
SiDiTeR: Similarity Discovering Techniques
for Robotic Process Automation

Petr Průcha(B) and Peter Madzík

Technical University of Liberec, Studentská 1402/2, Liberec, Czechia
petr.prucha@tul.cz

Abstract. Robotic Process Automation (RPA) has gainedwidespread adoption in
corporate organizations, streamlining work processes while also introducing addi-
tional maintenance tasks. Effective governance of RPA can be achieved through
the reusability of RPA components. However, refactoring RPA processes poses
challenges when dealing with larger development teams, outsourcing, and staff
turnover. This research aims to explore the possibility of identifying similarities in
RPA processes for refactoring. To address this issue, we have developed Similarity
Discovering Techniques for RPA (SiDiTeR). SiDiTeR utilizes source code or pro-
cess logs fromRPA automations to search for similar or identical parts within RPA
processes. The techniques introduced are specifically tailored to the RPA domain.
We have expanded the potential matches by introducing a dictionary feature which
helps identify different activities that produce the same output, and this has led to
improved results in the RPA domain. Through our analysis, we have discovered
655 matches across 156 processes, with the longest match spanning 163 occur-
rences in 15 processes. Process similarity within the RPA domain proves to be a
viable solution for mitigating the maintenance burden associated with RPA. This
underscores the significance of process similarity in the RPA domain.

Keywords: Robotic Process Automation · process similarity · RPA governance ·
RPA maintenance

1 Introduction

Robotic Process Automation is slowly becoming mainstream technology in various
corporate organizations. Unfortunately, even though RPA makes work easier in some
ways, it can generate additional work, especially during the running of RPA itself [16].
Very often this happens with companies that cross a critical threshold and fall into an
RPA maintenance trap [27]. One way to prevent this, according to RPA developers, is
to ensure the reusability of RPA components [7, 16, 26]. With a small number of RPA
robots and a small number of RPA developers, this can be easily ensured. With a larger
number of RPA robots, larger development teams, outsourcing automation to different
development teams in different parts of the world and with the turnover of staff, ensuring
the reusability of RPA components is very challenging. Making sure that code quality
complies with company norms during development is also challenging. For this reason,
software developers should refactor their code to be more efficient and serviceable.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Köpke et al. (Eds.): BPM 2023, LNBIP 491, pp. 106–119, 2023.
https://doi.org/10.1007/978-3-031-43433-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43433-4_7&domain=pdf
http://orcid.org/0000-0003-2197-7825
http://orcid.org/0000-0002-1655-6500
https://doi.org/10.1007/978-3-031-43433-4_7


SiDiTeR: Similarity Discovering Techniques 107

Hence, it is advisable to refactor the RPA code as well, so that the code components are
reusable. As in software development, refactoring can be done backwards.

Aim of the research: To explore the possibility of finding similarities or identical
parts in an RPA process for refactoring if many automations were developed by people
who no longer work in a particular company, or if the development was outsourced.

There is an area in business process management that addresses a similar problem
and then tries to find identical processes within an organization, or across manufacturing
plants, or after a merger/acquisition. However, these techniques have focused on pro-
cesses that are not automated. The most commonly used sources for analysis are process
logs, natural language content, graph structures, Petri Nets, and BPMN notation [11,
31]. None of these methods are primarily intended for the RPA area. Therefore, input
data, which for RPA may be the code of an RPA bot or possibly the log records from
RPA bots, are not considered. However, using the foundation of these techniques can
help answer our research question and achieve better maintainability by finding parts
from RPA code to refactor into reusable components.

The need for a new similarity algorithm comes from the desire to deal with the
maintenance trap. The current algorithms and solutions are not compatible with RPA
processes or logs. Many current discovery techniques are discussed in the section titled
Related Work. While these techniques propose interesting ideas which inspired our
solution here, they would be hard to use in the RPA domain or would not be especially
effective. Firstly, all currently used algorithms would need a certain amount of data
preparation before their application. And then, after all of the transformations, there
could arise certain problems related to the specifics of RPA technologies and the struc-
ture of process flow. For example, the process inquiry can deviate from reality. The RPA
technology sometimes needs to add extra activities to the flow in order to function prop-
erly, for example exceptions which account for a loading screen. These extra activities
would be problematic because in a standard graphical visualization as a BPMN or a Petri
Net, these activities would not be covered. Also, the structure of the RPA code can be
more problematic due to the fact that many activities are nested inside other activities.
Before the analysis, it is important to flatten the process structure in order to perform
an analysis. Lastly, the effectiveness of non-RPA algorithms can be lower, because in
a computer environment, it is possible to perform the same action a different way and
get an identical output. Our dictionary feature can recognize process activities which
are different, even when the activities yield the same output. This extends the pool of
similar or same activities. This increases the number of criteria for using algorithms
from related work that can be used in the RPA domain after minor or major changes.
These criteria will be introduced in the Related Work section.

