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Abstract. The maritime industry is under pressure to increase energy
efficiency for climate change mitigation. Navigational data, combining ves-
sel operational and environmental measurements from onboard instru-
ments and external sources, are critical for achieving this goal. Short-sea
shipping presents a unique challenge due to the significant influence of
surrounding landscape characteristics. With high-resolution onboard data
increasingly accessible through IoT devices, appropriate data representa-
tions and AI/ML analytical tools are needed for effective decision sup-
port. The aim of this study is to investigate the fuel consumption esti-
mation model’s role in developing an energy efficiency decision support
tool. ML models that lacking explainability may neglect important factors
and essential constraints, such as the need to meet arrival time require-
ments. Onboard weather measurements are compared to external fore-
casts, and our findings demonstrate the necessity of eXplainable Artificial
Intelligence (XAI) techniques for effective decision support. Real-world
data from a short-sea passenger vessel in southern Sweden, consisting of
1754 voyages over 15 months (More of data description and code sources
of this study can be found in theGitHub repository at https://github.com/
MohamedAbuella/ST4EESSS), are used to support our conclusions.

Keywords: Short-sea shipping · Energy efficiency · Explainability ·
Spatio-temporal aggregation

1 Introduction

Maritime transport of commercial freight is widely considered as one of the
most environmentally friendly modes of transportation due to its low emissions
of greenhouse gases (GHGs) per unit of capacity and distance traveled. This
can result in a reduced carbon footprint and a smaller impact on the global
climate, as illustrated in Fig. 1a. Short-Sea Shipping (SSS) represents a mode
of commercial transportation that does not involve intercontinental cross-ocean
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travel. SSS provides a cost-effective and eco-friendly alternative by leveraging
inland and coastal waterways to transport commercial freight. The statistics
presented in Fig. 1b demonstrate the vital role SSS plays in Europe [11].

(a) Average environmental im-
pact of different transportation
modes per tonne-kilometer (in
terms of fuel consumption and
CO2 emission) [18].

(b) European short-sea shipping of freight versus to-
tal sea transport, in 2021 [11].

Fig. 1. The importance of short-sea shipping for Europe.

Despite the advantages of sea transportation for the environment, there
remains a significant need to improve the energy efficiency of sea vessels. The SSS
continues to produce negative effects on natural habitats and contributes to air
pollution along the coasts of populated cities [10]. Therefore, the International
Maritime Organization (IMO) has conducted numerous studies, recommended
standards, and imposed policies for the maritime sector aimed at reducing car-
bon dioxide (CO2) emissions by 40% by 2030 and cut overall GHG emissions by
50% by 2050, compared to the levels from 2008 [6].

Furthermore, the COVID-19 pandemic has accelerated the digitalization of
the global shipping industry, drawing significant attention to data collection and
preparation stages [8]. Information on select operational and environmental con-
ditions can be obtained from Automatic Identification System (AIS) messages,
a service established by the IMO in 2002. AIS was designed to record the sensor
measurement data and transmit vessel position information for communication
between ships and neighboring shores [13].

While sea transportation boasts a lower carbon footprint compared to
other modes of transportation, there is still improvement potential. However,
it requires a significant effort to understand and enhance the energy efficiency
of sea vessels and how to reduce their negative impact on the environment. One
potential approach to achieving this objective is through employing data ana-
lytics and Machine Learning (ML) techniques to study vessel operations and
quantify the influence of various factors, such as weather and sea conditions, on
fuel consumption. This work is a result of collaboration between academia and a
Swedish startup company CetaSol AB1. CetaSol has developed iHelm, an intel-
ligent digital analytical platform for energy optimization tailored toward small
1 https://cetasol.com/.
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and medium-sized vessels. The platform features a data logging and processing
unit installed on board and a user interface that provides the captain with rele-
vant visual information and real-time actionable insights for optimal operation.
Land-based personnel can access an analytical cloud platform with statistics
and reports, enabling them to make informed decisions and optimize operations
over time. The ultimate goal is to assist shipping companies in reducing their
operating costs, increasing profitability, and minimizing environmental impact.

