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Abstract. Reinforcement learning (RL) techniques for traffic signal
control (TSC) have gained increasing popularity in recent years. How-
ever, most existing RL-based T'SC methods tend to focus primarily on
the RL model structure while neglecting the significance of proper traf-
fic state representation. Furthermore, some RL-based methods heav-
ily rely on expert-designed traffic signal phase competition. In this
paper, we present a novel approach to TSC that utilizes queue length
as an efficient state representation. We propose two new methods: (1)
Max Queue-Length (M-QL), an optimization-based traditional method
designed based on the property of queue length; and (2) Attention-
Light, an RL model that employs the self-attention mechanism to cap-
ture the signal phase correlation without requiring human knowledge of
phase relationships. Comprehensive experiments on multiple real-world
datasets demonstrate the effectiveness of our approach: (1) the M-QL
method outperforms the latest RL-based methods; (2) AttentionLight
achieves a new state-of-the-art performance; and (3) our results high-
light the significance of proper state representation, which is as crucial
as neural network design in TSC methods. Our findings have impor-
tant implications for advancing the development of more effective and
efficient TSC methods. Our code is released on Github (https://github.
com/LiangZhang1996/AttentionLight).

Keywords: traffic signal control - reinforcement learning - state
representation - attention mechanism

1 Introduction

With the growth of population and economy, the number of vehicles on the
road has surged, leading to widespread traffic congestion. This congestion causes
fuel waste, environmental pollution, and economic losses. Enhancing transporta-
tion efficiency and alleviating traffic congestion has become crucial. Signalized
intersections are common bottlenecks in urban areas, and traffic signal control
(TSC) is critical for effective traffic management. Common TSC systems in mod-
ern cities include FixedTime [8], GreenWave [19], SCOOT [6], and SCATS [11].
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These systems predominantly rely on expert-designed traffic signal plans, making
them unsuitable for dynamic traffic and various intersections.

Reinforcement learning (RL) [17], a branch of machine learning, focuses
on how intelligent agents should take action within an environment to maxi-
mize cumulative rewards. RL has attracted increasing attention for TSC, with
researchers applying RL to address the TSC problem [1,14,15,18,23-25,30].
Unlike traditional TSC methods, RL models can directly learn from the envi-
ronment through trial and reward without requiring strict assumptions. Fur-
thermore, deep neural networks [13] powered RL models can learn to manage
complex and dynamic traffic environments. RL-based TSC methods [1,23,24]
become a promising solution for adapting the dynamic traffic. RL-based meth-
ods such as PressLight [23], FRAP [29], MPLight [1], and CoLight [24] have
emerged as promising solutions for adapting to dynamic traffic.

The performance in RL-based approaches can be influenced by the model
framework, state representation, and reward function design. FRAP [29] devel-
ops a specific network that constructs phase features and models phase competi-
tion correlations to obtain the score of each phase, yielding excellent performance
for TSC. CoLight [24] uses graph attention network [22] to facilitate intersection
cooperation, achieving state-of-the-art performance. LIT [30] leverages the net-
work from IntelliLight [25] with a simple state scheme and reward function, sig-
nificantly outperforming IntelliLight. PressLight [23] further optimizes the state
and reward using pressure, considerably surpassing LIT. MPLight [1] improves
the state representation from PressLight and adopts a more efficient framework
FRAP [29], significantly improving PressLight.

Various traffic state representations are employed, but the most effective
state representation remains unknown. State representations for RL-based TSC
differ considerably compared to RL approaches in Atari games [12]. In the
TSC field, state representation mainly varies in terms of the number of vehi-
cles [23-27,27,29,30], vehicle image [15,25], traffic movement pressure [1], queue
length [14,25], average velocity [14], current phase [23-27,27,29,30], and next
phase [25,26]; reward representation varies in: queue length [23,24,26,29], pres-
sure [1,23], total wait time [14,15,25,26], and delay [15,25,26]. Some methods
such as LIT [30] and PressLight [23], employ a simple state and reward and
outperform IntelliLight [25], even with the same neural network. Although traf-
fic state representation plays an essential role in RL models, most research
focuses on developing new network structures to improve TSC performance.
Consequently, state design for TSC merits further consideration.

