
Loop Quantum 
Gravity for the 
Bewildered 

Sundance Bilson-Thompson

The Self-Dual Approach Revisited 

Contributed by  Deepak Vaid

Second Edition



Loop Quantum Gravity for the Bewildered



Sundance Bilson-Thompson 

Loop Quantum Gravity 
for the Bewildered 
The Self-Dual Approach Revisited 

Second Edition



Sundance Bilson-Thompson 
School of Physics, Chemistry and Earth 
Sciences 
University of Adelaide 
Adelaide, SA, Australia 

With Contribution by 
Deepak Vaid 
Department of Physics 
National Institute of Technology 
Mangalore, Karnataka, India 

ISBN 978-3-031-43451-8 ISBN 978-3-031-43452-5 (eBook) 
https://doi.org/10.1007/978-3-031-43452-5 

1st edition: © Springer International Publishing Switzerland 2017 
2nd edition: © Springer Nature Switzerland AG 2024 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-43452-5


Preface 

The first edition of this book arose out of a desire to better understand the foun-
dations of loop quantum gravity, at a time when I and my co-author Deepak Vaid 
were both postdocs. We were essentially exploring a realm of knowledge that was 
comparatively new to both of us. Although the broad outline of this realm was evi-
dent, a cohesive picture of its structure appeared to be hidden behind a substantial 
mathematical paraphernalia. It wasn’t always clear how much of this was necessary 
to grasp the physical underpinnings of the theory. Towards the goal of improving 
our own understanding we conceived of and composed a review article in the 
hopes that by clearing our own bewilderment about topics such as holonomies and 
spin networks, we might also contribute to mapping out these concepts and the 
relationships between them for others interested in this rapidly developing field. It 
was a happy surprise when we were invited to turn that review article into a book, 
which became the first edition of this text. As our efforts were geared towards 
understanding the basic structure of loop quantum gravity (LQG) and connecting 
it to more familiar branches of modern physics, there were many important topics 
that we left out of the first edition. Perhaps most significantly, we chose to omit 
any meaningful discussion of the covariant 3+1 formalism of spacetime dynamics 
which goes by the name of spin foams. 

It was therefore another happy surprise when the first edition was sufficiently 
well-received that our publishers invited us to produce an updated second edition, 
affording the opportunity to include a more thorough discussion of the topics we 
had skipped the first time around. Unfortunately owing to other concerns and per-
sonal priorities, Deepak concluded that he was unable to contribute the time and 
effort needed to bring the second edition to completion. We discussed what role (if 
any) he wanted to have, and eventually he made the difficult decision to withdraw 
from co-authorship of the second edition. I wish to make it clear, however, that 
the work he put into the first edition was inestimable, and without it the current 
edition would not exist. Furthermore the content of the updates included in this 
edition was largely inspired by his enthusiasm for these topics, and much of the 
discussion of group field theory was based upon rough notes that he shared with 
me. He also kindly volunteered to proof-read the draft of the second edition. Those 
sections which have not been substantially updated from the first edition still refer 
to the authors, plural, as they were a joint effort. It is important and fair to ensure
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vi Preface

that Deepak’s contributions are fully recognised. Naturally, any errors or flaws in 
the second edition are my responsibility alone. 

And so, after several years and the devotion of much time and effort towards 
deeper understanding of the topics at hand, it is a pleasure to present the second 
edition of this work. This book is not intended to be an account of the current 
state of the art, as research is always developing but books are static and rapidly 
fall out-of-date. So while extra material has been included in this edition, the 
focus has been on broadening the range of foundational concepts covered and 
emphasising the conceptual links between topics. It is my sincere hope that much 
as the first edition was successful (at least in its creators’ opinion) in providing a 
pedagogical introduction to the foundations of LQG, the second edition will help 
clarify the central concepts and technical tools of spin foams, group field theory, 
spinorial LQG, and coherent states for the reader bewildered and discouraged by 
the vast literature on these topics and the accompanying mathematical tools which 
appear to be necessary for these constructions, as well as covering some earlier 
developments to show where the state of the art comes from. 

The opportunity has also been taken to make some minor but desirable amend-
ments, to reflect the intended role of this book as an introduction for interested 
outsiders from a wide range of backgrounds. These have included a more thor-
ough discussion of the connection between entropy and information theory, a 
more detailed discussion of the group theory describing special relativity, a more 
extensive discussion of differential forms to bridge the gap between indexed and 
index-free notation, as well as a number of adjustments to wording in several 
instances, additional discussions to enhance the reader’s intuition for the meaning 
behind the maths, and updated illustrations more suitable for viewing in e-book 
format. Furthermore, the choice of notation has been reworked to ensure the use 
of symbols and indices is more consistent throughout the text. There is of course 
much more that could have been included, but I hope the right balance has been 
struck between the breadth and depth of the content. 

Whether or not this book is successful in the goal Deepak and I initially set 
ourselves for this edition will be determined by its readers. If ever the possibility 
of a third edition is raised, I will take that as a sign that this work did indeed help 
some in the community enhance their understanding of this important approach 
towards a theory of quantum gravity. 

I wish again to thank Deepak Vaid for his work on the first edition, as well as 
his contribution of ideas and feedback on drafts of this edition. I also wish to thank 
Christian Caron, Chandra Sekaran Arjunan, Lisa Scalone, and Sivananth Sivachan-
dran at Springer for their substantial patience and guidance during the preparation 
of the manuscript. During the writing of this book, I have been employed in teach-
ing and research positions at the University of Adelaide and RMIT University and 
was supported in part by the Australian Research Council through a Discovery 
Project (project number DP200102152). I wish to thank Nicolas Menicucci for 
his support, discussions, and suggestions, and Valentina Baccetti for her support 
through the RMIT Vice-Chancellor’s Research Fellowship. I also wish to thank 
Gavin Brennen of Macquarie University for discussions and suggestions, Sebastian
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Murk of the Okinawa Institute of Science and Technology for insightful feedback 
and careful proofreading, and Anthony Williams of the University of Adelaide for 
his ongoing support. 

My parents, Lianne and Gary, have provided several decades’ worth of support 
for my passion for physics, as well as much-needed enthusiasm and encouragement 
throughout the writing process, and for these and so many other reasons they have 
my gratitude and love. 

Adelaide, Australia 
September 2023 

Sundance Bilson-Thompson



Conventions 

Before we proceed, a quick description of our conventions will hopefully be useful 
to the reader. We have attempted to strike a balance between clarity of description 
and simplicity of notation. In particular, the use of different symbols for indices 
should clearly indicate the number of dimensions, and whether we are dealing with 
tensors, matrices, Lie algebra generators, etc. Deviations from these conventions 
may occur from time to time, in the effort to avoid confusion through the re-use of 
similar symbols. However, every effort has been made to avoid assigning different 
meanings to the same symbol within individual chapters; 

Indices 

• Greek letters μ, ν, ρ, ... ∈ {0, 1, 2, 3} from the middle of the alphabet are 
four-dimensional spacetime indices. Other Greek letters, α, β, . . .  will be used 
for general cases in N dimensions, and when unused indices are needed to 
complete tensor expressions. 

• Lowercase letters a, b, c, . . .  from the start of the Latin alphabet are integers, 
primarily used as three-dimensional spatial indices, taking values in {1, 2, 3}. 
These will often be used when dealing exclusively with the spatial part of 
a four-dimensional quantity that would otherwise have Greek indices. More 
generally, they may be used as integer parameters. 

• Lowercase letters i, j , k, . . .  ∈ 1, 2, 3, ..., N from the middle of the Latin alpha-
bet are indices for a space of N dimensions. Equations involving these indices 
are the general cases, which can be applied to Minkowski space, R3, etc. They 
will also sometimes be used as indices labelling rows and columns of matrices, 
and as su(2) Lie algebra indices. 

• Uppercase letters I , J , K , . . .  are specifically “internal” indices used for Lie 
algebra elements, which take values in the appropriate range, such as {1, 2, 3} 
for the Pauli matrices, or {0, 1, 2, 3} for the sl(2, C) Lorentz Lie algebra.
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x Conventions

Symbols 

Wherever possible, to avoid ambiguity we will refrain from using “special” letters 
as indices, or distinguish particular symbols from their index versions to avoid 
confusion, as follows; 

• The Greek lower-case λ refers to paths, and is not used as an index. 
• The imaginary unit will be in boldface, hence i = 

√−1, to distinguish it from 
the index i . 

• Similarly, the bold j will be used to denote spin, when necessary, to distinguish 
it from an index. 

• The cosmological scale factor will be denoted in bold, hence a, to distinguish 
it from an index. We follow the standard practice of using a for lattice spacing, 
and a, b, c for the sides of a triangle; however, it should be clear from context 
when these are not indices. 

• The Greek lower-case γ without indices occurs as an index in the early chap-
ters, but from Chap. 5 onwards it is used exclusively for the Barbero-Immirzi 
parameter. With indices (e.g. γμ or γI ), it always denotes the Dirac gamma 
matrices. 

• Annihilation and creation operators are denoted by â, b̂ (and their conjugates), 
rather than a, b. 

• For blades and forms (see Appendix B), the letters u, v, w  represent k-blades, 
and an arrow above a symbol (e.g. �u, �V ) denotes a vector, in any number of 
dimensions. Differential forms will be represented either by α, β or Roman 
capitals as noted in the text. 

• The gravitational constant is denoted by the symbol G, rather than G.
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1Introduction 

1.1 Motivation and Some History 

The goal of Loop Quantum Gravity (LQG) is to take two extremely well-developed 
and successful theories, General Relativity (GR) and Quantum Field Theory (QFT), 
at “face value” and attempt to combine them into a single theory with a minimum 
of assumptions and deviations from established physics. Our goal, as authors of 
this book, is to provide a succinct but clear description of LQG—the main body 
of concepts in the current formulation of LQG relying primarily on the self-dual 
variables approach, some of the historical basis underlying these concepts, and a 
few simple yet interesting results—aimed at the reader who has more curiosity than 
familiarity with the underlying concepts, and hence desires a broad, pedagogical 
overview before attempting to read more technical discussions. This book is inspired 
by the view that one never truly understands a subject until one tries to explain it to 
others. Accordingly we have attempted to create a discussion which we would have 
wanted to read when first encountering LQG. Everyone’s learning style is different, 
and accordingly we make note of several other reviews of this subject [ 1– 11], which 
the reader may refer to in order to gain a broader understanding, and to sample the 
various points of view held by researchers in the field. 

We will begin with a brief review of the history of the field of quantum gravity in 
the remainder of this section. Following this we provide a non-technical overview of 
some of the models and theories that are similar to LQG, in the interests of showing 
the reader some of the “landscape” of approaches to formulating a viable theory 
of quantum gravity. We will return to some of these ideas near the end of the text, 
once the technical details of LQG have been discussed. To begin our discussion of 
LQG proper, we review some topics in general relativity in Chap. 2 and quantum 
field theory in Chap. 3, which hopefully fall into the “Goldilocks zone”, providing 
all the necessary basis for LQG, and nothing more. We may occasionally intro-
duce concepts in greater detail than the reader considers necessary, but we feel that 
when introducing concepts to a (hopefully) wide audience who find them unfamiliar, 
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insufficient detail is more harmful than excessive detail. We will discuss the 
Lagrangian and Hamiltonian approaches to classical GR in more depth and set the 
stage for its quantization in Chap. 4 then sketch a conceptual outline of the broad 
program of quantization of the gravitational field in Chap. 5, before moving on to our 
main discussion of the loop quantum gravity approach in Chap. 6. The pros and cons 
of the self-dual variables are also discussed in some depth in Sect. 5.3. In Chap. 8 we 
cover applications of the ideas and methods of LQG to the counting of microstates 
of black holes (Sect. 8.1) and to the problem of quantum cosmology (Sect. 8.2). Last, 
but not least, some common criticisms of LQG and our rebuttals thereof are presented 
in Chap. 9 along with a discussion of its present status and future prospects, and we 
discuss again (in more technical detail) some similar theories that may (in the course 
of future developments) borrow from, lend ideas to, or subsume LQG. 

It is assumed that the reader has a minimal familiarity with the tools and concepts 
of differential geometry, quantum field theory, and general relativity, though we aim 
to remind the reader of any relevant technical details as necessary. 1 In light of the 
extensive use of concepts from group theory throughout the text, a brief summary of 
important concepts and notation relevant to Lie groups and Lie algebras is provided 
in Appendix A. While this material is widely covered in other texts and undergraduate 
courses, we feel it’s better to have it on hand for reference and not need it, than to 
need it and not have it. 

Before we begin, it would be helpful to give the reader a historical perspective of 
the developments in theoretical physics which have led us to the present stage. 

We are all familiar with classical geometry consisting of points, lines and surfaces. 
The framework of Euclidean geometry provided the mathematical foundation for 
Newton’s work on inertia and the laws of motion. In the 19. th century Gauss, Riemann 
and Lobachevsky, among others, developed notions of curved geometries in which 
one or more of Euclid’s postulates were loosened. The resulting structures allowed 
Einstein and Hilbert to formulate the theory of general relativity which describes 
the motion of matter through spacetime as a consequence of the curvature of the 
background geometry. This curvature in turn is induced by the matter content as 
encoded in Einstein’s equations (2.10). Just as the parallel postulate was the unstated 
assumption of Newtonian mechanics, whose rejection led to Riemmanian geometry, 
the unstated assumption underlying the framework of general relativity is that of the 
smoothness and continuity of spacetime on all scales. 

Loop quantum gravity and related approaches invite us to consider that our notion 
of spacetime as a smooth continuum must give way to an atomistic description of 
geometry in which the classical spacetime we observe around us emerges from 
the interactions of countless (truly indivisible) atoms of spacetime. This idea is 
grounded in mathematically rigorous results, but is also a natural continuation of the 
trend that began when 19.th century attempts to reconcile classical thermodynamics 

1 Given that we are aiming this book at a broad audience, we may even hope that some readers 
will find it helpful with their understanding of GR and/or QFT, quite aside from its intended role 
explaining quantum gravity. 
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with the physics of radiation encountered fatal difficulties—such as James Jeans’ 
“ultraviolet catastrophe”. These difficulties were resolved only when work by Planck, 
Einstein and others in the early 20.th century provided an atomistic description of 
electromagnetic radiation in terms of particles or “quanta” of light known as photons. 
This development spawned quantum mechanics, and in turn quantum field theory, 
while around the same time the special and general theories of relativity were being 
developed. 

In the latter part of the 20.th century physicists attempted, without much success, 
to unify the two great frameworks of quantum mechanics and general relativity. 
For the most part it was assumed that gravity was a phenomenon whose ultimate 
description was to be found in the form of a quantum field theory as had been so 
dramatically and successfully accomplished for the electromagnetic, weak and strong 
forces in the framework known as the Standard Model (SM). These three forces 
could be understood as arising due to interactions between elementary particles 
mediated by gauge bosons whose symmetries were encoded in the groups U(1), 
SU(2) and SU(3) for the electromagnetic, weak and strong forces, respectively. The 
universal presumption was that the final missing piece of this “grand unified” picture, 
gravity, would eventually be found as the QFT of some suitable gauge group. This 
was the motivation for the various Grand Unified Theories (GUTs) developed by 
Glashow, Pati-Salam, Weinberg and others where the hope was that it would be 
possible to embed the gravitational interaction along with the Standard Model in 
some larger group (such SO(5), SO(10) or E. 8 depending on the particular scheme). 
Such schemes could be said to be in conflict with Occam’s dictum of simplicity 
and Einstein and Dirac’s notions of beauty and elegance. More importantly all these 
models assumed implicitly that spacetime remains continuous at all scales. As we  
shall see this assumption lies at the heart of the difficulties encountered in unifying 
gravity with quantum mechanics. 

A significant obstacle to the development of a theory of quantum gravity is the fact 
that GR is not renormalizable. The gravitational coupling constant. G (or equivalently 
.1/M2 

Planck in dimensionless “natural” units where.G = c =  = 1) is not dimension-
less, unlike the fine-structure constant . α in Quantum Electrodynamics (QED). This 
means that successive terms in any perturbative series have increasing powers of 
momenta in the numerator. Rejecting the notion that systems could absorb or trans-
mit energy in arbitrarily small amounts led to the photonic picture of electromagnetic 
radiation and the discovery of quantum mechanics. Likewise, rejecting the notion 
that spacetime is arbitrarily smooth at all scales—and replacing it with the idea that 
geometry at the Planck scale must have a discrete character—leads us to a possible 
resolution of the ultraviolet infinities encountered in quantum field theory and to a 
theory of “quantum gravity”. 

Bekenstein’s observation [ 12– 14] of the relationship between the entropy of a 
black hole and the area of its horizon combined with Hawking’s work on black hole 
thermodynamics led to the realization that there were profound connections between 
thermodynamics, information theory and black hole physics. These can be succinctly 



4 1 Introduction 

summarized by the famous area law relating the Bekenstein–Hawking (BH) entropy 
of a macroscopic black hole .SBH to its surface area . A: 

.SBH = kB A 
4l2 P 

= kBc
3 A 

4G (1.1) 

with .l2 P being the Planck area and .kB the Boltzmann constant (which is sometimes 
set to 1). While a more detailed discussion will wait until Sect. 8.1, we note here 
that if geometrical observables such as area are quantized Eq. (1.1) can be seen as 
arising from the number of ways that one can join together.N quanta of area to form 
a horizon. In LQG the quantization of geometry arises naturally—though not all 
theorists are convinced that geometry should be quantized or that LQG is the right 
way to do so.  

1.2 Overview: Loop Quantum Gravity and Friends 

As just discussed, LQG is an attempt to describe gravity in a manner that is compatible 
with both general relativity and quantum field theory. However, it is by no means 
the only attempt to do so. LQG is often compared, and set in opposition to, string 
theory. But it is perhaps fairer to characterise the various quantum gravity schemes as 
attempts to create a gravitational theory of quantum fields (i.e. starting with quantum 
field theory and constructing a theory that recreates GR in some limit), and attempts 
to create a quantum theory of gravitational fields (i.e. starting with GR and attempting 
to quantise it). The former approach includes string theory and related ideas, while 
the latter approach includes loop quantum gravity and related ideas. 

At the time of writing there is no compelling experimental evidence to support 
a preference for one approach over the other. The various attempts to create a the-
ory of quantum gravity show promise in some regards, and face difficulties in their 
own ways. It is possible that a successful theory of quantum gravity will incorpo-
rate features of several existing approaches. To paraphrase Carlo Rovelli, at this 
stage humanity is not trying to decide between viable candidate theories of quan-
tum gravity—quite the opposite. Just finding one candidate that is compatible with 
experimental data would be a significant advance! But at the same time this gives us 
hope that the space of possible theories is not overwhelming, and the requirement 
of consistency with quantum mechanics and general relativity should be a reliable 
guide to our goal. 

For the sake of introducing the concepts which will be developed here, it seems 
appropriate to start with a nontechnical overview of some of the ideas and terminol-
ogy related to loop quantum gravity. 

String theory falls into the first category mentioned above—that of trying to create 
a gravitational theory of quantum fields. It postulates a fixed, continuous background 
spacetime, 2 and fundamental entities existing within this background which are 

2 Some attempts have been made to develop background-independent formulations, see for instance 
Smolin’s contribution to [ 15]. 
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extended rather than pointlike. The various topologies and quantised vibrations of 
these “strings” give rise to a range of fermions and bosons, and the claim that string 
theory is a theory of quantum gravity rests upon the idea that the bosons which 
occur amongst these vibrations include the graviton. The quantisation procedure in 
string theory implies the existence of several dimensions beyond the three spatial and 
one temporal dimension of everyday experience, explaining this disparity through 
the idea that the extra dimensions are rolled up or “compactified” to a length scale 
well below detection with current experiments. The number of extra dimensions 
necessary is also modified by the incorporation of supersymmetry, leading to the 
name “superstrings”. 

Loop quantum gravity falls into the second category—that of creating a quan-
tum theory of gravitational fields. In general the starting point for this approach is 
the idea that connections and paths between different points in spacetime are more 
important than the coordinates of the points. Curvature of spacetime corresponds to 
gravitational fields, and this curvature is both dynamical, and independent of any 
embedding in a background space. This is what we meant when we said in Sect. 1.1 
that GR is taken “at face value”. Perhaps the most explicit example of the idea that 
relations between points in spacetime are more important than coordinates is causal 
set theory. This starts with a set of points and a partial ordering (i.e. a sense in which 
some pairs of points, but not all, can be compared to see which point comes “before” 
the other), and attempts to build the structure of spacetime from these ingredients, 
developing concepts of geometry, geodesics, and so forth from the combinations 
of the interrelations between points. Causal sets are similar in many ways to Pen-
rose’s conception of spin networks, which were created with the goal of building 
spacetime structure entirely from combinatorial rules. While it is extremely easy to 
take a smooth manifold and approximate it by a set of points, defining a smooth 
manifold from an arbitrarily-generated set of points—sometimes referred to as the 
“inverse problem”—has presented a considerable challenge within causal set the-
ory for some time (see, for instance, Stachel and Smolin’s respective contributions 
to [ 15].) Another approach with a similar goal is Causal Dynamical Triangulations 
(CDT) [ 16]. These are an outgrowth of Regge calculus (Appendix I), which aimed to 
simplify calculations in general relativity by approximating spacetime by a collec-
tion of small sections, or simplices. Dynamical triangulations developed from this 
in an attempt to see if an .n-dimensional spacetime could develop (subject to certain 
dynamical rules) from an .(n − 1)-dimensional collection of simplices, but it was 
discovered that without a sense of causality (such that edges which have an asso-
ciated time direction are oriented to agree with each other) the resulting structures 
were unphysical. This may be seen as another manifestation of the inverse problem 
that occurs in causal set theory. With the imposition of causality, CDT has shown 
itself to be capable of numerically simulating the formation of manifolds (with a dis-
crete structure) that appear to grow like inflating “mini-universes”, and approximate 
4-dimensional spacetime at large scales. 

Loop quantum gravity and spin foams are often mentioned in the same breath, but it 
is worth recognising that they developed somewhat in parallel. Loop quantum gravity 
was infused with the concept of spin networks, creating a viable set of kinematical 
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states to describe quantum spacetime. Spin foams grew out of concepts like BF theory 
(Sect. 7.2), providing a concept of dynamics in need of a kinematics to complete it—a 
role which LQG has stepped in to fill. We shall mention almost all of these ideas, and 
more, in greater detail throughout the rest of this book. But hopefully this overview 
serves to familiarise the reader with the names of various theories and models, and 
show that there is a lot to learn, and that many more discoveries lie ahead. For the 
interested reader, a more thorough survey of these ideas is provided by Smolin in 
[ 15]. The history of the quest for a viable theory of quantum gravity, like all of 
science, is one of ideas converging, combining serendipitously, and spawning new 
and unexpected avenues for exploration. Even loop quantum gravity and string theory 
(as just noted, so frequently cast as opponents) show signs of finding common ground 
in recent years. 

With this historical summary and overview in mind, it is now worth covering the 
basic notions of general relativity and QFT before we attempt to see how these two 
disciplines may be unified in a single framework. 
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2Classical GR 

General Relativity (GR) is an extension of Einstein’s theory of Special Relativ-
ity (SR), which was required in order to include observers in non-trivial gravita-
tional backgrounds. SR applies in the absence of gravity, and in essence it describes 
the behavior of vector quantities in a four-dimensional Galilean space, with the 
Minkowski metric1 

.ημν = diag(−1, +1, +1, +1), (2.1) 

leading to a 4D line-element 

.ds2 = −c2dt2 + dx2 + dy2 + dz2 . (2.2) 

The speed of a light signal, measured by any inertial observer, is a constant, denoted 
. c. If we denote the components of a vector in four-dimensional spacetime with Greek 
indices (e.g..vμ) the Minkowski metric 2 divides vectors into three categories; timelike 
(those vectors for which .ημνv

μvν < 0), null or light-like (those vectors for which 
.ημνv

μvν = 0), and spacelike (those vectors for which .ημνv
μvν > 0). Any point, 

with coordinates.(ct, x, y, z), is referred to as an event, and the set of all null vectors 
having their origin at any event define the future light-cone and past light-cone of that 
event (Fig. 2.1). Events having time-like or null displacement from a given event. E0
(i.e. lying inside or on.E0’s lightcones) are causally connected to.E0. Those in/on the 
past light-cone can influence .E0, those in/on the future lightcone can be influenced 
by .E0. 

1 Of course the choice .diag(+1,−1,−1,−1) is equally valid but we will have occasion later to 
restrict our attention to the spacial part of the metric, in which case a positive (spatial) line-element 
is cleaner to work with. 
2 Strictly speaking it is a pseudo-metric, as the distance it measures between two distinct points can 
be zero. 
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Future light cone 

Past light cone 

Fig. 2.1 The future-pointing and past-pointing null vectors at an event define the future and past
light cones of that event. One spatial dimension is omitted in this diagram, so in fact slices (at
constant time) through the past light cone of an observer are two-spheres centred on the observer,
and hence map directly to that observer’s celestial sphere

General relativity extends these concepts to non-Euclidean spacetime. The metric 
of this (possibly curved) spacetime is denoted .gμν . Around each event (i.e. point in 
spacetime) it is possible to consider a sufficiently small region that the curvature of 
spacetime within this region is negligible, and hence the central concepts of special 
relativity apply locally. Rather than developing the idea that the curvature of space-
time gives rise to gravitational effects, we shall treat this as assumed knowledge, 
and discuss how the curvature of spacetime may be investigated. In general one can-
not usefully extend the coordinate system in the region of one event to the region 
of another arbitrary event since spacetime is not assumed to be flat and Euclidean 
(we’ll define “flat” and “curved” rigorously below). This can be seen from the fact 
that a Cartesian coordinate system which defined “up” to be the .z-axis at one point 
on the surface of the Earth, would have to define “up” not to be parallel to the.z-axis 
at most other points. In short, a freely-falling reference frame cannot be extended to 
each point in the vicinity of the surface of the Earth—or any other gravitating body. 
We are thus forced to work with local coordinate systems which vary from region 
to region. We shall refer to the basis vectors of these local coordinate systems by 
the symbols . e j . A set of four such basis vectors at any event is called a tetrad or 
vierbein. The discussion of tetrads will be taken up again in Sect. 4.3.2. The metric 
is related to the dot product of basis vectors by .g jk = e j · ek . In an orthonormal 
basis with Euclidean metric the convenient relation .e j · ek = δ jk holds true. As the 
basis vectors are not necessarily orthonormal in general, we may define another set 
of vectors . e j , which satisfy the analogous relationship .e j · ek = δ

j
k . The .e

j will be 
referred to as the dual basis vectors or covectors. 

2.1 Parallel Transport and Curvature 

Given the basis vectors.e j of a local coordinate system, an arbitrary vector is written 
in terms of its components .v j as . →V = v j e j . It is of course also possible to define 
vectors with respect to the dual basis. These dual vectors will have components with 
lowered indices, for example. v j , and take the general form.v j e j . The metric is used
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to switch between components referred to the basis or dual basis, e.g. .vk = g jkv
j . 

Vectors defined with raised indices on their components are called ‘contravariant 
vectors’ or simply ‘vectors’. Those with lowered indices are called ‘covariant vectors, 
‘covectors’ or ‘1-forms’. 3 Note that the. e j , having lowered indices, are basis vectors 
while the. e j , having raised indices, are basis 1-forms. We will return to the distinction 
between vectors and 1-forms in Sect. 3.2. 

When we differentiate a vector along a curve parametrised by the coordinate . xk

we must apply the product rule, as the vector itself can change direction and length, 
and the local basis will in general also change along the curve, hence 

.
d →V
dxk

= ∂v j

∂xk
e j + v j ∂e j

∂xk
. (2.3) 

We extract the .mth component by taking the dot product with the dual basis vector 
(i.e. basis 1-form) .em , since .em · e j = δmj . Hence we obtain 

.
dvm

dxk
= ∂vm

∂xk
+ v j ∂e j

∂xk
· em , (2.4) 

which by a suitable choice of notation is usually rewritten in the form 

.∇kv
m = ∂kv

m + v j┌m
jk . (2.5) 

The derivative written on the left-hand-side is termed the covariant derivative, and 
consists of a partial derivative due to changes in the vector, and a term .┌m

jk called 
the connection which is due to changes in the local coordinate basis from one place to 
another. The symbols.┌m

jk are called Christoffel symbols, and so in later chapters we 
will frequently refer to this term as the Christoffel connection. If a vector is parallel-
transported along a path, its covariant derivative will be zero. In consequence any 
change in the components of the vector is due to (and hence equal and opposite to) 
the change in local basis, so that 

.
∂vm

∂xk
= −v j ∂e j

∂xk
· em . (2.6) 

The transport of a vector along a single path between two distinct points does not 
reveal any curvature of the space (or spacetime) through which the vector is carried. 
To detect curvature it is necessary to carry a vector all the way around a closed path 
and back to its starting point, and compare its initial and final orientations. If they

3 The terms covariant and contravariant come about in reference to whether the quantity transforms 
the same way as or oppositely to the basis vectors, but applying it to a vector like. →V = v j e j , which  
has no uncontracted indices, is something of a misnomer. It is really the components—referred to a 
particular choice of basis—that vary, so an expression like ‘contravariant (covariant) vector’ should 
be understood as shorthand for “vector with components defined with respect to a particular basis 
(dual basis).” 
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λ1 

λ2 

A 

B 

initial 

final 

Fig. 2.2 The parallel transport of a vector around a closed path tells us about the curvature of a 
region bounded by that path. Here a vector is parallel transported along curve .λ1 from A to B, 
and back from B to A along .λ2. Both  .λ1 and .λ2 are sections of great circles, and so we can see 
that the vector maintains a constant angle to the tangent to the curve between A and B, but this 
angle changes abruptly at B when the vector switches from.λ1 to .λ2. The difference in initial and 
final orientation of the vector at A tells us that the surface (a sphere in this case) is curved. Just as 
an arbitrarily curved path in .R2 can be built up from straight line segments, an arbitrary path in a 
curved manifold can be built up from sections of geodesics (of which great circles are an example) 

are the same, for an arbitrary path, the space (or spacetime) is flat. If they differ, 
the space is curved, and the amount by which the initial and final orientations of 
the vector differ provides a measure of how much curvature is enclosed within the 
path. Alternatively, one may transport two copies of a vector from the same starting 
point, A, along different paths,.λ1 and.λ2 to a common end-point, B. Comparing the 
orientations of the vectors after they have been transported along these two different 
paths reveals whether the space is flat or curved. It should be obvious that this is 
equivalent to following a closed path (moving along.λ1 from A to B, and then along 
.λ2 from B to A, c.f. Fig. 2.2). The measure of how much this closed path (loop) differs 
from a loop in flat space (that is, how much the two transported vectors at B differ 
from each other) is called the holonomy of the loop. The reader is cautioned that the 
term ‘holonomy’ is sometimes used with different meanings in different contexts. 
To (hopefully) minimise confusion we shall employ the term “loop holonomy” for 
the concept we have just introduced. 

In light of the preceding discussion, suppose a vector. →V is transported from point 
A some distance in the.μ-direction. The effect of this transport upon the components 
of . →V is given by the covariant derivative .∇μ of . →V . The vector is then transported in 
the .ν-direction to arrive at point B. An identical copy of the vector is carried first 
from A in the .ν-direction, and then in the .μ-direction to B. The difference between 
the two resulting (transported) vectors, when they arrive at B is given by 

.(∇μ∇ν − ∇ν∇μ) →V . (2.7)
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This commutator defines the Riemann curvature tensor, 

.Rδ
ρμνv

ρ = [∇μ, ∇ν]vδ. (2.8) 

If and only if the space is flat, all the components of .Rδ
ρμν will be zero, otherwise 

the space is curved. 
Since the terms in the commutator of covariant derivatives differ only in the 

ordering of the indices, it is common to place the commutator brackets around the 
indices only, rather than the operators, hence we can write 

.∇[μ∇ν] = [∇μ, ∇ν] = ∇μ∇ν − ∇ν∇μ . (2.9) 

2.2 Einstein’s Field Equations 

Einstein’s equations relate the curvature of spacetime with the energy density of the 
matter and fields present in the spacetime. Defining the Ricci tensor . Rρν = Rμ

ρμν

and the Ricci scalar .R = Rν
ν (i.e. it is the trace of the Ricci tensor, taken after 

raising an index using the metric .gμν), the relationship between energy density and 
spacetime curvature is then given by 

.Rμν − 1

2
Rgμν + ∆gμν = 8πGT μν, (2.10) 

where . G is Newton’s constant, and the coefficient .∆ is the cosmological constant, 
which prior to the 1990s was believed to be identically zero. The tensor .T μν is 
the energy-momentum tensor (also referred to as the stress-energy tensor). We will 
not discuss it in great detail, but its components describe the flux of energy and 
momentum (i.e. 4-momentum) across various timelike and spacelike surfaces. 4 The 
component .T μν describes the flux of the .μth component of 4-momentum across 
a surface of constant .xν . For instance, the zeroeth component of 4-momentum is 
energy, and hence .T 00 is the amount of energy crossing a surface of constant . time
(i.e. energy per unit volume that is moving into the future but stationary in space, 
hence it is the energy density). 

It should be noted that we can write.┌
ρ
μν in terms of the metric.gμν (see e.g. [ 1]), 

.┌ρ
μν = 1

2
gρδ

(
∂μgδν + ∂νgδμ − ∂δgμν

)
. (2.11) 

Since the Riemann tensor is defined from the covariant derivative, and the covariant 
derivative is defined by the connection, the metric .gμν should be interpreted as a 
solution of the Einstein field equations (EFEs), Eq. (2.10).

4 The presence of the energy-momentum tensor is related to the fact that it is not merely the mass of 
matter that creates gravity, but its momentum, as required to maintain consistency when transforming 
between various Lorentz-boosted frames. 
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It is sometimes preferable to write Eq. (2.10) in the form 

.Gμν = 8πGT μν − ∆gμν (2.12) 

where the Einstein tensor .Gμν = Rμν − Rgμν/2 is the divergence-free part of the 
Ricci tensor. The explicit form of Eq. (2.10) emphasises the relationship between 
mass-energy and spacetime curvature. All the quantities related to the structure of 
the spacetime (i.e. .Rμν , . R, .gμν) are on the left-hand side. The quantity related to the 
presence of matter and energy, .T μν , is on the right-hand side. For now it remains 
a question of interpretation whether this means that mass-energy is equivalent to 
spacetime curvature, or identical to it. Perhaps more importantly the form of the 
EFEs makes it clear that GR is a theory of dynamical spacetime. As matter and 
energy move, so the curvature of the spacetime in their vicinity changes. 

It is worth noting (without proof, see for instance [ 1]) that the gravitational field 
in the simplest case of a static, spherically-symmetric field around a mass. M , defines 
a line element of the form derived by Schwarzschild, 

. ds2 = −c2
(
1 − 2GM

c2r

)
dt2 +

(
1 − 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

(2.13) 
For weak gravitational fields, and test masses moving at low velocities (that is,.v << c) 
the majority of the deviation from the line element in empty space is caused by the 
coefficent of the .dt2 term on the right. This situation also coincides with the limit 
in which Newtonian gravity becomes a good description of the mechanics. In the 
Newtonian picture the force of gravity can be written as the gradient of a potential, 

. →F = ∇V . (2.14) 

It can be shown that 

.∂g00 ∝ ∇V , (2.15) 

implying that gravity in the Newtonian or weak-field limit can be understood, pri-
marily, as the amount of distortion in the local “speed” of time caused by the presence 
of matter—an effect known as gravitational time dilation. 

2.3 Coordinates and Diffeomorphism Invariance 

General relativity embodies a principle called diffeomorphism invariance. This prin-
ciple states, in essence, that the laws of physics should be invariant under different 
choices of coordinates. In fact, one may say that coordinates have no meaning in the 
formulation of physical laws, and in principle we could do without them. 

In a practical sense, however, when performing calculations it is often necessary 
to work with a particular choice of coordinates. When translating in spacetime we 
may find that the basis vectors are defined differently at different points (giving rise 
to a connection, as we saw above). However if we restrict our attention to a particular
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point we find that the coordinate basis may be changed by performing a transfor-
mation on the basis, leading to new coordinates derived from the old coordinates. 
Transformations of coordinates take a well-known form, which we will briefly recap. 
Suppose the two coordinate systems have basis vectors .x1, . . . , xn and .y1, . . . , yn . 
Then for a given vector . →V with components .ui and .v j in the two coordinate sys-
tems it must be true that .ui xi = →V = v j y j . Differentiating with respect to . y, the 
relationship between coordinate systems is given by 

.v j = ui
∂xi

∂y j
. (2.16) 

This tells us how to find the components of a vector in a “new” coordinate system (the 
.y-basis), given the components in the “old” coordinate system (the .x-basis). Let us 
write.J ij = ∂xi/∂y j , and then since a summation is implied over. i the transformation 
of coordinates can be written in terms of a matrix acting upon the components 
of vectors, .v j = J ij ui . Such a matrix, relating two coordinate systems is called a 
Jacobian matrix. While one transformation matrix is needed to act upon vectors 
(which have only a single index), one transformation matrix per index is needed for 
more complex objects, e.g. 

.vi jk = J p
i J rj J

s
k u prs . (2.17) 

Since the metric defines angles and lengths (and hence areas and volumes) calcula-
tions involving the volume of a region of spacetime (e.g. integration of a Lagrangian) 
must introduce a supplementary factor of .

√−g (where . g is the determinant of the 
metric .gμν) in order to remain invariant under arbitrary coordinate transformations. 
Hence instead of .dnx → dn y we have 

.dnx
√−g(x) → dn y

√−g(y) . (2.18) 

The square root of the determinant of the metric is an important factor in defining 
areas, as we can see by considering a parallelogram whose sides are defined by two 
vectors,. →x and. →y which are at an angle. θ to each other. The area of this parallelogram 
is given by the magnitude of the cross product of these vectors, hence 

. Aparallel = √
(→x × →y) · (→x × →y)

=
/

(→x · →x)(→y · →y) sin2 θ

=
/

(→x · →x)(→y · →y)(1 − cos2 θ) . (2.19) 

Suppose that. →x and. →y are basis vectors lying in a plane. Then the metric in this plane 
will be 

.m jk =
( →x · →x →x · →y

→y · →x →y · →y
)

(2.20)
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where . j, k ∈ {→x, →y}. Comparing Eqs. (2.19) and (2.20), we see that 

.Aparallel =
/

(→x · →x)(→y · →y) − (→x · →y)2 = √
detmab . (2.21) 

It is therefore reasonable to expect an analogous function of the metric to play a 
role in changes of coordinates. Furthermore we would expect the total area of some 
two-dimensional surface, which can be broken up into many small parallelograms, 
to be given by integrating the areas of such parallelograms together (this point will 
be taken up again in Sect. 6.3). 

To see why Eq. (2.18) applies in the case of coordinate transformations, 5 con-
sider an infinitessimal region of a space. Let this region be a parallelepiped in some 
coordinate system.x1, . . . , xn . Now suppose we want to change to a different set of 
coordinates, .y1, . . . , yn , which are functions of the first set (e.g. we want to change 
from polar coordinates to cartesian). The Jacobian of this transformation is 

.J = ∂(x1, . . . , xn)

∂(y1, . . . , yn)
=

⎛

⎜⎜
⎝

∂x1

∂y1
· · · ∂x1

∂yn

...
...

∂xn

∂y1
· · · ∂xn

∂yn .

⎞

⎟⎟
⎠ (2.22) 

The entries in the Jacobian matrix are the elements of the vectors defining the sides 
of the infinitessimal region we began with, referred to the new basis. Each row 
corresponds with one vector, and the absolute value of the determinant of such 
a matrix, multiplied by .dn y = dy1 . . . dyn gives the volume of the infinitessimal 
region. An integral referred to these new coordinates must include a factor of this 
volume, to ensure that the coordinates have been transformed correctly and the 
integral doesn’t over-count the infinitessimal regions of which it is composed, hence 

.

 
f (x1, . . . , xn)dx1 . . . dxn =

 
f (y1, . . . , yn)|detJ |dy1 . . . dyn . (2.23) 

The Jacobian matrix defines the transformation between coordinate systems. To 
be specific, we will choose the Minkowski metric.ημν for the first coordinate system. 
The metric of the second coordinate system remains unspecified, hence 

.gαβ = ∂xμ

∂yα

∂xν

∂yβ
ημν . (2.24) 

We can treat this expression as a product of matrices. If we do so, we must be careful 
about the ordering of terms, since matrix multiplication is non-commutative, and 
it is useful to replace one of the Jacobian matrices by its transpose. However this 
extra complication can be avoided since we are interested in the determinants of

5 This argument is taken from Chap. 8 of [ 2], where a more detailed discussion can be found. 
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the matrices, and .det(AB) = detA detB = detB detA, and also .detAT = detA so 
the ordering of terms is ultimately unimportant. Taking the absolute value of the 
determinant of Eq. (2.24), 

.|J | =
/

g

η
= √−g (2.25) 

since .η = detημν = −1. From this and Eq. (2.23) the use of a factor .
√−g follows 

immediately. 
The transformations described above, where a new coordinate basis is derived 

from an old one is called a passive transformation. By contrast, it is possible to leave 
the coordinate basis unchanged and instead change the positions of objects, whose 
coordinates will consequently change as measured in this basis. This is called an 
active coordinate transformation. With this distinction in mind, we will elaborate on 
the concept of diffeomorphism invariance in GR. 

A diffeomorphism is a mapping of coordinates . f : x → f (x) from a manifold 
.M1 to a manifold .M2 that is smooth, invertible, one-to-one, and onto. As a special 
case we can take.M1 and.M2 to be the same manifold, and define a diffeomorphism 
from a spacetime manifold to itself. A passive diffeomorphism will change the coor-
dinates, but leave objects based on them unchanged, so that for instance the metric 
before a passive diffeomorphism is.gμν(x) and after it is.gμν( f (x)). Invariance under 
passive diffeomorphisms is nothing special, as any physical theory can be made to 
yield the same results under a change of coordinates. An active diffeomorphism, on 
the other hand, would yield a new metric .g'

μν(x), which would in general measure 
different distances between any two points than does.gμν(x). General relativity is sig-
nificant for being invariant under active diffeomorphisms. This invariance requires 
that if .gμν(x) is any solution of the Einstein field equations, an active diffeomor-
phism yields .g'

μν(x) which must be another valid solution of the EFEs. We require 
that any theory of quantum gravity should also embody a notion of diffeomorphism 
invariance, or at the very least, should exhibit a suitable notion of diffeomorphism 
invariance in the classical limit. 

An understanding of classical general relativity helps us to better understand 
transformations between locally-defined coordinate systems. We will now proceed 
to a discussion of quantum field theory, where these local coordinate systems are 
abstracted to “internal” coordinates. And just as the discussion of GR provides us 
with tools to more easily visualise the concepts at the heart of QFT, the quantisation 
of field theories discussed in the next section will lay the foundations for our account 
of the attempts to extend classical GR into a quantum theory of gravity. 
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3Quantum Field Theory 

Quantum Field Theory should be familiar to most (if not all) modern physicists, 
however we feel it is worth mentioning the basic details here, in order to emphasize 
the similarities between QFT and GR, and hence illustrate how GR can be written as 
a gauge theory. In short, we will see that a local change of phase of the wavefunction 
is equivalent to the position-dependent change of basis we considered in the case 
of GR. Just as the partial derivative of a vector gave (via the product rule) a deriva-
tive term corresponding to the change in basis, we will see that a derivative term 
arises corresponding to the change in phase of the quantum field. This introduces a 
connection and a covariant derivative defined in terms of the connection. 

3.1 Covariant Derivative and Curvature 

We may write the wavefunction of a particle as a product of wavefunctions.φ(x) and 
.ω(x) corresponding respectively to the external and internal degrees of freedom, 1

.ψ(x) = φ(x) jω(x) j (3.1) 

where there is an obvious analogy to the definition of a vector, with the.ω j playing the 
role of basis vectors, the .φ(x) j playing the role of the components, and summation 
implied over the repeated index . j . In complete analogy with Eq. (2.3), by applying 
the product rule we find that 

.
dψ

dxμ
= ∂φ j

∂xμ
ω j + φ j

∂ω j

∂xμ
. (3.2) 

For illustrative purposes, let us consider a fairly simple choice of basis, where we 
have only one . u and so we drop the index . j . We will write .ω = eigθ(x). Then the 
derivative of . ψ will take the form 

1 A more thorough discussion of the material in this subsection can be found in Chap. 3 of [ 1]. 
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. 
dψ

dxμ
= ∂φ

∂xμ
eigθ(x) + igeigθ(x)φ

∂θ(x)

∂xμ

= eigθ(x)
(

∂

∂xμ
+ ig

∂θ(x)

∂xμ

)
φ. (3.3) 

Next we can pre-multiply the whole expression by.e−igθ(x) to eliminate the exponen-
tial term on the right hand side. This is equivalent to Eq. (2.4) where we extracted an 
expression for the derivative of the components using.ei · e j = δij . Lastly we switch 
notation slightly to more closely resemble Eq. (2.5), and define the term in brackets 
to be a covariant derivative 

.Dμ = ∂μ + igAμ (3.4) 

where.Aμ = ∂μθ, and.Dμ satisfies all the properties required of a derivative operator 
(linearity, Leibniz’s rule, etc.). 

A transformation.θ → θ' = θ + ζ will result in a transformation of the wavefunc-
tion.ψ → ψ' = eigζψ, and a transformation of the connection.Aμ → A'

μ. For brevity, 

let us write .G = eigζ . We can find the transformation of .Aμ from the requirement 
that .D'

μψ' = D'
μGψ = GDμψ, which means that 

. (∂μ + igA'
μ)Gψ = G(∂μ + igAμ)ψ

∴ (∂μG)ψ + G∂μψ + igA'
μGψ = G∂μψ + igGAμψ

∴ (∂μG)ψ + igA'
μGψ = igGAμψ

∴ igA'
μG = igGAμ − (∂μG)

∴ A'
μ = GAμG

−1 + i
g
(∂μG)G

−1 . (3.5) 

Substituting in .G = eigζ we deduce that .Aμ transforms as 

.A'
μ = Aμ − ∂μζ . (3.6) 

Since we defined .Aμ = ∂μθ above, the presence of a minus sign might be a bit 
surprising. Surely from the definition of.Aμ we expect that.∂θ' = ∂θ + ∂ζ. However  
what Eq. (3.6) is telling us is simply that when we locally change the basis of a 
wavefunction but leave the overall physics unchanged, the connection must change 
in an equal and opposite manner to compensate. This is akin to the concept of 
diffeomorphism invariance discussed in Sect. 2.3. In both GR and QFT there are two 
ways to change the local coordinate basis. The first is by moving from an initial 
position to a new position where the basis is defined differently. The second is by 
staying at one point and performing a transformation (a diffeomorphism in GR, 
a gauge transformation in QFT) to change the coordinate basis. In each case, we 
want the laws of physics to remain the same, despite any change to the chosen 
coordinate basis. We can see how this condition is enforced by the transformation of
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the connection, Eq. (3.6), and the role of the covariant derivative in the action for a 
Dirac field . ψ of mass . m; 

.S =
 

d4x ψ(i cγμ∂μ − mc2)ψ . (3.7) 

A global gauge transformation corresponds to rotating . ψ by a constant phase . ψ →
eigλψ. Under this change we can see that the value of the action 

.S →
 

d4x ψe−igζ(i cγμ∂μ − mc2)eigζψ (3.8) 

does not change because the factor of .eigζ acting on . ψ and the corresponding factor 
of .e−igζ acting on . ψ pass through the partial derivative unaffected, and cancel out. 
However if we allow. ζ to become a function of position.ζ(x), then the global gauge 
transformation is promoted to a local gauge transformation, due to which the partial 
derivative becomes 

.∂μ

(
eigζ(x)ψ

)
= eigζ(x) (∂μ + ig(∂μζ(x))

)
ψ (3.9) 

leading to a modification of the action.S → S −  
d4x cγμ(∂μζ)ψψ. The covariant 

derivative, however, compensates for the .x-dependence of . ζ, since as we saw in 
Eq. (3.5) it has the property that 

.Dμψ → Dμ

(
eigζ(x)ψ

)
= eigζ(x)Dμψ (3.10) 

and so the phase factor passes through the covariant derivative as desired. It is now 
trivial to show that the Dirac action defined in terms of the covariant derivative, 

.SDirac =
 

d4x ψ(i cγμDμ − mc2)ψ (3.11) 

is invariant under local phase transformations of the form .ψ → eigζ(x)ψ, 
.ψ → ψe−igζ(x), so long as .Aμ(x) transforms as per Eq. (3.6). The connection . Aμ

tells us how the phase of the wavefunction at each point corresponds to the phase at 
a different point, in analogy to the connection in GR which told us how coordinate 
bases varied from point to point, but additionally the requirement that the action 
be invariant under local gauge transformations necessitates that it is not simply the 
wavefunction, but also the connection that changes under a gauge transformation. 

The discussion above has been restricted to the case of a simple rotation of the 
phase (that is, .eigζ ∈ U(1), the rotation group of the plane). In GR, by contrast, 
the local bases at different points may be rotated in three dimensions relative to 
each other (that is, the basis vectors are acted upon by elements of SO(3)). We can 
accordingly generalise the discussion above to include phase rotations arising from
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more elaborate groups. For instance, in the case of SU(2) we replace the wavefunction 
. ψ by a Dirac doublet 

.ψ → ψ =
(

ψ1(x)
ψ2(x)

)
(3.12) 

and act upon this with transformations of the form 

.U (x) = exp(iζ I (x)t I ). (3.13) 

Here.t I = σ I /2, (with.σ I the. I th Pauli matrix). 2 In this case the covariant derivative 
becomes 

.Dμ = ∂μ + igAI
μt

I (3.14) 

(summation on the repeated index is implied). In analogy to the case discussed above 
for GR, we can form the commutator of covariant derivatives. In this case, we obtain 
the field strength tensor .Fμν , the analogue of the Riemann curvature tensor, 

.[Dμ, Dν] = igF I
μν t

I (3.15) 

where we can see (by applying the standard commutation relations for the Pauli 
matrices, namely.[σ I , σ J ] = 2iϵI J KσK , and relabelling some dummy indices) that 

.F I
μν = ∂μA

I
ν − ∂ν A

I
μ − gϵI J K AJ

μ A
K
ν . (3.16) 

When our gauge group is abelian (as in QED) all the generators of the corre-
sponding Lie algebra commute with each other and thus the structure constants of 
the group (.ϵI J K in the SU(2) example of Eq. (3.16)) vanish. In this event the field 
strength simplifies to 

.F I
μν = ∂μA

I
ν − ∂ν A

I
μ . (3.17) 

The field strength.F I
μν itself is gauge covariant but not gauge invariant. Under an 

infinitesimal gauge transformation .A0 → A0 + δA the field strength also changes 
by .F[A0] → F[A0 + δA] = F0 + δF where the variation in field strength is given 
by .δF = Dμ[A0] as the reader can easily verify by substituting and expanding in 
Eq. (3.16) or Eq. (3.17). Here .Dμ[A0] denotes that the covariant derivative is taken 
with respect to the original connection .A0. 

