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Abstract. This paper proposes the fine-grained traffic prediction task
(e.g. interval between data points is 1 min), which is essential to traffic-
related downstream applications. Under this setting, traffic flow is highly
influenced by traffic signals and the correlation between traffic nodes is
dynamic. As a result, the traffic data is non-smooth between nodes,
and hard to utilize previous methods which focus on smooth traffic
data. To address this problem, we propose Fine-grained Deep Traffic
Inference, termed as FDTI. Specifically, we construct a fine-grained
traffic graph based on traffic signals to model the inter-road relations.
Then, a physically-interpretable dynamic mobility convolution module
is proposed to capture vehicle moving dynamics controlled by the traffic
signals. Furthermore, traffic flow conservation is introduced to accurately
infer future volume. Extensive experiments demonstrate that our method
achieves state-of-the-art performance and learned traffic dynamics with
good properties. To the best of our knowledge, we are the first to conduct
the city-level fine-grained traffic prediction.

Keywords: Spatio-Temporal Data · Traffic Forecasting

1 Introduction

Traffic prediction is an important part of an intelligent traffic system and ben-
efits downstream tasks. Some downstream tasks are sensitive to the granularity
of prediction results, such as traffic signal control, congestion discovery, and
route planning. Taking traffic signal control as an example, predictions on the
1-minute level could timely evaluate the impact of the incoming traffic signal
and improve traffic policy because the interval of traffic signal change is approx-
imately 1 min [22]. Previous deep methods [8,9,38] focus on the coarse-grained
traffic data. However, it remains unexplored that utilizes deep methods to solve
traffic prediction tasks under the fine-grained setting.

Under the fine-grained setting, the traffic flow is determined by traffic sig-
nals [25]. When the signal turns green, the vehicles could flow into downstream
roads. As a result, the correlations between these roads are strong under the traf-
fic prediction context, which is shown in Fig. 1(a). However, previous research
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Fig. 1. (a) The traffic signal determines the traffic flow, thereby determining the corre-
lation between roads. (b) Our fine-grained data is much more unsmooth than previous
datasets. (Low STMAD indicates smoother and the wavy line indicates the omitted
space). (c) Diagrams of Traffic-movement graph and FTSTG.

ignores the explicit highly dynamic correlation between nodes under the fine-
grained settings and utilizes static graphs [28,46] or data-driven graphs [2,36,37]
to aggregate the knowledge of nodes.

Due to the highly dynamic correlations resulting from the traffic signals,
spatial neighbors do not have similar traffic volumes. Therefore, as shown in
Fig. 1(b), the fine-grained traffic data is non-smooth, which is evaluated by Spa-
tial Temporal Mean Average Distance (STMAD) defined in this paper. Previous
methods have satisfying results on coarse-grained smooth datasets. However,
since smoothing is the essential nature of the GCN design [4], experiments show
previous methods still make smooth predictions on the nonsmooth fine-grained
data which leads to big errors.

To better model the dynamic correlations and tackle the non-smoothness of
the data under the fine-grained setting, we propose a model called Fine-grained
Deep Traffic Inference (FDTI). First, to adapt the characteristic that traffic
signal controls traffic flow in fine-grained traffic inference, we construct a Fine-
grained Traffic Spatial-Temporal Graph (FTSTG). Specifically, we build
a road network feature enriched multi-layer traffic graph, in which each layer
represents a time frame as shown in Fig. 1(c). Edges inside the graph represent
traffic flow links between two nodes at adjacent time frames, which are controlled
by traffic signals. Then, we propose a Dynamic Mobility Convolution Net-
work to induce consistency with the traffic policy on FTSTG. People can make
a metaphor between a traffic network and a water flow network, in which the
traffic signal is similar to the tap controlling the flow. Based on the previous
two modules, we further infer the traffic volume of each node following Flow
Conservative Traffic State Transition. Our contribution can be summarized
as follows.
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– To the best of our knowledge, we are the first to complete the city-level fine-
grained traffic prediction, which is important in intelligent traffic systems and
will enable efficient and in-time traffic policy-making and other downstream
tasks.

