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Abstract. Failure prediction is key to ensuring the reliable operation
of vehicles, especially for organizations that depend on a fleet of vehi-
cles. However, traditional approaches often rely on rule-based or heuris-
tic methods that may not be effective in detecting subtle anomalies, rare
events, or in more modern vehicles containing a complex sensory net-
work. This paper presents a novel approach to vehicle failure prediction,
called mVSG-VFP, which employs self-supervised learning and graph-
based techniques. The proposed method realizes the failure prediction
task by exploring information hidden in the time-series data recorded
through the sensors embedded in the vehicle. mVSG-VFP includes two
main components: a graph-based autoencoder that learns representa-
tions of normal data while considering the relationship between different
sensors and a self-supervised component that maps temporally-adjacent
data to similar representations. We propose a novel approach to define
the notion of adjacency in vehicle temporal data.

To evaluate mVSG-VFP, we apply it to a dataset comprised of vehi-
cle sensor recordings to identify the abnormal data samples that signal a
potential future failure. We performed a flurry of experiments to verify
the accuracy of our model and demonstrate it outperforms state-of-the-
art models in this task. Overall, the method is robust and intuitive,
making it a useful tool for real-world applications.

Keywords: Self-Supervised Learning · Failure Prediction ·
Time-Series Anomaly Detection · Graph Neural Networks · Predictive
Maintenance

1 Introduction

Failure prediction is a crucial aspect of modern predictive maintenance sys-
tems in transportation, as it helps to prevent unexpected breakdowns and costly
repairs [1,36]. Modern vehicles are equipped with complex sensory networks,
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which are helpful for the early detection of malfunctioning subsystems before
they harm other parts of the vehicle. However, analyzing the sheer volume of
sensor data is not feasible for a technician. Therefore, an automated framework
is needed to extract relevant information from the data efficiently and objec-
tively. One promising approach to achieving this goal is through deep anomaly
detection, a family of machine learning algorithms tailored to detect irregular
data patterns [30].

1.1 Problem Statement

Vehicles’ sensors commonly output the data as multivariate time series, i.e. a
set of sequentially recorded points from different sources. Detecting anomalies
in such data is highly challenging for several reasons: First, time-series data can
be complex, non-stationary and high-dimensional, making it difficult to identify
meaningful patterns [9]. Additionally, distinguishing anomalies from variations
in driving patterns or weather and road conditions is an arduous task in time
series. Furthermore, capturing the temporal relationship in the data is a complex
job, particularly since the length of the recordings is variable, and that they are
not continuously recorded. Machine learning models, particularly deep learning
algorithms, have helped design efficient algorithms that can address part of these
challenges. However, most existing methods suffer from four crucial drawbacks
[10]: I) they do not consider the inter-relationship between different sensors;
therefore, their application is limited to cases in which anomalies can be easily
identified by analyzing the data of individual sensors, which is not the case in
complex systems such as a vehicle; II) since the time series recording are com-
monly very long, the models need to split the data into smaller partitions hence
losing the long-term temporal relationships; III) most of the existing methods
are not capable of identifying the abnormal sensor and they can only perform
system-level anomaly detection; IV) most state-of-the-art algorithms define their
anomaly score based on a single data point in the time series. However, time
series are commonly contaminated with noise, making the sample-based anomaly
scores unreliable, causing performance underestimation. To handle this matter,
rather than defining a proper anomaly score, they use a biased evaluation pro-
tocol – more specifically, they label the whole data points within a segment of
time series as abnormal even if only one data point is abnormal. Such relabeling
causes a performance overestimation [23].

