmann et al. 2022). 

Natural vegetation systems are exposed to high stresses and degradation due 
to anthropogenic activities and climatic changes. It is translated into reduction 
in forest vigour, degradation and deforestation leading to loss of carbon stocks, 
biodiversity, ecosystem services and livelihoods of dependent people (Midha and 
Mathur 2010). Multi-temporal long-term satellite data can be used to retrieve 
vegetation phenology, and the subtle changes in forest vigour can be assessed by 
analysing changes in its seasonal greenness. Recently, long-term MODIS NDVI 
data has been used to assess the spatial patterns of significant negative trend of 
seasonal greenness over the different forest types of India particularly its hotspots 
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in the core forest areas (Chakraborty et al. 2018). Lion’s share of these negative 
changes in greenness were found to be in tropical moist deciduous (2.06 m ha) 
followed by tropical dry deciduous (1.4 m ha) forest. Interestingly, nearly 80% 
of these changes took place in the core forest areas, which seems to be alarming. 
The states of Odisha, Chhattisgarh, Madhya Pradesh, Telangana and Uttarakhand 
were found to be hotspots of these negative changes in deciduous forest. The 
study has also identified significant negative changes of seasonal greenness over 
the large protected areas such as national park, wildlife sanctuary an conservation 
reserve for prioritization of biodiversity conservation and climate change mitigation 
programmes. 

4.5 Forest Fire 

Though wildfires were normal processes earlier, current spate of blazes raging 
across Europe, North America and other continents are certainly abnormal and seem 
to have origins due to excessive heat and dry conditions prevalent. Biodiversity 
loss, air pollution and habitat damage are clear fallouts of such extreme events. As 
per United Nation Environment Programme, global warming and land-use change 
are projected to increase extreme fires by up to 14 to 50% by the end of century, 
with increases of up to 14% by 2030, 30% by the end of 2050 and 50% by the 
end of the century. Remote sensing of forest fire is an exhaustively researched 
and understood subject and is made possible from earliest days of visible/near-
infrared remote sensing period through benchmark MODIS sensor on board Aqua 
and Terra satellites to Suomi NPP VIIRS sensor. Indian remote sensing satellites 
such as Resourcesat having sensors LISS III and AWIFS consisting of shortwave 
infrared band (1550–1770 nm) provide a high degree of detectability and mapping 
potential over the globe. Harnessing strength of SWIR, MIR regions coupled with 
thermal regions at about 3900, 11,000 and 12,000 nanometres offer clear scope of 
smouldering and incandescent fires, which can detect forest fires of different nature 
from a geostationary and polar orbiting platforms. 

An exhaustive review of optical remote sensing sensors employed in forest fire 
mapping along with traditional and neural network-based computing procedures to 
assist early fire warning systems provides an extensive survey on both flame and 
smoke detection algorithms employed, encompassing data retrieved between 1990 
and October 2020 from Web of Science (Barmpoutis et al. 2020). Data streams from 
terrestrial, airborne and space-borne-based systems with various models aiming to 
detect fire occurrences with high accuracy in challenging environments have been 
assessed. Massive peaking of works during 2019 is observed (Fig. 15), which may 
correspond to works coinciding with peak activity of fire vulnerability and events. 

Sun synchronous satellites have been deployed since earliest days to monitor 
various land cover characteristics using multispectral imaging of which AVHRR, 
MODIS and VIIRS form key sensors, which have been of great use in map-
ping forest fires. AVHRR (advanced very-high-resolution radiometer) which has 
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Fig. 15 Trend in studies published on forest fire from 1990 through three streams of remote 
sensing data, using Web of Science source. (Shukla and Pal 2009) 

six channels, three in the visible/near-infrared region and three thermal infrared 
channels, with 1 km spatial resolution. MODIS (Moderate Resolution Imaging 
Spectroradiometer) on board Aqua and Terra with 1–2 days revisit time, image 
data in 36 spectral bands ranging in wavelengths from 0.4 to 14.4 μm and at 
varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 
1 km). This is followed by VIIRS sensor (Visible Infrared Imaging Radiometer 
Suite) on board Suomi NPP satellites which provides 22 different spectral bands, 
i.e. 16 moderate-resolution bands (M-bands, 750 m), 5 imaging resolution bands 
(I-bands, 375 m) and 1 day/night panchromatic band (750 m). Himawari is also 
used to detect the forest fire using its Advanced Himawari Imager. Apart from 
this, geostationary satellites with sensors such as GOES Baseline Imager and ESA-
SEVIRI (Spinning Enhanced Visible and InfraRed Imager) have also been used for 
forest fire detection. Differentiation of smoke and clouds has been a key factor in 
achieving the clear identification of forest fires since clouds can produce similar 
signatures. Multiband thresholding technique for discriminating between smoke 
plumes and clouds suggested that it was able to isolate smoke pixels in the presence 
of other scene types, such as clouds. However, this approach performed better in 
identifying fresh dense smoke as compared to highly diffused smoke (Shukla and 
Pal 2009). Global Forest Watch, an online web GIS platform, provides latest updated 
content on ground fires prevalent across the globe using VIIRS 375 m pixel-based 
information and is meant to be an open data source for empowering participatory 
forest management. 
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5 Earth Observation to Support Governance of Climate 
Change 

Argument about the climate change scenario is that contract of science and society 
has been broken (Glavovic et al. 2021). In spite the understanding that climate 
change is anthropogenic and science is settled in the issue of providing clear proofs, 
climate change is being reversed. The indicators of change are rising alarmingly at 
an unacceptable scale. The ‘uncertainty’ factors that are naturally part of scientific 
conclusions have been exploited by interest groups promoting financial viability of 
investments. Today, solutions to reverse climate change seem to be oriented about 
society and economy, rather than science alone. Activism is being repeatedly argued 
as a truly plausible alternative since policymaking has hardly kept pace with true 
needs of natural resources handling, to the limit that the next IIPC assessment report 
(AR7) need not be compiled at all. Severity of climate change impacts in Europe 
causing forest blazes, floods, dry weather and even melting of tarmacs has opened 
unprecedented perspectives coupled with compulsions of war disrupting all the 
energy production patterns. Though countries need to pledge for reduction of fossil 
fuel usage, war has pushed many countries to look for newer projects exploiting 
fossil-based energy unwillingly. Current plans to address climate change need to 
ideally result in cuts to greenhouse gas emissions by around 7.5% by 2030. Yet, 
to meet the 1.5 ◦C target, the world would require a cut of 55% by 2030 (Moody 
2022). 

Existing governance frameworks are poorly equipped with skills and procedures 
to handle the unprecedented uncertainty in climate change research results making 
it the biggest impediment. Intra-agency information sharing alone can bring in 
accountability of the actions taken. The essence of new governance needs to 
inculcate ‘adaptive governance’ framework that demands a systematic monitoring 
and adaptation approaches in decisions and programmes (Camacho 2009). 

An approach suggested to bring in adaptive governance to climate change 
by managing uncertainty through a learninginfrastructure focuses on fourfold 
framework. It aims to build case studies to illustrate valuable lessons of challenges to 
create effective natural resource management, followed by deliberating the specific 
implications of climate change considering the interagency information sharing 
and adaptive governance. Effort needs to be done to also engage the growing 
theoretical literature in adaptive management and federalism. Insight about how 
agencies manage uncertainty that has far-reaching implications for other areas of 
administrative regulation is also important. The fragmented regulatory patchwork 
prevalent in handling natural resources has been the biggest hurdle in addressing the 
concerns. In spite of having sound investments on managing natural resources such 
as large waterbodies and their basins, multitude of institutions with their discrete 
approaches not communicating to each other will not create any true resilient 
or adaptive mechanism, instead leaving the system possibly intensely vulnerable. 
Recent spurt in flooding in major cities of India points to such a phenomenon of not 
being able to cater to the extremes and discovering the intentional misappropriation 
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of land parcels for development damaging the economy itself. In spite of bringing 
in policy-level adjustments to foster collaboration between interagency activity, fear 
is expressed about less than expected level of collaborative innovations. 

Such shortcomings or lack of learning outcomes from instances of natural 
resource handling across stakeholder, in principle, need to harness the capacity 
of Earth observation along with advances in android technology followed by 
open-source technologies in serving geospatial data. Geospatial data streaming 
from various satellite-based or non-orbital sensor into an information system can 
be integrated as a spatial or process model to provide analysis of the status 
and dynamics of the climate change-related indicator or its value addition into 
existing national-level governance service mechanism. Capacity building of the 
functionaries to handle such information either as consuming the satellite image-
based thematic content followed by training and handholding of the devices to 
carry out spatial inventory is central to scale up applications of governance-related 
projects. 

Urban systems are the biggest consumers of energy on Earth and regulating 
their patterns of energy usage lies at the heart of mitigating the change. Wide-
ranging experiments have been recorded across the globe which are initiated as 
either local governance driven or sociotechnical or strategic to arrive at reduced 
carbon footprints of urban activities. Bulkeley and Broto (2013) analysed 627 
such experiments across 100 cities of the globe to understand the overall trend, 
which points towards creation of new forms of political space within the city, as 
public and private authorities merge. Such actions are primarily enacted through 
forms of technical intervention in infrastructure networks, drawing attention to 
the importance of such sites in urban climate politics. The diverging arguments 
arising out of multiple actors demonstrating solutions also cast a doubt about the 
overall efficacy of attaining low carbon economy and climate-resilient urban future, 
since actors with state authority and actors in voluntary sectors may operate cross 
purposes. Role of Earth observation systems in such contexts of conflict handling 
can be quite relevant since geospatial systems along with mapping and monitoring 
ability of remote sensing offer spatio-temporal capability to resolve the jurisdictions 
of each of the experiments and understand the hotspots of effects of each treatment. 
At least empirically low carbon patterns induced may be catalogued to assess the 
contribution of each intervention, so as to bring in the synergy of state- and citizen-
induced changes. 

Advent of night-time higher-resolution imaging by Suomi NPP VIIRS can 
provide insight into spatial pattern of energy usage and hence enable a direct 
insight into carbon consumption. A system for using VIIRS data for remote carbon 
estimates, which provides monthly independent, unbiased estimates of per-capita 
carbon emissions, has been implemented (Jasmin et al. 2015). Full spatial resolution 
(750 meter) mosaics of VIIRS were regressed against census data of US followed 
by emission estimates from the US Department of Energy. Due consideration in of 
fraction of energy use from renewables was also taken care to provide estimates 
at country level. Opening of up opportunistic remote sensing using volunteered 
passenger aircraft night-time imaging offers further scope of strengthening up 
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Fig. 16 Comparative images of satellite-derived and aerial camera night-time lights. Brightness 
contrast between VIIRS-DNB and VPAN-RS images at different scales. (1) VIIRS-DNB. (2) 
VPAN-RS. (3) Overlapped image of VIIRS-DNB and VPAN-RS images. (a) Puning, Guangdong. 
(b) Part of Shanghai. (c) Edge of Wuhan, Hubei. (d) Downtown area of Changsha, Hunan. (Liu et 
al. 2021) 

carbon accounting of urban systems. In a study covering 16 cities of China or one 
from Japan (Liu et al. 2021), a reliable approach has been developed (Fig. 16) 
using VIIRS imagery as reference to align night-time passenger aircraft-derived 
data so as to obtain high resolution (up to even 1 mtr) at 5–10 pixel error. This 
method provides good frequency of observation and can have huge implications 
in monitoring second- and third-tier cities which are accumulating investment in 
current growth scenarios, especially in India. 

6 Conclusion 

Addressing the aspects of remote sensing for climate change is a challenging 
task in terms of representing the prevalent technologies and findings that lead to 
the understanding of climate change along with its management. Alarm raised 
at COP27 about the extremity of events in developed world, and need to assist 
majority of global population to combat the impacts as well as support affected 
livelihoods requires formulation of mechanisms to fund, implement and monitor the 
mitigative and adaptation measures. Geospatial observation coupled with remote 
sensing systems offer reliable and at times irreplaceable approaches to watch the 
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Earth processes on land, ocean and atmosphere, brought in by ongoing climate 
change. Long-term observations derived from earlier ground-based sensors, later 
coupled with satellite-based observations with sufficient validation, have clearly 
demonstrated the effect of anthropogenic emissions onto changing climate. Though 
uncertainty factors associated with any of the scientific methods have been exploited 
by undesirable market forces, heavily invested in fossil fuels, disasters at the doors 
of developed countries are pushing policymakers to rethink the options of approach 
drastically. It sounds at times that terms of reference at Kyoto, Bali and Paris have all 
been relegated by commercial and national interests, while the vulnerable countries 
continue to suffer the impact of unabated emissions by industrial establishments. 

Ironically, increasing climate change has fuelled innovations in remote sensing 
focusing on atmospheric chemistry, physics, geophysics oceanography, vegetation 
sciences as well as modelling, by employing newer datasets from unprecedented 
domains. Though science has demonstrated sufficient evidence of climate change 
through all these observations and experiments, it is important now that observations 
need to be dovetailed to the requirements of citizenry in bracing the impacts and 
being alerted about the impending losses and threats. Earth observations in various 
spatial and temporal resolutions help in visualizing the processes and their impact 
ahead of the critical events such as drought, cyclone, floods and storms at each 
administrative levels through well-developed web-enabled geographic information 
systems coupled with information on smart phone applications served by govern-
ments and organizations handling stewardship in climate change such as IPCC and 
UNFCCC (IPCC 2022). 

Insight into possibilities and capabilities prevalent at global and national level has 
potential to assimilate the information hierarchically as per the scale of observation, 
so as to match measures to combat the impacts using state-of-the-art data analytics 
involving machine learning. Though many of the events are obvious as the scale 
of impact is global, boundary phenomenon having high degree of fuzziness as well 
as temporal precision in predicting the movements of atmospheric systems require 
huge computation power and innovation. Two- and three-dimensional awareness 
of climate systems and their interaction with Earth-based land cover along with 
terrain complexities is key to give forecasts and nowcasts so as to keep citizens 
aware and alert of the impending dangers especially in areas of historically well-
known vulnerabilities. Our country being a curious mixture of high resourcefulness 
in terms of funds and hardware at one end of the spectrum coupled with totally 
unaware remote and hapless societal proportions requires perspectives from various 
angles. Exploration of existing ITK (indigenous and traditional knowledge) and 
their degree of relevance in new climate normal should be a priority and it needs 
to be catalogued, analysed and given a technologically value-added outlook so as 
to render the readiness against hazards in sufficient manner. Translation of satellite-
derived content through tools of artificial intelligence and machine learning into a 
communication understandable by highly vulnerable sections of society can be one 
among the important tasks towards adaptation. 



Sensing Climate Change Through Earth Observations: Perspectives at Global. . . 275 

Acknowledgement The authors would like to express gratitude for the support and insights 
provided for this task by Shri Bishwadip Gharai, Former Head of the Atmospheric Sciences Group. 
The kind support provided by Dr. Prakash Chauhan, Director of NRSC, Dr. K. Vinod Kumar, 
Deputy Director of RSA and Dr. Rajashree V. Bothale, Deputy Director of ECSA, in developing 
this review is greatly acknowledged. Suggestions on addressing critical impacts aspects by Dr. 
K. Vinod Kumar has improved the scope of the work immensely. We would also like to express 
our deep gratitude to the support extended by Dr. M V Ramana, Group Head of AS and LSP CSG, 
ECSA. The authors also thank Mr. Mahesh P. (ASD, ECSA) for his resourceful help in compilation 
of this document. Timely and valuable inputs by Dr. Rajadeep Roy, scientist at RRSC-E, Kolkata, 
have added relevant strength in this review. We also thank all the support and guidance provided 
by Dr. K M Reddy, Head of Rural Development Division of RSA. The authors also thank the effort 
of Dr. Suneetha Manne, Professor and Head of IT Department at Siddhartha Engineering College, 
Vijayawada, and his team in supporting the initial compilation of information using customized 
tools. 

References 

Alahacoon N, Edirisinghe M (2022) A comprehensive assessment of remote sensing and tradi-
tional based drought monitoring indices at global and regional scale. Geomat Nat Haz Risk 
13(1):762–799 

Arora M, De K, Chaudhury NR, Nanajkar M, Chauhan P, Pateriya B (2022) Climate change 
induced thermal stress caused recurrent coral bleaching over gulf of Kachchh and Malvan 
marine sanctuary, west coast of India. Climate Change in Asia and Africa: Examining the 
Biophysical and Social Consequences, and Society’s Responses 35 

Azarderakhsh M, Prakash S, Zhao Y, AghaKouchak A (2020) Satellite-based analysis of extreme 
land surface temperatures and diurnal variability across the hottest place on earth. IEEE Geosci 
Remote Sens Lett 17(12):2025–2029 

Banger K, Tian H, Tao B, Lu C, Ren W, Yang J (2015) Magnitude, spatiotemporal patterns, 
and controls for soil organic carbon stocks in India during 1901–2010. Soil Sci Soc Am J 
79(3):864–875 

Barmpoutis P, Papaioannou P, Dimitropoulos K, Grammalidis NA (2020) Review on early Forest 
fire detection systems using optical remote sensing. Sensors 20(22):6442. https://doi.org/ 
10.3390/s20226442 

Bell JR, Schultz LA, Molthan AL, Meyer FJ (2018) Investigations of Hail Damage Swaths using 
Various Satellite Remote Sensing Platforms. In Annual Meeting of the National Weather 
Association (No. MSFC-E-DAA-TN60390)) 

Bhattacharyya T, Pal DK, Easter M, Batjes NH, Milne E, Gajbhiye KS et al (2007) Modelled soil 
organic carbon stocks and changes in the Indo-Gangetic Plains, India from 1980 to 2030. Agric 
Ecosyst Environ 122(1):84–94 

Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG et al (2012) The state and fate of 
Himalayan glaciers. Science 336(6079):310–314 

Brown ME, De Beurs KM, Marshall M (2012) Global phenological response to climate change 
in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 
years. Remote Sens Environ 126:174–183 

Bulkeley H, Castan Broto V (2013) Government by experiment? Global cities and the governing 
of climate change. Trans Inst Br Geogr 38(3):361–375 

Camacho AE (2009) Adapting governance to climate change: managing uncertainty through a 
learning infrastructure. Emory LJ 59:1 

Canadian Space Agency (2022). https://letstalkscience.ca/educational-resources/backgrounders/7-
ways-satellites-help-fight-climate-change 

http://doi.org/10.3390/s20226442
http://doi.org/10.3390/s20226442
https://letstalkscience.ca/educational-resources/backgrounders/7-ways-satellites-help-fight-climate-change
https://letstalkscience.ca/educational-resources/backgrounders/7-ways-satellites-help-fight-climate-change


276 G. S. Pujar et al. 

Candanosa RM (2022) NASA finds 2022 Arctic Winter Sea ice maximum extent 10th-lowest on 
record. scitechdaily.Com 

Chakraborty A, Seshasai MVR, Dadhwal VK (2014) Geo-spatial analysis of the temporal trends of 
kharif crop phenology metrics over India and its relationships with rainfall parameters. Environ 
Monit Assess 186(7):4531–4542 

Chakraborty A, Seshasai MVR, Rao SVC, Dadhwal VK (2017) Geo-spatial analysis of temporal 
trends of temperature and its extremes over India using daily gridded (1◦× 1◦) temperature data 
of 1969–2005. Theor Appl Climatol 130(1):133–149 

Chakraborty A, Seshasai MVR, Reddy CS, Dadhwal VK (2018) Persistent negative changes in 
seasonal greenness over different forest types of India using MODIS time series NDVI data 
(2001–2014). Ecol Indic 85:887–903 

Chaturvedi RK, Kattumuri R, Ravindranath D (2014) Mainstreaming adaptation to climate change 
in Indian policy planning. Int J Appl Econ Econ 22(1):23–56 

Chen R, Jones WL (2018, March) Creating a consistent multi-decadal oceanic TRMM-GPM 
brightness temperature data record. In: 2018 IEEE 15th specialist meeting on microwave 
radiometry and remote sensing of the environment (MicroRad). IEEE, pp 1–6 

Cleland EE, Chuine I, Menzel A (2007) Shifting plant phenology in response to global change. 
Trends Ecol Evol 22(7):357–365 

Climateinformation (n.d.) What do different RCPs mean?. https://climateinformation.org/wp-
content/uploads/sites/6/2019/06/rcps.png. Accessed on 13 Dec 2022 

Cracknell AP, Cracknell AP (2001) Remote sensing and climate change: role of earth observation. 
Springer, Berlin 

D’Mello JR, Prasanna KS (2018) Processes controlling the accelerated warming of the Arabian 
Sea. Int J Climatol 38(2):1074–1086 

Das PK, Chakraborty A, Seshasai MV (2014) Spatial analysis of temporal trend of rainfall and 
rainy days during the Indian Summer Monsoon season using daily gridded (0.5o×0.5o) rainfall 
data for the period of 1971–2005. Meteorol Appl 21(3):481–493 

Dubash NK, Raghunandan D, Sant G, Sreenivas A (2013) Indian climate change policy: exploring 
a co-benefits based approach. Econ Polit Wkly:47–61 

ESA (n.d.) Climate change. https://www.esa.int/Applications/Observing_the_Earth/ 
Space_for_our_climate/Climate_change 

Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Bhattacharyya T et al (2007) Climate 
change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. 
Agric Ecosyst Environ 122(1):114–124 

Fei S, Morin RS, Oswalt CM, Liebhold AM (2019) Biomass losses resulting from insect and 
disease invasions in US forests. Proc Natl Acad Sci 116(35):17371–17376 

Forzieri G, Dakos V, McDowell NG et al (2022) Emerging signals of declining forest resilience 
under climate change. Nature 608:534–539. https://doi.org/10.1038/s41586-022-04959-9 

Gaddam VK, Boddapati R, Kumar T, Kulkarni AV, Bjornsson H (2022) Application of (“OTSU”) 
an image segmentation method for differentiation of snow and ice regions of glaciers and 
assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and 
GIS techniques. Environ Monit Assess 194(5):1–18 

GCOS (2021) The status of the Global Climate Observing System 2021: The GCOS status 
report (GCOS-240). World Meteorological Organization Rep. 384p. https://gcos.wmo.int/en/ 
publications/gcos-status-report-2021 

Glavovic BC, Smith TF, White I (2021) The tragedy of climate change science. Clim Dev:1–5 
Gouveia CM, Martins JP, Russo A, Durão R, Trigo IF (2022) Monitoring heat extremes across 

Central Europe using land surface temperature data records from SEVIRI/MSG. Remote Sens 
14(14):3470 

Gupta S (2015) Simulating climate change impact on soil erosion & soil carbon sequestration. M. 
Tech RS&GIS) thesis, Andhra University, Visakhapatnam 

Ha T, Shen Y, Duddu H, Johnson E, Shirtliffe SJ (2022) Quantifying hail damage in crops using 
Sentinel-2 imagery. Remote Sens 14(4):951 

https://climateinformation.org/wp-content/uploads/sites/6/2019/06/rcps.png
https://climateinformation.org/wp-content/uploads/sites/6/2019/06/rcps.png
https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/Climate_change
https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/Climate_change

 16063 40651 a 16063
40651 a
 
http://doi.org/10.1038/s41586-022-04959-9
https://gcos.wmo.int/en/publications/gcos-status-report-2021
https://gcos.wmo.int/en/publications/gcos-status-report-2021


Sensing Climate Change Through Earth Observations: Perspectives at Global. . . 277 

Halsnæs K, Larsen MAD, Kaspersen PS (2018) Climate change risks for severe storms in 
developing countries in the context of poverty and inequality in Cambodia. Nat Hazards 
94:261–278. [CrossRef] 

Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J et al 
(2022) Climate change risks to global forest health: emergence of unexpected events of elevated 
tree mortality worldwide. Annu Rev Plant Biol 73:673–702 

Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD et al (2018) Research 
frontiers for improving our understanding of drought-induced tree and forest mortality. New 
Phytol 218(1):15–28 

Hooker J, Duveiller G, Cescatti A (2018) A global dataset of air temperature derived from satellite 
remote sensing and weather stations. Scientific Data 5(1):1–11 

Hulley GC, Malakar NK, Islam T, Freepartner RJ (2017) NASA’s MODIS and VIIRS land surface 
temperature and emissivity products: a long-term and consistent earth system data record. IEEE 
J Select Topics Appl Earth Observ Remote Sens 11(2):522–535 

IPCC (2022) Climate change 2022: mitigation of climate change. In: Shukla PR, Skea J, Slade 
R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, 
Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (eds) Contribution of working group III 
to the sixth assessment report of the intergovernmental panel on climate change. Cambridge 
University Press, Cambridge, UK and New York, NY. https://doi.org/10.1017/9781009157926 

Jain J, Mitran T (2020) A geospatial approach to assess climate change impact on soil organic 
carbon in a semi-arid region. Trop Ecol 61(3):412–428 

Jasmin T, Desai AR, Pierce RB (2015) Estimating global per-capita carbon emissions with VIIRS 
nighttime lights satellite data. In: AGU fall meeting abstracts, vol. 2015, pp GC11B–G1029 

Jones PD, Moberg A (2003) Hemispherical and large scale surface air temperature variations; an 
extensive revision and an update to 2001. J Clim 16:206–223 

Keen RM, Voelker SL, Wang SYS, Bentz BJ, Goulden ML, Dangerfield CR et al (2022) Changes 
in tree drought sensitivity provided early warning signals to the California drought and forest 
mortality event. Glob Chang Biol 28(3):1119–1132 

Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR et al (2016) 
Temperature-driven global sea-level variability in the common era. Proc Natl Acad Sci 
113(11):E1434–E1441 

Kumar R, Manzoor S, Vishwakarma DK, Al-Ansari N, Kushwaha NL, Elbeltagi A et al (2022) 
Assessment of climate change impact on snowmelt runoff in Himalayan region. Sustainability 
14(3):1150 

Li T, Zhang Y, Chang C-P, Wang B (2001) On the relationship between Indian Ocean sea surface 
temperature and Asian summer monsoon. Geophys Res Lett 28(14):2843–2846 

Lima CB, Prijith SS, Sesha Sai MV, Rao PV, Niranjan K, Ramana MV (2019) Retrieval and 
validation of cloud top temperature from the geostationary satellite INSAT-3D. Remote Sens 
11(23):2811 

Lindsey R, Dahlman L (2020) Climate Change: Ocean Heat Content). NOAA Climate.gov 
Liu C, Tang Q, Xu Y, Wang C, Wang S, Wang H et al (2021) High-spatial-resolution nighttime 

light dataset acquisition based on volunteered passenger aircraft remote sensing. IEEE Trans 
Geosci Remote Sens 60:1–17 

Mazzoglio P, Laio F, Balbo S, Boccardo P, Disabato F (2019) Improving an extreme rainfall 
detection system with GPM IMERG data. Remote Sens 11(6):677 

McCarl BA, Thayer AW, Jones JPH (2016) The challenge of climate change adaptation for 
agriculture: an economically oriented review. J Agric Appl Econ 48(4):321–344 

McSweeney R (2015) Analysis: the most ‘cited’ climate change papers. https:// 
www.carbonbrief.org 

Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons 
in Germany from 1951 to 1996. Glob Chang Biol 7(6):657–666 

Merchant CJ, EmMcbury O, Bulgin CE et al (2019) Satellite-based time-series of sea-surface 
temperature since 1981 for climate applications. Sci Data 6:223. https://doi.org/10.1038/ 
s41597-019-0236-x 


 19776 19619 a 19776 19619 a
 
http://doi.org/10.1017/9781009157926

 27493 42865 a 27493
42865 a
 
http://climate.gov
https://www.carbonbrief.org
https://www.carbonbrief.org
http://doi.org/10.1038/s41597-019-0236-x
http://doi.org/10.1038/s41597-019-0236-x


278 G. S. Pujar et al. 

Midha N, Mathur PK (2010) Assessment of forest fragmentation in the conservation priority 
Dudhwa landscape India using FRAGSTATS computed class level metrics. J Indian Soc 
Remote Sens 38:487–500 

Mitran T, Lal R, Mishra U, Meena RS, Ravisankar T, Sreenivas K (2018) 12 climate change impact 
on soil carbon stocks in India. Soil and Climate 

Mondal A, Khare D, Kundu S, Meena PK, Mishra PK, Shukla R (2015) Impact of climate change 
on future soil erosion in different slope, land use, and soil-type conditions in a part of the 
Narmada River basin, India. J Hydrol Eng 20(6):C5014003 

Moody J (2022) Europe caught napping on climate change as heatwaves spread by Jessica Moody 
| 29 Jul 2022 | Climate change, Environment, Europe, News Decoder 

Minnett PJ, Alvera-Azcárateb A, Chin TM, Corlett GK, Gentemann CL, Karagali I, Li X, Marsouin 
A, Marullo S, Maturi E, Santoleri R, Picart SS, Steele M, Vazquez-Cuervo J (2019) Half a 
century of satellite remote sensing of sea-surface temperature, 111366. Remote Sens Environ 
233. https://doi.org/10.1016/j.rse.2019.111366. ISSN 0034-4257, 

Nagler T, Rott H, Malcher P, Müller F (2008) Assimilation of meteorological and remote sensing 
data for snowmelt runoff forecasting. Remote Sens Environ 112(4):1408–1420 

NASA (n.d.) Taking a global perspective on earth’s climate. https://climate.nasa.gov/nasa_science/ 
history/ 

Nela BR, Singh G, Kulkarni AV (2023) Ice thickness distribution of Himalayan glaciers inferred 
from DInSAR-based glacier surface velocity. Environ Monit Assess 195(1):1–20 

Nes EH et al (2016) What do you mean, ‘tipping point’? Trends Ecol Evol 31:902–904 
New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth 

century. Int J Climatol 21:189–1922 
Newburger (2020) Climate change is driving widespread forest death and creating 

shorter, younger trees. www.cnbc.com/2020/05/28/climate-change-is-driving-widespread-
forest-death-creating-shorter-trees.html 

NRSC (2022) National Information system for climate and environment Studies. https:// 
www.nrsc.gov.in/sites/default/files/doc_to_html/NICES_brochure_final_July_2022.pdf 

O’Carroll AG, Armstrong EM, Beggs HM, Bouali M, Casey KS, Corlett GK et al (2019) 
Observational needs of sea surface temperature. Front Mar Sci 6:420 

Pandey R, Alatalo JM, Thapliyal K, Chauhan S, Archie KM, Gupta AK et al (2018) Climate change 
vulnerability in urban slum communities: investigating household adaptation and decision-
making capacity in the Indian Himalaya. Ecol Indic 90:379–391 

Parida BR, Pandey AC, Patel NR (2020) Greening and browning trends of vegetation in India and 
their responses to climatic and non-climatic drivers. Climate 8(8):92 

Penuelas J, Fiella I (2001) Response to a warming world. Science 294(5543):793–794 
Prijith SS, Rao PVN, Mohan M, Sesha Sai MVR, Ramana MV (2018) Trends of absorption, 

scattering and total aerosol optical depths over India and surrounding oceanic regions from 
satellite observations: role of local production, transport and atmospheric dynamics. Environ 
Sci Pollut Res 25:18147–18160. https://doi.org/10.1007/s11356-018-2032-0 

Rahman MS, Di L (2020) A systematic review on case studies of remote-sensing-based flood crop 
loss assessment. Agriculture 10(4):131 

Ramanathan V, Ramana M, Roberts G et al (2007) Warming trends in Asia amplified by brown 
cloud solar absorption. Nature 448:575–578. https://doi.org/10.1038/nature06019 

Rao KG, Goswami BN (1988) Interannual variations of sea surface temperature over the Arabian 
Sea and the Indian monsoon: a new perspective. Mon Weather Rev 116(3):558–568 

Rao RR, Girish Kumar MS, Ravichandran M, Rao AR, Gopalakrishna VV, Thadathil P (2010) 
Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian 
Ocean, the coastal Bay of Bengal and the Southeastern Arabian Sea during 1993–2006. Deep-
Sea Res I Oceanogr Res Pap 57(1):1–13 

Remya SN, Syed TH, Kulkarni AV, Anand R (2022) Manifestation of topography and climate 
variations on long-term glacier changes in the Alaknanda Basin of Central Himalaya, India. 
Geocarto Int:1–20 


 1194 14084 a 1194 14084
a
 
http://doi.org/10.1016/j.rse.2019.111366
https://climate.nasa.gov/nasa_science/history/
https://climate.nasa.gov/nasa_science/history/
http://www.cnbc.com/2020/05/28/climate-change-is-driving-widespread-forest-death-creating-shorter-trees.html
http://www.cnbc.com/2020/05/28/climate-change-is-driving-widespread-forest-death-creating-shorter-trees.html
http://www.nrsc.gov.in/sites/default/files/doc_to_html/NICES_brochure_final_July_2022.pdf
http://www.nrsc.gov.in/sites/default/files/doc_to_html/NICES_brochure_final_July_2022.pdf

 11729 42865 a 11729
42865 a
 
http://doi.org/10.1007/s11356-018-2032-0

 16378 47293 a 16378 47293 a
 
http://doi.org/10.1038/nature06019


Sensing Climate Change Through Earth Observations: Perspectives at Global. . . 279 

Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and 
satellite SST analysis for climate. J Climate 15(13):1609–1625 

Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian 
subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient. Nat 
Commun 6(1):1–10 

Roxy MK, Gnanaseelan C, Parekh A, Chowdary JS, Singh S, Modi A, Kakatkar R, Mohapatra S, 
Dhara C, Shenoi SC, Rajeevan M (2020) Indian ocean warming assessment of climate change 
over the Indian region: a report of the Ministry of Earth Sciences (MoES), Government of India 
ed R Krishnan et al. Springer, Singapore, pp 191–206 

Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. 
Nature 413:591–596 

Senf C, Buras A, Zang CS, Rammig A, Seidl R (2020) Excess forest mortality is consistently 
linked to drought across Europe. Nat Commun 11(1):1–8 

Shetye SS, Kurian S, Gauns M, Vidya PJ (2019) 2015-16 ENSO contributed reduction in oil sar-
dines along the Kerala coast, south-west India. Mar Ecol 40(6) https://onlinelibrary.wiley.com/ 
doi/abs/10.1111/maec.12568 

Shukla BP, Pal PK (2009) Automatic smoke detection using satellite imagery: preparatory to smoke 
detection from Insat-3D. Int J Remote Sens 2009, 30:9–22. [CrossRef] 

Singh R, Kumar R, Latief SU, Kumar R, Shekhar M (2022) Recession of Gaglu Glacier, Chandra 
Basin, Western Indian Himalaya. In: Rani S, Kumar R (eds) Climate change. Springer Climate. 
Springer, Cham. https://doi.org/10.1007/978-3-030-92782-0_5 

Sosa L, Justel A, Molina ´i (2021) Detection of crop hail damage with a machine learning algorithm 
using time series of remote sensing data. Agronomy 11(10):2078 

Sreenivas G, Mahesh P, Mahalakshmi DV, Kanchana AL, Chandra N, Patra PK, Dadhwal VK 
(2022) Seasonal and annual variations of CO2 and CH4 at Shadnagar, a semi-urban site. Sci 
Total Environ 819:153114 

Subrahmanyam B, Robinson IS (2000) Sea surface height variability in the Indian Ocean from 
TOPEX/POSEIDON altimetry and model simulations. Mar Geod 23(3):167–195 

Taori A, Suryavanshi A, Pawar S et al (2022) Establishment of lightning detection sensors network 
in India: generation of essential climate variable and characterization of cloud-to-ground 
lightning occurrences. Nat Hazards 111:19–32 

Taori A, Suryavanshi A, Bothale RV (2023) Cloud-to-ground lightning occurrences over India: 
seasonal and diurnal characteristics deduced with ground-based lightning detection sensor 
network (LDSN). Nat Hazards 116:4037–4049 

Thapliyal A, Kimothi S, Taloor AK, Bisht MPS, Mehta P, Kothyari GC (2023) Glacier retreat 
analysis in the context of climate change impact over the Satopanth (SPG) and Bhagirathi-
Kharak (BKG) g Newberger, 2020laciers in the Mana basin of the Central Himalaya, India: a 
geospatial approach. Geosystems and Geoenvironment 2(1):100128 

Verron J, Bonnefond P, Aouf L, Birol F, Bhowmick SA, Calmant S, Conchy T, Crétaux J-F, 
Dibarboure G, Dubey AK, Faugère Y, Guerreiro K, Gupta PK, Hamon M, Jebri F, Kumar 
R, Morrow R, Pascual A, Pujol M-I, Rémy E, Rémy F, Smith WHF, Tournadre J, Vergara O 
(2018) The benefits of the Ka-band as evidenced from the SARAL/AltiKa altimetric mission: 
scientific applications. Remote Sens 10:163. https://doi.org/10.3390/rs10020163 

Vibhute A, Halder S, Singh P, Parekh A, Chowdary JS, Gnanaseelan C (2020) Decadal variability 
of tropical Indian Ocean Sea surface temperature and its impact on the Indian summer 
monsoon. Theor Appl Climatol 141(1):551–566 

Vignudelli S, Birol F, Benveniste J, Fu LL, Picot N, Raynal M, Roinard H (2019) Satellite altimetry 
measurements of sea level in the coastal zone. Surv Geophys 40(6):1319–1349 

Vineetha G, Karati KK, Raveendran TV, Idrees Babu KK, Riyas C,MuhsinMI, Shihab BK, Simson 
C, Anil P (2018) Responses of the zooplankton community to peak and waning periods of El 
Niño 2015-2016 in Kavaratti reef ecosystem, northern Indian Ocean. Environ Monit Assess 
190(8):1–22. https://doi.org/10.1007/s10661-018-6842-9 

https://onlinelibrary.wiley.com/doi/abs/10.1111/maec.12568
https://onlinelibrary.wiley.com/doi/abs/10.1111/maec.12568

 5704 21833 a 5704 21833 a
 
http://doi.org/10.1007/978-3-030-92782-0_5

 16223
46186 a 16223 46186 a
 
http://doi.org/10.3390/rs10020163

 4435 56148 a 4435 56148 a
 
http://doi.org/10.1007/s10661-018-6842-9


280 G. S. Pujar et al. 

Wang J, Sun R, Zhang H, Xiao Z, Zhu A, Wang M et al (2021) New global MuSyQ GPP/NPP 
remote sensing products from 1981 to 2018. IEEE J Select Topics Appl Earth Observ Remote 
Sens 14:5596–5612 

White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring 
vegetation response to interannual climatic variability. Glob Biogeochem Cycles 11(3):217– 
234 



Satellite-Based Remote Sensing 
Approaches for Estimating 
Evapotranspiration from Agricultural 
Systems 

Abhilash Chandel 

Abstract Quantifying the actual amount of water used by agricultural cropping 
systems is deemed essential for irrigation scheduling and management. Conven-
tionally, this has been either not pursued or done using single-point measurement 
or estimation tools. Since crop water uses may vary spatially within the field and 
over time, understanding its spatiotemporal dynamics has emerged as a critical 
need for sustainable agricultural production. To address this, satellite-based remote 
sensing (RS) has evolved as a rapid and high-throughput tool for mapping geospatial 
evapotranspiration (ET) from agricultural production systems, globally. Such data 
is either used through various biophysical models or empirical data-run approaches 
towards improving the accuracy of ET estimates which are deemed to serve as 
decision support for precision irrigation and water management. This chapter 
discusses fundamentals of computing ET through various energy balance and 
empirical models that have evolved or refined over time. The chapter also sum-
marizes up-to-date case studies with identified accuracies of water use estimations 
using satellite-based RS approaches. Such approaches demonstrate potentials to 
be coupled with automated irrigation systems for envisioned precision irrigation 
scheduling and management at spatiotemporal scales. 

Keywords Evapotranspiration · Satellite-based remote sensing · Energy balance 
models · Empirical models · Agricultural cropping systems · Precision irrigation 

1 Introduction 

The rate of exchange of water packets from land surface to the atmosphere is 
termed as evapotranspiration (ET). The rate of water exchanged from soil surface 
is termed as evaporation, while that exchanged from vegetation surfaces is termed 
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as transpiration (Fig. 1). The water is exchanged in the form of energies that in 
turn require energy sources to carry out this process. Direct solar radiation and 
ambient temperatures are the primary variables that drive exchange of water from 
soil or vegetation surfaces to the atmosphere depending upon the deficit in water 
vapor pressure between the evaporating surface and the surrounding atmosphere. 
The evaporation rate subsides as it proceeds and surrounding air enriches with 
water in it. Eventually, the evaporation may stop if the surrounding atmosphere 
becomes completely saturated. The saturation is also affected by the wind speed 
which is responsible for the replacement of saturated air by the dry air. Therefore, 
in a nutshell, solar radiation, air temperature, relative humidity, and wind speed are 
the major climatological variables which drive water exchange from land surface to 
atmosphere. Soil evaporation is also affected by the amount of vegetation shading 
on the soil and the amount of water available within (due to rainfall or irrigation) to 
fulfill the evaporative demand. If the soil surface can fulfill the evaporative demand 

Fig. 1 The water cycle representing evapotranspiration in an agricultural cropping system
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easily, the evaporation can be determined solely by the meteorological variables. 
However, when the water inputs (irrigation or rainfall) to the soil occur at very large 
intervals, the transport of water from deep soil to pear evaporating surface slows 
down and the soil surface dries out. This drying slows down the soil evaporation 
and in case of no soil water availability, the soil evaporation almost ceases in some 
(Borrelli et al. 1998). 

Transpiration occurs from stomata, the small openings on the leaf surface through 
which water vapor and gases are exchanged with the surrounding atmosphere. This 
water is taken up by the roots from soil and transported throughout the plant. Almost 
all the water taken up by the plant is lost as transpiration and a minute fraction 
of it is used in overall plant development. Alike soil evaporation, transpiration is 
driven by excitation energy, vapor pressure deficit, and wind which stem from solar 
radiation, air temperature, relative humidity, and wind speed variables. The soil 
water availability and soil’s ability to allow water pumping by the roots influence 
transpiration rates. Additionally, transpiration rate is affected by the crop type, vigor 
and physiology, ambient weather, and land management practices such as tillage. 

The transpiration and soil evaporation, together termed as ET, occur simultane-
ously. When the vegetation or crop is small, the ET is predominantly accounted 
by soil evaporation and as the crop develops, the evaporation slows down and 
transpiration increases. Eventually when the soil is completely covered by the 
crop/vegetation, ET almost gets completely dominated by transpiration. It is 
estimated that at crop sowing 100% of ET comes from soil evaporation, and at full 
crop cover over 90% of ET comes from transpiration. ET is expressed as the water 
depth lost per unit time (hour, day, month, etc.). 

Regional ET is generally more than half of the total precipitation and tends 
to be almost equal to precipitation in semiarid regions. Therefore, an in-depth 
understanding of ET is critical for evaluating hydrological cycle, water resource 
management, environmental sustentation, hydrometeorological predictions, global 
climate, and water cycle shift simulations and most importantly for agricultural 
water use mitigation and management (Jiang et al. 2009; Mcshane et al. 2017). 
Majority of agricultural production regions of the world today are irrigation-
dependent, especially the arid and semiarid ones which are prone to drought 
risks. To mitigate such risks and ensure healthy crop production, about 70% of 
the fresh water is utilized for irrigation. As the food demands, climate change 
impacts continue to grow, the freshwater utilization rates are further expected to 
multiply, leaving reduced water sources to meet growing household consumption 
demands (Misra 2014; Mancosu et al. 2015). Utilizing ET to determine actual crop 
water requirements can help precise optimization of freshwater irrigation without 
compromising the crop yield and quality (Adeyemi et al. 2017). Numerous methods 
of ET estimation have evolved over time which range from point to regional scales 
as discussed in the following sections.



284 A. Chandel

2 ET Estimation: Small-Scale Methods 

2.1 Point-Scale Methods 

Point-scale approaches can be categorized into invasive and noninvasive ones. 
Common invasive point-scale approaches include canopy water content retrieval 
from leaf sample weights before and after oven-drying, sap flow measurements, and 
measurement of leaf photosynthesis or stomatal conductance rates in the field, while 
common non-canopy-invasive point-scale approaches include soil moisture deple-
tion measurements in the root zone and water budget rate change measurements 
using lysimeters. Lysimeters are the tank-like structures installed in the soil bed 
which isolate the crop root zone, and water loss (ET) from that tank is measured 
in terms of change of mass in case of weighing lysimeters. In non-weighing-type 
lysimeters, ET for a given time duration is calculated by subtracting the total water 
collected at the tank bottom (discharge) from the total input water (irrigation and/or 
rainfall). Lysimeters and leaf photosynthesis measurement systems are expensive 
and may not be readily affordable by the researchers or end users. At point scale, 
ET can also be calculated by measuring the water flux components within the crop 
root zone (Fig. 1, Eq.  1, Allen et al. 1998). 

.ET = I + P − RO − DP + CR ± A SF ± A SW (1) 

Where, irrigation (I) and rainfall (P) are the water inputs to crop root zone, 
RO is the surface runoff and is the part of I and P, which does not stay within 
the soil. DP is the deep percolation, also a part of I and P that will eventually 
recharge the water table. CR is the capillary rise, which is the water that may 
transport upward, and A SF is the rate of horizontal movement of water from 
shallow depths towards the root zone. In non-slopy land surfaces, A SF is assumed 
to be negligible, while the CR is assumed negligible within short time periods. Soil 
evaporation and crop transpiration deplete water from the root zone. Once all the 
water inputs and outputs of a crop root zone are known, ET can be calculated 
from the change in soil water content (A SW) over time. The soil water balance 
approach can be better applied when estimating ET over long time periods ranging 
at least from week to months. Some of the other indirect but point-scale methods of 
estimating ET are measurement of stem and leaf water potentials and leaf/canopy 
level thermometry. Although point-scale approaches are accurate at leaf/point level, 
all such approaches are constrained due to limited sampling and inaccuracies of 
spatial variability assessments when intended for implementing precision irrigation 
management at field scales. Mobile point-scale approaches of ET estimation such 
as photosynthesis, leaf conductance, manual thermometry, and leaf/stem water 
potential measurements, among others, require extensive human effort and time 
and therefore expenses to gather sufficient measurement samples to assess spatial 
variations in crop ET at field-scales. This is one of the reasons for limited adaptation
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of point-scale approaches for ET estimation and irrigation management by the crop 
producers. 

2.2 Gross-Scale Method: Eddy Covariance 

The eddy covariance (EC) technique measures and calculates turbulent energy 
fluxes within atmospheric boundary layers by analyzing frequencies and magnitudes 
of wind, energies, and various gases including H2O, CO2, CH4, and N2O above an 
area of land surface. These measurements are ultimately assessed in the form of gas 
emission and consumption rates, sensible heat (H), and latent heat fluxes (LE). The 
latent heat fluxes are precisely estimated based on the covariance between vertical 
wind velocities and specific humidity over land areas of various sizes ranging from 
square-hundreds to square-meters (Burba 2013; Denager et al. 2020). EC measuring 
towers (Fig. 2) are typically equipped with 3D sonic anemometers installed at 
12 m above ground, an open-path gas analyzer, net radiometer, air temperature and 
humidity sensor, and a data logging system. EC has been a widely used method in 
micrometeorology for over 30 years now (Monteith and Unsworth 2008; Baldocchi 
2013). The integrity of EC estimated LE is evaluated from the energy balance 
(Eq. 2) considering the fact that an equal amount of energy enters (net radiation: 
Rn) and exits (G: soil heat flux, H, and LE) the earth system over a given time 
period (Li et al. 2009). It must be noted that the energy inputs and outputs of the 

Fig. 2 A close view of eddy covariance flux measurement tower used for gas exchange measure-
ment from paddy field. (From Bhattacharyya et al. 2013).
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earth system can reverse their directions based on time of the day and agroclimatic 
conditions. Several studies have documented with evidence that the land surface 
energy balance is always incomplete when using energy fluxes out of EC method 
(Foken et al. 2011; Leuning et al. 2012). This is mostly due to uncertainties or 
underestimation of turbulent fluxes that compute the difference of G and Rn energy 
components to be larger than the sum of H and LE energy components (Twine et al. 
2000; Foken 2008; Foken et al. 2011). Therefore, an energy balance closure ratio 
(sum of H and LE fluxes to the difference of Rn and G fluxes) is mostly used to 
represent the uncertainty in the energy balance computed by the EC method. This 
ratio mostly ranges between 0.7 and 0.9 depending on the surface (forests, orchards, 
short vegetation or crops, or bare soil). As a result, it has been reported that the 
EC method often underestimates actual ET. EC approach is a single point-in-time 
(or gross) estimator of ET and does not account for spatial variations for a given 
region or crop field; as a result, temporal precision irrigation could be scheduled 
but not the site-specific irrigation. Furthermore, EC flux towers can be expensive to 
install and operate and incoming data would need further processing to convert it 
to decisions. Therefore, this approach often lacks adaptation by crop producers for 
irrigation management. Some of the case studies where EC method have been used 
for ET estimation in agricultural cropping systems are summarized in Table 1. 

.Rn = LE + H + G (2) 

Table 1 Case studies of using eddy covariance method for estimating evapotranspiration from 
cropping systems 

Crop/ commodity Region Accuracy/errors References 

Corn China R2 = 0.84, E = 6% Li et al. (2008) 
Soybean Mississippi, 

USA 
E = 6.8–18% Anapalli et al. (2018) 

Potato South Africa R2 = 0.92, E = 4% Machakaire et al. (2021) 
Sorghum Texas, USA R2 = 0.9–0.93, E = 10–15% Moorhead et al. (2019) 
Sorghum and corn Texas, USA R2 = 0.91–0.94, 

E = 0.51–1.34 mm 
Dhungel et al. (2021) 

Grapevines Spain R2 = 0.69–0.75, 
E = 0.5 mm 

Sánchez et al. (2019) 

Wheat China R2 = 0.96–0.98, 
Eseason = 6–25% 

Wang et al. (2020) 

Corn China R2 = 0.94–1.0, 
Eseason = 9–27% 

Wang et al. (2020) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 
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2.3 Gross-Scale Method: Standard-Crop Coefficients 

The other commonly used method for ET estimation at a scale similar to EC is the 
standard-crop coefficient approach. In this method, a factor determinant of crop’s 
physiological status termed as crop coefficient is multiplied to the reference ET 
(ETr) computed from meteorological data. ETr is the estimate of atmospheric water 
demand from the land surface based on weather conditions for a given time duration. 
Hypothetically, ETr is equal to the actual ET from a well-watered short grass or 
alfalfa crop surface. The term ETo is used when using short grass as reference 
crop and ETr is used when using alfalfa as reference crop. A large number of 
empirical or semiempirical equations have been developed for computing ETr from 
a single or few weather variables. However, most of these equations are valid under 
very specific climatic and agronomic conditions and are not globally applicable. In 
an expert consultation meeting held in May 1990, the UN Food and Agricultural 
Organization (FAO) recommended the use of the Penman–Monteith (PM) equation 
as standard for ETr computation. The PM equation (Eq. 3) includes weather inputs 
of rainfall, wind speed, air temperature, relative humidity, net radiation, and inputs 
pertaining to hypothetical crop surface (short grass or alfalfa). 

.λET = A × (Rn − G) + ρa × Cp × (es−ea) 
rah

A + γ ×
(
1 + rs 

rah

) (3) 

where (es – ea) is the vapor pressure deficit of the air, ρa is the mean air density 
at constant pressure, cp is the specific heat of the air, A is the slope of the 
saturated vapor pressure–temperature relationship, γ is the psychrometric constant 
(0.066 kPa ◦C−1), and rs and rah are the (bulk) surface and aerodynamic resistances 
to the water exchange. The PM method includes all parameters governing energy 
exchange and LE flux (or ET) from uniform vegetation surface. All the parameters 
can be measured or calculated from standard weather data. The PM equation can 
be directly utilized for ET calculation for any crop, given that the surface and 
aerodynamic resistances (rah) are crop specific (Eq. 4). 

.rah = 
ln

[
zm−d 
zom

]
× ln

[
zh−d 
zoh

]

k2 × uz 
(4) 

where zm is the height of wind speed measurement (m), zh is the height of humidity 
measurement (m), d is the zero-plane displacement height (m), zom is the roughness 
length governing momentum transfer (m), zoh is the roughness length governing 
transfer of heat and vapor (m), k is the von Karman constant (0.41), and uz is the 
wind speed measured at height z (m s−1). This equation is restricted for neutral 
stability, i.e., adiabatic conditions where no heat exchange occurs. The variables d, 
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zom, and zoh are considered when the land surface is covered by vegetation as they 
depend on the crop height and architecture. For a standard hypothetical and well-
irrigated reference crop (short grass, height: 0.12 m; rs: 70 s m−1; and albedo: 0.23), 
Eq. 3 translates to Eq. 5. 

.ET0 = 
0.408 × A × (Rn − G) + γ ×

(
900 
Ta

)
× u2 × (es−ea) 

rah

A + γ × (1 + 0.34 × u2) 
(5) 

where Ta and u2 are the air temperature (Kelvin) and wind speed (m s−1) measured 
at 2 m height above ground. ETr (or ETo) is multiplied by a crop-specific factor 
termed as crop coefficient (Kc) to estimate actual ET from a specific crop field. Kc 
is determined experimentally as the ratio of actual ET from lysimeter/soil water 
balance to the ETr. However, since lysimeters cannot be affordable for all, standard 
Kc values have been determined which can be adjusted as per local agroclimatic 
conditions (Allen et al. 1998). Kc values represent integrated effects of canopy 
leaf area, height, crop health and vigor, development rate, management practices, 
canopy resistance to evaporative losses, and soil and climate conditions. Kc varies 
over the season with phenological growth stage and represents different rates of ET 
or crop water use as the season progresses. Typically for standard usage, Kc values 
have been documented for three growth stages (initial, mid, and late) in the FAO 
irrigation and drainage paper 56 (Allen et al. 1998). There are two types of crop 
coefficients generally used for estimating crop water use: (1) single crop coefficient 
and (2) dual crop coefficient. The single crop coefficient approach combines both 
transpiration and evaporation components, while in dual crop coefficient approach 
the two components are split. The single crop coefficient approach is mostly used 
for irrigation management, while dual crop coefficient approach is used for detailed 
understanding of soil evaporation. As the name suggests, dual crop coefficient is 
formed by a basal crop coefficient (Kcb) and soil evaporation coefficient (Ke). All 
these coefficients are represented in Fig. 3. As the experimented values of crop 
coefficients may not be readily generated across different agroclimatic conditions 
due to resource constraints, standard equation (Eq. 6) as in the FAO irrigation 
and drainage paper 56 (Allen et al. 1998) is used to adjust default crop/basal crop 
coefficients for given agroclimatic conditions. 

.Kc = Kc,tab + [0.04 × (u2 − 2) − 0.004 × (RHmin − 45)] ×
)

h 
3

)0.3 

(6) 

where Kc,tab is the generalized standard crop coefficient for a given crop as tabulated 
in the FAO irrigation and drainage paper 56, RHmin is the mean daily minimum 
relative humidity (%), and h is the mean crop height at the given growth stage. This 
equation is applicable for both single crop coefficient and basal crop coefficient. It 
must be noted that this equation is designed with short grass as the reference crop. 
A ratio adjustment to this equation should be done when computing coefficients 
with alfalfa as the reference crop (Allen et al. 1998). Relative to EC method, 
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Fig. 3 A generalized conceptual view of single and dual crop coefficients with basal crop and soil 
evaporation coefficients progressing during the crop growing season. 

crop coefficient-based approaches are nearly inexpensive to utilize as there are free 
weather datasets available for actual ET computation. However, alike EC method, 
this approach is also a single point-in-time (or gross) estimator of ET and does not 
account for spatial heterogeneities within a crop field towards site-specific irrigation 
scheduling. Furthermore, crop coefficient approaches are relatively inaccurate in 
ET estimation compared to EC or other point-scale methods. This is due to its 
empirical nature when adjusting crop coefficients and not accounting for all possible 
soil, crop, or weather variations (Chandel et al. 2020, 2021). Nonetheless, due to 
its simplistic nature of ET computation, it is fairly used by the crop producers 
for blanket irrigation scheduling. Some of the case studies where crop coefficient 
approaches have been used for ET estimation in agricultural cropping systems are 
summarized in Table 2. 

3 ET Estimation: Regional-Scale Methods 

3.1 Remote Sensing 

Remote sensing (RS) is the method of obtaining information about objects, sur-
faces, or phenomenon without getting into physical contact. RS data is typically 
acquired from spectral sensors such as spectroradiometers or spectral cameras 
at various spatial resolutions (μm to m to km). The spatial resolution is the 
characteristic of the sensors being used and the platform on which such sensors 
are mounted ranging from handheld frames to fixed poles to mobile ground vehicles 
to occupied/unoccupied aircrafts to satellites (Sankaran et al. 2015; Ranjan et al. 
2019; Sinha et al. 2021). As the demand for effortless and high-throughput RS 
has increased significantly over time, satellite-based RS has gained tremendous 
attention and adaptation for land surface monitoring especially agricultural and 
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Table 2 Case studies of using crop coefficient approaches for estimating evapotranspiration from 
cropping systems 

Crop 
coefficient 
approach Crop/commodity Region Accuracy and error Reference 

Dual Peach orchard Portugal R2 = 0.9, 
E = 0.32 mm 

Paço et al. (2012) 

Dual Wheat and corn China E = 0.5 mm Zhang et al. (2013) 
Dual Phacelia, hairy vetch, 

rye, mustard 
Austria Edry = 6.7% 

Ewet = 1.4% 
Bodner et al. (2007) 

Dual Potato, lima bean, 
dolichos 

Kenya R2 = 0.77–0.92 
E = 0.03–0.09 mm 

Nyawade et al. (2021) 

Dual Maize China R2 = 0.73–0.80 
Eseason = 4.6–12.6 mm 

Li and Ma (2019) 

Single Tomato China R2 = 0.78–0.95 
E = 0.25–0.43 mm 

Gong et al. (2020) 

Single Sugarcane India E = 4–25.5% Dingre and Gorantiwar 
(2020) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates. 

forestry systems. Major benefits of satellite-based RS include nondestructive data 
retrieval for wider geographical regions (hundreds of kilometers), data acquisition 
over remote locations, plethora of spatial resolution options ranging at least from 
0.1 m to 1 km, temporal data acquisition, negligible sampling biases, and free of 
cost/less expensive, among others (Liaghat and Balasundram 2010; Zhang et al. 
2020). Some of the most commonly used satellite-based sensors for crop health 
diagnostics provide data in visible range (RGB), infrared ranges (near infrared, 
shortwave infrared, mediumwave infrared, longwave infrared [thermal]), and radar 
ranges. 

3.2 Satellite RS for ET Estimation 

Satellite-based RS data has been extensively used for ET estimation. The main 
advantage is water use mapping at high spatiotemporal resolutions and from field to 
regional scales. We have grouped RS-based approaches into three categories: single-
source energy balance, dual-source energy balance, and empirical models, where 
spectral imagery typically in the visible and near-infrared and thermal infrared 
ranges are used as inputs along with the weather data or ETr to estimate actual 
ET at hourly, daily, weekly, or seasonal intervals. The following sections describe 
the most widely used satellite RS-based ET estimation approaches in detail along 
with latest use cases specific to agricultural cropping systems. 
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3.2.1 Surface Energy Balance Concept 

Sun is the primary energy source of the Earth. This energy reaches earth surface in 
radiation form and raises the atmospheric and land surface temperatures. The dif-
ference between these two temperatures aided with other meteorological variations 
forms the source of exciting energy transfer from the earth surface to the atmosphere 
to maintain energy equilibrium. Given the law of energy conservation, the energy 
can neither be created nor destroyed but can be transferred from one form to other. 
Based on this fact, energy enters the earth system in the form of radiation of which 
a portion is reflected back and the remaining comes in contact with the land surface, 
termed as net radiation (Rn). A portion of Rn is lost to the ground as soil/ground 
heat flux (G), one portion is lost to the atmosphere as sensible heat flux (H) due 
to temperature gradient between surface and the overlying air, and the remaining 
portion is lost as the latent heat flux (LE) to the atmosphere due to evaporation or 
condensation at the surface (Fig. 4). The proportions of all these fluxes vary over 
time and geographical locations but maintain a balance within the earth system. 
Equations 7, 8, 9, 10 and 11 present general equations utilized to compute all the 
energy balance flux components of Eq. 2. 

.Rn = Rs↓ + Rs↑ + Rl↓ − Rl↑ (7) 

where Rs↓ and Rs↑ are the incoming and outgoing shortwave radiations (W m−2) 
and their net sum is calculated using Eq. 8. Rl↓ and Rl↑ are the incoming and 
outgoing longwave radiations (W m−2) and can be calculated from Eqs. 9 and 10. 

Fig. 4 The energy balance concept for actual evapotranspiration. λ is the latent heat of water 
vaporization 
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.

Σ
Rs = (1 − α) Rs↓ = (1 − α) × (

Sc × cosβ × dy × zj

)
(8) 

.Rl↓ = εa × σ × T 4 a (9) 

.Rl↑ = ε0 × σ × T 4 s (10) 

where α is the surface albedo, Sc is the solar constant (1367 W m−2), β is 
solar incidence angle, dy is relative distance between the Earth and Sun, zj is 
the atmospheric transmissivity, εa is the atmospheric emissivity, σ is the Stefan– 
Boltzmann constant (W m−2 K−4), Ta is the absolute air temperature (K), ε0 is 
surface emissivity, and Ts is the absolute surface temperature (K). The H energy 
component is calculated from Eq. 11. 

.H = 
ρ × CP × dT 

rah 
(11) 

where ρ is the air density (kg m−2), Cp is the specific heat of air (1004 J kg−1 K−1), 
rah is the aerodynamic resistance, and dT is the gradient between air temperature 
and aerodynamic temperature near the surface. Over the past two decades, research 
studies have been applying surface energy balance (SEB) to satellite RS inputs 
for actual ET estimation. This is because SEB takes an analytical approach using 
physics-driven models of varied complexities where combinations of ground-based 
weather data and RS data inputs are required and effectively analyzed. As mentioned 
earlier, SEBs are primarily of two types, single-source energy balance (SSEB) 
where vegetation and soil energy budgets are combinedly analyzed and two-source 
energy balance (TSEB) where the two budgets are analyzed separately. SSEBs 
are best used for estimating transpiration from vegetation surfaces, while TSEBs 
are used for better estimation of evaporation from bare land/soil surfaces. TSEBs 
require larger number of input data variables and parametrization but do to not 
improve ET estimations significantly compared to SSEBs. The primary RS input 
to SEBs is the thermal infrared imagery which is useful for land’s biophysical and 
ecological process modeling (Liou and Kar 2014). The output of SEBs is the map 
with ET values for each pixel of the satellite images. In the following sections, 
variants of SSEBs and TSEBs are described in detail with some of the latest use 
cases evaluated for agricultural cropping systems. 

3.2.2 Single-Source Energy Balance Models 

Some of the most widely used SSEB models include surface energy balance 
algorithm for land (SEBAL; Bastiaanssen et al. 1998a, b), Modified SEBAL (M-
SEBAL; Long and Singh 2012), simplified surface energy balance index (S-SEBI; 
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Roerink et al. 2000), surface energy balance system (SEBS; Su 2002), simplified 
surface energy balance (SSEB, Senay et al. 2007), mapping evapotranspiration at 
high resolution with internalized calibration (METRIC; Allen et al. 2007a, 2007b), 
and operational simplified surface energy balance (SSEBop; Senay et al. 2007, 
2013). 

3.2.2.1 SEBAL and M-SEBAL 

SEBAL was developed in 1998 which computes actual and potential ET exchanges 
between land and atmosphere as a residual of SEB (Eq. 2). SEBAL uses an 
integration of a few empirical relationships and physical parametrizations to 
estimate ET at local and regional scales. The major inputs to SEBAL are surface 
radiances in visible, NIR, and thermal infrared spectral ranges which are capable 
of providing surface temperature (Ts), normalized difference vegetation index 
(NDVI), and surface albedo (α). Such all-in-one dataset are available from sensors 
on board Landsat series satellites (4/5/7/8/9; spatial resolution: 30–120 m/pixel; 
temporal resolution: ~16 days) and moderate resolution imaging spectroradiometer 
(MODIS)/ visible infrared imaging radiometer suite (VIIRS) sensors on board 
Terra and Aqua satellites (spatial resolution: 0.250–1 km; temporal resolution: 
~2 days). Net radiation is calculated using Eqs. 7, 8, 9, and 10 from the balance 
of shortwave and longwave radiations. Soil heat flux can be calculated using an 
empirical relationship for all vegetation and soil types (Eq. 12) that have been 
validated in over 30 countries worldwide with accuracies of 85–95%. In the next 
step, sensible heat flux (H) is computed using air temperatures measured at two 
reference points (one closer to the surface and other at an upper height). In SEBAL, 
the temperature gradient in Eq. 11 is assumed to have a linear relationship with the 
surface temperature (Kelvin, Eq. 13) under homogenous meteorological and surface 
conditions. 

. G = (Ts − 273.15) × [0.0032 + 0.0062 × α] ×
[
1 − 0.98 × NDVI4

]
× Rn 

(12) 

.dT = k + a × Ts (13) 

where k and a are the empirical coefficients obtained from the anchor “hot” and 
“cold” pixels in a given satellite image. In SEBAL, the “hot” pixel is the point where 
evaporation is almost zero and is typically a bare soil surface at high temperature, 
while at the “cold” pixel point, the surface transpires at its full capacity, is at low 
temperature, and is typically a free water surface. For the “cold” pixel, dT values 
and sensible heat flux are assumed to be zero as most of the energy is consumed 
by evaporation. For the “hot” pixel, dT is calculated from Eq. 14 where Hhot is the 
sensible heat at the “hot” pixel and is equal to Rn-G for that pixel. Once coefficients 
k and a are computed, dT can be computed from Eq. 13. Next,  H is computed 
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iteratively with rah,hot corrected for stability through extrapolation of wind speed 
(uz) between ground level to a height of 100–200 m above ground. 

.dThot = 
Hhot × rah,hot 

ρ × CP 
(14) 

Major noted advantages of SEBAL for ET estimation include (1) minimum 
ground data requirement, (2) automatic internal correction of surface temperature 
from atmospheric interferences, and (3) internal calibration of each image using 
“hot” and “cold” anchor pixels which reduces bias in surface roughness and 
aerodynamic stability corrections. Some major limitations of using SEBAL are 
(1) subjective specification of “hot” and “cold” pixels for internal calibration 
which induce uncertainties in H and ET estimates, (2) unaccountability of surface 
temperature and wind speed variations and lapses in mountains or variable terrains, 
(3) uncertainties in H and ET estimates due to non-corrected surface air temperature 
gradients or surface temperature measurements, and (4) unaccounted variations 
from sensor-viewing angles that can vary surface temperature estimates by several 
degrees. SEBAL works on rectangular contextual relationship between surface 
temperature and vegetation fraction due to subjectivity of anchor pixels. This 
can distort spatial distribution of latent heat flux (or ET) by several degrees. To 
avoid this, a modified version of SEBAL (M-SEBAL) was developed where a 
trapezoidal contextual relationship has been defined between surface temperature 
and vegetation fractions on ground. Further details on SEBAL can be availed from 
literature by Bastiaanssen et al. (1998a, b, 2005) and Ahmad et al. (2006) and for 
M-SEBAL from literature by Long and Singh (2012). Table 3 mentions some of 
the use cases where SEBAL or its improved versions were used for geospatial ET 
estimation in agricultural–forestry systems. 

3.2.2.2 METRIC 

METRIC is an advanced version of SEBAL developed in 2007 and well-applied in 
almost all agroclimatic conditions (Allen et al. 2007a,b). METRIC was especially 
developed for Landsat satellite RS data (~30 m/pixel) for specific areas smaller than 
hundreds of square kilometers. METRIC modifies over SEBAL by not choosing 
“cold” pixel subjectively, rather utilizing weather data-based ETr to perform energy 
balance at that “cold” pixel thereby serving as a check on actual ET estimates 
especially in agricultural areas. This weather-based ETr for alfalfa as reference 
crop is utilized to refine and obtain automated internal calibration of energy balance 
for entire satellite-imagery. This refined calibration further minimizes the biases 
in estimating aerodynamic stability correction and surface roughness. METRIC 
provides several advantages over other satellite RS-based energy balance model 
first due to its refined internal calibration using weather data, extrapolation of 
ET estimates to daily, weekly, and seasonal estimates, thereby compensating for 
regional advection effects, applicable where ET can exceed net radiation especially 
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Table 3 Application use cases of using SEBAL and its versions for geospatial evapotranspiration 
mapping of agricultural/forestry systems 

SEBAL 
version 

Satellite/RS 
sensor Crop/commodity Region 

Accuracy and 
error References 

SEBAL MODIS Land use and 
cover 

China R2 = 0.92 
E = 20% 
(daily), 9% 
(seasonal) 

Du et al. 
(2013) 

SEBAL Landsat 7 
ETM+ 

Wheat India R2 = 0.84 
E = 0.583 mm 

Bala et al. 
(2017) 

SEBAL Landsat 8 Multiple crops China R2 = 0.73–0.99 
E = 1.5% 

Tan et al. 
(2021) 

SEBAL Landsat TM, 
MODIS, 
AVHRR 

Agro–pastures China ELandsat = 12% 
EMODIS = 33% 
EAVHRR = 3.6% 

Li et al. 
(2021) 

geeSEBAL Landsat 5/7/8 Multiple 
agro–forestry 
systems 

Brazil R2 = 0.2–0.77 
E = 15–23% 

Laipelt et al.  
(2021) 

SEBALIGEE Landsat 7/8, 
MODIS 

Corn soybean, 
winter wheat 

Contiguous 
USA 

R2 = 0.78–0.83 
EMonthly = 14% 

Mhawej et al. 
(2022) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 

in arid and semiarid regions. METRIC unlike other models or traditional approaches 
has very limited dependency on crop or surface specifics where phenological stage, 
cultivar, or other information is not needed. 

In METRIC, Rn is computed from shortwave and longwave radiation compo-
nents computed from satellite-measured narrow-band reflectance, surface tempera-
ture, and digital elevation model (DEM) and ground weather data being collected 
near target area (Eq. 15), unlike SEBAL. Next, G is computed from Rn using the 
refined version of Eq. 12 (Eq. 19, Bastiaanssen 2000). H is computed from surface 
temperature, surface roughness, and wind speed through buoyancy corrections. 
METRIC leverages SEBAL’s concept of estimating dT as a linear function of 
surface temperature to eliminate the need for measurement of accurate aerodynamic 
surface temperature and air temperature to estimate sensible heat flux. METRIC also 
modifies the computation of surface albedo (α) for global applicability, following 
the procedure laid out by Tasumi et al. (2008). Further details on computing 
intermediate parameters of METRIC can be obtained from Allen et al. (2007a). 

.Rn = Rs↓ + Rs↑ + Rl↓ − Rl↑ − (1 − ε0) × Rl↓ (15) 

where component (1-ε0) × Rl↓ is the fraction of incoming longwave radiation 
reflected back from the surface. This component was not accounted for in other 
methods of Rn computations. Rs↓ in METRIC is computed as in Eq. 16. The surface 
emissivity (ε0) in METRIC for computing outgoing longwave radiation (Rl↑) is  
calculated using a linear empirical Eq. 17, as a function of leaf area index (LAI). 
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When LAI exceeds 3 m2 m−2, ε0 is fixed equal to 0.98. The atmospheric emissivity 
(e) used for computing incoming longwave radiation (Rl↓) is also calculated using 
an empirical Eq. 18. The constants in Eq. 18 were derived for alfalfa crop grown in 
Idaho, USA, and can be experimentally derived for a given agroclimatic condition. 

.Rs↓ = 
Sc × cos β × zj 

dy 
2 (16) 

.ε0 = 0.95 + 0.01 × LAI when LAI ≤ 3 (17) 

.e = 0.85 × (− ln zj

)0.09 (18) 

. G = (Ts − 273.15) × [0.0038 + 0.0074 × α] ×
[
1 − 0.98 × NDVI4

]
× Rn 

(19) 

METRIC follows a different approach than SEBAL for computing sensible heat 
flux (H) through calibration of H function. For calculation of coefficients in Eq. 13, 
dThot is calculated from Eq. 14 same as SEBAL, following same assumptions, but 
also including a provision for supplying nonzero value of ET (or LE) for “hot” pixel 
in case there is a residual evaporation from bare soil (Eq. 20). For the “cold” pixel, 
METRIC defines Hcold in Eq. 21. In the agricultural setting, the coldest pixel has 
LAI over 4 m2 m−2, lower temperature, high NDVI, and typically actual ET about 
5% more than ETr for alfalfa crop (Tasumi 2003, Tasumi et al. 2005). Therefore, 
LEcold in Eq. 21 can be replaced by 1.05 × ETr × λ following which dTcold and 
coefficients a and k of Eq. 13 are computed from Eq. 23. 

.Hhot = (Rn − G)hot + LEhot (20) 

.Hcold = (Rn − G)cold + LEcold (21) 

.dTcold = 
Hcold × rah,cold 

ρ × CP 
(22) 

.k = 
dThot − dT cold 
Ts,hot − Ts,cold 

, a  = 
dThot − k 

Ts,hot 
(23) 

Finally, instantaneous ET (mm h−1) is calculated using Eq. 2 and latent heat of 
water vaporization. Instantaneous ET is converted to daily water use (or ET) by 
computing reference ET fraction (ETrF) for each pixel as the ratio of instantaneous 
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actual ET and ETr for that hour instance. ETrF is then multiplied to daily or 24-
h ETr to obtain daily or 24-h actual ET from one satellite image. It must also be 
noted that ETrF can be used as a surrogate of crop coefficient (Kc). The cumulative 
ETrF and actual ET for any given period (month or year or further) with limited 
number of satellite imageries can be computed from Eqs. 24 and 25. With these 
equations, seasonal actual ET can be estimated even from one satellite imagery 
obtained per month. However, during rapid crop development stages, using multiple 
satellite imageries over a month is recommended for accurate estimations. 

.ETrFPeriod =
Σn 

i=m [(ETrFi) × (ETr24i )]Σn 
i=m ETr24i 

(24) 

.ETPeriod = 
nΣ

i=m 
[(ETrFi) × (ETr24i )] (25) 

Since development, METRIC model has been well validated across various 
agroclimatic regions with estimation errors not exceeding 17%. Some of the use 
cases of estimating geospatial ET for agroecosystems with METRIC energy balance 
model are presented in Table 4. 

3.2.2.3 SEBI, S-SEBI, and SEBS 

SEBI is a crop water stress index (CWSI, Jackson et al. 1981) based energy 
balance model where an index of evaporative fraction (EF, Eq. 26) is calculated 
using surface temperature satellite imagery and minimum (Thot) and maximum 

Table 4 Application use cases of using METRIC for geospatial evapotranspiration mapping of 
agricultural cropping systems 

Crop/commodity Region Accuracy and errors References 

Sugar beet and 
meadow 

Idaho, USA E: 1–4% Allen et al. (2007b) 

Corn and cotton Texas, USA E: 5–13% Gowda et al. (2008) 
Corn and soybean Iowa, USA R2: 0.9, E: 0.25 mm Gonzalez-Dugo et al. 

(2009) 
Grapevine Chile E: 11% Ortega-Farıás et al. (2016) 
Alfalfa Kingdom of Saudi 

Arabia 
R2: 0.8, E: 1.7 mm Elkatoury et al. (2020) 

Tall and short crops 
under dry and irrigated 
regimes 

Texas, US R2: 0.62–0.65, E: 
0.14–0.16 mm 

Hashem et al. (2020) 

Olive orchard Chile E: 5% Ortega-Salazar et al. (2021) 
Almond and pistachio California, USA E: 0.30–0.33 mm He et al. (2022) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 
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temperatures (Tcold) computed for wet and dry surfaces, respectively, using external 
meteorological data sources (Menenti and Choudhury 1993). 

.EF = 
Thot − Ts 

Thot − Tcold 
(26) 

Due to complexities in calculating surface temperature from satellite RS, biases 
are often incurred in ET estimation. To minimize this bias, reflectance-based iden-
tification of minimum and maximum temperature pixels within satellite imagery 
is available with simplified-SEBI (S-SEBI) version (Roerink et al. 2000). At 
low reflectance ranges, surface temperature remains pretty much constant with 
reflectance increase, for example, in case of well-irrigated lands or free water 
surfaces where all the available energy is consumed in evaporation. While at higher 
reflectance ranges, the surface temperature increases with the increase in reflectance 
up to a certain threshold point. Increase in temperature till this threshold is termed 
as “evaporation-controlled” because the change in temperature then is a result 
of decreased evaporation due to decreased soil moisture availability. Beyond this 
threshold point of reflectance, the surface temperature decreases with increasing 
reflectance. This is because of the soil moisture level extent that no more aids 
evaporation and all available energy just heats up the surface. In this situation, 
the available energy reduces as the result of reduced net radiation because of 
higher reflection fraction. This temperature decrease with increased reflectance is 
termed as “radiation-controlled.” S-SEBI simplifies the EF computation by directly 
using extreme pixels (wet/cold or dry/hot) if present within the surface temperature 
satellite image under consistent atmospheric conditions. If consistency condition 
is not met, extreme temperatures are computed as in SEBI, i.e., from external 
meteorological data sources. When using SEBI or S-SEBI, net radiation can be 
computed from Eq. 5, soil heat flux from Eq. 27, sensible heat flux from Eq. 28, 
and latent heat (or ET) from Eq. 29. 

.G = (Ts − 273.15) × [0.32 + 0.62 × α] ×
[
1 − 0.98 × NDVI4

]
× Rn (27) 

.H = (1 − EF) × (Rn − G) (28) 

.λET = EF × (Rn − G) (29) 

SEBS is a modified version of SEBI (Su 2002) where H and LE components 
are computed from satellite imagery and weather data. Energy balance is computed 
through an instantaneous evaporative fraction (A, Eq.  30) using dry and wet regions 
in the imagery. SEBM fixes LE to be zero in Eq. 20 so that H satisfies to be 
maximum for dry (or hot) surfaces. Cold surface is assumed to be fully covered 
by vegetation and therefore Gcold is substituted as 0.05 × Rn and hot surface is 
assumed to be bare soil for which Ghot is substituted as 0.315× Rn. For the wet 
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(or cold) surface, Hcold is calculated from Eq. 30. Next,  LEcold can be calculated 
from Eq. 21, and sensible heat flux component (H) is calculated using the Monin– 
Obukhov similarity functions (Brutsaert 1999). Instantaneous EF is calculated using 
Eq. 32 and is assumed to stay constant throughout the 24-h period; it is multiplied 
to the daily reference ET (ETo or ETr) to compute 24-h actual ET. 

.Ar = 
Hhot − H 

Hhot − Hcold 
(30) 

.Hcold = 
γ × (Rn − G)hot 

γ + A
− 

ρ × CP × (es − ea)cold 

rah,cold (γ + A) 
(31) 

.A = 
LE 

Rn − G 
= Ar × LEcold 

Rn − G 
(32) 

SEBS reduces uncertainty in ET estimation stemming from uncertainty in 
satellite-based surface temperature imagery, by defining “hot” (or wet) and “cold” 
(wet) surface conditions for calibrating energy balance. However, SEBS is demand-
ing large number of data inputs which if not available will limit ET estimation using 
SEBS. Some of the case studies that utilized SEBI, S-SEBI, and SEBS models for 
ET estimation in agricultural setting are listed in Table 5. 

3.2.2.4 SSEB, SSEBelvi, and SSEBop 

SSEB (Senay et al. 2013) operates similar to METRIC in that ET is calculated from 
satellite-based thermal imagery and meteorological data only by identifying and 
utilizing temperatures of “hot” and “cold” anchor pixels within satellite imagery. 
SSEB runs a partial energy balance as it does not compute sensible energy flux 
like other energy balance models. SSEB assumes that actual ET can be inferred 
from the ratio of surface temperature gradient with hot pixel to the temperature 
gradient of “hot” and “cold” pixels. Actual ET at “hot” pixel is assumed to be zero 
and equal to ETr for “cold” pixel. “Hot” pixel is identified as the one with high 
temperature and low NDVI and “cold” pixel as the one with low temperature and 
high NDVI. An evaporative fraction (Eq. 26) is then calculated and multiplied with 
the ETr to obtain daily actual ET map. SSEB ignores albedo and soil heat flux 
and therefore underestimates ET for surfaces with low albedo and overestimates for 
surfaces with high albedo and soil heat flux such as for bare soil. The assumption 
of linearity between temperature and ET also does not stand true for the landscapes 
or vegetation surfaces different than reference crops (alfalfa or short grass) as well 
as under complex terrains (Senay et al. 2011a). For these limitations, an improved 
version SSEBelvi includes elevation variation factor for refining the computation 
of land surface temperature (Ts,elv, Eq.  33) and also includes empirical vegetation 
parameterization through NDVI for computing adjusted EF (EFelvi, Eq.  34). 
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Table 5 Application use cases of using S-SEB, and SEBS models for geospatial evapotranspira-
tion mapping of agricultural cropping systems 

Crop/commodity 
Model and satellite 
imagery Region 

Accuracy and 
errors Reference 

Cotton S-SEBI and 
Landsat 5 

Brazil R2: 
0.84–0.87, E: 
4–16% 

Santos et al. (2010) 

Paddy S-SEBI and 
Landsat 8 

India R2: 
0.71–0.77, E: 
0.52 mm 

Kumar et al. (2020) 

Grass, wheat, 
barley, and 
grapevines 

S-SEBI and 
Landsat 8 

Spain R2: 0.8, E:  
0.63– 
1.71 mm 

Sobrino et al. 
(2021) 

Barley S-SEBI and 
Landsat 8 

Switzerland and 
Italy 

R2: 0.7–0.9, 
E: 0.9 mm 

Santos et al. (2022) 

Fennel, maize, 
ryegrass 

SEBS and Landsat 
7 

Italy R2: 0.6, E:  
0.7 mm 

Nisa et al. (2021) 

Sugar beet, dry 
bean, barley 

SEBS and Landsat 
7/8 

Wyoming, USA R2: 0.87, E: 
12.3% 

Acharya et al. 
(2021) 

S-SEBI & Landsat 
7/8 

R2: 0.76, E: 
3.9% 

Rapeseed, wheat, 
barley, green peas, 
rye 

SEBS and MODIS Spain R2: 0.7, E:  
0.34– 
0.45 W m−2 

Pardo et al. (2014) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 

.Ts,elv = Ts + KL × DEM (33) 

.EFelvi =
)
0.35 × 

NDVI 

0.7 
+ 0.65

)
× EFelv (34) 

where KL is the standard temperature lapse rate of 0.0065 K m−1, DEM is the 
land surface elevation (m) obtained from digital elevation model, and EFelv is the 
EF obtained from Eq. 25 for surface temperature corrected for elevation (Ts,elv). 
SSEBelvi assumes that if NDVI is greater than 0.7, then the surface is well-vegetated 
and will have ET higher than the reference crop if the available water is limited. 
This assumption is similar to the assumption of “cold” pixel ET in METRIC. For 
using SSEBelvi, EFelvi is multiplied with ETr for computing daily ET. SSEB and 
SSEBelvi can induce biases during “hot” and “cold” pixel selection due to human 
subjectivity. To eliminate this, a further improved version SSEBop is used for ET 
computations which determines the “hot” and “cold” boundary conditions for each 
image pixel similar to SEBS (Senay et al. 2013). The only required data inputs for 
SSEBop are Ts (from satellite imagery), Ta, and ETr from weather data. SSEBop is 
based on the argument that Rn drives surface energy balance and under clear skies, 
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the “hot” and “cold” boundary conditions do not vary for years and their difference 
is constant for a given location and day of year. Under clear sky conditions, Tcold 
and Thot can be calculated using weather data from Eq. 35, and ultimately actual 
ET can be calculated from Eq. 36, where a calibration coefficient (kf ) is introduced 
to scale ETo to maximum ET for a lesser aerodynamic crop. Standard value of 1.2 
is used for kf but can be obtained from calibration of soil water balance or energy 
balance. 

