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Abstract. Wearable sensors such as Inertial Measurement Units
(IMUs) are often used to assess the performance of human exercise. Com-
mon approaches use handcrafted features based on domain expertise or
automatically extracted features using time series analysis. Multiple sen-
sors are required to achieve high classification accuracy, which is not very
practical. These sensors require calibration and synchronization and may
lead to discomfort over longer time periods. Recent work utilizing com-
puter vision techniques has shown similar performance using video, with-
out the need for manual feature engineering, and avoiding some pitfalls
such as sensor calibration and placement on the body. In this paper, we
compare the performance of IMUs to a video-based approach for human
exercise classification on two real-world datasets consisting of Military
Press and Rowing exercises. We compare the performance using a single
camera that captures video in the frontal view versus using 5 IMUs placed
on different parts of the body. We observe that an approach based on a
single camera can outperform a single IMU by 10 percentage points on
average. Additionally, a minimum of 3 IMUs are required to outperform
a single camera. We observe that working with the raw data using mul-
tivariate time series classifiers outperforms traditional approaches based
on handcrafted or automatically extracted features. Finally, we show that
an ensemble model combining the data from a single camera with a sin-
gle IMU outperforms either data modality. Our work opens up new and
more realistic avenues for this application, where a video captured using
a readily available smartphone camera, combined with a single sensor,
can be used for effective human exercise classification.
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1 Introduction

Recent years have seen an accelerated use of machine learning solutions to assess
the performance of athletes. New technologies allow easier data capture and effi-
cient machine learning techniques enable effective measurement and feedback.
In this paper, we focus on the application of human exercise classification where
the task is to differentiate normal and abnormal executions for strength and
conditioning (S&C) exercises. S&C exercises are widely used for rehabilitation,
performance assessment, injury screening and resistance training in order to
improve the performance of athletes [18,19]. Approaches to data capture are
either sensor-based or video-based. For sensor-based approaches, sensors such as
Inertial Measurement Units (IMUs) are worn by participants [18,19]. For video,
a participant’s motion is captured using 3D motion capture [15], depth-capture
based systems [31], or 2D video recordings using cameras [22,25]. The data
obtained from these sources is processed and classified using machine learning
models. Classification methods based on sensor data are popular in the litera-
ture and real-world applications, and yet, video-based approaches are gaining
popularity [25,26] as they show potential for providing high classification accu-
racy and overcoming common issues of inertial sensors. Sensors require fitting on
different parts of the body and the number of sensors to be worn depends upon
the context of the exercise. For instance, the Military Press exercise requires
at least 3 IMUs for optimal performance. Despite their popularity, sensors may
cause discomfort, thereby hindering the movement of participants. In addition,
using multiple sensors leads to overheads such as synchronization, calibration
and orientation.

Fig. 1. Comparison of video (top) and sensors (bottom) to classify human exercise
movement. The upper box presents the process of obtaining multivariate data from
video (only 3 out of 25 body parts shown). The bottom box shows the raw Y-signals
from a single IMU placed on the participant’s body (only 3 signals shown here).
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Recent advances in computer vision have enabled the usage of 2D videos for
human exercise classification. Past work explored posture detection [22] and the
application of human exercise classification using pose estimation. Our previous
work [25] proposed a novel method named BodyMTS to classify human exercises
using video, human pose estimation and multivariate time series classification.
There is less work comparing sensors with video in real-world applications. In
this paper, we compare the performance of a sensor-based approach utilizing 5
IMUs with that of video from a single front-facing camera, on the same set of 54
participants, on two real-world datasets consisting of Military Press (MP) and
Rowing exercises. These are important S&C exercises and are widely used for
injury risk screening and rehabilitation [30]. Incorrect executions may lead to
musculoskeletal injuries and undermine the performance of athletes [1]. Hence,
correct detection of abnormal movements is crucial to avoid injuries and maxi-
mize performance.