In this article, we propose that Similarity Discovering Techniques for RPA processes
shall be identified as SiDiTeRs. A SiDiTeR is a technique for searching for similar parts
of RPAcodewhich could be refactored into reusable components. ASiDiTeR is specially
designed for use with UiPath RPA processes, currently the most used RPA tools [38].
The approach can be extended to other commercial RPA solutions in order to discover
similarities in RPA processes. Our techniques promise to efficiently discover similar
patterns in a sequence of activities to later maximize the ability to leverage the benefit
of reusability of the RPA components.



108 P. Průcha and P. Madzík

The main contributions of this new algorithm for identifying process similarity in
RPA processes are:

• Its ability to work on RPA designs or RPA process logs
• By design it works with the specifics of RPA technologies, like process structure and

process flow
• A dictionary feature is provided to extend potential matches and cover identical

outputs

In this article we first analyze the previous work related to our approach. Subse-
quently we describe the use of SiDiTeRs in detail as a method for RPA process similarity
discovery. We follow with an evaluation of the method and a conclusion of the work.

2 Related Work

There are already other approaches for discovering process similarity. Therefore, in this
section wewill analyze other approaches where a discovery approach is used, what input
data is needed, and also how much these approaches comply with our criteria for RPA.
We assume that after tuning all of the algorithms, they could at least partly be used in
the RPA domain. For example, after converting the RPA processes to another format,
a certain approach could be used. For the analysis of other approaches we will classify
them based on the publication on process similarity by Schoknecht et al. and Dijkman
et al. [6, 29]. Most authors use more than one of these approaches to compare process
similarity. Process similarity approaches are:

Behavioural similarity methods usually use execution traces of process and then
analyze the change in execution states or the behaviour of the flow. That means that they
check individual states and their changes.

Natural language similarity methods use natural language to try to find similarity
in labels of activities. Many other approaches use both syntactic and semantic aspects
of language to analyze similarity.

Graph or structural similarity methods consider graph structure or business
process-aware control flow. Various techniques like the graph edit distance technique or
the block structure technique are used to measure the similarity between process models
based on their graph structure and control flow.

Attribute Similaritymethods examine the similarity between the attributes of each
activity that are required for the successful execution of that activity in the process.

The criteria for determining if related algorithms (after the necessary changes)
have the ability to work effectively in the RPA domain can be summarized from the
introduction of this paper. The criteria are:

1. The ability to correctly interpret RPA processes from the RPA design or an RPA log
with all of the nested activities inside.

2. The ability to handle the extra activities in theRPAprocesses thatwill not be displayed
in a graphical visualization of the process.

3. The ability to cover different activities with the same output.



SiDiTeR: Similarity Discovering Techniques 109

An analysis of the criteria for a match is presented in the last column of Table 1.
An analysis of related works for determining which approaches and inputs could be
exploited for this study was carried out according to Fig. 1. Scopus and Web of Science
databases were used to search for related works. All non-BPM records were excluded
from the search results, including those from manufacturing, computer science (CPU
related), databases, web services, and psychology. We also excluded works related to
BPM if they were not relevant for generating similar processes or if the records were not
accessible. In this eligibility screening, we also excluded records which did not provide
a new method or algorithm for analyzing the process similarity or if they had not yet
been validated on any processes.

Fig. 1. Related work procedure

The result of the analysis of each approach is shown in Table 1. In Table 1 there
are only the publications that passed through the filter. Our search phrases are shown
in Fig. 1. Schoknecht et al. [29] conducted a similar literature review and found 123
relevant publications. However, they also used phrases and keywords which were older
and, according to them, no longer used today.