In this paper, we report our findings related to one aspect of this multifaceted
issue: the creation of fuel estimation and prediction algorithms. We believe this
work offers several contributions to the scientific community, including: (1) the
investigation of various models for fuel consumption estimation, forming the
foundation and the first step toward an energy efficiency decision support tool;
(2) quantifying the relative importance of pertinent factors and the benefits of
data aggregation from various onboard and external sources; (3) showcasing the
practical application of eXplainable Artificial (XAI) in the iterative improvement
of the ML model, based on real-world considerations; and (4), illustrating the
potential to enhance short-sea vessel energy efficiency by employing real-world
data from a passenger vessel operating in southern Sweden over a period of 15
months.

With these contributions, our study lays the groundwork for future research
in the area. Also, shipping companies can leverage the insights and recom-
mendations presented in this paper. The lessons learned from our experiments
will contribute to the optimization of shipping operations and the reduction of
adverse environmental effects. Moreover, integrating these innovative insights
into upcoming fleet management systems will empower SSS companies to gain a
deeper understanding of vessel operations and make well-informed, data-driven
decisions to reduce costs. The remainder of the paper is organized as follows:
related work is described in Sect. 2. Section 3 introduces the case study and the
challenges linked to short-sea shipping. The outcomes of modeling and energy
efficiency analysis are covered in Sect. 4. Finally, conclusions and future work are
addressed in Sect. 5.

2 Related Work

As digitalization and automation become increasingly prevalent in the maritime
sector, the research addressing new challenges has been growing rapidly, partic-
ularly with regard to developing frameworks for energy efficiency and Maritime
Situational Awareness (MSA) in cross-ocean shipping. On the other hand, the
research progress has not kept pace for vessels operating in coastal areas. Thus,
this literature review will focus on our primary area of interest, which is research
that is related to short-sea shipping.

Recent research studies [9,14] have explored energy-efficient routing for an
electric ferry in Western Norway. They rely on operational data from onboard
measurements and environmental conditions from the Norwegian Meteorolog-
ical Institute, interpolated to the nearest temporal and spatial resolutions of
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the vessel’s onboard data. Similarly, the researchers from Napa Ltd. in Finland
conducted several studies on voyage optimization, including two cases [12,20]
where environmental conditions were collected from the weather forecasts. Other
studies in the literature have also processed environmental data from different
weather providers to match the vessel’s operational onboard data, as reviewed
in [22]. However, such approaches do not account for weather factors that influ-
ence both fuel consumption and the Estimated Time of Arrival (ETA), which is
a crucial constraint when optimizing the vessel’s voyage, especially in SSS.

The maritime industry increasingly adopts digitization and Machine Learn-
ing (ML) techniques; however, their black-box nature remains a significant chal-
lenge. While ML can provide valuable insights, the reasoning behind the predic-
tions made by such models is often difficult to comprehend due to their lack of
explainability. To address this issue, Shapley additive explanations (SHAP) [17]
were developed, providing a way to determine the contribution of each input
feature toward the model’s output. SHAP is commonly used as a solution to the
explainability issue in ML. A recent study [16] analyzed feature importance for
the power consumption of a chemical tanker. The results indicate that the ship’s
speed through the water is the most influential feature, while ship heading and
other weather features have relatively minor influences. Kim et al. [15] utilized
SHAP in combination with an anomaly detection algorithm to detect and inter-
pret anomalies in onboard data from a cargo vessel. It allowed the identification
of the specific sensor variable responsible for an anomaly, and SHAP-based clus-
tering was used to interpret and group common anomaly patterns. A validation
study for explainability in the maritime time-series data [21] compared two com-
mon model-agnostic XAI approaches, SHAP for a global method and LIME as
a local method. A literature review on XAI [7] discusses the importance of XAI
as a key component in modern AI techniques. The authors present a taxonomy
of existing contributions related to the explainability of different machine learn-
ing models. Overall, the use and development of ML techniques in the maritime
industry requires a careful balance between performance gain and explainability.

3 Case Study Description

Throughout this paper, we will focus on a specific use case of a passenger ferry
operating in southern Sweden. The ship’s name is Buro, built in 1985, with
a carrying capacity of 68 Gross Tonnage, a length of 19 m, and a breadth of
6.41 m. It operates daily passenger traffic between Swedish islands Öckerö, Kalv-
sund, Framnäs, and Grötö in the Gothenburg archipelago. A single voyage takes
approximately 30 min, with an average speed of 8.2 knots (4.2 m/s). The picture
of the vessel is provided as in Fig. 2. Additional information about the ship and
its voyages can be found on Marine Traffic website [5].