– We propose a model named Fine-grained Deep Traffic Inference (FDTI) to
incorporate the dynamic spatial temporal dependency caused by traffic signals
and then the future traffic is inferred in a flow-conservative perspective.

– Extensive experiments on traffic datasets have shown the superior perfor-
mance of our proposed method. Graph smoothness analysis is conducted
based on our proposed metric STMAD, which explains the mechanism of
how other baselines fail under the fine granularity setting.

2 Related Work

Conventional Traffic Prediction. Traffic prediction research draws lots of
attention [44], while conventional methods focus on statistical methods. Kalman
filter based methods [30,32] show good results for short-term traffic volume pre-
diction. ML methods such as SVM [31] built on non-linear relationships achieve
better performance. The spatial dependency is modeled by methods such as
Bayesian Network [49], and probabilistic model [1]. However, they have not
exploited the rich spatial information enough.

Deep Spatial-Temporal Traffic Prediction. The utilization of graph convo-
lutional networks (GCNs) [21,39] contributes significantly to the advancement
of spatial-temporal traffic prediction. DCRNN [28], STGCN [46], GSTNet [10],
STDN [45], STFGNN [27], LSGCN [19] combines modules such as diffusion, GCN
and GRU to model the spatial and temporal relations. Recently many adaptive
methods for spatial-temporal data have been proposed. Methodologies such as
Graph Wavenet [43], AGCRN [2], GMAN [47], FC-GAGA [33], D2STGNN [37],
HGCN [13], ST-WA [8], DSTAGNN [23] utilize techniques such as node embed-
ding and attention to reconstruct the adaptive adjacent matrix and fuse the
temporal long term relation. MDTP [12], MTGNN [42], and DMSTGCN [16]
utilize multimodal data to help forecast the traffic. Z-GCNET [6] introduces
time-aware persistent homology. STGODE [11], STG-NCDE [7], STDEN [20]
use differential equations to model the traffic. However, most of those methods
would utilize enormous parameters on learning graphs with node embeddings
which ignores the influence of traffic signals between different nodes. [34,35]
researches the fine-grained volume inference. However, they focus on spatial-
fine-grained grid-based data and utilize CNN-based methods, which can not
be applied to our temporal-fine-grained graph-based data. A recent work [25]
focuses on fine-grained graph-based traffic prediction, which incorporates a sim-
ilar state transition function but uses a different setting of missing data.
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3 Preliminaries

Definition 1 (Traffic-Movements Grap). We model the traffic system as
a traffic-movement graph G = (V,E) where V is the set of N traffic-
movements [48] and E is the set of connections between traffic movements.
Each traffic-movement vi is a set of lanes with the same moving direction
di ∈ {Left, Straight,Right}. Each directed edge eij denotes the link from traf-
fic movement vi to traffic movement vj. Figure 1(c) shows a sample traffic-
movement graph G generated from the real traffic system.

Definition 2 (Traffic State). The traffic state xit of a traffic-movement vi at
timestamp t includes various measurements such as speed and volume. Thus,
the traffic state of the whole system is represented as Xt = {x1t ,x2t , · · · ,xNt }. In
this paper, we mainly focus on traffic volume, defined as the number of vehicles
on the traffic-movement vi at timestamp t. The time granularity of the traffic
volume is 1min.

Definition 3 (Roadnet-enriched Feature). Roadnet is an abbreviation for
road network. The roadnet-enriched feature indicates the road-network-related
feature that helps infer future traffic states. It contains the traffic signal
(described as green signal time pi) and the static information of traffic-
movements (e.g., length li and direction di). Foramally, the system-wise roadnet-
enriched feature is represented as St = {s1t , s2t , · · · , sNt } where sit = {pit, l

i, di} is
the features of traffic-movement vi at time t.