1.2 Addressing the Challenges: Our Methodology

Very recently, several studies have revisited the existing deep time-series anomaly
detection models more closely and concluded that most of them cannot perform
better than simple baselines [11,23]. According to these papers, confirmed by
our own experiments, a combination of simple benchmark datasets and biased
evaluation metrics has led to the illusion of progress in this field, and the majority
of existing algorithms fail in more challenging datasets if an unbiased evaluation
protocol is used [11]. One of the very few exceptions was graph-based methods,
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which could outperform other baselines in these scenarios [10,23]. Inspired by
these findings, in this paper, we develop a graph-based model for tackling the
problem of vehicle failure prediction. By representing the data as a graph, we
can capture the complex relationships between components, allowing us to detect
subtle changes that existing anomaly detection methods may miss [8,40].

To develop a system that can better identify abnormal sensors, we utilize a
generative approach wherein we mask one sensor at a time and encourage the
model to reconstruct it. In a model trained in this fashion, if it faces a normal
sample during inference, we expect it to still have a small reconstruction error.
Thus, we can leverage the reconstruction error to detect abnormal sensors [16].

Similar to other machine learning algorithms, graph-based models cannot
process long sequences due to memory and computational constraints [10].
Therefore, it is a common practice in the literature to split the data into smaller
windows and treat each partition as a single sample when feeding them to the
network [28]. As a result of such partitioning, the model ignores the long-term
dependencies between adjacent partitions as the partitions are treated as inde-
pendent and identically distributed (IID) samples during training. This is an
undesirable property which limits the performance of models. To overcome this
barrier, we leverage the recent progress in self-supervised learning and the unique
properties of our dataset to propose a novel and ground-breaking solution. Our
idea is based on the notion of contrastive learning – more specifically the pro-
posed maps the adjacent partitions into similar representations. By doing so, the
model learns to extract meaningful and discriminative features that can be used
for a wide range of downstream tasks [6,15]. Contrastive learning has gained
popularity in recent years, particularly in the field of computer vision, where
it has achieved state-of-the-art results in tasks such as image recognition and
object detection [6]. However, its application in time-series analysis is underex-
plored mainly because of the fact that it is extremely difficult to define positive
and negative pairs in time series [20]. Our method leverages a unique character-
istic of vehicle data to overcome this challenge; the data that are recorded during
one trip1 of the vehicle are more similar compared to those that are produced
during another trip; e.g. the driver, weather, road, and load conditions are more
probably the same during one vehicle trip. Our model uses this unique vehicle
data property to learn a better representation of the data. In this paper, we
refer to the data recorded in one vehicle trip as Block. The Block size varies with
the trip duration. We partition each Block into fixed-length time series; these
sub-Blocks are referred to as Segment throughout this paper. In general, a Block
is usually comprised of several data Segments.

Contribution: We can summarize the main contributions of our work as fol-
lows:

1. This is the first study that proposes an effective deep learning framework
designed based on the unique properties of the vehicle failure prediction task.

1 We define a trip as a continuous recording of sensors in which the engine is not
turned off for more than 5 min.
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2. This is the first study on multivariate time-series analysis that can effectively
capture the long-term dependencies within and across time series.

3. We realized the proposed idea through the concepts of graphs, contrastive,
and generative learnings.

4. In addition to the vehicle-level failure prediction, the proposed method is
capable of identifying faulty sensors. This makes the model more interpretable
and helps technicians fix the vehicle.

5. As opposed to the other time-series anomaly detection methods that provide
an anomaly score based on individual timestamps and a biased protocol, our
proposed method directly outputs the segment anomaly score, and we use
them to determine if the whole block is anomalous.

6. We demonstrate the effectiveness of the proposed method on a real-world
dataset for early engine failure prediction. The proposed method significantly
outperforms all existing and SOTA time-series anomaly detection methods in
Precision, Recall, and F1 score on average by 11.2%, 0.8% and 7.4%.