The main requirements for an effective human exercise classification applica-
tion are [25]: accurate monitoring of body parts movement, correct classification
of deviations from normal movements, timely feedback to end users, simple data
capture using available smartphones and coverage of a wide range of S&C exer-
cises. Previous work [29] has shown that this task is difficult and has poor intra
and inter-rater accuracy in user studies with domain experts, with Kappa scores
for inter-rater agreement between 0.18–0.53, and intra-rater between 0.38–0.62.
Through discussions with domain experts, we established that an effective appli-
cation should achieve a minimum accuracy of 80% to be useful for end users.

Existing methods using IMUs involve pre-processing the raw data, creating
handcrafted features [18,20], and applying classical machine learning algorithms.
Handcrafted feature extraction is often tedious and time-consuming, requires
access to domain knowledge and is prone to cherry-pick features that only work
for a specific set of exercises. Deep learning methods [17] overcome this issue by
automatically constructing features during training, but still require expertise in
deep learning architectures along with hardware resources such as GPUs. Hence,
we take two approaches to feature extraction: (1) using lightweight packages such
as catch22 [13] and tsfresh [4] to automate the feature extraction from raw signals
and (2) using the raw time series data with time series classifiers, which implicitly
construct features inside the algorithm. For videos, we first extract multivariate
data using human pose estimation with OpenPose [3] to obtain (X,Y) location
coordinates of key body parts over all the frames of a video. Figure 1 shows data
captured with IMUs and video for the Military Press exercise. The top part shows
the Y-signal for 3 body parts for a total of 10 repetitions, while the bottom part
shows the X, Y, and Z signals of the magnetometer from an IMU worn on the
right arm for the same set of 10 repetitions. Our main contributions are:

– We compare 3 strategies for creating features from IMU data for human
exercise classification. We observe that directly classifying the raw signals
using multivariate time series classifiers outperforms the approach based on
handcrafted features by a margin of 10 and 4 percentage points in accuracy
for MP and Rowing respectively. Automatic feature extraction shows better
performance than handcrafted features.
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– We compare the performance of IMU and video for human exercise classifi-
cation. We observe that a single video-based approach outperforms a single
IMU-based approach by a margin of 5 percentage points accuracy for MP and
15 percentage points for Rowing. Additionally, we observe that a minimum
of 3 IMU devices are needed to outperform a single video for both exercises.

– We propose an ensemble model that combines the data modalities from IMU
and video, which outperforms either approach by a minimum of 2 percentage
points accuracy for both MP and Rowing. This leads to an accuracy of 93%
for MP and 87% for Rowing, using only a single IMU and a reduced-size
video. We discuss reasons why combining video and sensor data is beneficial,
in particular, the 2D video provides positional information, while the sensor
provides information on orientation and depth of movement.

– To support this paper we have made all our code and data available 1.

The rest of the paper is organized as follows. Section 2 presents an overview
of related work, Sect. 3 describes the data collection procedure, Sect. 4 describes
the data analysis and methodology for classification and Sect. 5 presents the
classification results using IMUs and video. Section 6 concludes and outlines
directions for future work and Sect.A discusses ethical implications of this work.

2 Related Work

This section describes the purpose of S&C exercises and provides an overview
of sensor-based and video-based data capture approaches.

2.1 S&C Exercise Classification

S&C exercises aim at improving the performance of human participants in terms
of strength, speed and agility, and they can be captured using sensor-based or
video-based techniques.

Wearable sensor-based approaches involve fitting Inertial Measurement Units
(IMUs) [18,19] on different parts of the body. This is followed by creating hand-
crafted features which are used in conjunction with a classical machine learning
model. Deep learning methods attempt to automate the process of feature extrac-
tion. CNN models work by stacking IMU signals into an image [17], whereas [28]
uses an attention mechanism to identify the important parts in a signal. Using
IMUs has its own limitations. First, the number of inertial sensors required and
their positions can vary from exercise to exercise [18,20,30]. Furthermore, sen-
sors require calibration and synchronization and may also hinder the movement
of the body and cause discomfort when used over longer time periods [11,30].