3.1 Problem Definition

Problem 1 (One-step inference). Given a city-level traffic system G = (V,E),
the goal is to learn a model f to perform traffic inference of next time step
Xt+1 based on traffic state observations Xt−T+1:t and roadnet-enriched feature
St−T+1:t of previous T time steps. Formally, the problem is defined as

X̂t+1 = f(Xt−T+1:t,St−T+1:t). (1)

Problem 2 (Q-step inference). Based on one-step state inference, Q-step state
inference can be achieved by performing one-step inference Q times. Formally,
this problem could be denoted as

X̂t′+1 = f(X̂t′−T+1:t′ ,St′−T+1:t′), t′ = t + 1, · · · , t + Q (2)

Here X̂t′−T+1:t′ is the input of function f and it could include both predicted
value and ground truth value.

4 Method

To solve the defined problem, we propose Fine-grained Deep Traffic Inference
(FDTI) as illustrated in Fig. 2(a). Firstly, traffic states and roadnet-enriched
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Fig. 2. Diagrams of Fine-grained Deep Traffic Inference (FDTI). (Color figure online)

features are organized to construct FTSTG, which represents the traffic node
in a graph with multiple time layers. Then, a dynamic mobility convolution is
conducted to model the traffic flow transition via dynamic edges. Lastly, the
model predicted the traffic flow, and the future traffic volume of each node is
inferred on considering the conservation of the traffic system.

4.1 Fine-Grained Traffic Spatial-Temporal Graph

Graph Construction. In this section, we introduce the construction of Fine-
grained Traffic Spatial-Temporal Graph as shown in Fig. 1(c). For the sake of
understanding, we make an analogy between a traffic flow network controlled by
traffic signals and a water network controlled by taps (as shown in Fig. 2(b)).
For the simple water network, the water volume of A (denoted as xA

t at step t)
can be inferred based on the flow-in volume ιAt and flow-out volume oAt as

xA
t+1 = xA

t + ιAt − oAt . (3)

By considering the spatial dependency, ιAt and oAt can be calculated with the
data B,C, and D, as shown below.

ιAt = σ(xB
t , τB

t , xC
t , τC

t , xD
t , τD

t ) (4)

oAt = φ(xA
t , τA

t ) (5)

where σ and φ calculate the flow-in volume and flow-out volume based on x and
the turn-on time of the water tap τ .

A traffic system can be represented similarly. Traffic signals can naturally
substitute the role of taps in the water network. Equations (3), (4) and (5) show
that the states of spatial neighbors of A at timestamp t (xB

t , xC
t , xD

t ) are highly
related to the state of A at timestamp t + 1 (xA

t+1), which inspires us how
to construct Fine-grained Traffic Spatial-Temporal Graph (FTSTG). Formally,
FTSTG is denoted as G = {V, E}, where each vertex vi

t ∈ V denotes the node
i at timestamp t. Here the size of V is calculated as |V| = N × T where N is
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the number of traffic movements and T is the total number of timestamps. We
model the spatial-temporal dependency by the edges.

< vi
t, v

j
t+1 >=

{
1 < i, j >∈ E or i = j
0 otherwise

(6)

where E is the edge set of the graph G. (1) We add the edge between spatial
neighbors of different time layers. (2) We add edges between the same node of
the adjacent time layer. (3) There is no edge inside the same time layer, which
is the key difference between FTSTG and STSGCN [38].

The roadnet-enriched features St = {Pt, l, d} along with the historical traffic
states Xt serve as the input of each node. There are two reasons why the features
St help forecast future traffic. Firstly, The green signal time Pt controls the traffic
flow according to Eqs. (4) and (5) and thus significantly influence the future
traffic volume. Secondly, the length l and the turning direction d influence the
volume distribution of the traffic node since longer roads tend to have more
traffic volume, and right-turning lanes tend to have less traffic volume.

4.2 Dynamic Mobility Convolution

To capture the spatial temporal dependencies, we propose Dynamic Mobility
Convolution on FTSTG, which is shown in Fig. 2(c). This builds a model that
approximates the function σ and φ in Eqs. (4) and (5).

