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Preface

The 2023 edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2023) was held in Turin,
Italy, from September 18 to 22, 2023.

The ECMLPKDD conference, held annually, acts as a worldwide platform showcas-
ing the latest advancements in machine learning and knowledge discovery in databases,
encompassing groundbreaking applications.With a history of successful editions, ECML
PKDD has established itself as the leading European machine learning and data min-
ing conference, offering researchers and practitioners an unparalleled opportunity to
exchange knowledge and ideas.

The main conference program consisted of presentations of 255 accepted papers and
three keynote talks (in order of appearance):

– Max Welling (University of Amsterdam): Neural Wave Representations
– Michael Bronstein (University of Oxford): Physics-Inspired Graph Neural Networks
– Kate Crawford (USC Annenberg): Mapping Generative AI

In addition, there were 30 workshops, 9 combined workshop-tutorials, 5 tutorials,
3 discovery challenges, and 16 demonstrations. Moreover, the PhD Forum provided
a friendly environment for junior PhD students to exchange ideas and experiences
with peers in an interactive atmosphere and to get constructive feedback from senior
researchers. The conference included a Special Day on Artificial Intelligence for Finan-
cial Crime Fight to discuss, share, and present recent developments in AI-based financial
crime detection.

In recognition of the paramount significance of ethics in machine learning and data
mining, we invited the authors to include an ethical statement in their submissions. We
encouraged the authors to discuss the ethical implications of their submission, such as
those related to the collection and processing of personal data, the inference of personal
information, or the potential risks. We are pleased to report that our call for ethical
statements was met with an overwhelmingly positive response from the authors.

The ECML PKDD 2023 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. A
total of 8 grants covering all or part of the registration fee (4 free registrations and 4
with 50% discount) were awarded to individuals who belong to underrepresented com-
munities, based on gender and role/position, to attend the conference and present their
research activities. The goal of the grants was to provide financial support to early-
career (women) scientists and Master and Ph.D. students from developing countries.
The Diversity and Inclusion action also includes the SoBigData Award, fully sponsored
by the SoBigData++ Horizon2020 project, which aims to encourage more diverse par-
ticipation in computer science and machine learning events. The award is intended to
cover expenses for transportation and accommodation.
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The papers presented during the three main conference days were organized in four
different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining;

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging the
gap between practice and current theory;

– Journal Track: papers published in special issues of the journals Machine Learning
and Data Mining and Knowledge Discovery;

– Demo Track: short papers introducing new prototypes or fully operational systems
that exploit data science techniques and are presented via working demonstrations.

We received 829 submissions for the Research track and 239 for the Applied Data
Science Track.

We accepted 196 papers (24%) in the Research Track and 58 (24%) in the Applied
Data Science Track. In addition, there were 44 papers from the Journal Track and 16
demo papers (out of 28 submissions).

We want to thank all participants, authors, all chairs, all Program Committee mem-
bers, area chairs, session chairs, volunteers, co-organizers, and organizers of workshops
and tutorials for making ECML PKDD 2023 an outstanding success. Thanks to Springer
for their continuous support and Microsoft for allowing us to use their CMT software
for conference management and providing support throughout. Special thanks to our
sponsors and the ECML PKDD Steering Committee for their support. Finally, we thank
the organizing institutions: CENTAI (Italy) and Politecnico di Torino (Italy).

September 2023 Elena Baralis
Francesco Bonchi

Manuel Gomez Rodriguez
Danai Koutra
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Gianmarco De Francisci Morales
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Neural Wave Representations

Max Welling

University of Amsterdam, The Netherlands

Abstract. Good neural architectures are rooted in good inductive biases
(a.k.a. priors). Equivariance under symmetries is a prime example of a
successful physics-inspired prior which sometimes dramatically reduces
the number of examples needed to learn predictive models. In this work,
we tried to extend this thinking to more flexible priors in the hidden vari-
ables of a neural network. In particular, we imposed wavelike dynamics
in hidden variables under transformations of the inputs, which relaxes
the stricter notion of equivariance. We find that under certain conditions,
wavelike dynamics naturally arises in these hidden representations. We
formalize this idea in a VAE-over-time architecture where the hidden
dynamics is described by a Fokker-Planck (a.k.a. drift-diffusion) equa-
tion. This in turn leads to a new definition of a disentangled hidden rep-
resentation of input states that can easily be manipulated to undergo
transformations. I also discussed very preliminary work on how the
Schrödinger equation can also be used to move information in the hidden
representations.

Biography. Prof. Dr. Max Welling is a research chair in Machine Learning at the Uni-
versity of Amsterdam and a Distinguished Scientist at MSR. He is a fellow at the Cana-
dian Institute for Advanced Research (CIFAR) and the European Lab for Learning and
Intelligent Systems (ELLIS) where he also serves on the founding board. His previous
appointments include VP at Qualcomm Technologies, professor at UC Irvine, postdoc
at the University of Toronto and UCL under the supervision of Prof. Geoffrey Hinton,
and postdoc at Caltech under the supervision of Prof. Pietro Perona. He finished his
PhD in theoretical high energy physics under the supervision of Nobel laureate Prof.
Gerard ‘t Hooft. Max Welling served as associate editor-in-chief of IEEE TPAMI from
2011–2015, he has served on the advisory board of the NeurIPS Foundation since 2015
and was program chair and general chair of NeurIPS in 2013 and 2014 respectively. He
was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of
MIDL in 2018. MaxWelling was a recipient of the ECCVKoenderink Prize in 2010 and
the ICML Test of Time Award in 2021. He directs the Amsterdam Machine Learning
Lab (AMLAB) and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the
Bosch-UvA Deep Learning lab (DELTA).



Physics-Inspired Graph Neural Networks

Michael Bronstein

University of Oxford, UK

Abstract. The message-passing paradigm has been the “battle horse” of
deep learning on graphs for several years, making graph neural networks
a big success in a wide range of applications, from particle physics to
protein design. From a theoretical viewpoint, it established the link to
the Weisfeiler-Lehman hierarchy, allowing us to analyse the expressive
power of GNNs.We argue that the very “node-and-edge”-centric mindset
of current graph deep learning schemes may hinder future progress in
the field. As an alternative, we propose physics-inspired “continuous”
learning models that open up a new trove of tools from the fields of
differential geometry, algebraic topology, and differential equations so
far largely unexplored in graph ML.

Biography. Michael Bronstein is the DeepMind Professor of AI at the University of
Oxford. He was previously a professor at Imperial College London and held visiting
appointments at Stanford, MIT, and Harvard, and has also been affiliated with three
Institutes for Advanced Study (at TUM as a Rudolf Diesel Fellow (2017–2019), at
Harvard as a Radcliffe fellow (2017–2018), and at Princeton as a short-time scholar
(2020)). Michael received his PhD from the Technion in 2007. He is the recipient of the
Royal Society Wolfson Research Merit Award, Royal Academy of Engineering Silver
Medal, five ERC grants, two Google Faculty Research Awards, and two Amazon AWS
ML Research Awards. He is a Member of the Academia Europaea, Fellow of the IEEE,
IAPR, BCS, and ELLIS, ACM Distinguished Speaker, and World Economic Forum
Young Scientist. In addition to his academic career, Michael is a serial entrepreneur and
founder of multiple startup companies, including Novafora, Invision (acquired by Intel
in 2012), Videocites, and Fabula AI (acquired by Twitter in 2019).



Mapping Generative AI

Kate Crawford

USC Annenberg, USA

Abstract. Training data is foundational to generative AI systems. From
Common Crawl’s 3.1 billion web pages to LAION-5B’s corpus of almost
6 billion image-text pairs, these vast collections – scraped from the inter-
net and treated as “ground truth” – play a critical role in shaping the
epistemic boundaries that govern generative AI models. Yet training data
is beset with complex social, political, and epistemological challenges.
What happens when data is stripped of context, meaning, and prove-
nance? How does training data limit what and howmachine learning sys-
tems interpret the world? What are the copyright implications of these
datasets?Andmost importantly,what formsof power do these approaches
enhance and enable? This keynote is an invitation to reflect on the epis-
temic foundations of generative AI, and to consider the wide-ranging
impacts of the current generative turn.

Biography. Professor Kate Crawford is a leading international scholar of the social
implications of artificial intelligence. She is a Research Professor at USC Annenberg in
Los Angeles, a Senior Principal Researcher atMSR in NewYork, an Honorary Professor
at the University of Sydney, and the inaugural Visiting Chair for AI and Justice at the
École Normale Supérieure in Paris. Her latest book, Atlas of AI (Yale, 2021) won the
Sally Hacker Prize from the Society for the History of Technology, the ASIS&T Best
Information Science Book Award, and was named one of the best books in 2021 by
New Scientist and the Financial Times. Over her twenty-year research career, she has
also produced groundbreaking creative collaborations and visual investigations. Her
project Anatomy of an AI System with Vladan Joler is in the permanent collection of
the Museum of Modern Art in New York and the V&A in London, and was awarded
with the Design of the Year Award in 2019 and included in the Design of the Decades
by the Design Museum of London. Her collaboration with the artist Trevor Paglen,
Excavating AI, won the Ayrton Prize from the British Society for the History of Science.
She has advised policymakers in the United Nations, theWhite House, and the European
Parliament, and she currently leads the Knowing Machines Project, an international
research collaboration that investigates the foundations of machine learning.
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Abstract. This paper proposes a novel approach for modeling obser-
vational data in the form of expert ratings, which are commonly given
on an ordered (numerical or ordinal) scale. In practice, such ratings are
often biased, due to the expert’s preferences, psychological effects, etc.
Our approach aims to rectify these biases, thereby preventing machine
learning methods from transferring them to models trained on the data.
To this end, we make use of so-called label smoothing, which allows for
redistributing probability mass from the originally observed rating to
other ratings, which are considered as possible corrections. This enables
the incorporation of domain knowledge into the standard cross-entropy
loss and leads to flexibly configurable models. Concretely, our method is
realized for ordinal ratings and allows for arbitrary unimodal smoothings
using a binary smoothing relation. Additionally, the paper suggests two
practically motivated smoothing heuristics to address common biases in
observational data, a time-based smoothing to handle concept drift and
a class-wise smoothing based on class priors to mitigate data imbalance.
The effectiveness of the proposed methods is demonstrated on four real-
world goodwill assessment data sets of a car manufacturer with the aim
of automating goodwill decisions. Overall, this paper presents a promis-
ing approach for modeling ordinal observational data that can improve
decision-making processes and reduce reliance on human expertise.

Keywords: Prescriptive machine learning · Ordinal classification ·
Ordinal regression · Label smoothing · Observational data · Unimodal
distribution

1 Introduction

Our starting point is rating data, where cases x are associated with a score or
rating y, typically taken from an ordinal scale. In credit scoring, for example,
a customer’s credit worthiness could be rated on the scale Y = {poor, fair,
good, very good, excellent}; similar examples can be found in finance [10,16] or
medicine [6,18]. Our real-world example, to which we will return later on in the
experimental part, is the assessment of goodwill requests by a car manufacturer,
where a human goodwill after-sales expert decides about the percentage of the
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labor and parts cost contributions the manufacturer is willing to pay. In our
case, the decision is a contribution between 0 and 100%, in steps of 10%, i.e.,
Y = {0, 10, 20, . . . , 100}— note that this scale is somewhat in-between cardinal
and ordinal, and could in principle be treated either way.

From a machine learning (ML) perspective, rating data has (at least) two
interesting properties. First, ML models learned on such data are prescriptive
rather than predictive in nature [11]. In particular, given a case x, there is
arguably nothing like a ground-truth rating y. At best, a rating could be seen as
fair from the point of view of a customer, or opportune from the point of view of
a manufacturer. For machine learning, the problem is thus to learn a prescriptive
model that stipulates “appropriate” ratings or actions to be taken to achieve a
certain goal, rather than a predictive model targeting any ground-truth.

Second, rating data is often biased in various ways. This is especially true
for observational data where labels or ratings are coming from human experts
and may be geared towards the expert’s preferences and views. For example,
the distribution of ratings in our goodwill use case (cf. Fig. 1) clearly shows a
kind of “rounding effect”: Experts prefer ratings of 0%, 50%, and 100%; ratings
in-between (20% or 30%, 70% or 80%) are still used but much less, while values
close to these preferred ones, such as 10% or 90%, are almost never observed —
presumably, these “odd” ratings are rounded to the closest “even” ratings. Con-
sequently, such data should not necessarily be taken as a gold standard. On
the contrary, it might be sub-optimal and may not necessarily suggest the best
course of action to be taken in a given context.

Fig. 1. Distribution of goodwill contributions for labor and parts at the car manufac-
turer.

To tackle this problem, our idea is to “weaken” the rating data through real-
location, turning a deterministic observation y into a (probability) distribution
on Y; this idea is inspired by a technique known as label smoothing [19]. For
example, an observed rating of 50% could be replaced by a distribution assign-
ing probabilities of 0.05, 0.2, 0.5, 0.2, 0.0.5, respectively, to 30%, 40%, 50%, 60%,
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and 70%, suggesting that the actually most appropriate rating is not necessarily
50%, but maybe another value close by. Learning from such data can be seen as
a specific form of weakly supervised learning [22].

More concretely, we propose a novel label smoothing approach based on
the geometric distribution, which, compared to previous methods (cf. Sect. 2),
enables more transparent and flexible re-distribution of probability mass. The
approach is specifically tailored to probabilistic prescriptive ordinal classifica-
tion, where a high degree of model configurability is required to correct bias in
observational data, surpassing regularization aspects of previous methods by far.
Our contributions can be summarized as follows:

– Novel unimodal smoothing method: In Sect. 3, we introduce our new
unimodal label smoothing method. We first outline the basic smoothing app-
roach and then extend it to a smoothing-relation based approach. This allows
for flexible class-wise re-distribution of probability mass to inject domain
knowledge into the standard cross-entropy loss.

– Practically motivated heuristics: Additionally, we present two heuris-
tic smoothing functions to deal with common issues in observational data,
namely concept drift and data imbalance (cf. Sect. 3.4).

– Application to a real world automated decision making (ADM)
use-case: In Sect. 4, we apply and evaluate our proposed methods on the
aforementioned use-case. To this end, we leverage real-world observational
goodwill assessment data sets of a car manufacturer.

2 Related Work

So-called label smoothing is a popular method in machine learning, specifically
in deep learning [15,19], which is meant to reduce overconfidence in one-hot
encoded (0/1) deterministic labels, thereby serving as a kind of regularizer and
preventing the learner from over-fitting the (possibly noisy) training data. Label
smoothing removes a certain amount of probability mass from the observed label
and spreads it uniformly across the classes. That is, an observation (xi, yi) is
turned into a training example (xi, p

LS
i ), where pLS

i is a probability distribution
on Y:

pLS
i (k) = (1 − α)yi,k + α

1
K

,

with K = |Y| the number of classes, yi,k = 1 for the observed class and = 0
otherwise, and α ∈ (0, 1) a smoothing parameter. Label relaxation is a general-
ization of label smoothing, in which the single smoothed distribution is replaced
by a larger set of candidate distributions [12]. While a uniform distribution of
probability mass is a meaningful strategy for standard (nominal) classification,
where classes have no specific order, this is arguably less true for ordinal clas-
sification, also called ordinal regression in statistics [9,17], where classes have a
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linear order: y1 ≺ y2 ≺ · · · ≺ yK . In this setting, one may rather expect a uni-
modal distribution of the classes, where the observed label is the single mode of
the distribution, and classes closer to the mode are considered more likely than
classes farther away. In ordinal classification, unimodality is not only a natural
property for smoothing, but of course also for prediction [1,2,4,5]; see Fig. 2 for
an illustration.

Liu et al. [13] propose to use the Binomial and Poisson distribution to re-
distribute the probability mass of one-hot encoded (0/1) labels in a unimodal
fashion. However, the authors admit that both distributions are problematic:
In the case of Poisson, it is not easy to flexibly adjust the shape, and for the
Binomial distribution, it is difficult to flexibly adjust the position of the peak
and the variance. Therefore, they propose another smoothing function e

−|k−j|
τ

based on the exponential function, followed by a softmax normalization to turn
the result into a discrete probability distribution on Y. Here, τ > 0 is a smooth-
ing factor that determines the “peakedness” of the function, j the index of the
observed class in the one-hot encoded label yi (where the value is 1) and k the
k-th class. However, how much probability mass is assigned to the mode and the
rest of the classes is not transparent and might require significant experimen-
tation effort. Vargas et al. propose unimodal smoothing methods based on the
continuous Beta and Triangular distributions [20,21] where parameters need to
be pre-calculated upfront depending on the current class and the overall number
of classes. The Binomial and Poisson distribution have previously also been used
to constrain the output of neural networks to unimodailty, where their usage
appears more natural than for label smoothing. For instance, Beckham and Pal
[2] use the Binomial and Poisson distributions as the penultimate layer in a deep
neural network to constrain the output to unimodality before sending it through

(a) Multimodal distribution of credit scor-
ing probabilities.

(b) Unimodal distribution of credit scoring
probabilities.

Fig. 2. Exemplary multimodal (left) and unimodal (right) output distributions of credit
scoring probabilities. The multimodal distribution on the left appears unnatural since
the data underlies a natural order. One would rather expect a monotonic decrease of
probability from the mode of the distribution, like it is shown on the right.
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a final softmax layer. A quite similar approach was previously proposed by da
Costa et al. [4,5].

3 Unimodal Label Smoothing Based on the Geometric
Distribution

In the following, we introduce our novel unimodal label smoothing approach
based on the geometric distribution. We begin with a motivation, explaining
why smoothing degenerate one-point distributions is meaningful, especially in
the setting of prescriptive ML primarily dealing with observational data.

3.1 Motivation

As already mentioned previously, our focus is on prescriptive probabilistic ordinal
classification, where past observations are given in the form of data

D = {(x1, y1), · · · , (xn, yn)} ⊂ X × Y ,

with xi ∈ X ⊆ R
m a feature vector characterizing a case, and yi ∈ Y the

corresponding label or observed rating. The set of class labels has a natural linear
order: y1 ≺ y2 ≺ · · · ≺ yK . In standard (probabilistic) supervised learning, the
goal is then to learn a probabilistic predictor p̂ : X → P(Y) that performs well in
terms of a loss (error) function l : Y ×P(Y) → R+, and training such a predictor
is guided by (perhaps regularized variants of) the empirical risk

R(p̂) :=
1
n

n∑

i=1

l(yi, p̂(xi))

as an estimate of the true generalization performance. The de-facto standard loss
function for nominal probabilistic multi-class classification is the cross-entropy
loss

H(yi, p̂i) = −
K∑

k=1

p(yi = k|xi) log(p̂(yi = k|xi)) ,

where class labels are one-hot encoded as degenerate one-point distributions
pi ∈ P(Y) with pi(yi|xi) = 1 and pi(y|xi) = 0 for y �= yi.

Since all classes apart from the ground-truth or observed label are set to zero,
the cross-entropy loss then boils down to log-loss

H(yi, p̂i) = − log(p̂(yi|xi)).

Obviously, this only makes sense if the labels can be considered incontestable
ground truth. Since this is not warranted to that extend in ordinal observa-
tional data, replacing this degenerate one point distributions with more realistic
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smoothed unimodal surrogate distributions pS is required to prevent the before
shown degeneration of the cross-entropy loss.

H(pSi , p̂i) = −
K∑

k=1

pS(yi = k|xi) log(p̂(yi = k|xi))

Furthermore, surrogate distributions may even serve to correct wrong inflation-
ary decisions or inject domain knowledge into the learning process, which is a
requirement in prescriptive ML scenarios and at the heart of this paper.

3.2 Basic Unimodal Label Smoothing

The geometric distribution models the probability that the k -th trial is the first
success for a given success probability θ and trials k ∈ {1, 2, 3, . . .}.

p(k) = (1 − θ)(k−1)θ

Due to its monotonically decreasing curve, it’s well suited to model an unimodal
probability distribution. The shape of the distribution hereby heavily depends
on the “success” probability θ. We may think of the original label of a training
instance as the success probability θ and the future mode of our new unimodal
distribution. The more probability mass we want to allocate to the original
label of our training instance, the more peaked or degenerate the distribution
will look like. In a standard scenario with one-hot encoded labels, the complete
probability mass of 1 is initially assigned to the ground truth or observed label.
To take away probability mass from the label, we introduce a smoothing factor
α ∈ (0, 1). The probability assigned to the mode of the probability distribution
is then defined as (1 − α) (cf. Eq. 1). The probability of the rest of the classes
is modeled as a two-sided geometric distribution decreasing monotonically from
the mode. Below is the raw, non-normalized version of our unimodal smoothing
approach based on the geometric distribution with j as the index of the observed
class in the one-hot encoded label yi (where the value is 1):

pGi (k) = α|j−k|(1 − α) (1)

Since the geometric distribution has infinite support we need to truncate
and normalize it so that the probabilities sum to 1. We do this by introducing a
normalizing constant Gi:

Gi = pGi (k �= j) =
∑

k �=j

α|j−k|(1 − α).

The normalized version of our smoothing approach with
∑K

k=1 pGi (k) = 1 then
looks as follows:

pGi (k) =

{
1 − α if k = j

1/Gi α|j−k|+1(1 − α) if k �= j
.
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Fig. 3. The above figures illustrate our proposed unimodal smoothing approach based
on the geometric distribution.

Note that we do not normalize the mode of the distribution (1− α) since we
want to keep transparent how much probability mass is allocated to the ground
truth or observed label. Figures 3a and 3b illustrate how our unimodal smoothing
approach based on the geometric distribution looks like for different classes and
different smoothing factors respectively.

3.3 Class-Wise Unimodal Label Smoothing Using a Smoothing
Relation

The basic smoothing approach presented in the previous subsection does not
distinguish between classes and all classes are smoothed the same. Furthermore,
it assumes a rather symmetric smoothing where probability mass is distributed
to the left and right side of the mode (if possible). To achieve a higher degree of
configurability in terms of smoothing, we introduce a so called smoothing relation
(cf. table 1) that allows to define how strong the label or mode is smoothed per
observed class index j (αj), as well as the fraction of outstanding probability
mass that is supposed to be distributed to the left (Fl,j) and right (Fr,j) of the
mode, with Fl,j +Fr,j = 1. An extended smoothing function allowing class-wise
smoothing based on a smoothing relation (cf. Table 1) is displayed below:

pGi (k) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − αj if k = j

1/Gi Fl,j α
(j−k)+1
j (1 − αj) if k < j

1/Gi Fr,j α
(k−j)+1
j (1 − αj) if k > j

, with Fl,j + Fr,j = 1
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Table 1. Two exemplary smoothing-relations to configure unimodal re-distribution of
probability mass.

j 1 2 3 4 5
α 0 0.2 0.3 0.4 0.5
Fl 0 1 1 1 1
Fr 0 0 0 0 0
(a) Cautious smoothing relation.

j 1 2 3 4 5
α 0.5 0.4 0.3 0.2 0
Fl 0 0 0 0 0
Fr 1 1 1 1 0
(b) Generous smoothing relation.

The adapted normalization constant Gj then looks as follows:

Gi =

⎧
⎪⎪⎨

⎪⎪⎩

∑
k>j α

(k−j)
j (1 − αj) if Fl, j = 0

∑
k<j α

(j−k)
j (1 − αj) if Fr, j = 0

∑
k �=j α

|j−k|
j (1 − αj) otherwise

.

In this case, one can particularly define how much of the outstanding probabil-
ity mass is assigned left or right of the mode. This, in the extreme case, even
enables unimodal one-sided label smoothing by distributing probability mass
only to one side. This extreme scenario is shown in Table 1, where in the left
smoothing-relation smoothing is only performed to the left side of the mode,
with increasing α and in the right smoothing-relation only to the right, with
decreasing α. Smoothing only to the left side of the mode indicates a more cau-
tious smoothing, for instance, in our credit scoring example, probability mass is
then re-distributed from higher ratings to lower ratings. The other way round,
smoothing to the right indicates a more generous approach, where probabil-
ity mass is re-distributed from lower ratings to higher ratings. Hence, through
using this approach, probability mass can be flexibly re-distributed to correct
any biases in the underlying observational data, e.g., too cautious or generous
credit rating assessments in the past. Figure 4 shows the smoothing curves for
the cautious (Fig. 4a) respectively generous smoothing (Fig. 4b).

3.4 Unimodal Smoothing Heuristics for Prescriptive Machine
Learning

The basic smoothing approach outlined in Subsect. 3.2 smooths the distribution
for every class the same, which may be a too simplified assumption. In con-
trast, the smoothing relation approach introduced in Subsect. 3.3 provides more
flexibility, but on the other side also requires detailed knowledge about present
biases and the domain. Hence, in the following we want to look at two generally
applicable smoothing heuristics to deal with two common issues in observational
data: data imbalance and concept drift.
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Fig. 4. Class-wise left- or right-tailed smoothing using the smoothing relations in
Table 1.

Unimodal Smoothing Based on Class Priors. Observational data is often
strongly imbalanced (cf. Fig. 1) [10]. From a prescriptive ML point of view, “cor-
recting” over-proportionally used labels or ratings stronger through smoothing
them more than infrequently used ones might be a reasonable correction. In
observational data, the more inflationary a rating is used, the less meaningful it
appears. The other way round, one may assume that rare ratings are selected
more carefully and more thought might have been put into their selection. More-
over, this may also counteract class imbalance as the probability mass assigned
to inflationary used ratings is reduced compared to more seldomly used ratings.

Hence, a simple smoothing heuristic may be to vary the smoothing factor
depending on the class prior.

si(α) = α · p(yi)
max

y∈{y1,y2,...,yK}
p(y)

∈ [0, α]

The single smoothing factor α is hereby replaced by a smoothing function si(α)
depending on α and the class prior p(yi) normalized by the max class prior. The
equation below shows the adapted unimodal smoothing approach dependent on
prior class probabilities.

pGi (k) =

{
1 − si(α) if k = j

1/Gi si(α)|j−k|+1(1 − si(α)) if k �= j

The normalizing constant Gi also needs to be updated accordingly:

Gi = pGi (k �= j) =
∑

k �=j

si(α)|j−k|(1 − si(α))

Figure 5 illustrates the class-wise smoothing approach on exemplary imbal-
anced class prior probabilities. As one can see, class 1 has the highest prior
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Fig. 5. Class-wise unimodal smoothing of probability mass depending on class priors.

Fig. 6. Goodwill decision mean values for parts and labor contributions over time,
entailing concept drift and shift.

probability and is smoothed the most. Whereas class 2 has the lowest prior
probability and is smoothed the least.

Time Based Unimodal Smoothing. Another very typical bias in observa-
tional data is concept drift or shift, where the target variable which a model
tries to predict changes its statistical properties over time [14]. Typically, rat-
ings conducted by human experts like credit rating assessments or candidate
rating in human resources will not remain static over time. Strategies will change
dynamically depending on market situations. This is also visible in our goodwill
assessment data sets, where mean contribution ratings for labor and parts repair
costs change dynamically over time for some markets (cf. Fig. 6).

Hence, we propose another simple linear smoothing function that will smooth
older instances stronger than more recent ones, whereas ti ∈ T are time stamps
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Table 2. Goodwill assessment data set sizes. All data sets have 26 features (18 cat-
egorical and 8 numeric) and a single label with 11 classes (Y = {0, 10, 20, . . . , 100}).

Market A B C D

# Instances 17,652 27,390 43,286 13,832

accompanying each human expert rating:

si(α) = α ·
max
t∈T

t − ti

max
t∈T

t − min
t∈T

t
∈ [0, α]

4 Evaluation

In the following, we want to evaluate our proposed smoothing approaches
on four ordinal real world goodwill assessment data sets of a car manufac-
turer (cf. Table 2), with the goal to predict appropriate monetary contribu-
tions for parts and labor repair costs on an ordinal scale from 0 to 100%
(Y = {0, 10, 20, . . . , 100}). The different data sets are taken from different
national sales markets and reflect the different goodwill assessment strategies
of the national sales companies (NSC) of the car manufacturer. At the moment,
goodwill requests are to a large extend assessed manually by human experts [10].
However, the long term aim of the car manufacturer is to increase automation
and process goodwill requests through automated decision making (ADM) [10].
The attributes of the data instances entail information about the vehicle and
the case, for instance, vehicle age, mileage, requested costs, defect code, whether
the vehicle was regularly serviced, etc. [10]. The data is of mid-size tabular
nature which makes us rely on Gradient Boosted Trees (GBT) for our evalua-
tion implementation [8]. Concretely, we make use of eXtreme Gradient Boosting
(XGBoost) [3]. However, our proposed smoothing approaches are not limited to
GBTs and could, for instance, also be used in a deep learning context. Table 2
summarizes some characteristics of the goodwill data sets used for evaluation.
In general, the data sets are in most cases heavily imbalanced with mostly 0,
50 and 100% ratings (cf. Fig. 1). As shown in Fig. 6, data sets A, B and C also
contain some sort of drift in the target ratings.

4.1 Relation and Priors Based Smoothing Results

To evaluate the flexibility of the smoothing-relation based approach on goodwill
assessment data, we make use of the smoothing-relations shown in Table 3, which
are similar to the previous five classes example (cf. Table 1), but expanded to
11 classes or ratings for the case of goodwill assessment. On max, 50% of the
probability mass is re-distributed to other classes (α = 0.5).
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Table 3. Cautious (top) and generous (bottom) smoothing-relations for goodwill
assessment with 11 classes (Y = {0, 10, 20, . . . , 100}).

j 1 2 3 4 5 6 7 8 9 10 11
α 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fl 0 1 1 1 1 1 1 1 1 1 1
Fr 0 0 0 0 0 0 0 0 0 0 0

(a) Cautious smoothing-relation.

j 1 2 3 4 5 6 7 8 9 10 11
α 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Fl 0 0 0 0 0 0 0 0 0 0 0
Fr 1 1 1 1 1 1 1 1 1 1 0

(b) Generous smoothing-relation.

Tables 4 and 5 show the results of a ten-fold cross validation evaluation of the
cautious (+Cautious) respectively generous (+Generous) smoothing-relation in
relation to a standard nominal classification (Base). Additionally, we also display
the results of the smoothing heuristic based on the class priors (+Priors) with
a max smoothing factor of α = 0.5. In all cases, we display the mean as well as
the standard deviation (±) of the ten folds. The evaluated standard metrics are
accuracy (ACC), mean absolute error (MAE) and mean squared error (MSE).
Since we are dealing with an ordinal classification problem that lies somewhere
between classification and regression, classification as well as regression metrics
are of interest [7]. The underpay and overpay metrics are domain specific met-
rics relevant from a goodwill assessment perspective, as they indicate how much
money was payed less (underpay), respectively more (overpay), compared to the
manual human assessments. One can clearly see that the cautious, respectively
generous, smoothing-relations are reflected in the results. In case of the cautious
strategy there is a strong tendency of underpayment, whereas in case of the gen-
erous strategy there is a strong tendency for overpayment. The class priors based
smoothing approach trades-off accuracy for improved MAE and MSE metrics,
which can be considered beneficial in ordinal classification.

4.2 Time Based Smoothing Results

In the time-based smoothing evaluation, we set the smoothing factor to α = 0.8,
which is a rather aggressive value that leads to almost uniform re-distribution of
probability mass for the oldest training instances. The data is split into training
and test data with a ratio of 90/10, whereas the test data entails the most recent
10% of the data. The small test data set size of 10% was chosen to use the same
amount of data for testing as in the experiments performed above which used
10-fold cross validation and, even more important, to specifically focus on very
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Table 4. Results of smoothing for labor contributions of different goodwill assessment
data sets with a max smoothing factor of α = 0.5.

Model ACC MAE MSE UNDERPAY OVERPAY

Base 0.906 ±0.008 6.76 ±0.61 586.85 ±57.78 −20,810.34 ±3,987.55 22,220.51 ±3,486.62
+Generous 0.902 ±0.007 7.06 ±0.56 615.11 ±53.74 −11,788.37 ±2,630.4 34,593.04 ±4,824.63
+Cautious 0.904 ±0.007 6.94 ±0.52 606.49 ±46.65 −30,887.52 ±5,159.07 14,395.95 ±1,757.34
+Priors 0.905 ±0.009 6.74 ±0.74 581.03 ±68.85 −17,901.34 ±6001.66 25,858.72 ±3,534.84
Base 0.89 ±0.007 6.7 ±0.51 521.91 ±45.95 −200,513.25 ±22,181.56 555,628.97 ±110,741.03
+Generous 0.885 ±0.005 6.96 ±0.45 545.08 ±41.78 −112,300.64 ±24,587.5 712,084.73 ±129,923.33
+Cautious 0.887 ±0.005 6.9 ±0.41 542.97 ±38.37 −365,626.9 ±47,568.54 402,926.56 ±91,423.83
+Priors 0.886 ±0.003 6.63 ±0.3 505.23 ±28.57 −224,039.44 ±28,151.06 511,294.98 ±109,859.14
Base 0.933 ±0.004 4.53 ±0.33 380.53 ±31.07 -34,406.94 ±5629.54 52,374.52 ±6,396.72
+Generous 0.929 ±0.003 4.81 ±0.31 409.64 ±29.87 −19,201.82 ±3,462.9 72,995.39 ±6,103.36
+Cautious 0.93 ±0.003 4.87 ±0.3 416.79 ±30.74 −52,842.93 ±8,453.54 38,187.68 ±5,016.32
+Priors 0.93 ±0.004 4.68 ±0.37 393.6 ±35.41 −27,316.0 ±3,750.45 59,746.98 ±4,594.85
Base 0.862 ±0.007 7.93 ±0.59 580.46 ±56.44 −153,618.28 ±35,419.88 345,107.29 ±66857.93
+Generous 0.862 ±0.01 7.88 ±0.62 575.39 ±53.25 −62,970.68 ±24,501.17 415,654.6 ±83243.69
+Cautious 0.859 ±0.008 7.93 ±0.67 578.67 ±63.08 −222,597.46 ±29955.5 270,679.0 ±53,456.44
+Priors 0.862 ±0.008 7.7 ±0.61 554.95 ±55.18 −105,230.72 ±30,140.38 371,125.59 ±58,349.45

Table 5. Results of smoothing for parts contributions of different goodwill assessment
data sets with a max smoothing factor of α = 0.5.

Model ACC MAE MSE UNDERPAY OVERPAY

Base 0.896 ±0.009 6.98 ±0.82 579.34 ±78.5 −31,744.94 ±9306.37 84,160.92 ±21,575.87
+Generous 0.892 ±0.008 7.16 ±0.7 594.27 ±66.21 −15,378.27 ±5,296.54 102,037.97 ±19,866.94
+Cautious 0.895 ±0.006 7.13 ±0.63 598.47 ±61.55 −45,414.86 ±19,132.45 72,023.1 ±14,395.4
+Priors 0.895 ±0.008 6.96 ±0.7 575.55 ±66.55 −36,270.52 ±15,750.53 78,736.36 ±20,136.15
Base 0.894 ±0.006 6.24 ±0.35 477.5 ±31.8 −430,146.61 ±108977.81 1,122,151.24 ±176,516.56
+Generous 0.891 ±0.005 6.38 ±0.33 491.79 ±31.37 −217,544.71 ±74,535.81 1,367,306.62 ±187,239.83
+Cautious 0.894 ±0.005 6.22 ±0.31 481.64 ±30.41 −640,450.7 ±177,181.13 894,571.07 ±166,891.27
+Priors 0.892 ±0.005 6.1 ±0.24 456.87 ±21.91 −546,358.25 ±165,084.6 967,882.1 ±143,394.63
Base 0.884 ±0.003 4.24 ±0.16 243.91 ±12.32 −67,451.36 ±8,535.11 219,066.1 ±34,154.76
+Generous 0.882 ±0.006 4.28 ±0.21 247.98 ±13.92 −38,309.93 ±6,165.02 245,536.55 ±37,405.61
+Cautious 0.883 ±0.005 4.19 ±0.2 241.42 ±13.77 −83,698.36 ±15,123.86 197,573.78 ±39,719.46
+Priors 0.884 ±0.004 4.19 ±0.16 239.42 ±11.72 −63,682.4 ±8,578.55 217,069.17 ±35,658.62
Base 0.87 ±0.009 7.16 ±0.57 514.27 ±53.2 −264,672.6 ±110,169.93 765,250.06 ±163,638.98
+Generous 0.867 ±0.007 7.38 ±0.52 534.6 ±51.22 -128,742.79 ±41,807.12 890,592.62 ±174,359.46
+Cautious 0.866 ±0.006 7.28 ±0.45 523.84 ±39.17 −54,350.41 ±109,682.42 631,753.19 ±123,490.03
+Priors 0.869 ±0.006 7.03 ±0.53 498.47 ±51.21 −222,986.36 ±67,758.96 778,818.12 ±160,019.91

recent data. For this evaluation, we focus on the three data sets that visually
entail some sort of drift in the target rating over time (cf. figure 6). Tables 6
and 7 summarize the obtained time based smoothed results (+Time) for labor
and parts contributions respectively in comparison to a nominal classification
baseline (Base). One can clearly see that the time based smoothing approach
increases the predictive performance of the models on our data sets for the
majority of our metrics.
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Table 6. Results of time based smoothing (+Time) compared to standard nominal
classification (Base) for labor contributions of different goodwill assessment data sets
(α = 0.8).

Model ACC MAE MSE UNDERPAY OVERPAY

Base 0.888 8.95 832.46 −20,166.82 31,891.31
+Time 0.89 8.93 831.73 −15,223.71 24,952.21
Base 0.827 8.92 668.35 −145,360.16 844,359.37
+Time 0.829 8.45 633.88 −137,898.47 799,428.2
Base 0.951 2.97 240.73 −31,880.59 29,368.8
+Time 0.952 2.87 232.61 −28,603.83 27,001.83

Table 7. Results of time based smoothing (+Time) compared to standard nominal
classification (Base) for parts contributions of different goodwill assessment data sets
(α = 0.8).

Model ACC MAE MSE UNDERPAY OVERPAY

Base 0.845 10.02 839.32 −72,368.92 117,635.19
+Time 0.844 9.98 829.63 −58,450.89 154,781.0
Base 0.834 8.73 655.28 −312,151.14 1,260,827.89
+Time 0.828 8.57 643.12 −242,015.57 1,121,527.11
Base 0.919 2.75 146.03 −85,673.42 110,494.84
+Time 0.924 2.68 147.0 −75,981.27 122,821.94

5 Conclusion

In this paper, we presented a novel unimodal label smoothing approach with
the aim to rectify bias in ordinal observational data. We have demonstrated
the effectiveness of the approach for the use case of automotive goodwill assess-
ment. Through the usage of different smoothing-relations we can flexibly con-
figure our models to be more cautious, respectively generous, with regards to
goodwill assessments which is clearly indicated in strong underpayment, respec-
tively strong overpayment, in comparison to a nominal classification baseline.
The class priors based smoothing heuristic corrects inflationary used ratings
through smoothing them stronger than less frequently used ratings which man-
ifests in reduced MAE and MSE metrics compared to the baseline. Time based
smoothing helps to reduce concept drift bias and outperforms standard nominal
classification on the majority of our evaluated metrics. Overall we can say that,
our proposed methods are effective and flexible tools to correct biased expert
ratings and reduce reliance on human expertise.
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Abstract. Class-conditional label noise characterizes classification
tasks in which the training set labels are randomly flipped versions of
the actual ground-truth. The analysis of telescope data in astroparticle
physics poses this problem with a novel condition: one of the class-wise
label flip probabilities is known while the other is not. We address this
condition with an objective function for optimizing the decision thresh-
olds of existing classifiers. Our experiments on several imbalanced data
sets demonstrate that accounting for the known label flip probability
substantially improves the learning outcome over existing methods for
learning under class-conditional label noise. In astroparticle physics, our
proposal achieves an improvement in predictive performance and a con-
siderable reduction in computational requirements. These achievements
are a direct result of our proposal’s ability to learn from real telescope
data, instead of relying on simulated data as is common practice in the
field.

Keywords: Class-conditional label noise · Imbalanced classification ·
Astroparticle physics

1 Introduction

Astroparticle physics is a research field that advances our understanding of fun-
damental physics in extreme cosmic environments [11]. Its scientific questions
regard the origin of cosmic rays, the acceleration processes of particles, and the
nature of dark matter [1,13]. Advancing these topics requires precise measure-
ments of the cosmos—a purpose for which specialized telescopes of increasing
scale and complexity are being deployed.

The most extreme environments are monitored by imaging atmospheric Che-
renkov telescopes (IACTs) [2,4,31], which record the interactions of cosmic par-
ticles within Earth’s atmosphere. These recordings are represented as feature
vectors x ∈ R

d, from which the particle type y ∈ {+1,−1} (signal or noise) and
other latent quantities (particle energy and direction) have to be predicted by
supervised machine learning models [6,7]. If the predictions are accurate, they
allow physicists to uncover the characteristics of the extreme cosmic environ-
ments that have produced the recorded particles.
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Training a prediction model requires some form of supervision, typically in
the form of ground-truth labels that are assigned to every instance of a training
data set. In astroparticle physics, this form of supervision is conventionally pro-
vided by simulations [6,7] because real IACT data is not ground-truth labeled.
However, utilizing simulations for training machine learning models raises con-
cerns about the quality and the computational cost of the training data.

In this work, we omit the simulation and instead explore the potential of
learning from weak labels that we obtain from real IACT data. Hence, our
approach saves computational resources and circumvents the deficiencies of the
simulation. Our weak labels suffer from class-conditional label noise (CCN) [5,
24,27,30], i.e., they are randomly flipped versions of the ground-truth labels with
fixed class-wise label flip probabilities p+ and p−.

Definition 1 (Class-Conditional Label Noise). Let p+, p− ∈ [0, 1) and let
y ∈ {+1,−1} be a ground-truth label. The corresponding CCN noisy label is

ŷ = CCN(y; p+, p−) =

{

−y with probability py

y with probability 1 − py

Remark 1 (Compact Notation). We use subscripts py with y ∈ {+1,−1} and Nŷ

with ŷ ∈ {+1,−1} to compactly represent p+, p−, N+, and N−.

While existing work on CCN either assumes p+ and p− both to be known [14,27]
or both to be unknown [14,25], it turns out that astroparticle physics poses a novel
setting of CCN where p− is known and p+ is not. We address this setting through
an objective function that a learning algorithm can optimize and we demonstrate
that accounting for the known p− substantially improves the learning outcome over
the state-of-the-art in CCN learning. We regard the astroparticle use case to be a
valuable addition to CCN research because settings with known p− and unknown
p+ have remained unexplored to the best of our knowledge.

This paper is structured as follows: Sect. 2 introduces astroparticle physics as
an application domain of CCN. The related work on learning under CCN is intro-
duced in Sect. 3 before algorithms for handling the knowledge of p− are developed
in Sect. 4. We evaluate our proposals in Sect. 5 and conclude with Sect. 6.

2 Binary Classification in Astroparticle Physics

IACTs [2,4,31] observe the gamma radiation of extreme cosmic environments. If
a gamma ray travels through Earth’s atmosphere, it interacts with atmospheric
particles and thereby emits light that the camera of an IACT can record. Unfor-
tunately, the same effect happens with cosmic hadron particles. As sketched
in Fig. 1, hadrons do not identify the cosmic environments they originate in
because interstellar magnetic fields deflect them on their way. As a consequence,
the camera recordings of an IACT need to be classified as being either gamma
rays (y = +1) or hadrons (y = −1) [6,7], to obtain a clean sample of gamma
rays for downstream physics analyses.
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Fig. 1. An IACT observes an extreme cosmic environment that is the source of high-
energy gamma radiation. Hadronic particles have to be discarded from the data sample
because their deflection conceals their true origin.

The training data for classifying IACT recordings is typically provided by
sophisticated simulations of gamma rays and hadrons [7,10]. These simulations
comprise all physical processes that generate IACT data in the real world, includ-
ing particle interactions, light emission, and camera electronics. While simulated
data are indeed capable of training accurate classifiers for the real IACT, they
also induce computational costs at a considerable scale. Additionally, inaccura-
cies of the simulation can limit the efficiency of learning from simulated data
[21]. Hence, learning from real IACT data is desirable.

2.1 Source Detection

One of the first downstream analyses of a classified gamma ray sample is to detect
and locate extreme cosmic environments in space. Unfortunately, this analysis
is complicated by misclassification errors that mistake hadrons for gamma rays.
Due to these errors, detecting a gamma ray source requires predicting an amount
of gamma radiation that clearly exceeds the amount that has to be expected
solely from misclassifications.

Comparing these two amounts requires measuring both, the apparent gamma
radiation of a source and the apparent radiation from misclassifications. For this
purpose, the IACT’s field of view is divided into multiple regions. As sketched in
Fig. 2, the telescope is positioned such that the source location aligns with one of
these regions. This “on” region measures all predicted gamma rays, be they true
or false predictions. All other regions, now called “off” regions, do not picture
a source and, hence, measure the false predictions in isolation. If some location
in the sky indeed contains a source, this setup will record a higher number of
predicted gamma rays in the “on” region compared to the average number of
gamma rays predicted in a single “off” region.

To assess whether the number of predicted gamma rays in the “on” region
is indeed higher, astroparticle physicists employ the likelihood-ratio hypothesis
test from Definition 2. This test aims at rejecting the null hypothesis that the
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Fig. 2. An IACT is pointed towards the location of a potential gamma ray source.
The field of view of the IACT is divided into multiple regions, one of which is centered
around this location. In this figure, R = 5 “off” regions are employed, which corresponds
to ω = 1

5
and to p− = 1

6
.

“on” region does not emit more predicted gamma rays than the average “off”
region. Hence, the rejection of this null hypothesis corresponds to the successful
detection of an extreme cosmic environment.

Definition 2. (Hypothesis Test for Source Detection [18]) Let N+ be the
number of gamma ray predictions in the “on” region and let N− be the number of
gamma ray predictions in all “off” regions. Moreover, let λ+ and λ− be the rates
of the corresponding Poisson distributions, let N : R → [0, 1] be the cumulative
distribution function of the standard normal distribution, let R ∈ N be the num-
ber of “off” regions, and let ω = 1

R . The p-value for rejecting the null hypothesis
h0 : λ+ ≤ ω · λ− is

p = 1 − N (fω(N+, N−)),

fω(N+, N−) =
[

2N+ · ln
(

1 + ω

ω
· N+

N+ + N−

)

+2N− · ln
(

(1 + ω) · N−
N+ + N−

)]1/2

.

In astroparticle physics, a detection typically succeeds when the test statistic fω

exceeds a value of 5. We are then speaking of a “five sigma detection”, which
amounts to a p-value of 2.87 · 10−7. As of today, over 220 sources of high-energy
gamma radiation have been detected at this immense level of certainty.1

Since N+ and N− are numbers of predicted gamma rays, they are controlled
through the decision threshold of the classifier—a higher threshold predicts less
gamma rays and thus reduces N+ and N− by different amounts. To facilitate
detections, it is a common practice in astroparticle physics to maximize fω by
choosing this decision threshold. In Sect. 4, we generalize this common practice
beyond astroparticle physics and towards CCN learning in general.

1 http://tevcat.uchicago.edu/, catalog version 3.400 by Wakely and Horan [32].

http://tevcat.uchicago.edu/
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Fig. 3. CCN in astroparticle physics. The goal is to distinguish gammas from hadrons,
while the noisy labels are defined by the “on” and “off” regions. The novelty of this use
case, in the context of CCN research, is that p− = 1

R+1
is known and p+ is not.

2.2 Noisy Labels of Real Telescope Data

The usual goal of source detection is to discover sources of gamma radiation that
were not yet known to exist. Something interesting happens, however, if we point
the telescope towards a gamma ray source that we already know with certainty: if
the “on” region certainly pictures a source, then the number of predicted gamma
rays in the “on” region has to be higher than the average number of predicted
gamma rays per “off” region. Quite strikingly, this requirement allows us to
interpret the “on” and “off” origins of real IACT data as CCN noisy labels. We
sketch this interpretation in Fig. 3 and provide a formal proof in Theorem 1.

In the context of CCN, a novelty of the astroparticle use case is its precise
knowledge of p−. This knowledge stems from the fact that hadron particles are
distributed uniformly over the night sky; hence, a hadron appears in each of the
“on” and “off” regions with equal probability. The probability of misclassifying a
hadron in the “on” region is therefore p− = 1

R+1 , where R is the number of “off”
regions. We propose to make use of this knowledge during CCN learning.

3 Related Work on Class-Conditional Label Noise

In binary classification under random label noise, we only have access to training
labels ŷ ∈ {+1,−1} that are noisy in the sense of being randomly flipped versions
of the clean ground-truth labels y ∈ {+1,−1}. In particular, the CCN label noise
model from Definition 1 [5,24,27,30] states that the labels are flipped according
to probabilities p+ and p− that depend exclusively on the true class y, and not
on the features of the data.

The feasibility of learning under the CCN noise model is conventionally estab-
lished by assuming

p+ + p− < 1, (1)

where py = P(̂Y = −y | Y = y) are the label flip probabilities. We can rearrange
this assumption to see that it is equivalent to assuming a correspondence between
noisy and true labels: P(̂Y = +1 | Y = +1) > P(̂Y = +1 | Y = −1).

Theoretic studies [5,24,27,30] have shown that CCN data even facilitates the
learning of an optimal classifier, in terms of the clean ground-truth labels and in
terms of several performance metrics. For these metrics, the only complication of
CCN learning is to find an optimal decision threshold θ∗ ∈ R; an optimal scoring
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function h : X → R, which is to be thresholded at θ∗, can be learned directly
from CCN data. Ignoring CCN, however, can lead to sub-optimal results. The
following proposition formalizes these properties of CCN learning.

Proposition 1 (Consistent CCN Learning). Consider a performance met-
ric Q : H → R for which the Bayes-optimal classifier, with respect to the clean
ground-truth labels, is of the form h∗(x) = sign(P(Y = +1 | X = x) − θ∗) with
an optimal threshold θ∗ ∈ R. Moreover, let φ∗ be the threshold that is optimal
with respect to the CCN noisy labels, let p+ + p− < 1, and let the learning algo-
rithm A : ∪∞

m=1(X ×Y)m → H be a consistent estimator of the scoring function,
i.e., let ∀x ∈ X : E(X×Y)m hA(x) → P(̂Y = +1 | X = x) for a noisy sample of
size m → ∞. Then, for m → ∞, the classifier

h(x) = sign

(

hA(x) − φ∗ − p−
1 − p+ − p−

)

is Bayes-optimal for Q with respect to the clean ground-truth labels ŷ.

Proof. The proof is detailed in our supplementary material.2 It summarizes exist-
ing results [24,27] on CCN learning.

Remark 2. Proposition 1 makes two assumptions. First, it requires a perfor-
mance metric Q for which the Bayes-optimal classifier is a thresholded decision
function of the form h∗(x) = sign(P(Y = +1 | X = x)− θ∗). This family of per-
formance metrics contains several important measures, like accuracy, weighted
accuracy, and the Fβ score [8,35]. Second, the proposition assumes a consistent
learning algorithm A for the decision function hA(x). This consistency assump-
tion holds for any A which evolves around empirical risk minimization of a
proper loss function [8,22], like the logistic loss and the squared error. Hence,
the proposition applies to many performance metrics and learning algorithms.

Proposition 1 allows us to use CCN data to fit a decision function h and to
obtain an estimate ̂φ ∈ R of the noisy-optimal threshold φ∗. The only difficulty
of CCN learning is to estimate the clean-optimal threshold

̂θ =
̂φ − p−

1 − p+ − p−
, (2)

without knowing p+ and p−. We typically have to estimate these label flip prob-
abilities from CCN data, employing additional assumptions such as the existence
of clean labels at a point in feature space where the other clean class has zero
probability [24], the so-called anchor point assumption [33].

Example 1 (Accuracy). The optimal threshold for the accuracy metric is known
to be φ∗

Acc =
1
2 [8]. Hence, we do not need to estimate φ∗

Acc from data but, due
to CCN, we have to acknowledge that φ∗

Acc is not optimal for the clean ground-
truth labels. As according to Eq. 2 (also see previous work [27, Theorem 9]),
an optimal threshold for the clean labels is θ∗

Acc = (12 − p−) · (1 − p+ − p−)−1,
which requires the precise knowledge of p+ and p− or the estimation thereof.
2 https://github.com/mirkobunse/pkccn.

https://github.com/mirkobunse/pkccn
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An alternative approach to thresholding is a label-dependent weighting of
the loss function already during training [14,27]. However, finding the optimal
weights also requires precise knowledge of p+ and p− or the estimation thereof,
just like the thresholding approach. If we had a small cleanly labeled data set, we
could alternatively tune the decision threshold directly on this set [5], without
the need for estimating p+ and p−. However, cleanly labeled data is typically
not available in CCN use cases.

3.1 Class Imbalance in CCN

IACT data is extremely imbalanced [7]. In this situation, the estimation of p+
and p− becomes more difficult [25]. Additionally, the evaluation of classifiers
crucially needs to address the class imbalance through dedicated performance
metrics such as the Fβ score or the G-score.

Unfortunately, with the notable exception of Mithal et al. [25], the problem of
class imbalance in CCN has remained largely unexplored. Recent works [15,20,
28,29,34] primarily optimize accuracy instead, a metric that is not adequate for
imbalanced classification tasks [12]. For the imbalanced astroparticle use case,
we evaluate CCN techniques in terms of their F1 scores, a suitable measure for
imbalanced classification performance.

3.2 Other Types of Label Noise

Beyond the CCN noise model, other types of label noise have been discussed. For
instance, the label noise is called uniform [14] if each label has the same chance
of being flipped, independent of the class and the features. If the chance of being
flipped does not depend on the true class, but on the features, we are speaking
of purely instance-dependent label noise [23]. Learning is feasible under each of
these noise models if dedicated assumptions about the data and the learning
method hold. Our focus on CCN stems from our astroparticle use case, which
poses a CCN task in particular.

Recently, multi-class settings are moving into the focus of CCN research [15,
20,28,29,34]. These settings require not only the estimation (or the knowledge)
of two noise rates, but the estimation (or the knowledge) of a dense transition
matrix between all noisy and true labels [33,34]. In the context of deep learning,
methods for the simultaneous training of the prediction model and the transition
matrix have been proposed [19]. However, none of these multi-class methods is
shown to improve over binary CCN techniques in case of imbalanced binary CCN
tasks, such as our astroparticle use case.

4 Partially-Known Class-Conditional Label Noise

Existing work on CCN either addresses the complete knowledge of p+ and p−
[14,27] or the complete ignorance thereof [14,25]. In the following, we focus on a
novel setting of CCN in binary classification where p− is known while p+ is not.
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We refer to this novel setting as partially-known CCN (PK-CCN). It inherits all
properties of general CCN learning, as discussed in Sect. 3, but allows algorithms
to employ p− for a more effective training.

Remark 3. By swapping the clean ground-truth classes +1 and −1, PK-CCN
can also address the converse setting where p+ is known and p− is not. For
notational consistency, we continue to assume, without loss of generality, that
p− is the known label flip probability.

Before we develop algorithms for learning under PK-CCN, we generalize the
hypothesis test from Definition 2 beyond the astroparticle use case and towards
CCN learning in general. This generalization stems from a connection to the
central CCN assumption, i.e., p+ + p− < 1, from Eq. 1. Testing this assumption
for a given set of CCN labels tells us whether consistent learning is feasible.

Theorem 1 (Hypothesis Test for PK-CCN Learnability). Let Nŷ be the
number of clean positives (i.e., y = +1) with a noisy label ŷ ∈ {+1,−1} and
let ω = p−

1−p−
. With these re-definitions, the hypothesis test from Definition 2

computes the p-value for rejecting the null hypothesis h0 : p+ + p− ≥ 1.

Proof. The proof is detailed in our supplementary material (see Footnote 2). It
establishes the equivalence between the null hypotheses from Theorem 1 and
Definition 2.

Computing the Nŷ in Theorem 1 requires access to a set of data that is
labeled both in terms of clean ground-truth labels and in terms of noisy labels.
Typically, such data are not available. Still, we find this theoretical connection
striking because it motivates a heuristic optimization of decision thresholds in
terms of fω. In fact, this optimization is a common practice in the analysis of
IACT data but has not yet been discussed in the scope of CCN learning.

