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Abstract. While traditional Learning to Rank (LTR) models use query-
webpage pairs to perform regression tasks to predict the ranking scores,
they usually fail to capture the structure of interactions between queries
and webpages over an extremely large bipartite graph. In recent years,
Graph Convolutional Neural Networks (GCNs) have demonstrated their
unique advantages in link prediction over bipartite graphs and have been
successfully used for user-item recommendations. However, it is still dif-
ficult to scale-up GCNs for web search, due to the (1) extreme sparsity of
links in query-webpage bipartite graphs caused by the expense of ranking
scores annotation and (2) imbalance between queries (billions) and web-
pages (trillions) for web-scale search as well as the imbalance in anno-
tations. In this work, we introduce the Q-subgraph and W-subgraph
to represent every query and webpage with the structure of interaction
preserved, and then propose LtrGCN—an LTR pipeline that samples
Q-subgraphs and W-subgraphs from all query-webpage pairs, learns to
extract features from Q-subgraphs and W-subgraphs, and predict rank-
ing scores in an end-to-end manner. We carried out extensive experi-
ments to evaluate LtrGCN using two real-world datasets and online
experiments based on the A/B test at a large-scale search engine. The
offline results show that LtrGCN could achieve Δ NDCG5 = 2.89%–
3.97% compared to baselines. We deploy LtrGCN with realistic traf-
fic at a large-scale search engine, where we can still observe significant
improvement. LtrGCN performs consistently in both offline and online
experiments.
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1 Introduction

Large-scale Learning to Rank (LTR) is a central part of real-world information
retrieval problems, such as web search and content recommendations. Given a
query of web search, the search engine first retrieves relevant webpages from the
database and sorts the webpages by the ranking scores predicted by LTR mod-
els. While traditional LTR models transform ranking into regression problems
of various types, they usually fail to capture the structural information over the
interactions between billions of queries and trillions of webpages. These interac-
tions indeed characterize how all these queries and webpages connect each other
in a large bipartite graph of the web. To provide a better search experience, it
is inevitable to incorporate such structural information in LTR.

On the other hand, in recent years, Graph Neural Networks, such as Graph
Convolutional Neural Networks (GCN) [18], have been used for user-item recom-
mendations and demonstrated their unique advantages in modeling the problem
as link prediction over bipartite graphs [10]. Similar to LTR based on query-
webpage pairs, the user-item recommendation also needs to rank items (e.g.,
products or contents) subject to the given profile of every user. However, it is
difficult to directly adopt GCNs for LTR tasks at web-scale, due to the spar-
sity and imbalanced issues as follows. First of all, as shown in Fig. 1, links are
extremely sparse in the query-webpage bipartite graph extracted from LTR train-
ing datasets, as labeling query-webpage pairs by professional annotators is expen-
sive and time-consuming (difficult to scale-up). Furthermore, from the webpages’
perspectives, edges between queries and webpages are severely imbalanced—it is
quite common to link a query to dozens of webpages with both high and low rele-
vant scores, while a webpage hardly links to any queries, especially to the queries
that the webpage is less relevant or low-ranked, in the annotations. Apparently,
either sparsity or imbalance issue would significantly downgrade the performance
of GCN models [29]. Therefore, to tackle the above two challenges, there needs
a non-trivial extension on the GCN-based model for handling LTR at web-scale.

In this work, we propose LtrGCN to tackle the above two issues and adopt
GCNs for LTR tasks in a pipeline as follows. Given all query-webpage pairs in the
LTR training dataset, LtrGCN first leverages two advanced sampling strate-
gies to generate the Q-subgraph and W-subgraph for every query and webpage.
Then, LtrGCN leverages GCNs to extract feature vectors from the Q-subgraph
and W-subgraph as the representation of the query-webpage pair for ranking
score prediction. The feature extraction and ranking score prediction are opti-
mized in an end-to-end manner, so as to enable discriminative feature extraction
while preserving structural information in the bipartite graph. As sparsity and
imbalance issues are addressed, LtrGCN can work with the training datasets,
where it is sufficient that only a small proportion of query-webpage pairs are
labeled by experts. Furthermore, we conduct extensive experiments to evaluate
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Fig. 1. Sparsity and Imbalance Issues in the Query-Webpage Bipartite Graph.