Dynamic Edge Construction. To utilize the spatial temporal dependency, a
traditional methodology is to apply graph convolution operation on the FTSTG.
However, as shown in Fig. 2(b), the traffic flow between different nodes is highly
related to the green signal time. Inspired by this fact, we add Dynamic Edge
Construction on FTSTG as shown in Fig. 2(c). The dynamic edges are related to
the green signal time of each vertex and could represent the traffic flow mobility.
A higher weight of dynamic edges indicates higher mobility of traffic flow. Thus,
by denoting the edge weight of < vit, v

j
t′ > as wi,j

t,t′ , and the green signal time of
vi
t as pit, we build the edge of FTSTG as follow.

wi,j
t,t′ =

{
pi
t

t′−t if < vit, v
j
t′ > ∈ E

0 otherwise
(7)

Mobility Propagation and Mobility Aggregation. After the Dynamic
Edge Construction, we conduct Mobility Propagation and Mobility Aggrega-
tion based on the idea of GraphSAGE [15], which is a representative inductive
graph learning method. The key idea of Mobility Propagation and Mobility
Aggregation is that the hidden states of FTSTG represent the traffic flow and
the dynamic edge represents the traffic flow mobility. Then one propagation-
aggregation operation layer is simulating the process that vehicles flow into
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downstream nodes once, which is also an inductive operation. The output of
the l-th layer can be derived as follows.

H l
t,i = Agg(H l−1

t,i , P rop({H l−1
t−1,j |j})) (8)

Here j ∈ {k| < vkt−1, v
i
t >∈ E}, which are the spatial neighbors of i and i itself

at previous adjacent timestamp. For Mobility Propagation, we take the dynamic
edge into the operation. Formally we can write.

Ĥ l
t,i = f({H l−1

t−1,j · wj,i
t−1,t|j}). (9)

Then Mobility Aggregation is conducted to aggregate the result of Mobility
Propagation and hidden states, which could be formulated as.

H l
t,i = g(H l−1

t,i , Ĥ l
t,i). (10)

For f and g, multiple functions such as MEAN( ·), POOL( ·), Concat( ·),
FC( ·) could be chosen. Furthermore, we add residual links [17] between adjacent
blocks

A key observation is that one layer of propagation and aggregation feeds all
the required input contained in Eqs. (3),(4), and (5) to state xi

t+1. This means
the number of layers of propagation and aggregation is equal to the number
of historical horizons that are aggregated to H l

t+1,i. Typically, the model only
needs to consider several adjacent horizons and get good results, which keeps
consistent with the fact that only traffic states of adjacent time stamps are useful
in the fine-grained traffic inference scenario.

4.3 Flow Conservative Traffic State Transition

Traffic Flow Prediction. The Dynamic Mobility Convolution learns represen-
tations HL

t that capture the fine-grained spatial temporal dynamics. Based on
that, we can predict the flow features, i.e., the out number Ôt and in number Ît
by using two fully connected layers.

Ôt = FC(HL
t ), Ît = FC(HL

t ) (11)

One-Step Traffic Inference. After the out number Ôt and in number Ît is
predicted, the future traffic could be inferred in a flow conservative perspective.
Equation (12) shows the transition from current observation Xt to the inference
of next timestamp X̂t+1 based on the out number Ôt and in number Ît.

X̂t+1 = Xt + Ît − Ôt (12)

This shows a flow-conservative perspective for traffic inference. Intuitively, the
volume of a node would stay conserved if there are no vehicles driving in or
driving out. Hence, by considering each node as a closed traffic system, we only
need to focus on the number of the drive-in and drive-out vehicles for future
volume inference. This is a key difference between FDTI and other conventional
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(a) Nanchang (b)Hangzhou (c) Manhattan

Fig. 3. The running screenshots of the traffic simulator.

approaches to traffic prediction. Conventional approaches focus on capturing
the numerical pattern based on mechanisms such as convolution and ignore the
conservative traffic state transition which is the intrinsic dynamics.