Decision Threshold Optimization: For the optimization of decision thresh-
olds, we do not assume any clean labels. Instead, we heuristically replace the Nŷ

counts in Theorem 1 with counts of predicted positives Nθ
ŷ according to some

threshold θ ∈ R. Specifically, we compute the function fω from Definition 2 over
Nθ

ŷ , instead of Nŷ. This replacement allows us to choose θ such that fω becomes
maximal. For a soft classifier h : X → R, and for a noisily labeled data set
{(xi, ŷi) : 1 ≤ i ≤ m}, we choose

̂θ = argmax
θ∈R

fω(Nθ
+, Nθ

−),

where Nθ
ŷ =

∑

1≤i≤m : ŷh(xi)> ŷθ 1
(3)

is the number of predicted positives in the noisy class ŷ. The heuristic replace-
ment of Nŷ with Nθ

ŷ has the following implications:

no need for clean labels: the optimization in Eq. 3 does not require any clean
ground-truth labels; it only needs to count the numbers of predicted positives
in both noisy classes, which is easily obtained from the noisy data.



Class-Conditional Label Noise in Astroparticle Physics 27

Algorithm 1. Decision Threshold Optimization for PK-CCN.
Input: A scoring function h : X → R, a desired p value p > 0, a noise rate 0 < p− < 1,
and m noisily labeled instances {(xi, ŷi) : 1 ≤ i ≤ m}
Output: A decision threshold ̂θ ∈ R

1: ω ← p−
1−p−

2: ̂θ ← argmaxθ∈R
fω(N

θ
+, Nθ

−), see Eq. 3
3: if p > 1 − N (fω(N

̂θ
+, N

̂θ
−)) then

4: return ̂θ
5: else
6: failure PK-CCN learning does not appear feasible

partial knowledge of noise rates: the optimization in Eq. 3 needs to know
p−, such that ω = p−

1−p−
can be computed according to Theorem 1. Without

a need to know p+, our method is a true PK-CCN method.
model agnosticism: the optimization in Eq. 3 works with any soft classifier

h : X → R, like SVMs, decision trees, deep neural networks, and many more.
Unlike existing CCN methods [24,25], we do not require an anchor point
assumption [33] for optimizing fω.

Our threshold optimization technique for PK-CCN is summarized in Algo-
rithm 1. If our heuristic does not indicate a successful rejection of the null hypoth-
esis, we raise a warning to the user.

5 Experiments

We now evaluate the merits of our proposed PK-CCN setting over previous
binary CCN settings. In the previous setting where p+ and p− are both known
[14,27], we speak of completely known CCN (CK-CCN); in the previous setting
where both are unknown [14,25], we speak of completely unknown CCN (CU-
CCN) instead.

Our first experiment evolves around an extensive evaluation of CCN learn-
ing methods on 27 conventional imbalanced data sets. Our second experiment
covers a practical case study in astroparticle physics. The implementation of our
algorithms and experiments is publicly available (see footnote 2).

5.1 Baseline Methods

Mithal et al. [25] propose a CCN-aware decision threshold which maximizes the
G-score, a suitable metric for imbalanced binary classification. Without assuming
p+ or p− to be known, this method is a true CU-CCN method.

Menon et al. [24] propose a technique to estimate several performance metrics
in spite of CCN, including the F1 score for imbalanced classification. This general
technique builds on a CCN-aware estimation of the true positive rate and the true
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Algorithm 2. F1 Score Maximization [16,26] in Spite of Binary CU-CCN [24].
Input: A scoring function h : X → [0, 1] and m noisily labeled instances
{(xi, ŷi) : 1 ≤ i ≤ m}
Output: A decision threshold ̂θ ∈ R

1: p̂+ ← 1 − max1≤i≤m h(xi)
2: p̂− ← min1≤i≤m h(xi)

3: ̂θ ← argmaxθ∈R
F1(θ; h, p̂−, p̂+), see Eq. 4 in the supplementary material

4: return ̂θ

negative rate of a classifier [30], which we detail in the supplementary material
(see Footnote 2).

Since the F1 score cannot be optimized analytically, we have developed Algo-
rithm 2. This algorithm adapts a consistent F1 optimization that is unaware of
CCN [16,26] by plugging in the CCN-aware F1 estimate by Menon et al. [24].

Lines 1 and 2 of Algorithm 2 estimate p+ and p− under the anchor point
assumption [33]. If these rates are known, however, we can replace the estimates
p̂+ and p̂− with their true values. In this case, the algorithm becomes either
a PK-CCN algorithm (if p− is known) or a CK-CCN algorithm (if p+ and p−
are known). We assess the merits of our PK-CCN proposal by evaluating all
versions of Algorithm 2: its vanilla CU-CCN version and its PK-CCN and CK-
CCN versions.

In imbalanced classification, accuracy is not informative [12]. Hence, an opti-
mization of accuracy would be inappropriate and we do not experiment with
CCN techniques that optimize this measure [15,20,28,29,34].

5.2 Merits of PK-CCN: Methodology

Our evaluation is based on the 27 imbalanced data sets from the imbalanced-learn
library [17].3 We artificially inject different levels of CCN, which are listed in
Fig. 4 and in Table 1. The first two noise configurations are designed by ourselves
and the remaining four are taken from previous experiments [27].

We estimate the performance of each CCN method in terms of the F1 score, a
metric that is well suited for imbalanced data. We report the average F1 score and
its standard deviation over 20 repetitions of a 10-fold stratified cross validation.
In total, our results comprise 194 400 classification models. We employ random
forest classifiers because they have a high predictive power and they allow us to
tune decision thresholds consistently on out-of-bag noisily labeled data.

We do not validate in terms of the area under the ROC curve or in terms of
balanced accuracy because these metrics are immune to CCN [24] and therefore
not informative. Due to the class imbalance, we do also not validate in terms of
unbalanced accuracy.

3 https://imbalanced-learn.org/stable/datasets/.

https://imbalanced-learn.org/stable/data sets/
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5.3 Merits of PK-CCN: Results on Conventional Imbalanced Data

Figure 4 compares the performances of CCN learning methods with Critical Dif-
ference (CD) diagrams [9]. These diagrams are specifically designed for statis-
tically meaningful comparisons of multiple classifiers across multiple data sets.
The x-axis of a CD diagram plots the average rank of each method (lower is
better), here in terms of the F1 score: intuitively, a low rank indicates that a
method beats the other methods on many data sets. Connected are those meth-
ods that a Bonferroni-corrected Wilcoxon signed-rank hypothesis test cannot
distinguish. Hence, all missing connections indicate statistically significant dif-
ferences between the data set-wise performances of methods.

Fig. 4. Each row displays one critical difference diagram [9] for one noise configura-
tion (p−, p+). This overview summarizes a total of 194 400 random forest classifiers,
a collection which consists of 6 CCN learning methods × 6 noise configurations × 27
data sets × 10 cross validation folds × 20 repetitions with random initialization. The
x-coordinates indicate average ranks (lower is better) and methods are connected with
horizontal bars if and only if a Bonferroni-corrected Wilcoxon signed-rank test cannot
distinguish their pairwise performances in terms of their cross-validated F1 score at a
confidence level of 95%. Hence, missing connections indicate significant differences.

The CD diagrams from Fig. 4 are complemented by Table 1, which reports
the average F1 scores across all data sets and repetitions. These values complete
the picture of Fig. 4 by revealing the magnitudes of performance differences.

The average fω scores of each method are displayed in Table 2. Unlike the F1

score, this metric can be evaluated exclusively on noisy labels, without requiring
the clean labels that we only know because we artificially inject CCN.

Discussion: The perspectives from Fig. 4 and Table 1 demonstrate the merits of
our proposed setting, PK-CCN: accounting for the known p− gives a performance
improvement that is statistically significant and has a considerable magnitude.
For instance, the PK-CCN version of Algorithm 2 achieves an average F1 score
of 0.425, which is way beyond its average CU-CCN score of 0.310.
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Table 1. Average F1 scores (higher is better) over all 27 data sets and over 20 repeti-
tions of a 10-fold cross validation. Bold values represent the best performances, either
including or excluding the privileged CK-CCN method of the last column.

(p−, p+) Algorithm 1/fω

PK-CCN
Algorithm 2/F1

PK-CCN
Algorithm 2/F1

CU-CCN
G-score [25]
CU-CCN

CCN-
blind F1

Algorithm 2/F1

CK-CCN

(0.5, 0.1) .408±.050 .417±.051 .262±.046 .333±.051 .112±.000 .424±.049
(0.5, 0.25) .327±.059 .336±.066 .184±.037 .234±.057 .112±.000 .339±.062
(0.2, 0.2) .485±.044 .498±.041 .408±.044 .429±.051 .169±.036 .510±.035
(0.4, 0.4) .280±.067 .294±.069 .172±.039 .185±.047 .112±.000 .298±.068
(0.1, 0.3) .499±.039 .512±.034 .466±.043 .461±.052 .402±.045 .525±.032
(0.3, 0.1) .480±.046 .490±.041 .371±.042 .405±.045 .114±.002 .501±.037
Avg. F1 .413±.051 .425±.050 .310±.042 .341±.050 .170±.014 .433±.047

Table 2. Average fω scores (higher is better, see Theorem 1) in the setup of Table 1.

(p−, p+) Algorithm 1/fω

PK-CCN
Algorithm 2/F1

PK-CCN
Algorithm 2/F1

CU-CCN
G-score [25]
CU-CCN

CCN-
blind F1

Algorithm 2/F1

CK-CCN

(0.5, 0.1) 7.16±1.07 6.99±1.09 5.57±1.27 6.61±1.26 2.79±0.90 7.16±1.08

(0.5, 0.25) 3.85±1.17 3.83±1.20 2.70±1.07 3.15±1.24 1.75±0.86 3.88±1.16
(0.2, 0.2) 12.79±1.13 12.59±1.19 12.01±1.22 12.25±1.34 7.02±1.43 12.76±1.09

(0.4, 0.4) 2.90±1.15 2.90±1.17 2.27±1.16 2.25±1.25 1.65±1.01 2.94±1.12
(0.1, 0.3) 15.06±1.20 14.83±1.20 14.74±1.23 14.60±1.29 12.87±1.38 14.90±1.21

(0.3, 0.1) 11.91±1.09 11.66±1.13 10.66±1.21 11.27±1.23 4.88±1.09 11.89±1.05

avg. fω 8.95±1.13 8.80±1.16 7.99±1.20 8.35±1.27 5.16±1.11 8.92±1.12

The additionally improvement of also knowing p+ has a much smaller magni-
tude (Algorithm 2: F1 = 0.433 in CK-CCN versus F1 = 0.425 in PK-CCN) and
this improvement is not statistically significant in 4 out of 6 noise configurations.

We recognize that our Algorithm 1 significantly looses against Algorithm 2
in half of the noise configurations. We attribute this observation to the fact that
Fig. 4 and Table 1 present an evaluation in terms of the F1 score, which Algo-
rithm 2 optimizes directly. If we replace the F1 evaluation with an fω evaluation,
as presented in Table 2 and in the supplementary material, we see that our meth-
ods can frequently win against the baselines. Evaluating in terms of the fω score
has the advantage that no clean labels are required during the evaluation. This
advantage is crucial in some use cases of CCN learning, such as the detection of
gamma ray sources in astroparticle physics.

5.4 Case Study: Detection of the Crab Nebula

We now detect the Crab Nebula, a bright supernova remnant, in IACT data. In
particular, we analyze the open data sample4 of the FACT telescope [4], a small
IACT located on the La Palma island, Spain. As motivated in Sect. 2, we want
to predict the true “gamma” and “hadron” classes, but only have access to the
noisy “on” and “off” labels. The data set represents 21 682 telescope recordings
by 22 features that are extracted from the raw telescope data [7]. The standard
operation mode of FACT chooses R = 5 “off” regions, which yields p− = 1/6 or

4 https://factdata.app.tu-dortmund.de/.

https://factdata.app.tu-dortmund.de/


Class-Conditional Label Noise in Astroparticle Physics 31

equivalently ω = 1/5. We compare the same CCN learning methods as before,
but need to exclude the privileged CK-CCN method because we have no prior
knowledge of p+.

This time, we compare all thresholding methods on scoring functions h :
X → R that are trained with two different training sets. In particular, we use
random forests as scoring functions and train them using:

real data: the first training set consists of a large, closed sample of the real
FACT data, totalling 94 968 recordings that are disjunct from the open testing
sample. Like all real IACT data, our large sample is only labeled in terms of
CCN noisy labels.

simulated data: we obtain the second training set from a computationally
expensive simulation of FACT. This data source yields the state-of-the-art
classifier5 for this telescope. Notably, the state-of-the-art also takes into
account the CCN labels by optimizing its decision threshold through Algo-
rithm 1 [3]; only the scoring function is trained from simulated data.

The high computational cost of the simulation motivates using the real IACT
data not only for threshold optimization, but also for learning the underlying
scoring function. Due to a previously lacking connection between IACT data
and CCN theory, however, astroparticle physicists have not yet considered the
opportunity of learning solely from real IACT data.

Without having clean ground-truth labels for our test set, which is a typical
limitation of machine learning for IACTs, we can report the real-world perfor-
mance of our models only in terms of the test statistic fω and not in terms
of supervised measures like the F1 score or accuracy. Fortunately, fω supports
evaluating classifiers without clean labels. Moreover, fω is a conventional per-
formance metric in astroparticle physics. Higher values indicate that the IACT
would be able to detect the Crab Nebula even with less data; therefore, compar-
ing fω values is meaningful beyond a mere reject/accept decision of the corre-
sponding hypothesis test.

Discussion: The average values and standard deviations across 20 repetitions of
the experiment are displayed in Table 3. We see that the CCN-trained approaches
consistently outperform the costly simulation-trained approaches.

Interpretability: We conduct another experiment in which we artificially
remove all “on”-labeled instances from the data set. We then incorrectly label some
of the “off” instances as being “on” instances.These fake reassignments aremeant to
break the correspondence between clean and noisy labels and should therefore ren-
der CCN learning infeasible. Table 4 demonstrates that our proposed algorithms
produce fω values close to zero, as is desired. These values convey that no strong
classifier can be learnt from the fake noisy labels. The fact that our algorithms
maximize fω does not result in an over-estimation of fω.

5 https://github.com/fact-project/open_crab_sample_analysis.

https://github.com/fact-project/open_crab_sample_analysis
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Table 3. fω scores (higher is better, see Definition 2) for the open Crab data of the
FACT telescope. We evaluate the threshold tuning methods by training the underlying
scoring functions either with CCN labels (left) or with simulated clean labels (right).

method real data (CCN) simulated data (clean, SOTA)

Algorithm 1 (fω, PK-CCN) 27.08±0.22 26.63±0.01

Algorithm 2 (F1, PK-CCN) 27.07±0.24 26.07±0.73

Algorithm 2 (F1, CU-CCN) 26.88±0.23 16.32±0.02

G-score [25] (CU-CCN) 26.99±0.25 26.63±0.03

CCN-blind F1 19.56±1.01 16.35±0.11

Table 4. fω scores for the FACT data with artificially removed “on” instances. Due to
the removal, small values are desirable.

method fω(N
θ
+, Nθ

−)

Algorithm 1 (fω, PK-CCN) 1.279±0.926

Algorithm 2 (F1, PK-CCN) 0.503±0.570

Algorithm 2 (F1, CU-CCN) 0.000±0.000

G-score [25] (CU-CCN) 0.087±0.153

CCN-blind F1 0.000±0.000

6 Conclusion and Outlook

We have introduced partially-known class-conditional label noise (PK-CCN),
a novel learning task that appears in the analysis of IACT data. PK-CCN is
characterized by the availability of precise knowledge of exactly one of the two
class-wise label flip probabilities. Besides this characteristic, PK-CCN inherits
all properties of general CCN learning.

We have proposed fω as an objective function to tackle PK-CCN in noise-
aware decision thresholding. We have further adapted existing CCN methods
to the PK-CCN setting and we have demonstrated the effectiveness of all our
approaches using an extensive set of noise configurations and data sets.

A case study from astroparticle physics, the field that originally inspired our
algorithms, demonstrates the practical value of our proposals. In this field, our
methods are capable of learning from real IACT data instead of following the
common practice of learning from simulated data. Due to this capability, our
methods achieve improvements in predictive performance and a reduction in
computational requirements.

Future work should explore other use cases of PK-CCN. We expect potential
occurrences of this setting whenever the noisy labels are based on some char-
acteristic of the data (like the “on” and “off” regions of IACT recordings) that
is precisely known for the clean negative class (like the uniform distribution of
hadrons over all regions).



Class-Conditional Label Noise in Astroparticle Physics 33

Acknowledgments. This research was partly funded by the Federal Ministry of Edu-
cation and Research of Germany and the state of North-Rhine Westphalia as part of
the Lamarr-Institute for Machine Learning and Artificial Intelligence.

Ethical Implications. Label noise, if not mitigated, can easily lead to the learning of
incorrect prediction models, which is a particular danger for safety-critical applications.
Moreover, label noise can perpetuate and amplify existing societal biases if appropriate
countermeasures are not taken. The existence of these risks crucially requires research
on the effects and the mitigation of different kinds of label noise. In this regard, we
contribute a characterization and mitigation of PK-CCN, a novel instance of class-
conditional label noise.

Successful mitigation techniques can tempt stakeholders to take the risks of label
noise even if alternative solutions exist. In fact, we advocate the employment of PK-
CCN data in a use case where training data is otherwise obtained from simulations.
In spite of such alternative solutions, a careful consideration of all risks is morally
required. In our use case, the risks of learning from simulations are still vague while we
have clearly described the effects of PK-CCN and have mitigated them through learn-
ing algorithms that are proven to be consistent. Our algorithms result in a reduction of
computational requirements, which translates to a reduction in energy consumption.
This improvement is a desirable property for combating climate change. We emphasize
that other cases of label noise can involve risks that require different considerations.

Astroparticle physics is a research field that is concerned with advancing our under-
standing of the cosmos and fundamental physics. While a deep understanding of the
cosmos can inspire us to appreciate nature and take better care of our planet, the
understanding of fundamental physics can eventually contribute to the development of
technologies that improve the lives of many.
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Abstract. Finding relevant and high-quality datasets to train machine
learning models is a major bottleneck for practitioners. Furthermore,
to address ambitious real-world use-cases there is usually the require-
ment that the data come labelled with high-quality annotations that
can facilitate the training of a supervised model. Manually labelling
data with high-quality labels is generally a time-consuming and chal-
lenging task and often this turns out to be the bottleneck in a machine
learning project. Weakly Supervised Learning (WSL) approaches have
been developed to alleviate the annotation burden by offering an auto-
matic way of assigning approximate labels (pseudo-labels) to unlabelled
data based on heuristics, distant supervision and knowledge bases. We
apply probabilistic generative latent variable models (PLVMs), trained
on heuristic labelling representations of the original dataset, as an accu-
rate, fast and cost-effective way to generate pseudo-labels. We show that
the PLVMs achieve state-of-the-art performance across four datasets. For
example, they achieve 22% points higher F1 score than Snorkel in the
class-imbalanced Spouse dataset. PLVMs are plug-and-playable and are
a drop-in replacement to existing WSL frameworks (e.g. Snorkel) or they
can be used as baseline high-performance models for more complicated
algorithms, giving practitioners a compelling accuracy boost.

Keywords: Weakly Supervised Learning · Generative Models ·
Probabilistic Models

1 Introduction

In recent years, weakly supervised learning (WSL) has emerged as an area of
increasing interest among machine learning practitioners and researchers. This
interest has been driven by the need to automate the process of applying deep
learning models to unlabelled real-world data, thus making manual annota-
tions unnecessary and expensive. For example, medical doctors may wish to use
machine learning (ML) models to improve the detection of intracranial hemor-
rhage (ICH) on head computed tomography (CT) scans [24], but current datasets
are often large and unlabelled, making the application of ML the models difficult.
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Various research teams, including Snorkel and Flying Squid [19–21,34], have
developed methods to address this labelling problem, with the overarching goal
of reducing the cost of labelling for large datasets by hand. These WSL methods
automate the otherwise tedious and costly manual labelling process by sourcing
prior information from Subject Matter Experts (SMEs), which is used to create
labelling functions λ that are applied to the data. The output of this approach
is typically a binary sparse matrix (labelling matrix) Λ.

Overall, the increasing interest in WSL reflects the potential of this approach
to enable the more efficient and effective use of machine learning models on
real-world data, even when labelled data is scarce or expensive to obtain. By
leveraging SME guidance and prior knowledge, WSL methods offer a promising
avenue for automating the labelling process, reducing costs, and enabling more
widespread adoption of ML models in a range of applications.

We present a straightforward algorithm to create dichotomous classes on
unlabelled datasets. Like [20], our method utilizes labelling functions λ derived
from Subject Matter Expert (SME) domain knowledge to programmatically
annotate previously unlabelled data. The resulting annotations are represented
as a labelling matrix Λ. Our approach relies on the assumption that the sparse
input matrix Λ contains sufficient information for robust model creation. Specif-
ically, we propose to use a probabilistic generative latent variable model, Factor
Analysis (FA), to map dependencies among the elements of the labelling matrix
and generate a 1-dimensional latent factor z. We dichotomize the latent variable
z using the median and assign each group of observations to a binary class.

Our approach addresses the negative impact of class imbalance and label
abstentions on existing WSL methods. We provide empirical evidence for the
superior performance of the FA model compared to the state-of-the-art model,
Snorkel, across three publicly available datasets and one internal curated dataset.
We also compare the performance of FA with two more complex generative
probabilistic latent variable models: Gaussian process latent variable models
(GPLVM) with Sparse Variational Gaussian Processes (SVGP) and Variational
Inference - Factor Analysis (VI-FA).

We show that FA as a WSL model outperforms other methods in Table 3,
where it achieved accuracy of 95% for the source code classification task, 86% in
the YouTube Spam dataset, 86% in the Spouse dataset, and 65% in Goodreads
dataset.

To summarise, the contribution of this paper is the following:

– Impact of class imbalance: We study the impact of class imbalance and
label abstentions on existing WSL models [21]. This is not only an aca-
demic problem but also a common occurrence in real-world data and applied
cases. We empirically illustrate this negative effect on three publicly available
datasets, YouTube Spam dataset [1], Spouse dataset [21], and Goodreads
dataset [29,30].

– Stronger performance: As a solution, we propose to leverage FA for
a new WSL method that outperforms current state-of-the-art models,
including Snorkel [21], as well as the benchmark probabilistic algorithms
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GPLVM-SVGP and VI-FA in terms of both performance and resilience to
class imbalance.

– Robustness and Causality: We demonstrate the robustness of the pro-
posed FA model under small datasets, class-imbalance and label abstentions.
Also, it is proven that FA models offer causality between the labelling func-
tions and the true labels [9].

– Industrial Applicability: We applied our method on internal data (JPMor-
gan) and evaluated our model in real-world cases (source code) by communi-
cating with SMEs (firm engineers).We show our method scales well in indus-
trial settings, is plug-and-play, and highly robust and accurate.

2 Related Work

WSL, as a research area, has become widely popular and has experienced a
wealth of publications; with many culminating to end-to-end production systems
[19,21]. Some real-world examples, from a diversified domain, which WSL meth-
ods have been applied, include healthcare [8,10,11,24,25], human posturing and
ergonomic studies [5,14,35], multimedia and sound [15,18,23], dataset querying
[33], in business studies and behavioural analysis [12,16,27], and autonomous
driving [31].

In our paper, we draw motivation from recent research on data program-
ming and matrix completion methods for WSL. Specifically, in [22] the authors
use conditionally independent and user defined labelling functions with a proba-
bilistic model optimised using the log-maximum likelihood and gradient descent
methods. The true class label for a data point is modeled as a latent variable
that generates the observed, noisy labels. After fitting the parameters of this
generative model on unlabeled data, a distribution over the latent, true labels
can then be inferred. [2] expand the previous research by adding an L1 regu-
lariser to the [22]’s formula. The team created a first end-to-end programmatic
pipeline by incorporating findings from the two previous papers, named Snorkel
[19,20,34]. They also replaced the sampling of the posterior from a graphical
model with a matrix completion approach [19].

The main shortcomings of the probabilistic approach that [2,19,22] are using
are that is mathematically quite complex (for example the works of [2,22]).
Also, challenging to implement as a plug-and-play solution on industrial scale
projects. Finally, as we demonstrate in Sects. 3 and 5, fails to perform under
class-imbalance and small datasets.

One way to address the class imbalance performance problem and simplify the
algorithms came from [28]. The authors presented a structure learning method
that relies on robust Principal Component Analysis (PCA) to estimate the
dependencies among the different weakly supervision sources. They show that
the dependency structure of generative models significantly affects the quality of
the generated labels. This, thematically, is quite similar to our work. The main
differentiating factor is that in [28] they use PCA as a method to replace the
lower rank and the sparse matrix from their previous work [20]; whereas, we
propose to use FA as the entire WSL model.
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Our approach, compared to [28], allows users to plug-and-play any latent
probabilistic models, without further modification. Another major difference is
that our approach (FA) considers independent diagonal noise compared to spher-
ical noise of the PCA, therefore as a model is better suited to map causality
amongst the labelling functions (λ) and the ground truth [9].

3 Model Formulation

In this paper we follow a two-step approach. Initially, we utilise heuristic labelling
function techniques based on [19] to create a sparse labelling matrix Λ. In the sec-
ond step, we map the relationships (Fig. 1) among the labelling functions using
FA. Our approach has the benefit that can be expanded using any probabilistic
generative latent variable model such as GPLVM.

(a) YouTube Spam (b) Spouse (c) Goodreads

Fig. 1. The covariance heatmaps of the three labelling matrices (λ). Each heatmap
is a dataset. We observe that the labelling functions Λ are independent. There is no
strong relationship amongst them. But FA (and PLVM in general) are able to capture
the causal relationship and approximate a true latent factor.

3.1 Labelling Functions

Labelling functions λ, as described in [22], are user-defined programmatic items
that each incorporate the SME’s knowledge in a binary form λ ∈ {0, 1} or {−1} if
the function λ is considered as abstain; where no relevant information is present.
The goal of this process is to build a large set of approximate labels [2]. Effec-
tively, rather than hand-labelling training data, SMEs can write labelling func-
tions instead. To this end, as a data programming approach, labelling functions
offer model flexibility by programmatically expressing various weakly supervision
sources, including patterns, heuristics, external knowledge bases, and more.

3.2 Factor Analysis

Our objective is to enhance the generative methodology underlying Snorkel [21]
with a more straightforward approaching. In a related work, [28] applied a robust
PCA to improve Snorkel results. However, our method differs from theirs in that
they used PCA to initialize parameters for their probabilistic model, whereas we



40 G. Papadopoulos et al.

replace the scalable matrix completion algorithm with a probabilistic generative
latent variable model (PLVM).

The use of generative latent models to extract underlying components from
data has been extensively researched and documented [3,4,6,17]. A standard
generative latent model is Factor Analysis (FA), which is closely related to
Probabilistic PCA [26]. By leveraging the FA model, we aim to simplify the
underlying probabilistic complexity of Snorkel and improve its performance on
unlabelled datasets.

3.3 Weakly Supervision with Factor Analysis

Given an observed dataset X ∈ R
n×d, we utilise the labelling function λ capabil-

ities from Snorkel [21] to create a binary labelling matrix Λ. Labelling functions
are user-defined programmatic items that scan the underlying data X and result
in the labelling matrix Λ(X). The labelling matrix is a n×m sparse matrix with
m the number of labelling functions λ, n the number of data-points in the data
X and values Λ ∈ {0, 1,−1}. The Factor Analysis (FA) model captures the dom-
inant dependencies amongst the data and subsequently finds a lower dimensional
probabilistic description. FA can also be used for classification as they can model
class conditional densities [6]. In brief, the idea behind FA is that we have an
observed dataset Λ that is a linear representation of a latent factor z

Λ = Wz + c + ε (1)

W is the loading matrix with dimensions m×k with k the dimensions of the
latent factor z with k�d, c is a centred constant bias term and ε = N (ε|0, Ψ) is
the Gaussian distributed noise of the model with Ψ the m×m diagonal matrix.
As a reminder m is the number of columns/labelling functions in our observed
data Λ and n the number of observed data-points. Probabilistically, this formula
takes the form of the likelihood p(Λ|z):

p(Λ|z) = N (Λ|Wz + c, Ψ)

∝ exp(−1
2
(Λ − Wz − c)TΨ−1(Λ − Wz − c))

(2)

the prior p(z) of the Bayesian model is:

p(z) = N (z|0, I) ∝ exp(−1
2
zT z) (3)

This means that the centre of the factor z, due to its prior, will be constraint
around 0. The next step to construct a full Bayesian model is to add the marginal
p(Λ):

p(Λ) =
∫

p(Λ|z)p(z)dz =
∫

N (Λ|c,WWT + Ψ) (4)
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The posterior p(z|Λ):

p(z|Λ) =
p(Λ|z)p(z)

p(Λ)
= N (z|m,V )

m = GWTΨ−1(Λ − c)

V = G + E[z]E[z]T

(5)

with G = (I + WTΨ−1W )−1.
The log-likelihood of this model is:

L(Λ|W, z, Ψ) = −1
2
trace((Λ − c)TΣ−1(Λ − c))

− N

2
log(2π) − 1

2
log|Σ|

(6)

with Σ = WWT + Ψ ; where Ψ the m × m noise diagonal matrix, WWT the
m × m weights (loadings) matrix, and Σ the m × m covariance matrix of the
labelling data Λ.

Thus, the variance of the observed data (Λ) consists of a rank one component
WWT originating from the joint dependence of the indicators on the latent factor
z. Together with a full rank diagonal matrix Ψ , arising from the presence of noise,
as it is an approximation of the latent variable.

3.4 Other Probabilistic Generative Latent Variable Models

In addition to Factor Analysis, we have also explored two alternative models in
the family of PLVM. Specifically, we built a variational inference version of the
Factor Analysis (VI-FA) using Tensorflow and the Adam optimiser, and we also
put together a version of the GPLVM and SVGP models from GPflow.

VI-FA Model: For this model, we followed a similar process as for the prob-
abilistic PCA [6] but using an independent variance for each data dimension
m (see Eq. 2). To infer the posterior distribution of the latent variable model
we utilise variational inference. We approximate the posterior p(W, z, Ψ |Λ) (see
Eq. 5) using a variational distribution q(W, z, Ψ) with parameters θ. To find θ
we minimise the KL divergence between the approximate distribution q and the
posterior, KL(q(W, z, Ψ)|p(W, z, Ψ |Λ)), which is to maximise the ELBO.

GPLVM Model: For the latter method, we trained a GPLVM model on the
labelling matrix (Λ). By its nature, a GPLVM model can be interpreted as a
generalisation of probabilistic PCA [6], where instead of optimising the linear
mappings (W in Eq. 1) we optimise the latent variable z. In other words, it maps
the connection between latent data z and observable data Λ using Gaussian-
process priors. Overall, the log-likelihood from Eq. 6 becomes

L(Λ|W, z,K) = −1
2
tr((Λ − c)K−1(ΛT − c))

− N

2
log(2π) − 1

2
log|K|

(7)
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with K as the Gaussian process kernel.
During inference, the model accepts new (test) latent z∗-data and predicts

the observable data Λ∗ by computing the two moments, mean and standard
deviation. But, for our approach we need to be able to accept new observable data
Λ∗ and predict the latent z∗-data. Similar to any other non-linear kernel-based
model it is difficult for the GPLVM to be used as a dimensionality reduction tool
that accepts test data. This is because it is challenging to invert the mapping
between z and observable X (or Λ in our case). Various approaches have been
proposed that involve learned pre-images and auxiliary models [7,13,32].

After training the GPLVM (Radial Basis Function kernel), we use an aux-
iliary Bernoulli regression model (SVGP) with Matern52 kernel to create the
mapping between the latent target variable z and the covariates of the regres-
sion model Λ. Then, for new data Λ∗ we use the SVGP model for predicting z∗.

4 Datasets

In this section, we describe the four datasets used to evaluate the model perfor-
mance between Snorkel and PLVMs. Three of them are publicly available and
commonly used in the field of weakly supervised learning, and one is internally
sourced. Table 1 provides the summary statistics.

Table 1. Dataset Statistics. λ is the labelling function. Absent, shows the number of
rows n in the labelling matrix Λ that have all the columns m assigned as absent {−1}.
*For the Spouse dataset we do not have the target values for the training data, only
for the test sub-set. In the table we use the test data information. For the training data
(n = 22, 254) the number of absent rows is n = 16, 520 or 74%.

Number of

Positive Negative Absent λ

Source Code Balanced 127 123 0 3

Spam Balanced 831 755 230 9

Spouse Unbalanced* 218 2,483 1,951 9

Goodreads Unbalanced 514,778 281,293 691,795 5

YouTube Spam Comments: We use YouTube comments dataset, originally
introduced in [1]. The comments were collected via the YouTube API from five
of the ten most viewed videos on YouTube in the first half of 2015. The training
data have n = 1, 586 YouTube video messages and the test data size is n =
250. [21] created the labelling functions that include 5 keyword-based, 1 regular
expression-based, 1 heuristic, 1 complex preprocessors, and 2 third-party model
rules.
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Spouse Dataset: This dataset is constructed by [21] to identify mentions of
spouse relationships in a set of news articles from the Signal Media. The data
is split between n = 22, 254 training samples and n = 2, 701 testing samples.
There are 9 heuristic and NLP related labelling functions1. The ground truth
labels for the training set are not available. Therefore, we are unable to check
for class imbalance or the accuracy of the model on the training set.

Goodreads Dataset: We use the Goodreads dataset, from [29,30]. This data
is a smaller sample from the original dataset and contains n = 794, 294 training
records and n = 44, 336 test records, collected from 876, 145 Goodreads’ users
(with detailed meta-data). We followed the same experiment settings2 defined
by Snorkel, where the task is to predict whether a user favours the book or not
given the interaction and metadata as context.

Source Code Dataset: In addition to the natural language based tasks, we
have also created a pipeline and evaluated our proposed method in an indus-
trial setting at JPMorgan; on a binary classification task in the field of Machine
Learning on Source Code (MLonCode). The objective was to predict the label
of each function/method within a set of source code repositories. To the best
of our knowledge, this is the first attempt of applying weakly supervised learn-
ing on source code. We internally curated n = 250 functions and asked expe-
rienced senior software engineers to construct three labelling functions. The
three labelling functions represent empirical methods that the engineers would
have used if they were to manually assess the quality of the code of the func-
tion/method. This results in a class balanced source code dataset as indicated
in Table 1.

5 Experiments

Our aim is to validate the three main hypothesis of the paper: 1) the factor
analysis model can be used for binary classification tasks; 2) the labelling matrix
that contains the observable variables (Λ) of the model is the sufficient statistics
of the model; 3) using PLVMs we achieve better results compared to existing
methodologies. We ran our experiments using the following configurations: Mac-
Book Pro 2019, Python 3.7.10, Snorkel 0.9.7, Sklearn 1.7.0, Tensorflow 2.6.0,
Tensorflow-probability 0.13.0. The FA method that is used in Sklearn follows
the SVD approach from [3, p. 448]. For the alternative models that we used,
Variational Inference Factor Analysis (VI-FA) and Gaussian process latent vari-
able models - Sparse Variational Gaussian process (GPLVM-SVGP), we relied
on Tensorflow and GPflow 2.2.1. All our models and data shuffling were set with
random key {123}.

1 https://github.com/snorkel-team/snorkel-tutorials/blob/master/spouse/
spouse demo.ipynb.

2 https://github.com/snorkel-team/snorkel-tutorials/blob/master/recsys/recsys
tutorial.ipynb.

https://github.com/snorkel-team/snorkel-tutorials/blob/master/spouse/spouse_demo.ipynb
https://github.com/snorkel-team/snorkel-tutorials/blob/master/spouse/spouse_demo.ipynb
https://github.com/snorkel-team/snorkel-tutorials/blob/master/recsys/recsys_tutorial.ipynb
https://github.com/snorkel-team/snorkel-tutorials/blob/master/recsys/recsys_tutorial.ipynb
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(a) YouTube Spam (b) Spouse (c) Goodreads

Fig. 2. Jointplots between the two factors from the FA model. The top and right sides
of the plots illustrate the distribution of each factor for the respective test set. The
dotted line shows the median of the first factor, which is the one we used to dichotomise
it and infer the classes during inference. The median is calculated on the training data
factor. We observe that utilizing the first factor is sufficient to separate the two labels
(blue and orange). (Color figure online)

Selection of Classification Threshold: To create binary values from the
latent factor z we tested a series of thresholding methods. The best approach was
to dichotomise the normally distributed test factor z∗ with a median computed
from the training factor z. Figure 2 shows that the first factor’s median (dotted
line) of the YouTube Spam data divides the two separate groups accurately. For
the Spouse and the Goodreads datasets, the median threshold again separates
the two groups but not as effectively as in the previous case. Table 2 shows the
performance of using median, mean and Youden’s J statistics as the threshold,
where median achieves the best results. Thus, we propose to use median as the
thresholding method.

Table 2. Threshold selection. The table shows the accuracy scores for each threshold
choice. The CDF threshold was calculated using the Youden’s J statistic after we
transformed the test z∗ with the normal CDF.

Median Mean CDF

Source Code 0.95 0.92 0.95

Spam 0.86 0.74 0.85

Spouse 0.86 0.92 0.90

Goodreads 0.63 0.39 0.62

YouTube Spam Comments: The YouTube Spam data [1] is a balanced
dataset, with positive class numbers (1) n = 831 and negative class numbers
(0) n = 755 (Table 1). The Snorkel and FA models achieve close results, with
accuracy 86% for both methods, precision 83% for Snorkel and 85% for FA, recall
88% and 84%, and F1 score 86% and 85%.
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Table 3. Accuracy, precision, recall, and F1 metrics for Source Code Classification,
YouTube spam, spouse and Goodreads datasets, comparing the Snorkel approach
against the FA WSL model. Each model is trained on the training dataset and evalu-
ated on the test set. Bold numbers indicates the best performance.

Source Code Spam Dataset (NLP) Spouse Dataset (NLP) Goodreads Dataset
(Recommender systems)

Snorkel Factor Analysis Snorkel Factor Analysis Snorkel Factor Analysis Snorkel Factor Analysis

Accuracy 0.92 0.95 0.86 0.86 0.54 0.86 0.53 0.63

Precision 0.90 0.97 0.83 0.85 0.12 0.32 0.66 0.65

Recall 0.95 0.93 0.88 0.84 0.72 0.64 0.56 0.95

F1 0.93 0.95 0.86 0.85 0.20 0.42 0.61 0.77

Table 4. Accuracy, precision, recall, and F1 metrics for Source Code Classification,
YouTube spam, spouse and Goodreads datasets, comparing the FA WSL model against
the VI-FA and GPLVM-SVGP models. The performance has been measured on the test
sample of each dataset. Bold numbers indicates the best performance.

Source Code Classification Spam Dataset (NLP) Spouse Dataset (NLP) Goodreads Dataset
(Recommender systems)

Factor Analysis VI-FA GPLVM Factor Analysis VI-FA GPLVM Factor Analysis VI-FA GPLVM Factor Analysis VI-FA GPLVM

Accuracy 0.95 0.92 0.92 0.86 0.70 0.82 0.86 0.78 0.09 0.63 0.60 0.63

Precision 0.97 0.89 0.89 0.85 0.89 0.79 0.32 0.22 0.08 0.65 0.64 0.64

Recall 0.93 0.95 0.95 0.84 0.42 0.85 0.64 0.70 0.99 0.95 0.89 0.96

F1 0.95 0.92 0.92 0.85 0.58 0.82 0.42 0.34 0.15 0.77 0.74 0.77

Spouse Dataset: In the Spouse dataset [21], the FA achieves much higher per-
formance compared to the Snorkel model. The dataset suffers from severe class-
imbalance and a large number of absent labelled classes, as shown in Table 1.
Specifically, from the n = 22, 254 training data, 74% or n = 16, 520 observations
have absent values (λ = −1) in all m = 9 labelling functions.

The FA model shows its strength on this type of dataset that have high
number of absent items and experience class-imbalance. In terms of accuracy,
Snorkel scores 54%, whereas our model attains an impressive 86%. On the other
hand, in recall, Snorkel shows a score of 72% and our model 64% (Table 3).

Goodreads Dataset: This is the largest dataset we used for model training and
predictions [29,30]. Similarly to Spouse data, Goodreads is a class-imbalanced
dataset and it exhibits a considerable amount (87% of the observations) of absent
labelled items (Table 1). In Table 3, FA beats Snorkel predictions on almost every
classification metric, namely 10%+ accuracy, 1.69x recall and 16% higher F1
score, and achieves marginally lower precision (1%).

Source Code Classification: Table 3 shows the classification performance of
Snorkel and FA when evaluated against the truth data. Specifically, the accuracy
is 92% for Snorkel and 95% for the FA model; the precision is 90% for Snorkel
and 97% for the FA; recall is 95% and 93% subsequently; and finally the F1
score is 93% for Snorkel and 95% for the FA.

Class Imbalance and Abstentions: To examine the relationship between
model performance and class imbalance, we first quantify the class imbalance
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by computing the absolute percentage difference between positive and negative,
|npos−nneg|
npos+nneg

of each dataset, where npos and nneg refer to the number of positive
and negative class respectively. We then compared this to the result stated in
Table 3. In Fig. 3, we observe promising evidence to suggest that as the extent
of class imbalance increases, the performance of Snorkel drops, whereas Factor
Analysis model does not.

Fig. 3. Relation between the accuracy and absolute percentage difference of positive
and negative classes representing the extent of class imbalance. We see evidence that
the accuracy of Snorkel decreases with the extent of class imbalance, whereas Factor
Analysis does not. FA also consistently outperforms Snorkel, when we compare the
model accuracy for binary classification tasks on the four datasets: Youtube Spam
(triangle), Spouse (star), Goodreads (cross), Internal Source Code (circle) and the
extent of class imbalance.

The effect of class imbalance and abstentions can also be viewed in Fig. 2. In
the Spouse (a) and in the Goodreads (b) figures, we observe that abstentions
make more challenging for the model to dichotomise efficiently the classes. Nev-
ertheless, the FA method performs much more accurately compared to Snorkel
(Table 3) or the other two PLVM models (Table 4).

In general, abstentions and class-imbalance are two critical issues when we
build a WSL pipeline. The probabilistic mechanism of FA, and how it maps the
dependencies across the functions in the labelling matrix Λ, weaken the impact
of these two problems significantly.

Robustness: We studied how the model performance changes when we vary
the size of the training data. Figure 4 shows that Factor Analysis achieves a
1.7x and 14% higher accuracy in Spouse and Goodreads test set with only 10
training datapoints, and 4% higher in YouTube Spam test set with 30 training
datapoints.

6 Benefits of the Model

The benefits of using the benchmark model to replace the pipeline of the
Snorkel algorithm, include the speed, the robustness of the results on unbalanced
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(a) YouTube Spam (b) Spouse (c) Goodreads

Fig. 4. Comparison of classification performance of Snorkel and Factor Analysis (our
proposed approach) in terms of accuracy. We randomly selected n sample as the train-
ing set forming the labelling matrix Λ, where n ∈ {10, 20, 30, 40, 50, 60} and evaluated
against their respective test set. Factor Analysis achieves significant higher accuracy
than Snorkel with merely 10 training samples in the Spouse and Goodreads datasets,
and 30 training samples for the YouTube Spam dataset illustrating the robustness of
our approach.

datasets, the causality that FA offers [9], and the explainability of the model
compared to the Snorkel probabilistic approach. Explainability, as in terms of
the FA model is a method that has been tested, evaluated, and used for years
in the field of social sciences and the underlying mechanisms have been stud-
ied extensively. Finally, as we demonstrated in the evaluation of source code in
JPMorgan, our approach can be easily integrated into existing machine learning
workflows using standard widely-used libraries in Python (scikit) or R (psych).
This allows users to leverage their existing knowledge and resources to quickly
adopt and integrate the new framework into their applications.

7 Limitations

While the proposed method offers several benefits, there are some limitations
that require further investigation in future research. The model’s inability to
perform on multi-label datasets, which are commonly encountered in many real-
world applications. Multi-label datasets involve instances that can be assigned
multiple labels or categories simultaneously, making them more complex than
single-label datasets. Unfortunately, the model developed in this research was
not able to effectively handle this type of data. We attempted to address this
issue by increasing the number of principal components in the model output,
but this did not yield significant improvements in performance.

8 Discussion and Future Direction

We introduced generative probabilistic latent variable models (Factor Analysis)
as a novel approach to solve weakly supervised learning tasks. Our method, by
using high-level domain knowledge from Subject Matter Experts, accomplishes
high quality results and can be an excellent choice for approximating true labels
on unlabelled data. We provided evidence that Factor Analysis is resilient to
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class imbalanced datasets as indicated by the significant improvement to the
classification performance. Finally, we tested the effect of sparse data resources
by varying the number of data-points used to train the generative model and
we showed that with a minimum number of points our approach can attain high
performance. For future work, we hope to expand the generative probabilistic
latent variable models into a multi-class domain and explore our approach to
other weakly supervised learning tasks.

Acknowledgments. We want to thank the reviewers for their time, effort, and the
very constructive feedback and advice. Our aim was to try and incorporate as many of
their suggestions as possible considering the time. If some of their suggestions are not
present (e.g. more datasets) is purely because of the limited timeframe. The readers
can find the relevant code, as soon as it becomes available, at the JPMorgan Github
https://github.com/jpmorganchase under the repository name weakly-supervision and
the branch ecml-experiments.
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Abstract. Paying for deliveries using cash after the delivery is made is
a popular mode of payment employed by customers transacting online
for the first time or those that prefer to have more control, especially in
emerging economies like India. While the cash (or pay)-on-delivery (COD
or POD) option helps e-commerce platforms, for example in our food
delivery platform, tap into new customers, it also opens up substantial
risk in the form of fraud and abuse. A common risk mitigation strategy
is to impose a limit on the order value that can be paid using COD. In
our experience and survey, these limits are typically blunt (a single limit
for a city or zip code) and set by business teams using heuristics and
primarily from a risk-management-backwards view. This one-size-fits-all
approach means we leave money on the table on customer groups where
the limits are too strict and lose money on groups where they are lax.
We need to balance the risk-management and the customer-preference
angles simultaneously and dynamically. Note that this is different from
a typical credit-scoring approach due to at least two major reasons - 1)
the information available in e-commerce, especially online food delivery,
is much sparser, 2) the limit needs to be calculated dynamically in real-
time depending on the transaction value, restaurant and marketplace
constraints and network effects. To this end, we present a framework
called DyCOD that maps this to a non-linear constrained optimisation
problem. To the best of our knowledge there are no published results in
this area and our work is the first. We solve this using both heuristic
and model driven approaches and run large-scale A/B experiments. Our
approaches delivered a 2.1% lift in margin per order vs. the baseline
while not increasing any risk metrics, which is highly significant at our
scale.
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1 Introduction

Despite the growing popularity of digital payment methods, Cash on Delivery
(COD) still accounts for $30 billion of the Indian e-commerce market [3,10] which
is significant. According to a report published by an Indian startup that special-
izes in payment systems, 65% of its transactions were settled using COD [7]. For
Indian customers who are still adapting to the world of digital transactions, the
COD mode of payment provides assurance, generates confidence, and instills a
sense of control, leading to continued engagement and reduced churn.

However, COD orders can result in abusive scenarios, where the orders get
canceled and the company has no way of recovering the cash, impacting the com-
pany’s baseline negatively. Preventing such abuse becomes further challenging
in a three-sided hyperlocal marketplace as multiple actors - customers, delivery
partners, and restaurants are involved. Since the abuse can originate from any
of the actors and collusion between them, it is difficult to attribute abuse to any
one of them and levy cancellation fees. In the case of pre-paid orders, compa-
nies have more control over the transaction, as they can deduct the cancellation
charge from the amount already prepaid by the customer and refund the bal-
ance, if any, back to the customer. On the other hand in COD, the order amount
was never paid and the company loses all the so-far invested cost.

The most common strategy that the Indian e-commerce industry has adopted
to contain such abuse is by limiting all COD transactions to a maximum-
purchase-limit (MPL) beyond which COD is disabled for the customer [8,9].
The objective of MPL is to restrict higher value orders to keep the cost of
doing business in check. Companies use several heuristic and rule based meth-
ods [8,11] to determine MPL. Although these methods can restrict abuse, there
are cases where a genuine customer intends to place a higher value order but is
restricted by these limits. Such instances can lead to a bad customer experience
and may even result in customers churning away from the platform. Since COD
is a growth lever [3] for Indian businesses, such experience can be detrimental
to customer retention. Hence, determining optimal limits and having the right
tradeoff between abuse cost and ensuring a smooth customer experience becomes
critical. Further, in this paper, we show that utilizing the customer attributes
to determine optimal MPL can improve key business metrics.

There is limited academic literature on determining MPL. The closest well-
studied field is credit limit determination [1,4,5]. However, the dynamics of MPL
at an e-commerce company are different from that of credit limits. While credit
limits are primarily calculated offline with explicit information provided by the
customer and his/her payment history, customer specific MPL is calculated real-
time taking into account current transaction details like location, cart value etc.
as well as implicit signals derived from historical platform behavior of the cus-
tomer.

To this end, we introduce “DyCOD”, a nonlinear optimization-based algo-
rithm that dynamically generates MPL for customers based on their COD prefer-
ences and past behavior on the platform. The algorithm aims at increasing order
conversion while balancing the abuse cost and finding optimal (customer,MPL)
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segments. The algorithm is divided into three modules: Customer score genera-
tion, Customer Segmentation, and Limit Allocation. The Customer Score module
focuses on defining customers’ platform trust score and preference towards COD
using heuristic and propensity-model-driven methods. Customer Segmentation
uses these scores to identify similar cohorts. These cohorts are then fed into
the Limit Allocation Module to determine the optimal MPL for each customer
segment. The modular structure of the algorithm allows us to experiment with
different techniques in each module. Due to its real-life business application,
the design principle followed is that the generated limit should be explainable,
overridable and configurable.

Summarising the above, the key contributions of this paper are

1. We formulate MPL determination as a non-linear constrained optimization
problem and propose an extensible, modular algorithm, DyCOD, to determine
optimal MPL in real-time.

2. We present how propensity modeling can be effective in predicting customer
order conversion at different MPLs and use gradient boosted trees to learn
from real-time order details, COD preferences and customers’ trust score
derived from implicit platform behavior

3. We conduct an extensive ablation study offline and perform a large-scale A/B
experiment to deliver a 2.1% lift in margin per order vs. the baseline while
not increasing any risk metrics. The algorithm was deployed at full-scale and
is currently serving millions of customers.

The rest of the paper is organized as follows. In Sect. 2, we briefly describe
COD systems in our setting. In Sect. 3, we introduce the problem statement fol-
lowed by the data requirements in Sect. 4. Section 5 explains the different mod-
ules, a summary of how the algorithm evolved over time and lessons learned. In
Sect. 6, we illustrate the real-time inference architecture. In Sect. 7, we present
results from our offline and online experiments. In Sect. 8, we review the litera-
ture in the related fields, followed by the conclusion and future scope in Sects. 9
and 10 respectively.

2 System View

In a typical e-commerce system, a customer can create a cart with multiple items
and subsequently move to the payment page to check the available payment
methods. COD is one such payment method.

Figure 1 illustrates a “Trust and Safety” (TnS) service that determines the
COD-eligibility of a customer. The key components of the TnS Service are the
ML model and business policies for preventing fraud and determining MPL.
These components interact with each other to determine the final COD eligibil-
ity of the customer; given the adversarial nature of the domain, we will refrain
from disclosing the exact nature of interactions between the systems. Currently,
in our system, MPL is determined based on business intuition and domain under-
standing (BizCOD) and is set as a static configuration. The proposed DyCOD
algorithm aims to optimize MPL in real-time.
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Fig. 1. System architecture for COD eligibility

3 Problem Formulation

In this section, we define our business metrics and use them to formulate the
problem as a constrained optimization problem.

Our primary objective is to increase the order conversion ‘c’ while balancing
the abuse cost per order ‘r’. Since millions of customers transact monthly on our
platform, it makes optimizing for each customer computationally challenging.
Hence, we first divide the customers into ‘n’ homogeneous customer groups:
G = [Gi, G2 . . . Gn], and then use these groups to measure different business
metrics and allocate MPL. Let gi be the size of the group Gi. Let rb, cb, gb and
rd, cd, gd be the above defined metrics for BizCOD and DyCOD respectively.

The incremental gain in conversion (Δc), when MPL is determined by
DyCOD instead of BizCOD can be obtained as follows

Δc =
∑n

i=1((c
d
i − cbi ) × gi)∑n
i=1 gi

(1)

Let γ represent the cost per incremental order which helps to measure the
tradeoff between Δc and r. γ can be calculated as:

γ =
∑n

i=1 rdi × cdi × gi − ∑n
i=1 rbi × cbi × gi

∑n
i=1((c

d
i − cbi ) × gi)

(2)

γ should be less than the amount (φ) company is spending to get per incre-
mental conversion. Summarizing, from Eqs. 1 and 2 our problem formulation for
DyCOD becomes the following optimization problem:

maximize Δc ⇒
∑n

i=1((c
d
i −cbi )×gi)∑n
i=1 gi

subject to γ < φ
(3)
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4 Data Collection Design

In order to determine whether increasing MPL is an effective way to boost
user conversion and further understand customer behavior with changing MPL,
representative data collection becomes critical. In the data collection design, we
subject randomly selected customer samples to progressively increasing limits
on MPL to understand their conversion behavior and potential for abuse. The
data collection was designed to adhere with in-house implementation constraints
which allowed us to increase the BizCODMPL only by 10%-point increments, i.e.
1x, 1.1x, 1.2x, ..., 1.6x (1.3x represents MPL of 1.3 times the BizCODMPL).
For example, in a city with a BizCODMPL of Rs. 1000, seven groups of y%
customers each will be randomly assigned an MPL of Rs. 1000, 1100, 1200,
. . . , 1600. Since the objective is to optimize MPL, we keep the remaining TnS
components intact. However, the algorithm proposed in the next section is not
limited to this data collection design and can be generalized for any continuous
range of MPL.

5 Dynamic COD Algorithm

The proposed algorithm has three modules

1. Customer Score Generation: The objective of this module is to give a
score to each customer based on their historical and real-time attributes. The
underlying idea is to assign higher scores to customers who have a higher
preference to use COD and a lower tendency to abuse. We propose two ways to
derive this score: heuristically and propensity-based ML-model (Subsect. 5.1)

2. Customer Segmentation: This module utilizes customer scores to group
similar customers. We propose multiple strategies for identifying such groups
(Subsect. 5.2)

3. Limit Allocation: In this optimal MPL for each segment is determined
using constrained grid-search (Subsect. 5.3).

5.1 Customer Score Generation

In this section, we introduce three methods as a series of iterative refinements to
generate customer scores. We started with the heuristic-based COD Usage Gra-
dient and the Customer Trust Score and then pivoted to the ML-model-driven
Propensity Score. One of the major design considerations was interpretability,
especially to front-line Operations folks, which made sophisticated ML models
like neural networks and other deep learning-based methods out of scope for us.

COD Usage Gradient (UG). We started with the intuition that if a function
f represents a customer’s preference to use COD for different order values, then
its derivative at the customer’s currently assigned MPL can be used as a score
to indicate whether the MPL should be changed for that customer. We call
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this score the COD Usage Gradient (UG). In our data, the current MPL for
all customers is the BizCODMPL. We divide the order values into multiple
continuous buckets with constant step size x. We model f as the ratio of the
count of the customer’s COD orders to all his/her orders (prepaid+COD) in
that bucket. We then calculate UG as the derivative of f at BizCODMPL.

For any given order value z, yz be the upper bound of its bucket, then:

CO[x](z) = number of cod orders in order value range (yz − x, yz]
LO[x](z) = number of orders in order value range (yz − x, yz]

We define f and calculate UG as

f[x](z) =
CO[x](z)
LO[x](z)

(4)

UG =
f[x](BizCODMPL) − f[x](BizCODMPL − x)

x
(5)

For example, if BizCODMPL is 550 which lies in the bucket (500, 600] and
x = 100,

UG =
f[100](600) − f[100](500)

100

Customer Trust Score (TS). We observed that a number of customers pre-
ferred COD specifically for orders valued higher than their historical orders.
Majority of such past orders were pre-paid leading to cold-start issues in UG.
The bucketized calculation of UG required a substantial amount of COD orders
leading to data sparsity. To tackle such behavior we decided to maximize all the
available customer information. The underlying hypothesis was if a customer
has shown good behavior on the platform, they can be trusted with higher order
COD orders. A higher score indicates a more trustworthy customer. Customer
Trust Score used a comprehensive list of the customer attributes like frequent
ordering, less cancellations, higher order values, number of orders etc. These
attributes were normalized with platform numbers to determine the final trust
score of each customer. Based on business objectives, definitions of trust can
vary for businesses.