LtrGCN using two real-world datasets (offline), and launch online experiments
based on an A/B test at a large-scale search engine. The offline results show
that LtrGCN could achieve the best performance on both datasets compared
to baselines. As for the online evaluation, we deploy LtrGCN with realistic
traffic at a large-scale search engine, where we still observe significant improve-
ment. LtrGCN performs consistently in both offline and online experiments.
Our main contributions are summarized as follows:

– We study the problem of the extreme sparsity of links in query-webpage
bipartite graphs caused by the expense of ranking score annotation and the
imbalance between queries and webpages for web-scale search. To the best of
our knowledge, this work is the first to investigate sparsity and imbalance in
query-webpage bipartite graphs for large-scale industrial LTR tasks.

– We propose LtrGCN consisting of three steps: (1) Q-subgraph Generation
via Self-tuned Labeling that annotates all unlabeled query-webpage pairs and
assigns every query webpages with ranking scores to generate Q-subgraphs,
(2) W-subgraph Generation via Negative Sampling that find irrelevant queries
for every webpage to construct W-subgraphs, (3) Learning to Rank based
on GCN with Q-subgraphs and W-subgraphs that learns the representations
of query-webpage pairs from Q-subgraphs and W-subgraphs and predicts
ranking scores in an end-to-end manner.

– We carry out extensive offline experiments on a public LTR dataset and a
real-world dataset collected from a large-scale search engine. We also deploy
LtrGCN at the search engine and implement a series of online evaluations.
The experiment results show that, compared to the state-of-the-art in web-
page ranking, LtrGCN could achieve the best performance on both offline
datasets. Furthermore, LtrGCN obtains significant improvements in online
evaluations under fair comparisons.

2 Methodology

2.1 Task Formulation

Given a set of search queries Q = {q1, q2, . . . } and all archived webpages
D = {d1, d2, . . . }, for each query qi ∈ Q, the search engine could retrieve a
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Fig. 2. The framework of LtrGCN consisting of three steps: (1) Q-subgraph Gener-
ation via Self-tuned Labeling, (2) W-subgraph Generation via Negative Sampling, and
(3) GCN-based LTR with Q-subgraphs and W-subgraphs.

set of relevant webpages denoted as Di = {di
j}

|Di|
j=1 ⊂ D. Through professional

labeling, a set of ranking scores yi = {yi
j}

|Di|
j=1 for qi is established to characterize

the relevance of the webpage di
j ∈ Di to the search query qi. In this paper, we

follow the settings in [26] and scale the relevant score from 0 to 4 to represent
levels of relevance (i.e., {bad-0, fair-1, good-2, excellent-3, perfect-4}). We
denote a set of query-webpage pairs with ranking score annotations as triples
S = {(q1,D1,y1), (q2,D2,y2), (q3, D3,y3), . . . }. We aim to learn an LTR scoring
function f : Q × D → [0, 4], which could be approximated through minimizing
the following ranking loss:

L =
1

|S|

|S|∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

�(yi
j , f(q

i, di
j))

⎞

⎠ , (1)

where � represents the loss of the ranking prediction for query qi with returned
webpage di

j against the ground truth label yi
j . Note that, LtrGCN is flexible

with standard loss functions (i.e., pointwise, pairwise, and listwise). As annota-
tors can barely label a small number of query-webpage pairs due to the limited
budgets, the key problem of LTR is thus to incorporate the unlabeled query-
webpage pairs denoted as set S ′

= {(q′
1,D

′
1), (q′

2,D
′
2), . . . }.

2.2 Overall Framework of LtrGCN

As illustrated in Fig. 2, LtrGCN consists of three steps: (1) Q-subgraph Genera-
tion via Self-tuned Labeling, (2) W-subgraph Generation via Negative Sampling,
and (3) Learning to Rank based on GCN with Q-subgraphs and W-subgraphs.
Specifically, in Step (1), LtrGCN first annotates all unlabeled query-webpage
pairs with pseudo ranking scores and then assigns every query webpages with
high ranking scores and also webpages with low scores to generate Q-subgraphs
from the training set. Then, in Step (2), LtrGCN proposes a negative sam-
pling strategy to find irrelevant queries for every webpage to construct W-
subgraphs. Eventually, in Step (3), given Q-subgraphs and W-subgraphs for
every high-ranked query-webpage pair, LtrGCN learns the representations of
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query-webpage pairs using a Light Graph Convolution Network (LightGCN) [12]
and enables LTR in an end-to-end manner.