The ship’s onboard data have been received using an IoT system designed
and developed by CetaSol in Gothenburg, Sweden. The data has been gathered
over a period of 15 months, between January 2020 and March 2021. The majority
of signals are collected at 3 Hz frequency and record key navigational parameters
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Fig. 2. The passenger ship Buro (photo by Owe Johansson [5]) and her diesel engine
from Volvo Penta [2].

such as the ship’s position, course (direction), and speed; operational parameters
such as fuel rate, engine speed, torque, and acceleration; and meteorological data
such as apparent and real wind speed and direction.

Additionally, external weather variables such as wave height and speed and
direction of both wind and sea current have been collected from external APIs,
Copernicus Marine Service [1] and Stormglass [4]. The complete list of available
signals is included in the supplementary material2.

Onboard signals have been resampled from the original 3 Hz frequency to a
1-min time resolution. The external weather data are past forecasts (hindcasts),
which have been interpolated from an hourly temporal resolution to a 1-min
temporal and a 0.25 to 0.5◦ spatial resolution. Trilinear interpolation has been
applied in time and space dimensions.

3.1 Problem Formulation

From a broad perspective, improving the vessel’s energy efficiency for fuel savings
and lowering GHG emissions can be done in two stages. The first is during the
design, where the shape, materials, and equipment are decided – which is out of
the scope of this paper. The second stage is during the ship’s operation, both
on the water and at ports. The latter, however, is heavily influenced by the
former; it is, therefore, challenging to design optimal operation upfront, before
fully understanding how each individual vessel behaves [23].

ML-based solutions present an opportunity to leverage domain knowledge
and customize it to specific usage patterns and design choices. Our study
embraces this approach specifically for short-sea shipping, which exhibits dis-
tinct challenges from those encountered in deep-sea shipping.

Continuing with the illustrative case of the Buno passenger ferry, the actual
profiles of fuel consumption are illustrated in Fig. 3. In the middle, we showcase
(sorted) fuel consumption per voyage on one day, 1st of April 2020. On the left
and right, respectively, we show on the map the best and worst voyages, with

2 Due to the limited length of the paper, the complete supplementary material
is provided in the GitHub repository at:https://github.com/MohamedAbuella/
ST4EESSS.

https://github.com/MohamedAbuella/ST4EESSS
https://github.com/MohamedAbuella/ST4EESSS
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color-coded speed (upper) and fuel rate (lower). Finally, at the bottom, we show
environmental conditions: wind, current, and waves.

Fig. 3. Vessel’s fuel consumption and some navigational data on April 1st, 2020

Notably, the highest fuel consumption voyage started at 15:38; in the final
part of the route, Buro is traveling toward the west, against the wind, current and
wave directions. This can be compared to the previous voyage, at 15:08, going in
the opposite direction – which also happens to be the most fuel-efficient. At the
same time, the vessel’s speed was also relatively high when traveling westward;
in such harsh conditions, the captains tend to overcompensate, unsure about the
exact speed profile needed to keep the timetable, and knowing that “catching
up” may not be possible due to physical limitations. Thus, at this combination
of vessel speed, direction, and weather conditions, the vessel’s resistance has
increased, leading to 38% higher fuel usage. One can clearly see that the weather
impacts fuel consumption significantly, and that there is room for improvement
using ML-powered decision support.

In particular, we envision a decision support system that provides a vessel
captain with, in real-time, suggestions on the most efficient operation, includ-
ing vessel trajectory and speed profile. Such a system requires an accurate fuel
estimation model capable of counterfactual reasoning, i.e., analyzing the effect
a change in speed or direction would have on the overall fuel consumption. By
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adapting the operation to varying external conditions, the decision support sys-
tem can thus improve the overall energy efficiency of the vessel.

4 Modeling and Analysis

In this section, we describe the workflow for estimating fuel consumption, which
is the first stage of energy efficiency modeling and analysis for an SSS vessel.
Figure 4 shows the workflow. Details on the framework, results, and discussion
are provided below.