110 P. Průcha and P. Madzík

Table 1. Related work comparison table

Publication Type similarity Format of input data Criteria match

Ye et al. [34] Graph similarity Connected Graph Low

Garcia et al. [11] Graph similarity (BPMN) 2.0.2 Medium

Pei et al. [25] Behavioural similarity Petri Net Low

Niu et al. [24] Behavioural similarity Token Logs Very Low

Liu et al. [19] Behavioural and
graph similarity

DWF-nets Low

Sohail et al. [30] Natural language and
behavioural similarity

XML Medium

Zeng et al. [35] Behavioural similarity Role relation network Very Low

Zhou et al. [37] Natural language and
behavioural similarity

Business process graph
+ processLog

Very Low

Liu et al. [20] Behavioural similarity Business process graph Very Low

Valero [32] Behavioural similarity Petri Nets Low

Klinkmuller and Weber
[18]

Behavioural similarity Control flow log Very Low

Cao et al. [5] Graph and
behavioural similarity

Petri nets or BPMN Low

Amiri and Koupaee [3] Structural, attribute
behavioural similarity

BPMN Medium

Figueroa et al. [9] Natural language and
structural similarity

Business process in
XML

Medium

Montani et al. [22] Structural similarity Process log Medium

Yan et al. [33] Attribute similarity BPMN notation Medium

Niemann et al. [23] Natural language and
graph similarity

SAP reference model Very Low

Dijkman et al. [8] Behavioural, natural
language and graph
similarity

SAP reference model Very Low

Zha et al. [36] Behavioural similarity Transition adjacency
relation set

Very Low

Lu et al. [21] Structural,
Behavioural, and
natural language

Business process
constraint network
(BPCN), and process
variant repository
(PVR)

Low

(continued)



SiDiTeR: Similarity Discovering Techniques 111

Table 1. (continued)

Publication Type similarity Format of input data Criteria match

Jung et al. [14] Structural similarity Non specified process
model is converted to:
weighted Complete
Dependency Graph
(wCDG)

Very Low

Dijkman et al. [6] Natural language and
graph similarity

SAP reference model Low

Jung and Bae[15] Behavioural similarity Weighted complete
dependency graphs,

Very Low

Huang et al. [12] Graph similarity Weighted complete
dependency graphs,

Very Low

As shown in Table 1, most of the authors used more than one type of similarity
techniques. None of the studies focused on RPAs, nor did they utilize RPA source
codes or log information. This is confirmed by Schoknecht et al. [29] in their literature
review. Most approaches would require transforming the RPA process into a specific
input format in order to be usable. For example, converting RPA code into BPMN has
already been proposed in some approaches: [10, 13, 28]. The transformation would then
be less demanding than with other approaches. The least amount of effort for utilizing
an existing method for finding similarity would be to use methods that utilize process
logs [22, 37], or other studies that did not appear in the searched results [1, 2].

In Table 1, the criteria match column shows a range of values from very low to
medium. These values indicate a match with the criteria presented earlier in this paper.
None of the techniques in Table 1would fulfil all of the criteria. The closest oneswere the
algorithms which used similar input data to RPAs such as process logs or XML, or which
made use of the BPMN format because of its easy transformation from RPA code. Also,
some algorithms were valued higher because of a natural language similarity, attribute
similarity or other similarity approaches which would be useful in the RPA domain.

3 Description of Method

OurproposedmethodSiDiTeR (SimilarityDiscoveringTechniques forRPA)uses natural
language-based and graph similarity-based methods. The method is composed of three
main parts. The first part is the decomposition of the RPA process/design. The second
part of SiDiTeR focuses on natural language matching. The activities from RPA process
are compared with activities in a provided dictionary feature (later referred as dictionary
�), and this then produces an abstract (meta) process. The third part of SiDiTeR is the
use of the longest common sequence (LCS) algorithm to find the longest sequences in
the processes.



112 P. Průcha and P. Madzík

3.1 SiDiTeR

In the first part, SiDiTeR decomposes the source code of the RPA process, referred to
then as the RPA design. From the design, we extract all of the activities with a name
α. We preserve the order of activities α in the RPA design. Technically, we extract the
activity names after the colon tag starting with< ui: from the XAML files. An example
is < ui:ReadRange. We extract just the name ReadRange from the text. Thanks to the
decomposition, we are able to have an RPA design activity list A for each process that
we decompose this way and save to a list of all activities A.