2.3 Q-subgraph Generation via Self-tuned Labeling

As mentioned above, to leverage GCN for ranking, there needs to feed the
model with Q-subgraphs and W-subgraphs. Given query-webpage pairs that
are sparsely annotated with ranking scores in the training set, LtrGCN adopts
a labeling approach [23] that first annotates every unlabeled query-webpage pair
with a pseudo ranking score and then assigns every query webpages with high
ranking scores and also webpages with low scores, so as to generate Q-subgraphs
from the training set at full-scale. Thus, there needs the learning to predict
pseudo ranking scores with labeled/unlabeled samples in the training set.

LtrGCN first gets every possible query-webpage pair from query and web-
page datasets as (qi, d

j
i ) for ∀qi ∈ Q and ∀dj

i ∈ Di ⊂ D. For each query-
webpage pair (qi, d

j
i ), LtrGCN further extracts an m-dimensional feature vec-

tor xi,j representing the features of the jth webpage under the ith query.
Then, the labeled and unlabeled sets of feature vectors can be presented as
M = {(xi,j ,y

i
j)|∀(qi,Di,y) ∈ S and ∀di

j ∈ Di} and M′
= {xi,j |∀(qi,Di) ∈ S ′}.

Given the labeled feature set M and the unlabeled feature set M′
, LtrGCN

further takes a two-step strategy to accomplish the pseudo-label generation via
multi-loss learning as follows.

First, LtrGCN trains an LTR model with the listwise loss function as:

LList = − 1
|M|

|M|∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

softmax(yi
j) × log

(
softmax f(qi, di

j)
)
⎞

⎠ . (2)

The listwise-based LTR model is denoted as RankList. LtrGCN trains RankList

using both M and M′
through self-training, where RankList is first trained

using M through supervised learning. Then, RankList predicts the ranking score
for each feature vector in M′

and pseudo-labels the feature vector with the
prediction result. After that, LtrGCN combines M with pseudo-labeled data
MP and retrains RankList using the combined data MC .

Given the MC , M and M′
, LtrGCN (1) trains an LTR model with the

pointwise loss function as:

LPoint =
1

|MC |

|MC |∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

|f(qi, di
j) − yi

j |2
⎞

⎠ . (3)

The pointwise-based LTR model is denoted as RankPoint. LtrGCN first trains
RankPoint with MC and predicts pseudo-labels for each feature vector in M′

using trained RankPoint. Then, LtrGCN updates MP with the prediction
results of RankPoint and combines M with MP to conduct MC . LtrGCN
further retrains RankList using MC and predicts ranking scores for each feature
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vector in M′
using trained RankList. Finally, LtrGCN updates MP with the

prediction results of RList and combines M with MP to obtain MC . LtrGCN
repeats the above steps with T rounds and returns MC .

With pseudo ranking scores predicted for all unlabeled samples, LtrGCN
builds a Q-subgraph for every query with the (pseudo) ranking scores greater
than 2 (good). Specifically, to build the Q-subgraph, LtrGCN randomly picks
up a webpage that the query-webpage is with the ranking score lower than 1
(fair), and forms the three items (i.e., the query, a highly-ranked webpage of the
query, a low-ranked webpage of the query) into a Q-subgraph.

2.4 W-subgraph Generation via Negative Sampling

Though Q-subgraph Generation step could generate ranking scores for every
query-webpage pair in the training dataset, it is still difficult to construct W-
subgraphs using predicted scores at full-scale. While every query connects to
the webpages with high/low pseudo ranking scores, a webpage usually only con-
nects to one or very limited highly-relevant queries and the number of web-
pages is much larger than that of effective queries from a webpages’ perspective.
Thus, there needs to find irrelevant queries for every webpage. To build W-
subgraphs for a webpage, LtrGCN leverages a negative sampling strategy. Given
a webpage, LtrGCN retrieves all query-webpage pairs, builds a W-subgraph for
every query-webpage with the ranking scores higher than 2 (fair). Specifically,
LtrGCN randomly picks up a query that does not connect to the webpage as
the irrelevant query, then forms the three (i.e., the webpage, a query where the
webpage is highly ranked, and an irrelevant query) into a W-subgraph. Specif-
ically, for a query qi, LtrGCN randomly chooses the webpage from the other
query to conduct the negative samples and assigns the relevant score as 0 or 1
to represent poor relevance. Through this negative sampling method, LtrGCN
could build W-subgraphs for a webpage.