Fig. 4. Workflow of modeling and analysis of energy efficiency in short-sea shipping

4.1 Exploratory Analysis

As a starting point, an Extreme Gradient Boosting (XGBoost) model is initially
deployed as a regression model for estimating fuel consumption. The XGBoost
model is chosen for its ease of use and minimal need for parameter tuning, making
it ideal for exploratory analysis. The navigational variables, as listed in Table 1,
are used as inputs to the model. The first model created uses EngineFuelRate
directly from onboard data as the regression output, which is the most intuitive
case. The initial performance of the model, even without any additional tuning,
is relatively good, with an R2 value of 0.7615.

In the next step, the Shapley additive explanations (SHAP) [17] technique
was used, employing the SHAP package, which is publicly available in Python [3].
These SHAP values were used to determine the importance value of each feature
to the overall regression accuracy. This highlights the strengths of the XGBoost
algorithm since calculating SHAP values for tree-based models is relatively fast
compared to many other regression approaches. However, during this stage, a
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Table 1. The navigational variables and their data sources.

Variable Name Source Variable Name Source

Vo1 Latitude Onboard Vc1 WindSpeed cps Copernicus

Vo2 Longitude Onboard Vc2 WindDirection cps Copernicus

Vo3 SpeedOverGround Onboard Vc3 WaveHeight Copernicus

Vo4 HeadingMagnetic Onboard Vc4 WaveDirection Copernicus

Vo5 Pitch Onboard Vs1 WindSpeed sg Stormglass

Vo6 Roll Onboard Vs2 WindDirection sg Stormglass

Vo7 WindSpeed onb Onboard Vs3 CurrentSpeed Stormglass

Vo8 WindDirection onb Onboard Vs4 CurrentDirection Stormglass

significant issue was observed with the initial model. The vessel’s motion (kine-
matics) variables such as SpeedOverGround, Pitch, and HeadingMagnetic (direc-
tion), were found to be more significant in determining fuel consumption com-
pared to factors such as weather variability.

Figure 5 depicts Beeswarm plots for Shapley values for the XGBoost model,
considering the three output cases investigated in this section. The SHAP values
are used to determine the contribution of features to the regression model and
are often visualized using such beeswarm plots. Ranking features based on their
SHAP values allows interpreting how the changes in feature values affect the
model estimations.

In the case of the first model, predicting EngineFuelRate, depicted in the
top-left of Fig. 5, vessel kinematics were found to be the primary drivers. While
such a model may be suitable for explanatory analysis, it cannot be used for
optimization and counterfactual estimations.

Therefore, the insights gained from XAI and SHAP values indicate the need
to change our approach. Relying solely on the R2 score is not sufficient in eval-
uating the usefulness of a regression model. We require a model that is less
dependent on kinematics and considers weather variables as more impactful.
SHAP values, as an explainable AI tool, enable us to gain more insights into the
weaknesses of the developed fuel consumption model and guide future improve-
ments.

To address the limitations of the initial model, and based on the insights
obtained, the second model uses an aggregated output of Total Fuel for the entire
voyage, instead of instantaneous EngineFuelRate. The performance of the Total
Fuel model is similar and also relatively good, with an R2 value of 0.8400. on
the other hand, the SHAP values reveal that weather variables, particularly the
waves and the wind from external sources, are much more important. This model
is much better at capturing their causal relationships with fuel consumption.

The SHAP values reveal that the second model is more suitable for energy
efficiency analysis since it captures known causes for high or low fuel consump-
tion, making it more useful for counterfactual reasoning. This model can answer
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(a) Model’s output is EngineFuelRate,
(R2=0.7615)

(b) Model’s output is Total Fuel,
(R2=0.8400)

(c) Model’s output is Efficiency Score,
(R2=0.8324)

Fig. 5. Beeswarm plots of SHAP values for XGBoost regression model with different
outputs

questions like “what would be the effect of changing the speed profile on a
particular voyage,” which the first model cannot. At the same time, an issue
remains that prevents it from being practical as a part of an energy efficiency
decision support tool. This issue arises from the strong relationship between
fuel consumption and vessel speed, as illustrated in Fig. 6. The trend indicates
that higher cruising speeds result in higher fuel consumption. As a result, if this
model is used as part of a speed profile optimization tool, it will likely recom-
mend only one solution: to lower the speed. While a correct decision from a pure
fuel perspective, it is not practical since the ferry must keep its timetable.