Recent studies, such as MPLight [1] and MetaLight [27], have adopted FRAP
as their base model. However, FRAP necessitates manually designed phase corre-
lations, such as competing, partial competing, and no competing relationships in
a standard four-way and eight-phase (Fig. 1) intersection [29]. While the analysis
of phase and traffic movements can aid in determining phase correlations, this
approach may be impractical for more complex intersections, such as five-way
intersections.
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To tackle the aforementioned challenges, this article presents the following
key contributions: (1) we propose an optimization-based TSC method called
Max Queue-Length (M-QL), and (2) develop a novel RL model, Attention-
Light, which leverages self-attention to learn phase correlations without requir-
ing human knowledge of phase relationships. Extensive numerical experiments
demonstrate that our proposed methods outperform previous state-of-the-art
approaches, with AttentionLight achieving the best performance. Additionally,
our experiments highlight the significance of state representation alongside neu-
ral network design for RL.

2 Related Work

2.1 Traditional Methods

Traditional methods for traffic signal control (T'SC) can be broadly categorized
into four types: fixed-time control [8], actuated control [3,4], adaptive control
[6,11], and optimization-based control [10,16,20]. Fixed-time control [8] utilizes
pre-timed cycle length, fixed cycle-based phase sequence, and phase split, assum-
ing uniform traffic flow during specific periods. Actuated control [3] decides
whether to maintain or change the current phase based on the pre-defined rules
and real-time traffic data, such as setting a green signal for a phase if the num-
ber of approaching vehicles exceeds a threshold. Self-organizing traffic lights
(SOTL) [3] is one typical actuated control method. Adaptive control [6,11]
selects an optimal traffic plan for the current situation from a set of traffic plans
based on traffic volume data from loop sensors. Each plan includes cycle length,
phase split, and offsets. SCOOT [6] and SCATS [11] are widely used adaptive
control methods in modern cities. Optimization-based control [10,16,20] for-
mulates TSC as an optimization problem under a specific traffic low model,
using observed traffic data to make decisions. Max Pressure [20] is a typical
optimization-based control method that often requires turn ratio (the propor-
tion of turning vehicles at an intersection).

2.2 RL-Based Methods

Reinforcement learning (RL)-based methods have been employed to improve
traffic signal control (TSC) performance, with several studies concentrating
on optimizing state and reward design. A trend has emerged favoring sim-
pler yet more efficient state representations and reward functions. For example,
IntelliLight [25] employed six state representations and six features to compute
the reward function, resulting in moderate performance. In contrast, LIT [30]
used the current phase and the number of vehicles as the state, and queue length
as the reward, significantly outperforming IntelliLight. PressLight [23] further
improved upon LIT and IntelliLight by incorporating ’pressure’ into the state
and reward function design. MPLight [1] enhanced FRAP [29] by adopting traffic
movement pressure in the state and reward function design.
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Other studies have focused on improving control performance by employing
more powerful networks or RL techniques. For instance, FRAP [29] developed a
unique network structure to construct phase features and capture phase compe-
tition relations, resulting in invariance to symmetrical cases such as flipping and
rotation in traffic flow. GCN [14] utilized graph convolution networks [7] with
queue length and average velocity as the state and total wait time as the reward.
CoLight [24] introduced graph attention network [22] to facilitate intersection
cooperation, using the number of vehicles and current phase as the state and
queue length as the reward. HiLight [26] incorporated the concept of hierarchical
RL [9], using the current phase, next phase, and the number of vehicles as state,
while employing queue length, delay, and waiting time as the reward.

Although numerous studies strive to develop complex network structures
for TSC, few focus on appropriate traffic state representation design. LIT [30]
demonstrated that queue length serves as a more effective reward function than
delay, and the number of vehicles surpasses waiting time and traffic image as
the state representation. PressLight [23]| discovered that pressure outperforms
queue length as the reward function. MPLight [1] integrated pressure into state
design, resulting in improvements to the model. These findings indicate that
further research on state representation is required to enhance TSC methods.
Moreover, the exploration of novel network structures within RL techniques for
TSC should be considered.

3 Preliminary

In this study, our primary focus is on conventional and representative 4-way, 12-
lane, 4-phase intersections (Fig.1). In this section, we provide a comprehensive
summary of the definitions that are integral to TSC methods.
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Fig. 1. The illustration of an intersection. In case (a), phase #2 is activated.

