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Abstract. Widely used optical remote sensing images are often contam-
inated by clouds. The missing or cloud-contaminated data leads to incor-
rect predictions by the downstream machine learning tasks. However, the
availability of multi-sensor remote sensing imagery has great potential for
improving imputation under clouds. Existing cloud imputation methods
could generally preserve the spatial structure in the imputed regions, how-
ever, the spectral distribution does not match the target image due to dif-
ferences in sensor characteristics and temporal differences. In this paper,
we present a novel deep learning-based multi-sensor imputation technique
inspired by the computer vision-based style transfer. The proposed deep
learning framework consists of two modules: (i) cluster-based attentional
instance normalization (CAIN), and (ii) adaptive instance normalization
(AdaIN). The combined module, CAINA, exploits the style information
from cloud-free regions. These regions (land cover) were obtained through
clustering to reduce the style differences between the target and predicted
image patches. We have conducted extensive experiments and made com-
parisons against the state-of-the-art methods using a benchmark dataset
with images from Landsat-8 and Sentinel-2 satellites. Our experiments
show that the proposed CAINA is at least 24.49% better on MSE and
18.38% better on cloud MSE as compared to state-of-the-art methods.

Keywords: Cloud imputation · Multi-sensor · Deep learning · Style
transfer

1 Introduction

Remote sensing imagery has been widely used as an important research material
and information source in many applications ranging from crop monitoring, dis-
aster mapping, nuclear proliferation, and urban planning since 1950’s. However,
since more than 50% of Earth’s surface is covered by clouds [10] at any time,
the performance of various downstream tasks such as segmentation, recognition,
and classification on remote sensing images could be seriously affected because of
the cloud-contaminated pixels. Fortunately, the advancing remote sensing tech-
nology and increasing number of satellite collections have significantly increased
the spatial and temporal density of multi-sensor images.
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Given the limitations of cloud-contaminated remote sensing images in the
downstream applications (e.g., classification, change detection), a large number
of techniques have been developed for imputation under clouds by exploiting
multi-sensor imagery collections [1,2,4,14,34]. Multi-sensor imagery is preferred
for cloud imputation as the large revisit cycle of a single satellite (more than
15 days) makes it hard to find temporally close-by images. In contrast, the
chance of finding temporally close-by (less than a week) cloud-free images sig-
nificantly increases if images from several satellites (that is, multi-sensor) are
used [14]. Multi-sensor cloud imputation problem is often formulated as an
image restoration task with a triplet consisting of the target, and before and
after images [2,14,34]. Additionally, it is assumed that necessary cloud masks
are often given beforehand, as these masks help focus the imputation to cloudy
regions [17,34]. Given the computation and memory limitations, deep learning
approaches often work with small images (e.g., 384 × 384). However, the typ-
ical size of a remote sensing image is more than 7000 × 7000 for Landsat and
10000× 10000 for Sentinel satellites. In order to use these large images in training
deep learning models, we often split them into smaller patches. For convenience,
we call these input patches as images. Any subpart of this image is called as
a patch (for example, the cloudy portion of an image is called a patch, and
any small portion of the background (non-cloudy image) is also referred to as
a patch). Usually, an image with a cloudy patch is treated as the target, and
two temporally nearby geo-registered cloud-free images as input. These nearby
images may come from the same sensor as the target image or a different sensor.

Though recent advances in deep learning-based multi-sensor cloud imputa-
tion methods have improved imputation performance significantly against single-
sensor cloud imputation methods, they still have limitations. In particular, these
methods can preserve the spatial structure of the imputed patches close to the
input images. However, to the best of our knowledge, the existing multi-sensor
cloud imputation models can’t preserve the pixel-level spectral properties of the
target image. As a result, the imputed patches are not close to the target images
in terms of color style (spectral values). To address this issue, we propose a novel
deep learning framework that harmonizes the imputed cloudy patches to the tar-
get image. The multi-sensor component of the network preserves the structure
of the imputed patch and the harmonization component learns to transfer the
color style by utilizing the cloud-free background and the land cover information
of the target image.

