
Reinforcement Learning-Based SPARQL
Join Ordering Optimizer

Ruben Eschauzier1(B) , Ruben Taelman1 , Meike Morren2 ,
and Ruben Verborgh1

1 IDLab, Department of Electronics and Information Systems, Ghent University -
imec, Ghent, Belgium

ruben.eschauzier@ugent.be
2 Marketing, School of Business and Economics, Vrije Universiteit Amsterdam,

Amsterdam, The Netherlands

Abstract. In recent years, relational databases successfully leverage
reinforcement learning to optimize query plans. For graph databases and
RDF quad stores, such research has been limited, so there is a need to
understand the impact of reinforcement learning techniques. We explore
a reinforcement learning-based join plan optimizer that we design specif-
ically for optimizing join plans during SPARQL query planning. This
paper presents key aspects of this method and highlights open research
problems. We argue that while we can reuse aspects of relational database
optimization, SPARQL query optimization presents unique challenges
not encountered in relational databases. Nevertheless, initial benchmarks
show promising results that warrant further exploration.

Keywords: SPARQL · Join Order Optimization · Reinforcement
learning · Machine Learning

1 Introduction

Optimizing the order in which database management systems execute joins is a
well-studied topic in database literature because it heavily influences the perfor-
mance characteristics of queries [11]. SPARQL endpoints over consistently evolv-
ing datasets, like Wikidata, can benefit from an algorithm that optimizes queries
based on previous experiences. Different signals exist to inform an appropriate
choice of join order, such as cardinalities. One such signal is previous experi-
ences. We use previous experiences as a predictor to produce better join plans
for future queries.

In recent literature, reinforcement learning(RL)-based optimizers that use
greedy search procedures, guided by a learned value function, achieve impressive
results in relational databases. Neo [5] shows that learned optimizers can match
and surpass state-of-the-art commercial optimizers.

In SPARQL, machine learning is primarily used to predict query perfor-
mance. These approaches [2,3,12] use supervised machine learning with a static
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Pesquita et al. (Eds.): ESWC 2023, LNCS 13998, pp. 43–47, 2023.
https://doi.org/10.1007/978-3-031-43458-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43458-7_8&domain=pdf
http://orcid.org/0000-0002-6475-806X
http://orcid.org/0000-0001-5118-256X
http://orcid.org/0000-0001-6350-356X
http://orcid.org/0000-0002-8596-222X
https://doi.org/10.1007/978-3-031-43458-7_8


44 R. Eschauzier et al.

dataset of query executions. Learned query optimizers use reinforcement learn-
ing to dynamically generate training data, complicating the use of existing query
performance prediction methods. The April [10] optimizer uses reinforcement
learning for query optimization, with a one-hot encoded [6] feature vector denot-
ing the presence of RDF terms in joins. However, the paper does not report any
performance characteristics.

We fill this gap in the literature by exploring a fully-fledged RL-based query
optimizer for SPARQL join order optimization on SPARQL endpoints. End-
points query over the same dataset, likely making the previous experience signal
stronger for join order optimization. We model our approach after the RTOS
[11] optimizer for relational queries, which uses Tree-LSTM neural networks [9]
to predict the expected latency of a join plan.

2 Method

To iteratively build up an optimized join plan, the RL-based optimizer greedily
adds the join that minimizes the estimated query execution time at each iter-
ation. For the first iteration, we have the result sets of all triple patterns, and
in each subsequent iteration, we join two result sets. We estimate the execu-
tion time of the query using a neural network, which we train to minimize the
mean squared error between predicted and actual query execution time. We feed
a numerical representation of the current join plan as an input to the neural
network.

Join Plan Representation. Like in the optimizer RTOS [11], we represent
join plans as a tree that we build from the bottom up. Each leaf node repre-
sents the result set of a triple pattern, and internal nodes represent join result
sets. We represent result sets using their cardinality, the presence and location
of variables, named nodes and literals, and a vector representation of the pred-
icate. We learn the predicate representation vectors by applying the RDF2Vec
[7] algorithm to the RDF graph.

RDF2Vec generates learned vector representations of RDF terms that encode
information on what RDF terms co-occur often. RDF2Vec first generates random
walks on the input RDF graph, then for each random walk, it randomly removes
an RDF term and trains a neural network to predict the missing term. The
weights obtained during the model training are the feature vectors of the RDF
terms in the graph. RDF2Vec does not learn variable representations because
an RDF graph has no variables. The subject and object of triple patterns are
often variables, so we do not encode named nodes in these positions. We obtain
the representations for intermediate joins by applying an N-ary Tree-LSTM [9]
neural network on the result sets representations involved in the join. These rep-
resentations are optimized during training, thus allowing the model to determine



Reinforcement Learning-Based SPARQL Join Ordering Optimizer 45

which features of the result sets involved in the join are important. Finally, at
the (partial) join plan root node, we apply the Child-Sum Tree-LSTM network
[9] to all unjoined result sets to obtain the numerical join plan representation.

Data Efficiency and SPARQL-Specific Adjustments. Data generation
using query execution is slow; we account for this by applying two data efficiency
techniques. First, we include a time-out set according to existing optimizers. We
effectively truncate our optimization variable while ensuring the optimal query
plan will not reach the time-out. Second, we use experience replay [4] to store
previous (expensive) query executions and reuse them for training.