2 Related Works

2.1 Vehicle Predictive Maintenance with Machine Learning

Machine learning (ML) has been applied to predictive vehicle maintenance to
improve the accuracy of detecting potential vehicle failures and reduce mainte-
nance costs [36]. However, there are still challenges to overcome, such as data
quality and availability, the interpretability of the machine learning models, and
the need for collaboration between domain experts and data scientists. Machine
learning algorithms can analyze sensor data from vehicles to detect anomalies
and diagnose faults. In an early attempt, Wang et al. [37] leveraged the vibration
signals and a neural network to detect engine and fuel injection system failure.
A similar study by Wong et al. [39] proposed a supervised method based on the
ensemble of Bayesian extreme learning machines (BELMs) [32] to detect engine
faults. In another recent work, Wolf et al. [38] used the data of electric control
units (ECU) as the input to a customized deep learning model comprised of Con-
volutional Neural Networks (CNNs) [25] and Long short-term memory (LSTM)
[17] to detect faults in turbocharged engines. Besides engine fault detection,
machine learning has been extensively used for failure prediction and diagno-
sis in other vehicle subsystems. For instance, Rengasamy et al. [29] used CNNs
to detect faults in the air pressure system of heavy trucks. Recent progress in
the design of autonomous vehicles has also led to the development of innovative
failure prediction frameworks. Jeong et al. [21] leveraged the IoT infrastructure
of autonomous vehicles to design a predictive maintenance model using neural
networks. In another work, van Wyk et al. [41] leveraged CNN and anomaly
detection methods to identify anomalies in automated vehicles.

2.2 Time-Series Anomaly Detection

Time-series anomaly detection is a longstanding problem in various fields, such
as finance [2], healthcare [14], cybersecurity [3], and industrial maintenance [4].
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Before the introduction of machine learning algorithms, linear models such as the
autoregressive integrated moving average (ARIMA) [42] were used for modelling
and anomaly detection in time series. These models could identify linear patterns
in the stationary data but failed to generalize to more complex data.

Following the unprecedented success of machine learning and deep learn-
ing algorithms, researchers have started to leverage them for designing effec-
tive anomaly detection frameworks for time series. In early attempts, generic
anomaly detection algorithms such as Autoencoders (AEs) were applied to time
series, ignoring their temporal and spatial relationships [13,18]. With the intro-
duction of RNNs and their variants for handling temporal data, methods such
as LSTM-AE [33] and OmniAnomaly [34] were developed. Recently, transform-
ers became state-of-the-art in analyzing sequential data, and successful methods
such as Anomaly Transformers were designed based on them [28]. All mentioned
models have shown promising results on common time-series anomaly detection
benchmarks. However, recent studies have cast a shadow of doubt over their
generalizability power. They have shown that the performance of deep time-
series models is not necessarily better than traditional or, in some cases, random
baselines, and the superior performance that some papers have reported can be
attributed to other factors, such as incorrect evaluation procedures and inappro-
priate benchmark detests. Thus, most of the recent progress in deep time-series
anomaly detection is not practical for many real-life applications [11,23,26].

Recently, graph-based models became the new research trend for anomaly
detection. Graph-based models can effectively handle these relationships and
dependencies by modelling the data as a graph, where the nodes represent the
different sensors and the edges represent the relationships between them. Based
on this idea, several graph-based time series anomaly detection methods have
been proposed [10,43,44]. MTAD-GAT, proposed by Zhao et al. [44], was one of
the early methods that used two Graph Attention Networks (GAT) [?] to model
the relationship between sensors as well as the temporal data. They trained the
model to reconstruct and forecast the normal data simultaneously and defined
the anomaly score based on reconstruction and prediction errors. In another
similar work, Deng and Hooi [10] proposed GDN, which learns the relationship
between different sensors and employs GAT for fitting a forecasting model on
normal data. In a recent work, DVGCRN [7], authors used Variational AEs [24]
to improve the performance of their model. They jointly modelled the stochas-
tic relationship between different sensors and the multi-level temporal depen-
dencies in each sensor. Generative adversarial networks (GANs) [12] have also
shown remarkable improvements when combined with graph-based algorithms.
For instance, HAD-MDGAT [45] combines GAN with graph attention networks
to simultaneously learn the temporal and spatial relationship between sensors.
Another popular direction in the field is modelling the density of normal data
using normalizing flows and graph neural networks. Graph-augmented Normal-
izing Flow (GANF) [8] is proposed based on this idea and learns the density of
normal data via factorizing its density and a graph encoder. Anomalies can then
be detected as points that lie in low-probability regions.