From computer vision literature, earlier methods of style transfer between
images can be attributed to the work of [6]. They used VGG-based deep learn-
ing architecture with a goal of style transfer to synthesize a texture from a
source image, called “style,” while preserving the semantic content of a target
image called “content.” Later works by [3,8,24] found that the feature statis-
tics such as mean and standard deviation are highly effective in controlling the
“style” of the output images. In particular, the adaptive instance normaliza-
tion (AdaIN) method proposed by [8] can accommodate arbitrary style images
without pre-training using adaptive affine transformations learned from the style
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inputs. This AdaIN approach gave us the idea of adopting it to the multi-sensor
cloud imputation problem by transferring the style of cloud-free background to
imputed patches. In the multi-sensor cloud imputation problem, the cloud-free
background of the target image will be the style and the input images from which
the imputed patches are derived will be the content.

Fig. 1. Figure shows the spectral (color style) differences (red circles) in the imputed
regions. From left to right: (1) the cloud-masked image, (2) the ground truth, (3) the
imputed image by a state-of-the-art method called MDRN [34] (Color figure online).

However, the existing AdaIN only takes the mean and standard deviation
of the whole style feature as the transferring style information. Remote sensing
images often contain multiple types of land covers (e.g., forests, crops, buildings)
and thus multiple and complicated styles in a single image. Therefore, AdaIN
could only provide limited improvement for the multi-sensor cloud imputation
task. To address this limitation, we propose a novel extension to the AdaIN
that exploits the land cover information of the target image and transfers style
information from targeted patches called cluster-based attentional instance nor-
malization (CAIN). Without requiring extra land cover data, the land cover
information can be extracted with an unsupervised clustering method such as
K-means [30]. Recall that a patch is a small portion of the image, these smaller
patches can effectively capture the individual land cover types. CAIN first splits
both the cloud-free style and imputed content portions of the image into smaller
patches and matches each of the style and content patches according to their
land cover clustering results. For each imputed content patch, the cloud-free
background patches with the same land cover cluster are selected for transferring
the feature statistics, that is, the mean and standard deviation of the cloud-free
patches. This way, each patch of the imputed feature will be transferred to the
style of the patches with the same land cover cluster and, thus, to the style
closer to the target image. However, CAIN could be prone to the noise and bias
contained by a single land cover cluster. Therefore to overcome the limitations of
both AdaIN and CAIN, we combine them using a weighted combination scheme
called CAINA (CAIN + AdaIN). Thorough experimentation showed that both
the bias (via MSE) and variance (via box-plots) have significantly reduced as the
CAINA captures both general global and particular land cover style information.

Another advantage of the style transfer modules described above is that they
can be easily plugged into various deep learning architectures. In this paper,
we incorporated CAIN and CAINA modules in the deep learning networks
inspired by MDRN [34] and MSOPunet [2] and named the resulting architecture
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as MDRNunet. While MDRNunet has the same multi-stream-fusion structure and
composite upsampling structure as of MDRN, it also has U-Net [18] components
inspired by MSOPunet [2].

Overall, the contributions of this paper are two-fold. First, a novel style trans-
fer module, CAINA, is designed to exploit the remote sensing feature statistics
for harmonizing the imputed cloudy patches using the cloud-free background.
Second, a new deep learning network architecture was proposed by combining
the merits of two state-of-the-art multi-sensor cloud imputation models (MDRN
and MSOPunet) for testing our proposed style transfer module. Finally, exten-
sive experiments are conducted on a multi-sensor cloud imputation benchmark
dataset for evaluating the performance of our proposed style transfer module.
Experimental results showed that our proposed CAINA outperformed the state-
of-art methods by at least 18.38% and 24.49% using mean squared error (MSE)
in cloudy regions and the entire images, respectively.

Fig. 2. The illustration for cluster-based attentional instance normalization (CAIN).
We split the content feature X and the style feature Y into two sets of patches, {xi}
and {yj}, respectively. Then a lightweight K-means clustering method is employed to
extract each patch’s land cover type (Illustrated with different colors in {xi} and {yj}).
Then for each xi, all the patches with the same land cover type in {yj} are selected
and denoted as Yxi . Then Yxi can be aggregated for transferring the mean μ(Yxi) and
standard deviation σ(Yxi) to xi.