Video-based systems can be categorized into 3 types: 3D motion capture,
depth camera-based and 2D video camera. Though they are accurate, 3D motion
capture systems are expensive and require complex setups. In addition, fitting
multiple markers on the body may hinder the normal movement of the body [18].
1 https://github.com/mlgig/Video vs Shimmer ECML 2023.

https://github.com/mlgig/Video_vs_Shimmer_ECML_2023
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Microsoft Kinect is commonly used for depth camera-based systems [5,23,31].
These systems are less accurate and are affected by poor lighting, occlusion,
and clothing, and require high maintenance [18]. The third subcategory uses
video-based devices such as DSLR or smartphone cameras. Works based on
video rely on human pose estimation to track different body parts [16,25,26]
and have shown 2D videos to be a potential alternative to IMU sensors. The
video-based analysis also includes commercial software such as Dartfish [9] by
providing the option to analyze motion at a very low frame rate. However, these
are less accurate and require fitting body markers of a different colour to the
background.

2.2 Multivariate Time Series Classification (MTSC)

In multivariate time series classification tasks, the data is ordered and each
sample has more than one dimension. We focus on recent linear classifiers and
deep learning methods, which have been shown to achieve high accuracy with
minimal run-time and memory requirements [24,27].

Linear Classifiers. ROCKET [6] is a state-of-the-art algorithm for MTSC in
terms of accuracy and scalability. Two more extensions named MiniROCKET
[7] and MultiROCKET [27], have further improved this method. These classifiers
work by using a large number of random convolutional kernels which capture
different characteristics of a signal and hence do not require learning the kernel
weights as opposed to deep learning methods. These features are then classified
using a linear classifier such as Logistic or Ridge Regression.

Deep Learning Classifiers. Deep learning architectures based on Fully Con-
volutional Networks (FCN) and Resnet [10,24] have shown competitive perfor-
mance for MTSC, without suffering from high time and memory complexity.

3 Data Collection

Participants. 54 healthy volunteers (32 males and 22 females, age: 26 ± 5 years,
height: 1.73 ± 0.09 m, body mass: 72 ± 15 kg) were recruited for the study. Par-
ticipants were asked to complete multiple repetitions of the two exercises in this
study; the Military Press and Rowing exercises. In each case, the exercises were
performed under ’normal’ and ’induced’ conditions. In the ’normal’ condition the
exercise was performed with the correct biomechanical form and in the ’induced’
condition the exercise was purposefully performed with pre-determined devia-
tions from the normal form, assessed and confirmed in real-time by the movement
scientist. Please refer to these sources [25,26] for additional information on the
experiment protocol.

The data was collected using two video cameras and 5 Shimmer IMUs placed
on 5 different parts of the body. Two cameras (30 frames/sec with 720p reso-
lution) were set up in front and to the side of the participants. In this work,
we only use the video recordings from the front view camera which is a more
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common use case. The 5 IMUs with settings: sampling frequency of 51.2 Hz, tri-
axial accelerometer(±2 g), gyroscope (±500◦/s) and magnetometer (±1.9 Ga)
[20] were fitted on the participants at the following five locations: Left Wrist
(LW), Right Wrist (RW), Left Arm (LA), Right Arm (RA) and Back. The ori-
entation and locations of all the IMUs were consistent for all the participants.

Exercise Technique and Deviations. The induced forms were further sub-
categorized depending on the exercise.

3.1 Exercise Classes for Military Press (MP)

Normal (N): This class refers to the correct execution, involving lifting the bar
from shoulder level to above the head, fully extending the arms, and returning
it back to shoulder level with no arch in the back. The bar must be stable and
parallel to the ground throughout the execution. Asymmetrical (A): The bar
is lopsided and asymmetrical. Reduced Range (R): The bar is not brought
down completely to the shoulder level. Arch (Arch): The participant arches
their back during execution. Figure 2 shows these deviations using a single frame.

Fig. 2. Single frames from the Military Press exercise, depicting the induced deviations
for class A, Arch and R (left to right).