.Tcold = c × Ta, Thot = Tcold + dT (35) 

.ET = EF × kf × ETo (36) 

where c is the coefficient relating Ts to Ta for a well-irrigated vegetation at 
maximum ET. Some of the case studies that utilized SSEB, SSEBelvi, and SSEBop 
models for ET estimation in agricultural settings are listed in Table 6. 

3.2.3 Two-Source Energy Balance Models 

As discussed earlier, the two-source energy balance (TSEB) model evaluates 
vegetation and soil energy budgets separately and are mostly used for accurate 
estimation of soil evaporation fluxes. Surface temperatures of soil and vegetation 
are used as inputs to estimate evaporation and transpiration components. Since 
the temperature measurements from RS sensor is a single layer combination of 
soil and vegetation, TSEBs deploy approaches to decompose soil and vegetation 
temperatures into two different input layers for energy computations. Most widely 
used TSEB models are the Priestley–Taylor two-source energy balance model 
(TSEB-PT), Penman–Monteith two-source energy balance model (TSEB-PM), two-
source energy balance atmosphere land exchange inverse (TSEB ALEXI), and 
enhanced two-source evapotranspiration model for land (ETEML). These models 
are discussed in detail in the following sections along with their use cases in 
agricultural settings. 

3.2.3.1 Priestley-Taylor and Penman–Monteith Two-Source Energy Balance 
Models 

TSEB-PT was developed by Norman et al. (1995) through which soil and vegetation 
energy fluxes are partitioned based on their respective surface temperatures sensed 
remotely (Eqs. 37 and 38). The temperature partitioning considers the sensor 
viewing angle (φ) and fraction of vegetation cover calculated from LAI (Eq. 39). 
Along these lines, H is computed as the sum of sensible heat fluxes for vegetation 
canopy (Hc) and soil (Hs). 
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Table 6 Application use cases of using SSEB, SSEBelvi, and SSEBop for geospatial evapotran-
spiration mapping of agricultural cropping systems 

Crop/commodity 
Model and 
Satellite imagery Region 

Accuracy and 
errors Reference 

Corn and 
sorghum 

SSEB- Landsat 
7/8 

Texas, USA E: 16% Gowda et al. 
(2009) 

Agricultural 
subbasins 

SSEB-MODIS Conterminous 
USA 

R2: >0.9, E: 11% Senay et al. 
(2011b) 

Corn and 
soybean 

SSEB-Landsat 
7/8 

South Dakota, 
USA 

R2: >0.9 with 
METRIC-ET 

Senay et al. 
(2007) 

Agricultural 
fields 

SSEBelvi-
Landsat 
7/8 

Idahoa, USA R2: 0.95 with  
METRIC-ET 

Senay et al. 
(2011a) 

Diverse 
agroecosystems 

SSEB-op-
Landsat 
7/8 

Contiguous 
USA 

R2: 0.64, 
EMonthly: 27 mm  

Senay et al. 
(2013) 

Diverse 
croplands 

SSEBop-Landsat 
7/8 

Contiguous 
USA 

R2: 0.92, 
EMonthly: 13 mm  

Chen et al. (2016) 

Maize and 
soybean 

SSEBop-Landsat Midwest, 
USA 

R2: 0.92, 
ESeaonal: 84 mm  

Singh and Senay 
(2015) 

Diverse 
agroecosystems 

SSEBop-Landsat 
8 

Colorado, 
USA 

R2: 0.78–0.95, 
E: 10% 

Singh et al. 
(2013) 

Diverse 
agroecosystems 

SSEBop-Landsat 
8 and MODIS 

Colorado, 
USA 

R2 
Daily: >0.82, 

EDaily: 0.6 mm, 
R2 

Annual: >0.78, 
EAnnual: 77 mm, 

Singh et al. 
(2014) 

Wheat SSEBop-Landsat 
7/8 

Brazil R2: 0.82, E: 
13.6% 

Lopes et al. 
(2019) 

Cropland SSEBop-Landsat 
8/MODIS 

China R2: 0.93, E: 
13.3% 

Zhuang et al. 
(2022) 

Beans SSEBop-Landsat 
7/8 

Brazil R2: 0.82, E: 
0.62 mm 

Paula et al. 
(2019) 

E: rror, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 

.Tb (φ) =
[
ε (φ) ×

(
TRad (φ)

)
4 + (1 − ε (φ)) × T 4 sky

)] 1 
4 

(37) 

.TRad (φ) =
[
f (φ) × T 4 cs + (1 − f (φ)) T 4 ss

] 1 
4 

(38) 

where Tb is the brightness temperature, ε(φ) is the surface emissivity, φ is the view 
zenith angle of the sensor, and f (φ) is the fraction of field or view of the sensor that 
is occupied by the canopy and calculated using Eq. 39 assuming random canopy 
with spherical leaf angle distribution. TRad is the representation of combined soil 
(Tss) and canopy (Tss) surface temperatures. 
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.f (φ) = 1 − exp
)−0· 5 × LAI 

cosφ

)
(39) 

The net radiation component (Rn) is first calculated from Eq. 7 or 15 and then 
partitioned into canopy (Rnc) and soil net radiation (Rns) fluxes (Eq. 40), following 
which soil and canopy sensible heat fluxes (Hs and Hc) are calculated using soil and 
canopy temperatures (Eq. 40) and respective latent heat fluxes (evaporation: LEs; 
transpiration: LEc) from energy balance (Eq. 40). 

.Rns = Rn × exp [0.9 × ln (1 − fc)] and Rnc = Rn − Rns (40) 

.H = Hc + Hs = ρ × Cp ×
)

Tcs − Ta 
rah 

+ 
Tss − Ta 
rah + rss

)
(41) 

.LE = LEc + LEs = (Rnc − Hc) + (Rns − Hs − G) (42) 

where fc is the fraction canopy cover and the empirical constant of 0.9 is approx-
imated for random leaf with spherical distribution and Rn extinction coefficient 
of 0.45. Flux G is approximated as 0.35 × Rns (Choudhury et al. 1987). rss is 
the resistance to heat flow above soil surface, and Tcs and Tss are obtained by 
solving Eqs. 37 and 38 by having measurements of Tb and TRad at two view angles 
(e.g., φ1 = 50◦, φ2 = 25◦). Satellites with thermal remote sensing and capable 
of making measurements at two view angles (e.g., along-track scanning radiometer 
(ATSR) satellite) can help in the calculation of Tcs and Tss. Quite frequently, thermal 
data inputs from satellites are not available at two viewing angles; therefore, Tc 
can be obtained by partitioning Rnc into Hc and LEc using an iterative Priestly– 
Taylor approximation (Priestly and Taylor 1972) for the green vegetation fraction 
(fg, Eqs.  43 and 44). This approximation is based on experimental and theoretical 
assumption that Rnc almost directly relates to the intercepted photosynthetically 
active radiation to cause photosynthesis and thereby the transpiration. However, as 
the vapor pressure deficit with the surrounding atmosphere varies, the transpiration 
rate will vary despite constant Rnc. Initial canopy temperature (Tcsi) in the iteration 
is calculated from Eq. 43, following which Hc, Tss, and Hs are calculated and 
recalculated until the energy balance is achieved. Along those lines, for a negative 
LEs, it is replaced by a zero to recalculate correct Hs, Tss, Tcs, and Hc. Furthermore, 
if Hc is greater than Rnc which is not possible, then LEc is made zero, to recalculate 
Hc, Tcs, Tss, and Hs. This iterative and check-based approach ensures correctness 
and accuracy of soil and canopy energy balances. 

.Tcsi = Ta + 
Rnc 

ρ × Cp 
×

[
1 − 1.3 × fg ×

)
A

A + γ

)]
(43) 
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. 

LEc = 1.3 × fg × Rnc ×
)

A

A + γ

)
and 

LEs = Rnc ×
[
1 − 1.3 × fg ×

)
A

A + γ

)] (44) 

The advantage of TSEB-PT is that unlike single-source models, it does not 
require calibration of momentum roughness length for heterogeneous vegetation 
surfaces. Furthermore, TSEB-PT distinguishes between composite surface temper-
ature and aerodynamic temperature and therefore does not require surface-specific 
calibration like in the single-source models. Pertaining to transpiration component, 
a further accurate method to estimate the fraction of senesced vegetation (1-fc) is  
needed that does not contribute to LEc but Hc. This can be done by experimental 
evaluation of vegetation index LAI during the crop growing cycle. The same 
experiment can be used to refine empirical calculation of G (0.35 Rns). These steps 
will further minimize empirical dependencies within the model. Further TSEB-PT 
model details can be availed from literature by Norman et al. (1995) and Kustas and 
Norman (2000). 

The TSEB-PM version was developed in 2012 (Colaizzi et al. 2014, 2012) as  
the revised version of TSEB-PT where the Penman–Monteith equation is used as 
a replacement to compute canopy transpiration (or LEc), parameterized also for 
semiarid climate. Here, unlike TSEB-PT, G is calculated from a phase-difference 
approach (Eq. 45, Santanello Jr. and Friedl 2003) based on the finding that during 
daytime G has a strong phase difference with Rns. The nighttime G is calculated as 
a constant fraction of Rns and as then there is no phase difference. 

. GDay = Rns ×
{
A. cos

[
2||

D 
(t + C)

]}
and GNight = w × Rns 

(45) 

where A is the amplitude, D is the period length, C is the shift, and t is the solar time 
angle. All the constants A, D, C, t, and w can be derived by calibrating calculated G 
and that measured for the surface using heat flux plates (Evett et al. 2012). TSEB-
PM also modifies the computation of sensible heat fluxes (Eq. 46) by (1) considering 
all resistances to heat flows from canopy and soil surfaces to be in series unlike 
TSEB-PT, (2) including resistance to heat flow near canopy in the boundary layer 
(rc), and (3) including aerodynamic temperature (Tac). The iterative computation of 
Tcs and Tss in TSEB-PM is modified by using a Penman–Monteith approach (Eqs. 
47 and 48) as a replacement to Eq. 43 that used a Priestley–Taylor parameter of 
1.3. The TSEB-PM approach assumes non-water-stressed conditions but contains 
provisions to increase canopy resistance if the stress increases unlike the TSEB-
PT approach where a similar parameter decreased with the canopy stress. Some 
case studies that deployed TSEB-PT and TSEB-PM with satellite RS for water use 
estimation of agricultural systems are presented in Table 7. 
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Table 7 Application use cases of using TSEB-PT and TSEB-PM with satellite RS for geospatial 
evapotranspiration mapping of agricultural cropping systems 

Crop/commodity 
Model and satellite 
imagery Region 

Accuracy and 
errors Reference 

Diverse 
vegetation 

TSEB-PT-ASTER China E: 8% Yang et al. 
(2018) 

Diverse 
vegetation 

TSEB-PM-ASTER China E: 8.2% Yang et al. 
(2018) 

Diverse 
vegetation 

TSEB-PT-ASTER China E: 11.7% Song et al. 
(2016) 

Multiple crops TSEB-PT-MODIS Morocco r: 0.70, E: 
30 W m−2 

Diarra et al. 
(2022) 

Multiple crops TSEB-PT-Landsat 
7/8 and MODIS 

Australia and 
Europe 

r: 0.83, E: 10% Jaafer et al. 
(2022) 

Cotton TSEB-PM-Landsat 
7/8 and MODIS 

Texas, USA R2: 0.83, E: 12% Colaizzi et al. 
(2014) 

Cotton TSEB-PT-Landsat 
7/8 and MODIS 

Texas, USA R2: 0.66, E: 13% Colaizzi et al. 
(2014) 

Tree-grass 
ecosystems 

TSEB-PT- MODIS Spain r: 0.78, BE: 
34 W m−2 

Burchard-Levine 
et al. (2019) 

Multiple 
agroecosystems 

TSEB-PT-Landsat 8 Ghana R2: 0.85–0.96, 
E: 7% 

Alhassan and Jin 
(2020) 

Olive grove TSEB-PT-Landsat 5 Portugal R2: 0.5, E: 5% Häusler et al. 
(2018) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 

. H = Hc + Hs = ρ × Cp ×
)

Tcs − Tac 
rc 

+ 
Tss − Tac 

rss

)
= ρ × Cp ×

)
Tac − Ta 

rah

)

(46) 

.Tcsi = Ta + 
Rnc × rah × γ ×

(
1 + rc 

rah

)

ρcp

(
A + γ ×

(
1 + rc 

rah

)) − es − ea

A + γ ×
(
1 + rc 

rah

) (47) 

.LEc = 

⎡ 

⎣ A × Rnc

A + γ ×
(
1 + rc 

rah

) + ρ × cP × (es − ea) 

rah ×
(
A + γ ×

(
1 + rc 

rah

))
⎤ 

⎦ (48) 
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3.2.3.2 TSEB Atmosphere Land Exchange Inverse and Spatially 
Disaggregated ALEXI 

Two-source energy balance atmosphere land exchange inverse (TSEB ALEXI) 
(Anderson 1997) originally known as two-source time-integrated model (TSTIM) 
is the extended version of TSEB-PT model. ALEXI was developed to resolve 
a limitation of TSEB-PT or TSEB-PM, i.e., for their regional-scale application, 
meteorological boundary conditions in air temperature are needed at the spatial reso-
lution similar to thermal imagery which otherwise cannot be interpolated accurately 
due to continuous and localized cross-feedbacking between the land surface and 
atmosphere. ALEXI resolves this by coupling existing TSEB-PM with atmospheric 
boundary layer model to internally simulate land-atmosphere feedbacks and their 
effects on local air temperature. TSEB uses instantaneous surface temperature 
measurements, while TSEB ALEXI uses brightness temperatures acquired twice 
in the day from Geostationary Operational Environmental Satellite (GOES, spatial 
resolution: 5–10 km/pixel) 1.5 hours after the sunrise and next after 4 h to evaluate 
temporal energetics coupled with the atmospheric boundary layer model. This 
reduces sensor bias, eliminates dependency on air temperature measurements, and 
provides continuous flux estimates at continental scales. ALEXI has been improved 
over time and now also estimates moisture stress and soil water availability from 
ET estimates. ALEXI also includes techniques to estimate ET on cloudy days when 
surface thermal measurements are unavailable as well as extrapolate instantaneous 
ET for larger durations. 

ALEXI uses the series arrangement of resistances instead of parallel in TSEB-
PT and approximates composite surface temperature (TRad) as the linear aggregation 
of soil and canopy surface temperatures (Eq. 49). Energy balance closure between 
the thermal data acquisition instances relates the air temperature rise in the mixed 
atmospheric layer to the time-integrated influx of sensible heat from land surface. 
ALEXI therefore relies only on time-differential temperature signals, thereby 
minimizing errors due to sensor calibration and atmospheric and spatial aberrations. 
Specific inputs to ALEXI are surface temperatures at two instances (source: 
GEOS), LAI (MODIS), landcover (UMD Global), wind speed (ASOS/AWOS), 
lapse rates (Radiosonde), atmospheric corrections (Radiosonde), cloud amount 
(GEOS), hourly net radiation (GEOS), and soil texture (STATSGO, for cloudy 
days). The instantaneous TSEB and sensible heat fluxes at two instances are 
computed using Eqs. 41–44, 46, and 50. A linear form of H(t) is assumed to 
compute time-integrated heat flux during the morning interval. The time-integrated 
sensible heating is related to the height rise and potential temperature of the mixed 
layer through conservation Eqs. 51 and 52 (given by McNaughton and Spriggs 
(1986)). Potential evaporation and transpiration components are calculated from 
Priestley–Taylor approximation (Eq. 44). The hourly and daily values of ET and 
H are computed from evaporative fraction obtained at ALEXI modeling time (i.e.,
AALEXI, t2) and hourly values of Rn and G measured by GOES (Eqs. 53, 54 and 55). 
Studies have shown evaporative fractions obtained at midday underestimate actual 
ET by 5–10%; therefore, AALEXI, t2 is approximated as 1.1 times the evaporative 
fraction obtained at t2. 
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.TRad (φ) ≈ [f (φ) Tcs + (1 − f (φ) Tss)] (49) 

.

f t2 

t1 
H(t)  dt  = 

1 

2 
[H2t2 − H1t1] (50) 

.

f t2 

t1 
H(t)  dt = ρ × Cp

[
(zm2Tm2 − zm2Tm2) −

f zm2 

zm1 

Tss (zm) dzm

]
(51) 

.Tm = Ta ×
)
100 

p

)0.286 

, p : atmospheric pressure (kPa) (52) 

.AALEXI = 1.1 × 
LE2 

Rn2 − G2 
(53) 

. 
For soil

(
ith hour

)
: As, ALEXI = 1.1 × 

LEs2 

Rns2 − Gs2 
, 

LEsi = As, ALEXI × (Rnsi − Gsi) 
(54) 

.For canopy
(
ith hour

)
: LEci = LEi − LEsi,Hci = Hi − Hsi (55) 

ALEXI is advantageous as it moves the TSEB’s upper boundary condition of 
temperature from near-surface to atmospheric boundary layer where more spatial 
uniformity is achieved at continental scales. However, this is also a limitation that 
forces ALEXI to be applicable only at spatial resolutions of 5–10 km specific to 
GEOS. This limitation was alleviated by arriving at a modified version of ALEXI 
called as disaggregated ALEXI (DisALEXI, Norman et al. 2003). DisALEXI 
generates energy fluxes at much higher spatial resolutions of 0.3–1 km by com-
bining ALEXI outputs with the high-resolution satellite (Landsat 4/5/7/8, ASTER, 
MODIS) or aerial imagery. DisALEXI relies on the concept of blending height 
(100–200 m above ground) where the wind speeds become constant over the land 
surface. The first step follows same as ALEXI of computing air temperature from 
GEOS satellite (5 km/pixel), while in the next step the TSEB approach is applied 
on higher-resolution imagery of vegetation fraction (computed using NDVI) and 
radiometric surface temperature instead of low resolution as in ALEXI. At this 
step, TSEB is applied on total “N” number of pixels contained in one GEOS pixel 
(5 km) for which the air temperature is held constant. This hybrid approach uses 
atmospheric boundary layer component of ALEXI at large scale, while the surface 
component at finer scales. 

DisALEXI operates in the following steps. Air temperature, wind speed, down-
welling short- and longwave radiation, and blending height wind speed variables 
are held constant over 5 km disaggregation scale. High-resolution land surface 
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inputs of radiometric surface temperature (TRad) and vegetation fraction (fc) are  
developed on a grid with each pixel designated an id “i” for total “N” pixels made 
to coincide exactly with the 5 km grid from GEOS. This surface temperature is 
acquired around the second GEOS observation time and corrected for atmospheric 
and surface emissivity differences. Next, using the soil and canopy temperatures 
from ALEXI, the surface temperature at 5 km acquired at view angle φ is adjusted 
to the average angle at which the high-resolution surface temperature was acquired. 
Alternatively, a rigorous correction can also be applied by iteratively adjusting 
each pixel of high-resolution image to the GOES angle and then comparing the 
average adjusted surface temperature to the unadjusted GOES surface temperature. 
However, the two approaches have been reported to produce non-different adjusted 
surface temperatures at high resolution. Vegetation height is then scaled between 
season maximum and minimum based on fc for each pixel and used to estimate 
aerodynamic roughness and resistance for each pixel. For each pixel, net radiation is 
computed using equation fromALEXI but with high-resolution surface temperature, 
surface albedo, and surface emissivity (from fc). Rest all the flux computation 
steps are similar to ALEXI. An important step in DisALEXI is compensating 
for the differences in sensor calibration, atmospheric correction, and view angles 
between surface temperature estimates from GOES and high-resolution satellites. 
If not addressed, significant biases may occur in computations of sensible and 
latent heat fluxes. Recent case studies that have used ALEXI or DisALEXI for ET 
estimation in agricultural systems are mentioned in Table 8. A major limitation with 
ALEXI or DisALEXI is requirement of large number of data inputs. A simpler 
version of ALEXI is also available as the dual temperature difference (DTD) model 
that utilizes two radiometric surface temperatures like ALEXI but operates on a 
simpler structure with a smaller number of other inputs. This makes DTD more 
applicable than ALEXI or DisALEXI. The surface temperature partitioning for soil 
and vegetation cover is based on the fraction of radiometric view (φ) following 
which the sensible heat flux is calculated from Eq. 56 and soil and canopy LE fluxes 
from Priestley–Taylor expression (Eq. 44 and 55). 

. 

Hi = ρCp

[(
TRad,i − TRad,0

) − (
Ta,i − Ta,0

)

(1 − f (φ)) × (
rah,i + rss,i

)
]

+ Hc,i

[
1 − f (φ) × rah,i 

(1 − f (φ)) × (
rah,i + rss,i

)
]

+ Hc,i

[
f (φ) × rah,0 

(1 − f (φ)) × (
rah + rss,i

)
]

(56) 

where subscript i refers to any hour of the day when fluxes are computed and 
subscript 0 refers to the initial flux computation time, i.e., 1 h after sunrise. 
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Table 8 Application use cases of using ALEXI/DisALEXI with satellite RS for geospatial 
evapotranspiration mapping of agricultural cropping systems 

Crop/commodity 
Model and satellite 
imagery Region 

Accuracy and 
errors References 

Grapevines DisALEXI and 
Landsat 8 and 
Sentinel-2 

California R2: 0.9, E:  
1.36 mm 

Knipper et al. 
(2023) 

Almonds R2: 0.86, E: 
1.61 mm 

Multiple crops DisALEXI and 
Landsat 8 

Continental USA R2: 0.8, E:  
0.81 mm 

Cawse-
Nicholson et al. 
(2021) 

Corn, soybean, 
wheat 

DisALEXI and 
Landsat 7 

Maryland, USA R2: 0.8, E: 9% Sun et al. (2017) 

Forests and olive 
groves 

DisALEXI and 
Landsat 7/8 and 
MODIS 

Spain E: 0.67 mm Carpintero et al. 
(2021) 

Grapevines, 
alfalfa, paddy, 
and wetlands 

DisALEXI and 
Landsat 7/8 and 
MODIS 

California, USA R2: 0.8, E:  
0.91–0.95 mm 

Anderson et al. 
(2019) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 

3.2.3.3 TSEB-Trapezoidal Framework Model 

Primary TSEB models estimate ET using surface temperature measurements and 
vegetation features independently acquired at single-viewing or dual-viewing RS 
angles. These models can be categorized as non-space-based models where the 
interrelationships between the input parameters are not utilized for computing 
energy fluxes. As a result, such models require a large number of independent 
modelling inputs of vegetation, meteorology, and soil factors. To overcome this 
challenge, a version of TSEB was developed that utilizes soil wetness isopleths 
and trapezoidal space formed by the scatter plot relationship between surface 
temperature and vegetation index-derived fraction canopy cover to compute energy 
fluxes. Inclusion of soil isolines in trapezoidal space represents soil temperature 
(Long and Singh 2012) and overall aids acquisition of sufficient surface temperature 
measurements from a single RS observation. The trapezoidal space encompasses 
four boundary points (Eq. 57): (1) driest bare surface at highest temperature (fc = 0, 
TRad = Tss,max); (2) wettest surface at lowest temperature (fc = 0, TRad = Tss,min); 
(3) full vegetation surface at lowest temperature (fc = 1, TRad = Tcs,min); and 
(3) full vegetation surface at highest temperature (fc = 1, TRad = Tcs,max). The 
warm regime joining extreme points 1 and 4 experience largest water stress and 
therefore no LE flux. Cold edge joining extreme points 2 and 3 represents surfaces 
with no water stress and equilibrium in ET (i.e., EF = 1). These warm and cold 
edges are the boundary conditions for TSEB-TFM that are met theoretically under 
given meteorological and surface conditions. Trapezoidal space also helps improve 
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estimation of water scarcity, plant water stress and transpiration, and aerodynamic 
resistances. Unlike the previously discussed non-space-based TSEB models, space-
based TSEB-TFM does not require parametrization of surface (soil and canopy) 
resistance network and this approach avoids the need for excessive data inputs of 
crop physiology and meteorology. Net radiation fluxes are computed from Eq. 58. 
Following which, the EFs and net LE flux are estimated using patch approach that 
weights soil and canopy LE using fraction canopy cover, fc (Eqs. 59 and 60). 

. Tss,max = Ta + Rns,0 

4εsσTa 
3 + ρCp 

0.65×rss 

, Tcs,max = Ta + Rnc,0 

4εcσTa 
3 + ρCp 

rah 
(57) 

. Rns = (1 − αs) Rs↓ + εsεaσTa 
4 − εsσTa 

4 − 4εsσTa 
3 (Tss − Ta) and 

.Rnc = (1 − αc) Rs↓ + εcεaσTa 
4 − εcσTc 

4 (58) 

For the bare soil hottest surface, Tss,max is equal to Ta, and Rns = Rns,0. Similarly, 
for the hottest vegetation, Tcs,max is equal to Ta, and Rnc = Rnc,0. The  EFs for soil 
and canopy can be calculated from Eq. 59. 

. 

EFs = 
Tss,max − Tss 
Tss,max − Ta 

× 
Rns,0 

Rns 
, 

EFc = 
Tcs,max − Tcs 
Tcs,max − Ta 

× 
Rnc,0 

Rnc 
, and 

EF = fcEFc + (1 − fc)EFs 

(59) 

.LEc = RncEFc, LEs = (Rns − G)EFs , and LE = fcLEc + (1 − fc)LEs (60) 

It is worth noting that the TFM approach computes EF without parametrizing for 
the heterogeneity of aerodynamic and surface roughness and assumes those to be 
equal and uniform over the entire atmosphere–land surface nexus. It therefore essen-
tially ignores the atmospheric stability within flux computations and gets restricted 
only to surfaces that are sufficiently uniform but may fail under heterogeneous 
conditions such as terrains, forests, and orchard crops, among others. A hybridized 
version of TSEB-TFM is therefore available (HTFM) where the resistance network 
parametrization as in fundamental TSEB approach is integrated with the patch 
approach of splitting radiometric temperature into soil and canopy temperature as 
in conventional TFM (Yang and Shang 2013). In HTFM, the fundamental TSEB 
is used to split Rn into Rnc and Rns (Eq. 40) and TFM is used to breakdown 
those net radiation components into sensible, soil, and latent energy fluxes through 
weighted surface temperature decomposition for soil and canopy. The soil heat flux 
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is calculated using Eq. 19, sensible heat fluxes using Eq. 41, and latent heat fluxes 
as residue of surface energy balance (Eq. 61). 

.LEc = 
Rnc 

fc 
− Hc and LEs = 

Rns−G 
1 − fc 

− Hs (61) 

Although VI surface temperature, space-based models such as TFM and HTFM 
are advantageous for their relative independence over site-specific calibration 
of energy fluxes, such models are constrained due to four key limitations: (1) 
requirements of large areas in satellite images with sufficient vegetation and 
soil pixels under both dry/hot and cold/wet conditions, since such conditions 
cannot be readily identified in heterogeneous land surfaces especially with low-
resolution satellites (e.g., MODIS, ASTER, and AVHRR, among others); (2) correct 
and unbiased selection of hot/dry and cold/wet pixels is not well-validated and 
documented; (3) non-validated isoline assumptions of soil moisture status; and (4) 
difficult hybridization of space-based models with other energy balance models 
due to difference in anchor pixel (hot/cold) selection. An enhanced two-source 
evapotranspiration model for land (ETEML) was developed to overcome such 
limitations by theoretically defining the criteria for VI surface temperature space 
isolines. Similar to TFM and HTFM, the patch approach is applied to obtain latent 
heat fluxes for soil and canopy but through calibration of potential latent heat fluxes 
(PLEs, PLEc) using soil water-deficit index (SWDI, Moran et al. 1994) and crop 
water stress index (CWSI, Jackson et al. 1988) for soil and canopy, respectively 
(Eqs. 62, 63 and 64). 

.LEs = (1 − SWDI) × PLEs and LEc = (1 − CWSI) × PLEc (62) 

. 

CWSI = 
(Tcs − Ta) − (Tcs − Ta)min 

(Tcs − Ta)max − (Tcs − Ta)min 

SWDI = 
(Tss − Ta) − (Tss − Ta)min 

(Tss − Ta)max − (Tss − Ta)min 

(63) 

. PLEs = 1.26
)

A

A + γ

)
× (Rns − G) PLEc =

)
A

A + γ

)
× (Rnc + Ea) 

(64) 

where (Tcs-Ta)min and (Tcs-Ta)max and (Tss-Ta)min and (Tss-Ta)max are the lower 
and upper temperature gradient limits of crop water and soil water stresses. Ea is the 
drying power of the air calculated using Brutsaert (1982) equation. PLEs and PLEc 

are calculated by first determining a theoretical VI surface temperature space for 
each pixel where the surface air temperature difference is used as a surrogate instead 
of absolute soil and canopy surface temperatures. Using these identifications, four 
boundary points (dry bare soil, saturated bare soil, well-watered full vegetation, and 
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water-stressed full vegetation) around each pixel of satellite image (represented by 
a point M within trapezoidal space) are defined as in TFM. Solving for Eqs. 65, 
66, 67, 68 and 69 will determine canopy and soil temperatures, following which net 
radiation flux, soil heat flux, and latent heat fluxes can be calculated from Eqs. 62, 
63 and 64. 

. Tcs − Ta = Ss (1 − fc) + (Ts − Ta) and Tss − Ta = (Ts − Ta) − Ssfc 
(65) 

.Ss = Ss,dry + 
q 

p + q 
× [

Ss,wet − Ss,dry
]

(66) 

. Ss,dry = (Tcs − Ta)max − (Tss − Ta)max Ss,wet = (Tcs − Ta)min − (Tss − Ta)min 
(67) 

.p = (Ts − Ta) − Ss,wet (1 − fc) − (Tcs − Ta)min (68) 

.q = (1 − fc) (Tss − Ta)max + fc(Tcs − Ta)max − (Ts − Ta) (69) 

where Ss is the slope of isoline that passes through a point M within the trapezoidal 
space, q is the temperature gradient between point M and the warm edge (joining 
hot/dry soil and hot/dry vegetation), and p is the temperature gradient between point 
M and the cold edge of trapezoidal space (joining saturated/wet soil and wet/cold 
vegetation). Some of the case studies where TSEB-TFM and HTFM models have 
been used for ET estimation in agricultural cropping systems are summarized in 
Table 9. 

Table 9 Application use cases of using TSEB-TFM and HTFM models with satellite RS for 
geospatial evapotranspiration mapping of agricultural cropping systems 

Crop/commodity 
Model and satellite 
imagery Region Accuracy and errors References 

Vegetables and paddy TSEB-TFM and 
MODIS 

China R2: 0.52–0.61, E: 
36.3 W m2 

Chen et al. 
(2020) 

Forests and farmland TSEB-TFM and 
MODIS 

China R2: 0.74, E: 9–16% Chen et al. 
(2022) 

Corn and sunflower HTFM and 
HJ-1A/1B 

China E: 11.9% Yu and Shang 
(2020) 

Corn and sunflower HTFM and MODIS China R2: 0.7–0.74, E: 
9.6–12.7% 

Yu et al. (2019) 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates. 
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3.2.4 Empirical Crop Coefficient Vegetation Index Approaches 

The aforementioned energy balance models more or less require large number of 
data inputs to compute actual ET. As an alternative, the crop coefficient approaches 
(Sect. 2.3) are still among the most preferred ones. However, their appropriateness 
is dependent on localized calibration and adjustments at spatiotemporal scales 
on how well the dynamics of crop growth and phenological developments are 
represented. Therefore, empirical approaches of deriving crop coefficients (single 
and basal) from remote sensing data are also used to estimate actual ET or crop water 
use. It is to be highly considered that since the spatiotemporal dynamics of crop 
development is dependent on localized crop, soil, and meteorological conditions, 
site-specific calibrations become critical. The rate of water use is influenced by 
the active vegetation cover typically represented by LAI. However, LAI varies 
between crops, their cultivars, and localized agroclimatic conditions. Therefore, 
using a single LAI approximation to determine actual ET for different cropping 
systems becomes impractical (Campos et al. 2017). To alleviate this concern, RS 
data in the form of VIs have been widely used as an integrated surrogate for crop 
physiology, phenology, growth stage, effective vegetation cover, biomass, and LAI 
parameters, among others (Fig. 5). Relationships between VIs and single or basal 
crop coefficients are established and multiplied with the reference ET (ETr or ETo) 
to estimate actual geospatial ET. The Kc-VI relationships have been derived for 
a large range of agricultural crops including barley, wheat, cotton, corn, sugar 
beet, alfalfa, garlic, peach, grapevines, apples, olives, and others. Some of the 
widely used VIs to derive such relationships include NDVI (normalized difference 

Fig. 5 Canopy spectral reflectance curves for different crops within visible, near-infrared, and 
shortwave-infrared ranges. (From Hosgood et al. 1993) 
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VI), GNDVI (green NDVI), SAVI (soil-adjusted VI), EVI (enhanced VI), NDRE 
(normalized difference red-edge index), optimized SAVI, transformed SAVI, and 
many others. Some of the fundamental steps to empirically obtain crop coefficients 
(Kc or Kcb) include (1) determining crop coefficients as the ratio of measured ET 
(from lysimeters, eddy covariance fluxes, or other methods) to reference ET (ETr 

or ETo), and the basal crop coefficient is determined as the ratio of transpiration 
to reference ET; (2) modelling the determined crop coefficients as the function of 
VIs computed from RS data for the same location where actual ET measurements 
were carried out; (3) repeating step 2 over space and time for enhanced accuracy of 
crop coefficient and VI relationship (linear, polynomial, exponential, etc.); and (4) 
multiplying the relationship from step 3 with the reference ET to obtain geospatial 
ET estimates. Some case studies that developed empirical relationships between 
satellite RS and crop coefficients (Kc or Kcb) are detailed in Table 10 with evaluation 
results for different agricultural cropping systems. 

4 Practical Implications of Satellite-Based Remote Sensing 
for ET Estimation 

Crop coefficient-PM (including Kc-VI) approaches are purely empirical or semiem-
pirical in nature that exclude surface temperature and heat/energy flow resistances 
pertaining to actual surfaces. These factors are the primary and practical drivers of 
surface water exchange with the atmosphere. Exclusion of these factors results in 
accuracy and robustness of actual ET estimates to be tremendously compromised. 
Nonetheless, crop coefficient-based approaches require much lesser data inputs 
compared to energy balance models and therefore are handy for ET estimation of 
larger areas. Kc-VI approaches are crop and site-specific and the water stress/water 
use variations can only be estimated when chlorophyll variations are proportionally 
evident. Since changes in chlorophyll may take some time to reflect relative to 
water status variations, there is a risk of over-, under-, or misinterpretation of actual 
ET when using pure Kc-VI approaches. Furthermore, surface emissivity is more 
sensitive compared to surface reflectance under crop water variations, and thermal 
imaging/surface temperature measurements can serve as a better estimator of water 
stress compared to multispectral vegetation indices. Some of the other commonly 
identified uncertainties with using Kc-VI approaches include (1) their calibration for 
extreme surface conditions, i.e., bare soil and well-watered vegetation, (2) their site, 
crop, cultivar, irrigation regime, and agroclimate-specific nature, (3) non-inclusion 
of ETr dynamics, and (4) bias in fitting their regression relationships. Inclusion of 
minimum required ground observation and axillary data can address the mentioned 
uncertainties, while coupling Kc-VI approach with traditional soil water balance 
and/or energy balance models can improve actual ET estimation accuracies. 

Effective application of surface energy balance models depends on correct land 
surface temperature imagery. The correctness is very often impacted by the cloud 
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Table 10 Use cases of empirically deriving crop coefficients and actual evapotranspiration using 
visible and near-infrared remote sensing data 

Crop Crop coefficient-VI 
relationship 

Region Accuracy References 

Corn Kcb = 1.092NDVI − 0.053 Utah, USA E: 2.6% Neale et al. (1989) 
Kcb = 1.181NDVI − 0.026 E: 4.7% 
Kcb = 1.416SAVI + 0.017 Colorado, 

USA 
E: 6% Bausch (1993) 

Kcb = 1.414SAVI − 0.02 Nebraska, 
USA 

R2: 0.84, E: 10% Campos et al. 
(2017) 

Kc = 1.317NDVI + 0.023 R2: 0.86, E: 14% Singh et al. (2009) 
Wheat Kcb = 1.46NDVI − 0.26 Arizona, 

USA 
R2: 0.80, E: 25% Choudhary et al. 

(1994) 
Kcb = 1.69SAVI − 0.16 R2: 0.88, E: 12% 
Kcb = 1.54TSAVI + 0.03 R2: 0.86, E: 21% 
Kcb = 1.63NDVIn 
− 2.57NDVIn 2 
+ 1.93NDVIn 3 + 0.18 

R2: 0.90, E: 4% Hunsaker et al. 
(2005) 

Kcb = 1.64NDVI − 0.14 Morocco R2: 0.80, E: 15% Duchemin et al. 
(2006) 

Kc = 1.5141SAVI+ 0.4077 India R2: 0.90 Gontia and Tiwari 
(2010) 

Kc = 2.711NDVI + 0.424 R2: 0.80  
Wheat Kc, 1st stage = 654.943NDVI 

− 437.75SAVI + 0.1099 
Kc, 2nd stage = 18.405SAVI 
− 28NDVI + 1.877 
Kc, 3rd stage = 12.067SAVI 
− 17.90NDVI + 0.745 

Egypt 1st stage: R2: 0.81, E: 
0.0091 
2nd stage: R2: 0.90, 
E: 0.0014 
3rd stage: R2: 0.98, 
E: 0.0007 

Farg et al. (2012) 

Soybean Kcb = 1.258SAVI − 0.006 Nebraska, 
USA 

R2: 0.84, E: 10% Campos et al. 
(2017) 

Kc = 1.217NDVI + 0.93 R2: 0.93 Singh et al. (2009) 
Sorghum Kc = 1.453NDVI − 0.112 R2: 0.93  
Grapevine Kc = 1.44NDVI − 0.10 Spain R2: 0.84, E: 5% Campos et al. 

(2010) 
Kc = 0.181e1.314NDVI Mexico R2: 0.77, E: 18% Er-Raki et al.  

(2013) 
Apple Kcb = 1.82SAVI − 0.07 Chile R2: 0.95, E: 25% Odi-Lara et al. 

(2016) 
Potato Kcb = 1.044NDVI+ 0.4159 Canada R2: 0.96 Ali (2022) 
Bell 
pepper 

Kcb = 1.451NDVI 
− 0.124NDVI2 − 0.063 

California, 
USA 

E: 9.5% Johnson and Trout 
(2012) 

Broccoli Kcb = 2.636NDVI 
− 0.823NDVI2 − 0.165 

E: 6.1% 

Garlic Kcb = 2.663NDVI 
− 1.564NDVI2 − 0.077 

E: 5.9% 

Lettuce Kcb = 1.393NDVI 
− 0.111NDVI2 + 0.012 

E: 9.8% 

E: error, r: correlation coefficient, R2: coefficient of determination. Unless otherwise specified, E 
refers to error in daily ET estimates 
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covers and atmospheric aberrations (water vapor, surface emissivity, air quality, 
etc.) which are not very straightforward to resolve. On top of that, the restricted 
temporal resolution of the satellites carrying a thermal-infrared imaging sensor with 
desent spatial resolution (e.g., Landsat series, spatial resolution: 30 m, temporal 
resolution: 16 days) further leads to missing opportunity of actual ET estimation. 
Although, interpolation techniques can be applied to estimate the missing estimates, 
the accuracy is still questionable for temporal agroclimatic conditions. Ongoing 
efforts to obtain thermal imaging data at high spatial as well as temporal resolution 
can help alleviate data quality concerns with precision (Chandel et al. 2020, 2021). 
Another concern with satellite-based thermal imaging is ignoring the difference 
between surface temperature and aerodynamic temperature. Since the aerodynamic 
temperature is unmeasurable and its relationship is still not clear with the surface 
temperature due to thermodynamic properties of vegetation and soil surface, errors 
in precision ET estimation are quite possible. This is although a bigger concern 
for single-source energy balance models that relatively consider lower surface 
roughness and resistance parametrization compared to the two-source models. Con-
sidering absolute surface temperature estimates can induce significant uncertainties 
in sensible heat flux estimations when applying surface energy modeling to partially 
vegetated surfaces with varying architectures and geometries. Instead, utilizing the 
aerodynamic surface temperature gradient as in METRIC and further decomposing 
the surface temperature to soil and canopy vegetation through resistance network 
can minimize errors in estimating sensible heat fluxes. 

Studies have reported underestimation of actual latent heat flux compared 
to available energy, causing non-closure of energy balance. This non-closure is 
mostly due to sensors (e.g., wind speed, air temperature, solar radiation, soil 
heat flux, net radiation), measurement and computation errors, and errors due to 
ignoring other possible energy sources. Parametrization of unmeasurable resistance 
network is also critical for computing surface fluxes. The network is affected by 
atmospheric stability, wind speed profiles, and vegetation distributions on ground. 
Under unstable conditions, iterative methods of energy flux computations can be 
used. 

5 Conclusion 

Remote sensing data when coupled with meteorological or empirical models can be 
very promising to estimate actual exchange of water between the land surface and 
atmosphere nexus. Selection of appropriate ET estimation model and input parame-
ters are equally critical and must be paid due attention based on resource availability 
and accuracy limits. Specific to agricultural ecosystems, estimating actual ET is 
estimating the actual amount of water plants utilized to maintain their water-healthy 
status. This estimation is highly critical from precision irrigation management 
perspective amid the concerns of freshwater reserve shortages, population growth, 
and food demands. Estimation of ET using RS data can help develop site-/zone-
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specific precision irrigation management prescriptions. Currently, small unmanned 
aerial systems are also under heavy exploration to estimate actual crop ET at 
much finer spatiotemporal resolutions. Modeling RS-based ET estimates through 
cloud computing tools and web and smartphone applications can come handy, 
labor-efficient, and cost-effective for deriving and implementing actual irrigation 
management decisions on ground by the crop growers. 
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Satellite Imagery in Precision Agriculture 

Joel Segarra 

Abstract Many national and international institutions recognize that novel agri-
culture paradigms are needed to address the current challenges of adaptation to 
and mitigation of climate change. In this sense, digital agriculture and, specif-
ically, satellite images in precision farming allow efficient monitoring of crops 
to ameliorate the management impacts to the environment. These data allow 
estimating yields or fertilization requirements, as well as water-related aspects, such 
as evapotranspiration and crops hydric status. In this chapter, I aim to describe 
satellite imagery applications in precision agriculture, and I present the nature of 
remotely sensed data, the types of satellites, and data access, management, and 
processing in the case of precision farming applications. Landsat 9, Sentinel-2, 
as well as other commercial satellites orbiting the Earth are described as feature 
relevant characteristics for agriculture monitoring, especially regarding the visible, 
near-infrared, and red-edge parts of the spectrum, which can be related to biomass, 
canopy vigor, or chlorophyll content and subsequently be matched with agronomic 
features. Regarding data access and coverage, openly accessible datasets and 
commercial satellites are discussed. Moreover, data management and processing 
have also been presented in regard to the limitations that processing and analyzing 
such large amounts of data (i.e., images from vast agricultural regions on a daily 
basis) has and the potential of cloud computing and processing. I conclude that 
in industrial agriculture settings, openly accessible satellite imagery can contribute 
significantly to an overview the status of crops, guide specific and timely actions, 
and reduce production losses and the impacts on the environment. Satellite imagery 
has a spatial dimension that can be used at the field to regional level. The assessment 
of agricultural performance can also be matched to several agroecological and 
environmental levels; however, satellite imagery in precision farming has several 
limitations and knowledge gaps in its application in heterogenous and agricultural 
landscapes with small-scale fields. 
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1 Introduction 

Since agriculture started thousands of years ago, humans have shaped the Earth 
by producing agricultural landscapes in most of the habitats that we live in today 
(Blondel 2006). Rice terraces in Asia, high-yielding maize hydroponic islands 
in Mexico (Chinampas), or Mediterranean agroforestry systems have traditionally 
articulated local agricultural landscapes. The technique and the geographic milieu 
simultaneously change with human’s actions (Santos 2000), and so happens cur-
rently with a technique that has gone beyond using local resources and species for 
farming and has become a global highly technological and productive activity, such 
as many others in society. Since the mid-twentieth century, the “Green Revolution” 
transformed traditional agriculture into an industrial system by providing high 
yielding genotypes, fertilizers, and other chemically derived products, as well as 
improved machinery for sowing and harvesting. This turning point changed the 
agricultural paradigm in most areas of the world by improving agricultural yields 
and reducing the human labor force needed. Yet, the current industrial production 
system is recognized as a major source of global pollution, and its sustainability is 
discussed. 

The current industrial farming practices, characterized by a generalized use 
of chemical fertilizers and pesticides together with fossil-fueled machinery, have 
caused a tremendous negative impact to the environment. Agriculture is responsible 
for 21.2% of global anthropogenic greenhouse gas emissions when including land-
use changes (Tubiello et al. 2015). Hence, a significant contribution to climate 
change and temperature increases is related with agriculture, and many national 
and international institutions recognize that novel agriculture paradigms are needed 
to address the current challenges of adaptation to and mitigation of climate change 
(Rhodes 2016). In this sense, remote sensing data used in precision framing, such as 
that obtained with satellite technologies, allow an efficient monitoring of crops by 
acquiring satellite data. These data allow monitoring yields (Segarra et al. 2020b; 
Wolanin et al. 2019) or fertilization needs (Nutini et al. 2018), as well as water-
related aspects, such as evapotranspiration and irrigation needs (Rozenstein et al. 
2018) to ameliorate the agricultural management impacts to the environment. Many 
satellites orbiting the Earth have relevant characteristics for agriculture monitoring 
(Segarra et al. 2020a), especially regarding the visible, near-infrared, and red-edge 
parts of the spectrum, which can be related to biomass, canopy vigor, or chlorophyll 
content (Gitelson and Merzlyak 1996). These plants’ physiological features can 
be related to agronomic characteristics of crops and drive management decisions. 
This information is central for crops production, irrigation planification, and yield 
stability. The role of remote sensing and spatial analysis in adaptation to and 
mitigation of climate change is certainly relevant (Yang et al. 2013); however,
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there are still scale and knowledge gaps which need to advance to find adequate 
management strategies when following these remotely sensed data in precision 
farming. 

Precision farming is an agricultural management paradigm which is based on 
observing, measuring, and responding to crops’ temporal and spatial variability 
with the aim to improve agricultural production sustainability (Cisternas et al. 
2020; Zhang et al. 2002). Hence, this paradigm goes beyond the classical “Green 
Revolution” framework, and the use of agricultural inputs is optimized regarding 
crop demands and its impacts to the agro-environment. The multispectral sensors 
mounted on board of satellites have resolution features (Adams and Gillespie 2006) 
which can be used to determine crops’ physiological and agronomic characteristics. 
The temporal and spatial variability of crops is central for its monitoring in precision 
farming, and it suits satellites resolution features. Satellites have a temporal 
resolution in the sense that an orbiting satellite has a specific period in which it 
returns to the same geographic area after orbiting the Earth, and the revisit time 
is central to follow the emergence of crops or features related to phenology and 
the evolution of the crop. Moreover, the spatial resolution of satellites is central 
to precision farming as agriculture fields and landscapes are generally heterogenous 
and meet singularities within the field that can be observed if the spatial resolution of 
the satellite is enough to differentiate certain objects. The spectral resolution refers 
to the number of bands and the width, namely, the parts of the reflected spectrum that 
satellite sensors can capture and the spectral resolution allows monitoring different 
physiological characteristics of the plant. Finally, the radiometric resolution refers 
to how much information the satellite sensors can capture. All these sensor features 
are central for understanding the corresponding plants’ agronomic and physiological 
characteristics. 

This chapter presents satellite imagery use in precision farming, namely, it is 
focused on understanding the nature of satellite data and match it with farming. 
Moreover, we present how data can be accessed and different data management 
approaches. Finally, we discuss the advantages and limitations of using satellite 
data for agriculture and the implications it has regarding global sustainability 
and planetary boundaries. This chapter mainly focuses on passive remote sensing, 
comprehending optical and thermal spheres. Active remote sensing, those sensors 
using radar and other active technologies are presented but do not occupy a central 
part of this section, reviews on the use of active sensors in agriculture can be found 
elsewhere (McNairn and Shang 2016). The novelty of remote sensing applications 
in agriculture at multiple levels (Weiss et al. 2020) or for specific satellites such 
as Sentinel-2 (Segarra et al. 2020a) have been addressed in the last years with 
increasing interest. In this chapter, I present a general overview of satellite data 
applications in agriculture and how these data can be accessed and managed to 
finally discuss the advantages and limitations of satellites application in agriculture 
regarding the multiscale framework of digital agriculture for a sustainable food 
production.
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2 Satellite Data and Farming 

Satellite remote sensing is a technological field which senses Earth surfaces using 
multispectral, hyperspectral, and other instruments mounted on satellites orbiting 
the Earth. These Earth observation systems are available as a diverse array of 
sensors and, in regard of the source of illumination used on the sensed objects, 
can be divided between passive and active sensors. Passive sensors, such as optical 
and thermal systems, rely on reflected sunlight or emitted thermal energy. Passive 
multispectral sensors can acquire data beyond the visible wavelengths (i.e., infrared 
and thermal wavelengths) across the electromagnetic spectrum (Lechner et al. 
2020). Earth surfaces reflect and absorb sunlight at different wavelengths; these 
differences in spectral reflectance properties (i.e., spectral signatures) work as 
distinct fingerprints to differentiate surface types (Shaw and Burke 2003) which 
allow, for instance, identifying different crop types. Active sensors, meanwhile, 
emit a pulse and measure the backscatter reflecting to the sensor. Such sensors can 
penetrate clouds and operate at night. Active sensors such as SAR (synthetic aper-
ture radar) on board of Sentinel-1 can differentiate crops features according to their 
surface roughness and the three-dimensional structure of the targets (d’Andrimont 
et al. 2021; Ndikumana et al. 2018). Other active sensors such as LiDAR (light 
detection and ranging or laser imaging, detection, and ranging) systems emit a pulse 
from lasers and measure distance to a target and the reflected light; differences 
in laser return times and wavelengths can then be used for making digital three-
dimensional representations of the target (Lechner et al. 2020). Satellites from the 
European Space Agency (ESA), such as ADM-Aeolus, has a LiDAR mounted on 
board, although its use is not focused on agriculture. Meanwhile, NASA (National 
Aeronautics and Space Administration) has several satellites with LiDAR such as 
ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2), which is used to monitor 
vegetation across the globe and determine vegetation structure, also with some 
potential applications for farming (Brown et al. 2023); in 2019, ICESat-2 data was 
made available (Martino et al. 2019). 

Remote sensing satellite sensors feature a trade-off between the spatial, temporal, 
and spectral resolutions (Shen et al. 2016). Spatial resolution refers to the pixel size, 
which is very relevant as the spatial dimension allows differentiating objects within 
the Earth surface. The temporal resolution is the frequency with which satellite 
images of the same area are taken, that is, the time it takes for the sensor to revisit 
the same location on Earth. This depends on the features of the satellite and the 
mission itself; while some satellites are single devices, others are a constellation of 
them, such as Sentinel-2 A+B which is a constellation of two twin satellites (A and 
B) and therefore synchronically orbit the Earth increasing temporal resolution with 
relevant applications in precision farming (Segarra et al. 2020a). Spectral resolution 
is also relevant, and optical sensors vary in terms of the number of bands (and the 
widths of those bands) from which data are captured. The spectral resolution allows 
to extract more accurate information on the sensed surface as several parts of the
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Fig. 1 Crop reflectance signature with the bands available for the satellite sensors (Landsat 
9, Sentinel-2, and PlanetScope). The spectral regions are indicated, and the agronomic and 
physiological traits described in relation with its application in agriculture and plant monitoring 

reflected spectrum can be detected. As an example, Sentinel-1 SAR has a six-day 
revisit period at a high spatial resolution of about 20 m. 

In Fig. 1, the spectral signature of a crop is shown together with satellites 
Sentinel-2, Landsat 9, and PlanetScope. The physiological characteristics of the 
crop vegetation cover are appreciated in the reflectance spectrum in the sense that 
in the visible green parts of the spectrum the electromagnetic radiation is reflected, 
while in the blue and red areas the reflectance is inferior as the absorption of sunlight 
by the chlorophylls to carry out the photosynthetic activity happens in these regions 
of the spectrum. Moreover, in the area between red and near infrared, the so-called 
red edge, the reflectance increases greatly as in wavelengths over 700 nm the energy 
of the photon is not sufficient to synthesize organic molecules (Taiz and Zeiger 
2015), and it is hence highly reflected. The differences between photosynthetic 
active regions (between 400 and 700 nm) and the near infrared allows understanding 
the status of the vegetation cover, the biomass, and the photosynthetic activity. 
It is the case of the widely used vegetation index NDVI (normalized difference
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vegetation index) (Rouse Jr. et al. 1974) which takes advantage of the physiological 
characteristics of the plant and the interaction with light to calculate a biomass 
indicator using the red a near-infrared bands of a multispectral instrument. The 
visible and near-infrared parts of the spectrum are related with the leaf pigments and 
plant cell structure. While shortwave infrared and thermal infrared are related with 
leaf biochemical and plant water content (Fig. 1). As observed in Fig. 1, the  three  
satellites presented have several bands which can sense several parts throughout the 
reflectance spectrum and can be related to physiological characteristics of plants. 
The spectral resolution allows monitoring specific characteristics of the crops. 

Field vegetation cover and greenness are crop traits which can be sensed 
with visible and near infrared spectral information obtained from multispectral 
instruments (Gracia-Romero et al. 2017). In this sense, this data can be used to 
detect plant stress (both biotic and abiotic), to assess the canopy cover as well as to 
understand growth dynamics or phenology. Moreover, the chlorophyll content can 
be monitored with mainly green and red-edge bands, specially the red-edge band is 
very relevant to monitor chlorophyll content which can also be used as a proxy for 
the nitrogen status of the plant (Segarra et al. 2022b). The photosynthesis activity 
of the crop is directly linked to the yield as it is the source of organic matter for 
the plant (Sanchez-Bragado et al. 2014); hence, understanding this activity through 
satellite imagery allows developing yield estimation models which can be useful 
for both prediction of final yield and guiding management action to stabilize the 
potential final yield. The shortwave infrared and the thermal infrared are especially 
relevant regarding the water status of the plant (Guan et al. 2017). The water that the 
plant needs to grow can be monitored with the evapotranspiration which is a balance 
of the water transpired through the plants’ stomata during photosynthesis plus the 
evaporation of the water in the plant and soil surfaces within the agricultural fields 
in this case. 

Generally, as shown in Table 1, the spatial resolution of thermal bands obtained 
from satellites is coarse. Sentinel-3 provides 1 km spatial resolution thermal data, 
while Landsat 9 provides 100 m resolution thermal bands. These resolutions do not 
provide sufficient precise information to understand at the field level, for instance, 
the water status of a crop and drive the management decision of the farmer, namely, 
applying the precision farming framework in the case of irrigation. However, the 
combination of other satellite spectral information such as higher-resolution 10 
to 20 m Sentinel-2 bands allows fine-scaling some thermal remotely sensed data 
and obtain higher-resolution evapotranspiration products such as Sen-ET (https:// 
www.esa-sen4et.org/) which resamples 1 km pixels into 20 m by combining it with 
Sentinel-2 higher-resolution images. A few decades ago, estimates of crop water 
demand from Landsat satellite data (Allen et al. 2005) were already addressed, 
however, for a regional level. The combination of thermal and multispectral 
visible and near-infrared satellite-based imagery to empirically solve surface energy 
balance equations and provide estimates of crop actual evapotranspiration from 
fractional vegetation cover and latent heat flux is almost operational currently for 
precision agriculture with the 20 m evapotranspiration grids available through the 
Sen-ET plugin from the ESA.

https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
https://www.esa-sen4et.org/
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Table 1 Satellite missions, data type, and characteristics 

Sensor 
type Satellite name Data type 

Revisit capability and spatial 
resolution 

Passive Sentinel-2 A+B Visible and multispectral Every five days, pixels of 10 to 
20 m size (archives since 2015) 

Sentinel-3 Thermal 1 km of spatial resolution 
Landsat 8 and 9 Visible, thermal, and 

multispectral 
Every 15 days pixels of 15 to 30 m 
size, thermal 100 m (archives since 
2013) 

Landsat 1, 2, 3, 4, 5, 
6, 7, 8 and 9 

Visible, thermal, and 
multispectral 

Archives available since 1972, 
ongoing active missions Landsat 8 
and 9 

PlanetScope Visible and multispectral Scenes taken daily, high-resolution 
images below 5 m 

WorldView-3 Visible and multispectral Scenes taken daily, spatial 
resolution of 0.34 to 4.1 m 

Pléiades 1A/1B Visible and near infrared Scenes taken daily, spatial 
resolution of 0.5 m 

Amazônia-1 Visible and near infra-red Every five days, pixels of 60 m 
Cartosat Visible Every five days, archives available 

since 2005 with Cartosat-1, 
current Cartosat-3 has a 0.25 m 
spatial resolution 

Active Sentinel-1 SAR (radar) Every six days, 20 m of spatial 
resolution 

ICESat-2 LiDAR 1 km spatial resolution and 90-day 
revisit time 

For the case of grain yield or nitrogen status monitoring, the applicability of 
satellite data in precision farming is more advanced. In this sense, some studies 
have addressed the use of Sentinel-2 images to map grain yield within field 
variability at 10 to 20 m resolution (Cavalaris et al. 2021; Hunt et al. 2019; 
Segarra et al. 2022a). These products take advantage of the several elements used 
in the digital agriculture paradigm such as geolocated combine harvesters, which 
allow obtaining the harvested grain, for instance, with a geolocated reference. In 
contrast with obtaining single field values on the yield, or carrying out crop cuts 
by researchers, the combination of these technological advances allows creating 
high-resolution within-field performance maps. Moreover, beyond the performance 
maps themselves, the spectral data obtained from satellites and its relationship with 
physiological characteristics of the plant can determine the logic behind higher and 
lower yielding areas within a field. Whether the water status, the emergence of the 
crop, or the nitrogen status, just to mention some, are the reasons behind having 
lower-yielding areas in a field, they can be understood by linking the reflectance 
characteristics with the actual understanding of the plant physiology, either by using 
vegetation indices as proxies or biophysical variables obtained from more complex 
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radiative transfer models such as those developed by (Weiss and Baret 2016) in the  
case of Sentinel-2 images. 

Hence, the capacity of satellite data is not limited to generate within field actual 
agronomic grain yield or nitrogen status maps but can moreover be used to assess 
the physiological features of the plant hindering the specific limitation of the crop 
to subsequently guide specific management decisions. The vast dimension and 
potentialities for the use of satellite imagery for precision agriculture could be 
totally deployed when hyperspectral openly available satellite data can be accessed 
for agricultural monitoring. At UAV (unmanned aerial vehicle) and aircraft level, 
such hyperspectral data have been used in biotic stress monitoring in olive groves 
(Poblete et al. 2021) or grain nitrogen status monitoring in wheat (Zhao et al. 
2019). However, these demonstrations of the potentialities of remote sensing do not 
represent the operationality of precision farming. Mainly due to the lack of general 
availability of data and the intrinsic cost of many of these devices which make it 
operationally unlikely for most farmers to use them. However, on the scientific basis 
and future application, these pathways are of pivotal interest. 

Beside hyperspectral instruments, which are in the frontier regarding agricultural 
applications, high-resolution multispectral instruments on board of commercial 
satellites capture images with potential applications in precision farming. As shown 
in Table 1, PlanetScope, WorldView-3, or Pléiades 1A/1B provide daily high-
resolution images. Pléiades 1A/1B are a constellation of two satellites which have 
very-high optical resolution (0.5 m resolution); the satellites have four bands: the 
red–green–blue (RGB) visible bands and near infrared. Meanwhile, Worldview-
3 multispectral instrument collects images at 0.31 m panchromatic (RGB) and 
1.24 m in the eight near infrared bands, 3.7 m in the eight shortwave near infrared 
bands, and a 30 m resolution in the clouds, aerosols, vapors, ice, and snow bands. 
WorldView-3 has bands for enhanced multispectral analysis (coastal blue, yellow, 
and red edge) designed to improve segmentation and classification of land features, 
such as agricultural production. In this sense, several authors have used WorldView 
high-resolution images in agriculture monitoring, such as for segmenting olive tree 
crowns (Solano et al. 2019) or macadamia trees (Johansen et al. 2020), which needs 
a resolution that Sentinel-2 and Landsat 9 do not have. PlanetScope multispectral 
instruments, on board of the three orbiting satellites that constitute the constellation, 
operate currently in eight bands: red edge, red, green (2), yellow, blue, coastal 
blue, and near infrared. A PlanetScope RGB scene is shown in Fig. 2 together 
with a Sentinel-2 RGB scene; as observed, the delineation of the agricultural fields 
has a higher resolution in the PlanetScope image (below 5 m spatial resolution) 
than in the Sentinel-2 images (10 m spatial resolution). In both cases, nonetheless, 
the agricultural fields can be clearly observed. Even within-field variability can be 
visually assessed in the case of the RGB scene, other parts of the spectrum, in the 
case of these two satellites shown, cannot be sensed with the current sensors or the 
resolution is too coarse, as discussed, for example, in the case of thermal bands 
before. Regarding the findings of (Skakun et al. 2021), by comparing several spatial 
resolution of satellite imagery, they observed that spatial resolution of below 3 m is 
critical to explaining 100% of the within-field yield variability for corn and soybean. 
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Fig. 2 RGB composites of Sentinel-2 and PlanetsScope scenes at different spatial resolution (10 m 
and 5 m, respectively), coordinates of the scene (N 10.215075 E -71.943003; decimal degree 
WGS84) 

The results also showed that moving to coarser resolution data of 10 m, 20 m, 
and 30 m reduced the explained variability to 86%, 72%, and 59%, respectively. 
I continue by analyzing data accessibility, management, and processing for the case 
of satellite imagery for precision farming. 

3 Data Access, Management, and Processing 

The access to satellite data is an important aspect to consider. Some missions such as 
those from NASA and ESA provide accessibility to archives when logging in with 
a user, as well as other mission with limited satellite data availability and coverage 
such as Brazilian and Indian space missions. In Table 2, the accessibility to several 
satellites is presented. The Copernicus mission archives can be accessed through 
the Copernicus Open Access Hub (https://scihub.copernicus.eu/); this provides 
complete, free, and open access to Sentinel-1, Sentinel-2, and Sentinel-3 products. 
On the Copernicus Open Access Hub, a user-friendly platform allows defining 
the regions of interests and downloading the satellite imagery directly from the 
previous year and on demand from previous years as data need to be restored 
from the archives. Regarding NASA, on the US Geological Survey site (https:// 
earthexplorer.usgs.gov/), Landsat archives are available since 1972 until the current 
ongoing active missions Landsat 8 and 9. Moreover, other satellites such as MODIS 
(Moderate Resolution Imaging Spectroradiometer) are available but their spatial 
resolution is not suitable for the case of precision farming, and it is rather used in 
ecosystems monitoring. Other missions from NASA such as LiDAR ICESat-2 can 
be accessed elsewhere (https://openaltimetry.org/data/icesat2/), albeit its processing 
needs more complex transformations and its use is not specifically intended to 
agriculture as its spatial resolution of 1 km is limiting. Commercial satellites 
have their own platforms where scenes can be purchased and downloaded. In 
Table 2, the access of several satellites is described. The European Union provides 

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
https://openaltimetry.org/data/icesat2/
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Table 2 Access to satellite data 

Satellite name Access and coverage References 

Sentinel-2 A+B Publicly accessible (European 
Commission and European 
Space Agency), global 

https://scihub.copernicus.eu/ 

Sentinel-3 
Sentinel-1 
Landsat 8 and 9 Publicly accessible (NASA, 

USA), global 
https://earthexplorer.usgs.gov/ 

Landsat 1, 2, 3, 4, 5, 6, 
7, 8 and 9 
PlanetScope Private, global on-demand https://www.planet.com/nicfi/ 
WorldView-2,3,4 Private, global on-demand https://www.maxar.com/worldview-

legion 
Amazônia-1 Publicly accessible (Brazilian 

Space Agency), global 
theoretically but on the catalog 
only scenes in South America 
are available 

http://www2.dgi.inpe.br/catalogo/ 
explore 

Cartosat Publicly accessible (Indian 
Space Research Organization), 
scenes only cover India 
subcontinent 

https://bhuvan-
app3.nrsc.gov.in/data/download/ 
index.php 

access to some scenes already purchased for European programs and to archives of 
PlanetScope and WorldView; however, it is only intended for research institutions 
and innovative projects, which need to be justified ( https://earth.esa.int/eogateway/ 
catalog/worldview-3-full-archive-and-tasking). 

The accessibility to these data is central for precision farming. In this sense, 
besides some exceptions made in research or conservation initiatives, private 
satellites such as WorldView-3 or PlanetScope offer expensive services that capture 
high-resolution images on demand. For most farmers on Earth, cooperatives, and 
even small to middle companies, these data are far from their economic capacities. 
Hence, by understanding that precision farming involves observing, measuring, 
and responding to crops’ temporal and spatial variability and sustainability, one 
recognizes the importance of open accessibility to satellite data in this agriculture 
paradigm. Moreover, as most research institutions cannot afford these images and 
the research carried out with these data is not always reproducible (due to copyrights 
on the data and paywalls to access it), the potentialities of high-resolution satellite 
imagery in precision farming cannot be fully deployed. 

Meanwhile, publicly accessible satellite data, such as Sentinel-2, features many 
studies and applications due to the open access nature of the data. Although the 
spatial resolution of 10 m cannot explain all the variability within an agricultural 
field, the resolution of the satellite makes it almost fully operational for its use in pre-
cision farming (especially in regions with standardized agricultural managements). 
Regarding its access, there are several ways to freely and openly download Sentinel-

https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-tasking
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2 imagery; one of them is the direct download of the imagery from ESA’s website, 
through Copernicus (https://scihub.copernicus.eu/dhus/#/home), as mentioned. Fur-
thermore, third-party tools for downloading the imagery are available. For instance, 
there is the US Geological Survey (USGS) (https://earthexplorer.usgs.gov/) which 
allows comprehensive searching and downloading of full-resolution Sentinel-2 
images as well as Landsat archives. On the open-source software QGIS, there are 
various plug-ins that take advantage of the ESA’s Application Programing Interface 
at the Copernicus Open Access Hub (https://scihub.copernicus.eu/apihub/). Further-
more, Google Earth Engine has daily updated copies of all the available Sentinel-2, 
Landsat, MODIS, and other accessible satellite data and provides both access to this 
data repository along with high processing capacity using their image processing 
servers. Many other similar tools and services exist on other software applications 
and web portals and are being developed continuously. 

National and international agencies such as ESA or NASA provide specific 
access tools, algorithms, and software in support of the use and processing of 
their satellites, such as the Sentinel-2 Toolbox within the Sentinel Application 
Platform (SNAP, https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2), which 
can be used for agriculture monitoring. Besides vegetation indices, more deter-
ministic biophysical parameters, such as LAI (leaf area index) or FAPAR (fraction 
of absorbed photosynthetically active radiation), can be calculated on SNAP with 
Sentinel-2 data following the algorithms developed by (Weiss and Baret 2016). Most 
of these algorithms ready for the user are developed with thousands of training 
and validation points and follow complex inverse radiative transfer models. The 
availability of these models already developed improved the capacities to take most 
from satellite information. 

Another key point is data processing. For most research teams, farmers, or local 
agricultural companies, the computing capacity to operate large datasets is limited, 
especially when requiring visual interpretation of imagery and heavy processing. 
In the next few years, data accessibility will likely be widespread, including 
images from high-resolution satellites with increasing processing capacity demands. 
Currently, data acquisition is no longer a major challenge with Landsat and Sentinel-
2 archives; instead, it is the capacity to process and analyze such large amounts of 
data (i.e., images from vast agricultural regions on a daily basis) that is becoming 
the bottleneck. In this sense, besides the features of satellites and the data that can 
be obtained, the large amount of data and its potential use has generated commercial 
analytically oriented initiatives such as Google Earth Engine (Gorelick et al. 2017) 
or EarthServer (Baumann et al. 2016) that process these data on high-capacity 
cloud servers. In this sense, RUS (Research and User Support) virtual machines 
from the ESA also offer high storage and processing capacities on cloud servers 
(unfortunately only accessible to European-based institutions). 

Besides the technological advancements in satellite remote sensing, a central 
aspect when working with its applications in agriculture is modelling crops devel-
opment and forecasting agronomic variables (i.e., yield, quality traits). Advanced 
models regarding artificial intelligence and machine learning, as a general frame, 
have shown considerable promise in agricultural remote sensing applications 
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(Chlingaryan et al. 2018). These computer algorithms are particularly useful for 
studying complex biological systems, as they can capture complex interactions 
among variables and find generalizable predictive patterns (Bzdok et al. 2018), 
which can eventually be useful in guiding agricultural management decisions and 
can take the most of the data obtained from the agricultural fields. The use of 
machine learning to retrieve crop performance has been considered one of the most 
important areas to develop associated with remote sensing and agriculture (Weiss et 
al. 2020). 

4 Advantages and Limitations of Satellites Use in Precision 
Farming 

The advantages of using publicly available satellite data for precision farming are 
multiple: having up-to-date crop-related data, having an overview of the status 
of crops, guiding specific and timely actions, reducing production losses and the 
impacts to the environment, and achieving a sustainable production. An example 
of satellite data potentialities being deployed in precision farming is the Belgian 
WatchITgrow platform (Curnel 2017). This platform uses Sentinel-2 data and 
algorithms developed by national research institutions in partnership with other 
administrations and farming enterprises to monitor potato production in Belgium at 
the field level. The farmers using the platform can access the information collected 
from the satellites and the products generated (potential yield maps, nitrogen status, 
etc.). Moreover, the data is secured for each user, and it is intended to improve 
the management of fields and is not sold to other enterprises. Namely, the data 
of the user always remain property of the user. The public agricultural institutions 
of the country and research institutes together with farmers and other agricultural 
enterprises can lead the creation of accessible platforms to guide specific precision 
farming management decision, such as in Belgium and the platform WatchITgrow 
to monitor potato production with Sentinel-2 data. 

Satellite data applications in precision farming present significant potentialities in 
standardized and relatively homogenous agricultural settings, such as those common 
in industrial agriculture. However, most farming activities in the Earth are carried 
out in relatively heterogenous agricultural landscapes, with polycultures, trees, 
and herbaceous crops being simultaneously grown within the field, and relatively 
small fields (Altieri and Nicholls 2017). In such agricultural settings, in contrast 
with middle-resolution satellites, high-resolution satellites can best capture the 
variability within the fields and give a significant overview of crops status to guide 
the management. It is true, however, that Sentinel-2 imagery has been used in 
assessing heterogenous and diverse agricultural landscapes, such as in the case of 
Mali (Lambert et al. 2018), with relatively promising results. Nonetheless, higher-
resolution WorldView scenes were also used to map trees within the field and clear 
pixels for an improved assessment of field’s main crop. 
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The current availability of satellite data, which has significant restrictions to 
high-resolution scenes, is an important limitation for heterogenous agricultural 
landscapes. Such landscapes are often located in low-income countries in which 
securing yield and optimizing the use of inputs is pivotal. Moreover, in these regions, 
the complexity of interactions in agricultural production makes it difficult to monitor 
many variables. For instance, in the case of monitoring biotic stresses at regional 
level and guiding specific field-level management approaches, Buchaillot et al. 
(2022) observed that PlanetScope high-resolution images offered greater benefits 
in contrast with Sentinel-2 imagery. However, the complexity on using these scenes 
is also presented, especially due to the polycultures and diverse management in 
the fields, as well as the heterogenous agricultural mosaic present in Southern 
and Eastern Africa. Therefore, in heterogeneous agricultural landscapes, precision 
farming has several limitations regarding the sensing of the actual crops in the field, 
the sizes of the fields, as well as the management approaches, and the resources 
that farmers have in order to address them. In this sense the multiscale approach 
of digital agriculture together with the understanding of agroecological dynamics 
(many retrievable with remote sensing data) together with high-resolution satellite 
data can support the application of precision farming in such agro-environments. 

5 Conclusion 

In summary, in this section, I have presented satellite imagery use in precision 
agriculture. After defining the nature of satellite multispectral data, I have linked 
it with plants physiological and agronomic characteristics for its application in 
precision farming. Moreover, several satellites have been presented, regarding 
data access and coverage, as well as their resolution features, which are pivotal 
to understanding the data needed for its application in precision farming. Data 
management and processing have also been presented in regard with the limitations 
that processing and analyzing such large amounts of data (i.e., images from vast 
agricultural regions on a daily basis) have. In this sense, high-processing capacity 
cloud servers, such as Google Earth Engine, have been introduced. 

I conclude that paywalls to high-resolution satellite data limit the application 
of precision farming in heterogenous agricultural landscapes, which are especially 
present in low-income countries. In contrast with the potentialities that satellite 
imagery uses in precision farming have in standardized agricultural settings, in 
heterogenous agro-environments, the variability of crops within field level is not 
easily retrievable with current publicly accessible data. Meanwhile, I conclude that 
in industrial agriculture settings, openly accessible satellite imagery can contribute 
significantly to overview the status of crops, guide specific and timely actions, and 
reduce production losses and the impacts to the environment. Satellite imagery 
has a spatial dimension which covers field to regional levels; moreover, the 
assessment of agricultural performance can be matched with several agroecological 
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and environmental levels. Hence, satellite imagery plays a pivotal role in the 
multiscale framework of digital agriculture for a sustainable food production. 
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Applications of UAVs: Image-Based Plant 
Phenotyping 

Suchitra M. Patil, Sunita Choudhary, Jana Kholova, Magesh Chandramouli, 
and Adinarayana Jagarlapudi 

Abstract Plant phenotyping plays an important role in the qualitative and quan-
titative assessment of plant growth in its growth environment. Traditional data-
collection process used in plant breeding applications is mostly manual, time-
consuming, labor-intensive, and highly subjective. Recent advancements in imaging 
sensors and platforms have significantly enhanced the speed and precision of image-
based automated high-throughput plant phenotyping (HTPP). Current automated 
HTPP is mostly done in controlled environment where the plants are moved to phe-
notyping platforms. Such technologies are not feasible for open-field phenotyping. 
Satellite-based remote sensing has been used from decades but is not much effective 
in small-scale field phenotyping. Nowadays, satellite imagery with good resolution 
of up to few centimeters (~10–50 cm) is available, but due to fixed revisit time its 
temporal resolution is still limited. For crops’ trait estimation, high spatial, spectral, 
and temporal resolutions are mandatory. On the other hand, unmanned aerial vehicle 
(UAV)-drone-assisted image-based HTPP is current state-of-the-art for open-field 
phenotyping, and is known for providing data with high spatiotemporal resolution, 
with wide coverage in shorter duration. UAV (drone)-assisted HTPP is used in 
quantitative phenotyping for traits like plant height, biomass, and leaf area index, 
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and qualitative phenotyping for traits like leaf nitrogen content; it is also used in 
biotic and abiotic stress quantification in plants. As of now the UAVs (drones) are 
popular for scouting and pesticide spraying in open field. The use of UAVs (drones) 
for phenotyping is a newer research area that is not matured enough till date. The 
main objective of this chapter is to explore the use of UAVs (drones) with different 
types of sensors mounted on it, for lean field phenotyping so that it will be used to 
assist the breeders in speeding up the selective breeding process using image-based 
HTPP with high precision and accuracy. 

Keywords High-throughput plant phenotyping (HTPP) · Unmanned ariel vehicle 
(UAV) · Image-based phenotyping 

Abbreviations 

AGBM Above ground biomass 
ANN Artificial neural network 
CCC Canopy chlorophyll content 
CGM Crop growth model 
CHM Crop height model 
CI1 Red-edge chlorophyll index 1 
CI2 Red-edge chlorophyll index 2 
CIGR Chlorophyll index green 
CIRE Chlorophyll index red edge 
CIVE Color index vegetation index 
CNN Convolutional neural network 
CSM Crop surface model 
CWSI Crop water stress index 
DCNN Deep convolutional neural network 
DEM Digital elevation model 
DSM Digital surface model 
DVI Difference vegetation index 
EVI Enhanced vegetation index 
EVI2 Enhanced vegetation index 2 
ExG Excessive green index 
ExG-R Excess green index minus red 
FAPAR Fraction of absorbed photosynthetically active radiation 
FCOVER Fractional vegetation cover 
GCC Green chromaticity coordinate 
GI Green index 
GLI Green leaf index 
GLM General linear model 
GNDVI Green NDVI 
GNYLI Named by the developers GNYP and LI 
GRVI Green red vegetation index 
GWAS Genome-wide association study (two step mean adjusted model) 
GY Grain yield 
HS Hyperspectral 
iPLS interval partial least square 
KNN K nearest neighbour 
LAI Leaf area index
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LCC Leaf chlorophyll content 
LDM Leaf dry matter 
LM Linear model 
LNA Leaf N accumulation 
LR Linear regression 
LSWI Land surface water index 
MCARI Modified chlorophyll absorption ratio index 
MCARI2 Modified chlorophyll absorption ratio index 2 
MLM Mixed linear model 
MLR Multiple linear regression 
MS Multispectral 
MSAVI Modified soil-adjusted vegetation index 
MSI Moisture stress index 
MSR Modified simple ratio 
MTVI Modified triangular vegetation index 
MTVI2 Modified triangular vegetation index 2 
NDI Normalized difference index 
NDRE Normalized difference red edge 
NDVI Normalized difference vegetation index 
NDWI Normalized difference water index 
NGRDI Normalized green red difference index 
NIR Near infrared 
NLM Non-linear model 
NLR Non-linear regression 
NNI Nitrogen nutrition index 
NPLR Non-parametric linear regression 
NPRFM Non-parametric random forest model 
NRMSE Normalized root-mean-square error 
OBIA Object based image analysis 
OSAVI Optimized soil-adjusted vegetation index 
PDM Plant dry matter 
PGLM Parametric generalized linear model 
PLR Parametric linear regression 
PLS Partial least squares 
PLSR Partial least squares regression 
PNA Plant nitrogen accumulation 
PRI Photochemically refractive index 
R Pearson’s correlation coefficient 
RDVI Renormalized difference vegetation index 
REIP Red edge inflection point 
RERVI Red edge ratio vegetation index 
RF Random forest 
RFR Random forest regression 
RGBVI Red–green–blue vegetation index 
RTM Radiative transfer model 
RTVI Red edge simple ratio 
RVI Ratio vegetation index 
SAR Synthetic aperture radar 
SAVI Soil-adjusted vegetation index 
SIPI Structure-insensitive pigment index 
SM Surface model 
SR Simple ratio 
SVM Support vector 
SVR Support vector regression
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SWIR Short-wave infrared 
TCARI Transformed chlorophyll absorption reflectance index 
TVI Traiangular vegetation index 
VI Vegetation index 
VNIR Visible and near-infrared 
WDRVI Wide dynamic range VI 

1 Introduction 

The population of the world is about to reach 11 billion by 2100. Increasing demand 
for food, changes in climate, and limited arable land pose immense challenges for 
sustainable agriculture. For example, as an effect of global warming, more frequent, 
severe flooding and drought are experienced, which destroys the crops. To face this 
food security challenge, breeders and crop scientists are working together on the 
genetic improvement of crops and crop management practices. One particular effort 
focuses on crop cultivars improvement programs for breeding a new ideotype of 
crop that can sustain the adverse climate conditions (excessive temperature, saline 
soil or diseases, pest attack, etc.) (Donald 1968) and still provide higher yields with 
good quality. Crop productivity deteriorates if crops fail to adapt to the variability 
in climate conditions. To handle such scenarios, the agricultural community needs 
an in-depth understanding of the relationship among genotype, environment, and 
phenotype (physical and biochemical characteristics) in the selective breeding 
programs. On the other hand, improving crop management practices is also equally 
important as it explores the adaption of advanced farming concepts like precision 
farming. In precision farming, right input is provided in the right quantity at right 
time to maximize productivity and quality where an agricultural production system 
with technological innovations like sensing technologies, automation, and data 
science techniques is followed (Karunathilake et al., 2023). 

Recent advancements in plant phenotyping platforms and imaging sensors are 
game changers in high-throughput plant phenotyping (HTPP) with high-precision 
phenotyping. The popular HTPP platforms use potted plants grown in a controlled 
environment (like a greenhouse) that are often taken to the phenotyping platforms, 
which are mostly the conveyer belt (Demidchik et al. 2020). Potted plants are placed 
on the conveyer belt and the belt moves at a fixed speed. Various imaging sensors, 
as per applications requirement, are installed around the belt, as per predefined 
arrangement (imaging angle, height, etc.). These sensors image the plants moving 
on conveyer belt from a particular angle. Another HTPP platform is stationary 
platform, where, unlike the conveyer belt-based platform, the plant is fixed at one 
position (on table) and the sensor moves to the plant with the help of robotic system 
to capture the images (Demidchik et al. 2020). This process generates thousands 
of images per second. Such huge image databases can be used in data-hungry 
advanced machine learning (ML) and deep learning (DL) algorithms for automatic 
phenotyping of traits like leaf count, leaf angle, leaf length, stem height, and stem 
diameter. (Demidchik et al. 2020).
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In a selective breeding program, thousands of crop lines are crossed to get new 
cultivars and timely quantification of several traits in resultant cultivars is needed. 
It is not feasible to use greenhouses to accommodate such a huge number of crop 
lines. Hence, generally such experimentation is carried out in the open field wherein 
the technologies that use a fixed platform for image-based HTPP are not suitable 
for such high-scale breeding programs (White et al. 2012). Field phenotyping can 
be intensive with highly equipped phenotyping platforms with sensors, weather 
station, shelters, etc. installed in field itself, or it can be lean (Pieruschka and Schurr 
2019), where minimal equipment, such as a drone (type of unmanned aerial vehicle 
[UAV], which is not piloted remotely by human)-mounted imaging sensor, is needed 
(Morisse et al. 2022). Hereafter, drones are referred to as UAVs in this chapter. 
Breeders can track genotype performance in field plots using a UAV, which is a 
mobile image-based HTPP platform on which various sensors can be attached and 
farmers can use cutting-edge technology for precise crop management (Pieruschka 
and Schurr 2019). This chapter provides an overview of image-based HTPP and 
types of UAVs, sensors, and photogrammetry software suitable for agriculture 
applications, especially for morphological, physiological, and stress phenotyping 
(Danzi et al. 2019; Pasala and Pandey 2020). UAVs are flown at low altitude with 
different types of imaging sensors mounted on it. Generally, even if UAV is flown 
at high altitude, it generates imagery with higher spatial resolution compared to 
satellite (Anderson and Gaston 2013). With different advanced sensors mounted 
on UAV imagery, it is possible to capture an imagery with much higher spectral 
resolution (Colomina and Molina 2014). Unlike satellites, revisit time of UAVs 
is not fixed, so user can plan the frequency of the flying as required and hence 
higher temporal resolution can also be obtained. Using such high spectral and 
spatiotemporal resolution imagery, it is possible to perform image-based structural 
and physiological traits phenotyping as well as quantification of both biotic and 
abiotic stresses in plant with high precision. 