SiDiTeR then creates a new activity list λ for each design. Then it searches through
all activities α in the activity list A and looks for a match in the dictionary of identical
activities � (see Table 2). If no match is found, it adds the activity to the new list λ with
an original name. When a match is found between activity α and activity δ from the
dictionary �, activity α is assigned a more abstract description (a meta-action name in
Table 2) of activity δ that describes what the activity does. This results in a more abstract
process i.e. meta process of the activity, which is stored in the newly created list λ. This
results in a list of lists denoted as �. This process is visualized for an example in Fig. 2.

Fig. 2. Conversion to a meta process

The third part of SiDiTeR is a search for the longest common sequence for every
meta process λ saved in �. The longest common sequence algorithm finds identical
sequences in all newly made meta processes. The found sequences have to be equal to or
longer than 3 activities in order to qualify for saving. The saved activities allow the user
to effectively search for similar processes activities which can be then refactored. The
user later has to make decisions if the component is the same and should be refactored
into reusable components for another RPA process. An example of a found common
sequence in two processes is shown in Fig. 3. For understanding this process better, a
description of the code is written below. See Code 1.



SiDiTeR: Similarity Discovering Techniques 113

Fig. 3. Example of comparing meta processes

Code 1. Pseudocode of the SiDiTeR

list of activities A
list of lists Λ
for each ‘Ἀ in A:
 new list λ
for each α in ‘Α:
if α match δ in Δ:
λ add δ

else: 
λ add α
Λ add λ

function LongestCommonSequence(Λ):
dictionary lcs
for each pair of lists in Λ find identical sequence of

activities: 
if LEN(sequence) >= 3: 
lcs add sequence

return lcs



114 P. Průcha and P. Madzík

3.2 Dictionary Creations for SiDiTeR

The dictionary in Table 2 was created based on activities that were available in UiPath
Studio, version2023.4.0-beta.12241with a community license,with theUiPath packages
for OCR, Excel, Word, Ui Automation, Mail and System Activities all installed. The
dictionary was created as follows: we tried to find all activities that have the same or
similar output but canbe achievedbydifferent activities.Weonly looked for activities that
can be interchanged. We were not looking for sequences with the same output. The only
exception was for copy-paste activities called SetToClipboard - NkeyboardShortcuts,
which also work together as a sequence for writing. Using these actions, SetToClipboard
(setting text into the clipboard) and NkeyboardShortcuts (for pasting), are identical to
how a user would use copy and paste on a PC, i.e., Ctrl+ C and Ctrl+ V. In the second
column of Table 2, the δ activities are grouped by the same meta-action named in the
first column. The activity names in the second column come from the UiPath activity
names. The same names can be seen in the RPA process source code in the XAML file
and also in the UiPath user interface.

4 Evaluation

Our SiDiTeR approach, as presented in the previous section, was tested on a real RPA
process made for UiPath. We programmed SiDiTeR in Python 3.11 to evaluate our
approach. The repository with the sample processes is publicly available1. We evaluated
the effectiveness of SiDiTeR on 156 UiPath process designs. Among the processes
were 120 various sample processes, such as setting up an email account, calculator,
robotic enterprise framework, executing commands in PowerShell and many others. The
processeswere in.xaml format and came frompublic repositories fromGitHuborUiPath.
In the dataset there were also 36 corporate automations from the banking industry which
are not publicly available, and they are under a non-disclosure agreement. The corporate
process comes from one banking company, and their process is used in the UiPath
Robotic Enterprise Framework for building RPA processes. This is nicely presented in
the results, where 15 files from 36 corporate process files have the longest common
sequence of 163 same activities in the files. The second longest common sequence is 36
activities, and it comes from a different version of robotic enterprise framework files.
The rest of the sequence is much shorter, and it would be important go through the
activities manually and evaluate them. All of the results from SiDiTeR are presented in
Table 3. In total, we were able to discover 655 matches among the tested xaml files.

At the outset, we proposed the following research aim:
To explore the possibility of finding similarities or identical parts in an RPA process

for refactoring if many automations were developed by people who no longer work in a
particular company, or if the development was outsourced.

This research paper demonstrates that it is possible to identify similar or identical
parts in an RPA process. The results show that SiDiTeR can identify the same or similar
activities across RPA processes and help the RPA developers or RPA maintenance team
identify the activities which are candidates for refactoring.