mVSG-VFP 247

Parallel to the graph-based models, research in developing contrastive
learning methods for anomaly detection also gained momentum [20]. Lately,
researchers such as Tack et al. [35], and Li et al. [27] have shown that self-
supervision can significantly boost anomaly detection performance on images.
Since then, most research has been focused on visual anomaly detection [20].
Recently, a few studies attempted to apply these methods to other data types,
such as audio [19] and brain signals [16] Ho and Armanfard [16] proposed a
method for anomaly detection in brain signals using graphs and self-supervision.
However, the method is based on the spatial distance between the sensors, which
is not applicable to vehicle data since the spatial configuration of the vehicle sen-
sor does not bear meaningful information about their relationship.

Both Graph-based and self-supervised anomaly detection is a relatively young
research field, and there is no surprise that the aforementioned algorithms are
not thoroughly investigated in the context of real-world applications. In this
paper, we aim to take a step toward filling this research gap by proposing a self-
supervised graph-based method which is suitable for vehicle failure prediction
applications.

3 Proposed Model

Our model aims to detect anomalies in a multivariate time series at entity and
sensor levels after training on normal data. The data is commonly a very long
time series. To be able to process it, we use a sliding window of size L and
stride length m to generate fixed-size Segments. After windowing, the input
to our model is a Segmented multivariate time series dataset denoted by X ∈
R

N×L×(K+1), where N is the number of Segments in a mini-batch, L is the
window size, and K is the number of sensors. One additional column also denotes
the Block ID of the data points. The algorithm produces a vector y ∈ R

N where
yi ∈ {0, 1} denotes the true anomaly score of the ith sample, in which 0 denotes
normal condition, and 1 is an abnormality which can signal the failure.

Figure 1 shows an overview of our method. In summary, our method is com-
prised of the following components:

1. First, we use a sliding window to generate fixed-length Segments from the
time series and preprocess them. We then construct a feature vector from
each Segment. We build mini-batches from the data and augment them.

2. Several GAT layers then process the data. Each sensor represents a node in
the graph and is associated with its feature vector. The GAT layers GNNe

map the features into a lower-dimensional representation, and another stack
of GAT layers GNNd tries to reconstruct them.

3. A contrastive loss is applied to the latent space to pull the Segments with the
same Block ID closer and push them away from the rest of the batch.

4. Parallel to the above steps, we stochastically mask the data of one sensor and
try to generate the data of the affected sensor. We call this self-supervised
task the generative task.
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Fig. 1. Overview of the proposed method and its modules.

5. The anomaly score is defined as a combination of the reconstruction error
and a score to quantify how accurately the model solves the generative task.

3.1 Data Preprocessing and Feature Construction

As discussed earlier, we Segment the Blocks using a sliding window of size L
and stride length of m. To improve the robustness and follow the state-of-the-art
literature [10,28], we normalize each Segment with the maximum and minimum
values of the training set as follows:

x̃i =
xi − min(Xtrain)

max(Xtrain) − min(Xtrain)
(1)

where xi is the i-th sample, Xtrain is the set of all training samples and min(.)
and max(.) represent the minimum and maximum functions, respectively. Then,
from each sensor’s normalized data, we extract a fixed-length feature vector vi
using a feature extractor vi = R(x̃i)2.