Definition 1 (Traffic network). The traffic network is described as a directed
graph where each node represents an intersection, and each edge represents a
road. One road consists of several lanes with vehicles running on it. We denote
the set of incoming lanes and outgoing lanes of intersection i as £ and L%
respectively. The lanes are denoted with I, m, k. As is shown in Fig. 1 (a), there
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are one intersection, four incoming roads, four outgoing roads, twelve incoming
lanes, and twelve outgoing lanes.

Definition 2 (Traffic movement). A traffic movement is defined as the traffic
traveling across an intersection towards a specific direction, i.e., left turn, go
straight, and right turn. According to the traffic rules in some countries, vehicles
that turn right can pass regardless of the signal but must yield at red lights. As
shown in Fig. 1 (b), there are twelve traffic movements.

Definition 3 (Signal phase). Each signal phase is a set of permitted traffic
movements, denoted by d, and D; denotes the set of all the phases at intersection
1. As shown in Fig. 1, twelve traffic movements can be organized into four-phase
(c), and phase #2 is activated in case (a).

Definition 4 (Phase queue length). The queue length of each phase is the sum
queue length of the incoming lanes of that phase, denoted by

ap) => q(),lep (1)

in which ¢(I) is the queue length of lane .

Definition 5 (Intersection queue length). The queue length of each intersection
is defined as the total queue length of the incoming lanes of the intersection,
denoted by

Q=) all).le Ly (2)
in which ¢(I) represents the queue length of lane .

Definition 6 (Action duration). The action duration of our TSC models is
denoted by tgyration- It can also represent the minimum duration of each phase.

Problem (Multi-intersection TSC). We consider multi-intersection TSC, in
which each intersection is controlled by one RL agent. Every tguration, agent
i views the environment as its observation of, takes the action a! to control the
signal of intersection i, and obtains reward r!. Each agent can learn a control
policy by interacting with the environment. The goal of all the agents is to learn
an optimal policy (i.e. which phase to actuate) to maximize their cumulative

reward, denoted as:
n

T
> > 3)
t=1 i=1
where n is the number of RL agents and T is the timestep. The well-trained RL
agents will be evaluated with multiple real-world datasets.

4 Method

In this section, we first propose a TSC method, Max-QueueLength(M-QL), based
on the property of queue length. Next, we present a novel RL model called
AttentionLight, which employs multi-head self-attention [21] to model phase
correlation and utilizes queue length both as the state and reward.
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4.1 Introduce Queue Length for TSC Methods

Property of Queue Length. In TSC, vehicles within the traffic network can
be in one of two states: moving or queuing. Queuing vehicles can lead to con-
gestion and are essential for representing the traffic condition. The phase signal
can directly change the state of the queuing vehicles in the traffic network. A
deterministic change transpires when each phase is activated, causing the queue
length of that phase to decrease to zero. In contrast, subsequent changes, such
as the number of vehicles, vehicle position, and vehicle speed, exhibit greater
uncertainty compared to queue length.

RL agents learn the state-action values from the environment through trial
and reward. The feedback on actions significantly influences the learning effect.
Suppose the state representation omits critical contents of traffic movement. In
such cases, agents may become confused about the state and fail to learn an
appropriate policy for TSC. For example, consider a scenario where one case
has only queuing vehicles and another has only moving vehicles, and the state
representation is based solely on the number of vehicles. Under the same state
representation, there could be different optimal policies, which may confuse the
RL agents. Furthermore, the state space of queue length is larger than that of
the number of vehicles. As a result, the queue length is considered an effective
state representation. Using queue length as both the reward and the state can
support reward optimization. Consequently, we employ queue length as a traffic
state representation and reward function.

While previous studies have incorporated queue length in state and reward
design, our work is the first to use it as both. IntelliLight [25], GCN [14], and Tan
et al. [18] employ more complex state representations. In contrast, our approach
uniquely emphasizes simplicity and efficiency by focusing solely on queue length.

Max-QueueLength Control. Based on Max Pressure (MP) [20] and the prop-
erty of queue length, we introduce a new TSC method called Max Queue-Length
(M-QL), which directly optimizes intersection queue length. The M-QL control
chooses the phase that has the maximum queue length in a greedy manner. At
intersection 4, the queue length of each phase is calculated using equation (1).
During each action duration, M-QL activates the phase that has the maximum
queue length, denoted by

p = argmax (q¢(p)p € P:) (4)

where ¢(p) is calculated according to Eq. (1), and P; denotes the phases. Our
approach is straightforward and efficient, and we believe it has the potential to
improve traffic conditions significantly.

