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Abstract. Forecasting building energy usage is essential for promoting sustain-
ability and reducing waste, as it enables building managers to adjust energy use
to improve energy efficiency and reduce costs. This importance is magnified dur-
ing anomalous periods, such as the COVID-19 pandemic, which have disrupted
occupancy patterns and made accurate forecasting more challenging. Forecasting
energy usage during anomalous periods is difficult due to changes in occupancy
patterns and energy usage behavior. One of the primary reasons for this is the
shift in distribution of occupancy patterns, with many people working or learn-
ing from home. This has created a need for new forecasting methods that can
adapt to changing occupancy patterns. Online learning has emerged as a promis-
ing solution to this challenge, as it enables building managers to adapt to changes
in occupancy patterns and adjust energy usage accordingly. With online learning,
models can be updated incrementally with each new data point, allowing them to
learn and adapt in real-time. Continual learning methods offer a powerful solu-
tion to address the challenge of catastrophic forgetting in online learning, allow-
ing energy forecasting models to retain valuable insights while accommodating
new data and improving generalization in out-of-distribution scenarios. Another
solution is to use human mobility data as a proxy for occupancy, leveraging the
prevalence of mobile devices to track movement patterns and infer occupancy
levels. Human mobility data can be useful in this context as it provides a way to
monitor occupancy patterns without relying on traditional sensors or manual data
collection methods. We have conducted extensive experiments using data from
four buildings to test the efficacy of these approaches. However, deploying these
methods in the real world presents several challenges.
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1 Introduction

Accurate prediction of the electricity demand of buildings is vital for effective and cost-
efficient energy management in commercial buildings. It also plays a significant role in
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maintaining a balance between electricity supply and demand in modern power grids.
However, forecasting energy usage during anomalous periods, such as the COVID-19
pandemic, can be challenging due to changes in occupancy patterns and energy usage
behavior. One of the primary reasons for this is the shift in distribution of occupancy pat-
terns, with many people working or learning from home, leading to increased residential
occupancy and decreased occupancy in offices, schools, and most retail establishments.
Essential retail stores, such as grocery stores and restaurants, might experience a diver-
gence between occupancy and energy usage, as they have fewer dine-in customers but
still require energy for food preparation and sales. This has created a need for new
forecasting methods that can adapt to changing occupancy patterns.

Online learning has emerged as a promising solution to this challenge, as it enables
building managers to adapt to changes in occupancy patterns and adjust energy usage
accordingly. With Online learning, models can be updated incrementally with each new
data point, allowing them to learn and adapt in real-time [13].

Furthermore, continual learning methods offer an even more powerful solution by
addressing the issue of catastrophic forgetting [6,17]. These methods allow models to
retain previously learned information while accommodating new data, preventing the
loss of valuable insights and improving generalization in out-of-distribution scenarios.
By combining online learning with continual learning techniques, energy forecasting
models can achieve robustness, adaptability, and accuracy, making them well-suited for
handling the challenges posed by spatiotemporal data with evolving distributions.

Another solution is to use human mobility data as a proxy for occupancy, leveraging
the prevalence of mobile devices to track movement patterns and infer occupancy levels.
Human mobility data can be useful in this context as it provides a way to monitor
occupancy patterns without relying on traditional sensors or manual data collection
methods [28].

In this study, we evaluate the effectiveness of mobility data and continual learning
for forecasting building energy usage during anomalous periods. We utilized real-world
data from Melbourne, Australia, a city that experienced one of the strictest lockdowns
globally [4], making it an ideal case for studying energy usage patterns during out-
of-distribution periods. We conducted experiments using data from four building com-
plexes to empirically assess the performance of these methods.