The basic statement of Einstein’s gravitational theory, often expressed in the 
saying 

Matter tells geometry how to curve and geometry tells matter how to move.

2 In general the .t I will be the appropriate generators of the symmetry group, e.g. . I = 1, 2, . . .
N 2 − 1 for SU(N). 



3.2 Dual Tensors, Bivectors and k-forms 23

has a parallel statement in the language of gauge theory. In a gauge theory, matter is 
represented by the fields. ψwhereas the “geometry” (not of the background spacetime, 
but of the interactions between the particles) is determined by the configurations of 
the gauge field. The core idea of GR can then be generalised to an equivalent idea in 
field theoretic terms, 

Gauge charges tell gauge fields how to curve and gauge fields tell gauge charges how to 
move. 

Now, what we have so far is an action, Eq. (3.11) which describes the dynamics 
of spinorial fields, interactions between which are mediated by the gauge field. The 
gauge field itself is not yet a dynamic quantity. In any gauge theory, consistency 
demands that the final action should also include terms which describe the dynamics 
of the gauge field alone. We know this to be true from our experience with QED where 
the gauge field becomes a particle called the photon. From classical electrodynamics 
Maxwell’s equations possess propagating solutions of the gauge field - or more 
simply electromagnetic waves. The term giving the dynamics of the gauge field 
can be uniquely determined from the requirement of gauge invariance. We need to 
construct out of the field strength an expression with no indices. This can be achieved 
by contracting.F I

μν with itself and then taking the trace over the Lie algebra indices. 
Doing this we get the term 

.Sgauge = −1

4

 
d4xTr

(
FμνFμν

)
(3.18) 

which in combination with (3.11) gives us the complete action for a gauge field 
interacting with matter 

. S = Sgauge + SDirac =
 

d4x

 
−1

4
Tr

(
FμνFμν

) + ψ(i cγμDμ − mc2)ψ

 
.

(3.19) 

3.2 Dual Tensors, Bivectors and .k-forms 

The field strength is usually first encountered in the case of electromagnetism, where 
the relevant gauge group is U(1) which has only one group generator and so we can 
drop the index . I in Eq. (3.17). Bearing in mind that we are using the convention 
.ημν = diag(−1,+1,+1,+1), the electromagnetic field strength .Fμν combines the 
electric and magnetic fields into a single entity of the form 

.Fμν = ∂μAν − ∂ν Aμ =

⎛
⎜⎜⎝

0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

⎞
⎟⎟⎠ . (3.20) 

Since each component of .Fμν is associated with two index values, we can think of 
the components as “bivectors” (oriented areas lying in the .μ-. ν plane), in analogy
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Fig. 3.1 Wedge products of basis vectors define basis bivectors, basis trivectors, and so on. While a 
vector’s magnitude is its length, a bivector’s magnitude is its area, and the magnitude of a trivector 
is its volume. The orientation of the unit bivector and unit trivector are shown here by the dashed 
arrows. The field strength .Fμν can be represented as a set of bivectors oriented between pairs of 
timelike and spacelike axes in four dimensions (shown here by distorting the angles between axes, 
as is done in a two-dimensional drawing of a cube). Shaded (unshaded) bivectors in the rightmost 
diagram are the magnetic (electric) field components 

with vectors which carry only a single index (and are oriented lengths lying along 
a single axis). For the reader unfamiliar with bivectors we will very quickly review 
them. 

A unit basis vector. el can be visualised as a line segment with a “tail” and a “head”, 
and an orientation given by traversing the vector from its tail to its head. A general 
vector is a linear combination of basis vectors,.→v = v1e1 + v2e2 + v3e3 + . . .where 
the.vl are scalars. Similarly a unit basis bivector can be visualised as an area bounded 
by the vectors. el and.em , written as the wedge product.el ∧ em , and with an orientation 
defined by traversing the boundary of this area along the first side, in the same 
direction as. el , then along the second side parallel to.em , and continuing anti-parallel 
to .el and .em to arrive back at the origin (this concept can be extended arbitrarily to 
define trivectors, etc. as illustrated in Fig. 3.1. Such a construction wedging. k vectors 
together is called a.k-blade 3 and a linear combination of.k-blades, for several values 
of . k, is called a multivector). 

A general bivector is a linear combination of basis bivectors. Writing the field 
strength as such a general bivector we find that it takes the form 

. Fμν = E1(e1 ∧ e0)+ E2(e2 ∧ e0)+ E3(e3 ∧ e0)

+ B1(e2 ∧ e3)+ B2(e3 ∧ e1)+ B3(e1 ∧ e2). (3.21) 

Notice that the ordering of indices on the wedge products.(eμ ∧ eν) has been arranged 
to match the .. μth row and .. νth column of Eq. (3.20). Electric fields are those parts 
of .Fμν lying in a plane defined by one space axis and the time axis, while magnetic 
fields are those lying in a plane defined by two space axes (Fig. 3.1). Reversing the 
orientation of a bivector is equivalent to traversing its boundary “backwards”, so we 
may write.eμ ∧ eν = −eν ∧ eμ. This is consistent with the fact that the field strength 
is antisymmetric, i.e. .Fμν = −Fνμ.

3 The term.k-vector is also used, though we feel it is best avoided as it could lead to confusion with 
the concept of a vector in. k dimensions. 
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We can also combine the electric and magnetic fields into a single entity by 
defining the dual field strength, 

.⋆Fμν = 1

2
ϵ λρ
μν Fλρ =

⎛
⎜⎜⎝

0 B1 B2 B3
−B1 0 E3 −E2
−B2 −E3 0 E1
−B3 E2 −E1 0

⎞
⎟⎟⎠ , (3.22) 

where we can of course raise or lower indices on the field strength tensor and antisym-
metric tensor using the metric. We can see that the mapping between field strength and 
dual field strength 4 associates a given electric field component with a corresponding 
magnetic field component, such that .Ei → −Bi and .Bj → E j . Thinking in terms 
of bivectors, the quantity defined on the plane between any pair of spacetime axes is 
associated to the quantity defined on the plane between the other two spacetime axes. 
The field strength is said to be self-dual if.⋆F = +F , and anti-self-dual if.⋆F = −F . 
Although we will not be concerned with (anti-)self-dual field strengths in the rest of 
this book, we will be dealing with (anti-)self-dual gauge connections from Sect. 5.1 
onwards. The EM field strength as presented here is merely the simplest example 
to use to introduce the concept of self-duality, and illustrate its physical meaning. 
Further discussion of duality, for the reader requiring a deeper understanding, is pre-
sented in the appendices, Sect. B.3. Some readers will also no doubt have noticed the 
similarity between bivectors .el ∧ em , and differential 2-forms .dxl ∧ dxm . The two 
are indeed very similar. 

A bivector defined by the wedge product of two vectors .→u ∧ →v can be imagined 
as a parallelogram with two sides parallel to . →u, and the other sides parallel to . →v. The 
magnitude of this bivector is the area of the enclosed parallelogram. 5 Differential 
forms, on the other hand, have a magnitude which is thought of as a density. This is 
often drawn as a series of lines (similar to the contour lines on a topographical map or 
the isobars on a weather map) with smaller spacing between lines indicating higher 
density (Fig. 3.2). Hence a 1-form can be thought of as a density of contour lines 
or contour surfaces perpendicular to the direction of the 1-form. The inner product 
of a vector with a 1-form is a scalar - the number of lines that the vector crosses. 
Similarly a 2-form can be thought of as a series of contours spreading out through a 
plane (this plane being defined by the directions of the two 1-forms wedged together 
to make the 2-form). Clearly there is a one-to-one mapping between vectors and 
1-forms, and between bivectors and 2-forms, which simply involves changing one’s 
choice of magnitude, .(length or area) ↔ (density). 

It is certainly more common to see 1-forms, 2-forms, and other higher-dimensional 
forms used throughout physics, but .k-blades and multivectors can be very useful 
too, and are often easier to visualise (see Appendix B for a further discussion of

4 The notation.F̃ is also used for the dual field strength. 
5 Bivectors could just as well be visualised as disks or ellipses or any other planar shape. The area 
and orientation are what really matter. But describing them as parallelograms helps motivate the 
process of building up bivectors, trivectors, etc. by wedging together several vectors. 
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Fig. 3.2 Two vectors (far left) with the same direction and different magnitudes differ in length, 
while two bivectors (left) differ in their areas. The magnitude of .k-forms is a density, and can be 
represented by interval lines. A 1-form (right) has a direction (indicated by the hollow arrows), just 
like a vector, but the spacing of interval lines represents its magnitude. A 2-form (far right) defines 
a plane, just like a bivector does, and once again the magnitude is represented by the spacing of 
interval lines. In all cases, the greater magnitude object is on the top row 

the relationship between .k-blades and differential forms). The use of .k-blades in 
preference to differential forms has been extensively developed by Hestenes [ 5]. 

3.3 Wilson Loops and Holonomies 

In Chap. 2 we defined a loop holonomy as a measure of how much the initial and 
final values of a vector transported around a closed loop differ. The discussion in the 
previous section demonstrates that the internal degrees of freedom of a spinor can 
also be position-dependant, and hence it should be possible to define a loop holonomy 
by the difference between the initial and final values of a spinor transported around 
a closed loop. 6 As a first step to constructing such a definition, let us consider what 
happens when we compare the values of a field at different points, separated by a 
displacement .dxμ. We begin by using Eqs. (3.2), (3.3) and (3.4) to write 

.
dψ

dxμ
= ∂φ

∂xμ
ω + φ

∂ω

∂xμ
= ω

(
∂μ + igAμ

)
φ (3.23) 

from which by comparing terms we readily see that .igAμω = ∂μω, or equivalently 
.igAμωdxμ = dω. The internal components of the fields will be related by a gauge 
rotation which we will call .U (dxμ). The action of this rotation can be expanded as 

.U (dxμ)ω = ω + dω = ω + igAμωdxμ = (1 + igAμdx
μ)ω (3.24) 

and we immediately see that 

.U (dxμ) = exp{igAμdx
μ} . (3.25)

6 The name holonomy is also used within the LQG community to refer to a loop or closed path. 
We feel this is unnecessarily confusing, hence our choice to use “loop holonomy” for a quantity 
associated to a closed path, and to avoid using the term “holonomy” for a closed path itself. The 
reader should be aware that this terminology does, however, exist within the wider literature. 
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.U (dxμ) is the parallel transport operator that allows us to bring two field values at 
different positions together so that they may be compared. Remembering that the 
effect of parallel transport is path-dependant, this operator can be readily generalised 
to finite separations along an arbitrary path . λ and connections valued in arbitrary 
gauge groups, in which case we find 

.U (x, y) = P exp

  
λ
igAμ

I (x)t I dxμ

 
(3.26) 

where the .P tells us that the integral must be path ordered, 7 .t I are gauge group 
generators as before, and. x and. y are the two endpoints of the path. λ we are parallel 
transporting along. If the gauge connection vanishes along this path then the gauge 
rotation is simply the identity matrix and. ψ is unchanged by being parallel transported 
along the path. In general, however, the connection will not vanish. 

Now consider the situation when the path. λ is a closed loop, i.e. its beginning and 
end-point coincide. Analogously to the situation for a curved manifold, where the 
parallel transport of a vector along a closed path gives us a measure of the curvature 
of the spacetime bounded by that path, the parallel transport of a spinor around a 
closed path yields a measure of the gauge curvature living on a surface bounded by 
this path. We can see this simply in the case of a small square “plaquette” in the 
.μ-. ν plane, with side length . a. The gauge rotation in this case is a product of the 
rotation induced by parallel-transporting a spinor along each of the four sides of the 
plaquette in order. The parallel transport operators for each side of the plaquette are 
found from Eq. (3.26), and explicitly, their product around a plaquette is 

.W = eigaA
†
ν (x+aν)eigaA

†
μ(x+aμ+aν)eigaAν (x+aμ)eigaAμ(x) . (3.27) 

Assuming that we are dealing with a non-Abelian field theory, this product of expo-
nentials can be converted to a single exponential by use of the Baker-Cambell-
Haussdorf rule, which for the product of four terms takes the form 

. eAeBeCeD = exp{A + B + C + D + [A, B] + [A,C] + [A, D] + [B,C] + [B, D] + [C, D] + ...} .
(3.28) 

After a bit of algebra we find that this simplifies to 

.W = exp{iga2Fμν + ...} (3.29) 

where the .... represent higher-order terms. An arbitrary loop can be approximated 
by a tiling of small plaquettes, to yield a result proportional to the total tiled area 
multiplied by .Fμν . Since the common edges of adjacent plaquettes are traversed in 
opposite directions the contributions along these edges are cancelled, and the entire 
tiling results in a path around the outside of the tiled area (Fig. 3.3). Such an arbitrary

7 See Appendix C for the definition of a “path ordered” exponential. 
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Fig. 3.3 An arbitrary closed path in the plane can be approximated by tilings of plaquettes. Since 
each plaquette is traversed anti-clockwise, adjacent edges make cancelling contributions to the 
parallel transport of a spinor, leaving only the contribution at the boundary of the tiling (as illustrated 
for the plaquettes in the lower-right corner) 

loop is called a Wilson loop, and the loop holonomy associated to it is called the 
Wilson loop variable, and corresponds to an element in the gauge group of the theory. 
To obtain a single variable from the parallel transport around a loop, we take the trace 
of the loop holonomy 

.Wλ = TrP exp

  
λ
igAμ

I (x)t I dxμ

 
. (3.30) 

The Wilson loop is gauge-invariant, since each line segment of which the loop is 
composed transforms as 

.U (x, y) → G(y)U (x, y)G−1(x) (3.31) 

under a gauge transformation like that in Eq. (3.5), and so the product of several line 
segments forming a closed loop transforms as 

.W → W ' = G(x1)U (x1, x2)G
−1(x2) . . .G(xn)U (xn, x1)G

−1(x1) . (3.32) 

Different gauge transformations therefore correspond with different choices of start-
ing point for the loop. However the trace is invariant under cyclic permutations, 
TrABC = TrBCA = TrCAB, and so the Wilson loop variable is independent of choice 
of gauge transformation [ 2]. It is a fairly straightforward matter to see from the form 
of Eq. (3.18) that since.W is the exponential of a term proportional to.Fμν the action 
for the gauge field may be constructed by evaluating Wilson loops. 

This discussion shows that .Fμν is a measure of the gauge curvature within a 
surface, as well as a measure of the loop holonomy of the loop enclosing the surface 
(that is, the gauge rotation induced on a spinor when it is parallel-transported around 
a closed loop). Hence when the connection does not vanish the associated loop 
holonomy will in general not be trivial.
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3.4 Dynamics of Quantum Fields 

We will conclude this chapter with a discussion of two approaches to the dynamics of 
quantum fields. These are well-established in the case of theories like QED and QCD, 
and so it will be natural later on to consider equivalent approaches when we wish to 
quantise spacetime, which is the dynamical field in GR. These two approaches are 
based on Lagrangian and Hamiltonian dynamics. 

Lagrangian (or Path Integral) Approach 

Although our primary concern is fields, some insight can be provided by considering 
the classical case of a non-relativistic point particle in flat space moving under the 
influence of an external potential .V (x) for which the action is given by 

.Spp[λ] =
 

λ
d3xdt

(
1

2
mẋ2 − V (x)

)
=

 
λ
d3xdt L(x). (3.33) 

The action integral depends on the choice of the path . λ taken by the particle as it 
moves between its initial to final positions. By considering infinitesimal variations of 
the path we find that the classical behaviour of the particle corresponds to following 
a path for which the action is an extremum (generally a minimum). This amounts 
to finding the equation(s) of motion by inserting the Lagrangian . L into the Euler-
Lagrange equations. 

Note that in the relativistic case the potential term must be replaced by a gauge 
field .Aμ in which case the action takes the form 

.Srel[λ] =
 

λ
d3xdt

(pμ + Aμ)(pμ + Aμ)

m0
(3.34) 

where .pμ is the energy-momentum 4-vector of the particle and .m0 is its rest mass. 
This is the familiar action for a charged point particle moving under the influence of 
an external potential encoded in the Abelian gauge potential .Aμ. 

In the path-integral approach to quantum mechanics we assign a complex ampli-
tude 8 (or real probability in the Euclidean case) to any path . λ by 

. exp {iS[λ]} . (3.35)

8 The reader is reminded that by performing a Wick rotation, to introduce an imaginary time param-
eter, a mapping can be established between path integrals and statistical physics. See e.g. Chap. 25 
of [ 3]. 
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Fig. 3.4 The path a particle 
takes between initial and 
final positions can be 
regarded as a series of paths 
between intermediate 
positions. Varying these 
intermediate positions leads 
to variations in the overall 
path, and the action 
associated to it 

t t'

In contrast to the classical case we do not restrict our attention to those paths which 
correspond to extrema of the action. Instead we use this complex amplitude as 
a weighting function which allows us to calculate matrix elements for transitions 
between an arbitrary pair of initial and final states by forming a weighted sum of all 
paths which interpolate between the two states. 

For the point-particle .|q, t> represents a state where the particle is localized at 
position. q at time. t . The path between initial and final states can be broken up into a 
series of small steps by slicing up the time interval.t ' − t , as depicted in Fig. 3.4. The 
path is varied by adjusting the positions the particle passes through at the intermediate 
times. t1,. t2, etc. just as we considered variations of the path of a particle in the classical 
case. Each variation results in an action associated to the corresponding path. The 
matrix element between states at two different times then takes the form 

.
<
q ', t ' | q, t > =

 
D[ψ] exp {iSpp[λ]} . (3.36) 

The weighting factor gives higher value to the contribution from those paths which 
have an associated action close to the minimum. It is this which results in classical 
behaviour, in the appropriate limit. However the contributions of all possible paths 
must still be taken into account to accurately calculate the transitions between states. 

We now turn from considering single particles, to the path-integral approach 
to quantum field theory. Here the basic element is the propagator (or the partition 
function when the space on which the field is defined is a Euclidean manifold) which 
allows us to calculate the probability amplitudes between pairs of initial and final 
states of our Hilbert space. As shown in Eq. (3.18), starting with the curvature of a 
gauge field it is possible to define an action which governs the dynamics of the gauge 
field. Thus an analogous approach to the path integral just described for particles can 
be adopted when we wish to consider fields. In this case we do not sum over paths, 
but field configurations in each possible history between initial and final states, 

.
<
 i (t) |  f (t

')
> =

 
D[ψ] exp {iS[λ]} , (3.37)

in contrast to the classical view of dynamics, in which a system moves from an initial 
state to a final state in exactly one way. Here .D[ψ] is an appropriate measure on the
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space of allowed field configurations. Of course, as is well known, quantum field 
theory allows for the creation and annihilation of particle-antiparticle pairs. Hence 
the transition between an initial and final state is not so straightforward as the sum 
over contributions from all possible paths a single particle could take. The notational 
simplicity of writing .S[λ] (which emphasises the conceptual similarity between the 
dynamics of single particles, quantum fields, and as we shall soon see, spacetime 
itself) in this case conceals the presence of interaction and source terms within 
the exponential. Taylor expanding the contributions of these leads to a perturbation 
series of contributions to the overall calculation, which are identified with Feynman 
diagrams for interactions involving various numbers of incoming, outgoing, and 
intermediate states (see e.g. Sect. I.7 of [ 4], or Chap. 24 of [ 3]).

Hamiltonian Approach: Canonical Quantisation 

The alternative to the Lagrangian or path-integral approach is to study the dynamics 
of a system through its Hamiltonian. This leads to Dirac’s procedure for canonical 
(or “second”) quantisation. 9 The Hamiltonian .H for a dynamical system can be 
constructed from the Lagrangian. L by performing a Legendre transformation. Given 
a configuration variable . q , which we can think of as a generalised position, and a 
corresponding generalised momentum. p defined by

.p = ∂L

∂q̇
, (3.38) 

then the Hamiltonian is given by 

.H [p, q] = pq̇ − L[q, q̇] (3.39) 

in the case of a point particle, and generalisations of this equation for other systems. 
If we define the Poisson bracket of two functions by 

. { f , g} =
n∑

i=1

(
∂ f

∂qi

∂g

∂ pi
− ∂ f

∂ pi

∂g

∂qi

)
(3.40) 

where. f = f (q, p, t) and.g = g(q, p, t), then Hamilton’s equations can be written 
in the form 

.q̇ = ∂H

∂ p
= {H , p} and ṗ = −∂H

∂q
= {H , q} (3.41)

9 The quantisation of the motion of a particle in a classical potential is sometimes referred to as 
“first quantisation”. This is the basis for the somewhat un-intuitive name “second quantisation” for 
quantisation extended to the potential as well. 
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and give the time evolution of the system. Hence, leaving the second spot in the 
brackets empty, time evolution is generated by the operator .{H , } which acts upon 
the generalised coordinates and momenta.

In quantum mechanics and quantum field theory observables are replaced by oper-
ators, i.e..x → x̂ . While operators do not necessarily commute, classical observables 
do. However the Poisson bracket of two observables will not necessarily be zero, and 
Dirac was led to postulate that in the transition from classical to quantum mechanics, 
Poisson brackets between observables should be replaced by commutation relations, 
where the scalar value of the commutator is.i times the scalar value of the equivalent 
Poisson bracket, i.e. 

. { f , g} = 1 implies
[
f̂ , ĝ

]
= i . (3.42) 

This prescription will be central to our attempts to quantise spacetime in later sections. 
We are now ready to (at least attempt to) apply our understanding of quantum 

field theories to the formulation of general relativity. 
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4Expanding on Classical GR 

We now return to the discussion of general relativity. Equipped with the preceding 
discussions of both the quantisation of field theories, and the geometrical interpreta-
tions of gauge transformations, it is time to set about formulating what will eventually 
become a theory of dynamical spacetime obeying rules adapted from quantum field 
theory. But before we get there we must cast classical GR into a form amenable to 
quantisation. 

From classical mechanics, and the discussion in Sect. 3.4, we know that dynamics 
can be described either in the Hamiltonian or the Lagrangian frameworks. The ben-
efits of a Lagrangian framework are that it provides us with a covariant perspective 
on the dynamics and connects with the path-integral approach to the quantum field 
theory of the given system. The Hamiltonian approach, on the other hand, provides 
us with a phase space picture and access to the Schrödinger method for quantization. 
Each has its advantages and difficulties and thus it is prudent to be familiar with how 
both frameworks may be applied to general relativity. We will begin by discussing 
these approaches in a classical framework, and move to quantisation in Chap. 5. 

4.1 Lagrangian Approach: The Einstein-Hilbert Action 

The form of the Lagrangian, and hence the action, can be determined by requirements 
of covariance and simplicity. Out of the dynamical elements of geometry—the metric 
and the connection—we can construct a limited number of quantities which are 
invariant under coordinate transformations, hence they should have no uncontracted 
indices. These quantities must be constructed out of the Riemann curvature tensor or 
its derivatives. These possibilities are of the form:.{R, RμνRμν, R2,∇μR∇μR, . . .}. 
The simplest of these is the Ricci scalar.R = Rμναβgμαgνβ . As it turns out this term 
is sufficient to fully describe Einstein’s general relativity, yielding a Lagrangian that 
is simply .

√−gR, where as noted in Sect. 2.3, .g = det(gμν). 
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This allows us to construct the simplest Lagrangian which describes the coupling 
of geometry to matter, 

.SEH+M = 1

κ

 
d4x

√−gR +
 

d4x
√−gLmatter (4.1) 

where .Lmatter is the Lagrangian for the matter fields that may be present and . κ is a 
constant, to be determined. If the matter Lagrangian is omitted, one obtains the usual 
vacuum field equations of GR. This action (i.e. omitting the matter term) is known 
as the Einstein-Hilbert action, .SEH. 

It is worth digressing to prove (at least in outline form) that the Einstein field equa-
tions can be found from .SEH+M. The variation of the action (4.1) yields a classical 
solution which, by the action principle, is chosen to be zero, 

.δS = 0 =
 

d4x

[
1

κ

δ
√−g

δgμν
R + 1

κ

√−g
δR

δgμν
+ δ

√−gLmatter

δgμν

]
δgμν (4.2) 

which implies that 

.
1√−g

δ
√−g

δgμν
R + δR

δgμν
= −κ

1√−g

δ
√−gLmatter

δgμν
. (4.3) 

The energy-momentum tensor can be defined as 

.T μν = − 2√−g

δ
√−gLmatter

δgμν
(4.4) 

where .g = det(gμν), and .Lmatter is a Lagrangian encoding the presence of matter. 1

From Eq. (4.4) we can immediately see that 

.
1√−g

δ
√−g

δgμν
R + δR

δgμν
= κ

2
T μν . (4.5) 

We now need to work out the variation of the terms on the left-hand-side. Omitting 
the details, which can be found elsewhere (see e.g. the appendix of [ 2]), we find that

.δ
√−g = − 1

2
√−g

δ
√

g = 1

2

√−g(gμνδgμν) = −1

2

√−g(gμνδg
μν) (4.6)

1 This definition of the energy-momentum tensor may seem to come out of thin air, and in many 
texts it is simply presented as such. To save space we will follow suit, but the reader who wishes 
to delve deeper should consult [ 1], in which.Tμν is referred to as the dynamical energy-momentum 
tensor, and it is proven that it obeys the conservation law .∇μT μν = 0 (as one would hope, since 
energy and momentum are conserved quantities), as well as being consistent with the form of the 
electromagnetic energy-momentum tensor. 
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thanks to Jacobi’s formula for the derivative of a determinant. The variation of the 
Ricci scalar can be found by differentiating the Riemann tensor, and contracting on 
two indices to find the variation of the Ricci tensor. Then, since the Ricci scalar is 
given by .R = gμνRμν we find that

.δR = Rμνδg
μν + gμνδRμν . (4.7) 

The second term on the right may be neglected when the variation of the metric van-
ishes at infinity, and we obtain.δR/δgμν = Rμν . Plugging these results into Eq. (4.5) 
we find that 

. − 1

2
gμνR + Rμν = κ

2
T μν (4.8) 

which yields the Einstein equations if we set .κ = 16πG. 
As noted in Eq. (2.11), we can write .┌

ρ
μν in terms of the metric .gμν , 

. ┌ρ
μν = 1

2
gρδ

(
∂μgδν + ∂νgδμ − ∂δgμν

)

and since the covariant derivative.∇μ is a function of.┌ρ
μν , and the Riemann tensor is 

defined in terms of the covariant derivative, the Einstein-Hilbert action is ultimately 
a function of the metric .gμν and its derivatives. 

As a further aside, we will briefly describe how the Lagrangian formulation allows 
us to make contact with the path-integral or sum-over-histories approach outlined 
in Sect. 3.4, and apply it to the behaviour of spacetime as a dynamical field. In 
general, this approach involves calculating transition amplitudes with each path 
between the initial and final states being weighted by an exponential function of 
the action associated with that path. In the case of gravity we may think of four-
dimensional spacetime as a series of spacelike hypersurfaces, .∑t , corresponding to 
different times. Each complete 4-dimensional geometry consisting of a series of 3-
dimensional hypersurfaces that interpolate between the initial and final states may 
be thought of as the generalisation of a “path”. This.3 + 1 splitting of spacetime into 
foliated three-dimensional hypersurfaces will be covered in more detail in the next 
section. To calculate the matrix-elements (as in Eq. (3.37)) for transition amplitudes 
between initial and final states of geometry, .∑t and .∑t ' (see Fig. 4.1) we use the 
Einstein-Hilbert action for GR on a manifold .M without matter 

.SEH = 1

κ

 
d4x

√−g R. (4.9) 

Let us represent the states corresponding to the initial and final hypersurfaces as 
.|hab, t> and.|h'

ab, t
'>, where.hab is the intrinsic metric 2 of a given spatial hypersurface,

2 The intrinsic metric will be introduced properly very shortly, specifically in Eq. (4.16) and  the  
associated discussion. 
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Ψi Ψf Σi Σf 

Fig. 4.1 Weighted sums of transitions between different configurations of spacelike hypersurfaces 
may be used to calculate the transition amplitude between an initial and final state of geometry 
(right), see Eq. (4.10). This is analogous to the path-integral approach used in quantum field theory 
(left), see Eq. (3.37) 

and .a, b ∈ {1, 2, 3}. Then the probability that evolving the geometry will lead to a 
transition between these two states is given by 

.<hab, t |h'
ab, t

'> =
 

D[gμν] exp
{
iSEH(gμν)

}
(4.10) 

where the action is evaluated over all 4-metrics .gμν interpolating between the initial 
and final hypersurfaces..D[gμν] is the appropriate measure on the space of 4-metrics. 
While this approach is noteworthy, and ultimately leads to a very successful compu-
tational approach to quantising gravity [ 3], it is not the path we follow to formulate 
loop quantum gravity. Instead, as mentioned above, the Lagrangian formulation of 
general relativity is used as a stepping-stone to the Hamiltonian formulation. 

4.2 Hamiltonian Approach: The ADM Splitting 

Since general relativity is a theory of dynamical spacetime, we will want to describe 
the dynamics of spacetime in terms of some variables which make computations as 
tractable as possible. The Hamiltonian formulation is well suited to a wide range 
of physical systems, and the ADM (Arnowitt-Deser-Misner) formalism, described 
below, allows us to apply it to general relativity. We can think of the action, Eq. (4.1), 
which is clearly written in the form of an integral of a Lagrangian, as a stepping-stone 
to this Hamiltonian approach. This Hamiltonian formulation of GR takes us to the 
close of our discussion of classical gravity, and will be used as the jumping-off point 
for the quantisation of gravity, to be undertaken in Chap. 5. 

The ADM formalism involves foliating spacetime into a set of three-dimensional 
spacelike hypersurfaces, and picking an ordering for these hypersurfaces which plays 
the role of time, so that the hypersurfaces are level surfaces of the parameter. t . This is 
a necessary feature of the Hamiltonian formulation of a dynamical system, although 
it seems at odds with the way GR treats space and time as interchangable parts of 
spacetime. However this time direction is actually a “fiducial time” 3 and will turn

3 The term “fiducial” refers to a standard of reference, as used in surveying, or a standard established 
on a basis of faith or trust. 
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Fig. 4.2 When performing 
the ADM splitting, the lapse 
function.N and shift vector 
.N μ define how points on 
successive hypersurfaces are 
mapped together 

Nnµ 

N µ 

tµ 

out not to affect the dynamics. It is essentially a parameter used as a scaffold, which 
in the absence of a metric is not directly related to the passage of time as measured 
by a clock. 

To begin, we will suppose that the 4-dimensional spacetime is embedded within 
a manifold.M (which may be.R

4 or any other suitable manifold). Next we choose a 
local foliation 4 .{∑t , t} of.M into spacelike 3-manifolds, where.∑t is the 3-manifold 
corresponding to a given value of the parameter . t . We will refer to such a manifold 
as a “leaf of foliation”. The topology of the original four-dimensional spacetime is 
then .∑ × R, while . t is a parametrization of the set of geodesics orthogonal to . ∑t

(c.f. Fig. 4.2). In addition at each point of a leaf we have a unit time-like vector . nμ

(with .nμnμ = −1) which defines the normal at each point on the leaf. 
Given the full four-metric .gμν on .M and the vector field .nμ the foliation is 

completely determined by the requirement that the surfaces .∑t of constant “time” 
are normal to .nμ. 

The diffeomorphism invariance of general relativity implies that there is no canon-
ical choice of the time-like vector field .tμ which maps a point .xμ on a leaf .∑t to 
the point .x 'μ on the leaf .∑t+δt , i.e. which generates time evolution of the geometry. 
This property is in fact the gauge symmetry of general relativity. It implies that we 
can choose any vector field .tμ as long as it is time-like. Such a vector field can be 
projected onto the three-manifold to obtain the shift vector .Na = t|| which is the part 
tangent to the surface, while the component of.tμ normal to the three-manifold is then 
identified as the “distance between hypersufaces” and is called the lapse function 
.N = t⊥. Therefore .tμ can be written as 

.tμ = Nnμ + Nμ (4.11) 

where, though we have written the shift as a four-vector to keep our choice of indices 
consistent, it is understood that.N 0 = 0 in a local basis of coordinates adapted to the 
splitting.

4 Generally one assumes that our 4-manifolds can always be foliated by a set of spacelike 3-
manifolds. For a general theory of quantum gravity the assumption of trivial topologies must be 
dropped. In the presence of topological defects in the 4-manifold, in general, there will exist inequiv-
alent foliations in the vicinity of a given defect. This distinction can be disregarded in the following 
discussion for the time being. 
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Now we can determine the components of the four-metric in a basis adapted to 
the splitting as follows; 

. g00 = gμν t
μtν

= gμν

(
Nnμ + Nμ

) (
Nnν + N ν

)
= N 2nμnμ + NμNμ + 2 N (Nμnμ)

= − N 2 + NμNμ (4.12) 

where we have used .nμnμ = −1 and .Nμnμ = 0 in the third line. Working in a 
coordinate basis where .Nμ = (0, Na), the result .g00 = −N 2 + NaNa is found. 5

Similarly to obtain the other components of the metric we project along the time-
space and the space-space directions, 

.gμν t
μN ν = NμNμ ≡ NaNa . (4.13) 

Since, by definition.g0ν ≡ gμν tμ, this implies that .g0a = Na . The space-space com-
ponents of .gμν are simply given by selecting values of the indices .μ, ν ∈ {1, 2, 3}. 
Thus the full metric .gμν can be written schematically as 

.gμν =
(−N 2 + NaNa N

NT gab

)
(4.14) 

where.a, b ∈ {1, 2, 3} and.N ≡ {Na}. The 4D line-element can then be read off from 
the above expression, 

.ds2 = gμνdx
μdxν = (−N (t)2 + NaNa)dt

2 + 2 Nadt dxa + gabdx
adxb (4.15) 

where again .a, b ∈ {1, 2, 3} are spatial indices on .∑t . 
The components.gab of the metric restricted to a leaf of foliation are not the same 

as the intrinsic metric in a leaf of foliation. The intrinsic metric is related to the 
projection operator that takes any object .Tμ...ν defined in the full four-dimensional 
manifold and projects out its component normal to the leaf.∑t . To understand how to 
decompose.Tμ...ν into a part. T||, which lies only in the hypersurface.∑t and a part.T⊥, 
orthogonal to .∑t , we may consider a vector .vμ. The orthogonal component is given 
by .v⊥ = vμnμ. Similarly the component lying in .∑t is obtained by projecting the 
vector along the direction of the shift, so.v|| = vμNμ. Writing a general four-vector as 
.vμ = v⊥nμ + v|| Nμ

|N | (where.|N | = NμNμ is the norm of the shift vector) and acting 
on it with .gμν + nμnν we have 

.(gμν+nμnν)

(
v⊥nν + v||

N ν

|N |
)

= v⊥nμ(1 + nνnν) + v||
|N | (Nμ + nνNν) = v||

Nμ

|N | .

5 From this expression we can also see that .g00 = −N 2 + NaNa is a measure of the  local speed 
of time evolution and hence is a measure of the local gravitational energy density. 
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Since.nμnμ = −1, and .nνNν = 0 by definition, we are left with only the compo-
nent of .vμ parallel to .∑t . We see that .hμν = gμν + nμnν is the required projection 
operator. This tensor also happens to correspond to the intrinsic three-metric on .∑t , 
induced by its embedding in .M, 

.hab = gab + nanb , (4.16) 

where as above .a, b ∈ {1, 2, 3}. The reader might wonder how a rank 3 tensor . hab
can be written in terms of a rank 4 object.gμν . To understand this, note that the spatial 
metric can also be written as a rank 4 tensor, 

hμν = gμν + nμnν . 

However, by construction, the time-time (.htt  ) and space-time (.htx  , hty, htz) compo-
nents vanish and we are left with a rank 3 object. There is no contradiction in writing 
the spatial metric with either spatial indices (.a, b, . . .) or with spacetime indices 
(.μ, ν, . . .) as its contraction with another object is non-zero if and only if that object 
has a purely spatial character. 

We have already seen how the Einstein-Hilbert action can be written in terms 
of the metric .gμν and its derivatives. It makes sense, therefore, that in the case of 
general relativity, where we have foliated the spacetime into spacelike hypersurfaces, 
we should take the intrinsic metric on. ∑ (from now on we drop the. t superscript as we 
will deal with only one, representative, leaf of the foliation) as our configuration or 
“position” variable. To find the relevant Hamiltonian density we proceed in a manner 
that parallels the approach in classical mechanics or field theory—namely we perform 
a Legendre transform to obtain the Hamiltonian function from the Lagrangian. In the 
case of classical mechanics, given a Lagrangian . L dependent on some coordinates 
. q , we see that 

.H [p, q] = pq̇ − L[q, q̇] where p = ∂L

∂q̇
, (4.17) 

where. p is the generalised momentum conjugate to. q . Similarly, in the case of scalar 
field theory, we find that 

.H [π, φ] =
 

d4x πφ̇ − L[φ, φ̇]. (4.18) 

In the case of GR we find that 

.H [πμν, hμν] =
 

d3x πabḣab − L[hab, ḣab]. (4.19)
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Fig. 4.3 Intrinsic curvature measured by parallel transport (left), and extrinsic curvature measured 
by changes in the normal vectors (right). The cylinder in this example has no intrinsic curvature, 
the same as a flat sheet, since the solid vectors carried around the closed loop are unchanged, but 
the normal vectors of the cylinder are not all parallel, indicating non-zero extrinsic curvature 

In addition to the intrinsic metric .hab, the hypersurfaces .∑ also have a tensor 
which describes their embedding in .M, as shown in Fig. 4.3. 6 This object is known 
as the extrinsic curvature, and is measured by taking the spatial projection of the 
gradient of the normal vectors to the hypersurface, 

.kab = ha
chb

d∇cnd ≡ Danb (4.20) 

where .Da is now the covariant derivative operator which acts only on purely spa-
tial objects. This spatial covariant derivative operator is explored in more detail in 
Appendix D, Sect. D.1. 

As is true in the case of the intrinsic metric, contracting the extrinsic curva-
ture with any object with a time-like component gives zero, .kμνnμ = 0, implying 
that the extrinsic curvature is a quantity with only spacelike indices, .kab. Moreover 
.kab = k(ab) is a symmetric object by virtue of its construction (Sect. D.2). 

Due to the properties of the Lie derivative and the purely spatial character of 
the extrinsic curvature one can show (see Appendix E) that .kab = £nhab, i.e. the 
extrinsic curvature is the Lie derivative of the intrinsic metric with respect to the 
unit normal vector field .na . Now the Lie derivative .£→vX of an object .X with respect 
to a vector field .va can be interpreted as the rate of change of .X along the integral 
curves generated by. va . By analogy with the definition of. p in Eq. (4.17) we might be 
tempted to identify the extrinsic curvature with the “momentum variable” conjugate 
to the “position variable” (namely the intrinsic metric). This is not far off the mark. 
As we will see the conjugate momentum will, indeed, turn out to be a function of 
.kab. 

The Einstein-Hilbert action can be re-written in terms of quantities defined on the 
spatial hypersurfaces, by making two substitutions. Firstly, and analogously to. g, we  
write . h for the determinant of .hab and recognise that the four-dimensional volume

6 The notation .3∑ is sometimes used to denote that these are three-dimensional hypersurfaces, 
however this is redundant in our present discussion. 
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form.
√−g is equal to.N

√
h (that is, the three-dimensional volume form multiplied by 

the distance between hypersurfaces). Secondly, using the Gauss-Codazzi equation, 7

.
(3)Rμ

νρσ = hμ
αh

β
νh

γ
ρh

δ
σR

α
βγδ − kνσk

μ
ρ − kνρk

μ
σ (4.21) 

the four-dimensional Ricci curvature scalar. R can be re-written in terms of the three-
dimensional Ricci scalar .(3)R (that is, the Ricci scalar restricted to a hypersurface 
. ∑), and the extrinsic curvature of .∑ as 

.R = (3)R + kabkab − k2 (4.22) 

where . k is the trace of the extrinsic curvature taken with respect to the 3-metric 

.k := kabhab . (4.23) 

The Gauss-Codazzi relation is a very general result which is true in an arbitrary 
number of dimensions. The reader with too much time on their hands may wish 
to derive it for themselves by using the definition of the Ricci scalar in terms of 
the Christoffel connection and using the 3-metric .hμ

ν to project quantities in . 3 + 1
dimensions down to the three dimensions of. ∑. By repeating this process with objects 
living in . n and .n + 1 dimensions, one can obtain the version which applies for 
manifolds of any dimensionality . n. 

Using these substitutions, the Einstein-Hilbert action can be rewritten in a form 
that is convenient for identifying the parts which depend only on . ∑, 

.SEH =
 

dt d3x N
√
h
(

(3)R + kabkab − k2
)

=
 

dt LEH. (4.24) 

We next need to find .ḣab, which is obtained by taking the Lie derivative 
(Appendix E) with respect to the vector field .tμ which generates time-translations. 
A detailed derivation is given in Sect. D.3, yielding the result 

.ḣab = £→t hab = 2 Nkab + £ →Nhab. (4.25) 

The conjugate momentum is then found to be 

.πab = δL

δḣab
= √

h(kab − k hab). (4.26)

7 A derivation of which can be found in Appendix 1.3 of [ 4]. 
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Substituting these results into Eq. (4.19) we obtain 

. H [πab, hab] =
 

d3x πabḣab − L[hab, ḣab]

=
 

d3x N

(
−√

h(3)R + 1√
h

(πabπab − 1

2
π2)

)
− 2NaDbπ

ab

=
 

d3x NH − NaCa (4.27) 

where for brevity we have adopted the notation 

.H =
(
−√

h(3)R + 1√
h
(πabπab − 1

2π
2)
)
(Hamiltonian constraint) (4.28a) 

. Ca = 2Dbπ
ab (Diffeomorphism constraint) (4.28b) 

where . π is the trace of .πab, and .D is the covariant derivative with respect to the 
3-metric .hab. 

We can reverse the Legendre transform to rewrite the action for GR as 

.SEH =
 

dt LEH =
 

dtd3x
(
πabḣab − H [πab, hab]

)
(4.29a) 

. =
 

dtd3x
(
πabḣab − NH + NaCa

)
. (4.29b) 

It is now apparent that the action written in this form is a function of the lapse 
and shift but not their time derivatives. Consequently the Euler-Lagrange equations 
of motion obtained by varying .SEH with respect to the lapse and shift are 

.
δSEH
δN

= −H = 0 , (4.30a) 

.
δSEH
δNa

= Ca = 0 , (4.30b) 

implying that .H and .Ca are identically zero and are thus to be interpreted as con-
straints on the phase space! This is nothing more than the usual prescription of 
Lagrange multipliers—when an action depends only on a configuration variable . q
but not on the corresponding momentum. p, the terms multiplying the configuration 
variable are constraints on the phase space. 

.Ca and .H are referred to as the vector (or diffeomorphism) constraint and the 
scalar (or Hamiltonian) constraint, respectively. Before we discuss their interpre-
tation, and the reasons for these names, notice that the Hamiltonian density in 
Eq. (4.27), obtained after performing the .3 + 1 split of the Einstein-Hilbert action 
via the ADM procedure [ 5], is a sum of constraints, i.e. .HEH = NH − NaCa = 0. 
This is a generic feature of diffeomorphism invariant theories.
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4.2.1 Physical Interpretation of Constraints 

We now briefly describe the form of the Poisson brackets between the various con-
straints and their physical interpretation. For what follows, it will be helpful to recall 
some aspects the symplectic formulation of classical mechanics. A system may be 
described by reference to a phase space in the form of an even-dimensional mani-
fold. K equipped with a symplectic structure (anti-symmetric tensor).Ωμν . Given any 
function . f : K → R on the phase space, and a derivative operator . ∇, there exists a 
vector field associated with . f , given by .Xα

f = Ωαβ∇β f . Given two functions . f , g
on . K, the Poisson bracket between the two can be written as 

.{ f , g} = Ωαβ∇α f∇βg (4.31) 

which can also be identified with.−£X f g = £Xg f—the Lie derivative (see Appendix 
E) of . g along the vector field generated by . f or vice-versa. Thus in this picture, the 
Poisson bracket between two functions tells us the change in one function when it 
is Lie-dragged along the vector field generated by the other function (or vice-versa). 
For more details see [ 6, Appendix B]. 

In terms of the intrinsic metric and its conjugate momentum the Poisson bracket 
between two functions . f and . g defined on the phase space is given by 

.{ f , g} =
 

d3x
δ f

δhab

δg

δπab
− δ f

δπab

δg

δhab
. (4.32) 

Since .hab and .πab are fields defined over the three-dimensional manifold . ∑, it is  
necessary to integrate over. ∑ to obtain a number. Since the diffeomorphism constraint 
.Ca = 2Dbπ

ab is a function of momenta only, the Poisson bracket of this constraint 
with the canonical coordinate is given by 

. {hcd(x '), ξaCa(x '')} = −
 

d3x
δhcd(x ')
δhef (x)

δ
[
2ξaDbπ

ab(x '')
]

δπe f (x)

= −
 

d3x 2 δec δ
f
d δae δbf δ(x − x ') δ(x '' − x) Dbξa(x

'')

= −δ(x ' − x '') 2 Ddξc (4.33) 

where.ξa is a vector field defined on. ∑, which serves to “smear out” the constraint. Ca
over the manifold so that we get a function defined over the entire phase space, rather 
than just being defined at each point of . ∑. To go from the first line to the second we 
have integrated by parts and dropped the term which is a pure divergence. This is 
justified if the field.ξa has support only on a compact subset of . ∑. The constraint . Ca
takes the metric.hab to a neighboring point on the phase space,.hab → hab − 2Dbξa . 
Using the properties of the Lie derivative, the second term can also be written as 
.£ξhab = Daξb + Dbξa implying that .hab → hab − £ξhab, and that therefore . ξaCa
is the generator of spatial diffeomorphisms along the vector field .ξa on the spatial
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manifold . ∑. This is the reason for calling it the “diffeomorphism constraint” in the 
first place. 

Similarly a much more involved calculation along the lines of the one above yields 
for the Poisson bracket between a function. f on the phase space and the “Hamiltonian 
constraint” .H [ 7, Sect. I.1.1] 

.{NH, f } = £N →n f (4.34) 

i.e..H generates diffeomorphisms along the vector field.N →n orthogonal to the hyper-
surface . ∑. In other words .H maps functions defined on the hypersurface .∑t at a 
given time . t to functions on a hypersurface .∑t ' at a later time . t '. This is the reason 
for referring to .H as the “Hamiltonian constraint”; it generates time evolution of 
functions on the phase space, the same way the Hamiltonian in classical or quantum 
mechanics does. 

A little later, when we cast GR in the first order formulation we will encounter a 
third constraint, referred to as the Gauss constraint. We shall discuss the interpretation 
of the constraints again once the Gauss constraint has been properly introduced, but 
note here that the Hamiltonian constraint is relevant to the time evolution of the 
spacelike hypersurfaces, while the other two constraints act spatially (i.e. within the 
hypersurfaces). 

We do not wish to provide more details of the ADM procedure than are strictly 
necessary. Further details about the ADM splitting and canonical quantization can 
be found in [ 2] in the metric formulation, and [ 5] in the connection formulation. 8

4.3 Seeking a Path to Canonical Quantum Gravity 

In the Hamiltonian formulation one works with a phase space spanned by a set of 
generalized coordinates . qi , and a set of generalized momenta . pi . For the case of 
general relativity, the generalised coordinate is the intrinsic metric.hab of the spatial 
3-manifold.∑ and the extrinsic curvature.kab induced by its embedding in.M deter-
mines the corresponding generalized momentum, as per (4.26). For comparison the 
phase spaces of various classical systems are listed in the following table (Table 4.1) 

Table 4.1 Examples of generalised coordinates and momenta for various physical systems

System Coordinate Momentum 

Simple Harmonic Oscillator .x . p

Ideal Rotor .θ . Lθ

Scalar Field .φ(x, t) . π(x, t)

Geometrodynamics .hab . πab = √
h(kabkab − k2)

Connection Dynamics .Aa
i .Ea

i

8 The terms “metric formulation” and “connection formulation”will be defined in Sect. 4.3.1. 
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Now, given our phase space co-ordinatized by.{hab,πab} and the explicit form of 
the Hamiltonian of GR in terms of the Hamiltonian and diffeomorphism constraints, 
Eqs. (4.28a) and (4.28b), we may expect that we can proceed directly to quantization 
by promoting the Poisson brackets on the classical phase space to commutation 
relations between the operators acting on a Hilbert space .HGR: 

.hab → ĥab , (4.35a) 

.πab → i 
δ

δhab
, (4.35b) 

.

{
hab(x), π

a'b'
(x ')

}
= δ(x − x ')δa'

a δb
'

b →
[
ĥab, i 

δ

δha'b'

]
= i δa

'
aδ

b'
b , (4.35c) 

.f [hab] → |𝚿hab > . (4.35d) 

It should then remain to write the constraints .H and .Cμ in operator form 

.H , Ca → Ĥ, Ĉa (4.36) 

which act upon states .|𝚿q> which would then be identified with the physical states 
of quantum gravity. The physical Hilbert space is a subset of the kinematic Hilbert 
space which consists of all functionals of the 3-metrics, .|𝚿q ' > ∈ Hphys ⊂ Hkin. 

Unfortunately the above prescription is only formal in nature and we run into 
severe difficulties when we try to implement this recipe. The primary obstacle is 
the fact that the Hamiltonian constraint stated in Eq. (4.28a) has a non-polynomial 
dependence on the 3-metric via the Ricci curvature .

(3)R. We can see this schemati-
cally by noting that .(3)R is a function of the Christoffel connection . ┌ which in turn 
is a complicated function of .hab: 

.
(3)R ∼ (∂┌)2 + (┌)2 ; ┌ ∼ q∂q ⇒ ∂┌ ∼ ∂q∂q + q∂2q . (4.37) 

This complicated form of the constraints raises questions about operator ordering 
and is also very non-trivial to quantize. Therefore, in this form, the constraints of 
general relativity are not amenable to quantization. 

This is in contrast to the situation with the Maxwell and Yang-Mills fields, which 
being gauge fields can be quantized in terms of holonomies (see Sect. 3.3), which 
form a complete set of gauge-invariant variables. An optimist might believe that 
were we able to rewrite general relativity as a theory of a gauge field, we could make 
considerably more progress towards quantization than in the metric formulation. 
This does turn out to be the case as we see in the following sections. 