1 Available on Github: https://github.com/Scherifow/SiDiTar or Zenodo: https://zenodo.org/
badge/latestdoi/644473852.

https://github.com/Scherifow/SiDiTar
https://zenodo.org/badge/latestdoi/644473852


SiDiTeR: Similarity Discovering Techniques 115

Table 2. Dictionary �

Meta action name Activity name

Write in UI NTypeInto, SetToClipboard - NKeyboardShortcuts,
CVTypeIntoWithDescriptor

Write to Text File WriteTextFile, WordAppendText, DocumentAppendText,
AppendLine, DocumentReplaceText, WriteTextFile,NTypeInto

Write to Spreadsheet WriteCSVFile, WriteCellX, AppendCsvFile, WriteRangeX,
AutoFillX, ExportExcelToCsvX, InvokeVBAX,CopyPasteRangeX,
AppendRangeX, AutoFitX, FindReplaceValueX, AppendRange,
WriteCell, WriteRange, ExecuteMacroX, OutputDataTable,
AddDataRow, UpdateRowItem, NTypeInto

Creation of Data Objects BuildCollection < Object >, CreateList < Object >,
BuildDataTable

Write to Data Objects AppendItemToCollection< Object>, AppendItemToList< Object
>, UpdateListItem < Object >, AddDataRow, UpdateRowItem

SAP login Login, Logon,

OCR GoogleCloudOCR, MicrosoftAzureComputerVisionOCR,
CjkOCR, GoogleOCR, UiPathDocumentOCR, UiPathScreenOCR

Send Mail SendMail, SendOutlookMail, SendMailX

Receive Mail GetPOP3MailMessages, GetOutlookMailMessages,
GetIMAPMailMessages

Save Mail SaveMail, SaveOutlookMailMessage, SaveMailX

User Message LogMessage, WriteLine

Get text CVGetTextWithDescriptor, NGetText, GetOCRText

Click CVClickWithDescriptor, Nclick, ClickOCRText

Hover CVHoverWithDescriptor, Nhover, HoverOCRText

Highlight CVHighlightWithDescirptor, Nhighlight

Extract DataTable CvExtractDataTableWithDescriptor, NExtractData

Read File Text DocumentReadText, WordTextRead, ReadTextFile

Save to clipboard SetToClipboard, CopySelectedText

Loop ForEach < Object >, InterruptibleWhile,InterruptibleDoWhile,
ParallelForEach < Int32 >

Condition If, IfElseIf, Switch < Int32 >

5 Discussion and Limitations

We have proposed a newmethod for discovering similarity in RPA processes (SiDiTeR).
SiDiTeR uses an RPA design for the analysis of similar parts of different processes. This
helps to refactor RPA code into reusable components more easily. The results show that
SiDiTeR is able to find candidates among RPA processes for refactoring. As mentioned



116 P. Průcha and P. Madzík

Table 3. Results

Length of longest sequence Number of found values

3 481

4 125

5 30

6 2

9 1

36 1

163 15

in the introduction, this is one of the solutions for overcoming an RPAmaintenance trap,
as the whole portfolio of RPA bots will then be more easily governed [16]. To find out
which part of an RPA process should be refactored into components, process similarity
techniques can be used.

In the field of process similarity, there has been a decline in the number of new
works published [29]. The use of process equivalence and process similarity techniques
in the field of RPA can be a new spark for more research and publications in the field.
With a higher number of RPA automations, there will be a higher demand for making
the automations sustainable and avoiding the RPA maintenance trap. As seen from the
related works, no technique has addressed this topic yet. Thus, this could be an impulse
for using process similarity in another practical application.

We are aware of certain limitations that our approach currently has. One of the
concerns is that SiDiTeR works only with UiPath designs, and the dictionary is made for
UiPath activities. This limitation concerningUiPath designs is easily addressable, at least
partially, and it would be enough to decompose the activity names from the source code
of another platform. The limitation concerning the dictionary is more complicated, as
partial knowledge of the platform is needed to create a similar dictionary. It is likely that
the size of the dictionary will be different for different platforms. In certain cases, such as
writing vs copying and pasting text, these activities can be adopted one to one for other
platforms. When creating the dictionary for our study, only activities that had identical
or similar resulting actions were used. The dictionary could be extended to include
sequences where the output of the activities is also identical, but the result achieved is
made up of multiple actions such as: clicking in the UI vs using a keyboard shortcut;
or, for example, using the UI instead of using the API. Experienced programmers are
likely to use the most efficient path, but for junior development or citizen development,
inefficient sequences are likely to occur [17, 27].