To address the practical limitations of the second model, we introduce a new
metric called the Efficiency Score. This metric aims to balance fuel consumption
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(a) Theoretical analysis of sea
vessel’s engine operation.

(b) Vessel Buro’s actual engine performance.

Fig. 6. A fuel efficiency curve: how the fuel consumption varies as a function of speed.

and time of arrival, two critical factors in determining energy efficiency for SSS
vessels. Only by considering both factors together, can we represent the vessel’s
overall energy efficiency. The efficiency Score is defined as follows:

EffScore = 1 − 2 × Fuel × Time

Fuel + Time
, (1)

where Fuel and Time are the normalized total fuel and time, respectively, for
each route of the vessel. The accumulated fuel is derived from the raw onboard
EngineFuelRate data, while the accumulated time is based on the SpeedOver-
Ground measurements and the distance traveled. The distance between two
points is calculated using the Haversine formula [19], which takes into account
the Earth’s spherical shape.

Figure 7 illustrates the spatio-temporal aggregation for the vessel’s routes.
First, in Fig. 7a, we show the routes in spatial dimensions (latitude and longi-
tude). Next, we project these routes as aggregated Efficiency Scores onto new
dimensions of fuel and time Fig. 7b. The plot confirms the Efficiency Score cor-
rectly captures the original intuition, with voyages that have lower fuel and
shorter time having higher Efficiency Scores, and vice versa.

As a result, in our final regression model, we use the Efficiency Score as the
output variable, reaching R2 score of 0.8324. The corresponding SHAP values
plot, shown at the bottom of Fig. 5, indicated that spatial variables, namely
latitude and longitude, are the most important factors in estimating fuel con-
sumption over time. The model also suggests a causal relationship between fuel
consumption and weather variables, with external weather variables being more
significant than vessel motion.

4.2 Optimizing the Model

After completing the exploratory analysis, we aim to optimize the performance
of the model by switching from XGBoost to Artificial Neural Networks (ANN).
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(a) The vessel routes are
mapped by latitude and lon-
gitude.

(b) The routes are projected by aggregated Efficiency
Score in dimensions of fuel and time.

Fig. 7. The vessel routes and their projections as Efficiency Scores.

Table 2. Description of the four input cases of ANN.

Inputs
Case

Operational Variables Weather Variables

onboard data external sources

I Vessel’s location, speed,
and direction are used
for all cases

wind —

II — wind, wave, and current

III wind wave and current

IV wind wind, wave, and current

Through several experiments involving the various relevant combinations of nav-
igational variables, as depicted in the workflow diagram in Fig. 4, we obtain
models with higher performance than XGBoost, albeit at the cost of increased
computational complexity.

The first step in optimizing the model is to identify the best set of input
parameters. We consider four cases of ANN inputs, where each case consists
of different combinations of operational and weather variables. Further details
about these ANN input cases are provided in Tables 2 and 3. It is worth noting
that some operational variables, such as pitch and roll, are highly correlated and
primarily depend on the vessel’s speed and weather conditions. Therefore, we
have excluded such inputs from our ANN models. In general, the vessel’s speed
and direction are the most important control variables used to improve energy
efficiency.

According to the workflow in Fig. 4, we consider the same output cases for the
ANN models as we did for XGBoost: EngineFuelRate, Total Fuel, and Efficiency
Score. We optimize the structure of the ANN models using a grid search app-
roach, considering the four different input cases and three output cases, resulting
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Table 3. Combinations of variables that are used in the four input cases of ANN. The
names and sources of these variables can be found in Table 1.

Inputs
Case

#
Inputs

List of Inputs

I 6 Vo1, Vo2, Vo3, Vo4, Vo7, Vo8

II 12 Vo1, Vo2, Vo3, Vo4, Vc1, Vc2, Vc3, Vc4, Vs1, Vs2, Vs3, Vs4

III 10 Vo1, Vo2, Vo3, Vo4, Vo7, Vo8, Vc3, Vc4, Vs3, Vs4

IV 14 Vo1, Vo2, Vo3, Vo4, Vo7, Vo8, Vc1, Vc2, Vc3, Vc4, Vs1, Vs2,
Vs3, Vs4

(a) Results in MAE for ANN Structure
Search

(b) Results in R2 for ANN Structure
Search

Fig. 8. Grid search results for the best ANN structure, with Efficiency Score output.

in twelve ANN models being tuned separately. To measure the estimation accu-
racy of the different ANN models, we adopt three metrics: root mean squared
error (RMSE), mean absolute error (MAE), and the coefficient of determination
(R2).