Fig. 3. Single frames for the Rowing exercise, depicting the induced deviations for class
A, Ext, R and RB (left to right).
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3.2 Exercise Classes for Rowing

Normal (N): This class refers to the correct execution, where the participant
begins by positioning themselves correctly, bending knees and leaning forward
from the waist. The execution starts by lifting the bar with fully extended arms
until it touches the sternum and bringing it back to the starting position. The
bar must be stable and parallel to the ground and the back should be straight.
Asymmetrical (A): The bar is lopsided and asymmetrical. Reduced Range
(R): The bar is not brought up completely until it touches the sternum. Ext: The
participant moves his/her back during execution. RB: The participant executes
with a rounded back. Figure 3 shows these deviations by depicting a single frame.

4 Data Analysis and Methods

This section presents the data pre-processing, features extraction and classifica-
tion models. We present the feature extraction for IMU data, followed by feature
extraction for video. We also provide a description of the train/test splits for
IMUs and video data.

4.1 IMU Data

We discuss three strategies to create features from IMU data. First, we directly
use the raw signal as a time series. Second, we use existing approaches to create
handcrafted features. Third, we use dedicated packages to automatically extract
features. Features extraction is performed after segmenting the full signal to
obtain individual repetitions.

Raw Signal as Multivariate Time Series. The raw signal from IMU records
data for 10 repetitions. Hence, we segment the time series to obtain signals for
individual repetitions. The Y signal of the magnetometer from the IMU placed on
the right arm is utilized to segment the signals. The time series obtained after this
step has variable length since the time taken to complete each repetition differs
from participant to participant. Further, current implementations of selected
time series classifiers cannot handle variable-length time series and therefore all
time series are re-sampled to a length of 161 (length of the longest time series).
This does not impact the performance as shown in the supplementary material.
Every single repetition constitutes a single sample for train/test data. The final
data D has a shape of D ∈ R

N×45×161, where N indicates the total samples.
Each sample denoted by xi in the data has a dimension of xi ∈ R

45×161, where
45 denotes the total number of time series (5 IMUs x 9 signals) and 161 is the
length of each time series.
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Handcrafted Features. Each of the 5 IMUs outputs 9 signals (X,Y,Z) for
each of the accelerometer, magnetometer and gyroscope. We follow the procedure
as described in [20] to create handcrafted features. Additionally, 5 signals were
created for each IMU: pitch, roll, yaw signal and vector magnitude of accelerom-
eter and gyroscope, giving a total of 70 signals (5 × (9 + 5)). For each repetition
signal, 18 handcrafted features that capture time and frequency domain charac-
teristics were created. Hence, we obtain the final data D ∈ R

N×1260, where N
is the total samples and 1260 represents the features extracted from 70 signals
with 18 features each for both MP and Rowing.

Auto Extracted Features. We use packages catch22 [13] and tsfresh [4] to
perform automatic feature extraction from a single repetition signal. These pack-
ages calculate a wide range of pre-defined metrics in order to capture the diverse
characteristics of a signal. They are straightforward to use and avoid the need for
domain knowledge and signal processing techniques. Catch22 captures 22 fea-
tures for each of the 45 signals (5 IMUs x 9 signals) giving a total of 990 tabular
features for MP and Rowing in the final dataset D ∈ R

N×990, where N indi-
cates the total samples. Similarly, tsfresh captures a large number of time series
characteristics by creating a large number of features. The final dataset D has
a shape of D ∈ R

N×15000 and D ∈ R
N×16000, for MP and Rowing respectively.

Both manual and automatic feature extraction are performed on the normalized
time series, as we observed that normalizing the time series leads to an increase
in accuracy.

4.2 Video Data

We follow the methodology presented in our previous work [25] to classify human
exercise from videos. OpenPose is used for human pose estimation to track the
key body parts, followed by a multivariate time series classifier. Each video
consists of a sequence of frames where each frame is considered a time step. Each
frame is fed to OpenPose which outputs coordinates (X,Y ) for 25 body parts.
We only use the 8 upper body parts most relevant to the target exercises but
also conduct experiments with the full 25 body parts. The time series obtained
from a single body part is denoted by bn = [(X,Y )1, (X,Y )2, (X,Y )3, ...(X,Y )T ]
where n indicates the nth body part and T is the length of the video clip.