SiDiTeR can also raise questions about why we use process similarity techniques
for processes instead of techniques from the computer science field, even though RPA
is software. This is a justified question because there are already techniques for code
refactoring. For example, a systematic literature review from 2020 [4], analyzed 41
techniques concerning automatic software refactoring. But we focused more on process
similarity due to the fact that RPA process (code) can also be analyzed as a process.



SiDiTeR: Similarity Discovering Techniques 117

RPA as a process is more understandable to non-technical users, citizen developers and
process owners. The understanding by stakeholders of a process can by crucial for the
additional validation of refactoring of the correct part of a process. The main advantage
of SiDiTeR techniques is that they can be used on the source code of RPA or also on the
process log to analyze the RPA as a process.

Another limitation may be the accuracy of SiDiTeR, where in some cases the activ-
ities are not identical but will still be included, even though they are different processes
i.e. false positives. Accuracy could be increased by using parameters and incorporating
attribute similarity into SiDiTeR. This approach would then be even more efficient for
users who will evaluate the results. There is an opportunity for extending this research
further, for the purpose of identifying the right candidates for refactoring among RPA
processes more precisely.

6 Conclusion

Finding similarity in theRPAdomain is veryuseful, because it canbeused for refactoring.
The refactoring of RPA processes will be one of the crucial components for future RPA
governance, since the same parts of RPA code can be refactored into components and
shared across a portfolio of RPA bots. We have presented a new approach for detecting
identical or similar parts in RPA processes called SiDiTeR. SiDiTeR is designed with
RPAs in mind, and can easily read RPA code or process logs with nested activities and
handle extra activities in processes. It can also deal with different activities with the same
output, which is crucial for complex refactoring. Our approach was tested on 156 RPA
processes. The longest match we discovered was with 163 activities across 15 processes
and 655 matches among RPA processes. These results challenge future researchers to
find ways to identify parts of RPA which could be more precise, and thus allow for a
more convenient search method for suitable components for refactorization.

Acknowledgment. This researchwasmade possible thanks to theTechnicalUniversity of Liberec
and the SGSgrant number: SGS-2023–1328. This researchwas conductedwith the help of Pointee.

References

1. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equivalence: com-
paring two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) Business Process Management. BPM 2006. Lecture Notes in Computer Science,
vol. 4102. Springer, Heidelberg (2006). https://doi.org/10.1007/11841760_10

2. Alves de Medeiros, A.K. et al.: Quantifying process equivalence based on observed behavior.
Data Knowl. Eng. 64(1), 55–74 (2008). https://doi.org/10.1016/j.datak.2007.06.010

3. Amiri, M., Koupaee, M.: Data-driven business process similarity. IET Softw. 11(6), 309–318
(2017). https://doi.org/10.1049/iet-sen.2016.0256

4. Baqais, A.A.B., Alshayeb,M.: Automatic software refactoring: a systematic literature review.
Softw. Qual. J. 28(2), 459–502 (2020). https://doi.org/10.1007/s11219-019-09477-y

5. Cao, B., et al.: Querying similar process models based on the Hungarian algorithm. IEEE
Trans. Serv. Comput. 10(1), 121–135 (2017). https://doi.org/10.1109/TSC.2016.2597143

https://doi.org/10.1007/11841760_10
https://doi.org/10.1016/j.datak.2007.06.010
https://doi.org/10.1049/iet-sen.2016.0256
https://doi.org/10.1007/s11219-019-09477-y
https://doi.org/10.1109/TSC.2016.2597143


118 P. Průcha and P. Madzík

6. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business pro-
cess model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business
Process Management. BPM 2009. Lecture Notes in Computer Science, vol. 5701. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_5

7. Dijkman, R., et al.: Managing large collections of business process models—current tech-
niques and challenges. Comput. Ind. 63(2), 91–97 (2012). https://doi.org/10.1016/j.compind.
2011.12.003

8. Dijkman, R., et al.: Similarity of business process models: metrics and evaluation. Inf. Syst.
36(2), 498–516 (2011). https://doi.org/10.1016/j.is.2010.09.006

9. Figueroa, C., et al.: Improving business process retrieval using categorization and multimodal
search. Knowl.-Based Syst. 110, 49–59 (2016). https://doi.org/10.1016/j.knosys.2016.07.014