While TS helped in incorporating a wide spectrum of customer behavior, the
impact of changing MPL was not explicitly captured. This motivated us to find
a balance between COD availability and platform trust attributes.

Propensity Score (PR). Propensity score aims at capturing the difference
in customer’s order conversion probability when shown an MPL (say L) higher
than BizCODMPL. It is defined as

Po(L) = po(L) − po(BizCODMPL) (6)
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Fig. 2. Block Diagram for inference of Po(1.3x) as the PR at 1.3 times BizCODMPL

where, po(MPL) is the propensity of the customer to convert at any MPL, and
Po(L) is propensity score at L

While UG and TS are agnostic of different MPLs, PR is calculated for each
(transaction,MPL) combination. po(MPL) is learned using a classification
model where the corresponding MPL is the xn+1th feature along with other
xn features. These xn features constitute real-time attributes of the cart, histor-
ical and in-session behavior of the COD transactions including UG and TS. We
experimented with logistic regression (LR) and gradient-boosting trees (GBT)
as classifiers to learn po(MPL). Figure 2 shows how PR at L = 1.3x is predicted
during inference.

5.2 Customer Segmentation

The next step is to identify homogeneous customer groups which will be assigned
the same MPL. We experimented with a heuristic and a K-means segmentation
for UG and TS and a propensity-based segmentation designed specifically for
PS.

Heuristic-Based Segmentation (HS). We identify local minima in score dis-
tribution and use perturbations around them as thresholds to segment customers
into similar cohorts. This yields three variants - HS-UG, HS-TS and HS-[UG,
TS] using Usage Gradient and Trust Score.
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K-means-Based Segmentation (KS). In this, customer segments are deter-
mined using the k-means algorithm with UG and TS as input features. KS has
only one variant i.e. KS-[UG, TS].

Propensity-Based Segmentation (PS). Since PR gives a score for every
configurable MPL for all customers, it requires a different segmentation method.
Every customer having ‘similar’ PRs for ‘certain’ MPLs can be grouped together
in a segment. For a customer, we first identify MPLs that are above a desired
threshold - let’s call them feasible MPLs for that customer. Two possible strate-
gies to determine the feasible MPLs thresholds are (i) to use a single threshold
across all MPLs [Global] or (ii) to use different thresholds for different MPLs
[Local]. From this, we create two variants - the Max variant where all customers
who have the same maximum feasible MPL are grouped together in one segment,
and the Min variant where all customers who have the same minimum feasi-
ble MPL form one segment. We compare these four combinations of strategies
(GMin, GMax, LMin, LMax) in our offline evaluation exercise. For each strategy,
many segments are returned as we use a random set of thresholds to determine
feasible MPLs.

Table 1. Comparison of propensity values and limit allotment for 5 customers using
different strategies, under a global threshold of 0.1 and various local thresholds of (0.1,
0.2, 0.3, 0.4, 0.5, 0.6)

Customer Po(1.1) Po(1.2) Po(1.3) Po(1.4) Po(1.5) Po(1.6) GMin GMax LMin LMax

A 0.12 0.54 0.54 0.54 0.57 0.27 1.1 1.6 1.1 1.5

B 0.1 0.1 0.1 0.1 0.2 0.15 1.5 1.5 1 1

C 0.32 0.39 0.2 0.6 0.64 0.71 1.1 1.6 1.1 1.6

D 0 0 0 0 0 0 1 1 1 1

E 0.02 0.02 0.04 0.7 0.65 0.68 1.5 1.4 1.4 1.6

Table 1 demonstrates how PS does segmentation for 5 illustrative customers.
Let’s assume global threshold of 0.1 and local thresholds of (0.1, 0.2, 0.3, 0.4, 0.5,
0.6) for 1.1x to 1.6x MPLs. For customer E, feasible MPLs are 1.4x, 1.5x and
1.6x as per the Global strategy, and 1.4x and 1.5x as per the Local Strategy.
Hence, GMin is 1.4x and GMax is 1.6x, while LMin and LMax are 1.4x and 1.5x
respectively. In the GMin strategy, customer A and C have the same GMin MPL
and hence, they are grouped into the same segment. Similarly, as per LMin, A
and C belong to one segment and B and D belong to another segment, while E
belongs to another. Same method is followed to get GMax and LMax segments.
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5.3 Limit Allocation

In this final module, we aim to get the optimal MPL for each segment. We
explain step by step computation below:

1. Fetch the customer to segment mapping (SGi,MPL) from the customer seg-
mentation module

2. For each segment, use the collected data to compute the conversion (cb) and
abuse cost per order (rb) with BizCODMPL

3. Compute (cd, rd) and evaluate the incremental conversion (Δc) and the con-
straint (γ) for each permutation of possible limits

4. Return the permutation with maximum Δc while satisfying the constraint
(γ < φ).

The Limit Allocation module is presented as Algorithm 1

6 Real-Time Inference

All the historical data, log tables and customer information are stored in a Hive-
based data warehouse. We use Spark jobs to process historical data for offline
training and online inference. Amazon DynamoDB-DAX (DDB-DAX) serves as
the online feature cache and S3 as a cold-feature store.

During inference, when a cart is being evaluated for COD availability, the TnS
system calls the model API hosted on Spark-based MLEAP serving. This API
consists of cart and transaction details required as input features in the model.
MLEAP serving fetches the historical data from DDB-DAX and combines it with
realtime-features, deserializes the model and returns the predicted DyCODMPL.
Figure 3 illustrates the training and inference pipeline.

Fig. 3. The system view for DyCOD training and online real-time inference.
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Algorithm 1. Limit Allocation using Grid Search
Input: SGi,MPL = (C, Gi, l) a data structure denoting customer, the corresponding

segment and the limit assigned during data collection
Output: A mapping of cod limits for each distinct customer cluster

procedure LimitAllocation(SGi,MPL, possible limits)
allocationbest ← None
γbest, cbest ← inf, −inf
possible allocations ← permutations(possible limits, size = N) � all

permutations of size ‘N’

cb, rb ← [cb1, c
b
2, ..., c

b
N ], [rb1, r

b
2, ..., r

b
N ]

while i < N do
cb[i], rb[i] = compute metrics(SGi=i,MPL=1) � c, r from collected data
i += 1

end while

for each allocation in possible allocations do
cd, rd ← [cd1, c

d
2, ..., c

d
N ], [rd1 , rd2 , ..., rdN ]

for each k, l in K, allocation do
cd[i], rd[i] ← compute metrics(SGi=i,MPL=l)

end for

while i < N do
Δc += cd[i] − cb[i]
Δr += rb[i] − rb[i]
sizetotal += gi

end while

γ ← Δr/(Δc · sizetotal)

if γ < Φ AND γ < γbest then
if Δc > cbest then

allocationbest ← allocation
γbest, cbest ← γ, Δc

end if
end if

end for

return allocationbest, cbest, γbest

end procedure
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7 Results

Since our experiments directly impacts the company’s baseline, we first exten-
sively evaluate the various strategies offline and then conduct a large online A/B
experiment with the two best-performing variants.

7.1 Offline Evaluation

Figure 4 summarizes the results of our offline evaluation. We use a relative scale
to directionally compare all the methods as absolute numbers and deltas can
differ for different businesses. For PR, we only report the GBT model results since
the LR model underperformed substantially compared to any other method.

The best-performing method for us was LMax. It gave the maximum Δc and
similar Margin per Order as HS-TS. It performed better than GMax particularly
because thresholds are tuned at a limit level in L∗ methods. The LMax performs
better than LMin in terms of Δc because it allocates the highest eligible COD
limit for a customer compared to LMin which does the vice-versa and hence
higher conversion. We can see that variants using UG score did not perform
relatively well due to data sparsity and cold-start issues explained in Sect. 5.1

(a) Conversion (b) Margin per order

Fig. 4. The Offline evaluation results demonstrate the increase in conversion and profit
per order due to DyCOD algorithms over the baseline BizCOD. Each algorithm had a
feasible solution.

7.2 Online A/B Experiment

Based on the results from Sect. 7.1, we conducted an A/B experiment with Biz-
COD as the control and two test treatments as HS-TS and LMax. Table 2 sum-
marises statistically significant observations from the experiment.

LMax was the best-performing variant and it was deployed at full scale deliv-
ering a 0.1% increase in conversion. HS-TS being a more generalized platform
level approach was less effective in deriving COD conversion.
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Table 2. Online experiment results

Variant Δc γ < Φ Increase in margin per order

HS-TS 0.07% True 2.13%

LMax 0.1% True 2.14%

As shown in Fig. 5 we also observed that the LMax increased MPL for 2.5
times fewer customers than HS-TS. This observation along with the experiment
results show that LMax is selective and assigns higher MPL to only COD-seeking
customers.

Fig. 5. Plot shows the percentage of customers assigned to different COD limits based
on HS-TS and LMax

8 Related Work

Credit Scoring: The paper is inspired by credit score and credit limit determi-
nation problems. Since credit score modeling is a widely studied field, Anton
et al. [6] summarizes recent papers and best practices. Zhang et al. [16] high-
lights the issues of high data dimensions and sparse features in internet credit
loan business and propose a group sampling method to model credit behavior.
Methods like regression [1], Markov decision processes [5], and linear program-
ming [4] have been used to determine customers’ credit limits. Jual et al. [5] uses
a combination of customer segments and credit balance to define a state space,
and uses an MDP to learn optimal credit limit. A study by Nobert et al. [14]
provides interesting insights that customers tends to spend more given a higher
credit limit despite not wanting the increase. Karmi et al. [13] empahasized
on balance between limit increase and credit utilization to derive profitability
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and proposed a Neural Network based predictive function to determine the right
limit-setting strategy.

Propensity Modeling: Propensity-based methods have been widely used in the
industry to understand how likely a certain group of customers is going to act
under certain circumstances. The applications vary from a sale win opportu-
nity [15] to paying energy bills [2], from predicting order conversion [17] in e-
commerce to solving positional bias in search engines [12]. The majority of the
papers use linear regression [15] as a baseline and decision tree [17] or neural
network [2] based methods for the final solution.

9 Conclusion

In this paper, we formulate MPL as a constrained non-linear optimization
problem and present the DyCOD algorithm that determines MPL by incor-
porating customer preference and behavior. The modular structure of the algo-
rithm allowed us to experiment with heuristic scores UG and TS that attempts
to model COD preference and abuse behaviour respectively, and with PR, a
propensity-model-driven score. We assess different segmentation methods on
these scores and propose a limit allocation framework to determine the best (seg-
ment, MPL) combination for our formulation. We demonstrate how DyCOD can
be deployed for real-time inference and share the performance of different vari-
ants in both offline simulations and online large-scale A/B experiments. Propen-
sity model-based LMax was the champion DyCOD variant which also delivered
a significant lift in the margin per order.

10 Future Scope

The current DyCOD algorithm provides the capability to optimize conversion
in hyper-local delivery space, by assigning custom MPLs to customers’ cohorts
based on their propensity to use cash and the capacity to abuse. The future
versions of the algorithm will target the optimization of multiple objectives like
order value in addition to order conversion. The model is presently trained on
data for returning users only and is not suited for users that have low order
history or are new to the platform. We plan to harvest more features relevant
to new users and extend DyCOD to new users as well. The dynamic MPLs
generated by the current model are based on BizCODMPL which is specific to
each geography and is decided by business policies. We plan to experiment with
DyCOD in a more unconstrained nature and agnostic of BizCODMPL, thereby
potentially generating more business value. We will also explore reinforcement
learning methods for DyCOD, where the system learns customer behavior over
time and rewards the customers by providing higher or lower limits based on the
actions they take on the platform. DyCOD will also lead to challenges related to
cash accumulating with delivery agents doing predominantly COD orders and
opens up the possibility of abuse. We will also explore strategies to minimize this
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problem by adding additional constraints on delivery agent cash accumulation
in the optimization function.

Ethical Statement. As we propose a framework to determine the cash-on-delivery

limits for e-commerce transactions, we acknowledge the ethical implications of our

work. Since our work is closely associated with collecting and processing transaction

level data, we assure that any data collected for the research, including any per-

sonal information, has been secured and anonymised. We commit to safeguarding and

respecting the privacy of individuals’ data. We ensure that our work is agnostic to any

personal information including race, gender, religion, or any other personal character-

istic. We believe in equality and inclusivity as essential aspects of ethical development.

We believe that our work is extensible across industries to many applications within

the pay-on-delivery limit and credit limit determination domains. We emphasise that

our work should not be used for any harmful purpose.

References

1. Aa, G., Sb, V., Ab, M.K.R.: Deciding bank client’s credit limit and home loan
using machine learning. Smart Intell. Comput. Commun. Technol. 38, 288 (2021)

2. Bashar, M.A., Nayak, R., Astin-Walmsley, K., Heath, K.: Machine learning for
predicting propensity-to-pay energy bills. Intell. Syst. Appl. 17, 200176 (2023)

3. Economic-Times: Cash on delivery about $30 billion of India’s ecommerce market
(2022). https://economictimes.indiatimes.com/industry/services/retail/cash-on-
delivery-about-30-billion-of-indias-ecommerce-market-says-gokwik/articleshow/
96112033.cms?from=mdr
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Abstract. In the context of public procurement, several indicators
called red flags are used to estimate fraud risk. They are computed
according to certain contract attributes and are therefore dependent
on the proper filling of the contract and award notices. However, these
attributes are very often missing in practice, which prohibits red flags
computation. Traditional fraud detection approaches focus on tabular
data only, considering each contract separately, and are therefore very
sensitive to this issue. In this work, we adopt a graph-based method
allowing leveraging relations between contracts, to compensate for the
missing attributes. We propose PANG (Pattern-Based Anomaly Detec-
tion in Graphs), a general supervised framework relying on pattern
extraction to detect anomalous graphs in a collection of attributed
graphs. Notably, it is able to identify induced subgraphs, a type of pat-
tern widely overlooked in the literature. When benchmarked on standard
datasets, its predictive performance is on par with state-of-the-art meth-
ods, with the additional advantage of being explainable. These experi-
ments also reveal that induced patterns are more discriminative on cer-
tain datasets. When applying PANG to public procurement data, the
prediction is superior to other methods, and it identifies subgraph pat-
terns that are characteristic of fraud-prone situations, thereby making it
possible to better understand fraudulent behavior.

Keywords: Pattern Mining · Graph Classification · Public
Procurement · Fraud Detection

1 Introduction

Public procurement refers to the purchase of goods, services and works by a
public authority (the buyer), from a legal entity governed by public or private
law (the winner). In the European Union, when the contract exceeds some price
threshold, the buyer must first advertise a call for tenders defining its needs in
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detail, and later the corresponding award notice, which describes the content of
the contract eventually concluded with one or more winners. These documents
must be published in the Official Journal of the European Union (OJEU). The
online version of this journal, called the Tenders Electronic Daily (TED) [11],
publishes more than 650,000 procurement notices a year. Consequently, the pub-
lic procurement sector provides a huge amount of publicly available data.

Historically, anomalies in public procurement, which refer to doubtful behav-
ior, are linked to specific characteristics associated with contracts. In the liter-
ature, these characteristics are called red flags, and are used as indicators of
potential fraud [13,15,16,40]. For instance, modifying the contract price during
the procedure, or receiving a single offer for a given call for tenders, are typically
considered as red flags [36]. But the information required to compute these red
flags is not always available. In the French subset of the TED, some essential
attributes are largely missing [37], e.g. the number of offers answering a call
for tenders is not documented in 30% of the cases. For such contracts, one can
compute only partial red flags, in the best of cases, or even no red flags at all.

Anomaly detection approaches are commonly used in fraud detection [39].
However, when applied to public procurement, most studies are based on tabular
data [3,4], i.e. each contract is considered separately, as a set of attribute val-
ues. Only a very few authors try to take advantage of the relationships between
contracts by adopting a graph-based approach. Fazekas & Kertész propose the
CRI, a composite score combining several red flags, and leverage graphs [14],
but only to visualize its distribution over their dataset. Wachs & Kertész [47]
use graphs in order to estimate the proportion of red flags in the core agents,
i.e. buyers and winners with the most frequent relationships, compared to the
others. However, to the best of our knowledge, no method in the literature dedi-
cated to anomaly or fraud detection in public procurement uses graphs to create
predictive models.

This leads us to propose a graph-based method to identify anomalies in public
procurement. Our work makes three main contributions. First, we propose the
PANG framework (Pattern-Based Anomaly Detection in Graphs), that lever-
ages pattern mining to solve this problem. When evaluated on a benchmark of
standard datasets, its performance is on par with state-of-the-art methods, with
the advantage of being explainable. In addition, it allows looking for different
types of patterns, including induced subgraphs, which are generally overlooked
in the literature. Our second contribution is to show empirically that such sub-
graphs can result in better classification performance on certain datasets. As a
third contribution, we apply our generic framework to public procurement data,
and identify the relevant patterns characterizing risky behaviors.

The rest of the article is structured as follows. Section 2 gives an overview
of the literature regarding graph anomaly detection and graph pattern mining.
Section 3 introduces the terminology used throughout this paper, as well as our
problem formulation. Section 4 describes our framework PANG and assesses its
performance on standard datasets. Section 5 applies PANG to public procure-
ment. Finally, we comment the main aspects of our work in Sect. 6.
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2 Related Work

The goal of anomaly detection is to detect behaviors significantly differing from
expected norms. The methods dealing with this task on graphs either focus
on single elements (vertices, edges) or larger structures (subgraphs, graphs)
[2,24,30]. When considering whole graphs, the task can be seen as a classification
problem consisting in labelling the graph as normal or anomalous. The standard
approach consists in building a vector-based representation of the graph, in order
to apply classic data mining tools [30]. Most recent works focus on deep learning
methods such as Graph Neural Networks (GNN) [10,28,29], which not only learn
this representation, but also tackle the classification task. However, one limita-
tion of these methods lies in the lack of explainability: while some approaches
have been proposed to make GNNs explainable [52], achieving this goal is non-
trivial, especially when considering graphs with edge features. An alternative is
to build the representation in a more controlled way, in order to retain its seman-
tics [51]. Among the methods following this path, pattern-based approaches rely
on the subgraphs that compose the graphs [1]. They require retrieving the most
characteristic of these patterns, generally the most frequent ones, in order to
represent each graph in terms of absence or presence of these patterns.

There are different algorithms to extract frequent subgraphs from a collection
of graphs [17,50], i.e. patterns appearing in more graphs than a fixed threshold.
The main issue encountered with this approach is the pattern explosion problem,
which states that the number of patterns increases exponentially when decreasing
this threshold. To alleviate the computational cost, some algorithms mine more
constrained patterns, such as closed frequent patterns [42], maximal frequent
patterns [31], or approximate patterns [26]. As these notions are not the focus
of this paper, we refer the reader to [34] for further details.

Moreover, all frequent patterns may not be relevant when dealing with a
graph classification problem: some could occur equally in all classes, and thus
provide no information to distinguish them. To overcome this issue, some meth-
ods have been proposed to mine discriminative patterns. Leap [49] relies on a
notion of structural proximity when building its search tree, that lets it com-
pare branches in order to avoid exploring those that are similar. CORK [45] is
based on a metric that evaluates a pattern in relation to a collection of patterns
already selected, which allows accounting for the proximity between frequent
patterns. Moreover, this metric is submodular, and can thus be integrated into
tools such as gSpan [50] to mine discriminative patterns efficiently. It also allows
CORK to automatically select the number of patterns to extract. In [23], the
notion of discriminative pattern is extended in order to mine jumping emerging
patterns: subgraphs appearing in only one class. However, this notion is very
restricted, as it requires that a pattern never appears in one of the two classes.
As a consequence, in practice, it often leads to very infrequent patterns [27]. Our
objective is to propose a generic classification framework which allows choosing
the number of discriminative patterns to keep, as well as their type and, then to
apply it for identifying fraud in public procurement.
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Fig. 1. A collection G of graphs including the subsets of anomalous (GA) and normal
(GN ) graphs. (Color figure online)

3 Problem Formulation

To detect fraud in public procurement, we adopt a network representation
inspired by information retrieval or text mining, and previously successfully
used for chemical compound classification [33]. In the same way that a docu-
ment can be modeled as a bag-of-words, we propose to represent a graph as a
bag-of-subgraphs, i.e. the set of its constituting subgraphs, called patterns. To
do this, we construct a global dictionary constituted of the patterns appearing
in a collection of attributed graphs. Based on this dictionary, each graph can
then be represented as a fixed-length numerical vector, which can be used as
an input by any standard machine learning algorithm. In this section, we first
describe how we define such vector-based representation, and then formulate our
anomaly detection task as a classification problem.

Definition 1 (Attributed Graph). An attributed graph is defined as a tuple
G = (V,E,X,Y) in which V is the set of n vertices, E the set of m edges of
G, X the n × dv matrix whose row xi is the dv-dimensional attribute vector
associated with vertex vi ∈ V , and Y the m × de matrix whose row yi is the
de-dimensional attribute vector associated with edge ei ∈ E.

As an illustration, we consider a collection of such graphs, as shown in Fig. 1. In
this example, each vertex has an attribute corresponding to its color (brown or
purple) as well as each edge (green or red).

Let us assume that each graph G has a label �G picked in L = {A,N},
denoting an anomalous or a normal graph, respectively. Importantly, this label
is not known for all the graphs at our disposal. Let G be the set of graphs whose
label is known. The set G can be split into two disjoint subsets: G = GA ∪ GN

(GA ∩GN = ∅). Set GA contains the anomalous graphs, and GN the normal ones.
Using the labeled set of graphs G, our aim is to train a classifier able to predict
the unknown label for the other graphs. For this purpose, we use a pattern-based
graph representation.

Definition 2 (General Pattern). Let G = (V,E,X,Y) be an attributed
graph. A graph P is a pattern of G if it is isomorphic to a subgraph H of G, i.e.
∃H ⊆ G : P ∼= H.

As we consider attributed graphs, we adopt the definition of a graph isomorphism
proposed by Hsieh et al. [21], i.e. an isomorphism must preserve not only edges,
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Fig. 2. Three examples of general patterns present in graph G1 of Fig. 1.

but also vertex and edge attributes. We consider that P is a pattern for a set of
graphs G when P is a pattern of at least one of its graphs. Figure 2 shows three
examples of patterns of G1, and therefore of G, from Fig. 1.

It should be noted that, according to Definition 2, a pattern P may not
include all the edges originally present in G between the considered vertices.
We can restrict this definition by considering induced patterns. Similarly to
Definition 2, P is an induced pattern of G if it is isomorphic to an induced
subgraph H of G.

Definition 3 (Induced Subgraph). Let G = (V,E,X,Y) be an attributed
graph. The subgraph H = (VH , EH ,XH ,YH) induced by a vertex subset VH ∈ V
is such that EH = {(u, v) ∈ E : u, v ∈ VH}, and XH and YH retain only the
rows of X and Y matching VH and EH , respectively.

In Fig. 2, P1 is an induced pattern of G1. On the contrary, P2 is a general pattern
of G1, but not an induced pattern, because edge (v3, v5) from G1 has no image
in P2. We consider that P is an induced pattern of G when P is an induced
pattern of at least one of its graphs. To measure the importance of a pattern in
G, we now need the notion of graph frequency.

Definition 4 (Graph Frequency). The graph frequency GF (P,G) of a pattern
P in G is the number of graphs in G having P as a pattern:

GF (P,G) = |{G ∈ G : ∃H ⊆ G s.t. P ∼= H}|.
It indicates the number of graphs having a specific pattern, but does not give
any information about the number of times the pattern appears in these graphs.
For this, we use the subgraph frequency.

Definition 5 (Subgraph Frequency). The subgraph frequency SF (P,G) of a
pattern P in G is its total number of occurrences over all G ∈ G:

SF (P,G) =
∑

G∈G |{H ⊆ G : P ∼= H}|.
Graph frequency can be used to define the notion of closed pattern, which

in turn allows finding a more compact set of relevant patterns.

Definition 6 (Closed Pattern). A pattern P of G is said to be closed if it has
no supergraph P ′, or equivalently if P is not the subgraph of any graph P ′, such
that GF (P ′,G) = GF (P,G).
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As a consequence, the set of closed patterns is a subset of the set of general
patterns. In our example, there is no supergraph of P1 appearing in two graphs,
which makes it a closed pattern of G.

Regardless of the type of pattern, we note PA and PN the sets of patterns of
GA and GN , respectively, and P the complete set of patterns of G: P = PA ∪PN .
Not all patterns are equally relevant to solve a given task. For instance, in
Fig. 2, P3 is much more common than both other patterns in G from Fig. 1. To
distinguish them, we rely on the discrimination score from [45], that characterizes
each pattern according to its frequency in the two subsets.

Definition 7 (Discrimination Score). The discrimination score of a pattern
P of G is defined as disc(P ) = |F (P,GA) − F (P,GN )|, where F is GF or SF .

Our definition generalizes that of [45], so that it can be applied to both frequen-
cies (GF and SF ). A score close to 0 indicates a pattern that is as frequent in
GA as in GN , while a higher score means that the pattern is more frequent in
one of the two subsets. We use this score to rank the patterns in P, and select
the s most discriminative ones (1 ≤ s ≤ |P|). Some methods, like CORK [45],
estimate s automatically, which can be an advantage or a drawback, depending
on the level of control desired by the user.

The resulting subset Ps ⊆ P constitutes our dictionary, which means that s
lets us control the dimension of our graph representation. The representation of
each graph Gi ∈ G is a vector hi ∈ R

s whose components measure how important
each pattern of Ps is to Gi. These measures can be computed according to
different formula, as discussed in Sect. 4. Finally, we build the matrix H ∈ R

|G|×s

by considering the vector representations of all the graphs in G.
Based on this graph representation, our anomaly detection problem amounts

to classifying graphs with unknown labels as anomalous or normal. More for-
mally, given the training set composed of a set of graphs G = {Gi, i = 1, . . . , |G|}
with the labels �Gi

∈ L and the vector representations hi, the goal is to learn
a function f : Rs → {A,N}, which associates a label (anomalous or normal) to
the vector representation of an unlabeled graph.

4 PANG Framework

4.1 Description of the Framework

To solve our classification problem, we propose the PANG framework (Pattern-
Based Anomaly Detection in Graphs), whose source code is publicly available
online1. A preliminary step consists in extracting the graphs, but as it is data-
dependent, we defer its description to Sect. 5.1. The rest of the process is con-
stituted of four steps, as represented in Fig. 3:

1. Identify all the patterns of G and build P.
2. Select the most discriminative patterns Ps among them.
3. Use these patterns to build the vector-based representation of each graph.
4. Train a classifier to predict the graph labels based on these representations.

1 https://github.com/CompNet/Pang/releases/tag/v1.0.0 .

https://github.com/CompNet/Pang/releases/tag/v1.0.0
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Fig. 3. Processing steps of the proposed PANG framework.

Step #1: Pattern Identification. In order to create P, we use an existing graph
pattern extractor. Several tools are available to enumerate patterns, such as
gSpan [50], FFSM [22], or more recently TKG [17] and cgSpan [42].

gSpan and cgSpan respectively search the frequent and closed frequent pat-
terns in a set of graphs. Both rely on an iterative procedure, which starts from
the simplest pattern possible, i.e. a single vertex with a specific attribute, in
order to initialize the list of ranked frequent patterns. At each step, the algo-
rithm takes the most frequent pattern according to this list, and tries to extend
it by adding an edge. This expansion results in a set of new patterns, which are
added or not to the ranked list, according to their frequency. This list is updated
over the iterations, until it is no longer possible to find any new pattern with a
frequency potentially higher than a predefined threshold.

In the case of cgSpan, the algorithm is able to find the set of closed frequent
patterns, which is included in the set of frequent patterns. A smaller set of
patterns allows reducing the computation time during the pattern mining phase,
but also at post-processing, e.g. when computing the discrimination scores, since
there are fewer patterns to consider, and consequently a smaller size for the
vector representation.

We choose to use gSpan [50] and cgSpan [42]. The former mines an important
number of frequent patterns while requiring less memory than TKG. The latter
is able to efficiently identify closed patterns. Both algorithms are implemented
in Java, and are available as a part of software SPMF [18]. The process used for
the induced patterns is based on two steps: first, each pattern is extracted using
one of these algorithms. Then, we filter the induced patterns using the ISMAGS
algorithm [20] implemented in NetworkX [19].

Step #2: Discriminative Pattern Selection. Next, we compute the discrimination
score of each extracted pattern as explained in Definition 7. We keep the s most
discriminative patterns to construct Ps.

Step # 3: Vector-Based Representation. Once we have Ps, we compute the vector
representation of each graph in G. In this work, we use several approaches. First,
we build a binary vector indicating the presence or absence of each pattern in the
considered graph. In that case, for each graph Gi ∈ G and each pattern Pj ∈ P,
Hij equals 1 if this pattern Pj is present in Gi and 0 otherwise.
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Fig. 4. Binary (hb
j) and integer (hz

j ) vector-based representations of the graphs of
Fig. 1, using the patterns of Fig. 2 as Ps.

This representation is somewhat limited, though, as it ignores how much
patterns are present in graphs. To solve this issue, we propose an integer rep-
resentation based on the number of occurrences in the graph. This number is
computed with the VF2 algorithm [6], available in Networkx [19]. Given a pat-
tern P and a graph G, VF2 identifies the number of subgraph isomorphisms of
P in G, which we store in Hij .

Figure 4 shows the representations obtained for the graphs of Fig. 1, using
the patterns from Fig. 2 as Ps. Vectors hb

j and hz
j denote the binary and inte-

ger representations of each graph Gj , respectively. It is worth noting that two
different graphs can have the same vector representation, as is the case for the
binary representation of G3 and G4 in our example.

For reasons of consistency, we compute the discrimination scores based on
GF when using the binary representation, and on SF when using the integer
one.

Step #4: Classifier Training. After the previous step, each graph is represented
by a fixed-sized vector, no matter its number of vertices or edges. We leverage
this representation to train a classifier into predicting the graph labels. Our
framework is general and allows any classifier, but we select C-SVM [5] in this
article, as it gives the best experimental results.

4.2 Assessment on Benchmarks

Before focusing on fraud detection in public procurement, we assess PANG on
FOPPA, the public procurement dataset that we use in our application, as well as
four real-world datasets commonly used in the literature as benchmarks. These
last datasets, our protocol and the results of this first experiment are detailed
in the following. The FOPPA data is described in Sect. 5.1.
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Table 1. Characteristics of the 4 benchmark datasets.

Datasets MUTAG PTC FR NCI1 D&D

Number of graphs 188 350 4,110 1,178

Average number of vertices 17.93 25.56 29.87 284.72

Average number of edges 19.79 25.96 32.30 715.66

Experimental Protocol. We decide to use 4 standard datasets. MUTAG [8] con-
tains 188 graphs representing molecules, where vertices are atoms and edges
bonds between them. The graphs are distributed over two classes, depending
on the molecule mutagenicity. PTC FR [46] contains 350 graphs, also repre-
senting molecules. There are also two graph classes, depending on the molecule
carcinogenicity on male and female mice and rats. NCI1 [48] contains 4,110
graphs representing chemical compounds. Each vertex stands for an atom, while
edges represent the bonds connecting them. Like before, there are two classes
distinguishing the compounds depending on their carcinogenicity. D&D [9] is
composed of 1,178 protein structures. Each vertex is an amino acid, and two
vertices are connected if they are less than 6 angstroms apart. There are two
graph classes corresponding to enzymes vs. non-enzymes. Table 1 shows the main
characteristics of these datasets: number of graphs, and average numbers of ver-
tices and edges.

Regarding graph representations, we compute the six types proposed in
PANG:

– PANG GenBin: binary representation considering general patterns.
– PANG GenOcc: integer representation considering general patterns.
– PANG IndBin: binary representation using only induced patterns.
– PANG IndOcc: integer representation using only induced patterns.
– PANG CloBin: binary representation using only closed patterns.
– PANG CloOcc: integer representation using only closed patterns.

We compare our results with four different types of baselines. First, as an
alternative pattern-based method, we use CORK (cf. Sect. 2), which automati-
cally estimates the size of the representation. The second baseline type is graph
kernels. We use the kernel matrices of the graphs as representations, associat-
ing each row of the matrix with the corresponding graph. These matrices are
computed from the implementation of the WL kernel [43] and the WL OA [25]
kernel, both available in the GraKel [44] library. The third type is whole graph
embedding neural methods, for which we use Graph2Vec [35], available in the
KarateClub library [41]. We set an embedding size of 128, which is standard in
the literature. For each of these representations, we train a C-SVM as indicated
in Step 4 of Sect. 4.1.

The fourth baseline type is Graph Neural Networks, with DGCNN [53]. This
method produces a graph representation, which can be fetched to the SVM, but
it can also perform the classification step directly. The results reported here are
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Table 2. F -Scores (± standard deviation) for the Anomalous class.

Representation MUTAG NCI1 D&D PTC FOPPA

PANG GenBin 0.85 (0.05) 0.79 (0.02) 0.77 (0.03) 0.60 (0.13) 0.93 (0.02)

PANG GenOcc 0.87 (0.04) 0.77 (0.02) 0.75 (0.02) 0.58 (0.10) 0.91 (0.03)

PANG IndBin 0.87 (0.05) 0.79 (0.02) 0.76 (0.03) 0.59 (0.13) 0.95 (0.01)

PANG IndOcc 0.87 (0.03) 0.79 (0.01) 0.75 (0.03) 0.56 (0.07) 0.92 (0.02)

PANG CloBin 0.86 (0.05) 0.78 (0.03) 0.75 (0.03) 0.57 (0.15) 0.94 (0.03)

PANG CloOcc 0.88 (0.04) 0.76 (0.02) 0.71 (0.04) 0.54 (0.11) 0.92 (0.02)

CORK 0.66 (0.08) 0.78 (0.02) 0.73 (0.03) 0.54 (0.06) 0.63 (0.05)

WL 0.86 (0.06) 0.83 (0.01) 0.82 (0.01) 0.57 (0.06) 0.90 (0.05)

WL OA 0.86 (0.06) 0.81 (0.03) 0.77 (0.03) 0.55 (0.11) 0.90 (0.05)

Graph2Vec 0.84 (0.07) 0.82 (0.01) 0.72 (0.03) 0.61 (0.11) 0.91 (0.04)

DGCNN 0.86 (0.04) 0.74 (0.01) 0.79 (0.01) 0.58 (0.05) 0.89 (0.01)

the best ones, obtained in this second setting, using the implementation from
StellarGraph [7], with the optimal parameter values as indicated in [53].

Experimental Results. We adopt a 10-fold cross-validation to assess classifier per-
formance. Table 2 shows the average F -Score for the Anomalous class. Each col-
umn corresponds to one of the considered datasets: 4 benchmarks and FOPPA.

No method dominates the others over all datasets, therefore we can assume
that some graph representations are more relevant to model certain systems. We
plan to investigate this question further, but this is out of this article’s scope. The
performance of PANG is systematically above CORK, its most similar method.
This is because, on the considered datasets, CORK identifies a very restricted
set of discriminative patterns and trades classification performance against rep-
resentation size. Moreover, PANG is on par with the remaining methods on
NCI1, D&D and PTC, and has the best performance on MUTAG and, impor-
tantly, on FOPPA, our application dataset. Thus, we assume that PANG is able
to capture the same information as embedding- and GNN-based methods. On
the one hand, it requires numerous patterns to be mined, and is therefore more
time-consuming than these methods. On the other hand, it has the advantage
of being interpretable, allowing us to identify the most discriminative patterns.
This is why we apply it to fraud detection in public procurement, in Sect. 5.

5 Public Procurement Use Case

In this section, we apply PANG to real data representing public procurement.
We first describe the process used to extract graphs from a database of French
public procurement contracts (Sect. 5.1), then we discuss our results (Sect. 5.2).
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5.1 Extraction of the Graph Dataset

Raw Data. The FOPPA [37,38] database lists all French contracts award notices
published at the European level. Each such contract involves at least two eco-
nomic agents: a buyer and a winner, and may be constituted of several lots. It
is described by a collection of attributes such as the total price, the number of
offers, and whether the procedure was accelerated. In this paper, we consider the
specific subset of contracts concerning period 2015–19, containing 417,809 lots.

Contract Filtering. We could apply our graph extraction process to the whole set
of French contracts, however this would result in a single graph, combining het-
erogeneous activity domains and agent types. Yet, some attributes, for example
the weight of social and environmental criteria, directly depend on these domains
and types [32]. Instead, we select only a part of the available data to constitute
a collection of consistent contracts. For this purpose, we filter them according to
five aspects: agent category, activity sector, temporal period, geographic region
and size. Regarding the agents, we focus on municipalities, because their iden-
tification is more straightforward than for the other types of agents. For each
municipality present in the dataset, we build a subset of contracts containing its
own contracts, those involving their winners, as well as the other municipalities
with which they have obtained contracts. The other four filters allow us to con-
trol the size of these subsets of contracts, while retaining a certain homogeneity:
we keep only those related to works, covering periods of one year, and involving
only suppliers belonging to the same French administrative subdivision.

After this filtering, we obtain a collection of contract subsets containing a
total of 25,252 contracts. For each contract, we compute a standard red flag from
the literature. A contract is red flagged if the number of offers received is exactly
1, which reveals a lack of competition [36].

Graph Extraction. For each contract subset obtained after the filtering, we
extract a graph G. We consequently build a set of graphs, corresponding to
G in Sect. 4. In the context of public procurement, due to the complexity of the
data, one can extract various types of graphs [14].

We use vertices to model agents, and edges to represent relationships between
them, i.e. their joint involvement in at least one contract. Each vertex has an
attribute, indicating whether the agent is a buyer or a winner, while each edge
has an attribute related to the number of lots contracted. We limit the latter to
three levels: 1) exactly one lot; 2) between 2 and 5 lots; and 3) 6 lots or more.
This allows us to identify cases where a buyer has many contracts with a single
winner, a behavior generally associated with red flags in the literature [12].

We consider that an edge is anomalous if it represents at least one red flagged
contract, i.e. a contract that received exactly one offer. The label of a graph
depends on its total number of anomalous edges: normal if there are fewer than
2, anomalous otherwise. Our graph extraction method produces 389 normal and
330 anomalous graphs. Table 3 shows the main characteristics of the resulting
FOPPA dataset, which is publicly available online with our source code3.
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Table 3. Characteristics of the graphs extracted from the FOPPA dataset.

Graph Class Average number of vertices (std) Average number of edges (std)

Anomalous 15.76 (5.56) 17.09 (7.86)

Normal 12.54 (5.41) 12.59 (6.90)

Table 4. F -Scores (± sd) for both classes, obtained with tabular and graph data.

Type of data Anomalous Class Normal Class

Tabular Data 0.19 (0.01) 0.66 (0.01)

PANG IndBin 0.95 (0.01) 0.93 (0.02)

5.2 Results on Public Procurement Data

Comparison with a Tabular Representation. To study the impact of our graph-
based representations, we compare them to a baseline using a traditional tabular
approach. For each contract, we use as predictive features 15 fields available in
FOPPA, such as the type of procedure, or the presence of a framework agree-
ment. We aim to predict a binary class, based on the same red flag as before:
the number of offers for the contract. Class 0 contains the contracts with more
than 1 tender, and Class 1 those with a unique tender. Note that the predictive
features are independent of the number of offers.

Like for the graphs, we train an SVM with 10-fold cross-validation, on the
same 25,252 contracts. However, the resulting prediction is defined at the con-
tract level (one row in the tabular data), whereas PANG works at the agent
level (one graph in the collection). To compare these results, we need to group
the tabular predictions by agent. For this purpose, we proceed as in Sect. 5.1, by
considering any agent with two red flagged contracts or more as anomalous.

Table 4 compares the obtained performance with our best graph-based
results. The F -Scores are averaged over the 10 folds, with standard deviation,
for the Anomalous and Normal classes. For the same contracts and classifier
(C-SVM), the graphs allow us to predict fraudulent behaviors much more effi-
ciently than the tabular data, notably for anomalous agents. This clearly con-
firms the interest of taking advantage of relationships between agents to tackle
fraud detection, especially when red flags are missing.

Discrimination Score. When applied to our dataset, gSpan returns a total of
15,793 distinct patterns. Figure 5.a shows the distribution of their discrimination
score. It is in [0; 20] for most patterns (85%), which can thus be considered as
non-discriminative. Figure 5.b shows examples of 2 discriminative patterns, with
respective scores of 64 and 91. Both of them include several relations with an
intermediary number of lots, which are rather common in large graphs, and more
often associated with anomalous graphs.
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Fig. 5. (a) Distribution of the patterns in function of their discrimination scores (b)
Examples of discriminative patterns.

Table 5. F -Score (± sd) depending on parameter s, the size of Ps.

Representation Size s Anomalous Class Normal Class

10 0.66 (0.05) 0.73 (0.05)

50 0.74 (0.05) 0.77 (0.04)

100 0.81 (0.05) 0.83 (0.04)

150 0.88 (0.03) 0.88 (0.03)

(all) 15,793 0.93 (0.02) 0.93 (0.02)

Impact of the Number of Discriminative Patterns. We now study how the perfor-
mance is affected by the number s of patterns in Ps, i.e. the vector representation
size. Table 5 shows how the F -Score changes depending on s, for anomalous and
normal graphs. The last row indicates the performance obtained with all the
identified patterns (s = |P|). A representation based on only 100 patterns, i.e.
less than 1% of the 15,793 patterns, is sufficient to reach the 0.8 bar for both
classes. This represents around 90% of the maximal F -Score, obtained with all
patterns. Therefore, only a small number of patterns are required to convey the
information necessary to tackle the classification task.

Impact of the Type of Patterns. We also study how the type of pattern influences
the constitution of Ps, and therefore the classification performance. We set s =
100, and compare all PANG representations, as we did in Sect. 4.2. Table 6 shows
the F -Score obtained with each representation, for both classes.

Representations based on induced and closed patterns lead to better results.
Yet, a manual examination of Ps reveals that the discrimination scores of their
patterns are similar to the general case. The worst selected pattern reaches a
score of 67 for general patterns, vs. 61 for induced and 64 for closed patterns.
The difference lies in the nature of the patterns, which are more diverse than
when mining general patterns. For induced and closed patterns, Ps includes
respectively 16 and 13 patterns that do not appear when using general patterns.
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Table 6. F -Score (± sd) depending on the pattern type of the representation.

Representation Type Anomalous Class Normal Class

PANG GenBin 0.81 (0.05) 0.83 (0.04)

PANG GenOcc 0.73 (0.07) 0.79 (0.05)

PANG IndBin 0.84 (0.03) 0.85 (0.03)

PANG IndOcc 0.82 (0.05) 0.84 (0.04)

PANG CloBin 0.84 (0.04) 0.85 (0.04)

PANG CloOcc 0.83 (0.05) 0.85 (0.04)

Fig. 6. Examples of discriminative patterns characteristic of class Anomalous. (Color
figure online)

Interpretation of Fraudulent Behavior Through Pattern Analysis. An important
advantage of our framework is the identification of the most discriminative pat-
terns, and thus the possibility to leverage human expertise to interpret these
patterns and understand the reasons why an agent is considered fraudulent.
Figure 6 shows two discriminative patterns, P4 and P6. Pattern P4 represents a
relationship between two winners and two buyers, with more than one contract
between them. This type of pattern occurs more frequently in graphs with more
contracts, which is typical of anomalous graphs. Pattern P6 has a winner con-
nected to several buyers, with a single green edge. This can be interpreted as
favoritism: a winner works much more with a municipality than with the others.

6 Conclusion

In this paper, we propose PANG, a pattern-based generic framework that repre-
sents graphs as vectors, by identifying their most discriminative subgraphs. We
show how PANG, coupled with a standard classifier, can detect fraud in pub-
lic procurement, by applying it to an existing database (FOPPA). Traditional
fraud detection approaches use tabular data to compute red flags to estimate
risk, and fail when these data are incomplete. PANG leverages relational infor-
mation between economical agents, and our experiments confirm that the use
of graphs makes it possible to overcome this issue. They also show that predic-
tion performance can be improved by mining closed or induced patterns, which
constitute a set of predictors less redundant than general patterns. Finally, a
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clear advantage of PANG relies on the explainability of these discriminative pat-
terns, which can be interpreted and associated with human behaviors such as
favoritism.
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Ethical Implications. Anomaly detection can have ethical implications, for instance

if the methods are used to discriminate against certain individuals. In this respect,

however, our PANG methodological framework does not present any more risk than

the supervised classification methods developed in machine learning.

Moreover, this work takes place in the framework of a project aiming, among other

things, at proposing ways of automatically red flagging contracts and economic agents

depending on fraud risk. Therefore, the method that we propose is meant to be used

by public authorities to better regulate public procurement and the management of

the related open data.

Finally, the data used in this article are publicly shared, and were collected from a

public open data repository handled by the European Union. They do not contain any

personal information, and cannot be used directly to infer any personal information,

as they only describe the economic transactions of companies and public institutions

regarding public procurement.
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Abstract. Customer reviews often contain valuable feedback about a
product or service, but it can be challenging to extract specific com-
plaints and their underlying causes from the text. Despite the use of var-
ious methods to detect and analyze complaints, no studies have concen-
trated on thoroughly examining complaints at the aspect-level and the
underlying reasons for such aspect-level complaints. We add the rationale
annotation for the aspect-based complaint classes in a publicly available
benchmark multimodal complaint dataset (CESAMARD), which spans
five domains (books, electronics, edibles, fashion, and miscellaneous).
Current multimodal complaint detection methods treat these tasks
as classification problems and do not utilize external knowledge. The
present study aims to tackle these concerns. We propose a knowledge-
infused unified Multimodal Generative framework for Aspect-based com-
plaint and Cause detection (MuGACD) by reframing the multitasking
problem as a multimodal text-to-text generation task. Our proposed
methodology established a benchmark performance in the novel aspect-
based complaint and cause detection task based on extensive evaluation.
We also demonstrated that our model consistently outperformed all other
baselines and state-of-the-art models in both full and few-shot settings
(The dataset and code are available at https://github.com/Raghav10j/
ECML23).

Keywords: Complaint Detection · Cause Analysis · Explainable AI ·
Multi-task learning · Generative Modeling · Deep learning

1 Introduction

The use of multimodal systems allows customers to examine products and pro-
vide feedback on their preferences, but analyzing user-generated text and man-
aging this type of review can be difficult due to the sporadic nature of the reviews
and the limited availability of necessary resources and techniques. As a result,
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it has become essential for researchers to develop reliable techniques for swiftly
evaluating consumer content. Complaint detection is one such endeavour [11,19].
According to Olshtain et al. [17], complaints arise because of the discrepancy
between actuality and people’s expectations. Depending on the seriousness and
urgency of the situation, people use complaints to communicate their concerns
or discontent Fig. 1.

Fig. 1. Example of aspect-based complaint and cause detection. The highlighted text
shows the causal span of complaint for the packaging aspect.

Motivation: Earlier studies on complaint analysis detect complaints at the
sentence or review level [9,23,25]. Among these studies, we note two missing
elements which are the aspect information and the reason/rationale of the com-
plaint at the aspect-level. For example, if a user dislikes an online purchased
edible product, it may not be evident ‘what’ aspect the user finds problematic
or ‘why’ the user is complaining.

The Aspect-based Complaint and Cause identification (AbCC) framework
could be useful in this scenario. There are currently no complaint-cause detec-
tion frameworks that are guided by aspects, to the best of our knowledge. AbCC
consists of three sub-tasks: aspect class detection (ACD), aspect-level complaint
classification (ACC), and aspect-level rationale detection (ARD). The first sub-
task identifies the aspects present in the instance and assigns them to one of sev-
eral aspect categories. In the second subtask, fine-grained aspect categories along
with review text and image, are used to classify instances at the aspect-level as
either complaints or non-complaints. The third sub-task involves identifying the
rationale behind the aspect-level complaint.

We believe that by leveraging external knowledge, complaint detection sys-
tems can gain a deeper understanding of a consumer’s situation and concerns,
leading to more effective solutions. As an additional knowledge base for this
study, we have utilized ConceptNet [28] due to its extensive collection of com-
monsense knowledge [14]. This knowledge base covers commonly held beliefs,
including information about social groups and situations. Additionally, prior
studies have indicated that performing a related supplementary task alongside
the primary task can improve performance [16,25]. However, this approach can
lead to negative transfer and pose optimization challenges [5,34]. To overcome
these issues, we propose using multimodal text-to-text generation for aspect-
based complaint and cause detection, inspired by the generative language mod-
els’ ability to solve downstream tasks in both full and few-shot (low resource
and data constrained) scenarios [3].
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Research Objectives: Following are the research objectives of the current
study:

(1) We aim to explore how multimodal cues can assist in the identification
of aspect categories, the assignment of the aspect-level complaint/non-
complaint labels, and the determination of complaint causal spans at the
aspect-level using social media data.

(2) This work aims to study how a generative model can be adapted to solve
classification tasks like complaint and cause detection in a multimodal
setting.

Contributions: The major contributions of the current work are as follows:

(1) We propose the novel task of aspect-based complaint and rationale detection
in a multimodal setup.

(2) We enhance the existing CESAMARD dataset [23] by manually annotating
the causal span for each aspect-level complaint instance.

(3) We propose a knowledge-infused unified Multimodal Generative frame-
work for Aspect-based complaint and Cause Detection, MuGACD, which
reframes the multitasking problem as a multimodal text-to-text generation
task and addresses three problems simultaneously, aspect class detection
(ACD), aspect-level complaint classification (ACC), and aspect-level ratio-
nale detection (ARD).

(4) The proposed model serves as a benchmark for aspect-based complaint and
cause identification (AbCC) and outperforms several strong baselines based
on the state-of-the-art related models. Evaluation results demonstrate that
the proposed generative model consistently achieves significantly better per-
formance than other baselines and state-of-the-art models in both full and
few-shot settings.

2 Related Studies

Linguists and psychologists have consistently found that people shape their com-
plaints to varying extents [8,17,30]. A complaint can be implicit (that is, without
identifying who is at fault) or explicit. (i.e., accusing someone of doing some-
thing) [31]. The authors in [30] grouped complaints based on their emotional
depth into four granular severity levels: (a) no particular reproach; (b) disap-
proval; (c) accusation; and (d) blame. Minor complaints can achieve the goal
of expressing emotions to promote psychological wellness, but severe complaints
can result in animosity and even aggressive behaviors [7].

In computational linguistics, earlier research has mainly focused on develop-
ing automated classification techniques for detecting the presence of complaints
[4,9,19]. Moreover, multitask complaint analysis models that integrated senti-
ment and emotion information to improve the complaint mining task have been
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developed [25–27]. Additionally, complaints have been previously categorized
based on responsible department, and degree of urgency [12,36].

The study in [23] proposed a binary complaint classifier based on multimodal
information without considering the particular features or aspects about which
the user is complaining. The public release of the multimodal complaint dataset
(CESAMARD) [23], a collection of consumer feedback or reviews and images of
products purchased from the e-commerce website Amazon1, has aided additional
investigations into complaint detection in multimodal setup.

This study diverges from previous multimodal, multitask complaint detection
research in two ways. Firstly, we focus on identifying complaints from various
aspects of product reviews using the associated text and image. Secondly, we
treat the multitasking problem as a language generation task, eliminating the
need for task-specific layers.

Table 1. Annotation guidelines for CESAMARD-Span dataset.

S.No. Annotation Guidelines

1 Causal span should consider the complainant’s perspective

2 Causal span should imply aspect-level complaint labeled

instances only

3 Causal span annotation should be marked in the same speech

form as used in the instance

4 Causal span for aspect-level non-complaint instances should

be marked as Nan

5 Each causal span should refer to a single aspect

6 Erroneous labels if found should be reported and rectified

3 Dataset Extension

For this work, we utilize the extended CESAMARD dataset2. This dataset was
chosen because it is the only publicly available multimodal complaint dataset to
the best of our knowledge. The CESAMARD dataset comprises 3962 reviews,
with 2641 reviews in the non-complaint category and 1321 reviews in the com-
plaint category. Each record in the dataset contains the image URL, review title,
review text, and associated complaint, sentiment, and emotion labels. Addition-
ally, the CESAMARD dataset is organized into different domains, such as elec-
tronics, edibles, fashion, books, and miscellaneous, which is why we decided to
use it for aspect-level complaint and cause identification.

We undertake the task of manually annotating complaint causal span or
rationale at the aspect level, utilizing the available text and image data. Further
details about these activities can be found in the following section.

1 https://www.amazon.in.
2 https://github.com/appy1608/ECIR2023 Complaint-Detection.

https://www.amazon.in
https://github.com/appy1608/ECIR2023_Complaint-Detection
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3.1 Annotator Details

Three annotators, two doctoral and one graduate student annotated the causal
span for each of the aspect-level complaint-type reviews in the dataset. They
are well-versed in labeling tasks and possess adequate domain understanding
and experience in developing supervised corpora. All of them are proficient in
English, having been educated in an English-medium environment.

Table 2. Aspect categories and the total number of instances corresponding to different
domains present in the dataset.

Domains Instances Aspect Categories

Edibles 450 Taste, Smell, Packaging, Price, Quality

Books 690 Content, Packaging, Price, Quality

Fashion 1275 Colour, Style, Fit, Packaging, Price, Quality

Electronics 1507 Design, Software, Hardware, Packaging, Price, Quality

Miscellaneous 40 Miscellaneous, Packaging, Price, Quality

3.2 Annotation Phase and Dataset Analysis

The annotators were given annotation guidelines (Table 1) and 50 examples to
guide them for annotation and ambiguity resolution. We use a similar strat-
egy in line with work in the related field of aspect-based sentiment analysis [1]
and SemEval shared tasks for understanding and annotating the aspect-level
causal spans. Table 2 depicts the various aspect categories and the total number
of instances in each of the five domains in the extended dataset. All domains
have three features in common: packaging, price, and quality. This is because all
of these aspects are important when making purchases online. For each aspect-
level complaint instance in the dataset, annotators were instructed to identify the
causal span that best captured the reason/rationale for the complaint label. The
Fleiss-Kappa [6] agreement scores of 0.69 and 0.83 were reported for ACI and
ACC tasks in [24], which signifies a substantial agreement between the annota-
tors [2]. With an understanding of previous studies on cause/rationale detection
[18], we use the macro-F1 [21] metric to evaluate inter-annotator agreement. The
result is a 0.75 F1 score, which shows that the causal span annotations are of an
acceptable standard. Note that if the review is categorized as non-complaint as
a whole, then all aspect-level annotations will also be marked as non-complaint.
However, in cases where there is a complaint at the review level, certain aspects
may still be considered non-complaint. Each review instance is marked with at
most six aspects in the dataset.

Table 3 illustrates a few examples of aspect terms, aspect-level complaint
labels, and the complaint rationale annotations from the CESAMARD-Span
dataset. The 40 instances in the miscellaneous domain were not enough to train
a deep learning model, so they were not used for further training.
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Table 3. Few examples from the CESAMARD-Span dataset with ACD and ACC task
annotation. Labels: auxiliary tasks sentiment and emotion labels

4 Methodology

4.1 Problem Formulation

For a given review instance, R is represented as {[T, I,Ak, ck, sk]i}N
i=1, where T

denotes the review text, I is the review image, Ak denotes the aspect categories,
ck is the associated complaint/non-complaint labels for every aspect category
and sk denotes the causal span for every complaint label present in the review
instance. The first task is to identify the aspect categories, Ak and the second
task involves detecting the complaint/non-complaint labels, ck, and the corre-
sponding causal span for that label sk, for each of the identified aspect categories
present in Ak (Fig. 2).

Fig. 2. Architectural diagram of the proposed model, MuGACD (Multimodal Gener-
ative Aspect-based complaint and Cause Detection framework). The left side denotes
the complete flow of the proposed model and the right side denotes the proposed visual
aware encoder which is used for fusing textual and visual content.
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4.2 Redefining AbCC Task as Multimodal Text-to-Text Generation
Task

Here, we propose a multimodal text-to-text generation paradigm for solving
aspect-based complaint detection in a single unified manner. To transform this
problem into a multimodal text generation problem, we first construct a natural
language target sequence, Yi, for input review text, Ri (Ti ∪ Ii), for training
purposes as defined in Eq. 1.

Yi = [A1, c1, s1][A2, c2, s2].... (1)

Now the problem can be reformulated as: given an input review Ri, the task
is to generate an output sequence, Y

′
i , containing all the predictions defined in

Eq. 1 using a generative model G; Y
′
i = G(Ti, Ii).