4.3.1 Connection Formulation 

Our ultimate goal is to cast general relativity in the mould of gauge field theories 
such as Maxwell or Yang-Mills. The parallel between covariant derivatives and con-
nections in GR and QFT suggests that gravity may be treated as a gauge field theory
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with.┌
ρ
μν as the gauge connection. However, though the Christoffel connection is an 

affine connection it does not transform as a tensor under arbitrary coordinate trans-
formations (c.f. [ 2, Chap. 4]) and thus cannot play the role of a gauge connection 
which should be a covariant quantity. 

.┌
ρ
μν allows us to parallel transport vectors .vμ and, 9 in general, arbitrary tensors 

(vectors are of course a special case of tensors) i.e. it allows us to map the tangent 
space.Tp at point . p to the tangent space.Tp' at the point . p'. The map depends on the 
path connecting. p and.p' and it is this fact that allows us to measure local geometric 
properties of a manifold. However, in order to allow the parallel transport of spinors 
the Christoffel connection is not sufficient. 

The Christoffel connection does not “know” about spinor fields of the form . ψμ
I

(where . I is a Lie algebra index). A theory of quantum gravity which does not know 
about fermions would not be very useful. Thus we need an alternative to the Christof-
fel connection which has both these properties; covariance with respect to coordinate 
transformations, and coupling with spinors. 

Up until now we have worked with GR in second-order form, i.e. with the metric 
.gμν as the only configuration variable (hence this is also called the metric formu-
lation). The Christoffel connection .┌ρ

μν is determined by the metric compatibility 
condition, 

.∇gμν = 0 . (4.38) 

The passage to the quantum theory is facilitated by switching to a first-order formula-
tion of GR (also called the connection formulation), in which both the metric and the 
connection are treated as independent configuration variables. However due to the 
problems with the Christoffel connection noted above, we shall choose a first-order 
formulation in terms of a tetrad or “frame-field” (which we will see shortly takes the 
role of the metric) and a gauge connection (the “spin connection”), both of which 
take values in the Lie algebra of the Lorentz group. In the following subsections we 
will describe the tetrads and the spin connection in some detail, before proceeding 
to our first example of a first-order formulation of gravity, the Palatini formulation. 

The connection formulation exposes a hidden symmetry of geometry as illustrated 
by the following analogy. The introduction of spinors in quantum mechanics (and 
the corresponding Dirac equation) allows us to express a scalar field .φ(x) as the 
“square” of a spinor .φ = 𝚿 i𝚿i . In a similar manner the use of the tetrads allows 
us to write the metric as a square .gμν = eIμe

J
ν ηI J . The transition from the metric 

to connection variables in GR is analogous to the transition from the Klein-Gordon 
equation 

.(−∂2
t + ∂a∂a − m2)ψ = 0 (4.39) 

to the Dirac equation 

.(iγμ∂μ − m)ψ = 0 (4.40) 

in field theory (where here we have used .c =  = 1).

9 We will from time to time commit the cardinal sin of conflating a vector with its components. 
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The connection is a Lie algebra valued one-form .Aμ
I J τI J where .τI J are the 

generators of the Lorentz group. Our configuration space is then spanned by a tetrad 
and connection pair, .{eIμ, Aμ

I J }. The tetrads are naturally identified as mappings 
between the Lie algebra .sl(2,C), and the Lie algebra .so(3, 1) of 4-vectors. 

4.3.2 Tetrads 

We begin by considering the four dimensional manifold.M, introduced in Sect. 4.2, 
above. As we know, any sufficiently small region of a curved manifold will look 
flat 10 and so we may define a tangent space to any point .P in .M. Such a tangent 
space will be a flat Minkowski spacetime, and the point .P may be regarded as part 
of the worldline of an observer, without loss of generality. This tangent space will be 
spanned by four vectors, . eμ. Each basis vector will have four components, .eIμ where 
.I ∈ {0, 1, 2, 3}, referred to the locally-defined reference frame (the “laboratory 
frame” of the observer who’s worldline passes through . P , with lengths and angles 
measured using the Minkowski metric). 11 As noted back in Chap. 1, such a set of four 
basis vectors is referred to as a tetrad or vierbein (German for “four legs”). 12 Since 
the tetrads live in Minkowski space, their dot product is taken using the Minkowski 
metric. But the dot product of basis vectors is just the metric itself, so the metric of 
.M at any point is just given by 

.gμν = eIμe
J
ν ηI J (4.41) 

where .ηI J = diag(−1, +1,+1, +1) is the Minkowski metric. Taking the determi-
nant of both sides we find that 

.det(gμν) = det(IJ)det(e
I
μ)2 = −det(eIμ)2 (4.42a) 

. ∴ e = √−g (4.42b) 

where.g ≡ det(gμν) and.e ≡ det(eIμ). Due to this fact the tetrad can be thought of as 
the “square-root” of the metric. 

Tetrads can thus be interpreted as the transformation matrices that map between 
two sets of coordinates, as can be seen by comparing Eq. (4.41) with the standard 
form for a coordinate transformation, Eq. (2.16). It is this fact which makes the tetrads 
a useful tool in modern formulations of GR. Since the components of spinors are 
defined relative to the flat “laboratory frame” of the tangent space, and tetrads map

10 So long as the manifold is continuous, not discrete. This is an important point to keep in mind 
for later. 
11 The components can be regarded a internal to the “laboratory frame” tangent space, and hence 
the choice of indices.I , J . . . is appropriate. 
12 The similar word vielbein (“any legs”) is used for the generalisation of this concept to an arbitrary 
number of dimensions (e.g. triads, pentads). 
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the metric of this tangent space to the metric of the full four-dimensional spacetime, 
they serve the role we mentioned above, of allowing us to construct a connection 
that knows about spinor quantities as well as vectors and tensors. The construction 
of such a connection will be described below. 

As an aside, we note that any vector.vμ can be written as an.sl(2,C) spinor.vi j as 

.vi j := vμe
μ
Iσ

I
i j (4.43) 

where .σ I = {1,σx , σy,σz} is a basis of the Lie algebra .sl(2,C) and .i, j are the 
spinorial matrix indices shown explicitly for clarity. 

4.3.3 Choosing a Gauge Group 

It is a truth universally acknowledged, that a student in possession of a basic familiar-
ity with loop quantum gravity will be in want of an explanation of the significance of 
.SL(2,C). If we wish to construct a theory that encompasses GR under the framework 
of gauge field theories we should anticipate that the local symmetries of spacetime 
will define the gauge group of our quantum gravity theory. To give one example, BF 
theory (discussed in Sect. 7.2) in three dimensions contains (2+1) general relativity, 
where choosing SO.(3) results in a Riemannian metric, 13 while choosing SO(2,1) 
results in a Lorentzian one. 

We have seen already that gauge field theories are constructed by promoting 
global gauge symmetries to local symmetries, giving rise to gauge fields which 
manifest as connection terms in the covariant derivative. The reader will recall from 
the start of Chap. 2 that special relativity is formulated in a flat spacetime, and 
hence any transformation of the coordinates applies globally, while GR describes 
curved spacetime, with SR applying in any sufficiently small region 14 and mappings 
between coordinate choices in widely-separated regions accounting for the spacetime 
curvature. In other words, we expect the symmetries of SR to carry over to GR but to 
be locally applicable, rather than global, and hence expect the existence of a covariant 
derivative with a connection term. We will discuss the choice of gauge group of this 
connection term using both a conceptual argument, and a more precise mathematical 
formulation. 

Both arguments involve recognising that rotations in spacetime can be mapped 
to .SL(2,C) transformations. As noted in Chap. 2 the causal structure of spacetime 
defines a future light-cone and past light-cone at each event. The past light-cone of

13 A Riemannian metric by definition always assigns lengths greater than zero to distinct points in 
a manifold. This is in contrast to the Minkowski metric, which as per footnote 2 of Chap. 2, may  
not. 
14 In constructing a theory of quantum gravity we may find that this is not strictly true, as spacetime 
may not be viably treated as continuous at all length scales, and in fact the concept of a background 
spacetime may not be valid at all. But these are subtleties to dwell upon in the latter parts of this 
book. For now, we’ll focus on classical theories of spacetime structure. 
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an observer at any given value of time is the celestial sphere at a fixed distance from 
the observer. The celestial sphere can be parametrised by the angles . θ, . φ, and any 
point on a sphere can be stereographically projected onto a plane. For our purposes, 
this shall be taken to be the complex plane, so that any point on the celestial sphere 
corresponds with a complex number .ζ = X + iY . We can write this as the ratio of 
two complex numbers.ζ = χ/υ. This may seem like an odd thing to do, exchanging 
one complex number for two, but if we write . χ and . υ as the components of a 2-
vector it allows us to let . ζ become infinite or zero (corresponding to stereographic 
projection of the “north pole” and “south pole” of the celestial sphere) by acting on 
this 2-vector with a transformation that has a finite determinant (and hence keeps the 
magnitudes of both . χ and . υ within a finite range). Such a linear transformation can 
be written in the form of a.2 × 2 matrix with complex components. We can of course 
write . χ and . υ as functions of . θ and . φ, and vice-versa. So a change of the complex 
coordinates is equivalent to a coordinate transformation of the real angles . θ, . φ. If  
we take the determinant of this transformation matrix to be +1 (which we can do, 
without loss of generality) this is an .SL(2,C) transformation. Thus .SL(2,C) is the 
local gauge group of special relativity. 

To state this result more precisely, we recognise that the Lorentz group is generated 
by three rotations, denoted. Ja , and three boosts—which we may think of as rotations 
in the planes defined by the time direction and a spatial direction—denoted .Ka . 
These may be explicitly constructed from the Pauli matrices using the definitions 

.Ja = 1

2
σa, Ka = i

2
σa . (4.44) 

Since the Pauli matrices are traceless .2 × 2 matrices, the .Ja and .Ka will generate 
(via exponentiation, as usual) a group of.2 × 2matrices with complex entries, having 
determinant .+1. The group .SL(2,C) consists of such matrices, and has six inde-
pendent parameters, which we can identify with the magnitudes of the rotations and 
boosts. 

The .Ja and .Ka satisfy the commutation relations 

.[Ja, Jb] = iϵabc Jc , (4.45) 

.[Ka, Kb] = −iϵabc Jc , (4.46) 

.[Ja, Kb] = iϵabcKc . (4.47) 

These are simply the commutation relations of the Lorentz Lie algebra. Thus the 
correspondence between .SL(2,C) and the Lorentz group is established. 

The reader should recognise from Eqs. (4.45) and (4.46), that while the commu-
tators of the rotations are linear combinations of rotations, so are the commutators of 
the boosts. In other words, the boosts are not closed under commutation. However 
we can define new operators 

.Na
± = Ja ± iKa

2
(4.48)
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and find that 

.
[
N+
a , N+

b

] = iϵabcN+
c ,

[
N−
a , N−

b

] = iϵabcN−
c ,

[
N+
a , N−

b

] = 0 , (4.49) 

hence both the .N+ and .N− independently act like generators of SU.(2), and we 
conclude that the Lie algebra of the Lorentz group is equivalent to two copies of the 
Lie algebra.su(2). This leads in a well-known manner to classifying representations 
(Sect. A.1) of the Lorentz group by pairs of eigenvalues. With .Ja and .Ka chosen as 
per Eq. (4.44) we find that .N+

a = 0 and .N−
a = 1

2σa , and denote this the . (0, 1/2)
representation which acts on right-handed spinors. If we had chosen .Ja = 1

2σa and 
.Ka = − i

2σa we would have instead obtained .N+
a = 1

2σa and .N−
a = 0 yielding the 

.(1/2, 0) representation, which acts on left-handed spinors. Note that having one 
or both generators equal to zero is perfectly acceptable, as exponentiation of zero 
yields . 1, the sole element of the trivial group. Indeed the simplest representation of 
the Lorentz group is the trivial representation, with all group elements equal to 1. It 
acts upon Lorentz scalars (since these don’t change under a Lorentz transformation 
i.e. are multiplied by 1). The eigenvalues of .N+ = 0 and .N− = 0 are both zero, so 
we refer to this as the.(0, 0) representation. Naturally the commutation relations are 
fulfilled since .[0, 0] = 0. 

But let us return to the matter at hand. Just as a pair of real scalars may be identified 
with a complex scalar, we may identify .sl(2,C) as the complexification of .su(2). 
Without getting bogged down in details, the take-home message is that .SL(2,C) is 
found to be the universal covering group of the Lorentz group. 15 This should sound 
familiar to physicists—the well-known fact that SU.(2) is a double-cover of SO. (3)
is another example of such a relationship. 

With the correspondence between the Lorentz group and.SL(2,C) established we 
can go on to think about what this means for transformations of spinors. The Lorentz 
group is a subgroup of the Poincaré group, which consists of translations in addition 
to the rotations and boosts we have just considered. Dynamics on a flat spacetime 
can be described by the Poincaré group, however in a general curved spacetime 
such as we would expect in GR, translational symmetry is broken and only local 
Lorentz invariance remains as an unbroken symmetry. As discussed in Sect. 2.1 the 
mapping between local coordinate bases is encoded in the connection. However 
the Christoffel connection does not allow for the parallel transport of spinors. It is 
therefore not suitable to be used in constructing a theory of quantum gravity. The 
simplest candidate that allows for parallel transport of spinors is an .sl(2,C) valued 
connection.Aμ

I J . Such a choice of connection is a logical candidate for casting GR 
as a gauge theory, and will be referred to as a spin connection.

15 It should be borne in mind that the isomorphism is between the algebras, not the groups. The 
group SU.(2), with its relationship to rotations, is compact. This reflects the fact that rotating an 
object through a finite number of finite rotations can return it to its starting orientation. However 
the Lorentz group is non-compact, reflecting the fact that even an arbitrarily-large number of finite 
boosts cannot accelerate an object to the speed of light, and so boosts may be parametrised by a 
“rapidity” which takes values between negative and positive infinity. 
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4.3.4 Spin Connection 

In order to be able to parallel transport objects with spinorial indices we need a 
suitable extension of the notion of a covariant derivative which acts on vectors to 
one which acts on spinors (we follow [ 8, Appendix B]). The condition for parallel 
transport of a vector is that its covariant derivative with respect to the Christoffel 
connection should vanish, i.e. 

.∇kv
i = ∂kv

i + v j┌i
jk = 0 . (4.50) 

Similarly the condition for parallel transport of a spinor requires that its covariant 
derivative with respect to the gauge connection should vanish 

.Dμψ = ∂μψ + igAμψ = 0 (4.51) 

where.Aμ ≡ AI
μt

I is the gauge connection. Analogously, given the tetrad.eIμ and the 
Christoffel connection .┌γ

αβ we define an .sl(2,C) valued spin connection .ω I J
α and 

use these to construct the generalised derivative operator on .M which annihilates 
the tetrad 

.Dαe
I
β = ∂αe

I
β − ┌

γ
αβe

I
γ + ω I

α J e
J
β = 0 . (4.52) 

The term “spin connection” may cause some confusion, by tricking newcomers 
into thinking they have to learn a new concept, when it fact this is nothing more than 
the notion of parallel transport of a particle along a Wilson line. 

Now one would expect that this derivative operator should also annihilate the 
(internal) Minkowski metric.ηI J = eαI eα

J and the spacetime metric.gμν = eIμe
J
ν ηI J . 

One can check that requiring this to be the case yields that the spin-connection is 
anti-symmetric .ω

{I J }
α = 0 and the Christoffel connection is symmetric .┌α

[βγ] = 0. 
We can solve for .┌α

βγ in the usual manner (see e.g. [ 2]) to obtain 

.┌
γ
αβ = 1

2
gγδ

(
∂αgδβ + ∂βgδα − ∂δgαβ

)
. (4.53) 

Inserting the above into Eq. (4.52) we can solve for . ω to obtain 

.ω I J
α = 1

2
eδ[I (∂[αeJ ]

δ] + e|β|J ]eKα ∂βeδK

)
(4.54) 

where the notation on the superscripts indicates that we anti-symmetrize on . I and 
. J but not the dummy variable . β. Note that in the above expression the Christoffel 
connection does not occur. 

In the definition of .D we have included the Christoffel connection. Ideally, in 
a gauge theory of gravity, we would not want any dependence on the spacetime 
connection. That this is the case can be seen by noting that all derivatives that appear 
in the Lagrangian or in expressions for physical observables are exterior derivatives, 
i.e. of the form .D[αeIβ]. The anti-symmetrization in the spacetime indices and the
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symmetry of the Christoffel connection.┌γ
[αβ] = 0 implies that the exterior derivative 

of the tetrad can be written without any reference to . ┌: 

.D[αeIβ] = ∂[αeIβ] + ω[α I Leβ]L = 0 . (4.55) 

We can solve for .ω by a trick similar to one used in solving for the Christoffel 
connection. Following [ 8, Appendix B], first contract the above expression with 
.eα
J e

β
K to obtain 

.eα
J e

β
K

(
∂[αeIβ] + ω[α I Leβ]L

)
= 0 . (4.56) 

Now let us define .ΩI J K = eα
I e

β
J∂[αeβ]K . Performing a cyclic permutation of the 

indices.I , J , K in the above expression, adding the first two terms thus obtained and 
subtracting the third term we are left with 

.ΩJ K I + ΩI J K − ΩK I J + 2eα
JωαI K = 0 . (4.57) 

This can be solved for . ω to yield 

.ωαI J = 1

2
eKα [ΩK I J + ΩJ K I − ΩI J K ] (4.58) 

which is equivalent to the previous expression, Eq. (4.54), for . ω. 
Next we consider the curvature tensors for the Christoffel and the spin connections 

and show the fundamental identity that allows us to write the Einstein-Hilbert action 
solely in terms of the tetrad and the spin-connection. The Riemann tensor for the 
spacetime and the spin connections respectively are defined as 

.D[αDβ]vγ = Rαβγ
δvδ, D[αDβ]vI = Rαβ I

JvJ . (4.59) 

Writing .vγ = eIγvI and inserting into the first expression we obtain 

.Rαβγ
δvδ = D[αDβ]vγ = D[αDβ]eIγvI = eIγRαβ I

JvJ = eIγRαβ I
J eδ

Jvδ (4.60) 

where we have used the fact that .DμeIν = 0. Since the above is true for all . vδ , we  
obtain 

.Rαβγ
δ = Rαβ I

J eIγe
δ
J . (4.61) 

The Ricci scalar is given by.R = gμνRμν = gμνRμδν
δ . Using the previous expression 

we find 

.Rμδν
δ = Rμδ I

J eIνe
δ
J . (4.62) 

Contracting over the remaining two spacetime indices then allows us to write the 
Ricci scalar in terms of the curvature of the spin-connection and the tetrads, 

.R = Rμν
I J eμ

I e
ν
J . (4.63)
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4.3.5 Palatini Action 

The Einstein-Hilbert action, from the discussion in Sect. 4.1, can be written in the 
form 

.SEH = 1

κ

 
d4x

√−ggμνRμν . (4.64) 

The Palatini approach to GR starts with this action and treats the metric and the 
connection as independent dynamical variables. Variation of the action with respect 
to the metric yields the vacuum field equations.Rμν = 0, while variation with respect 
to the connection implies that the connection is the Christoffel connection. Discussion 
of the Palatini approach in terms of the metric and Christoffel connection can be found 
in many textbooks (see e.g. [ 2, Appendix E]). 

Having gone to the effort of defining tetrads and the spin connection we now wish 
to write the action for GR in terms of these variables. We saw in Sect. 4.1 that require-
ments of covariance and simplicity dictated the form of the action for GR. Similarly 
our construction of an action based on tetrads and the spin connection is guided by 
physical considerations. Firstly we want the action to be diffeomorphism invariant. 
We also require the Lagrangian density to be a four-form, which we can integrate 
over a four-dimensional spacetime to give a scalar (thus this action is valid only in 
four dimensions). The curvature of the connection is already a two-form, so (sup-
pressing spacetime indices for simplicity) we include .eI ∧ eJ ≡ e[μ I eν] J , which is 
a two-form. 16 This yields the Palatini action, the simplest diffeomorphism-invariant 
action one can construct using tetrads and the curvature of the gauge connection. 
We emphasise that this is not simply .SEH rewritten with a change of variables, but 
a parallel construction. The discussion above is intended to describe the physical 
intuition behind this construction. It is conventional to use the notation .F I J

μν for the 
curvature of the spin connection, to yield 

. SP [e,ω] = 1

2κ

 
d4x ⋆(eI ∧ eJ ) ∧ FKL ϵI J K L

= 1

4κ

 
d4x ϵμναβϵI J K L eμ

I eν
J Fαβ

K L , (4.65) 

where 

.FKL
γδ = ∂[γωδ]K L + 1

2

[
ωγ

KM , ωδ M
L
]

. (4.66) 

The similarity between Eqs. (4.64) and (4.65) should be clear, especially when 
we remember that .gμν = eIμe

J
ν ηI J (Eq. (4.41)). We also note that this is essentially 

the action obtained from the BF Lagrangian, Eq. (7.4), with .(e ∧ e) replacing. E . At  
this point .Fμν

I J is the curvature of . ω, but it remains to be shown that it satisfies

16 If we use two copies of the curvature tensor then we get Yang-Mills theory (.F ∧ F). But that 
doesn’t include the tetrad. 
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the identity of Eq. (4.63). The equations of motion obtained by varying the Palatini 
action are 

.
δSP

δων
I J

= ϵμναβϵI J K L Dν

(
eα

I eβ
J
)

= 0 , (4.67a) 

.
δS

δeI μ
= ϵμναβϵI J K L eν

J Fαβ
K L = 0 . (4.67b) 

One can see that Eq. (4.67a) is equivalent to the statement that 

.
δS[g, ┌]

δ┌
= 0 ⇒ ∇g = 0 (4.68) 

therefore in this approach the metric compatibility condition Eq. (4.38) arises as the 
equation of motion obtained by varying the action with respect to the connection. 

Our derivation of Eq. (4.67a) utilized that.F[ω + δω] = F[ω] + D[ω](δω), where 
.D[ω] is the covariant derivative defined with respect to the unperturbed connection. ω
as in Eq. (4.55). The resulting equation of motion, Eq. (4.67a), is then the torsion-free 
or metric-compatibility condition which tells us that the tetrad is parallel transported 
by the connection . ω. This then implies that Eq. (4.63) holds, i.e. .Fμν

I J ≡ Rμν
I J . 

The second equation of motion can be obtained by inspection, since .F does not 
depend on the tetrad. Already we see dramatic technical simplification compared 
to when we had to vary the Einstein-Hilbert action with respect to the metric as in 
Eq. (4.2). 

We will digress at this point, much as we did in Sect. 4.1, in order to show that 
Eq. (4.67b) is equivalent to Einstein’s vacuum equations. We first note that the volume 
form can be written as 

.ϵμναβ = 1

4!ϵPQRS e[μPeν
Qeα

Reβ]S . (4.69) 

Contracting both sides with .eν
J we find that 

. ϵμναβ e
ν
J = 1

4!ϵPQRS e[μPeν
Qeα

Reβ]Seν
J

= − 1

3!ϵJ PQR e[μPeα
Qeβ]R (4.70) 

where in the second line we have switched some dummy indices and relabelled 
others. Inserting the right hand side of the above in Eq. (4.67b) and using the fact 
that Eq. (4.63) implies .Fμν

I J ≡ Rμν
I J , we find that 

.
δS

δeI μ
= ϵμναβ eν

J ϵI J K L Rαβ
K L

= − 1

3!ϵ
J PQR ϵI J K L e

[μ
P eα

Q eβ]
R Rαβ

K L

= δP[I δQK δRL] e
μ
P eα

Q eβ
R Rαβ

K L
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= eμ 
[I e

α 
K e

β 
L] Rαβ 

K L  

= 
(
eμ 
I e

α 
K e

β 
L + eμ 

K e
α 
Le

β 
I + eμ 

Le
α 
I e

β 
K 

) 
Rαβ 

K L  

= eμ 
I R + eβ 

I Rαβ 
μα + eα 

I Rαβ 
βμ 

= eμ 
I R − 2eβ 

I Rβ 
μ = 0 . (4.71) 

In the first step we have used the result in Eq. (4.70). In the second step we have 
used the fact that the contraction of two . ϵ tensors can be written in terms of anti-
symmetrized products of Kronecker deltas. In the third and fourth steps we have 
simply contracted some indices using the Kronecker deltas and expanded the anti-
symmetrized product explicitly. In the fifth and sixth steps we have made use of 
Eq. (4.61) and the definition of the Ricci tensor as the trace of the Riemann tensor: 
.Rβ

μ = Rαβ
αμ. Contracting the last line of the above with.eν I and using the fact that 

.gμν = eIμe
J
ν ηI J we find 

.Rμν − 1

2
gμνR = 0 . (4.72) 

Thus the tetradic action in the first-order formulation—where the connection and 
tetrad are independent variables—is completely equivalent to classical general rela-
tivity. 

4.3.6 Palatini Hamiltonian and Constraints 

Up to this point we have been discussing classical approaches to GR. The Palatini and 
ADM approaches reproduce Einstein’s original formulation of GR, but as mentioned 
in Sect. 4.3, one would hope that they provide a formulation amenable to canonical 
quantisation. We can perform a .3 + 1 split of the Palatini action, Eq. (4.65) and 
obtain a Hamiltonian which, once again, is a sum of constraints. However, while the 
resulting formulation appears simpler than that in terms of the metric variables, there 
are some second class constraints which when solved [ 8, Sect. 2.4] yield the same 
set of constraints as obtained in the ADM framework. Thus, the Palatini approach 
does not appear to yield any substantial improvements over the ADM version as far 
as canonical quantization is concerned. To proceed to a quantum theory, we must 
transition to a description of gravity in terms of the Ashtekar variables. But first, let 
us briefly review the ADM splitting in the tetrad formalism. For this purpose there 
are two approaches. 

The first approach involves repeating the steps in Sect. 4.2, but this time with 
the first order action (4.65) (where the dynamical variables are the tetrad and the 
connection), rather than with the Einstein-Hilbert action (4.64). This method is quite 
tedious and is summarized in Appendix F. Here we present a more direct approach 
due to Thiemann [ 7, Sect. I.1.3]. 

Thiemann’s approach is quite simple. It involves starting with the ADM con-
straints in the metric formulation and rewriting functions of the 3-metric .hab and 
3-momentum .πab in terms of the tetrad .e ja and the extrinsic curvature one-form
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.Ki
a = Kabeib (these symbols should not be confused with the Lorentz group boost 

generators.Ka encountered in Sect. 4.3.3.) We already know that the relation between 
the tetrad one-form and the metric is given by (4.41), 

hab = ei ae 
j 
bδi j  

keeping in mind that in .(3 + 1) dimensions the correct tensor on the right-hand side 
would be the Minkowski tensor .ηI J rather than the Kroneckar delta. Now under 
local SO.(3) rotations given by the matrix .Oi

j , the tetrad changes, .e
i
a → Oi

j e
j
a , but  

the 3-metric .hab remains invariant. Thus, in the tetrad formalism, the action of the 
rotation group introduces three new degrees of freedom, 17 which were not present 
in the metric formulation. These extra degrees of freedom can be eliminated by 
introducing the extrinsic curvature one-form, 

.Ki
a = Kabe

i
b , (4.73) 

where .Kab is the extrinsic curvature (4.20) of the 3-manifold . ∑. This equation can 
be inverted to give 

.Kab = ei(aK
j
b)δi j . (4.74) 

Since .Kab is symmetric, the following constraint on .Ki
a must hold: 

.Gab = K i[ae
j
b]δi j . (4.75) 

It is convenient to introduce a quantity .Ẽa
i given by the wedge (anti-symmetric) 

product (see Sect. 3.2 and Appendix B) of two copies of the tetrad, 

.Ẽa
i = 1

2
ϵabcϵi jke

j
be

k
c , (4.76) 

in terms of which (4.75) can be written as 

.Gi j = Ka[i Ẽa
j] = 0 , (4.77) 

or equivalently, as 

.Gk := ϵk
i j Kai Ẽ

a
j = 0 . (4.78) 

We can now write the 3-metric and 3-momentum in terms of.Ea
j and.Ki

a as follows; 

.qab = det(Ẽc
l ) Ẽ

i
a Ẽ

j
b (4.79a) 

.pab = det(Ẽc
l ) Ẽ

a
k Ẽ

d
k K

j
[dδ

b
c] Ẽc

j . (4.79b)

17 In .D dimensions, the rotation group has .D(D − 1)/2 degrees of freedom corresponding to the 
number of independent elements of an antisymmetric.D × D matrix. 
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When the “Gauss constraint” (4.77), which we first mentioned in Sect. 4.2.1, is  
satisfied we find that .qab, pab reduce to the ADM variables .hab,πab. Using these 
definitions we can now rewrite the metric ADM constraints (4.28) as  

.Gi = ϵi jk K
j
a Ẽ

ak (4.80a) 

.Ca = Db

[
K j
a Ẽ

b
j − δba K

j
c Ẽ

c
j

]
(4.80b) 

.H = −det(q)R + 2√
det(q)

K j
a K

l
b Ẽ

[a
j Ẽ

b]
l (4.80c) 

where the first line is the Gauss constraint, the second the diffeomorphism constraint 
and the third line is the Hamiltonian constraint. 

The physical interpretation of these constraints is identical to that given in 
Sect. 4.2.1, i.e. the diffeomorphism constraint .ξaCa generates spatial diffeomor-
phisms along the vector field .ξa on.∑ and the Hamiltonian constraint is the genera-
tor of diffeomorphisms along the vector field.N →n normal to.∑ which corresponds to 
time-evolution of physical quantities defined on . ∑. The only change is the addition 
of the Gauss constraint (4.78), which acts as the generator of SO.(3) rotations. Given 
an SO.(3)-valued form.ηi defined on . ∑, .ηiCi generates infinitesimal rotations in the 
triad .eia in the “direction” (in the sense of a direction on the SO.(3) group manifold) 
given by . ηi . 

These constraints satisfy the following Poisson bracket relations: 

.{K i
a(x), K

j
b (y)} = 0 (4.81a) 

.{Ẽa
i (x), K j

b (y)} = δ
j
i δ

a
bδ

3(x, y) (4.81b) 

.{Ẽa
i (x), Ẽb

j (y)} = 0 (4.81c) 

showing that .Ẽa
i and .K j

b are canonically conjugate variables. 
For further details including the calculations of the Poisson bracket structure of 

these constraints we refer the reader to [ 7, Sect. I.1.3] or to any of the other reviews 
listed in the bibliography. 
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As discussed in the previous section, we wish to attempt to canonically quantise GR,
which means turning the Hamiltonian, diffeomorphism and Gauss constraints into
operators and replacing Poisson brackets with commutation relations. This proce-
dure is easier said than done, however. In a practical sense one must be careful with
the ordering of operators, and hence constructing appropriate commutation relations
is not as easy as one might at first hope. We shall discuss the way forward in outline,
before turning to a more detailed discussion of each step. Firstly we simplify the
constraints by adopting a complex-valued form for the connection and tetrad vari-
ables. These are the Ashtekar variables. Next one performs a .3 1 decomposition
to obtain the Einstein-Hilbert-Ashtekar (EHA) Hamiltonian .

+
HEHA which turns out

to be a sum of constraints. We have already seen that these constraints all equal zero,
and so when treated as operators they should act upon a state of quantum spacetime,
.|𝚿> to yield.HEHA|𝚿
for. 𝚿 upon us, but it

> = 0. This condition does not force a particular choice of basis
| > does admit a choice built from objects we are already familiar

with—Wilson loops. These loops are then allowed to intersect, to yield area and vol-
ume operators of the spacetime. As a result, the states of quantum spacetime come to
be represented by graphs whose edges are labelled by representations of the gauge
group (for GR this is SU.(2)). Throughout, the notion of background independence,1

which is central to general relativity, is considered sacrosanct.
The reader interested in the history behind the canonical quantization program,

with further mathematical details, is referred to [1].

1 It is important tomention one aspect of background independence that is not implemented, a priori,
in the LQG framework. This is the question of the topological degrees of freedom of geometry. On
general grounds, one would expect any four dimensional theory of quantum gravity to contain non-
trivial topological excitations at the quantum level. Classically, these excitations would correspond
to defects which would lead to deviations from smoothness of any coarse-grained geometry.
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5.1 Ashtekar Formulation:“NewVariables” for General
Relativity

We have already discussed the first-order form of GR above. Now let us turn our
attention to Ashtekar’s complex-valued version of this formalism. We begin with
tetradic GR whose action is written in the Palatini form. This action is equivalent to
the usual Einstein-Hilbert action on-shell, i.e. for configurations which satisfy Ein-
stein’s field equations, as shown in Sect. 4.3.5. For dealing with spinors, a formalism
defined in terms of connections and tetrads is more useful than one defined in terms
of the metric, as shown above. When we perform the ADM splitting of the Palatini
action, we switch from variables defined in the full four-dimensional spacetime to
the three-dimensional hypersurfaces.∑t . Hence the tetrads at each point become “tri-
ads”, .eIμ → eia where.μ → a ∈ {1, 2, 3}, .I → i ∈ {1, 2, 3}, and the spin connection
is likewise restricted, to become .┌i

a = ωajkϵ
jki . The phase space variables of the

Palatini picture .(eia, ┌
i
a) are the intrinsic metric of the spacelike manifold .∑ and a

function of its extrinsic curvature respectively, similarly to the situation we noted in
Sect. 4.2. Unfortunately in this case the Hamiltonian constraint (Eq. (4.80c)) is still
a complicated non-polynomial function and canonical quantization does not appear
to be any easier in this formalism.

Ashtekar made the remarkable observation that the form of the constraints simpli-
fies dramatically2 if instead of the real connection.ωμ

I J one works with a complex,
self-/anti-self-dual connection (this means that the connection is equal to .±1 times
the dual connection,which is defined in an analogousmanner to the dual field strength
of Eq. (3.22)). At the heart of the formulation of general relativity as a gauge the-
ory lies a canonical transformation from the triad and connection to the “new” or
Ashtekar variables,

.Ẽa
i → 1

i
Ẽa
i , Ki

a → Ai
a = ┌i

a − iKi
a , (5.1)

where .Ai
a is the Ashtekar-Barbero connection, .Ki

a = kabebi with .kab the extrinsic
curvature of .∑ and .Ẽa

i is the variable introduced previously in (4.76).
Both .Ai

a and .Ẽa
i admit SU.(2) rotations with respect to the internal indices (and

hence the choice of densitised triads is non-unique). We can therefore treat the
Ashtekar formulation of gravity as an SU.(2) gauge theory. This is consistent with
our previous discussion about the choice of gauge group for gravity (Sect. 4.3.3), as
SU.(2) is a subgroup of .SL(2,C).

Given this choice of variables, the constraints simplify to

.Gi = Da Ẽ
a
i (Gauss constraint) (5.2a)

.Ca = Ẽb
i F

i
ab − Ai

aGi (Diffeomorphism constraint) (5.2b)

.H = ϵi j k Ẽ
a
i Ẽ

b
j F

k
ab (Hamiltonian constraint) (5.2c)

2 For the detailed derivation of these constraints starting with the self-dual Lagrangian see e.g. [2,
Sect. 6.2].
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Comparing these to the form of the Palatini constraints (4.80a), we see that the
Gauss constraint now takes the form of a net divergence of the triad “electric” field,
in analogy with the form of the Gauss law in electromagnetism. The diffeomorphism
constraint is now linear in the triad field. The greatest simplification is seen in the
Hamiltonian constraint which is now only quadratic in the triad, whereas previously,
due to the presence of the .1/ det(q) term, it had a non-polynomial dependence on
the triad. This makes quantisation feasible. In fact [3], it turns out that the exponen-
tial of the Chern-Simons invariant on the manifold is an exact solution of all three
constraints! (See Appendix G for more details.)

The phase space configuration and momentum variables are .Ẽa
i and the spa-

tial connection .Ai
a . The second class constraints which were present in the Palatini

frameworkmust nowvanish due to theBianchi identity (see [4, Sect. 2.4–2.5]) and the
diffeomorphism constraint becomes a polynomial quadratic function of the momen-
tum variables—in this case the triad. We thereby obtain a form for the constraints
which is polynomial in the coordinates and momenta and thus amenable to methods
of quantization used for quantizing gauge theories such as Yang-Mills. The resulting
expression for the Einstein-Hilbert-Ashtekar Hamiltonian of GR is

.HEHA = NaCa + NH + T iGi = 0 (5.3)

where .Ca , .H and .Gi are the vector, scalar and Gauss constraints respectively. The
terms .Na

i and .N are the shift and lapse, while .T i is a lie-algebra valued function
over our spatial surface which encodes the freedom we have in choosing the gauge
for the gauge connection. As in Sect. 4.2.1 we can calculate the Poisson brackets
between these constraints and the canonical variables. Doing so verifies the intuition
gained from Sect. 4.2.1. The Poisson brackets of a function . f with the Hamiltonian
and diffeomorphism constraints gives

.{ f ,H} = £N →n f , { f , ξaCa} = £→ξ f , (5.4)

implying that as expected .H and .Ca generate time-evolution and spatial diffeomor-
phism respectively. Introducing the gauge degrees of freedom has also led to the
introduction of a third constraint .Gi , for whose Poisson bracket we have

.{ f , T iGi } = −Ẽa
i DaT

i , (5.5)

implying that .Gi corresponds to the generators of gauge rotations.
It is instructive to compare the above form of the constraints to their metric

counterparts in Eq. (4.28) which are reproduced below for the reader’s convenience:

.H =
(

−√
h(3)R + 1√

h
(πabπab − 1

2
π2)

)
,

Ca =2Dbπ
ab.

The price to be paid for this simplification is that the theory we are left with is no
longer the theory we started with—general relativity with a manifestly real metric
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geometry. The connection is nowa complex connection.However the newconcoction
is also not too far from the original theory and can be derived from an action. That this
is the case was shown independently by Jacobson and Smolin [5] and by Samuel [6].
They completed the analysis by writing down the Lagrangian fromwhich Ashtekar’s
form of the constraints would result:

.S± [e, A] = 1

4κ

 
d4x ±∑μν

I J
±Fμν

I J . (5.6)

Here.
±F is the curvature of a self-dual (anti-self-dual) four-dimensional connection

.
±A one-form, which we will discuss more in the next subsection. The field .

±∑ is
the self-dual (anti-self-dual) portion of the two-form.ẽ I ∧ ẽ J . The Palatini action is
then simply given by the real part of the self-dual (or anti-self-dual) action,

.SP = Re[S±] . (5.7)

5.2 The Barbero-Immirzi Parameter

In the previous sectionwe saw that the transformation (5.1) from thePalatini variables
.{K i

a, E
a
i } to the Ashtekar variables .{Ai

a, E
a
i } is of the form

.Ẽa
i → 1

i
Ẽa
i ; Ki

a → Ai
a = ┌i

a − iKi
a .

While this leads to simplification of the constraints, the presence of the unit imaginary
.i = √−1 in the transformation rule also makes the theory complex! In order to
obtain physical results—corresponding to a metric valued in.R instead of in .C—we
must impose some restrictions on the possible solutions of the theory. If we use the
notation .X• to represent the time derivative of .X , then solutions must satisfy not
only the constraints (5.2a)–(5.2c), but also the so-called “reality conditions”,

.Ẽa
i Ẽ

b
j δ

i j ∈ R, (5.8a)

.

(
Ẽa
i Ẽ

b
j δ

i j
)• ∈ R . (5.8b)

The first of these is simply the requirement that the metric constructed from the triad
field be real. The second says that themetric should remain real under time evolution.

As first pointed out in [7–9], the Ashtekar variables are a particular case of a more
general transformation,3

.Ea
i → 1

γ
Ea
i , K i

a → Ai
a = ┌i

a − γK i
a (5.9)

3 The transformation to new variables, as implemented by most authors, including Barbero and
Immirzi, does not involve changing the triad. In this case the Poisson brackets between the new
variables picks up a factor of .γ. However if we transform the triad also, as is done here following
[1], the factor of.γ cancels out when taking the Poisson brackets.
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where .γ, the so-called “Barbero-Immirzi” parameter (often referred to as just the
Immirzi parameter), is an arbitrary complex number with a significant physical inter-
pretation. It is related to the size of a quantum of area, measured in Planck units, and
thus to the area operators mentioned in this chapter’s introduction [10, Sect. 6.6.2].
For the particular choice of .γ = i, the above variables reduce to Ashtekar’s original
form. For any other choice of .γ, however, the resulting variables are just as valid
because the transformation remains canonical, i.e. the Poisson brackets before and
after the transformation continue to remain the same, namely

.

{
K i
a(x), Ẽ

b
j (y)

}
=

{
Ai
a(x),

(γ) Ẽb
j (y)

}
= κδijδ

b
aδ(x, y). (5.10)

The Barbero-Immirzi parameter, and constraining its possible values, has been
an area of active discussion in the (loop and allied) quantum gravity community for
some time. Specific topics of discussion include determining its value from compar-
ison with the calculation of the Bekenstein-Hawking gravity of a black hole [11–17],
four-fermion interactions sourced by non-zero value of .γ [18–20], effects of renor-
malization on values of.γ [15,21], possible relationship to the Standard Model [22],
its role in obtaining a generalization of the Kodama state (Appendix G) which over-
comes difficulties first pointed out by Witten [23–25], its role in determining the
strength of topological interactions in LQG of the sort encountered in the Peccei-
Quinn mechanism of the Standard Model [26–29], and more recently a possible
holographic interpretation of .γ [30,31]. This list is not meant to be exhaustive and
any errors and emissions of significant contributions related to.γ are solely the result
of the authors’ ignorance.

5.3 To Be or Not to Be (Real)

Before proceeding to the details of the quantization procedure let us address the
controversy over which is preferable, real variables or complex ones. The reality of
theAshtekar variables depends on the reality of theBarbero-Immirzi parameter—if.γ
is complex (or real), then so are the Ashtekar variables. We have chosen to introduce
the complex variables for historical reasons, and because the self-dual variables
have great pedagogical value for explaining the steps leading to the simplified form
of the ADM constraints. However the newcomer to LQG (at whom this book is
aimed) should be aware that the choice between real or complex variables is not
immediately obvious. Over time conventional wisdom has favored the real variables,
primarily because they allow us to construct the kinematical Hilbert space of SU.(2)
spin networks, and some may question the need to discuss the complex variables
in any great detail in an introductory review. But it is worth noting that in recent
years self-dual variables have made something of a comeback in works by Wieland,
Frodden et al., and Pranzetti. Each choice has its pros and cons.

The advantage of using a real value for.γ is that the new variables and the resulting
constraints remain real, avoiding the need to impose reality conditions (5.8) on solu-
tions of the constraints. Secondly, a real.γ avoids difficulties that arise when moving
to the quantum theory—since with.γ = i, the gauge group of the theory is.SL(2,C),
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which is non-compact and it is not clearly understood how to perform integration
over non-compact groups.

The disadvantage of a real value for.γ is that the formof theHamiltonian constraint
is no longer as simple as given in (5.2c), and picks up another term quadratic in both
the triad and extrinsic curvature,

.H = ϵi j k Ẽ
a
i Ẽ

b
j F

k
ab − 2(1 + γ2)Ẽ [a

i Ẽb]
j K

i
aK

j
b ≈ 0. (5.11)

In contrast we can see that when.γ = i, the second term in the above vanishes and
we are left with the usual Ashtekar form of the constraint.

A complex value of.γ implies that the spectrum of the area operator (to be studied
in greater detail in Sect. 6.3) will also contain complex eigenvalues. It is not clear
what physical interpretation one can assign to complex areas or complex volumes.
Moreover the structure of the kinematical Hilbert space of LQG (to be discussed
later in Chap.6) is understood only for the case of real.γ. If .γ is taken to be complex
then the entire technology of spin networks—using which, for instance, the black
hole entropy calculation (Sect. 8.1) is performed—is rendered unusable.

On the other hand, retaining a complex .γ means that the spatial connection has
an interpretation as a spacetime connection since it transforms correctly under dif-
feomorphisms [6,32,33], whereas this is not true for the real or “Ashtekar-Barbero”
connection. The Hamiltonian constraint is polynomial which is one of the principle
motivations and advantages for going frommetric dynamics to connection dynamics.

Wieland [34,35] has shown that starting from the complex variables (with
.SL(2,C) as gauge group) one can perform the canonical quantization procedure
and obtain the same kinematic Hilbert space as in the SU.(2) case. Thus the earlier
concerns regarding the viability of complex variables vis-a-vis the existence of the
kinematical Hilbert space would appear to have been resolved.

Frodden, Perez, and Ghosh [36] have shown that when the dimension of the
Hilbert space of SU.(2) Chern-Simons gauge theory, which describes the dynamics
of a quantum isolated horizon (QIH) [37,38], is analytically continued to complex
values, its asymptotic behavior has an exponential dependence on the horizon area.
In this way the Bekenstein-Hawking entropy is recovered in the semiclassical limit.

Pranzetti [39] has demonstrated that in order to provide a geometrical notion
of the temperature of a QIH one must work with a complex value of the Barbero-
Immirzi parameter. Taking .γ = i and requiring that the horizon state satisfying the
QIH boundary condition be a Kubo-Martin-Schwinger (KMS) state (i.e. a thermal
equilibrium state) leads to the formula for the temperature of the horizon. The Boltz-
mann and von-Neumann entropies can also be calculated and in the semi-classical
limit both yield the expression for the Bekenstein-Hawking entropy.

With these observations in hand, it is certainly too soon to consign the complex
variables to being merely a historical footnote in the development of LQG.
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5.4 Loop Quantization

As noted above, the program of loop quantum gravity involves the following steps:

1. Write GR in connection and tetrad variables (in first order form).
2. Perform a.3 + 1 decomposition to obtain the Einstein-Hilbert-Ashtekar Hamilto-

nian .HEHA which turns out to be a sum of constraints.
3. Obtain a quantized version of the Hamiltonian whose action on elements of the

physical space of states yields .HEHA|𝚿> = 0.
4. Identify an appropriate basis for the physical states of spacetime.

The first two steps have been thoroughly covered. So now, after a fairly lengthy
digression, we are ready to return to the task mentioned in Sect. 4.3, rewriting the
constraints in operator form, and identifying the physical states of quantum gravity.
The first part of this process was completed in Eqs. (5.2a)–(5.2c).

The following exposition only gives us a bird’s eye viewof the process of canonical
quantization. The reader interested in the mathematical details of and the history
behind the canonical quantization program is referred to [1].

5.5 Canonical Quantization

To find solutions of the equations of motion we want to find states .𝚿[A] such that
they are acted upon appropriately by the constraints. This means that they satisfy

.Ĥ|𝚿> = 0

Ĉa |𝚿> = 0

Ĝi |𝚿> = 0

The Gauss constraint tells us that .𝚿[A] should be gauge-invariant functions of the
connection. The diffeomorphism constraint is telling us that .𝚿[A] should be invari-
ant under diffeomorphisms of the paths along which the connection lies. These
constraints taken together do not impose a particular choice of .𝚿[A] upon us, but
they do admit Wilson loops as one possible, and particularly convenient, choice.

Let us consider solutions of the form .𝚿[A] = ∑
λ 𝚿[λ]Wλ[A]. A given state

will therefore be a sum of loops. These loops may in general be knotted, and hence
topologically distinct from each other. Such states will satisfy the Gauss constraint,
as Wilson loops are gauge-invariant. They will also satisfy the diffeomorphism con-
straint. In fact, diffeomorphism invariance actually helps us reduce the number of
basis states, thereby avoiding a potentially awkward problem. In a theory with a fixed
background and a well-defined metric any tiny change in the shape of a Wilson loop
will lead to a different loop holonomy, since parallel transport is path-dependent.
If different loops are taken to be the orthonormal basis states, this means that each
deformation of a loop results in a new state, orthonormal to every other loop. But in
a diffeomorphism-invariant theory it is not possible to distinguish between any two
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loops that may be smoothly deformed into each other, and hence the space of loops
consists of only a single member of each topological equivalence class.

Nowwemust askwhetherWilson loops satisfy theHamiltonian constraint. Firstly
we observe that the triads (or tetrads when we are working in four dimensions) are
the conjugate momenta to the connection. In quantum mechanics the operator for
the momentum corresponds to derivation with respect to the position coordinate,
.p → p̂ = −i ∂

∂q . Similarly the quantum operator for the triad (or tetrad!) is given

by the derivative with respect to the connection, hence .eai → −i ∂
∂Aa

i . The action

of .Ĥ on a Wilson loop is therefore

.ĤWλ[A] = ϵi j k
δ

δAi
a

δ

δA j
b

Fk
abWλ[A] . (5.12)

The exact formof the resulting functional derivatives is not important for themoment.
However, as will be discussed below (Eq. (6.10)) the loop holonomies contain a
term representing the tangent vector to the curve along which the loop holonomy is
evaluated.But the tangent vector to the loop is.λ̇ = dλ/dswhere.s parametrises points
along the loop. Due to the exponential form of the loop holonomy the derivatives
pull out factors of .λ̇. Then since .Fk

ab = −Fk
ba it follows that summation over the

indices of the curvature yields zero, and hence .Fk
abλ̇

a λ̇b = 0, confirming that the
Hamiltonian constraint is satisfied.

This loop basis gives us a picture of spacetime at the smallest scale, consisting of
closed paths carrying representations of SU.(2). It now remains to interpret the loop
basis in terms of physical observables.
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6Kinematical Hilbert Space

In light of the discussion at the end of the previous chapter, we see that spacetime can
be represented by a wide range of loop states. These may consist of simple closed
loops. The loops may be linked through each other. They may also be knotted, and
hence classified by knot invariants. And the loops may intersect, creating vertices
at which three or more Wilson lines meet. Historically the importance of all these
possibilities has been considered, and continues to be assessed. We will simply take
the view that a general loop state can have all of the properties listed above, and
turn our attention to understanding the kinematics inherent to this loop picture of
spacetime.

Before we dive straight in to the main subject matter of this chapter it is useful to
introduce a simple model of space, and examine its kinematics. This will allow us to
familiarise the reader with the terminology that will follow, as well as introducing
the basic concepts by which areas and volumes of spacetime regions can be defined.
This also sets the stage for a discussion of dynamics, to be pursued in Chap. 7, in a
low-dimensional case that is easy to visualise.

Throughout this chapter several expressions arise which involve spin operators
and components, and the reader should bear inmind thatwewill be relying heavily on
the convention that. j , J (i.e. in bold) refer to spins, while. j, J are indices. However
wewill still write “3-. j symbol” and “6-. j symbol” as these are the names of particular
mathematical structures, rather than the notation that denotes their values.