M-QL Can Stabilize the Network. We present proof of the stability of
M-QL control for T'SC.
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Definition 7 (Queue length process stability) [20]. The queue length process
Q(t) = {q(1)} is stable in the mean (and u* is a stabilizing control policy) if for
some M < oo:

% > > Elg(l)] < M,VT. (5)
t=1 1

where E denotes expectation. Stability in the mean implies that the chain is
positively recurrent and has a unique steady-state probability distribution.

Theorem 1. The M-QL control u* is stabilizing whenever the average demand
is admissible!.

Proof. We use x(l) and 2,,4.(I) to denote the number of vehicles and the
maximum permissible vehicle number on lane [, respectively. Based on the
property of queue length, we have ¢(I) < xz(l). Moreover, as the average
demand is admissible, () < Zma(l). For a rough estimation, we obtain
M < 530 3 Elttmas (D).

For the traffic conditions in this study, such as shown in Fig.1 (a), there
are four phases and twelve lanes. Vehicles that turn right can pass regardless
of the signal. Additionally, M-QL always actuates one phase, and there are no
queuing vehicles on the lane of that corresponding phase. Hence, there are no
queuing vehicles on half of the lanes. For a more precise estimation, we can get
M < % 2551 1 E[Zmaz (1)]-

Therefore, based on the stability criterion defined in Eq. (5), we prove that
the M-QL control policy is stabilizing, and the queue length process is stable in
the mean whenever the average demand is admissible.

Comparison of M-QL and MP. The MP control selects the phase with the
maximum pressure, which is the difference in queue length between upstream
and downstream, indicating the balance of the queue length. Similarly, the M-
QL control opts for the phase with the maximum queue length in a greedy
manner. These two methods are identical for single intersection control, where
the outgoing lanes are infinite, and the calculated pressure equals the queue
length.

However, MP also considers the neighboring influences and stabilizes the
queue length by ensuring that vehicles are not stopped by upstream queuing
vehicles. Consequently, a phase with higher pressure would result in a larger
queue length. MP is effective for short traffic road lengths, where the influence of
adjacent intersections is felt rapidly. Nevertheless, for long road lengths, pressure
may not be as effective since the impact can be several t g, qtion (action duration)
away. For example, for a road length of 300m, with a ¢ gyrqtion Of 15 s and a vehicle
maximum velocity of 10m/s, it would take at least 30s to reach the neighbor,

! An admissible demand means the traffic demand can be accommodated by traffic
signal control policies, not including situations like long-lasting over-saturated traffic
that requires perimeter control to stop traffic getting in the system.
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rendering the neighbor condition ineffective. In contrast, M-QL might perform
better on longer traffic roads, as it directly optimizes queue length. Experiments
will be conducted later to verify this assumption.

4.2 AttentionLight Agent Design

Prior to delving into the network architecture of AttenditonLight, it is essential
to elucidate the state, action, and reward for each RL agent. Considering queue
length’s role in M-QL, we suggest incorporating it in both state and reward
design, expected to boost our model’s performance and efficiency.

— State. The current phase and queue length are used as the state representa-
tion (agent observations). The state at time ¢ is denoted as s;.

— Action. At the time ¢, each agent chooses a phase p according to the obser-
vations, and the traffic signal will be changed to p. The action thus influences
traffic flow by modifying the traffic signal.

— Reward. The negative intersection queue length is used as the reward. The
reward for the agent that is controlling intersection 4 is denoted by

ri=—> q(l),l €Ly (6)

in which ¢() is the queue length at lane . By maximizing the reward, the
agent is trying to maximize the throughput in the system. In this study, we
update our agent based on the average reward (r;) over the action duration,
taking into account the reward delay.

Advanced RL framework The DQN [13] is used as the function approximator
to estimate the Q-value function, and the RL agents are updated by the Bell-
man Equation. We also employ a decentralized RL paradigm, including ApeX-
DQN [5], for scalability. This approach shares parameters and replay memory
among all agents, enabling intersections to learn from each other’s experiences,
a technique proven to enhance model performance [1].

4.3 Network Design of AttentionLight

Though some RL-related methods [1,27,29] using FRAP [29] have achieved
impressive performance, they rely on human-designed phase correlations. To
overcome this limitation, we propose AttentionLight, an RL model based on
FRAP that utilizes self-attention [21] to automatically model phase correlations.