2 Related Work

2.1 Multi-sensor Cloud Imputation

The remote sensing cloud imputation problem has been primarily considered in
single-sensor or single-image settings previously in [9,21,22,29,31,33]. Although
these works made significant improvements on the cloud imputation task, single-
sensor settings can only be adopted to limited practical situations as it has
more restrictions for input compared to multi-sensor settings. In contrast, cloud
imputation with multi-sensor data was considered in [1,4,14,19]. [2,4,14] used
optical and SAR channels for cloud imputation tasks. However, they did not
explicitly address the multi-resolution issue between SAR and optical images.



Multi-sensor Cloud Imputation with Style Transfer 41

Instead, they artificially down-sampled the SAR images to the same lower res-
olution as optical images and thus caused a loss of spectral and spatial infor-
mation. The multi-resolution settings in remote sensing imagery were tackled
while other problems such as land cover classification and segmentation were
addressed in [13,16,20,23,25–27,36]. Recently, the multi-resolution issue in the
cloud imputation problem was tackled by a multi-stream deep residual network
(MDRN) [34]. MDRN used a multi-stream-fusion structure to process inputs
with different resolutions separately and achieved state-of-the-art performance.
However, MDRN could not effectively harmonize the imputed patches to the
same color style as the target image. Therefore, in this paper, we attempt to
improve the harmonization of imputed patches with our proposed style transfer
modules, CAIN and CAINA while keeping the effective components of MDRN
in our deep learning network, MDRNunet.

Fig. 3. The architecture and data flow of our testing deep learning network. The
detailed structures of the encoder and decoder blocks are shown in the right-hand
side. XCF

1 (CF stands for cloud-free) is the cloud-free Landsat-8 input, XC
2 is the

cloudy Sentinel-2 input, and XCF
3 is the cloud-free Sentinel-2 input. Ŷ is the predicted

target cloud-free image.

2.2 Style Transfer

Style transfer between images was tackled with deep learning networks first in [6].
The goal of style transfer is to synthesize a texture from a source image, called
“style,” while preserving the semantic content of a target image called “content.”
Later works done by [3,8,24] discovered that the feature statistics such as mean
and standard deviation in a deep learning network can be effective in controlling
the style of the output images. In particular, adaptive instance normalization
(AdaIN) was proposed by [8] for arbitrary style transfer. AdaIN has no learn-
able affine parameters. Each content could be paired with a style in every data
instance. AdaIN’s adaptiveness enabled the possibility of improving multi-sensor
cloud imputation with style transfer ideas, as the cloud-free background could
be the style and the imputed patches could be the content. However, AdaIN
computed the statistics over the entire style feature and could contain tangent
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information in the feature statistics. The tangent information could compromise
the performance as it is not expected in the cloud patch. In contrast, our pro-
posed CAINA extracts feature statistics more accurately from the semantically
similar cloud-free regions with the same land cover cluster as the cloud patch so
that the cloud patch could be transferred with reduced tangent style information.

In addition to the instance normalization methods that directly inspired our
work, style transfer has also been tackled with other works focusing on the
innovation of deep learning architectures [12,15]. Multi-level interactive Siamese
filtering (MISF) [12] aims at the high-fidelity transformation of background in
image inpainting by exploiting the semantic information with a kernel prediction
branch and filling details with an image filtering branch. Whereas contrastive
unpaired translation (CUT) [15] proposed a patchwise contrastive loss based on
the famous Cycle-consistent GAN [37] to overcome the restriction of bijective
assumption with more accurate contrastive translation in the style transfer task.
However, while applying to the remote sensing imagery, these methods didn’t
exploit the valuable information in land cover clusters and, thus, cannot achieve
optimal cloud imputation performance.

Fig. 4. The validation MSE loss curves of the same deep learning architecture without
style transfer, with AdaIN, with CAIN, with CAINA.