2.5 GCN-Based LTR with Q-subgraphs and W-subgraphs

Given Q-subgraphs and W-subgraphs for every high-ranked query-webpage pair,
in this step, LtrGCN learns the representations of query-webpage pairs with a
GCN and enables learning to rank (LTR) in an end-to-end manner.

In the initial step, given the Q-subgraph and W-subgraph, LtrGCN extracts
the feature vector of each query and webpage. Specifically, the feature of query
qi and webpage di

j is denoted as z(n=0)
qi and z

(n=0)

di
j

, where n indicates the feature

output from the nth GCN layer. Next, the GCN-based encoder utilizes the query-
webpage interaction graph to propagate the representations as:

z
(n+1)
qi =

∑

di
j∈Nqi

1√∣∣Nqi

∣∣
√∣∣Ndj,i

∣∣
z
(n)

di
j

,

z
(n+1)

di
j

=
∑

qi∈N
di
j

1√∣∣Nqi

∣∣
√∣∣Ndj,i

∣∣
z
(n)
qi ,

(4)
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where Nqi and Ndj,i
represent the set of webpages that are relevant to query qi

and the set of queries that are relevant to webpage di
j , respectively. Moreover,

1√
|Nqi |

√
|Ndj,i |

is the normalization term used to prevent the scale of representa-

tions from increasing as a result of graph convolution operations. After N layers
graph convolution operations, LtrGCN combines the representations generated
from each layer to conduct the final representation of query qi and webpage di

j

as follows:

zqi =
N∑

n=0

βnz
(n)
qi ; zdi

j
=

N∑

n=0

βnz
(n)

di
j

, (5)

where βn ∈ [0, 1] is a hyper-parameter to balance the weight of each layer repre-
sentation. Then, LtrGCN combines zqi and zdi

j
to conduct the learned query-

webpage pair representation as zi,j .
Given the learned vector zi,j , LtrGCN adopts a Multi-Layer Perception

(MLP)-based model with a fully-connected layer to calculate the predicted score
si,j . The whole process can be formulated as: si,j = fθ(zi,j), where θ is the set
of discriminative parameters. Against the ground truth, LtrGCN leverages the
discriminative loss function, which is defined as:

LDisc =
1

|Q|

|Q|∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

�LTR

(
yi

j , fθ(zi,j)
)
⎞

⎠ , (6)

where �LTR represents the standard LTR loss function (i.e., pointwise, pairwise
and listwise).

3 Deployment of LtrGCN

In this section, we introduce the deployment settings of LtrGCN at a large-
scale industrial search engine. As illustrated in Fig. 3, we present the overall
workflow of the real-world deployment and the three-stage design of the search
engine as follows: (1) Webpage Collection, (2) Webpage Storage and Indexing,
and (3) Retrieval and Ranking.

Webpage Collection. To efficiently navigate the vast expanse of webpages avail-
able on the internet, the search engine employs high-performance crawlers known
as Web Crawlers. These crawlers play a vital role in collecting and downloading
webpages. The Web Crawler operates by systematically scanning a comprehen-
sive list of links, and actively searching for new webpages and updates to existing
ones. It selects and stores valid links containing the desired content, creating a
downloading list. Utilizing real-time web traffic data, the Web Crawler initiates
the downloading process, ensuring timely retrieval of information.
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Fig. 3. The overview of the large-scale search engine with LtrGCN deployed.

Webpage Storage and Indexing. The search engine stores downloaded webpages
in distributed archival storage systems and create efficient indices for high-
performance search. These storage systems utilize elastic resources across multi-
ple regional data centers, reducing storage costs. The indexing system balances
indexing workloads and achieves superb I/O efficiency through novel key-value
operations and in-memory computation. This combination allows search engines
to effectively manage large volumes of web content and provide fast and accurate
search results.

Retrieval and Ranking. Given a search query, the search engine first retrieves all
relevant webpages from the dataset and sorts top-K relevant webpages. Specif-
ically, the search engine adopts a pre-trained language model based semantic
retrieval algorithms to enhance the conventional retrieval approach. Then, the
search engine pairs each webpage with the query to conduct a query-webpage
pair and uses LtrGCN to accomplish ranking tasks. To ensure LtrGCN can
satisfy the rapid shift of internet interest, the search engine periodically picks up
new queries and relevant webpages, hires people to annotate scores and re-trains
LtrGCN with labeled data.