The core idea of AttentionLight is to apply self-attention [21] to learn phase
correlations and predict the Q-value of each phase through the phase feature con-
structed by the self-attention mechanism. This approach enables the Q-value of
each phase to fully consider its correlation with others. We divide the prediction
of Q-values (i.e. the score of each phase) into three stages: phase feature con-
struction, phase correlation learning with multi-head self-attention, and Q-value
prediction.
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Phase Feature Construction. AttentionLight utilizes queue length and cur-
rent phase as inputs. Initially, AttentionLight embeds the feature of each lane
from [-dimensional into a m-dimensional latent space via a layer of multi-layer
perceptron:

hi = Embed (o) = o(oW, + b,) (7)

where o € R! is the observation at time ¢, W, € R™™ and b, € R™ are weight
matrix and bias vector to learn, o is the sigmoid function. Subsequently, the
feature of each phase is constructed through feature fusion of the participating
lanes:

hg = Fusion(hl) (8)
in this case, the fusion function is a direct addition.

Phase Correlation Learning. In this stage, our model takes the phase fea-
ture as input and uses multi-head self-attention(MHA) [21] to learn the phase
correlation:

hs = MHA(h2) 9)

we find that the head number does not have a significant influence on the model
performance, and we finally adopt four attention heads as default.

Q-Value Prediction. In this stage, our model takes the correlated phase feature
as input to get the Q-value for each phase:

@ = Embed(hs) = hsW, + b, (10)

where W), € R*! and b, € R! are parameters to be learned, p denotes the
number of phases (action space), g refers to the predicted g-values. The agent
selects the phase that has the maximum Q-value.

AttentionLight and FRAP. AttentionLight is a novel RL model that
uses self-attention to automatically model phase correlation for TSC. Unlike
FRAP [29], which requires human-designed phase correlation, AttentionLight
does not rely on human knowledge of the complex competing relationships
between phases. For instance, in a typical 4-way and 8-phase intersection, phases
can have competing, partial competing, or no competing relationships. Although
the competing relationships of the 8 phases in such an intersection can be easily
acquired through analysis of phase and traffic movements, this task becomes
considerably more challenging for more complex intersections or phases.

AttentionLight is better suited for real-world deployment than FRAP, as it
significantly reduces the complexity of phase relation design. By learning the
phase correlation through a neural network, our model enables scalability and
eliminates the need for human intervention.

5 Experiment

Settings. We conduct comprehensive numerical experiments on CityFlow [28],
where each green signal is followed by a five-second red time to prepare for the
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signal phase transition. Within this simulator, vehicles navigate toward their
respective destination following pre-defined routes, adhering strictly to traffic
regulations. Control methods are deployed to control the signals at each inter-
section to optimize the traffic flow. We evaluate our proposed methods using
seven real-world traffic datasets [24]% sourced from JiNan, HangZhou, and New
York. These datasets have been extensively utilized by various methods, such as
CoLight [24], HiLight [26], and PRGLight [2]. The traffic networks under JiNan,
HangZhou, and New York each exhibit unique topologies. In JiNan, the road net-
work comprises 12 intersections (3 x 4), each linking two 400-meter East-West
and two 800-meter South-North road segments; in HangZhou, the road network
consists of 16 intersections (3 x 4), each connecting two 800-meter East-West
and two 600-meter South-North road segments; in New York, the road network
has 196 intersections (28 x 7), each connecting four 300-meter (two East-West
and two South-North) road segments. The average arrival rate (vehicles/second)
of the seven datasets is 1.75, 1.21, 1.53, 0.83, 1.94, 2.97, and 4.41 respectively.
These traffic flow datasets not only vary in terms of arrival rate but also in travel
patterns, thereby demonstrating the diversity and validity of our experiments.

Drawing upon prior research [24,26,29], we select the average travel time
as the evaluation metric and compare our methods with various traditional
and RL approaches. To ensure a fair comparison, we set the phase number
as four(Figurel (c)), and the action duration as 15s. All RL methods are
trained using the same hyper-parameters, such as optimizer (Adam), learning
rate (0.001), batch size (20), sample size (3000), memory size (12000), epochs
number (100), discount factor v (0.8), etc. In order to derive definitive results
for all the RL methods, a total of 80 episodes are utilized. Each episode, both in
training and testing, executes a simulation lasting 60 min. The mean value is then
calculated based on the final ten testing episodes. To bolster the reliability of our
findings, we conducted three independent experiments and reported the average
outcome. This rigorous approach ensures the robustness and reproducibility of
our results.