3.2 Graph Autoencoder

We represent the data as a graph structure to consider the relationship between
sensors. In this graph, the nodes represent sensors, and the edges denote their
relationship. If an edge exists between two sensors, it indicates that they are
useful for modelling the behaviour of each other. We represent the edges using

2 Here R(.) can be any feature extraction function, including predefined feature extrac-
tion functions as well as trainable neural networks.
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an adjacency matrix A, where Aij = 1 if there is an edge between the ith and
jth sensors. This adjacency matrix can be built by incorporating prior knowl-
edge about sensor relationships or by using a dependency measure between the
sensors. In this work, we use a data-driven approach and build the adjacency
matrix based on mutual information (MI). MI is a measure of the statistical
dependence between two random variables X and Y and can be calculated as:

I(X ;Y) =
∑

x∈X

∑

y∈Y
P (x, y) log(

P (x, y)
P (x)P (y)

) (2)

where P (x, y) is the joint probability between x and y and P (x) and P (y) are
marginal probabilities of x and y, respectively. In the context of our work, the
MI is used to quantify the amount of information that is shared between two
sensors. We digitize the raw time series Segments into bins to calculate the MI.
We build the adjacency matrix as follows:

Aij =

{
1 if MI(xi, xj) > T

0 otherwise
(3)

where T is the connectivity threshold, and MI(.) is the mutual information.
The feature vector of each sensor is used as the node embedding. We then

use GAT layers to process the data. GATs are a type of layer used in graph
neural networks to perform message passing and feature aggregation on graph-
structured data. GATs enhance the ability of GNNs to capture relationships and
interactions between nodes in a graph by using attention mechanisms to weight
the neighbouring nodes during message passing. This allows the model to focus
on the most relevant nodes for a given task, improving its overall performance.

Mathematically, given a set of node features V = {v1; v2; . . . ; vK}, where
vi ∈ R

F , we calculate the attention score αij as follows:

eij = LeakyReLU(aT .(Wvi ⊕ Wvj)) (4)

αij =
exp(eij)∑

q∈adj{i} exp(eiq)
(5)

where ‘.’ is the standard vector inner product, W ∈ R
F×F ′

is the weight matrix
of a linear transformation that maps feature space F to F ′, a ∈ R

2F ′
is a

learnable attention vector, ⊕ is the concatenation operation, and adj{i} is the
set of adjacent nodes of node i. We define a node j to be adjacent to i if Aij = 1.
The aggregated representation of node i can then be calculated as:

hi = ReLU(αi,iWvi +
∑

j∈adj{i}
αijWvj) (6)

We stack the GAT layers to encode the node embedding as a low-dimensional
representation ĥi, and then use another set of GAT layers to decode them and
reconstruct the features:
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v̂i = G(vi,A) = GNNd(GNNe(vi,A),A) (7)

The loss function of the network is defined as the reconstruction error of the
feature embeddings:

Lrec =
1
N

N∑

n=1

1
K

K∑

i=1

‖v̂
(n)
i − v

(n)
i ‖ (8)

3.3 Graph Generative Learning

We propose a generative task, a self-supervised learning module, to help the
model better learn the contextual information and use them in the inference
phase for detecting abnormal sensors. It also improves the model generalization.

In this task, we stochastically mask the feature vector of one sensor and
use the model and other sensors’ data to reconstruct the masked node’s embed-
ding. We perform this pretext task during the training on the ζ portion of the
mini-batch samples at each epoch. By performing the generative task, the model
learns to reconstruct data even in the absence of one sensor embedding. This task
operates under the assumption that missing sensor embeddings can be recon-
structed by other data points when the data is normal. Consequently, the gen-
erative task facilitates anomaly detection by indicating that the sensor data is
abnormal or that the other sensors are malfunctioning so that their data is not
viable for reconstructing the missing node if the model cannot reconstruct a sen-
sor’s embedding. Additionally, the generative task aids in identifying anomalous
sensors by concealing their embeddings and evaluating whether the model can
successfully reconstruct them.