The chapter focuses on the feasibility of UAV as image-based HTPP platforms 
for lean field phenotyping. Breeders can accelerate the process of selection of 
lines in the selective breeding process, where multiple lines are crossed to get 
new cultivars, for which timely quantification of traits on large scale is needed. 
The chapter starts with Sect. 1 introducing the concept of image-based plant 
phenotyping, along with its pros and cons. Furthermore, in Sect. 2, an introduction 
to HTPP platforms is covered. In Sect. 3, UAV as HTPP platform for lean field 
phenotyping is discussed, where different types of UAVs, various imaging sensors 
compatible with UAVs, software for UAV mission planning, and software for UAV 
imagery processing are covered. In Sect. 4, the general framework used in UAV-
assisted image-based phenotyping is discussed. In Sect. 5, 43 latest research papers 
covering different crop species, where UAV-assisted image-based phenotyping is 
used, are summarized. In Sect. 6, different real-time challenges faced in UAV-
based lean field phenotyping are discussed and the chapter ends with a summary 
section.
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2 Image-Based Plant Phenotyping 

Plant phenotype refers to the set of visible biophysical characteristics of a plant, 
and it is determined by the interaction between genotype (the genetic makeup of 
the plant) and environmental conditions in which the plant actually grows (Hickey 
et al. 2019). This interaction is shown in Fig. 1. A quantitative assessment of 
a plant’s morphological, physiological, and component traits at the cell, tissue, 
organ, plant, canopy, or population level is known as phenotyping (Demidchik et 
al. 2020). Phenotypic traits can be as simple as morphological parameters such 
as leaf surface area, stem diameter, leaf angle, width, the height of the plant, 
tiller count, etc., which are related to the architecture of the plant or can be as 
complex as the physiological principles, such as the evapotranspiration rate, which 
controls the plant functions. Measuring morphological traits (leaf length, width, 
area, stem diameter, etc.) is easier compared to quantification of functional or 
physiological traits (water content, chlorophyll contents of plant, temperature of 
individual leaf) (Das Choudhury et al. 2020). In selective breeding applications, 
breeders monitor and analyze different traits controlling plant growth on large 
scale and on regular basis. This can be achieved collectively with effective image 
processing for feature extraction and machine learning (ML) for data analysis. 
Recent ML literature has a deep learning (DL)-based state-of-the-art explored for 
various image-processing tasks like object detection, localization, image semantic 
segmentation, and classification. These techniques can help the plant science 
community to close the genotype-to-phenotype gap by accelerating research in plant 

Fig. 1 Phenotype is function 
of environment and genotype. 
(Source: Furbank and Tester 
2011)
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phenotyping. Some DL techniques such as deep convolution networks combine 
feature extraction and regression/classification into a single pipeline, which is 
trained end to end simultaneously. These techniques do not rely on hand-engineered 
features that are based on human expertise and hence prone to error sometimes. 
Also, ML/DL-based algorithms have the potential to improve the robustness of 
image-based phenotyping and support automatic extraction of more complex and 
abstract phenotypic features required for the genotype–phenotype association. 

Phenotyping using traditional tools and techniques is subjective and generally 
relies on manual measurements of selected traits from small number of samples 
of plants; hence, it is called a low- or limited-throughput technique. In field-based 
phenotyping platforms, the throughput is in terms of plant population (White et al. 
2012). Manual measurement of morphological traits does not require any special 
skill as such, but obtaining frequent and robust measurements of multiple plant 
traits across many cultivars becomes a labor-intensive, error-prone, and imprecise 
task. Also, such techniques cannot be extended to quantify functional traits related 
to dynamic and complex plant processes (Pasala and Pandey 2020). For example, 
phenotypes such as early stress quantification cannot be performed directly in 
many cases. This is a phenotyping bottleneck. Hence, as an improvement in 
phenotyping efficiency and throughput, simultaneous measurement and analysis 
of environmental conditions is needed. To address this bottleneck it is required to 
develop a fully automatic, high-resolution, high-throughput system for quantitative 
measurement of plant structure- and function-related traits with a capacity to 
perform a comprehensive analysis of phenotypes. Image-based phenotyping offers a 
viable solution to overcome these limitations, wherein plant traits are automatically 
extracted from images with the help of image analysis algorithms. 

Images needed for image-based plant phenotyping are generally acquired by 
HTPP platforms, in which robotic arms or/and conveyer belt are used to image 
the plants grown in controlled environments like greenhouses. Both, ground-based 
and aerial imaging platforms are used in fields to take pictures of plants and 
crops, matching the scale and throughput of image-based phenotyping (Mochida 
et al. 2018). However, a key requirement for such image-based phenotyping tools 
is the ability to automatically convert plant images into accurate and reliable 
phenotypic measurements across a wider range of phenotypes for different scientific 
applications. With the advancements in imaging techniques, multiple images of 
plants from different angles are captured and further temporal dimension can also be 
added to same. Similarly, the use of thermal infrared imaging for water stress detec-
tion, quantitative analysis of photosynthesis by chlorophyll fluorescence imaging, 
near-infrared spectroscopy for identifying nutrient deficiencies related to changes 
in plant organs, visible–near-infrared hyperspectral imaging for shoot biomass 
estimation, and short-wave infrared hyperspectral imaging for water absorbance 
allows getting complex phenotype information (Demidchik et al. 2020). All these 
images obtained from the sensor can be further analyzed using advanced image-
processing algorithms, for instance, image segmentation can be used for automatic 
and pixel-wise phenotype data extraction for various phenotypic traits, such as leaf 
length, width, area, plant height (PH), and stem diameter, and functional traits



348 S. M. Patil et al.

such as chlorophyll content, etc. (Lobet et al. 2013; Gibbs et al. 2017). Image-
based phenotyping techniques have been used for the quantification of a wide 
range of properties of roots, shoots, leaves, etc. by constructing a 3D model of the 
plant using the images captured from different view angles (Gibbs et al. 2017). 
A simple analysis of the color of plant images can be important while studying 
abiotic and biotic stresses experienced by the plant. As discussed above, in high-
throughput image-based plant phenotyping, the major bottleneck is an assessment 
of different phenotypes for dense population. Hence, here the main focus is on 
building high-throughput automatic pipeline for processing and assessment of the 
plant phenotypes on large scale. 

2.1 Advantages and Disadvantages of Image-Based Plant 
Phenotyping 

Advantages 
• This methodology is non-destructive. 
• The same plant can be imaged to obtain a sequence in its entire life cycle. 
• Imaging the entire plant or even the entire field in one single image is possible. 
• Analysis of a single image enables quantification of various characteristics. 
• Infrared data facilitates obtaining and assessing the data that cannot be seen by 

human eyes. 

Disadvantages 
• High cost of imaging setup consisting of hyperspectral cameras, drones, and 

controlled environment chambers. 
• Data analytics software must be capable of handling complex and huge data with 

superfast computing. 

2.2 High-Throughput Plant Phenotyping Platforms 

Of late, both environmentally controlled plants and field phenotyping platforms 
have witnessed significant advancements. Generally, phenotyping in environmen-
tally controlled conditions (greenhouses) is used in educational and some research 
institutes that conduct research of small potted plants such as Arabidopsis and some 
other crops/plants (Demidchik et al. 2020). Crop breeders can also use them in 
a selective breeding program when a limited number of lines are used. In such 
platforms, in-depth measurement of plants is taken with the help of imaging sensors 
mounted on robotic arm, or fixed around conveyer belt, and image analysis tools 
integrated as a system. There are many limitations for plant growth in a controlled 
environment. For instance, factors such as limited soil and small spaces generally
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affect flower and seed production in such plants compared to plants in open fields. 
However, certain obstacles like wind speed, light, evaporation, pest, and diseases 
attack are comparatively lesser than in an open-air environment. Measurement 
of abiotic stress is restricted in controlled environments (Gilliham et al. 2017), 
so breeders and crop researchers have now focused on field-level enhancements 
in yield productivity or abiotic stress resistance quantification using field-based 
phenotyping. In field-based phenotyping platforms, the throughput is in terms of 
plant population (White et al. 2012). Furthermore, field-based platforms such as 
ground-based platforms (modified vehicles) and aerial platform with remote sensing 
sensors mounted on it have great potential, because it covers wider area, real-time 
data are acquired by sensing plant conditions, and it has some useful instruments, 
such as remote sensing tools, a global positioning system (GPS), and geographic 
information system (GIS) for exploring spatial changeability (Kang et al. 2019). 
Pheno-towers is one such advanced platform, which has eight sets of sensors, 
and two 3D flight cameras, an RGB (red–green–blue) camera, three laser distance 
sensors, a spectral imaging camera, and two light curtain imaging structures. This 
platform is capable of collecting data on the height of plants, fresh weight density, 
moisture content, growth stage, and tiller density nitrogen content of all plots by 
screening almost 250 plots per hour (Busemeyer et al. 2013; Li et al.  2014). 

Plant phenomics deals with the registration, accumulation, and mathematical 
analysis of arrays of data on the phenotype of plant organisms. This field is 
undergoing rapid development and has opened up completely new possibilities 
for fundamental research on genotype–phenotype relationship, which is critical for 
the transition to high-tech agriculture and forestry (Demidchik et al. 2020). Like 
genomics, where the entire sequenced genome is completely characterized, in phe-
nomics, the entire phenome cannot be characterized due to its highly dynamic nature 
and multidimensional properties. Nevertheless, one can go for high-throughput 
phenotyping on a set of certain traits; here throughput refers to the number of 
individual units at certain structural levels in plants. Dimensionality addresses 
various phenotypic characteristics, such as plant compositions, physiology, and 
performance in different spatial and temporal systems, along with the number 
of genotypes and the different environmental conditions considered at the time 
of phenotyping (Dhondt et al. 2013). ML, especially DL–based techniques, can 
provide robust measurement, and this can be extended to handle complex phenotype 
too, considering the above issues of invariant features and dimensionality (Ubbens 
et al. 2018). 

Aerial phenotyping platform is a good alternative to overcome the difficulties 
faced in ground-based phenotyping platforms. Aerial phenotyping is a quick 
and non-invasive method of quantification of plants and plots of a plant (large 
population). The primary aerial phenotyping platforms use UAVs, which can be 
small-size aeroplanes or multicopters with considerable payloads (4–10 kg) needed 
for this task. Multicopters are more popular for lean field phenotyping. More on 
UAVs is discussed in the next section.
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3 UAV for Image-Based Plant Phenotyping 

As far as lean field phenotyping is concerned, the use of UAV-based high-resolution 
imagery for phenotyping is current state-of-the-art (Colomina and Molina 2014). In 
the USA and many Asian countries, for crop breeding, the steep use of UAV-based 
imaging for data collection is noticed. It is due to its reliability, cost-effectiveness, 
and resolution. Current applications of UAV imagery are seen in weed detection, 
pathogen detection, drought stress assessment, nutrient status, growth assessment, 
and in yield prediction (Maes and Steppe 2019). 

3.1 Types of Drones Used in Phenotyping 

Remote sensing using UAVs is proving to be a game changer in precision agricul-
ture. UAVs have sorted out different problems, such as cloud cover effect, temporal 
and spatial resolution, faced in satellite-based remote sensing. Researchers use 
unmanned aerial systems (UAS) as an umbrella term to refer to the entire system 
comprising of UAVs, all other equipment, and the software (for flight mission 
planning as well as data analysis) related to it. This can include global positioning 
system (GPS), communications equipment, and sensors. Rotary and fixed wings are 
two popular types of UAV described below. 

Rotary UAVs are generally recognized by the number of rotors (propellers) they 
have, like a quadcopter has four rotors, a hex-copter has six rotors, and so on. These 
UAVs have the helicopter-like appearance and are more suitable for agricultural 
applications like field scouting (Khot n.d.). It is possible to hover rotary UAV over 
the specific research plots or some important area in the experiment, to image that 
specific area for more detailed analysis. They have vertical landing and take-off 
ability and hence need minimum landing space. The speed limit for such UAVs is 
10–20 mph and is mostly unstable with wind speeds of more than 15 mph. Rotary 
UAVs are better for small-size fields due to their shorter battery life (most of the 
battery power is consumed for operating the multiple rotors). 

Single-rotor UAV has a larger rotor on top and a smaller rotor at the tail. These 
UAVs can fly for a longer time compared to multirotors as these are operated by 
gas engines. These UAVs have heavier payload capability than fixed wings, but it 
is challenging to fly such UAVs, which comes with operational dangers due to their 
larger rotor (Khot n.d.; Kakarla and Ampatzidis 2021). 

Fixed-wings UAVs are used for longer flights of 1–2 h duration. They have longer 
battery life as they use the aerodynamic lift provided by their structure to stay 
floating in the air. These UAVs can operate at the maximum speed of 70 miles/h, 
but it is not recommended, as such high speed will induce blur in images. It requires 
a more prominent and uniform area for landing and take-off. This UAV cannot be 
hovered over a specific location and need a lot of training to fly it. Fixed wings are 
costlier than rotary UAVs (Kakarla and Ampatzidis 2021).
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3.2 Types of Sensors 

To capture the images, different imaging sensors like RGB, multispectral, hyper-
spectral, thermal, and light detection and ranging (LiDAR) can be mounted on 
UAVs. RGB camera is used for visible spectrum (450–750 nm; number of bands 
≤3) imaging to cover larger areas and capture more images to get higher spatial 
resolution. The multispectral camera is an advanced version of RGB camera with 
imaging capability till the infrared region (450–1000 nm; 4–10 bands) whereas the 
hyperspectral camera can capture the higher spectral resolution (450–1000 nm) with 
100–200 very narrow bands. LiDAR sensors can be single as well as multiband. 
Researchers convert this spectral information into measurable quantities using band 
arithmetic-based vegetation indices (VIs). Later, these VIs can be correlated with 
various traits of crops, for instance, the use of hyperspectral images with ML for 
the detection, identification, and differentiation of plant diseases having the same 
visual characteristics (Hariharan et al. 2019; Abdulridha et al. 2020). Similarly, 
thermal sensors measure the thermal energy emitted by an object at the wavelength 
matching its surface temperature, and hence the thermal cameras can be utilized in 
measuring parameters such as canopy temperature and based on it to determine the 
canopy waters stress required in precision irrigations (Zhou et al. 2020) and in leaf 
moisture detection (Swarup et al. 2020). In agricultural applications, LiDAR sensors 
are used to get high-resolution DEM (digital elevation model) and DSM (digital 
surface model) from which crop height, crop density, etc. is computed (García et al. 
2018). Comparisons of different sensors discussed above are represented in Table 1 
and discussed in Guo et al. (2021). 

Before purchasing the sensors, the application for which it is used and its 
compatibility with the UAV on which it will be mounted need to be checked 

Table 1 Comparative analysis of various imaging sensors compatible with UAVs (Guo et al. 2021) 

Sensor 

No. of bands 
(commonly 
available) 

Spectral range 
covered Cost Weight 

Resolution 
(megapix-
els) Ease of use 

RGB 3 450–750 nm Low Low-
medium 

Low-high Easy 

Multispectral 3–10 450–1000 nm Medium Low-
medium 

Medium Medium 

Hyperspectral >10 450–1000 nm High High Low Difficult 
Thermal 1 3500– 

7500 nm 
Medium Low Low Medium 

LiDAR 1a 905 nm Medium-
high 

Medium-
high 

Medium-
highb 

Difficult 

aThere are some multiband LiDARs 
bLiDAR resolution is given as point cloud density 
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3.3 Flight Mission Planning and Photogrammetry Software 

As mentioned earlier, UAS is the entire system comprising of UAVs, sensors, and 
different software required for operating UAV and processing UAV imagery. 

Flight Mission Planning Before taking flight using a UAV, it is very important to 
plan the flight mission carefully. In this mission planning, the region over the flight is 
to be taken is marked in satellite map and different parameters like flight speed, fly-
ing altitude, front and side overlap, camera aperture and shutter speed, and imaging 
angle etc., can be set. There are several software and mobile applications available 
for flight mission planning, for instance, DroneDeploy (www.dronedeploy.com n.d.) 
is paid software and few free software include Pix4Dcapture (Pix4D n.d.), DJI GS 
Pro (DJI Official n.d.), Precision Flight (flightsims-dev.10web.site n.d.), etc.; more 
on such software is discussed in Kakarla and Ampatzidis (2021). Furthermore, this 
imagery is processed using photogrammetry software. 

Photogrammetry Software Photogrammetry is the key technique used in UAV-
based agricultural applications. Photogrammetric techniques also have played 
significant role in 3D reconstruction employed in geographic information systems 
and various other areas with considerable success (Chandramouli et al. 2016). In 
this study, geometric information is extracted in three dimensions from the high-
resolution imagery (Kakarla and Ampatzidis 2021) taken with 70–90% front and 
side overlap, using structure from motion algorithm. First, the common tie points 
from selected pairs of images are obtained, and then a dense 3D point cloud 
is generated. Further, this point cloud is rasterized to get the digital elevation 
model (DEM), and using DEM a single orthomosaic from these multiple images 
is obtained. Various photogrammetry software that can be used for this purpose are 
Pix4D (Pix4D 2011) and Agisoft Metashape (Agisoft 2019), which are proprietary, 
and OpenDroneMapper (WebODM) (OpenDroneMap 2018), a web-based open-
source software. Furthermore, with use of various software, such as QGIS (QGIS 
2017) and ArcGIS (Esri 2019), this orthomosaic is analyzed and processed to extract 
the valuable information (traits) based on vegetation indices that the crop growers 
and researchers are interested in. 

4 Framework for UAV-Based Phenotyping 

As discussed in the previous sections, the raw imagery is captured by on-board 
application-specific sensor. Photogrammetry software Agisoft Metashape provides 
a facility to check the quality of these raw images based on contrast. Good-
quality image (which has good contrast and no blur) is further processed with the 
help of photogrammetric software. In this process, the imagery is first aligned. 
In the process of alignment, the common tie points are selected from the pair of 
overlapping images using shift invariant feature transform (SIFT) technique (Zhao 
et al. 2016), to get sparse point cloud. Furthermore, using structure from motion 
technique the dense point cloud is generated from sparse point cloud. This dense 
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point cloud is rasterized into 2D digital surface model (DSM) also known as DEM 
in Agisoft. Finally, the orthomosaic is generated from the DEM. DEM is processed 
further to get crop height information. Orthomosaic is processed by some other 
software like ArcGIS and QGIS to extract the individual plot image from the entire 
field and from that plot level information like representative plant height (PH), 
nitrogen content (N), and leaf area index (LAI) of the plot is extracted. Furthermore, 
the extracted information is correlated with the observed ground truth data using 
statistical methods like linear regression. For ground truth generation, manual 
destructive techniques are used. Plant height readings are measured with rulers for 
selected plant samples from plot. For leaf area, the Licor 3100 (www.licor.com 
n.d.) instrument is used and all the leaves of these sample plants are scanned; 
nitrogen content is obtained using SPAD-502 (www.specmeters.com n.d.), such as 
spectroradiometers. Advanced ML and DL algorithms extract these features directly 
from the images and these are further correlated with ground truth using CNN-
based predictive modeling. The information extracted from the image correlates 
with many traits, such as 2D canopy cover, leaf area, crop height, canopy nitrogen 
content, canopy temperature, and canopy water content. Based on these traits further 
assessment of stress can be done. For instance, using canopy water content, water 
stress quantification is done, and using canopy cover and crop height information, 
crop’s biomass prediction is done. The general framework for UAV-assisted image-
based HTPP is shown in the Fig. 2. 

Fig. 2 General framework for UAV-assisted image-based high-throughput plant phenotyping 
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5 Applications of UAV in Plant Phenotyping 

UAV drones are known as movable plant phenotyping platform suitable for lean field 
phenotyping that assists in image-based HTPP. The UAV-captured high-resolution 
imagery can be processed to extract the canopy structure-related information, which 
is used for quantification of morphological traits such as plant height using DSM 
(Bendig et al. 2015), 2D canopy cover, or 2D leaf area (Makanza et al. 2018). The 
high spectral resolution can be used to extract the spectral information from the 
crops in various narrower bands, and further, using the vegetation indices as metric 
for spectral transformation, the presence and state of vegetation can be quantified. 
During spectral transformation, the spectral information in images is transformed 
into some quantity that can be used to extract the functional traits like canopy 
nitrogen content (Jiang et al. 2020) and chlorophyll concentration (Zhu et al. 2020). 
Using these, vegetation indices like excessive green index (ExG), green chromaticity 
coordinate index (GCC), red–green–blue vegetation index (RGBVI), normalized 
difference vegetation index (NDVI), normalized difference red edge (NDRE), and 
normalized difference water index (NDWI) are used for estimating the nitrogen, 
greenness, canopy cover, leaf area index, and water stress quantification in the 
crop. Review of 43 latest papers from 2010 to 2022, where UAV-assisted plant 
phenotyping is explored for structural and functional phenotyping in different crops 
like maize, wheat, barley, potato, pea, cotton, soybean, dry beans, grapevine, beet, 
and sunflower, is presented in Table 2. Further in-detail information on the working 
principles of vegetation indices used in these papers is given in Table 3. 

In-detail information on vegetation indices listed in Table 2 above can be 
obtained from Table 3. 

6 Challenges Associated with UAV-Based Phenotyping 

Few real-time imaging-related challenges faced in UAV-assisted lean field pheno-
typing are listed and discussed in this section. 

• Lack of plant-level information: It is difficult to get the structural information 
at plant level in field phenotyping. It is rather obtained at canopy level for the 
particular plot in field. This may be due to plant density or management practices 
(inter and intra distance between the plants). 

• Problem of weeds: In the initial growth stages, weeds are seen prominently and 
in bulk, which needs to be handled properly by timely and precise weeding. 
Since it is done manually most of the time, some weeds in between the plant 
are excavated as they may harm the plant, and they grow faster than the plant and 
create problems in crop height estimation using DEM and even in color-based 
nitrogen status estimation. It can be addressed by herbicide spraying, but if it is 
done before sowing, it affects the germination of the crop. So, it is a big challenge 
in UAV-based phenotyping. 



Applications of UAVs: Image-Based Plant Phenotyping 355 

Ta
bl
e 
2 

Su
m
m
ar
y 
of
 v
ar
io
us
 c
ro
ps
 a
nd
 th

ei
r 
ph
en
ot
yp
es
 e
st
im

at
io
n 
us
in
g 
U
A
V
-i
m
ag
er
y 

S.
 

no
. 

C
ro
p

Se
ns
or

U
A
V
 ty

pe
 

E
st
im

at
ed
 v
ar
ia
bl
e 

Ty
pe
 o
f 
pl
an
t 

tr
ai
ts
/s
tr
es
s 

Pl
an
t 

ph
en
ot
yp
e 

(t
ra
its
) 

Pl
an
t t
ra
it 

m
od
el

A
lti
tu
de
 

Im
ag
e 

re
so
lu
tio

n 
(u
ni
t/p

ix
el
) 

C
ita

tio
n 

1
W
he
at

M
S

Ph
en
o-

co
pt
er
 

N
D
V
I

A
gr
on
om

ic
al
 

fu
nc
tio

na
l 

B
io
m
as
s,
 le
af
 

gr
ee
nn
es
s 

L
R

30
– 

50
 m

 
1.
8 
cm

D
ua
n 
et
 a
l. 

(2
01
7)
 

2
B
ar
le
y

R
G
B
, H

S
M
ul
tir
ot
or
 

N
D
V
I,
 S
A
V
I,
 

M
SA

V
I,
 O
SA

V
I,
 

G
N
Y
L
I 

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s,
 

pl
an
t h

ei
gh
t 

M
L
R
, N

L
R
, 

C
SM

 
L
ow

-
al
tit
ud

e 
1
cm

B
en
di
g 
et
 a
l. 

(2
01
5)
 

3
C
or
n,
 

so
yb
ea
n 

M
S

–
N
D
V
I,
 S
R
, 

G
N
D
V
I,
 M

T
V
I2
 

L
SW

I,
 M

SI
, R

T
V
I 

A
gr
on
om

ic
al

L
A
I,
 b
io
m
as
s 

M
L
R
, N

L
R

L
ow

-
al
tit
ud

e 
–

K
ro
ss
 e
t a
l. 

(2
01
5)
 

4
R
ye
 g
ra
ss
 
M
S

B
al
lo
on

 
sy
st
em

 
N
D
V
I

A
gr
on
om

ic
al
 

fu
nc
tio

na
l 

B
io
m
as
s,
 

ni
tr
og
en
 

L
R
, M

L
R

L
ow

-
al
tit
ud

e 
15
 c
m

K
aw

am
ur
a 

(2
01
1)
 

5
Pe

a
R
G
B
, M

S
Q
ua
dr
ot
or
 

C
IG

R
, C

IR
E
, 

E
V
I2
, G

N
D
V
I,
 

M
C
A
R
I2
, M

T
V
I2
, 

N
D
R
E
, N

D
V
I,
 

N
D
W
I,
 O
SA

V
I,
 

R
D
V
I,
 R
G
B
V
I 

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s 

(A
G
B
M
),
 

ca
no
py
 

vo
lu
m
e 

L
R
, D

SM
, 3

D
 

re
co
ns
tr
uc
tio

n 
m
od
el
 

10
– 

20
 m

 
0.
21
– 

1.
36
 c
m
 

Sa
ng

ja
n 
et
 a
l. 

(2
02
2)
 

6
W
he
at

R
G
B
, M

S
Fi
xe
d-

w
in
gs
 

R
ed
E
dg
e,
 N
IR
 a
nd
 

R
G
B
 V
Is
 

M
or
ph
ol
og
ic
al
 

ag
ro
no
m
ic
al
 

Pl
an
t h

ei
gh

t, 
L
A
I,
 L
C
C
, 

C
C
C
, p
la
nt
 

yi
el
d 

PL
R
, R

FR
, 

SV
R
 

L
ow

-
al
tit
ud

e 
5
cm

G
an
ev
a 
et
 a
l. 

(2
02
2)
 

7
W
he
at

R
G
B
, M

S,
 

H
S 

–
R
E
R
V
I,
 C
IR
E
, D

V
I 
A
gr
on
om

ic
al
 

fu
nc
tio

na
l 

L
A
I,
 n
itr
og
en
 

co
nt
en
t 

L
R

0.
5–
1 
m
 
–

Ji
an
g 
et
 a
l. 

(2
02
0)
 

(c
on
tin

ue
d)
 



356 S. M. Patil et al. 

Ta
bl
e 
2 

(c
on
tin

ue
d)
 

S.
 

no
. 

C
ro
p

Se
ns
or

U
A
V
 ty

pe
 

E
st
im

at
ed
 v
ar
ia
bl
e 

Ty
pe
 o
f 
pl
an
t 

tr
ai
ts
/s
tr
es
s 

Pl
an
t 

ph
en
ot
yp
e 

(t
ra
its
) 

Pl
an
t t
ra
it 

m
od
el

A
lti
tu
de
 

Im
ag
e 

re
so
lu
tio

n 
(u
ni
t/p

ix
el
) 

C
ita

tio
n 

8
Po

ta
to

R
G
B
, H

S
Q
ua
dc
op
te
rs
 N

D
V
I,
 M

SR
, 

M
SA

V
I,
 O
SA

V
I,
 

M
C
A
R
I,
 M

C
A
R
I2
, 

T
C
A
R
I,
 N
D
I,
 C
I1
, 

C
I2
, S

IP
I,
 E
xG

 

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s,
 c
ro
p 

yi
el
d,
 p
la
nt
 

he
ig
ht
, c
ro
p 

yi
el
d 

R
FR

, P
L
SR

, 
L
R
 

30
 m

0.
5,
 2
.2
, 

3.
1 
cm

 
L
i e
t a
l. 

(2
02
0)
 

9
M
ai
ze

H
S

A
ir
 b
or
ne
 

V
N
IR
, S

W
IR

Fu
nc
tio

na
l 

ag
ro
no
m
ic
al
 

N
itr
og
en
, 

gr
ai
n 
yi
el
d 

R
T
M
, P

L
SR

 
50
0 
m
 

–
W
an
g 
et
 a
l. 

(2
02
1)
 

10
M
ai
ze

M
S

+ 
R
G
B
 

M
ul
tic

op
te
r 

N
D
V
I,
 G
N
D
V
I,
 

SR
, S

A
V
I 

B
io
tic

 s
tr
es
s 

ag
ro
no
m
ic
al
 

M
SV

 (
m
ai
ze
 

st
re
ak
 v
ir
us
) 

gr
ai
n 
yi
el
d 

M
L
R
, L

R
–

–
C
hi
va
sa
 e
t a
l. 

(2
02
1)
 

11
M
ai
ze

R
G
B
 

(P
an
as
on
ic
 

ca
m
er
a)
 

M
ul
tir
ot
or
 

N
D
V
I

M
or
ph
ol
og
ic
al
 

C
ro
p 
co
ve
r

B
ro
ad
-s
en
se
 

he
ri
ta
bi
lit
y 

an
d 
ge
ne
tic

 
co
rr
el
at
io
ns
 

80
 m

1.
5,
 1
 c
m
 

M
ak
an
za
 e
t 

al
. (
20
18
) 

12
C
or
n

R
G
B

M
ul
tir
ot
or
 

E
xG

, O
B
IA

B
io
tic

 s
tr
es
s

W
ee
d 

de
te
ct
io
n 

C
N
N
, R

F,
 

SV
M
 

3
m

 
ab
ov
e 

gr
ou
nd
 

–
B
ah
 e
t a
l. 

(2
01
8)
 

13
Po

ta
to

R
G
B
 +

 H
S 

Q
ua
dc
op
te
rs
 N

D
V
I,
 M

SR
,

A
gr
on
om

ic
al

B
io
m
as
s 
cr
op

 
yi
el
d 

R
F,
 L
R

30
 m

–
L
i e
t a
l. 

(2
02
0)
 

14
B
ar
le
y

R
G
B

–
N
D
V
I,
 P
R
I,
 S
A
V
I 

Fu
nc
tio

na
l

N
itr
og
en
 u
se
 

ef
fic

ie
nc
y 

M
L
R

50
 m

–
K
ef
au
ve
r 
et
 

al
. (
20
17
) 

15
So

yb
ea
n 

R
G
B

M
ul
tir
ot
or
 

C
ol
or
, g

ra
di
en
t, 

te
xt
ur
e,
 s
ha
pe
 

B
io
tic

 s
tr
es
s

Fo
lia

r 
di
se
as
e 

SV
M
, K

N
N

1,
 2
, 4

, 
8,
 1
6 

–
C
as
te
la
o 

Te
til
a 
et
 a
l. 

(2
01
7)
 



Applications of UAVs: Image-Based Plant Phenotyping 357 

16
C
ot
to
n

R
G
B

M
ul
tir
ot
or
 

N
D
V
I

M
or
ph
ol
og
ic
al
 

H
ei
gh
t

L
R

50
, 2

9,
 

13
 

–
X
u 
et
 a
l. 

(2
01
9)
 

17
C
ot
to
n

R
G
B

M
ul
tir
ot
or
 

C
ro
p 
yi
el
d

B
io
tic

 s
tr
es
s

C
ot
to
n 
bo
ll 

de
te
ct
io
n 

L
R
, O

B
IA

13
–

Y
eo
m
 e
t a
l. 

(2
01
8)
 

18
Pe
an
ut

H
S,
 M

S
M
ul
tir
ot
or
 

G
R
V
I,
 N
D
R
E

B
io
tic

 s
tr
es
s

Sp
ot
 w
ilt

V
I

–
–

Pa
tr
ic
k 
et
 a
l. 

(2
01
7)
 

19
B
ee
t

H
S

M
ul
tir
ot
or
 

N
D
V
I,
 N
D
W
I

A
bi
ot
ic
 s
tr
es
s 

B
ee
t c
ys
t 

ne
m
at
od
e 

D
ec
is
io
n 
tr
ee
 

80
 m

–
Jo
al
la
nd

 e
t a
l. 

(2
01
8)
 

20
To

m
at
o

R
G
B
, M

S
M
ul
tir
ot
or
 

N
D
V
I

A
bi
ot
ic
 s
tr
es
s 

Sa
lin

ity
 s
tr
es
s 

pl
an
t a
re
a 

O
B
IA

13
 m

–
Jo
ha
ns
en
 e
t 

al
. (
20
19
) 

21
D
ry
be
an
 

M
S

M
ul
tir
ot
or
 

G
N
D
V
I

A
gr
on
om

ic
al
 

ab
io
tic

 s
tr
es
s 

Se
ed
 y
ie
ld
, 

bi
om

as
s,
 

flo
w
er
in
g,
 

dr
ou
gh
t 

Pe
ar
so
n 
r

50
, 1

20
 

7.
2,
 3
 c
m
 

Sa
nk
ar
an
 e
t 

al
. (
20
18
) 

22
C
itr
us
 

tr
ee
 

M
ul
tis
pe
ct
ra
l 
M
ul
tir
ot
or
 

G
N
D
V
I

M
or
ph
ol
og
ic
al
 

C
ou
nt
in
g 

tr
ee
s 

D
C
N
N

–
5
cm

A
m
pa
tz
id
is
 

an
d 
Pa
rt
el
 

(2
01
9)
 

23
Su

nfl
ow

er
 
R
G
B
, 

M
S

+ 
N
IR
 

M
ul
tir
ot
or
 

E
xG

, N
D
V
I

B
io
tic

 s
tr
es
s

W
ee
d

O
B
IA

–
0.
5,
 

1.
12
 c
m
 

L
óp
ez
-

G
ra
na
do
s 
et
 

al
. (
20
15
) 

24
V
in
ey
ar
d 

M
ul
tis
pe
ct
ra
l 
M
ul
tir
ot
or
 

N
D
V
I,
 N
D
R
E

Fu
nc
tio

na
l

St
em

 w
at
er
 

po
te
nt
ia
l, 

w
at
er
 s
tr
es
s 

A
N
N

30
~2

.2
 c
m
, 

1.
11
 

R
om

er
o 
et
 a
l. 

(2
01
8)
 

(c
on
tin

ue
d)
 



358 S. M. Patil et al. 

Ta
bl
e 
2 

(c
on
tin

ue
d)
 

S.
 

no
. 

C
ro
p

Se
ns
or

U
A
V
 ty

pe
 

E
st
im

at
ed
 v
ar
ia
bl
e 

Ty
pe
 o
f 
pl
an
t 

tr
ai
ts
/s
tr
es
s 

Pl
an
t 

ph
en
ot
yp
e 

(t
ra
its
) 

Pl
an
t t
ra
it 

m
od
el

A
lti
tu
de
 

Im
ag
e 

re
so
lu
tio

n 
(u
ni
t/p

ix
el
) 

C
ita

tio
n 

25
W
he
at

R
G
B
, m

ul
ti-

sp
ec
tr
al
 

M
ul
tir
ot
or
 

L
od
gi
ng
 in

de
x

Fu
nc
tio

na
l

L
od
gi
ng

H
er
ita

bi
lit
y,
 

co
rr
el
at
io
n,
 

G
W
A
S 

25
m

–
Si
ng

h 
et
 a
l. 

(2
01
9)
 

26
C
or
n

3D
 s
en
so
r

–
Po

in
ts
 c
lo
ud

M
or
ph
ol
og
ic
al
 

H
ei
gh

t, 
w
ei
gh

t, 
le
ng
th
, a
re
a 

3D
 m

od
el

–
–

L
i a
nd
 T
an
g 

(2
01
7)
 

27
G
ra
pe
vi
ne
 
H
S

Fa
br
y-
Pé
ro
t 

in
te
rf
er
om

-
et
er
 

N
ar
ro
w
-b
an
d 
V
I

A
gr
on
om

ic
al
 

fu
nc
tio

na
l 

L
A
I,
 p
la
nt
 

an
d 
le
af
 

ni
tr
og
en
 

co
nt
en
t, 

tr
an
sp
ir
at
io
n 

PL
S,
 iP

L
S

32
 m

2
cm

M
at
es
e 
et
 a
l. 

(2
02
2)
 

28
B
ar
le
y

H
S

M
ul
tir
ot
or
 

N
D
V
I,
 G
N
D
V
I,
 

E
xG

, E
xG

-R
, 

C
IV

E
, G

R
V
I 

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s,
 

pl
an
t h

ei
gh
t 

3D
 m

od
el

70
 m

0.
01
 m

, 
0.
04
 m

 
D
i G

en
na
ro
 e
t 

al
. (
20
17
) 

29
W
he
at

R
G
B

R
ot
ar
y-

w
in
gs
 

N
D
V
, G

I,
 G
L
I

B
io
tic

 s
tr
es
s

Fo
lia

ge
 

di
se
as
e 

se
ve
ri
ty
 

3D
 m

od
el

25
 m

0.
7 
cm

B
ha
nd
ar
i e
t 

al
. (
20
20
) 

30
B
ar
le
y

R
G
B
, M

S
Q
ua
dc
op
te
r 

V
ar
io
us
 M

S 
an
d 

R
G
B
 V
Is
 

M
or
ph
ol
og
ic
al
 

ag
ro
no
m
ic
al
 

C
an
op
y 

he
ig
ht
, 

ve
ge
ta
tio

n 
co
ve
r, 
gr
ow

th
 

yi
el
d 

PG
L
M
, 

N
PR

FM
 

30
 m

, 
50
 m

 
0.
82
 c
m
, 

1.
3 
cm

 
H
er
zi
g 
et
 a
l. 

(2
02
1)
 

31
W
in
te
r 

w
he
at
 

R
G
B

A
R
F 

M
ik
ro
ko
pt
er
 

O
kt
o 
X
L
 

N
D
V
I,
 R
E
IP
, G

R
V
I 
M
or
ph
ol
og
ic
al
 

C
an
op
y 
co
ve
r, 

pl
an
t h

ei
gh
t 

C
SM

, D
SM

50
 m

, 
75
 m

, 
30
 m

 

0.
10
 m

, 
0.
06
 m

, 
0.
04
 m

 

R
ot
h 
an
d 

St
re
it 
(2
01
7)
 



Applications of UAVs: Image-Based Plant Phenotyping 359 

32
W
in
te
r 

w
he
at
 

jo
in
tin

g,
 

fla
gg
in
g,
 

an
d 

flo
w
er
in
g 

pe
ri
od
s 

H
S

M
ul
tic

op
te
r 

N
D
V
I,
 O
SA

V
I,
 

m
an
y 
ot
he
r 
H
S 
an
d 

R
G
B
 s
pe
ct
ru
m
 V
Is
 

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

L
A
I,
 b
io
m
as
s,
 

cr
op
 h
ei
gh
t 

R
FR

, P
L
SR

50
 m

–
Y
ue
 e
t a
l. 

(2
01
8)
 

33
W
in
te
r 

ba
rl
ey
 

H
S

R
ot
ar
y-

w
in
gs
 

U
A
V
 

N
D
V
I

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s,
 

pl
an
t h

ei
gh
t 

L
R
 o
r 
PL

SR
 

an
al
ys
is
 

80
 m

–
R
ot
h 
an
d 

St
re
it 
(2
01
7)
 

34
W
he
at

H
S

M
ic
ro
co
pt
er
 N

D
V
I,
 M

C
A
R
I

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s,
 

ni
tr
og
en
 

co
nt
en
t 

L
M
, N

L
M

–
–

Pö
lö
ne
n 
et
 a
l. 

(2
01
3)
 

35
R
ap
es
ee
d 

M
S

Fi
xe
d-

w
in
gs
 

N
D
V
I,
 N
D
R
E
, 

G
N
D
V
I 

A
gr
on
om

ic
al

C
ro
p 
yi
el
d

SM
–

10
 c
m
, 

5
cm

, 
2.
5 
cm

 

N
eb
ik
er
 e
t a
l. 

(2
01
6)
 

36
B
ar
le
y

M
S

Fi
xe
d-

w
in
gs
 

N
D
V
I,
 N
D
R
E
, 

G
N
D
V
I 

A
gr
on
om

ic
al

C
ro
p 
yi
el
d

SM
–

10
 c
m
, 

5
cm

, 
2.
5 
cm

 

N
eb
ik
er
 e
t a
l. 

(2
01
6)
 

37
O
ni
on

M
S

Fi
xe
d-

w
in
gs
 

N
D
V
I

B
io
tic

 s
tr
es
s

D
is
ea
se
 

de
te
ct
io
n 

SM
–

10
 c
m
, 

5
cm

, 
2.
5 
cm

 

N
eb
ik
er
 e
t a
l. 

(2
01
6)
 

(c
on
tin

ue
d)
 



360 S. M. Patil et al. 

Ta
bl
e 
2 

(c
on
tin

ue
d)
 

S.
 

no
. 

C
ro
p

Se
ns
or

U
A
V
 ty

pe
 

E
st
im

at
ed
 v
ar
ia
bl
e 

Ty
pe
 o
f 
pl
an
t 

tr
ai
ts
/s
tr
es
s 

Pl
an
t 

ph
en
ot
yp
e 

(t
ra
its
) 

Pl
an
t t
ra
it 

m
od
el

A
lti
tu
de
 

Im
ag
e 

re
so
lu
tio

n 
(u
ni
t/p

ix
el
)

C
ita

tio
n 

38
Po

ta
to

M
S

Fi
xe
d-

w
in
gs
 

N
D
V
I

B
io
tic

 s
tr
es
s

D
is
ea
se
 

de
te
ct
io
n 

(p
ot
at
o 
bl
ig
ht
 

in
fe
st
at
io
n 

si
te
s)
 

SM
–

10
 c
m
, 5

 c
m
 

N
eb
ik
er
 e
t 

al
. (
20
16
) 

39
W
in
te
r 

w
he
at
 

H
S

M
ul
tic

op
te
r 

N
D
V
I,
 G
I,
 R
V
I,
 

W
D
R
V
I,
 E
V
I,
 

O
SA

V
I, 
M
SA

V
I 

A
gr
on
om

ic
al
 

m
or
ph
ol
og
ic
al
 

B
io
m
as
s,
 c
ro
p 

he
ig
ht
 

PL
SR

36
 m

1
cm

Y
ue
 e
t a
l. 

(2
01
7)
 

40
O
liv

e
H
S

Fi
xe
d-

w
in
gs
 

N
D
V
I,
 R
D
V
I,
 

O
SA

V
I,
 T
V
I,
 

M
T
V
I,
 S
R
, M

SR
, 

C
W
SI
 

B
io
tic

 s
tr
es
s

D
et
ec
tio

n 
of
 

ve
rt
ic
ill
iu
m
 

G
L
M
, R

T
M

55
0 
m
 

53
 c
m
*4
2 
cm

 
C
al
de
ró
n 
et
 

al
. (
20
13
) 

41
W
he
at

M
S

–
N
D
V
I,
 N
D
R
E
, 

N
G
R
D
I 

Ph
ys
io
lo
gi
ca
l

G
ra
in
 y
ie
ld

M
L
M

30
 m

, 
40
 m

 
2.
5 
cm

, 3
 c
m
 

H
as
sa
n 
et
 a
l. 

(2
01
9)
 

42
M
ai
ze

L
iD
A
R

Q
ua
dc
op
te
r 

N
R
M
SE

, R
M
SE

A
gr
on
om

ic
al

C
ha
ng
e 
in
 

L
A
I 

N
R
M
SE

 
m
od
el
 

15
 m

–
L
ei
 e
t a
l. 

(2
01
9)
 

43
M
ai
ze

L
iD
A
R

M
ul
tir
ot
or
 

–
M
or
ph
ol
og
ic
al
 

Pl
an
t h

ei
gh
t 

D
SM

15
 m

5
cm

Z
ho

u 
et
 a
l. 

(2
02
0)
 



Applications of UAVs: Image-Based Plant Phenotyping 361 

Table 3 More information 
on various vegetation indices 
listed in Table 2 

Vegetation index References/Citations 

CIGR Sangjan et al. (2022) 
CIRE Jiang et al. (2020) 
CIVE Di Gennaro et al. (2017) 
CWSI Calderón et al. (2013) 
DVI Jiang et al. (2020) 
ExG Di Gennaro et al. (2017) 
ExG-R Di Gennaro et al. (2017) 
GI Bhandari et al. (2020) 
GLI Bhandari et al. (2020) 
GNDVI Nebiker et al. (2016) 
GNYLI Bendig et al. (2015) 
GRVI Patrick et al. (2017) 
LAI Wang et al. (2021) 
LSWI Kross et al. (2015) 
MCARI2 Li et al. (2020) 
MSAVI Bendig et al. (2015) 
MSI Kross et al. (2015) 
MSR Calderón et al. (2013) 
MTVI Calderón et al. (2013) 
NDI Li et al. (2020) 
NDRE Sangjan et al. (2022) 
NDVI Duan et al. (2017) 
NDWI Sangjan et al. (2022) 
NGRDI Hassan et al. (2019) 
OSAVI Bendig et al. (2015) 
OSAVI Yue et al. (2018) 
PLSR Li et al. (2020) 
PNA Jiang et al. (2020) 
PRI Kefauver et al. (2017) 
REIP Roth and Streit (2017) 
RERVI Jiang et al. (2020) 
RTM Wang et al. (2021) 
RTVI Kross et al. (2015) 
SAVI Bendig et al. (2015) 
SR Chivasa et al. (2021) 
TVI Calderón et al. (2013) 
WDRVI Yue et al. (2017) 

• The problem of wind: Wind speed of <12 mph is ideal for flying a UAV; if 
the wind is more than this, then the crop canopy and UAV both are unstable. 
During high wind speed if the flight is taken then the structural information 
of crop canopy (crop height, canopy cover, etc.) is affected in images and 
further agronomically essential traits like yield and biomass for which canopy 
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information serves as a component trait is affected too. Also, though it is possible 
to fly UAV in wind speed of >12 mph, in order to stay floating and stable in such 
wind resistance, the batteries of UAV are consumed faster. 

• Ground truth and time of flight: Though plants do not grow too fast, it is a 
recommended practice to obtain ground truth and flight data simultaneously. This 
is not always feasible because for a few traits, such as 3D leaf area, fresh and dry 
biomass, and nitrogen content, destructive sampling has to be done to record the 
observed values. It is a laborious and time-consuming process and is difficult to 
complete at the same time when plants are toward maturity. In all the growth 
stages, the number of samples, genotypes, treatment combinations, and further 
processing of it is required to be checked. So, a maximum duration of one to 
two days can be considered between ground truth and flight if it is not done on 
the same day. 

• Solar radiation: Flight data must be collected under a clear sky, in an environ-
ment that is as evenly distributed as is practical. Due to cloudy skies or uneven 
sunlight during flight, the quality of images, especially the color and contrast, is 
hampered. In case RGB sensor is used to phenotype color-based traits such as 
chlorophyll concentration, then solar radiation is the biggest challenge. 

• Uneven climate conditions: Due to uneven climate, drought-related experiments 
are affected a lot. The sudden raining spoils the drought experimentation carried 
out in the field and creates a problem. Unfortunately, in case of lean field 
phenotyping such inevitable conditions cannot be avoided where as in intense 
field phenotyping rainout shelters can handle this to some extent. 

7 Summary 

The increasing population and unfavorable climate conditions are exaggerated 
and it will lead to the worsening of the pre-existing food security challenge, 
by 2100. Breeders and crop scientists are working to handle these by working 
on the genetic improvement of crops and crop management practices. Breeders 
use selective breeding where many crop lines are used, and the introgression 
is explored, and timely monitoring and quantification of many traits on large 
scale is needed. Such experimentation is generally carried out in the open field 
rather than the controlled environment, which has space limitations for the huge 
number of lines that can be accommodated in it. Traditional methods used for 
phenotyping are manual, laborious, time-consuming, and more prone to human 
error. So, an automatic phenotyping solution for plant phenotyping in time-efficient 
manner is required. With the advancements in HTPP platform and image-based 
high precision, plant phenotyping is possible. UAVs are the most suitable high-
throughput imaging platform suitable for lean field plant phenotyping. This chapter 
provided an overview of the use of UAVs as a high-throughput plant phenotyping 
platform. Different types of sensors can be used for different applications. Generally, 
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for morphological traits, CSM and DEM/DTM-based approaches are more popular. 
Further, the different vegetation indices were generated based on the spectral range 
captured by the sensor during imaging. There is a trade-off in the spatial and spectral 
resolutions of various sensors and based on the need for application appropriate 
sensor as per their compatibility with UAV is selected. Thus UAV-based HTPP gives 
higher precision but it comes with many real-time challenges as discussed. 
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Digital Yield Predictions 

Tarmo Lipping and Petteri Ranta 

Abstract Yield prediction is a vast area of study involving different fields of 
science such as agriculture, plant physiology, informatics, and machine learning. 
Numerous review papers have been published on various aspects of yield prediction. 
Instead of focusing on certain types of models, data sources, or crops, we provide a 
general overview of the methods used for forecasting crop yield. We first consider 
various sources of data used in yield prediction efforts as well as the various 
measures to assess prediction accuracy. We then give a brief overview on plant 
physiology-based yield simulation models. Although the main aim of these models 
is usually not to forecast crop yield as accurately as possible, they describe the 
phenomena of plant growth that ultimately underlie all efforts related to yield 
prediction. After that, a more comprehensive overview is given on the various 
types of machine learning methods applied to yield prediction in exponentially 
increasing number of studies. We first describe the conventional feature-based 
machine learning techniques after which the use of several deep learning methods 
for yield prediction is considered. 

Keywords Yield prediction · Prediction accuracy · Crop growth modelling · 
Machine learning · Deep neural networks 

1 Introduction 

Yield prediction is a general term describing an attempt to forecast crop yield in 
a forthcoming harvest season. Virtually all the efforts aiming at yield prediction 
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involve data and some kind of an underlying model. A variety of different efforts 
can be considered when talking about yield prediction, depending on the aim of 
the prediction, the type of the model used (from gut feeling to complex plant 
physiology-based models to rigorous deep learning algorithms), the type of crop 
under consideration, the time horizon of the prediction, the scale of yield assessment 
(intra-field vs. regional), etc. 

Yield prediction can be done at a global or national scale in which case the aim 
of the prediction is often economical (to predict the market prices, for example) 
or related to the security of supply. As market prices and food supply are complex 
issues depending, in addition to yield, on geopolitical situation, logistics, financial 
issues, etc., yield prediction driven by these aims is not considered in this chapter. 
Also, the data sources used to predict the yield are different in these efforts including 
official statistics, questionnaires to the farmers, etc. Instead, in this chapter we 
focus on yield prediction performed at the scale of a single crop field (or even 
at the subfield scale) over which the soil properties and growth conditions can 
be considered more or less constant. Indeed, this kind of effort will produce 
information for yield prediction at the global or national scale, but the immediate 
goal is different. 

The aim of the yield prediction effort depends also on the time horizon of the 
prediction. One can develop a general model using the data from multiple years 
(together with general knowledge on plant physiology) to inform the farmers which 
crops and varieties would have higher potential in their particular environment 
or when to sow the crops. Slightly different aims can be considered when the 
predictions are made during the actual growth season the yield of which is predicted. 
Having yield prediction maps at the subfield level in the budding phase of plant 
growth could still inform the farmer on possible actions to be taken before harvest. 
Also, yield prediction can be performed using either a ‘snapshot’ of data at a certain 
time or a time series of data (weekly acquired weather data or remote sensing data, 
for example). 

In this chapter we mainly focus on yield prediction based on the data acquired 
from the growth environment during the particular (and possibly also previous) 
growth season. While some data remain relatively constant (such as soil properties 
or climate conditions), other kinds of data can change radically from year to year 
(weather conditions). The main goals of this kind of yield prediction are to better 
understand the relationship between the environmental parameters and the yield 
and to provide as accurate prediction as possible. The practical value of these 
kinds of efforts is to provide the involved stakeholders (farmers, food industry, and 
regulators) information to support their decision-making (what crops to cultivate 
and how to improve the growth conditions by means of, for example, drainage, 
irrigation, soil shaping, or fertilization). The primary type of crops considered is 
cereals, although the models can be applied also to growing vegetables (but not so 
well to growing fruits or to the subject area of horticulture). 

We will first have a look at the various data sources used in yield prediction 
and the measures used to assess the goodness of the prediction result. We will 
then consider two kinds of models—those based on plant physiology and those
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based on data alone—in separate sections of the chapter. The models based on plant 
physiology are presented only briefly and mostly for reference purposes, the main 
emphasis being on data-driven yield prediction models using machine learning. 

2 Prerequisites of Yield Prediction 

Whatever the method or model of yield prediction, it is always based on data. In the 
case of physics-based models, the data is used to calibrate or tune the model while 
in the case of data-driven models, such as those based on deep learning, the data 
are used for training the model parameters. In this section we first describe some 
common sources of data used in calibration or training yield prediction models. 
We then discuss various measures used in the evaluation of the accuracy of yield 
prediction models. 

2.1 Source Data 

Soil Data Soil and its properties (composition and structure) play a major role in 
how plants grow and produce yield. A wide variety of variables can be derived such 
as: 

• Soil acidity (pH) 
• Cation exchange capacity (CEC) 
• Soil type 
• Soil chemical content (potassium and magnesium, for example) 
• Soil structure (clay or sand content, soil texture, etc.) 
• Water-related properties such as water holding capacity or water permeability. 

Different ways can be used to acquire subsets of these variables. A chemical or 
structural analysis of soil samples in a laboratory setting is the most direct way to 
estimate soil properties. However, the collected data is sparse and it is often difficult 
to decide, where in the field the samples should be taken, especially in areas where 
soil properties change abruptly. More efficient sampling of soil chemical content can 
be done using portable hand-held X-ray fluorescence (XRF) devices (Weindorf and 
Chakraborty 2020). These devices enable determination of the amount of chemical 
elements in soil at a certain location in the field without the need for preprocessing 
the sample. However, the data acquisition is still manual and requires a license 
to operate the device. Other ways of acquiring soil property data are scanning for 
Electrical Conductivity (EC) (Stadler et al. 2015) or using the Ground Penetrating 
Radar (GPR) (Linna et al. 2022). 

Features such as soil moisture or soil temperature can also be used in yield 
prediction models. These features are closely related to weather or climate data and 
can be directly measured using soil sensors. A variety of solutions are available from
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miniature wireless underground sensor systems (Tiusanen 2013) to tubes equipped 
with sensors at various depths providing stratigraphic data (Shah et al. 2012) of soil  
moisture and temperature. On the other hand, soil properties can also be obtained 
as target variables when applying machine learning methods to remote sensing data 
(Tantalaki et al. 2019). In this case soil properties, estimated from satellite or drone 
data, can be fed into the yield prediction models. 

Remote Sensing Remote sensing settings can be divided according to the host plat-
form of the sensor. During recent years Unmanned Aerial Vehicles (UAVs), more 
commonly called drones, have become popular in remote sensing of agricultural 
land. Initial expectations of autonomous data acquisition with drones have not fully 
realized as in most countries restrictions on using UAVs are in place. In Finland, for 
example, there has to be constant visual contact between the operator and the drone 
and the operator has to have a license. 

The Unmanned Aerial Systems (UASs) used in the context of smart farming 
usually contain a separate sensor mounted to the UAV platform, while in consumer 
systems, an RGB camera is often integrated to the drone. The most common sensor 
types used with UAVs include RGB cameras, multispectral cameras, hyperspectral 
cameras, thermal sensors, and lidar devices (Messina and Modica 2020; Tsouros 
et al. 2019). While RGB cameras use three wavelength bands in the visual range of 
400–700 nm, multispectral cameras typically add one or more additional bands at 
the Near-InfraRed (NIR) region. In agricultural applications the main role of these 
additional bands is to cover the red edge in the spectrum caused by chlorophyll in 
plants. Hyperspectral cameras differ from the multispectral ones in that they cover 
a certain spectral range (usually either up to about 1100 nm or about 2500 nm) in 
consecutive wavelength bands. Thermal sensors (wavelength of 3–8 μm) measure 
the surface temperature of the foliage and are mainly used for monitoring plant 
water stress and detecting plant diseases (Messina and Modica 2020). Lidar is the 
only active measurement technique in the above list as it measures the reflection of 
an emitted light beam from the surface. Using lidar techniques, the elevation map of 
a crop field can be produced. In addition, by analyzing the waveform of the reflected 
pulse, the structure of the targets can be characterized. 

Remote sensing data from high-altitude satellite systems form another important 
data source in smart farming and yield prediction applications. Data from satellites 
were available long before UAVs became available, however, after the launches of 
higher resolution systems such as Landsat 8 in 2013 and Sentinel 2 in 2015, and 
after several operators have started to offer their data for free over a well-defined 
interface, the number of studies and services based on these kinds of data has 
increased significantly. A comprehensive list of satellite missions can be found in the 
Satellite Missions Catalogue,1 the most common platforms employed in agricultural 
applications being Landsat 7&8, Sentinel 2, WorldView 2&3, and Geofen 1&2. All

1 https://www.eoportal.org/satellite-missions 

https://www.eoportal.org/satellite-missions
https://www.eoportal.org/satellite-missions
https://www.eoportal.org/satellite-missions
https://www.eoportal.org/satellite-missions
https://www.eoportal.org/satellite-missions
https://www.eoportal.org/satellite-missions
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these missions provide remote sensing data in the optical range of the spectrum 
starting from 400 nm. The spatial resolution of the data varies from 0.31m/pixel 
for commercial WorldView satellites to 10. . .60m/pixel for open access Landsat 
and Sentinel missions. In addition to the optical range, satellite data from Synthetic 
Aperture Radar (SAR) missions such as Sentinel 1 or TerraSAR-X have been used 
in crop yield prediction (Alebele et al. 2021). As mentioned above, remote sensing 
data can either be used directly for developing yield prediction models or they 
can be used to derive features such as soil or plant moisture, soil temperature, 
nitrogen level, etc. to be further used in plant physiology-based yield prediction 
models. Even if satellite data are freely available, processing and interpretation of 
the data requires expert knowledge and the farmers usually rely on either public or 
commercial service providers. 

Weather Data Weather data are probably the most common data source when 
decisions are made on immediate actions in agricultural production. In contrast to 
other data sources considered, weather data are often freely available from publicly 
maintained weather stations. Various derived parameters such as growing degree 
days may also be available. However, if more accurate and location-specific weather 
data is required, a private weather station can be installed. More advanced weather 
stations can provide data on a wide variety of environmental factors such as air 
temperature, wind speed and direction, atmospheric pressure, light intensity, solar 
radiation, and precipitation. Indeed, weather data are related to soil temperature 
and moisture, and due to easy access and interpretation, weather data provide 
valuable additional information for yield prediction models. Physical models for 
yield prediction usually involve weather-related parameters directly, whereas in 
data-driven models they can be used as additional data features. Some studies have 
even built deep learning models solely on weather data to predict crop growth stages 
(Yue et al. 2020). 

Yield Maps To validate yield prediction models, reference data on actual yield is 
required. The traditional approach to measuring crop yield is to weigh the harvested 
grain and calculate the average in a field by field basis. This kind of yield data can be 
used if the scope of yield prediction is county level, for example (Wang et al. 2020). 
To obtain data on intra-field variability of crop yield, yield monitoring devices can 
be mounted to harvesters. These devices may be based on optical measurement 
or on kinetic mass flow sensors. Also, accurate logging of the location of the 
harvester is required using satellite navigation systems. While harvester-mounted 
yield monitors are becoming more common among farmers, the skills required to 
extract and preprocess the data often hinder their use locally. Different vendors 
use different data formats and the data need to be corrected for several factors 
such as the properties of the grain (moisture level, for example) or incomplete 
swathes of harvesting. Also, point data obtained from the yield monitors need to 
be aggregated and rasterized. Other methods have also been proposed for intra-field 
yield assessment such as manual yield assessment within a standard frame at several 
locations of the field (Narra et al. 2022). The yield map can then be formed by coarse 
interpolation of the sampled yield values.
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2.2 Assessment of Prediction Accuracy 

In validating crop yield models for either parameter calibration of physical models 
or training of machine learning models, some kind of metrics is needed to estimate 
prediction error. Let us denote the predicted and true yield at location i by . ŷi and . yi , 
respectively. The most common error metrics include 

.Mean Absolute Error: MAE = 1

N

N∑

i=1

|ŷi − yi | (1) 

or 

.Root Mean Squared Error: RMSE =
√√√√ 1

N

N∑

i=1

(ŷi − yi)2, (2) 

where N is the number of individual units of yield measurement. If the units are 
of different size (as in the case of yield prediction on a field-by-field basis), the 
yield values should be normalized by the area of the corresponding field. In the case 
of intra-field yield assessment, usually yield in equal-sized units (say, 10. ×10m) is 
considered. 

The MAE and RMSE error metrics are useful if prediction errors obtained for 
the same crop in similar growing conditions are compared. Otherwise, it would be 
more useful to calculate relative error metrics such as 

.Mean Absolute Percentage Error: MAPE = 1

N

N∑

i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣ · 100%, (3) 

or 

. Relative Root Mean Square Error: RRMSE =
√√√√

1
N

∑N
i=1(ŷi − yi)2

∑N
i=1 ŷi

2
· 100%.

(4) 

Another popular performance metric of crop yield prediction models is the coef-
ficient of determination . R2. . R2 evaluates how well the true versus predicted yield 
values follow the linear regression line and can be calculated as 

.R2 = 1 −
∑N

i=1(ŷi − yi)
2

∑N
i=1(yi − μy)2

, (5) 

where . μy is the average over the true yield values. In their review on crop yield 
prediction using machine learning, van Klompenburg et al. have found that in 50
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selected studies RMSE was used 29, . R2 19, and MAE 8 times as the metric of the 
prediction error (van Klompenburg et al. 2020). 

Other metrics for model efficiency used in the context of yield prediction include 

.Coefficient of Residual Mass: CRM =
∑N

i=1 yi − ∑N
i=1 ŷi∑N

i=1 yi

, (6) 

used in the assessment of crop yield prediction models in Chipanshi et al. (2015), 
for example, or 

. Lin’s Concordance Correlation Coefficient: LCCC = 2ryŷσyσŷ

σ 2
y + σ 2

ŷ
+ (μy − μŷ)

2
,

(7) 

where . σ 2
y and . σ 2

ŷ
are the variances of the true and predicted yield, respectively, 

and r is the correlation coefficient between the two variables. LCCC measures the 
goodness of linear regression between predicted and true yield and is used, for 
example, in Filippi et al. (2019). Still other metrics, more suitable for usage in the 
context of physics-based models, include the Skill Score (SS) (Johnson et al. 2016) 
and the ecological distance measure (Tian et al. 2020). It is common to use several 
error metrics in a single study to better characterize the model behavior. 

The above list of yield prediction accuracy assessment measures is not com-
prehensive, and in individual studies several other metrics have been used. The 
selection of appropriate metrics should take into account the type of prediction 
model as well as the usage of the metrics (i.e., for what comparison is the metrics 
used for). 

3 Physics-Based Models for Crop Yield Prediction 

There are many plant physiology-based crop growth models available. EU Joint 
Research Center (JRC) launched the Monitoring Agricultural ResourceS (MARS) 
initiative in 1988 to acquire information on crop production using remote sensing 
technology (van der Velde et al. 2019). The crop monitoring and yield forecasting 
are currently performed by the Food Security Unit of the European Commission’s 
Joint Research Center using the MARS Crop Yield Forecasting System (MCYFS). 
Part of this system is the crop simulation module relying on crop models. The main 
crop growth model used within the MCYFS is the WOFOST (acronym for WOrld 
FOod STudies) model (de Wit et al. 2019), introduced already in 1989 (van Diepen 
et al. 1989) and updated continuously since. WOFOST explains crop growth based 
on the underlying processes such as photosynthesis and respiration. The effects 
of environmental conditions on these processes are considered when monitoring 
and forecasting crop growth and yield. WOFOST is open source and numerous
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Fig. 1 Schematic of the Aquacrop model (https://www.fao.org/3/i6321e/i6321e.pdf) 

implementations of its conceptual framework exist. The model has been used for 
modeling a wide variety of crops such as wheat, barley, maize, potato, sunflower, 
and rice in different growing conditions from Europe to China.2 Other more limited 
models used in the MCYFS context include: 

• WARM: a simplified user-friendly growth model for paddy rice crops 
• CropSyst: a multi-layer multi-crop model designed to study the effect of cropping 

systems management on productivity 
• CANERGO: sugarcane growth model based on daily weather data, soil proper-

ties, and data on management. 

At the global level, the Food and Agriculture Organization (FAO) of the United 
Nations has developed the Aquacrop model, widely used to simulate the dependence 
of crop growth on water and nutrient availability (Steduto et al. 2009). The model is 
based on converting transpiration into biomass through water productivity. Biomass 
is connected to yield via the Harvest Index (HI) parameter (see Fig. 1). Similarly 
to WOFOST, numerous open source implementations of the Aquacrop model exist.

2 https://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Crop_Simulation 
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In Todorovic et al. (2009) the Aquacrop model is compared with the WOFOST 
and Cropsyst models in the simulation of sunflower growth under different water 
regimes. The authors note that whereas Aquacrop is water-driven, Cropsyst can be 
considered both water- and radiation-driven and the WOFOST model is carbon-
driven. It is found that the performance of the three models is similar in simulating 
biomass and yield, while Aquacrop requires less input parameters. In Mkhabela and 
Bullock (2012) the performance of the Aquacrop model in simulating yield and 
soil moisture for wheat is assessed. The model appears to model soil moisture better 
than yield (. R2 of 0.90 vs 0.66, respectively). Aquacrop is compared to the WOFOST 
model for potato crop in Quintero and Díaz (2020). Both models gave correlation 
over 0.99 between the true and simulated harvestable biomass. 

A major challenge in applying physics-based crop growth models for yield 
simulation and forecasting is model calibration. For example, the Aquacrop model 
has more than 50 input variables or model parameters that should be determined 
to run the model. Modeling can be performed at a field scale with more precise 
parameter values or at a regional scale with different calibration for different crops 
and their varieties as well as different climatic conditions. In Silvestro et al. (2017) 
the sensitivity of the Aquacrop model to its parameters has been studied using the 
Morris and EFAST (Extended Fourier Amplitude Sensitivity Test) techniques. In 
the study, Aquacrop is compared to a more simple SAFYE (Simple Algorithm For 
Yield expanded with the evapotranspiration component) model (Duchemin et al. 
2008) in complexity and plasticity for wet and dry conditions. SAFYE was found to 
be less complex but of less plasticity. 

The main aim of the plant physiology-based crop models is usually not to 
estimate the crop yield as accurately as possible but rather to understand the 
factors affecting crop growth, biomass generation, and yield production. The target 
variables in these models can be other than yield (biomass or leaf area index, for 
example). The brief presentation of these models here is meant to underline the 
importance of relating the data-driven yield prediction models to the physiology of 
plant growth. Performing yield prediction using remote sensing or environmental 
data is, in fact, an indirect way to assess the factors of crop growth and yield 
production. 

4 Data-Driven Yield Prediction Using Machine Learning 

In this section yield prediction methods relying completely on the underlying data 
are discussed, i.e., no physical model of plant growth or growth environment is 
considered. Although the prediction algorithm can be called a model also in this 
case, the model is purely computational and its parameters are determined based 
on the data by some learning algorithm. If the learning algorithm involves training 
data (i.e., data for which the true yield value is known), it is called supervised, 
otherwise unsupervised learning or clustering is in question. The amount of training
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data required to train a supervised learning algorithm depends on the complexity of 
the computational model, its structure, and the number of parameters. 

While recently more attention has been paid on deep learning models, the so-
called conventional classification or regression models are still intensively used. 
Although it is difficult to draw a strict line between the two types of models from the 
application point of view, the main difference is that the conventional methods are 
usually based on precalculated features or properties of the data while deep learning 
models work on raw data. The number of parameters is usually much higher in 
deep learning models, and therefore, more data need to be used in their training. 
Deep learning models are usually not as sensitive to occasional errors in data as the 
conventional methods; on the other hand, they are only as good as their training data 
and biased training data will produce biased predictions. Deep learning models can 
comprehend a large amount of available data of different modalities being capable of 
combining virtually all the data sources available for a particular task (see Sect. 2.1). 
The results obtained with deep learning models are difficult to track or interpret, 
and although methods exist to pinpoint the features in the source data that affect the 
prediction results most, it is still difficult to relate the performance of the model to 
certain phenomena. 

In the following a brief overview of the conventional machine learning methods 
and their usage in yield prediction is given. After that, three main types of 
deep learning models, Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), and Transformer Neural Networks (TNNs) are discussed. The 
following is not a comprehensive literature review of the usage of these models; 
the reader is directed to the numerous review papers on the subject. The aim is to 
provide a general overview on the various methods with examples of their use for 
yield prediction. 

4.1 Feature-Based Methods in Yield Prediction 

The conventional classification models can be roughly divided into three categories: 
regression analysis, Bayesian models, and decision trees. 

4.1.1 Regression Analysis 

The main idea behind these models is to divide the feature space into subareas based 
on what is known about the true yield in the form of the training data. For example, 
the training data samples can be projected to the feature space formed by two or 
more wavelength bands of a remotely sensed data set and a discrimination curve 
can be defined to optimally separate the data points according to the true yield 
values. Probably the most common method in this category is the Support Vector 
Machine (SVM). In its basic form the SVM works in a two-dimensional feature 
space producing a linear separation line between two classes (in our case, the data
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points corresponding to yield higher or lower with respect to a certain threshold). 
Using modifications of the SVM such as kernel functions, SVMs can fit nonlinear 
discrimination functions and be used in higher dimensional feature space with more 
than two classes. 

SVMs have been widely used for the classification of remotely sensed data 
acquired from crop fields, especially when evaluating the performance of more 
advanced deep learning (DL) methods in their early applications (Kim and Lee 
2016; Ji et al.  2018). They are still commonly used in agricultural applications, 
including yield prediction (Kuradusenge et al. 2023). A common usage of SVMs is 
in combination with the CNNs (see Sect. 4.2) as a classification layer working on 
the features provided by the convolutional layers of the CNN (Tao and Wei 2022). 

4.1.2 Bayesian Methods in Yield Prediction 

In its simplest form Bayesian yield prediction models are based on the probabilities: 

.p(Yk|x) = p(Yk)p(x|Yk)

p(x)
, (8) 

where .p(Yk|x) is the probability of certain yield range k given feature vector . x
(posterior probability), .p(Yk) is the prior probability of having yield in the range 
k, .p(x|Yk) is the likelihood that if yield values are in the range k, certain feature 
vector . x has occurred, and .p(x) is the probability of having a certain feature vector 
. x in the first place (i.e., evidence). Thus, to determine the model one should have 
the knowledge on how the probability of observing certain source data values 
(wavelength band values in remote sensing or temperature/precipitation sums, for 
example) relates to the probability of having yield in certain ranges. Once the 
probabilities have been determined using the training data, the model can be used 
for obtaining the posterior probability of future yield values given the input feature 
vector. 

The Bayesian method has the additional advantage of obtaining the uncertainty 
of the predicted yield values. Also, information about the sensitivity of the model 
output to changes in the input variables is inherently present in the model, while 
in the case of DL models, Monte Carlo analysis should be performed to assess the 
sensitivity of the model to its input. Bayesian inference is also widely used with 
physics-based model. The probabilities in Eq. 8 can be based on physical models 
and the knowledge on the underlying phenomena instead of using the training data. 

An example of maize yield prediction based on temperature and precipitation 
using Bayesian inference is presented in Shirley et al. (2020). In Bazrafshan et al. 
(2022) Bayesian analysis is used to quantify the uncertainty of the parameters and 
input variables of yield prediction models that rely on other techniques such as 
multi-layer perceptrons or neuro-fuzzy models.



380 T. Lipping and P. Ranta

4.1.3 Decision Trees in Yield Prediction 

The basic idea behind decision trees is to use expert knowledge in classifying 
the input feature vector by comparing the values of the features to predetermined 
thresholds in a step-by-step manner. As the models described in Sect. 4.1.1, decision 
trees also divide the feature space into subareas, however, the resulting subareas are 
rectangles bordered by threshold values used in the tree. From their basic form, 
decision tree models have developed into ensemble structures where a large number 
of individual decision trees are applied and their outputs are aggregated according 
to some rules. These methods are commonly referred to as Random Forest (RF) 
classifiers. In the context of machine learning, the thresholds used at the tree nodes 
are determined based on the training data. Also, the structure of the trees can 
be optimized (referred to as tree pruning). A deep learning approach to decision 
trees is provided by the eXtreme Gradient Boosting (XGBoost) software library 
including algorithms for penalization of trees, tree pruning, randomization (to avoid 
overfitting), and automatic feature selection. 

Several studies applying SVMs to perform yield prediction also use RF classifiers 
in comparison (Kim and Lee 2016; Jhajharia et al. 2023). In Jhajharia et al. (2023) 
the RF classifier outperformed several other methods including SVM and LSTM 
(see Sect. 4.3). This indicates that the conventional prediction models have still 
their advantages despite the shift in the main focus of machine learning-based 
yield prediction toward DL models. In Huber et al. (2022) the XGBoost model is 
compared to DL models in soybean yield prediction with the advantage of more 
transparent prediction process. The authors encourage further experiments with the 
XGBoost model for other crops and geographical areas. 

4.2 Convolutional Neural Network Models 

Convolutional neural networks are probably the most widely used deep learning 
neural network architecture so far. The introduction of the pioneering 7-level LeNet-
5 architecture meant the beginning of a new area in image analysis (Lecun et al. 
1998). The main component of the model is the convolution operation, where a 
set of trainable kernels is applied to the input image, resulting in a set of features 
describing the data. The model learns basic features in the first layers and composite 
features in further layers. A fully connected (FC) network layer is then used after 
the convolutional layers to perform the classification. Structures where the FC layer 
is replaced by other classifiers such as the SVM have also been widely used. 

In addition to the feature-extracting convolutional layers, several other properties 
of the CNNs have contributed to their popularity. The Rectified Linear Unit (ReLU) 
activation function used after the convolution operator, the batch normalization and 
pooling layers, as well as using regularization in the loss function used in error 
backpropagation to avoid overfitting constitute some of the properties behind the 
success of CNNs. As the most common application area of CNNs is image analysis,
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they are especially suitable for yield prediction based on remote sensing imagery. 
However, the kernel filters of CNNs can also be applied to one-dimensional input 
such as time series. On the other hand, using three-dimensional kernels (3D CNN), 
sequences of images (or other type of input data) can be used for yield prediction 
(Nevavuori et al. 2020). 

The use of CNNs has been extensively studied in the context of smart farming and 
agriculture and several comprehensive reviews have been published on the subject. 
In a review published in 2018, the use of CNNs in agriculture has been considered 
in a set of 23 papers published between 2014 and 2017 (Kamilaris and Prenafeta-
Boldú 2018). It was found that the most popular application areas of CNNs were 
fruit counting, plant recognition, land cover classification, weed identification, and 
disease detection, with one paper considering maize yield estimation (Kuwata and 
Shibasaki 2015). In a later review on using machine learning techniques specifically 
for crop yield prediction, 50 papers were considered (van Klompenburg et al. 2020). 
Of these, 30 papers applied deep learning models, CNN being the most popular with 
15 cases. In some cases CNNs were combined with LSTMs (see Sect. 4.3) or some  
modification of the basic CNN architecture (such as Region-based CNN, R-CNN) 
was used. 

4.3 Recurrent Neural Network Models 

Recurrent Neural Networks (RNNs) form a subclass of deep learning architectures 
designed to analyze sequential data. As the term recurrent implies, the output of 
a network node can be used as an input to the same node at the next step of the 
sequence, forming loops. Another way to look at the network structure is having 
multiple nodes operating on consecutive elements of the sequence (feature vectors 
corresponding to consecutive sampling instances of data sources, for example). In 
addition to the input values, a state variable from the previous node is fed to each 
network node. The output of the network can be taken from all nodes forming an 
output sequence or just from the last node (if, for example, a single crop yield value 
is to be obtained based on a sequence of input feature vectors). Also, CNN layers can 
be applied to the input data before feeding them to the RNN nodes to automatically 
extract features, or FC layers can be applied to the RNN outputs for classification. 

A node of an RNN structure is more complex compared to what is usually 
considered a node in a conventional neural network or in CNN architecture, 
containing several trainable parameter matrices and gates. Several modifications of 
RNN nodes have been introduced. The most popular RNN subclass in agricultural 
applications seems to be that of Long Short-Term Memory (LSTM). The main 
idea behind LSTM node architecture is to avoid vanishing or exploding gradients 
when training the network using backpropagation. There are two general concepts 
in the LSTM that help it learn temporal features from data. The first is the concept 
of memory, introduced as the cell state. The other one is the concept of gates, 
effectively trainable FC layers, manipulating the cell state in response to new inputs
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from the data and past outputs of the model. To handle the sequence of data, 
the model loops over the sequence, altering its cell (C) and hidden (H) states in 
the process using a combination of learned parameters and nonlinear activation 
functions. 

In the review by van Klompenburg et al. (2020) 8 papers were found applying 
either LSTMs or hybrid methods including LSTMs to yield prediction. In a more 
recent review on deep learning methods for crop yield prediction using remote 
sensing data, 44 papers were considered. It was found that since 2018 the number of 
papers on the subject has been increasing exponentially and that LSTMs are gaining 
popularity with 30% of the studies applying this model (Muruganantham et al. 
2022). Also, various hybrid architectures and subclasses of CNNs and LSTMs have 
been applied. In Nevavuori et al. (2020) we tested four different models (pretrained 
CNN, CNN-LSTM, convolutional LSTM, and 3D CNN) for the prediction of wheat, 
barley, and oats yield based on a sequence of UAV-based RGB data and found that 
the least prediction error was obtained with the 3D CNN model, while the CNN-
LSTM model performed in a more stable manner (i.e., did not produce ill-fitted 
predictions for individual inputs). 

4.4 Transformer Networks 

Recently, a new deep learning architecture, generally called transformer network, 
has been presented. The basic transformer architecture was first introduced in 
Vaswani et al. (2017) for natural language processing applications such as trans-
lation. Transformer networks are based on the encoder-decoder architecture with a 
connection between the two. As RNNs, transformer networks are designed for the 
analysis of sequences of data, however, instead of sequential data processing by 
network nodes, joint information between all pairs of the elements of the sequence 
is considered by a set of computations in the multi-head attention block. A desired 
output sequence is fed to the decoder part for training the model and is processed 
by the masked multi-head attention block, the output of which is combined with the 
information coming from the encoder and fed to another attention block. FC layers 
are also used in both encoder and decoder. 

Transformer networks have outperformed other deep learning structures in lan-
guage models and in linguistic Artificial Intelligence. However, they have recently 
been successfully applied also to image analysis (using the Vision Transformer 
(ViT) architecture (Dosovitskiy et al. 2021)) as well as to other forms of source 
data. In this case, the image blocks are considered as the elements of a sequence. 
The blocks are encoded together with the information about the position of the block 
within the image before feeding to the multi-head attention. When considering yield 
prediction based on remote sensing data, transformer networks have the advantage 
of making better use of long-range and multi-level dependencies across the regions 
within the image (spatial dependencies) as well as long-term time dependencies in 
a sequence of images.
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As of writing this chapter, only a few studies could be found applying transformer 
networks for crop yield prediction. In Liu et al. (2022) a modified version of the 
transformer network, called Informer (Zhou et al. 2021), was used for rice yield 
prediction across the Indian Indo-Gangetic Plains by combining time-series satellite 
data and environmental variables. The Informer model was found to give higher 
. R2 and lower RMSE and MAPE than the other tested models (the Least Absolute 
Shrinkage and Selection Operator (LASSO), RF, XGBoost, and a modification of 
the LSTM) almost consistently. In Bi et al. (2022) two transformer networks, the 
ViT for image analysis and another transformer module for time series analysis, 
were used for the prediction of soybean yield. The authors claim a reduction of 
40% in the prediction error compared to the baseline models of CNN combined 
with Linear Regression and CNN-LSTM. In other studies the transformer networks 
have been used for crop disease detection (Jubair et al. 2021) and crop classification 
(Weilandt et al. 2023). These early studies are promising, and given the success of 
the transformer models in other application areas we can expect rapid growth in 
their application for crop yield prediction as well. 

5 Discussion and Conclusions 

This chapter is an attempt to give a brief overview on the techniques and technolo-
gies used for the prediction of crop yield. The number of studies dealing with the 
task has increased exponentially during recent years. One reason might be that smart 
farming and precision agriculture have gained a lot of attention and the amount and 
variety of available data to develop methods for yield prediction has also increased, 
especially in the area of remote sensing. Satellite data have become freely available 
from various sources and drones are now in the reach of all the interested users. 
The role of data in agriculture has been intensively discussed and rules are being 
developed to determine the ownership and value of data. This gives incentives to 
develop algorithms and tools that would make use of the data and provide additional 
value for stakeholders. The largest increase in studies concerning yield prediction 
is related to applying novel deep learning methods to the task. Yield prediction is 
a favorable task to test and apply these methods as the reference data is relatively 
easy to obtain using yield monitors, for example. 

We have included a brief overview of yield monitoring models based on plant 
physiology in this chapter. This is usually considered as a separate subject compared 
to machine learning-based yield prediction. This can be justified as the aims of the 
two types of models are different and obtaining an accurate yield forecast is not 
the primary goal of physics-based models. However, we suggest that combining 
these two branches of research would be worth paying more attention. From the 
point of view of yield forecasting, the machine learning models can be considered 
as metamodels for physics-based crop growth models. Also, machine learning can 
be used within physics-based models to assist in determining model parameters and 
in the calibration of the model.



384 T. Lipping and P. Ranta

There is virtually an infinite set of possibilities to test and evaluate various models 
for crop yield prediction. The models vary according to the crops and their varieties, 
climatic conditions, model structures, soil types, crop management, etc. For the 
model to be used in practical decision-making, the use cases and limitations of 
the models should be well defined. Linking the deep learning models to physical 
properties of the growth conditions and plant physiology makes the models more 
reliable and encourages their use. 
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Abstract Abiotic stresses, like drought, salinity, and high temperature pose signif-
icant challenges to global agriculture, jeopardizing crop yields and food security. 
Traditional breeding methods struggle to efficiently develop stress-tolerant crop 
varieties due to the complex genetic basis of stress responses. Phenomics, the 
comprehensive study of plant traits, has emerged as a valuable approach to accel-
erate abiotic stress breeding. This chapter reviews recent advances in phenomics 
techniques applied to abiotic stress research, highlighting their potential to enhance 
stress tolerance in crops. We discuss cutting-edge technologies, including high-
throughput phenotyping and imaging systems, which enable the rapid and accurate 
assessment of stress-induced morphological and physiological changes. Moreover, 
we explore how multidimensional data generated by these techniques can be har-
nessed through data analytics and machine learning to uncover key stress-responsive 
traits and genes. Through this synthesis, we emphasize the transformative impact of 
phenomics on breeding programs and its pivotal role in developing stress-resilient 
crop varieties, ensuring sustainable agricultural productivity in the face of changing 
environmental conditions. 
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1 Introduction 

Plant phenomics is a comprehensive evaluation of plant traits including plant 
growth, development, architecture, physiology, and yield (Gaudin et al. 2013). 
Plant phenotyping is important for the development of elite plant varieties. Forward 
phenomics employs phenotyping technologies to identify the most favorable geno-
types with the most desirable attributes within a vast collection. Reverse phenomics 
is the in-depth analysis of qualities that have been demonstrated to be useful in 
revealing underlying concepts and enabling the exploitation of a mechanism in novel 
techniques (Furbank and Tester 2011). Additionally, high-throughput phenotyping 
(HTP) for crop development in response to climate scenarios is made possible 
by the core science of phenomics (Yang et al. 2013). Crop plant phenomics is 
based on vast amounts of plant phenotyping data, including morphological qualities, 
physiological variables, and biochemical traits, that have been collected using high-
throughput systems (Fig. 1) (Rahaman et al. 2015). 