6.1 Kinematics via a ToyModel

Consider a two-dimensional manifold, embedded in three dimensions. The topology
of the mainfold could be arbitrary but to develop useful terminology we are only
concerned with a small region of it, so it may as well not have any handles or holes.
Such a manifold is what we would commonly think of in day-to-day life as a surface,
and can be approximated by a set of flat triangles. By “flat triangles” wemean that the
regionwithin the three edges of each triangle is a subset of.R2. Of course, the triangles
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Fig. 6.1 An example of a
triangulation of a 2D surface

will not necessarily be coplanar with each other, and so the whole arrangement will
resemble interlocking triangular scales on the skin of some animal. The surface
being approximated may have some (extrinsic and/or intrinsic) curvature, and so we
describe the triangular approximation as piecewise flat. The dimensionality of the
triangles (being 2) is one less than that of the space in which they are embedded.
The triangles themselves meet at 1-dimensional edges, and the edges meet at 0-
dimensional vertices. Each triangle is referred to as a simplex (plural, simplices).
Therefore the surface is covered by a pattern of simplices clustered around vertices,
as depicted in Fig. 6.1. We will refer to this entire arrangement of simplices, edges,
and vertices as a triangulation, denoted .Δ. The lengths .x1, .x2, .x3 of the edges of
each two-dimensional simplex must obey the triangle inequality, .x1 + x2 ≥ x3 (and
of course this relation must hold true for any permutations of 1, 2, and 3).

If the surface being triangulated is flat (i.e. has no intrinsic curvature) traversing
a closed path1 will mean turning through a total of .360◦ or .2π. However if some
of the triangular simplices adjacent to the vertex at the centre of such a closed
path were removed and the remaining simplices reconnected, a closed path would
traverse less than.2π (or more, if instead extra simplices were added). In this case the
triangulated surface would no longer be intrinsically flat, but would have negative or
positive curvature, measured by the deficit angle, or deviation from.2π encountered
when following a closed path. In short, curvature exists on the boundaries between
flat simplices. This is intuitively equivalent to the idea that traversing the boundary
of a flat paper disk means travelling through an angle of .2π radians from one’s
starting point, however if a wedge is cut out of the disk and the gap where the wedge
was removed is closed up the paper disk is now no longer flat, but must become
conical. In other words, the paper disk has acquired some intrinsic curvature, and its
circumference has changed from.2πr to .(2π − θ)r where.θ is the “deficit angle”, as
per Fig. 6.2.

Inwhat follows there is a correspondence that can be drawnbetween triangulations
and graphs. A graph is a set of discrete elements often referred to as nodes, points,
or vertices, however we will use the term ‘hubs’, along with a set of associations
between some pairs of hubs. These associations are often called edges, lines, or links,
however we will use the terminology ‘tracks’. Our reason for adopting this slightly
unusual terminology is to maintain clarity when switching between discussions of
abstract graphs, triangulations, and dual triangulations (to be introduced shortly). If
.n tracks meet at a hub that hub is said to be .n-valent.2

1 For instance, one which remains one step away from a specified vertex, as in Fig. 6.2.
2 In the general case it is possible for a track to begin and end on the same hub, however we will
ignore this subtlety for now.
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Fig. 6.2 Flat (left) and curved triangulations, compared to a paper disk which is made non-flat by
the addition or removal of a wedge-shaped section

A triangulation .Δ can be thought of as a type of graph. The vertices of a trian-
gulation correspond with hubs of the associated graph, and edges correspond with
tracks. Henceforth any mention of vertices and edges will imply a reference to a
triangulation, not an abstract graph.

Given a triangulation.Δ, we can construct a dual triangulation, denoted.Δ∗, which
consists of a graph having hubs at the centres of the simplices of.Δ and tracks which
each cross through exactly one of the edges of.Δ. We shall refer to the hubs of a dual
triangulation as ‘nodes’, and the tracks of a dual triangulation as ‘links’. Henceforth
any mention of nodes and links will imply a reference to a dual triangulation, not an
abstract graph.

In our two-dimensional model, each two-dimensional simplex is dual to a zero-
dimensional node, and each one-dimensional edge is dual to a one-dimensional link.
Since the simplices in this model are triangular, each node is trivalent (that is, exactly
three linksmeet at each node), as per Fig. 6.3. It is commonplace, and somewhatmore
general, to refer to each of these elements as .k-cells. So a triangular simplex is an
example of a 2-cell,3 edges and links are 1-cells, vertices and nodes are 0-cells.
This is the basis of terminology the reader may sometimes encounter, with (dual)
triangulations and their higher-dimensional analogues referred to as piecewise linear
cell complexes.

As noted above, each 1-cell (edge) in.Δ is dual to exactly one 1-cell (link) in.Δ∗,
and each simplex (2-cell) in .Δ is dual to a node (0-cell) in .Δ∗. Therefore if a label
exists upon an edge, the same label can be associated with the corresponding link,
and vice versa.

We can anticipate some of the results to be introduced later by recognising that
a graph in which the tracks and/or hubs have some extra information associated
with them can model more complex physical systems than a graph which consists
of “bare” elements, and these can be relevant to the dynamics of such models. For

3 Though a general 2-cell could be a rectangle or hexagon or any other polygon.
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Fig. 6.3 A triangulation
(black) consisting of edges
and vertices, and the
corresponding dual
triangulation (orange)
consisting of links and nodes

instance Ising models are simply graphs with the value of a spin variable associated
to each hub. In general, the extra information associated to the graph could be a
sense of direction, allowing us to think of hub .i as the source of a track, and hub . f
as the destination of a track. It could be scalar values corresponding to lengths of the
tracks. In general, it could be elements drawn from any set or group we choose to
utilise. In fact, a bare graph can be thought of as a graph whose tracks are labelled by
copies of the identity element, which are representations of the trivial group. If the
tracks carry some labels, there may be constraints on the labels assigned to adjacent
tracks. We have already encountered an example of such a constraint in the form of
the triangle inequality, as mentioned above.

This brings us to a conception very much like Penrose’s original proposal of spin
networks [1]. As conceived, these were graphs with trivalent hubs, each track being
labelled by a positive integer. It was originally intended that these spin networks
could provide a geometrical concept of spacetime structure, and only later was it
recognised that theyoccurred in theories of quantumgravity. In light of the preceeding
discussion, their similarity to the dual triangulationswehave introduced above should
be apparent.

The integer labels.n assigned to the tracks of one of Penrose’s spin networks must
obey certain constraints. For the three tracks attached to any hub, no single label
should exceed the sum of the other two labels, and the sum of all the labels should be
even. The first of these conditions is simply the triangle inequality. But taken together,
they can be seen to be consistent with the addition of spin angular momentum values,
. j = nh/2, for some integers.n ≥ 0. Penrose hoped to develop a concept of spacetime
that was not reliant upon the existence of a background coordinate system, and hence
the labels on the tracks of a network could only represent total angular momentum,
not some component thereof in a preferred direction. The rules for coupling the .n
values would be used to perform a type of graphical calculation of probabilities,
from which a sense of ‘parallelism’ and ‘orthogonality’ could be assigned to pairs
of regions of spin networks. In this way the idea of a geometry for spacetime was
supposed to build up, starting with nothing but combinatorics.

With this in mind we will associate spins . j ≥ 0 with the three links meeting at
a node in .Δ∗ (and with the corresponding edges in .Δ). It is commonly said that we
label the links with representations of SU(2), although this terminology is probably
not the clearest. It would be better to say that we associate representations of SU(2)
with the links and since representations can be labelled by themaximum eigenvalues,
. j , which characterise the .(2 j + 1)-dimensional representation of SU(2), we in turn
label the links by the corresponding . j values. Recall that SU(2) is a double-cover
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of the rotation group in three dimensions, SO(3). We can view the intersection of
three links at a node as the coupling of three spins. In general there is an extra detail
to be taken into account—the links carry an associated direction, from one node
to another. There is then a label associated with each node, called an “intertwining
operator” or more commonly just an intertwiner, generally denoted .ı , which is a
mapping from the space of representations .ρa on the links incoming to that node, to
the space of representations .ρ'

b on the links outgoing from the node, that is to say
that for an .(n + m)-valent node

.ı : ρ1 ⊗ . . . ⊗ ρn → ρ'
1 ⊗ . . . ⊗ ρ'

m . (6.1)

An alternative but equally valid way of regarding an intertwiner is as a mapping
from the space of representations that meet at a node, to the complex numbers,
.ρ1 ⊗ . . . ⊗ ρn ⊗ ρ'

1 ⊗ . . . ⊗ ρ'
m → C. In this case, the intertwiner can be thought of

as belonging to the space of products of dual representations, and providing a scalar
weighting to each node. This is discussed in more detail in the article by Aquilanti
et al. [2].

When first learning quantummechanics, the addition of angular momentum states
.| j1,m1⟩ and .| j2,m2⟩ to produce a state .|J, M⟩ introduces the concept of Clebsch-
Gordon coefficients, which are often written as an inner product .⟨ j1,m1; j2,m2|
J, M⟩. However, addition of angular momenta can also equivalently be described
with reference to the Wigner 3-. j symbols, which are related to the Clebsch-Gordan
coefficients through

.

(
j1 j2 j3
m1 m2 m3

)
≡ (−1) j1− j2−m3√

2 j3 + 1
⟨ j1,m1; j2,m2| j3, (−m3)⟩

where the .( j i ,mi ) are the orbital and magnetic quantum numbers of the .i th sys-
tem. Although written as .3 × 2 matrices, these symbols are in fact just scalars. The
state .| j1,m1; j2,m2⟩ is the state representing two systems (e.g. particles) each
with their separate angular momentum numbers, while.| j3,m3⟩ represents the total
angular momentum of the system. Classically, when we have two systems with
angular momentum . →L1 and . →L2, the angular momentum of the combined system is
. →L3 = →L1 + →L2. In quantummechanics, however, the angular momentum of the com-
posite system can be any one of a set of possible allowed choices. Whether or not the
angular momentum of the composite system can be specified by quantum numbers
. j3, m3 is determined by whether or not the corresponding Clebsch-Gordan coeffi-
cient is non-zero. In contrast, conceptually the 3-. j symbols are coefficients of a sum
over . j and .m values such that the linear combination formed from three spin states
is zero,

.

j1∑
m1=− j1

j2∑
m2=− j2

j3∑
m3=− j3

| j1m1⟩| j2m2⟩| j3m3⟩
(

j1 j2 j3
m1 m2 m3

)
= |00⟩ . (6.2)

http://en.wikipedia.org/wiki/3-jm_symbol
 7332 27582 a 7332 27582 a
 
http://en.wikipedia.org/wiki/3-jm_symbol
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The 3-. j symbols are non-zero only if three conditions are met; the sum
.m1 + m2 + m3 = 0, the. j values are all greater than or equal to zero, and the. j val-
ues satisfy the triangle inequality. Given the summation in Eq. (6.2) we can see that
3-. j symbols treat the three angular momenta more symmetrically than the Clebsch-
Gordon coefficients, so that intertwining of representations at a node maps freely
between the links chosen to be incoming and outgoing from a given node. Associ-
ating the 3-. j symbols to a node means that no single . j value exceeds the sum of
the other two (e.g. . j1 + j2 − j3 ≥ 0) and furthermore that no value is less than the
difference of the other two (e.g. . j3 ≥ | j1 − j2|). These conditions hold true under
permutation of the indices 1, 2, 3. Ultimately the constraints on the values of the spin
labels mean that the areas of the 2-cells can only take discrete values.

Now that we have a two-dimensionalmodelwith descriptive terminology in place,
let us develop a three-dimensional model. We will want to do this because the space
we live in is three-dimensional, and ultimately the model we develop will corre-
spond to a sheet of a spacelike foliation of four-dimensional spacetime, such as we
encountered when performing the ADM splitting in Sect. 4.2. The simplices in the
two-dimensional case were triangles—polygons with the minimum possible num-
ber of edges. In three dimensions the simplices will be tetrahedra—the polyhedra
with the minimum number of faces. Each tetrahedron is bounded by four triangular
faces, has six edges, and four vertices. Hence if we label the edges (as before) with
eigenvalues of representations of SU(2), each simplex is associated to six spins. As
before we can construct a dual cell complex, with nodes corresponding to the centres
of tetrahedra, and links piercing the triangular faces of the tetrahedra, as depicted
in Fig. 6.4b (as the reader may have deduced from the two-dimensional case, in .d
dimensions a.k-cell is dual to a (.d − k)-cell). The. j values associated to edges are not
lengths, but we will see in Sect. 6.3 that they are used in a pairwise fashion to define
the areas of the faces of tetrahedral simplices occurring in the three-dimensional
case.

As in the two-dimensional case there are constraints to be satisfied in constructing
a viable cell complex. The triangle inequality places constraints on the allowed edge
lengths, for two-dimensional triangulations. However, restrictions on the areas of
faces are not enough to uniquely define a tetrahedron. The relationships between
them are determined by an extension of the concept of the 3-. j symbol, namely the
Wigner 6-. j symbols. These occur in the addition of three angular momenta to form
a fourth (total) angular momentum, and can be written as the sum over products of
four 3-. j symbols,

.

{
j1 j2 j3
j4 j5 j6

}
=

∑
m1,...,m6

(−1)
∑6

k=1( jk−mk )

(
j1 j2 j3

−m1 −m2 −m3

)

×
(

j1 j5 j6
m1 −m5 m6

)
×

(
j4 j5 j3

−m4 m5 m3

)

×
(

j4 j2 j6
m4 m2 −m6

)
. (6.3)
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(a) A tetrahedral simplex (black)
and its dual (orange)
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(b) The tetrahedral Yutsis graph,
used to visualise the couplings of
angular momenta

Fig.6.4 Although there are six edges on a tetrahedron, the constraints imposed by the 6-. j symbols
ensure that only four of these labels are associated with the areas of faces

The formof the product on the right-hand side indicates the couplings of four triples of
angular momenta. The 6-. j symbol can be visualised as the tetrahedral Yutsis graph4

(Fig. 6.4b). Symmetries of the graph correspond to invariance of the 6-. j symbol
under permutations of its columns, and the interchange of upper and lower symbols
in any two columns. Even though a tetrahedral Yutsis graph has six edges, the 6-. j
symbol imposes a restriction to a condition between four angular momenta. This can
be understood by “peeling open” the tetrahedron into a pair of couplings between
four spins, with any three meeting at a vertex of the tetrahedron (corresponding to
the decomposition into four 3-. j symbols, mentioned above). In the case of Fig. 6.4b
we would have, for example, that the value of . j3 is determined by the values of
the pairs .{ j1, j2} and .{ j4, j5}, and likewise the value of . j6 is determined by the
values of the pairs .{ j1, j5} and .{ j2, j4}. Of course, other permutations of these
relationships are equally valid. Hence the constraint requiring that the six edges
form a closed tetrahedron ensures that there are only four independent spin labels,
which are associated with the areas of faces (or links in the dual cell complex).5

The tetrahedral simplices described correspond to tetravalent (i.e. 4-valent) nodes,
at which four links .l1, .l2, .l3, .l4 meet. Each node can be decomposed into a pair of
trivalent nodes, for instance by considering the links.l1,.l2 and an intermediate link.li
to meet at one node, and the links .l3, .l4 and.li to meet at the other node. There is, of
course, an ambiguity about which external links meet at the same node, resulting in
several possible decompositions, as per Fig. 6.5. The intertwining operators at each
node provide weightings for each decomposition via the relevant 6-. j symbols, which
are determined by the 3-. j symbols (Fig. 6.6).

Having spent some time developing the conceptual foundations of spin networks,
we will now proceed with a more mathematically explicit discussion. Naturally

4 A graph is a Yutsis graph if it can be partitioned into two subgraphs which are each connected
(there is a path between each node and any other node) and acyclic (there is only one path between
a node and any other node).
5 For a more detailed discussion of this the reader is recommended to consult Sect. 3.4 of [2], as
well as the wikipedia articles ‘6-. j symbol’ and ‘Racah W-coefficient’.
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Fig. 6.5 A 4-valent node can be decomposed into a pair of 3-valent nodes in multiple ways. The
requirements on the spins meeting at each node, imposed by the 3-. j symbols, affect how each
decomposition weights the structure of the 4-valent node
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Fig. 6.6 Using Penrose’s spin network rules to provide a simplified example of how intertwiners
determine the decomposition of a 4-valent node into two 3-valent nodes. The illustration on the left
is admissible, but the illustration on the right is not, as one label (with value 2) is greater than the
sum of the other two labels at the same node

this will involve reiterating several points already made above, but hopefully the
associated ideas will be clearer as a result. Henceforth we will consider a loop state
to be a graph or network .⎡ with tracks labelled by elements of some gauge group
(generally SU.(2) or .SL(2, C) in LQG)

.Ψ⎡ = ψ(g1, g2, . . . , gm) (6.4)

where .gi is the holonomy of .A along the .i th track, defined in Eq. (6.10), below.6

Pictorially, we can imagine something like Fig. 6.7a. It is also possible to label the
tracks of these graphs by angular momenta, as per Fig. 6.7b, by making use of the
Peter-Weyl theorem (Appendix H). At this point a graph .⎡ consisting of tracks .τ
labelled by spins. j τ , and hubs.χ labelled by intertwiners.ıχ is adopted as the definition
of a spin network.7

6 The expression “holonomy of a track” may surprise the reader. We have previously referred to
a loop holonomy, which measures curvature within a closed path, and described the effect of the
connection along a general curve as Eq. (3.26), the Schwinger line integral. As noted in Rovelli and
Vidotto [3], the use of the term holonomy in the quantum gravity community is a bit different from
the more generally-accepted use of the term. For the sake of consistency with other works in the
LQG literature we take this opportunity to point out that in LQG the name holonomy is frequently
used to refer to the path-ordered exponential of the connection along an arbitrary curve, and will
use it in this sense from now on. Only in the special case where the curve is closed upon itself will
we revert to using the term “loop holonomy”.
7 The use of .χ to denote hubs is somewhat unorthodox. Most authors use the term “vertex” much
more freely than is done here, and adopt the symbol.v accordingly, but as alluded to above this risks
confusing triangulations, dual triangulations, and abstract graphs. As a possibly helpful mnemonic
device, recognise that the letter.χ looks like the convergence of four tracks at a single hub.
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(a) Labelling of the track of a graph
by holonomies
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(b) Labelling of the tracks of a
graph by spins

Fig. 6.7 States of quantum geometry are given by arbitrary graphs whose tracks are labelled by
group elements representing the holonomy along each track. These graphs can take quite compli-
cated forms. The Peter-Weyl theorem allows us to decompose these states in terms of spin network
states, where tracks are labelled by group representations (angular momenta)

In general we expect there to be an ensemble .{(Ψ⎡)i } of spin networks which
corresponds to a semiclassical geometry .{M, gab} in the thermodynamic limit.8

Shortly we shall identify spin networks with dual triangulations, so that hubs of the
graph constituting a spin network are equivalent to nodes, and the tracks of the graph
are equivalent to links.

6.2 Space of Generalised Connections

We now wish to identify operators corresponding to physical observables of the
spacetime. These operators should be based upon the physical structure of the graphs
under consideration. It is worth noting at this point that in the Hamiltonian approach
to quantum gravity that we have pursued there is an ambiguity as to whether we
choose the connection or the triads as the configuration variables. In fact either
choice is permissible, but the physical interpretation of connections as configuration
variables and triads as conjugate momenta is more straightforward, and as we shall
see it allows us to write operators that generate discrete areas and volumes.

In order to obtain suitable regularised operators in conventional quantum field
theory, one must smear the field corresponding to configuration and momentum
variables over three-dimensional regions. For instance the operator .Φ̂ f , for the con-
figuration variable .φ in a scalar field theory, would be constructed by smearing the
field operator with some function . f (xμ) over some compact subset .U ∈ M of the
background manifold .M,

.Φ̂ f =
∫
U
d3x f (x)φ̂(x) (6.5)

8When the number of degrees of freedom.N → ∞, the volume.V → ∞ and the number density
.N/V → n where.n is bounded from above.
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and similarly for the momentum operators .⊓̂g ,

.⊓̂g =
∫
U
d3x g(x)π̂(x) . (6.6)

Given that the local operators satisfy the commutation relations

.

[
φ̂(x), π̂(x ')

]
= ihδ3(x, x ') (6.7)

one can now compute the commutator of the smeared operators:

.

[
Φ̂ f , ⊓̂g

]
=

∫
U
d3x d3x ' [

f (x)φ̂(x), g(x ')π̂(x ')
]

= ih
∫
U
d3x f (x)g(x ')δ3(x, x ')

= ih
∫
U
d3x f (x)g(x) . (6.8)

The problemwith using this prescription for constructing a quantum theory of gravity
is that it depends on the structure of the background spacetime, which enters through
the integration measure. In a curved spacetime with metric .gμν , the integral (6.5)
will include a factor of .

√−det(g), hence

.Φ̂ f =
∫
U
d3x

√−det(g) f (x)φ̂(x) . (6.9)

Our goal is a background-independent treatment of geometrical observables. For
this to be possible the smearing procedure should also be background-independent.
In a theory of connections and triads such a procedure is already well known—the
construction of holonomy variables by integrating (“smearing”) the connection along
a one-dimensional curve. We write holonomies (compare Eq. (3.30)) in the form

.gλ[A] = P exp

{∫
λ
ina(x) Aa

I t
I dx

}
(6.10)

where.λ is the curve along which the holonomy is evaluated,.x is an affine parameter
along that curve, the .t I are generators of the appropriate symmetry group as noted
in Sect. 3.1, and.na is the tangent to the curve at .x . What makes holonomies “good”
variables for constructing a background-independent theory is the fact that the algebra
.Cyl = U

⎡ Cyl⎡ , (where .Cyl⎡ is the algebra of cylindrical functions on the graph
.⎡, whose elements are of the form (6.4)) constructed on all possible graphs on a
manifold .M is dense in the space of all suitably regular connections .A on .M. In
other words, given any connection .A on .M, by considering all possible graphs on
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.M, with each track labelled by the holonomy of the connection .A along that track,
the full gauge invariant information about .A can be reconstructed.9

So finally we have that the kinematical Hilbert space for a single track .τ is
.Hτ = L2(G, dμ)—the space of square integrable functions on the groupmanifold of
the group.G, with.dμ the invariant measure (Haar measure)10 on the group manifold.
For a graph .⎡, the kinematical Hilbert space is the tensor product space

.H⎡ =
⊗

τ

Hτ (6.11)

over all tracks .τ ∈ ⎡ in the graph.
Given two states of different graphs .⎡ and .⎡', their inner product is zero

.⟨Θ⎡' |Ψ⎡⟩ = δ⎡,⎡' . (6.12)

Given two different states on the same graph.⎡, their inner product can be defined
using the Haar measure .dμ, as

.⟨Θ⎡|Ψ⎡⟩ =
∫
Gm

dμ1 . . . dμmΘ(g1, . . . , gm)Ψ̄(g1, . . . , gm) (6.13)

where .m is the number of tracks in the graph.
However, there is an ambiguity in the above procedure because a given state .|Ψ⟩

may be cylindrical with respect to more than one graph .⎡. This difficulty can be
overcome by extending the configuration space .A of regular (smooth, continuous)
connections on.M to the space.Ā of generalized connectionswhose elements can be
arbitrarily discontinuous and need only be continuous along one-dimensional curves.

For further details and discussion the reader is referred to [6–8].

6.3 Area Operator

The area operator in quantum geometry is defined in analogy with the classical
definition of the area of a two-dimensional surface .S embedded in some higher
dimensional manifold .M. To impart an intuitive idea of what follows, we may
consider a classical tetrahedron, with each of its triangular faces qualifying as a
surface .S as just described. If we treat one vertex of this tetrahedron as the origin,

9 For the interested reader, in particular, we recommend reading [4, Sect. 3] and [5, Sect. I.2] for
details on the historical developments which led to use of spin networks as the basic objects in
LQG.
10 A Haar measure assigns an invariant concept of volume to subsets of locally compact topological
groups (these are sets for which each neighbourhood of a point can be considered to be a closed set,
the neighbourhoods around any two distinct points have empty intersection i.e. it is Hausdorff, and
the set is endowed with a binary operation making it a group.) The exact form of this measure will
depend on the group in question. It serves the useful purpose of establishing a concept of volume
that makes it possible to define integrals for the functions of locally compact topological groups.
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→u1 →u2
→u3

→n

→u3

→u2

Fig.6.8 Classically a tetrahedron can be defined by three vectors, with any two defining one of the
three faces closest to the origin, and all three defining the fourth face. The magnitude of the wedge
product of any pair of vectors is twice the area of the corresponding face, and the length of the
normal vector.→n to that face is proportional to this area, since the normal vector and wedge product
are dual to each other

then the tetrahedron can be defined by a set of three vectors, denoted.→u1, →u2, →u3, all
originating at this vertex (as per Fig. 6.8). The other three vertices are located at the
tips of the three vectors. Each face can then be thought of as a bivector, . 12

(→ui ∧ →u j
)
.

The normal vector to the face is dual to this bivector, and thus its length measures the
area of the face. We immediately recognise that classical angular momentum may
be regarded as a bivector .→r ∧ →p, owing to the connection between wedge products
and cross products noted in Sect.B.3. The same holds true of angular momentum
in quantum mechanics. This hints strongly that the area of a face can be regarded
as a measure of angular momentum, and in the quantum case, with links (carrying
angular momentum labels) being dual to the triangular faces of tetrahedral simplices,
the area of a face should be related to the spin eigenvalues of the associated links.
This implies that the areas of the faces would take discrete values. Let us explore
these ideas more precisely.

In the simplest case the two-dimensional surface .S is a piece of .R2 embedded in
.R

3. In general both.S and the higher-dimensionalmanifoldmay have some curvature.
To make use of notation developed above, and without loss of generality, we will
presume .S is embedded in a three-dimensional manifold .∑ obtained by foliating
four-dimensional spacetime (see Sect. 4.2). To each point .s ∈ S we can associate
a triad or “frame field” i.e. a set of vectors .{→e1, →e2, →e3} which form a basis for the
tangent space.Ts at that point. In abstract index notation this basis can also be written
more succinctly as .{eai }s where .a, b, c ∈ {1, 2, 3} index the vectors and .i, j, k . . .

label the components of each individual vector in the active or “chosen” coordinate
system. The indices .i, j, k . . . are necessary because if .S is curved (i.e. the gauge
connection.Aa is non-zero) the basis at two distinct points in.S need not be the same,
and hence a given vector .→ea will have different components at different points.

The area of a two-dimensional surface .S embedded in .∑ is given by

.AS =
∫

d2x
√

2 h (6.14)

where .
2hab is the metric on .S, induced by the three-dimensional metric .hab on .∑,

and.
2h is its determinant, consistent with Eq. (2.21). Given an orthonormal triad field

.{eai } on .∑, we can always apply a local gauge rotation to obtain a new triad basis

.{e'
a
i }, such that two of its legs—a “dyad” .{e'

x
i , e'

y
j }—are tangent to the surface .S
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and .e'
z
k is normal to .S. Then the components of the two-dimensional metric .

2hAB

(.A, B ∈ {x, y} are purely spatial indices) can be written in terms of the dyad basis
.{eA I }11 as

.
2hAB = eA

I eB
J δI J . (6.15)

The above expression with all indices shown explicitly becomes

.
2hAB :=

(
hxx hxy
hyx hyy

)
=

(
ex I ex J ex I ey J

ey I ex J ey I ey J

)
δI J . (6.16)

Now, the determinant of a .2 × 2 matrix .
2hAB takes the well-known form12

.det(2hAB) =
∑
i1,i2

h1 i1h2 i2ϵ
i1 i2 = h11h22 − h12h21 . (6.17)

For an orthornormal triad .ϵi j kezk = ex i ey j . Therefore in terms of the dyad basis
.{eA I }, adapted to the surface .S, the expression for the determinant becomes

.det(2hAB) =
(
ex

i ex
j ey

key
l − ex

i ey
j ey

kex
l
)

δi jδkl

=
(
ϵikmϵ jl n − ϵi j mϵkl n

)
ez

mez
n δi jδkl

= ϵikm ϵikn ez
mez

n

= δmn ez
mez

n (6.18)

where we have used the fact that.ϵi j m δi j = 0 and also chosen to write the contraction
of two completely anti-symmetric tensors in terms of products of Kronecker deltas.

Thus the classical expression13 for the area becomes

.AS =
∫
S
d2x

√ →ez · →ez (6.21)

11.I , J ∈ {0, 1} label generators of the group of rotations SO.(2) in two dimensions. They are what
is left of the “internal”.su(2) degrees of freedom of the triad when it is projected down to.S.
12 This is a special case of the determinant for an .n × n matrix .Ai j which can be written as
.det(A) = ∑

i1...in∈P A1 ii A2 i2 . . . An in ϵ
i1i2...in where the sum is over all elements of the permu-

tation group of the set of indices.{im} and.ϵi1i2...in is the completely anti-symmetric tensor.
13 This is only valid for the casewhen.∑ is a three-dimensionalmanifold. In a general.d-dimensional
manifold, the area is a tensor

. Aμν
jk = e[μ j eν]k . (6.19)

In order to extract a single number—the “area”—from this tensor we project onto a two-dimensional
surface spanned by the vectors.{u j , vk}
. A[S] = e[μ j eν]ku jvk . (6.20)

where we suppress the indices .μ, ν on the left-hand-side, which distinguish the orientation of the
area we are evaluating, just as in the three-dimensional case .z is orthogonal to the area we are
evaluating, as in Eq. (6.21).
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where. →ez · →ez ≡ ezmeznδmn . With the classical version in hand it is straightforward to
write down the quantum expression for the area operator. In the connection represen-
tation, the classical triad plays the role of the momenta. Since the quantum operator
for the triad is given by .ea j → −ih δ

δAa
j
we find that

. ÂS =
∫
S
d2x

/
δ jk

δ

δAz
j

δ

δAz
k

. (6.22)

In order to determine the action of this operator on a spin network state, let us recall
the form of the state .Ψ⎡ from Eq. (6.4),

.Ψ⎡ = ψ(g1, g2, . . . , gm),

where.gl is the holonomy along the.lth track of the graph. Let the tracks of the graph
.⎡ puncture the surface .S at exactly .r locations, .{P1, P2, . . . Pr }, as in Fig. 6.9. For
the time being let us ignore the cases when a track is tangent to.S. We will also ignore
the possibility that if the tracks intersect, creating hubs, such a hub happens to lie on
.S. Then, evidently, the action of Eq. (6.22) on the state .Ψ⎡ will give us a non-zero
result only in the vicinity of the punctures.14 Thus

. ÂSΨ⎡ ≡
Pr∑

p=P1

/
δi j

δ

δAz
i (p)

δ

δAz
j (p)

Ψ⎡ . (6.23)

We have written the connections with an explicit dependence on position .p to
emphasise that at the .lth puncture, the operator will act only on the holonomy .gl .
Then recognising that the functional derivative of the holonomy (Eq. (6.10)) with
respect to the connection takes the form

.
δ

δAa
I

gλ[A] = na(x)t
I gλ[A] (6.24)

it follows easily that

.
δ

δAa
I
ψ(g1, . . . , gk, . . . , gm) = nat

Iψ(g1, . . . , gk, . . . , gm) (6.25)

where .na is the unit vector tangent to the track at the location of the puncture. Now,
recall that the .t I in the above expression is nothing more than the .I th generator of
the Lie group in question. For SO.(3), these generators are the same as the angular
momentum operators: .t I ≡ J I . Thus the effect of taking the derivative with respect

14 Since the connection is defined only along those edges and nowhere else!.
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Fig. 6.9 A spin network intersecting a surface at a series of locations (“punctures”). The circles
around each puncture are not part of the spin network, but should be interpreted as symbolising that
the network endows the surface with quanta of area at these punctures

to the connection is to act on the state by the angular momentum operators. This
gives us

.
δ

δAa
I

δ

δAb
J
ψ = nanb J I J Jψ . (6.26)

Performing the contractions over the spatial and internal indices, noting that
.nana = 1, we finally obtain

. ÂSΨ⎡ ≡
∑
k

/
δi j Ĵ i Ĵ jΨ⎡ =

∑
k

√
J2Ψ⎡ (6.27)

where. Ĵ i is the.i th component of the angular momentum operator acting on the spin
assigned to a given track. .J2 is the usual Casimir of the rotation group—that is, it
is the element .

∑
a Xa Xa where the .Xa are the basis of the relevant Lie algebra and

the.Xa are the dual basis defined with respect to some invariant mapping of the basis
and dual basis to the scalars. The basic example of a Casimir element encountered at
undergraduate level is the squared angularmomentumoperator.L2 = L2

x + L2
y + L2

z .

Casimir operators commute with all elements of the Lie algebra. The action of .J2

upon a given spin state gives us

.J2| j⟩ = j( j + 1)| j⟩ . (6.28)

This gives us the final expression for the area of.S in terms of the angular momentum
label . jk assigned to each track of .⎡ which happens to intersect .S,

. ÂSΨ⎡ = l2P
∑
k

√
jk( jk + 1)Ψ⎡ (6.29)
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where.l2P is inserted in order for both sides to have the correct dimensions.15 We have
therefore found a way of assigning quantised areas to graph states. As the discussion
in Sect. 6.1 implied, we would like to use this to operator to assign area to the faces
of a simplex. We can therefore identify the graph of a spin network with a dual
triangulation, and ascribe area to the faces of a simplex by applying Eq. (6.29) to the
spin labels of the links which are dual to these faces.

6.4 Volume Operator

Having found a way of assigning quantised area to the faces dual to the tracks of
graph states (spin networks) in Sect. 6.3 it is natural to search for an operator which
could assign volume to the regions enclosed by these faces (Fig. 6.10). Similarly to
the two-dimensional case, we find that the volume of a region of space.R is given by

.V =
∫
R
d3x

√
h = 1

6

∫
R
d3x

/
ϵabcϵi jkeai e

b
j e

c
k . (6.30)

Replacing the tetrads by their operator equivalents gives us the following expression
for the volume operator:

..V = 1

6

∫
R
d3x

/
ϵabcϵi jk

δ

δAa
i

δ

δAb
j

δ

δAc
k

. (6.31)

We have already discussed in the previous section that the effect of acting on
a spin network state with the operator corresponding to the triad has the effect of
multiplying the state by the angular momentum operator,

.na
δ

δAa
i
Ψ⎡ = Ĵ

i
Ψ⎡ . (6.32)

Consequently the action of the volume operator on a given state can be expressed as

..V Ψ⎡ = 1

6

∫
R
d3x

/
ϵabcϵi jknanbnc Ĵ i Ĵ j Ĵk Ψ⎡ . (6.33)

Now, since the operator’s action is non-zero only on the hubs .χ of the graph .⎡, the
integral in the above expression reduces to a sum over a finite number of hubs.χ ∈ ⎡

which lie in .⎡ ∩ R,

..V Ψ⎡ = 1

6

∑
χ∈⎡∩R

/
ϵabcϵi jknanbnc Ĵ i Ĵ j Ĵk Ψ⎡ . (6.34)

15.l2P is also known as the “Planck area”, a unit of area given as the square of the Planck length

.lP = √
Gh/c3. We have already encountered this quantity in Chap.1 when discussing the BH

entropy. It should be noted that if the Barbero-Immirzi parameter.γ is not real, Eq. (6.29) will also
include a factor of.γ.
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→a

→b

→c

→d

(a) Volume around a node in classi-
cal geometry. links are labelled by
vectors of the form ax̂+bŷ+cẑ ∈ R

3

j1

j2

j3

j4

(b) Volume operator in quantum
geometry. Links are labelled by el-
ements of the form ασx + βσy +
γσz ∈ sl(2,C)

Fig. 6.10 In order to calculate the volume around a node we must sum over the volume contained
in the solid angles between each unique triple of links. Classically this volume can be determined
by the usual prescription .→a · (→b × →c), where .→a, →b, →c are the vectors along each link in the triple. In
quantum geometry these vectors are replaced by irreps of SU.(2) but the basic idea remains the same

In the literature one finds several forms of the volume operator.16 Two of these are
the Rovelli-Smolin (RS) and Ashtekar-Lewandowski (AL) versions. The RS version
[11] is

..VRS
R Ψ⎡ = γ3/2l3P

∑
χ∈⎡∩R

∑
i, j,k

|||| iCreg

8
ϵabcϵ

i jknanbnc Ĵ i Ĵ j Ĵk

||||
1/2

Ψ⎡ (6.35)

where .ϵabc is the alternating tensor, and .Creg is a regularization constant.
The AL version [8] is

..VAL
R Ψ⎡ = γ3/2l3P

∑
χ∈⎡∩R

|||| iCreg

8
ϵχ(na, nb, nc)ϵabcϵ

i jknanbnc Ĵ i Ĵ j Ĵk

||||
1/2

Ψ⎡,

(6.36)
where .ϵχ(na, nb, nc) ∈ {−1, 0, 1} is the orientation of the three tangent vectors at
.χ to the three tracks meeting at .χ. The term .ϵχ(na, nb, nc) takes the value zero if
the tangents to the tracks are linearly dependent, and if they are independent takes a
value reflecting their overall orientation, into or out of the hub. The key difference
between the two versions lies in this term. The RS operator does not take account

16 In [9] a construction based on the geometry of classical polyhedra is used to obtain an expression
for the volume operator which acts on nodes with valence greater than four. For nodes with fewer
than four links, the associated volume always vanishes independent of the choice of the volume
operator. For other interesting work, see [10] where the pentahedral volume operator is analyzed
and classical chaos is found in the resulting dynamics.
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of the orientation of the tracks which meet at the hub, while the AL version does,
and it allows us to speak of a phase transition from a high-temperature (.T > Tc)
state of geometry, where the volume operator averages to zero for all graphs (which
are “large” in some suitable sense) and a low-temperature (.T < Tc) state where a
geometric condensate forms and the volume operator gains a non-zero expectation
value for states on all graphs. Temperature, in this case, is a parameter with an
externally-imposed value, which determines the probability that the orientation of
any track will flip. The key point here is that the AL version takes into account
the “sign” of the volume contribution from any triplet of tracks meeting at a hub.
Given any such triplet of tracks .eI , eJ , eK , by flipping the orientation of any one
track we flip the sign of the corresponding contribution to ..VAL

S . If we take the
orientation of a track as our random variable for the purposes of constructing a
thermal ensemble, then it is clear that in the high-temperature limit these orientations
will flip randomly and the sum over the triplets of tracks in ..VAL

S will give zero for
most (if not all) graph states. As we lower the temperature the system begins to
anneal and for some temperature .T = Tc the system should reach a critical point
where the volume operator spontaneously develops a non-zero expectation on most
(if not all) graph states.

Note that:

1. Since the result of the volume operator acting on a hub depends on the signs
.ϵ(eI , eJ , eK ) of each triplet of tracks, a simple dynamical system would then
consist of a fixed graph with fixed spin assignments (. je) to tracks but with orien-
tations that can flip, i.e. . je ↔ − j e (much like a spin).

2. The Hamiltonian must be a hermitian operator. This fixes the various terms one
can include in it. We must also include all terms consistent with all the allowed
symmetries in our model.

3. The simplest trivalent spin network has one node with three links (as depicted
by the orange hexagonal lattice in Fig. 6.3). One can generalize the action of the
volume operator on graphswhich have hubswith valence.n (number of connecting
tracks) greater than 3. (The volume operator gives zero on vertices with.n ≤ 2 so
these are excluded). To do so we use the fundamental identity which allows us
to decompose the state describing a hub with .n ≥ 4 into a sum over states with
.n = 3. Examples of the decomposition of a four valent hub into two three-valent
hubs are given in Fig. 6.5.

4. This model can help us understand how amacroscopic geometry can emerge from
the “spin” ormany-body systemdescribedby aHamiltonian,which contains terms
with the volume and area operators, on a spin network.

We are supposing here that the connections between hubs are fixed in place, to create
a static lattice, and only their orientations are allowed to vary. On a tetrahedral lattice
with fixed . j = 1/2, the associated volume at each hub has only two eigenvalues,
plus or minus .V0, with the sign being determined by the orientation of the spins on
the adjoining tracks.
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6.5 Spin Networks

This discussion leaves us with a simple mental picture of spin networks, which we
sketched in a somewhat intuitive fashion in Sect. 6.1, and which we reiterate here
after having developed it more rigorously. Briefly, spin networks are graphs with
representations (“spins”) of some gauge group (generally SU.(2) or.SL(2, C) in LQG)
living on each track. We can equate the spin network graphs with dual triangulations
of a manifold, with each.n-valent node being dual to a simplex with.n faces, and each
link being dual to a face. By the arguments used above to define area and volume
operators, the areas of the faces of a simplex, and the area of the simplex itself are
determined by the spin labels on the relevant links. Since each link corresponds with
the parallel transport of spin from one node to another, it is necessary to ensure that
angular momentum is conserved at nodes, and so an intertwiner is associated with
each node. For the case of a four-valent node we have four spins, .( j1, j2, j3, j4).
More generally a polyhedron with .n faces represents an intertwiner between the
edges piercing each one of the faces.

To put it another way, there is a simple visual picture of the intertwiner. In the
four-valent case, picture a tetrahedron enclosing a given node, such that each link
pierces precisely one face of the tetrahedron. Now, the natural prescription for what
happens when a surface is punctured by a spin is to associate the Casimir of that
spin .J2 with the puncture. The Casimir for spin . j has eigenvalues . j( j + 1). These
eigenvalues are identified with the area associated with a puncture.

In order for the links and nodes to correspond to a consistent geometry it is
important that certain constraints be satisfied. For instance, for a triangle we require
that the edge lengths satisfy the triangle inequality .a + b < c and the angles should
add up to .∠a + ∠b + ∠c = κπ, with .κ = 1 if the triangle is embedded in a flat
space and.κ /= 1 denoting the deviation of the space from zero curvature (positively
or negatively curved).

In a similar manner, for a classical tetrahedron, now it is the sums of the areas
of the faces which should satisfy “closure” constraints. For a quantum tetrahedron
these constraints translate into relations between the operators . j i which endow the
faces with area.

For a triangle, giving its three edge lengths .(a, b, c) completely fixes the angles
and there is no more freedom. However, specifying the areas of all four faces of
a tetrahedron does not fix all the freedom. The tetrahedron can still be bent and
distorted in ways that preserve the closure constraints. These are the physical degrees
of freedom that an intertwiner possesses—the various shapes that are consistent with
a tetrahedron with a given set of face areas. We can understand this as meaning that
when tetrahedra are “glued together” the areas of the joined faces must match, but
the shapes of the joined faces do not need to match (and are, in fact, meaningless in
a background-independent context).
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6.6 Looking Ahead to Spin Foams

In LQG the kinematical entities describing a given state of quantum geometry are
spin networks. The dynamical entities—i.e. those that encode the evolution and
history of spin networks—are known as spin foams. If a spin network describes a
.d-dimensional spacelike geometry, then a spin foam describes a possible history
which maps this spin network into another one, via some series of intermediate spin
networks embedded within .d + 1 dimensions, all of which are within the kinemat-
ical Hilbert space. The name spin foam derives from the superficial resemblance
borne to a mass of soap bubbles by the structure produced when a spin network is
“extruded” through one higher dimension. In order to determine the transition ampli-
tudes between two different states of quantum geometry whose initial and final states
are given by spin networks .Si and .Sf, one must sum over all possible spin foams
which interpolate between the two spin network states. This sum over spin foams
should sound familiar, since it is essentially the sum over geometries mentioned near
the end of Sect. 4.1 in our discussion of the Einstein-Hilbert action, and subsequent
discussion of the ADM splitting.

We will turn our attention to spin foams more fully in the next chapter, but note
here that when the sum over all allowed histories is performed one finds that the
resulting amplitude depends only on the boundary configuration of spins. This is
holography. The holographic principle boils down to saying that the state of a system
is determined by the state of its boundary. Therefore, although the point is not made
as often as it possibly should be, LQG embodies the holographic principle in a very
fundamental way. This point is discussed in more detail in Chap. 9.

The remainder of this book will deal with the dynamics of spacetime in loop
quantum gravity, and the applications of LQG to physical scenarios which may lend
themselves to experimental testing of the theory. It is not our intention to discuss
any of the subsequent topics in exhaustive detail. We do hope, though, that a good
overview of the recent developments in LQG, and its applications to a range of topics
(like cosmology, for instance) will help anyone new to the field understand where to
turn next as they investigate loop quantum gravity and related ideas for themselves.
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7 Dynamics of Spin Networks 

The discussion has reached a point where we understand the basic structure of space-
time in loop quantum gravity. In short, the similarities between general relativity and 
quantum field theory have been noted, and we have seen how a foliation that allows 
us to view spacetime in terms of generalised coordinates and canonical momenta 
can be constructed. The quantization of this model brings us to a point where the 
structure of spacetime is viewed as discrete, and composed of intersecting loops. This 
enables us to view the kinematics of the theory in terms of one-dimensional links 
that meet at nodes, the valence of any node being equal to the number of links that 
meet there, and each node being associated with a discrete volume contribution to 
a spatial manifold. The earlier “chain-mail” conception of interlinking loops (which 
inspired the name loop quantum gravity) has largely given way to this graph-based 
concept of spin networks. 

Of course, the most significant feature of general relativity is that it is a theory of 
dynamical spacetime. Therefore, while kinematics are important, it is not sufficient 
to treat spacetime as a static network, but we should also ask how this quantised 
spacetime can change its geometry. Without this ability, our quantum spacetime is 
unable to account for the full range of phenomona that occur within general relativity. 

To this end, we will now turn to the topic we touched on at the end of the previous 
chapter, spin foams. We have come a long way since the discussions of quantum 
field theory and classical general relativity at the start of this book. These topics are 
covered in a profusion of textbooks, and should be familiar to most physicists, but 
we are now heading into territory where less familiar concepts lurk, and ideas from 
group theory, quantum field theory, and graph theory mix together in surprising ways. 
As we proceed, we will focus on describing concepts clearly and spelling out the 
meanings of terminology that may be used in unfamiliar ways, and also mention the 
historical development of these ideas, setting the reader up to explore more thorough 
mathematical coverage of each topic in their own further reading. 
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7.1 Spin Foams 

A spin foam corresponds to a history which connects two spin network states. To build 
an intuition for how this can be achieved, we will return to the two-dimensional and 
three-dimensional toy models we developed in Sect. 6.1. Consider a spin network— 
that is, a dual triangulation .Δ∗ of a two-dimensional surface . S, embedded in three 
dimensions. Now extend each .k-cell in .Δ∗ away from the surface. Every .k-cell 
will extrude to a .(k + 1)-cell, and the final spin network obtained is a copy of the 
dual triangulation .Δ∗. The cell complex we have obtained is a trivial example of 
a spin foam. If we think of the spin foam as a mapping from a dual triangulation 
of an initial surface to a dual triangulation of a final surface then we have in fact 
just described the “identity spin foam”. Although simple, this example serves two 
primary purposes. Firstly, it explains the motivation behind the name, since it looks a 
bit like a foam of soap bubbles. And secondly, it shows that the labels on the.k-cells of 
the original triangulation (for .k ≥ 0) are carried by the corresponding.(k + 1)-cells 
of the spin foam—hence the 2-cells of the spin foam (which we will call sheets) carry 
spins, and the 1-cells of the spin foam (which we will call edges) carry intertwiners. 
Naturally we can imagine an equivalent process happening simultaneously with the 
triangulation. Δ, since we can construct. Δ from.Δ∗ and vice-versa, and so we are also 
constructing a copy of the surface . S. The three-dimensional region “swept out” by 
the triangulation.Δ (as opposed to the spin network) as it extends away from. S can 
be identified as.S × [0, 1], where naturally.[0, 1] is a subset of . R. We can therefore 
imagine that we have two parallel surfaces, .S0 and .S1. If the process were repeated 
. n times we would have a succession of two-dimensional manifolds . Si , with spin 
networks embedded in them. This is entirely analogous to the foliation of spacetime 
which we encountered in Sect. 4.2, and so we should regard the variable . i as a time 
parameter. 

Any valid (non-trivial) dynamics for spin networks must transform an initial 
network in the kinematical Hilbert space into another network also in the kinemat-
ical Hilbert space. There are two basic transformations from which the transitions 
between network states can be built. These are the “2-to-2” move, in which we take 
a pair of triangular 2-cells connected along a single edge, and redefine the edge to 
run between the two vertices which they do not initially have in common, and the 
“1-to-3” move, in which a single triangle is split into three. These evolution moves 
(and thus the process of extruding a triangulation) can also be viewed in terms of 
the dual triangulation.Δ∗, which is a trivalent graph as noted before. From this per-
spective the 2-to-2 move consists of an adjacent pair of trivalent nodes in a network 
exchanging one incoming link each, and the 1-to-3 move consists of a single trivalent 
node splitting into three, in analogy to the “star-triangle transformation” used in the 
analysis of electrical circuits (see Fig. 7.1a). The inverse moves are also possible, of 
course, and the reader should easily recognize that the 2-to-2 move is its own inverse, 
while the inverse of the 1-to-3 move shrinks a trio of nodes down to form a single 
node. 

It can be seen from Fig. 7.1b (right) that the 1-to-3 move acting on the dual 
triangulation creates a set of sheets which form a tetrahedron having one vertex in 
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(a) The 2-2 and 1-3 moves in a triangulation (black) and the 
dual triangulation (orange) 

(b) Evolution of a triangulation (left) and dual triangula-
tion (right) through successive spatial hypersurfaces. 

Fig. 7.1 The spin networks undergo a succession of evolution moves as time passes, from bottom 
to top as indicated by the vertical arrow, creating “spin foams”. For clarity we restrict ourselves in 
this case to two-dimensional spatial hypersurfaces. The evolution of .d-simplices in the triangulation 
(triangles in this case) creates a triangulation of the resultant spacetime by.(d + 1)-simplices (tetra-
hedra, in this case). However, extrusion of one-dimensional links in the dual triangulation creates 
two-dimensional sheets, which don’t necessarily correspond to the faces of.(d + 1)-simplices 

the surface.Si and three vertices in the surface.Si+1. Likewise the 2-to-2 move acting 
on the dual triangulation creates a set of sheets which form a tetrahedron having two 
vertices in each of the surfaces .Si and .Si+1. As a result, in what follows, the nodes 
of a spin network embedded in.d-dimensional space will sometimes be equated with 
the vertices of a .(d + 1)-simplex. However, it is not necessarily true that the sheets 
resulting from the evolution of a spin network in .Si to a spin network in .Si+1 will 
form simplices of the resulting spacetime. For instance, the trivial identity spin foam 
described at the start of this chapter does not divide the manifold into.d-dimensional 
simplices. It is worth stating clearly then, to avoid confusion in what follows, that the 
spin networks are dual triangulations of a.d-dimensional manifold, and the spin foams 
that arise from them can be seen as subdivisions (rather than dual triangulations) 
of a .(d + 1)-dimensional manifold. However, we can see from Fig. 7.1b (left)  that  a  
triangulation (as opposed to a dual triangulation) of a two-dimensional surface gives 
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rise to a (2+1)-dimensional structure of tetrahedra. This is the basis of the Regge 
model of 2+1 gravity, and is fleshed out further in Appendix I. 