3.4 Temporal Contrastive Learning

The other notion of self-supervision is Contrastive learning which aims to pull
together the Segments with the same Block ID in the latent representation space.
Let X = {x1, x2, . . . , xN} represents all Segments of our training dataset, and
B = {x1, x2, . . . , xN̂} be a mini-batch of size N̂ that we use for training. B is
random subset of X. For every Segment xi with Block ID bi in B, we stochastically
sample another Segment x̄i with the same Block ID bi from X, i.e. x̄i ∼ {xj ∈
X|bj = bi, j ∈ {1, . . . , N}\i} where ‘\’ denotes that j is any number between 1
to N except for i. This makes sure that for every sample in the mini-batch B,
we have at least one other sample with the same Block ID.

When we Segment the time series using a sliding window, the information
about the temporal dependency between different Segments is lost. To encourage
our model to map the Segments from the same Block of operation closer together,
we employ the idea of contrastive learning. To this end, we first concatenate the
latent embedding of sensors ĥi and pass them through a projection head f(.):

z = f(ĥ1 ⊕ ĥ2 ⊕ · · · ⊕ ĥK) (9)
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As we might have more than one positive sample for some data points of the
batch, we use the SupCON loss [22] instead of the normal contrastive loss. If the
representation vectors, i.e. the z vectors associated to the mini-batch segments,
are normalized, the SupCON loss can be calculated as:

Lcon =
∑

i∈I

−1
|P (i)|

∑

p∈P (i)

log
exp (zi.zp/τ)∑

a∈A(i) exp (zi.za/τ)
(10)

where I = {1, 2, . . . , 2N} is the set of indices of the augmented batch (each
point has an augmentation, so we have 2N points in the augmented batch),
A(i) = I\{i} , P (i) = {A(i) : bp = bi} is the set of indices of Segments that
share the same Block IDs, and τ is called the temperature hyperparameter,
and determines the strength of repulsion or attraction between representation
vectors.

The final loss function of the network is defined as:

Ltotal = λLrec + (1 − λ)Lcon (11)

3.5 Anomaly Scoring

To find the anomaly score for a sample xi during the test phase, we first calculate
the reconstruction loss as follows:

Srec(xi) = ‖G(xi,A) − xi‖ (12)

Then, we mask the data of one sensor at a time and re-calculate the average
reconstruction error over all masked sensors:

Sgen(xi) =
1
K

∑

k

‖G(Mk(xi),A) − xi‖ (13)

where Mk(.) is the masking operator which masks out the k-th sensor.
The underlying assumption behind adding the generative loss is that other

sensors’ information can generate the missing sensor normal data since the model
has learned how to leverage the sensors’ relationship for data reconstruction.
However, for abnormal data, the reconstructed pattern should have a large
reconstruction error mainly because the other sensors’ data is also abnormal
and misses some important structural relationships as well.

4 Experiments

4.1 Dataset

To evaluate the performance of our method, we used a real-world dataset consist-
ing of five trucks. All the trucks are from the same model and same manufacturer
and thus have the same set of sensors. The data on the vehicle were recorded
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Fig. 2. Visualization of a normal and an abnormal Segment from the dataset. Data
are normalized to the range of 0 and 1.

in six months between August 2021 to February 2022. The data also includes
information about the operation Blocks of the vehicles, as well as the vehicle’s
state at each time, both annotated by the company that recorded the data.
The vehicle’s state is determined by a team of technicians who analyze the data
Blocks. The vehicle state identifies if the vehicle is operating in normal condition
or if there is a potential defect that may lead to a future failure. Figure 2 shows
a visualization of one normal and one abnormal data Segment.

Our work focuses on predicting engine-related failures, and to this end, we
picked the data from the same set of sensors that technicians use for engine failure
detection and diagnosis. In total, thirteen sensors are used, each monitoring a
particular parameter in the engine. The data were recorded with a one-second
sampling period. We used a window with length L = 300 to partition the data
down into 5-minute Segments.