The heatmaps in Fig. 8 show that the best ANN structure for the Efficiency
Score model is achieved with 100 neurons and 5 layers, as it results in the lowest
value of MAE and the highest value of R2. These heatmaps also show that the
model’s performance is sensitive to changes in the hyperparameters, indicating
the importance of carefully tuning the ANN model to achieve optimal results.

Tables 4, 5, and 6 present the results of all twelve ANN regression models.
The fourth case of inputs (IV), which considers operational and weather variables
from onboard and external sources, led to the best performance (i.e., R2 = 0.8088
and MAE = 0.0516) for estimating EngineFuelRate, as shown in Table 4.

On the other hand, for estimating both Total Fuel and Efficiency Score, the
best is the combination of inputs for case (II), including the weather variables
only from external sources. The former achieves R2 = 0.9170 and MAE =
0.0221, as shown in Table 5, and the latter R2 = 0.8953 and MAE = 0.0204
(Table 6).



238 M. Abuella et al.

Table 4. Results of ANN with EngineFuelRate output, for different input cases.

Input
Cases

Number of
ANN Inputs

Number of
ANN Layers

Number of ANN
Neurons

RMSE R2 MAE

I 6 10 100 0.0852 0.7153 0.0631

II 12 4 100 0.0730 0.7909 0.0544

III 10 5 100 0.0714 0.8001 0.0531

IV 14 4 100 0.0698 0.8088 0.0516

Table 5. Results of ANN with Total Fuel output, for different input cases.

Input
Cases

Number of
ANN Inputs

Number of
ANN Layers

Number of ANN
Neurons

RMSE R2 MAE

I 6 4 100 0.0980 0.2074 0.0776

II 12 5 100 0.0317 0.9170 0.0221

III 10 5 100 0.0562 0.7398 0.0409

IV 14 5 100 0.0351 0.8986 0.0249

Overall, ANN models outperform XGBoost in terms of all three estimation
metrics across all three outputs. At the same time, the results clearly demon-
strate the importance of incorporating external weather forecasting sources –
the onboard weather information is not sufficient.

The accuracy of the Total Fuel and Efficiency Score models is higher com-
pared to the EngineFuelRate model’s estimation. The Total Fuel model yields the
highest accuracy, whereas the Efficiency Score model, which takes into account
the total time of the vessel’s routes, only shows a slight difference.

4.3 Exploiting the Model

The Beeswarm plot in Fig. 5c indicates that the vessel’s location has the most
significant impact on the Efficiency Score. Therefore, a spatial analysis was con-
ducted to identify the impact of various combinations of operational and weather
variables on the Efficiency Score concerning the vessel’s location.

As shown in Fig. 7a, we partitioned the vessel’s typical route into four distinct
sections, namely North, Middle, South, and Direct. The impact of operational
and weather combinations on fuel consumption varies in these sections.

The results are shown as heatmaps in Fig. 9, revealing that the direct route
from south to north or vice versa, located on the open sea, is particularly suscep-
tible to the impact of weather conditions. Thus, for this direct section of vessel
routes, the estimation of Efficiency Score, as shown in Fig. 9b, has the highest
accuracy with different inputs combinations.

Meanwhile, in the north section, where strong either head or tail wind is more
frequent (in this area, west winds dominate) with respect to the vessel route,
the Efficiency Score estimation has the second highest accuracy, as in Fig. 9b.
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Table 6. Results of ANN with Efficiency Score output, for different input cases.

Input
Cases

Number of
ANN Inputs

Number of
ANN Layers

Number of ANN
Neurons

RMSE R2 MAE

I 6 3 50 0.0807 0.1886 0.0634

II 12 5 100 0.0290 0.8953 0.0204

III 10 4 100 0.0564 0.6037 0.0431

IV 14 5 100 0.0363 0.8361 0.0267

(a) EngineFuelRate (b) Efficiency Score

Fig. 9. Results (R2) for ANN regression with EngineFuelRate and Efficiency Score as
outputs across different input cases in relation to varying vessel’s route sections.