Multivariate Time Series Data. Since each video records 10 repetitions
for each exercise execution, segmentation is necessary in order to obtain single
repetitions. Each repetition forms a single time series sample for training and
evaluating a classifier. We use peak detection to segment the time series as
mentioned in our previous work [25]. Similarly to the IMU case, every time series
obtained after this step has a variable length and therefore is re-sampled to a
length of 161. The final data is denoted by D ∈ R

N×16×161, where N indicates
the total samples. Each sample denoted by xi has a dimension of xi ∈ R

16×161,
where 16 indicates X and Y coordinates for 8 body parts and 161 is the length
of each time series.
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Auto Extracted Features. We use catch22 [13] and tsfresh [4] to perform
automatic feature extraction from each single repetition signal.

4.3 Train/Test Splits

We use 3 train/test splits in the ratio of 70/30 on the full data set to obtain
train and test data for both IMUs and video. Each split is done based on the
unique participant IDs to avoid leaking information into the test data. Train
data is further split in the ratio of 85/15 to create validation data to fine-tune
the hyperparameters. The validation data is merged back into the train data
before the final classification. The data is balanced across all the classes. Table 1
shows the number of samples across all classes for a single train/test split for
MP and Rowing respectively.

Table 1. Samples per class in train/test dataset for a single 70/30 split for MP (left)
and Rowing (right) for both IMU and video.

Class Train Test Total

N 370 150 520

A 340 150 490

R 366 155 521

Arch 350 140 490

Total 1426 595 2021

Class Train Test Total

N 360 160 520

A 362 150 512

Ext 340 130 470

R 380 150 530

RB 361 140 501

Total 1803 730 2533

4.4 Classification Models

We use tabular machine learning models to work with handcrafted and auto-
mated features. Informed by previous literature on feature extraction for IMU
data [18,20], we focus on Logistic Regression, Ridge Regression, Naive Bayes,
Random Forest and SVM as classifiers for tabular data. We select ROCKET,
MultiROCKET and deep learning models FCN and Resnet as recent accurate
and fast multivariate time series classifiers [2].

5 Empirical Evaluation

We present results on IMU data, video data and combinations using ensembles.
We report average accuracy over 3 train/test splits for all the results. We use the
sklearn library [21] to classify tabular data and sktime [12] to classify time series
data. All the experiments are performed using Python on an Ubuntu 18.04 sys-
tem (16GB RAM, Intel i7-4790 CPU @ 3.60GHz). The Supplementary Material2

2 https://github.com/mlgig/Video vs Shimmer ECML 2023/blob/master/
Supplementary material.pdf.

https://github.com/mlgig/Video_vs_Shimmer_ECML_2023/blob/master/Supplementary_material.pdf
https://github.com/mlgig/Video_vs_Shimmer_ECML_2023/blob/master/Supplementary_material.pdf
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presents further detailed results on leave-one-participant-out cross-validation,
demographic results, execution time, as well as the impact of normalization and
re-sampling length on the classification accuracy.

5.1 Accuracy Using IMUs

We present the classification results using 3 different strategies for creating fea-
tures from IMU data. For tabular features, we perform feature selection to reduce
overfitting and execution time. We use Lasso Regression (C=0.01) with L1
penalty for feature selection, where C is the regularization parameter. Logis-
tic Regression achieves the best performance followed by Ridge Regression and
SVM. These results suggest that linear classifiers are best suited for this prob-
lem. Hence we only present results using Logistic Regression here. We tune
hyperparameters, particularly regularization parameter C of Logistic Regression
using cross validation. We observed that Logistic Regression (LR) with C=0.01
achieves the highest accuracy (Table 3 presents results with Logistic Regression).

Table 2. Average accuracy on test data over 3 splits for selected multivariate time
series classifiers using IMU raw data as time series.