Fig. 1 Application of phenomics in fundamental and applied plant sciences
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Phenomics implements multidisciplinary technologies including software and 
hardware components (Lin 2015). Many countries have made investments in phe-
nomics, including the United States, Australia, Belgium, England, France, Germany, 
Japan, China, India, and Korea. These countries set up high-throughput plant 
phenotyping (HTPP) facilities using visible (VIS), near-infrared (NIR), infrared 
(IR), and hyperspectral images. The major purpose of the facilities was to analyze 
rice, wheat, maize, vegetables, and fruits. There are many phenotypic trait analyses, 
including biomass, root shape, yield-related attributes, leaf characteristics, and 
stress responses (Arvidsson et al. 2011; Balachandran et al. 1997; Duan et al. 2011; 
Golzarian et al. 2011; Kumar et al. 2014). 

Data management is the process of organizing, storing, and disseminating 
research data (Brown et al. 2014). It can be difficult, particularly whenever studies 
involve multiple researchers and are done in complicated situations. Throughout the 
study phase, the way data are handled is determined by the types of data involved, 
how they are gathered and kept, and how data are used. The success of research is 
influenced by the manner in which data are maintained. Data management assists 
researchers in organizing research files and data for better access and analysis (Li 
et al. 2013). It contributes to the overall excellence of the research as well as 
validates the published results in terms of ongoing data analysis accountability. 
The gathering of large-scale plant phenotypic data is rising at an exponential rate, 
and it must be effectively handled prior to, throughout, and following the research 
period. The massive amounts of phenotypic data received from various phenomics 
platforms, both raw and metadata, are put into analytic workflows (Yang et al. 
2013), where adequate data management is required for optimal applicability. Plant 
phenomics data management is a vital procedure for crop development programs. 
Therefore, this book chapter tries to describe the workflow of data management in 
plant phenomics programs. 

One of the major problems in current plant breeding is the genotype-to-
phenotype gap (Houle et al. 2010). Although studies in genomics have revealed 
plenty of information about the genetic structure of many plant species, sequencing 
techniques and the data generated by them much exceed our present abilities for 
plant phenotyping (Yang et al. 2014). Conventional plant phenotyping technologies, 
particularly depending on the laborious measurement of selected attributes from a 
small sample of plants, have very low throughput and thus impede complete analysis 
of traits within and across cultivars. This referred to as phenotyping bottleneck 
inhibits the chance to figure out how expressed phenotypes correspond with 
underlying genetic variables and environmental conditions, and it has hampered 
progress on critical breeding challenges like drought resistance (Furbank and Tester 
2011). 

Image-based approaches have the potential to significantly expand the area of 
study and efficiency of plant phenotyping efforts. In the last eight years, the ability to 
capture images of plants and crops has grown considerably due to the incorporation 
of new imaging technologies, robotic and conveyer belt systems in greenhouses, 
and ground-based and aerial imaging platforms in fields (Fahlgren et al. 2015). It 
has been suggested that future advancements in image-based plant phenotyping
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will necessitate a collaborative effort in the areas of image processing based on 
obtaining features and machine learning for analyzing the data (Tsaftaris et al. 
2016). Deep learning methods now dominate the present state of advancement in 
many picture-based tasks, such as object recognition, among the localization of 
operations segmentation based on semantics, classification of images, and others, 
according to the current machine learning literature. However, limited applications 
for deep learning are currently presented in the field of plant phenotyping literature, 
and few general-purpose tools have been made available for the plant phenotyping 
group in order to encourage such techniques. 

Our aim is to help the plant phenotyping community with the opportunity to 
utilize cutting-edge deep learning techniques in machine vision with the objective 
to accelerate plant phenotyping research and contribute to closing the genotype-
to-phenotype gap. The majority of HTPPs, including those operated through 
large transnational seed manufacturers as well as those managed by the world’s 
leading open plant-related organizations, including the Australian Plant Phenomics 
Facility, the European Plant Phenotyping Network, and the USDA (United States 
Department of Agriculture), have fully automated amenities in greenhouses or 
growth chambers that use robotics, accurate monitoring of the environment, along 
with remote sensing methods to analyze plant development and yield. In this 
book chapter, we discuss phenomics for abiotic stresses, high-throughput plant 
phenotyping techniques, data management, and the role of HTPs in crop breeding 
programs. 

2 Phenomics for Abiotic Stresses 

Crop growth and development are severely hampered by abiotic factors such as 
drought, salt, water logging, extremely high temperatures, and heavy metals, which 
reduce yield (Bray et al. 2000). Non-stress agricultural area accounts for just 10% 
of total arable land worldwide (Dita et al. 2006). According to Furbank and Tester 
(2011), there is a significant knowledge gap between genotype and phenotype, or, to 
put it another way, the relationship between the two is mostly illusory. In fact, a new 
obstacle in plant breeding and stress biology has been identified: high-throughput 
phenotyping (Yang et al. 2013). As proteins play a role in the stress response of 
plants, it is crucial to examine proteome changes under diverse stress situations. 
The cellular processes of stress sensing and signaling are the initial mechanisms 
by which plants react to stressful situations. When plants are under stress, it 
is important to comprehend how proteins are modified during post-translation. 
Proteomics research offers a wealth of knowledge regarding the fine-tuning of 
cellular pathways involved in stress mitigation in the past. 

The leaf surface temperature, which represents the plant’s transpiration rate, is 
a crucial characteristic in drought research. Feher-Juhasz et al. (2014) employed a 
combination of shoot digital imaging, infrared imaging, and automated weighing 
and watering to explore WUE (Water Use Efficiency). To choose drought-tolerant
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transgenic wheat plants, these authors used a platform based on a self-built 
greenhouse. The platform enables the assessment of the leaf surface temperature by 
side-view thermal camera recording the variations in temperatures of plant shoots, 
as well as the monitoring of the growth of mature cereal plants by multiple-view 
RGB (red-green-blue) imaging (Feher-Juhasz et al. 2014). Additionally, various 
vegetation indices and unmanned aerial vehicle (UAV) platform are used for 
HTP to assess many aspects of plant development and wellness, including soil 
properties, water content, and nutrient levels (Tayade et al. 2022). The assessment 
of drought tolerance in barley was conducted using the same platform and phe-
notyping experimental methodology. The system offers an in-depth investigation 
of plant physiology and development, but its application to large-scale analysis 
is constrained by a semi-automated regime that necessitates manually loading the 
plants into the system (Cseri et al. 2013). 

It is possible to research plants’ resistance to both drought and high temperatures 
using the same methods since physiological responses to both stressors are closely 
related. A review by Gupta et al. (2012) provides information on the usage of high-
throughput phenotyping for high-temperature tolerance as well as a description of 
the required sensors. The effects of the high temperature on the Arabidopsis plants 
have been investigated (Vasseur et al. 2014). In order to show different adaptation 
responses to the pressures of high temperature and drought, the authors employed a 
commercial prototype platform that allowed top-view RGB photography and WUE 
analysis, followed by a highly sophisticated statistical method (Vasseur et al. 2014). 

The other process that is frequently linked to stress from drought and high 
temperatures is the salinization of soil. In a study, an example of a procedure for salt-
stress research on different cereals, including wheat, was provided that combined 
RGB imaging with destructive leaf sampling to determine Na+ concentration 
(Berger et al. 2012). Using digital RGB imaging in a commercial system situated 
in a greenhouse, the effects of salt stress were studied by Rajendran et al. (2009). 
This study gave a thorough understanding of the physiological mechanisms linked 
to salt in wheat. For the purpose of quantifying the senescent region, the authors 
estimated a digital area of the shoot and visualized changes in leaf color using 
multiple-view RGB imaging. Through non-invasive plant phenotyping and exam-
ination of Na+ concentration in fourth leaf, the authors projected a plant salinity 
tolerance index that correlated well with the findings of standard salt-tolerant 
assays (Rajendran et al. 2009). The physiological study in wheat and barley used 
conventional RGB imaging (Harris et al. 2010). A similar method was also used by 
Schilling et al. to choose a transgenic barley line that can tolerate salt (Schilling 
et al. 2014). In order to choose rice cultivars that are resistant to salt, digital 
RGB imaging and SLCFIM (Strasbourg Laser-induced Chlorophyll Fluorescence 
Imaging) were combined (Hairmansis et al. 2014). These salt-stress tolerance 
investigations were carried out on the same commercial platform that included the 
SLCFIM sensor. This form of chlorophyll fluorescence imaging (CFIM) only gives 
an estimation of a senescent region, which may be acquired using an earlier method 
of estimation based on color detection using RGB imaging, as mentioned in Sect. 
5.3, “Chlorophyll Fluorescence Imaging” (CFIM). In order to quantify the quantum
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yield of photochemistry and other competitive processes, the application of KCFIM 
(Karlsruhe Chlorophyll Fluorescence Imaging) is thus required in order to enhance 
the usefulness of the physiological evaluation (Lazar et al. 2015). 

The pioneering study of Chaerle et al. (2006), who studied the effects of moderate 
mottle virus infection on tobacco and bean plants, employed a combination of RGB 
imaging, thermal imaging, and TLCFIM (Terrestial Laser-induced Chlorophyll 
Fluorescence Imaging). The concept of the approach based on RGB imaging of 
leaf growth was explained by Moreau et al. (2009). In a study, a comprehensive 
investigation on the phenotypic impacts of nitrogen and phosphorus nutritional 
statuses was conducted in Brachypodium, using RGB imaging to assess growth 
rate (Poire et al. 2014). In a study conducted by Neilson et al. (2015), a similar 
methodology was used to assess the effects of nitrogen deficiency and drought using 
RGB imaging, NIR imaging, and automated weighing. In addition, the authors 
also developed software that retrieved additive characteristics from the images, 
including predicted plant height and the height to the ligule of the youngest fully 
grown leaf. These traits had excellent correlates with standard manually observed 
agronomical parameters (Neilson et al. 2015). Chaerle et al. (2007a, b) employed 
RGB imaging, thermal imaging, and TLCFIM to assess the phenotypes associated 
with magnesium shortage and biotic stress in beans when they earliest described the 
multiple-sensor technique. Chlorophyll fluorescence (ChlF) analysis is a common 
non-invasive technique used to study the effects of cold stress on plant growth and 
physiology; however, fluorescence sensors incorporated into sophisticated growth-
analyzing platforms are rarely used (Mishra et al. 2011). In another study by 
Humplik et al. (2015), an automated screening method based on RGB imaging and 
KCFIM analysis was developed for the selection of pea cultivars with various levels 
of cold sensitivity. The described study was designed for investigations of plant 
cold-response strategies generally, not just the selection of cold-sensitive/tolerant 
types. The presented approach should potentially be used for shoot assessments of 
different plant species since the CFIM analysis is not restricted to plant shape and 
the image analysis was sensitive enough to detect small tendrils (Humplik et al. 
2015). 

3 Phenomics Techniques for Plant Shoots and Canopies 

In 1729, the French astronomer Jean Jacques Ortous de Mairan discovered the 
existence of circadian rhythms in plants after observing the daily leaf motions of 
the heliotrope plant (Mimosa), which continued throughout continuous darkness (de 
Mairan 1729). It is generally known that one output of a plant’s circadian clock is 
the daily rhythmic movements of its leaves (Engelmann et al. 1992); this is known as 
TRiP, or Tracking Rhythms in Plants. Using this rhythmic movement, it is possible 
to calculate the internal clock’s period. Using time-lapse photography and consistent 
lighting, images are taken every 10–20 min over a span of 5–10 days to track the 
timing of leaf movement. Large image series are generated, which are evaluated for
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rhythmicity by monitoring the precise position of the leaves in every photograph. 
A number of techniques for performing this analysis have been devised; however, 
each of them requires user input at various stages of the process (Bours et al. 2012). 
One popular technique, for instance, uses the Biological Rhythms Analysis Software 
System (BRASS) and MetaMorph 

® 
software to analyze each cotyledon’s movement 

and fit period, phase, and amplitude data using the Fast Fourier Transform Nonlinear 
Least Squares (FFT-NLLS) algorithm (Edwards and Millar 2007). The process of 
creating the input data for BRASS in MetaMorph 

® 
or a comparable image analysis 

program is a significant bottleneck for the analysis. The region tool in MetaMorph 
® 

is used to choose the area around specific leaves. This region needs to be drawn 
with enough space around it to encompass the leaf throughout the image stack as 
it develops and moves during the time series. The study of a huge population is 
extremely labor-intensive and time-consuming due to the requirement to process 
each plant individually. Another disadvantage of utilizing a single cotyledon is that 
its movement is dependent on the petiole’s active growth, and that when growth 
stops, the movement substantially slows down, making period detection inaccurate 
(Engelmann et al. 1992). 

Unmanned aerial vehicles (UAVs) were utilized in research to produce 3D 
reconstructions of winter wheat from several photos in order to determine crop 
height (Khanna et al. 2015) and to create 3D digital surface models of barley 
from hyperspectral data (Aasen et al. 2015). In another research study, a laser 
scanner placed on a UAV was used to measure maize crop height. The so-called 3D 
digitizer, which creates 3D images of individual plants or plant sections as a whole 
using ultrasonic or electromagnetic sensors, is an extremely precise and intriguing 
technology. To construct light models in plant canopies in rice (Zheng et al. 2008) 
and cucumber (Wiechers et al. 2011) canopies, the plant architecture of various 
crops was assessed using 3D digitizers. Due to the requirement to physically point 
the digitizing pen at significant plant landmarks in order to record the architecture 
of the plant in 3D, 3D digitizing requires a lot of labor and time. As a result, this 
technology cannot be utilized as a high-throughput, automated phenotyping system. 

Plant phenotyping under laboratory or field circumstances is a significant study 
area in which terrestrial laser scanning (TLS) is used. Numerous morphological 
plant factors have been studied, including canopy height (Tilly et al. 2014) and 
leaf area (Gebbers et al. 2011). Besides morphological parameters, structural and 
functional information has also been studied (Sirault et al. 2013). After height 
growth, biomass is likely the second-most crucial factor (Lumme et al. 2008). In 
another method, the identification of single maize plants has been carried out to 
enhance crop management strategies or plant growth models (Hofle 2013). TLS 
measurements were mainly performed on single plants in pots; therefore, it was 
difficult to generalize the results to crops, which limited their use for field studies 
(Paulus et al. 2014). Additionally, these observations were frequently performed 
in controlled and entirely artificial environments, such as greenhouses or climate 
chambers (Kjaer and Ottosen 2015). In the field, if TLS measurements were



398 P. Kumari et al.

Fig. 2 High-throughput plant phenotyping techniques used for root system architecture (RSA; 
includes in situ and ex situ approaches) and shoot phenotyping for a comprehensive study of plant 
growth and development 

made, they were typically made on extremely small regions or with low resolution 
(Hoffmeister et al. 2013). 

The most popular technique for determining shoot biomass in phenotyping 
platforms is to take digital pictures of the plants after putting them at a specific 
position toward a camera under specific lighting conditions (Fig. 2). Using color 
and brightness evaluation, digital image processing after capture makes it possible 
to isolate plant features from the background of the image (Fiorani et al. 2012). 
The primary drawbacks of assessing biomass using imaging techniques like color 
imaging in 2D spatial dimensions are: (1) overlapped leaves and stems cause the 
shoot area to be underestimated and frequently limit this application to a specific 
plant size or developmental stage; and (2) image segmentation necessitates quite 
complicated processing pipelines (Paproki et al. 2012). A phenotyping technique 
known as a light curtain array (LC) has been utilized to measure canopy height in 
the field with success (Busemeyer et al. 2013). Depending on whether plants are 
transferred to the sensor or vice versa, phenotyping platforms can be managed uti-
lizing plant-to-sensor or sensor-to-plant measurement protocols. There are several 
restrictions when using imaging techniques as a sensor-to-plant strategy, with small 
rosette plants being the exception (Arvidsson et al. 2011). Multiple cameras would 
need to be positioned above the plant in a specific direction, and the lighting during 
imaging would need to be tightly regulated. This requirement partially explains 
the implementation of a plant-to-sensor strategy, in which plants are transported to 
specific imaging stations, using existing platforms for the phenotypic evaluation of 
plants of various sizes (Golzarian et al. 2011). Table 1 describes the image analysis 
software available for high-throughput phenotyping.
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Table 1 Selected image analysis software available for high-throughput phenotyping 

Plant tissue Software Phenotypic trait/parameter References 

Shoot and 
leaves 

TraitMill Platform for monitoring different 
agronomic traits 

Reuzeau et al. 
(2006) 

PHENOPSIS Automated evaluation of 
characteristics associated to water 
deficit 

Granier et al. 
(2006) 

LeafAnalyser Leaf shape variation analysis Weight et al. 
(2008) 

LAMINA Rapid measurement of leaf size and 
shape 

Bylesjo et al. 
(2008) 

HYPOTrace Hypocotyl growth and shape Wang et al. 
(2009) 

LEAFPROCESSOR Analysis of leaf shape Backhaus et al. 
(2010) 

Lamina2Shape Leaf length and shape: width ratio and 
leaf area 

Dornbusch and 
Andrieu (2010) 

Easy leaf area Total leaf area and non-invasive 
canopy area estimation 

Easlon and 
Bloom (2014) 

LeafByte Leaf dimensions, herbivory extent Getman-
Pickering et al. 
(2020) 

LI-3000C Leaf dimensions, leaf area – 
WinDIAS Leaf area, length, width, perimeter, 

proportion of diseased area 
– 

WinFOLIA Morphological measurements of broad 
leaves, herbivory extent, disease 
extent, and color profiles 

http://www. 
regent.qc.ca/ 
products/folia/ 
WinFOLIA.html 

Root KineRoot Root diameter and growth Basu et al. (2007) 
EZ-Rhizo Root length, insertion-angles, and 

branches 
Armengaud et al. 
(2009) 

PlaRoM Lateral root formation, extension, and 
root hair development 

Yazdanbakhsh 
and Fisahn (2009) 

DART Root system architecture Le Bot et al. 
(2010) 

RootTrace Root length and curvature Naeem et al. 
(2011) 

Root reader 3D 2D analysis of root length, depth, 
convex-hull, and volume 

Clark et al. (2011) 

SmartRoot Measurements of growth and 
architecture 

Lobet et al.  
(2011) 

GiA roots 2D analysis of total root length, area, 
and volume 

Galkovskyi et al. 
(2012) 

GROWSCREEN-
Rhizo 

Root and shoot growth Nagel et al. 
(2012) 

(continued) 

http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
http://www.regent.qc.ca/products/folia/WinFOLIA.html
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Table 1 (continued) 

Plant tissue Software Phenotypic trait/parameter References 

DIRT Root tissue angle in soil, root 
dispersion and density, root network 
size, shape, and depth 

Das et al. (2015) 

archiDART v3.0 Topology of root system Delory et al. 
(2018) 

RootNav 2.0 Primary and lateral root count, 
lengths, insertion angles 

Yasrab et al. 
(2019) 

saRIA Total root length, area, volume, and 
diameter, all aspects of root 
morphology, both globally and locally 

Narisetti et al. 
(2019) 

SegRoot Root length Wang et al. 
(2019) 

4DRoot Root architecture Herrero-Huerta 
et al. (2022) 

WinRHIZO Morphological characteristics 
including root area, volume, length, 
surface, and root color 

http://www. 
regent.qc.ca/ 
products/rhizo/ 
RHIZOTron.html 

Seed SHAPE Quantitative evaluation of shape 
parameters 

Iwata and Ukai 
(2002) 

ImageJ Seed area, size, and shape Herridge et al. 
(2011), http://rsb. 
info.nih.gov/ij/ 

SmartGrain Seed shape, size, dimensions, and 
count 

Tanabata et al. 
2012 

GrainScan Seed size, color, dimensions, and seed 
count 

Whan et al. 2014 

WinSEEDLE Measurements of the volume and 
surface area of seeds and needles 

http://www. 
regent.qc.ca/ 
products/needle/ 
WinSEEDLE. 
html 

SeedCount Seed size, dimensions, color, seed 
count 

– 

3.1 Digital Imaging 

Digital image evaluation offers a quick and affordable method for accurately assess-
ing plant traits that would otherwise take a lot of effort. The measuring of canopy 
characteristics is a good example (Fiorani et al. 2012). Digital photographs have 
several benefits over conventional ways of estimating light interception, including 
the ability to immediately process photos by computer. Video image analysis 
enables a rapid, low-cost, and non-destructive evaluation of canopy characteristics 
and crop development (Elsayed et al. 2011). Digital imaging is also useful for 

http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://www.regent.qc.ca/products/rhizo/RHIZOTron.html
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
http://www.regent.qc.ca/products/needle/WinSEEDLE.html
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monitoring root features in research, which are sometimes limited by a lack of 
acceptable methods for continuous, non-destructive observations (Blouin et al. 
2007). Furthermore, the analysis of digital images (Armengaud et al. 2009) enables 
accurate evaluation at higher resolution scales, which is required to explore the 
kinetics of the mechanisms that regulate root growth. In this regard, Chavarria-
Krauser et al. (2008) used a non-invasive technique based on digital imaging to 
quantify highly resolved spatiotemporal dynamics within the root development zone 
of Arabidopsis. 

3.2 Near-Infrared Spectroscopy and Spectral Reflectance 

High-throughput phenotyping platforms may benefit from remote sensing using 
near-infrared spectroscopy and the spectral reflectance of plant canopies (Montes 
et al. 2007) and offer intriguing chances to gather integrative features with great 
temporal resolution (Gutierrez et al. 2010). Sensors attached on tractors gather spec-
tral reflectance in the visible and near-infrared wavelengths of the electromagnetic 
spectrum from the crop canopy (Montes et al. 2007) or by employing handheld 
gadgets with digital cameras attached on them (Casadesus et al. 2007). With the help 
of remote sensing, we now understand how species, leaf thickness, canopy structure, 
leaf age, nutritional status, and, most crucially, water status affect changes in leaf 
reflectance and emittance. On the basis of these data, numerous vegetative indices 
for crop canopies have been developed to quantify agronomic characteristics. The 
usage of calibration models for the phenotypic value prediction is necessary to get 
relevant information from the plot spectra. Under carefully controlled experimental 
circumstances, spectral reflectance used to track plant photosynthetic pigment 
composition, evaluate the state of the water, and identify abiotic stress in its early 
stages (Babar et al. 2006; Gray et al. 2010). 

3.3 Light Imaging and Detection 

The introduction of light detection and ranging (LiDAR) technology has given rise 
to a new goal for 3D plant phenotype analysis (Lefsky et al. 2002). Short-wavelength 
lasers like ultraviolet to near-infrared light are used in this innovative remote sensing 
approach to calculate the distance between sensor and target object using laser 
beam speed and flight time captured by a timer (Lin 2015; Shan and Toth 2018). 
The angle encoder captures laser emitting angles and converts the distance into 
3D structure information. This technique gathers information about the canopy and 
leaves’ numerous characteristics, including the vegetation’s height, structure, and 
leaf area index as well as the nitrogen level (Lin 2015; Madec et al. 2017; Zhang 
and Grift 2012). LiDAR provides a number of benefits, including high-throughput 
phenotyping, excellent repeatability, high spatial resolution, and independence from 
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light; this makes the technique suitable for field use (Llorens et al. 2011; Madec et al. 
2017). The short-wavelength laser can characterize the interior structures of plants 
by penetrating the plant canopy, making up for the shortcomings of the other optical 
image techniques (Berk et al. 2016). 

4 Phenomics Techniques for Roots/RSA (Root System 
Architecture) 

Plant roots play important roles in water and mineral absorption, anchoring, devel-
opment as well as growth, storing food, and as interaction areas for many biological 
communities (Urfan et al. 2022). Several biochemical processes occur in plant roots 
to adapt to stress, which can be rapid or long term. As a result, numerous breeders 
realize that the secret to producing genotypes resistant to a variety of abiotic stresses 
is located beneath the soil surface (DoVale and Fritsche-Neto 2015). The structure 
and arrangement of a root system in a particular environmental state is termed as root 
system architecture (RSA) (Urfan et al. 2022). Plant root phenotyping is a difficult 
undertaking that represents a significant gap in plant root study. Because of this, 
the genetic and physiological bases of roots are less developed than those of above-
ground phenes. In order to overcome this “phenotyping gap,” classical phenotyping 
has given way to image-based phenotyping, which allows for comparatively high 
throughput while retaining root measurement precision (Kumar et al. 2022). In the 
beginning of the 2000s, certain devices and programs were developed that allowed 
the assessment of various root statistics such as volume, length, area of surface, 
and projected area, among others (Danilevicz et al. 2021; DoVale and Fritsche-Neto 
2015). It is important to examine the stages of root phenotyping along the traditional, 
single-trait and developing, multi-trait paths to accelerate the adaptation of root 
phenotypes to field environments. Root phenotyping generally starts in controlled 
environments and advances to field validation for early, quick success due to the 
high-throughput performing approach that prevents challenging conditions (Watt 
et al. 2020). The two main categories of root phenotyping methods are ex situ 
(where the whole system of roots has been collected and examined outside of living 
conditions) and in situ (where the entire root system is obtained and evaluated in 
natural conditions) (Mir et al. 2019), as shown in Fig. 2. 

4.1 Ex Situ Techniques 

Since 1727, traditional root phenotyping techniques have been damaging, low-
resolution, and time-consuming such as the pinboard method, excavation methods, 
and the trench profile technique (Shi et al. 2022). A variety of soil-free techniques— 
such as aeroponics, where the target plant’s roots are suspended in the air and treated 
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with a fine spray of nutrient solutions (Gangopadhyay et al. 2021), and hydroponics, 
static hydroponics that involves growing plants in containers and water-circulating 
hydroponics that uses PVC (Polyvinyl Chloride) pipes—are used for RSA studies 
(Bonato et al. 2022). The paper roll technique is also commonly employed in the 
study and monitoring of early RSA characteristics under various environmental 
stimuli in the seedlings of wheat (Alemu et al. 2021). It is possible to thoroughly 
explore their implications on RSA. 

Interestingly, RSA in Arabidopsis and other related plants can be studied using 
rhizoponics, a system that combines hydroponics and rhizotron (Mathieu et al. 2015; 
Urfan et al. 2022). The rhizoponics technique allows for the exact measurement of 
plant root growth. Using the rhizoslide method, a plant is grown inside a layer of 
large, two-dimensional (2D) plates. In this, germination sheets that offer substrate, 
water, and nutrients for the growing embryo are covered on both sides of the central 
glass shelter, which stabilizes the root system (Urfan et al. 2022; Yang et al. 2020). 
For a high-throughput system study of RSA in wheat seedlings, transparent pots 
have been employed successfully (Richard et al. 2015). 

Ex situ root phenotyping requires less expense, does not call for specialized 
knowledge, and does not require access to expensive equipment. However, the ex 
situ method of examination has a number of drawbacks, such as: (i) only 2D data 
of root development; (ii) it is difficult to perform phenotyping on a large scale; and 
(iii) because small roots break during the washing process during phenotyping in 
PVC pipes, the contribution of these roots is underestimating (DoVale and Fritsche-
Neto 2015). So digital scanning paired with computerized image processing offers 
a quicker high-throughput technique for analyzing root morphological features, 
including the length of the root, width, structure, and branching (Mir et al. 2019). 

4.2 In Situ Techniques 

There are now a number of advanced non-destructive approaches for root assess-
ment that have been effectively applied in in situ root phenotype analysis. 

4.2.1 X-Ray Computed Tomography 

The inner 3D volume can be seen using X-ray computed tomography (CT), a 
three-dimensional (3D) structural visualization application, based on the changes 
in the X-ray attenuation of various materials, such as soil and roots (DoVale 
and Fritsche-Neto 2015). A beneficial version of the CT scanner, developed by 
Hounsfield in 1976, rapidly followed the invention of the original CT scanner, for 
which its creators were awarded the 1979 Nobel Prize in Physiology and Medicine 
(Yang et al. 2020). Detailed root phenotyping, superior spatial accuracy, and three-
dimensional interaction of root hairs in soil—where root architectural aspects are 
crucial for water and nutrient uptake—are all possible with X-ray CT (Mir et al. 
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2019). Comparing this technology to other methods, it is deemed to be quicker, 
more consistent, and more adaptable, especially when used to evaluate field samples 
collected in situ, as was previously done in wheat, canola, and barley. Additionally, it 
is important to remember the following problems with CT scanning of roots: (i) low 
dose of radiation (Zappala et al. 2013); and (ii) the use of CT imaging frequently 
includes trade-offs; for example, bigger pots with greater resolution will restrict 
the number of samples or rate of data capture because the scanning volume and 
resolution both lengthen the scanning process (Mairhofer et al. 2012). 

4.2.2 CI-600 RootSnap Scanner and Software 

This phenotyping method is intended for extensive field research on plants that 
are still growing, allowing for several assessments of each plant at various stages 
of its life cycle. This technique helps to examine how roots grow, develop, and 
work to adapt to a certain environment. The CI-600 scanner takes high-resolution 
digital photos without causing any damage. As the plants begin to build their root 
“networks” around the tube, images of the roots can be collected using the scanner 
and viewed with the CI-690 RootSnap program (DoVale and Fritsche-Neto 2015). 
WinRHIZO, RootReader, SmartRoot software, ImageJ: IJ-Rhizo, DynamicRoots 
software, and Digital Imaging of Root Traits (DIRT) are some other software 
that help to study root architecture. Uses of WinRHIZO in wheat allowed for 
the examination of numerous features and processes, such as root length density 
modeling (Zuo et al. 2004). In wheat research, SmartRoot was successfully used 
to identify germplasm (Roselló et al. 2019), analyze interactions among plants 
(Finch et al. 2017), and investigate prospective breeding targets for root architectural 
features (Cane et al. 2014). RootNav’s capacity to analyze lateral roots in complex 
networks of roots has offered it various applications in wheat research, i.e., research 
relating seedling traits to yield components (Xie et al. 2017) and intake of nitrogen 
(Kenobi et al. 2017), as well as research into the genetic aspects of root architecture 
(Griffiths et al. 2019). DIRT holds potential for wheat research because of its unique 
capacity to measure excised root systems without the additional technical skills 
required for installing and operating independent software. This is already used 
to investigate the response of wheat toward phosphorus deprivation (Nguyen et al. 
2019). 

4.2.3 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is classified based on the magnetic field strength 
functional range, with high-field MRI (HF-MRI) commonly working in the 1–10 T 
(Tesla) range and low-field MRI (LF-MRI) operating below one Tesla (1 T) (Bagnall 
et al. 2020). MRI is used to observe and measure root development in 3D in opaque 
soil (Mir et al. 2019). MRI can be performed separately or in conjunction with 
various methods to determine root shape, length, and volume (Urfan et al. 2022). 
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But this approach is very susceptible to sample moisture content. Moisture level 
exceeding 80% and dense soil can significantly impede the identification of lateral 
roots and, to a lesser extent, seminal roots in the soil (DoVale and Fritsche-Neto 
2015). 

4.2.4 Neutron Radiography 

Beginning in 1985, neutron radiography was put forward and used to acquire roots’ 
growing images (Moradi et al. 2009). However, because of the long-term impact of 
radiation on the growth of roots, as well as the cost and discomfort of the equipment, 
neutron radiography is not applicable for in situ root phenotyping (Shi et al. 2022). 

5 Recent Advances in High-Throughput Phenomics 

High-throughput plant phenomics enables rapid phenotyping of several plant pop-
ulations at each plant level (Pasala and Pandey 2020). Majority of high-throughput 
phenomics approaches are thermal-infrared imaging, fluorescence imaging, visible-
light scanning, spectroscopy imaging, and tomographic imaging including com-
puted tomography, magnetic resonance imaging, and positron emission tomography 
(PET), as given in Fig. 3 (Sozzani et al. 2014; Yang et al. 2020). These advanced 
software systems and imaging-based, automated, high-throughput plant phenotyp-
ing technologies have become essential tools for plant biology (Paproki et al. 2012). 
Plants must adapt to an environment that is always changing, including stressful 
situations that are unfavorable to plant growth and development. These unfavorable 
conditions include biotic and abiotic stresses (such as heat, drought, cold, and 
salinity). Plant stress phenotyping provides chances for early intervention to stop 
the spread of illnesses/damages and to aid in the selection of elite lines to direct 
plant breeding efforts (Li et al. 2020). 

5.1 Visible-Light Imaging 

Visible-light imaging devices are basic tools for assessing the characteristics of 
plants, such as their color, size, texture, leaf biomass, leaf physiology, imbibition, 
and germination rates, panicle traits, yield traits, seed morphology, and root archi-
tecture (Arvidsson et al. 2011; Duan et al. 2011; Kumar et al. 2015; Li et al.  2014; 
Zhang and Zhang 2019). The estimated leaf area in plants, including Arabidopsis 
thaliana and maize, is provided through commercial systems that are based on 
visual imaging in one example for shoot biomass in a controlled environment (Li 
et al. 2014). Visible-light imaging has been widely utilized in plant science due to 
its low cost and clarity (Rahaman et al. 2015). Typically, this imaging approach 
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Fig. 3 High-throughput plant phenomics techniques and their phenotypic parameters used to 
capture the desired plant trait and gain insight into plant adaptation, performance, and responses to 
different environmental conditions 

is carried out by using conventional color cameras with electromagnetic spectrum 
wavelengths between 400 and 750 nm, and two-dimensional (2D) images can be 
used to monitor changes in plant biomass and analyze various phenotypic traits 
(Bylesjo et al. 2008; Golzarian et al. 2011). In order to do this, three-dimensional 
(3D) imaging was developed to produce more precise detail on complex phenotypes. 
The 2D and 3D imaging technologies have been combined to improve phenotyping 
accuracy (Rahaman et al. 2015). Traditional digital or RCB/CIR (Red-Green-
Blue/Color Infrared) cameras are typically employed in visible imaging due to their 
rapid detection (Jangra et al. 2021). Previously, Golzarian et al. (2011) precisely 
evaluated the dry weight of shoots for assessing wheat seedlings for salt stress 
using LemnaTec 3D Scanalyzer. Bowman et al. (2015) analyzed canopy spectral 
reflectance to assess wheat grain yield during an extended drought. Phenotyping 
with RGB has been applied for various abiotic stressors in various crops utilizing 
many different platforms; for example, PlantScreen and GROWSCREEN have been 
used for chilling tolerance in Arabidopsis and peas, respectively (Jansen et al. 2009; 
Humplik et al. 2015). In addition, PHENOPSIS and WIWAM have been used for 
drought stress in Arabidopsis, LemnaTec for drought stress in barley and maize 
and for salt stress in rice, wheat, and barley (Ge et al. 2016; Granier et al. 2006; 
Hairmansis et al. 2014; Honsdorf et al. 2014; Humplik et al. 2015, Meng et al. 
2017). 
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5.2 Infrared- and Thermal-Based Imaging 

Infrared imaging technologies are being utilized to examine objects for interior 
molecular motions that generate infrared light (Kastberger and Stachl 2003). The 
most often utilized wavelengths for thermal imaging are 3–5 μm or 7–14 μm 
(Kaplan 2007). This imaging technique offers better insight into plant wellness 
under various stress conditions both in the field and in greenhouse conditions. 
It measures the leaf surface temperature of the plant’s response to changes in 
water status and transpiration rate as well as differences in the plant’s stomatal 
conductance for the adoption of abiotic stress (Yang et al. 2013). Reduced rates 
of photosynthesis and transpiration are frequently caused by biotic or abiotic 
challenges, and thermal imaging remote sensing of leaf temperature can be an 
effective way for recognizing changes in the physiological status of plants in 
response to various biotic or abiotic stresses (Chaerle and van der Straeten 2000). 
In a study, 92 distinct maize genotypes were screened for their ability to tolerate 
drought using thermal-infrared imaging (Romano et al. 2013). Additionally, it can 
assess the stomatal conductance, leaf area, and relative chlorophyll content in wheat 
response to water deficit (Munns et al. 2010). Stomatal behavior under various 
stress situations has been measured using infrared thermal imaging systems, for 
instance, to monitor salt tolerance in wheat genotypes (Bayoumi et al. 2014). This 
imaging technique is also used for the estimation of rust disease severity, stored 
fungal infection detection, and estimation of crop canopy leaf area index in various 
moisture stress conditions (Banerjee et al. 2018; Chelladurai et al. 2010; Singh et al. 
2022). 

5.3 Fluorescence Imaging 

Fluorescence is the process of a substance absorbing some shorter-wavelength light 
and then emitting low-wavelength light (Li et al. 2014). Fluorescence imaging 
illuminates the plants with flashes of blue light (500 nm or less), and the plants 
themselves emit fluorescence light in the red spectrum between 600 and 750 nm 
(Singh et al. 2018). The chlorophyll complex is the portion of the plant that 
normally fluoresces. Chlorophyll fluorescence is typically employed in phenomics 
to identify the impact of various environmental events and the capacity of plants to 
continue photosynthesis under these conditions, because abiotic pressures largely 
affect chlorophyll concentration (Weirman 2010). Photosynthetic performance, 
stomatal mobility, an association between spatial and temporal fluctuations of 
photosynthesis, detection of genetic disease resistance, identifying growth-related 
QTLs (Quantitative Trait Loci), and plants with improved or delayed metabolism 
and growth under stress can be rapidly recognized using fluorescence imaging 
(Cardon et al. 1994; Chen et al. 2014; El-Lithy et al. 2004; Fiorani and Schurr 
2013; Li et al. 2014; Walter et al. 2004). Swarbrick et al. (2006) investigated 
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the resistance response of barley leaves infected with Blumeria graminis using 
quantitative imaging of chlorophyll fluorescence. Chaerle et al. (2006) screened 
sugar beet susceptible and resistant lines infected with Cercospora beticola and 
estimated fluorescence intensity using fluorescence imaging. Burling et al. (2010) 
examined variations in the degree of wheat cultivar resistance to Puccina triticina. 
Under salt stress, Arabidopsis thaliana and rice morphology, growth, and pho-
tosynthetic performance were measured using RGB and chlorophyll fluorescence 
(ChlF) imaging (Awlia et al. 2016; Hairmansis et al. 2014). In wheat, the combined 
effects of heat and drought were examined using fluorescence imaging phenotyping 
(Abdelhakim et al. 2021). Additionally, wheat seedling leaves were observed under 
salt and osmotic stresses for physiological and chloroplast proteome analyses (Zhu 
et al. 2021). Through this technique, wheat plants were investigated under heat 
stress to confirm that the PS II (Photosystem II) system protects through the methyl 
jasmonate pathway (Fatma et al. 2021; Kim et al. 2021). 

5.4 Spectroscopy Imaging 

Spectroscopy imaging is to accomplish vegetation remote sensing and it measures 
the effect of solar radiation on plants. This imaging technique displays immense 
potential for plant phenotyping (Kokaly et al. 2009). Multispectral or hyperspectral 
sensors, which can periodically scan wavelengths of interest, can be used to gather 
spectral measurements of the electromagnetic spectrum (Fiorani and Schurr 2013). 
Spectral imaging employed for plant phenotyping includes rapid, non-destructive 
measures of green biomass, pigment content, canopy chlorophyll content, leaf, 
canopy senescence, water status, and yield in many crop species. For large-scale 
phenotyping and dynamic assessments of the biomass, greenness, nitrogen content, 
pigment composition, photosynthetic state, and canopy water content, a number 
of indices have been established in both field research and breeding programs 
(Cheng et al. 2011; Claudio et al. 2006; Din et al. 2017; Mistele and Schmidhalter 
2008; Penuelas and Filella 1998; Schlemmer et al. 2005; Ullah et al. 2013). 
Near-infrared spectroscopy was used to precisely predict genotypic changes in the 
nitrogen and leaf ash content and in the kernel of maize grown under various 
water treatments (Cabrera-Bosquet et al. 2011). The severity of the disease in 
wheat leaves under stress from powdery mildew infection was monitored using 
hyperspectral imaging (Jiang et al. 2010). Early stress symptoms are detected 
through hyperspectral imaging by combing with other analysis tools. Simple volume 
maximization (SiVM) is one of the popular tools for the early detection of drought 
stress in plants (Thurau et al. 2010). Moshou et al. (2014) analyzed drought stress 
in wheat through spectral reflectance and fluorescence imaging. 
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5.5 Integrated Imaging Techniques 

Functional imaging and optical 3D structural tomography are recent technological 
developments that have shifted more and more toward live visualization in all 
directions, high accuracy, and low noise level in plants (Zhao et al. 2019). These 
imaging techniques are used for plant phenotyping including canopy, shoot, and root 
architecture as well as for plant height. Functional imaging focuses on physiological 
changes to assess photosynthetic performance under stress, such as ChlF imaging 
and positron emission tomography (Baker 2008). Magnetic resonance imaging 
(MRI), another cutting-edge imaging method, is utilized to image physiological 
processes occurring in vivo (Borisjuk et al. 2013). A unique functional and structural 
imaging technique involves screening the dynamic changes in plant functions and 
structures using MRI and PET (Jahnke et al. 2009). Fluorescence resonance energy 
transfer (FRET) is another innovative non-invasive technique for high-resolution 
molecular phenotyping of tiny molecules in live tissue (Jones et al. 2014). Another 
high-throughput imaging technique is 3D imaging. The devices for 3D imaging 
include laser scanners, time-of-flight cameras, stereo vision, and light detection and 
ranging sensors (Omasa et al. 2007). These imaging tools are used for plant height, 
leaf area, and leaf shape (Takizawa et al. 2005). Wheat plants were phenotyped using 
the PlantEye, a high-resolution 3D laser scanner, while they were developing in a 
controlled environment under both salt stress and control conditions. The system 
uses a data cloud that is created when PlantEye scans plants from above to calculate 
attributes like 3D leaf area, plant height, and leaf number (Maphosa et al. 2017). 

6 Data Management and Their Tool Assembly for Plant 
Phenomics 

Through the use of phenotyping tools, phenomics produces a large number of 
images and metadata, hence efficient data processing and management are required 
(Kim et al. 2017). It can be challenging, especially when numerous researchers are 
involved in the study or when it is carried out in a complex environment. Throughout 
the research life cycle, the types of data involved, the methods used to gather and 
store them, and the uses for which they are intended all affect how data are handled, 
and hence how well the data are managed impacts the conclusion of the study (Kim 
et al. 2017). According to Yang et al. (2013), Brown et al. (2014), and Klukas 
et al. (2014), data management is the process of organizing, storing, and sharing 
research data. Data management assists researchers in organizing study files and 
data for easy access and analysis (Li et al. 2013). It contributes to the long-term 
accountability of data analysis by ensuring the quality of the study. If the data are 
adequately maintained, researchers may simply find information that will aid them 
in producing the intended outcomes. Large-scale plant phenotypic data collection 
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Fig. 4 Data management and tool assembly are used to handle and organize data on large scale 
during phenotyping, which advances our understanding of plant biology and improving crop 
productivity 

is expanding extensively, and it is essential to handle it efficiently before, during, 
and after the research period. An automated HTP device, such as the largest robotic 
field scanner in the world, TERRA-REF (Transportation Energy Resources from 
Renewable Agriculture Phenotyping Reference Platform), may collect phenotypic 
data and can output up to 10 TB of data every day, with an estimated 10 PB 
over the course of three years (Kim 2017). The huge amounts of phenotypic data, 
both raw and metadata, that are received from a range of phenomics platforms are 
transferred into analytic pipelines (Yang et al. 2013), where they require adequate 
data management for the best use. Generally, an Integrated Analysis Platform 
supports a broad set of functionalities, including both data management and data 
processing. Data management describes the planning of data, how data are collected, 
stored, and analyzed, as well as how we share and reuse the data throughout the 
research cycle, as described in Fig. 4. 

Considerations for data management in plant phenomics include the following: 

1. Planning: It includes different elements that describe description, documenta-
tion, process, and archive of data. There are many different tools available for 
data management planning, which includes Data Stewardship Wizard (DSW) 
(Pergl et al. 2019), DAMAP (https://damap.org/), DataPLAN (https://plan. 
nfdi4plants.org/), DMPonline (https://dmponline.dcc.ac.uk/), DMPTool (https:// 
dmptool.org/), EasyDMP (https://easydmp.no/), and many more. 

2. Data collection: Data should be arranged to make effective data administration 
and analysis possible. To maintain uniformity, this might involve creating a 
data dictionary and adopting standardized folders and file names. To fill up 
the information and description of your experiments, MIAPPE (Minimum 
Information About a Plant Phenotyping Experiment) template should be used. 
There is a readme file that covers each field, as well as its kind and optional or 
necessary status. This will further enable the processing and validation of data 
using specific tools (Krajewski et al. 2015). 

3. Data storage: It is crucial to decide how the data will be organized and kept. 
Scalable and affordable choices for data storage may be offered through cloud-
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based storage systems. The output files are saved on the file server after being 
processed by scripts, and copies may be downloaded by each partner (Billiau 
et al. 2012). Many public databases maintain phenotypic data to organize and 
gather the information (Cobb et al. 2013), such as Soybase (http://soybase.org; 
Grant et al. 2010), MaizeGDB (http://www.maizegdb.org; Schaeffer et al. 2011), 
PHENOPSIS DB (http://bioweb.supagro.inra.fr/phenopsis; Fabre et al. 2011), 
and T3 Triticeae toolbox (http://triticeaetoolbox.org; Blake et al. 2016). 

4. Data management process: It is an essential aspect of the research process. It 
can be difficult, especially when studies include numerous researchers and/or are 
done from multiple locations. Throughout the study period, data management 
is determined by the types of data involved, and how they are collected, kept, 
and used. Processing offers the methods and tools needed to convert raw 
primary data, including imaging or observational data, into a suitable quality 
and processable state. Then, the analysis focuses on obtaining information from 
the data that have been processed in order to aid in the acquisition of knowledge. 
Some analytic tools like Plant 3D (Ziamtsov and Navlakha 2020), LeafNet (Li 
et al. 2022), PlantCV (Gehan et al. 2017), and Phenomenal 3D (Artzet et al. 2019) 
are registered in bio.tools and dedicated to plant phenotyping experiments. 

5. Data sharing: It must be considered to think about if and how the data will be 
shared with the larger scientific community. Data sharing may be facilitated by 
standardized data formats and metadata, and data repositories can be used to 
grant restricted access to data. However, data sharing must be done responsibly 
to ensure data privacy and intellectual property protection. Some data repository 
software are Dataverse (https://dataverse.org/), e!DAL-PGP (https://edal-pgp. 
ipk-gatersleben.de/), Zenodo (https://zenodo.org/), and BrAPI (https://www. 
brapi.org/). 

6. Data reuse: Plant phenomics researchers should contribute to ensuring that their 
data are as helpful as possible for increasing scientific knowledge and avoiding 
redundancy in data collecting by encouraging data sharing, correct recording, 
standardization, analysis, and citation. Many data repositories are available like 
AgroPortal (Jonquet et al. 2018), and FAIDARE for reusing plant phenotyping 
data that follows MIAPPE specifications. 

7 Role of HTP Phenomics in Accelerating Plant Breeding 

The scope of phenomics data has expanded, which has made it easier to determine 
whether analytical and quantitative genetic approaches for the study of plant 
breeding in multi-environment trials have become more apparent. It is critical 
for plant breeding and the advancement of plant genomics to connect phenotypes 
and genotypes in order to find genetic structures that regulate significant features. 
Genome-wide association studies (GWAS) have been used widely in recent years to 
decipher the connections between genes and phenotypes (Xiao et al. 2022). Bai et al.  
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(2016) developed a multi-sensor system for high-throughput phenotyping platform 
suitable for evaluating canopy data in wheat. This particular system includes five 
sensors for plant phenotyping, including (i) ultrasonic distance sensor, (ii) thermal-
infrared radiometer, (iii) NDVI (Normalized Difference Vegetation Index) sensor, 
(iv) portable spectrometer, and (v) RGB web camera. Besides, two sensors (solar 
radiation sensor and temperature/relative humidity sensor) are also included to 
record the environmental data. LabVIEW program enabled the synchronization 
of multiple sensors and data storage. Number of platforms are available to hold 
the sensors for phenotyping but each has its own limitations and advantages. For 
instance, platforms like self-propelled tractors cause more mechanical disturbance 
and soil compactness. Unmanual aerial vehicles are limiting while the payload 
is a concern. For a limited area (few acres) of phenotyping, manually operated 
platform was found best to carry the multiple sensors and to ensure the minimum 
mechanical disturbance. A strong correlation between manual phenotyping and 
sensor-based phenotyping suggested the applicability of this system for HTP in 
wheat. Although the primary purpose of phenotyping in plant breeding is to 
discover plants with enhanced characteristics, phenotyping is currently primarily 
used to monitor crops for pest identification and fertilizer requirements in crop 
management. The advancement of phenotyping techniques and processes for both 
proximal and remote sensing speeds up germplasm screening and selection, which 
increases the genetic variety in breeding material since germplasm with such 
qualities can then be kept in breeding programs (Zheng et al. 2021). Some HTPP 
techniques for plant breeding includes satellite imaging, UAVs (Unmanned Aerial 
Vehicles), and proximal phenotyping (Chawade et al. 2019; Pinto et al. 2023; Zhang 
et al. 2020). 

In order to ensure precise phenotyping, particularly under drought/heat stress, 
it is important to develop a large-scale platform that controls the environmental 
condition along with the HTP. One such platform called “PhénoField 

® 
” is created at 

Ouzouer-le-Marché/Beaucela Romaine in 2013 (Beauchene et al. 2019). It occupies 
the area of 7.5 hectares. This platform has three major parts: (i) automated rainout 
shelters, which protect the crop from rainfall and reduces cofounding in pheno-
typing, (ii) high-throughput field phenotyping sensors, and (iii) data processing 
and storage unit. The platform is also equipped with automated irrigation systems 
and fertilization management systems. Micrometeorological measurement systems, 
available in the system, access the environmental data and also record the responses 
of different genotypes under such conditions. These features are good to study 
genotype–environment interactions. The availability of various automated systems, 
like rainout shelters, irrigation systems, fertilization management systems, and 
micrometeorological measurement system, makes “PhénoField 

® 
” the best suitable 

system for HTP under various abiotic stresses. The suitability of “PhénoField 
® 

” 
for wheat production under abiotic stress is also demonstrated (Beauchene et al. 
2019). The “PhénoField 

® 
” is used in BREEDWHEAT (an initiative to strengthen 

the French wheat breeding sector), and in field trial conducted in 2017. The large-
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scale precision phenotyping applicability of the system was well demonstrated, 
particularly under water deficit and nitrogen stress conditions. Varietal differences in 
growth and wheat development under stress conditions were well characterized by 
“PhénoField 

® 
.” Drought stress during stem elongation severely impacted the wheat 

yield. Similarly, yield goes down under nitrogen deficiency as compared to optimum 
nitrogen conditions (Beauchene et al. 2019). To enhance traditional breeding 
methods and enhance genetic gain, HTP approaches are essential. Incorporating 
these novel technologies into conventional breeding pipelines will help cultivars 
with resilient yields be delivered in the face of the anticipated unfavorable future 
climatic circumstances brought on by climate change and as a result of a rise in the 
biotic and abiotic stressors. 

8 Conclusion 

In recent years, HTP has advanced significantly, and it now plays a crucial role in 
the analysis and comprehensive measurement of various observable traits, including 
morphological, physiological, biochemical, and behavioral traits, in order to identify 
the complex relationship between phenotype and genotype in different crops. It 
is feasible to do crop planning on agricultural lands, determine the factors that 
influence crop production, and determine the processes by which plants work 
against abiotic stresses by using phenomics techniques. Phenomics technologies 
are being used in different areas such as physiology and biochemical mechanism, 
the morphology of above-ground organs and RSA, growth processes, productivity, 
identification of biotic and abiotic stresses, genetic engineering, breeding, selection 
of lines and varieties, yield forecasting, etc., which makes it possible to monitor 
the environment more effectively and find solutions to major issues in the area 
of food and environmental safety. In the upcoming decade, crop phenomics will 
also need to overcome hurdles such as the creation of novel artificial intelligence 
(AI)-based approaches and techniques to advance image-based phenotyping, which 
efficiently evaluates and precisely interprets large digital image-based phenotypes, 
and identifies useful quantitative traits for functional analysis of crop plants. We 
also need to work in the area of intelligent data-mining of multi-omics data, which 
offers a potent tool to explore biological mechanisms regulating plant growth and 
development and assist in plant breeding for the development of high-yielding and 
climate-resilient crops. 
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Speed Breeding to Accelerate Crop 
Improvement 

Sobhan B. Sajja, Anurag Mathew, Janila Pasupuleti, and Radhakrishnan T. 

Abstract Speed breeding through controlled environments as a new technique on 
the block offers advantages over conventional field-based generation advancement 
methods. Physiological parameters, especially light, is altered to induce early 
flowering to reduce generation time. Germinating immature seeds will reduce 
the generation time further. Several experiments were conducted in the past and 
are being conducted to develop speed breeding protocols for many crops. Speed 
breeding protocols were standardized for some crops, for example, chickpea, 
that allow six to seven generations per year as opposed to two to three earlier. 
Besides being faster, speed breeding enables savings on resources as advancing 
generations is cheaper through speed breeding as compared to field experiments. 
Rapid generation advancement through speed breeding integrated with the advanced 
techniques of genomic tools, gene editing, early- and high-throughput phenotyping, 
rapid population development, etc. would boost the genetic analysis and increase the 
rate of genetic gain in the cultivar development of the crop plants. In the backdrop 
of increasing food and nutrition demands, gains in crop improvement need to be 
increased. Speed breeding offers one of the feasible ways to achieve this. The costs 
involved may pose an obstacle to many enthusiasts, but cheaper alternatives can 
be explored. Integrating artificial intelligence with speed breeding makes it more 
valuable in crop improvement programs. 
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1 The Necessity 

From one billion to eight billion, human population witnessed a big jump in a 
short period of 200 years considering that the growth was relatively slow up till 
1950 (Fig. 1). Post 1950, the growth was phenomenal. If observed, the growth in 
population was exponential in Asia, as compared to other continents. Africa was 
the next to record such growth in the last few decades. Out of the eight billion 
population, six billion are in Asia (4.69 billion) and Africa (1.39 billion). During 
the early 60s, barring few developed countries, majority of the countries in Africa 
and Asia were struggling with food security issues, and several countries continue 
to be food insecure to date. Global hunger map (Fig. 2) shows that more than 800 
million people do not get enough to eat (https://reliefweb.int/map/world/hunger-
map-2018). 

The global population has increased 2.7 times since 1960, while the production 
of primary cereals during the same period has increased by 3.5 times (Fig. 
3). The growth of food grains can be largely attributed to the improvements 
made in crop genetics, agronomy, and plant protection through new high-yielding 
cultivars, improved cultivation practices, and pest and disease resistance/tolerance, 

Fig. 1 Global growth in population over the last 200 years. (Source:https://ourworldindata.org/ 
grapher/population)
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Fig. 2 Global hunger map (Source: https://reliefweb.int/map/world/hunger-map-2018) 
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respectively (Spanne 2021). Plant breeding efforts produced new high-yielding crop 
cultivars with resistance to diseases and drought, contributing to the food grain 
production.
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2 Role of Crop Improvement in the Phenomenal Food Grain 
Production 

Crop improvement has been instrumental in increasing food grain production 
and addressing food insecurity. As the global population continues to grow, the 
development of new crop varieties with improved yield potential, pest and disease 
resistance, abiotic stress tolerance, and nutritional value will remain a critical tool 
in meeting the needs of the world’s population. Traditional breeding techniques like 
introduction, selection, and interspecific hybridization have been successful over the 
years in developing crop varieties. Mutation breeding has also played an essential 
role in crop improvement and food production. By 2000, techniques of recombinant 
DNA technology were available to plant breeders to make further improvement in 
crop yields. Genetically modified plants were the last step to improve crop plants 
when all other techniques failed to solve perennial problems of stresses, biotic 
and abiotic. Some of the successfully developed genetically modified plants are Bt 
cotton, golden rice, roundup ready soybean, etc. However, the concerns associated 
with the safety of GM crops paved way for another new technology called “gene 
editing,” which, on the other hand, involves precise modifications of a plant’s 
DNA using technologies such as CRISPR/Cas9 to introduce targeted changes in the 
genetic code. The gene editing technique has been used in several crops like tomato 
to delay ripening (Tiwari et al. 2023), rice for bacterial blight resistance (Zaidi et 
al. 2016), and canola for herbicide tolerance (Li et al. 2013). The rate of genetic 
gain in major cereals saw an impressive growth from 1970 onwards. To meet the 
projected demand for food in future for the growing population, the rate of genetic 
improvement must double across (Voss-Fels et al. 2019). Enhanced genetic gain 
needs to be achieved not only for major staples, but also for other crops such as 
millets, oilseeds, and pulses that are important for both food and nutrition security. 

2.1 Consequences on Rate of Genetic Gain 

Genetic gain refers to the rate at which a population’s average genetic value for a 
particular trait increases over time. This rate is influenced by a number of factors, 
such as selection intensity, genetic variance of the trait, accuracy of selection, and 
breeding cycle time. It is important to consider all of these factors when attempting 
to increase the rate of genetic gain for a particular trait or population. The following 
is the equation to measure genetic gain per year (Begna 2022): 

. ΔGyear = i rAI σA

L

i = Selection intensity
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rAI = Accuracy 
σA = Genetic variance 
L = Generation interval 

Traditionally, genetic improvement programs have focused on increasing the 
numerator or the additive genetic variance of a trait. This involves selecting 
individuals with superior genetics and using them as parents for the next generation. 
But the impressive gains made in the last few decades are difficult to achieve 
currently, as yields are plateaued in many crops. However, recent research has 
shown that the denominator, or the generation interval, also plays an important role 
in genetic improvement. Reducing the breeding cycle time can have a significant 
impact on the rate of genetic gain and help to improve crop yields, especially in 
crops that have already plateaued in terms of yield improvement. 

3 Reducing the Breeding Cycle Time 

Development of new cultivars requires production of homozygous breeding lines 
following self-fertilization for four to five generations. Homozygous breeding lines 
thus developed constitute the candidates for selection. Further, these candidates 
will be subjected to selection for morphological traits, biotic and abiotic stress 
tolerance/resistance, and other parameters to select approximately 20% of lines 
(selected candidates) that will be advanced to next selection cycle or yield evaluation 
in multilocation trials. Production of homozygous lines in the field depends on the 
number of seasons a crop can be grown at a location. Generally, crops are grown 
once or twice in a year, depending on the local conditions. If only one season 
is feasible at a location, it takes 6–7 years to produce homozygous lines from 
hybridization to production of F5 or F6 lines, and about 3–3.5 years if two seasons 
of a crop can be taken. Therefore, considerable time is invested in the production of 
homozygous lines in the crop breeding programs. 

To accelerate breeding cycles, there are different methods adopted by the crop 
breeding programs, such as shuttle breeding, doubled haploidy, anther culture, and 
rapid generation advancement (RGA) under controlled conditions to take two or 
more generations in a year. The controlled conditions required for each crop can 
vary depending on the geographical location where RGA will be taken up, the 
resources available, and the targeted breeding cycles per year. 

3.1 Shuttle Breeding 

Shuttle breeding is a method used for testing genetic material during the off-season, 
where plants are grown in different environments to grow two plant generations 
within a year. This technique has been successful in reducing the time taken to
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complete a breeding cycle by half (Alahmad et al. 2022). The process involves 
screening and selecting populations that are segregating, while simultaneously 
advancing the generations. However, this has a limitation of finding a suitable place 
and involves cost on logistics. Many crop improvement programs follow this route 
of shuttle breeding to reduce the time to achieve homozygosity in breeding lines. 

The wheat shuttle breeding at CIMMYT (International Maize and Wheat 
Improvement Centre) that was first developed by Norman Borlaug to speed up 
breeding cycles resulted in development of varieties faster for Mexican wheat 
farmers (Alahmad et al. 2018). Mallik et al. (2002) have developed several rice 
varieties suitable for rain-fed and irrigated ecosystems in India. DBW 14, an 
early maturing wheat variety, suitable for late sown and irrigated conditions, was 
developed using the shuttle breeding approach and suitable for rice–wheat system 
of India (CVRC 2003). ICRISAT had successfully sped up the process of developing 
new chickpea varieties better adapted to different environments, with higher yields 
and resistance to pests and diseases using the shuttle breeding approach. They 
employed two approaches to produce three generations per year in a short-season 
environment in southern India. The first approach involved growing one crop in the 
field during the regular crop season and two additional crops in a glasshouse during 
the off-season. The second approach featured three crop cycles per year, with the 
initial crop in the field, the second crop in the field under late-sown conditions 
accompanied by irrigation, and the third crop in a nursery located off-season at 
Hiriyur in Karnataka, India. These approaches mainly targeted short- and medium-
duration crosses (Samineni et al. 2020). 

3.2 Anther Culture 

Anther culture is used to generate haploid plants, which then be used to create 
homozygous lines through chromosome doubling, resulting in a pure breeding line 
that is genetically identical to the parent plant. This process can save time and 
resources compared to the traditional breeding methods. Anther culture can also 
be used to introduce genetic variability into a plant population, after subjecting 
anthers to mutagenesis or genetic modification; thereby, scientists can generate new 
traits that can be selected for subsequent generations (Maluszynski et al. 2003). 
This technique has been used to create new crop varieties that are resistant to pests, 
diseases, or stresses, and help to increase crop yields and improve food security. 

3.3 Doubled Haploidy 

Doubled haploidy (DH) is the quickest method to achieve homozygosity. This 
technique involves inducing a plant to produce haploid cells, which have only one 
set of chromosomes instead of the usual two sets. Haploid cells are then stimulated
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to double their chromosome number through a process called “doubling.” This 
results in the production of plants that are genetically identical to the parent plant 
and have a complete set of chromosomes. Doubled haploid production is a valuable 
tool in plant breeding because it can significantly reduce the time and effort required 
to produce new crop varieties with desirable traits. Doubled haploidy has been used 
to develop improved varieties in several crops like wheat, maize, tobacco, rapeseed 
(also known as canola), and barley for yield, oil content, improved resistance to 
disease, and stress (Maluszynski et al. 2003). 

3.4 Speed Breeding 

Speed breeding is a novel plant breeding technique that involves manipulating the 
plant growth conditions to accelerate the breeding process and reduce the time 
required for crop development. This technique allows breeders to develop new 
breeding lines in a short time, which is particularly beneficial for developing crops 
that are resistant to disease, drought, and other environmental stresses (Watson et al. 
2018). Indirectly, this will also contribute to increase in genetic gains for the crop. 
By altering the photoperiod, light quality and intensity (using artificial LED lights) 
under controlled conditions, it is possible to induce early flowering, thus reducing 
the time for completing the life cycle of crop plants. Speed breeding has also gained 
attention in recent years as a promising tool for improving global food security 
and addressing the challenges of climate change. Several research institutions and 
companies have been working on refining this technique and applying it to a wide 
range of crops, including wheat, barley, chickpea, and potato (Hickey et al. 2019). 

3.4.1 Origin 

The speed breeding method has its origins from the experiments conducted on 
photoperiod and photoperiodism by Garner and Allard (Thomas 2003). Since 
then, scientists have been studying the plants from the perspective of their light 
requirements. This forms the basis for all future speed breeding experiments dealing 
with the plants. Experiments can be broadly divided into two categories—one with 
long hours of light and the other with long hours of dark. Based on the requirements 
of the plants to enter the flowering stage, photoperiod can be adjusted to induce 
flowering. For example, long-day plants need additional hours of light beyond 
daylight hours. This can be done through artificial lighting during evening hours. 
Similarly, for short-day plants, long dark hours are needed to enter the flowering 
stage. In such situations, the area where plants are grown needs to be covered to 
avoid daylight or any other form of light.
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3.4.2 Requirements 

Speed breeding procedures essentially require controlled environment, which 
can be achieved through either dedicated structures like growth chambers or 
glass/polyhouses. The choice of structure will depend on factors such as the 
size of the breeding program, the type of plant being bred, and the available 
resources. Such structures are equipped with artificial lighting with precise control 
on the wavelength and intensity, shade nets in glass/polyhouses to regulate daylight 
intensity, cooling/heating systems to maintain precision temperature, and a system 
to keep the humidity at control (humidifier/de-humidifiers). There can be an 
automated system to maintain the soil moisture level when large glass/polyhouses 
are used. The entire parameters are to be monitored by sensors, which are then 
integrated to a programmable control system, which can be monitored in real time 
and controlled remotely over networks. There can be dedicated mobile apps or 
web portals for the purpose. Integration with the artificial intelligence system can 
provide instant and real-time corrections in the set parameters, as a useful warning 
system and to generate meaningful data. 

Various studies have explored the use of controlled growth structures to develop 
rapid generation advancement protocols for different crops. For example, Ochatt et 
al. (2002) studied the use of controlled glasshouse conditions to develop a rapid 
generation advancement protocol for Bambara groundnuts (Vigna subterranea) and 
peas (Pisum sativum). Ohnishi et al. (2011) developed a speed breeding protocol 
for rice using the biotron breeding system in combination with tiller removal and 
embryo rescue, which allowed for the control of photoperiod, temperature, and 
CO2 levels in an environmental chamber. Similarly, Tanaka et al. (2016) reduced 
the duration of the rice crop by 3 months without additional interventions like 
embryo rescue or tiller removal, in the rice variety Nipponbare. Baier et al. (2012) 
reported early flowering in transgenic chestnut (Castanea dentata) trees grown 
under artificial conditions in a chamber. Collard et al. (2017) evaluated the use 
of rapid generation advancement (RGA) in rice breeding and found that it had 
better cost-effectiveness compared to conventional methods and was effective in 
both glasshouse and field conditions. Watson et al. (2018) used growth chambers to 
enhance generation turnover and phenotype for pod shattering in canola cultivars. 
Nagatoshi and Fujita (2019) demonstrated a speed breeding method for soybean 
using compact growth chambers. Rana et al. (2019) modified the biotron system 
and used it for introgressing the hst1 gene to the salinity-susceptible rice cultivar 
Yukinko-mai, with the help of a SNP-based marker system. Edet and Ishii (2022) 
reported a rapid generation advancement system for cowpea using breeding lines 
IT86D-1010, IT97K-499-35, and the Japanese cultivar Sasaque grown in growth 
chambers. 

Artificial lighting can be provided by installing electric bulbs or lights. Several 
options are available in the market, i.e., incandescent bulbs, high-pressure sodium 
lamps, fluorescent lights, and LED (light emitting diode) lights. Incandescent bulbs 
are cheap and do not provide any option to adjust the light spectrum. Intensity 
can be adjusted by altering the height of lights from the crop canopy. Fluorescent
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lights provide options to switch to broad-spectrum light, in addition to adjust light 
intensity. LED lights are commonly used in RGA or speed breeding, as they are 
energy-efficient and also customizable to provide specific wavelengths of light 
that are optimal for plant growth (Watson et al. 2018). Lights should offer 100– 
1000 μmol/m2/s intensity, based on the requirements of different plant species at 
different growth stages, as light is one of the essential factors for photosynthesis and 
plant growth and also should offer adjustable spectrum control, height adjustment 
mechanism, and active cooling options. 

O’Connor et al. (2013) reported peanut growth under continuous light (24 h) 
using photosynthetically active radiation (PAR) lamps and specific temperature 
and humidity conditions. Jahne et al. (2020) used far-red-deprived and blue-
light-enriched LED spectrum systems that allowed Glycine max, Oryza sativa, 
and Amaranthus spp. plants to advance five generations/year by adjusting the 
photoperiod to 10 h. Harrison et al. (2021) developed a speed breeding protocol 
for US soybean genotypes using red and blue LED lights in combination with 
photothermal conditions, reducing the growing time to 83–81 days against 120 days 
in field. Mobini et al. (2016) studied two cultivars of lentil viz. CDC Greenland and 
CDC Maxim, grown under T5 fluorescent bulbs (R:FR = 5.6); T5 supplemented 
with near far-red bulbs (R:FR = 3.1) and LEDs (R:FR = 3.09). Though both 
the cultivars responded similarly to different R:FR ratios, plants grown under the 
R:FR = 3.1 or less could flower 10–11 days earlier than the ones grown under 
the R:FR = 5.6. Watson et al. (2018) used LED-supplemented glasshouses for 
accelerating the generations of crops to four to six generations/year in wheat, 
barley, oat pea, chickpea, and various Brassica plants. Cazzola et al. (2020) reported 
advancement of pea plants, five generations/year, using 22 h of photoperiod through 
T5 fluorescent tubes under controlled conditions. 

Speed breeding can be useful for long-day plants. Most of the legume crops, 
which fall under this category, can be the ideal crops of interest to develop 
protocols for faster generation advancement. These crops can respond to extended 
photoperiod that can be achieved through artificial lighting. On the other hand, 
short-day plants need less duration of photoperiod, which can be achieved in closed 
structures with environmental control like growth chambers or glasshouses using 
shade net to reduce the number of hours of natural light. Appropriate modification 
of the quality of the light spectrum in such cases was found to be useful in inducing 
early flowering of short-day plants (Jähne et al. 2020). 

Durum wheat (Triticum durum), spring bread wheat (Triticum aestivum), barley 
(Hordeum vulgare), and model grass (Brachypodium distachyon) were grown under 
environment-controlled growth chambers, glasshouses with temperature control 
(22 ◦C), and low-cost homemade growth rooms and found that up to six generations 
could be achieved under these speed breeding conditions (Watson et al. 2018). 
Pazos-Navarro et al. (2017) reported generation acceleration in subterranean clover 
(Trifolium subterraneum L.), a forage crop, using an in vitro-assisted single seed 
descent (SSD) protocol by which 2.7–6.1 generations per year could be generated. 
The protocol involved the use of controlled conditions of temperature (25 ◦C) and 
photoperiod to minimize the duration for flowering and truncation of seed filling
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period. Saxena et al. (2017) developed an RGA protocol for pigeon pea (Cajanus 
cajan L.) by integrating SSD with the germination of immature seeds. Thirty-five-
day-old seeds could be germinated with 100% success at 32 ◦C, which have three 
to four successive generations per year. 

In pulses, long generation time is one of the major impediments to cultivar 
development. Further, pulses are also not easily amenable to in vitro manipulations 
(Ochatt et al. 2002). The in vitro approach of speed breeding in pulses involves 
regenerating and growing plants till flowering and seed development. The immature 
seeds thus produced can be used further for generation advancement. Such protocols 
have been reported in chickpea (Cicer arietinum L.); pea (Pisum sativum L.) by 
Espósito et al. (2012); common bean (Phaseolus vulgaris L.); faba bean (Vicia faba 
L.) by Mobini et al. (2015); and lentil (Lens culinaris Medikus) by Mobini et al. 
(2015). In pulses, the combination of in vitro and in vivo techniques (controlled 
environment) has been reported to be more useful in reducing generation time. 
Bhattarai et al. (2009) reported an in vitro protocol to rescue tomato embryos 
and reduce the generation advancement time. This approach could produce five 
generations per year, while the conventional methods could produce only two. 
Gebologlu et al. (2011) reported in vitro germination of immature tomato seeds in 
Murashige and Skoog (MS) medium supplemented with different growth regulators 
and observed that 28- to 32-day-old embryos gave better germination and the 
protocol could shorten the flowering time by 53–36 days. In most of the fruit crops, 
the juvenile phase is relatively long and it may take even more than 20 years to 
flower in some cases (Van Nocker et al. 2014). Hence, speed breeding techniques in 
such crop species primarily aim at reducing the juvenile phase by inducing vigorous 
vegetative growth and early flowering. 

Several crop species, i.e., Amaranth, Arabidopsis thaliana, barley, canola, 
chickpea, faba bean, groundnut, lentil, pea, pigeon pea, rice, sorghum, soybean and 
wheat, have undergone rapid generation advancement through the implementation 
of various techniques aimed at reducing their time to flowering and increasing the 
number of generations per year (Wanga et al. 2021). 

3.4.3 Costs and Consequences 

The cost of building a structure is onetime investment. The maintenance takes 
centerstage afterwards. So, it is important to consider long-term sustainability. Let 
us investigate the options available and costs associated with them. 

A growth chamber is the best choice to develop a speed breeding protocol. 
Precision is guaranteed and operations are automated. However, apart from initial 
investment (starting price around US $40,000), the maintenance costs are huge. For 
example, a growth chamber of 1.5 m2 consumes around 200 units of electricity 
per day. The energy cost alone is US $1000 per month. Thus, it becomes a 
hindrance to conduct experiments in it. Even developing a protocol will be a huge
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cost. The growth chamber does offer precise conditions. When a speed breeding 
protocol is developed using a growth chamber, it needs to be scaled up for practical 
use in breeding programs. The scaling up is usually done in polyhouse type of 
construction, where the control over light, humidity, and temperature is not precise, 
as in a growth chamber. That means the protocol needs to be tweaked to make 
use of the conditions that exist in a polyhouse. This is the reason why a different 
solution is needed to bring the protocol to scaling up facility. Conducting the 
protocol development experiment on the lines of a polyhouse in a similar but smaller 
structure would be a better idea. Then, the protocol can directly be applied to scaling 
up experiments. 

3.4.4 Low-Cost Alternatives 

Small chambers fitted with cooling pads and LED lights on top of work benches 
will be an ideal option to save costs. These chambers can be further subdivided 
into ultra-small units by arranging separators in the form of polycarbonate sheets of 
sufficient thickness and lined up with reflective material on inner side. A thick cloth 
sheet with Velcro tapes for closing can be used to cover these ultra-small chambers 
to contain leakage of light. LED lights available in the local market can be used. 
Care should be taken to choose right capacity and spectral control. Lights that allow 
control via the internet cost a bit higher as compared to manually controlled lights. 
Alternatively, some species do not need variable spectrum. In this case, normal cool 
LED lights of sufficient capacity can be used. 

For temperature control, AC units or cooling pads can be used. For a small area, 
the cost will be under control. Dehumidifier is a must to check the humidity, inside 
the chamber. 

The automated irrigation system with a nutrient supply system is ideal, but 
not mandatory. Manual irrigation and nutrient supply will a cheaper solution. 
Accessories such as a rose can and small handheld sprayers of 1–2 liters of capacity 
can also serve the purpose. 

Finally, the space can be optimized, if a second and third layer of planting is 
possible. This needs structural interventions backed up by strong light interventions. 
Suitable methods need to be identified to undertake operations in the upper tiers. For 
example, instead of work benches, the first tier can be on the floor. The second tier 
can be accommodated on a two-level workbench bottom layer and a third on the 
top. This way, volume of plants in the same area goes up and reduces the cost. 
Utilizing cost-effective methods such as benchtop cabinets and LED-supplemented 
glasshouses, Ghosh et al. (2018) achieved successful early generation advancements 
in crops including pea (Pisum sativum) and wheat (Triticum aestivum), while 
Watson et al. (2018) reported similar achievements in crops such as barley (H. 
vulgare cvs Gus and Baudin), oat (Avena sativa cv. Swan), and triticale (Tritico 
secale cvs Jackie and Coorong).
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3.4.5 Speed Breeding for Accelerating Basic and Applied Research 

In addition to the advantage of reducing the generation time of crops, speed breeding 
(SB) has tremendous potential, when used in combination with other tools of crop 
improvement and basic research. Speed breeding integrated with the phenotyping 
of complex traits will make trait-based selection easy and fast (Christopher et al. 
2015). Since SB is done under controlled environments, this approach can readily 
be adapted to study the adaptation of crop species under changing environments and 
other stress conditions like water deficit, in addition to the accelerated generation 
advancement (Wang et al. 2019). 

More directed approaches to genetic improvement like transgenic and gene 
editing techniques, like CRIPSPR-CAS9, have been a component of modern plant 
breeding to enhance genetic diversity (Richardson et al. 2014; Doudna et al. 
2014; Wolter et al. 2019). This integration facilitates the breeder to snip out 
undesirable traits from the crop and, with the rapid generation advancement, cultivar 
development in crops with complex genomics like polyploids. 

Speed breeding can also be profitably utilized in the artificial domestication of 
wild plants through early habitations, selective breeding, and reduced duration and 
generation advancement (O’Connor et al. 2013; Hickey et al. 2019). For rapid 
development of breeding or mapping populations like recombinant inbred lines 
(RILs) for marker discovery, the rapid generation advancement system is potentially 
relevant. Speed breeding can be used in the development of complex mapping 
populations, accelerated backcrossing and pyramiding of genes/quantitative trait 
locus (QTL) (Varshney et al. 2021), and marker-assisted and genomic selection 
(Gosal et al. 2020; Croser et al.  2021; Dadu et al. 2021). Marker-assisted selection 
was employed in soybean to identify hybrid progenies with specific E1–E4 alleles 
associated with growth period, rather than relying on phenotypic performance. This 
approach facilitated the identification of stable genotypes, leading to improved 
selection efficiency and a significant reduction in the time required for generation 
advancement in the soybean speed breeding program (Fang et al. 2021). Hickey et 
al. (2017) used a revamped backcross method with speed breeding to develop 87 
Scarlett introgression lines (ILs) in BC1F3:4 within 2 years. There will be cost 
saving also on the space requirements to grow a large number of inbred lines 
as they could be planted in high density (Yao et al. 2017). Another technique 
is genomic selection, which enables the selection of plants with higher genomic 
estimated breeding values (GEBVs) and advancing them to the next generation. 
This technique not only contributes to greater genetic gain, but also expedites the 
overall process of generation advancement (Gorjanc et al. 2018). Advancement of 
segregating populations using SSD, combined with speed breeding, is cost-effective 
and less time-consuming and gives better turnover than the conventional pedigree 
method or shuttle breeding (Ortiz et al. 2007; Jähne et al. 2020; Sinha et al. 2021).
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Fig. 4 General breeding cycle to develop homozygous breeding lines 

3.4.6 Speed Breeding for Crop Breeding and Cultivar Development 

Fig. 4 depicts a general breeding cycle to develop a homozygous breeding line. 
It takes 3–6 years depending on the number of generations possible in the given 
geographical area. Slight changes are possible, if shuttle breeding is practiced. 
Availability of DH technology rapidly reduces this duration. However, it is not 
available in several crops of interest. At this juncture, speed breeding can be handy 
to save time attaining homozygosity rapidly. Depending on the need, either three 
or four generations can be rapidly advanced followed by screening and initial 
evaluation for two seasons. If markers are available, the population can be screened 
in F2 or subsequent generations to save resources. Only the desirable genotypes can 
be advanced further. The varietal release follows certain norms for evaluation of 
performance. This duration is nonnegotiable, usually taking 3–4 years. Thus, a new 
variety can be released potentially in 6–10 years. 

4 Case Studies 

Speed breeding has successfully reduced the generation interval in various long-
day and short-day plants, resulting in an accelerated plant improvement process 
(Samantara et al. 2022). A few selected crops are discussed hereunder. 

4.1 Chickpea 

The concept was proven in many crops, such as wheat, barley, canola, and pea 
(Wanga et al. 2021). However, many of these experiments involved huge energy 
costs besides infrastructure facilities. One of the exceptions was chickpea. At
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ICRISAT, the speed breeding protocol for chickpea was developed in a cost-
effective way (Samineni et al. 2020). The method used a regular glasshouse, 
incandescent bulbs of 60-W capacity delivering 870 lm. Chickpea plants were 
exposed to 22 h of light (10 h of natural light and 12 h of artificial light) to induce 
early flowering. Immature seeds were harvested and germinated to get the next 
generation. This method does not require state-of-the-art facilities yet delivers on 
the target. 

Currently, populations of chickpea are advanced at the ICRISAT using this 
protocol. In a glasshouse bay of 6-m long and 9-m wide, 1368 pots of 5-inch 
size can be accommodated. These pots can be arranged on work benches. For 
artificial lighting, 32 incandescent bulbs of 60-W capacity are required. Temperature 
is controlled by cooling pads. The incandescent bulbs cost |20 apiece. Power 
consumption of this bulb if used for 12 h in a day is 0.72 units. Cooling pads (two 
numbers in one glasshouse bay) consume 48 units of power in a day (assuming on-
and-off action to maintain temperature). So, a generation advancement experiment 
of 60 days would cost 2923 units of power. By far, this is the cheapest to advance 
chickpea population at the ICRISAT. 

4.2 Lentil 

Idrissi et al. (2019) applied extended photoperiod for accelerating lentil growth and 
development. Plants were exposed to an extended period of 22 h of light and 2 h 
of dark under growth chamber conditions, using far-red-enriched LED and blue 
LED lights. The extended photoperiod results in shorter cycles of development, 
such as fewer number of days to first flower, first pod, physiological maturity, 
and also shorter period for pod filling. A reduction of 46% was recorded for early 
physiological maturity due to photoperiod extension. Harvested seeds (F3) were  
sown and advanced three generations per year under growth chamber conditions 
instead of one generation in the field. 

4.3 Wheat 

Watson et al. (2018) and Ghosh et al. (2018) facilitated speed breeding protocols 
for shortening wheat generation time using controlled environment chamber and 
glasshouse conditions. The process involves the exposure of plants to a longer 
period of 22 h of light and 2 h of dark at 22 ◦C and 17 ◦C, respectively, using 
LED lights, which cover the photosynthetically active radiation (PAR) of 400– 
700 nm focusing on blue, red, and far-red regions of spectrum. They discovered 
that extended photoperiod reduced the total number of days of flowering to half 
compared to the wheat genotypes grown with 12/12-h light/dark.
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4.4 Groundnut 

A rapid generation turnover (RGT) for peanut under greenhouse conditions with 
continuous light (24 h) using 450-W PAR lamps and temperature 32 ◦C/22 ◦C 
maximum/minimum with 65% relative humidity (RH) was reported by O’Connor et 
al. (2013). The peanut lines, Farnsfield and D147-p3-115, generally mature in 140– 
145 days in the field, while the F2 and F3 generations from the cross of the two lines 
matured in 113 and 89 days, respectively, under the speed breeding conditions. The 
final plant recovery ranged from 68% to 74% in F2 to F4 generations. A combination 
of speed breeding with single seed chipping (a rapid protocol for sampling for DNA 
extraction using a small portion of the cotyledon without losing the viability of the 
seed) and high-throughput genotyping in peanut has been reported recently, which 
also could save 6–8 months of crop duration (Parmar et al. 2021). 

4.5 Pigeon Pea 

Saxena et al. (2017) reported an RGA technology combining the germination of 
immature seeds with the single seed descent (SSD) technique in pigeon pea, a 
legume crop that is widely grown in many parts of the world. They reported that, 
using speed breeding, they were able to significantly reduce the time required for 
pigeon pea plants to reach maturity and produce seeds. The outcome demonstrated 
that 35 days old immature seeds could be used to successfully produce a new 
generation of pigeon pea with 100% seed germination, at 32 ◦C and 60% relative 
humidity RGA technique allowed them to grow three generations of pigeon pea in a 
single year, as opposed to the usual one generation per year under normal growing 
conditions. 