In the other case, when it comes to estimating EngineFuelRate, as shown
in Fig. 9a, the results are not accurate. For instance, the direct sections of the
route are not achieving the highest accuracy, even though they are supposed to
experience more weather conditions than other sections due to these sections
being the most similar to an open sea.

5 Conclusion

By using a practical real-world example of a small passenger vessel, this paper
showcases how XAI with ML techniques can facilitate decision-making. In this
case, we analyze the process of developing a fuel estimation module, which is
a crucial component of the vessel’s energy efficiency decision support tool. The
outcomes presented in this paper have the potential to enhance operation and
energy management in short-sea shipping.

Based on the discussed results, it is evident that the proposed approach of
aggregating data and estimating the Efficiency Score, instead of directly working
with the EngineFuelRate onboard signal, is more effective in facilitating decision-
making. The resulting model is based on a more comprehensive understanding of
the critical factors that impact fuel consumption, both temporally and spatially,
resulting in more dependable counterfactual predictions. Moreover, the quanti-
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tative evaluation indicates that estimating the Efficiency Score produces more
precise and less biased outcomes than estimating the measured EngineFuelRate.

Moving forward, the developed model will be integrated with the vessel’s
energy optimization framework to provide decision support to captains on suit-
able trajectories and speed profiles based on current and forecasted weather
conditions, thereby enhancing energy efficiency. Real-world implementation and
the evaluation of its value for short-sea shipping are planned in the near future.

Acknowledgments. This research project is funded by Sweden’s innovation agency
(Vinnova).
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12. Haranen, M., Myöhänen, S., Cristea, D.S.: The role of accurate now-cast data in
shi p efficiency analysis. In: 2nd Hull Performance & Insight Conference, pp. 25–38
(2017)

13. Fourth IMO GHG study 2020 (2020)
14. Jørgensen, U., Belingmo, P.R., Murray, B., Berge, S.P., Pobitzer, A.: Ship route

optimization using hybrid physics-guided machine learning. In: Journal of Physics:
Conference Series, vol. 2311, p. 012037. IOP Publishing (2022)

15. Kim, D., Antariksa, G., Handayani, M.P., Lee, S., Lee, J.: Explainable anomaly
detection framework for maritime main engine sensor data. Sensors 21(15), 5200
(2021)

16. Lang, X., Wu, D., Mao, W.: Comparison of supervised machine learning methods
to predict ship propulsion power at sea. Ocean Eng. 245, 110387 (2022)

https://marine.copernicus.eu
https://www.volvopenta.com/about-us/news-page/2022/jun/imo-tier-iii-range-expands-with-new-d13-solutions/
https://www.volvopenta.com/about-us/news-page/2022/jun/imo-tier-iii-range-expands-with-new-d13-solutions/
https://github.com/slundberg/shap
https://stormglass.io
https://www.marinetraffic.com/en/ais/details/ships/shipid:1088282/mmsi:265513810/imo:8602713/vessel:BURO
https://www.marinetraffic.com/en/ais/details/ships/shipid:1088282/mmsi:265513810/imo:8602713/vessel:BURO
https://ec.europa.eu/eurostat/databrowser/view/mar_sg_am_cw/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/mar_sg_am_cw/default/table?lang=en


XAI for Energy Efficiency in Short-Sea Shipping 241

17. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

18. Medda, F., Trujillo, L.: Short-sea shipping: an analysis of its determinants. Mar-
itime Policy Manag. 37(3), 285–303 (2010)

19. Sinnott, R.W.: Virtues of the haversine. Sky Telescope 68(2), 158 (1984)
20. Sugimoto, K.: Digital twin for monitoring remaining fatigue life of critical hull

structures
21. Veerappa, M., Anneken, M., Burkart, N., Huber, M.F.: Validation of XAI explana-

tions for multivariate time series classification in the maritime domain. J. Comput.
Sci. 58, 101539 (2022)

22. Zakaria, A., Md Arof, A., Khabir, A.: Instruments utilized in short sea shipping
research: a review. In: Ismail, A., Dahalan, W.M., Öchsner, A. (eds.) Design in Mar-
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