2 Related Works

2.1 Energy Prediction in Urban Environments

Electricity demand profiling and forecasting has been a task of importance for many
decades. Nevertheless, there exist a limited number of work in literature that investigate
how human mobility patterns are directly related to the urban scale energy consumption,
both during normal periods as well as adverse/extreme events. Energy modelling in lit-
erature is done at different granularities, occupant-level (personal energy footprinting),
building-level and city-level. Models used for energy consumption prediction in urban
environments are known as Urban Building Energy Models (UBEM). While top-down
UBEMs are used for predicting aggregated energy consumption in urban areas using
macro-economic variables and other aggregated statistical data, bottom-up UBEMs are
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more suited for building-level modelling of energy by clustering buildings into groups
of similar characteristics [2]. Some examples in this respect are SUNtool, CitySim,
UMI, CityBES, TEASER and HUES. Software modelling (simulation-based) is also a
heavily used approach for building-wise energy prediction (Eg: EnergyPlus [7]). Due
to fine-grain end-user level modelling, bottom-up UBEMs can incorporate inputs of
occupant schedules. There also exist occupant-wise personal energy footprinting sys-
tems. However, for such occupant-wise energy footprinting, it requires infrastructure
related to monitoring systems and sensors for indoor occupant behaviours, which are
not always available. Also, due to privacy issues, to perform modelling at end-user
level granularity, it can be hard to get access to publicly available data at finer tem-
poral resolutions (both occupancy and energy) [33]. Building-wise energy models also
have the same problems. Simulation-based models have complexity issues when scal-
ing to the city level, because they have to build one model per each building. Moreover,
simulation-based models contain assumptions about the data which make their outputs
less accurate [1]. Consequently, it remains mostly an open research area how to conduct
energy forecasting with data distribution shifts.

2.2 Mobility Data as Auxiliary Information in Forecasting

The study of human mobility patterns involves analysing the behaviours and move-
ments of occupants in a particular area in a spatio-temporal context [28]. The amount
of information that mobility data encompasses can be huge. The behaviour patterns of
humans drive the decision making in many use-cases. Mobility data in particular, can
act as a proxy for the dynamic (time varying) human occupancy at various spatial den-
sities (building-wise, city-wise etc.). Thus such data are leveraged extensively for many
tasks in urban environments including predicting water demand [31], urban flow fore-
casting [34], predicting patterns in hospital patient rooms [8], electricity use [12] etc.
that depend on human activities.

Especially, during the COVID19 pandemic, mobility data has been quite useful for
disease propagation modelling. For example, in the work by [32], those authors have
developed a Graph Neural Network (GNN) based deep learning architecture to forecast
the daily new COVID19 cases state-wise in United States. The GNN is developed such
that each node represents one region and each edge represents the interaction between
the two regions in terms of mobility flow. The daily new case counts, death counts
and intra-region mobility flow is used as the features of each node whereas the inter-
region mobility flow and flow of active cases is used as the edge features. Comparisons
against other classical models which do not use mobility data has demonstrated the
competitiveness of the developed model.

Nevertheless, as [28] state, the existing studies involving human mobility data lack
diversity in the datasets in terms of their social demographics, building types, loca-
tions etc. Due to the heterogeneity, sparsity and difficulty in obtaining diverse mobility
data, it remains a significant research challenge to incorporate them in modelling tech-
niques [2]. Yet, the lack of extracting valuable information from such real-world data
sources remains untapped, with a huge potential of building smarter automated decision
making systems for urban planning [28].
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2.3 Deep Learning for Forecasting

Deep learning has gained significant popularity in the field of forecasting, with various
studies demonstrating its effectiveness in different domains [11]. For instance, it has
been widely applied in mobility data forecasting, including road traffic forecasting [24–
26], and flight delay forecasting [30]. In the realm of electricity forecasting, Long Short-
Term Memory (LSTM) networks have been widely utilized [21]. Another popular deep
learning model for electricity load forecasting is Neural basis expansion analysis for
interpretable time series forecasting (N-BEATS) [20].

However, one common challenge faced by these deep learning methods is the per-
formance degradation when the data distributions change rapidly, especially during
out-of-distribution (OOD) periods. Online learning methods have been proposed to
address this issue [14,16,18]. However, online learning methods can suffer from catas-
trophic forgetting, where newly acquired knowledge erases previously learned infor-
mation [28]. To mitigate this, continual learning methods have been developed, which
aim to retain previously learned information while accommodating new data, thereby
improving generalization in OOD scenarios.