4.2 Evaluation Protocol

We used the labels provided by the company as the ground truth. To evaluate
the performance of our algorithm, we used precision (P), recall (R), and F1
score as our metrics. Calculating the F1 score on single timestamps has shown
to underestimate the anomaly detector performance [11], mainly because of two
reasons: First, even if the data is abnormal, some points might represent normal
patterns. Furthermore, for several reasons, one or more normal points might
have unexpected values. To alleviate this issue, our proposed algorithm directly
outputs the anomaly score for every Segment of the data. Since there are multiple
Segments in each Block, we modify the score of different Segments by assigning
all of them to abnormal if one anomalous Segment is found in their Block.

More details about the dataset and implementation of the methods can be
found in the appendix. We compared our model against several state-of-the-
art baselines: One-Class Support Vector Machine (OCSVM) which is a popu-
lar traditional anomaly detection method [31], Autoencoder (AE) [13] which is
one of the most common tools for anomaly detection [30], LSTM-Autoencoder
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Table 1. Precision, Recall, and F1 of Vehicles. Training and test are done on the same
vehicle model. Vi is short for the i-th vehicle. The best-performing model is denoted in
boldface, and the second best is marked by *.

Algorithm Metric V1 V2 V3 V4 V5 Average

OCSVM Prec 0.56 0.48 0.49 0.63 0.46 0.52

Recall 0.81 0.74 0.71 0.83 0.77 0.77

F1 0.66 0.58 0.58 0.71 0.57 0.62

AE Prec 0.58 0.51 0.53 0.67 0.58 0.57

Recall 0.88 0.83 0.85 0.91 0.81 0.85

F1 0.69 0.83* 0.65 0.71 0.676 0.68

LSTM-AE Prec 0.63 0.59 0.63 0.67 0.62 0.62

Recall 0.93 0.88 0.86 0.97 0.91 0.91

F1 0.75 0.70 0.72 0.79 0.73 0.74

TCN-AE Prec 0.61 0.52 0.57 0.63 0.59 0.58

Recall 0.96 0.93 0.91 0.95 0.93* 0.93

F1 0.74 0.66 0.70 0.75 0.72 0.71

USAD Prec 0.68 0.57 0.64* 0.70 0.59 0.63

Recall 0.92 0.90 0.94* 0.95 0.88 0.91

F1 0.78 0.69 0.76* 0.80 0.706 0.75

GDN Prec 0.72* 0.63* 0.61 0.72* 0.68* 0.67*

Recall 0.94* 0.92* 0.92 0.98 0.93* 0.93*

F1 0.81 0.74 0.73 0.83* 0.78* 0.78*

mVSG-VFP Prec 0.85 0.74 0.71 0.84 0.78 0.78

Recall 0.94* 0.92* 0.95 0.96* 0.96 0.94

F1 0.89 0.82 0.81 0.89 0.86 0.85

(LSTM-AE), another autoencoder-based method [33] that uses LSTM layers
instead of fully-connected ones to capture the temporal relationship, Temporal
Convolutional Network Autoencder (TCNAE), which uses TCN instead of fully-
connected layers, USAD [5] which uses two adversarial-trained autoencoders
to detect anomalies, and Graph Deviation Network (GDN) [10], a graph-based
method that detects anomalies based on the prediction error.

4.3 Experimental Results

Vehicle-Specific Training: We compared the performance of our proposed
model against several common and state-of-the-art algorithms in Table 1. In this
experiment, we train the model on the same vehicle for training and testing. We
did the experiments ten times and reported the average.

These results demonstrate the superiority of our method over other baselines
in detecting abnormal events which lead to a potential vehicle failure. In terms
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of F1 and Precision, we can confirm that our model outperforms all the methods
in all vehicles and has superior Recall compared to the baselines on average. A
remarkable observation is that graph-based methods, such as our algorithm and
GDN, outperform other methods. This highlights the key role of capturing sensor
relationships in detecting multivariate time-series anomalies. Furthermore, the
results show that our proposed model can outperform GDN on all vehicles. This
can be attributed to the two main differences between our model and GDN:

1. Our model is reconstruction-based, while GDN is predictive-based and defines
the anomaly score based on the deviation from expected future behaviour.
Although it showed promising results on benchmarks such as SWAT, the
predictive-based nature of GDN limits its performance on data that does not
possess predictable temporal patterns. As a result, the GDN model will have
a large prediction error even on normal samples of our dataset, which is also
suggested by its low precision score in the table.