4.6 Cowpea 

Cowpea is an important dryland crop in sub-Saharan Africa that has potential to 
improve food security. Edet and Ishii (2022) developed and validated an efficient 
speed breeding protocol for cowpea that accommodates seven to eight breeding 
generations per year for three cowpea genotypes. The protocol involves using 
controlled growth conditions in two different chamber types and cultivating new 
plant generations from seeds of oven-dried immature pods, thereby reducing 62% 
time from pollination to sowing of the next plant generation.
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5 Conclusion and Prospectives 

Plant breeding has played a crucial role in ensuring the food security of the 
world’s population over the past century through high-yielding varieties in major 
crops. Most of this effort was through traditional breeding techniques. To meet the 
demands of food and nutritional security, modern techniques need to be adopted. 
Speed breeding has just begun and picking up globally by scientists involved in 
crop improvement as it saves time and resources. Protocols are being developed for 
many crops that respond to the techniques of speed breeding. 

Currently, the focus is on reducing the generation time of a crop. Going forward, 
speed breeding can be complemented with various advanced techniques to accel-
erate the breeding programs. The integration of techniques such as backcrossing, 
gene pyramiding, gene editing, and genomic selection with speed breeding can help 
to reduce project costs and to accelerate crop improvement. 

In recent times, artificial intelligence (AI) has emerged as a valuable tool for 
exploring the biological and molecular processes that govern plant functions in 
response to environmental factors (Rai 2022). AI will have a significant impact 
on plant breeding offering various benefits. AI-assisted breeding systems will play 
a pivotal role in different aspects of research, evaluation, selection, development 
of breeding procedures, and field management. These AI-driven systems possess 
remarkable capabilities in designing and predicting outcomes through model sim-
ulation and optimization. Moreover, robots equipped with AI are now involved 
in data collection, storage, and analysis, thereby significantly enhancing breeding 
information systems (Xu et al. 2022). A list of successful implementation events of 
AI models in plant breeding studies of various crops like Glycine max L., Phaseolus 
vulgaris L., Zea mays L., Brassica rapa L., and Triticum aestivum L. were reported 
by Rai (2022). Further, AI has the capacity to integrate and incorporate OMICS 
datasets, which are essential requirements for effectively implementing speed 
breeding protocols. As a result, speed breeding becomes not only more compelling 
but also more cost-effective. 
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Digital Agriculture for Enhancing Yield, 
Nutrition, and Biological Stress 
Resistance 
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Yomna A. Mohamed, Hossam E. Harb, Ahmed M. Saleh, 
Mahmoud H. Abd El-Aziz, and Sozan E. El-Abeid 

Abstract The application of artificial intelligence (AI) has fundamentally altered 
the agriculture industry by introducing novel approaches that boost crop yields 
while lowering the cost of production. The monitoring and estimation of preyield 
requirements, including water and energy for agriculture, disease prediction, and 
pest and weed control, have been made by the development of methodologies and 
applications based on AI. In addition, computer vision is a branch of artificial 
intelligence that focuses on enabling computers to interpret visual information 
from images or videos. It uses technologies such as object recognition, image 
segmentation, and motion estimation to identify objects in an image or video frame 
and track them over time. Computer vision has been used for applications such 
as imaging analysis of plants and prediction of plant health status. Also, artificial 
intelligence-based smart irrigation systems are being employed to improve crop 
yields while reducing water consumption. In addition, artificial intelligence-based 
crop yield forecasting algorithms have been developed in order to reliably anticipate 
crop yields. This enables governments to plan crops in an appropriate manner. 
Additionally, strategies based on AI have been applied to improve transportation 
demands, purchasing processes, storage facilities, and the agricultural sector’s 
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economy as a whole. It is therefore possible to draw the conclusion that artificial 
intelligence has completely transformed the agriculture industry by delivering 
effective solutions that simultaneously raise levels of productivity and cut the 
expenses of production. 

Keywords Monitoring · Artificial intelligence · Nanosensor · Sensor · Smart 
irrigation 

1 Introduction 

The use of AI in agricultural and weather forecasting has become more widespread 
in recent years. This has sparked a surge in study in these areas, which has improved 
AI technology. Given the need to optimize productivity and efficiency and the 
fact that 40% of the world’s population is employed in agriculture (Ramankutty 
et al. 2018), research on using artificial intelligence to increase crop yields with 
little waste was initiated as a result of the world’s waste of essential resources. 
Manual labors were used in traditional farming for years (Al-Arif et al. 2012). 
Inaccurate calculations and a lack of comprehension resulted in damaged crops and 
decreased soil productivity (Patil and Thorat 2016). Consequently, objectives of the 
early stages of artificial intelligence research in an effort to adapt it to agricultural 
requirements and alleviate farmers’ problems are as follows: 

1. Determine contemporary agriculture farmer difficulties. 
2. Evaluate AI technology for agricultural use. 
3. Create a prototype of an AI system to support farmers with daily duties. 
4. Test and improve the prototype depending on farmer feedback. 
5. Use the AI system in agriculture and track its success. 
6. Collect data from the deployed AI system and use it to improve its performance 

further. 
7. Provide farmers a simple way to use the AI system. 
8. Teach farmers how to gain from AI. This coincided with industrial revolution 

inventions and mechanism advances (Kait et al. 2007). The collection of informa-
tion on agricultural practices like farming, irrigation, crop forecasting, planning, 
and organizing the global supply and demand for agricultural products requires a 
combination of artificial intelligence techniques and the Internet (Vinayak and 
Malavade 2016). It also allows the collection of information on crops, their 
growth rate, and the amount of water they need for optimal growth. This chapter 
describes artificial intelligence’s agricultural and crop monitoring technologies. 
In this chapter, we have highlighted the various tools and contributions of 
artificial intelligence in agriculture and crop monitoring.
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2 Some Effective Technologies 

Number of effective technologies used in climate change monitoring is summarized 
in Fig. 1: 

1. Climate modeling: This technology uses mathematical models to simulate the 
climate system and predict future climate change. 

2. Remote sensing: This technology uses satellites, aircraft, and unmanned aerial 
vehicles to collect data on land cover, land use, and other environmental 
parameters such as changes in the Earth’s atmosphere, land, and humidity. 

3. Geographic information system (GIS): GIS is a computer-based system that com-
bines spatial data with other information to analyze and visualize relationships 
between different elements of the environment. 

4. Soil moisture sensors: These sensors measure the amount of water in the soil and 
can be used to monitor irrigation needs or detect water stress in plants. 

5. Weather stations: Weather stations measure temperature, humidity, wind speed, 
rainfall, and other meteorological variables that can be used to monitor climate 
change and predict weather patterns. 

6. Drones: Unmanned aerial vehicles (UAVs) are increasingly being used for 
environmental monitoring applications such as mapping land cover changes or 
monitoring air quality. 

7. Plant health monitoring systems: These systems use sensors to monitor plant 
health parameters such as leaf temperature, leaf wetness, and nutrient levels in 
order to detect early signs of pest infestations or disease outbreaks. 

Fig. 1 Number of effective technologies used in climate change monitoring
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8. Precision agriculture technologies: Precision agriculture technologies such as 
yield monitors and variable rate application systems allow farmers to optimize 
their inputs for maximum efficiency while minimizing their environmental 
impact. 

9. Solar radiation monitors: These instruments measure the amount of solar radia-
tion reaching the Earth’s surface from the Sun. 

They have helped to monitor climate change, frequent weather, nutrition and 
moisture efficiency of plants, pest and weed control, and plant health monitor-
ing, which leads researchers in developing subtechnology such as GPS satellites 
(Gondchawar and Kawitkar 2016), sensors, and satellite imagery (images of satellite 
imagery), and to monitor areas that influence factors such as temperature, moisture, 
soil pH, and other factors. This other factors that can be monitored using sensors and 
satellite imagery include vegetation health, land use, water quality, air quality, and 
topography. Additionally, satellite imagery can be used to monitor changes in land 
cover and land use over time. All these huge data are collected through proximity, 
remote, and temperature/humidity sensors (Jha et al. 2019). These advanced Internet 
means enable data to be disseminated to different channels, such as Internet cloud 
technology (Kodali and Sahu 2016). With the increase in the technical ability in data 
processing, the computational power and accuracy have increased its effectiveness 
in dealing with agricultural challenges and setting agricultural forecasts useful, 
accurate, and reliable (Roopaei et al. 2017) (Fig. 2). 

3 Digital Agriculture for Nutrient Security 
and Environmental Sustainability Improvement 

Crop tracking AI may tell farmers about soil moisture, temperature, and other 
factors affecting crops. This helps farmers schedule watering, fertilizing, and 
harvesting. AI can monitor soil moisture and dispense water in smart irrigation 
systems. This innovation helps farmers save time and money while caring for their 
crops. AI can identify weeds in fields by analyzing drone or camera photographs 
and using computer vision. Thus, farmers can save time and money by focusing 
on the most important tasks. Early crop illness detection AI can help farmers spot 
crop illnesses before they spread. Computer vision technology is used to analyze 
drone or camera photographs for signs of illness. AI uses meteorological and soil 
quality data to predict agricultural output. Farmers can better predict future needs 
and allocate enough resources to varied crops. We can illustrate the various abilities 
of artificial intelligence (AI) in agriculture as: 

• Real-time crop monitoring AI can be used to provide farmers with information 
about soil moisture, temperature, and other environmental elements affecting 
their crops. This is helpful for farmers because it allows them to better plan when 
to water, fertilize, and harvest their crops.
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Fig. 2 A graph showing the different abilities of potential AI roles in agriculture 

• Smart irrigation systems can be easily achieved with the assistance of AI by 
monitoring soil moisture levels and dispensing water accordingly. Farmers may 
save both time and money while still giving their crops the care they need, thanks 
to this innovation. 

• Artificial intelligence (AI) can be used to spot weeds in fields by analyzing 
photographs captured by drones or other cameras and utilizing computer vision 
technologies to identify the plants. As a result, farmers can save both time and 
money by focusing their efforts where they will have the greatest impact. 

• Early detection of crop illnesses. Artificial intelligence can be used to help 
farmers identify crop diseases before they cause widespread damage. Doing so 
involves the use of computer vision technologies to analyze images captured by 
drones or other cameras in order to spot telltale symptoms of sickness. 

• Predicting crop yields with AI requires analyzing past data and current condi-
tions, such as weather and soil quality. As a result, farmers are better able to 
anticipate future needs and dedicate sufficient resources to the cultivation of 
various crops.
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Now, it is crucial that we make an effort to discover the important features that 
best explain this technology and the significant role it plays in agriculture. 

3.1 Information Production 

Agricultural informatization is essential to achieving agricultural modernization. 
In China, agricultural information refers to the widespread use of information 
technologies in agricultural production and management, which encompasses the 
transformation of information technology into means of production and the indus-
trialization of agricultural information products or services (Liu and Gao 2016). 

As part of a study effort, information technology (IT) supports the appropriate 
service procedure was built to optimize the precision farming process. In the 
information production system (IPS) project, a software system that facilitates 
efficient and transparent service provision was developed using service engineering 
methodologies (Information Production System for Precision Farming). Today, site-
specific farming, which allows for efficient field production, is adopted in response 
to rising global food demand. However, owing to the lack of arable land and the 
requirement of employing farming practices, it is crucial that agricultural output 
be optimized in a way that takes into consideration more than just self-serving 
interests. Over the past three decades, significant technics have been made in 
agricultural field management (Mulla 2013). A prerequisite is efficient and detailed 
data collecting. Sensors are offered for various precision farming (PF) applications 
(e.g., nitrogen fertilization and plant protection). Although preliminary techniques 
for sensor-based analysis for particular nutrients exist, no solution for complete 
and reliable sensor-based detection is predicted in the medium future (Kim et 
al. 2009). The creation of IPS demonstrates how adopting a service engineering 
methodology in agriculture leads to service quality and effectiveness gains. It 
gives farmers greater traceability and transparency when using the cloud-based 
AgriPort. Using IPS as an example, numerous effects of digitalizing cooperative 
business operations were demonstrated. Weaknesses have been discovered based 
on business process modeling. The entire service became more efficient by stan-
dardizing data formats, reducing the number of tools used, and predefining error 
routines, benefiting all stakeholders (Friedrich et al. 2016). Agriculture includes 
crop production and animal husbandry for food, wool, and other items. Agriculture 
sustains every economy. Long-term economic growth and structural transformation 
depend on it. Previously, agriculture only produced food and crops. Agriculture now 
includes animal processing, production, marketing, and distribution. Nowadays, 
agriculture generates most revenue, reduces unemployment, supplies raw materials 
to other businesses, and boosts economic growth. Agriculture made sedentary 
human civilization possible by producing food surpluses. Sheep, goats, pigs, and 
cattle were domesticated 10,000 years ago. Plants were grown individually in 
11 locations. Throughout the twentieth century, industrial agriculture based on
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large-scale monoculture dominated agricultural output despite 2 billion people 
still practicing subsistence agriculture (2002). Intelligent or e-agricultural farming 
is digital agriculture. These agricultural technologies capture, store, analyze, and 
distribute digital data. The UN Food and Agriculture Organization calls digital-
izing agriculture the “digital agricultural revolution” (Klerkx et al. 2019). Digital 
technologies may change farming. Agricultural revolutions boost productivity and 
technology. The five agricultural revolutions were the First, Arab, British, Scottish, 
and Green. Despite increased production, prior agricultural revolutions ignored 
some issues. The Green Revolution caused inequity and environmental devastation. 
The Green Revolution first favored large farmers who could afford new technolo-
gies, worsening interfarm and interregional inequities. Second, its detractors say its 
policies promoted excessive input use and pesticide use, causing soil deterioration 
and chemical runoff. Digital agriculture may mitigate Green Revolution effects 
(Shepherd et al. 2020). To feed 9 billion people by 2050, the FAO predicts 56% 
greater food production than in 2010. Hunger, climate change, food waste, and 
dietary changes are global challenges. Food production, greenhouse gas emissions, 
and agricultural land protection must all be done at once to establish a “sustainable 
food future.” Digital agriculture can improve the agricultural value chain’s efficacy, 
egalitarianism, and sustainability (Alexandratos 1995). 

3.2 Artificial Intelligence (AI) Role in Agriculture 

Throughout the nineteenth century, during the time of the industrial revolution, 
machines were frequently utilized in place of or to reduce the need for human labor. 
The gradual replacement of human labor by AI is a fact that cannot be ignored in the 
present day and age (Dharmaraj and Vijayanand 2018). AI in agriculture increases 
agricultural production and sustainability. For agricultural decision-making, AI can 
be used for crop monitoring and yield prediction, precision irrigation, weed and 
pest identification, and automated machine learning. Farmers use AI to detect areas 
that need irrigation, fertilizer, pesticides, or production enhancements. Agronomists 
research with AI. AI has been used to predict tomato ripening, monitor soil moisture, 
control agricultural robots, do predictive analytics, profile livestock pig throw 
emotions, automate greenhouses, detect illnesses and pests, and save water (Talaviya 
et al. 2020). 

AI’s adaptability, high performance, precision, and affordability are key to 
agriculture. AI in agriculture will be achievable because of big data analytics, 
robotics, the Internet of Things, inexpensive sensors and cameras, drone technology, 
and extensive Internet connectivity on geographically scattered fields. By analyzing 
soil management data sources like temperature, weather, soil analysis, moisture, 
and historical crop performance, AI systems will be able to predict which crop to 
plant in a given year and when the optimal sowing and harvesting dates are in a 
specific region, increasing crop yields and reducing water, fertilizer, and pesticide 
use. Workers’ safety and natural ecosystems may benefit from AI technology. In
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turn, this will keep food costs low and guarantee food production stays pace with 
population growth (Eli-Chukwu 2019). 

In the context of a wide variety of agri-food applications and supply chain phases, 
comprehending a model’s identification, service creation, and decision-making 
approaches can considerably benefit from AI methodologies. Al technologies 
deliver algorithms for evaluating performance, classifying patterns, and predict-
ing unanticipated problems or phenomena to solve comprehension issues in the 
agricultural field, as well as for the identification of pests and their appropriate 
treatment methods, as well as for the management of irrigation, using remote 
sensing and sensors to assess abiotic and biotic factors in order to optimize 
agriculture and animal management. Other applications of AI tools include the 
management of irrigation, as well as the identification of pests and their appropriate 
treatment methods. In addition, the implementation and use of AI provide enormous 
benefits that have the potential to transform the agri-food sector and associated 
businesses. Initially, AI provides more efficient techniques for growing, harvesting, 
and marketing agricultural products, emphasizing analyzing problematic crops and 
increasing the possibility of healthy crop yield. AI is also used in applications 
such as the automated adjustment of machines for weather forecasting and the 98% 
accurate identification of plant diseases or pests (Eli-Chukwu 2019). 

The initial phase in the agricultural supply chain is the preproduction cluster. 
It focuses mostly on crop production forecasts, soil parameters, and irrigation 
needs. Numerous experts stress the importance of agricultural yield generation for 
enhancing plant support management. Indeed, by employing input data, precision 
agriculture solutions strive to make stakeholders and farmers more aware of their 
demands (such as water, nutrients, and fertilizers) by projecting effective models 
based on machine learning (ML) algorithms. Additionally, they assist with optimum 
crop output forecasting judgments and enhance prudent agricultural practices. Var-
ious machine learning (ML) methods, including deep learning, Bayesian networks, 
regression, decision trees, clustering, and artificial neural networks (ANNs), have 
recently been used in agricultural production prediction. There is currently a dearth 
of expertise with sophisticated machine learning systems on farms throughout the 
globe, despite AI providing vast prospects for agricultural applications. AI systems 
need substantial data for machine training to produce correct predictions. The 
future of agriculture will rely greatly on adaptable cognitive solutions. Extensive 
research has resulted in the availability of several applications, even though the 
agriculture market remains underserved. AI farming is still in its infancy, despite 
using AI decision-making systems and predictive solutions to address genuine 
farmer difficulties and expectations (Dharmaraj and Vijayanand 2018). 

3.3 Weather Forecasting 

It may be finished day by day or in advance over multiple days. Weather forecasting 
is a crucial procedure that influences many people’s everyday lives and may save
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countless lives by preventing accidents in industries such as agriculture, irrigation, 
and maritime commerce. Weather forecasting has several uses; it impacts numerous 
facets of life, including industry, transportation, disaster management, and energy 
management (Fathi et al. 2021). 

Weather forecasting uses science and technology to forecast the atmospheric 
conditions for a certain location and time. Weather predictions have been done 
informally for millennia and professionally since the eighteenth century. Meteo-
rologists make weather forecasts by gathering quantitative data on the current state 
of the atmosphere, land, and water and then using meteorology to determine how 
the atmosphere will change at a certain location. Globally, agricultural communities 
must adjust to climate change. Simultaneously, they must increase the food supply 
for a rising population while guaranteeing the sustainable use of natural resources. 
In this dynamic, Agriculture is one of the factors contributing to increased green-
house gas emissions and a victim of extreme weather events and rising temperatures. 
Agriculture is also an ally in climate change mitigation and adaptation because 
ad hoc crop types and animals may lower farming’s environmental effects, and 
improved management techniques can encourage soil conservation. The influence 
of agriculture on climate change adaptation and mitigation will be defined by the 
adopted rural policies, as well as a knowledge of the links between weather, climate, 
and farming (Parolini 2022). 

As a crucial and necessary aspect of people’s everyday life, weather forecasting 
examines changes in the existing atmosphere condition. Big data analytics analyzes 
enormous volumes of data to reveal hidden patterns and pertinent information that 
might lead to improved outcomes. Multiple sectors of society, including the meteo-
rological institution, are now interested in big data. Consequently, big data analytics 
will provide more accurate weather forecasts and aid forecasters in making more 
precise weather predictions. Several big data approaches and technologies have been 
developed to handle and analyze a large amount of weather data from a variety of 
sources in order to accomplish this objective and to provide effective remedies (Fathi 
et al. 2021). Previously, weather forecasting was computed manually based mostly 
on changes in barometric pressure, present weather conditions, and sky conditions 
or cloud cover. Weather forecasting depends on computer-based models that account 
for several atmospheric elements. 

The selection of the optimal prediction model still involves human input, which 
necessitates pattern identification abilities, teleconnections, model performance 
information, and model bias awareness. Inaccurate forecasting results from the 
chaotic character of the atmosphere, the huge processing capacity necessary to 
solve the equations describing the atmosphere, land, and ocean, measurement error, 
and a lack of knowledge of atmospheric and associated processes. As the time 
gap between now and the period for which the prediction is being produced (the 
forecast range) rises, the accuracy of forecasts decreases. Using ensembles and 
model consensus aids in reducing error and providing prediction certainty (Fathi 
et al. 2021). 

There are several applications for weather forecasting. Important weather fore-
casts are weather warnings because they protect people and property. Agriculture



454 M. A. M. El-Tabakh et al.

and, by extension, commodity traders need forecasts based on temperature and 
precipitation. The demand forecasts of utility companies are based on temperature 
estimates. Numerous folks depend on weather forecasts to choose how to dress 
each day. Because severe rain, snow, and wind chill greatly limit outdoor activities, 
forecasts may be used to plan around these occurrences and prepare for their 
occurrence. In 2009, the United States spent around $5,1 billion on weather 
forecasting, with expected benefits six times higher. The ability to anticipate the 
weather is essential in agriculture since it enables farmers to produce healthy 
and abundant crops. Estimated precipitation and temperatures and historical data 
are the most important meteorological variables for agriculture to organize field 
activities from planting through harvesting, with fertilizer and herbicide applications 
in between. Accurate climate projections 3–6 months in advance may enable 
farmers and others in the agricultural industry to take steps to minimize negative 
consequences or capitalize on anticipated pleasant weather. Due to several physical, 
biological, economic, social, and political considerations, however, the potential 
advantages of climate projections vary considerably (Lazo et al. 2009; Jones et al. 
2000). 

The practice of weather forecasting dates back to the nineteenth century. 
Weather forecasting assesses atmospheric variables such as temperature, radiation, 
air pressure, wind speed, wind direction, humidity, and precipitation. A massive 
amount of data must be collected or developed to predict the weather. In addition, the 
information is unorganized. Consequently, utilizing meteorological data to forecast 
the weather is difficult with excessive changeable components. These variables 
fluctuate as a result of rapidly changing meteorological conditions. To propose 
a weather forecasting algorithm, we must consider its unique properties, such as 
continuity, data density, and multidimensional and chaotic behavior. Forecasting 
the weather has transitioned from a labor-intensive activity to a computer one 
that requires high-tech equipment. Numerous variables may alter the accuracy of 
forecasts. Effective criteria include the season, geographical location, input data 
accuracy, weather classifications, lead time, and validity (Fathi et al. 2021). 

In contrast, climate change and severe weather events provide new problems 
for agricultural meteorology study and application in industrialized nations. Over 
the last century, agricultural meteorology has seen many changes, but the focus on 
aiding farmers wherever needed has remained constant, although with less-than-
expected outcomes (Parolini 2022). 

In the nineteenth century, the practice of weather forecasting began. Assessing 
atmospheric data, including temperature, radiation, air pressure, wind speed, wind 
direction, humidity, and precipitation, defines weather forecasting. Collecting or 
generating a vast amount of data is necessary to predict the weather.
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3.4 Smart Irrigation 

Global food consumption is rising due to the fast population increase, placing extra 
pressure on water resources (Ochoa-García and Rist 2018). Irrigation accounts for 
over 70% of worldwide water withdrawals, and agriculture is the largest consumer 
of water (Simionesei et al. 2020). Water shortage is one of agriculture’s greatest 
challenges in arid and semiarid areas (Nazari et al. 2018). This issue emerges as 
a result of farmers regularly irrigating all portions of an agricultural field without 
addressing the crop’s water needs. Some portions of a farm may be over- or 
underirrigated, a downside of the irrigation mentioned above since it may cause 
unpleasant water stress on the crops (Abioye et al. 2020). Therefore, good irrigation 
water management is necessary to ensure global water security (Nazari et al. 2018). 
In agriculture, the disparity between water demand and availability is considered an 
issue that should be solved by optimizing irrigation water utilization using cutting-
edge technology (Pereira et al. 2022). 

Remote sensing (RS), soil moisture sensor (SMS), evapotranspiration (ET)-based 
controllers, and optical sensors are generally the four smart irrigation systems 
available on the market to reduce water waste during field watering. This section 
focuses on the effect of these techniques on water conservation and crop quality. 
It was discovered that the Internet of Things-based automated agricultural field 
watering system with soil, temperature, and humidity sensors was 92% more 
successful than conventional human approaches. Smart irrigation requires little to no 
human input and only uses water where it is required. Additionally, it has high cost-
effectiveness since less water is utilized and the process is more precise, resulting in 
lower prices and expenditures overall (Jain and Vani 2018). 

Additionally, the technique considerably decreases energy consumption since 
fewer hours are spent operating the equipment, and regulated pauses are performed 
during the process to minimize total energy usage. Moreover, since resources are 
limited and enterprises must control expenditures to some level, it is essential 
to reduce expenses and save materials. Smart irrigation takes into account cost, 
allowing related tasks to be completed successfully while spending less money. 
Lastly, improved irrigation efficiency and water management ensure that crops 
and plants receive only the necessary amount of water, reducing crop loss due to 
inadequate or excessive watering (Jain and Vani 2018). 

Advantages of using smart irrigation are to (1) reduce water waste to save 
money, (2) improve your landscape’s health, (3) prepare you for water’s future, 
and (4) avoid paying fines. (5) There are numerous advantages to using Internet 
of Things (IoT) systems in irrigation, featuring decreased total water usage, high 
cost-effectiveness, high-performance efficiency, decreased energy consumption, and 
decreased crop waste. Reduced water use is one of the major advantages of IoT 
irrigation systems (Touil et al. 2022). 

The principle of intelligent irrigation uses sensors that assess soil moisture, 
expected precipitation, and external temperatures to gather crucial data. The intel-
ligent controller may utilize this data to guide the sprinkler system’s actuators to
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switch on and off in response to user requests. The user merely has to define a 
moisture and temperature range for the sensors to capture this information. When 
this threshold is met, an action is triggered (such as starting or stopping smart 
irrigation). The intelligent irrigation controller can detect water flow and if pipes are 
blocked or leaking (massive water savings here). Typically, a smartphone app will 
enable you to operate and monitor your intelligent irrigation system. In contrast, 
your smart controller/irrigation system will be set up in an atomized manner, 
determining the optimal watering timings, durations, and quantities for your garden 
based on weather and sensor data (García et al. 2020). 

A sensor is a device capable of detecting measured data and turning it into an 
electrical signal or other kinds of information output depending on a set of rules 
to meet the requirements of information transmission, processing, storage, display, 
recording, and control. As the Internet of Things technology advances, sensors are 
used in various industries, including agriculture and industry. Agriculture sensors 
such as air temperature and humidity, soil moisture, pH, light intensity, and carbon 
dioxide are often used to collect data on crop production’s seedling, growth, and 
harvest stages. Using agricultural conductivity and pH sensors, water and fertilizers 
are monitored. The integrated monitoring system monitors the liquid mixture of 
fertilizer sensors of temperature. The temperature and humidity sensor is a piece of 
electronic equipment that detects and transmits the temperature and humidity levels 
in the shed. It is also a type of sensor with many applications in smart agriculture. 
There are two kinds of sensors in agricultural greenhouses: air temperature and 
humidity sensors and soil temperature and humidity sensors. During installation, the 
crop’s various root depths determine the sensor’s depth. It detects soil temperature, 
moisture content, and changes during crop growth and development, allowing for 
timely and appropriate watering. Here is a more in-depth look at the two temperature 
and humidity sensors. Using temperature and humidity sensors in greenhouses 
may help plant development, and employing such sensors for monitoring and 
management can successfully avert significant droughts and floods. We can also 
calculate the appropriate amounts of temperature and humidity for crops. When the 
temperature and humidity data exceed the standard, the sensor sends a signal to 
connect the heating/dehumidification equipment in parallel to effectively control 
the humidity and temperature in the shed, allowing the crop to grow normally. 
It determines whether crops lack water based on soil temperature and humidity. 
If crops are water-stressed, intelligent irrigation should be implemented promptly 
to meet crop water demands. When the temperature and humidity sensor detects 
enough water in the soil, it signals the irrigation system to turn off the water supply, 
completing the irrigation system’s automation. It meets crop needs without wasting 
water resources (Aniley et al. 2017). 

The World Meteorological Organization (WMO) characterizes soil temperature 
as a physical quantity that indicates the average random movement of molecules in a 
physical body (IAEA 2008). The temperature may also determine whether an object 
is warm or cold. It pertains to the random thermal mobility of a material’s molecules. 
It measures a substance’s average translational kinetic energy (Fahrenheit and 
Kelvin n.d.). From 0 to 40 ◦C is the most changeable soil temperature range (Liu et



Digital Agriculture for Enhancing Yield, Nutrition, and Biological Stress Resistance 457

al. 2011). Between 20 and 30 ◦Celsius is the best range of typical soil temperature 
for plant growth. 

The Importance of Soil Temperature Measurement Temperature influences 
several processes inside the soil and its environment. Consequently, soil temperature 
measurements are required (Valente et al. 2006). The soil temperature influences 
photosynthesis, respiration, transpiration, the soil’s water potential, soil transloca-
tion, and microbiological activity. 

The Value of Measuring Soil Temperature Several processes inside the soil 
and its ecosystem are affected by temperature. Therefore, soil temperature mea-
surements are essential (Valente et al. 2006). The temperature of the soil impacts 
photosynthesis, respiration, transpiration, the water potential of the soil, soil 
translocation, and microbial activity (Lehnert 2014). 

3.5 Sensors of Soil Moisture 

Soil moisture sensors are also referred to by the moniker “soil moisture meters.” 
The principal uses for this technology are agricultural irrigation, forest protection, 
monitoring the volumetric water content of the soil, and measuring the soil’s 
moisture content. FDR and TDR, which stand for frequency and temporal domains, 
respectively, are the two types of soil moisture sensors that are now available. The 
most common types of soil moisture sensors include tensiometers, capacitance, 
dielectric methods, volumetric sensors, and neutron analyzers. Gypsum blocks are 
another common type of soil moisture sensor. When inserted into the ground, 
these sensors determine the soil tension as well as the volumetric water content. 
The soil moisture sensor is a device that measures the level of moisture that is 
currently present in the soil. The incorporation of sensors into agricultural irrigation 
systems helps to enhance the effectiveness of water distribution. These meters help 
detect whether the amount of watering should be decreased or increased to promote 
optimal plant growth (Aniley et al. 2017). 

3.6 The TDR Approach and the FDR Method 

The time domain reflectometer method, also referred to as the TDR method, is 
a technique for determining the moisture content of the soil by measuring the 
dielectric constant using a time domain reflectometer. As soil moisture content 
increases, so does the value of the dielectric constant, and the speed of propagation 
of electromagnetic waves in the medium is proportional to the dielectric constant. 
Because the dielectric constant of water in the soil is significantly greater than 
that of solid particles and air in the soil, the value of the dielectric constant 
increases as soil moisture content increases. Because the square root has an inverse
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proportionality, the waveguide rod causes an increase in the amount of time it takes 
for electromagnetic waves to travel down the rod. It is possible to quantify the 
moisture content of the soil if one takes into account the speed at which high-
frequency electromagnetic pulses travel through the soil along the waveguide rod 
and measures the speed at which they do so (Babaeian et al. 2019). 

The term “FDR” refers to a method known as the frequency domain soil moisture 
sensor. It uses the electromagnetic pulse principle to compute the soil volumetric 
water content (v) by measuring the apparent permittivity of the soil in relation 
to the frequency of propagation of electromagnetic waves through the medium. 
This is done so in order to determine how much water is contained in the soil 
volumetrically. After the soil has been calibrated, the measurement accuracy is very 
high, the probe form is unrestricted, and it is possible to detect multiple depths at 
the same time, which makes data gathering much easier. The current method of 
monitoring soil moisture in agricultural settings is handled by a small number of 
sensors. The application of these sensors is severely limited due to their low sample 
volume, high cost, requirement for close contact between the soil and the sensor, and 
poor performance in salty, vertical, and rocky soils. This study was carried out to 
investigate a wide range of new and cutting-edge soil moisture sensors and to assess 
the range of possible applications those sensors could have in agriculture (Babaeian 
et al. 2019). 

The collection and analysis of soil moisture data is essential for a number of 
ecosystem services, including agricultural production, watershed hydrology, flood 
forecasting, and landslide prediction. Agricultural is the industry that uses the most 
water globally, accounting for around 70% of the overall water use. The rising 
demand for diminishing water supplies all over the world has rekindled interest 
in the research and development of proximal soil moisture sensors for the purpose 
of improved irrigation and better control of soil moisture in agricultural settings. 
A handful of “trusted” technologies are currently in control of the monitoring 
of soil moisture in agricultural settings. These technologies include frequency 
domain reflectometry (FDR) or capacitance, gypsum block sensors, time domain 
reflectometry (TDR), neutron moisture meters (NMMs), and amplitude domain 
reflectometry (ADR) (Babaeian et al. 2019). Because soil moisture is dynamic 
in space and time, it must be regularly monitored. There are several ways to 
assess the state of soil moisture. Depending on the needs and objectives of the 
project, each of these techniques has benefits and downsides and should be used 
with care. Compared to the total quantity of water on the globe, soil moisture 
is the temporary storage of water in a thin layer of the Earth’s surface. It is 
crucial to agronomic, hydrological, and meteorological processes at all geographical 
scales. It is essential for identifying water stress and controlling irrigation. In 
addition to predicting natural catastrophes like drought and floods, soil moisture 
data may also be used to forecast environmental changes like dust storms and 
erosion. However, a reliable estimate of soil moisture using in situ measurement 
is prohibitively costly owing to the need for replication sampling to assess the 
periodic change in soil moisture. Various approaches have been used to assess soil 
moisture, including spot measurements and remote sensing. Gravimetric, neutron
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probe, time domain reflectometry, capacitance, FDR, tensiometer techniques, and 
hygrometric techniques are examples of traditional methods or point measurement 
techniques. The typical gravimetric approach is precise and economical, but it is 
damaging, sluggish, and time-consuming, resulting in restricted coverage. At an 
Relative accuracy of the permittivity of ±4%, dielectric probe techniques are the 
most reliable means of measuring surface. Land surface parameters such as land 
use, land cover, soil moisture, surface water area, surface temperature, and snow 
cover have been collected using optical remote sensing. As a result, numerous 
researchers have investigated the relationship between soil moisture and reflectance. 
This method is well-suited for automated irrigation system monitoring and control 
and needs little maintenance. Hydrometers are part of a vast, sophisticated, and 
costly system, making their usage impracticable is one of its major drawbacks 
(Pavan et al. 2018). 

Likewise, methods including remote sensing provide more accurate measure-
ments of near-surface soil moisture over a vast region with a spatial and temporal 
variation. Although the soil moisture at the surface looks small, this thin layer 
controls all agricultural activities. In this work, we examined all remote sensing 
techniques. Due to their inability to penetrate weather, optical and thermal remote 
sensing techniques are inapplicable for estimating soil moisture under plant cover. 
However, microwave remote sensing methods are suitable for assessing soil mois-
ture under vegetation cover. Because point measurement techniques give point 
estimates, they cannot be used on a vast area with high precision, as determined 
by our review. Active microwave remote sensing technologies can estimate the 
spatial distribution of soil moisture over vast agricultural regions with high spatial 
resolution, but the temporal distribution of soil moisture over a broad area cannot 
be established. Passive microwave remote sensing can assess soil moisture with 
greater spatial and temporal precision across a broader observation region. Sensors 
for moisture humidity is the concentration of water vapors in the atmosphere. 
Generally speaking, water vapor, or water in its gaseous condition, is not visible 
to the human eye. The humidity level predicts the presence of precipitation, dew, 
or fog. Temperature and pressure influence the humidity of the system under study. 
Since it contains the same water vapors, cool air has greater relative humidity than 
warm air. The dew point is an associated variable. As the temperature rises, the 
quantity of water vapor necessary for saturation increases. As the temperature of an 
air parcel decreases, it reaches saturation without gaining or losing water mass. The 
quantity of water vapors in a given air volume may vary considerably (Brun et al. 
2022). 

A parcel of near-saturated air may contain 28 g of water per cubic meter of 
air at 30 ◦C (86 ◦F) but only 8 g at 8 ◦C (46 ◦F) (Brun et al. 2022). Humidity is 
measured by humidity sensors, which turn the data into an electrical signal that may 
be utilized for several reasons. You may have heard humidity sensors referred to 
as hygrometers. They are sometimes referred to as hygrometers, while “humidity 
sensor” is the more prevalent name.(Brun et al. 2022). 

Humidity sensors are often constructed from ceramic, semiconductor, and 
polymeric materials. When exposed to a humid environment, these sensors detect
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changes in the conductivity or dielectric permittivity of hygroscopic sensing materi-
als induced by water vapor absorption and desorption. As an essential environmental 
characteristic, humidity (often represented as relative humidity (RH)) significantly 
impacts the economy, agriculture, and human life. Consequently, humidity sensors 
serve a crucial role in detecting ambient humidity, and several kinds of humidity 
sensors have been created and extensively used in various situations. It directly 
and indirectly affects fruit crop water relations, leaf development, photosynthesis, 
disease incidence, and economic output. It influences the rate of evapotranspiration 
as well as the water needs of fruit crops. Because of the high turgor pressure and the 
ease with which fungal spores germinate on plant leaves, high humidity promotes 
leaf enlargement—humidity too low, humidity too high, and wilting soft growth 
(Aniley et al. 2017). 

Digital Agriculture for Biotic Stress 
There are three primary applications of AI in plant health and biostress 
management—disease profile, symptom fingerprinting, and the need to collect 
ever-increasing numbers of symptom developments in plant hosts—all play a role 
in disease detection and prognosis. Second, fungicides or other methods are used to 
control this disease quickly and directly to prevent the development of the pathogen, 
including the quantities and times at which they should be added. The collection 
of all weather data facilitates the growth of pathogens and results in crop losses, 
in order to make timely recommendations about who should use chemical control, 
plant protection, and disease tolerance. Due to the widespread use by potato farmers 
and producers, there was an urgent need for disease prediction and speeding up 
control when the warning is made that conditions are conducive to the spread of 
the disease. This is because the devastating effects of the disease occurred after 
suitable weather for infection in Ireland, leading to the loss of the potato crop 
(Anderson et al. 2004). The programs’ conclusions depend on taking individual 
readings of symptoms, environmental factors (such as temperature and humidity), 
and experimental conditions (such as the number of hours of daylight) Fig. 3. 

3.7 Crop Disease Prediction and Health Monitoring 

3.7.1 Disease Detection 

The most popular mobile program used in AI plant disease diagnosis is Plantix. 
Other programs in the market that offer similar services include Agrivi, Plant 
Village, and Farm Logs. Also using artificial intelligence, Albattah et al. (2022) 
established a new way to identify plant disease. As a novel deep learning method 
for plant disease detection and classification, these programs pass throw steps of AI 
to help in plant disease diagnosis Fig. 4. 

1. Data collection: Collect data related to plant disease, such as images of diseased 
plants, symptoms, and environmental conditions.
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Fig. 3 Role of programs of forecasting in protecting potato plants against late blight disease 

Fig. 4 Step progression to embed artificial intelligence into plant disease diagnoses 

2. Preprocessing: Clean and preprocess the collected data to make it suitable for AI 
algorithms. 

3. Feature extraction: Extract features from the preprocessed data that AI algo-
rithms can use to identify patterns and make predictions. 

4. Model training: Train a machine learning model using the extracted features and 
labeled data to detect patterns in the data and classify diseases accurately. 

5. Model evaluation: Evaluate the performance of the trained model on unseen data 
to ensure the accuracy and reliability of the model.
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6. Deployment: Deploy the trained model in a production environment where it can 
be used for real-time disease diagnosis and prediction. 

Environment, economics, and food security are all threatened by plant diseases. 
Early detection of plant diseases is crucial for disease management. Artificial 
intelligent-based picture recognition systems might effectively detect particular 
plant disease symptoms—opening the path for mobile devices such as smartphones 
to be used in the field to diagnose agricultural diseases. Bestelmeyer et al. 2020 
reported “Scaling up agricultural research using artificial intelligence,” developed 
AI-based tools that employ site-based science and large amounts of data to aid 
farmers and land managers in making site-specific choices. These technologies warn 
farmers the outbreak of pests and diseases and facilitate the selection of sustainable 
agricultural management strategies. Image sensing and analysis guarantee that 
plant leaf pictures are split into surface regions such as the leaf’s backdrop, sick 
area, and healthy area. The sick or infected region is removed and submitted for 
further analysis. This also helps with insect identification and nutritional deficiency 
diagnosis (Dharmaraj and Vijayanand 2018). 

3.7.2 Crop Health Monitoring 

Remote sensing (RS) methods, hyperspectral photography, for producing agricul-
tural metrics over tens of thousands of acres, and 3D laser scanning of cultivable 
land can potentially bring a time- and labor-saving revolution in farmers’ manage-
ment of farmlands. This technology will also be used to monitor the lifespan of 
crops (Dharmaraj and Vijayanand 2018). 

3.7.3 Disease Management 

For maximum agricultural harvest output, disease prevention is necessary. Plant 
and animal illnesses are significant barriers to yield growth. The development of 
various plant and animal diseases is influenced by genetic, soil, weather, wind, 
and temperature variables, among others. Due to these characteristics and the fickle 
nature of certain illnesses’ causal effects, managing the consequences in large-scale 
agriculture is especially difficult. A farmer should use an integrated disease control 
and management model incorporating physical, chemical, and biological techniques 
to successfully control illnesses and reduce losses. This is time-consuming and 
inefficient, underscoring the need for an AI-based disease management and control 
approach. The explanation block (EB) gives a transparent picture of the logic 
followed by the kernel of an expert system. A unique fuzzy logic-based technique to 
rule promotion is used in the system for intelligent agricultural disease management 
conclusions. A text-to-speech (TTS) converter enables a text-to-speaking user 
interface. It provides a very effective interactive online user interface for real-
time communications. A rule-based and forward-chaining inference engine was
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employed to construct the system, which assists in illness identification and therapy 
suggestion (Sladojevic et al. 2016). 

Both direct and indirect approaches were capable of detecting and identifying 
plant diseases. Typically, indirect methods are used to assess plant pathogens 
(bacteria, oomycetes, fungi, and viruses) or biomolecular markers (nucleic acids, 
proteins, and carbohydrates) isolated from diseased plant tissues. By detecting 
changes in physiological or histological markers, such as leaf surface temperature 
or humidity, spectroscopic features of plant tissues, shape, growth rate, and volatile 
organic compound emissions, indirect diagnostics identifies plant disease (VOCs). 
Numerous spectroscopic, electrochemical, and molecular technologies might be 
used as direct or indirect detection approaches. Nanodiagnostic instruments for 
agricultural biotechnology (AgBio) research are still in their infancy of develop-
ment. While several nanosensing technologies have been created and shown for 
monitoring human health, the application of nanosensors in agriculture started in 
2009 (Valdés et al. 2009; Li et al.  2020), a relatively new development. Other 
innovative sensing technologies, such as nanopore sequencing and array-based 
nanosensors, have just lately entered the AgBio industry, and the development of 
plant wearable and microneedle instruments is even more recent. In recent years, 
the acceptance and implementation of innovative agriculture and plant science 
technologies have increased. For instance, CRISPR (clustered regularly interspaced 
short palindromic repeats) technology has already found several uses in agriculture 
and the food business (Hanson et al. 2017). 

3.7.4 Weed/Pest Management 

Major pests damage crop production, which include fruit-piercing moths, fruit 
borers, leaf rollers, leaf-feeding caterpillars, and beetle borers. It needs more than 
one method to control pests and weeds. Control methods include biological, cultural, 
chemical, and physical. Weed control aims to prevent or reduce the growth of weeds, 
especially noxious weeds, to reduce competition with desirable flora and fauna, 
including domesticated plants and livestock, and to prevent nonnative species from 
competing with native species in natural settings. Weed management is important 
in agriculture. Hand cultivation with hoes, power cultivation with cultivators, mulch 
smothering, deadly wilting with high heat, burning, and herbicide chemical control 
are all examples of cultivation techniques for weeding in the field (weed killers) 
(Klingman 1961). 

Pest control refers to regulating or managing any animal, plant, or fungus that is 
detrimental to human activity or the environment. Depending on the magnitude of 
the harm, the human reaction will range from tolerance to deterrent and control to 
efforts to eliminate the pest. A plan for integrated pest management may involve pest 
control methods (Dent and Binks 2020). Rodents, birds, insects, and other species 
that share human environments and feed on or damage property are considered pests 
in houses and towns. Exclusion or quarantine, repulsiveness, physical removal, and
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chemical agents are utilized to manage these pests. Alternative biological control 
strategies include sterilization campaigns (Flint and Van den Bosch 2012). 

Weed continually affects the anticipated profit and productivity of farmers. 
Research indicated that weed infestations diminish the output of dry beans and 
maize by 50%. Approximately 48% of wheat output is lost due to weed competition. 
These losses might even surpass 60%. Gene technologies such as gene silencing 
(e.g., RNA interference) and gene drive offer a tremendous capacity for population 
control. It is anticipated that the deployment of gene technologies as weed control 
techniques would be intrinsically complicated, with several variables impacting 
their implementation. RNA molecules’ environmental stability and distribution into 
plants affect exogenous gene silencing applications. Drive efficiency, resistance 
alleles, and plant ecological complexity influence gene drive. Despite the harmful 
consequences on the environment and human health, farmers rely on agrochemicals 
for plant disease, insect, and weed management, and they stick to conventional 
crop protection tactics (which utilize a huge number of chemicals). For example, 
herbicides are sprayed on more than 90% of cropland in the United States (Gianessi 
and Reigner 2007). Herbicides have decreased the need for physical labor in 
weeding fields. Using herbicides has reduced production costs and increased 
agricultural yields in the United States. An estimated $26 billion is spent annually 
on herbicides in the United States. Herbicides account for about 65% of the overall 
expenditures of American farmers (Gianessi and Reigner 2006). 

Pests reduce up to 40% of the worldwide potential crop production. This number 
might be quadrupled without application of agrochemicals (Deutsch et al. 2018; 
Oerke 2006). In 2015, global pesticide consumption was projected at 3.5 billion kg, 
or $45 billion (Pretty and Bharucha 2015). 

In addition to the advantages of employing agrochemicals for pest and weed 
management, there are disadvantages, most notably the restrictions of conventional 
spraying methods. Reducing the detrimental effects of agrochemicals is a big world-
wide socioeconomic and human health concern (especially spraying technologies); 
72% of people regard agrochemical residues as one of their top three food-related 
concerns. The European Food Safety Authority (EFSA) issued a report about 
screening food products within 2013 warning of potential dangers to the food supply 
(European Food Safety Authority 2015). According to the EFSA, 99. % of food 
products have some trace of pesticides (with 1.5% of them over the legal limits). 
The threat to agricultural output in many countries is posed by plant agrochemicals 
(such as herbicides) (European Food Safety Authority 2015). In recent decades, 
there has been a rise in interest in pest and disease identification, as well as weed 
spraying automation (Abdulridha et al. 2018; Cruz et al.  2017, 2019; Fernández-
Quintanilla et al. 2018). Moller (2010) concluded that computer vision technology 
in agricultural operations minimizes operator stress. A smart sprayer system must be 
able to recognize weeds in real time and only apply the required chemical where it is 
necessary. Etienne and Saraswat (2019) investigated a variety of weed identification 
sensors and methodologies, including machine vision, spectrum analysis, remote 
sensing, and thermal pictures. Machine vision has been used for many years to
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differentiate a plant from dirt backgrounds using picture segmentation techniques 
based on color differences (McCarthy et al. 2010). 

Weed control was achieved by utilizing several strategies, such as mechanical 
weed control, crop rotation, and pesticides. Various biochemical weed and pest 
control methods are available on the market; however, they all result in a decline 
in crop output. Regular and consistent pesticide use in a field has a negative 
effect on crop output. AI provides a clever answer to this challenge (McAllister et 
al. 2019). Furthermore, they have developed “Agbots,” an autonomous, AI-based 
robot, that can do weed control in the field in an intriguing manner. AI-based 
weed management aims to automatically detect weeds (using pictures captured by 
autonomous robots’ cameras) and take the necessary remedial measures (such as 
mechanical weed removal or pesticide spraying). Other AI-based solutions, such as 
Blue River Technologies’ See and Spray, utilize AI to recognize and spray individual 
plants in milliseconds (Partel et al. 2019; Allmendinger et al. 2022). Actually, we 
can depend on drones, also known as unmanned aircraft systems (UAS), remotely 
piloted aircraft, and unmanned aerial vehicles, to offer farm management reaches 
accurate pixel sizes, coverage on demand, and rapid delivery of information they 
have been requesting from the remote sensing platform for a long time. 

3.7.5 Crop Management System (CMS) 

Determine the Maturity of the Crop Images of different crops were taken 
under white and ultraviolet A (UVA) light to determine the degree of ripeness 
of green fruits. Based on this study, producers might establish several degrees of 
preparedness for each fruit or crop, and then arrange them into various stacks before 
transporting them to the market. 

Agricultural Readiness Identification A system based on artificial intelligence 
gathers photographs of a crop and analyzes them to determine its readiness for 
harvest in a specific region. Before shipping the crops to market, they might be 
classified according to their maturity and other quality factors. Utilizing different 
pattern clustering algorithms, such as K-means, fuzzy C-means (FCM), expectation 
maximization (EM), and hierarchical clustering, is crucial for classification. As 
part of the Internet of Things (IoT) platform layer, an online crop management 
system (OCMS) was designed. The system attempted to provide measurements 
of the farm’s environmental parameters, including temperature, water level, pH 
value, and dissolved oxygen, from an arable farm where food and horticultural 
crops were cultivated. The OCMS will aid farmers in optimizing farm operation 
and management, data management, file sharing, farm environmental data analysis, 
and analytical reporting administration. The graphical user interface of the online 
crop management system (OCMS) displays temperature (◦C), pH or water acidity 
in moles per liter, dissolved oxygen in milligrams per liter (mg/L), and water level 
data (ft) (Aggarwal et al. 2022).
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4 Nanotechnology and Nanosensor Agricultural 
Management Tools 

In recent years, nanotechnology has emerged as one of the most important and 
reliable technologies in the agricultural sector. Agricultural production can be con-
trolled by nanotechnology through the regulation of the use of nutrients through the 
use of nanofertilizers; the rationalization of the use of agrochemicals, the detection 
and treatment of disease-host interactions; molecular interactions with nanocarriers 
(nanobiosensors) for plant disease diagnosis; the removal of contaminants from 
water and soil; farm management; and current trends including the treatment of 
salinity soil. In addition to detecting pathogens, fertilizers, moisture, and pH levels 
in the soil, nanosensors can help enhance the use of plant protection products, 
cut down on nutrient loss, and boost crop output through more efficient nutrient 
management (Kaushal and Wani 2017). 

Sensors can identify analytes in samples. The bioreceptor layer’s connection 
to the transducer determines the biosensor’s success. The goal is to establish a 
strong biological–sensory relationship (converter). Nanomaterials increase system 
sensitivity. 

A nanosensor uses at least one nanostructure to detect gases, chemicals, bio-
logical agents, electric fields, light, heat, etc. The right system helps biosensors 
attach analytics and accurately detect biological elements (such as antibodies, 
enzymes, and DNA strands). Nanomaterials bridge the nanoscale gap between the 
converter and the bioreceptor in these systems (Kaushal and Wani 2017). The bio-
material detection mechanism determines whether electrochemical biosensors are 
catalytic or propulsive. Electrochemical sensors use potentiometric, chronometric, 
voltametric, impedance measurement, and field effect transistors. Nanostructures 
and electrochemical technologies have produced sensors with high sensitivity 
and decomposition power. Nanoparticles, nanotubes, nanowires, nanopores, self-
adhesive monolayers, and nanocomposites can improve sensor performance. 

Nanomaterials are more active as pesticide agents or transporters. It can boost 
crop productivity and economic and social equity in agriculture (Prasad et al. 2014). 
Biodegradability, solubility, permeability, and thermal stability make nanomaterials 
useful for sensors and crop protection in agriculture. Their surface regions also 
attract the target organism. Nanopores, nanoencapsulates, nanocaps, and nanoemul-
sions are used as transporters, pesticides, and crop disease control. Controlled 
release mechanisms from nanoparticles (NPs) reduce pesticide and fertilizer use 
while growing crops. Nanoparticles are ideal for electrochemical and biosensors 
due to their unique features (Peng and Miller 2011). Nanosensors can detect 
waterborne pollutants, pathogens, and mercury (Selid et al. 2009). Nanosensors 
were constructed using nanomaterials for hormone regulation, agricultural pests, 
viruses, soil nutrient levels, and stress variables. Auxin and oxygen nanosensors 
have been produced (Koren et al. 2015). Fabiyi et al. (2020) reported that nanopar-
ticle biomarkers could detect bacteria, viruses, fungi, and nematodes of economic 
value in agriculture. Nanosensors may also detect chemicals in plants that evoke
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disease symptoms. Nanosensors detect pesticide residue accurately. Nanotechnol-
ogy involves the creation and utilization of nanoparticles as nanosensors like soil 
sensors. 

5 Digital Agriculture for Yield Development 

5.1 Remote Sensing-Based Yield Prediction 

Through machine learning and statistical methods, technological advances have 
made yield prediction more accessible and accurate. Random forests, linear regres-
sion, and ensemble methodologies have historically been used to estimate agri-
cultural productivity. However, deep learning techniques have recently dominated 
crop yield estimates. Recent research has combined observed phenotypic data with 
environmental data to forecast wheat, corn, and strawberry yield. In addition, a 
rapidly developing corpus of research combines convolutional neural networks 
with unmanned aerial vehicle (UAV) data to provide a prediction. Recent research 
demonstrates a definite movement toward employing deep neural networks for 
agricultural production forecasting, irrespective of the data collection technique. 
Regarding our issue, remote sensing technologies have been used globally to 
estimate agricultural yields at different sizes (field, county, and state), Fig. 5. Several 
research has been conducted to predict the yield of maize, wheat, grapes, rice, corn, 
and soybeans utilizing random forests, neural networks, multiple linear regression, 
partial least squares regression, and crop models based on several vegetation indices. 
In the past, standard machine learning and statistical methods dominated remote 
sensing yield predictions, such as tabular yield data and UAV pictures (Kogan 1990; 
Khaki et al. 2021). Standard machine learning and statistical methods have been 
used to predict crop yields from remote sensing data for decades. These methods 
include linear regression, logistic regression, decision trees, and support vector 
machines. Tabular yield data such as soil type, crop type, and weather conditions 
are used to train the models. UAV pictures are also used to create high-resolution 
images of the crops, which can be used to identify areas of stress or disease in the 
crops. The models are then used to predict the yield of a given crop based on these 
inputs. Additionally, more recent developments in machine learning such as deep 
learning have been applied to remote sensing data for yield prediction (Khaki et al. 
2021). These models use convolutional neural networks (CNNs) to extract features 
from the imagery and then use these features to make predictions about crop yields. 

Nonetheless, the current trend in crop production prediction is to combine 
convolutional neural networks with satellite images. These studies demonstrate 
that deep learning and remote sensing have the capacity, power, and precision 
to estimate yields on a massive scale. Remote sensing is the study of acquiring 
information about an object or phenomenon without having direct contact with it 
and, thus, without being intrusive. Electromagnetic radiation (EMR) emissions, such
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Fig. 5 yield data and UAV pictures globally to estimate agricultural yields. Neural networks, 
multiple linear regression, partial least squares regression, and crop models based on several 
vegetation indices. https://land.copernicus.eu/global/products/vci 

as ultraviolet, radio waves, infrared light, visible light, and microwaves, are used for 
remote sensing. Agriculture uses agricultural remote sensing to analyze crop growth 
conditions over time. In addition, it provides information for drought monitoring, 
recognizing excessive soil moisture, assessing meteorological effects on plants, 
evaluating vegetation health and productivity, and forecasting agricultural output. 
The availability of remote sensing data, which permits continuous monitoring of 
crops throughout their development cycle, enables the calculation of agricultural 
production on a wide scale. This information enables stakeholders and farmers 
to maximize crop potential in real time. In addition, satellite images may be 
used to determine many environmental factors, such as surface temperature and 
precipitation. In addition to monitoring crop growth and production, remote sensing 
data may be used to identify soil moisture and salt levels, assess insect infestation 
levels, and monitor environmental pollution levels. Commonly derived descriptive 
indices from remote sensing include the normalized difference vegetation index 
(NDVI), the temperature condition index, the enhanced vegetation index, and the 
leaf area index (Khaki et al. 2021). 

Several research based on the parallel development of crop models and remote 
sensing has combined agricultural models and remote sensing methods for regional 
or global crop yield estimates. Numerous remote sensing methods and equipment,

https://land.copernicus.eu/global/products/vci
https://land.copernicus.eu/global/products/vci
https://land.copernicus.eu/global/products/vci
https://land.copernicus.eu/global/products/vci
https://land.copernicus.eu/global/products/vci
https://land.copernicus.eu/global/products/vci
https://land.copernicus.eu/global/products/vci
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including satellite images, aerial photography, radar systems, and lidar, are utilized 
to collect this data (Jin et al. 2018; Cai et al. 2018; Yue et al. 2018). There are three 
types of remote sensing: ground-based, aircraft, and satellite. First, ground-based 
remote sensing is applied in Schneider et al. (2012)’s research on winter wheat, 
where ground-based spectra are used to anticipate yield at the start of the shooting 
stage. For example, the highest accurate yield projections of winter oilseed rape 
were obtained when spectral measurements were taken during the crop’s complete 
budding phase (Wójtowicz et al. 2005). 

However, Piekarczyk et al. (2011) found that the highest connection between 
spectral data and winter rape output was obtained during the early blooming stage, 
but wheat yields were most accurately predicted when the plants were in the 
vegetative stage. According to Piekarczyk et al. (2011), indices based on reflectance 
in green and near-infrared (NIR) wavelengths exhibited the strongest relationship 
with yield before oilseed rape blooming (550 and 775 nm, respectively). During rape 
flowering, indices based on reflectance at NIR wavelengths and their logarithmic 
adjustment beat nontransformed spectral data for yield predictions (Piekarczyk 
2011). 

Second, airborne remote sensing—even though satellite data are often accessible 
in various spatial, temporal, and spectral resolutions—may be used to predict 
agricultural yield over a broad range of geographical locations and scales. The 
availability of Earth observation (EO) data has created new opportunities for 
agricultural mapping on a wide scale. EO data enable a novel method for gathering 
agricultural information over vast regions and regularly updating it to generate crop 
production and yield maps. Due to the high spatial resolution necessary for precise 
yield estimations, unmanned aerial vehicles (UAVs) have been promoted for data 
collection (Wójtowicz et al. 2016). 

Although UAV platforms have exhibited greater picture capture capabilities, it 
is not viable to precisely measure the yield over wide areas without a huge crew. 
Piloted aircraft are predominantly used for airborne remote sensing; in recent years, 
they have been superseded by unmanned aerial vehicles (UAVs), which are aircraft 
remotely flown from a ground station. UAVs are often low-cost, lightweight, and 
slow-moving aircraft well suited for remote sensing data collection (Wójtowicz et 
al. 2016). 

There are presently two basic platforms for unmanned aerial vehicles: “fixed 
wing” versions that can fly at high speeds for extended durations with less 
aerodynamic characteristics and “rotary wing” variants that can take off and land 
vertically while hovering above a target. However, their flying range is restricted due 
to mechanical complexity and diminished battery capacity. UAVs provide several 
benefits, including the capacity to deploy rapidly and often, to be adaptable in 
terms of flight altitude and mission schedule, and to produce images with very high 
quality. Platforms for unmanned aerial vehicles might provide the high-resolution 
data necessary for site-specific crop management. Very high-resolution UAVs might 
also be exploited in agronomic research, specialized crop management, and within-
field variation studies (Wójtowicz et al. 2016).
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Third, satellite imagery has been used to map crop varieties, evaluate crop 
conditions, and calculate agricultural acreage. Due to the low spatial resolution of 
sensors, these applications were often deployed across expansive regions. However, 
the better resolutions of more modern satellite sensors enable in-field evaluations 
of issues such as drought stress, floods, and hail damage. Even if there are more 
satellite remote sensing uses, this technology has limitations. Stafford (2000) 
stressed that changing weather conditions may influence satellite images. According 
to Lamb and Brown (2001), low-resolution satellite images only apply to large-scale 
research and may not be suitable for small-scale farms. 

5.2 Data Capturing 

In agriculture, remote sensing utilizes information gathered by many pieces of 
equipment over time without personal touch with the object. The information 
collected can then be used to investigate various aspects of the crop and production. 
This research is utilized to make crop changes to maximize yield. The method could 
be used to conduct numerous tests and apply suitable measures. Remote sensing 
in agriculture can help farmers detect frequent crop threats early on, such as pest 
infestation and weeds, and alert farmers to take the appropriate countermeasures to 
ensure crop health. Sensors of various types are used to collect data from various 
regions of the ground. As previously said, sensors are classified into three logistical 
types: satellite sensors, airborne sensors, and ground sensors (Jin et al. 2018). 

Ground-based remote sensing is further classified into many types of ground 
sensors. Portable ground sensors, vehicle-mounted ground sensors, such as those 
connected to tractors, and free-standing ground sensors, which are generally 
affixed to posts and larger trees, are the three kinds of ground sensors. Small-
scale operational field monitoring of biotic and abiotic stress variables, including 
nutrient levels, soil moisture content, and weather, is facilitated using ground-based 
remote sensing technology. Numerous adjustments may be made to the use of 
fertilizers and irrigation to maintain a good yield. This technology provides better 
temporal, spectral, and geographical resolutions than airborne and satellite remote 
sensing, but it cannot compete with the efficiency of airborne and satellite remote 
sensing when collecting data across larger regions simultaneously. Utilizing field 
spectrometer capabilities is most often used in agricultural research for forecasting 
crop output, determining plant nutrient needs, detecting insect damage, determining 
water requirements, and managing weeds (Schneider et al. 2012). Aerial sensors are 
the sort of sensor that follows. Due to the availability of drones, aerial sensors have 
become extraordinarily affordable and accessible. While floating at low elevations 
above the crops for lengthy periods, these airborne sensors may acquire high-
resolution photographs of the land and gather other sensor data. The information 
gathered by these sensors may assist in weed identification, yield estimate, and 
other extensive research, such as detecting soil salinity and chlorophyll content. 
While they have become more accessible and affordable, they are still ineffective
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in heavy winds and dismal weather, which is a drawback to their usage. Data from 
aerial remote sensing may significantly enhance agricultural production and forecast 
models. Launay and Guerif (2005) developed a model that integrates growth-season 
photograph data. The root means square error (RMSE) was decreased from 20% 
to about 10 %, resulting in better yield projections. The quantity and timing of 
images, which influenced the number and kind of plant biophysical parameters 
that could be assessed, impacted the robustness of the model. If late-season remote 
sensing data were used, the model’s forecasts improved (RMSE decreased from 
21% to 15%) when yield estimates were created for areas with poorly defined 
soil. According to the experts, the crop model was much less accurate during 
severe drought conditions. It is possible to generate yield estimates using data from 
an aerial photography platform, such as an unmanned aerial vehicle (UAV). For 
instance, Swain et al. (2010) used an uncrewed aircraft to collect multispectral 
images to estimate rice (Oryza sativa L.) output. Swain and Zaman (2012) used  
a linear estimate of the rice (Oryza sativa L.) yield using an unmanned aircraft to 
collect multispectral images. 

Scientists generally divide remote sensing systems into three components: the 
space foundation system, the ground infrastructure system, and the data storage 
system for distant sensing. Moreover, we will focus on the same three components 
for UAV remote sensing systems. Although satellite remote sensing is the most 
established technology in developing RS technology, since it is often a national-
level technology, it may not be practical for other businesses that need remote sensor 
technology to assist in their growth. The cost is expensive since satellites have a 
time cycle when gathering data such as photographs. In addition, the picture quality 
is inadequate, making it difficult to catch fine details. This resulted in development 
of several novel delivery platforms, such as unmanned aerial vehicles (UAVs) and 
unmanned airships. UAVs offer various benefits over satellite sensors, including 
cheap flying costs, a broad range of flying heights, high flexibility, high work 
efficiency, no significant demand for take-off and landing sites, lower risk, less envi-
ronmental impact, and the possibility to conduct secondary measurements at any 
time. UAV remote sensing data collecting and preprocessing disadvantages include 
tiny volume, restricted power, and limited payload. Nevertheless, some advanced 
remote sensors, such as multispectrum, hyperspectrum, and high-resolution image 
sensors, can compensate for these limitations (Yue et al. 2018). 

Because the movement of the UAV relies entirely on its control system, it is 
essential for successful remote sensing that the control system performs admirably. 
To address UAVs’ ever-increasingly complex remote sensing needs, linear control 
methods are rapidly being superseded by nonlinear control approaches. Although 
some research has proven that these nonlinear control techniques tackle a certain 
classical control method problem, they will have additional shortcomings. Then, 
several methods integrating expert systems and neural networks appeared to 
strengthen the nonlinear control approach even more. Because remote sensing infor-
mation contains a huge quantity of data, fast data transfer speed and antijamming 
capabilities are essential to assuring data integrity. In other words, UAV remote 
sensing must choose several highly efficient and dependable data transmission
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routes to ensure the continuous transfer of data in real time. The preprocessing and 
storage of data must also be addressed to guarantee accurate and complete data 
(Wójtowicz et al. 2016; Yue et al. 2018). 

Image sensor devices that are the most distant are satellite sensors. Utilizing 
satellite imagery in agriculture helps cover a vast land region and may improve 
crop monitoring. After a natural catastrophe, it may be beneficial for assessing 
loss and calculating agricultural output. There are various advantages to using 
satellite sensor data but also some disadvantages. For starters, it is costly, and 
even if the expense is considered, the imaging must be ordered months in advance. 
This may be for naught if cloud cover is present at the desired place and time. 
Governments throughout the globe have started to make satellite pictures accessible 
to the public, which might make the practice far simpler in the future. Regional 
crop production estimate was accomplished using vegetation indicators derived 
from National Oceanic and Atmospheric Administration Advanced Very-High-
Resolution Radiometer (AVHRR/NOAA) satellite image data (Prasad et al. 2006). 
The authors’ model, which characterized the connections between satellite spectral 
data and crop production in Iowa, produced high R2 values for corn (0.78) 
and soybean (0.80, 0.78, and 0.86). Using AVHRR/NOAA images, Dabrowska-
Zielinska et al. (2008, 2016) tracked grain growth and yield in Poland using this 
approach. Using the leaf area index (LAI) and evapotranspiration indices derived 
from AVHRR images, the scientists developed a model to predict wheat yield (with 
a 13% margin of error; RMSE). Due to satellite, airplane, and ground-based remote 
sensing developments, reflectance data are increasingly being utilized in agriculture. 
In the information carrier in remote sensing, electromagnetic radiation travels at the 
speed of light in a vacuum as waves of variable lengths. Visible light (VIS), near-
infrared (NIR), shortwave infrared (SWIR), thermal infrared (TIR), and microwave 
bands are the most helpful wavelengths in remote sensing. Active sensors generate 
radiation interacting with the researched target and returning to the measuring 
device. Data preparation is a crucial aspect of deep learning projects, including a 
substantial amount of the analytical pipeline. Data preparation includes cleansing, 
normalization, transformation, feature extraction, and selection (Wójtowicz et al. 
2016; Altalak et al. 2022). 

5.3 Data Interpretation 

After data capture and storage using different IoT devices, data curation and 
storage techniques, as well as statistical methodology and programming models to 
extract usable information, are necessary. Data interpretation is analyzing data and 
drawing relevant conclusions using different analytic techniques. Consequently, AI 
operates on external information collected from IoT and other big data sources, 
utilizes knowledge-based rules (provided by developers), or finds the underly-
ing rules and patterns using artificial intelligence technology to push systems 
toward specified objectives. Utilizing sophisticated algorithms and assessing the
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system’s performance in relation to the intended objective enables a system to 
make autonomous, localized decisions and take necessary action. This degree of 
autonomy in sensing, decision-making, and action defines an “intelligent” IoT 
system. A fully intelligent system can learn, generalize (if such a capability exists), 
amass information, establish goals and priorities, and reduce decision-making risks. 
Such algorithms outperform merely static programming instructions by generating 
data-driven predictions/decisions (Misra et al. 2020). 

A scientific paper uses remote sensing, crop modeling, and machine learning to 
overcome current limitations in estimating maize crop production. MODIS NDVI, 
MODIS Land Surface Temperature (LST), and SMOS (Soil Moisture and Ocean 
Salinity) Surface Soil Moisture (SSM) were used to compute phenological metrics 
and drought and heat stress indices. In addition, in order to calibrate remote sensing-
based models, the SARRA-O crop model (Baron et al. 2005) was used to simulate 
AGB-F (aboveground biomass at flowering), Cstr (water stress coefficient), and final 
maize yields, and ground-based data were used to confirm our findings. To get 
field data continuously, following the gathering of data, which includes a variety 
of factors or variables such as phytosanitary treatment, fertilization, climate (which 
includes five factors—temperature, precipitation, humidity, wind speed, and solar 
radiation), as well as information on irrigation and parcels (le Roux et al. 2019). 

Several factors are associated. For instance, we may see that climate data and 
phytosanitary treatment parameters are connected. These data suggest that certain 
pathogens target trees at particular periods of the year (for example, Ceratitis 
capitata, which attacks citrus fruits in winter). In addition, the link between 
fertilization and climate is proven by the fact that the quantity of fertilizers needed 
throughout the year is often dependent on high temperatures or water stress, both 
of which are influenced by temperature. This reliance is crucial for the performance 
of prediction algorithms during training, and it may help us in feature engineering 
(Moussaid et al. 2022). 

5.4 Yield Prediction 

After the interpretation of the collected data, the next step is yield prediction. Crop 
production is important to the economy because it provides food, raw materials, 
and employment. Crop production now includes marketing, processing, distribution, 
and after-sales service. Yield prediction and agriculture monitoring are required 
for lower human intervention in practice and to assist in labor reduction and 
productivity increase. Food consumption is increasing daily, and it will be difficult 
to meet this demand unless contemporary agricultural methods are implemented. 
Artificial intelligence has been used in crop selection to assist farmers in picking 
harvestable crops and fertilizers that promote the highest growth. Moreover, arti-
ficial intelligence is considered the most important issue in precision agriculture 
because of its significant role in yield mapping, yield estimation, matching crop
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supply and demand, and crop management to increase production and reduce labor 
(Liakos et al. 2018; Chlingaryan et al. 2018). 

Agriculture has new prospects for more accurate crop forecasts due to machine 
learning and simulation crop modeling advances. Using larger datasets affects 
algorithm performance and results in greater accuracy or a lower RMSE value. 
Each of these technologies has contributed distinctive capabilities and significant 
accomplishments, with the understanding that the use of larger datasets affects 
algorithm performance and results in greater accuracy or a lower RMSE value (Shah 
et al. 2018). 

The prediction of the crop method predicts the optimal crop by analyzing 
multiple soil characteristics and meteorological conditions. Parameters to consider 
include soil type, depth, pH, organic carbon, phosphate, potassium, nitrogen, 
manganese, magnesium, sulfur, copper, iron, calcium, temperature, precipitation, 
and humidity (Eli-Chukwu 2019). 

Here are some examples of ML applications currently under development: an 
effective, inexpensive, and nondestructive method for mechanically counting coffee 
fruits on a branch. The research categorized coffee fruits into three categories: 
harvestable, unharvestable, and those whose maturity stage was neglected. In 
addition, the method computed the weight and maturity percentage of the coffee 
fruit. This project aimed to provide coffee growers with information that would 
enable them to maximize economic benefits and coordinate agricultural operations. 
The outcomes of this research will motivate the development of a new generation 
of instruments for use by coffee producers. It is an effective, nondestructive, and 
cost-effective method that gives critical data for planning agricultural activities and 
gaining economic benefits from resource management (Martins et al. 2019). 

Another study proposed a method for tomato identification based on electro-
magnetic (EM) and remotely sensed red–green–blue (RGB) images obtained by an 
unmanned aerial vehicle (UAV). The authors used ANNs and multitemporal remote 
sensing data in a separate study to build a model for predicting grassland biomass 
(kg dry matter/ha/day). Another generalized approach for estimating agricultural 
yields based on an ENN application to long-period agronomical data (1997–2014) 
has been developed. The research focuses on regional predictions (especially in 
Taiwan) to aid farmers in avoiding market supply and demand mismatches caused 
or accelerated by harvest crop quality (yue 2018; Weerakkody and Mawalagedera 
2020). 

In addition, the scientists constructed a method for forecasting the phases of 
rice growth based on support vector machine (SVM) and basic geographic data 
collected from meteorological stations. Incorporating field-specific rainfall data and 
meteorological parameters for each region is another use of machine learning in rice 
production prediction. Adjusting ANNs affects the accuracy of rice yield forecasts. 

Another effort is to build a system that reduces the amount of physical labor 
necessary for harvesting and handling. As part of their yield prediction system, 
they designed a machine vision system to shake and catch cherries during harvest 
automatically. The algorithm segments and identifies even when densely leafed 
cherry branches are hidden. In another research, the scientists developed a strategy
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for detecting immature green citrus in an outdoor citrus orchard using early yield 
mapping. As with other prior studies of this kind, the objective of this investigation 
was to provide farmers with yield-specific data to assist them in maximizing their 
orchards in terms of profit and productivity. Another research focused on yield 
prediction, specifically wheat yield prediction, built a system that utilizes satellite 
imagery to give integrated crop development characteristics and soil data for more 
accurate predictions (Liakos et al. 2018). 

There is also a groundnut yield prediction study in which weather data play a key 
role in determining agricultural crop yield statistics. On 8 years of groundnut data, 
researchers used the K-nearest neighbor (KNN) method to evaluate the results of 
multiple linear regression, regression tree, K-nearest neighbor, and artificial neural 
Network. They made their predictions based on soil, environmental, and abiotic 
parameters (Shah et al. 2018). 

5.5 Decision-Making 

Combining agriculture with AI has shown a great opportunity with the potential to 
tackle a number of agricultural production efficiency concerns. 

Artificial intelligence (AI) studies theory and computer systems capable of 
performing tasks that normally require human intellect, such as sensory perception 
and decision-making. Conventional agricultural operations have been replaced by 
automation, giving the end user real-time data analysis for more precise and fast 
decisions. 

Moreover, compared to conventional agricultural process management sys-
tems, AI techniques simplify data processing and give the end user increased 
decision-making skills. Digital agriculture, which encompasses agri-technology and 
precision agriculture, is the consequence of the use of data-driven technologies 
in agriculture, which increases agricultural output while lowering environmental 
impacts (Liakos et al. 2018). 

AI, or cognitive-based technology, is the most disruptive and powerful advanced 
analytics tool enterprises may utilize to make supply chain decisions (Liakos et al. 
2018). 

Zhai et al. (2020) assessed 13 decision support systems (DSSs) based on 
recognized criteria for accessibility, scalability, interoperability, and other variables, 
highlighting mainly graphical user interface (GUI) and system operations improve-
ment opportunities. 

Kanter et al. (2015) developed a framework that included key aspects of 
agricultural processes, involved stakeholders and the supply chain, and focused on 
the sociotechnical and socioeconomic drivers and challenges of big data and AI, 
which they perceived to exist in two contexts: developed countries with a severe 
labor shortage and developing countries with a nascent technology infrastructure. 

Huang et al. (2018) examine the possibility of automated identification and 
interpretation of satellite images of the Earth using big data analysis and AI. Jha et
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al. (2019) investigated the current status of automation and agricultural applications 
of artificial neural networks, machine learning, and IoT. Using machine learning, 
they also presented an IoT-based system for flower and leaf identification (Zhai et 
al. 2020). 

A decision support system (DSS) is a computerized system that gathers, analyzes, 
and synthesizes data to provide integrated data reports. In agriculture, the DSS is an 
interactive visualization system that collects and processes multiple inputs (raw data 
from farm-deployed sensors, compound data, agronomic data, and microbe data) to 
provide the farm manager with a solution to a deriving problem, such as disease 
pressure, ice, and snow, or the need to irrigate. A DSS is not a computer that makes 
choices but helps managers make better judgments (Kaur et al. 2022). 

As the name implies, the DSS is a system that supports the end user in achieving 
the final goals from various sources. It collects and analyzes data from various 
sources before generating relevant results. Decision support systems (DSSs) in 
agriculture collect and analyze data from many sources to offer end users visibility 
into their critical decision-making responsibilities (Kaur et al. 2022). 

These technologies assist farmers in addressing complex crop yield concerns in 
the agricultural arena. In this regard, DSSs are critical components of contemporary 
agriculture. Better decision-making, faster problem-solving, and higher efficiency 
in dealing with difficulties, operations, planning, and management are all aided by 
decision support systems (Kaur et al. 2022). 

6 Role of the Decision Support System in Agriculture 

Big Data–Based Yield Prediction 
A strategy for estimating agricultural production using machine learning techniques 
has been developed under the paradigm of big data computing. Therefore, yield 
forecast accuracy is a crucial problem that must be addressed. Farmers worldwide 
are usually perplexed when it comes to making sound decisions, but big data helps 
to maximize production and boost the economic sector to improve productivity. In 
extreme circumstances, the forecast will also assist farmers in making choices, such 
as selecting alternative crops or abandoning a crop at an early stage. Consequently, 
crop yield must be simulated and anticipated prior to cultivation for effective 
crop management and desired outcomes. By preserving the experience of farmers, 
weather conditions, and other influencing elements in a massive database, early 
prediction is possible. Typical input factors include precipitation, temperature, 
humidity, solar radiation, crop population density, fertilizer application, irrigation, 
tillage, soil type, depth, farm capacity, and soil organic matter. Recently, projecting 
crop yield at the field level has become increasingly prevalent. Weather has the 
biggest influence on agricultural yield. If weather prediction gets more precise, 
farmers can be warned far in advance, saving significant losses and helping 
economic growth. Due to the nonlinear relationship between agricultural production
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and its influencing variables, machine learning techniques may be useful for yield 
prediction (Palanivel and Surianarayanan 2019). 

Cutting-edge technologies like blockchain, IoT, big data, and machine learning 
(ML) are required to provide sustainable agricultural output. The majority of the 
world’s food problems could be solved if farms had access to massive amounts of 
data and used it to guide agricultural decisions. If farmers had access to datasets or 
maps for various environmental parameters around the farm, they might implement 
practices like smart farming, precision farming, and vertical farming. Scientific 
evidence shows that data-driven farming improves crop yields, cuts expenses, and 
guarantees the industry’s long-term viability (Bhat and Huang 2021). 

Big data can be categorized into three types: geospatial data, metadata, and 
telematics data. Geospatial data refers to information about items, events, or 
phenomena that have a physical location on the planet’s surface. Metadata includes 
information such as application dates for pesticides, herbicides, and fertilizers; 
cultivar selection; and the depth at which agricultural seed was sowed. Telematics 
data includes collected agricultural equipment (sensors installed on combines, 
tractors, sprayers, etc.) and sensors indicating the fuel and maintenance needed by 
machinery to accomplish a certain task. It also includes how much time a piece of 
equipment has spent doing a job (Bhat and Huang 2021). 

Big data is the most advanced stage of development of technology in the agri-
cultural sector; it encompasses ideas, tools, and procedures used in various settings, 
from fieldwork to crop planting. According to these same authors, informatization, 
intelligence, and precision could be the key to overcoming the problems plaguing 
conventional farming methods. However, the study of agricultural big data is just 
getting started, so there is a lot of room for exploration (Cravero et al. 2022). 

The most crucial enabling technologies included software-based decision sup-
port systems (which collect and analyze data to address system dynamics and 
optimization issues), sensors (which collect data on the functioning of agricultural 
equipment and resources), and digital communication tools. Some believe that the 
future of agriculture depends heavily on technologies that can be used in the field to 
collect data in real time, such as geographic information and geo-locating systems. 
In reference to the various approaches to analyzing big data, sensors attached 
to farm machinery could listen to the vibrations of the ground and detect any 
abnormalities in the machinery’s operation through sound waves. Second, using 
historical weather data, it may be possible to foretell the weather in the future 
using predictive analytics. Third, social media analytics are becoming increasingly 
important as social media’s role in everyday life expands. The data collected through 
these channels may be used as a supplementary resource for decision-making. It is 
possible to collect data from these platforms and use “big data” methods to analyze 
it. In order to find useful information, AI algorithms sift through mountains of 
text. Video analytics: cameras on machinery use artificial intelligence to recognize 
patterns (Lassoued et al. 2021). 

Fan et al. (2015) developed a big data analytics-based method for enhancing 
the accuracy of agricultural production forecasts. The “Big data prediction of
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agricultural output” study describes a reliable infrastructure for handling big data 
in agriculture. It consists of three key components. A MapReduce weather data 
processing component computes enormous datasets on a computer cluster. The 
second step involves selecting comparable years using the closest neighbors, and 
the last step involves developing an autoregressive moving average (ARMA) model 
based on the most recent year and generating the forecast number. The experimental 
assessment of the previous paper reveals that the nearest-neighbor strategy is 
effective, suggesting that crop yield is strongly tied to weather patterns. 

AI is increasingly being used in agriculture to increase production and effec-
tiveness. AI applications in agriculture include yield prediction algorithms, image 
recognition algorithms for plant pest and disease diagnosis, and agricultural har-
vesting robots. For instance, autonomous AI robots can pick up food at a higher 
capacity and quicker pace than human labor. Yield prediction algorithms utilize 
meteorological and historical yield data to accurately predict crop yields. Image 
recognition algorithms can detect pests and diseases in plants quickly and accu-
rately, allowing for timely interventions that can save crops from destruction. 
Agricultural harvesting robots are able to pick up food at a higher capacity and 
quicker pace than human labor, increasing efficiency in the harvesting process (Al-
Turjman 2019). 

While AI applications in agriculture are expanding, our survey anticipates that 
AI deployment will contribute 35%, significantly (33%), or substantially (23%) to 
the sector as a whole. AI will assist agricultural equipment and logistics, according 
to 90% of respondents; market information, according to 89%; plant breeding, 
according to 81%; and risk management, according to 71%. 

According to experts, applying digital decision-support systems, big data analyt-
ics, and artificial intelligence may increase agricultural productivity in several ways, 
including climate forecasting, yield prediction, crop selection, and disease/pest 
control. For the foreseeable future, however, the advantages of big data technologies 
will likely be used by developed countries that make substantial upfront expendi-
tures. According to experts, big data and AI will enhance global food security by 
lowering crop losses and increasing crop yields (Lassoued et al. 2021). 