4.3 Multimodal Generative Aspect-Based Complaint and Cause
Detection Framework (MuGACD)

MuGACD is a knowledge-infused unified multimodal generative approach that
solves the task of complaint detection at the aspect-level. For better understand-
ing, we divide our approach into two steps: 1) Knowledge extraction module, and
2) Multimodal transformer model.

Knowledge Extraction Module. We use a knowledge extraction module
to provide more context and background information to a review, as customers’
reviews are usually short and cursory. The knowledge extraction module provides
two types of external knowledge to the input review, one for text modality (T )
in the form of commonsense reasoning and the second one for image modality
(I) in the form of web entities.

For input review text T : We employ ConceptNet [28] as our knowledge base
to extract commonsense reasoning regarding social entities and events involved
in the input text, T . At first, we feed the input text, Ti, to the knowledge
extraction module to extract the top 5 commonsense reasoning triplets using
the same strategy as mentioned in [29] where a triplet will consist of two entities
and a connection/relation between these two entities which is then converted
into a single sentence. To obtain the final commonsense reasoning CS for each
input text, Ti, we concatenate these five commonsense reasonings together.

For image I: Motivated by Zhu et al. [37], we propose web entities as a higher-
level image concept to capture the context and background information of all the
entities and references in the image for our model. We use Google Cloud Vision
API3 to extract web entities from input images. At first, we feed image Ii to the
google cloud vision API to obtain the web entity set {p0, p1, ..., pk}. To obtain
the final external contextual knowledge Pi for each image Ii, we concatenate all
these individual entities.

3 https://cloud.google.com/vision/docs/detecting-web.

https://cloud.google.com/vision/docs/detecting-web
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We concatenate the input review text Ti with its corresponding commonsense
reasoning CS and web entity tag Pi to obtain the final textual information Xi

that we are going to feed to our model: Xi = Ti ⊕ Pi ⊕ CS.

Multimodal Transformer Model. To fuse the information from both image
and text modalities, we have proposed a visual aware encoder, an extension of
the original transformer encoder [32]. At first, the input text Xi is tokenized and
converted into a sequence of embeddings. Then positional encodings are added
to these token embeddings to retain their positional information before feeding
input to the proposed visual aware encoder. Our visual aware encoder is com-
posed of three sub-layers: 1) Multi-head Self-Attention (MSA), 2) Feedforward
Network (FFN) and 3) Multimodal Fusion (MuF). MSA and FFN are standard
sub-layers as used in the original transformer encoder [32]. We have added a
MuF sub-layer as a means to fuse the visual information from image I in our
model which works as follows: At first, we obtain the encoded representation,
HEN after feeding the tokenized input Xi to the first two sub-layers (MSA and
FFN). Similarly, we feed the corresponding image Ii through a VGG-19 encoder
[22] to obtain the image feature vector, GIM . We feed this encoded text repre-
sentation HEN and image feature vector GIM to the Multimodal fusion (MuF)
sub-layer. Unlike the standard transformer encoder where we project the same
input as query, key, and value, in the visual aware encoder, we implement a
context-aware self-attention mechanism inside MuF to facilitate the exchange of
information between HEN and GIM , motivated by [35]. We create two triplets of
queries, keys, and values matrices corresponding to HEN and GIM , respectively:
(Qx,Kx,Vx) and (Qim,Kim,Vim). Triplets (Qx,Kx,Vx) are generated by linearly
projecting the input text representation, HEN , whereas triplets (Qim,Kim,Vim)
are obtained through a gating mechanism as given in [35] which works as follows:
To maintain a balance between fusing information from visual image represen-
tation, GIM , and retain original information from text representation, HEN , we
learn matrices λK and λV to create context-aware Kim and Vim (Eq. 2).[

Kim

Vim

]
= (1 −

[
λK

λV

]
)
[
Kx

Vx

]
+

[
λK

λV

]
(GIM

[
UK

UV

]
) (2)

where UK and UV are learnable parameters and matrices λK and λV are com-
puted as follows:

[
λK

λV

]
= σ(

[
Kx

Vx

] [
WX

K

WX
V

]
+ GIM

[
UK

UV

] [
W IM

K

W IM
V

]
) (3)

where WX
K , WX

V , W IM
K , and W IM

V all are learnable parameters. σ represents the
sigmoid function computation.

After obtaining Kim and Vim, we apply the dot product attention-based
fusion method over Qx, Kim and Vim to obtain the final visual image aware
input representation Z computed as defined in following equation:
Z = softmax(QxKT

im√
dk

)Vim.
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At last, we pass this visual image-aware input representation vector, Z, to an
autoregressive decoder computed as follows: We will feed Z and all the output
tokens till time step t − 1 represented as Y<t to the decoder module to obtain
the hidden state at the time step t as defined in following equation, Ht

DE =
GDecoder(Z, Y<t) where GDecoder denotes the decoder computations. The condi-
tional probability for the predicted output token at tth time step, given the input
and previous t − 1 tokens is calculated by applying the softmax function over
the hidden state, Ht

DEC , as follows: Pθ(Y
′
t |Xi, Y<t) = Fsoftmax(θT Ht

DE) where
Fsoftmax represents softmax computation and θ denotes weights/parameters of
our model.

Loss Function: We initialize our model’s weights θ with weights of a pre-trained
sequence to sequence generative model. We then fine-tune the model with the
Negative log-likelihood training objective, i.e., the maximum likelihood estima-
tion (MLE) objective function, which works in a supervised manner to optimize
the weights, θ, as defined in the following Equation: maxθ

∏T
t=0 Pθ(Y

′
t |Xi, Y<t).

5 Experiments and Results

This section describes the experiments, results, and analysis of our proposed
model, MuGACD. The experiments are intended to address the following
research questions:
RQ1: How does the generative paradigm perform in comparison to traditional
multi-task models?
RQ2: How do each of the modalities contribute to the performance of ACD,
ACC, and ARD tasks?
RQ3: What is the impact of external knowledge on the performance of our
framework?
RQ4: How does the performance of the context-aware attention mechanism
compare to that of the simple fusion method (concatenation)?
RQ5: Is MuGACD able to outperform state-of-the-art models for ACD, ACC
and ARD subtasks?
RQ6: How does MuGACD perform in a few-shot setting?

5.1 Baselines

We evaluate the MuGACD model by comparing it with both basic unimodal
methods and more sophisticated multimodal fusion techniques. We engage in a
comprehensive analysis of each baseline on an individual basis:

Unimodal Baselines: To train the Text model, we provide the classifier with
the output from the ultimate layer of a pre-trained base-uncased RoBERTa
model. The input is purely textual in nature. On the other hand, the Image
model leverages a pre-trained ResNet-152 model with average pooling to classify
each image, producing a 2048-dimensional vector output.
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Generative Baselines: We use BART [13], and T5 [20] as the baseline text-
to-text generation models. We fine-tune these models on the proposed dataset
with the Negative log-likelihood training objective where the input sequence is
the review tweet, and concatenated outputs (defined in Eq. 1) are the target
sequence.

Text&Image: In this particular baseline, the outputs of both the Text and
Image baselines are merged together, resulting in an input of size 2048 +
768 dimensions for the classifier. This approach is noteworthy since it com-
bines the encoders for both modalities, granting the classifier complete access
to the encoder outputs. We also implemented a variation of MuGACD model,
MuGACDCon where we directly concatenate the encoded text representations
(HEN ) and image features (GIM ) instead of context-aware attention mechanism.

SpanBERT [10]: SpanBERT is a pre-training approach that improves the rep-
resentation and prediction of spans of text. It outperforms BERT consistently,
with the largest gains on span selection tasks. The approach randomly selects
contiguous spans which are used to train the model.

ViLBERT [15]: Our approach involves utilizing ViLBERT, which is a collabo-
rative framework for obtaining a task-independent visual basis for coupled visual-
linguistic information. ViLBERT comprises of separate processing streams for
both visual and linguistic modalities, which are interlinked through co-attentive
transformer layers.

5.2 Experimental Setup

This section outlines a range of hyperparameters and experimental configura-
tions used in our study. Our experiments were conducted exclusively on Tyrone’s
computer, equipped with Intel’s Xeon W-2155 Processor, featuring 196 Gb
DDR4 RAM and an 11 Gb Nvidia 1080Ti GPU. To conduct our experiments, we
partitioned the CESAMARD-Aspect dataset into three sets: 70% of the data was
employed as training data, 10% was designated for validation, and the remaining
20% was utilized for testing all of the experimental models. A seed value of 32
was chosen for all experiments to ensure a fair comparison. Our proposed frame-
work, MuGACD, is built upon the BART-base model [13]. The training process
of our model involves 60 epochs with a batch size of 16, utilizing the Adam opti-
mizer with an epsilon value of 0.00000001. In the context of the ACD task, we
present both macro-F1 score and micro-F1 score as measures for evaluating the
model’s predictive ability. Similarly, in relation to the ACC task, we report both
macro-F1 score and accuracy. To perform a quantitative evaluation of the ARD
task, we employed several metrics, including Jaccard Similarity (JS), Hamming
Distance (HD), and Ratcliff-Obershelp Similarity (ROS).
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5.3 Results and Discussion

Table 4 shows the outcomes of the proposed framework and all the baselines
discussed in the previous section.

(RQ1:) As can be observed from Table 4, the proposed model MuGACD out-
performs all the other baselines for ACD, ACC, and ARD tasks by a significant
margin across all domains. MuGACD outperforms the best generative baseline

Table 4. The results of our experiments for the aspect category detection task and
the aspect category complaint detection task were measured using the micro-F1 score
and macro-F1 score, as well as accuracy and macro-F1 score metrics. For the aspect-
level rationale detection task, we utilized Jaccard Similarity (JS), Hamming Distance
(HD), and Ratcliff-Obershelp Similarity (ROS) metrics, with bolded values representing
the highest scores attained. The abbreviations ACD, ACC, and ARD also refer to
aspect class detection, aspect-level complaint classification, and aspect-level rationale
detection, respectively. The symbol “†” indicates statistically significant results.

Domain Model ACD ACC ARD

Micro-F1 Macro-F1 Accuracy Macro-F1 JS HD ROS

Books Text 60.45 52.89 73.61 72.19 – – –

Image 31.25 29.97 47.77 45.57 – – –

Text&Image 66.04 60.31 74.78 73.05 – – –

SOTA [23] 62.09 57.88 77.42 76.28 – – –

SpanBERT – – – – 69.05 62.11 71.98

ViLBERT 71.34 68.41 77.84 76.78 69.23 62.04 72.22

MuGACDcon 64.34 68.41 72.84 71.78 67.81 60.61 72.01

T5 71.79 71.05 87.28 87.18 66.13 59.10 71.81

BART 75.79 71.05 87.28 86.98 68.24 59.21 74.89

MuGACD 85.71† 76.18† 92.11† 92.01† 78.72† 70.11† 82.19†

Edibles Text 59.08 55.87 74.38 72.02 – – –

Image 33.47 29.87 48.52 47.22 – – –

Text&Image 61.03 57.89 78.95 77.67 – – –

SOTA [23] 63.78 59.98 78.73 78.41 – – –

SpanBERT – – – – 45.63 40.22 51.27

ViLBERT 65.79 61.05 81.28 79.18 40.34 35.31 47.22

MuGACDcon 68.34 61.41 77.84 76.78 44.19 40.91 50.37

T5 69.79 67.05 85.28 84.18 41.31 36.54 48.11

BART 72.79 71.05 86.28 85.18 41.37 37.75 49.09

MuGACD 75.88† 79.66† 92.50† 91.23† 56.11† 49.99† 61.51†

Electronics Text 67.45 59.87 77.51 76.76 – – –

Image 35.55 31.89 50.78 49.17 – – –

Text&Image 68.88 62.49 79.48 78.12 – – –

SOTA [23] 69.88 61.56 81.34 78.27 – – –

SpanBERT – – – – 61.32 53.44 65.41

ViLBERT 71.89 65.87 82.46 80.28 65.77 52.32 66.21

MuGACDcon 67.34 58.41 71.24 70.78 62.72 54.67 67.99

T5 70.79 59.05 84.28 83.18 60.91 53.02 65.91

BART 70.99 59.25 86.28 86.18 60.74 52.82 65.44

MuGACD 72.45† 64.82† 93.62† 93.27† 69.82† 61.94† 72.14†

Fashion Text 65.56 59.14 76.59 74.77 – – –

Image 32.43 30.12 46.56 44.06 – – –

Text&Image 66.45 61.51 78.08 77.62 – – –

SOTA [23] 65.78 59.08 81.23 80.04 – – –

SpanBERT – – – – 70.25 65.93 73.22

ViLBERT 70.48 65.67 83.37 82.07 70.98 67.29 74.71

MuGACDcon 68.34 62.41 79.84 79.78 71.92 65.71 73.29

T5 70.79 69.05 83.28 81.18 71.13 65.06 73.21

BART 71.79 71.05 84.28 85.18 72.00 65.10 74.61

MuGACD 72.84† 70.32† 91.27† 90.25† 75.57† 67.84† 77.84†
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(BART), text-only baseline, and multimodal baseline (ViLBERT) on all met-
rics for all tasks, illustrating the superiority of pre-trained sequence-to-sequence
language models. Even in text-only settings, generative models (T5 and BART)
outperform text-only baselines. These findings validate our idea of reframing the
aspect-based complaint and cause detection problem as a multimodal text-to-
text generation task.

(RQ2:) We proposed two ablation models to study the contribution of each
of the modalities (shown in Table 5): 1) MuGACD − Text (without textual
modality), and 2) MuGACD − Image (without visual modality). It can be
observed that MuGACD − Text reports a below-average performance in all
tasks, as the image alone doesn’t convey sufficient information to make a cor-
rect prediction. However, MuGACD−Image performs significantly better than
MuGACD − Text. The reason for this can be attributed to the facts: 1) the
strength of seq2seq encoder-decoder architecture to model the textual informa-
tion, and 2) in many cases, the textual part of reviews contains harsh words and
reasons for a complaint which results in enhanced performance as compared to
MuGACD − Text ablation model.

(RQ3:) We also proposed two ablation models (MuGACD-CS and MuGACD-
WE) in Table 5 to study the effect of external knowledge on the model’s perfor-
mance. When we remove commonsense reasoning (CS) from the model, we see
a more significant drop in ACD, ACC, and ARD subtasks than removing the
web entity (WE), which does not result in a significant drop. Yet, together with
CS, the proposed model MuGACD is able to outperform all other baselines and
ablation models in all domains.

(RQ4:) We have proposed a variant of MuGACD model, MuGACDCon to
study the impact of context-aware self-attention. MuGACDCon depicts the case
where we perform bimodal concatenation of image representation (Gim) and text
representation (Hen). In comparison with MuGACD, MuGACDCon reports a
below-average performance for all tasks. This illustrates the need for a suitable
and perfectly formulated multimodal fusion technique.

(RQ5:) In order to compare the effectiveness of our proposed method for
aspect-based complaint detection, we conduct a comparison with the current
state-of-the-art technique, as no existing multi-modal aspect-based complaint
detection model is known to us. The state-of-the-art technique, referred to as
SOTA [23], employs an attention-based adversarial multi-task deep neural net-
work framework to detect complaints in a multimodal environment. We replicate
the SOTA model for the aspect-based complaint detection task while maintain-
ing the same experimental setup as our own work. Our experimental results,
as shown in Table 4, demonstrate that our proposed MuGACD model performs
better than the SOTA model for both sub-tasks. In the context of the ARD
task, we conducted a comparison between the performance of MuGACD and
the top-performing baseline model for the span detection task, which is Span-
BERT. Our findings indicate that MuGACD exhibits a substantial improvement
in performance across all metrics when compared to SpanBERT.
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Table 5. Results of the ablation studies performed on MuGACD.

Domain Model AD ACD ARD

Micro-F1 Macro-F1 Accuracy Macro-F1 JS HD ROS

Books MuGACD 85.71† 76.18† 92.11† 92.01† 78.72† 70.11† 82.19†

MuGACD−CS 84.25 75.17 91.77 91.57 76.31 69.26 80.10

MuGACD−WE 84.99 75.88 91.89 91.98 77.02 69.99 82.12

MuGACD−Text 75.13 52.11 77.84 72.71 59.13 53.04 62.11

MuGACD−Image 83.34 74.41 90.84 89.78 77.79 70.01 81.73

Edibles MuGACD 75.88† 79.66† 92.50† 91.23† 56.11† 49.99† 61.51†

MuGACD−CS 74.15 78.17 91.17 90.57 55.01 47.91 59.04

MuGACD−WE 74.59 78.98 92.12 90.82 55.81 48.12 59.83

MuGACD−Text 51.33 51.01 71.14 70.78 40.91 35.19 44.21

MuGACD−Image 70.24 75.11 90.81 86.18 55.66 49.21 60.12

Electronics MuGACD 72.45† 64.82† 93.62† 93.27† 69.82† 61.94† 72.14†

MuGACD−CS 71.05 57.97 91.17 91.49 67.12 60.08 70.13

MuGACD−WE 72.09 58.28 92.12 91.98 67.95 60.51 71.09

MuGACD−Text 51.94 49.22 66.84 66.98 52.16 43.28 55.41

MuGACD−Image 69.34 57.41 91.11 90.98 68.73 60.67 72.01

Fashion MuGACD 72.84† 70.32† 91.27† 90.25† 75.57† 67.84† 77.84†

MuGACD−CS 71.15 68.97 89.17 89.57 73.25 64.11 75.21

MuGACD−WE 71.49 69.18 90.02 89.72 74.92 64.82 74.81

MuGACD−Text 49.51 48.11 71.81 70.67 63.33 59.12 69.91

MuGACD−Image 71.34 68.21 90.84 89.98 74.97 66.00 76.17

(RQ6:) Few-shot analysis of MuGACD framework: To compare and evaluate
the performance of our model in few-shot settings, we sample the training data
to mimic the few-shot setting environment. We conducted two few-shot analyses
based on the sampling technique: (1) Few-Shot Analysis-1: In this setting, we
randomly sampled the training data based on percentages, [1%, 2%, 5%, 10%,
20%, 100%]. For example, the 1% setting will contain only 1% of original training
data (30 reviews). It can be observed from Fig. 3a that our model consistently
outperforms SOTA and best Multimodal baseline (ViLBERT) on all % settings
in ACD task. In the case of 1% and 2% settings when data is more scarce,
MuGACD is able to outperform these models by a significant margin. (2) Few-
Shot Analysis-2: In this setting (Fig. 3b), we sampled the training data based
on the number of examples per label, [1, 2, 5, 10, 20, Full]. In this setting also,
MuGACD outperforms both SOTA and best Multimodal baseline (ViLBERT)
across all training data shots on ACD subtask.

These few-shot experiments: 1) illustrate the strength and superiority of the
generative language model in data-constrained and low-resource settings, and 2)
further validate our approach of using the generative language model to solve
multitask complaint detection tasks. We have noticed a comparable pattern in
the ACC and ARD tasks; however, we are unable to present our findings due to
the limited space constraints of this document.
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Fig. 3. Comparison of performance of proposed model MuGACD with SOTA, and best
Multimodal baseline (ViLBERT) on Few-Shot settings for the primary task (ACD).

All of the results presented here are statistically significant [33]. The results
are found to be statistically significant when testing the null hypothesis (p-value
< 0.05).

5.4 Error Analysis

We discuss some of the reasons why the proposed model fails to classify the
aspect category and label pairs in this section:

Blurry Images: In some of the instances, the user-uploaded images are hazy
and uncorrelated, so the extracted web entities are generic and do not help the
model much. Therefore, in some cases, the model depends solely on the review’s
text, which might not always contain enough data for correct categorization.

Miscategorized Aspects: In scenarios where there are a greater number of
aspect classes but a lower number of training samples per aspect class, such as in
the electronics and fashion industries, the model may make erroneous classifica-
tions of aspect categories. For instance, if we consider the statement, “It’s good
but not a very good product. It’s working well for any PC, but the wire is not
durable, it’s very thin.” The MuGACD model predicts ‘hardware-complaint’
as the aspect category, whereas the correct aspect category and label pair is
‘quality-complaint’. One possible explanation for such incorrect classifications is
the limited availability of training samples for the ‘quality’ metric in the elec-
tronics domain.

Hallucinations: As generative models like BART are designed to generate out-
put based on the complete vocabulary it is trained on, there are some instances
where the model generates a cause that contains some information that is not
present in the original input review. For example, for review The number is
incomplete, the model generates the cause of complaint as The phone number is
incomplete. However, the word phone is not present in the input review.
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6 Conclusion

Our study aimed to address the limitations of previous research on complaint
detection by (1) modeling fine-grained aspect-level expressions of complaints and
identifying the rationale behind them and (2) avoiding the use of vanilla multi-
task modeling. To achieve this, we proposed a knowledge-infused unified mul-
timodal generative framework for aspect category recognition, complaint, and
rationale detection at the aspect level. By formulating the multitasking problem
as a text-to-text generation task in a multimodal setup, our approach utilized
the knowledge of large pre-trained sequence-to-sequence models. Our proposed
model outperformed all baselines and state-of-the-art methods in both full-shot
and few-shot settings, based on comprehensive testing. Our future research will
focus on summarizing valuable information from product reviews, and we plan
to expand our investigation to include other modalities, such as audio and video.
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Abstract. In recent years, mobile applications (apps) on smartphones
have shown explosive growth. Massive and diversified apps greatly affect
user experience. As a result, user mobile app behavior prediction has
become increasingly important. Existed algorithms based on deep learn-
ing mainly conduct sequence modeling on the app usage historical
records, which are insufficient in capturing the similarity between users
and apps, and ignore the semantic associations in app usage. Although
some works have tried to model from the perspective of graph structure
recently, the two types of modeling methods have not been combined,
and whether they are complementary has not been explored. There-
fore, we propose an SGFNN model based on sequence combined graph
modeling, which is already publicly available as the GitHub repository
https://github.com/ZAY113/SGFNN. Sequence Block, BipGraph Block,
and HyperGraph Block are used to capture the user mobile app behav-
ior short-term pattern, the similarity between users and apps, and the
semantic relations of hyperedge “user-time-location-app”, respectively.
Two real-world datasets are selected in our experiments. When the app
sequence length is 4, the prediction accuracy of Top1, Top5, and Top10
reaches 36.08%, 68.39%, 79.02% and 51.55%, 87.57%, 95.62%, respec-
tively. The experimental results show that the two modeling methods
can be combined to improve prediction accuracy, and the information
extracted from them is complementary.

Keywords: User app behavior prediction · Deep learning · Graph
neural networks · Hypergraph embedding

1 Introduction

Mobile applications (apps) are easy to use and can be accessed from anywhere.
Recently, the app market has been booming. In 2021, about 230 billion apps
were downloaded worldwide, and that number is still growing [2], which resulted
in a huge amount of user mobile app behavior data. Even though it has brought
convenience to users, it has also had a significant impact on user experience.
There has been an increase in the number of apps installed on users’ mobile
phones. However, only a few of these apps are actually used, and their usage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. De Francisci Morales et al. (Eds.): ECML PKDD 2023, LNAI 14174, pp. 105–121, 2023.
https://doi.org/10.1007/978-3-031-43427-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43427-3_7&domain=pdf
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often depends on specific times and locations. This places a considerable burden
on users when they try to find the right app. Similar to predicting locations [3,11]
and friendships [16], user mobile app behavior prediction, illustrated in Fig. 1, is
becoming increasingly crucial in determining which app the user will use next.
However, due to the complexities of user mobile app behavior data, it is still
challenging to achieve high precision, and the previous algorithms still have
room for further improvement.

Fig. 1. User Mobile App Behavior Prediction

Current researches show that traditional count-based algorithms (MRU,
MFU) [20] and probability-based algorithms (Bayes, Markov methods, etc.) can
predict user mobile app behavior and have interpretability. However, recent
works [24,30] show that deep learning methods have significant advantages
over traditional algorithms in user mobile app behavior prediction. Although
in App2Vec [22], the Bayesian network-based probabilistic approach outper-
formed the deep learning algorithm, the comparison object is only a two-layer
DNN. Therefore, in summary, deep learning methods may have more potential
to improve the prediction effect of user mobile app behavior.

At present, almost all prediction methods based on deep learning model the his-
torical app usage as a discrete sequence and improve the prediction effect by adding
time and location features to the neural network. However, the model architecture
is dominated by DNN stacked with MLP and RNN. In recent years, with the rapid
development of attention mechanism and transformer [21], deep neural networks
based on transformer have become the mainstream method in the field of nlp, cv,
and time series forecasting. In terms of user mobile app behavior prediction, the
training efficiency and prediction accuracy of transformer is still unknown. On the
other hand, inspired by the recommendation system, it is another possible manner
to model the spatio-temporal pattern of user mobile app behavior through graphs
anduse graph representation learning to complete the downstreamusermobile app
behavior prediction task. The advantage is that it can capture the semantic rela-
tionships between time, location, and app usage in a more intuitive and structured
manner, and it has a unique advantage in expressing long-term stability correla-
tion and multi-hop connection. However, most graph-based algorithms dedicate
to learning node embedding, and then sorting candidate apps by defining score
functions to complete the next prediction. Under this framework, user mobile app
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behavior prediction is just a replaceable downstream task of the upstream stage,
and it is not a specific training for the prediction task. Recently, AHNEAP [32]
tried to integrate the graph representation learning of non-specific tasks with the
downstream user mobile app behavior prediction task end-to-end, using the down-
stream task as the objective function to train the entire neural network. The exper-
imental results show that compared with the previous graph embedding methods,
this task-specific training method can achieve better prediction results. However,
the downstream network of this method is just a simple MLP, which does not use
the more complex deep learning method based on sequence modeling.

In short, when it comes to user mobile app behavior prediction task, previ-
ous methods either ignore the similarity between users and apps and the hyper-
edge semantic correlations between user, time, location, and app or ignore the
switching logic of app usage sequence. To address these problems, we propose a
novel end-to-end deep learning model SGFNN to predict from the perspective
of sequence combined graph modeling. The main contributions of this work are
as follows:

1. We construct a user-app bipartite graph to capture the similarity between
users and apps, so as to improve the personalization and accuracy of rec-
ommendations. And the hypergraph embedding is used to capture the rela-
tionships among different attribute nodes of “user-time-location-app”, which
makes up for the shortcomings of previous methods.

2. To the best of our knowledge, we are the first to combine sequence-based
methods with graph-based methods and train the graph module and sequence
module end-to-end by means of intercepting subgraph.

3. We evaluate our proposed SGFNN on two real-world datasets, test the effec-
tiveness of the sequence combined graph modeling method, and prove that the
switching logic of app sequence, the similarity between users and apps, and
the hyperedge semantic correlations can provide complementary information
in improving user mobile app behavior prediction.

2 Related Work

2.1 Traditional Methods

The most naive methods for predicting user mobile app behavior problems are
the count-based methods, which predict that the next app to be used will be the
most frequently used (MFU) app in the last window or the most recently used
(MRU) app. Both these methods exploit the fundamental behavioral character-
istics of users’ app usage history. Shin et al. [20] used MFU and MRU as the
most basic benchmark testing methods in their experiments.

Further, some methods are proposed to predict user mobile app behavior
in the hope of capturing the complex probabilistic relationship between history
and the next app. Natarajan et al. [18] model the historical app usage as a
Markov chain, and use first-order state transition probability to predict which
app users will use next. Zou et al. [33] improve the predicting accuracy by con-
structing a Bayesian network to capture the high-order relationship between app
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history switching. Huang et al. [10] point out that contextual information can
understand the user mobile app behavior pattern and use Bayesian methods
effectively predict the app usage. Jiang et al. [12] have added time as a new
feature to input in their research, and based on the nearest neighbor algorithm,
use the most similar app usage in history to generate predictions. In addition,
some works [19,22,23] studied the role of location features on user mobile app
behavior prediction.

2.2 Sequence-Based Deep Learning Methods

Deep learning has rapidly advanced in recent years. When predicting user mobile
app behavior, the user’s historical app usage window can be viewed as a sen-
tence with a discrete sequence. This problem is similar to NLP, where the goal
is to predict the probability of different objects appearing in the next position
based on a given past sequence. Recurrent neural networks such as LSTM [9] and
GRU [5] are effective for modeling sequence problems. Xu et al. [25] proposed a
general prediction model based on LSTM that converts time series dependencies
and context information into a unified feature representation for the next app
prediction. Lee et al. [14] used the stacked LSTM architecture to train the pre-
diction model without calculating transition probability. Experimental results
show that LSTM is advantageous in user mobile app behavior prediction. Zhao
et al. [30] proposed AppUsage2Vec, a deep learning-based framework for predict-
ing app usage. They trained a general model and single models for each user and
found that the general model performed better, particularly with limited train-
ing data. The model uses dual DNN and an attention mechanism to capture
the weight contributions of different apps in historical sequences for accurate
predictions. Xia et al. [24] proposed DeepApp, a GRU-based model. Similar to
Zhao et al. [30], they found that the general model outperformed single models.
To increase personalization, a user prediction task was added to the output end,
along with the integration of a location prediction task into the output end to
improve recommendation sensitivity. This leads to multi-task learning.

2.3 Graph-Based Deep Learning Methods

In addition to the above sequence-based methods, recently, some works have
also gradually tried to adopt graph modeling methods. Chen et al. [4] found
that the relationship between app-location, app-time and app-app category is
very important for user mobile app behavior prediction, so three kinds of bipar-
tite graphs were constructed, and a heterogeneous graph embedding algorithm
CAP was proposed to learn the embedding vector of nodes. Yu et al. [29] used
app, location and time unit as nodes, and co-occurrence relationships between
different nodes as edges to construct a heterogeneous graph, and defined objec-
tive functions with non-specific tasks to learn the representation of graph nodes.
The authors claim that this method can simultaneously learn the semantic aware
embeddings of app, location and time respectively, so as to obtain better results.
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Zhou et al. [32] proposed a framework AHNEAP, which is the first time to com-
bine graph representation learning with prediction tasks for end-to-end training
of downstream apps. The experimental results show that this method is superior
to the graph representation learning in user mobile app behavior prediction.

In addition to using the above features, the mobile status, network mode,
and battery level of smartphones are also used for user mobile app behavior pre-
diction. Zhao et al. [31] and De et al. [6] extracted the mobile status from user
trajectory data, combined with the historical app sequence as input for machine
learning classifiers to complete prediction. Further, Do et al. [7] considered fac-
tors such as network mode and battery level affecting user mobile app behavior
prediction. Xu et al. [26] used screen status and network mode to supplement the
feature information contained in the query vector and recalled the most likely
app used as the prediction result. Recently, Li et al. [15] systematically classi-
fied the methods and datasets related to user mobile app behavior prediction in
detail, making an important contribution to the development of this field.

3 Problem Definition

Let R = {r1, r2, . . . , rp} denote the user mobile app behavior records, U = {u1,
u2, . . . , um} denotes a user set, A = {a1, a2, . . . , an} denotes a set of applications,
T = {t1, t2, . . . , ti} denotes a collection of discrete time IDs. Considering that
the user mobile app behavior is closely related to the user’s spatial location and
other factors such as network conditions, battery life, etc., let L = {l1, l2, . . . , lj}
indicate the location set including j spatial locations, C = {c1, c2, . . . , cq} shows
a set of q contextual states (relevant information about users, devices, and envi-
ronments) that may help predict a user’s next usage of an app.

Definition (User Mobile App Behavior Prediction). Given a candidate
set of apps A and the input features of an user mobile app behavior prediction
sample data u, t, l, c, (a1, a2, . . . , al), predict the application a which the user is
most likely to use next from A. Formally, our problem is defined as:

âl+1 = argmax
a∈A

Pr(a|u, t, l, c, (a1, a2, . . . , al)) (1)

4 Methodology

4.1 Framework Overview

The model framework is shown in Fig. 2, which consists of embedding module,
feature extracting module, and predicting module. It accepts training samples
x = (u, t, l, a), wherein a = (a1, a2, . . . , al) represents the user u’s historical app
behavior sequence within a time window. For training purposes, the algorithm
also performs uniform random negative sampling, resulting in negative hyperedge
samples x′ = (u′, t′, l′, a′) as input data.
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Fig. 2. The Framework of Sequence-Graph Fusion Neural Network (SGFNN)

Firstly, all positive and negative samples will be passed through the embed-
ding module and we can get the hu ∈ Rd, ht ∈ Rd, hl ∈ Rd, and ha =
(a1, . . . , ai, . . . , al) where ai ∈ Rd, respectively represent the d-dimensional
embeddings of the corresponding input attributes, and the feature tensor learned
from the positive sample embeddings is represented as (hu, ha, ht, hl).

The subsequent feature extracting module is divided into three blocks,
namely the Sequence Block, BipGraph Block, and HyperGraph Block. The pos-
itive sample feature vector will be sent to the Sequence and BipGraph blocks
to capture the app switching sequence correlation and similarity between users
and apps, respectively, and output their respective hidden layer vectors hs and
hg. Furthermore, the BipGraph Block will construct negative graphs, and then
calculate the positive score s1+ and the negative score s1− on both the positive
and negative graphs. These scores will then be used to compute the loss function
to preserve the bipartite graph structural information. Specifically, it is as shown
in Eqs. 2 and 3:

hg, s1+, s1− = BipGraphBlock(hu, ha) (2)

hs = SequenceBlock(hg, ht, hl) (3)

The positive and negative feature tensors will be simultaneously inputted
to the HyperGraph Block to capture the semantic correlations of hyperedge
and output the positive sample score s2+ and the negative sample score s2−,
specifically as shown in Eq. 4:

s2+, s2− = HyperGraphBlock((hu, ha, ht, hl), (hu
′, ha

′, ht
′, hl

′)) (4)

The scores s2+ and s2− will then be used to calculate the model’s loss function,
allowing to learn the similarity between hyperedge composed nodes.
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Furthermore, hs and hg are added to fuse their latent features, and use a
time linear layer to compress the time dimension from the time window length
l to 1. Specifically, see Eq. 5:

ho = TimeLinear(hs, hg) (5)

The predicting module will receive ho and use an MLP to transform the hidden
size 4d to the app category dimension n, and use Softmax to convert the output
result to between 0 and 1. The final output al+1 represents the possibility score
of each app category under the next state. Specifically, see Eq. 7:

o = MLP (ho) = ho · Wo + bo (6)

al+1 = Softmax(o) =
eoi

∑C
c=1 eoc

(7)

Here, Wo ∈ R4d×n represents weight, bo ∈ Rn represents bias and C denotes the
set of candidate apps. The score al+1 will also be used to calculate the model’s
loss function to measure the error of the multi-classification prediction result.

The final model will be trained using the defined SGFNN loss function, and
in the inference stage, the score of the next app multi-classification al+1 will be
used for prediction.

4.2 Sequence Block: Learning the App Switch Patterns

The switching sequence of user mobile app behavior may have certain logical
rules. Therefore, we build a sequence model based on the behavior history of app
switches. Without using RNN and its variants LSTM and GRU, considering the
real-time prediction on the smartphone terminal, we adopt Transformer Encoder

Fig. 3. Learning the App Switch Patterns
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as the core of the Sequence Block, as shown in Fig. 3. The user, time, location,
and app sequence are sent to the transformer encoder.

hs = TransformerEncoder(hg, ht, hl) (8)

4.3 BipGraph Block: Learning the User-App Similarity

Existing sequence-based models do not explicitly model the relationships
between users and apps, as social relationships between users and similarities
between apps are often unknown. Inspired by collaborative filtering, we con-
struct a user-app bipartite graph [1] across the entire training set, which means
the interaction data can be represented as an undirected graph G = (V,E). The
vertex set consists of a collection of users ui ∈ U , where i ∈ {1, · · · , Nm}, and a
collection of apps aj ∈ A, where j ∈ {1, · · · , Nn}, such that U ∪A = V , the edge
set is defined as a 0–1 set, where eij = 1 if ui has used aj , otherwise eij = 0.

The internal structure of the BipGraph Block is shown on the rightmost side
of Fig. 4. We stack two layers of GraphSage [8] to capture the 2-order similarities.
To simplify the implementation, we re-encode the node IDs and convert the
bipartite graph into a simple graph. The one layer calculation given below is for
positive graphs, and the calculation on the negative graph is the same.

Fig. 4. Learning the User-App Similarity

The input of the BipGraph Block is hua = (hu ‖ ha), where hua represents
the original input features of the vertices in the bipartite graph. For any vertex
v ∈ V , the aggregation calculation is as follows in Eqs. 9 and 10:

hN(v) = Mean(hv′ ,∀v′ ∈ N(v)) (9)
hv = Relu(W · (hv ‖ hN(v))) (10)

where N(v) denotes the set of neighboring nodes of vertex v.
The second-order hidden vectors hv of all vertices constitute the output hg

of the BipGraph Block.
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4.4 HyperGraph Block: Learning the Correlations in Hyperedges

The user mobile app behavior prediction is highly spatiotemporal related. Exist-
ing methods ignore the semantic correlations including spatiotemporal factors
among “user-time-location-app”. As shown on the left of Fig. 5, the hyperedge
“user-time-location-app” connects four different attribute nodes. We use the
hyperedge embedding to learn the high-dimensional latent vectors. The vectors
of the positive samples will have higher scores due to their high similarity. The
internal structure of the HyperGraph Block is shown in the middle of Fig. 5.

Fig. 5. Learning the Semantic Correlations in Hyperedges

Inspired by Yang et al. [27], we define the HyperGraph Block as follows,
firstly, we normalize the embedding vectors of users, time, location, and app
sequences. Then, we calculate the best fit line:

hb =
hu + ht + hl + ha

4
(11)

Finally, we calculate the positive sample score:

s2+ =
cos(hu, hb) + cos(ht, hb) + cos(hl, hb) + cos(ha, hb)

4
(12)

And the negative sample score s2− is calculated in the same way.

4.5 Optimization

To train the parameters Θ = {ΘSeq,ΘBip,ΘPre}. Our objective function is
defined as the composition of three terms: the Cross-entropy loss Lce for app
multi-classification, the unsupervised loss term Lbip on the bipartite graph, and
the HyperEdge loss term Lhyper. Cross-entropy loss term is defined as:

Lce = argmin
θ

− 1
|C|

C∑

c=1

αI(pa>p[k])pa log pa (13)

where C represents the total number n of candidate apps. The pa is predicted
using al+1 from Eq. 7, I(·) is the indicator function, p[k] represents the k-th
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largest value of the predicted probability p, and α represents the weighting factor.
BipGraph loss term is defined as:

Lv
bip = − log(σ(h�

v · hu)) − β · Eh′
u∼Pn(u) log(1 − σ(h�

v · h′
u)) (14)

Lbip = mean(L0
bip,L1

bip, · · · ,LV
bip) (15)

where hv represents any node v in the bipartite graph G; hu represents any
neighbor u connected to node v; h′

u represents a negative sample node; Pn is
a negative sampling distribution; β represents the number of negative samples.
HyperEdge loss term is defined as:

Lhyper = −(s2+ + γ · Ev′
i
(1 − s2−))) (16)

where γ ∈ Z+ is the number of negative samples for hyperedges. The final
SGFNN loss function LSGFNN is defined as follows:

LSGFNN = Lce + λ1Lbip + λ2Lhyper (17)

where λ1 represents the weight of the BipGraph loss term, and λ2 represents the
weight of the HyperEdge loss term.

Previous deep learning models used batch gradient descent to update param-
eters, but GCN needs the complete adjacency matrix for training. To train
SGFNN in an end-to-end manner, we merge user and app sets, re-encode node
IDs, and use the merged node set to create a local subgraph Gsub from global
graph G for batch training.

5 Experiment

5.1 Setup

Datasets. In the experimental section, we select two user mobile app behav-
ior datasets: one public dataset proposed by [28,29] (denoted as China Telecom
dataset) and one private dataset provided by Huawei Technologies Co., Ltd.
(denoted as Huawei dataset). The basic statistical characteristics of the prepro-
cessed China Telecom dataset and Huawei dataset are shown in Table 1.

Table 1. Dataset Summary

Dataset #User #Time #Loc #App #Sample

China Telecom 748 168 6291 1518 908770

Huawei 64 168 9570 574 2394220

Metrics. We use the commonly used recall metric in classification problems as
the evaluation metric for our experiments, which can be calculated by:

Recall@k =
hit@k

|Dtest| (18)

Here, Dtest represents the entire test set, and hit@k represents the top-k hit rate
across the entire test set.
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Baselines. We compare the proposed SGFNN model with traditional proba-
bilistic algorithms and the latest deep learning methods based on sequences.

– MRU [20] predicts the most recently used app. It assumes that most applica-
tions are continuously used in multiple time intervals, utilizing the continuity
characteristics of app usage. Shin et al. [20] used MRU as a basic baseline.

– MFU [20] calculates and selects the most commonly used app based on the
user’s app behavior history. Shin et al. [20] also used MFU as a basic baseline.

– NaiveBayes [33] uses the historical app sequence as features and learns their
independent contributions to the target app.

– MarkovChain [7] constructs a Markov chain of the user’s app behavior to
estimate the joint probability of the app sequence and the target app.

– DNN [13] stacks two fully connected MLP layers to learn nonlinear hidden
features from app history sequences and time features.

– AppUsage2Vec [30] uses a dual-tower DNN to extract features of both user
and app sequence, computes the time difference as an input supplement,
and models the contribution of different apps to the target app through an
attention mechanism.

– DeepApp [24] uses time, location, and app historical sequences as input fea-
tures, employs GRU as the feature extraction layer, and adopts multi-task
learning to improve the personalized prediction ability of the model on dif-
ferent users and locations.

Implementations. The maximum training epochs are set as 100, and the
train/validation/test data ratio is set to 7:2:1. The batch size is set to 256,
and early stopping is applied with patience of 10 epochs. The learning rate is set
to 0.0005, the sequence length of apps is set to 4, and the weight factor α is set
to 3. Finally, the hidden size is set to 100 for China Telecom and 32 for Huawei,
the λ1 is set to 0.003 for China Telecom and 0.0007 for Huawei, and the λ2 is
set to 0.002 for China Telecom and 0.0002 for Huawei.

5.2 Performance Evaluation

The overall experimental results are shown in Table 2. It can be observed that the
proposed SGFNN achieves the best prediction performance compared to baseline
methods in terms of Recall@1, Recall@5, and Recall@10 metrics on both China
Telecom dataset and Huawei dataset.

The improvement on the China Telecom dataset is much greater than that
on the Huawei dataset for two reasons. Firstly, SGFNN uses location features
as inputs and location features have a significant impact on predictions on the
China Telecom dataset but a limited impact on the Huawei dataset. Secondly,
the use of sequence combined graph modeling in SGFNN compensates for the
high-order neighbor similarity between users and apps, users and users, and apps
and apps that is lacking in deep learning models such as DNN, AppUsage2Vec,
and DeepApp. The China Telecom dataset has a much larger number of users
and candidate apps than the Huawei dataset, with a more complex pattern of the
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Table 2. User App Behavior Prediction Performance Comparison

Method China Telecom dataset Huawei dataset
Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

MRU [20] 13.94% 37.02% 47.40% 39.98% 73.56% 86.21%
MFU [20] 15.95% 39.29% 51.03% 31.56% 72.43% 88.11%
NaiveBayes [33] 24.71% 56.01% 68.44% 47.87% 84.88% 94.28%
MarkovChain [7] 17.24% 45.33% 56.01% 29.64% 72.16% 87.80%
DNN [13] 31.83% 59.70% 69.66% 50.79% 86.01% 94.11%
AppUsage2Vec [30] 31.12% 61.23% 71.53% 51.18% 86.34% 94.40%
DeepApp [24] 33.17% 62.89% 73.25% 50.50% 84.70% 92.36%
SGFNN (Ours) 36.08% 68.39% 79.02% 51.55% 87.57% 95.62%

graph structure. Therefore, the effect of improving predictions is more significant
on the China Telecom dataset than on the Huawei dataset. Additionally, the
hyperedge module used in the SGFNN model also contributes to its superior
performance compared to AppUsage2Vec and DeepApp.

5.3 Ablation Study

To better compare the effects of location features, Sequence Block, BipGraph
Block, and HyperGraph Block, we conduct an ablation study and design the
following models to verify the effectiveness of each component:

– SGFNN-hyper: Removing the HyperGraph Block and HyperEdge loss.
– SGFNN-bip&hyper: Further removing the BipGraph Block and unsupervised

loss function of the bipartite graph, retaining only the Sequence Block for
feature extraction.

– SGFNN-bip&hyper&loc: Removing the BipGraph Block and HyperGraph
Block, and further remove input location features.

– SGFNN-seq: Removing the Sequence Block, retaining only the BipGraph
Block and HyperGraph Block for feature extraction.

– SGFNN-full: The complete version of the SGFNN model proposed.

Figures 6 and 7 illustrate the results of the ablation study on China Telecom
and Huawei datasets, respectively. Based on these, we can draw the following
conclusions:

1. Location characteristics, Sequence Blocks, BipGraph Blocks, and Hyper-
Graph Blocks all contribute to user mobile app behavior prediction accuracy
on two datasets. These factors provide different perspectives on information.
Specifically, the location feature, logic of app sequence switching, 1-order and
2-order similarities between users and apps, and semantic associations in the
hyperedge all provide valuable information.
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Fig. 6. Ablation Study on China Telecom Dataset

Fig. 7. Ablation Study on Huawei Dataset

2. In comparing SGFNN-seq with SGFNN-bip&hyper, we found that the latter
outperformed the former for most cases except for recall@10 on the China
Telecom dataset. This indicates that the logical switching patterns of app
sequences were more important for predicting than the user-app similarity.

3. By observing differences between SGFNN-bip&hyper, SGFNN-hyper, and
SGFNN-full, respectively, we found that adding BipGraph Blocks to the
base sequence model resulted in a larger increase in prediction accuracy than
adding HyperGraph Blocks. This suggests that the 1-order and 2-order sim-
ilarities between users and apps have a greater impact on user mobile app
behavior prediction than the semantic relationships in the hyperedge.

5.4 Case Study

In this section, we select specific cases to verify and analyze the effects of three
feature extraction blocks. (1) Sequence Block. It can be observed from Fig. 8
that different apps in the sequence contribute differently to the prediction of
app4, and the weights are not necessarily smaller with greater distance. In the
right of Fig. 8, attention scores indicate app1’s (social1) importance for pre-
diction even though it is farthest from app4 (social2), as they both belong to
the same social category. App2 (game) has the second-highest score, revealing
synergy between game and social apps. App3 (news) receives the lowest score
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Fig. 8. Attention Scores of App Sequences in Sequence Block

Fig. 9. Visualization of
User and App Latent
Vectors in BipGraph
Block

Fig. 10. Visualization
of Positive Hyperedge
in HyperGraph Block

Fig. 11. Visualization of
Negative Hyperedge in
HyperGraph Block

due to limited interaction. The sequence block captures switching logic in app
usage by modeling historical records as a sequence with self-attention mecha-
nism. (2) BipGraph Block. Figure 9 visualizes 50 user nodes and 50 app nodes
with TSNE [17] using their randomly selected latent vectors. User 698’s usage
sequence is {1, 324, 40, 220}. The cross shows user 698 and app 1 (social class)
closer in the reduced vector space as they are 1-order neighbors in the bipartite
graph, indicating that the model learns user-app similarities via the BipGraph
Block. (3) HyperGraph Block. Figure 10 visualizes a positive sample hyper-
edge. Hidden vectors of the nodes on this edge are more similar. Figure 11 shows
a negative hyperedge with less similar node vectors. The HyperGraph Block cap-
tures collaborative semantic relationships between heterogeneous nodes in the
positive sample hyperedge.

6 Conclusion

In this study, we propose SGFNN which combines sequence and graph modeling
to address limitations in existing user mobile app behavior prediction algorithms.
Sequence Block, BipGraph Block, and HyperGraph Block are designed to cap-
ture the user mobile app behavior short-term pattern, the similarity between
users and apps, and the semantic relations of hyperedge “user-time-location-
app”, respectively. This method achieves significant improvements over baselines
and it can be further extended to a wider range of applications such as restaurant
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demand prediction, location (Point-of-Interest) prediction, friendship prediction,
etc. Our future work includes exploring the selective preservation of relationships
during subgraph partitioning and optimizing the time and space complexity of
the model for large-scale applications. Our code is already publicly available as
the GitHub repository https://github.com/ZAY113/SGFNN.
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Abstract. User identity linkage (UIL), matching accounts of a per-
son on different social networks, is a fundamental task in cross-network
data mining. Recent works have achieved promising results by exploit-
ing graph neural networks (GNNs) to capture network structure. How-
ever, they rarely analyze the realistic node-level bottlenecks that hinder
UIL’s performance. First, node degrees in a graph vary widely and are
long-tailed. A significant fraction of tail nodes with small degrees are
underrepresented due to limited structural information, degrading link-
age performance seriously. The second bottleneck usually overlooked is
super head nodes. It is commonly accepted that head nodes perform
well. However, we find that some of them with super high degrees also
have difficulty aligning counterparts, due to noise introduced by the ran-
domness of following friends in real-world social graphs. In pursuit of
learning ideal representations for these two groups of nodes, this paper
proposes a degree-aware model named DegUIL to narrow the degree
gap. To this end, our model complements missing neighborhoods for
tail nodes and discards redundant structural information for super head
nodes in embeddings respectively. Specifically, the neighboring bias is
predicted and corrected locally by two modules, which are trained using
the knowledge from structurally adequate head nodes. As a result, ideal
neighborhoods are obtained for meaningful aggregation in GNNs. Exten-
sive experiments demonstrate the superiority of our model. Our data and
code can be found at https://github.com/Longmeix/DegUIL.

Keywords: User identity linkage · Long-tailed graph representation
learning · Graph neural networks

1 Introduction

To enjoy diverse types of services, people tend to join multiple social media sites
at the same time. Generally, the identities of a person on various social platforms
have underlying connections, which triggers research interest in user identity
linkage (UIL). This task aims to link identities belonging to the same natural
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(a) Long-tailed node distribution (b) MRR w.r.t degrees of test nodes

Fig. 1. A motivation example on the Foursquare-Twitter dataset with PALE [20].
(a) illustrates the node degree distribution of the Foursquare network, with a large
proportion of nodes below 10◦. (b) presents PALE’s performance by the degrees of test
nodes when 50% anchors are used for training. Low-degree nodes (0, 5] and super high-
degree nodes (200, 522] perform worse than the others, indicating these two groups of
nodes are the major bottleneck of UIL.

person across distinct social networks. As an information fusion task, UIL has
enormous practical value in many network data fusion and mining applications,
such as cross-platform recommendation [8,14], etc.

To date, a corpus of literature has emerged to tackle the UIL problem. Earlier
approaches [22,31] aligned users by comparing account profiles such as usernames
or post contents. However, such auxiliary information is becoming less accessible
and inconsistent due to increased privacy concerns. With the advent of graph
neural networks (GNNs), research attention related to this problem has been
shifted to network-structured data. Although structure-based methods [2,15,25]
have achieved substantial progress, they rarely doubt whether social networks
provide reliable and adequate information for each node.

Realistic Problems. In reality, however, social networks are always full of noise
and provide scarce structural information, especially in cold-start scenarios with
lots of new users. There are three problems that cannot be ignored.

(1) An inherent structural gap exists among nodes. The number
of neighbors varies from user to user in many social networks, and approxi-
mately follows a long-tailed distribution, as shown in Fig. 1(a). However, existing
approaches apply the same learning strategy to all nodes despite their diverse
degrees, which hinders the overall linkage performance. (2) The limited neigh-
borhoods of tail nodes hinder the linkage performance. The performance
of structure-aware UIL methods heavily depends on the observed neighborhood.
Unfortunately, a significant fraction of low-degree nodes, known as tail nodes,
connect to few neighbors. In the absence of sufficient structural information,
the embeddings of these tail nodes may be unsatisfactory or biased, resulting in
inferior performance, as demonstrated in Fig. 1(b). (3) Noise hidden in super
head nodes exacerbates the quality of representation. According to the
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first-order proximity [26], UIL works typically assume that friends have similar
interests. However, the random nature of users’ behavior in following friends is
unavoidable [17]. Due to this, fraudulent or meaningless edges are hidden in a
graph unnoticeably, especially in users with thousands of friends, which is called
super head nodes in this paper. Small noises in structure can be easily propagated
to the entire graph, thereby affecting the embeddings of many others.

All of these realistic issues motivate us to formulate a novel setting for user
identity linkage, aimed at improving the linkage performance of tail nodes, which
are the most vulnerable and dominant group. In other words, this paper investi-
gates the following research problem: how can we effectively link identities
for socially-inactive users in a noisy graph?

Challenges and Our Approach. To obtain more competitive embeddings for tail
nodes, we need to address three core issues, i.e. data gap, the absence of neigh-
boring information, and noise-filled graphs, which present three challenges.

First, addressing absent neighborhoods poses a dilemma: tail nodes have no
additional information but few neighbors. This is especially severe if only network
structures are available, without accessing additional side information such as
profiles or posts on a platform. Secondly, to defend against the noise in networks,
an intuitive idea is to delete fake edges or reduce their negative impacts. However,
how can noise be eliminated while preserving the intrinsic graph structure? Social
networks are full of complicated relationships, making it difficult to discern which
edges should be discarded. The above two issues lead to the third challenge: each
node owns both a unique locality and a generality, which means that bias should
be locally corrected without losing the common knowledge across nodes.

To address these challenges, this paper proposes a degree-aware user identity
linkage method named DegUIL to improve the matching of tail identities that
account for the majority. More concretely, to address the first and second chal-
lenges, we utilize the ideal neighborhood knowledge of head nodes to train two
modules. They complement potential local contexts for tail nodes and remove
redundant neighborhoods of super head nodes in embeddings. Due to this, degree
bias is mitigated and their observed neighborhoods are corrected for meaningful
aggregation in each GNN layer, thereby improving the quality of node embed-
dings. For the third challenge, two shared vectors are employed across the graph,
which adapt to the local context of each node without losing generality.

Contributions. To summarize, our main contributions are three-fold:

– Problem: This paper highlights that the performance bottlenecks of user
identity linkage arise not only from tail nodes but also from super head nodes.
The observation motivates us to explore the realistic long-tailed UIL.

– Algorithm: A degree-aware model is proposed to tackle the above two issues,
in pursuit of learning high-quality node embeddings for tail nodes’ align-
ment. Our DegUIL corrects the neighborhood bias of the two groups of nodes
and thus narrows the degree gap without additional attributes. This strategy
brings a novel perspective to the long-tailed UIL problem.
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– Evaluations: Extensive experiments demonstrate that our model is superior
and has significant advantages in dealing with complex networks.

2 Related Work

Structure-based UIL Methods. Structure-based methods have become increas-
ingly promising in tackling the UIL problem. Most of them are composed of two
major phases: feature extraction and identity matching. Recently, graph neural
networks have been well extended into the UIL task [2,3,7,9,13,33] and have
become mainstream, owing to their powerful capabilities in extracting graph
data. For instance, dName [33] learns a proximity-preserving model locally by
graph convolutional networks. As simple topology information may be insuf-
ficient, MGCN [2] considers convolutions on both local and hypergraph net-
work structures. While many works neglect topological differences such as low-
degree nodes, whose small neighborhood impedes the advance of GNN-based
approaches. Some recent works in entity alignment are devoted to handling the
long-tailed issue by supplementing entity names [29,30], or by preventing entities
with similar degrees from clustering into the same region of embedded space [23].

However, we have not seen a method that rectifies structural bias and narrows
degree gap for the realistic UIL task. Different from the existing approaches, our
model is dedicated to obtaining high-quality tail nodes’ embeddings when no
additional side information is available.

Other Long-Tailed Problems. The long-tailed problem has been studied in many
fields [4,11], but most of the findings cannot be directly applied to the UIL
problem due to differences in problem settings. Two closely related works are
Tail-GNN [18] and meta-tail2vec [19], which refine feature vectors of tail nodes
by transferring the prior knowledge gained from ideal head nodes, leading to
a significant improvement in node classification performance. Nevertheless, we
observe that not all head nodes are surrounded by ideal neighborhoods in social
networks. Structural noise exists in some of very high-degree nodes and impairs
performance, as seen in Fig. 1(b). Therefore, our paper mitigates the noise issue
of super head nodes to improve the linkage performance of tail nodes.