Classifier Acc MP Acc Rowing

FCN 0.86 0.77

ResNet 0.87 0.74

ROCKET 0.91 0.80

MultiROCKET 0.91 0.81

Table 2 presents the results using raw data and multivariate time series clas-
sifiers. ROCKET achieves the best performance with MultiROCKET having
similar accuracy for this problem. ROCKET has the added benefit that it can
also work with unnormalised data and it is faster during training and prediction,
so we select this classifier for the rest of the analysis. We analyse the average
accuracy using all 5 IMUs as well as combinations of IMUs using raw time series
with ROCKET as classifier. The goal is to select the minimum number of IMUs
needed to achieve the best performance for MP and Rowing. Table 3 presents the
average accuracy over 3 splits obtained using all IMUs whereas Table 4 presents
the average accuracy using different combinations of IMUs.

Results and Discussion: From Table 3 we observe that using raw data with
ROCKET achieves the highest accuracy when compared to the approaches based
on handcrafted and automated feature extraction. We tune hyperparameters
of ROCKET using the validation data, particularly the number-of-kernels and
observe no impact on the accuracy. The normalization flag is set to True here as
turning it off leads to a 4 percentage points drop in the accuracy. ROCKET can
easily be run on a single CPU machine without the need for much engineering
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Table 3. Average accuracy obtained on 5 IMUs data by using three feature selection
strategies. Logistic Regression (LR) is used for tabular data, whereas ROCKET is used
for time series classification.

Feature Type Acc MP Acc Rowing

Tabular

Handcrafted 0.80 0.76

Automated (catch22) 0.84 0.75

Automated (tsfresh) 0.88 0.80

Raw Signals

Time series 0.91 0.80

Table 4. Average accuracy obtained using the different placement of IMUs over three
train/test splits using raw data as time series with ROCKET as classifier.

Placement of IMU Acc MP Acc Rowing

5 IMUs 0.91 0.80

RightWrist 0.83 0.68

LeftWrist 0.84 0.70

RightArm 0.77 0.65

LeftArm 0.76 0.66

Back 0.71 0.71

LeftWrist + RightWrist 0.88 0.75

LeftWrist + RightWrist + Back 0.91 0.80

LeftArm + RightArm 0.82 0.70

LeftArm + RightArm + Back 0.86 0.78

effort (only 2 parameters to tune) and dedicated hardware. It is much faster than
using tsfresh or catch22 for feature extraction followed by classification. Table 4
presents the accuracy using different combinations of IMUs placed on different
parts of the body. Accuracy is lowest when using only a single sensor. Accuracy
starts to increase as more IMUs are included, for both MP and Rowing. We
observe that placing 1 IMU on each wrist and 1 at the back achieved the same
accuracy as using all 5 IMUs. The accuracy jumps from 0.83 to 0.88 moving
from one IMU placed on the right wrist to two IMUs placed on both wrists and
finally jumps to 0.91 when adding one more IMU at the back for MP. Similar
behaviour is observed for Rowing. This suggests that 3 IMUs are sufficient for
these exercises.

5.2 Accuracy Using Video

Here we present the results of classification using video as the data source. We
report the average accuracy over 3 train/test splits for MP and Rowing. We also
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Table 5. Average accuracy obtained by ROCKET using video as data source for MP
and Rowing over three train/test splits.

Feature Type Acc MP Acc Rowing

Tabular

Automated (catch22) 0.69 0.70

Automated (tsfresh) 0.77 0.77

Raw Signals

25 body parts 0.82 0.79

8 body parts 0.88 0.83

Elbow Pair [8] 0.83 0.82

present results using tabular classifiers with automated features for comparison
with the IMU based approach. For the raw data approach, we study the accuracy
when involving different body parts, e.g., all 25, the 8 upper body parts suggested
by domain experts and results using automated channel selection technique [8].
The normalization flag is set to False here as turning it on leads to a 4 percentage
points drop in accuracy. This is in contrast to the setting configured for IMUs.
We tune hyperparameters of ROCKET, particularly the number-of-kernels and
observe no impact on the accuracy. Table 5 presents the average accuracy using
these different approaches for classifying MP and Rowing exercises.