4 Experiments

In this section, we first detail experimental settings. Then, we introduce the
results of the offline experiments. Finally, extensive online experiments further
demonstrate the effectiveness of LtrGCN at a real-world search engine.

4.1 Experimental Settings

Datasets. To demonstrate the effectiveness of our proposed model, we present
extensive experiments on a common-used public dataset, MSLR-Web30K [26]
and a real-world dataset collected from a large-scale commercial web search
engine. MSLR-Web30K contains about 30,000 queries and 3,771,125 query-
webpage pairs. Each query-webpage pair is represented as a 136-dimensional
real-valued feature vector associated with a relevance label with a scale from 0
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(irrelevant) to 4 (perfectly relevant). In our experiments, we perform the five-fold
cross-validation [26] and report the average results across five folds.

Collected Dataset contains 15,000 queries and over 770,000 query-webpage
pairs from a large-scale industrial search engine. In our dataset, each query-
webpage pair is also represented as a 120-dimensional real-valued feature vector
associated with a relevant score. We randomly split the real-world dataset into a
training set (9,000 queries), a validation set (3,000 queries), and a test set (3,000
queries). All features are standardized before being fed into the ranking models
in our experiments.

Evaluation Metric. To evaluate the performance of LtrGCN, we utilize
Normalized Discounted Cumulative Gain (NDCG) [15], which is widely
adopted in LTR tasks. The NDCG score for the query could be computed as
follows:

NDCGN =
1
Z

N∑

i=1

2yi − 1
log2(1 + i)

, (7)

where Z is a normalization factor that is the ideal order of Discounted Cumula-
tive Gain [14], and yi is the ranking score of the ith webpage. Additionally, the
value of NDCG ranges between [0, 1], and a higher NDCGN indicates a better
LTR model. In our experiments, we consider the NDCG of the top 5 and 10
results (i.e., NDCG5 and NDCG10) for research and business purposes.

Interleaving [9] is a widely used metric for evaluating the performance of an
industrial search engine. In interleaved comparison, two results generated from
different systems are delivered to users whose click-through actions would be
attributed to the system that delivers the corresponding results.

Good vs. Same vs. Bad (GSB) [41] is an online pairwise metric evaluated by
professional annotators. In manual comparison, two results produced by the new
system and the legacy system are provided to human experts that are required
to judge which result is better.

Loss Functions and Competitor Systems. To evaluate the effectiveness of
our proposed model comprehensively, we adopt different state-of-the-art rank-
ing loss functions as follows: Root Mean Square Error (RMSE) is a widely
used pointwise loss. RankNet [6] and LambdaRank [5] are two popular pair-
wise losses for neural LTR tasks both in research and industry. More particular,
LambdaRank multiplies actual gradients with the change in NDCG by swapping
the rank positions of the two candidates. ListNet [7] and ListMLE [36] are two
listwise losses, which calculate the probability of the ideal permutation based on
the ground truth. ApproxNDCG [27] and NeuralNDCG [25] are two listwise
loss functions that directly optimize the metric.

For offline experiments, we compare LtrGCN with the state-of-the-art rank-
ing models to conduct comprehensive comparisons as follows: MLP is a com-
monly used ranking model. Context-Aware Ranker (CAR) [24] is a Trans-
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Table 1. Performance on MSLR-Web30k under various ratios of labeled data.