Compared Methods. The traditional methods include: FixedTime [§], a policy
that uses a fixed cycle length with a pre-defined phase split among all the phases;
Max Pressure (MP) [20]: a policy that selects the phase with the maximum
pressure. The RL-based methods include: FRAP [29], which uses a modified
network structure to capture phase competition relation between signal phases;
MPLight [1], which uses FRAP as the base model, incorporates pressure in the
state and reward design, and has shown superior performance in city-level TSC;
PRGLight [2], which employs a graph neural network to predict traffic state
and adjusts the phase duration according to the current observed traffic state
and predicted state; CoLight [24], which uses a graph attention network [22]
to facilitate intersection cooperation and has shown superior performance in
large-scale TSC, making it a state-of-the-art method.

2 https:/ /traffic-signal-control.github.io.
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5.1 Overall Performance

Table1 reports the performance of all the methods under JiNan, HangZhou,
and New York real-world datasets in terms of average travel time. Traditional
TSC methods, such as MP [20] and M-QL, continue to demonstrate competitive
results. Specifically, MP [20] outperforms FRAP [29], MPLight 1], PRGLight 2],
and CoLight [24] under JiNan and HangZhou datasets. Our proposed M-QL
consistently outperforms all other previous methods under JiNan and HangZhou
datasets, with an improvement of up to 4.21% (averaging 2.47%), while MP
surpasses M-QL under New York datasets. We hypothesize that the length of
traffic roads influences the performance of TSC methods, with M-QL potentially
excelling on longer roads and MP on shorter roads. These results can validate
this hypothesis.

Table 1. Overall performance. For average travel time, the smaller the better.

Method JiNan HangZhou New York

1 2 3 1 2 1 2
FixedTime 429.27 |370.34 |384.89 1 497.87 | 408.31 |1507.12 |1733.30
MP 274.99 | 246.41 | 244.63 | 289.54 | 349.85 | 1179.55 |1536.17
FRAP 299.56 | 268.57 |269.20 |308.73 |355.80 | 1192.23 |1470.51
MPLight 297.68 | 274.32 |268.00 |313.16 |355.35 | 1321.40 |1642.05
PRGLight 291.27 |257.52 |261.74 |301.06 |369.98 | 1283.37 |1472.73
CoLight 271.17 | 251.22 |248.87 |300.07 |339.76 1065.64 | 1367.54
M-QL 268.87 | 240.02 | 238.51 | 284.32 | 325.44 | 1197.59 | 1551.46
AttentionLight | 254.82 | 239.68 | 236.62 | 283.64 | 316.38 | 1013.78 | 1401.32

Additionally, our proposed AttentionLight achieves new state-of-the-art per-
formance and outperforms all other previous methods over JiNan and HangZhou
datasets, with an improvement of up to 6.88% (averaging 4.34%). Attention-
Light exclusively utilizes queue length information of a specific intersection,
thus requiring less computation and offering deployment advantages over Col.-
ight, MPLight, and FRAP. Finally, we reemphasize the importance of parameter
sharing for RL-based models in TSC. MPLight [1] has demonstrated superior
performance than FRAP and addressed the importance of parameter sharing.
When FRAP is trained and tested with parameter sharing in the same manner
as MPLight, it slightly outperforms MPLight.

5.2 Queue Length Effectiveness Analysis

To further illustrate the effectiveness of queue length as a state representation,
we incorporate queue length as both the state and reward for additional RL
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Fig. 2. Model performance comparison.

methods, including FRAP [29] and CoLight [24], which are referred to as QL-
FRAP and QL-CoLight, respectively. Additionally, we introduce a simple DQN
containing two multiple-layer perceptrons as QL-DQN.