The idea and methods of style transfer were considered to be helpful for cloud
imputation in remote sensing imagery only starting from recent years [32,35].
AdaIN was adopted and applied to a cloud imputation model in [35] for con-
trolling the global information of the images. Two parameters generated by a
pre-trained MLP network were used to replace the feature statistics used in [8].
Another example of employing AdaIN for cloud imputation is presented by [32].
AdaIN enabled incorporating physical attributes such as cloud reflection, ground
atmospheric estimation, and cloud light transmission to the deep learning net-
works in [32]. However, the usages of AdaIN in [32,35] relied on the reinforcement
of pre-trained models and external physical information. Additionally, they still
applied identical style information for all cloud patches. In contrast, our proposed
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CAINA applied the style of the corresponding land cover type by clustering tech-
niques to each cloud patch and do not rely on any pre-trained models or external
physical information.

Fig. 5. The validation MSE loss curves of the state-of-the-art deep learning cloud
imputation model, EDSR, MSOPunet, MDRN, CUT, MISF comparing with CAINA.

3 Methodology

Existing multi-sensor cloud imputation methods could generally detect the miss-
ing values and derive the spectral content from the temporally-nearby cloud-free
images reasonably well. Though the spatial structure under the cloud patches
is close to the target image, the existing models do not effectively preserve the
pixel-level spectral properties of the target image due to spectral and temporal
differences. Figure 1 shows some examples of the cloud patches imputed by an
existing cloud imputation method (MDRN). As can be seen from the images,
the imputed patches do not match the spectral distribution (color style) of the
target image.

As the pixel-level spectral properties of remote sensing images tend to depend
on time and the sensor collection, the patches imputed by existing deep learn-
ing networks often do not match the surrounding regions in the target image.
Thus, to make the imputed patches consistent with the target image, we need to
transfer the style of the cloud-free background to the imputed patches. Therefore,
the style transfer techniques in the computer vision (CV) area were considered
and evaluated. In this section, we demonstrate our attempts to bridge the style
transfer area to the multi-sensor cloud imputation problem and propose new
style transfer modules that serve the multi-sensor cloud imputation problem
better.
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Fig. 6. The validation cloud MSE boxplots of Substitution, MDRN, EDSR, MSOPunet,
MISF, CUT, MDRNunet, AdaIN, CAIN, and CAINA. The whiskers extend from the
box by 3x the inter-quartile range (IQR). Outliers (around 10% of the total validation
set size) that pass the end of the whiskers are omitted. It is shown that the variance
of CAINA is lower than all other methods, which is why CAINA outperformed the
state-of-the-art methods on averaged cloud imputation performance.

3.1 Adaptive Instance Normalization (AdaIN)

AdaIN [8] is an arbitrary style transfer technique that could take an arbitrary
style image as input without pre-training. The goal of style transfer is to synthe-
size a texture from a source image, called “style,” while preserving the semantic
content of a target image called “content.” The intuition of AdaIN is to make
the content image aligned with the mean and standard deviation of the “style”
image. More formally, suppose X and Y are content and style features, respec-
tively, then AdaIN aligns the feature-wise mean (μ) and standard deviation (σ)
of X to those of Y .

AdaIN(X,Y ) = σ(Y )

(
X − μ(X)

σ(X)

)
+ μ(Y ) (1)

In the case of cloud imputation, we are dealing with the following image
triplets similar to [31,34], XCF

1 , Y C = XC
2 , and XCF

3 (CF stands for cloud-free
and C stands for cloudy), where Y C is the target image containing the cloud
patches, and XCF

1 and XCF
3 are nearby cloud-free images which could be from a

different sensor than the target image Y C . From the perspective of style transfer
notation, the content feature X comes from XCF

{1,3}, and the style feature Y comes
from the cloud-free region of the target image Y C .

3.2 Cluster-Based Attentional Instance Normalization (CAIN)

Although experiments show that transferring the global mean and standard devi-
ation of the cloud-free background to cloud patches could improve the cloud
imputation performance, the improvement is still limited since remote sensing
images often contain multiple types of land covers (e.g., forests, crops, build-
ings). Thus more focused and accurate style information for the cloudy patches
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Fig. 7. Few examples of cloud imputed images showing the comparison across the state-
of-the-art deep learning cloud imputation models and our testing methods, MDRNunet,
AdaIN, CAIN, and CAINA. From the left to the right: (1) the cloud-masked images; (2)
the ground truths; the restored images by: (3) Substitution, (4) MDRN, (5) EDSR, (6)
MSOPunet, (7) MISF, (8) CUT, (9) MDRNunet, (10) AdaIN, (11) CAIN, (12) CAINA.

is expected to further reduce the style inconsistency between predicted images
and the target images.