Multi-step Traffic Inference. For multi-step traffic volume inference, the
future multi-faceted features St+1:t+P is predefined since the traffic signal pol-
icy is set in advance. Thus, we can simply apply traffic state transition Eq. (12)
multiple times. However, multi-step inference still suffers from error accumula-
tion [3] when a vertex takes inaccurate information from the previous one. Thus,
we propose a discounting mechanism to reduce the accumulated error. The dis-
counted multi-step traffic volume inference could be formulated as Eq. (13) where
λ denotes the discounting factor.

X̂t+Q = Xt +
Q−1∑
q=0

λq(Ît+q − Ôt+q) (13)

We choose MSE loss as the objective function for the one-step flow feature
inference to train the model. Thus the loss function of FDTI for flow prediction
can be formulated as

L =
1

NT

N∑
i=1

T∑
t=1

(ιit − ι̂it)
2 +

1
NT

N∑
i=1

T∑
t=1

(oit − ôit)
2. (14)

5 Experiment

5.1 Experiment Settings

Datasets. We evaluate our model on three city-wide large-scale datasets of
Nanchang, Manhattan, Hangzhou, and one small dataset Hangzhou-Small. Cur-
rent city traffic data is sparse, coarse-grained, and lacks traffic signal informa-
tion. Hence, utilizing real roadnet data and vehicle trajectory data as input,
we collect 1-h fine-grained data from the wildly-used traffic simulator of KDD-
CUP2021 [29]. The roadnet data of these three cities is extracted from Open-
StreetMap1. The vehicle trajectory of Manhattan is processed real data from [40].
1 https://www.openstreetmap.org/.

https://www.openstreetmap.org/
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Table 1. Details of datasets

City Intersections Nodes Connections between nodes

Nanchang 2,048 18,072 73,170

Hangzhou 3,819 32,772 76,788

Manhattan 3,938 40,026 107,442

Hangzhou-Small 211 1,944 4,770

The vehicle trajectories of Hangzhou and Nanchang are from the real informa-
tion reported by the traffic police. The details of the four datasets are shown
in Table 1. The running traffic screenshots of Nanchang, Hangzhou, and Man-
hattan in the traffic simulator are shown in Fig. 3. Code and data are released
in https://github.com/zhyliu00/FDTI.

Setup of Experiments

– Data preprocessing: The first 10 min are used to initialize the road network
with sufficient vehicles. The remaining part of the data is split by the ratio
of 6:2:2 in chronological order for training, validation, and testing.

– Network Structure: In mobility propagation, we use max-pooling as the func-
tion f . For the function g in mobility aggregation, we concatenate H l−1

t,i and
Ĥ l

t,i and feed them into a fully-connected layer. tanh is used as the activation
function. we set the hidden dimension of graph convolution as 256 and the
graph convolution layers L as 4.

– Training & Evaluating: The model is optimized by Adam optimizer for at
most 500 epochs. The learning rate is set to 0.0005. We evaluate the perfor-
mance of related models by RMSE and MAPE.

RMSE =

√√√√1
s

s∑
i=1

(yi − ŷi)2, MAPE =
1
s

s∑
i=1

|yi − ŷi
yi

|

Compared Methods. We compare FDTI with the following baselines. For the
sake of fairness, all of the baselines except HA and ARIMA take the same node
feature ([vi

t, pit, li, one hot coding for di]) and all of them are fine-tuned. Four
types of baselines are compared.

– Traditional methods: HA is historical average method, and ARIMA [41] is
a statistical time series analysis method.

– Basic Machine Learning models: LSTM [18] is a classic RNN-based
model for series analysis. LR exploits the linear correlations between data.
XGBoost [5] is a competitive method based on boosting-tree.