Results and Discussion: From Table 5 we observe that the average accuracy
achieved using raw time series is highest when using the 8 body parts suggested
by domain experts. Using automated features does not seem to work very well,
in this case, achieving accuracy below 80% for both exercises. Moreover, using
channel selection techniques leads to an improvement by 1 and 3 percentage
points in accuracy versus using the full 25 body parts.

5.3 IMU Versus Video

We compare IMU and video data for human exercise classification, using the
raw data approach for both IMU and video as it achieves the best performance.
We report the accuracy, the execution time and the storage space required.

Table 6 presents the results for both MP and Rowing exercises. We observe
that a minimum of 3 IMUs are required to achieve a higher accuracy than a
single video. A single video outperforms a single IMU for both exercises by a
minimum of 5 percentage points. Table 7 reports the real train/test time for
both approaches. This time includes time taken for data pre-processing and to
train/test the model. It also includes time to run pose estimation in case of video.
The IMUs approach takes the least amount of time to train/test as compared to
the video-based approach. For video, OpenPose extracts the multivariate time
series data. The total duration of all videos is 1 h 38 min for MP, whereas Open-
Pose took 1 h 12 min thus OpenPose can run faster than real-time, which is
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Table 6. Comparison of accuracy obtained using IMUs and video for MP and Rowing.

Data Source Acc MP Acc Rowing

Placement of IMUs

3 IMUs (Wrists and Back) 0.91 0.80

1 IMU (LeftWrist) 0.84 0.70

Video

25 body parts 0.82 0.79

8 body parts 0.88 0.83

Ensemble: video and IMUs

Video (8 body parts) + 3 IMUs 0.93 0.88

Video (8 body parts) + 1 IMU LeftWrist 0.93 0.87

important for getting fast predictions. Table 8 presents the storage consumption
for both approaches. We note savings in terms of storage space: 5 IMUs require 6
times more space than the time series obtained from videos. Even after selecting
the minimum number of sensors which is 3 in both exercises, the storage con-
sumption is more than 200 MB which is also higher as compared to using time
series from video. Our previous work in [25] explored the impact of video quality
such as resolution and bit rate on classification accuracy and demonstrated how
much video quality can be degraded without having a significant impact on the
accuracy, whilst saving storage space and processing power.

5.4 Combining IMU and Video

We create an ensemble model by combining individual models trained indepen-
dently on IMU and Video. For IMUs, we take the 3 sensors that achieved the
highest accuracy. When video is combined with just a single sensor, we take
the IMU placed on the left wrist, as it had the highest accuracy among single
sensors and it is the most common location for people to wear their smartwatch.
Probabilities are combined by averaging and the class with the highest average
probability is predicted for a sample during test time. Table 6 presents a com-
parison of different approaches, using ROCKET as a multivariate time series
classifier. From Table 6, we observe that an ensemble model achieves the best
average accuracy when compared to using any number of IMUs and a single
video-based approach. The accuracy for MP jumps by 2 percentage points when
transitioning from 5 IMUs to an ensemble approach, and by 5 percentage points
when moving from a single video to an ensemble. Similar results are observed
for Rowing. These results suggest that combining IMU and video modalities
enhances the performance of exercise classification. Combining video and IMU
data sources, with video providing 2D location coordinates for key anatomi-
cal landmarks and IMUs capturing acceleration and orientation of the body
parts, results in improved classification accuracy, as shown in this investigation
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Table 7. Average train/test time (minutes) obtained using IMUs and video as data
sources for MP over three train/test splits. We also report the average test (i.e., pre-
diction) time over a clip of 10 repetitions.

Data Type Training Time Test Time/

(minutes) Test time per clip of 10 reps

Sensor

3 IMUs (Wrists and Back) 8 6/0.10

Video

8 body parts 52 22/0.37

Ensemble: video and IMUs

Video (8 body parts) + 5 IMUs 60 29/0.50

Video (8 body parts) + 1 IMU 58 27/0.46

Table 8. Storage consumption using raw videos, IMUs and video as time series for
MP and Rowing exercises for the 54 participants in our study.