It should be kept in mind that referring to a spin foam as a two-dimensional 
piecewise linear cell complex does not mean the spin foam is two-dimensional, 
or able to be embedded in a two-dimensional manifold. Rather, it means that the 
fundamental pieces of which the spin foam is built up are two-dimensional. Just as 
the spin network is a complex of one-dimensional line segments, the spin foam is a 
complex of two-dimensional sheets. 1 

It is fairly easy to see that a cross-section through any spin foam will single out a 
spin network intermediate between the initial and final network states. Naturally this 
network will be of one dimension lower than the foam, hence a four-dimensional 
spin foam will (when “sliced through” by spacelike three-dimensional hypersurfaces) 
yield intermediate three-dimensional spin networks. 

This is essentially identical to the construction of a spacetime foliation at a fixed 
value of fiducial time which we have already encountered. Note that the topology of 
the spin network (i.e. the number of nodes, and the links defined between any pair 
of nodes) remain unchanged for slices between vertices of the spin foam, but can 
change when moving between slices that occur “before” and “after” any vertex. 

The discussion so far has dealt with spin networks embedded in two-dimensional 
hypersurfaces, which extrude along the time direction to produce three-dimensional 
spin foams. Since the universe in which we live is (.3 + 1)-dimensional we will want 
to extend the concepts we’ve developed so far to three-dimensional hypersurfaces 
which foliate four-dimensional spacetime. Thus we are re-treading the path laid 
out in Sect. 6.1, and as we argued there, the basic three-dimensional simplices will 
be tetrahedra. In analogy to the 2-2 and 1-3 moves already encountered, we can 
consider the evolution moves which carry a spin network in a three-dimensional 
spatial hypersurface into another hypersurface. One such move is the 1-4 move, 
which expands a single node in the spin network into a tetrahedral arrangement 
of four nodes (each node being dual to a tetrahedral 3-simplex). We can therefore 
see that four-dimensional spin foams will be composed of 4-simplices having five 
vertices (which we will identify with spin network nodes labelled .1,  .  . . ,  5 as in 
Fig. 7.2, where one node resides in hypersurface.Si and the other four in the surface 
.Si+1), ten edges (that is, the six edges of a tetrahedron, plus another four edges 
between the fifth node and the other four), and five tetrahedral “faces” (namely the 
tetrahedra defined by the nodes.{1, 2, 3, 4}, .{2, 3, 4, 5}, .{3, 4, 5, 1}, .{4, 5, 1, 2}, 
and .{5, 1, 2, 3}). The inverse move, that is the 4-1 move, shrinks a tetrahedral 
cluster of 3-simplices down to a single node (i.e. a single 3-simplex). We are also 
led to consider the 3-2 move (or 2-3 move) in which three of the five vertices of 
a 4-simplex reside in one hypersurface, and the other two reside in the subsequent 
(or previous) hypersurface. These evolution moves are illustrated in Fig. 7.2a. It is 

1 We note that we are restricting the discussion somewhat here for the sake of simplicity. We 
recommend Sect. 1 of [ 1] as a good starting-point to investigate more deeply the details around 
defining spin foams. 
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(a) The evolution of spin networks creates 
four-dimensional simplices between spatial hy-
persurfaces 

(b) The effect of the 1-4 and 2-3 moves on spatial simplices 

Fig. 7.2 Three-dimensional spin networks give rise to four-dimensional spin foams. a In the 1-to-4 
move (left), node 1 exists in a spatial hypersurface and nodes 2, 3, 4, and 5 exist in the subsequent 
hypersurface. In the 2-to-3 move (right), nodes 1 and 4 exist in the earlier hypersurface, and nodes 
2, 3, and 5 exist in the later hypersurface. b The same moves with the structure of simplices made 
explicit. Corresponding external links in the earlier and later hypersurfaces are identified with 
matching letters 

hopefully clear from this discussion that the tetrahedral arrangement of four nodes in 
.Si+1 (arising from a 1-4 move acting on a single node in hypersurface. Si ) is not itself 
a spatial simplex (i.e. 3-simplex), but rather a tetrahedral cluster of spatial simplices, 
as illustrated in Fig. 7.2b. 

As was suggested above by the initial example of an identity spin foam, we can 
think of spin foams as mappings or operators 2 which act upon the kinematical states 
to produce new states. Two spin foams that map between dual triangulations 3 . Δ∗

a 
and .Δ∗

b, and between .Δ
∗
b and .Δ

∗
c can be composed to form a spin foam that maps 

between.Δ∗
a and.Δ∗

c , thus.F1 : Δ∗
a → Δ∗

b and.F2 : Δ∗
b → Δ∗

c can be composed with 

2 A mathematician would use the term morphism. 
3 I.e. Between spin networks which represent the states of a spacelike hypersurface at two different 
times. 
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the result.F2F1 ≡ F : Δ∗
a → Δ∗

c . Even though we speak here of dual triangulations, 
implying a background manifold which is broken up into simplices, we are entitled to 
think of the spin networks these mappings act upon as abstract graphs, independent 
of any background. 

7.1.1 Transition Amplitudes 

With a clear mental picture of spin foams in both 2+1 dimensions and 3+1 dimensions 
hopefully established, one can formally view a spin foam as a succession of states 
.{|Ψ(ti )⟩} obtained by the repeated action of the scalar (or Hamiltonian) constraint 

.|Ψ(ti+1)⟩ ∼  exp{−iHEHAδt}|Ψ(ti )⟩ (7.1) 

and so on, where.HEHA is defined in Eq. (5.3), with .|Ψ(t0)⟩ as the initial state [ 2, 3]. 
At each node the Hamiltonian constraint acts to modify the geometry of the spin 
network according to the 2-to-2, 1-to-3, and 3-to-1 moves. 

Initial and final spin network states can be viewed as describing configurations 
of the metric of initial and final spacelike hypersurfaces forming the boundary of 
a spacetime manifold, .[gi] and .[gf]. As a result, the scalar product on the space of 
metrics 

.⟨[gi]|P |[gf]⟩ =
∫
M 
D[g]eiSEH (7.2) 

is a quantity of particular interest. As this is a measure of how much an initial and 
final state of geometry overlap, it would be expected to determine the amplitude 
for transition between initial and final spatial metrics. In this expression we inte-
grate over the space of metrics up to diffeomorphism, which are consistent with the 
boundary conditions (i.e. .[gi] and .[gf]), with .P being the projector on the kernel of 
the Hamiltonian constraint. 

It is the picture of spinfoams as operators, acting upon states which are spin 
networks, which connects to the sum-over-geometries concept invoked in Chap. 4. 
The action, and hence the weighting associated with the resultant geometries, is 
determined by the spin and intertwiner labels carried by the links and nodes. A 
particular spin foam.F is the entire complex of sheets extruded between the links of 
intermediate spin networks, the edges between sheets (extruded from nodes of spin 
networks), and the vertices where these meet. The initial and final spin network states 
therefore constitute the boundary of . F . But the piecewise linear cell complex of a 
spin foam is adorned with spins and intertwiners inherited from the spin networks 
it embodies. As a result, to each particular spin foam can be associated a transition 
amplitude of the form 

.A(F ) =
∑
js ,ıe

∏
s 

As( js)
∏
e 

Ae( jse , ıe)
∏
v 

Av( jsv , ıev ) , (7.3) 
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where . s refers to the “sheets”, 4 . e refers to the edges between sheets, and . v refers to 
the vertices where these edges meet. Here the notation. jsv , ıev refers respectively to 
the spins labelling the sheets that meet at vertex . v and the intertwiners labelling the 
edges that meet at . v. Similarly . jse refers to the spins labelling the sheets that meet 
at edge . e. 

As mentioned, each of these expressions is purely formal, and it is desirable to 
move beyond a formal view of spin foams, to make explicit calculations feasible. 
Naturally this is easier said than done, and new approaches continue to be developed. 
For the remainder of this chapter we will look at some of the historical and current 
efforts to address this task. 

7.2 Early Developments 

The first topic we will look at, BF theory, is over twenty years old at the time of 
writing. In a sense then we are stepping backwards in time, before surveying newer 
developments which may be of greater interest to the modern reader. However this 
topic is noteworthy for establishing concepts and terminology which continue to be 
important in discussions of loop quantum gravity and spinfoams, and furthermore its 
mathematical formulation is intimately linked to the conceptual image of spin foams 
laid out in Sect. 7.1. 

The discussion of classical GR in Chap. 4 used the Lagrangian and Hamiltonian 
frameworks to motivate our definitions and concepts. Discussions of BF theory often 
involve the language of differential forms and exterior derivatives (Appendix B), and 
so a comparison between the discussions in Chap. 4 (involving indices on terms such 
as the connection and curvature) and the index-free notation of differential forms 
may also benefit the reader by providing multiple perspectives. In particular this 
dovetails with the Palatini formulation which we covered in Sect. 4.3.5. Although 
not essential for the following discussion, the content of Appendix J provides a guide 
to some of the language and concepts frequently encountered in the wider literature 
on these topics. 

7.2.1 BF Theory 

BF theory has long been of interest as the three-dimensional version contains (2+1) 
general relativity, however for brevity we will concentrate on the four-dimensional 
case, in which we obtain (3+1) general relativity as a BF theory with extra constraints. 
By this point, the mention of constraints should give a hint as to where the discussion 
is leading. 

At the classical level we choose a .d-dimensional manifold.M and a gauge group 
.G with an associated Lie algebra. g. The theory involves two basic fields. The first is 
a 1-form. A which we identify as a connection. The second is a .(d − 2)-form which 

4 Other authors may refer to them as faces. 
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we denote. E . In four dimensions this obviously makes. E a 2-form. Since the exterior 
derivative of a.k-form is a.(k + 1)-form, the curvature of. A is a 2-form which we refer 
to as . F . The choice of symbol here is intentionally reminiscent of the field strength 
tensor .Fμν , which we will recall embodied the curvature of the gauge field .Aμ in 
quantum field theory (as per Eqs. (3.15) and  (3.16)). In what follows we will make 
use of.dA, the exterior covariant derivative with respect to the connection. A such that 
.dAω = dω + A ∧ ω, and recognise the curvature form as .F = d A  + A ∧ A. This  
bears a clear resemblance to the form of the field strength tensor given in Eq. (3.16). 
The relevant Lagrangian is obtained by taking the wedge product .E ∧ F , which  
defines a .d-form, i.e. a form having the same number of dimensions as the manifold 
.M, and taking the trace 5 to obtain 

.L = Tr(E ∧ F) . (7.4) 

Notice the similarity to the integrand of the Einstein-Hilbert action in the absence of 
matter, Eq. (4.64), where we have a curvature term given by.R = gμν Rμν , and recall 
that the curvature term in the BF action is a 2-form. The similarity here becomes 
even more pronounced when we recall the discussion of tetrads and their relationship 
to the metric in Sect. 4.3.2. The “extra constraints” mentioned above in fact refer to 
writing .E in terms of the tetrads. Specifically, if we require that .E = e ∧ e we can 
view the .E as simple bivectors, corresponding to the triangular faces of tetrahedra, 
as described at the start of Sect. 6.3. As one would expect of a bivector, when the 
orientation of a face is reversed, the sign of. E is reversed. We also require that these 
tetrahedra have non-zero volume, and that the four faces must meet up properly so 
that the tetrahedron is closed. The full list of these constraints can be found in [ 5], 
and as just mentioned, imposing them ensures that we obtain general relativity. The 
variation of the action obtained from Eq. 7.4 is zero when 

. δ

∫
M 

Tr(E ∧ F) =
∫
M 

Tr(δE ∧ F + (−1)n−1dA E ∧ δ A) = 0 

∴ F = 0, dA E = 0 . (7.5) 

This result is to be expected in a theory of spacetime without matter—it simply says 
that the connection is flat. We will notice that .dA F = 0 allows for transformations 
.E → E + dAη, adding an appropriately-chosen derivative term to . E , which  result  
in physically equivalent solutions [ 4]. 

The classical phase space of BF theory is investigated by foliating spacetime, as 
was done in Sect. 4.2, so  that  .M = ∑ × R. By a suitable choice of gauge the time 
component of. A can be set to zero and we find that the field. E becomes the canonically 
conjugate momentum to . A, hence.E = ∂L/∂ Ȧ. The analogy with classical electro-
magnetism leads to .E being referred to as the electric field in some instances (even 
though the student of quantum gravity may wonder what electric fields are doing in 

5 For a more detailed description of how to take this trace, see [ 4]. 
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a theory of dynamical spacetime). It is also responsible for the naming of the Gauss 
constraint (first mentioned in Sect. 4.2.1), as the condition .dA E = 0 is reminiscent 
of Gauss’ law from classical electromagnetism in the absence of charges. 6 

Based upon BF theory Barrett and Crane [ 5] developed, with notable contribu-
tions from Baez, a model of spacetime dynamics which is closely related to spin 
foams. In this model the spin networks are labelled by representations of SO(4) (or 
SU(2). ×SU(2)), and the tetrahedral 3-simplices extrude into 4-simplices, exactly as 
we have already discussed. The choice of SO(4) was determined by the desire to shift 
from a three-dimensional description of spacetime, i.e. (2+1) general relativity, to a 
four-dimensional description. It was realised [ 6] that this model could be interpreted 
in terms of a Feynman graph of a class of theories that came to be known as group 
field theories, to which we will turn in Sect. 7.3.3. However, the model is not identical 
to loop quantum gravity [ 7], and so we will mention it for historical context, but not 
dwell on it. 

7.2.2 Chern–Simons Theory 

The image we have built up in the previous sections is of the configurations of 
simplices (or the appropriate dual cell-complexes) as a kind of Feynman diagram for 
spacetime structure. Correspondingly, we expect a transition between an initial spin 
network state and a final spin network state to involve sums over the appropriately 
weighted intermediate spin foams. We naturally want the sum over spin foams to be 
triangulation independent, and we can be confident this is the case if we can relate 
the triangulations to some set of topological invariants. 

Frequently when summing over intermediate states in quantum field theory, we 
encounter divergences which must be tamed somehow. Similarly, when summing 
over spin foam states we encounter divergences. Roughly speaking, the sheets of 
the spin foam (being extruded from links in a spin network) are labelled by spins. 
Naively the sum over possible spin foams can include arbitrarily large spins, leading 
to transition amplitudes which diverge. What we would like, then, is a way to limit the 
permissible spin values so that the sum-over-geometries does not diverge. Fortunately 
in BF theory there is a way to do this, by adding extra terms to the Lagrangian. 

In the three-dimensional case the BF action is written in terms of . E , . F , and  a  
scalar constant .ᴧ as 

.

∫
M 

Tr

(
E ∧ F + ᴧ

6 
E ∧ E ∧ E

)
. (7.6) 

6 In earlier works the symbol .B was more frequently used for the bivector fields, hence the name 
BF theory. 
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This leads to new equations of motion, found by setting the variation of the resultant 
action to zero, hence 

.F + ᴧ

2 
E ∧ E = 0 , dA E = 0 . (7.7) 

In this case spacetime is no longer flat—.F becomes non-zero. 
To see why this is an effective way of eliminating divergences we will need 

to digress again, to talk about Chern–Simons theory (which is also discussed in 
Appendix G). This is a background-free gauge theory, originally formulated in three 
dimensions, with action 

.SCS = 
k 

4π

∫
M 

Tr

(
A ∧ d A  + 

2 

3 
A ∧ A ∧ A

)
. (7.8) 

In fact, Chern–Simons theory is a topological field theory, meaning the observables 
of the theory tell us about the topological invariants of spacetime itself. The action 
.SCS is (perhaps unsurprisingly, then) a topological invariant. 

If we define two connections 

.A± = A ± β E (7.9) 

then the BF action can be written as the difference of two Chern–Simons actions, 

.SCS( A+) − SCS( A−) =
∫
M 

Tr

(
E ∧ F + ᴧ

6 
E ∧ E ∧ E

)
. (7.10) 

by appropriate choices of . β and . k, and so if we can induce a cutoff for spin values 
in Chern–Simons theory, we should achieve the same for BF theory. The quantity . k 
is referred to as the Chern–Simons level, and will play an important role in taming 
the divergences that have motivated these steps. 

In the Abelian case the wedge product .A ∧ A ∧ A in Eq. (7.8), which we can 
think of a self-interaction term for the connection, is zero and so we are left with the 
leading .A ∧ dF  term only, corresponding to a flat connection, which we looked at 
in Sect. 7.2.1. 

The non-Abelian case corresponds to non-zero self-interactions, and results in 
the .E ∧ E ∧ E term in the BF action. The coupling strength is written as . ᴧ, since  
it is generally identified with a cosmological constant, which we can think of as 
representing the energy density of empty space. The introduction of this cosmological 
constant term leads to a modification of the spin networks we have by now come 
to know and (presumably) love, such that they may be visualised as networks of 
ribbons. It would be a significant digression to explain the details properly, and so 
we will provide below a conceptual outline of the reasoning which brings us to this 
view. For more details we recommend the reader consults [ 8, 9]. 



7.2 Early Developments 101 

7.2.3 The Cosmological Constant 

In discussing BF theory above it was mentioned that gauge transformations were 
possible, and involved adding an appropriate derivative term to . E . Working with 
explicit indices again, to emphasise the similarity to the discussion in Sect. 3.1, it  is  
natural to ask whether the action Eq. (7.8) is invariant under gauge transformations, 

.Aμ → A'
μ = g−1 Aμg + g−1∂μg (7.11) 

(notice the similarity here to Eq. (3.5), though with a slight change in notation). It 
is here that we must address the concept of winding numbers. Consider a mapping 
. f (θ ) = eiθ . Clearly this is a mapping from the circle to itself, . f : S1 → S1. We can 
construct other mappings by taking powers of . f , hence . f w (θ ) = eiwθ , but in this 
case the mapping winds. w times around the circle, and. w is referred to as the winding 
number of the mapping. We can also define a function . fa(θ ) = ei(wθ +aθ0). Setting 
.a = 0 yields . f0(θ ) = ei(wθ ), while setting .a = 1 yields another mapping with the 
same winding number, . f1(θ ) = ei(wθ+θ0). Varying the value of . a generates a class 
of mappings between . f0 and . f1 with the same winding number. Such a class of 
mappings that can be smoothly deformed into each other is called a homotopy class. 

What does this have to do with gauge transformations? We can readily identify 
the mappings. fa(θ ) = eiwθ+a as U(1) transformations. It is not difficult to generalise 
to other groups, such as SU(2), as we did in Eq. (3.13). We will refer to the relevant 
transformations as . g, as  per  Eq.  (7.11). In the case of SU(2) this is equivalent to a 
mapping .g : S3 → S3, as a Euclidean .n-dimensional space with points at infinity 
identified is equivalent to an .n-sphere (the first .S3), while the group manifold of 
SU(2) is the second.S3. 

Applying the gauge transformation above to .Aμ and taking the variation of the 
Chern–Simons action we obtain a sum of two terms 

. δSCS = 
k 

4π

∫
M 

d3xϵμνρ
(
∂μTr(∂νg)(g

−1 Aρ) 

+ Tr 
1 

3 
(g−1∂μg)(g

−1∂νg)(g
−1∂ρg)

)
. (7.12) 

The second term is actually proportional to the winding number.w associated to the 
gauge transformation. As mentioned above, these kinds of mappings can be assigned 
to distinct homotopy classes. Since gauge transformations associate a group element 
.g ∈ G with each point, .x |→ g(x ), one possible gauge transformation is the map-
ping to the identity element. This leads to a distinction between mappings that can be 
connected to the identity, and those that cannot. A transformation corresponding to 
anything less than a full rotation has a winding number of zero and can be deformed to 
no winding. These are generally called ‘small’ gauge transformations. Transforma-
tions corresponding to a full rotation, or several full rotations, have non-zero winding 
number and cannot be smoothly deformed to the identity. These are referred to as 
‘large’ gauge transformations. Thus the winding number is a characteristic of gauge 
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transformations which takes discrete values and can be used to distinguish between 
classes of gauge transformations. 

Since the winding number must be an integer the Chern–Simons action changes 
by an additive quantity of.2π kw under large gauge transformations, meaning that as 
long as the Chern–Simons level . k is an integer the exponential term appearing in a 
path integral, e.g. the calculation of a vacuum expectation value for a spin network 
state . Ψ, 

.⟨Ψ⟩ =
∫

ΨeiSCSD A∫
eiSCSD A , (7.13) 

must be gauge-invariant, and hence so are the VEVs themselves. 
The simplest observables we can calculate are Wilson loops. 7 A Wilson loop 

corresponds to a closed curve. λ, which as already discussed can be used to probe the 
amount of curvature of a gauge field. Now consider a collection of. r non-intersecting, 
closed curves, and endow each closed curve with an orientation, i.e. a preferred 
direction, which can be thought of as consistent set of vectors tangent to the curve 
at each point. The union of these closed curves will be referred to as a link, . L. The  
closed curves in this link may interconnect with each other, and each closed curve 
may pass around and through itself forming a knot. There are a number of quantities 
that can be used to characterise links and knots, which we discuss in Appendix K. 

The product of Wilson loops is referred to as a Wilson link, .W [L]. Working in 
the Abelian case for simplicity of illustration, the expectation value of a Wilson link 
is (see [ 9]) 

.⟨W (λ1)  . . .  W (λr )⟩ = ⟨W [L]⟩ = exp 

⎛ 

⎝ i2π 
k 

r∑
a,b=1 

nanbΦ[λa, λb] 
⎞ 

⎠ (7.14) 

where.na , .nb are integers which we associate with irreps (see Sect. A.1) of U(1),  and  
the Gauss linking number 

.Φ[λa, λb] =  
1 

4π

∮
λa 

dxμ 
a

∮
λb 

dxν 
bϵ

μνρ (xa − xb)ρ 

|xa − xb|3 (7.15) 

is an integer which counts the number of times one closed curve winds through 
the other. This linking number can be related to the flux linking associated with 
electromagnetism, if we think of one closed curve as a set of magnetic field lines, 
and the other as a wire loop which the field lines pass through. When .a = b we 
obtain the self-linking number .Φ[λa, λa] = Φ[λ], which diverges as we can see 
from Eq. (7.15). This divergence can be solved by creating a new closed curve, . λ', 
derived from but also displaced from . λ.  To do this  we “frame”  . λ, which is to say 
we assign a vector to every point of . λ, and let the tips of these vectors be the points 

7 As we learned all the way back in Chap. 3 they are gauge-invariant, and we can construct other 
observables such as the field strength .Fμν from them. 
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λ'

λ

Fig. 7.3 A closed  curve  . λ with framing, defining a second curve . λ'. The two resultant curves can 
wind around each other, resulting in a non-zero linking number. If the “ribbon” between them is 
non-orientable then. λ and.λ' are not actually distinct 

defining. λ'. In effect, we extrude. λ from a one-dimensional closed curve into a ribbon 
with some finite width between its “left” and “right” sides (see Fig. 7.3). 

We then treat these edges as separate knots. The problematic self-linking number 
.Φ[λ] is then replaced by the linking number.Φ[λ, λ']. Of course, to ensure that. λ and 
.λ' are truly distinct, the resulting ribbon defined between them must be an orientable 
surface, and hence their crossings must result in twists that are integer multiples 
of .2π . 

This framing of curves, when applied to a spin network, turns each link into a 
ribbon and each node into a disk. The unframed (i.e. .ᴧ = 0) spin networks could be 
analysed combinatorially using skein relations (see Appendix K) which embodied the 
representation theory of the group.G determining the link labels. The extra framing 
in the .ᴧ /= 0 case depends on an extra parameter 

.q = exp
(

i2π 
k + h

)
(7.16) 

where .h = 2 in the SU(2) case. It should be noted that when we work in the spin-
. 
1 
2 representation of SU(2) we find that the linking number of a Wilson link is the 
Kauffman bracket (Appendix K) evaluated with 

.A4 = q = exp
(

i2π 
k + 2

)
(7.17) 

where in this case .A is a specific parameter of the Kauffman bracket, not to be 
confused with .Aμ. 

We can view . q as a deformation parameter, related to the framing of the spin 
networks. Now the relevant skein relations encode a labelling by representations of 
a .q-deformed group U.q (g) (also frequently called a “quantum group”). Despite the 
name, these are actually not groups, but rather U(. g) is the enveloping algebra 8 of 
the algebra . g, and  U.q (g) is the enveloping algebra “deformed” by the parameter . q . 

8 The basics of group theory and algebras are covered in Appendix A.1 but the reader in need of 
a more detailed discussion may consult the wikipedia article ‘Universal enveloping algebra’, Sect. 
9.3 of [ 10], etc. 
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Such objects are a substantial subject in their own right, but we have attempted to 
address them briefly in Appendix L. 

This construction achieves our stated goal of eliminating divergences. Writing BF 
theory in terms of Chern–Simons theory means we arrive at a version of spin networks 
and spin foams in which the labellings by representations of a group are replaced 
by representations of the corresponding.q-deformed group. Similarly the labellings 
by intertwiners in terms of representations are replaced by intertwiners defined in 
terms of the .q-deformed group’s representations. In this case only representations 
of U.q (g) corresponding to . j = 0, 1 2 ,  . . .  k 2 are permitted, placing a limit on the spin 
values associated to faces. 

7.3 Some Recent Developments 

Attempts to convert the conceptual view of spin foams, embodied in Eq. (7.1) 
into practical, tractable calculations require great ingenuity. Much effort has been 
expended on developing such calculations, a full discussion of which is beyond the 
scope of this book. But a common feature of such efforts centres upon choosing 
labelling schemes for the links and nodes in a spin network, and hence the associ-
ated faces, edges, and vertices of a spin foam. We have already seen in the case of 
BF theory and the development of loop quantum gravity that different choices of 
gauge group are possible, guided by the desire for computational ease and physical 
plausibility. In a similar fashion, labelling the elements of spin networks and spin 
foams by group representations, tensors, etc. has led to a number of interesting ideas 
and avenues for further research. We provide here a brief survey to whet the reader’s 
appetite for their own investigations. We will start by discussing a very general con-
cept, that of tensor networks, which hints at connections between quantum gravity, 
topology, and quantum computing, amongst other concepts, before reviewing some 
recent and more specific work by various authors. 

7.3.1 Tensor Networks 

We are all familiar with the idea of contracting tensor indices. In the case of a tensor 
acting on a vector, covector, or another tensor, we think of this as the action of a 
mapping from the space of objects being acted upon to construct a new mapping 
or quantity (e.g. the inner product). In many applications we can regard a series of 
operations as tensors themselves. The logic gates in a computer circuit, for example, 
behave like simple tensors, and composing several of these together can produce quite 
complex evaluations of the inputs provided to the circuit. Of course, a computer 
circuit can also be interpreted as a type of graph, with junctions and logic gates 
acting as hubs (to use the terminology we adopted in Sect. 6.1). It therefore becomes 
possible to view a series of tensors related by index contractions, a circuit, and a 
graph with appropriately labelled tracks and hubs as different versions of the same 
type of structure. That structure is what we mean when we refer to a tensor network. 
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P ab cde Qf 
gh 

= δab 

= P ab cdeQ
d 
bh 

= δab 

= δa b 
= Qf 

fh  

Fig. 7.4 Contraction of tensor indices using Penrose’s graphical notation. On the top row we see 
two tensors (staggering of the indices has been suppressed to save space), and the product formed 
by two contractions between them. Different versions of the Kronecker delta, and a trace formed 
by contracting an upper and lower index on the same tensor are shown on the bottom row 

Visualising interrelated tensors as forming a network becomes more intuitive 
when we employ a graphical notation due to Penrose [ 11]. In this notation a tensor 
with . n raised indices and .m lowered indices is drawn as a box or shape with . n lines 
emerging from the top and. m lines emerging from the bottom. Contractions between 
tensors are then represented by joining a line attached to the top of one box with a 
line attached to the bottom of another box (or possibly the same box), as illustrated 
in Fig. 7.4. Contraction of an upper index and a lower index reduces the number of 
‘free’ lines in the diagram by exactly two. In this notation a scalar has no indices 
and hence no lines emerging from it, so if a tensor has one upper index (line) and 
one lower index (line) the contraction (joining) of the two gives a scalar—the trace 
of the tensor in question. 

Various tensors of interest can be represented in this notation—for example the 
Kronecker delta is simply an unadorned line, either vertical, or with open ends point-
ing up or down (depending on whether it has mixed, raised, or lowered indices.) This 
is consistent with the way the Kronecker delta serves (in the summation convention) 
to equate indices, e.g. .T abδc aU

d 
c = T abUd 

a , and hence acts like (in the graphical 
notation) a line between the relevant tensors. 

A symbol with a single upwards or downwards line stands in for a quantity with 
a single raised or lowered index—such as a vector with components .va or a dual 
vector with components . ub. In the standard way we can think of a tensor with . p 
raised indices and . q lowered indices as being the tensor product of . p vectors and . q 
dual vectors, e.g. .T ab c = va ⊗ wb ⊗ uc. If the vectors and dual vectors are elements 
of the representation space. V and dual representation space.V ∗ of some group. G then 
we can view these composite tensors with . p raised indices and. q lowered indices as 
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elements of the tensor product space 

. V ∗ ⊗ . . .  ⊗ V ∗. .. .
q copies 

⊗ V ⊗ . . .  ⊗ V. .. .
p copies 

. (7.18) 

which is itself a representation space of . G. 
Further discussion of this notation can be found in [ 11,12], and several informative 

reviews (especially for those with an interest in quantum information and quantum 
computing) can be found in [ 13,14]. A very thorough discussion of the use of network 
diagrams to perform calculations involving coupling of spins, as discussed in Chap. 6, 
can be found in [ 15]. 

7.3.2 Spinorial LQG and Coherent States 

We have at great length discussed the assignment of a representation of a group to the 
links in a spin network. We have also seen in Chap. 3 how holonomies correspond 
with the transport of spinors along a path. The spinorial formulation of LQG pro-
motes the importance of this idea, labelling either end of each link in a spin network 
with a spinor in .C

2. This implies that the nodes are then labelled by several spinors, 
the number of spinors being equal to the valency of the node [ 16]. In this view the 
labelling by spinors is more fundamental, and any labelling of links by representa-
tions and nodes by intertwiners is derived from the spinors. Since the components of 
a spinor are complex numbers this approach has great promise to simplify calcula-
tions, by converting calculations involving representation theory into comparatively 
straightforward matters of complex analysis. 

To begin, consider a spinor .|ζ ⟩ which takes values in .C
2, that  is  to say  

. |ζ ⟩ =
(

ζ0 
ζ1

)
, ⟨ζ | = (

ζ ∗0 ζ ∗1
)

(7.19) 

where the . ∗ superscript denotes complex conjugation, and let the product of two 
spinors .|ζ ⟩ and .|ξ⟩ be taken in the usual way, 

. ⟨ξ |ζ ⟩ = ξ ∗0 ζ0 + ξ ∗1 ζ1 . (7.20) 

Define a vector . →X = ⟨ζ | →σ |ζ ⟩. Then it is a fairly simple matter to confirm that 

. |ζ ⟩ ⟨ζ | = 
1 

2

(
⟨ζ |ζ ⟩1 + →X · →σ

)
(7.21) 

where the .σa with .a ∈ {1, 2, 3} are the Pauli matrices. Furthermore. →X can be shown 
to be a null vector, i.e..| →X |2 = |X0|2 where.X0 = ⟨ζ |ζ ⟩. The vector. →X can be thought 
of as the normal vector to a face of a simplex, with magnitude proportional to the 
area of that face as discussed in Sect. 6.3. 
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We define a dual spinor, denoted.~|ζ ⟩, by the mapping 9 

.⟨ζ | → ~|ζ ⟩ =
(−ζ ∗1 

ζ ∗0

)
. (7.22) 

Now given two spinors .|ζ ⟩ and .|ξ⟩ we claim that 

.g(ζ, ξ ) = 
|ζ ⟩~⟨ξ | − ~|ζ ⟩⟨ξ | 

||ζ || ||ξ || (7.23) 

is an element of SU(2). To confirm this we recognise that 

.g†(ζ, ξ ) = ~|ξ⟩⟨ζ | −  |ξ⟩~⟨ζ | 
||ζ || ||ξ || (7.24) 

and easily check that .g†(ζ, ξ )g(ζ, ξ ) = 1, and also that .det(g) = +1. 
Now when .g(ζ, ξ ) acts on normalised spinors we find that 

.g(ζ, ξ ) 
|ξ⟩
|ξ | = − ~|ζ ⟩

|ζ | , g†(ζ, ξ ) 
|ζ ⟩
|ζ | =

~|ξ⟩
|ξ | . (7.25) 

This is equivalent to the way we constructed the Schwinger line integral for parallel 
transport of a state vector along a path, .

||Ψ '⟩ = U (g) |Ψ⟩. 
The interpretation of . →X as the normal vector to a face implies a matching con-

straint. When two simplices are joined, pairing a face on one simplex with a face on 
the other, we expect the faces to have the same area. Using the idea that .|ζ ⟩ and . |ξ⟩
are the spinors on opposite ends of the link passing between (i.e. dual to) these two 
faces, and the relationship between components of a null vector, we can write the 
area matching constraint as 

.M = ⟨ζ | ζ ⟩ − ⟨ξ | ξ⟩ = 0 . (7.26) 

We are used to constructing a Poisson bracket with the Hamiltonian and one “empty 
slot”, forming an operator which describes the time evolution of functions. In a 
similar spirit we can create Poisson brackets using the area matching constraint, and 
find that 

.{M, |ζ ⟩} =  i |ζ ⟩ (7.27) 

.{M, |ξ⟩} = −i
||ξ ∗⟩ (7.28) 

from which we conclude that .M acts upon the spinors to generate U(1) gauge trans-
formations, .|ζ ⟩ → eiθ |ζ ⟩. 

9 The notation.|ζ ] is more common for the dual spinor, but in the opinion of the author this notation 
is harder to read, since .|ζ ] looks almost indistinguishable from.[ζ | and.|ζ |. 
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A further constraint implied by the normal vectors . →X arises from the fact that an 
.n-valent node will have . n spinors associated to it. This constraint, which may be 
written 

.→c := 
n∑

i=1

→Xi = 0 (7.29) 

can be interpreted as a requirement that the normal vectors sum to zero, or in other 
words the associated faces join together to form a closed simplex. Hence this is a 
closure constraint. 

In [ 16– 18] the labelling of .n-valent nodes by spinors was used to investigate 
spatial simplices beyond the tetrahedra we have discussed so far. This generalisation 
carried over to polyhedra with. n faces (with the restriction that exactly three faces met 
at a vertex). 10 In this polyhedral view of loop quantum gravity each spatial simplex 
is dual to a vertex labelled by an intertwiner carrying an irreducible representation 
of U(. n). 

It was already mentioned in Sect. 6.4 that tetrahedral simplices are not uniquely 
defined by the area of their faces. This admits an invariance under area-preserving 
diffeomorphisms of the simplices. 

In the case of polyhedral simplices, it is possible to construct operators which 
increase and decrease surface area. These are essentially raising and lowering oper-
ators, exactly as we would expect in the case of harmonic oscillators, and are related 
to the interpretation of spin (angular momentum) labels determining the area of a 
face dual to a line carrying that label. Consider commutator relations for a pair of 
uncoupled harmonic oscillators, 

.[â, â†] =  1 = [b̂, b̂†] , [â, b̂] =  0 . (7.30) 

Using these, the generators of .su(2) are 

. J z ≡ 
1 

2

(
â†â − b̂† b̂

)
, J+ ≡ â† b̂, J− ≡ â b̂† . (7.31) 

As one would expect from quantum field theory, the number operator is 

.E = 
1 

2

(
â†â + b̂† b̂

)
(7.32) 

which we can interpret as a measure of the total energy or number of quanta (of area, 
in this case). It turns out that the Casimir 

. J2 = E(E + 1) (7.33) 

10 For instance, using the example of the Platonic solids, this admits the regular tetrahedron, cube, 
and dodecahedron, but not the octohedron or icosahedron. 
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and so indeed. E can be regarded as a measure of area, as can be seen by comparison 
with Eq. (6.29). If we index the spins associated with different faces of a polyhedron 
by . i and. j then we have the operator 

.

(
â† i â j + b̂† i b̂ j

)
(7.34) 

which raises spin. j i and lowers. j j by half a unit, thereby leaving total area invariant. 
The conjugate operator is defined by swapping .i ↔ j . Furthermore, the operators 

.(âi b̂ j − â j b̂i ), (âi b̂ j − â j b̂i )
† (7.35) 

respectively lower (by reducing. j i and . j j simultaneously by half a unit), and raise 
the total surface area of a polyhedron. 

Consider an SU(2) gauge transformation applied to the . n spinors labelling a 
particular .n-valent node, .|ζi ⟩ → ||ζ '

i
⟩
for .i = 1, .  . .  ,  n. Then it is possible to define 

the SU(2)-invariant antisymmetric quantity 

.Fij  := ~⟨ζi |ζ j ⟩ (7.36) 

as well as .Eij  := ⟨ζi |
||ζ j ⟩ which naturally is symmetric. The .Fij  are used to define  

a creation operator in terms of spinor states, 

.F† = 
1 

2

∑
i /= j

~⟨ζi |ζ j ⟩( ̂ai b̂ j − â j b̂i )
† . (7.37) 

The fact that we have operators that create and annihilate units of surface area of the 
polyhedra means we can think of a Fock space, with a vacuum state .|0). The use of 
a rounded ket (or bra) indicates a coherent state. The creation operators in Eq. (7.37) 
can then act upon the vacuum to create coherent states .|J, ζi ), where. J is an integer 
equal to the area of the relevant face (which we denote in bold, consistent with the 
spin-area equivalence established in Chap. 6). The inner product of coherent states 
is found to be a straightforward power of the area, thus 

.( J, ζi |J, ξi ) = (ζi |ξi ) J . (7.38) 

Coherent states [ 19] are generally “well-behaved” under transformations, and can 
be thought of as states of minimal uncertainty, i.e. states for which the uncertainty 
principle yields an equality, rather than an inequality. One would hope then that 
they would shed light on the semi-classical limit of the theory. It turns out [ 16] that  
the coherent states are obtained by the action of U(. N) on states corresponding to 
polyhedra (or nodes in the dual spin network in which all but two of the labelling 
spinors are zero.) To think of this process as creating arbitrary-valency nodes out of 
the vacuum makes intuitive sense, as an arrangement of two links meeting at such a 
bivalent node is equivalent to a single link with no node at all (i.e. the spin on one side 
of the “node” must equal the spin on the other side to conserve angular momentum, 
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Fig. 7.5 A Wilson loop 
connecting a 2-valent vertex 
to itself 

and so the associated intertwiner must simply be the identity.) The machinery thus 
developed makes it possible to evaluate expectation values of operators defined from 
Eq. (7.34). It is found that the mean values grow faster than the uncertainties as 
.J → ∞, showing that these coherent states peak as . J becomes large. 

Up until now we have been talking about individual spatial simplices. So let us 
step back to review some work [ 20] in which the spinorial approach to LQG is extend 
to cover the case of gluing simplices together to form spin networks, with a view to 
discussing spin foams. We begin by considering the simple case of a Wilson loop 
with both ends connecting to the same 2-valent node, as depicted in Fig. 7.5. 11 

Then as in Eq. (3.30) the loop holonomy is constructed and its trace taken to obtain 

.Wλ(g) =
~⟨ζ2|ζ1⟩ + ⟨ζ2~|ζ1⟩

||ζ || ||ξ || = 
F21 + F∗

12√
E11E22 

. (7.39) 

This is fine for a description of the classical phase space, requiring simplices to 
be closed and flat, and for any curvature in the spacetime they triangulate to occur at 
the edges between simplices, just as was described in the toy model of Sect. 6.1. The  
.Fij  and their extension to the case of multi-node networks are classical quantities. 

The quantisation of this picture associates a Hilbert space.H⎡ to the spin network 
which is dual to this triangulation, as per Eq. (6.11). The question then arises as to 
whether.Hspin

⎡ , the Hilbert space we would construct for a network with links labelled 
by pairs of spinors, corresponds with.H⎡. In [  20] a mapping was constructed between 
the Hilbert space of a single link labelled by a spin, and a single link labelled by pairs 
of spinors. This mapping was then extended to networks with an arbitrary number 
of nodes and links. 

Let. U be the space of holomorphic 12 square-integrable functions over the complex 
numbers,.L2 

hol(C, dμ), where for this discussion we don’t need to consider the form 
of the measure .dμ (see [ 20] for more details). This is a space of polynomials in 
powers of.z ∈ C, and so it has an orthonormal basis given by.en(z) = zn/

√
n!. More  

generally we would write .Un = L2 
hol(C

n, dμ). The spinors we have considered so 
far transform under SU(2), and thus we are led to consider .U2.  This space  has as an  
orthonormal basis 

.e j m(z) = 1√
( j + m)!( j − m)! (z0) 

j+m (z1) j−m ≡ 1√
x !y!(z0)

x (z1)
y (7.40) 

11 This looks like a bit of a cheat, as it’s equivalent to the node-less link we mentioned above in the 
case of the Fock vacuum, but still serves to introduce a simple version of some results which will 
be described shortly. 
12 I.e. They can be expanded in powers of a complex number . z, and don’t depend on. z∗. 
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where we now invoke two complex numbers. z0,.z1 corresponding to the two complex 
components of a spinor. Equation (7.40) illustrates the connection between familiar 
notation in terms of total and magnetic quantum numbers (with. j taking half-integer 
values and .m taking values between .± j ) and points .(x, y) where .x , y are natural 
numbers, defining the form of a polynomial in powers of two complex numbers. 

This allows the construction of the Hilbert space for a link labelled by a spinor at 
either end. It is given by two copies of the space of functions for a spinor, however 
we must take into account the matching constraint which as we have seen generates 
U(1) gauge transformations. Hence the Hilbert space for a link is identified as 

.Hspin 
l = (U2 × U2) /U(1) (7.41) 

with orthonormal basis states .e j m1 ⊗ e j m2 (one might expect the occurrence of two 
different values, . j1 and . j2, however it can be shown that all states with . j1 /= j2 
vanish). 

The Hilbert space of an individual link does not pay attention to the SU(2) gauge 
transformations that may be applied to the. n spinors labelling an.n-valent node. The 
transition to considering the Hilbert space of entire networks labelled by spinors 
can be achieved by constructing SU(2) invariant functions corresponding to nodes, 
and connect these in such a way as to fulfill the U(1) invariance required by the 
matching constraint on each link between nodes. It turns out that, for.n-valent nodes, 
polynomials in the variables.Fij  defined in Eq. (7.36) are elements of.U⊗n 

2 , and hence 
can be used (nodewise) to construct functions of the spin networks, extending the 
result of Eq. (7.39). Specific details can be found in [ 20], but the basic result is that 
functions of the .Fij  are much easier to work with than expressions involving SU(2) 
recoupling theory applied to the intertwiners labelling spin network nodes. 

7.3.3 Group Field Theory 

Up to this point our ideas of spin networks, and spin foams, have had a fairly simple 
form which (if technically challenging) is at least intuitively simple; choose a base 
manifold which we can think of as similar if not identical to .RN , embed  a  graph  in  
that manifold, label the tracks and hubs of the graph, and ultimately consider only the 
labelled graph so that the base manifold becomes superfluous. In group field theory 
[ 21] the base manifold is instead taken to be the group manifold of a Lie group. 
This means that points in the manifold are no longer explicitly positions in some 
version of space (or spacetime), but group elements defined by particular choices of 
parameters. 

To explore this idea, let us define a field . φ which is a mapping from. d copies of 
a Lie group manifold to the complex numbers 

.φ : Gd → C (7.42) 
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where . d is the number of spacetime dimensions we wish to model. Given . d group 
elements .{gi} ∈  Gd we have 

. φ(g1, .  . .  ,  gd ) →
∫ (

d∏
i=1 

dgi
'
)
U (g'

1, g1) × . . .  × U(g'
d , gd )φ(g'

1,  . . .  ,  g'
d ) 

(7.43) 
where the .U (g'

i , gi ) are elements of some unitary group . U , and are analogous to 
the Schwinger line integral terms which we encountered in Eq. (3.26). These terms 
were identified as gauge rotations, and so in this case the .U are mappings between 
.{gi } and .{g'

i }. Consequently we can view . φ as a tensor transforming under . d copies 
of the group. U , where  the .{gi } are the tensor index labels. 

We can define an action for our group field theory consisting of kinetic and 
interaction terms, 

.Sd[φ] =  Skin + Sint (7.44) 

where the kinetic term takes the form 

.Skin = 
1 

2

∫
dgidg

'
i φ(gi )K (gi g

'−1 
i )φ(g'

i ) (7.45) 

and the kinetic kernel .K is invariant for all . h, .h' ∈ G, 

.K (hgi g
'
i 
−1 h') = K (gi g'−1 

i ) . (7.46) 

To represent the couplings inherent to the interaction term we require .i /= j and 
write 

. 
φ(g1 j ) = φ(g12, g13, .  . .  g1(d+1)) 
φ(g2 j ) = φ(g21, g23,  . . .  g2(d+1)) 

(7.47) 

and so forth, where the physical interpretation of .gi j  will be developed below. The 
interaction term is then 

.Sint = μ 
d + 1

∫ d+1∏
i=1 

d+1∏
j ( /=i)=1 

dgi j  V (gi j  g
'
j i  

−1 
)φ(gi j  ) (7.48) 

where .dgi j  is an invariant (Haar) measure on . G, and  .μ is a coupling strength. 
If it is understood that the measure includes a product over . i values, so that 
.dgi j  ≡ dg1 j . . .  dg(d+1) j then we can write the interaction term as 

.Sint = μ 
d + 1

∫ d+1∏
j ( /=i)=1 

dgi j  V (gi j  g j i  
−1)φ(g1 j )  . . . φ(g(d+1) j ) . (7.49) 

As with . K , the interaction kernel .V is an invariant, where for all .hi ∈ G, 

.V (hi gi j  g
'
j i  

−1 h−1 
j ) = V (gi j  g'

j i  
−1 

) . (7.50) 
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For the sake of concreteness, we will look at an example in .d = 4 dimensions. 
We draw inspiration from the Barrett–Crane model (see Sect. 7.2), and choose the 
gauge field to be SO(4). The . φ then become a field 

.φ(g1, g2, g3, g4) : SO(4) × SO(4) × SO(4) × SO(4) → R . (7.51) 

The action is found fairly easily from Eqs. (7.45) and  (7.49). A simple choice for the 
kinetic kernel is 

.K (gi g
'
i 
−1 

) =
∫
G 
dh  

4∏
i=1 

δ(gi g
'
i 
−1 h) . (7.52) 

In this case (glossing over symmetries and constraints) the kinetic part of the action 
is 

.Skin = 
1 

2

∫ 4∏
i=1 

dgi φ
2(g1, g2, g3, g4) . (7.53) 

To make the interaction term easier to write, let us reduce somewhat the number 
of indices present by defining .φA = φ(g1 j ) and similarly .φB = φ(g2 j ) etc. as per 
Eq. (7.47). In full then, we have 

.φA = φ(g12, g13, g14, g15) (7.54a) 

.φB = φ(g21, g23, g24, g25) (7.54b) 

.φC = φ(g31, g32, g34, g35) (7.54c) 

.φD = φ(g41, g42, g43, g45) (7.54d) 

.φE = φ(g51, g52, g53, g54) . (7.54e) 

Remembering the implicit iteration through values of . i , the potential is then 

.Spot = 
μ 
5

∫ 5∏
j ( /=i)=1 

dgi j  φAφBφC φDφE . (7.55) 

We can give a physical meaning to the integrand of Eq. (7.53) by reference to 
a series of graph diagrams [ 6]. We will use the hub-track terminology for abstract 
graphs, but very shortly see how these diagrams relate to simplices and spin networks. 
To start, represent. φ as a tetravalent hub. Note that in general we will consider several 
hubs labelled by . i , explaining the notation .gi j  used above, as referring to track . j 
attached to hub. i . As we are only considering one hub (for the moment) we simplify 
the indices accordingly. We therefore label the four tracks of the hub.g1,  . . .  g4, as  in  
Fig. 7.6, and write .φ(g j ) = φ(g1, g2, g3, g4). A consequence of the simplification 
of indices is that the graph diagrams that will now be introduced are also simplified. 
This will be rectified shortly. 

For the moment, recall the discussion in Sect. 7.3.1, in which we consider the 
joining of lines to be equivalent to contraction of indices. Setting the indices of two 
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Fig. 7.6 Interpretation of. φ 
as a hub attached to four 
tracks, corresponding to four 
index labels 

g1 

g2 g3 

g4 

φ

Fig. 7.7 Contraction of two 
. φ tensors, corresponding to 
the connection of two hubs 
via their four tracks 

g1 

g2 

g3 

g4 

φ φ

Fig. 7.8 Contraction of five 
hubs leads to the 
identification of 
.φA, φB , φC , φD, φE as 
vertices of a 4-dimensional 
simplex. The correspondence 
to the 4-simplices in 
Fig. 7.2a should be apparent 

φA 

φB 

φC 

φD 

φE 

g15 

g14 g13 

g12 

g25 

g24 g23g35 

g34 

g45 

hubs equal we obtain .φ2, exactly as we are used to doing with tensor indices to 
obtain, for instance, .Fμν Fμν = F2. Diagramatically we can view this as taking two 
hubs and joining their four tracks as Fig. 7.7 depicts. 

The potential part of the action involves.φA, φB, φC , φD, φE , which we interpret 
as the contraction of five hubs with each other. Since there are five hubs with four 
tracks each we have twenty indices, but each index is common to two hubs, so there 
are in fact only ten unique sets of indices. One will therefore sometimes encounter 
the potential term written in the form 

.Spot = 
μ 
5!