Therefore, we propose a new module called cluster-based attentional instance
normalization (CAIN). Instead of simply normalizing all pixels in the content
feature X with the global mean and standard deviation of the style feature Y ,
we only transfer the feature statistics of the pixels with the same land cover type
as the cloudy pixels. Specifically, we first employ a lightweight clustering model
such as K-means [30] on a temporally close cloud-free image, XCF

3 , for obtaining
the land cover information. Then we split X and Y into two sets of patches {xi}
and {yj} as shown in Fig. 2.

Then for each xi, we extract all the cloud-free patches in the same land cover
cluster, Yxi

,
Yxi

= τ{yj}
(
C(yj) = C(xi)

)
(2)

where τ(·) is the choice function. C(yj) and C(xi) are yj and xi’s land cover
clusters, respectively. Then xi is aligned to the mean and standard deviation,
Yxi

, as given by CAIN(,):

CAIN(xi, Y ) = σ(Yxi
)

(
xi − μ(xi)

σ(xi)

)
+ μ(Yxi

) (3)

This way, the content patches {xi} are transferred to the mean and standard
deviation of the style patches in the same land cover cluster, {Yxi

}. And the
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content feature X could be more consistent with the cloud-free background of
the target image Y .

3.3 Composite Style Transfer Module, CAIN + AdaIN (CAINA)

Though experiments show that CAIN could provide more accurate style infor-
mation, the mean and standard deviation of the same land cover type are aggre-
gated from a subset of cloud-free patches and could be prone to the employed
clustering method’s limitations. Therefore, a weighted combination of CAIN and
AdaIN (CAINA) is proposed to overcome their disadvantages and utilize their
advantages simultaneously,

CAINA(X,Y ) = Convolution(CAIN(X,Y ) ⊕ AdaIN(X,Y )) (4)

We employ a convolution layer to perform an automatic weighted combination of
the concatenated features returned by CAIN and AdaIN. In this setup, the style
information from the same land cover type is focused, while the style information
from the entire image could also contribute to the predictions. Experiments show
that the variance of the predictions is reduced with CAINA and the average error
of cloud imputation is further reduced as well.

3.4 The Deep Learning Network Architecture

Since the style transfer modules demonstrated above are independent from
any particular deep learning networks, they can be easily plugged into various
deep learning architectures. In this paper, we incorporate AdaIN, CAIN, and
CAINA in a deep learning architecture (MDRNunet), inspired by MDRN [34]
and MSOPunet [2]. As the multi-sensor, multi-resolution cloud imputation prob-
lem is considered in this paper, the architecture has the same multi-stream-fusion
structure and composite upsampling structure as MDRN. On the other hand,
inspired by MSOPunet [2], more U-Net [18] components were employed. Figure 3
shows the architecture and dataflow of our deep learning network.

4 Experiments

4.1 Dataset and Environmental Configuration

We test and compare all the methods on the benchmark dataset introduced
in [34] with remote sensing images from Landsat-81 and Sentinel-22. This collec-
tion includes the temporally closest image triplets, thus ideal for testing our pro-
posed methods. Another recent cloud imputation benchmark dataset, Sen12MS-
CR-TS [5], also includes temporally close-by multi-sensor image collections. How-
ever, Sen12MS-CR-TS uses SAR channels, two airborne microwave channels that

1 https://landsat.gsfc.nasa.gov/satellites/landsat-8/.
2 https://sentinel.esa.int/web/sentinel/missions/sentinel-2.

https://landsat.gsfc.nasa.gov/satellites/landsat-8/
https://sentinel.esa.int/web/sentinel/missions/sentinel-2


Multi-sensor Cloud Imputation with Style Transfer 47

can penetrate clouds but contain non-negligible noises. Thus, Sen12MS-CR-TS
is not an ideal benchmark dataset for evaluating the proposed methods here.