10. Flechsig, C., et al.: Robotic process automation in purchasing and supply management: a
multiple case study on potentials, barriers, and implementation. J. Purchas. Suppl. Manage.
28(1), 100718 (2022). https://doi.org/10.1016/j.pursup.2021.100718

11. Garcia,M.T., et al.:BPMN-Sim: amultilevel structural similarity technique forBPMNprocess
models. Inf. Syst. 116, 102211 (2023). https://doi.org/10.1016/j.is.2023.102211

12. Huang,K., et al.:Analgorithm for calculatingprocess similarity to cluster open-source process
designs. In: Jin, H., et al. (eds.) Grid and Cooperative Computing GCC 2004 Workshops,
Proceedings, pp. 107–114 (2004)

13. Hüller, L., et al.: Ark automate — an open-source platform for robotic process automation.
In: Proceedings of the Demonstration and Resources Track, Best BPM Dissertation Award,
and Doctoral Consortium at BPM 2021 co-located with the 19th International Conference on
Business Process Management, CEUR Workshop Proceedings, Rome, Italy (2021)

14. Jung, J., et al.: Hierarchical clustering of business process models. Int. J. Innov. Comput. Inf.
Control 5(12A), 4501–4511 (2009)

15. Jung, J., Bae, J.: Workflow clustering method based on process similarity. In: Gavrilova, M.,
et al. (eds.) Computational Science and ItsApplications - ICCSA2006, PT, vol. 2, pp. 379–389
(2006)

16. Kedziora, D., Penttinen, E.: Governance models for robotic process automation: the case of
Nordea Bank. J. Inf. Technol. Teach. Cases 11(1), 20–29 (2021). https://doi.org/10.1177/204
3886920937022

17. Klimkeit, D., Reihlen,M.: No longer second-class citizens: Redefining organizational identity
as a response to digitalization in accounting shared services. J. Prof. Organ. 9(1), 115–138
(2022). https://doi.org/10.1093/jpo/joac003

18. Klinkmuller, C., Weber, I.: Analyzing control flow information to improve the effectiveness
of process model matching techniques. Decis. Support Syst. 100, 6–14 (2017). https://doi.
org/10.1016/j.dss.2017.06.002

19. Liu, C., et al.: Measuring similarity for data-aware business processes. IEEE Trans. Autom.
Sci. Eng. 19(2), 1070–1082 (2022). https://doi.org/10.1109/TASE.2021.3049772

20. Liu, C., et al.: Towards comprehensive support for business process behavior similarity mea-
sure. IEICE Trans. Inf. Syst.E102D(3), 588–597 (2019). https://doi.org/10.1587/transinf.201
8EDP7127

21. Lu, R., et al.: On managing business processes variants. Data Knowl. Eng. 68(7), 642–664
(2009). https://doi.org/10.1016/j.datak.2009.02.009

22. Montani, S., et al.: A knowledge-intensive approach to process similarity calculation. Expert
Syst. Appl. 42(9), 4207–4215 (2015). https://doi.org/10.1016/j.eswa.2015.01.027

23. Niemann, M., et al.: Comparison and retrieval of process models using related cluster pairs.
Comput. Ind. 63(2), 168–180 (2012). https://doi.org/10.1016/j.compind.2011.11.002

24. Niu, F., et al.: Measuring business process behavioral similarity based on token log profile.
IEEE Trans. Serv. Comput. 15(6), 3344–3357 (2022). https://doi.org/10.1109/TSC.2021.310
4898

https://doi.org/10.1007/978-3-642-03848-8_5
https://doi.org/10.1016/j.compind.2011.12.003
https://doi.org/10.1016/j.is.2010.09.006
https://doi.org/10.1016/j.knosys.2016.07.014
https://doi.org/10.1016/j.pursup.2021.100718
https://doi.org/10.1016/j.is.2023.102211
https://doi.org/10.1177/2043886920937022
https://doi.org/10.1093/jpo/joac003
https://doi.org/10.1016/j.dss.2017.06.002
https://doi.org/10.1109/TASE.2021.3049772
https://doi.org/10.1587/transinf.2018EDP7127
https://doi.org/10.1016/j.datak.2009.02.009
https://doi.org/10.1016/j.eswa.2015.01.027
https://doi.org/10.1016/j.compind.2011.11.002
https://doi.org/10.1109/TSC.2021.3104898