∫ 10∏
k=1 

dgkφAφB φC φDφE (7.56) 

with . k (not to be confused with the Chern–Simons level of Sect. 7.2.2) standing in 
for pairs of.i , j values. These values of. k correspond to the ten edges of a 4-simplex, 
with the five hubs corresponding to its vertices, as described in Sect. 7.1. Performing 
the contractions between .φA, .φB , .φC , .φD, .φE we obtain a diagram as in Fig. 7.8. 
Examining the resultant connections and identifying.gi j  as the group element which 
labels the edge connecting vertex . i with vertex . j , we see that the indices associated 
to each hub are as given in Eqs. (7.54a)–(7.54e). 
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Fig. 7.9 Contraction of . φ tensors in two (left), three (middle), and four dimensions. In the two-
dimensional case each. φ has two lines running through it, and corresponds to a linear face—in blue— 
of a 2-simplex (a triangle). In three dimensions has three lines run through each . φ, corresponding 
to a triangular face of a 3-simplex (a tetrahedron). The tetrahedral faces of the 4-simplex (right) are 
omitted for clarity, but a quick comparison shows that Fig. 7.8 is the same diagram with “external” 
lines omitted 

Now it is tempting to identify the five hubs in Eqs. (7.54a)–(7.54e) as vertices of a 
volume simplex in four dimensions. We can understand the potential term Eq. (7.53) 
as being based on the structure of such simplices. However, we should actually 
recognise that the . φ can be associated with four lines (and so four of the tracks per 
hub have been suppressed so far, just as we suppressed one index on .gi j  above.) So 
we should think of each hub as a tetrahedral face of a 4-simplex, and think of .gi j  as 
representing the line running through faces . i and. j . This conception is illustrated in 
Fig. 7.9, in two, three, and four dimensions. Likewise, the coupling of two . φ factors 
in the kinetic part of the action, as illustrated in Fig. 7.7, should be thought of as a 
set of four lines passing into and through one . φ, through the next . φ and continuing 
out the other side. 

This leaves us with a scheme that can very easily be viewed as a Feynman diagram 
for interactions between an initial spin network state and a final state. We can there-
fore conceive of performing a perturbative sum over all topologies and geometries 
of the simplices. In this way we connect up to the concept of a path integral over 
field configurations involving a perturbative sum of interaction terms described by 
Feynman diagrams, as outlined in Sect. 3.4. This in turn should enable the calcula-
tion of the transition amplitudes mentioned above. For further details, the reader is 
recommended to consult the reviews [ 22,23]. Other interesting reviews of the spin 
foam formalism and group field theory include [ 24,25]. 

The time has come to move on from our survey of approaches to the quantum 
dynamics of spacetime. In each case the goal has been to construct something recog-
nisable as a path integral formulation of the structure of spacetime, in other words, 
the sum-over-histories for our quantum version of general relativity. Hopefully this 
discussion has set the stage for the reader to explore these concepts on their own. 
We now turn to looking at some applications of the ideas we have covered so far. 
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8Applications 

Ultimately, the value of any theory is judged by its relevance for the real world. 
Unfortunately, due to the small length scales involved, direct tests of models of 
quantum gravity are not easy to perform. However one can try to reproduce well-
known results from other physical theories as a preliminary consistency test for newer 
theories. In this section, we will consider how LQG can be applied to the calculation 
of black hole entropy, and cosmological models. 

While the question of black hole entropy is, as yet, an abstract problem, it is 
concrete enough to serve as a test-bed for theories of quantum gravity. In addition 
to the Bekenstein area law (mentioned in Chap. 1), by investigating the behavior of 
a scalar field in the curved background geometry near a black hole horizon it was 
determined [ 1] that all black holes behave as almost perfect black bodies radiating 
at a temperature inversely proportional to the mass of the black hole, .T ∝ 1/MBH. 
This thermal flux is named Hawking radiation after its discoverer. These properties 
of a black hole turn out to be completely independent of the nature and constitution 
of the matter which underwent gravitational collapse to form the black hole in the 
first place. These developments led to the understanding that a macroscopic black 
hole, at equilibrium, can be described as a thermal system characterized solely by 
its mass, charge and angular momentum. 

Bekenstein’s result has a deep implications for any theory of quantum gravity. 
The “Bekenstein bound” refers to the fact that Eq. (1.1) is the maximum number of 
degrees of freedom—of both, geometry and matter–that can lie within any region 
of spacetime of a given volume . V . The argument is straightforward [ 2]. Consider 
a region of volume .V whose entropy is greater than that of a black hole which 
would fit inside the given volume. If we add additional matter to the volume, we will 
eventually trigger gravitational collapse leading to the formation of a black hole, 
whose entropy will be less than the entropy of the region was initially. However, 
such a process would violate the second law of thermodynamics and therefore the 
entropy of a given volume must be at a maximum when that volume is occupied 
by a black hole. And since the entropy of a black hole is contained entirely on its 
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horizon, one must conclude that the maximum number of degrees of freedom. Nmax 
that would be required to describe the physics in a given region of spacetime.M, in  
any theory of quantum gravity, scales not as the volume of the region.V (M), but as 
the area of its boundary [ 2, 3] .Nmax ∝ A(∂M). 

In view of the independence of the Bekenstein entropy on the matter content of 
the black hole, the origin of Eq. (1.1) must be sought in the properties of the horizon 
geometry. Assuming that at the Planck scale, geometrical observables such as area 
are quantized such that there is a minimum possible area element .a0 that the black 
hole horizon, or any surface for that matter, can be “cut up into”, Eq. (1.1) can be 
seen as arising from the number of ways that one can put (or “sew”) together . N 
quanta of area to form a horizon of area .A = kNa0, where . k is a constant. In this 
manner, understanding the thermal properties of a black hole leads us to profound 
conclusions: 

1. In a theory of quantum gravity the physics within a given volume of spacetime. M 
is completely determined by the values of fields on the boundary of that region 
.∂M. This is the statement of the holographic principle. 

2. At the Planck scale (or at whichever scale quantum gravitational effects become 
relevant) spacetime ceases to be a smooth and continuous entity, i.e. geometric 
observables are quantized. 

In LQG, the second feature arises naturally—though not all theorists are convinced 
that geometry should be “quantized” or that LQG is the right way to do so. One can 
also argue on general grounds that the first feature—holography—is also present in 
LQG, though this has not been demonstrated in a conclusive manner. Perhaps this 
book might motivate some of its readers to close this gap! 

Let us now review the black hole entropy calculation in the framework of LQG. 

8.1 Black Hole Entropy 

The ideas of quantum geometry allow us to give a statistical mechanical description 
of a black hole horizon. This is analogous to the statistical mechanical description 
of entropy for a gas, or some other system composed of many smaller parts, and is 
related to the concept, mentioned above, that the horizon of a black hole can be cut 
up into small area elements. Just as a gas in classical thermodynamics can have a 
macrostate defined by its pressure, temperature, etc. and microstates defined by the 
positions and momenta of its constituent molecules, we are led to the idea that a 
black hole can have macrostates defined by mass, charge, and angular momentum, 
and microstates defined by the properties of the area elements its boundary has been 
subdivided into. 

In classical thermodynamics, the entropy of a system,. S, was related to the number 
of microstates, . Ω, by Boltzmann by the formula 

.S = kB lnΩ (8.1) 
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where .kB is Boltzmann’s constant. Gibbs deduced a similar formula relating the 
entopy to the probability, . pi , of a given microstate occurring, 

.S = −kB
∑

i 

pi ln pi . (8.2) 

For a proof that the logarithmic definitions of entropy provided by Boltzmann and 
Gibbs correspond to the thermodynamic definition usually encountered first in under-
graduate courses, 

.dS ≥ 
dQ 

T 
(8.3) 

the reader is referred to [ 4]. 
It is perhaps worth taking a small digression to discuss these microstate-based 

equations in more detail, since they suggest that the entropy of a black hole can indeed 
be calculated by reference to the microstates of quantum geometry at its boundary. 
Many discussions of entropy quote the result that it is a logarithmic function of the 
number of microstates,. Ω but a clear-cut explanation of why can be hard to come by. 
Indeed the formula 

. S = kB lnΩ

is often “dropped in” to discussions and derivations alike, and explained (if at all) by 
saying that it turns a large number (the number of microstates) into a smaller, more 
manageable number, and that it has the correct properties to describe the disorder of 
a physical system. 1 This may seem half-hearted and unsatisfying to many readers 
(it certainly does to the author), so in Appendix M a discussion is provided which is, 
if not entirely devoid of hand-waving, at least somewhat less vague. This discussion 
is largely based on Shannon’s work on entropy in the context of information theory 
[ 5]. 

In general there are two ways to calculate the entropy associated with a given 
random variable . x : 

1. Using Shannon’s formula. Let us say that we sample our random variable from 
some given ensemble, from which we draw .N samples. The variable . x takes 
values in the set .{xi } where .i = 1, 2, . . .  n. Then the entropy associated with our 
lack of knowledge of the variable . x is given by 

.S(x) = −  
n∑

i=1 

p(xi ) ln p(xi ) (8.4) 

1 For instance if you combine two systems with entropy.S1 and. S2, the resulting system has entropy 
.S = S1 + S2. This is not an entirely trivial or universal property, since if you combine two systems 
at temperatures.T1 and. T2, the resulting system does not attain a temperature.T = T1 + T2. 
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where .p(xi ) is the probability that the random variable takes on the value . xi . If  
in the .N samples on which the entropy is based, the .i th value .xi occurs .ki times 
(with the constraint that.

∑
i ki = N ), then we have the usual frequentist definition 

for the probability associated with that value, 

. p(xi ) = 
ki 
N 

. 

The definition of the Shannon entropy (8.4) is equivalent to the definition of the 
Gibbs entropy in statistical mechanics. 

2. Using the statistical mechanics method, or its more general version, Jaynes’ for-
malism [ 4]. This is based on the maximum entropy principle, according to which, 
in the absence of any prior information about a given random variable the least 
unbiased assumption one can make is that the variable satisfies a probability 
distribution which possesses the maximum possible entropy. This assumption 
leads us to the usual Boltzmann form of the probability. For a given value of the 
random variable . xi , the associated probability distribution must satisfy the max-
imum entropy criterion (wherein (8.4) is maximized) and also the usual axioms 
of probability theory . 

. 

n∑

i=1 

pi = 1 , (8.5a) 

.⟨ f (x)⟩ =  
n∑

i=1 

pi f (xi ) (8.5b) 

where . f (x) is any function of . x . The unique probability function which satisfies 
these criteria is found to be (see for e.g. [ 6, Sect. 3.2]) 

.pi = e−α−βxi (8.6) 

where .α, β are Lagrange multipliers required for enforcing the constraints given 
in (8.5) 2 and where.α, β can be identified with the chemical potential and inverse 
temperature respectively, associated with the random variable . x . Using (8.6) we  
can write down the partition function 

.Z (β) = 
n∑

i=1 

e−α−βxi (8.7) 

2 The quantity being extremised has the form 

.L = −  
n∑

i=1 

{p(xi ) ln p(xi ) − α p(xi ) − β f (xi ) p(xi )} . 
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Fig. 8.1 A spin network corresponding to some state of geometry in the bulk punctures a black 
hole horizon at the indicated locations. Each puncture yields a quantum of area (depicted by the 
black ovals) proportional to .

√
j( j + 1) where . j is the spin-label on the corresponding edge. The 

entropy of the black hole—or, more precisely, of the horizon—can be calculated by counting the 
number of possible configurations of punctures which add up to give a macroscopic value of the 
area lying within some finite interval. (A, A + δA)

given which we can evaluate the usual thermodynamic quantities such as expec-
tation values, free energy and the entropy in . x , given by . 

.⟨ f (x)⟩ = −∂ ln Z(β) 
∂β 

(8.8a) 

.F(T ) = −kT  ln Z(T ) (8.8b) 

.S = −∂ F 
∂T 

(8.8c) 

where the inverse “temperature” is given by .β = 1/kT  . 

In the case of quantum geometry, the microstates correspond with the assignments 
of area to the discrete “pieces” of a surface (such as the event horizon of a black 
hole). Hence for each macroscopic interval of area in the range .[A + δ A, A − δ A], 
entropy. S is proportional to the log of the number of ways in which we can puncture 
the sphere to yield an area within that interval (Fig. 8.1). 

The state of a quantum surface is specified by a sequence of .N integers (or half-
integers depending on the gauge group) .{ j i , . . . ,  j N }, each of which labels an edge 
which punctures the given surface. The area of the surface is given by a sum over 
the Casimir at each puncture, 

.A = 8πγl2 P 

N∑

i=1

√
j i ( j i + 1) . (8.9) 

The eigenvalues of the operator . j i are of the form .ki /2, where .ki ∈ Z. Thus, the 
eigenvalues of the area operator are of the form 

.Ai = 4πγl2 P
√
ki (ki + 2) = 4πγl2 P

√
(ki + 1)2 − 1 . (8.10) 
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In addition to (8.10) the integers .{kI } must also satisfy a so-called projection 
constraint, which is discussed later in this section. 

The task at hand is the following; given an interval .[A + δ A, A − δ A], where 
.A is a macroscopic area value and .δ A is some small interval (.δ A/A << 1), and the 
number .N of edges which puncture the surface, determine the allowed the number 
.N (M) of sequences of integers .{ki , . . . ,  kN }, such that the resulting value for the 
total area falls within the given interval 

.M = 
A 

4πγl2 P 
=
∑

i

√
ki (ki + 2) ∈ [A + δ A, A − δ A] . (8.11) 

There are various approaches to this problem. We summarize two of these—the 
simple argument of Rovelli’s [ 7] and the number theoretical approach of [ 8, 9] in the  
next section, and in the following section which we describe the approach based on 
Chern-Simons theory with SU(2) gauge group. 

8.1.1 Rovelli’s Counting 

We want to compute the number of sequences .N (M), where each sequence . {ki } 
satisfies 

. M = A 

4πγl2 P 
=
∑

i

√
ki (ki + 2) .  

Let us first note the following set of inequalities: 

.

∑

i

/
k2 i <

∑

i

√
ki (ki + 2) ≡

∑

i

√
(ki + 1)2 − 1 <

∑

i

√
(ki + 1)2 . (8.12) 

Let .N+(M) denote the number of sequences such that .
∑

i ki = M and . N−(M) 
denote the number of sequences such that .

∑
i (ki + 1) = M). Then the above set of 

inequalities implies that [ 7] 

.N−(M) <  N (M) <  N+(M) . (8.13) 

Computing .N+(M) boils down to counting the number of partitions of . M , i.e. 
the numbers of sets of ordered, positive integers whose sum is . M . As noted in 
[ 7], this can be solved by observing that if .(k1, k2, . . . ,  kn) is a partition of . M , 
then .(k1, k2, . . . ,  kn, 1) and .(k1, k2, . . . ,  kn + 1) are partitions of .M + 1. 
All partitions of .M + 1 can be obtained in this manner and therefore we have 
.N+(M + 1) = 2N+(M), which implies that.N+(M) = C2M , where. C is a constant. 



8.1 Black Hole Entropy 125 

8.1.2 Number Theoretical Approach 

This approach consists of two steps: 

A. Determine allowed sequences. This involves solving the Brahmagupta-Pell 
(BP) equation. 4 For now, we will work in units where .4πγl2 P ≡ 1. Thus for 
a given set of .N punctures on a quantum horizon, the total area can be written 
as 

. A = 
N∑

i=1 

Ai = 
N∑

i=1

√
(ki + 1)2 − 1 . 

For each possible value of . k, let .gk be the number of punctures which have the 
corresponding eigenvalue. So, we can write 

. A = 
kmax∑

k=1 

gk
√

(k + 1)2 − 1 

with .gk = 0 if no puncture has spin .k/2. Clearly the sum over all possible 
values of . k gives the total number of punctures on the horizon, .

∑
k gk = N . 

As shown in Appendix N, the square root of any integer can be written as 
the product of an integer and the square-root of a square-free integer. Since 
.k ∈ Z ⇒ (k + 1)2 − 1 ∈ Z, therefore we can write 

. 

√
(k + 1)2 − 1 = yk 

√
pk 

for some .yk ∈ Z and .pk ∈ A, where .A is the set of square-free integers. This 
implies that the area eigenvalue can be written as an integer linear combination 
of square-roots of square-free numbers, 

.A = 
imax∑

i=1 

yi 
√
pi , 

4 It is well-known that the name of “Pell’s Equation” was the result of Leonhard Euler’s misidenti-
fication of John Pell with the mathematician Lord Brouckner. If we gave Euler a second chance to 
name the equation, he might have called it “Brouckner’s equation”. This equation had previously 
been intensively studied by the Indian mathematicians Brahmagupta and Bhaskara around the 5th 
century B.C. and 12th century A.D. respectively. However, Brouckner and Euler are to be forgiven 
for not having knowledge of the existence of this earlier work. The authors hereby take the liberty 
of correcting this historical wrong associated with the naming of this equation, by adding the prefix 
“Brahmagupta” to the presently accepted name “Pell’s Equation”. 
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leading us to the condition that 

. 

kmax∑

k=1 

gk
√

(k + 1)2 − 1 = 
imax∑

i=1 

yi 
√
pi . 

As a first step towards solving the general case, let us first try to determine the 
solution of the above equation for a single area eigenvalue .ki /2, 

. 

√
(ki + 1)2 − 1 = yi 

√
pi 

knowing which we will be able to solve the general equation. Here the 
unknown variables are.ki , yi . The.pi are the known square-free numbers. Setting 
.xi = ki + 1 and squaring both sides we obtain 

. x2 i − pi y2 i = 1. 

This is commonly known as Pell’s equation, or perhaps more appropriately as the 
Brahmagupta-Pell equation. A method for obtaining its solutions is described 
in Appendix O. 

B. Determine the number of valid ways of sprinkling labels from an allowed 
sequence onto the edges. This can be mapped to one of the simpler exam-
ples of NP-complete problems in the field of computational complexity—the 
number partitioning problem (NPP) [ 10,11]. 
The relevance of the NPP for black hole entropy arises as follows: The counting 
of states of a horizon for a non-rotating black hole boils down to determin-
ing the number of ways in which we can choose spin-labels .ki from a given 
sequence.{k1, ..., kN } (where the allowed sequences are determined by solving 
the Brahmagupta-Pell equation) to each of the .i = 1...N edges puncturing the 
horizon, such that .

∑
ki = 0. 

More generally the case where .
∑

ki = m (m > 0), corresponds to a horizon 
with angular momentum. m. This is equivalent to the statement of the NPP, where 
given an arbitrary but fixed sequence of (positive) integers.A = {ai , ..., aN }, one 
asks for the number of ways .NA in which we can partition . A into two subsets 
.A+ and .A−, such that the difference of the sum of the elements of each subset 
is minimized, .

∑
A+ ai −

∑
A− ai = m. For the black hole entropy problem . m 

is given by .
∑

k+ 
i −∑ k− 

i = m. 
As shown in [ 8] this problem can be mapped to a non-interacting spin-system 
[ 12] as follows. Consider a chain of .N spins each of which can be in an up . |↑⟩
state or a down .|↓⟩ state. If .ai belongs to .A+ (.A−) then we set the . i th spin to 
up (down). Consequently the constraint.A+ − A− = m can be expressed as the 
condition that 

.m − 
N∑

i=1 

ai Si = 0 (8.14) 
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where .Si ∈ {+1, −1} are the possible eigenvalues of . σz . The problem of parti-
tioning . A is then equivalent [ 12] to determining the ground state of the Hamil-
tonian 

.H = m − 
N∑

i=1 

a j σ j z (8.15) 

where .σ j z is the Pauli spin operator for the . j th spin. Any eigenstate of .H with 
zero energy corresponds to a solution of the NPP for the set . A. 

8.1.3 Chern-Simons Approach 

Another approach to the black hole entropy problem rests on the observation that 
the dynamics of punctures on the black hole horizon, in the framework of LQG, 
is described by a Chern-Simons theory. This relationship was first observed in the 
classic papers by Ashtekar et al. [ 13– 15]. 

Building upon these findings, Kaul and Majumdar [ 16] were the first to show 
that the Bekenstein-Hawking expression for the entropy of a four-dimensional 
Schwarzschild black hole could be obtained from the dimensionality of the Hilbert 
space of an SU(2) Chern-Simons theory living on the horizon of that black hole. In 
addition to the leading term proportional to the area of the horizon, they were also 
able to obtain corrections proportional to the logarithm of the area in [ 17]. For a 
recent updated review of their findings see [ 18,19]. 

More recently work by Engle and co-workers [ 20,21], reaches a similar conclusion 
by working in a manifestly SU(2) invariant formulation of the horizon degrees of 
freedom. 

For a possible connection between the physics of the quantum Hall effect, as 
described by a Chern-Simons theory, and the question of black hole entropy see 
[ 22,23]. 

In this regard it is also worth mentioning that Chern-Simons theory provides 
an exact solution of the Hamiltonian constraint in terms of Ashtekar’s self-dual 
variables. This solution is known as the Kodama state [ 24] and its properties have 
been extensively studied by Randono [ 25– 27]. A brief introduction to the Kodama 
state is given in Appendix G. 

8.1.4 Entropy from Entanglement 

The relationship between entropy of entanglement and the entropy of black hole 
horizons was first suggested more than two decades ago in [ 28,29]. 

Consider a system, which could be a one-dimensional spin-chain (Fig. 8.2a) or a 
quantum field theory living on some spacetime (Fig. 8.2b). Divide the system into 
two parts. A and. B. Let.ρAB  be the density matrix representing the state of the system 
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BA 

(a) Partitioning a spin-chain into two parts A and B 

A                B 

S 

(b) Partitioning a spacetime into an “inte-
rior” region B, and an “exterior” region A, 
separated by a boundary S representing a 
black hole horizon. 

Fig. 8.2 Entropy of entanglement is obtained by tracing over the degrees of freedom in either . A
or. B

as a whole and.ρA, ρB be the density matrices for systems.A, B obtained by tracing 
over the degrees of freedom of .A, B respectively, where 

.ρA = TrB[ρAB] , ρB = TrA[ρAB] . (8.16) 

The von-Neumann entropy.SA of region. A (or the entropy.SB of region. B) can now 
be defined as 

.SA = TrA [ρA ln ρA] , SB = TrB [ρB ln ρB] . (8.17) 

The two entropies are equal, .SA = SB , so we only need to calculate one of them. In 
[ 28,29] a scalar field was employed as a “probe” field. After performing the trace 
over the interior region (.B in Fig. 8.2b), the reduced density matrix .ρA was found. 
Its von-Neumann entropy was found to be proportional to the area of the boundary 
surface. S separating the interior and exterior regions. 5 This relationship between the 
entanglement entropy and the “area” of the boundary has turned out to be very general 
and is not limited to.3 + 1 dimensional spacetime or to scalar fields. Some reviews of 
this phenomenon of “holographic” entanglement entropy are [ 30,31]. A perspective 
inspired by the anti-de Sitter/Conformal Field Theory (AdSCFT) correspondence 
can be found in [ 32]. 

In 2010, a seminal paper by Mark Van Raamsdonk [ 33] argued that entanglement 
is the glue that holds spacetime together. A similar idea had earlier been suggested by 
Brian Swingle [ 34] who proposed that holographic spacetimes find a realization in the 
structure of networks formed from a technique, originally developed for studying 
many body strongly correlated systems, known as entanglement renormalization 
[ 35,36]. Since then a substantial amount of work has been done [ 37,38] towards 
providing concrete support for this proposal. 

5 Strictly speaking, a surface and its area are not the same thing, and the entropy is proportional 
to the area rather than equal to it. However we feel it is acceptable in this case to use the standard 
symbol for entropy, . S, to indicate the boundary surface between the two regions, because of the 
conceptual connection between the surface and the entropy. 
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In 2006 Livine and Terno [ 39] first suggested that entanglement between differ-
ent parts of the horizon might contribute to the Bekenstein-Hawking entropy of the 
black hole. In 2008 Donelly [ 40] and in 2012 Bianchi and Myers [ 41,42] proposed 
that Bekenstein-Hawking entropy could be understood as arising from the entropy of 
entanglement between the quantum geometric degrees of freedom on either side of 
the horizon. Similar ideas have been put forth by Dasgupta [ 43]. While these propos-
als have much in common with Raamsdonk & Swingle’s ideas of geometry emerging 
from entanglement, the question of black hole entropy has yet to be addressed in the 
context of entanglement renormalization. 

In conclusion, the study of black hole entropy in LQG is a very rich and active 
field and the results presented in this review, while very important and pioneering, 
should not been seen as the final word on this topic. 

8.2 Loop Quantum Cosmology 

One of the first avenues to follow when approaching old problems with new tools 
is to select the simplest possible scenarios for study, in the hope that the under-
standing gained in this arena would ultimately lead to a better understanding of 
more complex systems and processes. In classical GR this corresponds to studying 
the symmetry reduced solutions 6 of Einstein’s equations, such as the Friedmann-
LeMaitre-Robertson-Walker (FLRW) cosmologies and their anisotropic counter-
parts, and various other exact solutions such as deSitter, anti-deSitter, Schwarzschild, 
Kerr-Newman etc. 7 which correspond respectively to a “universe” (in this very 
restricted sense) with positive cosmological constant (.Ʌ >  0), a universe with.Ʌ <  0, 
a non-rotating black hole and a rotating black hole (both in asymptotically flat space-
times 8 ). In each of these cases the metric has a very small number of local degrees 
of freedom and hence provides only a “toy model”. Of course, in the real world, 
the cosmos is a many-body system and reducing its study to a model such as the 
FLRW universe is a gross simplification. However, via such models, one can obtain 
a qualitative grasp of the behavior of the cosmos on the largest scales. This is the 
spirit in which the ideas of LQG are applied to the cosmos as a whole, leading to the 
field of Loop Quantum Cosmology (LQC). 

The following discussion draws primarily from [ 46– 48]. For a more in-depth 
introduction to the topic the reader is invited to consult [ 49,50]. 

6 That is, the solutions of the EFEs possessing strong global symmetries which reduces the effective 
local degrees of freedom to a small number. 
7 We refer the reader to the extremely comprehensive and well-researched catalog of solutions to 
Einstein’s field equations, in both metric and connection variables, presented in [ 44]. A somewhat 
older, but still valuable, catalog of exact solutions is given in [ 45]. 
8 A metric with a radial dependence is considered asymptotically flat if it approaches (in a well-
defined sense) a flat Minkowski metric as.r → ∞. 
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8.2.1 Isotropy and Homogeneity in the Metric Formulation 

In the metric formulation the statements of isotropy and homogeneity of a spacetime 
are as follows: 

Homogeneity A given spacetime geometry .Mg = (M, gμν ), consisting of a mani-
fold.M and a metric defined on that manifold,.gμν , is said to be spatially homogeneous 
[ 48, Sect. 4.1.1] if there exists a symmetry group . S acting on spatial slices .∑t , such 
that for any two points .x, y ∈ ∑t , there exists an .s ∈ S such that .s(x) = y. Under 
the action of . s, the spatial metric .hab on .∑t , satisfies 

.hab(x) = s⋆hab(x) = hab(y) (8.18) 

where .s⋆ is the pullback 9 of the spatial metric under the action of the isometry . s. 

Isotropy A given spacetime geometry .Mg is said to be isotropic if at any point 
.xμ ∈ M, the metric satisfies 

.gμν (x)u
μ vν = gμν (x)(Ru)μ (Rv)ν (8.19) 

where .uμ, vν are arbitrary vectors in the tangent space .Tp(x) at that point and .R is 
an arbitrary rotation acting on elements of .Tp(x). 

Isotropy is a more restrictive condition than homogeneity, because isotropy nec-
essarily implies homogeneity, however the reverse is not true. 

8.2.2 FLRW Models 

The simplest quantum cosmological model is that which corresponds to the Fried-
mann metric whose line-element is given by 10 

.ds2 = −N (t)2dt2 + a(t)2
(

1 

1 − kr2 
dr2 + r2dΩ2

)
(8.20) 

where the only dynamical variable is the scale factor .a(t) which depends only on 
the time parameter, .r = √

x2 + y2 + z2 is the radial dimension of the spatial slices, 
.dΩ2 = dθ2 + sin2 θdφ2 is the angular volume element and .k = −1, 0, +1 deter-
mines whether our spatial slices are open (.k = −1), flat (.k = 0) or closed (.k = 1). 
For this metric we can perform the .3 + 1 decomposition into a foliation of spatial 

9 If . r is a smooth map from one manifold to another .r : M → N , and  . f is a smooth function 
. f : N → P , the pullback of . f by . r , denoted .r⋆ f , is the map from .M to .P such that 
.(r⋆ f )(x) = f (r(x)) where. x is in. M . In the case given in the text. s is a map from the manifold. ∑t 

to itself. 
10 The following discussion is taken from [ 47, Sect. 4]. 



8.2 Loop Quantum Cosmology 131 

manifolds.∑t , and write down the action in terms of the various constraints. By com-
paring this metric with the general form given in Eq. (4.15), we see that .N (t) is the 
lapse function and the shift vanishes, .Na = 0. This implies that the diffeomorphism 
constraint .Daπ

ab must also vanish. 
Inserting this metric into the the EFE (2.12) gives us the vacuum FLRW equations 

which describe the dynamics of homogenous, isotropic spacetimes 

.

(
ȧ 
a

)2 

+ 
k 

a2 
= 

8πG 
3a2 

Hmatter(a) (8.21) 

where .Hmatter is the Hamiltonian for any matter fields that might be present. This 
equation gives us the Hamiltonian constraint for the FLRW metric. This can be seen 
by starting from the Lagrangian formulation where 

.SEH = 
1 

16πG
ʃ

dt  d3x 
√−g R[g] . (8.22) 

The Ricci scalar .R[g] for the FLRW line-element (8.20) is  

.R = 6
(

ä 
N 2a 

+ 
ȧ2 

N 2a2 
+ 

k 

a2 
− 

ȧ Ṅ 
aN 3

)
. (8.23) 

Substituting the above into the .SEH we obtain 

.S = V0 
16πG

ʃ
dt  N  a(t)2 R = 

3V0 
8πG

ʃ
dt  N

(
− 
a ȧ2 

N 2 
+ ka

)
(8.24) 

where .V0 =
ʃ
∑
d3x is the volume of a fiducial cell . V in the spatial manifold. From 

this equation we can identify the momentum .pa conjugate to the (only) degree of 
freedom—the scale factor .a(t): 

.pa = 
∂L 

∂ ̇a 
= −  

3V0 
4πG 

a ȧ 
N 

. (8.25) 

Since the action does not contain any terms depending on . Ṅ , we have  .pN = 0, 
implying that the lapse function .N (t) is not a dynamical degree of freedom. 
We can now write down the Hamiltonian for the system in the usual manner, 
.H = ∑

i pi q̇i − L = pa ȧ − L , which gives 

.Hgrav = −N

[
2πG 
3V0 

p2 a 
a 

+ 
3V0 
8πG ka

]
. (8.26) 

It is clear from the form of this expression that this Hamiltonian will become divergent 
as .a → 0. Changing from metric to connection variables will allow us to alleviate 
this problem. 
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8.2.3 Connection Variables 

In the connection formulation the definition of isotropy and homogeneity is different 
from that in the metric picture, because here the relevant variables—the connection 
and tetrad—transform not under the action of diffeomorphisms, but under the action 
of gauge transformations . g. 11 

Gauge Transformation Given a gauge group .G (typically .SL(2, C) for four-
dimensional Lorentzian gravity or SU(2) for the three-dimensional spatial slices) 
and a manifold.M, a gauge transformation is a map.g : M → G from the manifold 
to the group, whose action on a given connection-tetrad (or triad) pair .( Ai 

a, ea i ) on 
.M, is given  by  

.(A', e') = (g−1 Ag + g dg, g−1eg) . (8.27) 

Homogeneity and Isotropy A given connection-tetrad/triad pair 
.(Ai 

a, ea i ) on a manifold .M, is said to be spatially homogenous and isotropic [ 46, 
Sect. 7.1] if .M is equipped with an isometry group . S, and for every .s ∈ S there 
exists a gauge transformation .g : M → G such that 

.(s⋆A, s⋆e) = (g−1 Ag + g dg, g−1eg) . (8.28) 

Let us fix a fiducial flat metric . 0hab on .M and the associated tetrad . 0ea i and co-
triad . 0ωi 

a . Then every symmetric pair .(A', E ') on .M, can always be written in the 
form 

.Aa = c̃ 0ωi 
aτi , ea = p̃

√
det(0h) 0ea i τ i (8.29) 

by choosing a suitable local gauge transformation (8.28). Here .τi = − 1 
2 σi , with . σi 

being the Pauli matrices and generators of the Lie algebra .su(2). 
Thus the only non-trivial information in the pair .(A', E ') is contained in the two 

c-numbers .(c̃, p̃), in terms of which the connection and triad can be written as 

.Ai 
a = c̃ δi a, ea i = p̃ δa i . (8.30) 

In variables adapted to the particular form of the metric (8.20), the connection . c̃ 
and triad .| p̃| are expressed as 

.| p̃| =  
a2 

4 
, c̃ = ┌̃ + γȧ = 

1 

2 
(k + γȧ) (8.31) 

where . γ is the Immirzi parameter. The Poisson bracket between these variables is 

. {c̃, p̃} = 
8πGγ 
3 

V0 . (8.32) 

11 Gauge transformations for the case of abelian groups were discussed in Sect. 3.1. Here we cover 
the more general non-abelian case which arises in four-dimensional gravity. 
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The factors of .V0 can be absorbed into the definition of the variables to give us 

.c = V 1/3 0 c̃ p  = V 2/3 0 p̃ (8.33) 

whose Poisson bracket is 

. {c, p} = 
8πGγ 
3 

. (8.34) 

In terms of these the Hamiltonian constraint (8.26) becomes (for the flat . k = 0 
cosmology) 

.H = −  
3 

8πGγ2 
c2 sgn(p)

√|p| +  Hmatter = 0 (8.35) 

where the factor of .sgn(p) corresponds to the orientation of the triad, a feature that 
is lost in the metric framework. 

8.2.4 Holonomy Variables 

To proceed to quantum cosmology one can start with either (8.26) or  (8.35). Working 
with the former, using .a, pa as the generalized co-ordinate and momentum respec-
tively, one would obtain the Wheeler-deWitt equation. However, the WdW equation 
does not resolve the short-range singularity obtained in the limit .a → 0, since the 
momentum operator is expressed as a derivation with respect to the co-ordinate, 
. p̂a ∼ ∂/∂a, which is a continuous operator and hence does not encode the discrete-
ness of background geometry. 

In the LQC literature, the holonomy of an .su(2) connection is usually expressed 
in terms of the matrices .τ j = − 1 

2 σ j as 

.ge( A) = P exp
(ʃ

e 
Ai 
aτi n

a(x)dx

)
(8.36) 

where .na(x) is the unit tangent vector to the curve at the point .xμ. For the isotropic 
connection variable. c̃ (8.31), the holonomy can be evaluated along any straight curve 
of length .l = V 1/3 0 , to give  

.ge( A) = cos(lc/2)1 + 2 sin(lc/2)(naτi 0ei a) (8.37) 

where . 0ei a is the (constant) fiducial triad associated with the (constant) metric on 
spatial hypersurfaces 12 . For example, if .na lies along the .z-direction, then 

. ge(A) =
[
cos(lc/2) − i sin(lc/2) 0 

0 cos(lc/2) + i sin(lc/2)

]
=
[
e−ilc/2 0 

0 eilc/2

]

(8.38) 

12 Note that the peculiar factor of. 2 appearing in the second term on the right-hand side is a conse-
quence of working with the matrices.τ j = − 1 

2 σ j , rather than with.σ j . 



134 8 Applications 

where . c is the rescaled connection variable, and not the speed of light! The matrix 
elements of the holonomy operators, for an isotropic homogeneous spacetime, acting 
in the fundamental representation of .SU(2) will therefore be of the form.exp(iμ j c), 
where . j labels the edge along which the holonomy is evaluated, and .μ j depends on 
the length of that edge. In terms of these matrix elements, all states in the connection 
representation can be written in the form [ 48, Sect. 6.2.1.2] 

.ψ(c) =
∑

j 

f j e
iμ j c (8.39) 

where . f j ∈ C, μ j ∈ R. The inner product between two such states is given by 

.⟨ψ1|ψ2⟩ =  lim 
T →∞ 

Tʃ

−T 

dc  ψ∗
1ψ2 . (8.40) 

8.2.5 Quantisation 

While states of the form .eiμ j c look very much like the familiar plane-waves .eikx  of 
classical and (non-loop) quantum mechanics, in contrast to plane-waves holonomy 
states are discontinuous in the “momenta”.μ j . This can be understood by recognising 
that for general graph states, i.e. those not restricted to correspond to homogeneous 
and/or isotropic geometries, states living on different graphs are orthogonal (6.12), 

.⟨Θ┌' |𝚿┌⟩ =  δ┌,┌' . (8.41) 

In the present situation, when two states.ψ1 and.ψ2 are given in terms of two different 
sets of “momenta” .{μ j } and .{μ j ' }, the two states can be said to living on different 
graphs, and therefore are orthogonal whenever the sets of “momenta” for both states 
are not identical, 

. ⟨ψ1|ψ2⟩ =  0 , if {μ j } /= {μ j ' } . 
For states corresponding to individual edges, .ψi = eμi c, we have  

.⟨ψi |ψ j ⟩ =  δμi ,μ j =
(
1 if  μi = μ j 
0 if  μi /= μ j 

(8.42) 

regardless of how small the difference .μi − μ j is. Thus the basis states (8.39) for a 
homogeneous, isotropic spacetime are defined on a real number line, equipped not 
with the usual continuous topology, but with a discrete topology! Because of this 
fact there does not exist any operator corresponding to the connection. ĉ. 13 Therefore 

13 One might hope that such an operator could be obtained by taking the derivative of.  exp iμc with 
respect to. μ. This turns out to not be the case. For further details we recommend the reader to consult 
[ 46, Sect. 7.2.1, 7.2.2] and [ 47, Sect. 5.2.1].  
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when quantizing expressions involving powers of. c, the corresponding operators have 
to be constructed from exponentials of the connection. 

As an example, consider the factor of. c2, occurring in the definition of the Hamil-
tonian constraint (8.35). When constructing the operator for this constraint, we have 
to write .ĉ2 in terms of exponentials. This can be done by noting that 

. c2 = 
sin2(μc) 

μ2 + O(μ4) 

and .sin(μc) can in turn be expressed in terms of exponentials, 

. sin(μc) = 
eiμc − e−iμc 

2i 
, 

which finally allows us to approximate the operator expression for .ĉ2 as 

.ĉ2 = −
(

 exp(iμc) −  exp(−iμc)
)2 

4μ2 + O(μ4) (8.43) 

or, equivalently 

.ĉ2 =
 sin2(μc) 
μ2 + O(μ4) . (8.44) 

8.2.6 Triad Eigenstates and Volume Quantization 

From the Poisson bracket relations (8.34) between the rescaled connection and triad 
variables.(c, p), one can see that the commutator between the corresponding quantum 
operators will be 

.[ĉ, p̂] =  
8πγG 
3 

, (8.45) 

implying that, in the connection representation (where states are functions of the 
connections as in (8.39)), the operator . p̂, becomes a derivative with respect to . c, 

. p̂ = (−i ) 
8πγG 
3 

∂ 
∂c 

= −8πγl2 P 
3 

∂ 
∂c 

, (8.46) 

where in the second step we have absorbed the factor of.G into the definition of the 
Planck length.l2 P = G (in units where the speed of light .clight = 1). Then the action 
of . p̂ on the basis states .ψμ(c) = exp(iμc) is 

. p̂ψμ = 
8πγl2 P 
3 

μψμ , (8.47) 
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implying that the states .ψμ(c) ≡ |μ⟩ are eigenstates of the triad operator. We can 
now understand the meaning of the parameter. μ. By noting that the physical volume 
of a unit cell is given in terms of the triad 14 as .V = |p|3/2 , we can write down the 
action of the corresponding volume operator on the triad eigenstate 

. V |μ⟩ = || p̂
||3/2 |μ⟩ =

(
8πγl2 P 
3

)3/2 

|μ|3/2 |μ⟩ , (8.48) 

and.|μ|3/2 thus corresponds to the volume of a fiducial cell . V of the spacetime when 
the “universe” (in the very restricted sense of LQC) is in the state .|μ⟩. 

8.2.7 Regularized FLRW Hamiltonian 

By inserting the expression (8.44) for the operator . c2 in the expression (8.35), we 
obtain the loop regularized expression for the Hamiltonian operator corresponding 
to an isotropic, homogeneous, flat (.k = 0) FLRW universe, 

. Hloop = − 3 

8πGγ2

 sin2(μc) 
μ2 sgn(p)

√
| p̂| +  Hmatter + O(μ4) ≃ 0 . (8.49) 

Since there is no explicit time-dependence in this expression, corresponding to the 
absence of a natural “clock” variable in general relativity, in order to understand how 
this loop spacetime evolves we must introduce an auxiliary clock variable, a role 
which is typically played by a massless scalar field in the matter sector. 

The Hamiltonian for a massless scalar field in an isotropic background is given 
by 

.Hφ(a, φ, πφ) = 
1 

2 
|p|−3/2 π2 

φ + |p|3/2 V (φ) (8.50) 

where . a is the scale factor, .(φ, πφ) are the generalized co-ordinate and momenta 
variables for the scalar field respectively, .p is the isotropic triad and .V (φ) is an 
optional potential for the scalar. The complete classical Hamiltonian constraint for a 
massless scalar (with no potential term) in an isotropic background is then given by 

.H = Hgrav + Hφ = −  
3 

8πGγ2 
c2 sgn(p)

√|p| +  
1 

2 

π2 
φ 

|p|3/2 ≃ 0 (8.51) 

14 In terms of the spatial metric, the volume of a unit cell is given by. V = 
√
det h =

/
ϵabcϵi jkea i e

b 
j e

c 
k 

(6.30). Since for an isotropic spacetime.ea i = p δa i (8.30), we find that. V = | p|3/2 . 
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and likewise the full quantum Hamiltonian operator, for gravity plus matter, is given 
by 

.  H =  Hloop +  Hmatter = − 3 

8πGγ2

 sin2(μc) 
μ2 sgn(p)

√
| p̂| +  

1 

2

 1 

|p|3/2 π̂
2 
φ ≃ 0 . 

(8.52) 
Understanding how to obtain solutions of this equation will take us too far afield for 
an introductory review, so here we will only summarize the main implications of this 
quantization. 

8.2.8 Singularity Resolution and Bouncing Cosmologies 

Expressing the operator for the connection in the form (8.43), rather than in the famil-
iar form.ĉ = ∂/∂ p from “normal” quantum mechanics, has an important implication 
for the resulting equations of motion. In quantum mechanics, the operator for the 
squared momentum becomes (in the position representation) 

. p̂2|ψ⟩ ∼  
∂2 

∂x2 
|ψ⟩

leading to the usual Schrödinger equation, which is a differential equation. However, 
in the “new” loop quantum mechanics, there is no operator corresponding to the 
connection . ĉ, when working in the triad representation! Thus a .ĉ2 term has to be 
approximated by the form given in (8.43) 

. ĉ2 ≈ −
(

 exp(iδc) −  exp(−iδc)
)2 

4δ2
+ O(δ4) 

= −  
1 

4δ2

(
 exp(iδc) 

2 +  exp(−iδc) 
2 − 2

)
+ O(δ4) .  

To understand the action of this operator on a triad eigenstate.|μ⟩, we need the action 
of the operator .  exp(iδc) on .|μ⟩. This can be easily seen to be 

.  exp(iδc)|μ⟩ = |μ + δ⟩ (8.53) 

because .|μ⟩ is nothing more than .eiμc! 
Now we can easily determine the action of .ĉ2 on .|μ⟩, which is 

.ĉ2|μ⟩ ≈ −  
1 

4δ2 
(|μ + 2δ⟩ + |μ − 2δ⟩ −  2|μ⟩) + O(δ4) . (8.54) 
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One can see that instead of a differential equation, in the LQC approach, we will 
obtain difference equations. One might argue that if the limit .δ → 0 is taken in the 
above expression, the left-hand side will reduce to the usual expression for the second 
derivative 

. lim 
δ→0 

f (x + 2δ) + f (x − 2δ) − 2 f (x) 
δ2

= 
d2 f (x) 
dx2

. 

However, as (8.48) shows, .(8πγ/3)l3 P |μ|3/2 corresponds to the volume of a fiducial 
“cell”. As shown in Sect. 6.4, the action of the volume operator . V in full LQG - i.e. 
before any symmetry reduction has been performed—on a spin network state .𝚿┌ , 
living on the graph . ┌, is of the form 

.  V𝚿┌ ∼
∑

v∈S∩┌

/
ϵabcϵi jknanbnc Ĵ i Ĵ j Ĵk 

modulo some constants and choice of sign factors. Here. S is the region of the manifold 
whose volume we wish to obtain,.v ∈ S ∩ ┌ is set of vertices. v of. ┌ which lie within 
. S, and .na, nb, nc are tangent vectors to the edges of . ┌ which meet at . v. 

Now, we know that the operator . Ĵ is bounded from below, i.e. has a minimum 
eigenvalue of .1/2. Thus the volume operator . V must also necessarily be bounded 
from below, with the smallest possible volume eigenvalue in LQG being of the order 
.γ3/2l3 P. 

Thus we arrive at the conclusion that because of the quantization of geometric 
operators in full LQG it is not permissible to take the limit.δ → 0 in expressions such 
as (8.54). This fact lies at the core of the observation that LQC cures the singularities 
in cosmological evolution that are encountered in the limit that the scale factor 
.a → 0 when we solve the classical FRLW equations or their quantum counterparts, 
the Wheeler-deWitt equations. 

Furthermore, a similar line of reasoning shows that the factor of.  |p|−3/2, multiply-
ing the scalar field momentum in the LQC Hamiltonian (8.52), remains bounded from 
above throughout the evolution of the universe. In classical general relativity, where 
.p ∼ a2, as the initial Big Bang singularity is approached, the scale factor diverges 
.a → 0, leading to infinite energy densities for the scalar (and any other matter) field. 

In LQC, the fact that .  |p|−3/2 has an upper bound of order .∼ l−3 
P , ensures that such 

divergences do not occur. The consequence is that cosmological evolution remains 
regular and non-singular as one approaches the Big Bang and, in fact, one can evolve 
past the moment of creation into what can be interpreted as a collapsing phase of a 
universe which existed before our own! 

Though the interpretation of the various branches of the cosmological evolution 
in LQC as bouncing universes might be a matter of some debate, it is clear that due 
to the tight consistency constraints on this geometric approach to quantum gravity 
we can rest assured that singularities such as the one encountered at the moment of 
the Big Bang or the one which is the end result of uncontrolled gravitational collapse 
of matter, resulting in formation of a black hole, are artifacts of a description of 
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geometry which implicitly relied on the assumption of an infinitely smooth and 
continuous spacetime at all scales. 
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9Discussion 

Any fair and balanced review of LQG should also mention at least a few of the many 
objections its critics have presented. A list of a few of the more important points of 
weakness in the framework and brief responses to them follows: 

1. LQG admits a volume extensive entropy and therefore does not respect the Holo-
graphic principle: This criticism hinges upon the description of states of quantum 
gravity as spin networks which are essentially spin-systems on arbitrary graphs. 
However, spin networks only constitute the kinematical Hilbert space of LQG. 
They are solutions of the spatial diffeomorphism and the Gauss constraints but not 
of the Hamiltonian constraint which generates time-evolution. This criticism is 
therefore due to a (perhaps understandable) failure to grasp the difference between 
the kinematical and the dynamical phase space of LQG. 
In order to solve the Hamiltonian constraint we are forced to enlarge the set of 
states to include spin foams which are histories of spin networks. In a nutshell 
then, as we mentioned in Sect. 6.6, the kinematical states of LQG are the spin 
networks, while the dynamical states are the spin foams. The amplitudes asso-
ciated with a given spin foam are determined completely by the specification of 
its boundary state. Physical observables do not depend on the possible internal 
configurations of a spin foam but only on its boundary state. In this sense LQG 
satisfies a stronger and cleaner version of holography than string theory, where 
this picture emerges from considerations involving graviton scattering from cer-
tain extremal black hole solutions. 
In [ 1] it is shown that in the context of loop quantum cosmology of a radiation-
filled flat FLRW model, Bousso’s covariant entropy bound [ 2] is respected. As 
one approaches the moment of the Big Bang, and quantum gravitational effects 
become large the bound is violated, however, far from the Big Bang, when geom-
etry has become semiclassical the bound comes into force. 
As yet, there is no general proof of whether or not LQG respects Bousso’s bound. 
However, one might argue that the structure of LQG is amenable to the spirit of 
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Bousso’s bound. The latter suggests that there is a fundamental limit to the num-
ber of degrees of freedom in any given region of spacetime. Such a fundamental 
limit is already present in LQG in the form of the quantized area and volume 
operators which tell us that any region of spacetime must contain a finite number 
of geometric degrees of freedom. 

2. LQG violates the principle of local Lorentz invariance/picks out a preferred frame 
of reference: Lorentz invariance is obeyed in LQG but obviously not in the exact 
manner as for a continuum geometry. As has been shown by Rovelli and Speziale 
[ 3] the kinematical phase space of LQG can be cast into a manifestly Lorentz 
covariant form. A spin network/spin foam state transforms in a well-defined way 
under boosts and rotations. Similarly in quantum mechanics one finds that a 
quantum rotor transforms under discrete representations of the rotation group 
SO.(3). 

3. LQG does not have stable semiclassical geometries as solutions—geometry 
“crumbles”: CDT simulations e.g. [ 4] show how a stable geometry emerges. 
As mentioned in Sect. 4.1, this involves calculating a sum over histories for the 
geometry of spacetime, between some initial and final state. The stability of the 
spacetimes studied in such simulations appears to be dependent on causality— 
that is, spacetime geometries develop unphysical structures in the Euclidean case, 
which are controlled when there is a well-defined past and future, as is the case 
in LQG. The question of exactly how similar CDT and LQG are to each other is 
a matter of continuing investigation. 

4. LQG does not contain fermionic and bosonic excitations that could be identified 
with members of the Standard Model: The area and volume operators do not 
describe the entirety of the structures that can occur within spin networks. LQG 
or a suitably modified version which allows braiding between various edges will 
exhibit invariant topological structures. Recent work [ 5– 10] has been able to 
identify some such structures with SM particles. In addition, in any spin-system— 
such as LQG—there are effective (emergent) low-energy degrees of freedom 
which satisfy the equations of motion for Dirac and gauge fields. Xiao-Gang 
Wen and Michael Levin [ 11,12] have investigated so-called “string-nets” and 
find that the appropriate physical framework is the so-called “tensor category” 
or “tensor network” theory [ 13– 15]. In fact string-nets are very similar to spin 
networks so Wen and Levin’s work—showing that gauge bosons and fermions 
are quasiparticles of string-net condensates—should carry over into LQG without 
much modification. 

5. LQG does not exhibit dualities in the manner String Theory does: Any spin system 
exhibits dualities. A graph based model like LQG even more so. One example of 
a duality is to consider the dual of a spin network which is a so-called 2-skeleton 
or simplicial cell-complex. Another is the star-triangle transformation, which can 
be applied to spin networks which have certain symmetries, and which leads to a 
duality between the low and high temperature versions of a theory on a hexagonal 
and triangular lattice respectively [ 16]. 