2. An essential component of our model is the self-supervised module which
encourages the network to build a more representative feature space. This
module helps capture the long-term dependencies of Segments within a Block,
while this relationship is discarded in GDN and other baselines.

Cross-Vehicle Anomaly Detection: A possible vehicle failure prediction sys-
tem scenario is to train the model using data from a subset of vehicles and deploy
it on a new one. To assess the reliability of our framework in this situation, we
held one vehicle out for the test and trained the model using the normal samples
of the other four. During the test phase, we used the test dataset of the held-out
vehicle to measure the performance. The results of this experimental protocol
are shown in Table 2.

Table 2. Results of the Cross-vehicle training.

Metric V1 V2 V3 V4 V5 Average

Cross Vehicle Prec 0.65 0.53 0.51 0.65 0.68 0.60

Recall 0.74 0.80 0.77 0.77 0.89 0.79

F1 0.69 0.63 0.61 0.70 0.67 0.66

Comparing these results with Table 1, we can see that the cross-vehicle train-
ing has a lower performance than the vehicle-specific training protocol. This can
be attributed to the fact that the vehicle operates in different weather and load
conditions and has different depreciation levels. Therefore, having access to the
recordings of the same vehicle or other vehicles that operate under similar con-
ditions during training can help the model to perform better.
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Anamolous Sensor Detection: An interesting aspect of a failure prediction
method is its interpretability and the ability to localize the defect location.
Therefore, we explore the model’s performance for detecting anomalous sensors
in this experiment. Since our original dataset did not have the annotation for the
abnormal sensors, we devised synthetic data by replacing the embedding of one
of the sensors of the normal data with noise. Then we mask one node at a time
and reconstruct it. We threshold the reconstruction errors to get the anomaly
labels. This experiment yielded a 97.58% F1 score, highlighting the proposed
model’s application for localizing abnormal channels.

Fig. 3. Effect of Hyperparameter λ

Effect of Hyperparameter λ: Figure 3
shows the average F1 score of our model
for different values of λ. The two extreme
cases of λ = 0 and λ = 1 represent
our model if we remove the reconstruction
and contrastive losses, respectively. We can
confirm that including both losses with
λ = 0.8 yields the best performance. This
shows that both loss terms complement
each other and can improve the model’s
efficiency in detecting abnormal patterns.
We can still achieve good performance for
the case of λ = 1, which effectively means keeping the reconstruction error alone.
However, setting λ = 0 and removing the construction loss on the other side of
the spectrum can significantly degrade the F1 score. This can be attributed to
two main causes: I) If we remove the reconstruction loss, the model can trivially
minimize the contrastive loss by concentrating the samples of the same Block in
one single point [18]. Therefore, the latent space will not represent all data char-
acteristics, II) We defined the anomaly score based on the reconstruction error
of the input. If we exclude the reconstruction loss, the model will not be guided
to reconstruct the normal samples, and thus, it will have a large reconstruction
error on both normal and abnormal samples.

5 Conclusion

Overall, our work presents a significant step forward in predictive vehicle main-
tenance. By combining the power of graph-based anomaly detection with the
unique characteristics of vehicle sensor data, our approach has the potential to
improve the reliability and efficiency of transportation systems significantly. Our
method identifies defects in the sensor data by modelling the sensor network as a
graph and using leveraging self-supervised learning to capture temporal depen-
dency between the features. We evaluated our model on a dataset which includes
annotated ground truth and showed that our model achieved promising results
for detecting the anomalies that lead to the failure. The results of this work
demonstrate the potential of graph-based and contrastive learning in multivari-
ate time-series anomaly detection for solving real-world problems.
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