7 Conclusion 

Successful farming requires monitoring crops, predicting yields, and smart irriga-
tion systems that rely on artificial intelligence. It has been proven through excellent 
prototypes and solutions to match the requirements of the current scenario after 
analyzing many of the existing systems. In forecasting agricultural productivity 
and irrigation requirements, AI-based methods, along with additional hardware 
components such as Raspberry Pi, soil moisture sensors, temperature, and moisture 
content, have been shown to play an important role in predicting productivity and 
proper intelligent irrigation and flour. This plays a major role in reducing the total 
agricultural costs and the amount of wasted resources such as water and energy
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during the agricultural process, which improves economic growth, and reduces the 
wastage of major resources. These methods are excellent in reducing human efforts 
and speeding up the planning of agricultural practices. However, reducing the cost 
of implementing the system and training unskilled and technically illiterate farmers 
remains challenging. 
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Abstract Food security and increasing agricultural yields have become one of this 
century’s most essential and challenging topics. The global population is projected 
to reach 9.7 billion by 2050, so food production must increase significantly to meet 
the growing demand. Increasing agricultural yields is one of the ways to address 
the issue of food security. This can be achieved through various means, such as 
improving crop varieties, using better agricultural practices, and adopting advanced 
technologies such as precision agriculture and genetically modified crops. One of 
the ways to promote this is to improve understanding and activity within plants using 
electrical methods. This was the objective of the presented research. In this research, 
a hypothesis for signal conduction through the plant medium is suggested, modeled, 
and characterized. The results show that this approach could be included where the 
plant is used as the actual sensor, and changes in its internal activity indicate changes 
in the environment and the plant’s needs. It hereby allows the detection of water 
stress, different daylight conditions, and possibly future pathogenic attacks. Another 
new theoretical representation and approach were also presented and supported with 
various experimental methods showing that the plant’s physiological response and 
status can be derived from its electrical characteristics, similar to methods used in 
plant physiology studies. It paves the path for designing and applying new sensing 
technologies to promote plant monitoring and serve as an additional method in 
precision agriculture. 
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1 Introduction 

One of today’s most significant challenges is to ensure food security for a rapidly 
increasing global population while resources, like land and water, are limited. The 
United Nations Food and Agriculture Organization’s (UNFAO) latest report (Gar-
lando et al. 2020) estimated that, by 2050, the world population will have reached 
over 10 billion. Simultaneously, trends like urbanization, economic changes, and 
migration will increase nutrition dependence on fruits and vegetables rather than 
cereal produce. Climate change threatens the limited natural resources needed for 
agricultural growth and production (Cervantes-Godoy et al. 2020). 

The need for holistic solutions that involve a technological system approach 
is vital, according to the latest UNFAO report: “High-input, resource-intensive 
farming systems, which have caused massive deforestation, water scarcities, soil 
depletion and high levels of greenhouse gas emissions, cannot deliver sustainable 
food and agricultural production. Needed are innovative systems that protect and 
enhance the natural resource base while increasing productivity. Needed is a trans-
formative process towards ‘holistic’ approaches, such as agroecology, agroforestry, 
climate-smart agriculture, and conservation agriculture, which also build upon 
indigenous and traditional knowledge. Technological improvements and drastic 
cuts in economy-wide and agricultural fossil fuel use would help address climate 
change and the intensification of natural hazards, which affect all ecosystems and 
every aspect of human life. Greater international collaboration is needed to prevent 
emerging threats to transboundary agriculture and food system, such as pests and 
diseases” (Garlando et al. 2020). 

Providing food security, based on the availability of agricultural produce world-
wide, has become of the highest significance. A few issues where closer crop 
monitoring will have an impact are as follows: 

1. The amount of available food or agricultural produce 
2. The nutritional level and quality of crops grown 
3. The management of available produce: maximizing the number of crops that 

reach the population while minimizing the amount of produce that goes to waste 

One of the ways to increase agricultural yield, improve crop quality, and 
meet these increasing demands for agricultural produce, or “farm to fork,” is 
the incorporation of new technologies and monitoring methods into agriculture. 
This field has been named “precision agriculture.” Here, the combination of new 
accurate monitoring methods, i.e., technology-driven solutions, will allow data 
collection from areas, land, and when correctly used, leading to improved data 
analysis, decision-making, and crop management. These tasks depend on the quality 
and accuracy of the monitoring systems’ data. Technological solutions need to 
be researched and developed by combining knowledge and studies in agriculture, 
plant biology, and different engineering fields. One aspect of monitoring plants 
in agriculture is sensor technology. Here, the development of new methods to 
sense changes in plant well-being is needed. This research attempts to improve the
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understanding of electrical behavior in a plant by incorporating electrical sensing 
methods for monitoring. The development of such devices and approaches relies 
directly on the electronic and physical interpretation of the biological and chemical 
processes involved. Applying an interdisciplinary approach to developing new 
monitoring tools for precision agriculture will promote and improve monitoring 
methods, advancing food security throughout communities and crops. 

We describe here a novel approach for a study of the plant in electronic terms, 
the plant network methods, sensor technologies, and an example of the electrical 
methodology that can be applied. 

1.1 Internet of Things and Precision Agriculture 

The Internet of Things describes a network in which different devices can be 
connected and exchange information. It can be used for monitoring and controlling 
an environment, machines, or a set of devices. Examples of available systems today 
are smart homes, intelligent cities, and smart cars. The ability to monitor and 
exchange information in the Internet of Things depends on sensing changes and 
transmitting this information into a network. Measurement of such changes relies 
both on network abilities and communication, but before that, on the ability to sense 
the device or specimen to be monitored. 

This suggests that the existing sensing technology and ability to collect signals 
that can indicate a change and interpret and understand these signals is crucial for 
monitoring any specimen and creating an Internet of Things. 

The increasing demand for agricultural produce corresponds with the growth in 
the worldwide population. Consequently, the ability to monitor, forecast, and affect 
plant well-being and health is incredibly significant (Bar-On et al. 2019a). Precision 
agriculture refers to incorporating technology into agriculture to improve all aspects, 
including crop monitoring and quality, development, use of resources such as water. 
Here, the ability to collect information from crops in the field and adapt their care 
quickly depends on the available sensor technologies and data interpretation for 
improved decision-making. 

Combining these concepts suggests creating a Plant-Internet-of-Things. Plants 
(green plants, trees, fields, etc.) will be the monitored specimen in the network and 
will provide information on their status and receive information from the network. 
The concept is to address aspects in the development of an intelligent sensor system 
that will be interconnected with an external sensing system, similar to the methods 
of body channel communication, where the body serves as both the sensing interface 
and a medium for the signal transmission within the network (Lodi et al. 2020). The 
plant and its monitored responses will act as the sensing interface and a medium for 
signal transmission within the network created. The system will then be interfaced 
with the cloud via a propriety network. Such a network requires the use of a range 
of sensor technologies.
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The sensor connected to the plant could combine a range of existing sensors 
with novel electronic sensors using concepts for both sensing and signal trans-
mission within the plant. Today, various electrical measurement techniques exist 
for assessing plant well-being. Despite spanning a range of measurement methods 
and technologies, very few techniques offer either a direct assessment of the plant 
status or the overall status of the plant. For a comprehensive sensor system and 
network, an assessment indicating the status of the entire plant is needed. This 
status should be measured directly from the plant rather than a local measurement, 
showing a localized change in the plant or its surroundings. Therefore, this work 
aims to create a new technological aspect for direct plant monitoring using electrical 
measurements. A review of existing direct sensing methods is shown in Fig. 1. 

1.2 Sensors in Agriculture 

Many sensors are employed for monitoring in agriculture (Luvisi 2016). They 
span across many technologies alongside different parameters that are measured 
to determine crop status, treatment, health, and resource provisions. Here, we 
refer to different sensing areas: (a) indirect plant sensors and (b) direct plant 
sensors. While indirect sensors refer to different devices that collect data from the 
plant surrounding environment, and according to those readings, plant treatment 
is adapted. Usually, such sensors include temperature sensing, humidity, and soil 
moisture. These sensors are positioned in physical proximity to the plant to reflect 
environmental information closest to the plant experience. Direct plant sensors, 
also called functional sensors, collect a signal directly from the plant and use it 
to indicate its status. The novelty is that the plant itself is used as the sensor, while 
the electronic device “reads” its change in signaling due to the change in its status. A 
review of existing technologies, new developments, and gaps in the field is brought 
here, focusing on electronic measurement methods employed in the area and 
newer upcoming technologies. Data acquisition and analysis methods are currently 
emerging. These include direct plant measurements and methods for monitoring the 
plant environment (Mogili and Deepak 2018; Walter et al. 2017). This work aims to 
focus on the approach of sensing changes within the plant in a direct manner as a 
measure of plant physiological status and well-being. Different direct monitoring 
methods have been reported. Among these are sophisticated imaging and radar 
technologies used to monitor visual changes in crop status (Luvisi 2016; Zhang and 
Willison 1991). Others focus on root behavior, soil quality, and trunk health for tree 
stability assessments, using rather costly and not field-deployable tools (Yongzong 
et al. 2016; Sambuelli et al. 2003). Plant leaf changes are another monitored area. 
Here, temperature detection using thermocouples or capacitance measurements, 
imaging technology, and various electrical measurements are translated for plant 
treatment adaption (Repo et al. 2000; Volkov 2000; Volkov et al. 2016; Zhao et al. 
2013). Sap flow monitoring has also been reported. It is considered as it represents
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Fig. 1 Schematic description of “Plant-Internet-of-Things” (by Prof. Yosi Shacham, 2019) 

the flow of nutrients toward the plant roots. However, it is plant-type-specific and 
seasonal. 

In plant research, several electrical evaluations have been undertaken. The 
assessment of internal plant signaling among cells has been studied, showing action 
potentials and longer traveling signals called variation potentials (Volkov 2000; 
Volkov et al. 2016; Brown and Volkov 2006). These signals, however, indicate 
chemically induced changes or a response to local physical changes. Information
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on the overall plant status has not been reported. Attempts to electrically evaluate 
the response to plant trauma have been suggested, and it was concluded that 
local damage induces the generation and propagation of variation potentials. These 
potentials affect the physiological processes in plants (Repo et al. 2000; Zhao et al. 
2013). Electrochemical and bioelectrochemical measurements of plants have also 
been carried out, showing that long-distance communication between plant tissue 
and cells can propagate rapidly with bioelectrochemical signals (Volkov et al. 2016). 
It has been suggested that the phloem is the carrier for these signals. 

Sensors based on impedance measurements are commonly used for biological 
specimens, as impedance spectroscopy is a well-established method for material 
characterization. It is often used to evaluate changes in natural materials and 
structures. In plant research, it has been used to assess response at the cell level, 
differentiating between the cell membrane’s response or the cytoplasm’s vacuole, 
etc. 

Plant tissue from different sections of the plant has also been evaluated for 
several phenomena, such as disease detection, fruit ripening, and the evaluation 
of frost response (Jócsák et al. 2019). Models used to interpret the spectrum data 
have generally been based on available models, with adaptations to the specific 
specimen studied. Jócsák et al. include many of these reports in their comprehensive 
review (Jócsák et al. 2019). In earlier years (the 1920s), the electrical impedance 
of wood was studied, although not in a living plant. Measurements were carried 
out on bulk wood. Initially, the resistivity was evaluated in DC (direct current). It 
was shown to be correlated to the wood moisture content (Stamm 1927). Later, an 
attempt was made to measure the wood’s AC (alternate current) response across 
various frequencies. The frequency range was limited, as these experiments were 
undertaken for the first time almost a century ago (Luyet 1932). Following these 
findings, limited literature has been published on electrical impedance spectroscopy 
measurements to characterize live plants. 

1.3 Plant-Based Electrical Sensors 

New crop-growing techniques are expanding. New approaches are available among 
growing greenhouse farms, including vertical farming, lighting technologies for 
indoor growth, hydroponics, and many more. Although these environments are 
well monitored and allow almost complete control of the growing conditions, 
they still rely on plant well-being measures derived from the environment, prior 
research, or product feedback (once we taste the tomato, we decide whether growing 
conditions should be adapted). Yet, there need to be more technology-orientated 
methods that monitor plant health directly from a growing plant to adjust its nutrient 
and conditions. This implies that early detection of plant physiological change, 
alongside the ability to adapt treatment before the crop is produced and distributed, 
may significantly improve overall agriculture yield. Furthermore, across outdoor 
farmlands, where it is impossible to control the environment and predict climate
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Fig. 2 Monitoring methods that read a direct plant signal have been presented 

fluctuations, early detection of plant response, resulting in the ability to adapt 
irrigation and fertilization, would even more affect yield for the better (Fig. 2). 

In this research, we suggest incorporating a sensing method that follows the 
behavior in the plant vascular cambium, mounted onto the plant stem, while 
observing the readings continuously and examining changes in induced external 
stress factors. The approach suggests exploring the plant’s basic anatomy and phys-
iology and applying physics and engineering modeling methods and measurement 
techniques adapted to the plant structure. These applications are expected to allow 
a more rigorous quantitative assessment of plant physiological status, which can be 
adapted for a complete electronic system of sensors in the future. 

The work aims to improve our ability to describe the plant structure and internal 
changes that indicate a physiological change in electronic terms. Once these terms 
are defined, they could be applied to any species of plants in the future, ranging 
from small shrubs to large trees, as the primary plant anatomical structure across 
the species is similar (Taiz and Zeiger 2010). 

2 Impedance Spectroscopy for Plant Monitoring 

Impedance is defined as the ability of a material to resist the flow of electric 
current through it. It can be measured across frequencies, yielding a response 
of the material or system to different excitations or using singular frequency 
measurements. Intrinsically, the impedance at different frequencies will estimate 
the ability of dipoles in the material to respond to the excitation. The magnitude 
of change and the response time will be incorporated into the term of impedance 
values. The response of the system or material across frequencies is named electrical 
impedance spectroscopy. Impedance spectroscopy is often used to characterize a 
material or a design and asses its frequency response. The measured frequency 
values are determined according to the studied specimen, expected physical affects,
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and measurement setup considerations. Impedance measurements are commonly 
used to assess change in a material due to an external change, shock, wear over time, 
and more. It is also often applied for sensing applications, which consider biological 
tissue or material changes. These detectable changes can often be used to assess a 
physiological phenomenon. As impedance spectroscopy has been found helpful for 
sensor applications in biology, it has also been applied in plant studies. A recent 
review (Jócsák et al. 2019) shows the different applications of impedance spec-
troscopy to plant studies. She mentions the different experimental work carried out 
and explains the use of frequency range, electrical circuit modeling, and parameter 
extraction. Additional work for plant monitoring based on impedance spectroscopy 
has also become available. Here is an attempt to present a few challenges to 
overcome for field implementation of impedance spectroscopy measurements in 
precision agriculture. 

2.1 Coupling to the Plant and Electrodes 

Electronically two approaches to coupling to the specimen are defined: galvanic and 
capacitive (or faradic). The galvanic coupling means the electrode is in direct contact 
with the measured material, creating a resistive junction between the electrode 
conducting material and the specimen. A capacitive coupling means that a junction 
layer that behaves capacitively is formed between the electrode-bearing material 
and the sample measured. An example can be taken from electrocardiogram (ECG) 
measurements, where an adhesive is used to couple the electrode to the patient’s 
skin. When the measurement results are extracted, the effect of the adhesive material 
and skin contact need to be extracted. This requires prior information regarding the 
geometry and dimensions of the contact and the material properties. This knowledge 
allows for extracting the actual signal being studied and obtaining data about a 
patient. The advantage of such coupling often means that direct contact may not 
be necessary or that invasive measures can be avoided. The electrode coupling and 
contact formation are significant for determining the signal measured and under-
standing the signal-to-noise ratios to determine whether an effect can be measured 
using a particular electrode contact configuration. When examining changes in 
a signal, as in sensor applications, the contributions from the surrounding setup 
are crucial to determining whether the change results from the electrode/contact 
interface or arises from an actual change in the measured specimen. The electrode 
configuration should determine the interface being measured. As in the literature, 
two-, three-, or four-point setups are suitable for different types of measurements. 
However, in each setup, the electrode specimen interface contributes to the overall 
measurement values. Therefore, the electrode interface and configuration need to be 
carefully tailored and adapted to the specimen monitored. An example can be taken 
from semiconductor interfaces used for microelectronics fabrication. Here, ohmic 
contacts are often formed between metals and semiconductors. Once the contact 
is characterized as ohmic, it behaves linearly, and its resistance can be estimated
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for different working regimes. In other cases, where a non-ohmic contact exists, the 
behavior must be considered part of the device functionality. In plant measurements, 
different electrode setups have been demonstrated. A four-probe measurement using 
capacitive coupling to the leaf as shown using graphene-based square electrodes 
mounted onto the leaf. Results showed that detection of induced water stress could 
be detected (Zheng et al. 2015). Another example is the electrochemical sensing 
setup, using a three-electrode setup, where the sensor device is mounted close to the 
leaf and can detect a change in gas composition near the stomatal opening. Another 
form of electrochemical sensing has been demonstrated within the plant stem, where 
the device and electrodes have been inserted into the plant stem and show the ability 
to measure sugar changes due to plant transpiration activity (Cervantes-Godoy et 
al. 2020). Other forms of electrodes have been used to measure fruit ripening; an 
example is the use of medically prevalent sticky electrode patches. These were 
attached to the fruit in a four-point configuration, and different ripening stages 
were detected. Frost detection in fruits has also been studied using four-point probe 
impedance measurements. The electrodes also seem to have been inserted into the 
specimen under test. More recent technology for flexible microneedle fabrication 
has also been demonstrated to measure impedance in plants, showing results similar 
to other electrode configurations. The coupling to the specimen under test is highly 
significant for electrical impedance spectroscopy measurement. The method relies 
on the specimen’s response to a signal applied across a frequency range. As the 
reaction is composed of resistive, capacitive, and possibly inductive parts, the 
actual electrode’s proximity, location, and interface can affect the results of the 
measurements. With advances in nanotechnology and material sciences, several 
electrode options are available to improve the electrode material and mounting to 
the plant. However, a better and more in-depth study of the electrode interface with 
the plant and the internal effects on a living plant is needed. In addition, geometrical 
considerations and mechanical stability need to be considered—also durability in 
harsher outdoor conditions—possibly feeling the plant anatomy in the electrode 
design and optimization. 

2.2 System Design: Supporting Electronic Requirements 

Continuous monitoring and easily mounted field devices are needed in precision 
agriculture. For such applications, embedded electronic circuits and devices need to 
be designed. While for continuous long-term measurements, additional considera-
tions are required, such as, signal integrity over time and nondestructive connectivity 
to the plant being measured. The need for a compact system that allows continuous 
data collection and transfer to the cloud is clear. 

Furthermore, it should consist of low-power electronics and be robust for outdoor 
conditions. A requirement would also be that it would be easy for untrained farming 
workers to support multiple plants or measurements simultaneously. Lab systems 
have been suggested to show prolonged continuous monitoring of tobacco plants
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(Garlando et al. 2022). The proposed method was multiplexed to measure various 
plants and combined with designated environmental sensors. However, a complete 
outdoor system is yet to be developed. Some of the challenges posed have been 
addressed for different biomedical devices, which with adaptions, may also offer 
solutions that could be applied to plants in precision agriculture. Yet for agricultural 
monitoring, the low cost of the devices is also a priority, as many of the food 
security issues span across the poorest countries, with low income and resources 
for technological development. 

2.3 Data 

Collection and interpretation of the signals acquired using impedance spectroscopy 
measurements are also needed. The specificity of the plant response to different 
environmental changes of disease is unknown and needs to be quantified. Further-
more, the sensitivity of the measured data also requires study in plant physiological 
terms, not only electronically. The question of how often measurements should be 
collected and according to what amount of data improved decision-making will 
occur is also unknown. Beyond these research questions also lies the technological 
aspect of collecting, analyzing, and interpreting the data using extensive data 
algorithmic methods alongside engineering and physiological understanding. 

2.4 Biological Background 

All seed plants have similar basic body plans. However, diversity is apparent. The 
vegetative body comprises three organs: leaf, stem, and root (see Fig. 3). The 
primary function of the leaf is photosynthesis, that of the stem, support and root, 
anchorage, and absorption of water and minerals. Leaves are attached to the stem at 
nodes, and the region of the stem between two nodes is termed the internode. An 
evolutionary difference exists between flowering and nonflowering plants. We do 
not take this into account in this work. 

The stem consists of a vascular cambium, structured as a cylinder, and consists 
of supportive fiber cells and conduction vessels called the xylem and the phloem. 
These vessels conduct water and nutrients across the plant. The xylem provides a 
low-resistance pathway for water movement, thus reducing the pressure gradients 
needed to transport water from the soil to the leaves, while the phloem allows for 
nutrient flow from the leaves downwards. The stem growth is depicted in Fig. 4. 
Plant growth occurs from the center of the stem outwards, increasing the vascular 
cambium portion in the stem as the plant ages (Taiz and Zeiger 2010).
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Fig. 3 A tobacco plant displaying general plant structure showing (from left to right) the stem and 
leaves, a cross section of a the stem showing the different areas and the vascular cambium and a 
detailed schematic description of the vascular cambium 

Fig. 4 Schematic of a 
manual impedance 
measurement setup 
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2.5 Electrical-Based Model 

We chose a four-point configuration based on the following reasons. Impedance 
spectroscopy can be carried out using a different number of probes connected to the 
device:

• A two-probe configuration is typical in cases where the specimen is expected to 
have linear behavior. The contact resistance between the probes and the measured 
sample can be assumed to be ohmic.

• A three-probe configuration is suitable for interface interaction measurements, 
where one electrode can be used as a reference. This is commonly used for 
electrochemical measurements.

• A four-point probe configuration allows the decoupling of the contact resistance 
of the behavior of the probe from the actual measurement of the device under the 
test itself. It is often used in cases where the contact interaction with the specimen 
is unknown or may change over time. It is also helpful in cases where the contact 
resistance may introduce high resistance values compared to the device under 
test. 

The advantage of this configuration is that the voltage is sampled using different 
probes where the current is applied. Since the voltage is measured using a very 
high impedance operational amplifier, the effect of the contact impedance between 
the metal electrodes and the device under test is reduced. This is important since 
the exact characteristics of those contacts are often unknown. Four-point probe 
measurements are well known in the semiconductor industry for the characterization 
of different materials, from thin film dielectric layers to bulk metal lines and so on. 
The four-point probe configuration, both in direct and alternating currents, uses two 
probes to induce the current and the other two to measure the voltage drop across 
the specimen. The probes are often placed in a line, where the two outer probes are 
used for the current and the two inner probes for the voltage. In this manner, the 
current is forced across the specimen under test through a single set of leads (called 
“force”), while the voltage is measured through the second set (called “sense”). The 
voltage drop across the sense leads will be negligible, so the measured voltage is 
essentially the voltage across the specimen under test. This has several advantages 
over a two-probe configuration. The leads and connections resistances can be almost 
eliminated, allowing assessment of the actual contact resistances while providing 
more accurate and less noise-sensitive measurements. 

There are two ways to connect to the device under test using a four-point 
measurement configuration. One is using four physical contacts to the device under 
test, or using only two. 

The four physical contacts separate the “force” and “sense” connections. While 
with two physical contacts, each connected to a force and a sensor measurement. 
Therefore, a two-contact measurement requires specialized equipment and cali-
bration due to current leakage. In our case, a four-point configuration was used 
to avoid calibration uncertainty and separate the current source and voltmeter.
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Fig. 5 Impedance measurement setup schematic diagram including the plant connected and the 
control system designed (Garlando et al. 2020) 

In addition, this also removes the uncertainty of current leakage via the sense 
leads (Keithley 2016). During this work, different equipment was used to collect 
impedance data. Initially, a manual impedance setup was devised. Here, a signal 
generator was used as the source for signal excitation at different frequencies (for 
example, Keysight waveform generator 33500B), the input was measured across a 
resistor, and the output was registered using an oscilloscope (Agilent MSOX2012A 
(Keithley 2016)). The response of the plant stem was calculated according to the 
difference in voltage drop across the output about the input. A schematic illustration 
of the setup is shown in Fig. 5. 

2.6 Continuous Monitoring Systems 

Continuous monitoring setups were devised during the research to acquire multiple 
ongoing readings of the plant across different intervals. The setups rely on an 
impedance analyzer that was controlled using dedicated software, which was 
developed during this work. Environment sensors and monitoring tools comple-
mented these setups to study the plant status and response to different conditions 
comprehensively. 

2.6.1 Setup 1—Lab Indoor Plant Monitoring System 

An impedance analyzer (Keysight Technologies model 4294A (Keithley 2016)) 
was connected directly to the plant stem in a four-terminal setup. The analyzer 
was programmed and run continuously using a designated LabView© software
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Fig. 6 Sensor system block diagram (Bar-On et al. 2019a) 

interface. Measurements were conducted every 15 minutes, and data were logged 
and collected using an additional LabView© software. A diagram of the system can 
be seen in Fig. 6 (Bar-On et al. 2019a). 

The system is described in detail in Bar-On et al. (2019a). In addition to the 
impedance analyzer setup, an electronic system with controlling software was 
devised. This system included electronic circuitry to support multiplexing of the 
impedance analyzer to measure two channels without affecting the accuracy of 
measurements. This enabled measuring two plants under similar environmental 
conditions. In addition to the multiplexer option, a set of external sensors were 
configured onto an embedded board, designed as a system for environmental moni-
toring. This setup included a range of commercial sensors, including a temperature 
and humidity sensor, a soil moisture gauge, and a light sensor. The software was 
developed to allow simultaneous data collection and synchronized readings from 
the impedance analyzer and the sensor system (Bar-On et al. 2019a). 

The details for the system of sensors to collect information on the environmental 
status are described below. 

The system allows continuous data collection of the surrounding plant environ-
ment and samples every 15 minutes. It is controlled and programmed using a Python 
interface, and the hardware is based on the Raspberry Pi© platform. It includes three 
generic sensors: 

1. HDC2080 (Texas Instruments Ltd)—temperature and relative air humidity sen-
sor (Texas Instruments 2018) 

2. MAX44009 (Maxim Integrated Ltd)—ambient light sensor monitoring (Maxim 
Integrated 2011) 

3. 200SS WATERMARK Sensor (Irrometer Ltd)—soil moisture monitoring 
(Irrometer 1978)
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Fig. 7 The designed environment sensor board including the direct plant electronics interface (see 
Bar-On et al. (2019a)) 

The sensors are all connected to the GPIO (General-Purpose Input Output) port 
of the Raspberry Pi© using the I2C (Inter-integrated Circuit) protocol (port #1). 
At the same time, the moisture sensor requires an analog-to-digital converter and 
a readout circuit. The circuit is constituted by the schematics and components 
recommended by the manufacturer, also using the I2C protocol and sharing the port 
with the previously mentioned sensors. The complete supporting circuit allows to 
control and collect data in a synchronized manner while having the readout from 
each sensor collected serially every 15 minutes and saved to a data file. A block 
diagram of the system is shown in Fig. 5. The circuit with the sensors connected, 
indicating the ports that are then connected to the Raspberry Pi, can be seen in Fig. 7. 

A graphic user interface that included plotting abilities and calibration of all the 
connected sensors and impedance measurements were also established (Fig. 8). 

2.6.2 Field Outdoor System 

An outdoor field system for continuous impedance monitoring was also devised. 
The plan was set up in an outdoor greenhouse in Tel Aviv, Israel. The setting allowed 
exposure to natural light and outdoor growing conditions while the temperature in 
the greenhouse was controlled. All other parameters were closely monitored as in 
standard commercial greenhouse growing facilities. 

For the plant impedance monitoring, a Hioki IM3570 (Hioki Ltd n.d.) impedance 
analyzer was used in an analyzer mode. Measurements were taken at 500-mV 
RMS, while each measurement was averaged with a factor of 4. The frequency 
was swept logarithmically across 50 Hz to 4 MHz, collecting 801 points per 
sweep. Calibration, including cables, was completed before measurements. The 
electrodes were coupled galvanically to the plant by direct insertion into the plant
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Fig. 8 User interface, calibration, and plotting utility 

stem at a distance of 5 cm (as described in Bar-on et al. 2019b). Au electrodes 
(0.5-mm diameter, approx. 4 cm in length) were inserted into the stem, ensuring 
direct contact with the vascular tissues inside the stem. Measurements were carried 
out continuously over a few days, and the results were logged and analyzed. 
Experiments were repeated across multiple plants, while they were each prolonged 
across 30–60 days at a time, and data were collected every 9–24 minutes, yielding 
experiment sets of over 10,000 measurements each. 

2.6.3 Plant Choice 

This study tested a few different plants, including tobacco, tomato, and the cherry 
tree. However, we chose to focus the research on tobacco plants. The plant type 
for this purpose was selected regarding the knowledge of the vascular structure, 
robustness, and the study of its genetic makeup. Nicotiana tabacum L. cv. Samsun-
NN (tobacco) plants were a suitable match for this study. Young plants grown for 
3–4 months were used, having a stem diameter of 0.7–1.1 cm (Fig. 9). 

Plants were grown at different locations, providing growth conditions tailored 
per experiment. 

2.6.4 Comparative Study 

An assessment of the ability of impedance measurement to detect physiological 
change was completed in a comparative study manner. 

A comparative study can be carried out by comparing the same sample to itself 
under the same conditions with controlled change across time. Such an experiment
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Fig. 9 Outdoor impedance monitoring setup schematics 

would be carried out multiple times across multiple specimens to have a correct 
experimental procedure. Another way is to compare two similar specimens in the 
same environment, under a different condition, keeping one in a control condition 
and the other in the test. Both these approaches were used during the research and 
experiments. 

For example, this research completed a series of experiments to evaluate changes 
in impedance measurement values due to water stress. Initially, the plant was 
compared to its characteristics under normal hydration conditions, and once water 
stress causing dehydration was induced, values and changes in measurements were 
reevaluated. Next, a comparative study was done by multiplexing the measurement 
system and measuring two plants consecutively (with a difference of a few minutes 
between measurements so that this is almost simultaneous) in the same conditions. 

Once this was achieved, the newly suggested measurement method was com-
pared to well-known techniques commonly used in plant science to evaluate plant 
well-being and physiological state. The following section describes the different 
plant physiological measurements used. 

3 Plant Physiological Monitoring 

Plant monitoring in plant science and biology research is a well-established field. 
Only a few nondestructive measurement methods that estimate whole-plant status 
are available. One includes measuring plant water usage based on a continuous 
weight measurement technique. This method is called gravimetry, where weight 
changes are measured and attributed to changes in the monitored specimen. The 
estimated weight in gravimetry includes the overall plant weight, roots, stem and 
leaves, pot, and ground. These are counted multiple times, and the weight change 
across time can indicate plant water usage. 

The system allows assessing a few terms that are used to determine the plant’s 
physiological behavior, which we define below:
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(a) Plant transpiration (transpiration rate) 
(b) Daily and across time 
(c) Volumetric water content 

This method allows us to measure “whole-plant transpiration.” Transpiration 
defines the amount of water vapor loss from the plant and is usually measured across 
a single leaf or area; nowadays, using many high-precision weight measurements, 
overall plant water usage can be estimated to assess plant transpiration. Transpi-
ration is a fundamental and highly complex process in the plant system. Ongoing 
gravimetric data collection provide information regarding overall plant transpiration 
activity, allowing us to study water use efficiency, improve the understanding of 
the physiological activity, and give a comprehensive view of the plant status. 
Therefore, this method was chosen as a comparative baseline for inspecting the 
electrical impedance spectroscopy data acquired during this research. To study 
changes in impedance values measured, plants were also monitored using this 
method simultaneously. This way, modifications could be compared to well-known 
effects and values and attributed to different physiological phenomena. 

3.1 System Description—Gravimetric Measurements Using 
Plant Array 

Whole-plant physiological performance was monitored with the functional pheno-
typing system. Plant array platform is described in detail. The system includes a 
weight sensory system with an accuracy of a few milligrams. In addition, it consists 
of a soil moisture sensor placed inside the pot as an indicator of changes in the 
soil water content. Next, the system is connected to a controlled irrigation system, 
where the plant can be hydrated according to experiment requirements. In addition 
to the local monitoring of the plant, the greenhouse environment is continuously 
monitored and maintained. This includes measurements of temperature, light 
condition, and air humidity. The soil moisture is continuously monitored as well 
using soil probes. The data collected by the system are logged into a soil–plant– 
atmosphere control software tool. 

3.2 Physiological Studies Alongside Impedance Data 

To establish whether the impedance data collected might indicate the plant status, a 
range of different conditions were tested experimentally during the research for the 
electrical plant response. 

In plant physiology, the plant response to different situations, which can be 
induced externally, is known and can be expected. A simple example is water stress, 
i.e., once the plant lacks water resources, its leaves will wilt. Other stress conditions, 
such as lighting changes or disease, can also be induced.
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3.2.1 Water Stress/Drought 

Experiments were conducted to study the impedance measurements’ response 
to water stress situations. To accomplish this, plants were regularly watered, 
showing repetitive behavior across the days (watering saturation). Once These stable 
conditions were achieved study of different water stress cycles were completed by 
skipping specific watering time slots. 

3.2.2 Light 

Plant growth, development, and physiological regulation depend strongly on light. 
Therefore, exposure to changes in lighting and daylight hour fluctuations is mon-
itored in plant research and taken into account for physiological change studies. 
While daylight fluctuations are present across the different seasons and light 
exposure of a plant can depend on its location and external factors, sometimes 
growth chambers are used. Here, a light that imitates the sun spectra is used, and 
daylight hours can be controlled. Throughout the experiments presented in this 
work, the systems included continuous light monitoring within each system (each 
sensor is described in the system setup description). 

3.2.3 Soil 

The ground where plants grow varies in different locations and areas worldwide. 
Due to these variations, different types of land have been studied and adapted for 
growing agricultural crops around the world. Every kind of ground has different 
attributes and is better suited for specific terrain, climate, and crop. In our case, 
two types of land were used: standard soil and coarse sand. While comparing the 
behavior of these two, and is known to have lower water retention than soil, this can 
be utilized while examining drought or weight changes. 

3.3 Experimental Procedure Using the Gravimetric System 

Wild-type Nicotiana tabacum seeds were sown in growing soil (Avin Ari Ltd., 
Israel). The plants were grown in fully controlled growth chamber equipment with 
“ELIXIA” lights of “Heliospectra” (ref) set on a long day (18/6 hours) with 500 
PAR, and the temperature was controlled with AC (26/19). After 3 weeks, the plants 
were gently washed from the soil and transferred to the designated Plant Array 3.9 
pot full of coarse sand of “Negev Industrial Minerals Ltd.,” Israel. Coarse sand is a 
highly homogeneous, inert medium; using this medium minimizes the noise caused 
by the soil absorption of water and nutrients (ref). An “EVA” foam sheet covered the 
pot’s top to minimize the evapotranspiration from the soil. The 3.9-L pot with the
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seedlings was transferred to the Plants Array room in the semicontrol greenhouse at 
the Institute for Cereal Crops Improvement, Tel Aviv University, for acclimation. 
AC controlled the greenhouse temperature (28–19), and natural light conditions 
were used; the weather station recorded the humidity, temperature, and light 
during the experiments. The Plant Array system is supplied with a fully controlled 
irrigation system. During the acclimation period (from 3 weeks to the start of the 
measurements), the plants were watered throughout the day to stabilize and form 
their root system. When the plants showed full acclimation determined by active 
growth and transpired more than 300 mL per day, we started irrigating only at night 
(21-02) at list 2 L to reach full saturation. After 2–3 days of night irrigation period, 
the experiment started. “Shaphir Nitrate Solutions” fertilization (4:2:6) of “Deshen 
Gat” was added to the irrigation to ensure healthy plant growth. When plants were 
in high turgor in the morning, four probes were galvanically coupled to one plant’s 
stem while the other was used as a control. The probes were made of noble metals 
to avoid corrosion effects. The two pairs of probes were placed at a distance of 
5 cm from each other. The impedance measurement and the Plant Array systems 
were checked and synchronized to collect data continuously. To collect sufficient 
data, multiple rounds of experiments were run, each match including measurement 
under no-stress and stress water deficiency (drought) conditions. To measure the 
plant at control conditions (nonstressed), plants were irrigated to saturation (at list 2 
L) and complete drain of the remaining water during the night (21-02). To measure 
the plants under stress conditions, the plant connected to the impedance was not 
irrigated overnight. After the plants showed stress phenotypically (low transpiration 
and withered leaves) and the soil probe showed low moisture, the plant was given 
recovery irrigation overnight for at least 3 days before the repetition of another stress 
cycle. Each experiment was run for approximately 3–4 weeks. A more detailed 
description of our model has been published in “Frontiers in Electronics” (Bar-On 
et al. 2021). 

3.3.1 Setup 1—in Lab Monitoring—Turin, Italy 

The results in the section have been published in IEEE over the research period (Bar-
On et al. 2019a; Garlando et al. 2021). The indoor lab setup includes an impedance 
system alongside a set of environment sensors, which was established for this work. 
It allowed data collection across long periods, with different sampling rates. In 
addition to the impedance data collected, environmental data were also collected. A 
range of experiments were completed using two types of plants: tomato and tobacco 
(Fig. 10). 

Nicotiana tabacum (tobacco) plants were grown in labs from seeds provided by 
the lab at the Faculty for Plant Science at Tel Aviv University (TAU); the monitored 
plants were grown for 3–4 months, reaching a stem diameter of 0.5–1 cm. In 
addition, as tomatoes are quickly grown in Italy, tomato plants bought for edible 
tomato growing were tested. Here, plants were small (about 50 cm in height), and
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Fig. 10 Plants used in the Turin lab setup, visualizing the connected stem to an electrical design. 
Right: tobacco, left: tomato 

the stem diameter was chosen to be similar to the used tobacco plants, yielding a 
measurement of 0.5–1 cm in diameter. 

Initially, the system was set up to allow continuous measurements of a single 
plant. Later, the electronics allowing multiplexing the system to measure two plants 
consecutively was established. The system included (as described in Sect. 2.6) 
an impedance analyzer controlled using a dedicated LabView© software and a 
set of environmental sensors controlled using reliable electronics and controlled 
with Raspberry Pi© to run in a synchronized manner and log the data collected. 
Once continuous measurements of a single plant over time were completed and 
a sampling rate allowed the system to provide minimal noise during sampling, a 
multiplexer was added to collect data from two plants at a time. Here, a measurement 
was taken from each plant consecutively and continuously without affecting the 
quality of the data collected (i.e., parasitic impedances, signal averaging time on the 
impedance analyzer). Figure 11 shows this system setup with two plants connected 
for measurements. 

Impedance measurements were carried out across time, and data were collected. 
The impedance analyzer was calibrated according to the manufacturer’s manual, 
allowing the establishment of impedance spectra of the plant stem. The measure-
ments were set to measure across a frequency range of 40 Hz to 1 MHz. At the 
same time, in this domain, the impedance analyzer was fully calibrated with the 
additional multiplexing circuit and cables and connectors to the plant. Calibration 
included all wires except the actual probes in contact with the plant, as they were 
assumed to be perfect conductors (Au wires of approximately 4 cm in length and
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Fig. 11 Continuous 
monitoring system depicting 
two plants monitored 
simultaneously in Turin, Italy 

0.6 mm in diameter were used). Voltage was set to 500 mV VRMS while averaged 
across 4 for each sweep. 

This setup allowed data collection across a wide range of frequencies and time, so 
examining the results can be done in various ways. During this work, we presented 
the impedance data by looking at the impedance magnitude and impedance phase 
separately, as done in Bode plots (Agarwal and Lang 2005; Sze and Ng 2006); we 
found this useful for our study (other representations are available and presented 
briefly in this study). 

Impedance spectra were initially collected, showing that they coincided with 
previous results. In addition, the orders of magnitude measured agree with our 
initial results (published in Bar-on et al. 2019b, using a manual setup for impedance 
measurements). The continuous manner of data collection allowed us to distinguish 
that a change in the measured impedance values of the plant occurs during the 
day. By dividing the day into three regions: morning 8–12 AM, afternoon: 12– 
16, evening: and averaging the measurements taken every 4 minutes across these 
hours. We could distinguish that a shift in the measured curve exists, indicating the 
sensitivity of the size to the time of day (possibly corresponding to the plant’s daily 
cycle, daylight hours). An increase in impedance can be seen as the day proceeds 
across frequencies, while in phase, a shift is present, with decreasing absolute values 
of the angle. 

Next, the behavior of the plant across several consecutive days was examined 
(shown in Fig. 13). Here, to examine the variation across frequencies and time, 
we examined the behavior at the centroid frequency. This data, for both impedance 
magnitude and phase, show that the measurement is sensitive to a daily trend in the
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plant. However, plant behavior under similar conditions across days is repetitive. 
These would require further studies but indicate that the collected data may be a 
significant monitor for the plant. 

Next, using the multiplexer electronics, two plants were monitored simultane-
ously. This setup allowed us to carry out case studies in a comparative manner. 
Several experiments were carried out across 2–3 weeks each time (Fig. 12). 

In the following example, the experiment was carried out across multiple days 
(up to 3 weeks at a time). Two tomato plants were monitored continuously, 
collecting impedance data at 15-minute intervals. Here, we present an example of 
measurements taken across 6 days, examining the response of the two plants: one 
to complete dehydration over time, which was started on day 6; the second plant, 
which was kept well hydrated with regular watering every day. The result can be 
seen in Fig. 22. In this experimental setup, it is to be noted that the plant’s watering 
was completed manually, using approximately 300 mL of tap water, at 17:00 each 
day. The daily trend is visible in both the impedance magnitude and phase (as in 
Fig. 21). A change due to hydration/dehydration is also present in both measures. It 
should be noted that irrigation was done manually and exposed to variations. 

In addition to the impedance data, the sensor system collected environmental data 
simultaneously. The data acquired here were used comparatively. Presented below 
are impedance compared with data from a soil moisture sensor inserted into the pot 
plant soil and a light sensor. 

Measurement of soil moisture is a well-known method for irrigation planning. 
Here, the soil moisture sensor was calibrated and inserted into the plant pot. For 
convenience, we inspect the time derivative of the soil moisture sensor reading to 
see a “spike” each time an irrigation event occurs (an example can be seen in Fig. 
19). These values are shown alongside the impedance magnitude and phase across 

Fig. 12 Impedance measurements across a day, showing the differences between different times 
(classified as morning, afternoon, and evening). Right: Impedance magnitude and phase values 
across different frequencies. (Similar results are presented in our publication (Bar-On et al. 2019a))
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Fig. 13 Impedance measurements shown at the centroid frequency across 6 days. The plant was 
manually watered once a day. The impedance magnitude (top) and phase (bottom) are shown 
separately across time. Both measures show a repetitive behavior across different days, indicating 
that the impedance data may follow the plant’s daily cycle trend 

time, clearly showing a response in the plant impedance to these irrigation events 
(Fig. 13). 

Examination of impedance data alongside external illumination conditions was 
also completed. A light sensor sensitive to visible light was connected in the 
system to provide indication to daylight hours and lighting fluctuations. Here, the 
light sensor was set up in the lab near the plants and a window exposing the 
outside lighting conditions. Here, we could see that the impedance values fluctuate 
qualitatively, with a similar trend to the daylight cycle. This indicates that the 
impedance measurement follows activity within the plant vascular cambium, which 
is known to respond directly to light exercise. This is shown in Figs. 14 and 15. 

The results shown on the system established in the indoor lab conditions present 
the possibilities and sensitivities of the suggested impedance measurement of



Plant-Based Electrical Impedance Spectroscopy for Plant Health Monitoring 509

Fig. 14 Impedance measured across time of two tomato plants, the one regularly watered and the 
other dehydrated—both impedance magnitude (top) and phase (bottom) present the response to 
regular hydration versus dehydration 

Fig. 15 Tobacco plant signal across time
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living plants. These results suggest that close monitoring and combination with 
environmental sensors can yield useful data for precision agriculture. 

As the Department of Electronics and Telecommunications (DET) at the Politec-
nico di Torino lab has expertise in embedded electronics for sensor systems, the 
collaboration continued with a focus on developing additional multiplexing elec-
tronics, improvements, and adding sensors to monitor the surrounding environment 
while collecting data from plants in this lab. 

In addition, we established that comparative studies must be carried out alongside 
well-known and established plant-monitoring methods in the plant physiological 
world. Here, we could better understand the data collected, compare it to commonly 
used forms, and plan experiments suited by plant biologists. This was set up and is 
shown in the next section. 

3.3.2 Setup 2—Outdoor Greenhouse Monitoring—Tel-Aviv, Israel 

The following experiments were conducted in Tel Aviv, Israel, in a greenhouse facil-
ity at the Cereal Research Institute. The greenhouse offers the ability to control and 
monitor plant growth conditions so that the temperature and humidity are controlled 
and monitored. In contrast, the plants are exposed to natural light conditions, as 
these greenhouses are situated outside. To carry out our impedance experiments, 
the impedance monitoring system was connected inside the greenhouse to collect 
data continuously across time. A significant advantage of this setup was that the 
greenhouse included a fully automated irrigation control system that allowed one to 
determine the exact irrigation conditions, such as timing, speed, water quality, and 
nutrients. To enhance the research, the chosen greenhouse included a state-of-the-art 
plant physiological monitoring system that offers high-end plant weight monitoring 
alongside electronic sensors (PlantArray©, DiTech Ltd.). 

Multiple long-term experiments of a few weeks and up to 2 months were 
completed throughout the year. This provides information and consistency of the 
results across the different seasons of the year, accounting for changes in weather 
conditions, light temperatures, etc., as well as for multiple plant trials. 

The results are structured to demonstrate the systems set up and connected, the 
specifications of the different experiments completed, and their effects. For each 
experiment, the tobacco plant was connected and stabilized on the weight system 
and connected to the impedance analyzer. The exact experimental procedure is 
explained in an earlier section. An example of the physical setup of a tobacco plant 
in the greenhouse attached to both impedance measurement and the gravimetric 
system for continuous monitoring can be seen in Figs. 16 and 17. Each experiment 
was set up to run for several weeks.
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Fig. 16 Continuous monitoring of a tobacco plant in the TAU greenhouse; Left: Actual plant 
monitored during experiment, right: schematic description of the PlantArray System (DiTech Ltd.) 

Fig. 17 Impedance spectra of a tobacco plant at different points in time. Right: impedance 
magnitude; left: impedance phase 

3.4 Impedance and Plant Physiological Response—Light, 
Daily Cycle, Water Stress 

It is well known that activity in the plant, including transpiration and photosynthesis, 
depends on light conditions. The plant’s diurnal cycle depends on daylight hours 
and light exposure. To examine the response of the plant impedance spectra to 
a controlled light environment, the plant was kept fully hydrated, and constant 
intensity lighting was induced for a steady number of hours each day. The results 
show that, across the different frequencies, the plant impedance responds directly to 
the light changes.
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Normal daily behavior—shown with the impedance response to muted response 
to different hydration amounts graphs to prepare: daily light, Transpiration Rate 
(TR), weight, etc. 

4 Data Analysis 

The suggested model was fitted to the experimental results, and an evaluation of 
the model’s accuracy across the frequency range was performed. The spectra were 
provided to the lumped element model using a standard least square fitting algorithm 
based on the impedance magnitude. An example of the fit and an experimentally 
obtained spectra are shown in Fig. 20. The fitting algorithm was derived from 
the mathematical representation of each component in the lumped element model 
presented. It was run using the Matlab 

® 
curve fitting toolbox. The measurement 

data were imported and organized into the program and then run sequentially using 
an appropriate algorithm that considers least-squares fitting. The fitting provides 
an estimate for each model coefficient and can be presented parametrically. Initial 
values and lower and upper bounds were used based on measured impedance 
values and expected model behavior, allowing model parameters to converge across 
measurements and frequencies. Thus, the fitting algorithm yielded a good fit for all 
experimentally obtained sets of impedance spectra, with a mean relative appropriate 
error of approximately 1.06% ± 0.12%. This error is well within the limits of 
experimental error and the error limits of the instruments used. The error across 
time, i.e., across different days measured, is shown in Figs. 16, 17, 18, 19, and 20, 
where minor deviations are visible (Fig. 21). 

During data analysis, the following analysis has been done: 

1. Analysis of the impedance at prechosen representative frequencies. 
2. Spectral analysis using the dominant pole parameters as indicators. 
3. Fitting the spectrum, at each time point, to the physically based lumped element 

circuit model, using the model parameters as indicators. This analysis was also 
published by Bar-On et al. (2019a) and appeared in the section below. 

Three analysis methods are presented, followed by a comparison to gravimetry. 
The results were analyzed from the plant’s electrical response each day. Across 
those days, a series of hydration–dehydration cycles were performed daily. A more 
extended dehydration period (about 24 hours) was applied every few days, followed 
by a return to the daily hydration/dehydration sequence. The more extended 
dehydration period was used to study the plant’s longer-term characterlike, such as 
post-dehydration recovery time. The results depended on the dehydration/hydration 
cycles and the ambient plant conditions, i.e., temperature, time of the day, humidity, 
and lighting. Therefore, the effect of dehydration/hydration cycles on the electrical 
measured parameters was studied at the same time daily where the temperature and 
lighting provide similar comparative conditions.
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Fig. 18 Soil versus sand behavior 

Fig. 19 Water stress across time 

The lumped element modeling approach is commonly used to analyze a biologi-
cally based system using electronics. An equivalent circuit using the lumped element 
modeling has been suggested for this measurement setup (see Bar-On et al. (2019a)). 
A lumped element circuit approach attempts to consider the different physical 
components in the device under test and represent each of their contributions 
across the collection of frequencies used. The model parameter graphs across time
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Fig. 20 An example of the model fitting for both impedance magnitude and phase shown for a 
representative experimental result 

Fig. 21 Model error relative error calculated and shown across time
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Fig. 22 Lumped element circuit parameters across time (a) The insert: the plan physically based 
lumped electrical model, (b) the constant phase elements (CPE1, 2 & 3), (c) resistive components, 
(d) capacitive elements vs. time, over 10 days 

are shown in Fig. 22. In our case, a group of resistors, constant phase elements, 
and capacitors have been arranged based on the measurement setup and known 
plant physiology. Due to the plant stem physiology, the circuit assumes current 
flow across a collection of channels. Each channel is represented by a resistor 
and a CPE (constant phase element), while the different channels are capacitively 
coupled. Inspection of each ingredient in such a circuit across time will indicate 
their contribution to conduction across the specimen and the sensitivity of the 
system to change. This allows us to assess the significance of different components 
and estimate the system response to induced physiological stress. The presented 
parameters of the lumped element circuit are grouped by type in each graph, i.e., 
resistive, capacitive, and CPEs. Inspecting the different parameters, we may notice 
different behaviors. The different resistive components all show a change due to the 
stress. 

In addition, across the presented control period, they show slight fluctuation. 
These changes may, in the future, be correlated to daily changes within the plant. 
Yet all resistive components behave similarly. Looking into the capacitive and 
CPE details, all parameters show an absolute value change due to the water stress 
introduced. Yet the direction of the change differs. This may indicate the actual 
physical mechanism the parameter represents within the plant. The most significant 
change we observe using this method seemingly occurs in the first CPE component 
(CPE1) (Fig. 23). 

The daily fluctuations are enhanced, while the response to stress (observed 
as a peak both in the middle and at the end) increases by order of magnitude. 
Furthermore, it clearly can be seen that after the stress, the baseline of values is 
shifted during recovery. In modeling a system as in the plant stem, a constant phase 
element represents transport and diffusion within the biological specimen and can 
be expected to show higher sensitivity to a physiological change such as the water 
stress tested here. Comparing the change observed across the resistive elements, it 
can be assumed that they are more responsive to changes in ion concentration and 
therefore indicate more minor deviations. A better understanding of these changes 
requires a combined study with known plant physiology measurement methods. In 
addition, these qualitative changes shown mean the added value of the presented
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Fig. 23 A single element from the model as a function of time for normal conditions (e.g. daily 
watering) or under a draught induced stress. Showing the difference in response magnitude under 
the two conditions 

continuous impedance measurement method, as it allows for data sensitivity to more 
than a single change across the plant. However, the lumped element approach with 
different parameters requires further study of the relations between the parameters 
and their physical meaning. The ability to detect variations across the different 
components is apparent. 
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Data Analytics in Agriculture 

Ania Cravero Leal 

Abstract Food security is a crucial global need, threatened by population growth, 
climate change, and decreasing arable land. Data-driven agriculture is the most 
promising approach to solving these current and future problems by improving crop 
yields, reducing costs, and ensuring sustainability. As the number of smart sensors 
and machines on farms increases and a greater variety of data is used, farms will 
become increasingly data-driven, enabling the development of smart farming. This 
is possible, thanks to new technologies that enable massive data storage, such as 
cloud computing and Hadoop, in addition to processing and analysis through Big 
Data and machine learning. In this chapter, we explain some practical examples of 
their use. 

Keywords Data analytics · Agriculture · Big Data · Machine learning 

1 Data Analytics in Agriculture 

By 2050, the world is expected to face a substantial increase in the global demand 
for food, necessitating a significant boost in food production by as much as 25% to 
70% (Hunter et al. 2017); for this reason, it is crucial to double food production 
per hectare by the time the world population stabilizes around 2100 (United 
Nations 2019). Food security is a fundamental global need, threatened by population 
increase, climate change, decreasing arable land, food waste, and living standards 
that focus on consumer preference for animal protein (White et al. 2021). 

Increasing agriculture or food production rapidly is difficult (Ahmad and Huang 
2021). For this, the agricultural sector needs to employ cutting-edge technologies 
such as cloud computing, Internet of Things (IoT), Big Data, and machine learning 
(ML) (Ahmad and Huang 2021; Gopal Maya 2020). Through these technologies, 
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data-driven agriculture is the most promising approach to solving these current and 
future problems( Ahmad and Huang 2021), as it improves crop yields, reduces costs, 
and ensures sustainability (Torky and Hassanein 2020). 

Digital agriculture, like agrotechnology and precision agriculture, is a new 
scientific discipline that promotes agricultural productivity while minimizing envi-
ronmental impact through data analysis (Liakos et al. 2018). Data are extracted from 
farm operations using various sensors, satellite imagery, videos, and photographs. 
This is possible as data analysis enables more accurate decisions through better 
knowledge of crop dynamics, weather conditions, soil, and farm machinery use 
(Liakos et al. 2018). 

As the number of smart sensors and machines on farms increases and a wider 
variety of data is used, farms will become increasingly data-driven, enabling the 
development of smart farming (Sundmaeker et al. 2017). The difference between 
precision farming and smart farming is that the former was developed for farm 
management, and the latter considers real-time situations triggered by an event 
(Wolfert et al. 2017). On the other hand, smart farming includes intelligent 
assistance in implementing, maintaining, and using information technology (IT), 
enabling farmers to react quickly to sudden changes, such as disease alerts or 
weather events (Nandyala and Kim 2016). 

Li et al. (2020) explain that Agricultural Big Data belongs to a comprehensive, 
cutting-edge technology, as it contains specific concepts, technology, and measures, 
covering the whole range of agricultural activities, such as farming and planting. 
This technology allows the processing of a large amount of heterogeneous data such 
as lighting, temperature, the humidity of crop growth, and data on all aspects of 
the production process (Li et al. 2020). With the characteristics of informatization, 
intelligence, and precision, it can solve the problems encountered in traditional 
agriculture and provide new support for agricultural development. Agricultural Big 
Data can respond in the new era and promote the structural reform of the agricultural 
supply side (Li et al. 2020). However, the research on Agricultural Big Data is in 
the initial stage, so more researchers are needed to do more research and analysis 
(Li et al.  2020). 

According to Gopal Maya (2020), due to the multimodal nature of data, it has 
several challenges, such as improving methods for data collection and selecting 
effective statistical and data analysis techniques to understand and support agricul-
tural activities. To improve these aspects, the mechanism used in smart agriculture is 
ML, the scientific field that allows machines to learn without much programming. It 
has emerged along with Big Data technologies and high-performance computing 
to create new opportunities to facilitate, quantify, and understand data-intensive 
processes in agricultural operating environments (Gopal Maya 2020). 

Experts indicate that agriculture can benefit from ML at all stages, such as spice 
management, field management, crop management, and livestock management 
(Gopal Maya 2020). ML is used in several agricultural applications, including yield 
prediction algorithms based on weather and historical yield data, image recognition 
algorithms to detect pests and diseases in plants, and robotics to harvest different 
types of specialty crops (Tibbetts 2018).
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Agricultural Big Data is playing an important role by incorporating ML. Farmers 
are using data to calculate crop yield, fertilizer demand, cost savings, and even to 
identify optimization strategies for future crops (Gopal Maya 2020). For the case of 
crops, ML is being used for yield prediction, disease detection, weed detection, crop 
quality, and species recognition. In the case of livestock, it is being used for animal 
welfare and livestock production (Liakos et al. 2018). In this chapter, we explain 
some practical examples of their use. 

2 Data and Storage in Agriculture 

2.1 Data 

In Agricultural Big Data and ML, structured, semistructured, and unstructured 
data are often used, which adds complexity to the analysis process, as their use 
poses a significant challenge (Saiz-Rubio and Rovira-Más 2020). Unstructured data 
come from archives, such as videos, satellite images, and surveys, which contain a 
large amount of information hidden from the data scientist and cannot be analyzed 
directly. On the other hand, semistructured data have been stored in spreadsheets and 
repositories containing both essential and unimportant data for the desired analysis. 
Therefore, it is also necessary to process these data to obtain essential structured 
data, allowing data scientists to perform the relevant analyses (Cravero et al. 2022a). 

Unfortunately, processing unstructured data is not trivial, as it requires the 
use of specialized tools and the knowledge of subject matter experts. It also 
requires selecting the right types of repositories and databases for further processing 
and analysis (Šuman et al. 2020). Therefore, it is essential to identify available 
data, necessary processing, and potential studies based on the generated data, as 
ML requires test datasets of sufficient quality to achieve the expected learning 
(Bhatnagar 2018). 

According to Nandi and Sharma (2020), the analytics that can be performed 
using ML can be descriptive, diagnostic, predictive, and prescriptive. Prescriptive 
analytics is the most complex, as it is responsible for finding a solution among 
several variants to optimize resources and increase operational efficiency: the more 
complex the studies to be performed, the more complex the data processing will be. 

According to Firdaus and Hassan (2020), it is essential to know the data type 
before applying any algorithm. Therefore, data type plays a vital role in preprocess-
ing and visualization. There are four main types of data: numeric, categorical, time 
series, and text. Numerical data are further classified into continuous and discrete. 
Categorical data types represent quality; concepts such as “good”, “bad,” and others 
define levels. These data must be processed to be described as numbers rather than 
text.



522 A. C. Leal

2.2 Agricultural Data 

Data in Agriculture refer to variables or attributes that farmers need to carry out 
their business activities. The data can be specific agricultural records or parameters, 
such as crop varieties, yields, soil types in use, and acreage, and business-related 
information, such as products, suppliers, customers, and payments. They are 
classified into structured, semistructured, and unstructured data, depending on the 
storage format in which they are stored (Cravero et al. 2022a). 

The data used in Agricultural Big Data come from sensors, IoT, satellites, 
cameras, global positioning system (GPS), databases, and data from farmers’ expert 
knowledge. Figure 1 shows the main data used using a concept cloud. It can be seen 
the most used data are temperature, humidity, crop area, wind direction, and wind 
speed. 

An example of the use of data is the work of Nóbrega et al. (2018), in which they 
used video data to learn about sheep behavior in a vineyard. To do so, they analyzed 
each video to obtain a set of rules processed by experts. Yang et al. (2017) used  
video data to monitor plant growth status. Rehman et al. (2020) used various types 
of data for crop analysis, allowing them to understand soil temperature, atmospheric 
temperature, and humidity, as well as data from sensors. 

Another example is the work of Dutta et al. (2015), who used heterogeneous data 
from different sources to generate a knowledge system of agricultural processes in 

Fig. 1 Cloud of data concepts used in Agricultural Big Data



Data Analytics in Agriculture 523

conjunction with environmental processes. Data are obtained from a sensor network, 
large-scale simulated models, satellite imagery, meteorological data, and industry 
knowledge and experience to improve decision-making. The authors developed 
a Big Data system that incorporates unstructured, undocumented, and ad hoc 
knowledge into a structured rule base that allows for an improved decision support 
system. 

On the other hand, Amani et al. (2020) also used satellite images to obtain 
information on terrain characteristics. The data are extracted directly from Google 
Earth Engine (GEE), as it improves the efficiency of data processing from the point 
of view of time and costs. In addition, GEE contains freely available remote sensing 
datasets and several classification algorithms, which can be accessed for various 
farmland applications. 

Figure 2 shows the number of uses of different data sources for the generation 
or collection of Agricultural Big Data (y0, data type). The identified sources were 
categorized into six groups. These are sensors, cameras, databases, GPS, satellite, 
and people. Each of the groups is described below. 

Satellites are an essential data source for obtaining data on sizeable agricultural 
land. An array of sensors attached to the satellite is used to capture the data, from 
which numerous products can be obtained, such as optical, synthetic aperture radar 
(SAR), or thermal images. Cravero et al. (2022a) identified the use of six different 
satellites: Google Earth (Amani et al. 2020), Sentinel-1 (Shelestov et al. 2020) and 
Sentinel-2 (Sitokonstantinou et al. 2020), Landsat 7 and Landsat 8 (Dutta et al. 
2015), and MODIS (Dutta et al. 2015). 

Fig. 2 Data sources used in Agricultural Big Data
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The sensor group includes all IoT devices used statically in different locations 
to capture data. Many sensor types measure a single variable, such as temperature, 
radiation, and precipitation (Gnanasankaran and Ramaraj 2020). Similarly, devices 
that include several sensors, such as a weather stations or collars, are used in 
animals (Nóbrega et al. 2018). Using this data source usually requires dealing with 
IoT devices’ deployment, connection, and maintenance. Some advantages of using 
sensors are that the data obtained are particular to the area or task in which they are 
used and that they will be captured in real time. 

On the other hand, the temporal resolution of sensors tends to be low, from 
seconds to minutes, so large amounts of information are usually generated in a 
particular measurement period (Yang, J. et al., 2018). Wang and Mu explain that 
microsensors capable of capturing data on crop growth, land use, water use and 
characterization, and climatic variables, among other essential aspects, are being 
developed. The authors conclude that using these microsensors will enhance the 
development of artificial intelligence (Wang and Mu 2022). 

Unlike sensors, databases allow easy and immediate access to a large amount of 
historical data, with accumulated records of up to 10 years. The vast majority of the 
identified databases are managed by public entities or government agencies, such as 
AWAP, CosmOZ, SILO, ASRIS, BOM, ISTAT, CNIR, IndiaStat, AAFC, ARPAS, 
ACIS, IMD, OGD, and KME (Cravero et al. 2022a). 

2.3 Massive Storage 

Two primary technologies have been employed in Big Data for massive storage. 
However, relational databases (RDBMS) prepared to process in-memory data and 
NoSQL databases that store unstructured data have also been used. 

Apache Hadoop is an open-source data processing ecosystem used for distributed 
computing, which has been created to address Big Data problems. In addition, 
Hadoop has been expanded to use geospatial data. Hadoop generally contains a 
Hadoop Distributed File System (HDFS) and a MapReduce programming environ-
ment for data processing (Alkathiri et al. 2019). 

Cloud computing provides various services over the Internet that are scalable. 
This technology allows resource sharing using the infrastructure owned by a cloud 
service provider. The provider’s users or customers can access resources on demand 
by paying per use. It enables the abstraction of infrastructures, such as storage, 
network, and applications, through its three services: Platform as a Service (PaaS), 
Infrastructure as a Service (IaaS), and Software as a Service (SaaS) (Odun-Ayo et 
al. 2018). The fourth layer of services is Business Intelligence (BI), which contains 
applications to measure management indicators.
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2.4 Massive Storage in Agriculture 

Cravero et al. (2022a) analyzed 36 papers where Big Data and ML are applied for 
analysis in agriculture. Figure 3 shows the distribution of uses of the mentioned 
platforms, categorized into Hadoop, relational database, NoSQL database, and 
cloud. 

The cloud category includes several cloud computing services, such as AWS 
(Amazon Web Services) or GEE (Google Earth Engine). A direct advantage of using 
these platforms is their large computational and storage capacity. They are suitable 
for working with Big Data and can be resized according to the user’s needs. Another 
benefit is the free and direct access they provide to different data sources, such as 
satellite data captured by Landsat or Sentinel satellites. 

Shelestov et al. (2020) used AWS’s fast and easy access to Sentinel-1 and 
Sentinel-2 satellite imagery to work with datasets using up to 3 TB of memory 
space, eliminating the problems associated with downloading and storing data 
related to Big Data. Gumma et al. (2020) list the following reasons for using the 
GEE platform: easy access to Landsat satellite data, the powerful computational 
capability of the service, and the ability to perform parallel processing of the data, 
among others. 

Wang et al. (2019) use MongoDB, a document-oriented database, as intermediate 
temporary storage for data collected by sensors, which are subsequently transferred 
to an implemented data warehouse. Sathiaraj et al. (2019) used the in-memory 
database REDIS, whose data model is key value, for the visualization system of 

Fig. 3 Mass storage used in agriculture
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the computational analyses performed, as it presents low latency when accessing 
the data. 

Nóbrega et al. (2018) use PostgreSQL to store the data obtained by the collars 
placed on each sheep. They decided to use a relational database because their 
sensor collar network has several entities that can be efficiently designed in this 
database. Furthermore, they selected PostgreSQL among the available RDBMS 
options because it suits environments with system–critical data, security, and 
integrity mechanisms. 

3 Analysis in Agriculture 

3.1 Agricultural Big Data 

Big Data is defined in four dimensions (4 Vs). The first V refers to the enormous 
volume of data being developed, stored, and processed. The second V refers to 
the high speed of data transmission in interactions and the rates at which data 
are generated, collected, and exchanged. The third V refers to the variety of data 
formats and structures (structured, semistructured, and unstructured) resulting from 
the heterogeneity of data sources (Sassi et al. 2019). The fourth V is veracity, which 
refers to the ability to validate the data quality used in the analyses. 

Apart from the “4 Vs”, another dimension of Big Data, its value, must also be 
considered. Value is obtained by analyzing data to extract hidden patterns, trends, 
and knowledge models through intelligent data analysis algorithms and techniques. 
Data science methods increase the value of data, providing a better understanding 
of its phenomena and behaviors, optimizing processes, and improving discoveries 
by machines, companies, and scientists. Therefore, we cannot consider Big Data 
science without including data analytics and ML as critical steps to numerate the 
value among Big Data science strategies (Elshawi et al. 2018). 

In practice, Big Data analytics tools enable data scientists to discover correlations 
and patterns by analyzing massive amounts of data from different sources. In recent 
years, Big Data science has become an essential modern discipline for data analytics 
(Elshawi et al. 2018). It is considered an amalgamation of classical disciplines 
such as statistics, artificial intelligence, mathematics, and computer science, with 
its subdisciplines including database systems, ML, and distributed systems (Haig 
2020). 

Big Data in agriculture refers to all the modern technology available combined 
with data analysis as a basis for making decisions based only on data (Sarker et al. 
2019). The following typology will help us to understand the Big Data evolution 
(see Fig. 4). 

Precision agriculture collects real-time data on farm elements such as crops, 
air, and soil to protect the environment while ensuring profits and sustainability 
(Micheni et al. 2022). Incorporating ML techniques in farming has advanced aspects
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Fig. 4 Topologies in digital agriculture 

such as crop and soil health, irrigation systems, crop disease identification, weed 
control, and recommended control measures. The adoption of a robotic farming 
system has a significant impact on crop production, efficiency, and sustainability. 
However, the success of precision farming is hampered by factors such as lack of 
training, low return on investment, high costs, and lack of Big Data analysis of 
precision farming. 

Big Data has been used to improve various aspects of agriculture, such as knowl-
edge about weather and climate change, land, animal research, crops, soil, weeds, 
food availability and security, biodiversity, farmer decision-making, insurance and 
farmer financing, and remote sensing (Kamilaris et al. 2017). It is also used to 
create platforms that enable supply chain actors to access high-quality products and 
processes; tools to improve yields and predict demand; and advice and guidance to 
farmers based on the responsiveness of their crops to fertilizers, leading to better 
fertilizer use. It has also led to the introduction of plant scanning equipment to track
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deliveries and enable retailers to monitor consumer purchases, improving product 
traceability throughout the supply chain (Wolfert et al. 2017). 

Big Data has been used with other technologies such as ML, cloud-based plat-
forms, image processing, modeling and simulation, statistical analysis, normalized 
difference vegetation index (NDVI), and geographic information systems (GIS) 
(Kamilaris et al. 2017). 

There are Big Data solutions for different areas of agriculture, such as farmer 
decision-making, crops, animal research, land, food availability and security, 
weather and climate change, and weeds (Cravero et al. 2022b). 

For example, Boudriki Semlali and El Amrani (2021) used Big Data tools to 
monitor atmospheric composition. The system architecture contains the data source 
layer, ingest, storage using Hadoop, data management layer, infrastructure, and 
monitoring and security layer. In addition, they used data on pollutant gas emissions 
from other sources, such as agriculture, business, and transportation. As a result, 
the authors could continuously monitor the atmospheric composition by remote 
sensing. Figure 5 shows the complete process. 

Another example is Alex and Kanavalli (2019), who developed a Big Data system 
that predicts whether fertilizers will cause disease in crops. They used data such as 
soil moisture, average rainfall, and soil nutrients. The authors also used data such 
as phosphorus (P), nitrogen (N), magnesium (Mg), calcium (Ca), and sulfur (S). 
The Big Data process starts with data enrichment, followed by data clustering, so 
the data can be classified and analyzed to deliver recommendations. Finally, the 
Hadoop ecosystem was used to store and process the data analyzed with ML. Figure 
6 depicts the complete process. 

Big Data enables data scientists and farmers to understand agricultural behavior, 
such as climate, land, soil, crops, animal production, weeds, food safety, biodi-

Fig. 5 Architecture of Big Data for atmospheric composition monitoring
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Fig. 6 Big Data architecture for fertilizer management and yield prediction 

versity, remote sensing, farmer decision-making, insurance, financing, and climate 
change. It also enables the development of supply chain platforms, which allow 
players to access high-quality products, processes, and tools capable of improving 
yields, predicting demand, and targeting farmers based on crop needs, such as 
appropriate fertilizer use. 

3.2 Agricultural Big Data Technologies 

The technologies used for the implementation of Big Data and ML systems in 
agriculture are presented in Fig. 7. It can be seen that the most frequently identified 
technology was Apache Spark (Cravero et al. 2022b).
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Fig. 7 Main technologies used in Agricultural Big Data and ML 

For the collection of agricultural data, the most common technologies are sensors 
and satellite imagery. The former is used to take data on the location of interest 
of crops, animals, weather, or soil properties (Donzia and Kim 2020; Priya and 
Ramesh 2020; Nóbrega et al. 2018). Satellite imagery is used for monitoring land 
and crops over large areas (Amani et al. 2020; Gumma et al. 2020) (Sitokonstantinou 
et al. 2020). Data are obtained through satellites or services from external providers 
such as Google Earth Engine (GEE), a global positioning system (GPS), Sentinel 
satellites, Landsat satellites, or Google Maps. 

In the implementation of Big Data systems, the most used file system is 
Hadoop Distributed File System (HDFS), because it allows to separate of datasets, 
storing them in a distributed way in several nodes of a cluster, and parallelizing 
operations on them (Sitokonstantinou et al. 2020). Most of the implemented clusters 
were configured with the various programs provided through the Apache Hadoop 
framework. Among these, the following stand out: Apache Hive and Apache Kafka. 
Apache Hive is used to configure data warehouses that streamline working with 
large datasets stored in distributed units (Wang et al. 2019) (Pandya et al. 2020). 
Apache Kafka is used to transmitting information or messages to different nodes of 
the designed Big Data architecture (Pandya et al. 2020; Donzia and Kim 2020). 

The technology most often identified in the implementation of ML models is the 
Python programming language (Balducci et al. 2018; Gumma et al. 2020; Fenu and 
Malloci 2019). It highlights the latter especially together with libraries such as D3 
for data visualization (Sathiaraj et al. 2019), Leaflet.js for displaying maps (Doshi 
et al. 2018), and React for building interactive user interfaces (Sathiaraj et al. 2019). 

In (Wang et al. 2019), a Big Data system for agriculture was proposed and 
designed based on data collection, storage, analysis, and application. For collecting
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pear tree growth data (air temperature, soil moisture, light intensity, etc.), a high-
precision wireless sensor network is used, sending collected data via TCP protocol 
to traditional databases (MySQL, MongoDB, etc.). These databases are used 
temporarily to store the data and serve as data sources for the overall Big Data 
system. For this purpose, data synchronization software such as NiFi, Sqoop, or 
Flume is used. Data sources are synchronized with the HDFS cluster responsible 
for storing all the data together. SparkSQL reads, filters, and stores data from the 
HDFS cluster to Apache Hive and Apache Hbase. The former is employed for data 
used for analysis, and the latter is utilized for data monitoring and visualization of 
data statistics. Apache Dubbo is used for running farmer management services in a 
distributed manner (Cravero et al. 2022a). 

3.3 Machine Learning in Agriculture 

ML is a highly interdisciplinary field based on different areas such as artificial 
intelligence, optimization theory, information theory, statistics, cognitive science, 
optimal control, and many other scientific, engineering, and mathematical disci-
plines (Cherkassky and Mulier 2007). ML has covered almost all science domains, 
impacting society significantly (Rudin and Wagstaff 2014). It has been used in 
various problems, including recommendation controllers, computer science and data 
mining, recognition systems, and autonomous control systems (Qiu et al. 2016). In 
general, ML is used to optimize the performance of a task through mining past 
examples or experiences, as it can generate efficient relationships concerning data 
inputs and reconstruct a knowledge schema. 

ML has been used to solve different problems in agriculture, such as crop 
management, including yield prediction; disease detection, weed detection, crop 
quality, and species recognition; livestock management, including animal welfare 
and livestock production; water management; and soil management (Liakos et al. 
2018; Benos et al. 2021; Bal and Kayaalp 2021). 

An example of its use is in precise detection, as together with sensors, it 
allows accurate detection and identification of weeds without causing environmental 
problems or side effects. ML for weed detection has led to the development of tools 
and robots to destroy weeds, minimizing the need for herbicides (Liakos et al. 2018). 
In addition, accurate detection and classification of crop quality characteristics have 
increased the value of products and reduced waste. 

The increased research interest in ML in agriculture is a consequence of several 
factors: the considerable advances in IT systems in agriculture; the vital need 
to increase the efficiency of farming practices while reducing the environmental 
burden; and the need for reliable measurements with the handling of large volumes 
of data (Benos et al. 2021; Bal and Kayaalp 2021). 

ML is used in conjunction with Big Data, as it allows analyzing a volume of 
data that is generated after processing and filtering data coming from different 
heterogeneous sources. Agricultural Big Data has technologies that allow ML
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Fig. 8 ML techniques in Agricultural Big Data 

algorithms to perform their work. According to Cravero et al. (2022b), the most 
commonly used ML techniques in Agricultural Big Data are Neural Networks 
(NNs), Random Forest (RF), Support Vector Machine (SVM), and Decision Tree 
(DT). Figure 8 shows a list of ML techniques and the number of times they have 
been used in Big Data in the last 5 years. 

Some examples of their use are listed below. 

3.3.1 Neural Networks 

NNs are an excellent choice for working with large datasets because they have 
great flexibility to adapt to these, reducing the error produced by adjusting the 
weights and biases of each neuron based on the data it is trained with (Priya 
and Ramesh 2020). Saggi and Jain (2022) implemented the NN and compared 
its performance alongside other ML techniques. The NN was the best-performing 
technique, avoiding model overfitting and demonstrating excellent capabilities for 
estimating daily crop evapotranspiration. 

Doshi et al. (2018) used NNs for automatic crop recommendation due to its 
built-in support for multilabel classification. In this task, the technique performed
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well with 91% classification accuracy. Shelestov et al. (2020) found that the most 
sensitive parameters for the classification accuracy of an NN are the number of 
hidden neurons and the regularization of alpha coefficients. 

3.3.2 Random Forest 

Some of the applications of RF are crop prediction, crop yield under adverse 
conditions, identification of climatic variables, and analysis of agriculture-related 
problems such as nitrogen emissions or drought prediction (Priya and Ramesh 
2020). Furthermore, RF is ideal for working with massive datasets, as it needs less 
time for data preprocessing, is proficient in global time complexity, and works well 
with sparse datasets (Priya and Ramesh 2020). 

Doshi et al. (2018) implement RF for crop recommendation due to its built-in 
support for multiple-label classification (MLC), highlighting that this technique is 
effective for handling missing values and is resistant to model overfitting. The latter 
feature is one of the reasons for its implementation in the classification of South 
Asian croplands (Gumma et al. 2020). 

3.3.3 Support Vector Machine 

SVM is suitable for handling small datasets that do not contain too many outliers, 
and its performance is increased when the dimensional space of the data is ample. 
However, the attributes are lower (Priya and Ramesh 2020). 

In Nóbrega et al. (2018), different ML algorithms, including SVM, are compared 
to detect the conditions of an animal concerning posture data. Of the analyzed 
algorithms, SVM was the one that presented the worst performance; however, its 
results do not differ noticeably from the rest of the algorithms, and all of them had 
over 95% accuracy. A similar case was observed in Yang et al. (2018), where after 
comparing different ML techniques for predicting the growth state of a plant, it 
was observed that SVM had the lowest accuracy, although this was above 90%. In 
both cases, SVM was not the most suitable technique for the tasks performed, but it 
demonstrated a good level of accuracy. 

Shelestov et al. (2020) found that the most sensitive parameters of SVM are 
gamma, C, and the type of kernel used. They performed measurements on the latter 
using Radial Basis Function (RBF) and sigmoid kernels and found RBF to be the 
most appropriate for crop classification tasks. 

3.3.4 Decision Tree 

DT is efficient in terms of computation and scalability. Moreover, its performance 
increases when the data are uncorrelated (Priya and Ramesh 2020). The efficiency 
of this technique is proven in Nóbrega et al. (2018), where they compared different
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ML techniques for the classification of an animal’s posture using data collected 
by an IoT collar. Of the compared techniques, the authors highlighted DT due to 
the low computational time required for model training and the easy subsequent 
interpretation of the model; they also presented one of the best values of accuracy 
and area under the curve (AUC) of the compared techniques. 

On the other hand, Yang et al. (2018) investigated the prediction of the growth 
status of a plant using different ML techniques. The authors concluded that DT was 
the best algorithm compared due to the low time consumed and the high level of 
accuracy presented. 

4 Challenges and Future Work 

In general, data analysis for agriculture brings many benefits (Chergui et al. 2020) 
such as:

• Providing the farmer with helpful information and helping him to make decisions 
on how much, when, and where to apply nutrients, water, seeds, fertilizers, and 
other agricultural chemicals and inputs.

• Protecting the environment and helping to obtain healthy products, as it allows 
varying the number of inputs (irrigation, fertilizers, and pesticides) and even 
seeds used for crop production, and applying those inputs in exact amounts in 
each field.

• Data-driven management gives farmers access to sophisticated management 
solutions against climate change and other environmental challenges and natural 
phenomena. Thanks to these solutions, farmers can continuously monitor crop 
health and receive timely alerts about potential pests, disease problems, or 
climate change.

• From a marketing point of view, farmers can also benefit from advanced models 
that provide information about the market and which products could bring them 
the most profit. 

According to Basnet and Bang (2018), there are still many challenges for 
data analysis in agriculture. The authors explain that improved technology will 
add more precision, accuracy, speed, and reliability to data analysis and reduce 
costs. On the other hand, it is crucial to achieve technology standardization to 
improve communication between agricultural equipment and research and open-
source projects to improve the quality of technological solutions. The authors also 
explain that user-friendly technical solutions are required, as they must be adapted to 
local contexts and needs. It is also essential to improve the understanding of the use 
of Big Data by systematically promoting the concept, its practical use, the need for 
multidisciplinary work, and the value of its use, expanding education and awareness 
of the use in data analysis with Big Data. 

Lassoued et al. (2021) analyzed the impact and potential of Big Data in agricul-
ture. They identified several challenges related to data sources because not all value
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chain segments capture data in the same way. For example, they noted that there is 
no standard for data capture, which makes it difficult to harmonize and compile data 
from various sources. Another major obstacle identified is data governance. While 
most experts surveyed were willing to share their data under certain conditions, 
many expressed concerns about data privacy, security, cybercrime, and intellectual 
property protection. 

On the other hand, Bhat and Huang (2021) examined the challenges of data 
collection and analysis. The combination of data from various sources raises 
concerns about the quality of information and its fusion. In addition, the volume 
of information collected causes safety and security concerns. The datasets collected 
are vast and complex, making it challenging to handle standard intelligent analysis 
procedures. These methods often do not work well when applied to agricultural 
data. The authors expect scalable and versatile methods to adapt to large amounts 
of information. Weersink et al. (2018) explained that data must be collected 
consistently and comply with protocols that allow them to be pooled on centralized 
servers. These servers must be protected from cyberattacks while masking the 
identity of the operations managers. 

Regarding the use of ML in Big Data, a major challenge is to cope with a large 
volume of data. For example, the SVM algorithm has a training time complexity of 
O(n3) and a space complexity of O(n2), where n is the number of training samples. 
An increase in the value of n will drastically affect the time and memory required 
to train this algorithm and may even become computationally infeasible for large 
datasets. 

A common assumption of ML is that algorithms can learn better with more data 
and provide more accurate results. However, massive datasets impose several chal-
lenges because traditional algorithms were not designed to meet such requirements 
(Cravero et al. 2022b). 

In Agricultural Big Data, a combination of technologies is required, as data from 
experts, videos, and satellite images will be processed in batches. On the other hand, 
data from social networks and sensors will be processed by streaming. In the case 
of cloud-based technologies, there are several tools for ML use: Microsoft Azure 
Machine Learning, now part of Cortana Intelligence Suite; Google Cloud Machine 
Learning Platform; Amazon Machine Learning; and IBM Watson Analytics (Yang 
et al. 2017). Established vendors offer these services, which provide scalability and 
integration with other services and platforms. 

Other challenges include understanding the statistical characteristics of the 
data before applying algorithms and the ability to work with larger datasets 
(Sukumar 2014). In addition, specific knowledge is required for certain problems in 
agriculture, such as increased production, quality improvement, and climate change, 
among others. 

The future of Agricultural Big Data development and ML use is promising. This 
future will increase the effect of flexible Big Data architectures that consider various 
alternative ML techniques depending on the conditions of the data generated. This 
increase is possible thanks to developed and constantly evolving technologies. On 
the other hand, cloud computing will increase due to new professionals’ training and
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network speed improvement. Cloud computing and other tools will include more 
alternative ML techniques, which will facilitate flexibility. 

As for ML techniques, the use of DL and other techniques mentioned in this 
chapter, which were adapted to specific contexts due to problems with data volume, 
processing speed, variability, and veracity, will increase. However, these problems 
can be solved by classifying data storage through the Data Lake. 

Future research should focus on implementing appropriate decision support 
systems for accurate crop decisions, natural resource management, and climate 
change mitigation. 
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Sensing Systems for Precision Agriculture 

Laura García, Sandra Sendra, and Jaime Lloret 

Abstract Precision agriculture (PA) is becoming a staple part of the current pri-
mary sector. PA systems are comprised of different elements that allow monitoring 
variability in different agricultural parameters, transmitting data, and performing 
data storage and analysis. Sensing systems for PA focus primarily in acquiring 
all the information the PA system needs to gain knowledge of the state of the 
fields, the crops, the weather, or the available resources. All this information is 
key to providing farmers with predictions and suggestions to improve the quality 
and quantity of the produce as well as to aid in increasing the sustainability of 
agriculture. This chapter details the current state of sensing systems for PA from 
its evolution as a topic of research interest to the future trends to be expected in the 
next few years. Moreover, an overview of an architecture of a PA sensing system 
with complete functionalities is provided, as well as an overview of the sensing 
devices and technologies available for each PA domain. 