Methods 5% 10% 15% 20%
NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10

RMSE 35.26 38.02 39.12 41.95 43.31 45.65 46.04 48.86
RankNet 34.51 37.43 38.52 41.32 42.54 45.08 45.32 47.89
LambdaRank 35.84 38.50 39.65 42.47 43.69 46.23 46.57 49.56
ListNet 34.90 37.94 38.71 41.76 42.85 45.40 45.63 48.42
ListMLE 33.85 36.95 37.90 40.84 41.88 44.43 44.72 47.26
ApproxNDCG 34.29 37.20 38.32 41.01 42.37 44.70 45.26 47.50
NeuralNDCG 35.36 38.26 39.50 42.10 43.60 45.97 46.39 49.20
CARRMSE 35.89 38.82 40.24 43.02 44.16 46.51 46.96 49.78
CARRankNet 36.04 38.94 40.46 43.27 44.32 46.62 47.03 49.84
CARLambdaRank 35.83 38.79 40.05 42.84 44.03 46.39 46.83 49.62
CARListNet 35.52 38.54 39.80 42.60 43.84 46.19 46.59 49.38
CARListMLE 36.17 39.03 40.61 43.45 44.45 46.81 47.12 49.90
CARApproxNDCG 35.48 38.47 39.68 42.48 43.72 46.04 46.45 49.26
CARNeuralNDCG 35.66 38.64 39.87 42.70 43.90 46.25 46.72 49.53
XGBoost 33.63 36.94 37.68 40.81 41.67 44.46 44.53 47.28
LightGBM 35.14 38.12 39.63 42.32 43.38 45.98 46.05 49.39
+RMSE 35.62 38.64 39.49 42.29 43.64 46.05 46.42 49.21
+RankNet 35.64 38.67 39.22 42.48 43.98 46.48 46.73 49.24
+LambdaRank 35.96 38.72 40.24 42.75 44.01 46.62 46.95 49.92
+ListNet 36.13 38.87 40.47 43.03 44.26 46.73 47.02 50.14
+ListMLE 36.05 38.91 40.35 42.86 44.15 46.58 46.71 50.03
+ApproxNDCG 36.33 39.08 40.94 43.36 44.60 47.01 47.28 50.43
+NeuralNDCG 36.52 39.07 41.16 43.62 44.72 47.35 47.49 50.76

former [31]-based ranking model. XGBoost [8] and LightGBM [17] are two
tree-based ranking models with pairwise and listwise loss, respectively.

Considering the high expense of deploying ranking models and the prior expe-
rience, we only compare our proposed model with the aforementioned models
without including more previous ranking models [2,3,16]. For online experi-
ments, we only report the improvement between LtrGCN and the legacy sys-
tem .

4.2 Offline Experimental Results

Comparative Results. Tables 1 and 2 illustrate offline experimental results of
LtrGCN compared with baselines on MSLR-Web30K and Collected Dataset on
NDCG5 and NDCG10. We use the name of each loss to present MLP with the loss
and “+” to represent “LtrGCN+”. Intuitively, we could observe that LtrGCN
outperforms all baselines on two datasets. Specifically, LtrGCN+ApproxNDCG
obtains the best performance on NDCG10 with 5% labeled data on MSLR-
Web30K, which gains 1.88% improvements compared with the base model with
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Table 2. Performance on Collected Dataset under various ratios of labeled data.

Methods 5% 10% 15% 20%
NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10

RMSE 50.12 53.42 54.45 57.86 57.62 61.34 59.64 64.76
RankNet 49.76 53.07 54.08 57.37 57.41 60.92 59.38 64.25
LambdaRank 51.19 54.24 55.38 58.62 58.38 62.05 61.30 65.28
ListNet 50.48 53.61 54.91 58.04 58.05 61.41 59.92 64.82
ListMLE 49.24 52.46 53.42 56.70 56.61 60.25 58.67 63.68
ApproxNDCG 49.50 52.75 53.73 57.02 57.08 60.61 59.05 64.01
NeuralNDCG 51.05 53.89 55.19 58.31 58.24 61.82 61.21 64.97
CARRMSE 51.24 53.71 55.42 58.78 58.16 62.08 61.43 65.42
CARRankNet 51.36 53.82 55.49 58.81 58.33 62.15 61.49 65.58
CARLambdaRank 51.60 54.08 55.76 59.13 58.73 62.19 61.62 65.89
CARListNet 51.68 54.14 55.85 59.24 58.84 62.27 61.75 65.92
CARListMLE 51.47 53.96 55.52 58.90 58.50 62.12 61.56 65.70
CARApproxNDCG 51.72 54.17 55.93 59.32 59.02 62.32 61.91 66.08
CARNeuralNDCG 51.98 54.38 56.02 59.43 59.17 62.39 62.04 66.12
XGBoost 50.70 53.19 54.91 58.36 58.16 61.75 61.43 64.75
LightGBM 51.53 53.94 55.74 59.05 58.87 62.28 62.15 65.98
+RMSE 50.68 53.86 54.66 58.35 57.94 61.65 60.13 65.10
+RankNet 50.83 53.92 54.92 58.42 58.23 61.69 60.56 65.19
+LambdaRank 51.34 54.47 55.82 59.06 58.87 62.27 61.62 65.61
+ListNet 51.62 54.60 55.95 59.23 59.06 62.36 61.87 65.88
+ListMLE 51.32 54.23 55.70 59.04 58.62 61.82 61.50 65.43
+ApproxNDCG 52.05 54.57 56.17 59.60 59.39 62.42 62.23 66.17
+NeuralNDCG 52.16 54.79 56.36 59.78 59.62 62.53 62.64 66.29