3 Preliminaries

3.1 Problem Formulation

This paper regards a social network as an undirected graph G = (V, E), where
V = {v1, v2, . . . , vN} is the set of vertices (user identities), E = {eij = (vi, vj)} ⊆
V × V represents the edge set (social connections between users). Each edge eij

is associated with a weight aij ∈ R, and aij > 0 denotes that node vi and vj are
connected, otherwise aij = 0. Here A = [aij ] ∈ R

N×N is a symmetric adjacency
matrix. X ∈ R

N×d is a feature matrix with xi representing the d-dimensional
feature vector for node vi. Now our problems are formally defined as below.
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Definition 1 (Super Head Nodes and Tail Nodes). For a node vi ∈ V,
let Ni denote the set of first-order neighbors (neighborhood), and its size |Ni| is
the degree of vi. Tail nodes have a small degree not exceeding some threshold D,
i.e. Vtail = {vi : |Ni| ≤ D}. Nodes with a degree greater than M are super head
nodes as Vsuper = {vi : |Ni| > M}. The remaining nodes are called head nodes,
i.e. Vhead = {vi : D < |Ni| ≤ M}. Apparently, Vtail ∩ Vsuper ∩ Vhead = ∅.
Definition 2 (User Identity Linkage Aimed at Tail Nodes). Given two
social networks G1, G2, and a collection of observed anchor links as inputs, our
goal is to identify the unobserved corresponding anchors of tail nodes. Ideally, the
matched node should be ranked as top as possible in predicted top-k candidates.

3.2 Graph Neural Networks

A graph neural network with multiple layers transforms the raw node features
to another Euclidean space as output. Under the message-passing mechanism,
the initial features of any two nodes can affect each other even if they are far
away, along with the network going deeper. The input features to the l-th layer
can be represented by a set of vectors Hl =

{
hl
1, ...,h

l
N

}
, where hl

i ∈ R
dl is vi’s

representation in the l-th layer. Particularly, H0 = X is in the input layer. The
output node features of the (l+1)-th layer are generated as:

hl+1
i = Agg

(
hl

i,
{
hl

k : k ∈ Ni

}
; θl+1

)
(1)

where Agg (·) parameterized by θl+1, denotes an aggregation function such as
mean-pooling, generating new node features from the previous one and messages
from first-order neighbors. Most GNNs [12,28] follow the above definition.

4 The Proposed Framework: DegUIL

DegUIL aims to learn high-quality embeddings for tail nodes and super head
nodes as a way to enhance linkage performance. Its overall framework is illus-
trated in Fig. 2. As shown in Fig. 2(b), we train two predictors named absent
neighborhood predictor and noisy neighborhood remover to predict the neigh-
borhood bias of these two groups of nodes (Section 4.1–4.2). As a result, tail
nodes are enriched by complementing potential neighboring data, and super
head nodes are refined by removing noise adaptively, thereby supporting mean-
ingful aggregation (Section 4.3). Finally, predictors and weight-sharing GNNs are
jointly optimized by the task loss and several auxiliary constraints (Section 4.4),
for matching identities effectively in Fig. 2(c). The target node with the highest
similarity to a source anchor node is returned as its alignment result.

4.1 Uncovering Absent Neighborhood

Neighboring relations connected with tail nodes are relatively few, resulting in
biased representations and further hindering linkage results. To solve this prob-
lem, we propose an absent neighborhood predictor to predict the missing infor-
mation in their structure, which facilitates subsequent aggregation in each GNN
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Fig. 2. Overview of DegUIL. (a) Inputting two networks; (b) Complementing potential
information m2 for tail nodes and removing redundant data r0 for super head nodes
to correct their observed neighborhood to be ideal, which improves their representa-
tions during aggregation; (c) Mapping two embeddings into a unified space and then
matching identities.

layer. It is trained by exploiting the structurally rich prior learned from head
nodes. This component enriches the structural information of tail nodes to obtain
better representations as ideal as head nodes.

Absent Neighborhood Information for Tail Nodes. Tail nodes lack struc-
tural data owing to a variety of reasons, such as being new users on a social
platform. Relationships in networks change dynamically, in other words, tail
users may interact with other users in the near future, which can be considered
as potential relations. Thus, predicting and completing the latent structural
information for tail nodes is reasonable.

More concretely, for a tail node vi ∈ Vtail, the absent information mi mea-
sures the gap of feature vectors between its observed neighborhood Ni and ideal
neighborhood N ∗

i , that is,
mi = hN ∗

i
− hNi

. (2)

The ideal representation hN ∗
i

theoretically contains not only the observed
aggregated information from local neighborhoods but also friends that would
have been associated with vi. To construct hN ∗

i
, we train an absent neighborhood

predictor fm to uncover the missing features caused by limited local contexts.
That is, the ideal neighborhood representation of vi ∈ Vtail can be predicted as
hN ∗

i
= hNi

+ mi. Empirically hNi
is represented by a mean-pooling over all

nodes in the observed neighborhood, i.e., hNi
= MEAN({hk : vk ∈ Ni}). Now

the problem turns into modeling the potential information in a neighborhood.

Training Absent Neighborhood Predictor. The prediction model is learned
using the local contexts of head nodes. Let ml

i be absent neighboring information
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of node vi in the l-th GNN layer. For a head node vj , its observed neighborhood
is regarded as complete and ideal, thus no missing information on its neigh-
borhood. In other words, the representation of vj ’s ideal neighborhood can be
approximated by hl

Nj
, the representation of observed neighborhood Nj in the

same layer. Therefore, we train a prediction model fm by predicting missing
neighborhood information of vj closed to zero as expected, i.e. ‖ml

j‖2 ≈ 0. It
will be an auxiliary loss term further discussed in Sect. 4.4.

However, the training scheme has a major flaw: the abundance of head nodes
in training differs from tail nodes in testing. To tackle this problem, forged tail
nodes are supplemented via edge dropout on head nodes. On each head node,
neighbors (|Ni| ≤ D) are randomly sampled to mimic the real tail nodes. For
example, in Fig. 2(b), v′

1 is a forged tail node generated from the head node v1.
Toward ideal tail nodes representations, a key idea is to uncover the latent

information ml
i on tail nodes (forged or real), which will be predicted adaptively

in Sect. 4.3 to correct their observed neighborhoods that may be biased.

4.2 Removing Noisy Neighborhood

As the first step of UIL, learning effective representations for users is crucial.
In contrast to tail nodes, super head nodes are structurally rich and even have
redundant edges connecting them, since social networks are complex and unre-
liable. Perturbed neighbors may cause error propagations through the network
that drop the final performance [5]. To defend against the damage for further
enhancing tail node alignment, we design a redundant neighborhood remover.

To be specific, given a super head node vi ∈ Vsuper, ri denotes the embedding
redundancy between its observed neighborhood Ni and ideal one N ∗

i , i.e.,

ri = hNi
− hN ∗

i
. (3)

Our module removes the neighboring bias rl
i in each layer l to mitigate the error

cascade in message aggregation of GNNs. As a result, the ideal neighborhood
representation of vi can be obtained by hl

N ∗
i

= hl
Ni

−rl
i. Similar to the first mod-

ule, the absent neighborhood predictor, we employ a function fr to predict rl
i.

To refine an ideal graph, a natural strategy is to eliminate adversarial noise.
Many works [10,27,34] delete perturbed edges by graph structure learning or
graph defense techniques, but such techniques act on a single network rather
than cross-network user matching. Besides, mistakenly deleting a useful edge may
lead to cascading defects. Instead, we refine node embeddings directly to distill
local structure, which eliminates noise without destroying scarce but valuable
relations on tail nodes. We locally predict redundancy in the following section.

4.3 Adaptive Aggregation

Localization. The absent or redundant neighborhood information varies across
nodes, hence necessitating fine-grained node-wise adaptation. To capture the
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unique locality of each node while simultaneously preserving generality across
the graph, two globally shared vectors m and r (per layer) are introduced.

Formally, for each node vi in the l-th layer of DegUIL, a locality-aware miss-
ing vector mi ∈ R

dl and a redundant vector ri ∈ R
dl are customized according

to its local context. Specifically, the local context information is defined as the
concatenation of the node representation with its local observed neighborhood
representation, i.e. cl

i =
[
hl

i,h
l
Ni

]
. Then, the absent neighborhood predictor

model fm and noisy neighborhood remover fr output localized structural infor-
mation ml

i and rl
i, respectively. That is,

ml
i = fm

(
cl

i,m
l; θl

m

)
= γl

i 	 ml + αl
i, (4)

rl
i = fr

(
cl

i, r
l; θl

r

)
= γl

i 	 rl + βl
i, (5)

where θl
m and θl

r are the parameters of fm and fr in the l-th layer. Element-wise
scaling (	) and shifting (+) operations are used to implement the personalization
function for each node. The scaling vector γl

i ∈ R
dl can be calculated as γl

i =
cl

iW
l
γ with a learnable matrix Wl

γ ∈ R
2dl×dl . Shift vectors αl

i and βl
i are trained

using two fully connected networks, respectively.

Neighborhood Aggregation. Our discussion now turns to neighborhood
aggregation related to super head nodes and tail nodes. The neighborhoods
of head nodes are taken as ideal to follow the standard GNNs aggregation in
Eq. (1). In contrast, the embedding vectors of tail nodes are underrepresented
and those of super head nodes tend to be noisy. Thankfully, our DegUIL com-
plements potential neighboring data for the former and removes local noise for
the latter.

The corrected neighborhoods of these two groups of nodes are ideal for key
aggregation in GNN-based methods. In the (l+1)-th layer, the standard neigh-
borhood aggregation in Eq. (1) is adjusted as follows:

hl+1
i = Agg

(
hl

i,
{
hl

k : vk ∈ Ni

} ∪ {
I (vi ∈ Vtail)ml

i − I (vi ∈ Vsuper) rl
i

}
; θl+1

)
, (6)

where I(·) is a 0/1 indicator function based on the truth value of its argument.

Global and Local Aggregation for UIL. This paper employs two different
aggregation strategies to maintain global common knowledge and local structure:

Z = [AggGA (X,A) ,AggLA (X,A)] . (7)

Here, the global structure aggregator AggGA (·) observes the whole network
by graph convolutional networks (GCN) [12]. The local structure aggregator
AggLA (·) acquires specific patterns of nodes’ 1-hop neighborhood, implemented
by graph attention networks (GAT) [28]. Both of them adopt a two-layer archi-
tecture in our method, i.e., � = 2. By stacking aggregation layers, larger area
patterns are observed. The final representation Z is obtained by concatenating
the outputs of aggregators. To preserve the consistency of cross-network node
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pairs in the embedding space, we apply a shared weight GNN architecture for
G1 and G2. In other words, GCN and GAT embed nodes from both the source
network and target network via shared learnable parameters.

4.4 Training Loss

The whole training process is controlled by three objective terms, 1) topology
loss; 2) cross-network mapping loss; and 3) prediction constraints of Eq. (2) and
Eq. (3). They are described as follows.

Topology Loss. Global topology is preserved by minimizing the weighted differ-
ence on all edges between the input and reconstructed networks, i.e.,

Ls =
N∑

i=1

N∑

j=1

bij (aij − sij)
2 = ‖(A − S) 	 B‖2F . (8)

Here, A represents the adjacency matrix. S = [sij ] is the new connection matrix
where each element is sij = Sim(zi, zj). Sim(·, ·) is the similarity function, cosine
similarity here. sij ranges from −1 to 1, a larger value indicates a stronger
social connection between vi and vj . Moreover, the sampling matrix B = [bij ] ∈
{0, 1}N×N is used to balance the number of connected and unconnected edges.
We adopt a simple uniform negative sampling [24] here, while you are able to
make advances by replacing it with better sampling strategies [21].

Cross-network Matching Loss. Existing UIL models [20] learn desirable map-
ping functions f to unify the embeddings of different graphs. Formally, given a
matched pair (v1

i , v2
a) from the set of anchor links Ua and their features (z1i , z

2
a),

p = 5 unmatched node pairs (v1
i , v2

b ) are sampled uniformly as negative identity
links with features (z1i , z

2
b). After mapping by functions f1 and f2, the embed-

ding vectors from source network G1 and target network G2 are projected to
a common embedding space, i.e. oi = f1(z1i ), oa = f2(z2a) and ob = f2(z2b ),
respectively. Let tia = Sim(oi, oa), the loss is defined as:

Lt =
∑

(v1
i ,v2

a)∈Ua

(1 − tia)2 +
∑

(v1
i ,v2

b)/∈Ua

(t2ib + t2ab). (9)

The objective aims to maximize the similarities of anchor links while minimiz-
ing the link probabilities of unmatched identities. f1 (·; θf1) and f2 (·; θf2) are
implemented by two multi-layer perceptrons (MLPs) with learnable parameters
θf = (θf1 , θf2).

Constraints on Predicted Information. For tail nodes, DegUIL aims to com-
plement rather than refine its neighborhood. In contrast, the neighborhood of
super head nodes is refined but not enriched. The other nodes’ local contexts
are regarded as ideal without absence or redundancy. Therefore, both predicted
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missing data for nodes except tail nodes and noisy information for nodes except
super head nodes should be close to zero, which can be formulated as:

Lp =
∑�

l=1

(∑
vi /∈Vtail

∥
∥ml−1

i

∥
∥2

2
+

∑
vi /∈Vsuper

∥
∥rl−1

i

∥
∥2

2

)
. (10)

Optimization. For g = 2 social networks (G), the total loss is a combined loss:

L = Lt + λ

g∑

i

LGi

s + μ

g∑

i

LGi

p . (11)

Hyperparameters λ and μ balance the importance of topology and predicted
information constraint.

Here we discuss the computational complexity of DegUIL. Let Nmax =
max

(∣∣V1
∣
∣ ,

∣
∣V2

∣
∣) denote the maximum number of nodes of two input graphs.

First, we employ node2vec to generate initial features, resulting in O(Nmax)
complexity. Next, our model employs GCN and GAT to learn powerful represen-
tations. In each GNN layer l, the overhead involves forging tail nodes, the local-
ization, and the aggregation of absent information and redundant information.
Forging tail nodes consumes O(ND) time since we sample up to D neighbors on
a head node to forge a tail node, where D is the degree threshold of the tail node;
Locally predicting ml

i in (4) and rl
i in (5) needs O(ND̄d2l ) complexity, where dl

is the dimension of the l-th layer and D̄ is the average node degree. Aggre-
gating the corrected neighboring information takes O(N(D̄ +1)dldl−1) time. As
dl, dl−1 and the number of GNN layers are small constants, when D̄ � Nmax, the
complexity of node2vec and our degree-aware GNNs is O(Nmax) for the repre-
sentation learning process. Overall, the time complexity of our proposed DegUIL
is O(Nmax), i.e., it scales linear time with respect to the number of nodes.

4.5 Characteristics of DegUIL

DegUIL is characterized by the following features. (1) Unlike most UIL meth-
ods that apply the same learning approach to all nodes, our method divides
nodes into three groups (tail/head/super head nodes) according to their degrees.
DegUIL considers neighborhood differences and adopts different neighboring bias
correction strategies for them to narrow the structural gap by a node-wise local-
ization technique. (2) DegUIL predicts and complements potential neighboring
information of tail nodes directly, which avoids designing an extra neighborhood
translation [18] or separates the embedding and refinement processes [19]. It
eliminates noisy topology of super head nodes implicitly, preventing valuable
edges from being deleted by mistake like some graph structure learning meth-
ods [10,27,34]. (3) We use weight-sharing GNNs instead of two separate GNNs
to preserve cross-network similarity and reduce training parameters.

5 Experiments

In this section, we aim to answer the following questions via experiments. Q1:
How effective is our proposed DegUIL compared with baselines? Q2: How does
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Table 1. Dataset statistics.

Networks #Nodes #Edges #Anchor links #Tail links

Foursquare 5313 76972 1609 443

Twitter 5120 164919

DBLP17 9086 51700 2832 975

DBLP19 9325 47775

each component of DegUIL contribute to the final results? Q3: Is our method
compatible with previous data partitions? Q4: How much performance does our
method improve for nodes in each degree interval?

5.1 Experimental Settings

Datasets. Two benchmark datasets are employed for evaluation, as summarized
in Table 1. Foursquare-Twitter (FT), widely used real-world data in previous
literature [15,16], provides partial anchor nodes for identity linkage. DBLP17-
DBLP19 (DBLP) [1] includes two co-author networks, in which a node repre-
sents an author, and an edge connects two nodes if they are co-authors of at
least one paper. Common authors across two networks are used as the ground
truth. We define tail links as anchor links with a node degree of 5 or less.

To simulate a user cold-start scenario where a large number of nodes are tail
nodes, anchors containing tail nodes are split into the testing set, and the rest
anchor links are used in training.

Baselines. To evaluate the effectiveness of DegUIL, we compare it with three
kinds of embedding-based baselines, including a conventional representation
learning method (node2vec), state-of-the-art UIL methods and a tail node refine-
ment model (Tail-GNN). The baselines are described as follows.

– node2vec [6]: It encodes network topology into a low-dimensional space,
whose outputs serve as initial input features to our methods.

– PALE [20]: This method learns embeddings and predicts anchor links by
maximizing the log-likelihood of observed edges and latent space matching.

– SEA [23]: It is a semi-supervised entity alignment method that tries to avoid
embedding entities with similar degrees closely by an adversarial training.

– NeXtAlign [32]: A semi-supervised network alignment method that achieves
a balance between alignment consistency and disparity.

– Tail-GNN [18]: The GNN framework refines embeddings of tail nodes with
predicted missing neighborhood information. Tail-GCN is compared here.

Note that node2vec and Tail-GNN are not UIL methods, so the matching process
and other settings are the same as ours, for the sake of fair comparison. All codes
come from open-access repositories of the original papers.
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Table 2. Overall performance. Best result appears in bold and the second best model
is underlined except for ablation variants.

Dataset Foursquare-Twitter DBLP17-DBLP19

Metric Hits@1 Hits@10 Hits@30 MRR Hits@1 Hits@10 Hits@30 MRR

node2vec 5.43 15.08 25.49 10.93 33.18 55.10 66.52 44.17

PALE 6.00 15.77 26.48 11.51 21.28 39.78 52.04 30.94

SEA 6.93 15.89 23.94 11.80 38.62 60.13 71.01 49.27

NeXtAlign 6.47 12.23 16.62 9.63 36.82 59.58 70.46 48.06

Tail-GNN 6.70 17.67 28.39 12.66 36.36 56.58 67.21 46.44

DegUIL 9.33 21.70 32.81 16.00 37.59 60.73 71.51 48.96

DegUILw/o AP 8.11 19.39 30.39 14.30 36.26 59.29 70.32 47.67

DegUILw/o NR 8.94 20.53 31.79 15.21 37.13 59.61 70.02 48.26

Evaluation Metrics. Following previous works [22,23,33], we employ two
widely used Hits-Precision (Hits@k) and mean reciprocal rank (MRR) as evalu-
ation metrics. Hits@k = 1

N

∑N
i=1

k−(hit(vi)−1)
k , hit(vi) is the rank position of the

matched target user in the top-k candidates. MRR denotes the average reciprocal
rank of ground truth results. Higher metric values indicate better performance.

Setup and Parameters. For each method, we set the embedding vector dimen-
sion d = 256 on all datasets. The initial node feature of our method is generated
by node2vec [6]. We set hyperparameter λ = 0.2 in Eq. (11), μ to 0.001 and 0.01
for FT and DBLP datasets respectively. The dimension of hidden layers in Agg
is 64. Tail nodes’ degree is set to be no greater than 5, i.e. D = 5, consistent with
Tail-GNN. Super head nodes are the top 10% nodes with the highest degree, thus
M is set to {46, 116, 25, 23} in four networks (Fourquare, Twitter, DBLP17,
DBLP19), respectively. The 2-layer MLP network for matching outputs 256-
dimensional embeddings, and the dimension of hidden layers is twice the input
length. The optimal hyperparameters for each method are either determined by
experiments or the suggestions from the original papers. All experiments are
repeated five times to obtain the average Hits@k and MRR scores.

5.2 Result

Overwiew of Results (Q1). Comparison results on two UIL datasets are
presented in Table 2. From the results, we have the following observations.

– DegUIL consistently outperforms other baselines. On the Foursquare-Twitter
dataset, DegUIL achieves a remarkable relative improvement of 16%-39%
compared to the best baseline, TailGNN. This is empirical evidence that our
method is more effective than previous models in boosting linkage accuracy.
An exception is on the DBLP dataset, where SEA obtains the best Hit@1
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Fig. 3. Effect of training
ratio on the FT dataset.

Fig. 4. MRR results by degrees.

and MRR, while DegUIL remains a close runner-up ahead of other baselines.
We infer that SEA’s technique of encoding relations benefits learning node
representations. Besides, with the same mapping process, node2vec is inferior
to the GNNs-based Tail-GNN. It demonstrates the power of GNNs in cap-
turing neighboring topology, so mitigating the neighborhood bias to further
advance GNNs is significant.

– Degree-aware models perform better than traditional methods. Node2vec and
PALE treat all nodes uniformly without considering the structural dispar-
ity such as node degree. As a result, node representations learned by the
two simple methods are unsatisfactory for linking user identities. This high-
lights the importance of degree-aware baselines, which achieve more effective
results. However, SEA, NeXtAlign, and Tail-GNN are not specially designed
for enhancing super head nodes, their performance still falls short compared
to our model.

– DegUIL has a greater advvantage in complex long-tailed datasets. Under all
evaluation metrics, methods perform worse on the FT dataset than that on
the DBLP dataset, despite the former having more known anchor links. One
explanation for this discrepancy may be the greater complexity of edge rela-
tionships in FT, which makes it challenging to link users in social networks
with disparate node degrees. Our model can effectively handle this complex
situation, giving it a distinct advantage. Further discussions are in the abla-
tion study.

Ablation Study (Q2). DegUIL comprises two components: an absent neigh-
borhood predictor (AP) and a noisy neighborhood remover (NR). To evaluate
the contribution of each component, we designed two variants of our model.
DegUILw/o AP does not complement the predicted potential neighborhood for
learning tail nodes’ embeddings. Another variant model DegUILw/o NR does
not eliminate the noise from the local structure of super head nodes.

The results of the ablation study are presented in Table 2, which reveals
several conclusions. First, without AP predicting and complementing absent
neighborhoods for tail nodes, UIL performance declines by 1.70% and 1.29%
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in terms of MRR on the FT and DBLP datasets, respectively. This indicates
that the limited local context of tail nodes hinders user alignment, and our AP
component is proposed as a solution for improving tail node embeddings. Second,
removing structural noise in super head nodes also contributes to performance. It
supports our theoretical motivation that super head nodes are also a challenging
group of nodes. Notably, the gain of AP is more significant than that of NC on
both datasets, suggesting that correcting the neighborhoods of tail nodes offers
more substantial alignment benefits. One explanation for this phenomenon is
the greater number of tail nodes, compared to super head nodes, which allows
them to exert a more considerable influence on the overall performance.

Effect on Dataset with Classic Partition (Q3). This paper splits datasets
in a novel way to mimic a challenging UIL scenario, i.e. an anchor link without
tail nodes is assigned into the training set, otherwise in the testing set. This
naturally raises a question: whether DegUIL is compatible with previous ways
of data partitioning and still outperforms other baselines under this setting. To
answer it, we vary the proportion of labeled anchors for training from 20% to
60% with a step of 10%, and use the rest for testing. Experiments are conducted
on the FT dataset with competitive PALE and SEA as comparison methods.

Figure 3 illustrates the Hits@1 and MRR scores. As the training ratio
increases, more alignment information is available, enabling all models to dis-
cover potential user identities more easily. In most cases, our proposed DegUIL
achieves superior performance in both metrics, except when the training data is
less than 30%. This exception arises due to the difficulty of effectively training
the GNNs used in DegUIL when labeled supervision is insufficient. In such sce-
nario, SEA and PALE show slight superiority thanks to their semi-supervised
way or network extension using observed anchor links. In the future, we will con-
sider semi-supervised or self-supervised training to mitigate the problem of data
scarcity. With more supervision information, DegUIL consistently and signifi-
cantly outperforms the other two baselines. This means that our degree-aware
method is also applicable and competent in the previous data partition.

Evaluation by Degree (Q4). To demonstrate the effectiveness of DegUIL in
aligning long-tail entities, we divide the test anchors into multiple groups based
on their source node degrees. We compare our method with simple PALE and
illustrate their MRR results by degree in Fig. 4. As hypothesized, low-degree
nodes and super high-degree nodes perform worse than those normal nodes with
adequate local topology information. This experimental evidence shows that
drastic disparities in node degrees could lead to unsatisfactory node represen-
tations and biased outcomes. Moreover, DegUIL outperforms PALE across all
degree groups in both datasets, validating its effectiveness in handling long-
tail issues. While the improvements are smaller on nodes with fewer than two
neighbors, given that DegUIL is also constrained by the very limited structural
information.
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6 Conclusion

Commonly, node degrees in a social graph are long-tailed, yet UIL works rarely
explore the issue of degree bias. We associate the overlooked distribution with
UIL performance, observing that the key to improving overall performance is tail
nodes and super head nodes. This paper defines a realistic problem setting and
proposes DegUIL to learn high-quality node embeddings by mitigating degree
differences in the embedding process through two localized modules. These mod-
ules enrich neighborhood information for tail nodes and refine local contexts of
super head nodes. As a result, node representations are improved thanks to the
corrected ideal neighborhood. Extensive experiments show that DegUIL signifi-
cantly surpasses the baselines. In the future, we will consider high-order neigh-
borhood and predict structural bias more accurately to enhance our model.
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Abstract. Social media platforms have both positive and negative
impacts on users in diverse societies. One of the adverse effects of social
media platforms is the usage of hate and offensive language, which not
only fosters prejudice but also harms the vulnerable. Additionally, a per-
son’s sentiment and emotional state heavily influence the intended con-
tent of any social media post. Despite extensive research being conducted
to detect online hate speech in English, there is a lack of similar studies
on low-resource languages such as Thai. The recent enactment of laws
like the “right to explanations” in the General Data Protection Reg-
ulation has stimulated the development of interpretable models rather
than solely focusing on performance. Motivated by this, we created the
first benchmark hate speech corpus, called Ex-ThaiHate, in the Thai
language. Each post is annotated with four labels, namely hate, senti-
ment, emotion, and rationales (explainability), which specify the phrases
that are responsible for annotating the post as hate. In order to investi-
gate the effect of sentiment and emotional information on detecting hate
speech posts, we propose a unified generative framework called GenX,
which redefines this multi-task problem as a text-to-text generation task
to simultaneously solve four tasks: hate-speech identification, rationale
detection, sentiment, and emotion detection. Our extensive experiments
demonstrate that GenX significantly outperforms all baselines and state-
of-the-art models, thereby highlighting its effectiveness in detecting hate
speech and identifying the rationales in low-resource languages. The code
and dataset are available at https://github.com/dsmlr/Ex-ThaiHate.
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1 Introduction

Social media platforms have become an integral part of people’s lives, providing
opportunities to connect, express, and share ideas with individuals worldwide.
While these platforms have numerous positive effects, they are often plagued by
the prevalence of hate speech and offensive language. Hate speech refers to any
form of communication that aims to attack the dignity of a group based on char-
acteristics such as race, gender, ethnicity, sexual orientation, nationality, religion,
or other features [23]. According to the Pew Research Center, approximately
40% of social media users have encountered online harassment or bullying [6].
Between July and September 2021, Facebook detected and took action against
22.3 million instances of hate speech content [22]. These hate posts, which may
seem harmless on social media, have real-world consequences, including violence
and riots [6]. Therefore, it is crucial to prioritize the detection and control of
hate speech.

Over the past decade, significant research has been conducted to develop
models and datasets for automatic hate speech detection in the English lan-
guage, utilizing traditional machine learning techniques [8,9,30] as well as deep
learning techniques [1,2,37]. However, limited studies have been conducted for
other languages, such as Italian [35], Indonesian [14], and Thai [26], primarily
due to inadequate resources or conflicting interests. Given the variation in the
perception of hate speech across different languages and cultures, it is crucial to
develop automatic hate speech detection techniques for low-resource languages to
improve classification and understanding of the corresponding contexts. Accord-
ing to a recent report by Reuters, Thailand has witnessed a rapid surge in hate
speech incidents during the COVID-19 outbreak [34]. Specifically, the infection
of many Myanmar workers at a fish market in Samut Sakhon led to the spread of
hate speech against them on social media platforms, including YouTube, Face-
book, and Twitter. Consequently, migrant and immigrant workers from Myan-
mar became extremely fearful for their safety. To address this issue, we have
developed an advanced model for detecting online hate speech in the Thai lan-
guage. Our goal is to automatically identify and flag hateful messages using these
hate speech detection systems.

However, researchers have primarily focused on enhancing the performance
of hate speech detection by utilizing various models but have largely overlooked
the importance of explainability in these models. The emergence of explainable
artificial intelligence (AI) [13] has made it necessary to provide explanations or
interpretations for the decisions made by machine learning algorithms. This is
crucial for building trust and confidence when deploying AI models in practical
scenarios. Furthermore, legislation such as the General Data Protection Reg-
ulation (GDPR) [10] in Europe has introduced a “right to explanation” law,
highlighting the need to develop interpretable models. As a result, there is a
pressing demand to prioritize the development of interpretable models rather
than solely focusing on model complexity for enhanced performance.

Multi-task learning is a training technique that utilizes data from related
tasks to efficiently learn the relationship between them [5]. Numerous stud-
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ies have demonstrated that incorporating an auxiliary task can enhance the
performance of the primary task. For instance, in the context of cyberbullying
detection [20], complaint identification [33], and tweet act classification [31], the
inclusion of auxiliary tasks has proven beneficial. Considering that a person’s
sentiments and emotions can significantly impact the meaning of social media
posts, it is crucial to incorporate sentiment and emotional analysis in hate speech
detection.

Motivated by these considerations, we have developed the first explainable
hate speech dataset, called “Ex-ThaiHate,” in the Thai language. This dataset
addresses four tasks simultaneously: hate speech detection (HSD), sentiment
analysis (SA), emotion recognition (ER), and rationale detection (RD) — which
focuses on providing explainability. To construct Ex-ThaiHate, we re-annotated
the existing Thai Hate Speech dataset [26] by adding the sentiment and emotion
labels and marking rationales. Rationales are text fragments from a source text
that justify classification decisions. In cases where a post is a non-hate speech,
we do not indicate any rationales. Our study specifically emphasizes the appli-
cation of rationales to enhance model interpretability, aiming to achieve more
human-like decision-making and improve the model’s trustworthiness, trans-
parency, and reliability. Previous studies, such as e-SNLI [4] and commonsense
explanations [29], have also utilized rationales to enhance their models.

A typical multi-task model consists of a shared encoder that incorporates rep-
resentations from data of different tasks, along with task-specific layers or heads
attached to that encoder. However, this approach has several drawbacks. One
such drawback is negative transfer, where multiple tasks, instead of optimizing
the learning process, start to hinder the training process [7]. Additionally, there
are concerns related to model capacity, wherein if the size of the shared encoder
becomes too large, there will be no effective transfer of information across dif-
ferent tasks [38]. Furthermore, the optimization scheme for assigning weights to
different tasks during training poses challenges [38].

To address the challenges mentioned earlier in multi-task learning, we have
proposed the idea of employing a generative model to simultaneously solve mul-
tiple classification tasks in a text-to-text generation manner. In this work, we
introduce a unified generative framework called “GenX,” which is capable of
solving all four tasks concurrently. The input to the GenX model is a social
media post written in Thai, and the output target sequence is the concatenation
of corresponding hate, sentiment, emotion labels, and rationales, separated by
a special character. Through extensive experiments, we demonstrate that GenX
consistently outperforms other baselines and state-of-the-art (SOTA) models
across various evaluation metrics. The following is a summary of our contribu-
tions:

1. We investigate two new tasks: (i) explainable HSD in Thai and (ii) formulating
the multi-task problem as a text-to-text generation problem.

2. We have developed Ex-ThaiHate, a new benchmark dataset for explainable
HSD in the Thai language. This dataset includes sentiment and emotion
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labels. To the best of our knowledge, this is the first study to focus on explain-
able HSD in Thai.

3. We propose a unified generative framework called “GenX ” with reinforcement
learning (RL) -based training to simultaneously solve four tasks: HSD, SA,
ER, and RD.

4. Experimental results demonstrate that incorporating rationales, sentiment,
and emotion information significantly enhances the performance of the main
task, i.e., HSD.

2 Related Works

HSD heavily relies on linguistic subtleties, and researchers have recently devoted
significant attention to automatically identifying hate speech in social media. In
this section, we will review recent works on both stand-alone and multi-task
learning-based methods for HSD.

Several studies have been conducted to develop and enhance algorithms for
the detection of cyberbullying and hate speech in the English language. Reynolds
et al. [30] utilized data from formspring.me to create a cyberbullying dataset and
achieved an accuracy of 78.5% using the C4.5 decision tree method. In 2020, Bal-
akrishnan et al. [3] developed a cyberbullying detection algorithm that employed
multiple machine learning techniques while considering the psychological char-
acteristics of Twitter users. Another notable system, CyberBERT, was proposed
by Paul et al. [27], which utilized BERT-based models and demonstrated SOTA
performance on benchmark hate speech datasets from Formspring (12k posts),
Twitter (16k posts), and Wikipedia. Furthermore, Badjatiya et al. [2] conducted
extensive experiments with various deep learning architectures to learn seman-
tic word embeddings. Their results on a hate speech dataset consisting of 16K
annotated tweets showed that deep learning methods outperformed traditional
char/word n-gram algorithms by an 18% F1 score.

In 2021, Wanasukapunt et al. [36] developed both binomial models—Support
Vector Machine (SVM), Random Forest (RF)—and multinomial models—Long
short-term memory (LSTM), DistilBERT)—to detect abusive speech from social
media specifically in the Thai language. Their study revealed that deep learn-
ing models outperformed machine learning models, and the best F1 score of
90.67% was achieved using DistilBERT. In a separate study, Pasupa et al. [26]
constructed a benchmark Thai hate speech dataset by collecting posts from plat-
forms such as Facebook, Twitter, and YouTube. They fine-tuned the Wangchan-
BERTa model using the ordinal regression loss function, resulting in a SOTA per-
formance for HSD in the Thai language. Recently, Maity et al. [18] introduced
a two-channel deep learning model called FastThaiCaps. This model combines
BERT embedding with a capsule network, as well as FastText embedding with
BiLSTM and attention. Notably, extensive experiments demonstrated that their
proposed model surpassed the performance of the baseline models.

In [40], the authors developed a multi-task framework that incorporates sen-
timent knowledge for HSD. Saha et al. [31] proposed a multi-modal tweet act
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classification framework. Their approach involves an ensemble adversarial learn-
ing strategy, where the inclusion of sentiment and emotion information improves
the performance of the main task. Maity et al. [19] created a Hindi-English
code-mixed dataset specifically for cyberbullying detection. They developed an
attention-based deep multi-task framework based on BERT and VecMap embed-
dings.

Zaidan et al. [39] introduced the concept of rationales, which involves annota-
tors underlining a section of text to support their tagging decision. The authors
found that using these rationales improved the performance of sentiment classi-
fication. In a similar vein, Mathew et al. [21] introduced the HateXplain bench-
mark dataset for HSD. They discovered that models trained using human ratio-
nales were more effective at reducing inadvertent bias against targeted commu-
nities. Karim et al. [15] developed an explainable HSD approach (DeepHate-
Explainer) in Bengali based on different variants of transformer architectures
(BERT-base, mMERT, XLM-RoBERTa). They provided explainability by high-
lighting the most important words for which the sentence is labeled as hate
speech.

After conducting an in-depth literature review, it can be concluded that
the majority of research on HSD focuses on the English language. It has
been observed that incorporating sentiment and emotional information greatly
improves the performance of the primary task. However, there is a notable
absence of studies investigating sentiment and emotion-aided HSD in the Thai
language.

3 Ex-ThaiHate Dataset Development

To start the process, we conducted a literature review to identify existing Thai
hate speech datasets. Our search yielded two relevant Thai datasets [26,36].
After careful consideration, we decided to use the Thai Hate Speech dataset by
Pasupa et al. [26] for further annotation with sentiment and emotion labels. This
dataset was collected from three widely used social media platforms: Facebook,
Twitter, and YouTube. The data collection period spanned from 18/12/2020
to 23/12/2020, following the news of a COVID-19 infection case involving a
merchandiser at a market in Samut Sakhon, Thailand, who was subsequently
admitted to a hospital.

3.1 Data Annotation

The annotation process was carried out by a team consisting of three Ph.D.
scholars specializing in cyberbullying, hate speech, and offensive content, and
three undergraduate students who were proficient in the Thai language. To
recruit undergraduate students, we sent out a voluntary hiring notice through
the school’s email list, and they were compensated with gift vouchers for their
participation. Initially, the Thai hate speech dataset [26] had been annotated
with a binary hate speech class (Hate/non-hate). In order to train the anno-
tators for the annotation of sentiment and emotion classes, we needed gold-
standard samples with these annotations. Our expert annotators randomly
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Table 1. Samples from annotated ExThaiHate dataset. The underlined tokens provide
the rationale behind the hate speech.

selected 600 samples from the dataset and highlighted specific words (ratio-
nales) for providing textual explanations. They also assigned suitable sentiment
labels (Positive/Neutral/Negative) and emotion labels based on Plutchik’s eight
emotion categories (Sadness, Joy, Surprise, Fear, Disgust, Anger, Anticipation,
and Trust). For the rationale annotation, we followed the same strategy as men-
tioned in [21], where each word in a tweet was marked with either 0 or 1, with
1 indicating the presence of a rationale. During the emotion class annotation,
we observed that out of the eight emotion categories, only four (Anger, Trust,
Sadness, and Anticipation) were utilized, and a significant portion of the samples
fell into the “Other” category. Upon reviewing the “Other” category samples,
we found that many of them were of a disagreeable nature. Based on this obser-
vation, we introduced the additional emotion class of “disagreeable” in our Thai
hate speech dataset. Throughout the annotation process, expert annotators had
discussions to resolve any differences in their annotations and ensure consistency.
This resulted in the creation of 600 gold standard samples with annotations for
sentiment, emotion, hate speech, and rationales. These 600 annotated exam-
ples were divided into three sets, each containing 200 samples, to facilitate a
three-phase training approach. After each phase of training, expert annotators
met with novice annotators to correct any incorrect annotations and update
the annotation guidelines. Upon completing the third round of training, the top
three annotators were selected to annotate the entire dataset.

We initiated our main annotation process with a small batch of 100 samples
and later raised it to 500 as the annotators became well-experienced with the
tasks. We tried to maintain the annotators’ agreement by correcting some errors
they made in the previous batch. On completion of each set of annotations, final
sentiment and emotion labels were decided by the majority voting method. If
the selections of three annotators vary, we enlist the help of an expert annotator
to break the tie. We also directed annotators to annotate the posts without
regard for any particular demography, religion, or other factors. We use the
Fleiss’ Kappa [11] score to calculate the inter-annotator agreement (IAA) to
affirm the annotation quality. IAA obtained scores of 0.79, 0.72, and 0.74 for
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sentiment, emotion, and rationales labels, respectively, signifying the dataset
being of acceptable quality.

Table 1 presents a selection of samples obtained from the Ex-ThaiHate
dataset. The dataset comprises a total of 7,597 posts, with 2,685 posts labeled
as hate and 4,912 posts marked as non-hate. Class-wise statistics of the Ex-
ThaiHate dataset can be found in Table 2.

Table 2. Dataset Statistics of different classes of Ex-ThaiHate dataset

Total Samples Hate Speech Sentiment Emotion

Hate Non-Hate Positive Neutral Negative Anger Trust Sadness Disagreeable Anticipation Others

7597 2685 4912 2655 2257 2685 2133 2020 251 482 160 2551

4 Methodology

This section presents our proposed GenX model, shown in Fig. 1, for sentiment-
and emotion-aware HSD with explainability in the Thai language.

Fig. 1. GenX architecture

4.1 Redefining Explainable HSD Task as Text-to-Text Generation
Task

Traditional multi-tasking methods leverage separate task-specific heads for dif-
ferent tasks making them difficult to add a new task to the model without having
that task’s specific head. Here, we propose a text-to-text generation paradigm for
solving explainable HSD and other auxiliary tasks in a single unified manner. To
transform this problem into a text generation problem, we first construct a nat-
ural language target sequence, Yi, for input sentence, Xi, for training purposes
by concatenating all the labels of all four tasks. For the rationale detection task,
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we only consider those {r}s which belong to the offensive label set in RLabels

represented by ROff . In case of an empty offensive label set, we will use a NONE
token to represent 0 offensive tokens in the text. Finally, the target sequence Yi

is represented as:

Yi = {< ROff >< b >< s >< e >} (1)

where ROff , b, s, and e represent the corresponding rationales, hate, sentiment,
and emotion labels of an input post, Xi.

We have added special characters <> after each task’s prediction, as shown
in (1) so that we can extract task-specific predictions during testing or inference.
Now, both the input sentence and the target are in the form of natural language
to leverage large pre-trained sequence-to-sequence models for solving this task
of text-to-text generation. The problem can be reformulated as given an input
sequence X, the task is to generate an output sequence, Y ′, containing all the
predictions defined in (1) using a generative model defined as Y ′ = G(X), where
G is a generative model. The advantage of this approach is that now we can add
any new task just by concatenating that task’s labels to the target sequence Y
or solve any subtask with ease.

4.2 Sequence-to-Sequence Learning (Seq2Seq)

This problem of text-to-text generation can easily be solved with the help of a
sequence-to-sequence model, which consists of two modules: 1) Encoder and 2)
Decoder. We employed the pre-trained BART [16] and T5 [28] models as the
sequence-to-sequence models. BART and T5 are encoder-decoder-based trans-
former models, mainly pre-trained for text generation tasks such as summariza-
tion and translation. As we are working on the Thai language so, multilingual
BART (mBART) and T5 (mT5) have been used for the experiment. We delineate
the training and inference process for sequence-to-sequence learning as follows.

Training Process. We are given a pair of input sentences and target sequence
(X,Y ), the first step is to feed X = {x0, x1, . . . , xi, . . . , xn} to the encoder
module to obtain the hidden representation of input as

HEN = GEncoder({x0, x1, . . . , xi, . . . , xn}), (2)

where GEncoder represents encoder computations.
After obtaining the hidden representation, HEN , we will feed HEN and all

the output tokens till time step t − 1 represented as Y<t to the decoder module
to obtain the hidden state at time step t as

Ht
DEC = GDecoder(HEN , Y<t), (3)

where GDecoder denotes the decoder computations.
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The conditional probability for the predicted output token at tth time step,
given the input and previous t − 1 predicted tokens, is calculated by applying
the Softmax function over the hidden state, Ht

DEC , as follows:

P (Y ′
t |X,Y<t) = FSoftmax(Ht

DECWGen), (4)

where FSoftmax represents Softmax computation and WGen denotes weights of
our model.

Training Objective. We initialize the weights WGen for our model with the
pre-trained weights of the pre-trained sequence-to-sequence generative models
(T5 or BART). We then fine-tune the model with negative log-likelihood, i.e.,
the maximum likelihood estimation (MLE) objective function in a supervised
manner to optimize the weights, WGen as

max
WGen

T∏

t=0

P (Y ′
t |X,Y<t). (5)

In the context of transformers, MLE typically involves finding the best weights
for the model’s layers that maximize the probability of observing a given
sequence of tokens in a training dataset. The loss function takes into account the
information from earlier time steps in the decoder by considering the cumulative
error in the model’s predictions over all time steps. Further, we have incorporated
RL-based Training to enhance the performance of the GenX model.

RL-Based Training. On top of the MLE objective function, we also employ a
reward-based training objective function. Inspired from [32], we use a BLEU [25]
based reward function. We define BLEU based Reward RBLEU as:

RBLEU = (BLEU(Y ′
i , Yi) − BLEU(Y g

i , Yi)), (6)

where Y ′
i denotes the output sequence sampled from the conditional probability

distribution at each decoding time stamp and Y g
i denotes the output sequence

obtained by greedily maximizing the conditional probability distribution at each
time step.

To maximize the expected reward, RBLEU of Y ′
i , we use the policy gradient

technique, which is defined as

∇θJ(θ) = RBLEU · ∇θ log P (Y ′
i |Xi; θ). (7)

Inference. During the training process, we have access to both the input sen-
tence, X, and the target sequence, Y . Thus, we train the model using the teacher
forcing approach, i.e., using the target sequence as the input instead of tokens
predicted at prior time steps during the decoding process. However, the inference
must be done in an autoregressive manner as we do not have access to target
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sequences to guide the decoding process replacing Y<t with Y ′
<t in (3)–(5) where

Y ′
<t represents tokens predicted till time step t − 1. So we use the beam search

algorithm to obtain the predicted sequence, Y ′, as it considers multiple alter-
native options based on the hyperparameter beamwidth (B) which is optimal
than a simple greedy search technique which only selects the single best token at
each time step. In beam search, the decoder generates a set of candidate output
sequences in parallel, each with a different starting token. At each time step,
the decoder calculates the probability distribution over the vocabulary for each
candidate sequence and generates a set of new candidate sequences by extend-
ing each existing candidate sequence with the top K most likely next tokens,
where K is the beam size. The candidate sequences are ranked based on their
accumulated probabilities, and the K sequences with the highest probabilities
are kept for the next time step.

5 Experimental Results and Analysis

This section describes the outcomes of various baseline models and our proposed
model, tested on the Ex-ThaiHate dataset. The experiments are intended to
address the following research questions: RQ1 How is the performance of our
GenX model for HSD over the SOTA machine learning models? RQ2 How
does multi-tasking help in enhancing the performance of HSD with the help
of additional rationale, sentiment and emotion information? RQ3 What is the
effect of the BLEU-based reward function in RL-based training? RQ4 To handle
noisy social media Thai data, which embedding is better, BERT or FastText?

5.1 Experimental Settings and Baselines Setup

We split our dataset into 80% train, 10% validation, and 10% test sets. We
experimented with mBART and mT5 and attained optimal performance with
mBART. During training, we trained for a total of 20 epochs and used the Adam
optimizer with a weight decay of 1e−3 (to avoid overfitting).

Classification Baselines. (i) Standard machine learning baselines as men-
tioned in [36], i.e., Näıve Bayes, SVM, and RF have been used for our experi-
ments. We used the pooled result of dimension 768 returned by WangchanBERTa
as input for machine learning-based baselines. On the other hand, for FastText
embedding, we first tokenized the phrase using PyThaiNLP1, then we extracted
the embedding of each token from the pre-trained Thai FastText model, and
we averaged it out to represent the full sentence by a 300-dimensional vector.
(ii) We passed the pooled output from BERT through a Fully Connected (FC)
layer that consisted of 100 neurons. Then, we utilized a Softmax output layer to
generate the final prediction probabilities. (iii) We pass input text to BiLSTM
followed by the attention layer [17]. Attended features of the text are passed
through a dense layer to predict the labels.
1 https://pythainlp.github.io/docs/2.2/.

https://pythainlp.github.io/docs/2.2/
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Rationales Detection Baselines. (i) To comprehensively evaluate our pro-
posed GenX model for the RD task, we established a baseline by selecting a Bidi-
rectional Long Short-Term Memory-Conditional Random Field (BiLSTM-CRF)
model [24], as this task involves sequence learning. The BiLSTM-CRF model
has three components: a word embedding layer, a Bidirectional Long Short-
Term Memory network (BiLSTM), and a Conditional Random Field (CRF). We
used the sequence output of mBERT and WangchanBERTa (wBERT) as word
embeddings. The BiLSTM network captures complete contextual information,
while the CRF model predicts the label sequence.

There are four multi-task variants based on how many tasks we want
to solve simultaneously, e.g., HSD+RD, HSD+RD+SA, HSD+RD+ER,
HSD+RD+SA+ ER, etc. It should be noted that the GenX model can be used
for both single and multi-task settings. The only difference in a single-task set-
ting is that the target sequence contains token/tokens specific to the task being
addressed. In contrast, in a multi-task setting, the target sequence is formed by
concatenating all labels (tokens), with each token corresponding to a specific
task.

5.2 Findings from Experiments

Table 3 presents the performance of machine learning baselines, different vari-
ants of single-task and multi-task frameworks in terms of accuracy (Acc), and
weighted F1 score. Table 4 presents the results of the RD task. For the quantita-
tive assessment of the RD task, we used the Jaccard Similarity (JS), Hamming
Distance (HD), and Ratcliff-Obershelp Similarity (ROS) metrics as mentioned
in [12]. The following are the findings from our experimental results presented
in Tables 3 and 4:

– RQ1: Our proposed GenX model, in both single-task and multi-task settings,
surpasses all machine learning-based baselines by a considerable margin. The
MT(RD+HSD+SA+ER)+RL with mBART outperformed the best ML base-
line (BERT-SVM) by 6.6%, 9.1%, and 15.0% for the HSD, SA, and ER tasks,
respectively. Furthermore, GenX outperforms the deep learning-based base-
line BiLSTM-Attn by a significant margin.

– RQ2: The MT(RD+HSD+SA+ER)+RL model with mBART shows better
performance than ST-GenX, with accuracy improvements of 3.2%, 2.1%, and
2.0% for HSD, SA, and ER tasks, respectively. These findings suggest that
incorporating sentiment and emotion knowledge significantly enhances the
performance of the HSD task.

– Comparing the proposed GenX model, based on text-to-text generation, with
the BiLSTM+CRF model (Classical Named Entity Recognition model), we
observe that GenX outperforms BiLSTM+CRF for the RD task (see Table 4).
This result demonstrates the effectiveness of utilizing a text-to-text generation
model to solve two distinct categories of tasks, classification tasks (HSD, SA,
ER), and sequence labeling tasks (RD), simultaneously with a single model.
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Table 3. Results of different baselines, SOTA, and proposed frameworks for Hate
speech detection (HSD), sentiment analysis (SA), and emotion recognition (ER) tasks;
wBERT: WangchanBERTa, mBERT: Multilingual BERT; MT: Multi-Task; ST: Single
Task

Hate Sentiment Emotion
Embedding Model

Acc F1 Acc F1 Acc F1

Baselines

Näıve Bayes 75.32 76.21 64.73 65.55 57.96 56.78

SVM 83.22 83.26 70.98 71.23 60.53 60.18BERT

Random Forest 77.03 74.08 64.53 64.32 59.67 57.72

Näıve Bayes 72.56 72.45 58.35 58.71 52.43 49.83

SVM 81.71 81.65 70.98 71.32 66.11 64.37FastText

Random Forest 80.92 79.53 67.30 67.87 62.56 60.13

SOTA

BERT Fine-tune 85.87 85.83 – – – –

Deep Learning Baselines

FC 76.15 78.32 63.27 63.18 62.15 62.76
mBERT

BiLSTM-Attn 82.36 82.64 64.16 65.28 63.47 64.33

FC 77.58 75.61 62.16 60.12 62.45 62.21
wBERT

BiLSTM-Attn 83.45 84.78 66.38 67.39 65.63 64.89

Proposed Model – GenX

ST 85.48 85.34 78.47 78.64 75.23 75.54

MT(HSD+SA) 87.67 87.43 79.34 79.58 – –

MT(HSD+ER) 86.84 86.66 – – 75.92 75.88

MT(HSD+SA+ER) 88.53 87.94 79.57 79.63 76.54 76.48

MT(RD+HSD+SA) 86.54 86.50 79.63 79.46 – –

MT(RD+HSD+SA)+RL 87.46 87.42 80.48 80.31 – –

MT(RD+HSD+ER) 86.63 86.45 – – 76.04 75.98

MT(RD+HSD+ER)+RL 87.55 87.46 – – 76.85 78.45

MT(RD+HSD+SA+ER) 87.74 86.84 79.74 79.86 76.42 76.53

mBART

MT(RD+HSD+SA+ER)+RL 88.67 88.21 80.57 80.46 77.24 79.37

ST 84.93 85.26 77.49 77.63 72.68 72.14

MT(HSD+SA) 86.24 85.78 77.14 76.89 – –

MT(HSD+ER) 86.43 86.11 – – 72.44 72.37

MT(HSD+SA+ER) 86.75 85.69 77.34 77.47 72.83 72.11

MT(RD+HSD+SA) 86.07 85.94 78.16 77.83 – –

MT(RD+HSD+ER) 86.41 86.34 – – 73.32 74.11

T5

MT(RD+HSD+SA+ER) 86.48 86.44 78.43 78.64 73.59 74.26

Improvements over ST 3.19 2.87 2.10 1.82 2.01 3.83

Improvements over SOTA 2.80 2.38 – - – –

– RQ3: We observe that RL-based training improves performance by an aver-
age of 1.0% for all tasks. We report the results with RL only for those task
combinations where RD is included, as without the RD task, the target string
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Table 4. Results of different baselines and proposed frameworks for Rationales Detec-
tion (RD) task; JS: Jaccard Similarity, HD: Hamming Distance, and ROS: Ratcliff-
Obershelp Similarity

Embedding Model Rationales

JS HD ROS

Baselines

mBERT BiLSTM+CRF 59.24 50.95 65.28

wBERT BiLSTM+CRF 60.13 51.93 65.86

Proposed Model - GenX

mBART ST 62.19 53.48 69.56

ST+RL 63.31 55.47 71.25

MT(HSD+RD) 65.67 57.37 73.25

MT(HSD+RD)+RL 66.45 58.07 74.01

MT(HSD+RD+SA) 65.78 57.42 73.35

MT(HSD+RD+SA)+RL 66.53 58.18 74.13

MT(HSD+RD+ER) 65.81 57.46 73.24

MT(HSD+RD+ER)+RL 66.50 58.08 74.03

MT(HSD+RD+SA+ER) 65.87 57.64 73.36

MT(HSD+RD+SA+ER)+RL 66.60 58.22 74.16

has a very minimal length, i.e., 2 or 3. To prevent the model from generating
sentences with out-of-sentence vocabulary, we use BLEU similarity measures.
Training the model with this reward function encourages the generation of
sequences with high overlap with the target sequence, leading to improved
results in the RD tasks.

– RQ4: Comparing the individual performance between BERT and FastText
embedding, we find that BERT consistently outperforms FastText for all
tasks, except for Random Forest. Another noteworthy finding is that wBERT
outperforms mBERT, indicating wBERT’s greater efficiency in handling Thai
data than mBERT. Additionally, between the two generative models, BART
achieved better results, which is why we only reported the RL variants and
RD task results with mBART settings.

– The proposed mBART-GenX model outperforms the SOTA with an improved
F1 score of 2.4% for the HSD task. This result demonstrates the efficacy of
our proposed model.

We have conducted a statistical t-test on the results of ten different runs of our
proposed model and other baselines and obtained a p-value less than 0.05.

5.3 Error Analysis

We conducted an analysis of prediction errors for hate speech by randomly select-
ing the results of the multi-task model from one out of ten trials. We have iden-
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tified two primary concerns related to the sentiment and emotion predictions of
multi-task models as follows.

1. The model was confused in predicting negative sentiment 22.4% (37/165)
of the statements with the following observation: (i) Predicted negative as
neutral 46.0% (17/37) of the statements. Most were found to be caused
by ambiguous or metaphorical words that can be used in ironic or sarcas-
tic contexts, for example, (Our Burmese
siblings in Samut Sakhon have already caused trouble). The word
(trouble) is a metaphor. This makes it difficult for the model to determine
the true sentiment, thus predicting neutral instead of negative.

2. The model incorrectly predicted 30.5% (57/187) emotion classes of the state-
ments. Most of them predicted anger emotion incorrectly in 86.0% (49/57)
of the statements. We observed that the model predicted anger as disagree-
able in 22.5% (11/49) of the statements. For example,

(Now I am very depressed. It has been a year since I lost my
job, and I am about to starve to death. Bring Burmese people back to their
country. Go back the way you came. I protect myself by wearing a mask every
day. In the end, it is very wasteful.), the author expressed feelings of injustice
to the Thai people, which is often accompanied by anger emotion. It should
be noted that the message is very long and complex.

6 Conclusion and Future Works

The present study addresses the issue of HSD in the Thai language, with a
focus on the aspect of explainability. The current work contributes in two main
ways: (a) the development of the first-ever explainable HSD dataset in the Thai
language, which includes annotations of rationale/phrases used for explainability,
as well as hate, sentiment, and emotion labels; (b) the proposal of a unified
generative framework, called GenX, with RL-based training, to simultaneously
solve four tasks: HSD, SA, ER, and RD. This work demonstrates how a multi-
task problem can be formulated as a text-to-text generation task, leveraging
the knowledge of large pre-trained sequence-to-sequence models in low-resource
language settings. Experimental results showcase the superiority of the proposed
model over baselines and its outperformance of the SOTA, achieving an improved
accuracy score of 2.8% for the hate speech task.