Keywords Internet of Things (IoT) · Sensors · Precision agriculture (PA) · 
Monitoring · New technologies · Wireless sensor network (WSN) 

1 Introduction 

The introduction of technology in agriculture dates from the time humans began 
performing agricultural activities. This technology has evolved from learning 
planting schedules, learning when to irrigate, forms of irrigation, or how to fertilize, 
to the addition of chemicals to control pests, the evolution of tools and machinery, or 
the introduction of devices able to communicate with each other. This evolution was 
motivated by the will for increasing the yield, the quality, and the resilience of the 
produce so as to feed more people and trade for other goods with the excess produce. 
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Therefore, agriculture nowadays is still on the path of evolving with the addition 
of Internet of Things (IoT) solutions and the incorporation of techniques such as 
artificial intelligence (AI) that analyze the information collected from different 
sensors deployed on the fields to automate management and perform predictions. 
This introduction of sensors and communication devices with the aim of managing 
spatial and temporal variability in agriculture has received the name of precision 
agriculture (PA) (Pierce and Nowak 1999). Thus, a successful implementation of a 
PA system is able to assess, understand, and manage variability in agriculture aiming 
for low inputs, high efficiency, and sustainability (Zhang et al. 2002). 

The use of sensors is compulsory to deploy a smart agriculture system. Sensors 
are the devices that monitor variability for each factor or parameter of interest. 
Variability can be present in yield regarding historical and present distributions 
(Zhang et al. 2002). Field variability is related to the topography with factors 
such as elevation or slope. Soil variability depends on properties such as moisture 
content, water-holding capacity, conductivity, texture, or depth. Crop variability 
regards water stress, plant height, leaf-area index, nutrient deficits, or chlorophyll 
content. There is also variability in management such as crop rotations or the 
seeding process. Lastly, variability can be detected as well in other factors such as 
plant disease, pests, weeds, or the effects of adverse weather conditions. Each factor 
is monitored with the use of one sensor; therefore, sensors in PA may be part of 
multiparametric probes or devices comprised of an array of sensors that characterize 
one of the main areas of variability. The area of study or management zone (Zhang et 
al. 2002) is comprised of a part of the field that presents a homogeneous combination 
of crop-related factors. Thus, the design of the sensing deployment must consider 
the characteristics and number of management zones to determine not only the type 
of sensors that are needed but also the form in which the devices are connected to 
each other, and the information is transmitted. 

Although sensors are the principal components of sensing systems for PA, 
the system would not be useful without the addition of devices to perform data 
storage, data analysis, and data transmission tasks. Most sensing devices usually 
include an SD module to store the data even if the system transmits information 
in real-time. This is done to avoid losing data in case of malfunction (Lloret et al. 
2021). Furthermore, intermediate devices are needed to carry the data to the final 
destination. This way, a sink node or gateway is used to receive the data from the 
sensing devices and forward it to the database or even the final user, depending 
on the architecture design of the system. The selection of the communication 
technology must consider the distances between devices. Wired communications 
are usually avoided due to high costs and the interferences they cause to the 
machinery and the common activities in an agricultural field. Long-range wireless 
communications include technologies such as 3G, 4G, or LoRa. However, shorter-
range wireless communication technologies encompass technologies such as Wi-Fi 
or ZigBee. Although many sensing systems proposed in literature choose to use 
only one wireless technologies, the creation of heterogeneous networks allows 
addressing specific needs by incorporating several technologies (Lloret et al. 2021).
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This chapter provides a detailed view on the current state-of-the-art regarding 
sensing systems for precision agriculture. The rest of the chapter is organized as 
follows. Section 2 presents the evolution of sensing systems for PA in research. 
Section 3 presents an architecture for PA considering all domains of sensing 
systems. The sensing technologies employed in each dimension are discussed in 
Sect. 4. Section 5 presents the current challenges and future trends of sensing 
systems for PA. Lastly, the conclusion is provided in Sect. 6. 

2 Evolution of Sensing Systems for Precision Agriculture 

The concept of deploying electronic devices incorporating sensors to monitor all 
the aspects of agriculture that can be measured began becoming reality no more than 
25 years ago. Since then, the interest in providing agriculture with smart capabilities 
has been growing. Figure 1 presents the historic of works in the literature on sensing 
systems for PA according to (WorldWideScience n.d.). As it can be seen, interest in 
this area experimented moderate growth up to 2011 before dropping for the next 
3 years. Since 2015, the tendency has been positive with exponential growth in the 
last few years. 

The most mentioned topics regarding sensing systems for PA in academic works 
according to (WorldWideScience n.d.) are presented in Fig. 2. Remote sensing is the 
most mentioned topic with sensors and unmanned vehicles being the most relevant 
subtopics. Control and report are the next most mentioned topics which are related 
to tasks such as monitoring. The term low-cost is another topic. The development 
of low-cost sensing systems is prevalent in smart agriculture literature, where most 
papers use low-cost sensors to obtain data on weather conditions, qualities of the 
soil, or the state of the plants (García et al. 2020a, b). Lastly, unmanned aerial 

Fig. 1 Historic trend of interest in sensing systems for PA of academic literature
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Fig. 2 Topics and subtopics of the academic works regarding sensing systems for PA 

vehicles (UAVs) are a topic on their own as they are widely used for detection 
activities and to collect information so as to calculate vegetation indices. 

3 Architecture of Sensing Systems for PA 

PA is comprised of numerous domains or areas that can be monitored. Although 
most proposals in literature only focus on one or two of them, a complete sensing 
system for PA would include all the technologies available to monitor as many 
parameters affecting the crop as possible. These domains are soil, weather, water, 
plant, chemicals, and insects. The aim of classifying the parameters regarding agri-
culture that present special or temporal variability is to facilitate the understanding



Sensing Systems for Precision Agriculture 547

Fig. 3 Generic architecture of sensing systems for PA 

of the main aspects of interest in sensing systems for PA. This classification is 
evolving as new subdomains are added as a result of the latest research on PA. 

Figure 3 presents a generic architecture of sensing systems for PA that includes 
all domains. As it can be seen, there are specific nodes for monitoring the parameters 
of each domain in different areas. These nodes are comprised of a microcontroller 
that has the program to operate the device that may be part of an embedded 
system that includes the communication module, and the sensors that monitor each 
parameter. External storage like SD cards, modules such as a clock, or powering 
elements such as solar panels or batteries are elements that can be included as 
well. However, not only electronic devices with sensors can be used for sensing 
activities, but manned vehicles such as tractors, unmanned vehicles such as drones, 
and satellites are also used to gather data from the fields. Regardless of the platform 
where the sensor is installed, the device must consider the characteristics of the 
environment where it is going to be deployed so as to be placed inside a good 
encapsulation that protects it from physical harm. 

These devices are then deployed on the fields. The type of plant and characteris-
tics such as height and volume of foliage should be considered when designing the
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deployment (García et al. 2021) as the optimal height of the sensing device, or the 
placement of the antenna if it is not embedded, may vary due to foliage interferences 
in the wireless connection. Furthermore, the selection of the wireless technology 
used to forward the information gathered by the sensors also depends on the location 
of the device, the distance to its neighbors, the closest gateway, or the energy 
consumption. Thus, areas where many devices are deployed close to each other, 
for example, to monitor water quality (Lloret et al. 2021), may use medium-range 
wireless technologies such as Wi-Fi or ZigBee, which have coverages typically 
below 100 m. Other devices located in isolated areas, such as weather stations, 
may use long-range technologies such as LoRa or 3G/4G if there is an available 
infrastructure, which have coverages of kilometers. If energy consumption is the 
aspect of the network design with more priority, ZigBee and LoRa are wireless 
technologies, for medium and long-range coverage respectively, that are advertised 
as low power. However, it is important to consider the configuration as, in the case of 
LoRa for example, the selection of the Spreading Factor (SF) and bandwidth affects 
the airtime of transmitting a message and thus the energy required to send it. 

The data is forwarded to the gateway either by direct communication or routed 
through various nodes. This is dictated by the topology of the network, such as star 
or mesh topologies. The gateway then sends the information through the Internet to 
the database for storage and later processing. This information may be forwarded as 
it is received or preprocessed using edge computing to reduce the amount of data to 
be transmitted, and thus reduce energy consumption, or to determine some real-time 
actions to be carried out by deployed actuators. The data is usually processed with 
the use of algorithms, in particular, AI algorithms are currently popular for uses 
such as crop selection aided by a decision support system, optimization or resources 
such as the reduction of water or pesticide usage which improves the sustainability 
of agriculture, detection of plant disease or pests, and management of crops and 
related risks (Bhat and Huang 2021). However, the use of AI for PA also presents 
some challenges such as the computing capabilities of the available infrastructure or 
the collection and management of Big Data. The results of processing the data can 
be accessed by the user through web services or by receiving alerts and notifications 
by SMS or instant messaging applications like Telegram (Marques Mostaço et al. 
2018). 

However, traditional farmers may still have challenges using IoT solutions 
for agriculture based on data analytics and machine learning (Akhter and Sofi 
2021). Specifically, the results from a survey performed in India identified the 
following challenges. The key challenges regarding the commercial aspects of IoT 
are the costs, loss of manual employment, and the absence of immediate results 
after deploying an IoT system. The challenges regarding sectoral aspects are the 
size of the individual management zones, the interoperability of the available 
devices, and the supervisory challenges regarding data privacy and management. 
Regarding the technical aspects, the main challenges are the Internet connectivity 
in rural areas, data security, scalability and configuration, reliability, the selection 
of the technology to be used, and the optimization of scarce resources such as 
power usage. Lastly, the challenges regarding data analytics are data integration,
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knowledge mining, and visualization. It is, therefore, important to consider the real 
adoption possibilities of the proposed PA systems and promote training courses 
and the design of low-cost sensing systems to increase the chances of extending 
its use throughout the world and thus improve production, produce quality, and a 
sustainable use of resources. 

4 Sensing Methods for PA Dimensions 

PA typically involves the use of various sensing methods to gather data on crop 
growth, soil conditions, and weather patterns. Some common sensing methods used 
in precision agriculture include (Sishodia et al. 2020): 

• Remote sensing: This method involves the use of aerial or satellite imagery to 
gather information on crop growth, soil moisture, and other factors. 

• Ground-based sensors: These sensors are placed directly in the field and are used 
to measure factors such as soil moisture, temperature, and nutrient levels. 

• Weather stations: These stations gather data on weather patterns such as temper-
ature, precipitation, and wind speed, which can be used to optimize crop growth 
and management. 

• Yield monitoring: This method involves the use of sensors on farm equipment 
to measure crop yield in real-time, allowing farmers to optimize planting and 
harvesting. 

• Drones: Drones equipped with cameras and sensors can be used to gather data 
on crop growth and soil conditions, as well as to spray crops with pesticides and 
fertilizers. 

All these methods have their own advantages and limitations. Therefore, the 
selection of the best method to use depends on the specific crop, the state of the 
field, and the goals of the farmer. 

4.1 Soil Parameters 

Measuring soil parameters is crucial in agriculture because it helps farmers under-
stand the health and fertility of their soil. By analyzing soil samples, farmers 
can determine the pH level, moisture and temperature, among others, which are 
all important factors that affect plant growth and crop yields (Fazekaov 2012). 
Nutrient content is another important soil parameter to measure. Soil samples 
can be analyzed for the presence of essential nutrients like nitrogen, phosphorus, 
and potassium, as well as micronutrients like zinc and copper. Monitoring soil 
parameters is important for a variety of reasons. It can help farmers determine 
the best time to plant and harvest crops, as well as the best types of crops to 
grow in a specific area. It can also help to identify and address issues such as
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soil erosion and nutrient deficiencies, which can impact crop yields and overall soil 
health. Additionally, monitoring soil parameters can aid in conservation efforts by 
providing information on the impacts of land use changes, such as urbanization or 
deforestation, on soil conditions. Overall, monitoring soil parameters is essential 
for ensuring a sustainable agriculture and land management. Due to its importance, 
this subsection presents the main parameters to be monitored in soil with the aim of 
ensuring the correct development of crops. 

4.1.1 pH Level in Soil 

A soil’s pH level, which measures its acidity or alkalinity, can greatly impact the 
availability of nutrients for plants. Measuring the pH level of soil is a simple process 
that can be done using a pH meter or a pH test kit (Sumner 1994). 

• pH Meter: A pH meter is an electronic device that measures the acidity or basicity 
of a liquid solution, such as soil. To use a pH meter, simply insert the electrode 
into the soil sample and read the pH level displayed on the meter. 

• pH Test Kit: pH test kits are available in the form of paper strips or liquid 
reagents. To use a paper strip, simply dip the strip into the soil sample and 
compare the color change to the color chart provided. For liquid reagents, mix a 
small amount of soil with the reagent and compare the color change to the color 
chart provided. 

The soil pH can vary depending on the location in the soil. Therefore, it is 
recommended to take several readings from different parts of the soil and average 
the results to get a more accurate reading. It is also important to note that soil pH 
can be affected by various factors such as fertilizer application, liming and other 
management practices. Therefore, measuring soil pH regularly helps to ensure that 
the soil pH remains within the optimal range for the plants you want to grow. 

In general, most plants prefer a soil pH between 6.0 and 7.0, which is slightly 
acidic to neutral. However, some plants have different pH requirements, so it is 
important to know what pH range is best for the plants you want to grow. If the pH 
level is too low or too high, it can be adjusted by adding lime to raise the pH or 
sulfur to lower the pH. However, it is important to note that changing the pH level 
of the soil can take several months to a year, so it is important to plan ahead and 
make adjustments well in advance of planting. 

4.1.2 Soil Moisture 

Measuring soil moisture involves determining the water content in soil (Sharma et 
al. 2018). There are various methods to measure soil moisture, including: 

• Gravimetric method: This method involves taking a soil sample, drying it in an 
oven, and then weighing it to determine the moisture content.
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• Time domain reflectometry (TDR): This method uses a device that sends an 
electrical pulse into the soil and measures the time it takes for the pulse to return. 
The time is used to calculate the soil moisture content. 

• Neutron probe: This method involves using a neutron source to measure the 
amount of hydrogen (which is associated with water) in the soil. 

• Capacitance method: This method uses a sensor that measures the ability of the 
soil to hold an electrical charge, which is related to the soil moisture content. 

• Gypsum blocks: These are small blocks made of gypsum salt, which absorb 
moisture from the soil and change their weight in proportion to the amount of 
moisture present. 

• Soil moisture sensors: These are electronic devices that measure the water 
content of the soil by measuring the electrical resistance or capacitance. 

Regardless of the method used, it is important to take multiple measurements in 
different areas of the field or garden to get an accurate representation of the soil 
moisture content. It is also important to consider factors such as soil texture, plant 
growth stage, and weather conditions to get an accurate reading of the soil moisture. 
And regularly monitoring soil moisture will help farmers and gardeners to make 
informed decisions about irrigation and fertilization. 

4.1.3 Soil Temperature 

Soil temperature is an important factor in agricultural production, as it can influence 
the growth and productivity of crops and other plants. Measuring soil temperature 
is essential to ensure optimal growing conditions, and can be done with a variety 
of methods. The following are the most common methods used to measure soil 
temperature (Yin et al. 2021): 

• Soil temperature is to use a thermometer specifically designed for soil use. This 
type of thermometer is usually inserted into the soil using a metal probe, and 
is able to measure temperature to a specific depth. The thermometer should be 
inserted at least 4–6 inches into the soil, and should be left for several minutes to 
allow for an accurate reading. The thermometer should also be placed in an area 
of the soil that is representative of the entire field, and should be periodically 
moved to different locations in the field to ensure an accurate overall reading. 

• Soil temperature logger: This device is typically placed in the soil and records 
temperature readings over time. The logger is able to take readings at a variety of 
depths and can be used to track trends in soil temperature (Tongrod et al. 2009). 

• Handheld infrared thermometer: This type of thermometer uses infrared light to 
measure the temperature of the soil (Martínez et al. 2016). 

• Remote sensing technologies: It is possible to use satellites, aircraft, and drones 
for measuring soil temperature. These methods are advantageous because they 
allow for continuous monitoring of soil temperature over large areas in a 
short period of time. Remote sensing technologies are also more cost-effective
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than manual or thermometer measurements, and can provide more detailed 
information about soil temperature (Bhat and Huang 2021). 

As a summary, measuring soil temperature is an important part of understanding 
the effects of climate change on crop growth and assessing soil health. Accurate 
and reliable measurements of soil temperature can be obtained using a thermometer 
or temperature sensor, by hand, or with remote sensing technologies. By using 
these methods, agriculture professionals can gain a better understanding of soil 
temperature and how it affects crop growth and development. 

4.2 Weather Monitoring 

Weather monitoring in farming systems is a crucial aspect of modern agriculture. 
With the help of various weather monitoring technologies, farmers can predict 
and prepare for weather events that may affect crop growth and yields. This 
includes monitoring temperature, precipitation, wind, and solar radiation, among 
other factors. One of the most commonly used weather monitoring technologies in 
farming systems is the weather station. These stations are typically located on the 
crop. The data collected by these stations is used to predict weather patterns and 
to make informed decisions about crop management. Another important weather 
monitoring technology used in farming systems is remote sensing. This technology 
uses satellites, drones, and other aerial platforms to collect data on crop growth and 
weather patterns. This data can be used to create detailed maps of crop growth and 
to detect areas of stress or disease. 

Remote sensing can also be used to monitor soil moisture, which is critical 
for crop growth and water management. Climate forecasting (Graham et al. 2011; 
Ukhurebor et al. 2022) is also an important aspect of weather monitoring in farming 
systems. With the help of computer models and other forecasting tools, farmers can 
predict weather patterns and plan accordingly. For example, if a farmer knows that 
a drought is likely to occur in the coming months, they can make plans to conserve 
water and to plant drought-resistant crops. 

Smart irrigation systems are also becoming increasingly popular in farming 
systems. These systems use weather monitoring data to automatically adjust 
irrigation schedules and to conserve water. They can also detect areas of crop stress 
and adjust irrigation accordingly. This can help to save water, reduce costs, and 
improve crop yields. In addition to the technologies mentioned above, farmers can 
also use various mobile apps and online platforms to access weather data, as well 
as, the use of artificial Intelligence and big data to make informed decisions (El-
magrous et al. 2019; Hachimi et al. 2022). These platforms can provide real-time 
weather data and alerts, as well as historical data and analysis tools. 

This subsection shows the most commonly used technologies for measuring 
environmental parameters such as temperature, relative humidity, rainfall, wind 
characteristics, and solar radiation and luminosity.
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4.2.1 Temperature 

One of the most important parameters in precision agriculture is the measurement 
of ambient temperature. There are several types of temperature sensors available, 
including thermocouples, RTDs (resistance temperature detectors), and thermistors. 
Each type of sensor has its own strengths and weaknesses, and the best choice 
will depend on the specific application (Arman Kuzubasoglu and Kursun Bahadir 
2020): 

• Thermocouples are one of the most popular types of temperature sensors. They 
are relatively inexpensive and can measure temperatures over a wide range, from 
−200 ◦C to +1800 ◦C. They work by measuring the voltage difference between 
two different metals, and are most commonly used in industrial applications. 

• RTDs, or resistance temperature detectors, are another popular type of tem-
perature sensor. They are more accurate than thermocouples, and can measure 
temperatures over a narrower range, from −200 ◦C to +850 ◦C. They work by 
measuring the resistance of a specific metal, such as platinum, and are commonly 
used in laboratory and industrial applications. 

• Thermistors are another type of temperature sensor. They are small, inexpensive, 
and can measure temperatures over a narrow range, from −50 ◦C to +150 ◦C. 
They work by measuring the resistance of a specific material, such as ceramics, 
and are commonly used in consumer and industrial applications. 

In applications, such as agriculture, it may be sufficient to take readings every 
few hours. 

4.2.2 Relative Humidity 

Relative humidity (RH) is an important metric in agriculture as it can affect the 
growth and productivity of crops. There are several ways to measure relative 
humidity in an agricultural setting (Korotchenkov 2019). 

• Hygrometer: One common method is through the use of a hygrometer, which is 
a device that measures the amount of water vapor present in the air. Hygrometers 
can be either analog or digital, and they typically have a range of 0–100% relative 
humidity. 

• Psychrometer: Another way to measure relative humidity is through the use of 
a psychrometer, which is a combination of a thermometer and a hygrometer. 
A psychrometer, also known as a wet-and-dry-bulb thermometer, uses two 
thermometers, one with a wet wick wrapped around the bulb and the other with 
a dry bulb. As the air passes over the wet bulb, the evaporation of water cools the 
bulb and the temperature difference between the two bulbs is used to calculate 
the humidity. 

• Electronic hygrometers: Electronic hygrometers use sensors to measure the 
humidity directly. One common type of sensor is the capacitive sensor, which
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measures the electrical capacitance of a material. As the humidity changes, the 
capacitance of the sensor changes, allowing the humidity to be measured. Other 
types of electronic sensors include resistive sensors, and optical sensors. 

The accuracy of these methods may vary depending on the specific device and 
how it is used, so it is important to calibrate and maintain the equipment properly. 
Determining relative humidity in agriculture is important since high humidity can 
lead to mold and mildew growth, which can damage crops and reduce yields. On 
the other hand, low humidity can cause stress on plants and can make them more 
susceptible to pests and diseases. By monitoring relative humidity levels, farmers 
can take steps to improve the growing conditions for their crops and increase yields. 

4.2.3 Rainfall 

Rainfall is essential for agriculture as it provides the necessary water for plants 
to grow. Adequate rainfall ensures that crops have enough water to support their 
growth and development, while insufficient rainfall can lead to crop failure and 
reduced yields. Additionally, rainfall helps to replenish soil moisture, which is 
important for maintaining soil fertility and supporting the growth of beneficial 
microorganisms. There are several methods for measuring rainfall in agriculture. 
The main ones are the following: 

• Rain gauge: A simple device consisting of a funnel and a measuring cylinder that 
collects and measures the amount of rainfall in a specific location. 

• Tipping bucket rain gauge: A type of rain gauge that uses a bucket to collect and 
measure rainfall. The bucket tips over when it reaches a certain capacity, and the 
number of times it tips is recorded to measure the amount of rainfall. 

• Pluviometer: A device that uses a rotating drum or wheel to measure the amount 
of rainfall. The drum or wheel is turned by the falling rain, and the number of 
turns is recorded to measure the amount of rainfall. 

• Radar: Weather radar uses radio waves to detect the presence of rain, snow, and 
other precipitation. It can provide a more comprehensive view of precipitation 
patterns in a given area. 

• Satellite: Satellites can be used to measure rainfall by measuring the reflectivity 
of the Earth’s surface. This can provide a broad view of precipitation patterns 
over a large area. 

Recent researches are trying to mix new techniques such as fuzzy logic with 
classic measurements methods to obtain more accurate predictions (Janarthanan et 
al. 2021).
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4.2.4 Wind Speed and Wind Direction 

Wind direction and wind speed are important factors to consider in agriculture as 
they can have a significant impact on crop growth and yield. Strong winds can 
cause damage to crops, while weak winds can limit pollination and reduce crop 
yields. Therefore, measuring wind direction and wind speed in agriculture is crucial 
for farmers to make informed decisions about planting, irrigation, and pest control. 
Measuring wind direction and wind speed in agriculture can be done using various 
instruments (Oswald 2019): 

Wind speed can be measured by: 

• An anemometer is a device that measures wind speed by measuring the rotation 
of its cups or blades. 

• A sonic anemometer is a device that uses sound waves to measure wind speed and 
direction. It works by emitting sound waves at a known frequency and measuring 
the time it takes for the sound waves to travel to a distant target and back. The 
wind speed and direction can then be calculated based on the changes in the 
frequency and arrival time of the sound waves. Sonic anemometers are commonly 
used in meteorology and wind energy applications. 

Wind direction can be measured by using a: 

• A wind vane measures wind direction by determining the direction in which the 
wind is blowing. 

• Another tool to measure the wind is a windsock. It is not widely used in 
agriculture. Windsocks are most commonly found at airports to indicate the 
direction and intensity of wind to pilots. They are also used at chemical plants 
and oil rigs where they help to reduce and monitor the risk of air contamination. 
A windsock points in the direction the wind is blowing to, i.e., if the tapered end 
of the windsock is pointing to the north, this indicates a southerly wind. You can 
also estimate wind speed by looking at the angle of the windsock relative to the 
mounting pole as the wind blows through it. Each alternating orange and white 
stripe equal to 3 knots of wind speed, with a fully extended sock indicating wind 
speeds of 15 knots or greater (28 km/h; 17 mph). 

To measure wind speed, it is commonly used the Beaufort scale. It is a widely 
used empirical measure that relates wind speed to observed conditions at sea or 
on land. The scale runs from 0 to 12, with 0 indicating calm conditions and 12 
indicating the strongest winds, such as those found in a hurricane. The Beaufort 
scale provides a simple and intuitive way to describe wind conditions and is still 
in use today, although it has been updated over time to take into account advances 
in technology and understanding of wind phenomena. Using wind direction and 
wind speed information, farmers can make informed decisions about planting and 
harvesting. For example, wind direction and wind speed can affect the pollination of 
crops, so farmers can choose to plant crops that are more resistant to wind damage. 
They can also choose to plant crops that are more resistant to pests and diseases, 
as wind direction and wind speed can affect the spread of these problems. Wind
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direction and wind speed can also affect the irrigation of crops. For example, if the 
wind is blowing in a certain direction, farmers can adjust their irrigation schedules 
to ensure that the water is reaching the crops. This can help to reduce water waste 
and increase crop yields. 

4.2.5 Luminosity or Solar Radiation 

Luminosity is a measure of the amount of light energy received from the sun. It is 
an important aspect of weather monitoring in farming systems as it directly affects 
crop growth and yields (Babatunde 2012; Beyaz and Gül 2022). There are several 
ways to measure luminosity in weather monitoring systems: 

• Pyranometer: One of the most common methods is the use of a pyranometer. A 
pyranometer is a device that measures the amount of solar radiation received on 
a flat surface. It typically consists of a sensor that detects the radiation and a data 
logger that records the data. The sensor is usually placed on a mast or tower at a 
height of around 2 m above the ground. 

• Satellite data: Another method of measuring luminosity is through the use of 
satellite data. Satellites equipped with sensors can measure the amount of solar 
radiation received on a specific area. This data can then be used to create detailed 
maps of solar radiation over a specific region. This method is particularly useful 
for monitoring large areas of land and for predicting weather patterns. 

• Light sensors: It is also possible to measure luminosity by using a light sensor. 
This sensor detects light energy and can be used to measure the amount of light 
received in a specific location. This method is commonly used in indoor farming 
systems to measure the amount of light received by plants. 

In conclusion, weather monitoring in farming systems is crucial for modern 
agriculture. With the help of various technologies and platforms, farmers can predict 
and prepare for weather events, conserve water, improve crop yields, and respond 
to pests and diseases. This can help to increase productivity and profitability in the 
agriculture industry. 

4.3 Plant Welfare and Its Physical Aspect 

E-monitoring of plant diseases is a cutting-edge technology that enables the detec-
tion, monitoring, and management of plant diseases in real-time. This technology 
has seen an exponential growth over the last few years, owing to its ability to 
provide accurate, timely, and cost-effective solutions for plant disease management 
(Mohammad-Razdari et al. 2022). This subsection shows the most common used 
technologies to monitor different features of plants such as diseases, height, and 
foliage.
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4.3.1 Diseases 

Recent advances in the field of e-monitoring have led to the development of 
many innovative applications. The first of these is the use of remote sensing 
technology, which is capable of detecting symptoms of plant diseases in real-
time. This technology utilizes satellites and remote sensing, aircraft, and drones 
(Wójtowicz et al. 2016) to capture images of plants and their environment which 
can be analyzed to identify plant disease symptoms. Additionally, this technology 
can be used to predict the spread and severity of diseases, thus allowing farmers to 
take preventive measures in advance. Another breakthrough in e-monitoring is the 
development of mobile applications. These applications use information gathered 
from satellite images and sensors to provide real-time monitoring of plant diseases. 
The data collected can be used to detect the presence of pests and diseases, as well as 
to monitor their spread. This technology has the potential to alert farmers to diseases 
in their crops before they can cause significant damage. In addition to remote 
sensing, mobile applications, and sensors, e-monitoring has also seen advances 
in the use of artificial intelligence (AI) (Misra et al. 2020). AI-based systems are 
capable of collecting, analyzing, and predicting the spread of diseases in real-time. 
This technology can help farmers make informed decisions about their crops and 
take the necessary steps to control the spread of diseases. Finally, the development 
of predictive analytics has also improved e-monitoring of plant diseases. Predictive 
analytics use data collected from sensors and satellite images to predict the spread 
of diseases and their severity. This technology can be used to provide farmers 
with advanced warning of disease outbreaks and help them to take the necessary 
measures to control them. 

Image processing techniques are also widely used to detect problems in plants 
and they have become increasingly important in the detection of diseases in plants 
(Lloret et al. 2011). These techniques allow for the automated analysis of images of 
plants to detect diseases, saving time, and resources. The first step in the process is 
to collect the images of the plants. This is usually done through the use of cameras 
and other imaging equipment. The images must be of high quality and accurately 
represent the plants. The next step is to pre-process the images, which involves 
cleaning the images, correcting for noise, and making sure the images are properly 
formatted for further analysis. Once the images have been pre-processed, the next 
step is to extract features from the images. This can be done through a variety 
of methods, including edge detection, segmentation, and pattern recognition. By 
extracting features from the images, it is possible to create a model that can be used 
to identify the presence of a disease. The final step is to use the model to detect 
diseases in plants. This can be done through a variety of techniques, including 
supervised learning, unsupervised learning, and deep learning. These techniques 
can be used to classify the images into categories, such as healthy or diseased, 
and can also be used to detect signs of disease. Image processing techniques have 
become essential for the detection of diseases in plants. The process is relatively 
straightforward and can be used to automate the process of disease detection, saving 
time, and resources. By using these techniques, it is possible to create models
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that can be used to detect and classify diseases in plants quickly and accurately 
(Couliably et al. 2022; Jin et al. 2020). Image analysis techniques are particularly 
useful for diagnosing diseases which are difficult to see with the naked eye, such as 
leaf spot or bacterial blight. This technique is also useful for tracking the spread of 
disease over time, as images of plants can be taken at various intervals. 

Interesting techniques based on taking pictures in different spectrum directly 
to the plants are the following ones (Sankaran et al. 2010; Fang and Ramasamy 
2015): 

• Fluorescence spectroscopy: Fluorescence spectroscopy refers to a type of spec-
troscopic method, where the fluorescence from the object of interest is measured 
after excitation with a beam of light (typically in the ultraviolet spectrum). 
Fluorescence spectroscopy can be used to analyze the biochemical composition 
of plants, detect early signs of disease, and measure the effects of treatments 
on the plant. Fluorescence spectroscopy can be used to detect the presence of 
certain chemicals, such as proteins, lipids, and carbohydrates, as well as to 
measure changes in the photosynthetic efficiency of plants. It can also be used 
to distinguish between healthy and diseased plants. Fluorescence spectroscopy is 
a quick, noninvasive technique that can provide insights into the biochemical and 
physiological changes caused by plant diseases. 

• Visible and infrared spectroscopy: Visible and infrared spectroscopy can be used 
to detect the presence of pigments, proteins, and other components in plants. It 
can also be used to measure the amount of water present in plants, and to measure 
the changes in the concentration of water in plants due to disease. This can be 
used to monitor the progress of a disease. Infrared spectroscopy can also be used 
to measure the temperature of the plant material, which can be used to determine 
the degree of disease. 

• Fluorescence imaging: Blue-green fluorescence is a phenomenon observed in 
some plants under certain conditions. It is caused by the presence of certain 
compounds in the plant, such as anthocyanins, carotenoids, and other pigments. 
Chlorophyll fluorescence refers to the light emitted from chlorophyll molecules 
when they are exposed to certain wavelengths of light. This fluorescence is 
used by plants to help with photosynthesis. Both blue-green fluorescence and 
chlorophyll fluorescence can be used to detect certain diseases in plants. For 
example, blue-green fluorescence can be used to detect disease caused by fungi, 
bacteria, and viruses, while chlorophyll fluorescence can be used to detect 
diseases caused by nutrient deficiencies or environmental stress. Both of these 
methods can help to provide an early warning of disease, allowing for more 
timely treatment and prevention. 

• Hyperspectral imaging: Hyperspectral imaging is a technique used to detect 
and identify plant diseases, as it allows for the analysis of a large range of 
wavelengths that are emitted or reflected from the plant. In the hyperspectral 
imaging, the light reflected for each pixel is registered for a range of wavelengths 
in the electromagnetic spectrum. The resulting information is a set of pixel values 
(intensity of the reflectance) at each wavelength of the spectra in the form of an
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image. Each spectral region provides unique information about the plant. This 
method allows for the detection of subtle changes in the spectral signature of the 
plant, which can indicate the presence of a disease. By analyzing the spectral 
signature of the plant, researchers can identify the presence of specific pigments, 
proteins, and other compounds. This can enable the detection of plant diseases at 
an early stage and allow for more effective management practices. Additionally, 
hyperspectral imaging can be used to identify the causes of disease, such as 
environmental conditions, pests, and nutrient deficiencies. 

• Gas chromatography (GC): A completely different non-optical indirect method 
for plant disease detection involves the profiling of the volatile chemical signature 
of the infected plants. It can be used to identify different components within 
a sample and detect the presence of particular volatiles. GC is also used to 
differentiate between plant diseases and to provide a more accurate diagnosis. 
The pathogen infections of plants can result in the release of specific volatile 
organic compounds (VOCs) that are highly indicative of the type of stress 
experienced by plants, i.e., GC can be used to detect VOCs in the air surrounding 
a diseased plant, which can help to diagnose a particular disease. Additionally, 
GC can be used to detect and quantify metabolites in the plant tissue which can 
be used to assess the severity of the disease and the progress of the disease. 

Finally, there are modern techniques based on laboratory assays which are 
extensively used to detect diseases in plants. These assays use a combination 
of chemical and biological tests to detect the presence of specific diseases. For 
example, PCR (polymerase chain reaction) can be used to detect the presence of 
a particular virus or bacteria (Tatineni et al. 2008). This technique is faster and 
more accurate than traditional methods of disease detection and can be used to 
quickly detect and identify a wide range of diseases. Finally, molecular detection is a 
modern technique that uses deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) 
sequencing to identify the presence of a particular disease (MacKenzie et al. 1997). 
This technique is particularly useful for identifying new or emerging diseases, as 
it can quickly and accurately identify a wide range of pathogens. This technique is 
also useful for monitoring the spread of diseases over time, as the same sample can 
be used to compare the pathogen’s DNA or RNA sequence at different points in 
time. 

4.3.2 Height 

Height is an important factor in precision agriculture since it can help to identify 
and measure the amount of crop residue, weeds, and other materials in the field. It 
can also be used to determine the exact amount of fertilizer and other inputs needed 
for optimal crop growth. Height can assist with mapping the field and creating an 
accurate record of the field’s condition over time. In order to measure height, it is 
possible to use the most simple methods such as a tape measure up to the most
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modern ones based on AI and deep learning techniques. The following are the most 
modern methods used in PA: 

• Machine vision: Machine-vision based height measurement in crops involves the 
use of stereo cameras and software to capture images of the crop and measure 
the height of the plants. The images are then analyzed to determine the height 
of each plant and generate a report. This can be used for tracking the growth of 
the crop, understanding the health of the crop, and predicting yields. The height 
measurements can also be used to inform decisions about irrigation, fertilization, 
and pest control (Kim et al. 2021). 

• Light detection and ranging (LIDAR): LiDAR technology is a very accurate 
and reliable way of measuring the height of crops. It uses a laser beam to 
measure distances between the ground and the crop canopy, allowing for precise 
measurements without the need for manual labor or tedious surveying methods. 
In addition, LiDAR can provide detailed 3D models of the crop canopy, allowing 
for more accurate estimates of crop yield and crop health. LiDAR can also be 
used to detect changes in the terrain, allowing farmers to better manage their 
crop fields and maximize their yields (Canata et al. 2016). 

• UAV-based Remote Sensing or drones: A drone can be used to measure the height 
of a plant. There are several methods; however, the most interesting one is the 
system based on a laser scanner. The system takes different series of data and 
processes and analyzes the data to determine the distance from the drone to the 
ground and to the top of the crops (Anthony et al. 2014). 

In addition to the aforementioned advantages of measuring the height of a crop, 
quantifying the height of a plant can also help to detect diseases, pests, and other 
issues that may be affecting crop production, allowing for quick action to be taken 
to minimize any losses. 

4.3.3 Foliage 

Foliage monitoring in plants and trees has become increasingly important to ensure 
the health and growth of these essential elements of the environment. With the help 
of modern techniques, scientists and land managers can monitor foliage in real-time, 
collecting data that can be used to assess the health of both individual trees and entire 
forests. Foliage observation can also help to detect pests and diseases in plants and 
trees. The common parameters measured are changes in leaf color, shape, and size 
(Zhang et al. 2012). Considering the importance of the physical aspect of plants and 
trees in the detection of problems and diseases in a crop, this subsection describes 
some of the most modern methods to observe changes in foliage of plants and trees 
of different species. There are several modern techniques used to monitor foliage, 
including aerial photography and remote sensing, digital imaging, spectroscopy, and 
drone technology:
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• Aerial photography and remote sensing are two of the most commonly used 
methods for foliage monitoring. By using aerial photography, images of a large 
area can be captured and then analyzed for changes in foliage (Megat Mohamed 
Nazir et al. 2021). 

• Remote sensing takes this a step further by using satellite imagery to detect subtle 
changes in foliage. This allows for more accurate information on foliage health 
and changes in different areas. 

• Digital imaging is another technique used for foliage monitoring. This involves 
capturing images of foliage with a digital camera and then analyzing the images 
for changes in color, size, and shape. Digital imaging is especially useful for 
determining the presence of pests and diseases in a particular area. 

• Spectroscopy is a type of remote sensing which utilizes the electromagnetic 
spectrum to measure the spectral reflectance of foliage. This method allows for 
highly accurate measurements of foliage health, as it can measure subtle changes 
in color, texture, and structure. Spectroscopy is also useful for determining the 
presence of specific elements in the soil, such as nitrogen and phosphorus. 

• Finally, drone technology is a relatively new method which has been used for 
foliage monitoring. By using a drone, images of a large area can be captured 
and then analyzed for changes in foliage. This method is especially useful for 
surveying large areas of land, as it can cover a wide area quickly and accurately. 

In addition to sensors, advanced computer vision algorithms and convolutional 
neural networks (CNN) are used to analyze the data collected by the sensors. These 
algorithms can detect and identify individual tree species (Kumar et al. 2012), as 
well as measure the volume of branches (Zhang et al. 2020), size, shape, and health 
of each tree’s foliage. This data can be used to assess the overall health of a forest 
and to identify potential problems that could be addressed. 

Finally, it is important to highlight that Signal propagation of electromagnetic 
waves can also be used to determine the foliage loss in trees. Because plant matter 
has a degree of signal strength absorption, it is relatively easy to determine the 
amount of foliage lost in a set of trees. To do this we must determine the signal 
levels received by a receiver in the absence of vegetation and see how this value is 
modified due to the presence of a greater quantity of vegetation (Anzum et al. 2021; 
Lloret et al. 2009). 

4.4 Water 

Water is the most important resource in agriculture. However, water availability and 
managing the distribution and usage of water are not the only concern regarding 
water. Water in rivers, lakes, or groundwater may be polluted from fertilizers, 
pesticides, oils, and fuels, or different types of waste discarded into these masses of 
water. All this pollution makes water unsafe for human consumption, and irrigation 
with this type of water may result in unsafe and low-quality produce. Most PA
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systems focus on water management but do not include sensors to monitor water 
quality. One of the reasons is the need for chemical processes that cannot be done 
remotely. However, new sensors for water quality monitoring based on the study 
of physical properties have been developed in recent years (Rocher et al. 2021). 
Although they may have been proposed for other uses, these sensors can be added 
to PA sensing systems to add more functionalities and improve food security. 

As water scarcity has been one of the main concerns in PA regarding the use 
of water, the use of wastewater for irrigation has been considered. Wastewater is 
collected by the sewage system and transported into a water treatment plant to clean 
it, so it can be released back into nature. Although the resulting water is not good for 
human consumption, some studies indicate that the use of treated wastewater would 
be safe for the irrigation of crops (Zhang and Shen 2019). However, although the 
water may have passed quality control before its release, monitoring water quality 
before irrigation adds another safety layer and helps in the detection of leakages of 
untreated or not enough treated water. 

The following sensors can be included in a multiparametric sensing device to 
obtain real-time data on water quality: 

• Turbidity: The use of water with high turbidity for irrigation may cause the 
reduction of hydraulic conductivity in the soil, which leads to increased surface 
pollution due to surface flow (Jeong et al. 2016). Germs and bacteria can also be 
attached to suspended solids and the reduction of turbidity levels can also reduce 
the germs in the water. Specifically, vegetables are susceptible to germ infection 
and thus some countries such as Spain or Greece have turbidity standards for 
irrigation water, 10 NTU (Nephelometric Turbidity Units) for vegetables, and 
2 NTU for directly consumed crops respectively. Therefore, turbidity sensors 
should be considered in PA sensing systems to ensure the quality of the water 
remains within the standard. 

Turbidity sensors are based on optical parameters and can be based on 
nephelometry or optical-backscatter (OBS) (Rasmussen et al. 2009). They are 
available in a wide variety of price ranges, from low-cost sensors to high-end 
devices. The sensor presented by (Parra et al. 2018) has a price below 5 AC and 
is comprised of color and infrared LEDs and their detectors, encapsulated in a 
waterproof case. The LEDs are placed on both sides of a translucent cylinder 
where the water flows through. Other light sources such as optical fiber have also 
been used in turbidimeters (Bin Omar and Bin MatJafri 2009). 

• Ph: Changes in the pH of water can lead to less plant growth by affecting nutrient 
absorption, photosynthesis, or morphology (Zhao et al. 2013). It can also affect 
flower coloration and thus, its quality, when considering the sector of ornamental 
plants. Typical pH values considered in the recommendations of most countries 
range from 6.0 up to 9.5 (Jeong et al. 2016). Using water with extreme pH values 
such as 4.0 and 10.0 leads to the plant damages cited before (Zhao et al. 2013). 
However, pH is measured through chemical sensors that cannot be deployed for 
real-time monitoring and need frequent calibration. Some water quality proposals 
for real-time sensing use pH sensor probes (Das and Jain 2017). Others use
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inkjet-printed pH sensors based on glass substrates (Qin et al. 2018). And others 
not intended for real-time monitoring even propose the use of smartphones for 
pH monitoring (Dutta et al. 2015). 

• Salinity: Salinity is measured by the electric conductivity (EC); thus, it is often 
referred to as conductivity (Jeong et al. 2016). Therefore, both terms can be 
used interchangeably. Optimal salinity levels should remain below 700 μs/cm. 
However, standards recommend staying below 2000 μs/cm, with the stricter ones 
recommending 1000 μs/cm as the maximum. The principal effect of high salinity 
in water is reduced crop growth and permanent damage in extreme cases. Some 
conductivity sensors are based on measuring the voltage between electrodes 
which may be two (Shi et al. 2021), three, or even four (Ramos et al. 2008). 
Inductance-based sensors are another type of salinity sensor, which comprises 
two subtypes: transformer-based or Eddy current based (Harms and Kern 2021). 
The latter one is based on the use of coils where one is powered and the second 
one is induced. These sensors can be deployed in WSN for PA sensing for real-
time monitoring at a low cost (Parra et al. 2014). 

• Temperature: Water temperature is not often monitored in PA systems. However, 
it is a parameter to be considered if the selected crop is rice (Luo and Goudriaan 
1999). Optimal rice leaf guttation is achieved with a water temperature of 30 ◦C, 
and higher water temperatures were able to increase the amount of dew by 4 
times. Temperature sensors for water monitoring are widely available as they 
are common for smart solutions designed for other purposes such as aquaculture. 
Specifically, low-cost sensors such as the DS18B20 (Dallas Semiconductors n.d.) 
with waterproof encapsulations provide digital temperature readings at prices 
below 1AC per sensor. 

• Oil/fuel: Oil or fuel spillages, from agricultural machinery for example, pollute 
the water making it inadequate for irrigation, as it would pollute the crops 
and the soil (Basterrechea et al. 2021). This also results in reduced crop 
production, decreased produce quality, fewer profits for farmers, and an increase 
in the microorganisms that attack the nitrogen-fixing bacteria. As a solution for 
monitoring oil spillage, specific sensors have been developed to be deployed in 
water channels. For example, reflection-absorption sensors based on different 
colored LEDs and light-dependent resistors (LDRs) can be used to determine the 
presence and amount of fuel in water. 

• Bacteria: Bacteria is another important factor to consider, specifically in treated 
wastewater that is used for irrigation. For Escherichia coli, the WHO (World 
Health Organization) recommends maximum levels of 1000 cfu/100 mL (Jeong 
et al. 2016). However, other countries adopted more restrictive standards such 
as Spain, Portugal, or some states of the USA like California with maximum 
recommendations of 240 cfu/100 mL. There have also been studies of disease 
risk in farmers when manipulating the plants right after irrigation (Rhee et al. 
2009). The recommendation when irrigating with wastewater with rather high 
bacteria levels is to wait for 24 h after irrigation to perform any farming activities 
(Kiziloglu et al. 2008). The detection of coliform bacteria can be performed 
with gas sensor arrays that measure the volatile materials they produce in their
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growing period (McEntegart et al. 2000). Sensor nodes for bacteria monitoring in 
WSN have also been developed based on a chromogenic enzyme substrate assay 
method that detects color changes in the water (Kim and Myung 2015). These 
color changes in water are detected with the use of a camera and can be performed 
in real-time. However, the system includes a water sampling system consisting of 
a pump motor and bottles with the sampled water, the reagent, and the reaction 
chamber for the chemical reactions to be done automatically. This would need to 
be implemented on-site with an encapsulation that withstands weather conditions 
to be a viable option for real-time sensing systems for PA where all the sensors 
are deployed onsite. 

• Organic matter: Organic matter is monitored by measuring the biochemical oxy-
gen demand (BOD) (Jeong et al. 2016) which can be monitored by respirometers 
(Namour et al. 2010). Decomposing organic matter consumes the oxygen in the 
water and produces oxides in the soil that can affect the nutrient absorption of the 
plants. Different types of sensors can be used to monitor the amount of organic 
matter in the water. Photocatalytic sensors oxidize organic matter with the use 
of a light source (Namour et al. 2010). Chemiluminescence sensors measure the 
photons emanating after a chemical reaction. Optical sensors measure UV-visible 
absorbance. Furthermore, many commercial sensors are based on UV scanning 
paired with spectral deconvolution. 

• Heavy metals: Excessive amounts of heavy metals in irrigation water can result 
in damaged crops (Jeong et al. 2016). Some of the heavy metals that can be 
found in irrigation water are zinc, arsenic, copper, lead, or aluminum, among 
others. These heavy metals cause leaf chlorosis, damage root growth, decrease 
the productivity of the crop, and can even be present in the produce to be 
consumed affecting human health. The FAO (Food and Agriculture Organization) 
has a set of recommendations for maximum concentrations of heavy metals such 
as 5.0 mg/L for aluminum, 0.10 mg/L for arsenic, or 0.20 mg/L for copper (Ayers 
and Westcot n.d.). Electrochemical sensors are one type of heavy metal sensor 
that can be used in sensing systems (García-Miranda Ferrari et al. 2020). These 
sensors are low-cost, portable, have a small size, and do not require complicated 
sample preparations. They are comprised of a transducer and a working electrode. 
Although they are based on chemical reactions, there are automatic heavy metal 
sensors based on anodic stripping voltammetry (ASV) that have been used for 
water quality sensing systems (Lin et al. 2020). Other sensors are implemented 
with semiconductors based on ion-sensitive field effect transistors (ISFETs) or 
AlGaN/Gan high electron mobility transistors (HEMTs) (Nigam et al. 2021). 

Lastly, water quality monitoring systems for irrigation may include sensors that 
do not measure water quality but are used to monitor features related to water 
management such as water current in pipes or the water levels of water reservoirs 
for irrigation.
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4.5 Chemicals 

In this subsection, the technologies used for chemical use sensing in precision 
agriculture, specifically for fertilizer and chemical use, are presented. 

4.5.1 Fertilizers 

The use of fertilizers is paramount to addressing today’s food needs. But the excess 
use of fertilizers can lead to environmental problems such as those experienced 
in the semiarid Mar Menor lagoon in Spain (Puertes et al. 2021). Therefore, the 
addition of sensors able to monitor fertilizer use in sensing systems for PA aids 
in making agriculture more sustainable. However, detecting fertilizer use may 
be difficult without the use of chemical sensors or larger-scale devices operated 
manually. For example, visible near-infrared (Vis-NIR) spectroscopy is used to 
detect nitrogen (N) and organic matter in organic fertilizer (Guindo et al. 2021). 
For that reason, it is important to develop sensors able to be deployed in WSN to 
enable real-time monitoring without the need for constant calibration, cleaning, or 
sample manipulation. 

Nitrate is essential for chlorophyll production and plant growth. Direct nitrate 
measurement is primarily performed in laboratories. Electrical conductivity has 
been employed as an indirect form of nitrate monitoring. However, other techniques 
provide more direct nitrate measurements without the need for extended preparation, 
time, calibration, or maintenance (Sinfield et al. 2010). Regarding spectrometry 
techniques, near-infrared reflectance spectrometry (NIRS) has been utilized in the 
form of sensor probes with the use of optic fiber. Results show NIRS provides 
fast tests, good total nitrogen correlation, and portability. Other spectrometry 
techniques such as morphology-dependent stimulated Raman scattering (MDSRS) 
or copper/cadmium reduction (CCR) are used in laboratories and are not suitable 
for portable solutions. Regarding electrochemical techniques, nitrate ion-selective 
electrode (ISE) consists of two electrodes where one of which includes an ion-
selective membrane. ISE sensors are portable and cost-effective while providing 
adequate accuracy for detecting low or high nitrate levels. However, more precise 
measurements performed with these techniques are not possible with on-the-go 
solutions. Nitrate ion-selective field-effect transistor (ISFET) has a short lifetime, 
needs cleaning between measurements, and requires the careful introduction of 
samples. Therefore, it is not adequate for WSN. Lastly, nitrate combination (CCR-
ISE) is not suitable for on-the-go measurements. Finally, biosensors have a short 
lifetime but high precision and accuracy. As a result, they can be used for on-the-go 
measurements but not for WSN. 

Regarding phosphate and potassium, spectrometry techniques require thorough 
sample preparation and automatic sample devices should be developed to adapt 
this technique to perform in-field testing as part of PA sensing systems (Sinfield et 
al. 2010). Specifically for Raman scattering. reflectance spectrometry is performed
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in laboratories and the available portable solutions require manual operation. 
Electrochemical techniques use materials with a short lifetime, ranging from 30 min 
to 1 month, which makes it not suitable for PA. Lastly, biosensors also have a short 
lifetime, which make them not suitable for WSN solutions. 

Other techniques have been considered to detect the presence of a combination 
of fertilizers. Fiber optic color sensor probes have been used for monitoring NPK 
nutrients by classifying the readings into none, low, medium, and high levels 
(Ramane et al. 2015). It, however, does not differentiate between each nutrient. 
Colorimetry is used to detect NPK nutrients in soil samples with added reagents by 
using LEDs and a photodiode mounted on a robot that performs smart agricultural 
tasks (Amrutha et al. 2016). These tests can be completed in 40 min. A planar 
electromagnetic sensor was designed for nitrate and sulfate detection (Nor et al. 
2013). Parallel, star, and delta sensor arrays were first simulated and then tested 
with different N, P, and K concentrations, determining the star configuration as 
the one with the best performance. Lastly, a carbon dioxide (CO2) sensor that 
operates in the mid-infrared range based on NDIR (non-dispersive infrared) was 
designed for a fertilization system for greenhouses (Wang et al. 2016). The sensor 
was able to detect concentrations in the 30–5000 ppm range. These sensors were 
part of the sensor nodes that included condensation prevention based on waterproof 
membranes and wireless connectivity. CO2 data was then analyzed using the Fuzzy-
PID (Proportional, Integral, and Derivative) algorithm to determine optimal CO2 
values to regulate the greenhouse. 

Monitoring gases in the air has been studied to determine if other less straightfor-
ward methods can detect fertilizers as well. Specifically, a MOS electronic nose has 
been used to measure volatile organic compounds (VOCs) emitted by vegetables 
with high accumulations of nitrates due to overfertilization with nitrogen chemicals 
(Tatli et al. 2021). This e-nose is comprised of a sensor array that measures alcohol, 
organic solvents, sulfur dioxide (SO2), ammonia, sulfides, toluene, combustible 
gases, CO, CH4, C3H8, and C4H10, among others. Furthermore, artificial neural net-
works (ANN), support vector machine (SVM), and linear and quadratic discriminant 
analysis (LDA-QDA) algorithms have been used to classify the data. Results showed 
different VOCs emissions for different treatments with urea-nitrogen fertilizer. 

Remote sensing is one of the techniques that is being used to detect nutrient 
uptake in plants based on narrow-band hyperspectral images with a spatial reso-
lution of 1 m (Gil-Pérez et al. 2010). However, instead of directly monitoring the 
chemicals in fertilizers, a relation between vegetation indices and foliar variables 
such as concentrations in chlorophyll a + b, iron (Fe), calcium (Ca), magnesium 
(Mg), nitrate (N), phosphate (P), or potassium (K) is observed. Therefore, the 
obtained results are not nutrient concentrations themselves. 

Finally, the use of nanosensors and nanofertilizers has been considered as well as 
the research on nano-things keeps increasing (Rameshaiah et al. 2015). The use of 
nanomaterials in fertilizers can result in slow-release fertilizers that help in avoiding 
overfertilization. However, possible risk factors for human health with the contact 
or consumption of these nanomaterials should be considered.
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4.5.2 Pesticides 

More than 90% of the amount of pesticides used for treatment are said to miss 
the target pests, increasing in turn the contamination of the environment (Khairy 
et al. 2018). There are different types of pesticides according to their chemical 
composition. 

The use of organophosphate pesticides is very extended for both pre-harvest 
and post-harvest treatments (Khairy et al. 2018). However, inadequate use of 
these pesticides can lead to health problems and environmental damage. High 
concentrations can also lead to human deaths and Parathion is one of the most 
toxic pesticides in this category. Although numerous countries including the US 
have banned its use, parathion is still purchased in some developing countries. 
Gas chromatography, flame photometry, or mass spectrometry are some of the 
techniques that have been employed thus far for parathion detection. However, the 
evolution of nanomaterials has helped in the development of new techniques with 
reduced costs and the possibility of being incorporated into sensing systems in the 
future. In particular, screen-printed electrodes modified with nickel oxide have been 
utilized to detect parathion (Khairy et al. 2018). These materials are being tested in 
laboratories but further development can lead to their integration into IoT systems 
(Banerjee 2022). Furthermore, portable solutions based on biosensors and equipped 
with a wireless communication module have also been considered for the detection 
of organophosphate pesticides (Kim et al. 2015). These types of devices could also 
be adapted for PA sensing systems. 

Using the gases released by pesticides to detect their presence through the 
deployment of gas sensors has also been considered (Leccese et al. 2019). The 
electric nose, an array of different commercially available gas sensors (Marco 
et al. 2017), was developed as a first step in determining the possible uses of 
low-cost commercial solutions for this purpose within the framework of WSNs. 
This technology has been employed for the detection of pyrethroid pesticides in 
tea plantations (Tang et al. 2020). Particularly, neural networks were utilized to 
create models for bifenthrin, cyhalothrin, and fenpropathrin recognition reaching 
accuracies of 90% and above. Furthermore, their use for the detection of organic 
chloride pesticides (Ortiz et al. 2016) and organic phosphorus pesticides (Tan et al. 
2010) has also been studied with accuracies exceeding 80%. 

WSNs have also been used to monitor pesticide drift so as to avoid pesticides to 
reach areas further than the target crop (Santos and Cugnasca 2012). The factors 
determining pesticide drift are wind speed and direction, temperature, humidity, 
height of dusting equipment, and droplet characteristics such as weight and size. 
Therefore, environmental conditions are monitored by wireless sensors deployed on 
the field to generate new routes for dusting planes or equipment according to the 
obtained data.
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4.6 Pests 

Pest control is one of the main concerns in PA. Early detection helps in reducing 
crop damage and can lead to a reduction in the amount of pesticide needed to cover 
the target crop. The two main principal forms of sensing pests are acoustic and 
optical sensors (Azfar et al. 2018). These sensors can be easily installed in IoT to 
enable pest monitoring in real time. 

Acoustic sensors detect noise from insects in the fields. These sensors are 
often deployed in above-ground devices for the detection of pests in crops such 
as sugarcane (Srivastava et al. 2013) or palm trees (Cardim Ferreira Lima et al. 
2020) in the form of static sensor nodes or portable devices. Especially, larvae are 
located inside the produce of the woody parts of the plants. They are also employed 
to detect insects in the storage of grains (Fleurat-Lessard et al. 2006). However, 
acoustic sensors can also be used for the detection of underground pests with the 
use of underground sensor networks (Bayrakdar 2019). Underground sensors can 
communicate through wired or wireless connections. But wireless underground 
communications are still being developed and common wireless technologies such 
as Wi-Fi have their coverage greatly reduced in underground environments (García 
et al., 2020). 

Systems based on optical sensors are mainly comprised of a camera and an 
embedded system that provides computing capabilities and wireless communica-
tion. However, while some solutions take pictures of the plants directly, others install 
cameras inside traps for better identification of the insect (Segalla et al. 2020; Wang 
et al. 2020). The collected pictures are then processed to determine the type of insect 
that is damaging the crops. Cameras are not limited to static devices deployed in the 
fields. Drones can use their cameras for pest detection applications as well (Refaai 
et al. 2022). Another type of optical sensor is the camera used in satellite imaging. 
Satellite images are widely used in agriculture for aspects such as the calculation of 
vegetation indexes. However, this data has also been used for the detection of desert 
locust plagues (Geng et al. 2018). 

Artificial intelligence, specifically deep learning, is one of the most utilized 
techniques to perform identification tasks in recent years. This includes image 
processing for pest detection applications (TÜRKO ̆GLU and HANBAY 2019). 
However, some applications may not be able to send the images to a centralized 
server, leading to the need for local processing. So, the selection of the processing 
algorithms should consider the computing capabilities of the device. Therefore, it is 
important to test different algorithms to determine their accuracy for pest detection, 
which is a popular research line today (TÜRKO ̆GLU and HANBAY 2019). 

Although the use of AI is very promising, good datasets are required to improve 
classifications and detect new types of species (Wang et al. 2021). The lack of data 
regarding some pests leads to the developed systems being useful for only some 
particular pests such as insects with beetle-like forms (TÜRKO ̆GLU and HANBAY 
2019). Furthermore, laboratory images of pest specimens are not enough to develop 
systems with full functionalities in the field (Wang et al. 2021). More datasets of
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in-field images are necessary to improve pest detection for devices deployed in 
agricultural scenarios. An intermediate option is images taken from pests collected 
by a trap (Wang et al. 2020). This facilitates the identification of the insect as the trap 
may be manufactured with colors and materials that make insects more noticeable. 
However, it is limited to the insects attracted to that particular trap. 

5 Future Directions and Challenges 

The adoption of PA sensing systems is undergoing rapid growth which presents 
some challenges (Sinha and Dhanalakshmi 2021). Standardization is one of the 
main challenges. Many available IoT devices use different communication protocols 
or syntax that hinder interoperability among all devices. To achieve high interoper-
ability, standardization agencies need to make a common effort to unify the criteria 
for IoT networks. Securing PA sensing systems presents several challenges as well. 
Apart from physically harming the device, PA sensing systems are susceptible to 
cyberattacks such as Denegation of Service attacks, man-in-the-middle attacks, 
jamming, or data theft. The low computational power of many IoT devices 
makes it difficult to implement complex encryption techniques (Quy et al. 2022), 
which increases their susceptibility to those attacks. Furthermore, failures in the 
operations of the devices can lead to data inaccuracy or corruption, which affects the 
performance of the system. The reliability of PA sensing networks can be affected 
by the characteristics of the environment these devices are deployed in. Extreme 
weather conditions, animals, and workers can cause deterioration in specific sensors 
and the overall sensing device, which can lead as well to faulty network connections. 
The scalability of the PA sensing solution depends on the specifications of the 
communication technology, which can limit the number of deployed devices that 
can establish communication with the gateway. There are, however, secondary 
factors such as cost that, although it does not affect the scalability of the system 
per se, may lead to farmers being unable to scale the system if the cost is so 
high it cannot be covered. Lastly, powering IoT devices presents a challenge as 
these devices may not have access to the power grid. Thus, powering must be done 
with batteries and the use of solar panels. However, even if the system is scalable, 
secondary factors such as cost may lead farmers to experience difficulties in scaling 
the system due to lack of economic resources. 

On the other hand, the evolution of technology is leading to the following trends 
regarding the introduction of new techniques in PA sensing systems. Artificial 
intelligence is now a common theme in literature for sensing PA systems. It is 
now applied to every aspect of PA systems from predictions of irrigation needs or 
climate evolution to identification or classifications of plant diseases or pests. The 
rapid development of AI has made this technology affordable and highly available. 
Nonetheless, the use of AI in PA systems still requires qualified technicians to 
deploy and install these functionalities. Blockchain provides trustworthiness to 
information. It also allows for product tracking and traceability. For example, this
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can be applied to supply chains to track food origin or enable timely payments 
when combined with smart contracts (Sinha and Dhanalakshmi 2021). Furthermore, 
it can also be used to provide security in data transmission between wireless 
sensors and cloud servers (Qazi et al. 2022). The use of robots is still not very 
extended in agriculture. However, some advances have been done to automate 
some tasks such as sensing, harvesting, weeding, mowing, cutting, or applying 
herbicide (Gil et al. 2023). Some of the existing robots are being commercialized 
but their price is still an obstacle for many farmers. Another available option to use 
this technology is leasing, which is a revenue model that is currently expanding 
and allows farmers to use robots for agriculture at more affordable prices. Lastly, 
the use of nanotechnology in agriculture is being studied to improve soil health, 
plant resilience, production rates, crop yields, and resource efficiency, as well as 
to reduce pollution, or for the concept of plants as sensors (Zhang et al. 2021). 
However, nanotechnology presents some challenges such as the possible toxicity of 
the nanomaterials in plants and its effect on the environment. 

6 Conclusion 

Precision agriculture is now present in the primary sector of many countries. This 
leads to the need of expanding the knowledge of both farmers and researchers 
in this area. Through this chapter, the reader has been provided with a detailed 
introduction to sensing systems for PA. Firstly, the motivation for deploying sensing 
devices in fields and the evolution of PA as a topic of research interest have been 
presented. Furthermore, an architecture of a sensing system for PA with complete 
functionalities including all the domains currently available has been provided. The 
sensing devices and technologies that can be employed to acquire data for each 
of the PA domains have been discussed as well. Lastly, the current challenges and 
future trends of PA systems have been listed and commented on so the reader can 
obtain a clear view of what is expected for sensing systems for PA in the next years. 
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Robotics and Artificial Intelligence (AI) 
in Agriculture with Major Emphasis 
on Food Crops 

Naman Gupta and P. K. Gupta 

Abstract The current review deals with various aspects of robotics and artificial 
intelligence (AI) in agriculture with particular emphasis on food crops. The review 
starts with a brief account of what robotics and AI really mean, followed by a 
brief history of the development and use of robots and AI, in parallel with the 
development and growth of the concept of precision agriculture (particularly the 
development of unmanned ground vehicles [UGVs] including autonomous tractors). 
The major part of the review deals with modern technologies in agriculture with 
particular emphasis on development and use of robots for different agricultural 
operations including the following: planting (preparations of field and seeding), 
plant care and crop management (including weeding, thinning, pruning, plant 
protection measures), crop scouting (use of sensors and geo-mapping), picking and 
harvesting, and post-harvest technology (packaging, transport, and storage). This 
section is followed by a brief account of the following aspects: some case studies of 
using robotics and AI, cost effectiveness of using robotics and AI, and technologies 
for plant production under controlled conditions (greenhouse agriculture, in vitro 
culture, and gene banks). The next section deals with the future of robotics and AI in 
agriculture, which is also an important section that includes development and growth 
of technologies in agricultural operations in different parts of the world including 
Asia (Singapore, China, and India), the USA, Canada, Europe, and Australia. At the 
end, conclusions and prospects are provided. 
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1 Introduction 

Robotics and artificial intelligence (AI) have become an integrated important area 
of research in all walks of life and agriculture is no exception. Agriculture itself is 
associated with the problem of food security that has been an issue of worldwide 
interest, which in turn is associated with population growth (Verchot 2020; Torero 
2020). The current world population of 7.6 billion is expected to reach 8.6 billion in 
2030, 9.8 billion in 2050, and 11.2 billion in 2100 (United Nations 2022). In view of 
this, it is also estimated that food production will have to increase by ~68% by 2050 
to feed the growing world population. This must be achieved despite the problem 
of climate change, urbanization, and land degradation/desertification, which will 
adversely affect food productivity and production (Fig. 1). The use of robots and 
AI in agriculture is one of the many viable approaches to deal with this problem of 
food security. 

For achieving the food production level desired in 2050, one has to estimate the 
required annual global agriculture growth rate, which has been shown to be fairly 
volatile and has been decreasing ever since the period of the Green Revolution, when 
it used to be ~3%, to the current level of <1% (Fig. 2). During the last two decades 
also, it has been fairly volatile, ranging from 5.8% in 2005–2006 to 0.4% in 2009– 
2010 and as low as−0.2% in 2014–2015 (Deshpande 2017). Even in Southeast Asia 
(including India), the annual growth of food production and productivity of major 
crops has slowed down in recent decades, causing alarms. Major efforts like policy 
changes and biological improvements for increasing yield are, however, underway 
to deal with this problem. 

Increasing 
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Fig. 1 Vicious circle of increasing population, urbanization, land degradation, food scarcity, etc
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Fig. 2 Global agriculture growth rate during 1951–2015. (Agricultural Statistics at a Glance 2015; 
PRS Publication) 

We also know that the Green Revolution helped us scale-up the food production 
with the help of improvement of the genetic architecture of major crops, particularly 
through development and introduction of semi-dwarf varieties with high photo-
synthetic activity and fertilizer-response, along with crop management practices, 
although concerns have, recently, been expressed regarding the damage done to the 
environment due to the Green Revolution.1 

A digital revolution is taking place now, through AgTech (Agricultural Tech-
nology), which will engage a lot of robotics and AI with agriculture to solve the 
current bottlenecks in increasing the food production. Apart from other bottlenecks 
in agriculture, climate change has been both the cause and effect of problems in 
agriculture. It is debatable if all the effects and causes of climate change can be 
fixed with AgTech. However, the extensive use of herbicides and pesticides since 
the Green Revolution has caused significant land degradation affecting the yield 
and also other climate change issues because of their production and transport. 
AgTech can help reduce the use of these harmful chemicals by either using 
other technologies or targeted spraying. The food production system has also 
been shown to account for 26% of total global greenhouse gas emissions.2 Other 
issues associated with climate change include increased temperatures around the 
globe, unpredictable rainfall, and other natural disasters, which have an impact on

1 https://sciencing.com/harmful-effects-green-revolution-8587115.html 
2 https://news.un.org/en/story/2021/03/1086822 
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Fig. 3 The share of countries producing (a) maize, (b) wheat, and (c) rice at the global level. 
(Source: https://www.visualcapitalist.com/cp/mapped-food-production-around-the-world/) 

agricultural production, and AgTech is evolving to better prepare farmers to face 
such adversaries.3 

The major staple crops, which need attention toward achieving the solution to 
food security, include three major ones: wheat, maize, and rice. The shares of 
different countries involved in growing these crops are depicted in Fig. 3. Since 
these countries are also the ones with maximum demand, it is these countries 
that need to scale-up the production and productivity to deal with the problem 
of food security. Besides other measures including genetic improvement of crops, 
agronomic practices and the use of advanced technologies will have its own share. 
Among these advanced technologies, robotics and AI will have its own share, which 
will increase with time and will have their own set of limitations and challenges that 
might limit their usage across the globe. It is believed that robotics and AI can 
make all agricultural operations more efficient and at the same time reduce cost. 
Although the applications are not just limited to farms but also to greenhouses, 
vertical farming, and hydroponics, we will limit the scope of this chapter to farms 
only. 

Some countries, especially the Western countries, have also witnessed a huge 
impact of labor shortage, although this is more prevalent in the West. In recent 
years, it is also becoming a common issue in most developing countries because 
of migration of workforce from countryside and villages to towns and cities, which 
happened because of the industrial revolution and globalization. Even with the 
use of machinery, this has been a challenge for many farmers because we still

3 https://www.usgs.gov/faqs/what-are-long-term-effects-climate-change 
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need humans to monitor and manage the farms for using the farm equipment and 
machinery. 

The influence of the industrial revolution on agriculture has also been witnessed. 
Firstly, it has reduced the productivity due to the shortage of labor in agriculture, 
and, secondly, it has increased the labor cost by a factor that is smaller than the 
increase in agriculture profits. The extent of manual labor needed depends on 
the crop, cattle, climate, farming method, topology, and unforeseen problems like 
pest attacks. Digital revolution aims to solve some of these problems in certain 
straightforward cases using robots and AI. Along with monitoring and supervision, 
the robots can also help with minimal tasks like controlling the weeds, harvesting, 
irrigation, and ploughing. 

This chapter deals with use of robots and AI in agriculture and is divided into six 
main sections: Sect. 1, Introduction; Sect. 2, A primer explaining what are robotics 
and Al; Sect. 3, History of robotics and AI in agriculture; Sect. 4, Technologies for 
different agricultural operations; Sect. 5, Some case studies of using robots and AI in 
agriculture; Sect. 6, Cost effectiveness of using robotics and AI; Sect. 7, Robots and 
AI for plant production under artificial conditions; Sect. 8, The future of robotics 
and AI in agriculture; and Sect. 9, Summary and Conclusions. Several other related 
aspects including Internet of Things (IoT), unmanned aerial vehicles (UAVs), and 
vertical farming are discussed in other chapters of this volume, and therefore will 
not be covered in this chapter, except a brief account in Sect. 7. 

2 What Are Robotics and AI? A Primer 

The popularity of robotics and AI in the recent years has made many of us come 
across these technologies. However, the definitions regarding what are robotics and 
AI have been constantly evolving without a consensus. Robots were first used in 
science fiction plays, movies, and literature. All of them had human-like features; for 
example, they could either walk like humans, talk like them, or do tasks like humans 
that no other machines could do at that point of time. Since then, machines have 
become more sophisticated, and robots have also been developed for adaptation in 
various scenarios. The line between what we call a machine and a robot is very slim, 
and it is subjective to call something a robot or just a machine, but it is safe to say 
that all robots are machines but not all machines are robots. Just like machines and 
robots, robotics and AI have also been used interchangeably for some applications, 
which does spring up some confusion about how they are different from each other 
and what technology is at play in a certain technology. To prevent this confusion 
later in the chapter, this section will cover what the authors think should refer to as 
robotics and AI in this chapter.
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2.1 Robotics 

The word robot is derived from the Czech word robota, which means “forced labor.” 
Since robots were built for repeated and dangerous tasks initially, this derivation of 
the word held some meaning in the past. As robots have evolved, the definition of 
robotics has become context dependent. Oxford English dictionary defines it as “a 
machine—especially one programmable by a computer—capable of carrying out 
a complex series of actions automatically.” This definition is generic enough to 
encompass most of the robotics applications, but it is not specific enough, as this 
definition would allow a washing machine to be classified as a robot. A washing 
machine is not considered a robot because it is a pre-programmed machine that will 
do the same actions on a given input. It is not intelligent enough to select its own 
cycle based on the clothes in it. 

Another definition classifies robots as those machines that can mimic human 
or an animal movement to complete a task like a human. “Shakey” was the first 
general-purpose mobile robot that was built in the late 1960s. It was able to do things 
with a purpose versus just a list of instructions. Space exploration vehicles or rovers, 
humanoids, and other legged robots are unanimously termed as robots as they can 
carry out tasks like humans can, and even go in places where humans cannot go. 
These robots were initially completely remotely controlled but gradually have been 
integrated with different levels of autonomy to perform tasks more efficiently with 
easier control and lesser human intervention. This definition of “completing task like 
a human” also does not include all types of robots because there exist autonomous 
machines that do tasks that no humans could ever do and sometimes, even do the 
same tasks better and more efficiently than humans. 

There is no consensus on which machines qualify as robots but there is a 
general agreement among experts, and the public, that robots tend to possess 
some or all of the following abilities and functions: electronic programming, 
sense their environment, process data or physical perceptions electronically, operate 
autonomously to some degree, move around, operate physical parts by itself or 
physical processes, manipulate their environment, and exhibit intelligent decision-
making. Furthermore, a robot might or might not be completely autonomous. It 
can have varied degrees of autonomy. Their usage can vary from being manually 
driven or tele-operated to being completely autonomous and needing no human 
intervention. 

The most agreed difference between a machine and a robot is that a machine is an 
electro-mechanical appliance with a once programmed software on a low- to mid-
level computer, while robots have sensors to perceive the environment and interact 
with the environment. With this definition, the robots can be broadly classified into 
the following two types, or a combination of the two: (i) manipulator arms and 
(ii) mobile robots (Trevelyan 1999). In turn, mobile robots are mainly classified 
into the following three types based on the environment they move in: (i) ground 
vehicles: for example, wheeled, tracked (like military tanks), or legged robots; (ii)
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unmanned aerial vehicles (UAVs): for example, drones and unmanned airplanes; 
and, (iii) underwater vehicles: for example, autonomous submarines. 

In this chapter, we plan to restrict the scope to ground vehicles and manipulator 
arms attached to a moving base. In doing so, we will cover how these robots act 
intelligently and perform agricultural operations. There have been efforts to make 
robots of various levels of autonomy. For example, a leader–follower approach may 
be used where a leader tractor driven by a farmer is followed by an autonomous 
tractor. Swarm robots are another example where multiple robots talk to each other 
and complete a task collaboratively. There are also semi-autonomous robots, which 
do certain tasks on their own and ask for human intervention for more complex 
tasks. 

2.2 Artificial Intelligence 

The term “artificial intelligence” (AI) was coined in 1955 by John McCarthy, an 
American mathematician and computer scientist. Artificial intelligence refers to the 
ability of a computer-controlled machine or a computer to make decisions based 
on data. At this point, most of the AI applications include the use of machine 
learning (ML). Machine learning is an extension of a field in statistics called data 
science. Data science utilizes large-scale data and makes derived analysis from 
the data and generates or predicts the outputs for a given input by fitting a given 
non-linear mathematical function. The predictions are better with machine learning 
(ML) algorithms, which learn patterns from data and utilize that information to 
predict or generate an output that will help in decision-making. Learning patterns 
can be thought of as fitting an unknown mathematics function to the data, which 
specifically makes it different from the traditional data science methods. The 
complexity of learning these patterns depends on the quality and quantity of data, 
the number of data attributes associated with one output, and the complexity of 
dependence of these attributes on the output. The more complex the learning pattern 
is, the more computational resources are needed to learn accurately. Deep learning, 
which is a subset of machine learning, allows us to predict very complex patterns 
with a significant level of accuracy. However, these deep learning models act as 
a black box, meaning that they do not allow us to mathematically understand the 
function that converts the inputs to outputs. 

Research in AI is constantly evolving and one of the focuses of the research 
community is to make better judgments using lesser data as that would need lesser 
resources and will lead to automation in agriculture (Jha et al. 2019). Recently, a 
new field of AI has sprung up, which is called “Generative AI,” which explores 
generation of new unseen data based on old data. Another active field of research is 
“Explainable AI,” which enables humans to understand the predictions made by AI 
and unbox the “black box.” 

AI, just like robotics, has different levels of intelligence. A simple AI algorithm 
optimizes a cost function against some constraints given by the user. For example,
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AI can help find a path from point A to B using pre-defined distances and speed 
limits without any knowledge of real-time traffic. A more complex AI can learn 
from sensing the environment and actions of a human-driven car and then use that 
learning to drive a car by itself while making decisions about the fastest route and 
the fastest lane. 

Robotics and AI are often used interchangeably and sometimes together because 
robotics often uses AI for autonomy and automation. AI has been used in all aspects 
of robotics including sensing (see the world using sensors), mapping (map the 
world around it), localizing (know where the robot is in the map), planning (make 
decisions to navigate the world), and control (send the right commands to motors 
to enable desired and accurate movement of the robot). AI can learn all these steps 
from sensing to control together or individually but robot will use the output of an 
AI algorithm to take an action and interact with humans or the environment. We will 
explore past, present, and future of all these types of agricultural robots and AI in 
the following sections in this chapter. 

3 History of Robotics and AI in Agriculture 

Industrial revolution, which itself started in mid-eighteenth century and early 
nineteenth century, led to occupational mobility, which led people to migrate from 
countryside or villages to towns and cities in search for better income. Standard 
of life also created an immense shortage of labor across the globe. Often, lack of 
skilled labor and high investment in agriculture by the governments are compared 
against the high cost of building and buying robotic technologies and good-quality 
camera and other sensor data for AI. This benefit–cost ratio changes with kind of 
agricultural operations, countries, crops, and even the state of the economy of the 
country. 

In the early 1990s, there was a demand for improved efficiency, reduced costs, 
and automation in agriculture, and later robots and AI provided a solution for this 
demand. The world wars in the early twentieth century, which resulted in a shift 
of labor from agriculture to armed forces, also generated a demand for automation. 
A global increase in labor cost during the 1930s due to the so-called Dust Bowl 
involving poor farming practices and drought, thus devastating millions of acres of 
fertile land, also created a demand for automation for some of the trivial as well 
as major tasks in agriculture (Fountas et al. 2007, 2020). All these factors were 
responsible for regular and continuous research in the subject area of robotics and 
AI for agriculture. A timeline for major breakthroughs in the field of robotics and 
AI in agriculture during 1920–2020 is presented in Table 1.
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Table 1 A timeline showing major breakthroughs in the field of robotics and AI in agriculture 
during 1920–2000s 

Time period Major breakthroughs that happened during that time period 

1920–1945 Academic research in automation and electro-mechanical advancements in 
agriculture equipment 

1941 Plowing of circular fields using a rope tied in the center as it wounds on 
itselfa 

1945 Teleoperation using radiofrequency of farm tractors 
1959 Multichannel radio-controlled tractor employing hydraulic actuators 
1964 Leader–follower operation of farm tractors (automatic follower farm tractor 

following leader farm tractor separated by a physical fixed distance) 
1967 Localization using triangulation by detecting the exhaust pipe of a farm 

tractor using two fixed-in-place infrared sensors and then a control system to 
control the position of the tractor (other groups used radar instead of infrared 
sensors to do the same) 

1970s–1990s Development of control systems to control sprays for spraying herbicides 
and fertilizers (Harries and Ambler 1981) 

1981 First use of optical sensors in agriculture to do non-contact sensing of the 
furrow wall 

1992–2000 Integration of global positioning system (GPS) into agriculture vehicles for 
real-time position tracking and advanced control algorithms for precise 
navigation 

1995–2000 Vision guidance systems was successfully implemented using optical 
sensors (Gerrish et al. 1997) 

2000–2020 Industry and academic research working together on building various robotic 
platforms for agriculture 

ahttps://livinghistoryfarm.org/farminginthe40s/water_09.html 

3.1 Robots for Autonomous Tractors 

During the 1950s, agriculture witnessed a rise in rudimentary robots. For instance, a 
tractor tied with a rope to the center of the field allowing the rope to wind itself as the 
robot went in circles was the simplest approach to automation. Thereafter, during the 
1960s, tractors were controlled by radiofrequency remotes. Automation in tractors 
also resulted through research involving a leader–follower approach, which was a 
milestone in the history of using robots and AI in agriculture. However, the more 
difficult problem of making just a standalone tractor autonomous was solved by first 
solving the localization problem, which means that the robot needs to know where it 
is in the space in order to take an appropriate action. Earlier, triangulation was also 
a common approach for solving this problem because it is comparatively a simple 
mathematics problem. Triangulation is achieved by observing a common unknown 
point from two different known points. In the case of agriculture robotics, it was 
achieved by the use of infrared sensors placed at the two vertices of the field and 
measuring the distance of the tractor’s exhaust pipe from these two sensors. Since, 
the sensor location and the distance between them was known, it was possible to find 
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the tractor’s location from either of the sensors. This was a step ahead in determining 
the location of the tractor and then precisely controlling the tractor based on its 
location. The late twentieth century also witnessed a boom in the use of computers 
and supercomputers, which were faster, involving use of complicated algorithms. 
These developments were also utilized in all aspects of robotics. It started with the 
invention of precise control of electro-mechanical systems, with usage of camera 
like optical sensors to detect furrow walls and algorithms that could use the data 
and run the appropriate calculations. 

During the 1990s, Trimble released a Real-Time Kinematic (RTK) positioning 
device for precise control of the tractor. Since then, with increase in computer 
capabilities and semiconductor usage, sensors gradually became smaller in size with 
improved precision. Algorithms were also developed to utilize the sensor signals 
to correctly estimate the tractor’s velocity and position in the field. Improvements 
in the processing speeds also led to online optimizations, which made these 
technologies safer and user-friendly. During the late 1990s, the research conducted 
on the first semi-autonomous tractor technology resulted in modern-day tractors 
using robotics and AI (Stentz et al. 2002). 

3.2 Robots for Precision Agriculture 

During the 1980s and 1990s, the concept of precision agriculture (PA) emerged 
as the science of improving crop yields through improved management decisions 
and use of high-technology sensor and analysis tools. This also involved analysis 
of the field used for a crop, including health of soil, so that optimum quantity of 
fertilizer could be used according to soil condition in different areas of the field 
and appropriate weeding operations may be planned. These operations paved the 
way for use of robots. Integrating the data from external sensors to the robot’s 
computer allows the robot to know where an agricultural operation is needed. 
During early years of the present century, algorithms that allow precise control 
of these robots were also developed. However, the use of optimum fertilizers and 
weeding operations still continue to be an active area of research and development. 
During the last few years, computer vision (CV) involving use of imaging (through 
use of cameras) and machine learning (including deep learning) has made significant 
progress, and further steep rise in adoption of robotics and AI in agriculture is 
expected during the next few decades. More details about these developments will 
be covered in the following section. 
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4 Modern Technologies for Different Agricultural 
Operations 

In recent years, automation in agriculture has become a necessary component of pre-
cision agriculture, involving operations that include seeding (planting), inspection, 
spraying, pruning, and harvesting (Bogue 2016). Automation generally involves use 
of robots for different agricultural operations to minimize physical work that needs 
to be undertaken by the farmers. Automation helps in increasing precision and 
efficiency, thereby reducing the costs. Therefore, the development of an efficient 
automation system involving use of robots and AI in agriculture is becoming an 
active area of current research in agriculture to achieve sustainability and food 
security (Mahmud et al. 2020). 