SiDiTeR: Similarity Discovering Techniques 119

25. Pei, J., et al.: Efficient transition adjacency relation computation for process model similarity.
IEEE Trans. Serv. Comput. 15(3), 1295–1308 (2022). https://doi.org/10.1109/TSC.2020.298
4605

26. Průcha, P.:Aspect optimalization of robotic process automation. In: ICPM2021DoctoralCon-
sortium and Demo Track 2021, CEUR Workshop Proceedings, Eindhoven, The Netherlands
(2021)

27. Průcha, P., Skrbek, J.: API as method for improving robotic process automation. In: Mar-
rella, A., et al. Business Process Management: Blockchain, Robotic Process Automation,
and Central and Eastern Europe Forum. BPM 2022. Lecture Notes in Business Information
Processing, vol. 459. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16168-1_17

28. Rybinski, F., Schüler, S.: Process discovery analysis for generating RPA flowcharts. In: Mar-
rella, A., et al. Business Process Management: Blockchain, Robotic Process Automation,
and Central and Eastern Europe Forum. BPM 2022. Lecture Notes in Business Information
Processing, vol. 459. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16168-1_15

29. Schoknecht, A., et al.: Similarity of business process models-a state-of-the-art analysis. ACM
Comput. Surv. 50, 4 (2017). https://doi.org/10.1145/3092694

30. Sohail, A., et al.: An intelligent graph edit distance-based approach for finding business
process similarities. CMC-Comput. Mater. Continua 69(3), 3603–3618 (2021). https://doi.
org/10.32604/cmc.2021.017795

31. Thaler, T., Schoknecht, A., Fettke, P., Oberweis, A., Laue, R.: A comparative analysis of busi-
ness process model similarity measures. In: Dumas,M., Fantinato,M. (eds.) Business Process
ManagementWorkshops. BPM 2016. Lecture Notes in Business Information Processing, vol.
281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_23

32. Valero, V.: Strong behavioral similarities in timed-arc Petri nets. Appl. Math. Comput. 333,
401–415 (2018). https://doi.org/10.1016/j.amc.2018.03.073

33. Yan, Z., et al.: Fast business process similarity search. Distrib. Parallel Databases 30(2),
105–144 (2012). https://doi.org/10.1007/s10619-012-7089-z

34. Ye, Z., et al.: Synthesis of contracted graph for planar nonfractionated simple-jointed kine-
matic chain based on similarity information. Mech. Mach. Theory 181 (2023). https://doi.
org/10.1016/j.mechmachtheory.2023.105227

35. Zeng, Q., et al.: A novel approach for business process similarity measure based on role
relation network mining. IEEE Access 8, 60918–60928 (2020). https://doi.org/10.1109/ACC
ESS.2020.2983114

36. Zha, H., et al.: A workflow net similarity measure based on transition adjacency relations.
Comput. Ind. 61(5), 463–471 (2010). https://doi.org/10.1016/j.compind.2010.01.001

37. Zhou, C., et al.: A comprehensive process similarity measure based on models and logs. IEEE
Access 7, 69257–69273 (2019). https://doi.org/10.1109/ACCESS.2018.2885819

38. Robotic Process Automation (RPA) Software Reviews 2023 | Gartner Peer Insights. https://
www.gartner.com/reviews/market/robotic-process-automation-software. Accessed 21 Apr
2023

https://doi.org/10.1109/TSC.2020.2984605
https://doi.org/10.1007/978-3-031-16168-1_17
https://doi.org/10.1007/978-3-031-16168-1_15
https://doi.org/10.1145/3092694
https://doi.org/10.32604/cmc.2021.017795
https://doi.org/10.1007/978-3-319-58457-7_23
https://doi.org/10.1016/j.amc.2018.03.073
https://doi.org/10.1007/s10619-012-7089-z
https://doi.org/10.1016/j.mechmachtheory.2023.105227
https://doi.org/10.1109/ACCESS.2020.2983114
https://doi.org/10.1016/j.compind.2010.01.001
https://doi.org/10.1109/ACCESS.2018.2885819
https://www.gartner.com/reviews/market/robotic-process-automation-software

	SiDiTeR: Similarity Discovering Techniques for Robotic Process Automation
	1 Introduction
	2 Related Work
	3 Description of Method
	3.1 SiDiTeR
	3.2 Dictionary Creations for SiDiTeR

	4 Evaluation
	5 Discussion and Limitations
	6 Conclusion
	References