Relational RL-based optimization approaches use one-hot encoding [6] of
database attributes to create feature vectors. However, large graphs like Wiki-
data can contain over 100 million unique entries. One-hot encoding that many
attributes would create unwieldy vectors and degrade performance. To improve
scalability, we do not use one-hot encoding in our approach, instead, we use
feature encoding techniques to capture state information in fixed-size vectors.

Open Challenges. We have not found a way to encode connections between
triple patterns. To encode all information in the query graph, these encodings
should reflect the possible connections between triple patterns, like object-object,
subject-subject, object-subject, and subject-object. Which makes using a sim-
ple adjacency matrix infeasible. Furthermore, our approach can only optimize
basic graph patterns; in future work, this approach should be extended to more
complex SPARQL query operations. Finally, we do not learn feature representa-
tions for variables; to enrich our triple pattern representation, we should encode
variables based on the other RDF terms in the triple pattern.

3 Initial Experiments

We implement our optimizer in the TypeScript-based Comunica query engine [8]
and compare it to the default cardinality-based optimizer. We use the WatDiv
benchmark [1] to test our method, and show the performance characteristics of
a preliminary version of the model. Table 1 shows that the model can find better
plans for 7 templates, which we believe we can improve using the data efficiency
and SPARQL-specific adjustments mentioned in Sect. 2. The search time of our
method is significantly longer than the standard comunica optimizer. However,
we run these benchmarks on a dataset with only about 100,000 triples. For
large RDF graphs, like Wikidata, we expect that the execution of the join plan
dominates the total query execution time.



46 R. Eschauzier et al.

Table 1. Comparison of the query optimization and plan execution time, in seconds,
of a previous version of our optimizer and the standard Comunica [8] optimizer, with
the faster plan execution in bold.

Query Template C1 C2 C3 F1 F2 F3 F4 F5 L1

Planning (RL) 0.5028 1.000 0.277 0.214 0.347 0.160 0.800 0.278 0.027

Execution (RL) 3.116 2.577 0.583 0.100 0.090 0.062 1.906 0.059 0.006

Planning (Comunica) 0.007 0.008 0.017 0.002 0.003 0.005 0.005 0.005 0.002

Execution (Comunica) 0.076 0.001 0.490 0.001 0.005 0.008 0.012 0.194 0.032

Query Template L2 L5 S1 S2 S3 S4 S5 S6 S7

Planning (RL) 0.025 0.024 0.689 0.060 0.059 0.066 0.059 0.021 0.028

Execution (RL) 0.001 0.002 2.242 0.011 0.005 0.000 0.002 0.008 0.002

Planning (Comunica) 0.001 0.001 0.006 0.002 0.002 0.002 0.002 0.002 0.002

Execution (Comunica) 0.006 0.007 0.139 0.009 0.008 0.005 0.009 0.001 0.000

4 Conclusion

In this paper, we explore a novel RL-based join plan optimizer for SPARQL
endpoint query execution. Initial experiments show that the model can generate
better join plans than existing cardinality-based optimizers for 7 query templates
of the WatDiv benchmark. We plan to improve the model by enhancing data
efficiency during training. We propose to use query time-outs based on existing
query optimizers to reduce the time spent executing bad query plans. Addition-
ally, we propose to use experience replay to reuse query execution information
during training. For future work, we should include information on how triple
pattern result sets connect to other result sets in the query, encode the RDF
terms present in the subject and object locations of a triple pattern, and extend
our approach to more complex SPARQL operations.

Acknowledgments. This work is supported by SolidLab Vlaanderen (Flemish Gov-
ernment, EWI and RRF project VV023/10). Ruben Taelman is a postdoctoral fellow
of the Research Foundation - Flanders (FWO) (1274521N).

References

1. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 197–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-
9 13

2. Casals, D., Buil-Aranda, C., Valle, C.: SPARQL query execution time prediction
using deep learning

3. Hasan, R., Gandon, F.: A machine learning approach to SPARQL query perfor-
mance prediction. In: 2014 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT) (2014)

4. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Mach. Learn. 8, 293–321 (1992)

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13


Reinforcement Learning-Based SPARQL Join Ordering Optimizer 47

5. Marcus, R., et al.: Neo: a learned query optimizer. arXiv preprint arXiv:1904.03711
(2019)

6. Müller, A.C., Guido, S.: Introduction to machine learning with Python: a guide
for data scientists (2016)

7. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46523-4 30

8. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular SPARQL query engine for the web. In: Vrandečić, D., et al. (eds.) ISWC
2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00668-6 15

9. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

10. Wang, H., et al.: April: an automatic graph data management system based on
reinforcement learning. In: Proceedings of the 29th ACM International Conference
on Information & Knowledge Management (2020)

11. Yu, X., Li, G., Chai, C., Tang, N.: Reinforcement learning with tree-LSTM for join
order selection. In: 2020 IEEE 36th International Conference on Data Engineering
(ICDE) (2020)

12. Zhang, W.E., Sheng, Q.Z., Qin, Y., Taylor, K., Yao, L.: Learning-based SPARQL
query performance modeling and prediction. World Wide Web 21, 1015–1035
(2018)

http://arxiv.org/abs/1904.03711
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-00668-6_15
http://arxiv.org/abs/1503.00075

	Reinforcement Learning-Based SPARQL Join Ordering Optimizer
	1 Introduction
	2 Method
	3 Initial Experiments
	4 Conclusion
	References