Figure 2 demonstrates the model performance of QL-DQN, QL-FRAP, and
QL-CoLight. The results show that QL-FRAP significantly outperforms FRAP,
and QL-CoLight significantly outperforms CoLight. These improvements high-
light the importance of state representation for RL-based TSC. Moreover, QL-
DQN outperforms FRAP and CoLight, further emphasizing the critical role of
state representation in RL. Efficient state representation is also essential as the
neural network structure for TSC. QL-DQN employs a simple neural network
structure, but efficient state representation. In contrast, FRAP and CoLight use
well-designed neural network structures but have less efficient state representa-
tion. Furthermore, FRAP, CoLight, and QL-DQN use the same reward function.
When comparing the performance of QL-DQN with FRAP and CoLight, QL-
DQN consistently performs better under JiNan and HangZhou datasets. These
experimental results suggest that queue length serves as an efficient state repre-
sentation.

5.3 Reward Function Investigation

Previous studies, such as PressLight [23] and MPLight [1], have demonstrated
the superior performance of RL approaches under pressure compared to queue
length in the context of reward functions. This study revisits these findings,
focusing on the impact of reward settings when queue length is used as the state
representation. We utilize two base models for our investigation: AttentionLight
(Model 1) and CoLight (Model 2). Our experiments are structured around
two configurations: Configl: uses queue length and current phase as the state,
with negative queue length as the reward function; and Config2: uses the same
state representations but with negative absolute pressure as the reward function.

Experiments are conducted over JiNan and HangZhou, and the results are
reported in Fig. 3. Our findings show that AttentionLight performs slightly bet-
ter under queue length than pressure. Conversely, CoLight-based models demon-
strate significantly better performance under queue length compared to pressure.
In terms of state and reward calculation, queue length, which can be directly
obtained from the traffic environment, is simpler to acquire than pressure, which
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Fig. 3. Model performance under different rewards w.r.t average travel time, the
smaller the better.

necessitates complex calculation and neighbor information. Therefore, using
queue length as both the state and reward is a more favorable choice over
pressure. In conclusion, our experiments highlight the significance of selecting
suitable reward functions in RL-based TSC approaches. Utilizing queue length
as both state and reward can enhance performance, especially in the case of
CoLight-based models.

5.4 Action Duration Study
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Fig. 4. Model performance under different action duration.

To evaluate the impact of action duration on model performance, we con-
duct extensive experiments using our proposed methods. Figure4 illustrates
the model performance under different action duration. Our proposed Atten-
tionLight consistently outperforms other methods over JiNan and HangZhou
datasets. Notably, M-QL exhibits better performance than FRAP and CoLight
in most cases, suggesting that the traditional TSC methods remain powerful
and essential. The results highlight the crucial role action duration plays in the
effectiveness of TSC models, and indicate that our proposed methods are robust
and efficient under various action durations.

5.5 Model Generalization

Model generalization is a critical property of RL models, as an ideal RL model
should be resilient to different traffic conditions after training in one traffic sit-
uation. To evaluate the transferability of AttentionLight, We train it on JiNan
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and HangZhou datasets and transfer it to other datasets. In each experiment,
we calculated the average result of the final ten episodes.

AttentionLight

Average travel time ratio

JiNan] JiNan2 JiN;m3 HangZhou] HangZhou2

Fig. 5. The average travel time of transfer divided by the average travel time of direct
training. The error bars represent the 95% confidence interval for the average travel
time ratio.

The transfer performance is denoted as the average travel time ratio: t’;”:ﬁ,
where tirans fer a0d tirqin represent the average travel time of transfer and direct
training, respectively. The closer the average travel time ratio is to one, the less
degradation is caused when facing a new environment. Figure5 demonstrates
the transferability of AttentionLight on JiNan and HangZhou, indicating that
its model generalization is of great significance. AttentionLight achieved high
transfer performance over all datasets, suggesting that it is highly adaptable to
new traffic environments.

6 Conclusion

In this paper, we propose the use of queue length as an efficient state represen-
tation for TSC and present two novel methods: Max Queue-Length (M-QL) and
AttentionLight. M-QL is an optimization-based method that is built on queue
length, and AttentionLight uses self-attention to learn the phase correlation with-
out requiring human knowledge. Our proposed methods outperform previous
state-of-the-art methods, with AttentionLight achieving the best performance.
Furthermore, our experiments highlight the importance of state representation
in addition to neural network design for RL.

However, we acknowledge that queue length alone may not be sufficient for
complex traffic conditions, and additional information should be incorporated
into the state representation. In future research, we aim to explore the inclusion
of more information about the traffic conditions in the RL agent observations.
Additionally, we aim to investigate the use of more complex reward functions
and network structures to further improve the performance of TSC.
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