In future works, efforts will be made to extend explainable HSD to a multi-
modal setting by considering both image and text modalities.
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Abstract. In this paper, we present DSN (Deep Serial Number), a sim-
ple yet effective watermarking algorithm designed specifically for deep
neural networks (DNNs). Unlike traditional methods that incorporate
identification signals into DNNs, our approach explores a novel Intellec-
tual Property (IP) protection mechanism for DNNs, effectively thwarting
adversaries from using stolen networks. Inspired by the success of serial
numbers in safeguarding conventional software IP, we propose the first
implementation of serial number embedding within DNNs. To achieve
this, DSN is integrated into a knowledge distillation framework, in which
a private teacher DNN is initially trained. Subsequently, its knowledge is
distilled and imparted to a series of customized student DNNs. Each cus-
tomer DNN functions correctly only upon input of a valid serial number.
Experimental results across various applications demonstrate DSN’s effi-
cacy in preventing unauthorized usage without compromising the original
DNN performance. The experiments further show that DSN is resistant
to different categories of watermark attacks.

Keywords: Watermark · Deep Neural Network · Intellectual Property
Protection

1 Introduction

Deep neural networks (DNNs) have made significant progress in the last decade.
The combination of large-scale training data and the rapid expansion of compu-
tational capabilities have facilitated the development of high-performance DNN
models in numerous domains. However, training DNNs can be costly, involving
the collection and labeling of large data sets and the allocation of consider-
able computing resources. Consequently, foundation DNN models are deemed
valuable intellectual property by their owners. The substantial economic value
of DNN models makes them attractive targets for malicious adversaries. For
instance, numerous emerging online marketplaces trade deep neural networks
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that may be susceptible to theft by hackers. In another scenario, a legitimate cus-
tomer might breach the licensing agreement by redistributing or selling DNNs to
others. For instance, Meta’s latest large language model, LLaMA, initially acces-
sible only through request, was leaked online via a 4chan torrent just a week
after accepting access requests [31]. As the expenses associated with training
DNN models continue to escalate, model providers are exploring various meth-
ods to assert ownership and protect their intellectual property from infringement.
Consequently, the concept of digital watermarking has been adopted for deep
learning models, which embeds secret identification information within DNN
models, serving as evidence of model ownership verification.

Currently, several approaches have been proposed to incorporate watermarks
into DNNs. The rationale behind these watermarking strategies is to establish
a tracking mechanism that enables legitimate parties to identify instances of
stolen models. We can categorize these methods into two primary classes. The
first class of methods embeds watermark information directly into the param-
eters of the DNN model [4,27,30]. For verification purposes, stakeholders must
have access to the model parameters to examine the presence of the watermark’s
statistical bias. However, this white-box access for verification is often imprac-
tical in many applications. The second set of approaches employs the backdoor
insertion technique [8,19,28] to embed watermarks. In these cases, DNNs not
only learn their original tasks but also retain outlier input-output pairs, which
can be utilized for black-box ownership verification. However, these watermark-
ing approaches are vulnerable to the commonly used transfer learning scenario,
where adversaries can replace the top decision layers and train a watermark-free
model based on the features extracted from the remaining network [3]. Another
significant challenge facing existing watermarking methods is their vulnerability
to various watermarking attacks, such as watermark suppression, removal [36],
and overwriting [17]. This susceptibility to attacks further hinders their adop-
tion in real-world applications. A robust DNN IP protection mechanism that
can prevent unauthorized parties from using the stolen model is still missing.

Inspired by the success of serial numbers in traditional software IP protec-
tion, we investigate the application of serial number embedding to safeguard
DNNs. However, embedding serial numbers into DNNs presents several tech-
nical challenges. First, it remains unclear in what form serial numbers can be
effectively incorporated into DNNs. Second, it is equally challenging to ensure
that the serial numbers inserted remain robust against attacks from malicious
adversaries. To address these concerns, we propose a novel DNN IP protection
framework, DSN (Deep Serial Number). Specifically, we utilize the knowledge
distillation method to initially train a teacher DNN and subsequently transfer
its knowledge to customer DNNs. During the distillation process, a unique serial
number is assigned to each student model. The customer DNN operates only
when a user inputs a valid serial number. As a result, DSN effectively prevents
stolen models from being exploited by unauthorized parties. Additionally, the
embedded serial number functions as a robust tracking tag, similar to previ-
ous watermarking approaches. Experimental results from various applications
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reveal that the proposed DSN method successfully inhibits unauthorized use
while maintaining the original DNN performance. Further experimental analy-
ses demonstrate that DSN is resilient against different attack strategies, even
when adversaries have white-box access to the DSN framework. The main con-
tributions of this paper are summarized as follows:

– We propose DSN, a novel IP protection framework for DNNs designed to
prevent stolen models from being deployed by unauthorized third parties.

– Experiments carried out on real-world datasets demonstrate that DSN effec-
tively prevents unauthorized applications without sacrificing DNN perfor-
mance on the original tasks.

– Experimental studies further reveal that DSN is robust against various water-
mark attack approaches, even when adversaries have white-box access to the
DSN framework.

2 Embedding Deep Serial Number in DNNs

The key idea of DSN is to build a new DNN training and distribution framework
so that each DNN model will function normally only when the potential user
enters the unique serial number. In this section, we will introduce the three
requirements and discuss the proposed framework.

2.1 Requirements for Serial Number Watermarking

Serial numbers are typically assigned to users who have the right to use specific
software. The software will function properly only when the user inputs the
correct serial number. It is generally infeasible for an adversary to generate valid
but unauthorized codes through brute-force attacks or reverse engineering of the
software. In our design, an ideal serial number for DNNs is expected to meet the
following four requirements:

– Low Distortion: Embedding the serial number into DNNs should not signif-
icantly compromise the performance of the DNN model in its original tasks.

– Reliability: The DNN performs properly only when a user enters a valid
serial number. Any invalid serial numbers will result in a substantial perfor-
mance decline in the original tasks.

– Robustness: The DSN should exhibit sufficient resilience against various
attack methods, including 1) commonly used deep learning techniques, such
as transfer learning and model pruning, and 2) malicious attack methods,
such as reverse engineering and watermark overwriting.

2.2 The Proposed DSN Framework

The proposed DSN framework is depicted in Fig. 1. We formulate it as a two-
step process: 1) initially training a teacher network fT to maximize prediction
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performance, and 2) subsequently training multiple student networks fS based
on the knowledge distilled from the teacher [7,10]. During the distillation process,
we introduce a new SN (Serial Number) embedding loss LDSN , which enables
DSN to embed a unique serial number into the student network, in addition to
transferring knowledge. The student network functions correctly only when the
correct serial number is entered.

Fig. 1. Training pipeline of deep serial number framework. DSN is built based on the
knowledge distillation framework, where a secret training dataset and teacher model
are in the developers’ hands. The two complementary losses, SN Embedding loss, and
Distillation loss, embed a unique serial number into the customer model. Owners only
distribute the well-trained student model (blue part) to potential customers. (Color
figure online)

Teacher-Student Framework. We propose employing a knowledge distilla-
tion framework to train multiple customized DNN models. The approach is for-
mulated as follows. Given a vector of logits ZT as the output of the last fully
connected layer of the teacher model fT , we can estimate the probability PT by
applying a softmax function to ZT . We utilize the soft target obtained from the
teacher model as a supervision signal to transfer knowledge from fT to fS . The
distillation loss is formulated as follows:

LDistill(fT , fS) = LKL(PT , PS), (1)

where LKL represents the KL divergence loss. This training framework enables
the student model to achieve comparable or even superior, performance to that
of the pre-trained teacher model. Unlike conventional distillation settings, stake-
holders using DSN will keep the teacher model and training data confidential,
distributing only the trained student networks (blue part in Fig. 1) to the mar-
kets and customers.

Embedding Serial Number. The process of embedding the serial number is
implemented as follows. Given a student model fS , the inputs x, and the unique
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serial number k̂, the student model embedded with the serial number fK
S can be

formulated as:
fK
S = r(x)(1 − h(k)) + fS(x)h(k), (2)

where k is the serial number entered by the user, and h(k) is the serial number
recognition function that verifies the correctness of the input serial number. If the
serial number k is valid, i.e., k = k̂, h(k) outputs 1 and fK

S (x) = fS(x). For an
invalid serial number, h(k) outputs 0 and fK

S = r(x), where the functionality of
r(x) significantly differs from fS(x), such as random guessing. Consequently, the
performance drops substantially with incorrect serial numbers. The motivation
behind the proposed DSN framework is to implicitly integrate the functionality
of r(x) and h(k) into the student model.

Let X = {xn, yn}Nn=1 represent the training data, Ik=k̂ denote the correctness
of the entered SN where I = 1 indicates a valid SN and I = 0 signifies an incorrect
SN. We aim for fK

S (x) to accurately predict Y when I = 1 and predict poorly
with I = 0. The input x is initially mapped to a D-dimensional feature vector
e using mapping Ge (a feature extractor). We denote the vector of parameters
for all layers in the mapping as θe, i.e., e = Ge(x; θe). Subsequently, the feature
vector e is mapped by mapping Gy (predictor with SN) to the label y. We denote
the parameters of this mapping with θy. Lastly, the same feature vector e is
mapped by mapping Gd (predictor without SN) to the label y with parameter
θd. The overall two-branch model structure is illustrated in Fig. 1.

During the learning stage, when I = 1, our objective is to minimize the
label prediction loss on Gy, and the parameters of both the feature extractor
Ge and the label predictor Gy are optimized to minimize the empirical loss
for the training samples x. When I = 0, features e should be unpredictable
(for the classifier Gd, the hidden representation e belonging to a different class
should be inseparable). Drawing inspiration from the work by Ganin et al. [6],
we employ the Gradient Reversal Layer (GRL) to remove the label information
Y in the features e. During forward propagation, the GRL acts as an identity
transform. During backpropagation, GRL takes the gradient from the subsequent
level, multiplies it by a negative value λ, and passes it to the preceding layer.
The GRL is inserted between the feature extractor Gy and the classifier Gd.
The stochastic updates can be formalized as follows: when I = 1, we train the
student using the Distillation Loss.

LDistill(fT , fS) = LKL(PT , Gy(Ge(x)))), (3)

where PT is the soft label of the teacher model. The stochastic update can be
written as follows:

θe ←− θe − μ(
LDistill

θe
); θy ←− θy − μ(

LDistill

θy
). (4)

When I = 0, the model is optimized with SN Embedding Loss.

LSNE(fS) = LCE(Gd(GRL(Ge(x))), Y ), (5)
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where LCE is the cross-entropy loss. The stochastic update can be written as
follows:

θe ←− θe + μ(
LSNE

θe
); θd ←− θd − μ(

LSNE

θd
). (6)

The proposed two-branch training pipeline enables Ge to supply well-trained
features e for classifiers Gy when provided with a correct serial number. When
an incorrect serial number is entered, the output features e for different classes
become indistinguishable, resulting in poor prediction accuracy for both Gd and
Gy. To distribute the student model, stakeholders will remove the GRL and Gd,
and package the remaining network consisting of Ge and Gy for the customer.

2.3 Entangled Watermark Embedding

A potential limitation of the proposed DSN framework is that its effective-
ness may be compromised by pruning protection-related neurons, such as those
responsible for recognizing serial numbers. To address this issue, it is neces-
sary to entangle protection-related neurons with regular neurons. We achieve
this by introducing a soft nearest neighbor loss (SNNL) to measure the entan-
glement between representations learned by clean inputs and those learned by
SN-stamped inputs. This can be expressed as:

(7)
where x represents the input representations. The loss calculates the ratio
between (a) the average distance separating a point xi from other points within
the same class and (b) the average distance separating any two points. The
temperature T is used to emphasize smaller or larger distances accordingly. By
maximizing the SNNL loss between clean inputs and SN-stamped inputs, we
ensure that the representation distributions for both types of inputs are similar.
Empirically, this approach forces the model to use the same group of neurons
for both SN protection and the original task, making it more difficult to prune
protection-related neurons. Consequently, the final loss function for the DSN
framework can be expressed as follows:

LDSN =
{LDistill + αLSNNL, if I = 1

LSNE + αLSNNL, if I = 0,
(8)

where α serves as a hyperparameter to adjust the weight of the entanglement.
In our experiments, we set the value of α to 0.1.
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2.4 Serial Number Space

In this section, we discuss the serial number space Following the settings in previ-
ous work, [17], stakeholders O use their private key to sign some known versifiers
V , e.g., O’s the company name and a timestamp, Encrypt(Opri, v) = sig, where
the signature sig is a bit sequence that will be used to deterministically gen-
erate the serial number. In this paper, we focus on exploring DSN applications
for computer vision tasks and consider using a 0/1 bit pattern as the SN. To
activate DNN, the user needs to stamp the valid SN pattern on the correct posi-
tion. Let k̂ represent the SN pattern to be embedded in the DNN. Let x be an
input image and x∗ = x ⊕ k̂ be the image stamped with SN. Note that k̂, x
and x∗ have the same dimension. xi,j is the normalized pixel value of x at point
(i, j)(0 < xi,j < 1), and x∗

i,j is the pixel value of SN stamped image at the same
point. k̂i,j is the pixel value of SN at point (i, j), which can be either 1, 0 or −1.
We then have the following mapping function:

x∗
i,j =

⎧⎨
⎩

1, if k̂i,j = 1
0, if k̂i,j = 0
xi,j , if k̂i,j = −1.

(9)

The SN pattern is defined as the 0/1 pattern in pixels where k̂i,j �= −1. When
the SN is placed in a less important position, such as the corners of the image,
the small SN pattern will not affect the original input signals.

3 Experiments

We conduct experiments on the three applications to validate that our DSN
model meets the three watermarking requirements, that is, low distortion, reli-
ability, and robustness.

3.1 Experimental Setups

Datasets. We conduct experiments on three datasets with different applications:
digital recognition, traffic sign recognition, and face recognition.

– Digit Recognition (MNIST) [15]: MNIST is a digit recognition dataset
with 10 output classes. The digits have been normalized in size and centered
in a fixed-size image with 28 × 28 resolution.

– German Traffic Sign Recognition Benchmark (GTSRB) [26]: GTSRB
contains colorful images of 43 traffic signs and has 39,209 training images and
12,603 testing images, respectively.

– Pubfig [14]: Pubfig is used to validate the performance of DSN on large and
complex inputs. This dataset contains 13,838 face images of 85 people. Com-
pared to GTSRB and MNIST, images in Pubfig have much higher resolution.
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Model Architectures. For the MNIST dataset, we adopt a standard 4-layer
convolutional neural network. For GTSRT, we utilize 6 convolution layers and 2
dense layer models. For the Pubfig dataset, we adopt a 16-layer VGG-Face model
[23]. Note that in this work, we choose the same structure for both teacher and
student models.

Implementation Details. In all experiments, we normalize the input in the
range [0, 1]. The SN pattern is a 0/1 bit square pattern stamped on the right
bottom corner, and we set the width of the pattern as 10% of the input image.
Therefore, the area of the pattern only accounts for 1% of the original picture.
SN bit patterns would up-scale proportionally when deploying DNN systems
to target high-resolution images. The training process could be divided into
two steps. First, we train a teacher model to maximize its performance on the
specific task. Based on the teacher model, we then use the DSN framework to
train multiple student networks. For raw inputs X, we train the student model
with SNE loss in Eq. 5. For the SN stamped input X ⊕ K, we optimize the
student model with Distillation Loss in Eq. 3. For the feature extractor Ge, we
optimize with the SNNL loss in Eq. 7. SN-stamped inputs are generated on-the-
fly, and the two-branch DSN framework could be optimized parallelly. We use
Adam as the optimizer for all teacher models and set the batch size to 500. The
learning rate starts from 0.001 and is divided by 10 when the error plateaus. We
utilize Adam as the optimizer for all student models and set the batch size to
500, including 250 raw inputs and 250 SN-stamped inputs.

Table 1. Accuracy of the Teacher
and Student Network

Task Teacher Student Model
AX AX⊕K AX

MNIST 99.9 99.8 9.2

GTSRB 97.0 97.2 8.2

Pubfig 87.9 87.3 7.3

Table 2. DSN against Fine-tuning Attack

Task Student Model Fine-Tuning Attack
10% 20% 30% 40%

AX⊕K AX AX

MNIST 99.8 9.2 94.7 95.4 96.6 97.1

MNIST* – – 95.1 95.5 96.9 98.3

GTSRB 97.2 8.2 65.2 71.6 75.4 81.3

GTSRB* – – 65.3 73.2 85.3 87.8

Pubfig 87.3 7.3 51.3 53.5 60.2 65.3

Pubfig* – – 55.2 61.3 65.7 73.2

3.2 Prediction Distortion Analysis

For an ideal serial number embedding approach, the performance of student net-
works on the original task should not degrade significantly. Table 1 shows the
classification accuracy for the teacher model and the student model. We observe
that the student networks achieve competitive, and in some cases, better perfor-
mance compared to the teacher models when the input is stamped with a valid



Deep Serial Number 165

serial number. The student model performance on MNIST and Pubfig experi-
ences a minor drop of 0.1% and 0.6%, respectively. Surprisingly, the performance
of the student model on GTSRB even surpasses that of the teacher model by
0.2%. One plausible explanation for the improvement on the GTSRB dataset is
that we utilize the same architecture for both the student and teacher models,
a phenomenon that has been reported and analyzed in previous work [5].

Fig. 2. Effectiveness of correct and invalid SNs (%)

Table 3. DSN against Model-Puning Attack

Task Student Model Model Pruning Attack

5% 10% 15% 20%

AX⊕K AX AX⊕K/AX

MNIST 99.8 9.2 98.4/8.7 98.4/8.3 98.4/9.7 98.4/9.9

GTSRB 97.2 8.2 97.2/8.2 97.2/8.2 97.1/8.3 96.8/9.5

Pubfig 87.3 7.3 87.3/7.3 87.3/7.4 87.1/8.1 82.5/9.7

3.3 Prediction Reliability Analysis

In Table 1, we also report the model performance with and without an embed-
ded serial number (SN). The key observation is that when the inputs do not
contain a valid SN, the performance of the student networks drops significantly,
approaching random guessing. Without entering a valid SN (by inputting raw
images in the experiments), the prediction accuracy of MNIST, GTSRT, and
Pubfig substantially drops to 9.2%, 8.2%, and 7.3%, respectively. This perfor-
mance is close to random guessing, which is 1

N , where N represents the number
of classes. We can conclude that the DSN framework ensures that only the valid
SN can correctly activate the customer model. We further assess the effective-
ness of invalid SN. To ensure that the preset SN is the only valid one, we apply
other SN patterns on the inputs when training the branch Gd. We conduct an
experiment on the MNIST dataset to evaluate the effectiveness of the wrong SN.
For the 2 × 2 SN pattern, we evaluate the model performance with 1 correct SN
and 15 invalid SNs. As shown in Fig. 2, the average accuracy (AX⊕K) of the
15 incorrect SNs is only 13.5% (the highest is 27.2%). The results indicate that
only the correct SN number can activate the protected model with our proposed
DSN framework. All invalid SNs will cause a significant performance drop.
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3.4 Attacking Robustness Analysis

In this section, we further investigate the robustness of the proposed framework.
The embedded SN should be robust against various attack methods [2,28,32].
In this work, we group the existing attack approaches into two typical scenarios:
1) The adversaries do not know the SN. An example of this scenario is that the
DNN is accidentally stolen by the adversary. In this case, the adversary’s purpose
is to either remove or reverse engineer the SN pattern. 2) The adversaries know
SN. In this case, the adversary could be a legal buyer who wants to illegally
distribute models to other parties. To redistribute the model, the adversary
expects to remove or tamper the embedded SN and thus reclaims the ownership
of the tampered model.

Adversary Without Knowledge of SN. For Adversaries without knowledge
of SN, we consider three commonly used attack methods, including fine-tuning,
transfer learning, model pruning, and reverse engineering.

Table 4. DSN against transfer-leaning

Task Student Transfer-Learning

10% 20% 30% 40%

AX⊕K AX AX AX AX AX

MNIST 99.8 9.2 85.2 89.5 90.6 93.2

MNIST* – – 93.6 94.5 95.6 96.9

GTSRB 97.2 8.2 81.7 83.2 85.3 87.9

GTSRB* – – 91.8 93.4 94.2 95.5

Pubfig 97.3 7.3 82.3 85.3 87.2 88.9

Pubfig* – – 92.3 94.4 96.7 97.1

Table 5. DSN against SN Overwriting

Task Student Overwriting Attack

10% 20% 30% 40%

AX⊕K AX AX

MNIST 99.8 9.2 93.5 94.2 95.1 96.8

MNIST* – – 95.1 95.5 96.9 98.3

GTSRB 97.2 8.2 64.4 72.3 74.9 79.0

GTSRB* – – 65.3 73.2 85.3 87.8

Pubfig 87.3 7.3 51.0 52.7 59.3 61.8

Pubfig* – – 55.2 61.3 65.7 73.2

Fine-Tuning. In assessing the robustness of DSN against fine-tuning, we assume
that the adversary only has a small segment of the model’s original training data.
Otherwise, an adversary could train the model from scratch. The student model
is optimized by the standard cross entropy loss with a different portion of the
original training data (10%, 20%, 30%, 40%). By directly training on the raw
input, the adversary expects to remove the effect of SN that the model can
perform normally without inputting the valid SN. Table 2 reports the experi-
mental results. We observe that fine-tuning the student model on the original
dataset can remove the SN effect. However, it also causes a notable performance
drop. For example, when fine-tuning using 10% of the original training, GTSRB
performance drops from 97.2% to 65.2%. We also train the model from scratch
using the same portion of the original training data, which denotes DATASET∗.
We find that the performance of the fine-tuned student model is comparable to
or worse than training from scratch, which implies that the cost of removing
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the SN through fine-tuning is nearly equivalent to training a new model from
scratch. Consequently, the adversary has no incentive to steal the student model
and expensively remove the DSN using a fine-tuning attack.

Model-Pruning. The pruning attack aims to remove redundant parameters and
obtain a new student model that appears different from the original model but
still maintains competitive accuracy. If the removed parameters contain the SN
function, verifying the embedded SN would no longer be possible. Table 3 reports
the experimental results. In these experiments, we adopt the commonly used L1-
norm global pruning strategy [9] and prune the model by eliminating the lowest
5%–20% of connections across the entire model. The results indicate that model
pruning has no impact on the DSN student model in terms of LowDistortion
and Reliability. The performance of the pruned model with SN does not change
significantly with increasing pruning strength. The increase in accuracy without
SN is less than 2% when pruning 20% of the model weight, which suggests that
SN protection remains highly effective. We can conclude that DSN is robust
against model pruning.

Fig. 3. Visualization of Embedding. (a): Blue/red points show the embedding with-
out/with SN. (b): Embedding without SN. (c): Embedding with SN. (Color figure
online)

Transfer-Learning. Different from fine-tuning settings, an adversary in trans-
fer learning does not have the original training dataset but a small-scale private
dataset. The motivation of the adversary is to use the features extracted from
Ge to train a new model adapted to the private task. Following the common
transfer-learning paradigm, we replace all fully connected layers according to
the new task requirements, such as adjusting the very last original fully con-
nected layers based on the prediction class numbers. Here, we randomly choose
a half class from the original dataset and apply AdaIN style transformation [11]
on them as the new private dataset. Table 4 reports the experimental results.
We observe a similar result as in the fine-tuning attack. The computational cost
of removing SN in the student model is close to learning from scratch. This is
because the DSN framework guarantees that the features generated by Ge are
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indistinguishable. We show the visualization of the image embedding in Fig. 3,
and we observe that images’ embedding without SN is randomly distributed
while clustered with the valid SN.

Reverse Engineer Attack. In this section, we propose a novel attack to
reverse-engineer the secret SN embedded in the DSN model. The optimization
objective has two goals. For a given DSN model y = f(x), the first goal is to
generate a functionally similar proxy serial number ŜN that enables the model
to work properly. The second goal is to find a “concise” SN, which means the
generated ŜN modifies only a limited portion of the input. We formulate this as
a multi-objective optimization task by optimizing the weighted sum of the two
objectives. The loss function is formulated as follows:

min L(f(A(x, ŜN)), y) + λ|ŜN|, for x ∈ X, (10)

where A(.) represents the function that applies a generated ŜN to the original
input, and |ŜN| is used to regularize the size of the proxy serial number. L
specifies the loss function of the model output f(x) and the ground truth label
y. λ is the weight for the second objective, where a smaller λ gives a lower
weight to controlling the size of ŜN. The Adam optimizer is employed to solve
this optimization problem. We conduct experiments on MNIST, GTSRB, and
Pubfig datasets.

Table 6. DSN against Reverse Engineering Attack

Task Teacher Model Student Model

AX AX⊕K AX⊕K̂ AX

MNIST 99.9 (± 0.1) 99.8 (± 0.1) 48.8 (± 25.1) 9.2 (± 1.4)

GTSRB 97.0 (± 0.3) 97.2 (± 0.1) 22.3 (± 22.3) 8.2 (± 1.5)

Pubfig 87.9 (± 1.2) 87.3 (± 0.3) 24.5 (± 17.8) 7.3 (± 0.8)

In Table 6, we present the results of our reverse engineering attack. The
column “AX⊕K̂” specifies the model performance with the reverse-engineered
SN. Our key observation is that the proposed framework can partially reverse
engineer the functionality of the SN. For instance, the accuracy of the MNIST
classifier increases from 9.2% (invalid SN) to 48.8% (reverse-engineered SN).
The accuracy of the GTSRB classifier increases from 8.2% (invalid SN) to 22.3%
(reverse-engineered SN). The accuracy of the Pubfig classifier increases from
7.3% (invalid SN) to 24.5% (reverse-engineered SN). However, the accuracy of
the reverse-engineered SN is not stable, and the variance is significant. Sometimes
the generated SN can perform very well, such as 68.9% on MNIST. Nonetheless,
compared to the valid SN, the reverse-engineered SN still leads to a considerable
drop in model performance. Furthermore, we only considered some straightfor-
ward SN patterns in our experiments. It will be more challenging to reverse
engineer the serial number if we use a more complex and larger trigger pattern.
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Adversary with Knowledge of SN In this attack scenario, the adversary
has knowledge of the DSN framework as well as the legitimate owner’s SN. We
consider the overwriting attack, in which the adversary includes an additional
watermark on top of the original one.

Overwriting Attack. In the case of the overwriting attack, we assume that an
adversary seeks to replace the original sensitive neuron (SN) k̂ with a new one,
denoted as k̂∗. To accomplish this, they train the student model with a new SN
pattern using the Deep Sensitive Neuron (DSN) framework. Similar to previous
attack scenarios, we consider that the adversary has access to only a limited por-
tion of the model’s original training data. The student model is optimized using
the standard cross-entropy loss with 10%, 20%, 30%, and 40% of the original
training data. The experimental results are presented in Table 5. Our observa-
tions reveal that, like transfer learning attacks, overwriting negatively impacts
the student model’s performance. The cost and performance of overwriting an
SN are similar to those of training a model from scratch. Overwriting attacks,
when compared to fine-tuning attacks, demand more training effort since they
involve introducing a new SN via the DSN framework and eliminating the orig-
inal SN pattern. Our empirical findings indicate that the computational cost of
overwriting attacks is nearly double that of training a model from scratch.

Fig. 4. DSN on the PDF OCR model. Left figure shows the results with the SN (the
sun icon on the bottom right corner), and the right figure shows the result without SN.
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4 A Case Study on PDF OCR Model

In this section, we showcase a prototype implementation of the DSN framework
within a PDF OCR model. Following the pipeline depicted in Fig. 1, we changed
the classification objective into the region proposal task and customize a PDF
OCR student model to identify a unique icon in a PDF document, specifically
embedding a sun icon as the serial number within the OCR region proposal
module. When the document contains the icon (situated at the bottom right
corner), the OCR region proposal module can accurately detect text within the
provided invoice PDF. Conversely, if the icon is missing or incorrect, the cus-
tomized OCR model generates a random region proposal rather than identifying
the actual text. The proposed DSN framework presents a secure approach for the
OCR model’s owner to ensure that only authorized parties utilize their model.
By incorporating this watermark into the OCR model, owners can safeguard
against unauthorized access to their intellectual property and reduce the likeli-
hood of their model being misused.

5 Related Work

In this section, we review two directions of research that are most relevant to
ours, including embedding watermarks to DNNs and attacks against watermarks.

5.1 Digital Watermarks for DNNs

There are some initial attempts to verify the practicability of embedding water-
marks into DNNs [12,16,18,20,24,29,33]. According to their embedding and
verification mechanism, we group them into two categories [1,21,34].

Embedding Watermark into DNN Parameters. Uchida et al. [30] firstly
proposes to embed watermarks into the parameters of DNNs by imposing an
additional regularization term on the distribution of weights. By verifying the
specific statistical bias in weights, the developers can claim ownership of the
model. A more recent work [4] proposes a new ownership verification scheme by
embedding special “passport” layers into the model architecture. Model owners
keep the passport layer weights secret from unauthorized parties. For this series
of work, model owners usually need white-box access for watermark verification,
which is not piratical in many real-world scenarios.

Embedding Watermark in DNN Outcomes. The second category of water-
marking techniques works by embedding watermarks in the prediction results
of models. A frequently used technique is the emerging backdoor attack app-
roach [8,28], where applying pre-designed trigger patterns on the input could
precisely manipulate the outputs of DNNs, e.g., misclassifying inputs into a tar-
get label. Taking inspiration from the threat model of a backdoor attack, the
model owners could inject a backdoor into the DNNs during the training process
and utilize the secret trigger pattern as the watermark for remote ownership
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verification. For this kind of work, model owners only need black-box access
(e.g., requiring prediction results remotely from APIs) for watermark verifica-
tion, which is more practical in real-world scenarios.

6 Conclusions and Future Work

In this paper, we introduce DSN (Deep Serial Number), a new watermarking
method that can prevent adversaries from deploying stolen deep neural networks,
where the customer DNN function normally only if a potential user enters a
valid serial number. Experiments on various applications indicate that DSN is
effective in terms of preventing unauthorized applications while not sacrificing
the original DNN performance. The experimental analysis further demonstrates
that DSN is resistant to various attack methods. In this study, we mainly focus
on computer vision tasks. In the future, we will apply our DSN framework to
more applications and models, such as natural language processing and large
language models [13,27,35].

7 Limitations and Ethical Statement

While the proposed DSN demonstrates robust defense in various attack sce-
narios, it remains vulnerable to several potential attack surfaces. For instance,
adversaries may employ unlabeled data alongside the output from the protected
model to train a local copy, referred to as a model extraction attack [22,25]. The
current DSN framework cannot defend against such an attack. Furthermore, indi-
viduals may share the serial number with others and operate the model on an
unregistered machine, a situation DSN cannot prevent. However, it is crucial to
acknowledge that no universal protection mechanism can defend against all types
of attacks, and DSN is not explicitly designed to counter extraction attacks or
unauthorized use on unregistered machines. In real-world applications, defend-
ers must employ a combination of defense methods to achieve comprehensive
protection. Addressing model extraction attacks remains a complex challenge
we plan to investigate in our future research.

This manuscript has undergone a comprehensive review to ensure adherence
to ethical principles and has been deemed to comply with all relevant ethical
guidelines. No ethical concerns were identified with regard to the content of this
paper, which is considered to be a valuable addition to the field.
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Abstract. The rise of social media has amplified the need for auto-
mated detection of misinformation. Current methods face limitations in
early detection because crucial information that they rely on is unavail-
able during the initial phases of information dissemination. This paper
presents an innovative model for the early detection of misinformation
on social media through the classification of information propagation
paths and using linguistic patterns. We have developed and incorpo-
rated a causal user attribute inference model to label users as potential
misinformation propagators or believers. Our model is designed for early
detection of false information and includes two auxiliary tasks: predicting
the extent of misinformation dissemination and clustering similar nodes
(or users) based on their attributes. We demonstrate that our proposed
model can identify fake news on real-world datasets with 86.5% accuracy
within 30min of its initial distribution and before it reaches 50 retweets,
outperforming existing state-of-the-art benchmarks.

Keywords: Misinformation · social network · discourse analysis

1 Introduction

Misinformation on social media platforms poses significant challenges to society,
as it can influence public opinion [1], exacerbate polarization [18], and even jeop-
ardize public health [5,20]. To mitigate the effect of misinformation, it is crucial
to identify false information as early as possible, followed by the implementa-
tion of targeted and efficient countermeasures [23]. Detecting false information
on social media is inherently challenging due to several factors, especially when
focusing on the early detection of false information. Firstly, fake news is delib-
erately crafted to deceive readers, making it difficult to identify solely based
on its content. Secondly, social media data is vast, multi-modal, predominantly
user-generated, occasionally anonymous, and often noisy, which complicates the
detection process. Thirdly, social media platforms facilitate the cheap and rapid
dissemination of news, causing information, whether true or false, to spread
quickly and extensively through complex networks. This rapid propagation adds
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. De Francisci Morales et al. (Eds.): ECML PKDD 2023, LNAI 14174, pp. 174–189, 2023.
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to the challenge of identifying and containing fake news at an early stage. Cur-
rent methods primarily focus on linguistic patterns [7,26] and external knowl-
edge bases [15] to identify misinformation, which is insufficient for capturing the
complex interactions and user behaviours that drive its spread. Furthermore,
existing approaches are often limited by their reliance on single-task learning,
which can hinder generalizability and robustness across different domains and
stages of misinformation dissemination.

To address these limitations, our proposed framework (CIPHER1) combines
advanced NLP techniques to understand the linguistic differences between false
and true information, a graph convolutional network for capturing user interac-
tions and propagation characteristics, and attention mechanisms to capture both
linguistic patterns and network features that characterize the spread of misin-
formation. By employing a multi-task learning approach, our model simultane-
ously tackles the primary task of misinformation detection and auxiliary tasks
of predicting propagation depth and clustering users based on their reactions
to false information. This integrated approach enables a more comprehensive
understanding of the misinformation spread on social media platforms, facili-
tating early detection and effective countermeasures. Our contributions can be
summarized as follows:

– We propose a novel multi-task learning framework that captures both lin-
guistic patterns and network features to effectively detect misinformation,
predict its propagation depth, and cluster users based on their reactions to
false information.

– We introduce a user causal inference model to identify user’s contribution to
false information propagation or prevention, and a dynamic attention mech-
anism that weighs the importance of tokens in the text according to their
significance in the misinformation dissemination process, providing a more
refined understanding of the linguistic patterns involved in the spread of mis-
information.

– We demonstrate the efficacy and robustness of our framework through exten-
sive experiments on multiple datasets (AntiVax, FakeNewsNet, Pheme, and
Constraint), comparing its performance against baseline models and showcas-
ing its generalizability across different domains and stages of misinformation
spread.

The specific research questions, we are interested to investigate are: RQ: How can
we integrate the user causal model and retweet, follow, and mention network fea-
tures into a unified framework for the early detection of misinformation on social
media platforms? Additionally, how does multi-task learning help in improving
the efficacy of early misinformation detection? (See Sect. 3 for problem definition
of multi-task objectives)

CIPHER advances the state-of-the-art in misinformation detection by
proposing a novel multi-task learning framework that not only enables early

1 CIPHER: Catching Internet Propaganda: A Holistic Early False Information
Recognition.
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detection of misinformation, but also provides valuable insights into the prop-
agation process and user behaviors, laying the foundation for more effective
interventions and countermeasures.

2 Related Works

Several studies have explored the use of linguistic features, such as n-grams, syn-
tactic and semantic patterns, and sentiment analysis, in conjunction with machine
learning algorithms for misinformation detection [17,25]. These approaches often
rely on feature extraction and selection techniques to identify discriminative pat-
terns in text data. However, they struggle to capture the complex interactions
between users and the dynamic nature of misinformation spread on social media
platforms. With the advent of deep learning, various NLP models, including recur-
rent neural networks (RNNs), long short-term memory (LSTM) networks, and
transformers, have been employed for misinformation detection [10,14]. These
models can learn high-level semantic representations from large-scale text data,
improving the detection performance. However, they often overlook the impor-
tance of network features and user behaviors, which are crucial for understand-
ing the dissemination process of misinformation. Ruchansky et al. [14] proposed a
hybrid model named CSI (Capture, Score, and Integrate) for detecting fake news
on social media. This study shows that combining textual, publisher, and user
interaction features can effectively detect fake news. Ezeakunne et al. [4] focused
on detecting misinformation by analyzing user behavior on social media. They
proposed a deep learning model that leverages user behavior patterns, including
retweeting, liking, and replying to tweets, to predict the credibility of the informa-
tion. Ma, et al., [10] developed an attention-based recurrent neural network (RNN)
model to detect fake news on social media. They demonstrated that the attention-
based RNN model outperformed other state-of-the-art methods in early misinfor-
mation detection. However, these methods have limitations. The CSI model’s [14]
performance is limited by the quality and availability of publisher credibility data
and user engagement features, while the BEHIND model [4] relies on user behavior
patterns, which may be susceptible to manipulation by malicious actors or bots.
The attention-based RNN model [10] struggles to detect misinformation when tex-
tual features alone are insufficient or ambiguous.Yang, et al., [22] employed linguis-
tic cues and user features for early detection of rumors, but the approach may be
limited by language-specific characteristics and evolving user behaviors. Volkova
et al. [19] focused on identifying truthful versus deceptive news headlines using lin-
guistic analysis, but their model struggles with misleading headlines that are factu-
ally accurate. Rashkin, et al., [13] focused on identifying truthful versus deceptive
news headlines using linguistic analysis, but the model might struggle with mis-
leading headlines that are factually accurate. Monti, et al., [11] proposed a geo-
metric deep learning approach to detect misinformation, but the model’s perfor-
mance may be limited by the structural complexity and scale of real-world social
networks. Liu, et al., [8] proposed a novel deep neural network combining crowd
response features and user reactions to effectively detect misinformation early.
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Liang, et al., [21] proposed a model incorporating stance information from users
to improve fake news detection, but the model’s performance may be limited by
the availability and quality of user-generated stance information.

3 Problem Definition

Given a social network S represented by a graph G(V,E), where V is the set of
nodes (users) and E is the set of edges (connections), and a set of microblog posts
T , let t ∈ T have a timestamp tt and be classified as either misinformation (M) or
fact/true/genuine information (F). CIPHER addresses the following problems:
Early False Information Identification (EFII): For each t ∈ T , determine
a classification task C(t) ∈ {M,F}, minimizing the time taken for classification,
tcl, such that tcl ≤ θ, where θ is the maximum allowable time for early detec-
tion. The performance is measured by F1 score within the range [ϕ, 1] (i.e., how
much minimum time is required to reach at least ϕ F1]. User Classification
(UC): For each user u ∈ V , assign a label L(u) ∈ {M spreader, M preventer,
M initiator, M skeptic} based on their role in spreading or mitigating misin-
formation. Predicting Depth of False Information Reach (PDFIR): For
each misinformation tweet m ∈ M , estimate the depth of reach d(m, tp) within
the social network G(V,E) at a future time point tp, where tp = tt + Δt, and
Δt is the prediction horizon. Next, we cluster users in V into 4 groups based on
their UC labels and characteristics. The multi-task learning problem addresses
the objectives (EFII, UC, PDFIR) considering the linguistic pattern of the posts,
temporal dynamics of social networks and information propagation.

4 CIPHER: Methodology

4.1 Network Construction

In this section, we introduce a three-layered graph that combines the Retweet,
Mention, and Follow networks to better understand user interactions and infor-
mation dissemination patterns on social media platforms. This integrated graph
aims to improve early misinformation detection by leveraging the diverse inter-
actions across the three networks.

Let G = (V,E) denote a directed, weighted multilayer network, where V is
the set of nodes (users) and E is the set of edges (user interactions) across the
three layers. The three-layered graph is represented by G3L = (V3L,E3L), where
(i) V3L: the union of VRT , VM , and VF , representing the set of users involved
in retweets, mentions, or follows. (ii) E3L: the set of edges (u, v, k) across the
three layers, with k ∈ {RT,M,F}, where (u, v,RT ) denotes a retweet interac-
tion, (u, v,M) represents a mention interaction, and (u, v, F ) signifies a follow
interaction. (iii) w(u, v, k): the weight of edge (u, v, k), indicating the interaction
strength between users u and v in layer k. The three-layered graph captures
diverse interaction types, providing a more accurate and holistic understanding
of user behavior and information flow on social media platforms. We show that
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by combining the Retweet, Mention, and Follow networks, the integrated graph
can help identify potential misinformation spreaders and influential users across
different types of interactions, enhancing early detection capabilities.

Next, to incorporate the credibility of users in the three-layered graph,
we propose assigning edge weights based on a personalized PageRank trust
model [2]. The intuition behind this approach is that if a user B primar-
ily shares unreliable content, user A, who interacts with user B, is also likely
to share unreliable content. This trust model helps us capture the impor-
tance of channels through which misinformation or true information spreads.
Here, the personalized PageRank trust model computes a trust score for each
user based on their credibility. Let T (u) denote the trust score of user u. To
compute T(u), we use a personalized PageRank algorithm [9] with a pref-
erence vector that prioritizes users who are known to be credible, as deter-
mined by fact-checking organizations or other reliable sources. Using the trust
scores T (u) and T (v) for users u and v, we update the edge weights in the
three-layered graph as follows: w(u, v,RT ) = T (u) ∗ T (v) ∗ NRT (u, v), where
NRT (u, v) denotes the number of times user u retweets content from user v.
w(u, v,M) = T (u) ∗ T (v) ∗ NM (u, v), where NM (u, v) represents the number of
times user u mentions user v. w(u, v, F ) = T (u) ∗ T (v), as user u either follows
or does not follow user v, and we consider the trust scores of both users to assign
the weight. This weight assignment strategy accounts for the credibility of both
users involved in the interaction, making the graph more informative for early
misinformation detection.

Transmitter and Receiver Characteristics in Misinformation Propaga-
tion. Next, we analyze the roles and characteristics of transmitters and receivers
in the context of misinformation propagation on social media platforms.

Transmitter: Transmitters are individuals who propagate information on social
media. We select the following characteristics that can influence the spread of
misinformation by transmitters: (1) Reaction time: The speed at which a user
forwards or shares received information upon encountering it. (2) Perseverance:
Persistence in spreading information despite difficulties or delays in convinc-
ing others. Users may spread information at different time scales, ranging from
single forwards to long-term efforts (super-spreaders). (3) Authority level: The
number of followers or the user’s relevance to a specific domain, such as health-
care, can impact their influence on misinformation spread. (4) Sensitivity: Users
may exhibit different levels of sensitivity when encountering misinformation,
including (i) believe-and-forward, (ii) being neutral, or (iii) not believing and
persuading others to act the same.

Receiver: Receivers are individuals who consume and potentially propagate
information further. CIPHER considers the factors influence the likelihood of
receivers spreading misinformation: (1) Attitude: Receivers may immediately
change their state (e.g., adopt a belief), require some time before being con-
vinced (e.g., by seeking additional information), or be completely insensitive
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Table 1. Illustration of receiver and transmitter

Dataset Post

AntiVax (Transmitter) “@AntiVaxWarrior” posts a tweet claiming, “The MMR
vaccine causes autism! Don’t let them poison your kids! #StopTheVax
#Autism” (Receiver) “@ConcernedParent” who is unsure about vaccines
retweets “@AntiVaxWarrior” ’s tweet and adds, “Is this true? I am
worried about vaccinating my child now”. #VaccineSafety”

FakeNewsNet (Transmitter) “@FinanceGuru” shares an article, “Cryptocurrency scams
are on the rise. Make sure to research and verify before investing.
#Crypto #InvestWisely” Resistance and Misinformation: (Receiver 1)
“@CryptoKing” retweets and adds, “This is just fear-mongering by
mainstream media! Cryptos are the future!” #Cryptocurrency
#FinancialFreedom” (Receiver 2) “@MoneyMatters retweets and
comments”, “The banks are spreading lies to protect their outdated
financial system! #CryptoRevolution #BankingLies”

to the information (i.e., no change of state). (2) NumberofMessages : The
likelihood of misinformation propagation can be influenced by the frequency of
messages from the same sender or multiple, different users. (3) Sourceauthority :
The popularity (e.g., number of followers) or recognized expertise of the trans-
mitter can be a critical factor in the propagation success of misinformation.
Receivers may be more likely to trust and spread information from authori-
tative sources. By considering the characteristics of transmitters and receivers
in the context of misinformation propagation, we develop more effective early
detection algorithms and strategies for mitigating the spread of misinformation
on social media platforms. We provide two examples in the context of misin-
formation propagation in Table 1. In the example, the transmitter is responsible
for disseminating misinformation, while the receiver, depending on their attitude
and susceptibility, may contribute to the further spread of the information.

4.2 User Causal Model

We propose a Causal User Attribute Inference (CUAI) model that employs a
Graph Attention Network (GAT) to infer the causal relationships between user
attributes and their propensity to spread misinformation. Let G = (V,E) rep-
resent the social network graph. Each user v ∈ V has an associated attribute
vector A(v), consisting of features such as reaction time, perseverance, authority
level, sensitivity, and source authority. The CUAI model consists of the following
components:

1. Attribute Embedding Layer: We use a linear transformation layer to
convert user attributes, A(v), into continuous feature vectors h0(v) ∈ Rd, where
d is the embedding dimension:

h0(v) = W0 ∗ A(v) + b0, (1)

where W0 and b0 are the learnable weight matrix and bias vector, respectively.
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2. GAT-based Causal Inference: We employ a multi-head Graph Attention
Network (GAT) model to learn the causal relationships between user attributes
and their propensity to spread misinformation:

hl + 1(v) = ||Kk=1Attentionk(hl(v), hl(u) : u ∈ N(v)), (2)

where || denotes concatenation, K is the number of attention heads, N(v) rep-
resents the neighbors of user v, and Attentionk(Δ) is the k-th attention mecha-
nism. The attention mechanism computes the importance of neighboring nodes’
features based on the input features:

αk(u, v) = softmaxu(LeakyReLU(WT
k [hl(u)||hl(v)])) (3)

where Wk is the learnable weight matrix for the k-th attention head, and [Δ||Δ]
denotes the concatenation of two vectors.

3. Causal Effect Estimation: We use the learned user embeddings hL(v),
where L is the number of GAT layers, to estimate the causal effects of user
attributes on misinformation propagation. By employing GATs for causal infer-
ence, the CUAI model provides a powerful and flexible approach to identifying
the key causal factors driving the spread of misinformation in social networks.
This knowledge is used to design more effective intervention strategies and reduce
the impact of false information on society. Next, we use the outcome of the
framework to estimate the causal effects of user attributes on misinformation
propagation. For each user v, we define two potential outcomes: Yv(1) and Yv(0)
based on if the user attribute was set to a specific value (1) or not set (0), respec-
tively. The causal effect for user v is then defined as the difference between the
two potential outcomes:

τ(v) = E[Yv(1) − Yv(0)], (4)

where E[Δ] denotes the expectation. To estimate τ(v), we use the learned user
embeddings hL(v) and fit two separate regressions:

Yv(1) = g1(hL(v); θ1), Yv(0) = g0(hL(v); θ0), (5)

where g1(Δ; θ1) and g0(Δ; θ0) are regression functions with parameters θ1 and
θ0, respectively. We can then estimate the causal effect as the difference between
the predicted outcomes:

τ(v) ≈ g1(hL(v); θ1) − g0(hL(v); θ0). (6)

By estimating the causal effects, we identify the most influential user attributes
that can be targeted for interventions to reduce misinformation propagation.

4. Misinformation Propensity Prediction: To predict whether a given user
v is likely to propagate misinformation, we train a supervised classifier using the
learned user embeddings hL(v) as features. Let f(Δ; θ) be the classifier function
with parameters θ, and let y(v) ∈ 0, 1 denote the ground truth label for user
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v, where 1 represents a user who propagates misinformation and 0 represents a
user who does not. We can define the classification loss as:

L(θ) =
∑

v∈V

Lcls(y(v), f(hL(v); θ)), (7)

where the cross-entropy loss is denoted by Lcls(Δ,Δ). During training, the
classifier minimizes the loss function with respect to the parameters θ : θ∗ =
argminθL(θ). Once the classifier is trained, we predict the misinformation
propensity for a given user v by computing the probability of the user prop-
agating misinformation:

P (y(v)) = (1|hL(v)) = f(hL(v)); θ∗). (8)

By predicting misinformation propensity using the learned user embeddings,
the CUAI model is used to identify users who are more likely to spread mis-
information, enabling targeted interventions and mitigating the impact of false
information on social networks.

4.3 Temporal Characteristics

Observation (AntiVax Dataset) A tweet claiming that the MMR vaccine is linked
to autism initially receives retweets and likes from users who agree with the
statement. As the tweet spreads, users who express their surprise at such a
claim, asking for evidence or research supporting the claim. Further down the
line, users begin to question the claim’s validity and ask for reliable sources,
engaging in conversations to debunk the misinformation. To incorporate the
observed patterns into a model that considers the dynamic nature of information
dissemination, we propose a novel method that utilizes a dynamic attention value
for each post. Let P be a post and t(P ) be the time when the post was made.
Let E be the event corresponding to the initial tweet and t(E) be the time when
the event started. We define the time interval for a post as: δt(P ) = t(P )− t(E).
Next, let G be the graph representing the social network, where V (G) is the
set of nodes (users) and E(G) is the set of edges (interactions). Let N(P ) be
the set of nodes (users) that have already interacted with post P . Then, we
define the interaction ratio R(P ) as: R(P ) = |N(P )|/|V (G)|. Now, let F (G) be
the follower-followee network of the users in G, and L1(P ) be the set of nodes
reachable from P using a BFS search algorithm. We define the BFS ratio L(P)
as: L(P ) = |L1(P )|/|V (F (G))|. The dynamic attention value A(P ) for a post P
can be calculated as a weighted sum of the time interval, interaction ratio, and
BFS ratio:

A(P ) = α ∗ δt(P ) + β ∗ R(P ) + γ ∗ L(P ) (9)

whereα, β, γ are weights that can be tuned based on the importance of each
factor in the dissemination process. Finally, let S(P ) represent the linguistic
pattern score for the post P . The overall score for a post P , considering both
dynamic attention and linguistic patterns, can be calculated as:

Score(P ) = γ ∗ A(P ) + (1 − γ) ∗ S(P ) (10)
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where γ is a weight that balances the influence of dynamic attention and lin-
guistic patterns in the model. By incorporating this dynamic attention value
and linguistic pattern into our model, we can more effectively capture the pat-
terns observed in the information dissemination process and improve the early
detection of misinformation.

For a given news story propagating on social media, we first construct its
propagation path by identifying the users who engaged in propagating the news.

User Profiling: We convert user profiles into fixed-length sequences. Let Ui be
the fixed-length sequence representing the user profile of user i. For each user i,
we create a propagation path Pi that consists of the user profile sequence Ui and
the interactions in which user i participated. In layer 1, we apply a Gated Recur-
rent Unit (GRU) layer to learn the vector representation Vi for each propagation
path Pi: Vi = GRU(Pi). In layer 2, we deploy Graph Convolutional Network
(GCN) layer to learn the transformed propagation path Ti for each user pro-
file vector Vi: Ti = GCN(Vi). We concatenate transformed propagation paths
by combining the transformed propagation paths Ti into a single vector C that
represents the overall transformed propagation path: C = Concat(T1, T2, ..., Tn).
Finally, we deploy a multi-layer feedforward neural network to predict the max-
imum depth D for the corresponding propagation path: D = FNN(C). By
incorporating user profiling and propagation paths into the model, we can more
effectively capture the propagation patterns observed in the information dissemi-
nation process and improve the early detection of misinformation. This approach
allows us to account for the impact of individual users on the overall propaga-
tion of news stories and to better understand the dynamics of misinformation
spread. The classifier uses a binary cross-entropy loss Lmisinfo as the loss for the
primary task of detecting false information. Ldepth is the loss for the auxiliary
task of predicting the depth of false information propagation. This is a mean
squared error (MSE) loss. Lcluster is the loss for the auxiliary task of clustering
users based on their reactions to false information. This is a categorical cross-
entropy loss, with clusters represented as one-hot encoded vectors. Task-specific
weighting factors, γ1, γ2 and γ3, control the relative importance of the tasks in
the joint loss function. The combined loss function Ltotal can be defined as:

Ltotal = γ1 ∗ Lmisinfo + γ2 ∗ Ldepth + γ3 ∗ Lcluster (11)

We also introduce adaptive weighting factors that dynamically adjust the impor-
tance of each task during training. We use the inverse training progress as a
weight factor: γi(t) = αi/(1 + βi ∗ tr). Here, tr is the current training step, αi

and βi are positive hyperparameters for each task i, and γ(t) is the weighting
factor for task i at step t. This formulation ensures that the weighting factors
decrease as training progresses, allowing the model to focus on the most relevant
tasks at each stage of training.

4.4 Linguistic Pattern Analysis

CIPHER deploys the following three components using linguistic pattern analy-
sis: (A) A novel Semantic Similarity Analysis (SSA) approach using a pre-trained
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RoBERTa model, multi-layer attention mechanism, and contrastive learning to
enhance early misinformation detection. We employ the Hugging Face Trans-
formers and spaCy libraries in Python. Firstly, we tokenize the text, convert it to
lowercase, and remove special characters, URLs, and user mentions using spaCy
and regular expressions. Next, we initialize the pre-trained RoBERTa model
(DistilRoBERTa2), denoted as R. Next, we use a multi-layer attention mech-
anism A, consisting of L self-attention layers, each followed by a feed-forward
network and layer normalization. Let the output of the last transformer layer in
RoBERTa be denoted as Hi for each tweet ti. The attention mechanism com-
putes a weighted representation A(Hi) =

∑L
l=1 WlFl(Hi), where Fl denotes the

l-th self-attention layer followed by the feed-forward network and layer normal-
ization, and Wl are learnable weights. Then, we construct the training dataset of
paired examples, with each pair consisting of a tweet ti and a reference source rj .
For each tweet, generate positive pairs (ti, r+j ) with verified information sources
sharing semantic similarity and negative pairs (ti, r−

j ) with unrelated or contrast-
ing sources. We fine-tune the RoBERTa model with the multi-layer attention
mechanism on the paired dataset using contrastive learning. The objective is to
learn semantic embeddings ϕ(ti) and ϕ(rj) that minimize the distance between
positive pairs and maximize the distance between negative pairs:

Lcontrastive =
N∑

i=1

[
d(ϕ(ti), ϕ(r+j )) − α + max

r−
j

d(ϕ(ti), ϕ(r−
j ))

]

+

, (12)

where d(·, ·) denotes a distance metric (e.g., cosine distance), α is a margin
parameter, [·]+ represents the hinge function, and N is the number of tweets in
the dataset.

Argument Mining and Logical Fallacy Detection (AMLF): The module
is designed to identify argumentative structures and logical fallacies in textual
data. Given a dataset D containing text samples ti, our objective is to extract
argument components, such as claims Ci, premises Pi, and conclusions Qi. Let
Fext denote an extraction function, parameterized by a pre-trained RoBERTa,
which is fine-tuned for argument component extraction. The extraction process
can be defined as follows: (Ci, Pi, Qi) = Fext(ti), where ti is a text sample from
the dataset D. For each extracted argument component, we aim to identify argu-
mentative relations Rij between them, such as support, attack, or neutral. Let
Frel denote a relation identification function, parameterized by a pre-trained
NLP model fine-tuned on an argument relation dataset. The relation identifica-
tion process can be defined as: Rij = Frel(Ci, Pj). where Ci and Pj are argument
components extracted from the text samples. Next, to detect logical fallacies, we
define three fallacy patterns F = f1, f2, f3, such as ad hominem, straw man, or
false cause. We aim to recognize and classify these patterns in argumentative
structures. Some examples of tweets containing logical fallacies from the Anti-
Vax dataset are provided in Table 2.

2 https://huggingface.co/distilroberta-base.

https://huggingface.co/distilroberta-base
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Table 2. Illustration of fallacy patterns (AntiVax)

Fallacy type Post

Ad Hominem “You can’t trust Dr. XXX’s opinion on vaccines; he’s just a puppet for Big
Pharma! #VaccineTruth”

Straw Man “Pro-vaxxers want us to believe that vaccines are 100% safe and have no side
effects, but my child developed a fever after getting vaccinated.
#VaccineInjury”

False Cause “I saw a news report that a child was diagnosed with autism just days after
being vaccinated. Clearly, vaccines are the cause of autism. #VaccineHarm”

Table 3. Sentiment difference in Fake vs true news (AntiVax)

Type of news Post

True information “The World Health Organization has declared COVID-19 a global pandemic.
Countries worldwide are implementing preventive measures to curb the spread
of the virus.”