6. LQG doesn’t admit supersymmetry, wants to avoid extra dimensions, strings, 
extended objects, etc: Extra dimensions and supersymmetry are precisely that— 
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“extra”. Occam’s razor dictates that a successful physical theory should be 
founded on the minimum number of ingredients. It is worth noting that at the time 
of writing of this book, results from the Large Hadron Collider appear to have 
ruled out many supersymmetric extensions of the standard model. By avoiding 
the inclusion of extra dimensions and supersymmetry, LQG represents a perfectly 
valid attempt to create a theory that is consistent with observations. 

7. LQG has a proliferation of models and lacks robustness: Again a lack of extra 
baggage implies the opposite. LQG is a tightly constrained framework. There 
are various uniqueness theorems which underlie its foundations and were rig-
orously proven in the 1990s by Ashtekar, Lewandowski and others. There are 
questions about the role of the Immirzi parameter and the ambiguity it introduces 
however these are part and parcel of the broader question of the emergence of 
semi-classicality from LQG (see Simone Mercuri’s papers [ 17,18] in this regard). 

8. LQG does not contain any well-defined observables and does not allow us to 
calculate graviton scattering amplitudes: Several calculations of two-point cor-
relation functions in spin foams exist in the literature [ 19]. These demonstrate the 
emergence of an inverse-square law. 

As well as discussing criticisms of LQG, it is also fair to consider what role this 
theory may have in the future. We would not have written a review of the formulation 
of LQG if we did not consider it an important and interesting theory—one which 
we feel is probably a good representation of the nature of spacetime. However it is 
wise to remember that most physical theories are ultimately found to be flawed or 
inadequate representations of reality, and it would be unrealistic to think that the 
same might not be true of LQG. Questions linger about the nature of time and the 
interpretation of the Hamiltonian constraint, among other things. What is the value 
then, in studying LQG? Perhaps LQG will eventually be shown to be untenable, or 
perhaps it will be entirely vindicated. As authors of this book, we feel that the truth 
will probably lie somewhere in the middle, and that however much of our current 
theories of LQG survive over the next few decades, this research program does 
provide strong indications about what some future (and, we hope, experimentally 
validated) theory of “quantum gravity” will look like. 
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AGroups,Representations,and
Algebras

A.1 Lie Groups and Algebras

Symmetries in physics (that is to say, transformations which leave the underlying
physics unchanged) and conserved quantities are intimately related by Noether’s
theorem. Symmetries play a pivotal role in establishing which physical laws are
allowed. For instancewe saw in Sect. 3.1 how the requirement that the laws of physics
remain unchanged under a local gauge transformation necessitated the existence of
a covariant derivative and a gauge field.

Symmetries have several properties which are taken as the defining features of a
group. Consider a set .G containing elements .g1, g2, . . . Furthermore, consider an
operation, denoted here by the symbol .◦, which maps exactly two elements of .G
to some quantity. We will call such a mapping a binary operation. Then the set and
binary operation taken together form a group if for all.g ∈ G the following properties
are satisfied:

1. .g j ◦ gk ∈ G, ∀g j , gk ∈ G (closure)
2. .∃ e ∈ G such that .g ◦ e = e ◦ g = g (identity)
3. .∀g ∈ G ∃ g−1 ∈ G such that .g−1 ◦ g = g ◦ g−1 = e (inverse)
4. .g j ◦ (gk ◦ gl) = (g j ◦ gk) ◦ gl ∀g j , gk, gl ∈ G (associativity)

The groups we will be concerned with have elements that vary continuously as
functions of some parameter or parameters. These are known as Lie groups. For
example, rotations through some angle .θ, which can be written as .g(θ) = eiθ, and
which transform one point on a unit circle to another. In what follows we will call
this the circle group. It is worth emphasising that the group elements in this case are
the transformations of the points on a circle, and not the points themselves.

Rotations in a circle can also be enacted by operating on a vector by a.2× 2matrix.
Such matrices have two important properties. Their transpose is also their inverse
(we refer to such matrices as “orthogonal”) and their determinant is equal to +1 (we
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refer to such matrices as “special”). Hence these matrices are called SO(2) matrices
(short for “special orthogonal two-by-two”). Such matrices are again continuous
functions of the single parameter.θ, and are hence isomorphic to the circle group. The
circle group is actually a .1× 1 example of a “unitary” group (one whose transpose
complex conjugate is its inverse). Hence the circle group is also called U(1). Note
that the special unitary group of .1× 1 matrices SU(1) consists of only a single
element, the identity, and is referred to as the trivial group. While the special groups
correspond to rotations, the groups of matrices with determinant.= −1 correspond to
reflections. General .N × N matrices with arbitrary non-zero determinants (i.e. they
are invertible) form the “general linear” group GL(.N ). Where required, the field of
numbers used as matrix elements can be specified explicitly. For instance the group
whose elements are.N × N matriceswith complex entries and arbitrary determinants
is GL(.N ,.C). The subgroup with determinant .= +1 of this general linear group is
SL(.N ,.C). The unitary subgroup of this special linear group is SU(.N ), or SU(.N ,.C)
if one is being explicit. Restricting to the field of real numbers we obtain the special
orthogonal group SO(.N ). The orthogonal groups represent rotations in a space with
a Riemannian metric (i.e. one which always ascribes a separation greater than zero
to distinct points). In Minkowski space, with metric.ημν = diag(−1, +1, +1, +1),
the group of Lorentz transformations is SO(3,1), denoting that in .n dimensions (in
this case .n = 4), only .n − 1 of the terms in the metric are positive.

Since SO(2) and U(1) both embody rotations in a circle, it is clear that there
can be different representations of a group. In fact, we could represent rotations in
the complex plane by an infinite number of different functions, .exp{ikθ}, with each
function being labelled by different integer1 values of the parameter .k. Specifically,
a representation of a group is a mapping from group elements .g to functions .D(g),
which are usually taken to be matrices, such that .D(ga)D(gb) = D(ga ◦ gb) for all
.a, b. We can easily see that, for instance, rotations in the plane can be represented
by the .1× 1 “matrices” .D1(θ) = eiθ, and the .2× 2 matrices

.D2(θ) =
(
cos θ − sin θ
sin θ cos θ

)
.

Some representations contain a level of redundancy, allowing them to be viewed as
composed of simpler representations. Such redundant representations are referred to
as being reducible. A representation which is not reducible is called an irreducible
representation or irrep.

The tangent space to a Lie group (e.g. the group of rotations .g(θ) = eiθ) at
the identity, is the corresponding Lie algebra. Rotations in three dimensions can
be represented by the group SO(3), or the group SU(2). To be specific, consider
a general element .R ∈ SU(2) which can be written in terms of three parameters
.→β := (β1, β2, β3) as

1 So that.exp{ik2π} is a representation of the identity.
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.R(→β) =
(

β4 + iβ1 β2 + iβ3
−β2 + iβ3 β4 − iβ1

)
where β4 = +

/
1− β2

1 − β2
2 − β2

3 (A.1)

since .det R = β2
1 + β2

2 + β2
3 + β2

4 = +1. The identity corresponds to .β4 = 1,
.β1 = β2 = β3 = 0, so the tangent space to SU(2) is spanned by

. Ja = −i ∂R(→β)

∂βa

|||||→β=0,β4=1
(A.2)

. ∴ J1 =
(
1 0
0 −1

)
, J2 =

(
0 −i
i 0

)
, J3 =

(
0 1
1 0

)
. (A.3)

Lie algebras are referred towith the same notation, but lower case fraktur lettering,
as the corresponding group. Hence the Lie algebra of SU(2) is.su(2). Since this group
corresponds to rotations in three dimensions, .su(2) has three generators, which we
recognise from Eqs. (A.3) above as the Pauli matrices, .σa .

At an intuitive level, an algebra can be thought of as a vector space with the
usual operation of vector addition, and a second binary operation (generally called
the commutator or Lie bracket). In the case of the circle group, the Lie algebra is
one-dimensional, and the (single) basis vector defines a direction of rotation. The
entire group can be built up by infinitesimal iterations of this rotation, and hence the
group is said to be generated by the basis vector of the corresponding Lie algebra.
General elements of SU(2) are created (in analogy to the U(1) example.exp(iθ)), by
exponentiating the.su(2) generators multiplied by three angle parameters. Hence we
have .exp{iθata}, where .ta = 1

2σa . The commutator of the .su(2) generators is given
by the relation .[ta, tb] = iϵabctc.

The groups SO(3) and SU(2) share equivalent Lie algebras, but this does not mean
the two groups are identical, as a Lie algebra is a tangent space defined at the identity
element. SU(2) and SO(3) are locally isomorphic, but globally distinct, as there are
two elements in SU(2) that correspond to each element in SO(3). We say that SU(2)
is a double cover of SO(3), and also refer to SU(2) as the universal covering group
of SO(3).

For the purposes of explaining loop quantum gravity we will be most often con-
cerned with SU(2), though what we are about to say can be easily generalised to
other groups. The SU(2) matrices act on vectors with two complex components.
Such vectors can be written as linear combinations of the two basis vectors

.

(
1
0

)
,

(
0
1

)
.

In the case of intrinsic angular momentum these correspond to pure “spin-up” and
“spin-down” states. Multiplying these by . t3 = 1

2 σ3 yields the eigenvalues .± 1
2 .

The set of eigenvalues .{+ /2, − /2} is an example of a multiplet of states. As
the discussion above suggests, different representations of SU(2) are possible, and
these act upon different multiplets. Note that if we set . = 1 the number of states in
the multiplet is equal to .2 j + 1, where . j is the largest eigenvalue in the multiplet.
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Different representations can therefore be referred to by the largest eigenvalue in
the corresponding multiplet. It is a common and unfortunate practice, however, to
refer to the eigenvalues as a representation of the group. This can be confusing,
as the eigenvalues do not have the defining property of a representation, namely
that .D(ga)D(gb) = D(ga ◦ gb) for all .a, b. Therefore when the student encounters
statements that the loops from which loop quantum gravity derives its name are
“labelled by representations of SU(2)”, it should be understood that what is really
meant is that representations of SU(2) are associated to the loops and in turn the
loops “are labelled by values drawn from the multiplets upon which representations
of SU(2) act”, a point we have also attempted to emphasise in Sect. 6.1.

A.2 Lorentz Lie-Algebra

In Sect. 4.3.3 we discussed the Lorentz group, which consists of rotations around
three axes, generated by .Jx , .Jy , .Jz , and boosts along three axes, generated by .Kx ,
.Ky , .Kz . It was noted that a .2× 2 representation of the rotations and boosts can be
constructed from the Pauli matrices, as per Eq. (4.44). It is useful to recognise that
the .Ja can be regarded as purely spatial rotations, while the .Ka can be thought of
as rotations in the three planes defined by the time axis and each of the three spatial
axes.

The generators of the .n-dimensional representation of the Lorentz Lie algebra
can be written in terms of the (.n × n) Dirac gamma matrices.{γ I }, which satisfy the
anticommutation relations

.

{
γ I , γ J

}
= 2g I J × 1n×n (A.4)

where .g I J is the metric tensor and .1n×n is the .n × n identity matrix.
For the case of .n = 4, a possible choice of the matrices is given by

.γ0 =
(

0 1
−1 0

)
, γa =

(
0 σa

σa 0

)
(A.5)

where .σa are the usual Pauli matrices, and in this case .g I J is equivalent to
.η I J = diag(−1, 1, 1, 1), the usual Minkowski metric.

In terms of the.{γμ}, the generators of the Lorentz group SO.(3, 1) can be written
as [1]

.T I J = i
4

[
γ I , γ J

]
. (A.6)

Note that, whereas in the above we have restricted ourselves to the case of .3+ 1
dimensions, the expression for the generators of the Lorentz group goes through
in any dimension, with either Lorentzian or Euclidean metric [1, Sect. 3.2]. An
.so(3, 1)-valued connection can then be written as

.Aμ = Aμ
I J TI J = i

4
Aμ

I J [γI , γJ ] (A.7)
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but by the antisymmetry of the gamma matrices, the above expression can be short-
ened to.Aμ = i

2 Aμ
I JγIγJ , where we remember that the connection is antisymmetric

in the internal indices .AI J = −AJ I .



BBlades,Forms,andDuality

The notion of self-/anti-self-duality of the gauge field.Fαβ is central to understanding
both the topological sector of Yang-Mills theory and the solutions of Einstein’s equa-
tions in the connection formulation. As discussed in Sect. 3.2, the use of multivectors
and .k-forms can be very helpful for understanding duality. They also occur in the
formulation of BF theory and hence play a role in setting the stage for spinfoams,
as well as various approaches to writing GR as a gauge theory. Let us review these
concepts.

B.1 Blades andMultivectors

A vector is normally visualised as a directed line segment with a magnitude which
is interpreted as a length. One way to form the product of two vectors .→u and .→v
is the dot product.→u · →v, which is a scalar that is maximised when the vectors are par-
allel.We can also form the wedge product,.→u ∧ →v, which is a directed surface spanned
by.→u and.→v (the direction being both an orientation in space and a preferred direction
of rotation around the boundary of the surface), with a magnitude interpreted as the
area of the surface. This directed surface is called a bivector, and its magnitude is
maximised when .→u and .→v are perpendicular (and zero when they are parallel). The
wedge product of three non-coplanar vectors is a trivector, which may be visualised
as a parallelipiped with a direction (interpreted as a preferred direction assigned to
a path around the edges of the parallelipiped) and a magnitude (interpreted as its
volume). The wedge product of .k vectors (assuming they are not parallel, copla-
nar, etc.) will in general be called a .k-blade, and can be visualised as an oriented
.k-dimensional parallelipiped,2 with a magnitude given by its enclosed

2 Strictly speaking it could be any shape but a parallelipiped ismost directly visualised, by imagining
that each of the.k vectors forming a.k-blade define the length and orientation of its edges.
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volume.3 A scalar may be regarded as a .0-blade. We will use .u, v, w (without
arrows) to denote .k-blades in general, and retain .→u, →u, →w specifically for ordinary
vectors (i.e. 1-blades).

Consider two vectors .→u = u1e1 + u2e2 and .→v = v1e1 + v2e2 with orthonormal
basis vectors .e1, .e2 (we restrict ourselves to two dimensions for simplicity but can
easily generalise). The most general product of the vectors .→u and .→v, which we will
refer to as their Clifford product, is

.→u→v = (u1e1 + u2e2)(v
1e1 + v2e2)

= u1v1(e1)
2 + u1v2e1e2 + u2v1e2e1 + u2v2(e2)

2 (B.1)

i.e. we don’t assume the basis vectors commute. In the special case .→u = →v we let
.→u→v = →u · →u, hence

.→u→v = (u1)2(e1)
2 + u1u2e1e2 + u2u1e2e1 + (u2)2(e2)

2

= (u1)2(e1)
2 + u1u2(e1e2 + e2e1)+ (u2)2(e2)

2

= (u1)2 + (u2)2 .

In other words, since .u1 and .u2 commute (they’re scalars) the terms involving .e1e2
and .e2e1 must sum to zero, so .(e1)2 = (e2)2 = 1 while .e1e2 = −e2e1. The product
in Eq. (B.1) can then be written as

.→u→v = →u · →v + (u1v2 − u2v1)e1e2 .

The antisymmetric term is the wedge product, .→u ∧ →v = (u1v2 − u2v1)e1e2. So the
Clifford product of the vectors .→u and .→v is the sum

.→u→v = →u · →v + →u ∧ →v . (B.2)

Clearly .→u ∧ →v = −→v ∧ →u. It follows that

.→u · →v = 1

2
(→u→v + →v→u) = 1

2
{→u, →v} (B.3)

.→u ∧ →v = 1

2
(→u→v − →v→u) = 1

2
[→u, →v] (B.4)

Considering orthonormal basis vectors .ei , .e j etc. we find that the Clifford prod-
uct .ei ei = ei · ei . Conversely when .i /= j we have .ei e j = ei ∧ e j since in this case
.ei · e j = 0. We adopt the notation .ei e j = ei ∧ e j = ei j , and this product defines
a basis bivector. Likewise .ei e j ek = ei ∧ e j ∧ ek = ei jk , and so forth. Since any
1-blade (i.e. vector) can be written as a linear combination of basis vectors e.g.

3 The terminology “.k-vector” is also sometimes used, but we avoid it here as it can cause confusion
with vectors in.k dimensions.



Appendix B: Blades, Forms, and Duality 155

.→u = u1e1 + u2e2 + . . . it is straightforward to extend these concepts to .k-blades
in general, so that any 2-blade (bivector) can be written as a linear combination
.v = v12e12 + v23e23 + . . . (where the .vi j are scalars), and so forth for .3-blades, .4-
blades, etc. A linear combination of .k-blades, which may involve several different
values of .k (e.g. .w = w1e1 + w2e2 + w3e12 which is a sum of vector and bivector
parts) is referred to as a multivector, or sometimes a Clifford vector. We can readily
generalise Eq. (B.2) to define the Clifford product of .k-blades as

.uv = u · v + u ∧ v . (B.5)

The importance of .k-blades and multivector quantities in physics has already
been touched upon in Sect. 3.2 when discussing the field-strength tensor. Their
importance can be further illustrated if we consider the case of four-dimensional
Minkowski spacetime, where the scalar product is taken using the metric.ημν . Hence
.e0e0 = −1, and .e1e1 = e2e2 = e3e3 = +1. In this case there is an isomorphism
between the basis vectors and the Dirac gamma matrices, .γμ, and the reader can
verify that the basis vectors satisfy .{eμ, eν} = 2ημν , the defining relation of the
Dirac matrices (see Eq. A.4). Since this anticommutator is formed by taking Clifford
products of the .eμ, the gamma matrices are said to generate a representation of a
Clifford algebra.4

With the scalar values of .ei ei established (for all values of .i) the product .uv in
Eq. (B.5) can be explicitly evaluated by writing.u and.v in terms of the basis vectors
.ei . As a result, Eq. (B.5) remains valid even when .u is a .k-blade and .v is an .l-blade
with.k /= l, orwhen either or both of.u and.v aremultivectors (i.e. linear combinations
of 0-blades, 1-blades, 2-blades, etc.)

A bivector is said to be simple if it can be written as the wedge product of exactly
two vectors. This is always possible in two or three dimensions, e.g. the sum of the
two bivectors .e12 + e23 = e1 ∧ e2 − e3 ∧ e2 = (e1 − e3) ∧ e2, and hence this is the
wedge product of two vectors. However it is not necessarily possible in four or more
dimensions, e.g. .e12 + e34 is not a simple bivector.

B.2 Differential Forms and the Exterior Derivative

In Sect. 3.2 we mentioned the close correspondence between .k-blades and differ-
ential forms. The most apparent distinction between these concepts is that while a
1-blade has a magnitude interpreted as a length, a 1-form has a magnitude which
is interpreted as a density (with 2-blades, 2-forms, 3-blades etc. having magnitudes
which generalise to area, area-density, volume etc.)

Differential forms are a tool applied to a wide variety of manifolds, but we will
take some pedagogical liberties including restricting ourselves to .R

N . As a result
the discussion that ensues will hopefully be easy to follow, and build up the relevant

4 It should be emphasised that, as noted at the start of Sect. A.2, the Dirac gammamatrices provide a
representation of the algebra, but as such they are not the fundamental objects under consideration.
That honour belongs to the basis vectors themselves.



156 Appendix B: Blades, Forms, and Duality

concepts, but may cause more experienced pure mathematicians to snarl with indig-
nation. Much of the discussion that follows is distilled from Chaps. 4 and 5 of [2],
and a more precise, detailed exposition can be found therein.

The standard example of a 1-form is the differential .dx , while the equivalent
example of a vector is .

∂
∂x . To understand why .dx can be thought of as a density

(rather than a vector of infinitesimal length, which is how it’s usually introduced in
elementary calculus classes) it helps to think of the directional derivative. This is the
scalar product.→v · ∇ f of the gradient of a function. f with some vector.→v, and defines
how. f changes as we move along the direction defined by .→v.

The important thing to keep in mind here is that.∇ f is a function which embodies
all the information for how. f changes in any direction. If we specify a point .P (by
selecting particular values of the variables upon which . f depends) we are left with
the information defining howmuch. f varies under any displacement away from P. A
particular displacement is defined by providing a vector .→v. So.∇ f at P is a mapping
from vectors to scalars. But the mappings from vectors to scalars are just what we
think of as forms, visualised as contour lines, with the number of contour lines a
vector crosses defining a scalar product of the corresponding vector and form. Since
the point P can vary, we can think of.∇ f as a field of suchmappings (or “covectors”),
one for each possible choice of P.

Now consider the total derivative of a function . f ,

.d f = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + . . . (B.6)

The minimalistic change of notation from.∇ f to.d f should serve as a clue that these
are similar entities, and of course the partial derivatives occurring in Eq. (B.6) are
simply the components of .∇ f . It therefore makes sense to think of .dx1, .dx2 etc.
as the basis 1-forms that .d f is composed of. We can then think of writing .dxi not
to denote an infinitesimal change in the quantity .xi , but as a notation similar to .êi
for unit basis vectors. The total derivative is a specific example of a more general
concept which we will call the exterior derivative.

Consider a .k-form, .α = α1 ∧ α2 ∧ . . .αk and an .l-form .β = β1 ∧ β2 ∧ . . .βl ,
where.k might be equal to.l, but need not be. The exterior derivative of their product
will be

.d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ. (B.7)

The second term acquires a factor of .(−1)k because placing .d to the right of .α
involves swapping a series of wedge products, picking up a factor of .−1 with each
swap. If we were to write a .1-form as .α = αi dxi application of Eq. (B.7) would
yield

.dα = dαi ∧ dxi . (B.8)

Prompted by Eq. (B.7) the reader may anticipate a second term on the right, however
we use this particular example to introduce the important relation.d(d f ) = 0 obeyed
by the exterior derivative, which ensures that the anticipated term vanishes. A similar
line of reasoning can be applied to the case of a general .k-form.
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B.3 Duality

Differential forms and .k-blades can be seen to correspond closely. A bivector and
a 2-form both define a 2-dimensional subspace of whatever manifold they live in.
A trivector and a 3-form both define a 3-dimensional subspace, etc. However as
mentioned in Sect. 3.2, .k-blades can be easier to visualise, as the magnitude of a .k-
blade is a.k-dimensional volume. It can therefore often be easier to think of how the
wedge products of.k-forms behave by visualising them as.k-blades instead. However
we visualise them, it is clear that in .n dimensions a .k-blade (or .k-form) defines not
only a .k-dimensional subspace, but also an .(n − k)-dimensional subspace which is
the set of directions not spanned by the .k-blade (or .k-form) under consideration.
This latter subspace is said to be dual to the former. In fact the discussion in Sect. 3.2
invoked a specific example of the concept of duality, namely a mapping between
bivectors in a spacetime plane (i.e. a two-dimensional plane embedded in a four-
dimensional manifold) and bivectors in the plane defined by the other two spacetime
directions. Thus duality is a notion that emerges naturally from the construction of
the space of.k-blades, and likewise from the construction of the space of differential
forms, on an .n-dimensional manifold .M .

Consider the case of.k-blades in three dimensions. The antisymmetry of thewedge
product means that the unit trivector .ei jk = ei e j ek picks up a factor of .−1 each
time the order of any two of its factors is swapped, hence .ei jk = −eik j , etc. and
so the unit trivector is a geometrical representation of the antisymmetric tensor .ϵi jk .
Multiplying a vector by the unit trivector yields a bivector, andmultiplying a bivector
by the unit trivector yields a vector (Fig. B.1). To see why, consider the familiar
cross product. Any two vectors .→u, →v ∈ R3 (that are not parallel to each other) span
a two-dimensional subspace of .R

3. Using these two vectors we construct a third
vector . →w = →a × →b, where the components of . →w are given by.wi = ϵi jku jvk (and we
remind the reader that summation is performed over any repeated indices, as the
raising or lowering of indices is irrelevant in.R

N ). This construction is taught to us in
elementary algebra courses, but never quite seemed to make complete sense because
it seemed to be peculiar to three dimensions. The product .→u × →v is a vector which is

Fig.B.1 The unit trivector.e123 allows us to explore duality in three dimensions. When we take the
Clifford product, indicated here by . , of the unit trivector with a vector, the part of .e123 parallel
to the vector yields a scalar factor via the dot product, and a factor of zero via the wedge product
part. This leaves us with a bivector perpendicular to the original vector (left). Likewise the Clifford
product of.e123 with a bivector yields a vector (right). In each case the bivector and vector are dual
to each other, since each spans the directions the other doesn’t. Duality is therefore an extension
of the concept of orthogonality. For a four-dimensional object, the dual would be taken with.e1234,
the dual of a vector would be a trivector, and the dual of a bivector would be another bivector
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perpendicular to the plane defined by the vectors .→u and.→v. But this plane is the same
one that the wedge product.→u ∧ →v lies in. If we take the Clifford product of.→u ∧ →v with
the unit 3-vector, .e1 ∧ e2 ∧ e3 = e123 we are left with a vector that is perpendicular
to the plane of .→u ∧ →v, and which equals .−(→u × →v). Why? Because the components
of.→u ∧ →v parallel with components of the unit trivector yield scalars, leaving only the
components perpendicular to.→u ∧ →v, as we can see by expanding the Clifford product
in full,

.(e1 ∧ e2 ∧ e3)(→u ∧ →v) = (e123)
[
(u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3)

]
= (e123)

[
(u1v2 − u2v1)e12 + (u1v3 − u3v1)e13 + (u2v3 − u3v2)e23

]
= (u1v2 − u2v1)e12312 + (u1v3 − u3v1)e12313 + (u2v3 − u3v2)e12323

= (u1v2 − u2v1)(−e3)+ (u1v3 − u3v1)e2 + (u2v3 − u3v2)(−e1)
= −→u × →v

where in the third line we have dealt with the excessively-indexed terms
.e12312 = e1e2e3e1e2 etc. by using the antisymmetry of the product of dissimilar
terms .ei e j = ei ∧ e j = −e j ∧ ei = −e j ei to rearrange the basis vector terms, so
that we may eliminate some of them using .ei ei = ei · ei = 1. We also find that the
wedge product of .→u and .→v has components .(→u ∧ →v)i j = u[iv j].

This allows us to view the cross product as a three-dimensional special case
of a procedure that can be performed in any number of dimensions. This pro-
cedure is “forming the dual”. We can say that the cross product of two vectors
in three dimensions is (up to a sign) the dual of the wedge product, and write
.(→u × →v) = ⋆(→u ∧ →v).

This concept can be generalised to.n dimensions. In the language of multivectors,
it involves taking the Clifford product with the unit .n-blade .e1e2 . . . en = e12...n .
Re-worded in the language of differential forms, any .k-form .Fa1a2...ak , defined on
an.n dimensional manifold .M , can be mapped to an (.n − k)-form.(⋆Fa1a2...an−k ) by
utilising the completely antisymmetric tensor .ϵa1a2...an on .M :

.(⋆F)a1...an−k = 1

(n − k)!ϵ
a1...an−k

an−k+1...an F
an−k+1...an . (B.9)

From nowonwewill focus on.k-forms rather than.k-blades. But their equivalence,
and the geometric interpretation arising from this, should be kept in mind. It should
be clear that in.n dimensions there exists one unit 0-form,5 .n unit 1-forms,.n(n − 1)
unit 2-forms, etc. with the number of unit .k-forms increasing as .k approaches .n/2
but decreasing as .k exceeds .n/2. A similar result is true for .k-blades. We let .nΩk

5 The reader is reminded that a .k-form is a scalar-valued function—i.e. a mapping that takes .k
vectors as arguments and returns a scalar. When we refer to a “unit” 0-form, we simply mean that
we intend all scalars to be regarded as multiples of the value this form returns when provided with
no vectors as arguments, so we can conveniently think of the unit 0-form itself as the scalar 1.
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denote the subspace consisting only of forms of order .k in .n dimensions e.g. in
three dimensions the space of two-forms .

3Ω2 is spanned by the basis .
{
dx1 ∧ dx2 ,

.dx2 ∧ dx3, .dx3 ∧ dx1
}
where .{x1, x2, x3} is some local coordinate patch—i.e. a

mapping from a portion of the given manifold to a region around the origin in .R
3.

In .n dimensions then, the full space of differential forms is given by.⊕n
k=0nΩk . One

can show [2,3] that .nΩk = nΩn−k , i.e. the space of.k-forms is the same as the space
of (.n − k)-forms.6

B.4 Field Strength and the Exterior Derivative

Returning our attention to the exterior derivative, recall Eq. (B.8) and the discussion
that followed, from which we recognise that the exterior derivative of a .k-form is a
.(k + 1)-form. This feature of the exterior derivative allows us to encapsulate several
familiar differential operators in one.

The exterior derivative of a scalar (or more generally, a scalar-valued function
of several variables) is a 1-form. This turns out to be equivalent to the result from
elementary calculus that the gradient of a scalar-valued function is a vector. Now
consider a 1-form in three dimensions, .α = α1dx1 + α2dx2α3dx3. The exterior
derivative of this is

.dα = d(α1dx
1)+ d(α2dx

2)+ d(α3dx
3)

= dα1 ∧ dx1 + dα2 ∧ dx2 + dα3 ∧ dx3

= ∂α1

∂x1
dx1 ∧ dx1 + ∂α1

∂x2
dx2 ∧ dx1 + ∂α1

∂x3
dx3 ∧ dx1

+ ∂α2

∂x1
dx1 ∧ dx2 + ∂α2

∂x2
dx2 ∧ dx2 + ∂α2

∂x3
dx3 ∧ dx2

+ ∂α3

∂x1
dx1 ∧ dx3 + ∂α3

∂x2
dx2 ∧ dx3 + ∂α3

∂x3
dx3 ∧ dx3

=
(

∂α2

∂x2
− ∂α1

∂x2

)
dx1 ∧ dx2

+
(

∂α1

∂x3
− ∂α3

∂x1

)
dx3 ∧ dx1

+
(

∂α3

∂x2
− ∂α2

∂x3

)
dx2 ∧ dx3

∴ dα = ∂[iα j]dxi ∧ dx j (B.10)

where we have used the total derivative Eq. (B.6) and the antisymmetry of the wedge
product. Using the above discussion about duality to identify.dx2 ∧ dx3 with.ê1 etc.

6 In the first edition of this book the notation .n∆k was used, however the symbol .∆k is also used
throughout the wider literature to denote the space of products of.k vectors. Forms can be regarded
as the elements of a vector space, so this notation is general enough to be—strictly speaking—valid.
However to be specific the symbol.Ω will be used here to denote the space of differential forms.
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we see that when.α is a 1-form,.dα is equivalent to the curl of a 1-blade (vector) that
has the same components as .α.

Taking the next logical step we find that the exterior derivative of a 2-form is a
3-form. In three dimensions a 2-form can (as above) be equated to a vector, while
a 3-form, proportional to .dx1 ∧ dx2 ∧ dx3 can be equated (again, via the concept
of duality) to a scalar. The divergence of a vector field is a scalar, and so it should
come as no surprise to find that the exterior derivative of a 2-form is equivalent to
the divergence of a vector field.

Thus the exterior derivative embodies and generalises several familiar differential
operators. Part of the beauty of this approach is that the exterior derivative “takes
care of” deciding which differential operator to apply in a given situation, and so
the use of indices to keep track of whether we’re operating on a scalar, vector, or
other quantity, and which component thereof, loses its importance. For example, the
previously-introduced identity .d(d f ) = 0 embodies the identities

. ∇ × (∇ f ) = 0

∇ · (∇ × f ) = 0

and works appropriately to whatever type of object . f happens to be.
The gradient, divergence, and curl occur specifically in the classical theory of

electromagnetism. We have already seen (Sect. 3.2) how the electromagnetic field
strength tensor can be written in term of bivectors (that is to say, .2-blades). We
can similarly write the field strength in terms of 2-forms. To do so we construct a
magnetic field 2-form, an electric field .2-form, and a field-strength .2-form which is
their sum;

.B = B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2

E = E1dx
1 ∧ dx0 + E2dx

2 ∧ dx0 + E3dx
3 ∧ dx0

F = E + B (B.11)

where .dx0 = dt . Comparing this with Eq. (3.21) the equivalence of the two formu-
lations is clear. Applying the exterior derivative to .B and writing .dBa as the total
derivative

.dBa = ∂Ba

∂t
dt + ∂Ba

∂x1
dx1 + ∂Ba

∂x2
dx2 + ∂Ba

∂x3
dx3 (B.12)

we find

.dB = ∂Ba

∂t
dt ∧ dxb ∧ dxc + ∂Ba

∂x1
dx1 ∧ dxb ∧ dxc

+ ∂Ba

∂x2
dx2 ∧ dxb ∧ dxc + ∂Ba

∂x3
dx3 ∧ dxb ∧ dxc

= ∂Ba

∂t
dxb ∧ dxc ∧ dt + ∂Ba

∂xa
dx1 ∧ dx2 ∧ dx3 (B.13)
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where .{a, b, c} correspond to cyclic permutations of .{1, 2, 3}, we have used
.dxa ∧ dxa = 0 to simplify between the first line and the second, and there is a
sum over.a = 1, 2, 3 in the last term on the second line. The first term on the second
line is simply proportional to the time derivative of .B which we will write as .∂t B,
while the second term is equivalent to the divergence of .B, which we will write as
.dx B as it is the exterior derivative restricted to the spatial directions.

Similarly we find that in the exterior derivative of .E the terms proportional to
.(∂Ea/∂t)dt vanish, and we are left with only .dx E terms which are proportional
to .dt and correspond with the curl of .E , as per our previous result regarding the
(three-dimensional) exterior derivative of a 2-form. The exterior derivative of.F can
therefore be written

.dF = dx B +
(

∂Ba

∂t
dxb ∧ dxc ∧ dt + dx E

)
(B.14)

where the term in brackets is proportional to .dt and the other term is not.
Equation (B.14) is therefore equivalent to two separate equations, and setting

.dF = 0 (B.15)

requires that the divergence of .B and the bracketed term in Eq. (B.14) must each
be zero. Equation (B.15) is therefore equivalent to the two homogeneous Maxwell’s
equations.

In a similar fashion the inhomogeneous Maxwell’s equations can be written as

.⋆d⋆F = J (B.16)

where the dual field strength .⋆F is found by swapping .Ei →−Bi and .Bi → Ei as
noted in Sect. 3.2, and the current .J is an appropriately-defined 1-form.

The dual operation has another nice trick up its sleeve. Consider .k-blades again,
specifically a 1-blade.u = u1e1 + u2e2 + u3e3. The dual of this can be easily shown
to take the form .⋆u = u1e23 + u2e31 + u3e12. We keep in mind that the wedge
product of any terms proportional to the same basis vector will be zero, while for
orthogonal basis vectors the wedge product is equivalent to the Clifford product (e.g.
.e1 ∧ e31 = 0, and .e1 ∧ e23 = e123). It is then a fairly easy exercise to show that

.u ∧ ⋆u = (u1)2e123 + (u2)2e123 + (u3)2e123 . (B.17)

This is clearly proportional to (in fact, the dual of) the dot product of .u with itself.
It is easy to visualise how this arises, even without doing the calculation explicitly.
Recalling that duality is a generalisation of the concept of orthogonality, the proper-
ties of the wedge product ensure that only those terms which are dual to each other
(such as .e1 and .e23) will be non-zero. The reader may confirm for themselves that
an equivalent result is found if we replace the 1-blade .u with a 1-form instead. This
suggests that we can regard .u ∧ ⋆v as equivalent to the inner product of .u and .v.
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Extending this line of reasoning, if we write the field strength.Fμν in terms of bivec-
tors as in Eq. (3.21) and the dual field strength.⋆Fμν defined in Eq. (3.22) equivalently,
then we find that their wedge product .F ∧ ⋆F is equivalent to .

1
2 FμνFμν . Naturally

the same result applies if we write the field strength in terms of 2-forms instead of
bivectors.

The discussion of classical electromagnetism is somewhat peripheral to formu-
lating a theory of quantum gravity. It is however, for the reader unfamiliar with the
language of differential forms, useful for illustrating the way in which the notation
of differential forms is used, and hints at how this notation can be generalised to
any number of dimensions, and arbitrary manifolds without the need to juggle a
profusion of indices. It also, hopefully, lends plausibility to the use of index-free
formulations of various quantities such as the actions arising in gauge field theories
and formulations of GR, which will be examined further in the following sections
and especially AppendixG.

B.5 Spacetime Duality

From the discussion above and in Sect.B.3, it should be apparent that in four dimen-
sions the dual of any two-form is another two-form

.⋆Fαβ = 1

2
ϵαβ

μνFμν (B.18)

(also compare this with Eq. (3.22), and as noted there, the quantity defined on the
plane between any pair of spacetime axes is associated to the quantity defined on
the plane between the other two spacetime axes). It is due to this property of even-
dimensionalmanifolds thatwe can define self-dual and anti-self-dual.k-forms,where
a form is self-/anti-self-dual if

.⋆F = ±F . (B.19)

Given an arbitrary 2-form .Gμν its self-dual part .G+ and anti-self-dual part .G−
are given by

.G+ = G + ⋆G

2α
, G− = G − ⋆G

2β
,

where.α and.β are constants we have introduced for later convenience. We can check
that

.⋆(G ± ⋆G) = ±(G ± ⋆G) (B.20)

because .⋆⋆ = 1 in a Euclidean background. In other words .⋆G+ = G+ and
.⋆G− = −G−, which is precisely the definition of (anti-)self-duality. Thus any 2-
form can always be written as a linear-sum of a self-dual and an anti-self-dual piece

.G = αG+ + βG−, ⋆G = αG+ − βG−.
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The above results hold for a Euclidean spacetime. For a Lorentzian background
we would instead have .⋆⋆ = −1 and the dual of a two-form is given by

.⋆Fαβ = i
2
ϵαβ

γδFγδ (B.21)

and the statement of (anti-)self-duality becomes

.⋆F = ±iF (B.22)

with the self-dual and anti-self-dual pieces of a two-form .G being given by
.G+ = (G + ⋆iG)/2α and .G− = (G − ⋆iG)/2β.

B.6 Lie-Algebra Duality

The previous section discussed self-duality in the context of tensors with spacetime
indices .T αβ...

γδ.... In gauge theories based on non-trivial Lie algebras we also have
tensors with Lie algebra indices, such as the curvature .Fμν

I J of the gauge connec-
tion .Aμ

I J where .I , J label generators of the relevant Lie algebra.. The dual of the
connection can then be defined using the completely antisymmetric tensor acting on
the Lie algebra indices, as in

.⋆Aμ
I J = 1

2
ϵI J K L Aμ

K L . (B.23)

B.7 Yang-Mills

Let us illustrate the utility of the notion of self-duality by examining the classical
Yang-Mills action. We write this in a manner consistent with the discussion at the
end of Sect.B.4,

.SYM =
 
R4

Tr [F ∧ ⋆F]

Varying this action with respect to the connection gives us the equations of motion7

.dF = 0 , d⋆F = 0 ,

which are satisfied if .F = ±⋆F , i.e. if the gauge curvature is self-dual or anti-self-
dual. Thus for self-/anti-self-dual solutions the Yang-Mills action reduces to

.S±YM = ±
 
R4

Tr [F ∧ F]

which is a topological invariant of the givenmanifold and is known as the Pontryagin
index. Here the.± superscript denotes whether the field is self-dual or anti-self-dual.

7 See for instance the Yang-Mills theory section of the Wikipedia article on instantons.
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B.8 Geometrical Interpretation

Given any (Lie algebra valued) two-form .F I
ab (where .I , J , K . . . are Lie algebra

indices) we can obtain an element of the Lie algebra by contracting it with a member
of the basis of the space of two-forms, .{dxi ∧ dx j } where .xi denotes the .i th vector
and not the components of a vector. The components are suppressed in the differen-
tial form notation as explained in the preceding sections. The resulting Lie algebra
element is

.ϕI = F I
ab dx

a ∧ dxb

and.ϕI is the flux of the field strength through the two-dimensional surface spanned
by .{dxa, dxb}.

We can also define

.⋆ϕI = ⋆F I
ab dx

a ∧ dxb = 1

2
ϵab

cd F I
cd dx

a ∧ dxb

which implies that .⋆ϕI
ab = 1

2 ϵab
cdϕI

cd , i.e. the flux of the field strength through
the .a-.b plane is equal to the flux of the dual field through the .c-.d plane.

B.9 (Anti) Self-dual Connections

When we say that the connection is (anti-)self-dual, explicitly this means that

.AI J
μ = ±⋆Aμ

I J = ± i
2
ϵI J K L Aμ

K L . (B.24)

Let us now show the relation between the (anti-)self-dual four-dimensional connec-
tion and its restriction to the spatial hypersurface.∑.We begin bywriting the full con-
nection in terms of the generators.{γ I } of the Lorentz Lie algebra,.±A := AI J

μ γIγJ ,
and expanding the sum (see [4, Sect. 2] and Sect.A.2), thus

.AI J
μ γIγJ = Ai0

μ γiγ0 + A0i
μ γ0γi + Ai j

μ γiγ j

= 2A0i
μ γ0γi + Ai j

μ γiγ j

= 2A0i
μ

(
σi 0
0 −σi

)
+ iA jk

μ ϵi jk
(

σi 0
0 σi

)
. (B.25)

In the second line we have used the fact that .AI J
μ is antisymmetric in the internal

indices and that the gamma matrices anticommute. In the third we have used the
expressions for the gamma matrices given in Sect.A.2 to expand out the matrix
products. This allows us to write the last line in the above expression in the form

.A = AI J
μ γIγJ = 2i

(
Ai+

μ σi 0
0 Ai−

μ σi

)
(B.26)
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where

.Ai+
μ =

1

2
ϵi jk A jk

μ − iA0i
μ (B.27a)

.Ai−
μ =

1

2
ϵi jk A jk

μ + iA0i
μ . (B.27b)

For .I = 0, J ∈ {1, 2, 3}, using the definition of the dual connection, we find that

.Aμ
0i = i

2
ϵ0i jk Aμ

jk

and so we may rewrite these expressions as

.Ai+
μ =

1

2

(
ϵi jk + ϵ0i jk

)
A jk

μ (B.28a)

.Ai−
μ =

1

2

(
ϵi jk − ϵ0i jk

)
A jk

μ . (B.28b)



CPathOrdered Exponential

From Eq. (3.26) we see that the effect of a holonomy of a connection along a path.λ
(for either an open or closed path) in a manifold .M is defined as

.ψ|(τ=1) = P
{
e
 
λ igdτ 'Aμnμ

}
ψ|(τ=0) = Uλ ψ|(τ=0). (C.1)

The exponential can be formally expressed in terms of a Taylor series expansion

.e−
 
λ dτ 'Aμnμ = 1+

∞∑
n=1

1

n!
  σ1

σ0=0

 σ2

0
. . .

 σn=1

0
dτ1dτ2 . . . dτn A(σn)A(σn−1) . . . A(σ1)

 

(C.2)
where for the.nth term in the sum, the path.λ is broken up into.n intervals parametrized
by the variables .{τ1, τ2, . . . , τn} over which the integrals are performed. The path
ordering enforces the condition that the effect of traversing each interval is applied
in the order that the intervals occur. The interested reader is referred to pages 66–68
of [5].
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DADMVariables

One would like to be able to determine the data required to embed the spatial hyper-
surfaces .∑ within the 4-manifold .M, given the spacetime metric .gab and the unit
time-like vector field.na normal to.∑. This data consists of the intrinsic and extrinsic
curvature tensors.(hab, kab). As explained in the main text the object .hab defined by
Eq. (4.16) plays the role of the intrinsic metric (or “curvature”) of .∑. The quantity
.kab is the extrinsic curvature of.∑ determined by the particular form of its embedding
in .M. In order to define .kab we first need to determine the form of the covariant
spatial derivative.

D.1 Covariant Spatial Derivative

To help visualize the covariant spatial derivative .Da , one can think of an arbitrary
configuration of the electric field.E in three-dimensional space.3∑. For simplicity, if
.
3∑ is .R

3 and .
2∑ ⊂ 3∑ is the surface .z = 0, then the three-dimensional deriva-

tive operator .∇ = (∂x , ∂y, ∂z) on .R
3 reduces to the two-dimensional derivative

.D = (∂x , ∂y) on the .x-.y plane. .DaEb tells us how .E changes as we move from
one point to another in .

2∑.
The covariant spatial derivative on .∑ acting on an arbitrary spacetime tensor

.Tb1...bi
c1...c j is given by [6, Sect. 3.2.2.2]

.DaTb1...bi
c1...c j = ha

'
a hb1

b'1 . . . hbi
b'i hc1c'1 . . . hc j c'j∇a'Tb'1...b'i

c'1...c'j . (D.1)

This expression simplifies considerably in the case of a vector field .na . Using
Eq. (4.16) and the fact that.nd∇cnd = (1/2)∇c(ndnd) = (1/2)∇c(−1) = 0 because
.nana = −1, the spatial derivative of an arbitrary vector field can be written as

.Danb = ha
chb

d∇cnd = (gb
d + nbn

d)ha
c∇cnd = ha

c∇cnb . (D.2)
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There is nothing mysterious about (D.2). As shown by the electric field example
above, it simply measures how the vector field.na changes from point to point as we
move around the spatial manifold .∑.

D.2 Extrinsic Curvature

The extrinsic curvature of a given manifold is a mathematical measure of the manner
inwhich it is embedded in amanifold of higher dimension. As illustrated in Fig. 4.3, a
two-dimensional cylinder embedded in.R

3 has zero intrinsic curvature, but non-zero
extrinsic curvature. The normal at each point of the cylinder is a three-dimensional
vector .nb and this vector changes as one moves around the cylindrical surface if
the extrinsic curvature of the surface is non-zero. Thus, the simplest definition for a
tensorial quantity which measures this change is given by

.kab = Danb = ha
chb

d∇cnd (D.3)

where .Da is the covariant spatial derivative defined in Sect.D.1. This quantity turns
out to be symmetric. In order to see this ([6, Sect. 3.2.2.2]), note that given two spatial
vector fields .Ya and.Za , their commutator .[Y , Z ]a = Yb∇bZa − Zb∇bY a will also
be spatial, i.e. .na[Y , Z ]a = 0. Since .naY a = 0, by applying the product rule to
.∇bnaY a = 0 it follows that.na∇bY a = −Ya∇bna . The equivalent result holds if we
replace .Ya by .Za . Substituting in these results we find that

.na[Y , Z ]a = na(Y
b∇bZa − Zb∇bY a) = −ZaY b∇bna + ZbY a∇bna

= Ya Zb(∇bna −∇anb)
= 0

where we have used the summation over indices to swap the labels.a, .b in one of the
terms. Since .Ya, Za are purely spatial, this implies that (the spatial projection of)
.∇anb = ∇bna . Thus the extrinsic curvature of .3∑ can be written as

.kab = 1

2
(Danb + Dbna) (D.4)

verifying the symmetry of .kab which was stated, without proof, in Sect. 4.2.

D.3 Canonical Momentum in the ADM Formulation

Recall that the time vector field is written in terms of the lapse .N , shift .Nμ and
the normal to the hypersurface .nμ, so that .tμ = Nnμ + Nμ (Eq. 4.11). We wish to
write down the explicit form of the Lie derivative of a one-index .Xa and two-index
object .hab, with respect to a vector field .va . Conveniently this is already present
in Eqs. (E.2)–(E.4)! As we may expect, when a vector field is a sum of two
(or more) vector fields (as for the time-evolution field above), the Lie deriva-
tive with respect to that field decomposes into the sum of Lie derivatives with
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respect to each of the components fields. So if .Xa = ua + va + wa , then
.£X [T ] = £u[T ] + £v[T ] + £w[T ], where .T is the arbitrary tensor whose Lie
derivative we want to find. You can see this directly from Eq. (E.1) by
writing the field X as a sum of other vector fields. When .T is a vector, then
.£XT = [X , T ] = [u, T ] + [v, T ] + [w, T ] and so on (.[A, B] is the commutator of
two vector fields as in Eq. E.2).

There are two steps involved in deriving the form of the canonical momentum.
First is to prove the identity (4.25). The second is to use that result to perform the
functional derivative of the Einstein-Hilbert Lagrangian.LEH with respect to the.ḣab
to obtain Eq. (4.26).

First, we wish to show that .£→t hab = 2Nkab + £ →Nhab, which we can do by find-
ing a suitable expression for .£→t hμν , and then restricting the indices to the range
.μ, ν → a, b ∈ {1, 2, 3}. So, since.tμ = Nnμ + Nμ, using the abovementioned addi-
tive property of Lie derivatives, we have.£→t hμν = £N →nhμν + £ →Nhμν . The second term
is present (with indices restricted, as just discussed) in Eq. (4.25). It now remains to
be shown that .2Nkab = £N →nhab.

The simplest approach is to recognise that theLie derivative of ametric tensorwith
respect to the vector field.→n (we shall neglect the factor of.N at first, but re-introduce
it shortly) is given by Eq. (E.4), which we restate for convenience:

.£→nhμν = ∇μnν + ∇νnμ.

The above equation holds true only when the derivative operator .∇μ is compatible
with the metric.hμν whose Lie derivative we wish to determine (that is,.∇μhμν = 0).
Hence we restrict ourselves to the spatial components and switch to the correct
notation .D for the spatial derivative operator instead of .∇. Then by definition (D.4)
we see that the Lie derivative of the spatial metric is twice the extrinsic curvature of
.
3∑,

.£→nhab = Danb + Dbna = 2kab. (D.5)

Now we equate this expression with the definition of the Lie derivative of a rank-2
tensor, Eq. (E.3), and follow the treatment of [6, Sect. 3.2.2.2]:

.2kab = £→nhab = nc∇chab + hac∇bnc + hbc∇anc

= 1

N

(
Nnc∇chab + Nhac∇bnc + Nhbc∇anc

)

= 1

N

(
Nnc∇chab + hac∇b(Nnc)+ hbc∇a(Nnc)

)

= 1

N
£→t− →Nhab

= 1

N

(
£→t hab − £ →Nhab

)

= 1

N
ha

chb
d (£→t hcd − £ →Nhcd

)

= 1

N

(
ḣab − DaNb − DbNa

)
(D.6)
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where in the second line we have multiplied and divided by the scale factor .N . In
the third line we have used the fact that .nchac = 0 to move .N inside the deriva-
tive operator. In going from the third to the fourth, we have used Eq. (E.3) in
reverse, alongwith the relationship between the lapse, shift and time-evolution fields,
.Nna = ta − Na . The fifth line is obtained by using the linearity of the Lie derivative.
At this point wemay readily rearrange the expression to obtain Eq. (4.25). In the sixth
we have, in the words of Bojowald, “smuggled in” two factors of.h knowing that.kab
is spatial to begin with. In the seventh, the spatial projection .hachbd£t hcd = ḣab is
identified as the “time-derivative” of the spatial metric. We leave the remaining step
(to show that .hachbd£ →Nhcd = DaNb + DbNa) as an exercise for the reader.