The most widely used RGB channels are used for training our model. How-
ever, the proposed architecture does not depend on any specific channel com-
bination and it could be readily trained on any number of channels and their
combinations as long as the system permits (memory and compute power). The
dataset is split into independent training (consisting of 4,003 instances) and val-
idation (1,000 instances). All the models are trained with the following parame-
ters: batch-size = 16, epochs = 80, mean squared error (MSE) loss, ADAM opti-
mizer, and a step learning rate scheduler starting from 0.01 and every 10 epochs
decreases at the rate of 0.75. The source code is implemented with PyTorch3

and has been deployed to our sponsor’s system.

Fig. 8. The cloud residual maps of the same examples in Fig. 7 showing the comparison
across the state-of-the-art deep learning cloud imputation models and our proposed
CAINA. From the left to the right: the cloud residual maps by: (1) Substitution, (2)
MDRN, (3) EDSR, (4) MSOPunet, (5) MISF, (6) CUT, (7) MDRNunet, (8) AdaIN, (9)
CAIN, (10) CAINA. The darker residual maps implies better cloud imputation results.

4.2 Experiment Settings

We perform two sets of experiments. In the first set of experiments, we com-
pare the cloud imputation performance of the baseline method MDRNunet and
the style transfer extensions: MDRNunet + AdaIN, MDRNunet + CAIN, and
MDRNunet + CAINA. In the second set of experiments, we compare our best-
performing cloud imputation model with the style transfer module, MDRNunet

3 https://github.com/YifanZhao0822/CAINA.

https://github.com/YifanZhao0822/CAINA
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+ CAINA, with other state-of-the-art deep learning cloud imputation meth-
ods, namely, MDRN [34], MSOPunet [2], EDSR [14], MISF [12], and CUT [15].
Besides, we also compare with the imputation results by simply substituting the
cloud region of the target image with the corresponding area from the temporally
closest Sentinel-2 image and call this baseline method as “Substitution.”

We report the quantitative comparison results using two types of error met-
rics: pixel-wise metrics and structural metrics. For pixel-wise metrics, we are
using three well-known measures. These include Mean Square Error (MSE) for
the entire image and the cloud area separately, whereas peak-signal-to-noise
ratio (PSNR) [7] and spectral angle mapper (SAM) [11] on full images. The
MSE shows how close the predicted pixels are with respect to the ground truth;
the peak-signal-to-noise ratio (PSNR) approximates the human perception of the
restored image; the spectral angle mapper (SAM) is used for evaluating the spec-
tral difference over RGB channels. For structural metric, we used the structural
similarity index (SSIM) [28] for measuring the image restoration quality from
a visual perception standpoint. For the hyperparameters in CAIN and CAINA,
we tuned the patch size= 3 × 3 and the K-means # clusters k = 4.

4.3 Quantitative Results of the First Set of Experiments

In this section, we present the experimental results of various extension and
their relative performance over the baseline method: MDRNunet, MDRNunet +
AdaIN, MDRNunet + CAIN, and MDRNunet + CAINA. For simplicity, we are
omitting the prefix of MDRNunet, for example MDRNunet + CAINA is simply
referred to as CAINA. Figure 4 shows the validation MSE loss curve of each
model at the end of each epoch. We observe that both CAIN and AdaIN outper-
form MDRNunet in a significant way. CAINA further improves the performance
on the basis of CAIN and AdaIN. Table 1 shows the comparison using MSE,
cloud MSE, PSNR, SSIM, and SAM. As can be seen, CAINA outperforms all
other methods on the pixel-wise metrics and it outperforms all other methods
on structural metrics except for AdaIN on SAM measure.

Table 1. The comparison on MSE, cloud MSE, PSNR, and SSIM for MDRNunet,
AdaIN, CAIN, and CAINA. The best result of each metric is bolded.

Methods MSE (10−4) Cloud MSE (10−4) PSNR SSIM SAM (10−2)

MDRNunet 5.7871 16.2712 42.0875 0.9876 4.6549

AdaIN 5.0939 15.1207 42.6586 0.9878 3.9988

CAIN 5.1214 15.0891 42.2273 0.9871 4.3729

CAINA 4.8222 14.3214 42.9390 0.9881 4.1365
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4.4 Quantitative Results of the Second Set of Experiments