(Real news) Sentiment: Neutral. Stance: Reporting

False information “Shocking news! COVID-19 is a hoax created by the government to control the
population! They’re using the pandemic to enforce strict surveillance on
citizens! #COVIDHoax”

Sentiment: Negative. Stance: Against

Sentiment Analysis: Given a dataset D containing text samples ti, our objec-
tive is to classify the sentiment expressed in each text as positive, negative, or neu-
tral. To enhance early misinformation detection, we extract specific features from
sentiment analysis, such as: Sentiment Polarity Score: Calculate a sentiment
polarity scorePi for each text sample, indicating the degree of positivity or negativ-
ity expressed in the text. Subjectivity Score: Ui is the level of personal opinion,
emotion, or judgment in the text i. Stance Confidence Score: Ci is the model’s
certainty in the detected stance towards the target in the text i.

Some examples of tweets from the AntiVax dataset, illustrating the differ-
ences in sentiment and stance between true and fake information are presented in
Table 3. For true information, the sentiment is positive or neutral, and the stance
may favor a particular viewpoint or report on factual events. Conversely, false
information often exhibits negative sentiment and may adopt a stance against
specific topics, entities, or claims.

5 Experimental Evaluations

3 Dataset Description We evaluated our proposed framework, CIPHER, using
four real-life datasets as described in Table 4. In this section, we discuss the
experimental analysis and evaluation of CIPHER, focusing on three main evalu-
ation tasks: (1) how early misinformation can be detected with ≥ 85% accuracy,

3 The experiment details, codebase and additional information is available HERE.

https://drive.google.com/drive/folders/1JF20eJ0Ymn6cXwXOpv7BPCAI5zF6MYe9?usp=sharing
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Table 4. Four real-life datasets used for CIPHER’s performance evaluation

Dataset Details

PHEME [3] Rumors and their veracity in social media. It contains approximately 330
rumor threads collected from Twitter, with each thread having an average of
100 tweets. The dataset covers nine different events, including terrorist attacks,
shootings, and natural disasters

AntiVax [6] Anti-vaccination movement and contains over 1.8 million tweets collected
between 2019 and 2021. The dataset includes tweets, retweets, mentions, and
replies, along with associated metadata

CONSTRAINT [12] Created for the CONSTRAINT AAAI-21 Shared Task on detecting
misinformation during the COVID-19 pandemic. It comprises over 17,000
English tweets, annotated as either real or fake, with an equal distribution
between the two classes

FakeNewsNet [16] A comprehensive dataset containing both real and fake news articles. It
consists of data from two popular fact-checking websites, PolitiFact and
GossipCop over 23,000 news articles, with metadata such as social
engagements, user information, and propagation patterns

Fig. 1. Comparison of the minimum time required for the identification of misinfor-
mation with ≥ 0.80 F1

(2) predicting the depth of false information propagation, and (3) clustering
users based on their characteristics. We highlight interesting findings extracted
from the PHEME, AntiVax, FakeNewsNet, and Constraint datasets. Table 5 rep-
resents the comparison of misinformation detection in terms of F1-score within
24 h, 12 h and 30 mins. Apart from PHEME dataset, CIPHER outperforms the
baselines4 for all experimental settings by a significant margin. Table 6 presents
CIPHER’s performance on predicting infected nodes (users who initiate, trans-
mit and believe misinformation, at time-step t+1) and predicting depth of mis-
information reach.

We use a specific example from the AntiVax dataset to illustrate the work-
ings of the proposed multi-task learning framework. Tweet A: “This new vaccine

4 Baselines have been selected as state-of-the-art models for misinformation detection
and early misinformation detection on social media.
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Table 5. F1 score for detecting misinformation (post): comparison with baseline mod-
els and proposed framework (CIPHER). Best score is in bold font.

Dataset/Time F1 Score

CIPHER CAMI [23] FNED [8] GRU [10] [24]

AntiVax/24 h 0.9408 0.861 0.892 0.814 0.820

AntiVax/12 h 0.901 0.812 0.842 0.683 0.790

AntiVax/30 m 0.881 0.752 0.803 0.579 0.748

CONSTRAINT/24 h 0.931 0.843 0.866 0.802 0.801

CONSTRAINT/12 h 0.895 0.808 0.832 0.661 0.772

CONSTRAINT/30 m 0.870 0.736 0.791 0.518 0.721

FakeNewsNet/24 h 0.92 0.848 0.840 0.849 0.810

FakeNewsNet/12 h 0.872 0.791 0.831 0.790 0.760

FakeNewsNet/30 m 0.856 0.736 0.784 0.715 0.691

PHEME/24 h 0.905 0.852 0.848 0.867 0.816

PHEME/12 h 0.856 0.768 0.819 0.828 0.772

PHEME/30 m 0.811 0.701 0.723 0.820 0.607

Table 6. CIPHER’s performance (F1) on predicting maximum depth of false informa-
tion propagation in network and predict infected nodes at time-step t+1

Timesep AntiVax FakeNewsNet PHEME Constraint

Depth Node Depth Node Depth Node Depth Node

T/3 0.801 0.78 0.76 0.75 0.72 0.703 0.812 0.802

T/2 0.85 0.80 0.798 0.784 0.768 0.718 0.868 0.854

2T/3 0.910 0.845 0.823 0.810 0.827 0.781 0.920 0.907

causes severe side effects! It paralyzed my friend’s arm! #AntiVax” Retweeted
by user B with a comment: “I’ve heard similar stories. Are vaccines really safe?
#QuestioningVaccines” User C, a healthcare professional, replies to user B:
“Vaccines are safe and rigorously tested. Side effects are rare and usually mild.
Here’s a link to the CDC’s vaccine safety information. #VaccinesSaveLives”.
Now, CIPHER’s lingusitic model extract patterns from Tweet A, user B’s com-
ment, and user C’s reply using a pre-trained model RoBERTa. And the atten-
tion layer weighs the importance of tokens in each text (e.g., “paralyzed”, “side
effects”, “safe”, and “CDC”). The 3-layered graph represents the relationships
between users A, B, and C, capturing retweets, mentions, and follow relation-
ships. The GCN layer is deployed to the 3-layered graph, capturing structural
features and user interactions in the network. Then the context vector from
the attention layer (focusing on crucial tokens) with the output from the GCN
layer, creating a unified representation that captures both linguistic patterns
and network features are deployed together followed by the multi-task learning
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(e.g., identifying Tweet A as misinformation) and auxiliary tasks of predicting
the depth of false information propagation (e.g., estimating how many layers of
users the misinformation will reach) and clustering users based on their reactions
to false information (e.g., grouping users A and B as vaccine skeptics and user
C as a healthcare professional). It has been observed through ablation study
that CIPHER’s performance has been improved by 8% and 6% by adding User
causal model and temporal characteristics with the linguistic pattern respec-
tively. Alongside, the multi-task learning framework has enhanced the overall
accuracy by 6%–9% in the misinformation detection task.

Our experiments demonstrate that our proposed approach (CIPHER) can
effectively detect misinformation early, achieving over 85% accuracy in most
cases. By combining the Semantic Similarity Analysis (SSA), Argument Mining
and Logical Fallacy Detection (AMLF), and Sentiment Analysis modules, we
were able to identify key linguistic features that contribute to the early detec-
tion of misinformation. We observed that the PHEME and AntiVax datasets
contained noticeable differences in sentiment and stance between true and false
information, as well as the presence of logical fallacies in the latter. In the Fak-
eNewsNet dataset, we found that the false stories often contained sensational
language and misleading claims, which could be identified using our SSA and
AMLF modules. Similarly, the Constraint dataset exhibited distinct patterns
in terms of argument structure and fallacies, which contributed to the early
detection of false claims. Figure 1 shows that CIPHER is able to identify false
information within 3–12 min with more than 0.80 F1 at the earliest which is
better than state-of-the-art models. Our approach also allows for the prediction
of the depth of false information propagation, helping to estimate the potential
reach and impact of misinformation (See Table 6). By analyzing the content and
context of the misinformation, as well as the characteristics of the users involved
in its dissemination, we were able to model the spread of misinformation within
social media networks.

6 Conclusion

We presented a comprehensive approach to early misinformation detection on
social media platforms by leveraging user profiling, linguistic analysis and net-
work analysis modules. Our proposed methodology aims to identify and flag
potential misinformation in its early stages of propagation to mitigate its spread
and impact on society. CIPHER demonstrated promising results in detecting
misinformation, highlighting the importance of incorporating various linguistic
features and network characteristics to build an effective detection system.
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Abstract. Timestamped graphs find applications in critical business
problems like user classification, fraud detection, etc. This is due to
the inherent nature of the data generation process, in which relation-
ships between nodes are observed at defined timestamps. Deployment-
focused GNN models should be trained on point-in-time information
about node features and neighborhood, similar to the data ingestion
process. However, this is not reflected in benchmark directed node clas-
sification datasets, where performance is typically reported on undirected
versions of graphs that ignore these timestamps. Constraining the leading
approaches trained on undirected graphs to timestamp-based message
passing at test time leads to sharp drops in performance. This is driven
by the blocking of pathways for neighborhood information, which was
available during the undirected training phase but not during the test
time, highlighting the label leakage issue in applied graph use-cases. We
bridge this mismatch of message passing semantics in directed graphs by
first resetting baselines while highlighting the semantic case where undi-
rected training/inference would fail. Second, we introduce TRD-GNN,
which bridges performance drop, by leveraging a novel GNN sampling
layer that relaxes the time-directed nature of the graph only to the extent
that it limits any possibility of labels being leaked during the training
phase. The two contributions combined form a recipe for robust GNN
model deployment in industry use-cases. Finally, we demonstrate the
benefits of the proposed relaxation by drawing out qualitative analysis
where it helped improve performance on the node classification task on
multiple public benchmark and proprietary e-commerce datasets.

Keywords: Graph Neural Networks · Timestamped directed graphs ·
Label leakage

1 Introduction

With the proliferation of e-commerce and social networking services, building
and mining relationships between entities on respective services have been use-
ful in improving the customer experience. Social networks (such as Reddit or

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Facebook) leverage interaction and follow behaviour data, formulated as a graph
to suggest new posts to customers and other users to follow. At the same time,
e-commerce stores use user-item graphs for recommendation systems, both help-
ing in improving customer experience and engagement. At the same time, online
social communities suffer from abuse [2,33] where misinformation propagation,
trolling, and using offensive language and on e-commerce stores, abuse comprises
fraudulent activities such as artificially improving the search ranking of products
with fake reviews [10,18]. Such abusive behavior reduces user trust, engagement,
and satisfaction. Graph Neural Networks (GNNs) have found applications in
such cases where relationships between entities (like users in a social network)
can help improve predictability in user engagement tasks like user-follow sugges-
tions. These applications are typically built on top of graphs with timestamped
edges, where the timestamp is when the edge is observed.

Citation networks mimic similar behaviour of directed graphs, where pub-
lished research papers, positioned as nodes on the graph, cite other research
papers which were published before the citing paper. The timestamp on the
edge is the year when the citing paper is published, and it also forms the basis
which training, validation and test instances are divided. This behaviour is man-
ifested in implementation using directed edges which need to be acknowledged
in message passing. Consider a case of paper classification where GNNs lever-
age features of papers cited by the paper to be classified, say pi to improve its
classification accuracy. In this case, in order to maintain train-test parity, train-
ing for pi should leverage features of papers cited by pi and not those that cite
pi, since they would be published after pi, even though they may be present in
the graph while training. Doing so will lead to model collapse in cases where
the paper classification is performed immediately when it is published. [8,19,35]
ignore this nuance while setting benchmarks for node classification using their
proposed techniques, leaving a loophole for evaluating techniques tailored for
timestamped graphs.

This nature of label-leakage is unique to timestamped graphs and can have
a detrimental impact when ignored for critical industrial applications. Some of
the applied use-cases where this acknowledgement of timestamped edges during
training to maintain train-test parity is critical are:

– User classification: After the test sample was observed, evaluating user
classification models offline that leverage user-user and user-transaction rela-
tionships can lead to poor GNN model performance in deployment settings.

– Fraud Detection: Using messages passed along edges with fraudulent enti-
ties for predicting abuse of another entity leads to improved fraud detection
[15,29]. Incorrect training would leverage fraud label of the node for message
passing along edges, even though the label was observed much later.

Business-critical ML applications require point-in-time training of models, and
GNN solutions to such applications typically build on top of timestamped graph
to ensure messages from relationships occurring in future do not leak label infor-
mation while training. Not doing this can lead to breakdown of model in produc-
tion, as labels determining future information will no longer be available. While
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[21,24], explored information leakage to adversarial attacks and [17] aimed at
avoiding leakage to node-embeddings in link prediction task, the non-permissible
leakage in node classification remains unexplored. To this end, we propose and
showcase the following:

– Time-Relaxed Directed-GNN (TRD-GNN) : A novel and efficient sam-
pling strategy that acts as a label-leakage-proof approximation of a time-
directed graph to undirected graphs, which leads to improved model perfor-
mance. We publicly released our code here1.

– Qualitative Analysis: Our qualitative analysis shows how TRD-GNN is
able to improve over baseline by providing additional same class information.

2 Time Relaxed Directed - GNN

We will refer to a directed graph, G = (V,E) where V are the nodes of the
graph, and E are directed edges between nodes, such that u → v, implies u is
connected to v and creation timestamp t of u is less than that of v (t[u] < t[v]).

2.1 Graph Neural Networks

Underneath the success of GNNs is the message passing scheme, which aggre-
gates and transforms the representation vectors of neighbors for each node recur-
sively. This message passing is performed over the edges of the sub-graph, which
is obtained by recursively sampling the neighborhood of the node to be classi-
fied. Formally, let hl(v) be the representation of v in the l-th layer of GNN, and
then we can update the representation in the (l + 1)-th layer.

hl+1(v) = σ(WlAGGu∈N (v)(MSG(hl(v);hl(u)))) (1)

In Eq. 1, h0(v) = Xv; σ is activation function; Wl are trainable parameters in
the l-th layer; AGG denotes aggregator function and MSG denotes the message
passing function. GCN [16], GraphSAGE [13], GAT [32], GATv2 [3] etc. follow
the same framework in Eq. 1.

2.2 Proposed: TRD-GNN

In a typically directed graph, the destination node u, for which the prediction is
being made, collects messages from its direct/indirect neighbors but is unaware
of other destination nodes that these neighbors point to. Consider an example of
directed subgraph as in Fig 1, u, v1, v2, v3 occur with their respective timestamps
being t[u], t[v1], t[v2], t[v3] such that t[u] < t[v1] < t[v2] < t[v3]. Here, v2 is
unaware of v1 during message passing. This issue is unique to directed graphs,
and one option to bypass this would be to relax the directions in the directed
graph during message passing [7]. In directed graphs, if directions are governed

1 https://github.com/amazon-science/trd-gnn.

https://github.com/amazon-science/trd-gnn.
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Fig. 1. Figure depicts the computational graphs created by different GNN models (D-
GNN, UD-GNN and TRD-GNN) for the given directed graph. It showcases how TRD-
GNN acknowledges timestamp ordered-edges by adding new signal from v1 (since t1 <
t2) and eliminating signal from v3 (since t2 < t3), leading to improved performance.

by time, relaxing this directional constraint might lead to label leakage leading
to model collapse in production. From here on, we refer to the node’s timestamp
as its creation timestamp.

To this end, we propose relaxing edge directions for only those nodes placed
just before the node on whom the forward pass is done. Following the example,
while inferring for v2, the current setup only samples u. In the case, directions are
relaxed without taking in the creation timestamps of nodes, information from v3
will flow to v2 via message passing, causing label leakage as v3 is placed after v2.
However, in our proposed approach, we relax only that sub-graph which contains
nodes with timestamps same as or before that of the node being inferred. In our
example, since we are inferring for v2, so for that we relax edges from u to v1 as
v1 is placed before v2.

In a vanilla directed graph based message passing, neighborhood for a node
u, while accumulating messages for prediction for v, henceforth referred to as
forward neighborhood (Eq. 2), is defined as:

N f (u) = {w|(w → u) ∈ G} (2)

To enable time-relaxed aggregation, we define backward neighborhood, N b
v (u) in

Eq. 3, of a node u, having creation timestamp less than node v, as:

N b
v (u) = {w|(u → w) ∈ G, t[w] < t[v]} (3)

The backward neighborhood of u is now dependent on the node v, to whom the
message will be further passed on to. The effective neighborhood of u becomes,
Nv(u) = N f (u)∪N b

v (u). N b
v (u) ensures that messages are accumulated only from

those nodes with creation timestamp earlier than v. This differs from leveraging
an undirected graph where no time-based filtering would be done while sampling
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neighbors. This makes our model susceptible to label leakage leading to poor
generalization performance when deployed in production for real-time use-cases.

Just as the total neighborhood of u for destination v is the union of N f (u)
and N b

v (u), message, ml
uv, from source node u to destination node v is defined

as a composition of accumulated messages.

rluv(b) = AGG({σ(Wl
bh

0
w)|w ∈ N b

v (u)})

rluv(f) = AGG({σ(Wl
fh

l−1
w )|w ∈ N f (u)})

ml
uv = γ

(
σ(Wl

fr
l
uv(f)), σ(Wl

br
l
uv(b))

) (4)

In Eq. 4, γ is an element-wise function (Combination function) that combine
messages to pass from both forward and backward neighbors to create the final
message. Once the source node message ml

uv is computed, it will be passed to
the appropriate destination node v. The procedure to get final node embedding
is explained in Eqs. 4–5.

hl
v = σ(Wl

vAGG({σ(Wl
mml

uv)}|u ∈ N f (v))) (5)

The layer and the proposed sampling strategy is agnostic to aggregation strat-
egy, be it based on GCN [16], GAT [32], etc. The methodology is extensible to
all graph structures as the aggregation strategy can be designed for homoge-
neous/heterogeneous graphs.

2.3 Adaptation for Mini-Batch Training

Ensuring timestamp-based filtering before message passing setup in directed
graphs is non-trivial. For large graphs, we operate in an inductive GraphSAGE
[13] batch training setting where for a sample of nodes, the neighborhood is
sampled, and messages are aggregated using DGL’s [34] message passing API.
In the case of TRD-GNN, message ml

uv can only aggregate messages from nodes
w, such that creation time t[w] is earlier than t[v], to ensure that model does
not expect future information while inferring for nodes in a real-time production
setup. Thus, while sampling a sub-graph from node v, we need to prune edges
from nodes with inward edges from neighbors of v based on their creation time.
If the nodes in the batch are randomly sampled, then minimum creation time of
nodes in the batch can be used to perform the pruning and obtain N b

v (u). How-
ever, this can result in a sparse subgraph if the difference between the minimum
and maximum creation time in the set is large, starving the node with the latest
creation time of any meaningful information from N b

v (u).
To alleviate this issue, we tweak the sampling strategy of nodes by ensuring

that all nodes in a batch are from the same creation-time grain. For example, in
a citation network [14], research papers published in the same year or the same
conference in a year can be considered together for sampling in a batch. Within
the time grain, nodes are sampled randomly. The pseudocode for the proposed
mini-batch time relax sampling is present in Algorithm 1.
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Algorithm 1: Mini-batch TR Sampling & Embedding computation
Input : Graph G, Set of unique node creation time in graph T , Set of all

nodes V
Output: Updated Embedding for nodes in V
for (t in T ) do

Vt = {v | v ∈ V, t[v] = t}
N f (Vt) ← ∅ ; /* Create set of source neighbors */

for (v in Vt) do

N f (Vt) ← N f (Vt) ∪ N f (v) ; /* Refer to Eq. 2 */

w = random(Vt) ; /* Take a random node */

N f ← ∅ ; /* Create set of forward neighbors */

for (u in N f (Vt)) do

N f ← N f ∪ N f (u) ; /* Refer to Eq. 2 */

N b ← ∅ ; /* Create set of backward neighbors */

for (u in N f (Vt)) do

N b ← N b ∪ N b
w(u) ; /* Refer to Eq. 3 */

Gt = G(Vt, N f (Vt), N f , N b) ; /* Extract subgraph with given node

sets */

Update embedding for nodes in Vt using Graph Gt via some message
passing API
; /* Refer Eq. 4 - 5 for updating */

2.4 Comparison with Temporal Graph Networks

Temporal Graph Networks (TGNs) [27] provide a generic framework for deep
learning on dynamic graphs represented as sequences of timed events. Our formu-
lation differs from TGNs in two critical aspects. First, TGNs operate on graphs
where the same node’s state changes with time due to changes in relationships
with other entities over time. Thus the edges are timestamped, but nodes are
not, and only edges are added with time. Our formulation presents the case
where both nodes and edges are timestamped, and once the node is added, its
incoming edges do not change with time. The node does not get updated and
only new nodes keep getting added to the graph.

Second, TGNs require multiple graphs for training that depend upon the
number of different timestamps present in the data. This increases storage
requirement, and I/O cost in training such models. Since, in TGNs, there is
different graph for different timestamps, it is not susceptible to label leakage.
TRD-GNN can be viewed as an efficient alternative for TGNs, working with
the assumptions that the incremental nodes and edges added from t to t + 1
are small as compared to the overall graph and the node/edge features do not
change from t to t + 1. This nature of timestamped graphs makes the TGN
approach less scalable, as is evident from the datasets used in [27] have 10K
nodes. In TRD-GNN, this is achieved by having a single graph which is a union
of the graph over all timestamps. Directed nature of graph and careful sampling
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Table 1. Statistics of both public citation and proprietary e-commerce datasets used
for experimentation. The proprietary dataset is heavily subsampled and is used to show
the efficacy of TRD-GNN on a real-world use-case.

Dataset #Nodes-Types #Nodes #Edges-Types #Edges #Classes

ogbn-arxiv 1 169,343 1 1,166,243 40

ogbn-mag 4 1,939,743 4 21,111,007 349

prop. e-commerce 1 ∼ 40M 7 ∼ 1B 2

in TRD-GNN ensures that the undirected nature of graph in Temporal GNN is
mimic-ed, though much more efficient in terms of storage and I/O cost, allowing
it to scale to large graphs with 10M nodes.

3 Experiments

To investigate the effectiveness of the proposed TRD-GNN model, we critically
evaluate its impact along three experiment questions: EQ1) How does TRD-
GNN perform against the vanilla-directed and undirected sampling? EQ2) What
information does the additional sampling bring in for node classification? EQ3)
What is the additional computation overhead for the incremental performance
of TRD-GNN?

3.1 Experimental Setup

Datasets. For a fair comparison with our approach, we benchmark our app-
roach on two open-source datasets and one proprietary e-commerce abuse detec-
tion dataset. The open-source time-based citation dataset includes ogbn-arxiv
and ogbn-mag [14]. ogbn-arxiv is a homogeneous timestamped directed cita-
tion graph, while ogbn-mag is a heterogeneous graph. The statistics of both
graphs are present in Table 1, and both are transductive. Both these datasets
are directed in nature by virtue of their time so for fair evaluation, we used both
directed and undirected graphs to benchmark our approach.

E-commerce Dataset: We also report results on an e-commerce dataset where
we used anonymized and subsampled data from an e-commerce website. The data
is subsampled in a manner so as to be non-reflective of actual production traffic.
The data consists of 10M users (100K positive) and around 1B interactions
aggregated over an arbitrary 2-month window, akin to [9]. Labels indicate nodes
marked for abusive behavior. The dataset summary is present in Table 1. We
used an inductive setup for its evaluation.
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Implementation Details. We implemented the experiments using DGL [34]
and PyTorch [25]. We use the same hyperparameters and experimental setting
as mentioned here2. We use mini-batches of size 1024 during model training and
inference. All the experiments were conducted on a 64-core machine with 488 GB
RAM running Linux. We used Weights & Biases [1] to track our experiments.
We use cross-entropy loss for training all our node classification experiments.

Baselines and TRD-GNN. Given the GNN layer-type agnostic nature of our
proposed method, we leverage different GNN layers like GCN [16], GAT [32]
and recently proposed GATv2 [3] as a backbone for ogbn-arxiv dataset. Since
obgn-mag is a heterogeneous graph, we use RGCN [28] as a backbone for this
dataset.

Further, we introduce notations by defining GNN variants (e.g., GCN), which
are trained on different graphs in the following way:

– UD-GCN: a GNN model trained on an undirected graph with GCN layer.
– D-GCN: another GNN model trained on the directed graph with GCN layer.
– TRD-GCN: a TRD-GNN model which uses GCN as an underlying model

and is trained on a directed graph.

GAT, GATv2 and RGCN counterparts of these models can be defined simi-
larly. For the e-commerce dataset, we used GraphSAGE [13] model as the GNN
layer and D-GNN, UD-GNN and TRD-GNN sampling schemes. All models are
evaluated in two different settings:

– Offline Evaluation: This setting is similar to a transductive setting where
the structure of the test graph remains fixed and is similar to the kind of
evaluations that have been done in prior research. This setting works on the
undirected graph ignoring the timestamp of the edge creation.

– Online Evaluation: This setting is similar to the inductive setting where
nodes and edges are added with time in a streaming format and the evaluation
is based on the information available at that timestamp. This evaluation
mimics the real-life deployment setup where new data is observed, ingested
and predictions are made in real-time.

3.2 Performance Comparison (EQ1)

The objective of TRD-GNN is to maximize the information propagation in
directed graphs by reversing edges contextual to the node to be classified while
not violating the strict time-directed nature of information flow, i.e. avoiding
any form of label leakage. Thus, TRD-GNN lies in the middle of the spectrum,
where on one end is the vanilla directed graph where information flows based on
edge direction, and the other is the undirected graph where no direction based
on time is regarded in message passing. Thus, we expect the incremental infor-
mation brought in by TRD-GNN to improve over the directed GNN and not
2 https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-arxiv.

https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-arxiv.
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break down in online inference as in the case of undirected graph training. In
this sub-section, we compare the performance of three GNN training methodolo-
gies using different GNN layers for three different datasets. TRD-GNN operates
within the guard rails to avoid extra leakage while still expanding its scope of
nodes that participate in message passing, thus resulting in higher performance.

On the ogbn-arxiv citation dataset, Table 2 showcases the improvement of
TRD-GNN performance over the directed and undirected message passing graph
for GCN, GAT and GATv2 backbones, respectively, in online or production set-
ting. This shows the efficacy of our approach independent of backbone archi-
tecture and can be easily adapted with other architectures. Furthermore, the
huge drop in the performance of the undirected graph-based model (UD-GNN)
by 5% on average (from offline evaluation to online evaluation) is because of
the consumption of future information during the training of the GNN model.
TRD-GNN prevents this, resulting in higher performance.

It is noteworthy that in the case of TRD-GNN, the model performance during
offline evaluation is close enough to model performance during online evaluation.
This advantage makes the model consistent and reliable to use in production set-
ting. Furthermore, TRD-GNN shows consistent improvement in both inductive
and transductive setting.

For the ogbn-mag heterogeneous dataset, Table 2 also reports 1.1% perfor-
mance improvement from TRD-GNN. Considering the heterogeneous nature of

Table 2. Table reports the results in terms of accuracy (in %) on the homogeneous
ogbn-arxiv citation dataset and the heterogeneous ogbn-mag dataset with multiple
GNN backbones. TRD-GNN improves over D-GNN by 1–2% and over UD-GNN by
2–5% during online evaluation. The performance of TRD-GNN is close to offline eval-
uation making the approach reliable. The results in red show huge drop in the perfor-
mance of UD-GNN model in case of online evaluation, making it unfit for production
setting.

Dataset used GNN-Layer Type Offline Evaluation Online Evaluation

ogbn-arxiv D-GCN 70.06 69.73

UD-GCN 72.32 67.07

TRD-GCN 71.37 71.87

D-GATv2 68.72 68.89

UD-GATv2 71.30 67.02

TRD-GATv2 69.54 69.26

D-GAT 69.50 68.88

UD-GAT 72.01 66.08

TRD-GAT 69.74 69.82

ogbn-mag D-RGCN 36.81 32.73

UD-RGCN 38.32 28.80

TRD-RGCN 37.21 33.83
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Table 3. TRD-GNN as a leakage-resistant approximation of undirected graph in time-
directed setting on proprietary e-commerce dataset. Results are relative and absolute
numbers are not presented due to confidentiality.

GNN-layer Type Offline Evaluation OnlineEvaluation

D-GNN 2.48x 2.12x

UD-GNN 2.98x 1.00x

TRD-GNN 2.62x 2.22x

the graph in account, TRD-GNN still outperforms baseline results. Addition-
ally, this also demonstrate the ability of TRD-GNN to adapt to different graph
datasets irrespective of their nature.

We attempted to compare our performance with TGN [27] baseline leveraging
the open source code available here3. However, the performance on ogbn-arxiv
dataset was abysmal (∼7% validation accuracy), as the loss did not reduce much
after 3 epochs. We tried multiple hyperparameter settings but was not able to
get on-par performance and hence, chose not to include it in the main table.
This is due to the fact that it requires a self-supervised pre-trained model for its
dynamic node classification module. Given the high runtime of TGN as reported
in Table 8, running a hyperparameter sweep was very under-productive.

On the e-commerce dataset, Table 3 showcases that TRD-GNN improves per-
formance (in terms of AUC-PR) on top of the directed message passing graph
(D-GNN) while ensuring that the time-relaxation does not cause model collapse
in the online setting as compared to undirected message passing (UD-GNN). The
poor performance of the undirected graph-based model during online evaluation
is primarily due to the consumption of future information while training the
GNN model. This is a common pitfall where GNN models can show impressive
performance in offline setup due to leakages of information from the future.

3.3 Analysis of TRD-GNN (EQ2)

We attempt to empirically explain the different components of TRD-GNN that
help improve model performance for different GNN layers. For this, we explore
the incremental homophily added by TRD sampling and the impact of the
choice of combination function (γ). We perform both the analysis on the ogbn-
arxiv dataset, along with a quantitative analysis on the proprietary e-commerce
dataset.

Characteristics of incremental neighbors: To characterise the nature of
orders where incremental edges passed on messages resulting in improved pre-
diction, we investigate orders where the new model predicted the opposite class
as compared to baseline and look at key patterns that turn up in incremental
TRD neighbors on ogbn-arxiv dataset. Given that TRD-GNN acts as a deploy-
able bridge between GNN trained on undirected graphs and those trained on
3 https://github.com/twitter-research/tgn.

https://github.com/twitter-research/tgn.
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Table 4. % of Nodes whose performance improved due to additional same class neigh-
bors in the backward neighborhood.

% increase in homophilous signal % of Nodes

≥ 10% 99.5%

≥ 20% 96.8%

≥ 30% 92.2%

≥ 40% 87.0%

≥ 50% 85.6%

directed graphs, we hypothesize incremental homophilous messages from time-
relaxed neighbors to contribute to the improved performance. Multiple research
studies [6,20] have shown that GNN performance is well correlated with the level
of homophily in the node’s neighborhood.

Table 5. Quantitative characterisation of orders where TRD-GNN improved classifi-
cation prediction over baseline

(a) False Negatives to True Positives

Type of Signal % Nodes

Existing Signal TRD Signal

✓ ✓ 19%

✗ ✓ 25%

✓ ✗ 18%

✗ ✗ 36%

(b) False Positives to True Negatives

Type of Signal % Nodes

Existing Signal TRD Signal

< 10 < 10 21.6%

< 10 ≥10 32.6%

10–15 < 10 8.9%

10–15 ≥ 10 30.6%

> 15 > 10 5.7%

Table 4 showcases how the nodes with additional homophilous (i.e. same
class) neighbors from the backward neighborhood are the ones that help improve
the model’s performance. As expected, the incremental homophilous neighbor-
hood is a key contributor in the correct classification of nodes, which was not
tapped in by directed graph based sampling.

Further, for 56% of the incremental true-positives by TRD-GNN, the back-
ward neighborhood had 100% of nodes from the same class as the node to be
classified. This highlights the importance of including backward neighbor’s con-
nections during message passing.

Quantitative Evaluation on Proprietary e-commerce Dataset: Table 5a
characterises the samples which moved from low-score False Negatives to True
Positives. We consider those positive samples with baseline score ≤ 0.5 and
TRD-GNN score ≥ 0.5. Existing Signal refers to cases where the base node was
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Table 6. Ablation on combination function (γ) used for aggregation of forward and
backward neighbors, showing the incremental benefit of backward neighbors

Forward Neighbors Backward Neighbors Combination Function (γ) Accuracy (in %)

✓ - 69.73

✓ ✓ SUM 70.93

✓ ✓ CONCAT 70.73

✓ ✓ MAX 71.87

✓ ✓ MIN 70.57

connected to same-class nodes, and TRD Signal refers to cases where one of N b
v

is also from same-class nodes. We observe that, in 44% cases, the TRD Signal
added homophily signal (same class neighbor), leading to correct classification.

For the other case of False Positives to True Negatives, we define Existing
Signal and TRD Signal in terms of the number of neighbors sampled for message
passing by each methodology. We divide both signals into buckets and in Table 5b
observe that for 63.2% orders, TRD-Signal increased homophilous neighborhood
by at-least 10 neighbors.

Impact of Choice of Combination Function: Table 6 highlights the consis-
tent effect of adding backward neighbors along with forward neighbors in mes-
sage passing in terms of incremental performance. We, however, observe that
different choice of γ has an impact on the overall performance of the GNN. This
showcases that the nature of neighbors added by TRD sampling is different from
those already available. These were missed in the directed graph sampling.

3.4 Time Comparison (EQ3)

In this section, we compare the time taken by an epoch (including training
and inference time) with D-GATv2, UD-GATv2 and TRD-GATv2 layers on
ogbn-arxiv dataset and report the time in Table 7. For fair measurement, all the
experiments were conducted on a 64-core machine with 488 GB RAM running
Linux operating system. Table 7 draws out the fact that the average running
time per epoch for TRD-GATv2 is slightly higher than that of D-GATv2 in the
online setting while performing much better compared to UD-GATv2. However,
during offline evaluation, TRD-GATv2 takes lesser time than both D-GATv2 and
UD-GATv2. This is because TRD-GATv2 eliminates all the unused neighbors
from the forward neighbors and keep only necessary neighbors in the backward
neighbors set while maintaining the sanctity of timestamped nature of the graph.

Further, Table 8 brings the observation that TRD-GNN approach is much
more efficient when compared to TGN. In addition, TGN requires two extra
steps before finally training for the downstream node classification task, which
themselves are quite expensive. Even after discounting any data preprocessing
and self-supervised training on the graph, TRD-GNN is efficient, taking less than
half the time required for TGN.
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Table 7. Average time taken (in seconds per epoch) to run each experiment on ogbn-
arxiv dataset.

Type Offline (UD) Online (D)

D-GATv2 874 s/epoch 128 s/epoch

UD-GATv2 2359 s s/epoch 818 s/epoch

TRD-GATv2 598 s/epoch 322 s/epoch

Table 8. Run-time comparison of TRD-GATv2 with TGN on ogbn-arxiv dataset,
reported in seconds per epoch.

Steps/Module TRD-GATv2 TGN

Data-preprocessing - 73 s

Self-Supervised Training - 22476 s/epoch

Node classification Training 322 s/epoch 684 s/epoch

4 Related Work

GNNs have become ubiquitous to graph based modeling which is a very com-
mon use-case in industry. The increased penetration of e-commerce and social
networks in human life has increased the scale at which GNNs will be employed.
GNNs today power different business critical solutions that involve user/item
recommendations [26,39], feed ranking [11], fraud detection [15,29] etc. As dis-
cussed in previous sections and demonstrated by experiments section, time-
stamp acknowledging training of GNNs is critical for reliable deployable GNN
solution. We deep dive into the literature on directed and timestamped graphs
beyond TGNs as discussion on them is presented in Sect. 2.4.

In [4,5], the authors work on a strongly connected graph by constructing a
directed laplacian using random walks to leverage the GCN for directed graphs.
[31] used the PageRank based constructed laplacian in [4,5] in place of the ran-
dom walk based one. These methods are not popular among the industry due
to scale challenges involved in deployment. TGNs [12,23,27] are based on the
dynamism that allows node-wise events where new nodes are added or removed as
time progresses and edge-incidents where edges between nodes are either added
or removed from the graph. One key aspect of TGN was the use of RNN-based
memory component that updated the representation of nodes as newer informa-
tion comes in with every passing time. While the approach may seem generic, it
is hard to fine-tune and take considerably longer than static graph methods. [40]
proposed time-aware GNN for aligning entities between the temporally evolving
knowledge graphs. They embed entities, relations and timestamps of different
KGs into a single space and use GNNs to learn entity representations in the
same space. They present a time-aware attention mechanism that assigns differ-
ent weights to different nodes with orthogonal transformation matrices computed
from embeddings of the relevant relations and timestamps in a neighborhood.
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Spatio-temporal graph learning [22,41] is an efficient structure to characterize
the relations between different nodes in a specified spatial and temporal range.
They assume a fixed number of nodes while training and testing and expect
changes only in the adjacency of the graph. These assumptions of fixed number
of nodes make it difficult to extend such approaches to practical industry setting
where nodes are continuously added to the system as new users join the service.

From a production deployment perspective, there is no work, to the best
of our knowledge, that discusses directionality in timestamped graph and cre-
ates any solution around it. A large majority of GNN solutions proposed for
fraud/abuse detection [30,36,38] do not incorporate the timestamped aspect of
observation. Some, however, work on directed graphs [33,37] where the direction
is an outcome of the underlying data generation process. Our work is the first
that discusses the breakdown of undirected graphs in online production setting
and proposes a simple yet effective bridge between timestamp based directed and
undirected graphs, resulting in improved performance. We also create benchmark
performances on public datasets that can be leveraged by community to further
improve along this direction.

5 Application to Industry

Industry specific online ML models are time critical in nature. Therefore, it is
necessary to make sure that online performance matches the expected offline per-
formance. GNNs are particularly susceptible to label-leakage in industry applica-
tions. TRD-GNN provides a simple yet effective mechanism to make the graph
partially undirected and eliminate label leakage with consistency in training
and evaluation. We showcase that, with TRD-GNN (Algorithm 1), offline per-
formance of model is in-line with online performance making the GNN model
training process reliable, thus delivering the business objective of abuse detec-
tion (Table 3). We deployed the TRD-GNN in an offline manner where the graph
is updated with new nodes and edges at a fixed cadence, and the GNN model is
used for identifying abuse.

6 Conclusion

We propose an effective relaxation technique (TRD-GNN) for timestamped
directed graphs that is resilient to label-leakage and helps improve classifica-
tion performance, making the model reliable to use in production. The idea of
TRD-GNN is agnostic to GNN layer and type of graph and is extensible to all
GNN-based tasks where time direction is critical, which is typical to industry
production use-cases. The relaxation lies on a spectrum with directed sampling
on one end and undirected on the other. We also present an analysis which
answers why TRD-GNN is able to improve over vanilla-directed and undirected
GNNs.
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Ethical Statement. Our work is a generic framework to boost the performance of

timestamped directed graph neural network. This work applies to GNNs generally

and any graph-structured data specifically. Its ethical impacts (including positive and

negative) depend on the specific domain of the data. We conduct our experiments on

publicly available datasets and real-world datasets in compliance with fair-use clauses.
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Abstract. Social bot detection is a challenging task and receives exten-
sive attention in social security. Previous researches for this task often
assume the labeled samples are abundant, which neglects the fact that
labels of social bots are usually hard to derive from the real world. Mean-
while, graph neural networks (GNNs) have recently been applied to bot
detection. Whereas most GNNs are based on the homophily assumption,
where nodes of the same type are more likely to connect to each other. So
methods relying on these two assumptions will degrade while encounter-
ing graphs with heterophily or lack of labeled data. To solve these chal-
lenges above, we analyze human-bot networks and propose SIRAN, which
combines relation attention with initial residual connection to reduce and
prevent the noise aggregated from neighbors to improve the capability of
distinguishing different kinds of nodes on social graphs with heterophily.
Then we use a consistency loss to boost the detection performance of the
model for limited annotated data. Extensive experiments on two pub-
licly available and independent social bot detection datasets illustrate
SIRAN achieves state-of-the-art performance. Finally, further studies
demonstrate the effectiveness of our model as well. We have deployed
SIRAN online: https://botdetection.aminer.cn/robotmain.

Keywords: social networks · social bot detection · heterophily-aware
attention · semi-supervised learning

1 Introduction

Social bots are social media accounts controlled by automated programs. As
social media has become a primary source of information for people around the
world, malicious bots have posed a great threat to social security by spread-
ing false information and inciting public opinion warfare on social media plat-
forms [9]. For example, social bots are used to spread misinformation during the
COVID-19 pandemic [18,31] and mislead about the reality of the Russia-Ukraine
war [19,29,33]. In recent years, bots are also believed to have a significant impact
on the outcomes of national events. For example, during the 2010 midterm elec-
tion in the United States, social bots were used to attack candidates and spread
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. De Francisci Morales et al. (Eds.): ECML PKDD 2023, LNAI 14174, pp. 207–224, 2023.
https://doi.org/10.1007/978-3-031-43427-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43427-3_13&domain=pdf
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208 M. Zhou et al.

fake news to disrupt the election. Similar activities also appeared in the 2016 US
presidential election, the 2018 US midterm election [40], and the 2017 French
presidential election [15].

In view of the above risks, effective and reliable social bot detection meth-
ods are urgently needed to detect social bots’ activities in advance and further
protect social security. Traditional social bot detection methods generally adopt
feature engineering. Specifically, they rely on statistical methods and expert
knowledge to construct specific features based on user profile information and
tweet content. However, these approaches suffer from limited scalability. Because
of the excellent performance achieved by deep learning, based on it, more and
more social bot detection tools have been proposed. For example, long short-
term memory (LSTM) is adopted to extract the temporal features of user social
activities [28] and model both tweet content and metadata to detect bots [23].
Recently, graph neural networks (GNNs) are used to leverage the relationship
information of social networks and achieve leading performance [2].

However, there are still two challenges. Challenge 1 is that traditional
GNNs-based social bot detection methods cannot effectively deal with
heterophilous graphs. Through our research, we have found that there is
strong heterophily in social graphs, where different kinds of nodes are more
likely to establish connections with each other, which is known as “opposites
attract”. Most GNNs that are under the implicit homophily assumption will
degrade when they encounter social graphs with low homophily [26]. Challenge
2 is that labeled data usually cannot meet the training needs of tradi-
tional supervised bot detection models. As social bots evolve [9], more and
more labeled data are needed, so supervised GNNs-based algorithms also suffer
from the high cost of data annotation, which leads to the lack of labeled data.

In this work, we propose Semi-supervised Initial residual Relation Attetion
Networks (SIRAN). For challenge 1, to capture heterophilous information in
social graphs, SIRAN adopts heterophily-aware relation attention and initial
residual connection. Specifically, for each node, it can aggregate neighbor infor-
mation and reduce the impact of heterophilous noise. For challenge 2, SIRAN
leverages a confidence-aware consistency loss [13,14] to train the model to achieve
high accuracy using only a small amount of annotated data. Finally, the con-
sistency loss adopted by SIRAN can also be used to generalize other social bot
detection models to reduce the dependence on labeled data for semi-supervised
learning.

The main contributions are summarized as follows:

– We analyze social human-bot data and find significant differences in the dis-
tribution of social relationships between humans and bots as well as strong
heterophily in social human-bot graphs. These findings give guidance to fur-
ther study on social bot detection.

– We propose SIRAN, a semi-supervised bot detection framework, which adopts
relation attention and initial residual connection to reduce heterophilous noise
and thus enhance node representations.
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– Extensive experiments on two public and independent datasets demon-
strate that SIRAN consistently outperforms state-of-the-art baselines. Fur-
ther ablation and robustness studies are presented to prove the effectiveness
of SIRAN’s every component and its robustness.

2 Related Work

Social Bot Detection. Social bot detection methods can be divided into three
categories: crowdsourcing, machine learning, and graph-based approaches [3].
Earlier works adopt crowdsourcing and traditional machine learning based on
feature engineering. For example, Chu et al. [7] study a set of large-scale social
accounts’ information, including tweeting behavior, tweet content, and account
properties to detect social bots. Because of the quick evolution of social bots,
feature engineering and crowdsourcing cannot effectively detect bots due to poor
scalability and high costs. Recently, graph neural networks achieve state-of-the-
art performance in the bot detection field. Ali Alhosseini et al. [2] propose a
detection model based on graph convolutional networks (GCN). Feng et al. [10]
propose a model based on heterogeneous information. However, such supervised
graph-based methods require a large amount of labeled data for training, which
cannot be satisfied because of the high cost of data annotation.

Graph Neural Networks. Graph neural networks (GNNs) have received
extensive attention in recent years by exploiting relational information to gain
performance improvements on many graph-based tasks, such as fraud detection
and anomaly detection in social networks. Recent studies [37,42] have classified
the existing GNNs into the following categories: recurrent graph neural net-
works [16,24], convolutional graph neural networks [5,36], graph autoencoders
[4,32], and spatial-temporal graph neural networks [17,39]. Most of them fol-
low the homophilous assumption that nodes of the same or similar category are
more likely to establish links to each other. However, this assumption is broken
in heterophilous networks, which degrades the performance of GNNs, such as
human-bot networks and e-commerce networks [41].

Graph Neural Networks with Heterophily. Recently, heterophilous graph
learning is becoming an important research direction of GNNs, because het-
erophily is widespread in the real world, and graph learning with heterophily is
still an open and challenging problem. One of the current effective methods is the
inter-layer combination method, which adopts layer-wise operations to improve
the representation ability of GNNs under low homophily [41]. JKNet adopts
this mechanism firstly, which uses jump connections and an adaptive aggrega-
tion technique to gain stronger representation learning capability [38]. H2GCN
concatenates the node representations of each layer with those of all previous
layers together [43]. However, such heterophilous methods do not consider the
influence of different types of edges on representation learning and the problem
of insufficient labeled data, which makes them unable to meet the needs of social
bot detection.
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3 Problem Definition and Preliminaries

3.1 Problem Definition

We represent a social network as a directed graph G = (V, E), where V ={
v1, v2, ..., v|V|

}
is the set of nodes (i.e., the set of social user accounts) and

E ∈ |V| × |V| represents the set of edges, which indicates relationships between
nodes. The neighbor set of node v is represented as N (v) = {u : (v, u) ∈ E}. We
use A to represent the adjacency matrix and D to represent the diagonal degree
matrix. Let X ∈ R

|V|×d represent node features, where the i-th row Xi ∈ R
F is

the feature vector of node i with F denoting its dimension.
The goal of social bot detection is to detect whether a given social account is

a social bot, which can be viewed as a node binary classification problem. More
formally, let Y ∈ {0, 1}|V| denote the nodes’ label vector, where Yi ∈ {0, 1}
represents the ground truth of node i. If it is a social bot, then Yi = 1, otherwise
Yi = 0. Then our goal is to learn a function:

f : (G,X) −→ Y. (1)

3.2 Homophily and Heterophily

Homophily. In a homophilous graph, nodes with similar features or the same
class labels are tend to be linked together. For instance, a study usually cites
papers from the same or similar research area [8].

Heterophily. In a heterophilous graph, nodes with dissimilar features and dif-
ferent class labels are tend to be linked together. For example, bots are more
likely to follow humans rather than other bots in social networks.

Measure of Heterophily and Homophily. The homophility of a graph can
be measured by the edge homophily ratio [43]: Hedge = |{(v,u):(v,u)∈E∧yv=yu}|

|E| ,

where Hedge is the proportion of edges connecting nodes of the same category
and Hedge ∈ [0, 1]. Hedge → 0 means the graph has strong heterophily.

4 Human-Bot Network Analysis

In this section, we give a detailed analysis of the human-bot graph (HBG) built
by TwiBot-20 [12] as a typical social bot scenario. Particularly, we focus on social
relationship analysis (RA).

Social Influence Analysis. Influence plays an important role in people’s social
activities, because users may change their social activities due to the influence
of friends [20,35]. In the social network built by TwiBot-20, We carry out the
following analysis to further explore the distribution of human and bot influence.

We use the PageRank algorithm [27] to quantify the social influence of
humans and bots. Based on social accounts’ pagerank value, we can rank all
nodes in HBG and analyze the proportion of humans and bots under different
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influence rankings (represented by pagerank rankings). The results of the analy-
sis are shown in Fig. 1a. It is obvious that there is a significant difference between
humans’ and bots’ distribution under different influence rankings. Specifically,
the proportion of the humans is higher than the bots’ in the top 10%–70% and
the proportion of bots is higher than humans’ in the top 80%–100%.

Fig. 1. Social relationship analysis. Y-axis: the proportion of humans and bots; X-axis:
social accounts’ influence ranking (i.e., pagerank). (a) Humans’ and bots’ influence
comparison; (b) Bots’ relationship analysis (BRA); (c) Humans’ relationship analysis
(HRA).

Overall Relationship Analysis of Humans and Bots. In social networks,
bots spread misinformation through interactions between users, so social inter-
action information is very important for detection models to distinguish between
humans and bots. We summarize the interaction information between humans
and bots to obtain Table 1. And from it, we find out that bots like to fol-
low humans more than to follow bots themselves (i.e., heterophily). However,
humans prefer to follow humans that have the same category as themselves (i.e.,
homophily). Besides, from the “Total” column in Table 1, it can be observed
that bots tend to construct more interactive relationships than humans. So the
heterophily of HBG is mainly contributed by bots. Furthermore, through quan-
titative analysis, the edge homophily ratio Hedge = 0.5316 (see Sect. 3.2), which
confirms the above observation, i.e., there is strong heterophily in HBG.

Table 1. Humans’ and bots’ interactive statistics

Category Botb Humanb Total

Bota 4182(40.64%) 6109(59.36%) 10291(62.09%)

Humana 1627(25.90%) 4655(74.10%) 6282(37.91%)
aThe category of the source node.
bThe category of the destination node.
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Relationship Analysis of Humans and Bots w.r.t. Pagerank. In order to
further explore the differences between humans’ and bots’ relational distribution,
we conduct a detailed analysis of their relational distribution with respect to
social influence. Let the influence ranking (represented by pagerank ranking) be
the horizontal axis, and the vertical axis be the proportion of different social
relationships, we can get a visual description of the analysis results, which is as
follows:

– From Fig. 1b, we can observe that bots at both ends of the influence ranking
distribution are more likely to follow bots, and bots in the middle of the
influence distribution are more likely to follow humans.

– For humans, it is learned from Fig. 1c that humans always like to follow
humans and humans’ relational distribution is more stable than bots’ under
different influence rankings.

According to the relationship analysis above, there are significant differences in
the distribution of social relationships between humans and bots, which inspires
us to introduce relationship information into our model to improve the ability
to detect bots.

5 SIRAN

5.1 Overview of SIRAN

In order to solve the problem of model performance degradation caused by het-
erophilous noise and lack of annotated data, we propose Semi-supervised Initial
residual Relation Attetion Networks (SIRAN), which is illustrated in Fig. 2.

Fig. 2. Illustration of SIRAN. (1) SIRAN adopts relation attention and initial residual
connection to get node representations, and it also uses dropout to get diversity. (2)

Through N SIRAN layers, an enhanced feature matrix H
(N)

(m) can be obtained, where
m ∈ [1, M ] indicates the m-th channel. (3) At last, the enhanced feature matrix is
processed by MLP to conduct semi-supervised training, which leverages the confidence-
aware consistency loss Lcon and the supervised loss Lsup.
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5.2 Heterophily-Aware Attention Mechanism

In order to make full use of social relationship information, we use a heterophily-
aware relation attention mechanism to fuse relationship information into node
representations to improve the ability to distinguish between bots and humans.

Although the social network could be considered as a bidirectional or uni-
directional graph with two self-reciprocal kinds of relationships, following and
follower, the semantic impact of such two relations may be largely different.
Thus the proposed model regards the social network as a heterogeneous graph
with two different types of relations. For node i, we can learn two different node
representations based on following and follower relationships. Here we adopt a
multi-head attention mechanism in the model to obtain node representations.
Specifically, given the n-th layer node features H(n) =

{
h(n)
1 ,h(n)

2 , . . . ,h(n)
|V|

}
.

Query, key, and value from node j to node i for the h-th attention head in the
n-th layer with rf relationship (where f = 1 is the following relationship and
f = 2 is the follower relationship.) can be calculated respectively:

q(n),rf
h,i = W(n),rf

h,q h(n)
i + b

(n),rf
h,q ,

k(n),rf
h,j = W(n),rf

h,k h(n)
j + b

(n),rf
h,k ,

v(n),rf
h,j = W(n),rf

h,v h(n)
j + b

(n),rf
h,v , (2)

where W and b are learnable parameters. Then the attention weight calculated
by Eq. (3) describes the degree of concern from node i to node j, which models
the heterophily in social graphs.

α
(n),rf
h,ij =

〈
q(n),rf
h,i ,k(n),rf

h,j

〉

∑
u∈N (i)

〈
q(n),rf
h,i ,k(n),rf

h,u

〉 , (3)

where 〈q,k〉 = exp
(

qTk√
d

)
and d is the hidden dimension of each head. N (i)

denotes the set of neighbors of node i. After having q, k, and v, we can aggregate
the information from node j to node i to get the n-th layer’s node feature matrix:

z(n),rfi =
1
H

H−1∑

h=0

⎛

⎝
∑

j∈N (i)

α
(n),rf
h,ij v(n),rf

h,j

⎞

⎠ , (4)

where H is the number of attention heads. z(n),rfi indicates the node i’s rep-
resentation in the n-th layer with relationship rf . Then, for fusing relationship
information, we concatenate z(n),r1i and z(n),r2i and put it into MLP to obtain

z(n)i = MLP
([

z(n),r1i || z(n),r2i

]
,Θ

)
, where Θ is the hyperparameter in MLP.

Finally, by iterating all nodes in the graph, Z(n) =
{
z(n)i : 1 � i � |V|

}
can be

obtained. The overall flow is shown in Fig. 3.
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Based on the above, the n-th (n ≥ 1) layer of relation attention module can
be defined as

H(n+1) = σ
(
P̃Z(n)W(n)

)
, (5)

where σ is the activation function, here we use the ReLU operation. P̃ =
D̃− 1

2 ÃD̃− 1
2 = (D + I)− 1

2 (A + I) (D + I)− 1
2 is the convolved signal matrix with

the renormalization trick [22]. W(n) is the weight matrix.

Fig. 3. Illustration of heterophily-aware relation attention. (1) We aggregate respec-
tively following neighbors’ and follower neighbors’ features into node i with the atten-
tion mechanism. z

(n),r1
i (following relationship) and z

(n),r2
i (follower relationship) can

be obtained, where n denotes the n-th layer. (2) Then, concatenate z
(n),r1
i and z

(n),r2
i

to get
[
z
(n),r1
i || z(n),r2

i

]
. (3) Finally, put

[
z
(n),r1
i || z(n),r2

i

]
into MLP to fuse following

and follower information.

5.3 Initial Residual Connection

For the heterophilous graphs, with GNNs going deeper, more information from
different kinds of nodes is aggregated into node representations. That makes
models difficult to distinguish different kinds of nodes. So, reducing the noise
from different kinds of neighbors is the key point to improving the representa-
tion learning ability. Initial residual connection is an effective method to reduce
the noise aggregated from neighbors. Meanwhile, it can enhance node represen-
tations by ensuring that the initial node features, which contain important prior
information, act on node representations at each layer. Through importing the
initial residual connection, the n-th layer of SIRAN can be defined as

H(n+1) = σ
((

(1 − αn) P̃Z(n) + αnH(0)
)
W(n)

)
, (6)

where αn ∈ [0, 1] is a hyperparameter. H(0) is the initial representation, which
may not be equal to the input feature matrix X, e.g., if the dimension of X is
large, MLP can be used to reduce its dimension and get a low-dimensional H(0).
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5.4 Training and Optimization

SIRAN adopts both confidence-aware consistency loss and supervised loss
to optimize model parameters in the training stage.

Supervised Loss. The supervised loss is defined as the average cross entropy
of labeled nodes sampled over M channels:

Lsup = − 1
|L| M

∑

i∈L

M∑

m=1

Yi log
(
Ŷi,(m)

)
, (7)

where L represents the set of labeled training data. Yi is the ground-truth label
of node i in the labeled data set. Ŷi,(m) ∈ R

C,m ∈ [1,M ] denotes the probability
vector of the predicted category of node i on the m-th channel.

Confidence-Aware Consistency Loss. Due to the long-standing challenge
of lack of annotated data, we employ the confidence-aware consistency loss for
semi-supervised learning to solve it. Specifically, according to the procedure in
Fig. 2, the enhanced features are obtained through M -channel representation
learning with dropout. Then we feed them into MLP to get outputs: Ŷi,(m) =

MLP
(
hi,(m),Θ

)
, where Θ is the hyperparameter in MLP, and hi,(m) is the

enhanced feature matrix of node i on the m-th channel.
For semi-supervised learning, we sample unlabeled data and denote it as U.