To summarize, we have

.kab = 1

2N

[
£→t hab − D(aNb)

] = 1

2N

[
ḣab − D(aNb)

]
. (D.7)

Now, the Einstein-Hilbert Lagrangian is given by

.LEH = N
√
h
[
(3)R + kabkab − k2

]
.

The first term does not contain any dependence on .kab or .Na and so its derivative
with respect to .ḣab vanishes. For the remaining two terms we have

.
δLEH

δḣe f
= N
√
h

[
kab

δkab
δḣe f

+ kab
δkab

δḣe f
− 2k

δk

δḣe f

]
,

where .k = habkab and .kab can be written as .hachbdkcd , hence

.
δLEH

δḣe f
= N
√
h

[
kab

δkab
δḣe f

+ kabh
achbd

δkcd
δḣe f

− 2 k hab
δkab
δḣe f

]
. (D.8)

From (D.7) we have

.
δkab
δḣe f

= 1

2N
δeaδ

f
b . (D.9)

Inserting this into the previous expression we have

.
δLEH

δḣe f
= N
√
h

[
kab

1

2N
δeaδ

f
b + kabh

achbd
1

2N
δecδ

f
d − 2 k hab

1

2N
δeaδ

f
b

]

= √h
[
ke f − khef

]
= πe f (D.10)

which is identical to (4.26) as desired.



ELieDerivative

The Lie derivative .£X of a tensor .T is the change in .T evaluated along the flow
generated by the vector field . →X on a manifold. When .T is simply a function .T ≡ f
on the manifold, the Lie derivative reduces to the directional derivative of . f along
.X

.£XT ≡ Xa∂a f = ∂

∂s
f (s) ,

where.s parametrises the points along the curve generated by.X . This fact is related to
the interpretation of the differential.dx as a component of a 1-form, and the derivative
operator .∂x = ∂/∂x as a component of a vector field (see Sect. B.2 for more detail
if this interpretation is unfamiliar.) When the connection is torsion-free, we may
replace .∂α with .∇α.

It can be shown [3] that

.£XT
μ1...μn
ν1...νm

= Xα∇αT
μ1...μn
ν1...νm

−
n∑

i=1
T ...α...

ν1...νm
∇αX

μi +
m∑
i=1

T μ1...μn
...α... ∇νi X

α (E.1)

where .. . .α . . . is shorthand for an expression with .α in the .i th position and some
number of .μs or .νs elsewhere, e.g. .μ1 . . .μi−1 α μi+1 . . .μn . In particular the Lie
derivative of a vector field .T μ along a vector field .Xν reduces to the commutator of
the two vector fields,

. £XT
μ = Xα∇αT

μ − T α∇αX
μ ≡ [X , T ] . (E.2)

In the case of a rank-2 tensor .T μν

.£XTμν = Xα∇αTμν + Tαν∇μX
α + Tμα∇νX

α. (E.3)
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Applying this to the metric tensor .gμν we find the relation

.£Xgμν = ∇μXν +∇νXμ (E.4)

since the covariant derivative of the metric vanishes.



F3+1Decompositionof thePalatini
Action

Let us recall the gravity action (4.65) with connection and tetrad variables as basic
variables,

.SP [e,ω] = 1

4κ

 
d4x ϵμναβϵI J K L eμ

I eν
J Fαβ

K L

where, as before.Fαβ
K L is the curvature of the gauge connection as given by (4.66):

.FKL
γδ = ∂[γωδ]K L + 1

2

[
ωγ

KM ,ωδ M
L
]
.

As in Sect. 4.2, we assume that our spacetime manifold .M is topologically
.∑t × R, where .∑t are spatial (3D) manifolds which “foliate” .M. We identify a
vector field .tμ = Nnμ + Nμ as the generator of “time-evolution”, written in terms
of the purely time-like normal vector .nμ at each point of .∑t , the lapse function .N
and the purely spatial “shift” vector-field .Nμ.

In themetric formalism,we started bywriting the 4-metric.gμν in terms of a spatial
component.hμν

8 and a time-like component.nμnν such that.gμν = hμhν − nμnν . In
contrast, here we don’t have a metric! Instead we have the volume form .ϵμναβ and
the tetrad field .eμ

I .
We proceed by noting that, firstly, on a .p-dimensional manifold, the space of

.p-forms is one-dimensional, as per Sect.B.3. In other words any four-form .Lμναβ

defined on .M is proportional to any other four-form on .M. Second, the wedge or
antisymmetric outer product of a three-form and a one-form gives a four-form. Now,
on the 3-manifold .∑t , there exists a volume three-form .ϵabc or .ϵαβγ using four-
dimensional indices. One can take the wedge product of .ϵαβγ with the one-form .tδ

8 Recalling once again that even though.μ, ν are four-dimensional indices,.hμν itself is purely spatial,
because it satisfies.hμνnν = 0.
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(the dual of the time-evolution vector field) to obtain a four-form, .ϵ[αβγ tδ]. Then by
virtue of the fact that the space of four-forms on .M is one-dimensional it follows
that

.ϵμναβ ∝ ϵ[μναtβ] .

The constant of proportionality can easily be determined by contracting both sides
with .tβ , to obtain

.ϵμναβ = 4ϵ[μναtβ] . (F.1)

Substituting this expression into the tetrad Palatini action we find

.SP [e,ω]= 1

4κ

 
d4x 4 ϵ[μναtβ]ϵI J K L eμ

I eν
J Fαβ

K L

= 1

4κ

 
d4x

(
ϵμναtβ+ ϵβμν tα+ ϵαβμtν+ ϵναβ tμ

)
ϵI J K Leμ

I eν
J Fαβ

K L .

(F.2)

To proceed further, we introduce the following notation [7, Sect. 6.2]:

.Eα
I J := 1

2
ϵαμνϵI J K Leμ

K eν
L (F.3a)

.(e · t)I := tμeμ
I (F.3b)

.(A · t)I J := tμAμ
I J . (F.3c)

We will also need the identity [7, Sect. 3.2]

.tμFμν
I J = £→t Aν

I J − Dν(A · t)I J . (F.4)

Using (F.3) and (F.4), (F.2) becomes

.SP[e,ω] = 1

κ

 
d4x

[
1

4
(e · t)I ϵI J K Lϵναβeν

J Fαβ
I J

+1

2
Eα

I J£→t Aα
I J − 1

2
Eα

I J Dα(A · t)I J
]

. (F.5)

Substituting the expression for .tμ in terms of the lapse and shift, the first term in
the above equation can be written as

.
1

4
(e · t)I ϵI J K Lϵναβeν

J Fαβ
I J = − 1

2
√
h
NTr(Ẽα ẼβFαβ)+ 1

2
NβTr(ẼαFαβ).
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Inserting this in the previous expression (F.5), we see that the Lagrangian of .3+ 1
Palatini theory can be written as

.LP =
 

∑

− 1

2
√
h
NTr(Ẽα ẼβFαβ)+ 1

2
NβTr(ẼαFαβ)

+ 1

2
Eα

I J£→t Aα
I J + 1

2
Dα(Eα

I J )(A · t)I J (F.6)

wherewe have performed an integration by parts on the last term in (F.5) and dropped
a surface term, which is presumed to vanish at spatial infinity, in (F.6).

Since our configuration variable is the connection.Aα
I J , the canonicalmomentum

can be read off the coefficient multiplying the time-derivative (or in this case the Lie
derivative with respect to the time-evolution vector field) of the connection in the
Palatini Lagrangian. Thus the canonical momentum is the triad field .Eα

I J .
The configuration variables of our theory are .N , Nα, (A · t), Aα

I J , and .Eα
I J .

However, since the Lagrangian (F.6), does not contain any time-derivatives of
.N , Nαand (A · t), these variables act as Lagrange multipliers and their respective
coefficients must therefore be constant on the physical phase space.

To obtain the Hamiltonian, we can perform the usual Legendre transform on (F.6)
to obtain

.HP=
 

∑

1

2
√
h
NTr(Ẽα ẼβFαβ)− 1

2
NβTr(ẼαFαβ)

− 1

2
Dα(Eα

I J )(A · t)I J + λαβϵI J K L Ẽα
I J Ẽ

β
K L (F.7)

where the last term has been inserted in order to satisfy the constraint that

.ϵI J K L Ẽα
I J Ẽ

β
K L = 0

which follows from the definition of .Eα
I J .

The Hamiltonian thus becomes a sum of constraints, specifically

.Tr(Ẽα ẼβFαβ) ≈ 0, Tr(ẼαFαβ) ≈ 0, Dα(Eα
I J ) ≈ 0

which are, respectively, the Hamiltonian, diffeomorphism and Gauss constraints.



GTheKodamaState

The Kodama state is an exact solution of the Hamiltonian constraint for LQG with
positive cosmological constant.∆ > 0 and hence is of great importance for the theory.
It is given by

.𝚿K (A) = N e
 
SCS (G.1)

where.N is a normalization constant. The action.SCS[A] is the Chern-Simons action
for the connection .AI

μ on the spatial 3-manifold .M , given by

.SCS = 2

3∆

 
YCS

where

.YCS = 1

2
Tr

[
A ∧ d A + 2

3
A ∧ A ∧ A

]

with.d A  ∂[μAI
ν] being the exterior derivative of.A. Consistent with our discussion

of bivectors and .k-forms in AppendixB the wedge product between two 1-forms .P
and .Q is

.P ∧ Q  P[aQb] .

For identical one-forms the wedge product gives zero. That is why for the Chern-
Simons action to have a non-zero cubic term the connection must be non-abelian. As
was the case in Sect. 5.1 the restriction to the spatial 3-manifold means we replace
tetradswith triads, and indicate this by changing internal indices.I , J , K → i, j, k ∈
{1, 2, 3}. Let us write the various terms in the Chern-Simons density explicitly;

.A ∧ d A ≡ Ai[p∂q A
j
r ]Ti Tj , A ∧ A ∧ A ≡ Ai[p A

j
q A

k
r ]Ti Tj Tk
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where .p, q, r . . . are worldvolume (“spacetime”) indices, .i, j, k . . . are worldsheet
(“internal”) indices and .Ti are the basis vectors of the Lie algebra/internal space.
Taking the trace over these terms gives us

.YCS = 1

2
Tr

[
Ai[p∂q A

j
r ]Ti Tj + 2

3
Ai[p A

j
q A

k
r ]Ti Tj Tk

]

The trace over the Lie algebra elements gives us

.Tr
[
Ti Tj

] = δi j , Tr
[
Ti Tj Tk

] = fi jk

where . fi jk are the structure constants of the gauge group.
Now, the Hamiltonian constraint in Ashtekar variables has the form

.H = ϵi j k Ẽ
a
i Ẽ

b
j F

k
ab .

We can quantize this expression in the usual way setting the connection .Ai
a as the

“position” and the triad.Ẽa
i as its conjugate “momentum”. Then in terms of operators,

the action of the. Âi
a on a state will correspond to multiplication and.Êa

i corresponds
to taking the functional derivative with respect to the the connection, hence

. Âi
a𝚿(A) ≡ Ai

a𝚿(A) , Êa
i 𝚿(A) ≡ δ

δAi
a
𝚿(A) . (G.2)

The operator form of the Hamiltonian constraint then becomes

.Ĥ = F̂k
ab Ê

a
i Ê

b
j (G.3)

and its action on a wavefunction .𝚿(A) becomes

.Ĥ𝚿(A) = F̂k
ab

δ

δAi
a

δ

δA j
b

𝚿(A) . (G.4)

Now, making use of the fact that

.
δ

δAi
a

δ

δA j
b

SCS = ϵi j k F
k
abSCS

we can immediately see that the Kodama state.𝚿K (A) is an eigenstate of (G.4) with
eigenvalue .

2
3∆ !

Despite the remarkable fact that the Ashtekar variables allow us to find an exact
solution of the gravitational Hamiltonian for arbitrary geometries, there are sev-
eral technical problems with treating the Kodama state as a valid wavefunction for
quantum gravity as was first pointed out by Witten [8]. In recent work, Randono [9–
11] has suggested that these problems can be addressed by working with a suitable
modification of the original Kodama state.



HPeter-WeylTheorem

The crucial step involved in going from graph states with edges labelled by
holonomies to graph states with edges labelled by group representations (angular
momenta) is the Peter-Weyl theorem. This theorem allows the generalization of the
notion of Fourier transforms to functions defined on a group manifold for compact,
semi-simple Lie groups.

Given a group.G, let .D j (g)mn be the matrix representation of any group element
.g ∈ G. Then we have (see Chap.8 of [12]).

Theorem H.1 The irreducible representation matrices .D j (g) for the group SU(2)
satisfy the following orthonormality condition

.

 
dμ(g)D†

j (g)mnD
j '(g)n

'
m' = nG

n j
δ j '

jδ
n'
nδ

m'
m . (H.1)

Here .n j is the dimensionality of the . j th representation of .G and .nG is the order
of the group. For a finite group this is simply the number of elements of the group.
For example, for .Z2, .nG = 2. However a continuous or Lie group such as .SU (2)
has an uncountable infinity of group elements. In such cases .nG corresponds to the
“volume” of the group manifold.

This property allows us to decompose any square-integrable function
. f (g) : G → C in terms of its components with respect to the matrix coefficients
of the group representations.

Theorem H.2 The irreducible representation functions .D j (g)mn form a complete
basis of (Lebesgue) square-integrable functions defined on the group manifold.
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Any such function . f (g) can then be expanded as

. f (g) =
∑
j;mn

f j
mnD j (g)mn (H.2)

where. f j mn are constants which can be determined by inserting the above expression
for . f (g) in Eq. (H.1) and integrating over the group manifold. Thus we obtain

.

 
dμ(g) f (g)D†

j (g)mn =
∑
j ';m'n'

 
dμ(g) f j '

m'n'D j '(g)m'n'D
†
j (g)mn

=
∑
j ';m'n'

f j '
m'n' nG

n j
δ j '

jδ
n'
nδ

m'
m , (H.3)

which gives us

. f j
mn =

/
n j

nG

 
dμ(g) f (g)D†

j (g)mn . (H.4)



IReggeCalculus

Regge showed in 1961 that one could obtain the continuumaction of general relativity
“in 2+1 dimensions” from a discrete version thereof given by decomposing the
spacetime manifold into a collection of tetrahedral simplices [13,14], with curvature
corresponding to an excess or shortage of angle traversed around each vertex. For
instance, as discussed in Sect. 6.1 a plane 2D surface can be tiled with equilateral
triangles, with six such triangles meeting at each vertex. If one attempted to fit in
a seventh triangle around a given vertex, thereby effectively increasing the number
of degrees in a full circle, the only way it could be accommodated would be by
curving the resulting surface. Similarly if one attempted to omit a triangle, thereby
reducing the number of degrees in a full circle, the only way to join the edges of
adjacent triangles would be to curve the surface they formed (clearly the addition or
omission ofmore triangles leads tomore extreme curvature). Hence whenmany such
tetrahedral simplices are joined together, curvature of the resulting discrete manifold
is represented by positive or negative deficit angles.

The Regge action for the .i th tetrahedron is

.Si =
6∑

a=1
li,aθi,a . (I.1)

Here the sum over .a is the sum over the edges of the tetrahedron. The terms.li,a and
.θi,a are the length of the edge and the dihedral deficit angle, respectively, around the
.ath edge of the .i th tetrahedron.

The Regge action for a manifold built up by gluing such simplices together is
simply the sum of the above expression over all .N simplices

.SRegge =
N∑
i=1

Si .
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It was later shown by Ponzano and Regge [15] that in the. ji >> 1 limit, the.6− j
symbol corresponds to the cosine of the Regge action [16]

.

 
j1 j2 j3
j4 j5 j6

 
∼ 1

12πV
cos

(∑
i

jiθi + π

4

)
.



JFibreBundles

Much of the mathematical discussion about quantum gravity (especially the formu-
lation of BF theory) is presented in the language of fibre bundles. This language can
seem fairly abstract to the uninitiated. However it is important, and provides several
nice visualisations of themappings associated to gauge transformations, connections,
and the like, so it is useful provide an overview of the topic.

As a first step, consider two copies of the real number line,whichwewill refer to as
.X and.Y . These are just one-dimensional vector spaces.We recognise that an ordinary
function of one variable, .y = f (x) with .x ∈ X and .y ∈ Y is not simply a mapping
.X → Y , but rather it is a mapping from.X to a two-dimensional manifold consisting
of points labelled by the pairs.(x, y), hence. f : X → X × Y .We recognise that. f (x)
defines the locus of points .(x, y) ∈ X × Y satisfying the relationship .y = f (x). It
is a simple matter to define an inverse mapping. f −1 : X × Y → X , for instance one
which “throws away” the .y value, .(x, y)  → x . This is simply the act of projecting
a point in .X × Y down to a point in .X .

Generalising these concepts, we can imagine a function which assigns elements
.v of a vector space.V to each point in a manifold.M . For concreteness, imagine.V is
the space of vectors in two dimensions. We can represent this as a disk. Points in this
disk denote vectors, with the direction and distance of the point from the centre of
the disk indicating the direction and magnitude of the vector (Fig. J.1). There is one
copy of.V associated to each point.x ∈ M . The space formed by “stacking together”
the disks associated with each point in the manifold is.E = M × V , and is called the
total space. It is easy to define a mapping which takes any point in.E to a point in.M ,
which is the generalisation of . f −1, above. We denote such mappings .π : E → M .
The set of all points in .E projected by .π down to a given .x ∈ M is the vector space
.Vx which we can think of as living at or, in some sense, “above” .x .

In general we would consider topological spaces rather than vector spaces specif-
ically, and so it is often sensible to replace .V by another symbol such as .F or .Ex ,
but for our purposes it is sufficient to stick to considering vector spaces, and so we
will retain the notation we have established.
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π

Vq

qp

Vp

π

M

S

v(p)

v(q)

Fig.J.1 Weassociate the vector spaces.Vp and.Vq to points.p and.q in themanifold.M . Themapping
.π projects all points in a given vector space down to the associated point in .M (left). A section .S
through the “stack” of all vector spaces,.M × V , picks out a particular vector.v(x) in each.Vx , and
associates this to the corresponding point .x ∈ M . A section therefore generalises the concept of a
function, and defines a vector field on the manifold.M (right)

Our choice to represent.V as a disk is useful when talking about a two-dimensional
vector space, but in general a more abstract representation is used. We will therefore
adopt the usual practice of drawing .E as a sheet above the manifold .M , and repre-
senting .Vx as a vertical strip running through this sheet (Fig. J.2). The collection of
all such strips looks like a cluster of threads or fibres, so we call .Vx a fibre. Just as a
group is a set along with a binary operation (AppendixA), we refer to .E = M × F
along with a mapping .π : E → M as a “fibre bundle”. The total space is the union
of all the fibres,

.E =
||
x∈M

Vx . (J.1)

In the cases under consideration, where the fibres are vector spaces, we call the
fibre bundle a “vector bundle”.9 Assigning a vector .v(x) ∈ Vx to each point .x ∈ M
means picking a point in.E for each.x . The locus of such points is .S, a section of.E .
Choosing a section of .E defines a vector field on .M . We are then naturally drawn
to consider the prospect of mappings between sections. Such mappings change one
vector at any given point to another vector at the same point. We refer to these as
endomorphisms. These are denoted End(.V ), and roughly speaking move us around
from one place in.V to another.10 The collection of endomorphisms associated to all
points in the manifold is called the “endomorphism bundle” End(.E). A section.T of
End(.E) defines a field of endomorphisms over .M , which we can think of as linear
transformations acting on the vector field defined on .M . In other words, given a
vector field on.M (given by a section.S of.E), the section.T of End(.E) acts pointwise
on it to produce a new vector field. If.T (p) ∈ G, with.G being a group that provides

9 Actually, we also require the bundle to be locally trivial, but the precise meaning of this is a
distraction from building a clear mental picture. See e.g. [2] for more details.
10 Etymologically these are “inside/within-shape” mappings, because they stay within the vector
space in question.
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π

E

S1
S2

Vp

Vq

M
p

q

End(E)

T

End(Vq)

Fig. J.2 Sections of .E determine vector fields on .M according to where they intersect the fibres
such as .Vp and .Vq . Endomorphisms, shown by the curved arrows adjacent to .Vq , map between
sections such as.S1 and.S2 and are themselves elements of a vector space, namely the fibre End(.Vq )
of the bundle given by End(.E). A section.T of End(.E) determines a change of vector field at each
point.p in.M , and hence a gauge transformation

transformations of the vectors .v ∈ V then we can think of gauge transformations as
sections of End(.E).

We should also note that.Aμ, whichwe introduced in Eq. (3.4) in the context of the
covariant derivative, can be viewed as an End(.E)-valued 1-form. By this we mean
to recognise that the role of .Aμ is to tell us how a field (i.e. a section of .E) defined
on the manifold of interest changes when we move through the manifold in some
direction. Thus when supplied with a vector field (defining the direction of motion)
and a section .S of .E , the 1-form .Aμ contracts with the vector field and enacts an
endomorphism upon .S to produce another field, .S'.



KKnots,Links,and theKauffman
Bracket

Our discussion in the main text, specifically Sect. 7.2.3, led us to consider closed
curves which may be linked together, winding around each other (or if framed, them-
selves) several times. If we think of such closed curves as embedded in a manifold
we can consider the prospect of distorting them and moving them around within the
manifold. However, in a background-independent theory, the concept of distorting a
curve loses its meaning—there is nometric against which to measure the positions of
different parts of the curve. We are therefore drawn to consider topological features
of such closed curves, or collections of closed curves, which would remain invariant
if the curves were moved or deformed.

This leads us into a fairly wide area of knot theory, of which we will only scratch
the surface. The reader may consult Chap. II.5 of [2], for instance, or specific texts
on knot theory for more details.

In the main text we referred to “closed curves”, as this terminology matches the
language we used in discussing Wilson loops and spin networks. For now though,
we will revert to the usual terminology of calling a closed curve a “knot”. A knot is
simply a 1-dimensional submanifold of .R3 defined by a locus of points which can
be mapped to the circle .S1. In other words, if you started at some point in the knot
and moved from one point to another you would eventually return to your starting
point without having intersected any of the points you had previously visited along
the way. The simplest example is the unknot, which when projected into.R

2 does not
cross itself at any point (Fig. K.1a). More complicated possibilities may occur, such
as the trefoil knot, Fig. K.1b, which crosses itself three times when projected into
.R

2. In any case, we can think of a knot as an embedding .S1→ R
3. A knot may be

unoriented, or may have an orientation (i.e. a preferred direction around the knot),
indicated by arrowheads drawn facing tangentially along the knot.

Given multiple knots we can combine them to form links. Several knots which do
not cross at any point when projected into.R

2 constitute a perfectly valid (if somewhat
trivial) link, but in general links involve sets of knots which cannot be projected into
a plane without some crossings. The Hopf link (the union of two unknots) is shown
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(a) The unknot, without orientation
(left), and with orientation (right)

(b) The trefoil knot,
with orientation

Fig.K.1 The unknot and trefoil knot. The diagram of the unknot projected into two dimensions has
no crossings, but for other knots any crossings are indicated with breaks to show which segment of
the knot passes “under” or “behind” the other

(a) The Hopf link, with orientation (b) An oriented framed
unknot, with a 2π twist

Fig.K.2 The linking of knots, and the self-linking (or “writhe”) of a framed knot are closely related.
In this case we can see that the two edges of the framed unknot b are linked through each other in
exactly the same way as the component knots of the Hopf link a

in Fig. K.2a. A similar structure can be formed by framing the unknot. As mentioned
in Sect. 7.2.3, framing a knot means we assign a non-tangential vector to every point
of the knot, and let the tips of these vectors be the points defining a new knot.We then
think of the knot as being stretched out into a ribbon with the original and newly-
defined knots constituting the “left” and “right” edges of this ribbon. It is entirely
possible that the framing involves twists through multiples of .2π (Fig. K.2b).

We can formalise the discussion above about distorting knots by considering the
Reidemeister moves. These are a set of three ways in which crossings in a diagram
can be changed, without cutting or rejoining the associated knot (strictly speaking
there is a zeroeth Reidemeistermove, but it does not involve crossings). Any two knot
diagrams which can be transformed into each other via a sequence of Reidemester
moves correspond to knots which can be deformed into each other without breaking,
rejoining, or passing one segment of a knot through another in.R

3.We say such knots
are isotopic. The Reidemeister moves are illustrated in Fig. K.3.

We are now in a position to start discussing some invariants of knots and links.
The simplest place to start is with the linking number, .L (not to be confused with a
lagrangian density, despite the choice of symbol!), equivalent to .ϕ[λ, λ'] discussed
in Sect. 7.2.3. As the name suggests, this just counts the number of linkings, and since
two crossings must occur whenever a pair a knots.K1 and.K2 are linked, it is given by
half the number of crossings. To make this more precise, consider a crossing of two
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0th move 1st move 1F move 2nd move 3rd move

Fig.K.3 The Reidemeister moves, including the modified first move (1F) which applies to framed
knots

Left-handed Right-handed

−1 +1

2

1

Fig. K.4 Left-handed and right-handed crossings of segments of oriented knots. If one imagines
orienting one’s hands so the thumbs point upwards, when knots form a left-handed (right-handed)
crossing they wind around a vertical axis in the direction of the fingers of the left (right) hand.
The sign of each crossing allows skein relations to be written for the writhe, where a diagram of a
crossing stands in for the sign of that crossing (right)

oriented knots, and distinguish between left-handed and right-handed crossings, as
per Fig. K.4. The linking number for a given link is half the number of right-handed
crossings minus half the number or left-handed crossings (or in other words, let the
sign of a left-handed crossing be -1 and the sign of a right-handed crossing be +1. The
linking number is half the sum of these values for the entire link). You can confirm
for yourself that the Hopf link as drawn in Fig. K.2a has linking number –1, though
you may need to reorient the diagram to more easily determine if a given crossing
is left-handed or right-handed. Confirm also that if the orientation of either of the
component knots is reversed the linking number becomes +1, and reverts to –1 if the
orientations of both knots are reversed.

An associated quantity which can be assigned to oriented framed knots is the
self-linking number or writhe, .w(K ). This is found by treating a framed knot as
the link composed of its “left” and “right” edges, and counting the right-handed
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crossings minus the number of left-handed crossings. Thus, for example, the writhe
of the framed unknot in Fig. K.2b is –2. A writhe can also be assigned to links as
well as knots. In this case the writhe.w(L) is the sum of the linking numbers of pairs
of knots in the link, plus the sum of the self-linking numbers of the knots,

.w(L) =
∑
i /= j

L(Ki , K j )+
∑
i

w(Ki ) (K.1)

We can consider how the writhe and linking number would change if we swapped
left-handed crossings for right-handed crossings and vice-versa. This opens up the
subject of skein relations. These are rules which tell us how a quantity like the
linking number or writhe (or other more sophisticated invariants) change when we
make modifications to a link diagram. In the simple case of the writhe, these take the
form of algebraic relationships where the diagram of a crossing behaves equivalently
to its numerical value. The skein relations can be used to find the writhe of a framed
knot by successively undoing crossings (i.e. swapping a left-handed crossing for a
right-handed crossing and vice-versa, and retaining an additive numerical term as per
Fig. K.4), and using the Reidermeister moves (which leave the writhe unchanged)
to convert the knot into an unknot (which has a writhe of zero).

Take note that if two links (or two knots) have different linking numbers or writhes
they are not isotopic, but if they have the same linking numbers or writhes that does
not necessarily mean they are isotopic.

A vast amount can (and has) been said about knots and links which will not be
repeated here. We will simply mention another characterisation of links which is
relevant to the discussion in Sect. 7.2.3, the Kauffman bracket .<L> of a link .L . This
provides an algebraic expression which is determined via a state sum much like we
would encounter in classical statistical mechanics. In this case, the sum is taken over
possible values (named .A and .B, not to be confused with the vector potential and
magnetic field!) assigned to the crossings of a link, and dependent on a parameter .d
which is raised to the power of the number of separate closed loops the link would
form if all crossings were removed (this of course depends on exactly how each
crossing is removed). With the specific choices .B = A−1 and .d = −(A2 + A−2)
the Kauffman bracket is found to be invariant under the permissible deformations of
a framed link (i.e. the Reidemeister moves, with the first move being replaced by its
framed equivalent).

The Kauffman bracket of a link is found by examining each crossing, facing
such that it resembles a right-handed crossing (Fig. K.4), but without considering
orientation. One then looks at all the ways the values .A and .B could be assigned to
these crossings (i.e. for.N crossings there are.2N possible assignments). If a crossing
is assigned .A, it is replaced by a pair of uncrossed vertical lines. If a crossing is
assigned.B, it is replaced by a pair of uncrossed horizontal lines. Each assignment of
.As and.Bs then produces a diagram consisting of.d disjoint unknots. The polynomial
assigned to .<L> is found by adding the products of .As and .Bs for each assignment,
weighted by the relevant power of.d in each case. This is illustrated in Fig. K.5. The
Kauffman bracket has its own particular skein relations which are also illustrated.
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→ d2AB2→
B A

B

= 1

= d

= A +B

Fig.K.5 Calculation of one term (of eight) in the sum for the Kauffman bracket for the unoriented
trefoil knot (left). The skein relations for the Kauffman bracket (right)



LQuantum (or .q-Deformed)Groups

Probably the first important thing to say about quantum groups is that they should
really have a different name. It is not immediately obvious how (if at all) one would
relate them to quantummechanics, and,moreover they are noncommutative algebras,
rather than groups. The term “.q-deformed” is sometimes used, and gives a better
indication of the means by which these structures are established.

To keep the discussion brief we will follow [17] to present a simple example,
which illustrates the role of the deformation parameter .q . Consider .2× 2 matrices
.M and .ϵ such that

.M =
(

α β
γ δ

)
, ϵ =

(
0 q−1/2
−q1/2 0

)
. (L.1)

We recognise that .ϵ2 = −1. We will not assume that .α, β, γ, δ commute under
multiplication. If we impose the condition

.MϵM = M ϵM = ϵ (L.2)

it is a simple matter to run through expanding the matrices and find that,

.αβ = qβα βδ = qδβ δα− q−1γβ = 1

γδ = qδγ αγ = qγα αδ − qγβ = 1 (L.3)

γβ = βγ

These are clearly different to the relationships we would expect if the components of
.M were simply complex numbers and hence commuted. For example, we can easily
show that

.[α, δ] = (q − q−1)γβ . (L.4)
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Notice that.αδ − qγβ = 1 looks like the determinant of.M , if it were in SL(2), except
for that factor of .q . We see that these relationships amount to a “deformation” of
the relationships we would expect, which can be recovered by setting.q → 1. In this
context the parameter.q defines howmuch the quantumgroup is deformed frombeing
what we would think of as an ordinary group (hence we can take a group like U(1)
and deform it into a related quantum group) with.q = 1 resulting in no deformation.
Since doing so leads to.αβ = βα etc., we see that Eqs. (L.3) are a result of choosing
.q /= 1, and the supposition that the.α, β, γ, δ do not commute under multiplication
is secondary to the introduction of a deformation parameter. Note also that in the
discussion of BF theories with a cosmological constant in Sect. 7.2.3 we saw that .q
was given by the exponential of the inverse of the Chern-Simons level,.q ∼ exp(1/k).
Since.k is inversely-proportional to.∆ in such theories, we find that.q → 1 as.∆→ 0.

We can further explore the idea of a deformation (and indeed, something of
the reason behind the name “quantum groups”) by considering the transition from
classical mechanics to quantum mechanics. Classical observables of a system, such
as position and momentum, define points in phase space, and we can define an
algebra of classical observables by reference to the Poisson bracket which serves
as a binary operation (Sect.A.1). The transition to quantum mechanics is achieved
by reference to operators corresponding to observables, and promoting the Poisson
brackets to commutators, as per the discussion in Sect. 4.3, to obtain for example
the Heisenberg uncertainty relation.[x̂, p̂] = i . We can consider this a deformation
of the commutative algebra of classical observables into a noncommutative algebra,
with a deformation parameter . . When . → 0 we recover the classical world from
the quantum. In a similar vein, we may use Eqs. (L.3) to write relations such as

.αβ − βα = [α, β] = (q − 1)βα] , (L.5)

that is to say the commutator.[α, β] /= 0 when.q /= 1. This is the source of the name
“quantumgroup”, as the commutation relationship is reminiscent of the commutation
relations between position and momentum in the Heisenberg uncertainty relation,
above.

While.q-deformed groups are too vast a subject to discuss in great detail here, it is
worth becoming familiar with the foundational concepts and some terminology. The
next few paragraphs provide an overview, drawn specifically from the discussions in
[18–21], to which the reader is referred for more details.

The phase space of a system is usually thought of as a kind of abstract manifold
representing the possible states the system can be in. But it can be endowed with
extra structure, such that it becomes a group. That is to say, if .g and .h are points in
the phase space .G, we can define a mapping.G × G → G which obeys the closure,
identity, inverse, and associativity properties (Sect.A.1) which turns the set.G into a
group.

We can treat the functions. f on elements of.G (which aremappings from elements
of .G to some field .k, such as the complex numbers, for instance) as elements of an
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algebra, .A. Then just as a group has an identity and inverse we find that there exists
a mapping .ε : A→ k defined in terms of the identity,

.ε( f ) = f (e) (L.6)

referred to as the counit. That is, the counit is a mapping that acts upon the functions
. f to yield the.k-valued element that. f would map the identity to. Similarly there is a
mapping.S defined in terms of the inverse which maps.A→ A, called the antipode,
such that

.S( f )(g) = f (g−1) , (L.7)

which can be visualised as acting on. f to transpose where in.k any two points .g and
.g−1 are mapped to by . f . In fact, in general there is a coproduct, corresponding to
the product in .G, denoted by .∆ and mapping .A→ A ⊗ A such that

.∆( f )(g, h) = f (gh) = f(1)(g)⊗ f(2)(h) (L.8)

(the subscripts referring to the two copies of.A). If we have a mapping.m on.A, such
that.m : A ⊗ A→ A, then.∆maps “back the other way”. In short, given some group
we can associate an algebra to that group and construct a coalgebra, equipped with
the coproduct, counit, and antipode, corresponding to the product, unit, and inverse.
Hence if

.A ⊗ A ⊗ A
m⊗1−→ A ⊗ A

m−→ A (L.9)

we obtain a coalgebra .C by reversing arrows, and replacing the product with the
coproduct, hence

.C ⊗ C ⊗ C
∆⊗1←− C ⊗ C

m←− C (L.10)

as in the figures on pages 6 and 11 of [19]. In this sense coalgebras are dual to
algebras. Notice that in Eq. (L.9) we could have replaced.m ⊗ 1 with.1⊗ m, and in
Eq. (L.10) we could have replaced.∆⊗ 1 with .1⊗∆, due to the associativity of .m
and .∆.

One can also show that.ε and.∆ are morphisms of algebras, and along with.S they
satisfy coinvertibility, such that

.m ◦ (S ⊗ 1) ◦∆( f ) = m ◦ (1⊗ S) ◦∆( f ) = ε( f ) (L.11)

where .◦ denotes composition of mappings.
An algebra .A which contains a unit element, and satisfies these conditions is

referred to as a Hopf algebra. The name ‘quantum group’ is generally assigned to
such algebras which are not commutative, nor cocommutative.



MEntropy

Without thinking too hard about gases, and molecules moving at different speeds,
entropy can simply be related to how much information is conveyed by learning that
a system is in a given state. This may be seen as a measure of how surprising that
state is. For instance, considering a fair coin toss, it takes one bit of information to say
whether the coin lands on heads or tails. If the coinwas two-headed, therewould be no
surprise associated with the fact that it landed on heads, and no information conveyed
by saying the outcome of tossing this coin was heads. If the coin had a head and a tail,
but was biased such that the probability of heads was greater than the probability
of tails, there would be more surprise associated with reporting that it landed on
tails than on heads, and more information conveyed by doing so. The fact that more
information is conveyed by reporting the less likely outcome can be understood by
analogy to asking the question “Is today a week day?” Assuming the day on which
you ask the question is chosen randomly, there is a 2/7 chance the answer is no,
and a 5/7 chance the answer is yes. The more likely answer doesn’t convey much
information, as it is not very specific and doesn’t eliminate verymany options (telling
you that it’s either Monday, Tuesday, Wednesday, Thursday, or Friday). With five
remaining options you would need more than a single bit of information to specify
exactly which day it is. But the less likely answer is more specific. You now need
only a single bit of information to work out whether it’s Saturday or Sunday, and
hence the answer “No, today is not a weekday” carries more information than the
answer “Yes, today is a weekday”.

The question about whether today is a weekday is an example of a binary search.
A range of options were split into two categories, and we asked a question which
made us focus on one of those categories. In this case the categories were unequally
sized, but in general a binary search would proceed in the followingmanner. Suppose
we are trying to identify a target value .x of some variable, which we know takes
values in the set .{xi } where .i = 1, . . . , n. For instance, the .xi may be the integers
.i = 1, . . . , n, they may be the days of the week, they may be letters from the Latin
alphabet, etc. We first ask whether .i is greater than .n/2. Suppose the answer is yes.
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Wewould then ignore the values less than.n/2, and ask whether.i is greater than.3n/4
(i.e. which half of the range.n/2, . . . , n does it lie in?). We would continue like this,
dividing the range in half each time until we arrived at the value of.x wewere seeking.
At each step we ask a simple binary question—“Is.x in the top or bottom half of the
remaining range?”—and hence to specify the location of.x we need a number of bits
equal to the number of questions we ask. How many questions do we need? We can
deduce this by working backwards. The last question should decide between two
options, that is .21 options. The penultimate question should subdivide at most four
options, that is .22 options, in to equal halves. The third last question should divide
.23 options into equal halves. And so on. If the total number of questions is .Q, and.x
lies in the range.1, . . . , n it follows that.n ≈ 2Q (remembering that in the real world,
.n won’t necessarily be an integer power of 2, so we can expect approximate rather
than exact equality). In other words, .Q, which is the number of bits of information
needed to specify .x , is of order .log2 n. The appearance of a logarithm now seems
quite natural (pun intended, although in this case it of course not natural, but rather
to the base 2).

Consider now the case of multiple fair coin tosses, for instance tossing two coins,
each ofwhich has a.50%probability of landing heads (H) or tails (T)—or equivalently
tossing a single fair coin twice. The four possible outcomes are TT, TH, HT, and
HH, each with equal probability of .1/4. When the exact condition of each toss is
specified, we call this a microstate. If we ignore any ordering of the coins we can
then define three states, namely two-tails, one-head-one-tail, and two-heads, with
respective probabilities.1/4,.1/2, and.1/4. Since the exact outcome of each toss is not
specified, we distinguish these frommicrostates, and call themmacrostates. The one-
head-one-tail macrostate is twice as probable as either of the other two macrostates
because it contains twomicrostates (HT andTH), while the othermacrostates contain
only a single microstate each.11

In this case we see that it takes two bits of information to define each microstate.
And hence it takes two bits of information to specify that the system is in either
the two-tails or two-heads macrostates. But the one-of-each macrostate consists of
two microstates, corresponding to a single distinguishing bit of information that we
don’t need. So only.2− 1 = 1 bit of information is needed to specify that the system
is in this macrostate. Instead of asking two questions (“What was the result of the
first toss?” and “What was the result of the second toss?”) we could ask “Are both
coins showing the same face?”. Half the time the answer wil be yes, and no further
questions are needed to find the macrostate of the system. The average information
needed to specify which macrostate the system is in is the weighted mean of the
number of bits for each macrostate, thus

.I =
(
1

2
(1 bit)

)
one each

+
(
1

4
(2 bits)

)
two heads

+
(
1

4
(2 bits)

)
two tails

= 3

2
bits

(M.1)

11 This is, incidentally, the basis for the traditional Australian gambling game “Two-up”.
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For a more complex example, consider the analogous situation when tossing four
coins. This time four bits are needed to specify a particular microstate, as there are
.24 = 16 microstates, TTTT, HTTT, THTT, TTHT, TTTH, HHTT, HTHT,..., HHHT,
HHHH in total. The macrostate corresponding to one head and three tails contains
four microstates. Specifying a particular microstate within this macrostate requires
two bits (which are redundant if we only want to specify the macrostate), and hence
to answer the question “Is the system in the one-head-three-tails macrostate?” only
requires .4− 2 = 2 bits of information. The number of redundant questions is the
logarithm (to the base 2) of the number of microstates in the macrostate of interest.

Looking at the two-coin and four-coin examples, if we denote the number of
microstates in our macrostate of interest by.ΩI , and the total number of microstates
by .n = 2Q as before, then the number of bits needed to specify a macrostate was
equal to

.Q − log2(ΩI ) = log2(n)− log2(ΩI ) = log2

(
n

ΩI

)
= log2(1/pI ) (M.2)

where.pI is the probability that the system will be in our macrostate of interest, if all
microstates occur with equal probability. As above, the average information needed
to specify which macrostate the system is in is the weighted mean of the number of
bits for each macrostate, so we find

.I =
∑
i

pi log2(1/pi ) = −
∑
i

pi log2(pi ). (M.3)

To keep things easy here, for pedagogical purposes, we have stuck to cases where
each probability is a power of .1/2, and used logarithms to the base 2. Of course, we
might be tempted to look at examples where the probabilities were powers of .1/3
and use logarithms to the base 3, or some other choice, in which case we’re no longer
counting bits, but some other unit of information (trits in the case of logarithms to the
base 3, nats in the case of natural logarithms, etc.) but that would not fundamentally
change our result, as we can always convert between logarithms to the base 2 and
logarithms to another base using the well-known formula,

. loga(x) =
logb(x)

logb(a)
(M.4)

and hence convert our answer to bits. This shows us that Eq. (M.3) is just Shan-
non’s entropy formula, Eq. (8.4), if we identify the information needed to specify a
macrotate with the entropy associated to that macrostate.

The connection to thermodynamic entropy can be seen as follows. Imagine that
we have a container, divided into equal subsections labelled A, B, C, etc. The subsec-
tions are separated by impermeable partitions. Initially, there are .N gas molecules
contained in subsection A. At some time the partitions are removed, allowing the
gas molecules to diffuse to other subsections. If we were to ask where gas molecule
1, gas molecule 2,..., gas molecule .N are located at the moment the partitions are
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removed we will get the entirely straightforward answer AAAAAAAA... (a string of
As, of length.N ). The container is, in essence, a machine that produces a completely
predictable string of symbols from the list A, B, C,...

A short while later, some of the molecules will have diffused to the other subsec-
tions, but most will still remain in subsection A. If we were to ask the locations of
the gas molecules now we might get a string like AAABAACA... The container has
become a machine which produces a fairly predictable string of symbols. That is,
given each symbol in the string, we have a good (but not perfect) chance of predicting
the next symbol, since we know that it will most likely be an A.

Eventually the gas molecules will diffuse until they are equally (or very nearly so)
distributed among the subsections of the container. Nowwewould obtain a string like
EABBFCEDF... The container is now a kind of machine that produces an entirely
random answer, in which the probability of each symbol is equal and independent
of the symbols that came before it.

The crucial point is that each gas molecule is like a coin (or a coin toss) in our
examples above. And the subsections we may find the molecules in are like the
outcomes—heads or tails—of a coin toss. Each string of symbols corresponds to
a microstate of the gas molecules in the container, just as a string of symbols like
HTTH corresponded to a microstate of coin tosses. There is only one way to create
a microstate in which all the molecules are in subsection A. But there are multiple
ways (microstates) to have the molecules distributed between several subsections.
The number of microstates corresponding to the molecules being equally distributed
is larger than for any other situation. For instance, with three subsections A, B, C,
and three molecules the possibilities are;

0 Cs 1 C 2 Cs 3 Cs
0 Bs AAA CAA, ACA, AAC CCA, CAC, ACC CCC
1 B BAA, ABA, AAB ABC, ACB, BAC, BCA, CAB, CBA CCB, CBC, BCC
2 Bs BBA, BAB, ABB BBC, BCB, CBB
3 Bs BBB

Hence if each microstate is equally likely we would expect the system to more
often be in microstates corresponding to the molecules being distributed between
multiple subsections, rather than all concentrated into one subsection, since there
are more of the former microstates than the latter. The probability of any given
macrostate is proportional to the number of microstates it contains. In this exam-
ple, the macrostate consisting of all three molecules being in different subsections
contains six microstates, and hence it is twice as likely as the macrostate with two
molecules in A and one molecule in B, etc. As the number of molecules goes up,
the probabilities of macrostates in which the molecules are fairly evenly distributed
rapidly outstrips the probabilities ofmacrostates where they are unevenly distributed.

It should now be clear to see that the evolution from an uneven distribution of gas
molecules to an even distribution may be thought of as the container of gas evolving
from being a machine that outputs a low-entropy, predictable, unsurprising, string of
characters, such as AAAAA... (we’ll call such a machine a low-entropy macrostate)
to being a machine that outputs a high-entropy, unpredictable, surprising string of
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characters (and we’ll call such a machine a high-entropy macrostate). Furthermore,
this evolution is a probabilistic process, determined by the fact that the system ismore
likely to be in a macrostate which contains many microstates rather than one which
contains few microstates. As this process is probabilistic, we expect it to apply to
numerous other physical systems besides containers of gas—including the complex,
fluctuating networks of spins that describe spacetime in loop quantum gravity.



NSquare-FreeNumbers

According to the fundamental theorem of arithmetic, any integer.d ∈ Z, has a unique
factorization in term of prime numbers,

.d =
N||
i=1

pmi
i

where.{p1, p2, . . . , pN } are the.N prime numbers which divide.d, one ormore times,
and.mi is the number of times the prime number .pi occurs in the factorization of .d.
Thus we have

.

√
d =

N||
i=1

pmi /2
i .

We can partition the set .{mi } into two sets containing only the even or odd elements
respectively

.{mi } ≡ {me
j } ∪ {mo

k}
where . j ∈ 1 . . . ne, .k ∈ 1 . . . no, and .ne + no = N . This gives

.

√
d =

( ne||
i=1

p
me
i
2

i

)⎛
⎝ no||

j=1
p

mo
j
2
j

⎞
⎠ .

Since each of the .me
i = 2aei and .mo

j = 2b j + 1, for some.ai , b j ∈ Z, we have

.

√
d =

( ne||
i=1

p
aei
i

)⎛
⎝ no||

j=1
p
mo

j
j

⎞
⎠
┌||| no||

k=1
pk = A

√
B .
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It is evident that since the third term in the product has no repeating elements, its
square-root .

√
B cannot be an integer (i.e. the presence of repeating elements would

lead to an expression like.
√
X · X ). Such an integer.B is therefore known as a square-

free integer. Thus any integer.d can be written as the product of a square-free integer
.B and another (non square-free) integer .C = A2 such that .d = C × B.



OBrahmagupta-Pell Equation

Around the 7th century A.D. the Indian mathematician Brahmagupta demonstrated
the Brahmagupta-Fibonacci Identity,

.(a2 + nb2)(c2 + nd2) = (ac)2 + n2(bd)2 + n[(ad)2 + (bc)2]
+2acbdn − 2acbdn (O.1)

. = (ac + nbd)2 + n(ad − bc)2 (O.2)

where we have added and subtracted.2acbdn from the left-hand side on the first line.
The above goes through for all.n ∈ Z. Given any pair of triples of the form.(xi , yi , ki ),
where.i = 1, 2, which are solutions of the Diophantine equation.x2i − ny2i = k2i , we
can construct a third triple.(x3, y3, k3), which is also a solution of the same equation,
by applying the Brahmagupta-Fibonacci identity to the first two pairs

.(x21 − ny21 )(x
2
2 − ny22 ) = (x1x2 − ny1y2)

2 − n(x1y2 − x2y1)
2 (O.3)

which tells us that .x3 = x1x2 − ny1y2, .y3 = x1y2 − x2y1 and .k3 = k1k2. One can
easily check that the triple.{x3, y3, k3} is also a solution of the Diophantine equation.

When we apply the restriction that .ki = 1, the Diophantine equation
.x2i − ny2i = k2i reduces to the BP equation,

.x2i − ny2i = 1

and given two pairs of solutions.{(xi , yi ), (x j , y j )} to the BP equation (for the same
fixed value of .n), we can generate a third solution given by

.(xk, yk) = ((xi x j − nyi y j ), (xi y j − x j yi )) . (O.4)
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More generally given any solution.(x0, y0; n) to the BP equation, one can generate an
infinite set of solutions.(xi , yi ; n)by repeatedly applying theBrahmagupta-Fibonacci
identity to the starting solution

.(x1, y1) = (x0, y0)
2

(x2, y2) = (x0, y0)(x1, y1)
...

(xn, yn) = (x0, y0)(xn−1, yn−1) . (O.5)

Here, the pair .(x0, y0; n) is referred to as the fundamental solution.

O.1 Quadratic Integers and the BP Equation

We are familiar with solutions of equations of the form

.x2 + Bx + C = 0 .

This is the quadratic equation from beginning algebra courses, which has as solutions

.x± = −B ±
√
B2 − 4C

2

when the discriminant .B2 − 4C is negative, the roots of the equation are imaginary
or complex numbers

.x± = −B ± i
√
D

2
∈ C

where .D = |B2 − 4C | and .i = √−1. When .{B,C} ∈ Z, the solutions of the
quadratic equations can be characterized as elements of the field of quadratic inte-
gers.Q(

√
D), which is an extension of the familiar field of rational numbers.Q. Such

numbers have the form

.z = a + ωb

where .{a, b} ∈ Z, .ω = √D if .d mod 4 ≡ 2, 3 and .ω = 1+√D
2 otherwise (if

.D mod 4 ≡ 1). Note that .D ∈ A, where .A is the set of square-free integers.
It is at this point that onemakes a connection to the square-free quadratic extension

of the field of rationals .Q(
√
n) and its integral subset .Z(

√
n), by noting that any

solution .(xi , yi ; n) of the BP equation can be represented as a quadratic integer,

.(xi , yi ; n)⇒ zni = xi + yi
√
n ∈ Z(

√
n) .

The consistencyof this representation is enforcedby the fact that themultiplication
law for two quadratic integers .zi , z j ∈ Z(

√
n) is the same condition satisfied when

multiplying two pairs of solutions of the BP equation to obtain a third pair, i.e. , if
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.zi = xi + yi
√
n and.z j = x j + y j

√
n are twomembers of.Z(

√
n), then their product

.zk = zi × z j = xk + yk
√
n is given by

.xk = xi x j + nyi y j (O.6)

.yk = xi y j + x j yi (O.7)

which is identical to the multiplication law satisfied by pairs of solutions of the BP
equation.
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