One approach to continual learning is Experience Replay [6,17], a technique that
re-exposes the model to past experiences to improve learning efficiency and reduce
the effects of catastrophic forgetting. Building upon this idea, the Dark Experience
Replay++ algorithm [5] utilizes a memory buffer to store past experiences and a deep
neural network to learn from them, employing a dual-memory architecture that allows
for the storage of both short-term and long-term memories separately. Another approach
is the Fast and Slow Network (FSNet) [22], which incorporates a future adaptor and an
associative memory module. The future adaptor facilitates quick adaptation to changes
in the data distribution, while the associative memory module retains past patterns to
prevent catastrophic forgetting. These continual learning methods have shown promise
in mitigating catastrophic forgetting and improving generalization in OOD scenarios.

In the context of energy forecasting, the utilization of continual learning techniques
holds great potential for addressing the challenges posed by OOD spatiotemporal data.
By preserving past knowledge and adapting to new patterns, these methods enable more
robust and accurate energy forecasting even during periods of rapid data distribution
shifts.

3 Problem Definition

3.1 Time Series Forecasting

Consider a multivariate time series X ∈ RT×N comprising mobility data, weather
data, and the target variable, which is the energy consumption data. The time series
consists of T observations and N dimensions. To perform H-timestamps-ahead time
series forecasting, a model f takes as input a look-back window of L historical obser-
vations (xt−L+1,xt−L+2, ...,xt) and generates forecasts for H future observations of
the target variable y, which corresponds to the energy consumption of a building. We
have:

fω (xt−L+1,xt−L+2, ...,xt) = (yt+1, yt+2, ..., yt+H), (1)

where ω denotes the parameters in the model.
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Fig. 1. The convolution architecture in TCN

3.2 Continual Learning for Time Series Forecasting

In a continual learning setting, the conventional machine learning practice of separating
data into training and testing sets with a 70% to 30% ratio does not apply, as learning
occurs continuously over the entire period. After an initial pre-training phase using a
short period of training data, typically the first 3 months, the model continually trains
on incoming data and generates predictions for future time windows. Evaluation of the
model’s performance is commonly done by measuring its accumulated errors through-
out the entire learning process [27].

4 Method

Continual learning presents unique challenges that necessitate the development of spe-
cialized algorithms and evaluation metrics to address the problem effectively. In this
context, a continual learner must strike a balance between retaining previously acquired
knowledge while facilitating the learning of new tasks. In time-series forecasting,
the challenge lies in balancing the need to learn new temporal dependencies quickly
while remembering past patterns, a phenomenon commonly referred to as the stability-
plasticity dilemma [9]. Building on the concept of complementary learning systems the-
ory for dual learning systems [15], a Temporal Convolutional Network (TCN) is utilized
as the underlying architecture, which is pre-trained to extract temporal features from the
training dataset. Subsequently, the convolutional layers of the TCN are customized with
a future adaptor and an associative memory module to address the challenges associ-
ated with continual learning. The future adaptor facilitates quick adaptation to changes,
while the associative memory module is responsible for retaining past patterns to pre-
vent catastrophic forgetting. In this section we describe in detail the architecture of
FSNet [22].
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4.1 Backbone-Temporal Convolutional Network

FSNet adopts the TCN proposed by Bai et al. [3] as the backbone architecture for
extracting features from time series data. Although traditional Convolutional Neural
Networks (CNNs) have shown great success in image-processing tasks, their perfor-
mance in time-series forecasting is often unsatisfactory. This is due to several reasons,
including (a) the difficulty of capturing contextual relationships using CNNs, (b) the risk
of information leakage caused by traditional convolutions that incorporate future tem-
poral information, and (c) the loss of detail associated with pooling layers that extract
contour features. In contrast, TCN’s superiority over CNNs can be attributed to its use
of causal and dilated convolutions, which enhance its ability to capture temporal depen-
dencies in a more effective manner.

Causal Convolutions. In contrast to traditional CNNs, which may incorporate future
temporal information and violate causality, causal convolutions are effective in avoid-
ing data leakage in the future. By only considering information up to and including the
current time step, causal convolutions do not alter the order in which data is modelled
and are therefore well-suited for temporal data. Specifically, to ensure that the output
tensor has the same length as the input tensor, it is necessary to perform zero-padding.
When zero-padding is performed only on the left side of the input tensor, causal con-
volution can be ensured. In Fig. 1(a), zero-padding is shown in light colours on the left
side. There is no padding on the right side of the input sequence because the last ele-
ment of the input sequence is the latest element on which the rightmost output element
depends. Regarding the second-to-last output element, its kernel window is shifted one
position to the left compared to the last output element. This implies that the second-
to-last element’s latest dependency on the rightmost side of the input sequence is the
second-to-last element. By induction, for each element in the output sequence, its latest
dependency in the input sequence has the same index as the element itself.