In this section, we further compare our best-performing CAINA with the baseline
method, Substitution, and the state-of-the-art deep learning cloud imputation
models, namely MDRN [34], MSOPunet [2], EDSR [14], MISF [12], and CUT [15].
We used the same quantitative metrics as in Sect. 4.3, namely MSE, cloud MSE,
PSNR, SSIM, and SAM for comparing the performance of each model. Figure 5
shows the validation MSE loss curves of each model except Substitution at the
end of each training epoch. EDSR has the most stable convergence among the
state-of-the-art models. However, its best MSE is still suboptimal. We observe
that MSOPunet outperforms EDSR significantly, however, its validation loss is
not stable. MDRN outperforms the other state-of-the-art methods on MSE but
its validation MSE loss is still higher than CAINA. CAINA outperforms all
methods significantly and has also reached a stable convergence after 40 epochs.
Table 2 shows the comparison using MSE, cloud MSE, PSNR, SSIM, and SAM.
As can be seen, CAINA outperforms all other methods on both the pixel-wise and
structural metrics. Compared to the state-of-the-art cloud imputation models in
Table 2, using the primary measure of MSE, CAINA shows at least 18.38% and
24.49% improvement in cloudy regions and the entire image, respectively. Addi-
tionally, MISF achieved the second-best cloud MSE although its performance
on other metrics is limited. In our understanding, it could be the significant
contribution of the novel kernel prediction module in MISF, which could be an
inspiring point that leads to future innovations.

Table 2. The comparison on MSE, cloud MSE, PSNR, SSIM, and SAM for Substitu-
tion, MDRN, EDSR, MSOPunet, CAINA. The best result of each metric is bolded.

Methods MSE (10−4) Cloud MSE (10−4) PSNR SSIM SAM (10−2)

Substitution 25.6594 83.2660 38.6478 0.9704 4.6629

MDRN 6.3895 19.0507 39.5097 0.9810 5.1440

EDSR 8.1018 22.8269 39.3500 0.9805 4.9847

MSOPunet 7.6326 21.4471 39.1222 0.9803 5.2841

CUT 10.9325 28.5818 36.1848 0.9701 8.6621

MISF 8.1022 17.5454 35.3311 0.9573 9.6810

CAINA 4.8222 14.3214 42.9390 0.9881 4.1365

4.5 Analysis on Variances Among the Compared Methods

We further analyze the results using boxplots to understand the performance
gains of the CAINA better. Figure 6 shows the boxplot for Substitution, MDRN,
EDSR, MSOPunet, MISF, CUT, MDRNunet, AdaIN, CAIN, and CAINA on the
cloud MSE. Both CAIN and CAINA have the lowest third quartile (the upper
bound of the boxes). In addition, CAINA has the lowest median among the
boxplots. Therefore, the variance of CAINA is lower than all other methods,
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which is why CAINA outperformed the state-of-the-art methods on averaged
cloud imputation performance.

4.6 Qualitative Results and Residual Maps

Figure 7 and 8 shows a few examples of the restored RGB images and cloud resid-
ual maps for comparing across the state-of-the-art deep learning cloud imputa-
tion models and the testing methods in the same order as in Sect. 4.5. Images
in Fig. 8 are residual maps generated by subtracting the predicted image from
the ground truth in Fig. 7. The darker residual maps implies better cloud impu-
tation results. Our proposed CAINA outperformed the state-of-the-art models
consistently by achieving the darkest residual maps.

5 Conclusions

In this paper, we presented an effective cloud imputation model with a novel
style transfer function (CAINA) that harmonizes imputed patches by exploiting
image style information from the cloud-free region of the image to reduce the
style differences between the target and predicted image patches. We have exper-
imentally shown that our method not only brings improvements as an add-on
module to the MDRNunet, but also provides an improved cloud imputation per-
formance in comparison to the several state-of-the-art deep learning models on
a benchmark dataset. In particular, CAINA is at least 24.49% better on MSE as
compared to the state-of-the-art models, and 18.38% better on cloud MSE. How-
ever, the current proposed CAINA relies on the results of K-means clustering and
cloud-free regions of the target image. In the future, we will work on introducing
land cover segmentation maps to replace K-means clustering for improving the
reliability of the cloud imputation method. Additionally, our future work will
also try to reduce the dependence on cloud-free regions of the target image by
possibly exploiting sensor-level metadata.
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