ApproxNDCG. LtrGCN with NeuralNDCG achieves the best performance on
MSLR-Web30K with the other settings. Moreover, LtrGCN with NeuralNDCG
obtains the best performance against all competitors. Specifically, LtrGCN+
NeuralNDCG achieves the improvement with 1.11%, 1.17%, 1.38% and 1.43%
that MLP with NeuralNDCG on NDCG5 on Collected Dataset. The performance
of our model improves consistently with the label ratio increasing. We also com-
pared LtrGCN with LightGCN [12], which cannot be trained at all with “Out
of Memory” flagged, due to the sparsity issue.

Ablation Studies. In this study, we conduct a series of ablation studies
to investigate the effectiveness of the three steps of LtrGCN. Specifically,
LtrGCN w/o Q-subgraph Generation via Self-tuned Labeling (QGSL) is the
model that replaces QGSL with a pointwise-based self-trained LightGBM to
pseudo data. As for LtrGCN w/o W-subgraph Generation via Self-tuned Label-
ing, it fails to train the model due to the sparsity issue. LtrGCN w/o GCN-based
LTR with Q-subgraphs and W-subgraphs (GLQW ) is the proposed model that
directly utilizes the MLP-based LTR model on the combined data. LtrGCN
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Table 3. Ablation studies of LtrGCN+NeuralNDCG on NDCG5 under various ratios
of labeled data on two datasets.

Methods MSLR-Web30K Collected Dataset
5% 10% 15% 20% 5% 10% 15% 20%

+NeuralNDCG 36.52 41.16 44.72 47.49 52.16 56.36 59.62 62.64
+NeuralNDCG w/o QGSL 35.71 40.34 43.87 46.65 51.29 55.48 59.12 61.78
+NeuralNDCG w/o GLQW 35.48 40.19 43.70 46.54 51.50 55.65 59.35 61.91
+NeuralNDCG w/o MLM 35.92 40.43 44.12 46.90 51.47 55.74 59.48 62.12

Table 4. Ablation studies of LtrGCN+ApproxNDCG on NDCG10 under various
ratios of labeled data on two datasets.

Methods MSLR-Web30K Collected Dataset
5% 10% 15% 20% 5% 10% 15% 20%

+ApproxNDCG 39.08 43.36 47.01 50.43 54.57 59.60 62.42 66.17
+ApproxNDCG w/o QGSL 37.84 42.15 45.76 49.24 53.21 58.23 61.01 64.74
+ApproxNDCG w/o GLQW 38.12 42.40 46.15 49.36 53.39 58.57 61.28 65.62
+ApproxNDCG w/o MLM 38.05 42.37 45.98 49.39 53.40 57.92 61.17 64.93

w/o MLP-based LTR Model (MLM ) is the proposed model that utilizes an MLP
model with two layers following GLQW.

As shown in Tables 3 and 4, we sample the ablation study results of LtrGCN
with NeuralNDCG on NDCG5 and LtrGCN with ApproxNDCG on NDCG10

under four ratios of labeled data. Intuitively, we could observe that the three
steps contribute to positive improvements for LtrGCN under all settings.
Specifically, GLQW gains the improvement with 1.04%, 0.97%, 1.02% and 0.95%
on NDCG5 for LtrGCN+NeuralNDCG on MSLR-Web30K. Similarly, QGSL
improves the performance of LtrGCN with ApproxNDCG on NDCG10 with
1.36%, 1.37%, 1.41% and 1.43% on Collected Dataset. All results of ablation
studies demonstrate the effectiveness of the three steps for LtrGCN.

4.3 Online Experimental Results

Interleaving and Manual Evaluation. Table 5 illustrates performance
improvements on ΔAB and ΔGSB. We first find that LtrGCN trained under
20% labeled data achieves substantial improvements for the online system on two
metrics, which demonstrates the practicability and effectiveness of our proposed
model. Specifically, the proposed model achieves the most significant improve-
ment with 0.26% and 3.00% on ΔAB and ΔGSB for random queries, respectively.
Also, we observe that the proposed model outperforms the legacy system for long-
tail queries whose search frequencies are lower than 10 per week. Particularly,
the largest advantages of ΔAB and ΔGSB are 0.41% and 6.50%.



LtrGCN: GCN-Based Learning to Rank 647

Table 5. Performance improvements of online evaluation.