Dilated Convolutions. Dilated convolution is an important component of TCN because
causal convolution can only access the past inputs up to a certain depth, which is deter-
mined by the kernel size of the convolutional layer. In a deep network, the receptive
field of the last layer may not be large enough to capture long-term dependencies in
the input sequence. In dilated convolutions, the dilation factor is used to determine the
spacing between the values in the kernel of the dilated convolution. More formally, we
have:

Conv(x)i =
k∑

m=0

wm · xi−m×d (2)

where i represents the i-th element, w denotes the kernel, d is the dilation factor, k is
the filter size. Dilation introduces a fixed step between adjacent filter taps. Specifically,
if the dilation factor d is set to 1, the dilated convolution reduces to a regular convolu-
tion. However, for d > 1, the filters are expanded by d units, allowing the network to
capture longer-term dependencies in the input sequence. A dilated causal convolution
architecture can be seen in Fig. 1(a).
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4.2 Fast Adaptation

FSNet modify the convolution layer in TCN to achieve fast adaptation and associative
memory. The modified structure is illustrated in Fig. 1(b). In this subsection, we first
introduce the fast adaptation module.

In order to enable rapid adaptation to changes in data streams and effective learning
with limited data, Sahoo et al. [27] and Phuong and Lampert [23] propose the use of
shallower networks and single layers that can quickly adapt to changes in data streams
or learn more efficiently with limited data. Instead of limiting the depth of the network,
it is more advantageous to enable each layer to adapt independently. In this research, we
adopt an independent monitoring and modification approach for each layer to enhance
the learning of the current loss. An adaptor is utilized to map the recent gradients of
the layer to a smaller, more condensed set of transformation parameters to adapt the
backbone. However, the gradient of a single sample can cause significant fluctuation
and introduce noise into the adaptation coefficients in continual time-series forecasting.
As a solution, we utilize Exponential Moving Average (EMA) gradient to mitigate the
noise in online training and capture the temporal information in time series:

ĝl = γĝl + (1 − γ)ĝtl , (3)

where ĝtl denotes the gradient of the l-th layer at time t, ĝl denotes the EMA gradient,
and γ represents the momentum coefficient. For the sake of brevity, we shall exclude
the superscript t in the subsequent sections of this manuscript. We take ĝl as input and
get the adaptation coefficient μl:

μl = Ω(ĝl;φl), (4)

where Ω(·) is the chunking operation in [10] that partitions the gradient into uniformly-
sized chunks. These segments are subsequently associated with the adaptation coeffi-
cients that are characterized by the trainable parameters φl. Specifically, the adaptation
coefficient μl is composed of two components: a weight adaptation coefficient αl and a
feature adaptation coefficient βl. Then we conduct weight adaptation and feature adap-
tation. The weight adaptation parameter αl performs an element-wise multiplication on
the corresponding weight of the backbone network, as described in:

θ̃l = tile(αl) � θl, (5)

where we represent the feature maps of all channels in a TCN as θl, while the adapted
weights are denoted by θ̃l. The weight adaptor is applied per-channel on all filters using
the tile function, which repeats a vector along the new axes, as indicated by tile(αl).
Finally, the element-wise multiplication is represented by �. Likewise, we have:

h̃l = tile(βl) � hl, (6)

where hl = θ̃l ∗ h̃l−1 is the output feature map.
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4.3 Associative Memory

In order to prevent a model from forgetting old patterns during continual learning in the
context of time series, it is crucial to preserve the appropriate adaptation coefficients μ,
which encapsulate adequate temporal patterns for forecasting. These coefficients reflect
the model’s prior adaptation to a specific pattern, and thus, retaining and recalling the
corresponding μ can facilitate learning when the pattern resurfaces in the future. Con-
sequently, we incorporate an associative memory to store the adaptation coefficients of
recurring events encountered during training. This associative memory is denoted as
Ml ∈ RN×d, where d represents the dimensionality of μl and is set to a default value
of 64.