– Convolution-Kernel-based STGNN: DCRNN [28] and STGCN [46] use
GCN, GRU, and diffusion techniques to model the spatial and temporal

https://github.com/zhyliu00/FDTI
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Table 2. Performance comparison between FDTI and baselines on three large datasets.
All adaptive methods can not run on these large-scale datasets due to the huge memory
consumption. The lower the RMSE and MAPE are, the better. Horizon means the
number of forecasting steps and one horizon means one minute. FDTI achieves the
best performance

Nanchang Manhattan Hangzhou

Horizon 1 Horizon 3 Horizon 5 Horizon 1 Horizon 3 Horizon 5 Horizon 1 Horizon 3 Horizon 5

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

HA 4.91 23.18 7.79 25.73 10.41 29.97 3.86 13.80 5.45 15.25 6.76 17.96 4.72 21.41 7.47 23.36 10.06 27.21

ARIMA 4.42 24.30 6.90 26.00 9.58 30.77 3.78 14.02 5.26 15.23 6.47 17.95 4.36 22.76 6.62 23.95 9.07 27.75

LSTM 3.71 17.17 5.45 22.40 7.20 28.10 3.68 12.30 5.04 16.81 5.41 18.60 3.55 16.52 5.07 22.00 6.79 27.83

LR 3.19 18.78 5.02 24.70 6.80 30.07 2.68 12.93 4.43 18.56 5.70 22.61 3.24 19.31 4.91 25.45 6.73 32.40

XGBoost 2.85 14.74 4.91 20.70 6.86 26.23 2.53 9.87 4.31 15.17 5.45 19.33 2.94 14.92 4.84 20.95 6.79 27.48

DCRNN 3.98 18.91 5.48 26.42 7.38 31.94 3.92 14.31 5.42 21.48 7.01 29.56 3.85 20.19 5.44 27.27 7.49 35.14

STGCN 11.35 33.35 12.59 37.18 13.71 38.90 8.51 25.40 9.29 27.85 9.94 30.03 10.78 33.30 12.00 36.52 13.22 39.94

STDEN 15.05 37.43 16.11 39.18 17.34 40.37 7.38 25.97 12.26 35.32 15.79 43.21 9.06 28.92 10.14 32.14 11.78 35.01

FDTI 1.30 6.55 4.17 19.18 6.50 25.34 1.20 4.84 3.62 13.63 5.22 17.75 1.46 7.20 4.40 20.44 6.65 25.95

Fig. 4. The performance of different methods w.r.t. RMSE and MAPE on Hangzhou-
Small under horizon 1, 3 and 5. Horizon means the number of forecasting steps and
one horizon means one minute. The lower the RMSE and MAPE are, the better. FDTI
achieves the best performance.

dependencies. STDEN [20] is a physics-based ODE method that models
the traffic flow.

– Adaptive-based STGNN: AGCRN [2], DGCRN [26], D2STGNN [37]
focuses on learning the dynamic graph by various methods such as node
embeddings and learnable traffic pattern matrix. FOGS [36] utilize node2vec-
based methods to learn the graph. However, these methods could not run on
three large-scale datasets due to the out-of-memory error. They are only eval-
uated on the HangzhouSmall dataset.

5.2 Overall Performance

The results of the comparison between FDTI and baselines are shown in Table 2
and Fig. 4, where Table 2 shows the performance on three large-scale traffic
datasets and Fig. 4 shows the performance on a small traffic dataset. On all four
datasets with different scales, our proposed model outperforms all baseline meth-
ods in both single-step inference and multi-step inference. The good performance
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(a) The k-hop STMAD comparison. (b) Two cases of predictions

Fig. 5. (a) The k-hop STMAD comparison between GND (Ground Truth) and the
predictions of several methods. (b) Cases of the predicted volume of several methods
and ground truth.

indicates that the dynamic correlation modeling and the conservative traffic state
inference based on flow-in and flow-out volume help the model grasp the intrinsic
pattern of traffic. Note that other deep learning baselines perform worse than the
traditional statistic methods and regression-based methods. This indicates that
the dynamic correlation between traffic nodes could not be captured by simply
stacking convolutional, recurrent, or adaptive mechanisms. Another reason for
the bad performance is that these GNN-based methods tend to yield smooth
predictions on the nonsmooth dataset. We will discuss the smoothness in detail
later. Besides, all of the adaptive methods are not able to run on large-scale
datasets for their huge cost. Hence, they are only evaluated on Hangzhou-Small.