Model ΔAB ΔGSB

Random Long-Tail Random Long-Tail

The Legacy System – – – –
LtrGCN+ApproxNDCG 0.14% 0.35% 2.50% 5.00%
LtrGCN+NeuralNDCG 0.26% 0.41% 3.00% 6.50%

Fig. 4. Online comparative performance (ΔNCDG5) of LtrGCN for 7 days (t-test
with p < 0.05 over the baseline).

Online A/B Test. To further verify the effectiveness of LtrGCN, we conduct
a series of online A/B test with real-world web traffic and compare it with the
legacy system at a large-scale search engine. According to offline experimental
results, we deploy the trained LtrGCN under four ratios of labeled data with
5% real-world web traffic, which contains millions of queries per day. The online
A/B tests last for 7 days. Due to the page limit, we only report the performance
of trained models under 15% and 20% labeled data. Figure 4 illustrates the com-
parison of LtrGCN with the legacy system on ΔNCDG5. LtrGCN could boost
the performance compared with the online legacy system all day, which demon-
strates that LtrGCN is practical for improving the performance of the large-
scale search engine. Moreover, we could observe that the trained LtrGCN with
NeuralNDCG under 15% and 20% labeled data achieves the most significant
improvement with 0.64% and 0.60%. The improvement reveals the effectiveness
of LtrGCN. Eventually, it could be observed that LtrGCN performs stably
on all days. Online performance is consistent with offline experiment results.

5 Related Work

Learning-to-rank (LTR) techniques generally pertain to machine learning meth-
ods that are utilized to solve ranking problems, which are crucial in various
applications, such as search engine and recommendation system. Based on the
loss function, LTR models could be divided into three types: pointwise [20],
pairwise [5,16] and listwise [7,25,27,36]. The pointwise loss formulates the LTR
problem into a regression task. The pairwise loss converts two documents into a
document pair to treat LTR tasks as binary classification problems. The listwise
loss treats the whole document list as a sample and directly optimizes the evalu-
ation metrics [28], such as NDCG [15]. Recently, deep models have been widely
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employed in LTR tasks, achieved by minimizing various ranking loss functions
in an end-to-end manner [4,22,32,39]. However, deep techniques have led to the
study of learning to rank using implicit user feedback, but biases cause unsat-
isfied performance, so unbiased learning to rank has been proposed to mitigate
these biases [30,34,38]. In this work, we focus on solving practical LTR problems
in the industrial scenario.

In recent years, the modeling graph structure is highlighted by the devel-
oped Graph Convolutional Networks (GCN). Existing GCN methods could be
categorized into two families [35,40]: spectral GCN and spatial GCN. Spectral
GCN leverages graph spectral representations to define graph convolutions, such
as SGCN [33], JK-Net [37] and MixHop [1]. Spatial GCN models suggest mini-
batch graph training on spatially connected neighbours [42]. Many works have
studied the problem of node representation and re-defined graph convolution in
the spatial domain, such as GraphSage [11] and ASGCN [13]. It is important to
note that several recent attempts offer comprehensive insights on GNNs [19,21].
Moreover, some outstanding works pay more attention to avoiding the unneces-
sary complexity of GCN, such as SGCN [33] and LightGCN [12]. In this work,
we leverage a GCN-based encoder to learn the representations of query-webpage
pairs for the downstream LTR task.

6 Conclusion

In this work, we design, implement and deploy a GCN-based LTR model
LtrGCN at a large-scale industrial search engine to address the problem of
extreme sparsity of links in query-webpage bipartite graphs and imbalance
between queries and webpages for web-scale search. Specifically, LtrGCN uti-
lizes two advanced sampling strategies to generate the Q-subgraphs and W-
subgraphs from all query-webpage pairs in the first two steps. Then, LtrGCN
leverages GCNs to extract feature vectors from Q-subgraphs and W-subgraphs
for LTR as the representation of the query-webpage pair or ranking score pre-
diction. The feature extraction and ranking scores prediction are optimized in
an end-to-end manner, so as to enable discriminative feature extraction while
preserving structural information in the bipartite graph. To demonstrate the
effectiveness of LtrGCN, we conduct extensive offline and online experiments
compared with a large number of baseline methods. Offline experiment results
show that LtrGCN could achieve significant performance compared with other
competitors. Furthermore, LtrGCN significantly boosts the online ranking per-
formance at the industrial search engine, which is consistent with offline results.
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