Memory Interaction Triggering. To circumvent the computational burden and noise
that arises from storing and querying coefficients at each time step, FSNet propose
to activate this interaction only when there is a significant change in the representation.
The overlap between the current and past representations can be evaluated by taking the
dot product of their respective gradients. FSNet leverage an additional EMA gradient
ĝ′

l, with a smaller coefficient γ′ compared to the original EMA gradient ĝl, and measure
the cosine similarity between them to determine when to trigger the memory. We use
a hyper-parameter τ , which we set to 0.7, to ensure that the memory is only activated
to recall significant pattern changes that are more likely to recur. The interaction is
triggered when cosine(ĝl, ĝ′

l) < −τ .
To guarantee that the present adaptation coefficients account for the entire event,

which may extend over an extended period, memory read and write operations are car-
ried out utilizing the adaptation coefficients of the EMA with coefficient γ′. The EMA
of μl is computed following the same procedure as Eq. 3. In the event that a memory
interaction is initiated, the adaptor retrieves the most comparable transformations from
the past through an attention-read operation, which involves a weighted sum over the
memory items:

rl = softmax(Mlμ̂l), (7)

μ̃l =
k∑

i=1

TopK(rl)[i]Ml[i], (8)

where TopK(·) selects the top k values from rl, and [i] means the i-th element. Retriev-
ing the adaptation coefficient from memory enables the model to recall past experi-
ences in adapting to the current pattern and improve its learning in the present. The
retrieved coefficient is combined with the current parameters through a weighted sum:
μl = τμl + (1− τ)μ̃l. Subsequently, the memory is updated using the updated adapta-
tion coefficient:

Ml = τMl + (1 − τ)μ̃ ⊗ TopK(rl), (9)

where ⊗ denotes the outer-product operator. So far, we can effectively incorporate new
knowledge into the most pertinent locations, as identified by the top-k attention values
of rl. Since the memory is updated by summation, it can be inferred that the memory
μl does not increase as learning progresses.
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5 Datasets and Contextual Data

This paper is based on two primary data sources: energy usage data and mobility data,
as well as two contextual datasets: COVID lockdown dates and temperature data. The
statistical summary of the main datasets are provided in Table 1 and visualized in Fig. 2.
These datasets were collected from four building complexes in the Melbourne CBD area
of Australia between 2018 and 2021.

Table 1 outlines the essential statistical properties of energy usage and mobility data
collected from the four building complexes. It is evident from the data that energy usage
varies significantly between the buildings, with BC2 having over ten times the average
energy usage of BC4. Similarly, the mobility data shows distinct differences, with BC2
having a mean pedestrian count over three times greater than BC4. These differences
emphasize the complexity of forecasting for energy usage in different building com-
plexes.

Table 1. The summary statistics of the four datasets, each of which represents an aggregated and
anonymized building complex (BC).

BC1 BC2 BC3 BC4

Temporal start 2019-01-01 2018-01-01 2018-01-01 2019-07-01

end 2020-12-31 2020-12-31 2020-12-31 2020-12-31

num of record 17304 24614 26196 13200

duration (years) 2.0 3.0 3.0 1.5

granularity hourly hourly hourly hourly

Energy (kWh) mean 207.27 278.17 166.42 26.64

std 111.59 88.67 66.60 13.21

min 3.25 1.32 5.38 0.00

0.25 112.72 203.38 112.62 17.45

median 169.29 272.68 144.34 21.75

0.75 297.33 342.10 206.63 31.06

max 611.67 709.41 371.64 83.01

Mobility (count) mean 661.4 977.8 804.9 295.8

std 876.8 936.2 761.4 387.3

min 0 0 0 0

0.25 37 149 127 33

median 209 614 528 135

0.75 1004 1818 1349 386

max 6025 5053 3780 2984

It is worth noting that lockdown had a more significant impact on mobility than
energy usage, as illustrated in Fig. 2. Additionally, both energy usage and mobility
started declining even before the start of lockdown.
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Fig. 2. Visualizing the four datasets and their features, showing the significant changes in dis-
tributions due to lockdowns. Plots on the left column are smoothed with a Gaussian filter with
sigma = 24 h. Red areas are lockdowns. (Color figure online)