Data Size (MB) MP Rowing

5 IMUs 640 591

Raw Videos (720p) 813 1012

Videos as Time Series 97 114

(see supplementary material). This finding is consistent with previous work in
[14] that highlights the complementary nature of video and IMUs in enhancing
human pose estimation quality, while in this work we see a similar benefit for
human exercise classification.

6 Conclusion

We presented a comparison of IMU and video-based approaches for human exer-
cise classification on two real-world S&C exercises (Military Press and Rowing)
involving 54 participants. We compared different feature-creation strategies for
classification. The results show that an automated feature extraction approach
outperforms classification that is based on manually created features. Addition-
ally, directly using the raw time series data with multivariate time series classi-
fiers achieves the best performance for both IMU and video. While comparing
IMU and video-based approaches, we observed that using a single video signif-
icantly outperforms the accuracy obtained using a single IMU. Moreover, the
minimum number of IMUs required is not known in advance, for instance, 3
IMUs are required for MP to reach a reasonable accuracy. Next, we compared
the performance of an ensemble method combining both IMU and video with
the standalone approaches. We showed that an ensemble approach outperforms
either data modality deployed in isolation. The accuracy achieved was 93% and
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88% for MP and Rowing respectively. The criteria to select sensors or videos will
ultimately depend on the goal of the end user. For instance: the choice between
video and IMUs will depend on a combination of factors such as convenience
and levels of accuracy required for the specific application context.

We acknowledge the fact that the scenario that was tested in this research
does not accurately reflect real-world conditions. This does mean that we are
exposed to the risk that the induced deviation performances could be exagger-
ated, and therefore not reflective of the often very minor deviations that can
be observed in the real-world setting. However, we would argue that performing
exercises under induced deviation conditions, if done appropriately, is a very nec-
essary first step towards validating these exercise classification strategies in this
field. It would not be prudent to assume that this model could be generalised
to operate to the same level in real-world conditions. Having said that, the use
of conditioned datasets is a necessary first step in this kind of application and
provides the proof of concept evidence necessary to move onto the real-world
setting.

Acknowledgment. This work was funded by Science Foundation Ireland through
the Insight Centre for Data Analytics (12/RC/2289 P2) and VistaMilk SFI Research
Centre (SFI/16/RC/3835).

A Ethical Implications

Using videos for human exercise classification raises ethical implications that
need to be mitigated, prompting a discussion of potential ethical implications.

Data Collection. Participants in this study provided written consent and the
Human Research Ethics Committee of the university approved this study. All
experiments were conducted under the supervision of an expert physiotherapist.
The potential implications, in this case, can arise when the language used for
the consent form may not be native to all the participants. In our case, the
organizing authority or professional who was carrying out the data collection
made sure that all the participants have well understood the consent form and
the use of this data in the future.

Privacy and Confidentiality. This study uses videos which record participants
executing exercises. This poses obvious privacy challenges. A first step is to
blur the video to protect the participant’s identity. This work utilizes human
pose estimation to extract time series from video, thereby avoiding the need to
directly use the original video. By working with the extracted time series, it
largely safeguards the privacy and confidentiality of the participants.

Diversity of Representation. The participants considered in this study fall
into the age group of 20 to 46. Hence the results presented here may not gener-
alise for other age groups. Therefore the final use case will depend on the specific
target users, such as athletes competing in the Olympic games versus individuals
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with less intensive training goals. While there were slightly more male partici-
pants than female participants, it does not impact the conclusions drawn in this
work, as analysed in the supplementary material. However, this requires further
exploration to avoid any biases in the conclusion. Future studies should aim for
equal representation among participants in terms of age, sex, gender, race etc.,
from the start of the study.

Transparency and Feedback. The prediction of the model in this case outputs
whether the execution of the exercise was correct or incorrect. Deep learning-
based models and other posthoc explanation methods support saliency maps
which can be used to highlight the discriminative regions of the data that can
be mapped back to the original video thus providing more information about
the model decision to the participant.

The above list is not exhaustive and other inherent biases may appear because
of the chosen model and the way the data has been collected.
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