The agricultural operation, which involves use of robotics, can be broadly 
classified into the following four parts: (i) planting, (ii) plant care, (iii) harvesting, 
and (iv) post-harvest storage and shipping. Each of these operations can be further 
classified into minor operations, as done in a recent article by Bera and Dutta (2021). 
Some of these operations are shown in Fig. 4. A brief account of each of these 
developments is provided in this section. 

4.1 Robots for Planting 

Planting involves three major operations, including preparation of beds, seed 
mapping, and seed placement. The use of robotics and AI in each of these operations 
will be briefly described. 

Fig. 4 Some agricultural operations involving use of robotics including ground robotics and 
drones (shown on the left) and artificial intelligence (AI) in planning (shown on the right) 
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4.1.1 Preparation of Seed Beds 

Preparation of seed bed on a farm involves ploughing, which means inversion or 
mixing of topsoil to prepare a suitable seed bed. A small robot utilizing current 
technology does not have the energy density to sustain ploughing over a large 
area due to the high levels of energy needed to cut and invert the dense soil. 
As discussed before, autonomous tractors with various levels of autonomy have 
been used since the 1950s, but more recently, since 2010, companies like John 
Deere, Autonomous Tractor Corporation, Fendt, and Case IH have been moving 
toward mass production of their completely autonomous tractors. Current research 
has witnessed a rise in agriculture robots for multipurpose operations, including 
ploughing, seeding, and health monitoring (Chandana et al. 2020). These robots 
have the complete map of the farms using the satellite navigation systems like global 
navigation satellite system (GNSS), which they use to divide the farm into rows. The 
sensors on the robots like wheel encoders, inertial measurement unit (IMU), and 
RTK positioning provide the information about the robot’s location on the farm and 
this precise location is used to position the robot in such a way that proper tillage is 
obtained. With advances in communication protocols, semiconductors, and software 
engineering, the control of the robots has become increasingly precise, fast, and 
efficient (Rus 2018). 

4.1.2 Seed Mapping 

Seed mapping is the concept of passively determining the geospatial position of 
each seed before it goes into the ground. The robot takes the input from a pre-
existing model or from the user on how distant the seeds need to be placed. This 
information combined with an RTK GPS and infrared sensors mounted below the 
seed chute is all a seeder needs to know for placement of seed followed by recording 
the location of each seed. As the seed drops, it cuts the infrared beam and triggers a 
data logging system that records the position and orientation of the seeder. A simple 
kinematic model can then calculate actual seed position (Griepentrog et al. 2003). 
The seed coordinates can then be used to target subsequent plant-based operations. 

4.1.3 Seed Placement 

The traditional manual method for sowing seeds is to scatter them using a “broadcast 
spreader” attached to a tractor. This throws many seeds around the field while the 
tractor drives at a steady pace. It is not a very efficient method of planting as it can 
waste seeds. Therefore, robots that do seed mapping can be used for seed planting. 
Autonomous seeders have the mechanism to check the quality of the seed at a high 
speed using computer vision and weight sensing before placing them into the soil. 
The seeds are stored in huge bins on these seeders and a valve spits out one seed at a 
time. This seed goes on to the conveyer on which the quality is checked and is then 
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put into the soil with high pressure so that it goes deep into the soil. The seed map 
is used to control the seed position. Most seeds are dropped at high densities within 
each row, while having relatively more space between the rows. First principles of 
agronomy dictate that each plant should have equal access to spatial resources of air, 
light, ground moisture, etc. Most crops use a hexagonal or triangular seeding pattern, 
since this is believed to be more efficient. All these models are put into the seeders 
and with the technologies discussed above, a seeder can precisely conduct the seed 
placement. Robots are also being used for seed placement in potted plants, and for 
picking and placing pots from one place to another, as done in case of Harvest 
Automation’s HV-100. 

4.2 Robots for Plant Care (Crop Management) 

Crop growth and soil regulation are important to provide high yield, retain soil 
nutrients and microorganisms, and to deal with environmental uncertainties and 
natural disasters. Humidity, temperature, and nutrients of the soil also play a major 
role in crop yield and quality. It has been shown that global loss yield in rice, 
wheat, and maize due to weeds account for 46.2–61.5% of the potential yield 
losses. Similarly, losses due to pests account for 27.3–33.7% of actual yield losses 
(Oerke 2006). It has also been recognized that in the long term, soil treatment with 
chemicals (like fertilizers and herbicides) and operations including irrigation can 
cause substantial damage to the quality of top soil and may also contribute to climate 
change. 

In view of the above, robot experts have also come up with appropriate solutions, 
which can limit soil degradation, herbicide resistance, and climate change by either 
using a better substitute to treat crops, weeds, and soil or limiting the use of 
chemicals. The plant care broadly includes the following four operations, each 
involving use of robots (Fountas et al. 2020): (i) weeding, thinning, and pruning; (ii) 
spraying: irrigation and fertilizers; (iii) disease and insect detection; and (iv) crop 
scouting (plant monitoring and phenotyping). Since extensive literature is currently 
available, only a brief summary of the most important literature, based on scientific 
and commercial resources, will be described here under four subsections. 

4.2.1 Robots for Weeding, Thinning, and Pruning 

Weeding is one of the most repetitive, tedious, and time-consuming activities within 
the crop production cycle, especially for developing countries and small farms. 
Weed management accounts for more than 40% of the labor effort (Fountas et al. 
2020). For all the above-mentioned reasons, significant attention has been given to 
weeding robots both by private companies and academia (Ackerman 2015). 

The removal of weeds has traditionally been done either by manual weeding or 
by spraying herbicides/weedicides over the entire farm with the help of sprayers. 
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The robotics community aims to improve the accuracy of weed detection (number 
of weeds found by the robot divided by the actual number of weeds in the farm) 
and hit rate (number of weeds killed given they were detected) and increase the 
speed at which the entire farm is weeded. As there are hundreds of crops and 
weed varieties, it is difficult to develop one robot that solves this problem for all 
crops around the world. Current solutions include selective spraying of herbicides 
(John Deere’s See and Spray, QUT’s Agbot II), burning the weeds with lasers 
(Verdant Robotics), use of lasers (Andreasen et al. 2022; Heisel  2001), and also 
mechanically uprooting/destroying the weeds (Naio Technologies’ Dino, Garford’s 
Robocrop, Bosch’s BoniRob). All these robot cameras, lasers, radars, ultrasound 
sensors, infrared sensors, IMUs along with precision algorithm tools accurately 
detect the weeds above the ground in three dimensions (Table 2). These solutions 
not only reduce the time spent in weeding and cost associated with labor, but also 
reduce the amount of herbicides used, which saves cost for the farmers, prevents the 
weeds to become herbicide resistant, and protects the environment since minimum 
quantity of herbicides will get washed away into the oceans. 

Thinning involves reducing the density of plants so that each plant has a better 
chance of growing. One of the popular thinning robots is LettuceBot, which was 
developed by Blue River Technology and also received an award in 2017 by 
the American Society of Agricultural and Biological Engineers (ASABE). It uses 
computer vision to detect lettuce plants as it drives over them and decides at that 
moment, which plants to keep and which to remove. Special robots like Ibex have 
also been designed to be used on hills (Cousins 2016). 

4.2.2 Robots for Irrigation and Fertilizer Application 

Irrigation automation is done using sprinklers placed across the field, which are 
controlled based on a timer. Weather-based irrigation controllers are also available, 
which allow farmers to achieve water-efficient irrigation scheduling. Research has 
also been conducted by academia to build robots that carry sprinklers so that they 
can move around and irrigate, but no commercial product is available, since it 
might not be commercially viable. However, a robot-assisted precision irrigation, if 

Table 2 Robotics for weeding in different crops 

Crop Sensors 
Weed 
detection Weed control Result 

Maize Cameras; optical/acoustic 
sensors 

Yes Chemical No performance 
metrics 

Rice Laser range finders; IMU Partly Mechanical Precision <62 nm 
Potato Webcam; gyroscope No Chemical Accuracy: 98%; 89% 
Tomato Color camera; SensorWatch Partly Chemical Poor 
Sugar beet Color camera Yes Mechanical >90% weed removal 

From Fountas et al. (2020) 
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available, can reduce wastage of water by targeting specific plants (Company Osiris 
Agriculture’s Oscar). Ground robots can also autonomously navigate between rows 
of a crop and pour water directly at the base of each plant (Carpin et al. 2019). 

Fertilizers help keep the soil fertile and nutritious for healthy crops. Precision 
farming tools and hand-held tools (for example, Trimble’s GreenSeeker) have been 
used to measure the plant’s needs. The health of soil is determined using the 
precision farming sensors and the health of the crop can be determined using NDVI 
(normalized difference vegetation index) value provided by tools like GreenSeeker. 
This information is enough to precisely determine the amount of fertilizer needed. 
Ground robots for fertilizer application have an advantage as they can access areas 
where other agriculture equipment cannot reach. For example, corn growers face 
a problem that the plants grow too quickly to make the operation of reliable 
application of fertilizer difficult. An important robot for fertilizer application is 
Rowbot (https://www.rowbot.com/) that aims to solve this problem as it easily drives 
between the rows of corn field and targets nitrogen fertilizer directly at the base of 
each plant. 

4.2.3 Robots for Plant Protection (Pests and Diseases) 

Robots and AI have also been used for integrated pest management (IPM) involving 
identification of acceptable levels of pests and diseases and preventive cultural 
practices. Different types of cameras (including high-resolution visible RGB [red-
green-blue] to thermal, infrared, multispectral, hyperspectral, and ultraviolet [UV] 
cameras) and chemical and electrophysiological sensors are being used for collect-
ing data on health of the plants. The sensory data and imaging information is usually 
coupled with a machine learning/AI engine that either flags anomalies in the datasets 
or detects specific patterns or objects. Anomalies can be a sign of a pest attack or 
a disease-stricken crop. These solutions can produce real-time risk alerts, outbreak 
projections, and predictions. 

The data collected as above are also used to formulate a proper course of action 
and treatment to fix the problem. AI systems can calculate the most optimized course 
of action that provides the best control for the lowest price. The treatment prescribed 
based on data collected needs robots, which have become available. For instance, 
ultraviolet-C (UV-C) treatments, biopesticide sprayers, and robotic systems for 
dispersal of biological control agents are becoming commercially available. 

4.2.4 Robots for Crop Scouting (Monitoring and Phenotyping) 

Monitoring huge fields of crop is a big job. New sensor and geo-mapping tech-
nologies enable farmers to get a much higher level of data about their crops than 
they had in the past. Ground robots, sensors, and drones (Anderson 2017) provide 
a way to collect these data autonomously. Researchers have built ground robots, 
which can use cameras to record plant health indicators like the ripeness of the 

https://www.rowbot.com/
https://www.rowbot.com/
https://www.rowbot.com/
https://www.rowbot.com/
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fruits, color of the leaves, and other characteristics, which allows the researchers to 
conduct phenotyping on those crops. There has been an extensive use of manipulator 
arms on ground robots for phenotyping even if it is made for a specific crop, since 
this allows the robot to interact and examine crop at different heights. A significant 
amount of AI and deep learning is used to detect fruits and color of leaves and 
estimate the size of fruit, plant height, plant width, plant volume, and surface area. 
Multiple cameras or complex computer vision algorithms are needed with highest 
accuracy to gain three-dimensional (3D) knowledge. Researchers and entrepreneurs 
have used a laser-based technology called light detection and ranging (LiDAR), 
which directly gives the 3D data about the surroundings. It is based on the principle 
of “time of flight” technology, which is also used in sound navigation and ranging 
(SONAR) and radars. For instance, the plant volume of perennial ryegrass was 
measured using a LiDAR sensor on DairyBioBot, which was correlated with the 
biomass (Xu and Li 2022). The canopy volume of almond trees was also measured 
using a LiDAR sensor on the Shrimp robot, which was shown to be correlated with 
the yield. The flower and fruit density of the almond tree was measured using RGB 
images obtained from camera. 

4.3 Robots for Picking and Harvesting 

Picking and harvesting include one of the most popular robotic applications in 
agriculture due to the accuracy and speed that robots can achieve to improve yield 
levels and reduce waste that is left in the field after the crop is harvested. Most of the 
robots that pick fruits also use phenotyping results either through the same robot or a 
different robot to gauge the level of ripeness of different fruits before picking. Fruit 
picking robots have been developed for tomatoes, berries (strawberries, blueberries, 
etc.), apples, capsicum (or bell peppers), cotton, oranges, radicchio, etc. (Daniels 
2018; Foglia and Reina 2006). These robots, which use a suction gripper to pick 
fruits, can also be used for picking different types of ripe fruits, because ripe fruits 
are more easily removed from the stalk. For a number of vegetables and fruits, like 
those that are heavy or grow on the ground or below the ground, harvesters are used. 
These harvesters are more efficient compared to manipulator arms and can be used 
with multiple crops. However, it is not always possible to use harvesters, particularly 
for fruits that are delicate and need careful and soft handling to avoid damage to the 
fruit or the crop around it. 

Combines are also used to harvest the produce in a variety of grain crops. 
These machines combine the following four separate harvesting operations in a 
single process: (i) reaping, (ii) threshing, (iii) gathering, and (iv) winnowing. Semi-
autonomous combines (like John Deere’s S700) have been in the market since 
2017. This machine can auto-steer, calculate yield, and dispose off all the hay into 
a separate bin leaving no waste on the field. Since harvesting for grains is not a 
problem now, new products will generally aim mainly on fruits, which can also be 
harvested like grains, but none of these products are automated yet. 
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4.4 Robots for Post-Harvest Technology 

Harvesting and post-harvesting are the most delicate operations. This is where a 
mistake by a robot can lead to direct losses (either by recalling a product due to 
contamination or throwing away), which could likely have been avoided if humans 
were handling. This is why farmers still do not trust robots that directly handle 
the harvest, and thus there are fewer robots in this space. However, robots that 
interact with humans during the post-harvesting stage are more readily acceptable. 
Automation of carts that carry plants and harvest is one such example. A Philadel-
phia (USA)-based startup, Burro.ai, has developed such robots that move around 
the farms, scouting fruit crops, carrying the trays of harvest placed by humans from 
farms to shipping area and carrying small pots of plants around the nurseries. They 
increase efficiency of farmers by automating the simplest but important tasks that 
farmers can reliably let a robot help with. A large number of robots are also available 
for handling, storing, and transporting fresh horticulture produce (Luna-Maldonado 
2010; Luna-Maldonado et al. 2012). 

In the past, conveyor belts along with cameras and infrared devices have been 
used either with or without human intervention to scan the quality of the harvested 
product and then trim, cut, or discard the item depending on the standards set by 
the producer. Because of varying dimensions and fragility (depending on the crop 
or over-ripeness/damage) of the harvest, a conveyor belt solution without the use 
of robot and humans will eventually fail to do the job always correctly. Robots 
are also available, and are being developed for post-harvesting operations, since 
this operation also sometimes causes significant losses in yield. Manipulator robots 
(arm robots) are programmed to take the information from cameras and handle the 
product in the most suitable way at a consistent speed thereby neither damaging it 
nor dropping it. 

The handling of the product using mobile manipulator robots is needed in 
storage, packaging, and transporting. In storage, the robots need to take the harvest 
from outside to inside refrigerators. These huge refrigerators have a controlled or 
modified gas composition, which might not be safe for humans to work in without 
protective gear. IoT and AI can also be used in these applications, if we feed in the 
data about the type of produce, harvest date, quality of the harvest at the time of 
storage, and destination and put sensors inside the refrigerators, which can monitor 
the health of the produce. Such automation can possibly increase the shelf life of 
the produce. 

In packaging, manipulation plays a very important role as a fixed quantity of 
produce is supposed to be packaged individually and robots are capable of picking 
and placing different types of produce efficiently and accurately. The data for such 
an operation can be collected and used to train machine learning models to facilitate 
this operation. 

Transportation involves transporting from storage to the vehicles/trucks, when 
produce needs to be transported from one town to another. These products are 
packaged and contained in boxes or pallets. Autonomous forklifts have seen 
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their applications in inventory management for industrial warehouses, but the 
applications could be extended to agricultural inventory too. For trucking, there are 
ongoing efforts, at the time of writing this chapter, to automate highway driving for 
trucks. 

Most of the post-harvest robots need a structured and controlled environment 
as robots need to work 100% of the time with little to no errors. Here, the cost of 
waste is higher as compared to other operations due to the added cost of farming and 
supply chain. Grocery stores also employ robots to monitor and record the health of 
the produce kept, so as to always deliver fresh produce to customers. 

5 Some Case Studies of Using Robots and AI in Agriculture 

In crop production systems, one of the most significant issues concerns human labor-
intensive operations. These operations mainly include field tasks, such as harvesting 
of delicate and sensitive fruits that are prone to damage during harvesting and 
transport. Another major labor-intensive operation is weed control between rows 
and within rows, which are difficult to be executed by traditional field machinery. 
This has received major attention of robot experts involved in agriculture, such 
that autonomous tractors and robotic platforms have become available, and their 
successful use has been demonstrated in several case studies, although some of these 
are still being developed and are the subject of intensive research. In this section we 
describe a few case studies demonstrating the effective use of robotics in agriculture. 
Such cases studies largely deal with weeding and harvesting; the less-studied case 
studies deal with disease detection and seeding robots. 

5.1 Agri.Q for Hilly Areas in Italy 

In Italy, substantial regions of agricultural production are in hilly or mountainous 
areas, particularly for orchards, olive groves, and vineyards. As a result, robotic plat-
forms must overcome and deal with a variety of challenges, for example, to address 
traction concerns, wheel slippage, tight spaces between rows, instabilities associated 
with terrain irregularities and changing slopes, and poor GPS signal reception, 
dedicated awareness (location, terrain, environment) systems and architectures must 
be built. Agri.Q is an innovative unmanned ground vehicle (UGV) developed for 
precision agriculture applications in vineyards (Botta and Cavallone 2022; Botta et 
al. 2022). It is outfitted with various instruments and sensors to perform specific 
activities, such as field mapping and crop monitoring. It also allows soil, leaf, and 
grape sample collections. 

Agri.Q is an articulated robot made of two skid-steering modules, each module 
having two locomotion units driving two tires. The robot’s low weight of around 
110 kg allows it to move easily over rough and soft terrains, minimizing soil 
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degradation. It has been designed to fulfill mostly proximal soil and vine monitoring 
and sample collection, while a flying drone can use Agri.Q as a base whenever its 
remote-sensing capabilities are not required. 

5.2 A Case Study for Harvesting Sweet Pepper 

A case study was conducted by van Herck et al. (2020) involving improvement in 
use of robots for harvesting sweet pepper. They gave a parallel approach to “design” 
the crop and its environment to best fit the robot. A systematic methodology 
was presented to select and modify the crop “design” (crop and environment) to 
improve robotic harvesting of sweet pepper. A sequential field experiment was 
planned for three years, involving ten cultivars, two climate control conditions, two 
cultivation techniques, and two artificial illumination types. Results showed how the 
modification of the crop itself affects the crops characteristics influencing robotic 
harvesting by increased visibility and reachability. The systematic crop “design” 
approach also led to robot design recommendations. The presented “engineering” 
of the crop “design” framework highlights the importance of close synergy between 
crop and robot design achieved by strong collaboration between robotic and 
agronomy experts resulting in improved robotic harvesting performance. 

5.3 A Study on Designing an Apple Orchard for Robot 
Harvesting 

While designing a robot for an agricultural operation is a major activity, sometimes 
orchards are also designed to suit a robot to economize on harvesting operation. One 
such study was conducted by Bloch et al. (2018). 

6 Cost Effectiveness of Using Robotics and AI 

As emphasized throughout this review, agricultural machinery including robots 
is a device that significantly reduces the amount of human labor required for 
food and fiber production, particularly at a time when labor costs are increasing 
everywhere in the world, leading to increase in cost of growing crops for food, feed, 
and fiber. In agriculture industry, the robots provide numerous other advantages, 
including improved quality of fresh produce. Harvesting is one of the most common 
areas where robots are used in agriculture today. The discovery of robots for 
harvesting highlighted the significant benefit of robots in agricultural techniques 
for effective mechanized farming in the agricultural industry. Finally, agricultural 
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robots are critical equipment for performing repetitive tasks faster, cheaper, and 
more accurately than humans in farm cultural practices, inspection, and harvesting, 
as well as post-harvest handling. 

7 Robots and AI for Plant Production Under Artificial 
Conditions 

Growing crops under artificial condition is becoming a norm rather than an excep-
tion since farmers can now grow plants under controlled climatic conditions and can 
optimize production. Vertical farming is another example of plant production under 
artificial conditions. The greenhouses are usually built in areas where the climatic 
conditions for the growth of plants in the field are not optimal. This requires some 
artificial setups to improve productivity. Automation in using greenhouse requires 
monitoring and controlling of the climatic parameters. Efforts are, therefore, being 
made to minimize the cost of maintaining greenhouse environments using new 
technologies. This also involves use of robots and AI in automated system to 
optimally monitor and control the environmental factors inside greenhouse by 
monitoring temperature, soil moisture, humidity, and pH through a cloud-connected 
mobile robot that can detect unhealthy plants using image processing and machine 
learning. The mobile robot navigates through a pre-defined map of greenhouse. 
Database server has created a facility to store gathered real-time data that are useful 
in planning agricultural operations. The necessary accurate data are represented by 
using proper application for analyzing. 

8 Future of Robotics and AI in Agriculture 

It has been repeatedly emphasized that the future of agriculture lies in robot farmers 
(Jenkins 2013; Harvey 2014). The is evident from the fact that global spending on 
smart agricultural technologies and systems, including AI and machine learning, is 
projected to triple in revenue by 2025, reaching $15.3 billion. The development of 
AI integrated with IoT-enabled Agricultural (IoTAg) monitoring is also projected 
to reach $4.5 billion by 2025. According to PwC also, the global robot market 
will grow from 4082.8 million USD in 2018 to 16,640.4 million by 2026, which 
translates into compound annual growth rate (CAGR) of 19.2% and 400% over a 
period of eight years (Report by Research Dive; https://www.pwc.in/assets/pdfs/ 
grid/agriculture/redefining-agriculture-through-artificial-intelligence.pdf). 

The future growth of AI and robots in different parts of the world may also differ 
as witnessed in the past. For instance, it has been shown that by 2026, the Asia-
Pacific’s (APAC’s) agricultural robot market will have the highest CAGR in the 
world, which is currently estimated at 19.7% with revenue of 3798.3 million USD. 
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Robot Density in the Manufacturing Industry 2021 

Robots installed per 10,000 employees 

World:141 

Fig. 5 Growth of robotics per 10,000 employees in different parts of the world. (https://ifr.org/ifr-
press-releases/news/china-overtakes-usa-in-robot-density) 

Given this promising data, countries in the APAC region are also taking steps and 
initiatives that aim to explore potential applications of robots in agriculture. The 
growth of robots per 10,000 employees in different parts of the world is shown in 
Fig. 5. 

In this section we discuss the future of robotics in two parts, the first dealing with 
the expected future development of technologies globally and second dealing with 
the development of robotics and AI for agriculture in different parts of the world. 

8.1 Future of Robotics and AI in Various Agricultural 
Operations 

A number of reviews on use of robotics and AI have been written during the 
last five years (Kulothungan et al. 2018; Shieber 2018; Shamshiri et al. 2018; 
Mendes et al. 2019; Paquette 2019; Abdullayeva 2019; Jha et al. 2019; Fountas 
et al. 2020; Mahmud et al. 2020; Torero 2020; Chandana et al. 2020; Bera and 
Dutta 2021; Johnson 2021; Srivastava 2022; Papadopoulos 2022; Wakchaure et 
al. 2023). Based on these reviews and earlier studies, it is believed that the areas 
where robotics and AI will be used for agriculture in future include the following: 
(i) in autonomous disease detection and management; (ii) in use of large amounts 
of available data (digital solutions) using IoT (Internet of Things), including the 
following data: weather pattern, soil reports, rainfall, pest infestation, and imagery 
using drones and sensors; (iii) in gathering location data using proximity-sensing 
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sensors installed in the field and remote sensing using Wi-Fi active hot spot towers 
for entire field coverage for in-depth field analysis, crop monitoring, scanning of 
fields, and remotely being able to control robots and machines in the field; (iv) in use 
of “Chatbot” for assisting farmers with answers and recommendations on specific 
problems; (v) in use of “Agri-E-calculator” for suitable crop selection along with 
resource estimation and affordability based on several dependency factors; its output 
will provide useful data on both estimation of fertilizers’ cost/quantity, water, seeds, 
cultivation equipment cost, and labor day efforts/cost and distribution on calendar 
chart of crop life cycle, crop yield, and extrapolated market price at the harvest time 
and its profitability; (vi) in making available “crop care services” to the farmers 
that will provide analysis of complete data; accordingly, the corrective measures 
would be suggested through alerts to the farmer on their smart phone to prioritize 
the action based on severity and urgency to act upon; (vii) in price prediction and 
market guidance to safeguard the farmers from market fluctuation and to mitigate 
the risk of price loss; therefore, the farmers will be able to plan better for releasing 
their commodities to market; and (viii) in providing crop loan and insurance service, 
which will help the farmers by facilitating feasibility of getting crop loan, processing 
support, eligibility criteria, and loan limit as per the smart estimation made for the 
proposed crop; also, it would help to get the crop insured as a mitigation plan for 
crop failures due to any uncertainties or calamities. 

AI will also make farmers more efficient and connected to the economy and 
government policies by providing some information services like interest rates for 
loans, price in the consumer market, etc. for which farmers had to earlier either 
guess based on experience, read/watch news, or go to the cities to inquire about. In 
the future, the number of robotics used in agricultural field is expected to increase 
considerably as autonomous robots (using solar energy power) are able to work 
for many hours. A photoelectric and a capacitive sensor were tested for localizing 
cutting along the row and proved to be suitable to be included in intra-row weeding 
machine. 

8.2 Future of AI and Robotics Around the World 

Although there are various common applications of AI and robotics that will be 
seen across the globe, operations and level of automation will differ in different 
countries. This aspect will be discussed for the following three groups of countries: 
(i) Singapore and China; (ii) India; and (iii) Australia, the USA, and Europe. 

8.2.1 Activities in Singapore and China 

Since Singapore is not one of the agricultural economies, a lot of companies that 
have sprung up in the area focus on vertical farming. Singaporean agriculture 
company, Singrow, has focused on using robotics and other related technologies 



Robotics and Artificial Intelligence (AI) in Agriculture with Major Emphasis. . . 599 

to address issues of food security and agricultural sustainability. As reported by 
Techwire Asia, the company has already developed several technological models 
that integrate artificial intelligence (AI), including the following: (i) Automated 
Pollination: After a flower is automatically identified by a camera, agricultural 
robots will trigger a fan that toggles increased wind flow to encourage pollination 
effectivity; (ii) Strawberry Detection and Picking: Scanners are also becoming 
available, which identify and cross-check strawberries with an existing Singrow 
database; afterward, the agricultural robots can differentiate which strawberries are 
ready for harvesting and automatically pick them. 

In addition to some private companies like Singrow, governments are also at 
the forefront of including robotics in the agricultural industry as evident from 
the Singaporean government’s project “Agri-food Cluster Transformation (ACT) 
Fund.” This initiative outright pledges an investment of 60 million Singapore dollars 
(SGD) for exploring ways in which the domestic agri-food sector can increase 
overall productivity; this is a matter in which robotics is of the utmost relevance. 

Like Singapore, the Chinese Academy of Agricultural Sciences (CAAS) has also 
announced its commitment to exploring the deployment of technological solutions 
in China’s agricultural industry. Among its intention to improve seed varieties, 
grain yield, and overall agricultural sustainability, the CAAS will also work on the 
automation of processes through robotics. By doing so, the government-affiliated 
organization hopes to innovate traditional farming operations to reduce costs and 
increase supply chain efficiency. The government policies in China have encouraged 
a lot of research and development in the field of AgTech. 

8.2.2 Activities in India 

During 2020–2021 and 2021–2022, the Indian government allocated funds amoun-
tiung to Indian rupee (INR) 1756.3 cores in 2020–2021 and INR 2422.7 in the 
fiscal year 2021–2022 for introducing new technologies including drones, AI, block 
chain, remote sensing, geographic information system (GIS), etc., in agriculture. 
The Indian government also allocated INR 7302.50 crores and INR 7908.18 crores 
in 2020–2021 and 2021–2022, respectively, to ICAR (Indian Agricultural Research 
Institute) for undertaking research and development in agriculture for developing 
new technologies, their demonstration at farmer’s field, and capacity building of 
farmers for adoption of new technology. The government has recently also launched 
Digital Agriculture Mission (2021–2025). 

Following are some other areas that have potential to improve agriculture in India 
with the integration of AI: 

(i) Cognitive computing: Microsoft is currently working with 175 farmers in 
Andhra Pradesh to provide agricultural, land, and fertilizer advisory services. 
This initiative has already resulted in 30% higher average yield per hectare 
last year. The pilot project was completed using agricultural AI applications 
to communicate dates, soil preparation, fertilization based on soil tests, seed 
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treatment, optimal spreading depth, and more. Mobile robots and field sensors 
also support digital agricultural robots; multidisciplinary cameras and laser 
scanners are used for facilities and areas of radiation that cannot be measured. 

(ii) Proximity sensing, remote sensing, Internet of Things (IoT), and image-
based precision farming are being used for intelligent data integration related 
to historical meteorology, soil reports, recent research, rainfall, and insect 
infections; also, drone imagery is being used for in-depth field analysis, crop 
monitoring, and field surveys. 

(iii) The artificial use of image recognition using AI for plant identification, pest 
infestation, and disease diagnosis is also becoming prevalent. Using AI and 
machine learning-based surveillance systems to monitor every crop field’s real-
time video feed identifies animal or human breaches, and hence sending an 
alert immediately can become very useful to prevent crop damages. 

(iv) Yield mapping to find patterns in large-scale datasets and understand the 
orthogonality of them in real-time, and optimizing irrigation systems to mea-
sure effectiveness of frequent crop irrigation are invaluable for crop planning. 

(v) Due to shortage of labor, AI and machine learning-based smart tractors, 
agribots, and robotics are also considered to be viable options for many remote 
agricultural operations. These robots reduce operating costs. 

(vi) Chatbots in local languages: Farmers will be able to ask queries about their 
farms and crops in their local languages, which would allow less educated 
farmers to operate these AI-enabled tools. 

Although farming services and drones are being made available using AI, 
autonomous mobile robots have still a long way to go. Autonomous mobile robots 
need not only extensive and annotated data but also structured farming with clear 
boundaries for different crops and standard practices across the entire field. This 
is difficult to achieve if a lot of the tasks are done by humans in collaboration 
with machines and robots. Moreover, these robots are significantly more expensive 
because of the use of the highly precise sensors and actuators (motors). Country-
wide issues like smooth Internet connectivity and literacy among farmers will also 
impede the use of such technology unless it is developed for the Indian market 
considering all the socio-economic factors. 

8.2.3 Activities in Australia, the USA, and Europe 

Countries like Australia, the USA, Germany, Spain, France, the UK, and Italy have 
a considerable share in the usage of robotic technologies in agriculture. Even though 
the scale of production is much lower in farms in Australia and Europe as compared 
to the USA, small autonomous field robots have been developed and used and the 
activity is increasing in these countries also. Although autonomous tractors and 
robots for picking of a variety of fruits are already popular, the adoption of robots 
and AI for all agricultural operations will increase at an exponential rate in all these 
developed countries. 
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In Australia, as an answer to labor shortage, robots are already being used for 
commercial farming in >405,000 hectares of Australian farmland, including farm-
lands in Queensland, New South Wales, and Western Australia. Queensland is the 
hub of these activities, where regional sales offices for many global robot retailers 
have started their activities. Companies like “Swarm Farm Robotics” (established in 
2012) and LYRO Robotics are increasing their operations of manufacturing robots. 
Researchers at the Queensland University of Technology Centre for Robotics and 
the Australian Centre for Robotic Vision are also involved in building a Queensland 
ag robot knowledge-base. According to a 2020 report by McKinsey & Company, 
autonomous farm machinery in Australia could add up to $60 billion to global GDP 
by the end of the decade. 

In the USA, dozens of companies are working toward improving the existing 
robots and developing new robots for future. Some of these companies include 
the following: Harvest Automation, Harvest Croo, Blue-White Robotics, and Tevel 
Aerobotics Technologies. Most of these companies are utilizing computer vision 
(CV) and Edge AI, the two subdisciplines of AI and deep learning (for image 
recognition), a subdiscipline of machine learning, for building up their capacity 
in developing robots for agriculture. The use of computer vision techniques in 
conjunction with image acquisition through remote cameras has already opened up 
a range of new applications in the agricultural sector, from saving production costs 
with intelligent automation to boosting productivity (https://viso.ai/applications/ 
computer-vision-in-agriculture/). 

In Europe there are several activities that will be used in future in agriculture. 
Their Horizon Europe Programme will boost innovations (including robotics and 
AI) in the agricultural sector. In addition, under Pillar II, Cluster 4, “Digital, 
Industry and Space” Programme, innovative technologies such as IoT, cloud and 
edge computing, AI, robotics, and block chain will be tested and validated for use in 
agriculture. Similarly, Cluster 6 will involve use of following advanced technologies 
in agri-food: drones, smart IoT, AI, upscaling real-time sensor data, 5G, and edge 
solutions for remote farming. Under Cluster 6 Programme, AC9 billion will be 
invested in “food, bioeconomy, natural resources, agriculture, fisheries, aquaculture, 
and the environment,” including the use of digital solutions for the agricultural 
sector. 

9 Conclusion and Prospects 

As described in this chapter, Robotics and AI are already being utilized on a 
fairly large scale for all operations in agricultural farmlands and horticultural 
orchards. Almost all operations, starting from preparation of fields and sowing to 
harvest and post-harvest operations, involve use of robots and AI. However, the 
use is not widespread, particularly in the developing countries, except in countries 
like Singapore and China (as discussed above), where private companies and the 
government, both are involved in promoting the use of robots and AI in agriculture. 
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The Government of India is also making massive investment in modernizing 
agriculture through use of robots and AI. In developed countries like Australia, 
the USA, and Europe also, several private companies are involved in developing 
robots using AI. These activities will certainly increase exponentially in future, thus 
bringing about an agricultural revolution to deal with the problem of food security, 
despite the anticipated problem of climate change and environment degradation. 
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Analysing Data from Open Sources to 
Manage Risks in Food Production 

Nathaniel Narra, Reija Hietala, and Tarmo Lipping 

Abstract Agri-food supply chains pose unique challenges. They are inherently 
complex due to natural processes, random processes, and unpredictability. In mod-
ern agriculture and food production, the supply chains necessary for operations are 
wider because of more components involved and longer because of more complex 
products and services that themselves depend on supply chains. From a primary 
producer’s perspective, risk-sensitive components of the supply chain are not always 
fully identified. While the most important direct risks—such as energy, seeds, and 
fertilizers—are usually quite well understood, other deeper dependencies in the 
supply chain are not easily recognized. On the other hand, with data ‘revolution’ 
it has become easier to monitor processes. Advances in big data and analytics have 
made extracting information easier. Open data are also increasingly available and 
organized to the point where large amounts of data are shared and hosted through 
international collaboration. In this chapter, we seek to detail a producer’s risks and 
map available sources of relevant data. Through relevant example cases we illustrate 
the utility of using big data to increase information content that can help alleviate 
risks. We foresee this strategy as a tool for producers to customize their own supply 
chains and gain a deeper understanding of their vulnerabilities. 
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1 Introduction 

Background 
Improving production and staying competitive is often tackled via improving pro-
cess efficiency, removing the presence of negative factors or mitigating unavoidable 
risk factors. Agricultural production, as the production of any commodity, is a part 
of a supply chain. With modern trends in agricultural practices, the reliance on 
an extensive supplier network has become increasingly important. Efficiency and 
productivity comes with various supplies and products that themselves are part of 
an extended supply chain. Combined with the market of global causes and effects 
and greater regulatory regimes, the task of a primary producer in staying relevant in 
the market and staying ahead of global trends and disruptions is ever more complex. 

When considering preparedness, two kinds of changes in the operational environ-
ment can be considered. There are natural trends including, for example, changes 
in production volumes and market prices due to the yearly variability of weather 
and climate conditions. On top of these, there are disruptive events and crisis 
affecting the operational environment and rewriting the rules of operation. Of 
these, the recent global COVID crisis and war in Ukraine are prominent examples. 
While the natural trends can be anticipated and taken into account in forecasts, the 
occurrence and influence of disruptive events are virtually unpredictable. Also, the 
disruptive events usually possess the features of so-called wicked problems, first 
conceptualized by Rittel and Webber (1973). Wicked problems are unique so that 
the experiences gained from previous crisis are of limited use in dealing with them. 
There might be no true or false actions when addressing these problems and the 
consequences of the various actions might be difficult to anticipate (Schiefloe 2021). 
Wicked problems usually involve many dimensions such as social, (geo)political, 
behavioral, economical, etc. 

Availability of data and the ability to interpret the data and extract useful 
information from them are crucial when addressing both kinds of changes—natural 
trends and disruptive events. Even if the wicked crises cannot be predicted or 
previous experiences are of limited value in addressing them, situation awareness 
coming from proper analysis and interpretation of data can give hints on the 
development of the crises, help to develop plausible scenarios and make forecasts 
as soon as the ‘new normal’ begins to emerge. The proper interpretation of data also 
enables us to better comprehend the changed rules and operation environment after 
a wicked crisis. 

The Food and Agriculture Organization (FAO) of the United Nations has 
launched the Data Lab for Statistical Innovation1 in 2019. They recognize that in a 
globalized ecosystem, food value chains can be easily and quickly disrupted by sud-
den crises, putting food security and food safety at risk and that information needs 
in times of crisis are intrinsically different from business-as-usual needs. While

1 https://www.fao.org/datalab. 

https://www.fao.org/datalab
https://www.fao.org/datalab
https://www.fao.org/datalab
https://www.fao.org/datalab
https://www.fao.org/datalab
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data play an important role in staying competitive and enhancing the sustainability 
of agricultural production also in business-as-usual operational environment, the 
significance of timeliness and the importance of having automatic data infrastructure 
in place become especially crucial in crises. 

In light of the risks that production entails, a producer has to be aware of and 
monitor multiple risk factors. These factors can be either quantified or qualified 
through data of different forms such as textual information, performance categories, 
numeric data, or protocols. Open data collected by various organizations cover 
these types. Such heterogeneity in data characteristics and the necessary analyses 
requires involved handling. Although the interpretation of the data is mostly 
done by organizations such as ProAgria or the Natural Resources Institute in 
Finland or by technology companies, decision-making remains with producers, and 
therefore, general knowledge on the data sources and data infrastructure is highly 
recommended. 

Potential for Data-Driven Analytics in Agri-Food Supply Chains 
A lot of studies exist considering the Agri-Food Supply Chains (AFSCs) and their 
management (Zhong et al. 2085). Commonly, the main actors of the AFSC include 
the primary producer, food industry (food processor), retailer, and the consumer. 
Other actors may be marketers, distributors, caterers as well as various suppliers of 
energy, seeds, fertilizers, etc. (Dani and Deep 2010). Stone and Rahimifard (2018) 
consider in their review on the resilience of AFSCs the interrelationships between 
individual organizations and the supply chain as a whole in developing resilience. 
At both levels, similar phases are recognized; the actions of individual actors affect 
those of the supply chain and vice versa. The authors note that the actors of the 
AFSC both share general risks and face their own unique vulnerabilities. 

The importance of data and data-driven decision support has also been dis-
cussed by several authors. As brought up by FAO, there are mainly two drivers 
when developing supply chains: competitiveness and sustainability. Banasik et al. 
(2018) review the use of Multi-Criteria Decision Making (MCDM) in designing 
Green Supply Chains (GSCs). In MCDM, trade-offs among environmental, social, 
economic, etc. factors are considered. The authors consider AFSCs in the broader 
context of GSCs. They note that using MCDM is a relatively new but emerging 
approach. Ivanov et al. (2019) take the idea a step further by considering data-driven 
digital twins of supply chains when simulating the effects of disruptions to supply 
chains. These kinds of models—digital twins or not—allow for the assessment of 
the effects of various factors on the Key Performance Indicators (KPIs) of supply 
chains through sensitivity analysis (van der Vorst and Beulens 2002). While digital 
twins may stay as the ultimate goal, it is clear that the nature of wicked problems is 
too complex and unpredictable to be fully comprehended by a digital twin. 

The concept of Big Data has been around for some time by now and a multitude 
of studies consider its role in supply chain management (Talwar et al. 3509). 
Rejeb et al. (2021) provide a review on using Big Data specifically in AFSC 
management. While Big Data analytics has a lot of potential in mitigating risks, 
increasing efficiency and raising the level of sustainability, employing Big Data as it
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is commonly defined does not necessarily mean taking into account all the relevant 
aspects of supply chain development. In the studies reviewed in Rejeb et al. (2021), 
emphasis is on soil, water, crop, waste and traceability management, while social, 
financial, market-related, and regulatory issues are overlooked. 

Study Goals 
In this chapter we first consider a categorization of risks from the primary producer’s 
point of view. We then make an attempt to identify sources of open data that can be 
used to mitigate these risks. Most of the identified risks and related data sources 
are common to the actors of the AFSC. Some case studies are described next 
on the usage of open data to provide decision support for the primary producers. 
Finally, recent initiatives to provide a comprehensive decision support platform for 
producers are considered. 

2 Mapping Risks in Agricultural Production 

In this section we first give a brief overview on the results of a set of interviews 
carried out in the Satakunta region, Finland, on the experiences of the actors of agri-
food supply chain during the COVID crisis. The main focus here is on what data 
sources the actors were familiar with and what kind of data they would like to have 
for better decision-making. After that we provide a categorization of potential risks 
while suggesting corresponding data sources that can be used to mitigate these risks. 

2.1 Usage of Open Data by Actors of the AFSC: Summary of 
Interviews 

The interviews were carried out in Autumn 2021 as part of the project Security 
of Supply and Sustainability of AFSCs During Recovery from Corona Pandemic in 
Satakunta funded from EU Regional Funds. Altogether 10 farmers, 9 representatives 
of food industry and 2 representatives of retail were interviewed. While the overall 
scope of the interviews was wider, the following questions were asked regarding 
data usage:

• What data sources do the actors of the AFSC currently use?
• What data do the actors of the AFSC produce?
• What kind of data would the actors like to use if made available? 

The main results of the interviews, concerning data sources, are presented in Fig. 1. 
Naturally, most of the farmers use weather data, either provided by the Finnish 
Meteorological Institute (FMI) or acquired using their own weather stations. Some 
weather data products such as cumulative temperature sum are also followed. In 
addition, farmers utilize data related to the diagnostics of their machinery (meaning
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Fig. 1 Summary of the interviews regarding data usage by farmers. Grey boxes at the left side 
mark the data sources used by at least some of the farmers; data sources in shadowed boxes were 
used by some farmers while noted as desirable by others, while the data sources in white boxes 
were noted as not yet available but potentially useful 

of error codes, for example), data provided at various open or proprietary portals 
(such as Farmit.net or ett.fi in Finland), remote sensing data, and data in their 
own manual records. Data sources such as expert advice, information on standards, 
market forecasts, or soil sensor data were used by some farmers but noted as 
desirable by others. Remote sensing data combined with appropriate analysis tools, 
information about regulations, and market data were noted as desirable if provided 
in a suitable form. The data produced by farmers included bookkeeping data about 
production, GPS data on the use of pesticides and fertilizers, or crop yield data. The 
data produced by farmers are mainly made available to the public stakeholders for 
statistics or to the food industry companies based on mutual agreements; there is yet 
no common marketplace for this kind of data. 

In Fig. 1 the data sources are mapped to data categories according to the type of 
activities the data sources are related to. These data categories are in turn mapped 
to risk categories. For example, remote sensing or equipment diagnostics-related 
data are concerned with agricultural production and can be used to mitigate risks or 
support decisions on corresponding risks. On the other hand, data and information
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related to regulations fall in the category of institutional data and being able to 
comprehend this information enables us to anticipate the effects of the regulations 
and to take relevant actions. 

2.2 Mapping Risks to Data Sources 

In Fig. 2 a more comprehensive view of risk categories and related data sources 
is given. Classification of risks has been adopted from Rosales et al. (2015). The 
focus is on primary producers located in the AFSC between various suppliers (for 
obtaining equipment, seeds, fertilizers, etc.) and consumers. By consumers we mean 
various actors to whom the primary producers sell their products most commonly 
being food industry companies. Main risks from the primary producer’s point of 
view can be categorized as follows:

• Production risks; i.e., risks related to the production such as labour, climate 
conditions, and environment 

Fig. 2 A map of risk categories to relevant data sources from the primary producer’s point of view
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• Market risks; i.e., risks related to the prices of supplies and products, consumer 
behaviour, and market behaviour

• Financial risks such as interest rates, for example
• Institutional risks; i.e., risks related to regulations, changes in legislation, and 

changes in trade rules 

For each risk (sub)category, a set of data sources has been identified that can inform 
the producers when dealing with corresponding risks. In the following we discuss 
each of these risk categories briefly. 

Production Risks 
All factors that affect the production processes are included here. While labour is 
often earmarked as a separate category, we chose to include it within the production 
category. This risk basically arises from the availability of appropriately skilled 
labour. This availability can be endemic to the local/national context or influenced 
externally through labour import restrictions and delays in the bureaucracy (includ-
ing, for example, health-related restrictions as was the case with COVID). The other 
major components noted here are climate, bio-physical (environmental) factors, and 
operational issues. 

Climate, separated here from the broader environmental category, specifically 
deals with the weather parameters. Data related to climate and weather are widely 
used among the producers, even meat producers. Short-term weather forecasting is 
widely available in most countries via the national meteorological institutes. Inter-
nationally, the European Centre for Medium-Range Weather Forecasts (ECMWF) 
provides potentially useful long-term (up to 4 months) forecasting. These long-
term forecasts, although of limited reliability, can be useful for producers to plan 
ahead for the beginning of the growth season. Weather forecasting takes special 
importance when decisions on field preparation, sowing time, crop type, or irrigation 
are done. For example, decisions on irrigation can be done based on short-term 
forecasts, decisions on sowing time based on mid-term forecasts, and decisions 
on crop type and variety or purchase of irrigation equipment based on long-term 
forecasts. Weather conditions can have significant spatial variation caused by land 
forms or vicinity of large water bodies. When establishing one’s own weather 
station, more accurate data can be obtained. 

Another way of using the weather and climate data is to record and monitor year-
to-year variability in the weather to acquire knowledge on how specific fields react to 
exceptionally dry/wet or warm/cold conditions, for example. Producers usually have 
some gut feeling about this based on their long-term experience and manual records. 
However, the proper visualization and systematic analysis of the data is needed to 
make evidence-based decisions. Combining this information with soil type, water 
table, and crop type/variety enables us to accumulate valuable information which 
can then be used for better decision-making and calibration of crop models. 

Environmental risks are closely related to climate risks but consider a wider 
range of phenomena. Soil type with specific soil properties form a more-or-less 
permanent environment for crop growth, however, there are risks related to erosion 
or washing out of nutrients from the soil. Soil organic carbon has been found to



614 N. Narra et al.

significantly influence crop yield and, at the same time, mitigate the risks of climate 
change (Lal 2004). Information on how to sequestrate soil carbon is provided at 
https://carbonaction.org/en/front-page/ in the Finnish context. Soil moisture and soil 
temperature can also be considered as environmental variables as they depend on 
soil properties in addition to weather conditions. Soil sensors can be used to monitor 
these variables and to inform the farmer about the need for irrigation. Another 
environment-related issue is the occurrence of pests or crop diseases. As presented 
in Sect. 3.4, data sources estimating the probability of pests or diseases are available, 
however, there is clearly a need for better and more versatile data sources for that. 
Finally, remote sensing data can be used to monitor crop condition throughout the 
growth season and to inform farmers about unfavourable environmental changes. 

In the subcategory of operational risks, the issues related to various actions 
by the farmer or the maintenance of equipment can be considered. These include 
the selection of crop type/variety, decisions regarding sowing time, selection of 
fertilizers and pesticides as well as the timing of their application, etc. The main 
data sources here include the platforms of the producers of these commodities. 
In Sect. 3.3 an example of a decision tool for farmers regarding crop selection is 
presented. 

The overall production category is probably the widest and best researched 
among the risk categories. The factors within this category and the related data 
sources are somewhat specific to the type of production and the crop/variety and 
can have various subcategories when looked at in detail. 

Market Risks 
Market risks are mostly related to the volatility of the prices of various commodities 
(such as fuel, energy, equipment, machinery, fertilizers, etc.) as well as the prices of 
the produced crops. As a separate subcategory, market behaviour can be considered 
involving, in addition to prices, also the availability of the commodities and 
products. While apparently there is a clear connection between availability and 
price, geographical variation and temporal dynamics of the market as well as 
possible restrictions on trade due to political agendas or unexpected crises make the 
behaviour of the market difficult to predict even if changes in production volumes 
can be anticipated. 

The market of agricultural products is also related to the consumer’s behaviour 
which can change radically in modern globalized world. Currently, there are a lot 
of discussions on the price gap between meat and plant-based food products and 
to what extent the price can influence the sales and consumption habits of people 
(Garnett et al. 2021). While consumption is affected by price, there are also other 
factors that affect consumption such as trends and fashionability. These changes 
in consumption would affect prices if not globally, then at least within a certain 
economic region. Data sources that could potentially allow us to mitigate this 
kind of risks would include statistics on consumption or mining of social media 
and periodicals. While retailers collect data on consumer behaviour, these data are 
generally not available to producers. On the other hand, mining social media for 
detecting trends on consumption is difficult and the results unreliable.

https://carbonaction.org/en/front-page/
https://carbonaction.org/en/front-page/
https://carbonaction.org/en/front-page/
https://carbonaction.org/en/front-page/
https://carbonaction.org/en/front-page/
https://carbonaction.org/en/front-page/
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Financial Risks 
Financial risks are generally predominantly related to loans and the cost of loans. 
These are typically not extremely volatile if safety measures and risk mitigating 
packages are subscribed to with a financial institution. Financial risks are common 
to all businesses and financial institutions produce forecasts of interest rates 
regularly. At the moment of writing this chapter, inflation and interest rates are 
surging causing difficulties to many producers. It is difficult to say if any data source 
could have been useful in securing agricultural production against this situation. 

Institutional Risks 
The main institutional risks are posed by changes in the operation environment 
due to legislation and regulations. Also, political causes such as trade restrictions 
and sanctions can be considered as institutional risks as they are implemented via 
(often temporary) decrees or regulations. While normally changes in legislation are 
implemented after a careful evaluation of the consequences to the various groups 
involved and often there is a transition time to let citizens and businesses take 
actions, then in the case of crises the changes can be abrupt. Various compensation 
schemes can be designed, however, there tend to be always groups of people who 
suffer losses. 

To anticipate the changes and prepare for institutional risks, it is useful to 
consider the causes that might drive these changes. A significant driver for changes 
in legislation is sustainability. Political parties have different attitudes on the urgency 
of these actions—whether there is an emergency and the actions should be taken 
as in the case of an acute crisis or there is time to proceed according to common 
procedures. However, it is clear that legislation will change to force environment-
friendly ways of operation. 

Another major driver for changes in regulations is technological development. 
Herrero et al. (2020) list numerous technologies that either have already or 
will in the near future change our operation environment. In their paper they 
consider technologies that accelerate the transition towards sustainable food system; 
however, technology changes the ways we operate also if sustainability is not the 
primary goal. For example, regulations related to the use of data may have primarily 
economic and social incentives. 

When considering the sources of data to mitigate the risks due to changing 
regulations, the drafts of new laws and directives form, indeed, the most immediate 
source of information. It is clear that keeping track of these documents, making 
sense of their content and anticipating the consequences of their implementation 
cannot be expected from most of the agricultural producers. Therefore, disseminat-
ing this information by officials and explaining the opportunities and restrictions 
the new regulations will bring about from a farmer’s point of view via seminars and 
workshops is important.
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3 Case Studies 

In this section several examples are presented on how various data sources can be 
used and visualized for decision support in agricultural production. The context of 
the cases is Finnish, i.e., some of the data sources are made available by Finnish 
organizations and concern operating in Finland. However, similar data sets are 
available in other countries. 

3.1 Case 1: Using Weather Data for Mitigating Production 
Risks 

As indicated in Fig. 1, weather data are the most common data source the farmers 
use. Weather is an important factor in agricultural productivity, especially in open-
field cropping systems. While national (and international) meteorological institutes 
provide weather forecasts for at least 10 to 15 days ahead in various formats and 
visualizations, this is not the only way the weather data can be used (Lalić et al.  
2018; Nobre et al. 2019). For example, visualizing yearly weather statistics (such as 
temperature and precipitation) in a way that makes it easy to grasp the characteristic 
features of each year’s weather conditions and presenting this together with some 
target value (such as crop yield) enable to learn about the correlation between 
weather and crop performance for a specific field of particular soil type, water table, 
etc. Historical weather records can be obtained from an official data source such 
as Finnish Meteorological Institute (FMI) in Finland or by collecting data from 
one’s own weather station. In Fig. 3 two ways of aggregating precipitation and 
temperature data are shown. For example, it can be seen that year 2020 has been 
exceptionally wet and cold at the beginning (heatsum starting to accumulate only 
at mid-May), while during the growth period, dry and wet seasons have alternated. 
The total heatsum can vary from year to year by as much as 20% (about 1500 in 
2019 while over 1750 in 2018). 

In addition to past weather data and short-term forecasts, long-term and seasonal 
forecasts can be useful for decision-making. For example, the European Centre for 
Medium-Range Weather Forecasts (ECMWF) offers various forecast products at 
different time scopes such as:2 

• High-resolution short-term forecasts (up to 10 days)
• Ensemble forecasts (mid-term forecasts up to 15 days)
• Extended range forecasts (from 16 to 46 days)
• Long-range (seasonal) forecasts (monthly averages up to 7 or 12 months).

2 https://www.ecmwf.int/.

https://www.ecmwf.int/
https://www.ecmwf.int/
https://www.ecmwf.int/
https://www.ecmwf.int/
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Fig. 3 Multiyear precipitation data (upper panel) and multiyear heatsum (lower panel) for 
Kokemäki station (N 61.25. ◦, E 22.35. ◦), Finland. In the upper panel, the black curve indicates 
long-term average precipitation over years 1981–2010, while the yearly precipitation (calculated 
within 31-day running window) is presented in different colours according to the legend. In the 
lower panel, heatsum curves in Growing Degree Days are presented 

Naturally, the different forecast products have different level of confidence and 
thus require appropriate considerations when making agricultural decisions. These 
decisions range from scheduling field operations such as seeding to harvesting 
with various interventional operations in between (such as irrigation, fertilizer, 
and herbicide treatments). In 2011, Calanca et al. (2011) studied the efficacy of 
long-range forecasts as supplied by ECMWF in predicting soil water availability 
with encouraging results. Among topics for further investigation, they mentioned 
the need for promoting the dissemination of the utility among the agricultural 
community. However, in spite of significant advances in forecasting and software-
based productivity tools, the prevalence of freely available agriculturally relevant 
long-range forecasts can be improved.



618 N. Narra et al.

3.2 Case 2: Combining Weather Data with Remote Sensing 
and Crop Yield 

In Fig. 4 a more comprehensive presentation of weather data and the effect of 
weather to crop growth is provided for years 2018 and 2019. A 7.24-ha field is 
considered with oats and barley having been grown in 2018 and 2019, respectively. 
Weather data were collected using the weather station by Davis Systems located at 
about 600 m distance from the field. Daily mean temperature is presented in red, 
while daily precipitation is indicated by blue bars. On the x-axis, the time points of 
available satellite images are marked and the respective number of Growing Degree 
Days (GDD) are shown at the top of the graphs. Below the weather data panel, 
the satellite images from the Sentinel Hub (bands of the L2A product) are shown. 
Still below are differential plots of Normalized Difference Moisture Index (NDMI) 
calculated from the satellite data and the maps of dry yield for the respective fields. 

A detailed interpretation of this kind of data is beyond the scope of this chapter 
and requires more data for the reference. It can be seen, however, that the weather 
conditions are quite different for these two years and while the general behaviour of 
the yield maps is similar, some distinctive features can be observed. The satellite 
images are not distributed evenly along the timeline as the availability of these 
images depends on cloudiness. The images can be compared by considering the 
GDD; for example, in Fig. 4 the 6th image of year 2018 can be compared with 
the last image of year 2019 as the respective GDDs are 925 and 845. In the future, 
satellite data become available in exceeding amounts and frequency, however, cloud 
cover will still hinder its use. A possible solution is using drones for acquiring the 
remote sensing data. To be feasible, this would require at least semi-autonomous 
usage of drones (Kaivosoja 2022). It has been argued that by more efficient use of 
the vast amount of remote sensing data, available from different types of platforms 

Fig. 4 Multiyear weather station data at about 600 m from the field. For more detailed explanation 
see the text in Sect. 3.1
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(drones, airborne platforms, and spaceborne platforms) and of various modalities 
(multispectral, hyperpectral, LiDar, and radar), the resilience of agricultural food 
production systems can be significantly improved (Jung et al. 2021). 

For even more comprehensive representation of the effect of weather conditions 
on crop growth and yield, data from other sources such as soil sensors or soil maps 
(based, for example, on electrical conductivity of the soil) can be incorporated. With 
an increasing amount of data, machine learning techniques can be used to learn 
these relationships and suggest measures for increasing the yield and optimizing the 
production costs (Nevavuori et al. 2022). 

3.3 Case 3: Crop Selection Tool Based on Crop Variety Trials 

An important decision for any farmer before a growing season is the choice of crop 
and variety. This choice can be affected by considerations such as soil type, field 
specific crop cycles, projected weather, and market outlook. 

The Natural Resources Institute of Finland (Luke) maintains and updates an 
extensive database on the results of the nation-wide crop variety trials.3 They 
also offer a web-based selector tool (Pesola 2021). The tool currently includes the 
following plant species: oats, spring wheat, barley, winter rye, winter wheat, spring 
canola, and winter canola. The tool works as a webform that presents to the user 
multiple options based on which the underlying database is queried and the results 
presented in the table format (Fig. 5, upper panels; available only in Finnish). For 
better usability, we developed a user interface on top of the database with sliders for 
various crop properties (such as expected yield, growing time, risk for lodging, etc.) 
and a radar chart to present the results (Fig. 5, lower panel). This crop selection tool 
is now being integrated into our peltodata.fi service for farmers. 

While the selection of the crop variety depends on many other considerations 
such as previous experience of the farmer, existing marketing contracts, etc., this 
kind of tool may provide decision support and encourage producers to test new, 
potentially more productive varieties. 

3.4 Case 4: Prediction and Monitoring for Pests, Diseases, and 
Weeds 

The occurrence of pests, crop diseases, and weeds forms another important pro-
duction risk. There are mainly two ways to provide data about these risks: 
either to predict the probability of occurrence of pests, diseases, or weeds based 
on past weather conditions (temperature, humidity, and snow conditions) or to

3 https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/. 

https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
https://px.luke.fi/PxWeb/pxweb/en/maatalous/maatalous__lajikekokeet/
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Fig. 5 Crop selector tool as offered at Luke’s website (upper panels; see Sect. 3.3) and the user 
interface developed on top of the crop variety trials database 

collect information about the observations and try to predict the spreading of the 
phenomenon. Naturally, the weather conditions are specific to the pest, weed, or 
disease. In Finland, Luke currently provides forecasts for the occurrence of three 
pests: Psila rosae, Trioza apicalis, and Delia radicum up to 5 days ahead. The 
information is provided in the form of a map4 (see Fig. 6). The map cells are color-
coded according to the predicted occurrence of the pest: green denotes areas of 
no forecasted occurrence, yellow denotes the areas where the occurrence probably 
starts, and red denotes areas of peak occurrence for the season. A platform for 
collecting observations has also been set up but is underused so far. One reason 
might be that producers are reluctant to provide this information as it needs to be 
geotagged and can thus be linked to the field and the farmer.

4 https://maatalousinfo.luke.fi/fi/tuholaisennusteet. 

https://maatalousinfo.luke.fi/fi/tuholaisennusteet
https://maatalousinfo.luke.fi/fi/tuholaisennusteet
https://maatalousinfo.luke.fi/fi/tuholaisennusteet
https://maatalousinfo.luke.fi/fi/tuholaisennusteet
https://maatalousinfo.luke.fi/fi/tuholaisennusteet
https://maatalousinfo.luke.fi/fi/tuholaisennusteet
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Fig. 6 Luke pest forecast map for Psila rosae 

4 Discussion and Conclusions 

As indicated in Fig. 2, the number and variety of open data sources useful to mitigate 
risk in food production is large. Clearly, the figure is not comprehensive and the 
individual data sources depend on the country and even region as some actors 
may collect data and offer services regionally. However, sometimes relevant data 
that is not offered by national actors may be available from institutions operating 
globally. While combining data related to the environment and production risks 
is quite common (although usually considering a certain subset of the production 
environment) incorporating market data, consumer behaviour, financial data, and 
the effect of regulations is more challenging. 

Using data for decision support requires not only the data but the evidence as 
well. Evidence is built upon the data through research and data analytics. To a 
limited extent, research can be carried out using data collected from trial plots where 
the growth conditions are strictly controlled. However, the scale and efficiency of 
this kind of evidence building falls short when considering the requirements for 
competitive, resilient, and sustainable food production. To address these needs, 
Lacoste et al. (2021) have launched the initiative of On-Farm Experimentation 
(OFE) through restructuring farmer–researcher relationship. By the end of 2021 they 
had engaged already over 30,000 farms from more than 30 countries to participate
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in the living-lab type research activities. As described by the authors, OFE stands 
in the intersection of agricultural sciences, social sciences, and data sciences. They 
see that OFE has the power to transform global agriculture. In addition to more 
efficient evidence building, stronger farmer–researcher relationships and living-lab 
type experimentation have also the aspect of communality. Working together in 
collecting data and sharing the research results enables the participants to learn from 
each other’s experiences. 

Producing and sharing data in increasing volumes brings up the additional 
issues of data regulations. While in small communities collecting data for building 
evidence may happen on voluntary basis, at some point the agricultural data become 
commodity and a subject for monetization. At European level, several regulatory 
acts (the Data Governance Act, the Digital Markets Act, the Digital Services Act, 
and the Data Act) are being developed to set rules for data sharing and usage. At the 
same time, European data spaces are being developed in 9 areas of life including 
Agriculture. An important principle is that data can be shared also between the 
data spaces of different specialties. Considering the risks indicated in Fig. 2, at  
least the data spaces of Finance, Green Deal, Energy, and Public administration 
are relevant. It remains to be seen how well the data spaces will support data-driven 
risk management in agricultural production. 
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Crop Modeling for Future Climate 
Change Adaptation 

Andrés J. Cortés, Felipe López-Hernández, and Matthew W. Blair 

Abstract Crop susceptible to drought and heat stress is increasing due to climate 
change. Consequently, new analytical strategies are urgently required to determine 
sources of adaptation, and pyramid them into new sustainable cultivars for food 
security. Here we offer an overview on how modeling analytical tools serve 
to predict crop adaptive responses to ongoing climate change. First, we will 
describe how climate data meet ecophysiology modeling in order to forecast in situ 
stresses. Second, we will encourage coupling these climate-based ecophysiological 
inferences with genomics, as proxy to model standing natural adaptation already 
contained within current crop landraces, and their wild relatives. Third, we will 
discuss genomic-enabled modeling alternatives to optimize the introgression of 
such adaptive genetic variation into elite customized cultivars. Finally, we will 
prospect alternative models that could boost de novo adaptive variation, such as 
in silico breeding models, speed breeding, and genome editing. Throughout this 
compilation of case studies and reflections, readers will be able to identify the need 
for more robust high-resolution ecological data, combined with explicit empirical 
summary statistics of the genomic diversity within crop genepools. Only then, 
ecophysiological-based models would meet genomic-enabled predictions of the 
adaptive potential in current crops, empowering sustainable food security in the face 
of climate change. 
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1 Climate-Based Ecophysiological Models for Crop Stress 

Climate-based ecophysiological modeling aims at clustering crop genotypes accord-
ing to the stress gradient of the geographic regions where they come from. To 
accomplish so, high-resolution climate data are typically gathered from worldwide 
model repositories such as WorldClim (https://www.worldclim.org/) and Chelsa 
(https://chelsa-climate.org/) using the geo-referencing consigned in the passport 
data at the moment when the crop sample was collected. Not all crop samples 
are ideal to calibrate climate-based ecophysiological models. Researchers are 
encouraged to rely on germplasm accessions for which it is feasible to assume 
genotype–environment equilibrium, for instance in crop landraces, and their wild 
relatives (Hancock et al. 2011). 

Once climate data have been compiled and depurated, the design phase of the 
underlying ecophysiological model would depend on the a priori hypothesis that the 
researcher has. For instance, if the a priori hypothesis is to study drought adaptation 
in crop genepools, the classical hydrological water balance (Calvo 1986; Thorn-
thwaite and Mather 1955) could inspire an explicit potential evapotranspiration 
(PET) model that weights average temperature and radiation variables. Examples 
of this PET model include Thornthwaite’s (Thornthwaite and Mather 1957), and 
Hamon’s (1961). Estimated PET can then be contrasted against in situ accumulated 
precipitation (P) records to synthetize a drought index (DI) proxy (Cortés et al. 
2013), as follows in Eq. 1 for the time period j at the i geo-referenced site where the 
genotype came from. 

.DIi,j = PETi,j − Pi,j

PETi,j

× 100 (1) 

This way, crop genotypes would experience in situ drought stress if PET > P, 
meaning DI > 0 up to a maximum of 100%, which is the extreme case when there 
is no precipitation in the study time window at that particular geo-referenced site. 
When PET = P, DI equals 0, which counter-intuitively must not be interpreted as 
perfect water balance because of the soil water-holding capacity, and the ultimate 
nature of PET and P as stochastic variables in the time series (Heyman and Sobel 
1990). Therefore, researchers are encouraged to explore multiple time windows as 
part of the j component in a way to minimize time-wise stochasticity. 

On the other hand, negative DI estimates occur when P >  PET, and are suggestive 
of soil water saturation. Because of this, the same PET models could inspire

https://www.worldclim.org/
https://www.worldclim.org/
https://www.worldclim.org/
https://www.worldclim.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
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targeting adaptation to other types of abiotic stresses that imply hypoxia at the 
root level, such as flooding (Perata et al. 2011). A flooding index (FI) may be re-
customized as in Eq. 2. 

.FIi,j = Pi,j − PETi,j

Pi,j

× 100 (2) 

As before, crop genotypes would experience in situ flooding stress if P >  PET 
or FI > 0 up to a maximum of 100%. When P = PET, FI equals 0, an ambiguous 
stage for flooding stress due to the stochasticity of the PET and P variables in the 
time series (Heyman and Sobel 1990). If P <  PET, flooding stress is rare (FI < 0). 

Interestingly, Thornthwaite’s model (Thornthwaite and Mather 1957) includes 
a monthly heat component referred to as HIT or heat index from Thornthwaite 
(López-Hernández and Cortés 2019). It is defined as the average daily maximum 
temperature. This estimate could in turn be leveraged as a climate-based eco-
physiological model for further abiotic stresses, such as heat stress. Specifically, 
heat stress may occur when Thornthwaite’s HIT estimates exceed a predefined 
physiological temperature threshold (TH) for the crop species. Alternatively, heat 
stress can be simplified as minimum night temperatures (min(T)) that surpass the 
upper physiological temperature threshold (TH) ideal for the species. After all, plants 
are particularly susceptible to warm night temperatures during the reproductive 
phase of the crop, when heat shock may lead to pollen unviability, flower abortion, 
and unsuccessful fruit set (Burbano-Erazo et al. 2021). Hence, a heat index (HI) 
proxy (López-Hernández and Cortés 2019) may be defined as follows in Eq. 3 for 
the night of the day j during the crop’s reproductive phase at the i geo-referenced 
site where the genotype came from. 

.HIi,j = min
(
Ti,j

) − TH

TH
(3) 

Once again, crop genotypes would experience in situ heat stress if min(T) > TH, 
implying an HI > 0. When min(T) = TH, HI equals 0, which does not necessarily 
reflect absence of heat stress because T is a stochastic variable in the time series 
(Heyman and Sobel 1990). Finally, HI < 0 occurs when min(T) < TH, which 
may be indicative of lack of heat stress. For the heat stress case, researchers are 
not only invited to test various time windows across days during the reproductive 
phase as way to capture variability in the j component, but also to consider 
contrasting physiological temperature thresholds (TH) according to the literature, 
and experimental trials for the crop species in concrete geographies. 

Notice that the same logic would apply for climate-based ecophysiological 
models targeting cold stress. Broadly speaking, cold stress includes chilling (0– 
15 ◦C) and freezing (<0 ◦C) damages (Ding et al. 2019). The only difference is
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that instead of comparing the minimum temperature with an upper threshold of 
physiological viability, modeling cold stress requires relying on a lower temperature 
threshold of physiological activity for the plant species (TL), which for many 
crops may be generalized to the 15 ◦C chilling threshold (Ding et al. 2019). 
At temperatures below TL, plants cease vegetative growth, compromising yield 
potential. Therefore, TL is often incorporated into the growing degree-days (GDD) 
estimations. Cold index (CI) could be generalized as in Eq. 4 during day j at i geo-
referenced site where the genotype came from. 

.CIi,j = TL − min
(
Ti,j

)

TL
(4) 

Crops would experience cold damage s.l. when CI > 0 (or min(T) < TL), chilling 
damage when 0 < CI < 1 (or 0  < min(T) < TL), and frost damage (FD) when CI ≥ 1 
(or min(T) ≤ 0). Again, CI = 0 or min(T) = TL is a stochastic steady point. Finally, 
CI < 0 or min(T) > TL would suggest lack of cold stress at the particular location. 

Alternatively, frost stress cold index can simply be modeled by considering a 
0 ◦C threshold for frost damage (FD), as follows: FD = −min(Ti,j) for the genotype i 
during the day j. Nonetheless, the original definition at Eq. 4 is broader and therefore 
preferable. 

Some of these climate-based ecophysiological indices have recurrently been 
used to model adaptation in crop species. For instance, they have served to 
assess adaptation in common bean (Phaseolus vulgaris L.) to drought (Blair et 
al. 2016; Cortés and Blair 2018; Cortés et al. 2012a, b) and heat stresses (López-
Hernández and Cortés 2019). More recently, these models have been extended to 
study adaptation of tepary bean (Phaseolus acutifolius A. Gray) to drought stress 
(Buitrago-Bitar et al. 2021). 

There are several benefits in using explicit climate-based ecophysiological 
models as compared to raw environmental variables when assessing in situ crop 
adaptation. For instance, climate-based ecophysiological indices capture more pre-
cisely physiological mechanism capable to confer abiotic stress tolerance. Second, 
ecophysiological indices are hypothesis-inspired from the very beginning of the 
research, while using raw environmental variables lacks a priori definition of target 
stresses. It may be insightful to consider the latter approach as a pilot exploratory 
phase, but in any case such blind inspection should redound in ad hoc hypothesis 
for more customized ecophysiological models (Fig. 1). 

Despite the conceptual beauty of this climate-based ecophysiological-modeling 
approach, major improvements are required. First, standardized climate data are 
urgently needed to build more reliable climate-based ecophysiological models. 
However, it often lacks repeatability and systematicity (Waldvogel et al. 2020). 
Gathered climate data may further be coupled with remote sensing (Zellweger et 
al. 2019) and statistical downscaling (Zellweger et al. 2019) to achieve a better 
microhabitat resolution of the environmental heterogeneity (Ratcliffe et al. 2019).
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Fig. 1 Pipeline to leverage climate-based ecophysiological models in crops 

2 Modeling Standing Genetic Adaption in Modern Crops 

Modeling the genetic basis of environmental crop adaptation requires merging 
climate-based ecophysiological indices retrieved from the previous section with 
genomic screenings of the accessions putatively under adaptive divergent selection, 
which often correspond to crop landraces and their wild relatives. A type of linear 
mixed model (MLM) known as genome-wide association study (GWAS) inspired 
that purpose, by explicitly accounting for random effects such as population and 
kinship (Kruglyak 2008). To be precise, classical GWAS statistically converges 
phenotypes and genotypes. However, in order to distinguish it from models targeting 
the adaptive spectrum at the habitat–genotype interface, literature started coining the 
term genome–environment association (GEA) exclusively for MLM-based GWAS 
models that aimed retrieving the genomic architecture of adaptation (Cortés et al. 
2022; Hancock et al. 2011). They are mechanistically identical, the only difference 
being the replacement of the phenotypic response variable by an environmental 
response variable, ideally a climate-based ecophysiological index. The underlying 
GWAS-inspired GEA model can be summarized as in Eq. 5.
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.y = Xβ + Qv + Zu + e (5) 

In this model, y is the vector containing the climate-based ecophysiological index 
(or a weighted average of them) for all genotypes. Among the fixed effects, β is 
the vector of genetic marker effects and X its incidence matrix, while v is the 
vector of population stratification co-variable effects and Q its incidence matrix with 
admixture coefficients or principal component scores. Among the random effects, 
u is the vector of family effects and Z its incidence matrix containing kinship 
coefficient. By estimating β, the model ranks marker’s adaptive value. 

An alternative to MLM-based GWAS-inspired GEA models is to identify 
genome-wide signatures of divergent selection as a proxy for adaptation (Cortés 
et al. 2020a). This technique, known as divergence mapping via genome-wide 
selection scans (GWSS), does not require a priori training on the putative abiotic 
selective forces (i.e., climatic gradients). Hence, it does not explicitly model climate 
data, nor decompose an environmental-derived index into its additive genetic factors 
and its demographic co-variables. Instead, GWSS labels outlier markers from a 
genomic background distribution surveyed with summary statistics capable to spot 
selection footprints (Antao et al. 2008). Ad hoc inferences based on the outlier 
markers and genes under selection can be informative of the selection agents. Thus, 
the value of the GWSS is that it embraces a multiple working hypothesis paradigm 
(Chamberlin 1897) to inform on the abiotic selection forces without prior biased 
preferences. 

Yet, GEA and GWSS models alone are prone to confounding factors (Maher 
2008; Pennisi 2014) if demographic (Barton et al. 2019; Blair et al. 2012) and 
genomic features (Cortés et al. 2018), like linkage disequilibrium (Blair et al. 
2018) and recombination rate (Galeano et al. 2012), are improperly accounted for 
(Ellegren and Wolf 2017; Huber et al. 2016; Lambert and Black 2012; Wolf and 
Ellegren 2017; Wray et al.  2013). It is then at the interface among GWAS, GEA, 
and GWSS models that a more cohesive reconstruction of the landscape (Barrett 
and Hoekstra 2011) of crop adaptation might arise. 

3 Optimizing Standing Adaptation into Customized Crops 

Modeling standing genetic adaption in modern crops using a combination of 
climate-based ecophysiological indices and genome-wide scans of selection foot-
prints delivers candidate molecular markers for adaptation. These set of markers 
can then be utilized to guide breeding of customized crops for adaptive variation 
(Butcher and Southerton 2007; Sajad 2014; Stafford  2009). The strategy typically 
consists in pyramiding adaptive alleles from exotic donor accessions into the 
genomic backgrounds of elite cultivar. This introgression-breeding approach recom-
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bines allelic diversity conferring adaption with variants responsible for agronomic 
value (Burgarella et al. 2019; Kumar et al. 2020). The technique methodologically 
relies on backcrosses with elite parental accessions (Herzog and Frisch 2011). 
Such scheme has been implemented to introgress adaptation for heat and drought 
stress from exotic genepools of tepary bean (P. acutifolius A. Gray) and its wild 
relative Phaseolus parvifolius (Freytag), into commercially accepted common bean 
(P. vulgaris L.) cultivars (Burbano-Erazo et al. 2021; Mejía-Jiménez et al. 1994; 
Muñoz et al. 2003). Yet, a major difficulty of the introgression-breeding approach 
is to concurrently drag unrelated and unlinked alleles across the genome, a likely 
scenario for adaptation given its polygenic nature, in which many narrow regions 
across the genome confer modest adaptive effects (Barghi et al. 2020). 

Genomic-enabled prediction models then appear as a feasible alternative to assist 
the withholding of exotic polygenic adaptation (Cortés et al. 2020b; Migicovsky and 
Myles 2017). Genomic-enabled models perform predictive breeding via genomic 
selection (Migicovsky and Myles 2017; Varshney 2021). Original genomic predic-
tion BLUP models (Crossa et al. 2017; Desta and Ortiz 2014) relied on a molecular 
extension of the Fisherian infinitesimal polygenic model (Fisher 1930), as in Eq. 
6. Yet, last-generation machine learning models offer new angles into predictive 
breeding (Crossa et al. 2019; Montesinos-López et al. 2021a, b; Tong and Nikoloski 
2021). 

.yi = gi + ei = μ +
p∑

j=1

xi,j βj + ei (6) 

Where yi would be the predicted climate-based ecophysiological index for the 
accession j, g and e are genetic and environmental contributions, and xi,j is the 
genotype of the j marker weighted by its effect β j and summed through all p 
markers. 

Although genomic prediction models were originally designed to compute 
genomic estimated breeding values or polygenic risk scores, they could be 
redesigned to account for climate-driven adaptation, a genotype’s genetic parameter 
worth defining as genomic estimated adaptive value, or GEAV (Arenas et al. 2021; 
Capblancq et al. 2020). Just as explained in the previous section when referring to 
the transition from GWAS to GEA, the training and validation of genomic prediction 
models should shift from forecasting phenotypes, into estimating climate-based 
indices and GEAVs. Genomic-assisted backcrossing can then arise as the ultimate 
introgression-breeding tactic (Fig. 2) during early phases of crop improvement for 
adaptation (Cortés and López-Hernández 2021).
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4 Predicting De Novo Adaptation for Future Crops 

Even though heterogeneous environments may boost crops’ standing adaptive 
diversity, in situ local adaptation is finite when it comes to genetic recombination. 
Therefore, alternative strategies are required to enable de novo adaptive variation 
within crop genepools to cope with climate change in a sustainable manner. 
For instance, modern gene-editing technology (Doudna and Charpentier 2014) 
is capable to mutate adaptive alleles, just as targeted mutagenesis did in the



Crop Modeling for Future Climate Change Adaptation 633

past (Holme et al. 2019), or silence those that prevent adaptation (Ahmar et al. 
2021; Dort et al.  2020). When extrapolated from monogenic Mendelian traits to 
the quasi-infinitesimal paradigm of a typical polygenic adaptive trait, concurrent 
single-gene editions would lead to genome editing, an example of which is de 
novo domestication (Fernie and Yan 2019). Novel polygenic editions mediated by 
genome editing have already been implemented with success in complex genomic 
architectures of non-model orphan crop species (Lemmon et al. 2018). 

There are other alternatives to boost de novo adaptation in crop species for 
which gene editing is unfeasible due to bottlenecks during tissue culture. One of 
them is speed breeding (Varshney et al. 2021b), in which the crop-breeding cycles 
are shortened by accelerating the reproductive phase throughout a combination of 
greenhouse treatments, hormonal management, and genetically induced precocity 
(Alves et al. 2020; Kumar et al. 2020; Watson et al.  2018). Speed breeding can even 
make classical introgression breeding backcrosses more efficient in time. 

Another alternative to enable de novo adaptation in crop species is grafting, an 
ancient technique in which tissues of different plants, sometimes even from distinct 
species, are vascularly interconnected into a single viable individual (Goldschmidt 
2014; Wang et al. 2017). Grafting can provide a fast track to combine locally adapted 
rootstocks with elite clonal scions (Migicovsky and Myles 2017; Warschefsky et 
al. 2016). A wide spectrum of crops and phenotypes have already been shaped 
by grafting, such as adaptation to soil toxicity (Fernández-Paz et al. 2021), soil 
borne fungal pathogens (Guevara-Escudero et al. 2021; Sánchez-González et al. 
2019), and overall growth (Cañas-Gutiérrez et al. 2022) and yield traits (Reyes-
Herrera et al. 2020) in croplands outside the center of origin. This way, grafting may 
simplify the utilization of exotic adaptive alleles into crop genepools, an alternative 
to classical introgression breeding. 

Although we can agree on the utility of gene editing, speed breeding, and grafting 
as alternatives to enhance de novo adaptive variants during the design of future 
customized crops (Varshney et al. 2021a), they are methodological novelties that 
do not necessarily correspond to crop-modeling innovations. Nonetheless, in silico 
breeding models can help optimizing these crop improvement strategies. In silico 
breeding simulates and adjusts the selection intensity in a way that minimizes 
genetic erosion and the cycle length, without compromising overall genetic gains 
(Hoyos-Villegas et al. 2019). After all, simulation breeding guides scientists by 
modeling in silico crops with the target adaptations (Marshall-Colon et al. 2017). 

5 Conclusions 

Computational breeding for future climate change can benefit from standing genetic 
adaption already present in modern crops, mostly landraces and their wild relatives. 
For instance, climate-based ecophysiological models are informative of the natural 
adaptation to local environmental conditions. Meanwhile, these environmental 
indices can be inputted into MLM-type models that aim integrating landscape
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gradients with genomic diversity via GWAS-inspired GEA models at the habitat– 
genotype interface. Once a model for the genomic architecture of crop adaptation is 
construed, highly predictive molecular markers can be utilized to assist breeding 
by relying on last-generation genomic prediction and machine learning models. 
Genomic-enabled predictive models have the potential to accelerate the pyramiding 
of adaptive alleles via classical introgression pre-breeding approaches. For instance, 
backcrossing between exotic donors of adaptation and elite cultivars with agronomic 
value would be more efficient and precise if coupled with genomic estimated 
adaptive values. Finally, novel avenues to boost de novo adaptation for future 
customized crops are equally promising. Among these, in silico breeding models 
can optimize the introgression breeding, speed breeding, and genome editing 
pathways, which in turn could confer and sustain allelic novelty for adaptation in 
crop species. 

6 Perspectives 

Unlocking standing genetic adaptation in modern crops and boosting de novo adap-
tive variation for the future require transgressive phenotypes and trans-disciplinary 
innovations capable to unify the ecology, ecophysiology, agronomy, and genetic 
fields into the evolving research area of ecological genetics for crop adaptation. 
Transversal to these efforts are innovative modeling frameworks. For instance, 
crop modeling can assist prioritizing collection gaps targeting isolated pockets of 
cryptic adaptive diversity (Carver et al. 2021; Ramírez et al. 2010; Ramirez-Villegas 
et al. 2020). Crop modeling can also inspire the development of climate-based 
ecophysiological indices, and novel genetic mapping tools capable to label adaptive 
allelic variation. In turn, the results of these efforts serve to deploy exotic adaptive 
diversity into elite crop cultivars via introgressive breeding, which can be enabled 
and boosted by genomic prediction, machine learning, and in silico breeding 
models. In any case, the success of these modeling platforms relies on open-access 
multidimensional data (McCouch et al. 2016; Spindel and McCouch 2016), and 
efficient crop mobilization (McCouch et al. 2020). Therefore, open-access research 
networks are a prerequisite to vertically integrate the crop improvement pipeline 
for adaptation, which includes bridging ex situ conservation and parental screening 
(Blair et al. 2013) for adaptive value, with downstream seed deployment initiatives 
(Peláez et al. 2022). This way, ecophysiological-based models will be coupled with 
predictive breeding models of the adaptive potential, empowering sustainable food 
security under changing climate. 
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