5.1 Energy Usage Data

The energy usage data was collected from the energy suppliers for each building com-
plex and measured the amount of electricity used by the buildings. To protect the privacy
of the building owners, operators, and users, the energy usage data from each building
was aggregated into complexes and anonymized. Buildings in the same complexes can
have different primary use (e.g. residential, office, retails)

5.2 Mobility Data

The mobility data was captured by an automated pedestrian counting system installed
by the City of Melbourne http://www.pedestrian.melbourne.vic.gov.au/ [19], and pro-
vided information on the movement patterns of individuals in and around each building
complex. The system recorded the number of pedestrians passing through a given zone
as shown in Fig. 3. As no images were recorded, no individual information was col-
lected. Some sensors were installed as early as 2009, while others were installed as late
as 2021. Some devices were moved, removed, and upgraded at various times. Seventy-
nine sensors have been installed, and we have chosen four sensors, one for each build-
ing complex. We performed manual matching between the complexes and sensors by
selecting the sensor that was closest to each building complex.

5.3 COVID Lockdown Dates

We used data on the dates of the COVID lockdowns in Melbourne, one of the strictest
in the world. Our datasets coincides with the first lockdown from March 30, 2020
to May 12, 2020 (43 days), and the second lockdown from July 8 to October 27,

http://www.pedestrian.melbourne.vic.gov.au/
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Fig. 3. Diagram of automated pedestrian counting system. Obtained from the City of Melbourne
website [19].

2020 (111 days). We also divided the time into pre-lockdown and post-lockdown
periods, taking the date of the first lockdown (March 30, 2020) as the boundary.
We took this information from https://www.abc.net.au/news/2021-10-03/melbourne-
longest-lockdown/100510710 [4].

5.4 Temperature Data

Temperature records are extracted from the National Renewable Energy Laboratory
(NREL) Asia Pacific Himawari Solar Data [29]. As the building complexes are located
in close proximity to one another, we utilized the same temperature data for all of them.

5.5 Dataset Preprocessing

For this study, we have fixed an observation of L = 24 h and a forecast horizon size
of H = 24 h, to mimic a day-ahead forecasting experiment. To accurately link the foot
traffic mobility data with the building, we carefully handpicked the pedestrian counting
sensor that is located in the immediate vicinity of the building and used its correspond-
ing mobility signal. The energy usage load of the building, the foot traffic volume, and
the temperature degree were all aligned based on their timestamps.

6 Experiments and Results

We conducted two sets of experiments to evaluate the effectiveness of our proposed
methods for predicting energy usage during anomalous periods. The first set of exper-
iments evaluated the impact of including mobility contextual data in our models. The

https://www.abc.net.au/news/2021-10-03/melbourne-longest-lockdown/100510710
https://www.abc.net.au/news/2021-10-03/melbourne-longest-lockdown/100510710
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second set of experiments assessed the importance of continual learning. In addition,
we conducted ablation experiments on FSNet to investigate the impact of different com-
ponents of the model on the overall performance.

6.1 Experimental Setup

The experiments were conducted on a high-performance computing (HPC) node cluster
with an Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz and Tesla V100-SXM2. The
software specifications included intel-mkl 2020.3.304, nvidia-cublas 11.11.3.6, cudnn
8.1.1-cuda11, fftw3 3.3.8, openmpi 4.1.0, magma 2.6.0, cuda 11.2.2, pytorch 1.9.0,
python3 3.9.2, pandas 1.2.4, and numpy 1.20.0.

The data was split into three months for pre-training, three months for validation
of the pre-training, and the rest was used for the usual continual learning setup. No
hyperparameter tuning was conducted as default settings were used. The loss function
used is MSE.

6.2 Mobility

Table 2. Performance comparison between different contextual features. Results are average over
10 runs with different random seed. The standard deviation is shown. The algorithm used was
FSNet with continual learning. +M is the improvement of adding mobility over no context, +T
is the improvement of adding temperature over no context, T+M is the improvement of adding
mobility over temperature only.