5.3 Graph Smooth Analysis

In this part, we explain the reason why previous GCN-based methods yield
unsatisfying results by analyzing the smoothness of datasets and prediction
results.

To quantitatively measure the smoothness over spatial temporal graphs,
we leverage the STMAD (Spatial-Temporal Mean Average Distance) based on
MAD [4]. The MAD evaluates the smoothness of a given static graph with node
features, and lower MAD indicates the graph is smoother. Formally, given a spa-
tial temporal graph in which each node contains a long time series data with
length T , we cut the time series data over a sliding window with length P. After
that, the spatial temporal graph is cut into T

P subgraphs. The feature H of each
subgraph is the aligned partial time series data with length P, i.e., H ∈ R

N×P .
Then, we define the k-hop STMAD as follows.

STMADk =
1
T
P

T
P∑

m=1

MADk
m (15)
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MADk
m =

1
N

N∑
i=1

∑
j∈Nk(i)

(1 − Hi
m·Hj

m

|Hi
m|·|Hj

m| )

|Nk(i)|
(16)

Here STMADk means k-hop STMAD and it is the average of the k-hop MAD of
all subgraphs. MADk

m is the k-hop MAD of m-th subgraph and it is essentially
the average cosine distance between nodes and their k-hop neighbors. The k-hop
neighbors set of node i of m-th subgraph and its corresponding time series are
denoted as Nk(i) and Hi

m respectively.
We show the comparison of STMAD between the ground truth data and the

prediction result yielded by several methods in Fig. 5(a). Among all the three
datasets, We can observe that the STMAD of ground truth is large due to its
non-smoothness. The non-smoothness could also be observed in the prediction
result of FDTI, indicating that FDTI preserves the original traffic pattern of
the ground truth data, thus making accurate predictions. On the contrary, the
STMAD of STGCN and DCRNN is much smaller than the STMAD of ground
truth data. Furthermore, the STMAD of STGCN and DCRNN is similar to
the previous smooth datasets (METR-LA, PEMS-BAY, PEMSD7) as shown in
Fig. 1(b). This result explains that previous methodologies such as STGCN and
DCRNN could yield satisfying results on the previous smooth datasets since
these methodologies have a high tendency to make smooth predictions despite
the smoothness of the input data. However, when it comes to unsmooth datasets,
they make predictions with high errors.

Two examples of the smoothness of STGCN and DCRNN are shown in
Fig. 5(b). It shows the ground truth and prediction volume of a node along with
the sum volume of its neighbors. We could observe that STGCN and DCRNN
make relatively reasonable predictions at the beginning since the ground truth
volume is similar to the sum volume of neighbors. As the traffic flow goes on, the
gap between Ground Truth and the sum volume of neighbors increases, while
STGCN and DCRNN fail to follow the Ground Truth. Being consistent with
the fact that smoothing is the essential nature of the GCN design [4], this phe-
nomenon indicates that STGCN and DCRNN tend to average the volume of a
node and its neighbors and use the result as the prediction. As a result, the pre-
diction is smooth and a big error exists. On the contrary, FDTI keeps consistent
with the ground truth value, which is similar to the STMAD comparison.

To sum up, these two comparisons show FDTI performs admirably in the
non-smooth situation. We owe this excellent property to the conservative traffic
transitions as shown in Eq. (13). This equation shows that FDTI predicts the
first-order derivative of the ground truth and is hence resistant to oversmooth-
ness.