(MAE) dataset no context mobilityonly temp. only both +M +T T+M

BC1 0.1591 0.1587 0.1595 0.1516 0.0004 0.0004 0.0079

±0.0252 ±0.0334 ±0.0269 ±0.0332

BC2 0.1711 0.1993 0.1947 0.1708 −0.0282 −0.0236 0.0239

Pr
e-

L
oc

kd
ow

n

0.0085 ±0.0385 ±0.0391 ±0.0068

BC3 0.2629 0.2866 0.2509 0.2403 −0.0237 0.0120 0.0105

±0.0373 ±0.0534 ±0.0262 ±0.0095

BC4 0.2706 0.2516 0.3142 0.2776 0.0190 −0.0436 0.0366

±0.0370 ±0.0206 ±0.1581 ±0.0312

BC1 0.1484 0.1475 0.1434 0.1369 0.0033 0.0041 0.0041

±0.0318 ±0.0464 ±0.0283 ±0.0355

BC2 0.1636 0.1902 0.1849 0.1624 0.0072 −0.0194 0.0053

Po
st

-L
oc

kd
ow

n

±0.0085 ±0.0371 ±0.0381 ±0.0063

BC3 0.2418 0.2654 0.2299 0.2198 −0.0014 −0.0251 0.0355

±0.0374 ±0.0537 ±0.0252 ±0.0089

BC4 0.3236 0.2943 0.4134 0.3282 0.0293 −0.1191 0.0852

±0.0602 ±0.0294 ±0.3215 ±0.0502

To assess the significance of the mobility context in predicting energy usage during
anomalous periods, we performed a contextual feature ablation analysis, comparing
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pre- and post-lockdown performance. Table 2 presents the results of our experiments.
Our findings suggest that the importance of mobility context is unclear in pre-lockdown
periods, with mixed improvements observed, and the improvements are small compared
to the standard deviations. However, post-lockdown, the importance of mobility context
is more pronounced, and the best performance was achieved when both mobility and
temperature contexts were utilized. Notably, our analysis revealed that post-lockdown,
the improvement brought about by the mobility context is larger than that achieved
through temperature alone, as observed in BC1, BC2, and BC4. This could be due to
the fact that temperature has a comparatively simple and regular periodic pattern such
that deep learning models can deduce them from energy data alone.

6.3 Continual Learning

Table 3. Comparing the performance of different algorithm with or without continual learning
(CL). The metric used is MAE. Results are average over 10 runs with different random seed. The
standard deviation is shown.

dataset FSNet FSNet TCN OGD ER DER++

(no CL) (no CL)

BC1 0.3703 0.1583 0.3668 0.2056 0.1820 0.1696

±0.0607 ±0.0280 ±0.0379 ±0.0413 ±0.0217 ±0.0130

BC2 0.6272 0.1712 0.5176 0.2465 0.2322 0.2272

Pr
e-

L
oc

kd
ow

n

±0.0914 ±0.0063 ±0.0607 ±0.0105 ±0.0056 ±0.0062

BC3 0.6750 0.2462 0.6500 0.3308 0.2862 0.2726

±0.0638 ±0.0151 ±0.0698 ±0.0812 ±0.0432 ±0.0334

BC4 1.0018 0.2802 1.1236 0.3910 0.3511 0.3408

±0.1053 ±0.0312 ±0.1040 ±0.0520 ±0.0323 ±0.0210

BC1 0.4537 0.1429 0.4179 0.1797 0.1589 0.1482

±0.0517 ±0.0275 ±0.0443 ±0.0342 ±0.0168 ±0.0094

BC2 0.6506 0.1628 0.5209 0.2313 0.2188 0.2148

Po
st

-L
oc

kd
ow

n

±0.0994 ±0.0057 ±0.0535 ±0.0085 ±0.0060 ±0.0068

BC3 0.7168 0.2255 0.7083 0.3014 0.2636 0.2518

±0.0632 ±0.0145 ±0.0793 ±0.0709 ±0.0373 ±0.0286

BC4 1.8415 0.3314 1.8307 0.4496 0.4162 0.4043

±0.2765 ±0.0520 ±0.2319 ±0.0643 ±0.0475 ±0.0338

We conducted an experiment to determine the significance of continual learning by
comparing the performance of various popular models with and without continual learn-
ing.
The models used in the experiment are:

– FSNet [22]: Fast and slow network, described in detail in the method section of this
paper. In the no CL, version we use the exact same architecture, however we use the
traditional offline learning.
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– TCN [1]: Temporal Convolutional Network, is the offline learning baseline. It mod-
ifies the typical CNN using causal and dilated convolution which enhance its ability
to capture temporal dependencies more effectively. The next three methods are dif-
ferent continual learning methods that uses TCN as the baseline.

– OGD: Ordinary gradient descent, a popular optimization algorithm used in machine
learning. It updates the model parameters by taking small steps in the direction of
the gradient of the loss function.

– ER [6,17]: Experience Replay, a technique used to re-expose the model to past expe-
riences in order to improve learning efficiency and reduce the effects of catastrophic
forgetting.

– DER++ [5]: Dark Experience Replay++ is an extension of the DER (Deep Experi-
ence Replay) algorithm, which uses a memory buffer to store past experiences and
a deep neural network to learn from them. DER++ improves upon DER by using
a dual-memory architecture, which allows it to store both short-term and long-term
memories separately.

Table 3 displays the results, which demonstrate the consistent importance of contin-
ual learning in 1both the pre- and post-lockdown periods, with improvements multiple
times larger than the standard deviations.

7 Conclusion

In this study, we investigated the impact of mobility contextual data and continual learn-
ing on building energy usage forecasting during out-of-distribution periods. We used
data from Melbourne, Australia, a city that experienced one of the strictest lockdowns
during the COVID-19 pandemic, as a prime example of such periods. Our results indi-
cated that energy usage and mobility patterns vary significantly across different build-
ing complexes, highlighting the complexity of energy usage forecasting. We also found
that the mobility context had a greater impact than the temperature context in forecast-
ing energy usage during lockdown. We evaluated the importance of continual learning
by comparing the performance of several popular models with and without continual
learning, including FSNet, OGD, ER, and DER++. The results consistently demon-
strated that continual learning is important in both pre- and post-lockdown periods,
with significant improvements in performance observed across all models. Our study
emphasizes the importance of considering contextual data and implementing continual
learning techniques for robust energy usage forecasting in buildings.
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down dates, and pedestrian data can be access publicly. Lockdown dates is by ABC, an
Australian public news service https://www.abc.net.au/news/2021-10-03/melbourne-
longest-lockdown/100510710 and the pedestrian data is from City of Melbourne, a
municipal government http://www.pedestrian.melbourne.vic.gov.au/.

Statement of Informed Consent: This paper does not contain any studies with human
or animal participants. There are no human participants in this paper, and informed
consent is not applicable.

Ethical Considerations

There are several ethical considerations related to this paper.

Data Privacy. The use of data from buildings may raise concerns about privacy, par-
ticularly if personal data such as occupancy patterns is being collected and analyzed.
Although the privacy of individual residents, occupants, and users are protected through
the building level aggregations, sensitive information belonging to building managers,
operator, and owners might be at risk. To this end, we choose to further aggregate the
few buildings into complexes and make it anonymous. Unfortunately, the implication is
that we cannot publish the dataset.

Bias and Discrimination. There is a risk that the models used to predict energy usage
may be biased against certain groups of people, particularly if the models are trained on
data that is not representative of the population as a whole. This could lead to discrimi-
natory outcomes, such as higher energy bills or reduced access to energy for marginal-
ized communities. We do acknowledge that the CBD of Melbourne, Australia is not a
representative of energy usage in buildings in general, in CBD around the world, nor
Australia. However, our contribution specifically tackle the shift in distributions, albeit
only temporally and not spatially. We hope that our contributions will advance the fore-
casting techniques, even when the distributions in the dataset are not representative.

Environmental Impact. This paper can make buildings more sustainable by improving
energy usage forecasting, even during anomalous periods, such as the COVID-19 pan-
demic. Robust and accurate forecasting enables building managers to optimize energy
consumption and reduce costs. By using contextual data, such as human mobility pat-
terns, and continual learning techniques, building energy usage can be predicted more
accurately and efficiently, leading to better energy management and reduced waste.
This, in turn, can contribute to the overall sustainability of buildings and reduce their
impact on the environment.
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