5.4 Ablation Study

For FDTI, there are four main designs including FTSTG that models the traffic
dynamics, roadnet-enriched features (denoted as R) that help model capture traf-
fic dynamics, the discount mechanism (denoted as D) that reduces the accumu-
lated error of volume inference, and dynamic mobility convolution (denoted as C)
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that simulates the flow of vehicles. To validate these components, we design four
variants by adding blocks sequentially: FTSTG, FTSTG+R, FTSTG+R+D,
and FTSTG+R+D+C. Specifically, FTSTG+R+D+C equals FDTI because it
has all of these four components.

Fig. 6. Performance on the multi-step inference of different variants of FDTI on three
datasets. Horizon means the number of forecasting steps.

Fig. 7. Model parameter size and memory cost.

Results are shown in Fig. 6 from which we could observe that adding each
module can induce further improvement. The improvement induced by adding
the roadnet-enriched features (R) is due to that adding traffic-dynamic-related
features helps the model aggregate richer information. The performance of multi-
step inference is improved by adding the discount mechanism (D), which indi-
cates that the cumulative error could not be neglected and the discount mecha-
nism tackles this error well. Adding dynamic mobility convolution (C) also brings
notable performance gain. This demonstrates that considering the dynamic edges
contributes to the fine-grained traffic dynamics between nodes.

5.5 Scalability

In this part, we explore the scalability of datasets and models. Then, we explain
why previous adaptive methods fail to run on our datasets.
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City-scale Datasets and Experiments. To the best of our knowledge, we are
the first to complete the city-level traffic state inference. These three city-level
traffic datasets Nanchang, Hangzhou, and Manhattan cover more than 2,000
intersections and 18,000 nodes as shown in Table 1. In comparison, we have
summarized the datasets used in previous literature as in Table 3. It is easy to
observe that our datasets are at least 10 times larger than previously wildly-used
datasets in terms of the number of nodes.

Table 3. The scale of datasets. The upper 8 datasets are wildly used by previous
research. The lower 4 datasets downside are the datasets of this paper.

Dataset # of nodes Dataset # of nodes

PeMSD7(M) [46] 228 METR-LA [28] 207

PeMSD7(L) [46] 1,026 PEMS-BAY [28] 325

PeMSD4 [14] 307 Xiamen [47] 95

PeMSD8 [14] 170 PeMS3 [38] 358

Nanchang 18,072 Manhattan 40,026

Hangzhou 32,772 Hangzhou-Small 1,944

Model Scalability. The space complexity of FDTI is O(d×d) and thus the model
size is independent of the input graph scale. Furthermore, FDTI is an inductive
graph learning method due to the special construction of FTSTG that limited
hops of neighbors are required for predicting future traffic. Benefiting from this,
our model could deal with large-scale graphs with decent parameter efficiency.

Most of the previous deep spatial temporal methods [13,24,33,36,37] based
on adaptive mechanism fail to run on large-scale datasets. Firstly, they have
at least O(N × d) parameters as node embeddings, which is not parameter-
efficient. Secondly, the space complexity of calculating the similarity matrix of
these methods is O(N2), which is unacceptable for a large graph. To validate
their performance in the fine-grained setting, we extract Hangzhou-Small dataset
and implement some of them as baselines.

For the rest deep learning based methods, we select DCRNN (best perfor-
mance), STGCN (most efficient), and FDTI (this paper) and compare the model
efficiency on the large-scale datasets with the same number of hidden states and
layers as shown in Fig. 7. We can observe that FDTI has a similar number of
parameters while FDTI consumes much less memory.

6 Conclusion

In this paper, we have worked on a brand-new fine-grained traffic volume predic-
tion problem. We demonstrate that the traffic signal significantly influences the
correlation between neighboring roads. To address the problems, We propose a
novel method FDTI that models the influence of traffic signal and capture the
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fine-grained traffic dynamics. Extensive experiments are conducted on large-scale
traffic datasets, where FDTI outperforms other baselines and shows good prop-
erties such as resistance to oversmoothness. We believe that FDTI can better
support real-world downstream applications such as traffic policy making.
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