The center of the distribution of U can be obtained by averaging the predicted
probabilities over M channels, i.e., Yi = 1

M

∑M
m=1 Ŷi,(m). The confidence-aware

consistency loss is defined as:

Lcon =
1

|U| M
∑

i∈U

δ
(
Yi

) M∑

m=1

D
(
Yi, Ŷi,(m)

)
, (8)

where U is the set of unlabeled data. δ
(
Yi

)
=

{
1, max

(
Yi

)
� γ

0, otherwise
, γ ∈ [0, 1]

is the confidence threshold. D
(
Yi, Ŷi,(m)

)
is a distance function that measures

the distribution discrepancy between Yi and Ŷi,(m). Here the distance function
mainly includes L2 norm and KL divergence.

From Eq. (8), Lcon only considers highly confident unlabeled data selected
by the threshold γ in the training stage, it is the reason of being called confidence-
aware consistency loss. It can filter out the training noise brought by heterophily
to improve the prediction performance.

Finally, by combining Lsup with Lcon , we can obtain the final loss defined
as L = Lsup + λ (t)Lcon, where λ (t) is a decay function which decreases in the
range of [0, λmax], and usually λmax = 2. The whole training procedure is shown
in Algorithm 1.
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6 Experiments

6.1 Experimental Setup

Table 2. Dataset statistics.

Dataset Nodes Human Bot Edges Classes Hedge

TwiBot-20 229,580 5,237 6,589 33,716,171 2 0.5316

TwiBot-22 162,865 81,433 81,432 151,841 2 0.4963

Datasets. To verify the performance of the model in the heterophilous graphs,
We evaluate our model on two public and independent datasets, namely TwiBot-
20 [12] and TwiBot-22 [11], whose statistics are shown in Table 2. For TwiBot-20,
we follow the same data setup as in [12]. For TwiBot-22, we randomly sam-
ple 81, 432 bots as negative examples and 81, 433 humans as positive examples
to ensure that their proportions are relatively balanced, resulting in a total of
162, 865 social accounts. To ensure a fair comparative experiment, we randomly
split the sampled dataset 7 : 2 : 1 to obtain training, validation, and test sets,
respectively.

Comparing Baselines. We compare SIRAN and its three variants with 9 base-
lines, including 4 general GNNs, 4 non-homophilous methods, and 1 bot detec-
tion method with heterogeneity. All the experiments use the same input features,
including users’ (1) attributes: username, location, verified, registration time,
description, tweet count, listed count, follower count, following count; (2) tweet
content; (3) social relationships: list of following and follower friends. The full
list of baseline methods is: Four general GNNs: GAT [36], GCN [22], JKNet
(GCNJK) [38], R-GCN [30]. Four non-homophilous methods: MixHop [1],
LINKX [25], H2GCN [43], GPR-GNN [6]. One heterogeneous bot detection
method: Feng et al. [10]. Three variants of SIRAN: (1) SIRAN+PLR (Add
the previous layer’s residual connection), (2) SIRANJK (Combine the jumping
knowledge network with SIRAN), (3) SIRAN-CONCAT (Concatenation is used
instead of matrix addition to combine the representation of each layer with the
initial node features).

Implementation Details. Due to the interactive characteristics of social net-
works, we build the human-bot networks as directed graphs. For experimental
optimization, the AdamW optimizer [21] is used with weight decay 3 × 10−5.
Learning rate is 10−2 and 10−3 on TwiBot-20 and TwiBot-22, respectively. To
avoid overfitting, early stopping and Dropout [34] are used for model training.
We use grid search to adjust hyperparameters of SIRAN on the validation set,
and use the best configuration for prediction. Specifically, on TwiBot-20 and
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Algorithm 1: SIRAN
input : Social human-bot dataset S
output: Optimized model parameters Θ

1 Initialize Θ;
2 Preproccess S to build graph G (V, E), relation set

rf ⊆ E , f = 1 (following) or2 (follower), feature matrix X ∈ R
|V|×d, labeled

node set L, unlabeled node set U, ground-truth label set YL ∈ R
|L|×C ;

3 Function Pipeline(G, X):
4 for Node i in G do
5 for h : 0 → H − 1 do

6 α
(n),rf
h,ij ← Eq. (3)

7 z
(n),rf
i , z

(n)
i ← Eq. (4)

8 Z(n) =
{
z
(n)
i : 1 � i � |V|

}

9 H(n+1) ← Eq. (6)
// Through N layers SIRAN

10 H(N) =
{
H(n) : 0 � n � N − 1

}

11 return H(N)

12

13 while Θ does not converge OR t : 0 → T do
14 for m : 1 → M do

// Parallel M-channel processing

15 H
(N)

(m) = Pipeline(G, X)

16 Lsup, Lcon, L ← Eq. (7 - 8)
17 Θ ← BackPropagate (Loss)

18 Return Θ

TwiBot-22, the model adopts three hidden layers with 128 hidden size and 8
attention heads over three encoding channels, and the distance function and
confident threshold are set to L2 norm and 0.7, respectively. The initial residual
weight α is 0.5 and 0.9 on TwiBot-20 and TwiBot-22, respectively. The model
configurations of other baselines follow previous works [10,25,30]. Accuracy, F1-
score, and ROC-AUC are used to evaluate our model and baselines.

6.2 Overall Results

Table 3 shows the experimental results comparing SIRAN and its three variants
with 9 baselines on the test set. We run each experiment 5 times with random
weight initializations and report the mean values with standard deviation.
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Table 3. Overall performance comparison. Bold and underline represent the best and
runner-up performance, respectively.

Datasets TwiBot-20 TwiBot-22

Method Accuracy F1-Score ROC-AUC Accuracy F1-Score ROC-AUC

GAT 72.89 ± 0.88 79.13 ± 0.33 71.61 ± 1.27 59.66 ± 1.64 67.68 ± 0.15 59.51 ± 1.69

GCN 74.17 ± 0.44 79.91 ± 0.17 72.53 ± 0.57 62.16 ± 0.46 67.99 ± 0.61 62.13 ± 0.51

GCNJK 75.09 ± 0.61 80.63 ± 0.56 73.44 ± 0.46 62.96 ± 0.64 69.06 ± 0.32 62.91 ± 0.65

R-GCN 79.91 ± 0.42 83.68 ± 0.26 79.37 ± 0.69 63.63 ± 1.38 69.03 ± 0.51 63.56 ± 1.36

LINKX 76.35 ± 0.95 81.60 ± 0.23 74.26 ± 1.94 61.24 ± 0.87 67.60 ± 0.48 61.18 ± 0.93

MixHop 79.62 ± 0.46 83.35 ± 0.55 78.62 ± 0.70 62.41 ± 0.25 68.70 ± 1.44 62.40 ± 0.26

GPR-GNN 78.82 ± 0.49 82.89 ± 0.43 78.19 ± 0.52 61.63 ± 0.17 67.67 ± 0.19 61.48 ± 0.38

H2GCN 79.53 ± 0.29 83.10 ± 0.41 78.78 ± 0.31 61.65 ± 0.11 67.61 ± 0.18 61.61 ± 0.10

Feng et al. 76.13 ± 2.40 81.64 ± 0.96 73.55 ± 3.07 56.59 ± 0.16 67.49 ± 0.45 56.42 ± 0.15

SIRAN+PLR 80.68 ± 0.40 84.03 ± 0.29 79.98 ± 0.47 62.34 ± 1.01 69.23 ± 1.38 62.30 ± 0.99

SIRANJK 80.60 ± 0.47 83.94 ± 0.33 79.81 ± 0.57 62.95 ± 0.72 70.05 ± 0.97 62.91 ± 0.71

SIRAN-CONCAT 80.56 ± 0.61 83.85 ± 0.33 79.65 ± 0.49 65.31 ± 3.40 71.14 ± 2.49 65.26 ± 3.40

SIRAN(Ours) 81.11 ± 0.51 84.25 ± 0.32 80.11 ± 0.54 65.67 ± 2.85 71.95 ± 2.04 65.59 ± 2.81

Analysis and Discussion. From the test results, our model achieves state-of-
the-art bot detection performance, and two of its variants also achieve the top-2
performance on the two datasets respectively.

Among the general GNNs, R-GCN is the most competitive approach. Based
on GCN, it adds consideration of the influence of different types of edges on node
representations, and its performance is improved. This illustrates the importance
of edge category information for node representations. In contrast, our model not
only adopts relation attention, but also uses initial residual to augment node
representations to further improve the detection performance.

For non-homophilous models, they mainly consider reducing the impact of
heterophilous noise to improve performance, e.g., MixHop mixes the representa-
tions of neighbors at different distances to reduce heterophilous noise. However,
while using initial residual to reduce heterophilous noise, our model also employs
relation attention and a consistency loss to further improve the detection per-
formance in the absence of labels, which will be discussed in detail in Sect. 6.4.

For the social bot-oriented GNNs (i.e., [10]), our proposed SIRAN shows a
significant improvement by 6.5%, which indicates the effectiveness of reducing
heterophilous noise and label dependence in social networks with heterophily.

All the above observations prove that our model can effectively detect social
bots by employing relation attention and reducing heterophilous noise.

6.3 Ablation Study

We conduct ablation studies on TwiBot-20 and TwiBot-22 to demonstrate the
effectiveness of each component of SIRAN.

– SIRAN-withoutIR: Remove initial residual connection.
– SIRAN-PLR: Replace the initial residual with the previous layer residual.
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– SIRAN-GCN: Replace transformer with GCN to verify the effectiveness of
the attention mechanism.

– SIRAN-GAT: Replace transformer with GAT in the relation attention mod-
ule to compare the performance difference between transformer’s and GAT’s
attention mechanisms.

– SIRAN-withoutSR: Remove the separation of relationships (follower and fol-
lowing) from the attention module.

– SIRAN-withoutCL: Remove the confidence-aware consistency loss.

Table 4. F1-score of ablation experiments.

Ablation Settings TwiBot-20 TwiBot-22

SIRAN(full model) 84.25 ± 0.32 71.95 ± 2.04

SIRAN-withoutIR 83.46 ± 0.46 67.09 ± 1.58

SIRAN-PLR 83.08 ± 0.28 67.81 ± 0.05

SIRAN-GCN 83.72 ± 0.49 70.73 ± 2.63

SIRAN-GAT 84.14 ± 0.26 71.76 ± 2.53

SIRAN-withoutSR 84.20 ± 0.21 68.34 ± 1.66

SIRAN-withoutCL 84.15 ± 0.72 68.81 ± 0.78

Table 4 shows the experimental results of the ablation study on the test set,
from which we can get the following observations:

(1) Removing or replacing any component makes SIRAN degrade with com-
paring to the full model, so it can be concluded that each component of the
model makes a contribution to the effectiveness of SIRAN.

(2) From SIRAN-withoutIR, we observe that removing the initial residual
connection makes the performance drop more heavily than that of the relation
attention and consistency loss. Besides, from SIRAN-PLR, replacing the initial
residual with the previous layer residual also degrades the performance of the
model, which is attributed to the heterophilous noise from the previous layer.
So the initial residual plays a more important role.

(3) From SIRAN-GCN, we find that removing the attention module with
GCN makes the model’s performance degrade, and from SIRAN-GAT, for a
different attention mechanism, the performance improvement of GAT’s attention
is less than that of the Transformer’s attention.

(4) From SIRAN-withoutSR and SIRAN-withoutCL, we observe that the
performance degradation of the model on TwiBot-22 (which has stronger het-
erophily) is larger than that on TwiBot-20, which further illustrates their impor-
tant role in reducing the heterophilous noise.

6.4 Robustness Study

Due to the evolution of bots and the high cost of data annotation, the challenge
of lack of annotated data would degrade the performance of most bot detection
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Fig. 4. Robustness experiments. (a) Label robustness, (b) feature robustness, and
(c) edge robustness experiments are on TwiBot-20. (d) Label robustness, (e) feature
robustness, and (f) edge robustness experiments are on TwiBot-22.

methods that rely on the quality and quantity of annotated data. In the following,
we conduct robustness experiments on TwiBot-20 and TwiBot-22 to verify the
robustness of our model.

Label Robustness Experiments. First, some labels in the training set are
randomly masked, and the experimental results on the test set are shown in
Fig. 4a and d. Feature robustness experiments. Second, we randomly add
White Gaussian Noise (WGN, X ∼ N (

μ, σ2
)
) to node features. The power

of WGN is σ2, the experimental results are illustrated in Fig. 4b and 4e. Edge
robustness experiments. Third, Some edges are randomly removed to demon-
strate our model’s robustness of relationships, and the results are shown in Fig. 4c
and 4f.

Analysis and Discussion. Based on the results, we have the following discus-
sions: (1) From the above robustness experiments, our model outperforms the
baselines under all testing settings. (2) For the label robustness experiments, on
TwiBot-20 with fewer labels, the performance of our model shows a continu-
ous growth trend as the number of labels increases, while, on TwiBot-22 with
more labels, that of our model increases first, and reaches the highest value with
adopting 50% of labels and then levels off. The reason could be that the semi-
supervised loss function used by our model can improve the performance in the
absence of labels to achieve better performance with only fewer labels. (3) For
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the feature robustness experiments, our model is more robust to noise in features
than the baselines. This is because the relation attention mechanism adaptively
adjusts the weight of feature aggregation for the interference of noise so that the
model has a stronger feature representation ability. (4) For the edge robustness
experiments, on TwiBot-22 with stronger heterophily, as the number of edges
increases, the performance of our model first decreases slightly, then grows from
the point where 30% of the edges are adopted, and finally levels off. This is
because more edges bring both more information and noise, the relation atten-
tion and the initial residual can adaptively reduce and prevent the heterophilous
noise to make our model more robust, which is also the reason why our model
is more stable than the baselines on TwiBot-20.

7 Conclusion and Future Work

In this work, we study the problem of social bot detection, which has two chal-
lenges: heterophily in social graphs and lack of labeled data. To solve the chal-
lenges mentioned above, we propose SIRAN, which combines relation attention
with initial residual connection to reduce and prevent the heterophilous noise.
Then we adopt a confidence-aware consistency loss to improve the model’s gener-
alization on unlabeled data for semi-supervised learning. Extensive experiments
show that SIRAN consistently outperforms state-of-the-art baselines on two real-
world datasets. Up to now, we have deployed SIRAN online to detect Twitter
bots.

Limitations and Future Work. A limitation of SIRAN is that cross-platform
bot detection is not supported, which is still a common challenge for social bot
detection due to differences in data distribution between multiple platforms and
limited data collection and annotation capabilities. We leave it for future work.
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To the best of our knowledge, SIRAN currently ranks No.1 in Baidu (https://www.

baidu.com/) and Google (https://www.google.com/) searches. However, as we know

that “A coin has two sides”, bot creators can also use SIRAN to improve their bots’
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https://www.google.com/
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Abstract. The process of fitting mathematical finance (MF) models
for option pricing - known as calibration - is expensive because evaluat-
ing the pricing function usually requires Monte-Carlo sampling. Inspired
by the success of deep learning for simulation, we present a hypernet-
work based approach to improve the efficiency of calibration by several
orders of magnitude. We first introduce a proxy neural network to mimic
the behaviour of a given mathematical finance model. The parameters
of this proxy network are produced by a hyper-network conditioned on
the parameters of the corresponding MF model. Training the hyper net-
work with pseudo-data fits a family of proxy networks that can mimic
any MF model given its parameters, and produce accurate prices. This
amortises the cost of MF model fitting, which can now be performed
rapidly for any asset by optimising w.r.t. the input of the hypernetwork.
Our method is evaluated with S&P 500 index option data covering three
million contracts over 15 years, and the empirical results show it performs
very closely to the gold standard of calibrating the mathematical finance
models directly, while boosting the speed of calibration by 500 times.
The code is released at https://github.com/qmfin/HyperCalibration.

1 Introduction

Option pricing has been an active research area since the seminal work of Black-
Scholes [6]. Several option pricing models have since been proposed and research
continues to draw attention from both researchers and industry practitioners.
From an academic perspective, an accurate option pricing model reveals the
mechanism of financial markets, as an option essentially reflects the expectation
of its underlying asset’s value change over time. From a practical point of view,
derivative participants demand an efficient pricing model to set prices for market
making and hedging, or finding possible opportunities for trading.

The most well-known option pricing model is Black-Scholes model [6], which
gives a rough estimate of European option price, with the assumption that mar-
ket volatility is constant over time. Since the publication of Black-Scholes, vari-
ous mathematical finance models have been proposed, e.g., Heston [14], Jump-
Diffusion [31], rough Bergomi [2], and rough Heston [10].
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Those more advanced methods leverage more complicated stochastic pro-
cesses, so have greater potential to fit market data – through a process called
calibration. Calibrating an option pricing model is closely related to training
a supervised learning model in machine learning context. We find the optimal
parameters for the pricing model, such that the model’s predictions match real
market prices as closely as possible.

In contrast to some simple models [6,15] that have analytical forms, many
more complex models [19] have intractable integral forms, requiring approxima-
tions or numerical integration. For models such as [3,10], the approximation is
too inaccurate to use in practice, so we must revert to their original forms –
stochastic differential equations (SDE) and use simulation methods like Monte
Carlo. This is usually not parallelizable because the path of asset prices is time
dependent – we must generate the price at t− 1 before the price at t. Therefore,
while Monte Carlo simulation based methods tend to produce the best predic-
tions, their calibration is extremely time consuming, because evaluation of the
pricing function takes a very long time. This severely limits their application in
the real world.

The need for fast learning of high-accuracy Monte Carlo simulation based
pricing models has led to accelerated calibration becoming an important prob-
lem in option pricing. Most work has focused on improving the efficiency of the
simulation itself [11,22], but some recent studies in the machine learning com-
munity use neural networks or some other universal function approximators to
boost calibration by completely bypassing the simulation process [5,13,16]. This
echoes the similar efforts in machine learning for natural science, such physics [1],
chemistry [26], and astronomy [7], where simulation is fundamental.

Inspired by these works, we propose a hypernetwork based approach to amor-
tise the time-consuming Monte Carlo simulation in calibration for option pric-
ing. Our method has two phases: (i) We use a proxy pricing neural network to
mimic a given mathematical finance (MF) model, and the parameters of this
neural network are produced by a hypernetwork. The input space of the hyper-
network is the same as the parameter space of the MF model. The hypernetwork
is trained by a set of pseudo data covering sufficient randomly generated MF
model parameters. (ii) To calibrate the actual MF model for a new asset, we first
optimise the input of the hypernetwork such that the generated proxy network
closely approximates real market data for the asset. Then the corresponding
hypernetwork inputs are transferred to instantiate the calibrated MF model.

Clearly step (i) is an up-front investment requiring Monte Carlo simulation,
but it needs to be done only once. The trained hypernetwork remains effective
for a long period (15-year) without retraining. Step (ii) corresponds to the actual
calibration and it is many magnitudes (300–500 times) faster than the conven-
tional methods. Therefore, our method is overall much more efficient, even taking
into account the upfront cost of step (i).

The rest of this paper is organised as follows: In Section 2, we review related
works for mathematical finance models, calibration methods and deep learning
for simulation. In Sect. 3, we provide a self-contained introduction to options,
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option pricing models and calibration, and some baselines, before introducing
our model in Sect. 4. In Sect. 5, we use the real market data of S&P 500 index
options from 2006-01 to 2020-02 and evaluate our model in terms of efficiency
and accuracy. Section. 6 concludes the paper.

2 Related Work

2.1 Mathematical Finance Models for Option Pricing

A mathematical finance model for option pricing usually starts from a stochastic
differential equation (SDE) that describes how the underlying asset price moves
with time. They usually have one or more parameters, corresponding to some
(estimated) market information, e.g., interest rate and volatility. The most direct
way to evaluate a model, for a given set of parameters, is to do simulation –
generating a series of prices at by incremental (time) steps.

The generated time series is usually called a path, and a large number of
randomly generated paths can be used for pricing. This process is highly time
consuming, so many researchers seek analytical solutions of the SDE. This is
possible for some models, e.g., Black-Scholes [6] and Heston [14]. However, more
complex models may not have an exact solution in an analytical form. Instead
one often finds approximate solutions [20], but even approximations may require
intractable integrals, so numeric methods are needed [19,29]. For even more
complicated models, approximations exist but are low accuracy, making them
useless in practice. To leverage these sophisticated models [3,10,17,18], we need
to revert back to the naive method – running simulations, which is very time
consuming.

In this work we choose two mathematical finance models to evaluate our
hypernetwork based calibration method: rough Bergomi [3] and rough Hes-
ton [10]. In contrast to more classic models, which build stochastic processes
based on Brownian motion, these rough family models use Fractional Brownian
Motion, so they can model nonsmooth price process better, which is closer to
the real market.

2.2 Machine Learning Based Calibration Methods

The calibration of option pricing models has been a core problem in mathemat-
ical finance for years. Calibration is a standard optimisation problem, but it can
be hard to solve because of high sensitivity to the initial value. Minor changes
accumulate over time, resulting in very different final outcomes. Thus, we usually
need multiple runs with different starting points to get the best parameter in
practice. Therefore, the efficiency is very important. However, any optimisation
inevitably needs to evaluate the pricing function. If the pricing function has built
in simulation, calibration is inevitably costly.

Recently, researchers in the machine learning community proposed replace
time consuming simulation with neural networks. [13] presents a neural network
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that maps the market data (e.g., option prices) to mathematical finance model’s
parameter directly. Similarly, [5,16] proposed an inverse approach. I.e., their
neural network models map the MF model’s parameters to the market data,
such that calibration becomes optimising the input of a neural network model.
We will detail these methods in Sect. 3.3. The main drawbacks of these is that,
since the architecture of neural network is fixed, the amount of market data can
be used (either as input or as output) is fixed as well, thus it can only explore
the market under a discrete space because the neural network can only take as
input a finite number of prices (corresponding to the neurons in input layer).

The idea of replacing time-consuming simulation coincides with the recent
efforts of deep learning for simulation (SimDL), which gains some popularity in
deep learning for natural science, including physics [1], chemistry [26], astronomy
[7], meteorology [30] and robotics [25]. For example, [28] predict turbulent flow
while obeying desirable physical constraints, such as conservation of mass by
simulating relevance to turbulence modelling and climate modelling. [23] use
neural networks to simulate light scattering by multilayer nanoparticles. [27]
train learned neural network based simulators to simulate turbulent dynamics
at high resolution. The methodologies in this area have been developed actively
[8,9,21,24].

Our work is inspired by the success of SimDL and early attempts applying
it to calibration. However, we propose to use two networks (instead of one in
[5,13,16]): (i) a ‘proxy’ network that mimics the behaviour of a specific MF model
(ii) a hypernetwork that maps the parameters of the MF model to the parameters
of the proxy network that approximates it. With this architecture, our method
can explore the market data in a continuous space, instead of fixed grid in
[5,13,16]. In this regard the most related prior work is [4], whose network takes
an augmented input space concatenating market data and MF model parameters
and produces option price, and thus can also exploit continuous data. However,
the design choice of concatenation is a critical flaw.

To understand this issue, consider the differing requirements of a mathemat-
ical finance pricing model’s behaviour as a function of inputs strike price and
time-to-maturity (K, τ); vs as a function of its own parameters θ. Price c as a
function of (K, τ) should be a smooth function with low Lipschitz constant, such
that small changes in inputs lead to small changes in outputs. However, price
as a function of parameters may need to be a complex function with high Lip-
schitz constant, as different MF parameters θ define different patterns on how
underlying asset price evolves over time, and result in radically different prices
for some long periods (corresponding to options with large time-to-maturities),
which eventually lead to significantly different pricing surfaces.

Therefore, defining a proxy pricing model on the concatenation of both, [4]
requires a neural network to be small Lipschtz w.r.t. one set of inputs and large
Lipschitz w.r.t. another set of inputs. It is difficult or nearly impossible to design
a neural architecture that simultaneously satisfies both of these desiderata.

In contrast, our HyperCalibration can provide the desired inductive bias by
using a small proxy network that is thus comparatively smooth/low Lipschitz
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as required. Simultaneously, we can generate the weights of this proxy network
by a larger hypernetwork – thus leading to pricing that is a comparatively com-
plex/high Lipschitz function of θ. Our experiments show that this insight and
architecture are crucial for high accuracy calibration of real market data.

3 Preliminaries

We present a self-contained introduction to options, option pricing models, and
calibration. Then we introduce three baseline methods, as they help to under-
stand the design of ours.

3.1 Options

A European option is a contract that gives the holder the right, but not the
obligation, to buy (call option) or to sell (put option) the underlying asset (e.g.,
stock) at a specified price (strike price) on a certain future date (maturity date).
For example, at time t = 0 (i.e., today), a company’s stock price is $100, and
you buy a call option with strike price $110 and maturity date T = 5 (five days
later).

After five days, if the company’s stock price is $120, you can exercise the
option and buy the stock at the strike price $110. In this case, selling the stock
immediately, will return $10 profit. One the other hand, if the company’s stock
price is below $110, you will choose not to exercise the option, and the only loss
for is the price of the option (sometimes called premium).

For the put option, one profits if the stock price is lower than the strike price
on the maturity date, as you can buy the stock from the market at a lower price
and sell it at the strike price.

3.2 Pricing Models

We denote the strike price as K, time-to-maturity τ = T − t, and underlying
asset price at time t is referred to as St, its current value is S0, and option price
as c(K, τ ;S0).

Black-Scholes. Here we illustrate how to use a Black-Scholes model for option
pricing via simulation. The SDE of Black-Scholes model is

dSt = rStdt + σStdWt (1)

where r is the risk-free rate, usually set externally, σ is the only tunable param-
eter, for which we assume a certain value is given, and dWt is Brownian motion.
Its logarithmic form is,

d log(St) = log(S0) + (r − 1
2
σ2)t + σWt (2)
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To eliminate the effect of S0, we set it to one S0 = 1.0 as we can rescale (multiply)
it back. For a small t, e.g., t = Δt = 0.01, we can generate the path of (log)
prices by s0 = log(S0) = 0 and

st = log(StΔt) =st−1 + (r − 1
2
σ2)Δt + σ

√
Δtε

Until we arrive at sτ . Here ε is a random sample from a standard Gaussian, as
by definition of Brownian motion, we have Wt =

√
tε and ε ∼ N (0, 1).

Assume that we have a number of sτ from different paths, i.e.,

s = [s(1)
τ , s(2)

τ , . . . , s(N)
τ ] (3)

the call option with strike price K and time-to-maturity τ can be estimated by

ĉ(K, τ ;S0) = exp(−rτ)(
1
N

N∑

i=1

S0(exp(s(i)
τ ) − K

S0
)+) (4)

That is the discounted value (by the factor exp(−rτ)) of the expectation of the
payoff. For the put option with the same setting, we have

p̂(K, τ ;S0) = exp(−rτ)(
1
N

N∑

i=1

S0(
K

S0
− exp(s(i)

τ ))+) (5)

Beyond Black-Scholes For other pricing models using a simulation based app-
roach, the process is the same, though the process of generating s

(i)
τ s could be

much more complicated. For example, the SDE for rough Bergomi,

dSt = σtStdZt

σt = exp(Xt)

dXt = μdWH
t − α(Xt − m)dt

where dWH is a fractional Brownian motion with parameter H, and rough Hes-
ton SDE is

dSt = St

√
VtdWt

Vt = V0 +
1

Γ(α)

∫ t

0

(t−s)α−1λ(θ − Vs)ds +
1

Γ(α)

∫ t

0

(t − s)α−1λν
√

VsdBs.

3.3 Calibration

The concept of calibrating a mathematical finance model is similar to super-
vised learning, as we want to find the optimal parameter θ such that the model
produced prices ĉ matches market prices c as closely as possible. This can be
formulated as

min
θ

M∑

i=1

|ĉθ(K, τ) − c(K, τ)| (6)
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Here we drop the dependence for S0 and omit put options for simplicity. To
optimise Eq. 6, we inevitably need to evaluate ĉθ(K, τ), which is slow if it contains
a complicated simulation (Sect. 3.2).

Next, we will introduce three machine learning based methods to boost the
optimisation. They have two steps: the first step is to train a model with some
pseudo data, which is done once only, and the second step is to do the calibration
with the help of trained model.

Price to Parameter. [13] First, we generate a random parameter for a math-
ematical finance model, e.g., θi. Then, we define a list of possible strike price
and time-to-maturity pairs, e.g., [(K1, τ1), (K2, τ2), . . . (KN , τN )]. Given these
indices as input, we can price these options using the model θi, generating the
corresponding prices [c(i)

1 , c
(i)
2 , . . . , c

(i)
N ] where c

(i)
n = cθi

(Kn, τn).
This forms a pair of input (prices) and output (parameter θ), and by many

of these pairs, we can train a neural network model fφ by minimising

min
φ

∑

θi∈Θ

|fφ([c(i)
1 , c

(i)
2 , . . . , c

(i)
N ]) − θi| (7)

As we can see, the neural network essentially maps the prices to corresponding
the mathematical finance model parameter by which would generate those prices.
We can generate an arbitrarily large number of the mathematical finance model
parameters and store them in Θ for training.

Once the model fφ is trained, we keep it unchanged. When we need to cal-
ibrate the mathematical finance model with real market data, in the form of
[((K̄1, τ̄1), c̄1), ((K̄2, τ̄2), c̄2), . . . ], we will realise that the (K̄, τ̄) pairs from real
market would not match with our own defined (K, τ) index pairs as above, and
the number of element in the vector is not necessarily the same either.

To address this problem, we first fit a surface S : (K̄, τ̄) → c̄ using the real
market data, and evaluate at the (K, τ) index pairs defined by ourselves and
get a vector of [c1, c2, . . . , cN ] where ci = S(Ki, τi). Finally, we get the optimal
parameter θ∗ for the mathematical finance model by running a forward pass
with the aligned prices [c1, c2, . . . , cN ].

θ∗ = fφ([c1, c2, . . . , cN ]) (8)

Parameter to Price [5,16] With the same way of generating pseudo data,
[5,16] is an inverse of [13], as it trains a model to map parameter to prices.

min
φ

∑

θi∈Θ

|fφ(θi) − [c(i)
1 , c

(i)
2 , . . . , c

(i)
N ]| (9)

As a result, we need to run the second optimisation problem when we need to
calibrate for the real market data,

θ∗ = argmin
θ

|fφ(θ) − [c1, c2, . . . , cN ]| (10)

Note that, the input ([c1, c2, . . . , cN ]) is not from real market prices either, and
it contains the aligned prices using the same procedure of fitting surface and
evaluating as in [13].
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Augmented-input to Price [4] The key drawback of [5,13,16] is that they
have a pre-defined list of (K, τ) pairs and the list has to be fixed throughout.
This implies that the model can not directly exploit the full continuous space
of (pseudo-) market data. More crucially, to calibrate the real market data, the
(real) market prices have to be aligned, and this introduces a new source of error.

To address this problem, [4] propose to train a neural network model on the
augmented input space, where both strike price K, time-to-maturity τ , and the
mathematical finance model’s parameter are included, the output of the neural
network corresponds to option price.

min
φ

∑

Ki∈K

∑

τj∈T

∑

θk∈Θ

|fφ([Ki, τj , θk]) − cθk
(Ki, τj)| (11)

K and T are the true spaces for strike prices and time-to-maturities respectively,
from which we can sample freely. Once the model fφ is trained, we can calibrate
via solving the second optimisation problem, similar to [5,16].

θ∗ = argmin
θ

∑

i=1

|fφ([K̄i, τ̄j , θ]) − c̄i| (12)

Here [((K̄1, τ̄1), c̄1), ((K̄2, τ̄2), c̄2), . . . ] is the real market data, without further
alignment as in [5,13,16].

4 Methodology

4.1 Hypernetwork

With all the preceding background, we present our method based on hypernet-
works [12]. The pseudo-data generation is exactly the same as [4], thus we have
pseudo-data triplets (K, τ, θ). Instead of concatenating them together, we use θ
to generate a set of parameters for a proxy pricing network that takes as input
(K, τ) and outputs cθ(K, τ).

More specifically, we have a hypernetwork fφ(θ) → ψ and a pricing network
gψ(K, τ) → c. The training objective for the hyper-network using pseudo data
is then,

min
φ

∑

Ki∈K

∑

τj∈T

∑

θk∈Θ

|gψk
(Ki, τj) − cθk

(Ki, τj)| where ψk = fφ(θk) (13)

Once the hypernetwork fφ is trained, we can calibrate for real market data by
solving

θ∗ = argmin
θ

∑

i=1

|gψ(K̄i, τ̄j) − c̄i| where ψ = fφ(θ) (14)

The key innovation, discussed in Sect. 2.2 is that we decouple the pricing func-
tion and the mapping from mathematical finance model parameters to pricing
network parameters. As we will see in the experiments, this makes the design of
gψ much easier, as it only focuses on pricing. fφ, on the other hand, is a model to
map a low-dimensional vector of MF parameters (∼ 5) to a much higher dimen-
sion (thousands) of pricing model parameters. Thus it is intrinsically sensitive
to the input.
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Table 1. Summary of forward pass, expected output, and optimisation variable for
different methods

Training Calibration

Model Forward Pass Expected Output Optimisation
variable

Forward Pass Expected Output Optimisation
variable

Simulation - - - cθ(K̄i, τ̄i) c̄i θ

P2Param [13] fφ([c
(i)
1 , c

(i)
2 , . . . , c

(i)
N ]) θi φ fφ([c1, c2, . . . , cN ])θ -

Param2P [5,16] fφ(θi) [c
(i)
1 , c

(i)
2 , . . . , c

(i)
N ] φ fφ(θ) [c1, c2, . . . , cN ] θ

A2P [4] fφ([Ki, τj , θk]) cθk (Ki, τj) φ fφ([K̄i, τ̄j , θ]) c̄i θ

Ours – Pricing NN gψk (Ki, τj) cθk (Ki, τj) − gψ(K̄i, τ̄j) c̄i −
Ours – Hypernet fφ(θk) ψk φ fφ(θ) ψ θ

Fig. 1. Different approaches pf pseudo-data generation. (a) Artificially specified regular
grid [5,13,16]. (b) Pseudo-data according to real market.

Summary. The main settings of forward pass, expected output, and optimisa-
tion variable for all the models in training and calibration steps is summarised
in Table 1.

4.2 Pseudo Data Generation

A second key insight of our study is about the choice of pseudo-data used
for training. For pseudo data generation, all previous studies use a grid mesh.
More specifically, if we have a list of strike prices [K1,K2, . . . , KN ] and a list of
time-to-maturities [τ1, τ2, . . . , τM ], they will then form a list of (K, τ) pairs by
[(K1, τ1), (K1, τ2), . . . , (Kn, τM ), . . . , (KN , τM )], as illustrated in Fig. 1(a).

However, this is significantly different from the true joint distribution of
market data in practice (K̄, τ̄), as illustrated in Fig. 1(b). For example, the range
of strike prices should increase with longer time-to-maturity, reflecting more
uncertainty for farther future. This difference between synthetic and real data is
a form of distribution shift, which is detrimental to performance.

Having identified this issue, we exploit sampling from the empirical distri-
bution of strike and time-to-maturity from real market and our experiments in
Sect. 5.4 show that this makes a difference, benefiting all methods including
ours.
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Fig. 2. Neural architectures for all methods in this paper

5 Experiments

We evaluated our method as well as several baselines on S&P500 index options.
Since there are not real ground truths for option prices, we assume that fre-
quently traded options, such as for the S&P500 index, reflect the true value of
option contracts.

5.1 Datasets

Market Data. Options data for S&P500 index are collected from Option-
Metrics in a form of end-of-day bid and asks prices, and the option price is the
mid-point of bid and ask quotes. The data cover the period from 01-Mar-2006
to 28-Feb-2020, containing 3,054,496 contracts. The risk-free rates are based on
the bootstrap of LIBOR rates (from OptionMetrics) and overnight index swap
(OIS) rates (from Bloomberg) and then interpolated using cubic spline to match
the option maturity.

Several data filters are used before training. First, we exclude all option
quotes less than 0.375 as these prices may be misleading due to close to tick
size. Second, we discard in-the-money put and call option quotes that are less
frequently traded. Unlike many papers in literature that neglect all option con-
tracts with time to maturity shorter than 7 d, we only omit the contracts with
time to maturity shorter than 2 d, because options with a short maturity (e.g.,
weekly index options) are more popular now. Hence, we keep them at the cost
of increasing the difficulty of training.
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Pseudo-data. The pseudo-data for step-1 training of all methods, including
P2Param [13], Param2P [5,16], A2Param, and our method – HyperCalibra-
tion, are generated on-the-fly while training, so all models explore the con-
tinuous space of mathematical finance model’s parameter space. For P2Param
and Param2P, we pre-define 5000 pairs of (K, τ) according to the market data
(Fig. 1(b)), and this is significantly better than the setting in their original
papers (e.g., 11×8 evenly sampled strikes and time-to-maturities like Fig. 1(a)).
For A2Param and HyperCalibration, we sample (K, τ) pairs randomly from the
empirical distribution of market randomly, so they can explore the continuous
space of strikes and time-to-maturities as well.

5.2 Experimental Settings

Table 2. Running time and mean absolute error (MAE) for different models.

Running time MAE STD of MAE

rough Bergomi rough Heston rough Bergomi rough Heston rough Bergomi rough Heston

Simulation 32m25.61 s 36m16.15 s 6.19 6.05 9.06 10.95

P2Param 0.12 s 0.21 s 19.92 24.70 26.20 78.06

Param2P 6.05 s 5.84 s 10.48 16.93 39.22 31.50

A2P 6.41 s 6.12 s 14.33 11.85 23.36 24.68

HyperCalibration 6.51 s 5.93 s 6.82 8.34 12.87 14.56

Base MF Models. We conduct experiments for two mathematical finance
models: rough Bergomi [3] and rough Heston [10]. For these methods, we use
the accelerated simulation to minimise their disadvantages, i.e., Turbocharging
for rBergomi [22] and Affine Forward Variance for rHeston [11].

Calibration Methods. We compare our HyperCalibration with four
approaches to calibration, including (i) running simulation directly (gold stan-
dard), and three methods using machine learning for acceleration: P2Param,
Param2P, and A2P. The neural architectures for all methods can be found in
the Fig. 2. The code of HyperCalibration can be found in the material.

Evaluation Metrics. We evaluate the methods with the following metrics: (1)
Running time for calibration (2) Mean absolute error (MAE) between estimated
and true prices as a function of date, log moneyness and time-to-maturity. Here
we emphasise that all estimated prices are produced from the mathematical
finance model. After all machine learning methods find the parameters, they are
sent back to the mathematical finance model for pricing, even though some of
machine learning methods (Param2P, A2P, HyperCalibration) have their own
proxy pricing module. Like all research work for calibration, we evaluate the
in-sample performance only (i.e., training error), as interpolation/extrapolation
to unseen strike and time-to-maturity (out-of-sample) is out of the scope.
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Fig. 3. Comparative mean absolute error (MAE) aggregated by date, time-to-maturity,
and log-moneyness

5.3 Results Analysis

Table 2 present our mains result, on mean average error (MAE) and running
time. First, we can see all machine learning methods are many magnitudes faster
than calibration through simulation. P2Param is the fastest, as it only needs one
forward pass. For the methods that need the step-2 optimisation, the running
time is very close, so using hypernetwork does not slow down the calibration
time.

For accuracy, we can find our HyperCalibration is the only one that matches
the MAE of gold standard simulation, while all other machine learning baselines
are much worse. For a more detailed analysis, we plot daily MAE (correspond-
ing to performance one specifically calibrated model – since we calibrate model
using one day’s option data) across time in Fig. 3(a)-(b). We can see only simula-
tion and HyperCalibration lead to consistently good performance over the time
of 15 years, and all other methods behave unstably at certain periods. Next,
we group MAE values by time-to-maturity, and we can tell that all methods
perform worse for larger time-to-maturity. This is not a surprise, as options are
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Table 3. Analysis of up front model training cost and the number of accelerated
calibrations after which the up front cost is successfully amortised.

Time cost of step-1 training The balance point

P2Param Param2P A2P HyperCalibration P2Param Param2P A2P HyperCalibration

rough Bergomi 9h37m 12h11m 16h31m 12h21m 18 23 31 23

rough Heston 9h56m 12h28m 16h48m 12h43m 17 21 28 21

pricier for larger time-to-maturity, while HyperCalibration performs closely with
simulation. Finally, we group MAE values by log-moneyness (log value of strike
divides asset price) intervals. Since the distribution of log-moneyness is not uni-
form, we set the x-axis unevenly. We can see that the option price (black) is
higher when log-moneyness is closer to zero as expected, all methods have the
similar trends compared to simulation, and HyperCalibration is almost indistin-
guishable to simulation.

Finally, we present the the up-front time for training machine learning models
and answer the question: when it becomes economical for using these machine
learning based methods. Table 3 shows that the step-1 training time takes 9
– 16 h for all machine learning based methods. Given that the step-1 training
only needs to be done once, we can calculate the balance point P , after which
machine learning based methods save overall time, by u + Ps < Ps′, where u is
the up-front time, s is the calibration time (CF. Table 2), s′ is the calibration
time for simulation. Then, we can see that machine learning methods become
time-saving when we need to calibrate 17 – 31 or more models.

5.4 Ablation Study

First, we study the choice of pseudo data generation methods. Regular grid was
used in all previous studies [5,13,16]. We introduced the idea of using market
data to reduce distribution shift (Sect. 4.2). In the main preceding experiment,
we also improved the baselines by generating pseudo data matching the distri-
bution of market data. To show the impact of this, we use the data of the last
month (2020-Feb) to evaluate the difference of regular grid (Fig. 1(a)) and mar-
ket (Fig. 1(b)) style of generation. Table 4 shows that all methods benefit from
this.

Second, Param2P, A2P, and HyperCalibration all have the step-2 optimisa-
tion. To evaluate the efficiency and stability of this, we choose the last trading
day (29-Feb-2020) and run the step-2 optimisation (i.e., calibration) and record
MAE over step-2 iterations (corresponding to the number of function evalua-
tions). We can see that HyperCalibration converges much faster and it is more
stable compared to other baselines (Fig. 4).
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Table 4. MAE of rBergomi with different pseudo data generation methods

Regular grid Market data inferred

P2Param 227.80 17.83

Param2P 19.94 13.86

A2P 40.88 32.67

HyperCalibration 12.03 10.04

Direct simulation - 8.73

Fig. 4. Convergence rate and stability of step 2 optimisation.

6 Conclusion

We introduced a hypernetwork framework for amortised calibration of mathe-
matical finance models. This method is inspired by the newly popular SimDL,
and improves option pricing efficiency by 500 times with tiny difference in accu-
racy, compared to the gold standard simulation based on rough Bergomi and
rough Heston. Using real market data over 15 years and over three million
contracts, our model significantly, stably, and fairly defeats the other baselines
from every aspect of evaluation. Besides, we are the first to note the flaw in exist-
ing practice of using regular grid pseudo-data for amortised calibration, which
leads to an unnecessary distribution shift. We show that simply correcting this
leads to a clear improvement for all methods, bringing amortised calibration
closer to reality.

7 Ethical Implications

Our work relies on proprietary data derived from transactions of option con-
tracts, in order to to meet the industry standard product prototyping. We have
not used any personal data in this work, and we do not think this work can be
used for any other applications beyond calibrating mathematical finance models
for option pricing.

Disclaimer: All authors are faculty. Neither graduate students nor small ani-
mals were hurt while producing this paper.
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PU GNN: Chargeback Fraud Detection
in P2E MMORPGs via Graph Attention
Networks with Imbalanced PU Labels
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Abstract. The recent advent of play-to-earn (P2E) systems in mas-
sively multiplayer online role-playing games (MMORPGs) has made
in-game goods interchangeable with real-world values more than ever
before. The goods in the P2E MMORPGs can be directly exchanged with
cryptocurrencies such as Bitcoin, Ethereum, or Klaytn via blockchain
networks. Unlike traditional in-game goods, once they had been written
to the blockchains, P2E goods cannot be restored by the game operation
teams even with chargeback fraud such as payment fraud, cancellation, or
refund. To tackle the problem, we propose a novel chargeback fraud pre-
diction method, PU GNN, which leverages graph attention networks with
PU loss to capture both the players’ in-game behavior with P2E token
transaction patterns. With the adoption of modified GraphSMOTE, the
proposed model handles the imbalanced distribution of labels in charge-
back fraud datasets. The conducted experiments on three real-world P2E
MMORPG datasets demonstrate that PU GNN achieves superior per-
formances over previously suggested methods.

Keywords: chargeback fraud detection · graph neural networks · PU
learning · P2E · MMORPG

1 Introduction

The recent advent of play-to-earn (P2E) systems, a new paradigm where
game players can earn real-world value through their in-game activities, in mas-
sively multiplayer online role-playing games (MMORPGs) has made the value
of in-game goods interchangeable with real-world values [19,23] more than ever
before. The goods in the P2E MMORPGs can be directly exchanged for cryp-
tocurrencies such as Bitcoin, Ethereum, and Klaytn via blockchain networks,
immersing players to put more endeavors and facilitating players for better
engagements. However, unlike traditional in-game goods, from the game opera-
tion teams’ or publishers’ perspective, P2E goods are vulnerable to chargeback
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Fig. 1. The brief comparisons of goods refunds in non-P2E MMORPGs and P2E
MMORPGs. Unlike non-P2E goods, it is challenging for game publishers to roll back
the P2E goods even in the case of payment cancellation.

fraud [13,29] such as payment fraud, cancellation, or refund abuses. The P2E
tokens or comparable P2E goods cannot be restored by the game operation
teams once it had been written to the blockchain. Figure 1 is a brief comparison
of game goods refunds of non-P2E and P2E games. In general, goods obtained
through players’ payments are subject to retrieval in the event of payment can-
cellation. However, the P2E goods or tokens are difficult to retrieve as they are
recorded on the blockchain even if the payments are canceled. Thus it is essential
to detect chargeback frauds in P2E MMORPGs.

Some of the previously conducted studies [3,33,38] had utilized financial
datasets with traditional machine learning methods such as naive Bayes, ran-
dom forest, logistic regression, and K-means clustering for chargeback fraud
detection. [3,38] leveraged the learning methods with under-sampling to over-
come the nature of label imbalance between fraud and benign. [16,37] adopted
sequence and transaction modeling methods to combat chargeback fraud and
fraud transactions. Although these approaches had revealed some of the pat-
terns in chargeback fraud, they are not quite fitted with chargeback fraud in
P2E MMORPGs since they had the limitation of not jointly considering both
the player behaviors and token transaction patterns. Chargeback frauds in P2E
MMORPG often occur in automated programs rather than manual playing by
individuals. Therefore, the fraudsters leave relatively distinct in-game behavior
action patterns such as action sequences and intervals. The details will be dis-
cussed in Sects. 4.1 and 4.2. In addition, players who have not yet canceled their
payment should be considered unlabeled rather than fixed as negative since they
could cancel their payment after finishing mining the P2E token with their paid
in-game goods.
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Recent advents in graph neural networks (GNNs) have shown promising
results of graph inference tasks in many different domains such as social media,
biochemistry, knowledge graphs, citation networks, and transaction graphs
[1,12,14,20,35,45,46,50]. Likewise, positive-unlabeled (PU) learning has been
adopted in various fields of study. Some studies in bioinformatics [26,51] use PU
learning to overcome the lack of labeling, and [10,40,49] utilized PU learning for
anomaly detection and outlier detection.

In this study, we overcome the previously addressed problem in chargeback
fraud detection in P2E MMORPGs with the recent advent of GNNs and PU
learning. We propose a novel chargeback fraud detection method, PU GNN. The
proposed method utilizes players’ in-game activity logs and P2E token transac-
tion histories with positive and unlabeled label settings. The performance eval-
uation on three real-world datasets demonstrated the model’s superiority over
other previously presented methods.

We summarized our contributions as follows:

1. We propose a novel chargeback fraud detection method, PU GNN, for play-
to-earn massively multiplayer online role-playing games (P2E MMORPGs).

2. The proposed method carefully utilizes both the players’ in-game activi-
ties with P2E token transactions and tackled label imbalance with an over-
sampling method and positive & unlabeled label setups.

3. The conducted experiments on three real-world datasets demonstrate the
method is superior to previously presented methods.

2 Related Work

2.1 Fraud Detection

Fraud detection has been studied in various fields with the perspectives of credit
card fraud, payment fraud, and online game fraud [2,3,5,22,31]. Traditional
rule-based approaches [22] had been extended to pattern-based learning methods
[3,38] by discovering the distinctiveness patterns between fraudsters and benign
users. [2,5,33] adopted unsupervised approaches to retrieve outlier scores to spot
fraudulent activities, and [31] had utilized an imbalanced setup by leveraging
one-class classification and nearest neighbors approach. Recently, [16,37,52] had
adopted sequential or graph structures in transaction logs or graph representa-
tion to spot anomaly interactions.

2.2 Graph Neural Networks

Graph neural networks (GNNs) have shown promising results in many different
node, link, and graph inference tasks [1,14,20,45,50]. Some of the GNNs variants
leverage more on specific setups such as edge representation [12], heterogeneous
node types [46], or dynamic graphs [35]. However, one of the key mechanisms
that are shared with GNNs is message passing (or neighborhood aggregation)
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which takes the topologically connected components into account when learning
the representation of an entity. A brief generalization of GNNs is as follows:

h
(k)
i = UPDATEθ

(
h
(k−1)
i ,

aggregating neighbors’ representations︷ ︸︸ ︷
AGGθ

(
h
(k−1)
j ,∀j ∈ Ni

) )
︸ ︷︷ ︸

updating current node’s representation

(1)

The hidden representation of ith node after passing through kth GNN layer, h
(k)
i ,

can be retrieved with the combination of AGGθ and UPDATEθ. A differentiable
(learnable) and permutation invariant function AGGθ [14] aggregates (sometimes
sampled) set of neighborhood node N (·). UPDATEθ is an injective update function
[50] to associate current states h

(k−1)
i with aggregated neighbors’. Some of the

recent variants of GNNs such as graph attention networks [1,45] adopt attention
mechanism [44], and assign different weights when combining the neighbor nodes’
embeddings.

2.3 Imbalanced Positive and Unlabeled Learning

In the classification task, it is important for the labeled data to be evenly dis-
tributed, or otherwise, the classifiers could overfit the majority classes [25,32,48].
To handle the problem, sampling studies such as under-sampling or over-
sampling have been actively conducted. Under-sampling methods such as [32]
solved the problem of data imbalance by eliminating the dominant class by
finding data points that do not belong to its K nearest data point labels and
balancing the label distribution with other classes. An over-sampling method
such as SMOTE [4] duplicates the minority class observations by interpolating
the nearest data points in the same class.

In addition, especially in industrial fields, the lack of labeled data with the
majority of data being unlabeled, some studies [6,9,10,24] use unlabeled data
through a method called positive-unlabeled (PU) learning. The method can help
the classifier by leveraging unlabeled data. The method regards unlabeled as
negative labels with the mixture of positive, or estimating the approximated risks
[8,9]. PU learning has been widely adopted in various studies of classification,
anomaly detection, and outlier detection. [28,34,49,54].

3 Problem Definition

Let G = (V, E) be the P2E token transaction graph where the vertex set V =
{p1, p2, ..., p|V|} and edge set E = {t1, t2, ..., t|E|} denote |V| players and |E| token
transfers respectively. The node p consists of in-game behavioral features x ∈
RFx , and a link t includes token transfer features e ∈ RFe . A node belongs to
one of the binary class y ∈ {−1, 1}, and p(x, y) is the joint density of (X ,Y).
pp(x) = p(x|Y = +1) and pn(x) = p(x|Y = −1) are positive and negative
marginals respectively with p(x) being the whole X marginal.
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The aim is to learn a decision function f : RFx → R to predict chargeback
fraud with positive and unlabeled (PU) labels. We formulate the task as a node
classification task in a token transaction graph G with a PU learning setup in
which each set of data points is sampled from pp(x), p(x), which are Xp =
{xp

i }np

i=1 ∼ pp(x) and Xu = {xu
i }nu

i=1 ∼ p(x).

4 Proposed Method

In this section, we introduce PU GNN architecture as Fig. 2, which includes
player behavior modeling with in-game activity logs, graph attention with P2E
token transaction graph, and calculating positive and unlabeled loss with imbal-
anced label distribution.

Fig. 2. The overall architecture of PU GNN for chargeback fraud detection in P2E
MMORPG. The proposed method consists of four main components. The behavior
modeling layer finds representations of the initial node features by learning behavior
sequences. There are two different labels; unlabeled (a mixture of fraud (A,B) and
benign (C)) and fraud (D, E ,F), with the respect to transaction networks. Notice that
nodes with fewer labels (D, E ,F) are augmented with GraphSMOTE [53] and balanced.
The graph attention layers [1] calculate the attention weights of node A (expressed as
edge colors) to better leverage the embedding of the neighbor nodes B, C,D. With the
PU learning setup, half of the positive nodes are treated as unlabeled.

4.1 Player Behavior Modeling

We first retrieve the player i’s initial behavioral representation xi from his n
most recent in-game activity logs Si = {si1, si2, · · · , sin} such as character login,
item purchase, item use, skill use, quest completion, level up, goods acquisition,
dungeon entrance, guild join, and so on (may vary by game). Figure 3 is the
brief comparison of benign and fraud players where chargeback fraud users (or
automated programs such as a macro) produce collusive activities which largely
focus the mining the P2E goods or preceding activities such as the completion
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Fig. 3. The sampled users’ activity log sequences of benign and chargeback fraud play-
ers in P2E MMORPGs. The chargeback fraud users (or automated programs) show
collusive activities which mainly focus on purchasing P2E goods and mining tokens.
(each color denotes different types of activity logs; login, dungeon entrance, guild join,
quest completion, mining, et cetera)

of tutorials or quests. With a simple embedding lookup layer, si(·) are mapped
to d dimensional vectors resulting S′

i ∈ Rn×d. To better spot future chargeback
players, not all relations of activity logs should be considered equally. The scaled
dot-product attention [17,44] with a fully connected layer, a common sequence
modeling method, is adopted as below to utilize the activity logs:

Hi = FC{Attention(Q,K, V )} = FC{softmax(
QKT

√
d

)V } (2)

, where query;Q, key;K, and value;V are all S′
i. The attended behavioral logs

Hi are then mean and max pooled to model the player’s in-game activity. The
concatenation, ⊕, of pooled results is the initial behavioral representation as
follows:

xi = {PoolMEAN(Hi) ⊕ PoolMAX(Hi)} ∈ RFx , (3)

and now it is treated as the node feature of player i.

4.2 Graph Attention Networks

To better capture the relations between players and chargeback attempts, play-
to-earn (P2E) token transaction graph G = (V, E) is utilized. The transfer records
in the transaction graph may include the high-dimensional hidden relations of
source and target nodes [30,41] such as ownership, collusive works, and so on.
We adopt and modify graph attention networks (GATv2) [1] where dynamic
attention is computed. The previously retrieved node features x ∈ RFx and link
features e ∈ RFe are first upsampled with GraphSMOTE [53] and the details
would be discussed in Sect. 4.3.
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We leverage all features of the source node, target node, and link to calculate
the attention coefficients. A shared attention mechanism a : RFx ×RFx ×RFe →
R is as below to calculate the attention weight αij :

α
(l)
ij =

exp
(
a(l)LeakyReLU(Θ(l)

[
xi ‖ xj ‖ eij

]
)
)

∑
k∈Ni∪{i}{exp

(
a(l)LeakyReLU(Θ(l)

[
xi ‖ xk ‖ eik

]
)
)} , (4)

where a(l) and Θ(l) are learnable parameters for lth GNN layer. With the cal-
culated attention coefficients with generalized message passing framework Eq. 1,
the neighborhood nodes’ representations are aggregated and combined as:

�h
(l)
i =

∑
j∈Ni∪{i}

α
(l)
ij Θ(l)�h

(l−1)
i , (5)

where h
(0)
i = xi. With two GATv2 layers, the node representation embedded

the 1-hop and 2-hop neighbor nodes. The bi-directional (hi = �hi ⊕�hi) and skip-
connection [43] are concatenated to better embed the node features. The model
leverages the concatenation representation of hi with xi from Sect. 4.1 to classify
the frauds.

4.3 Imbalanced Positive and Unlabeled Learning

Non-negative PU (nnPU) [21] learning improved former PU learning, which
is also known as unbiased PU (uPU) learning [8]. uPU learning uses unbi-
ased risk estimators. Let L : R × {±1} → R be the loss function. L(t, y)
represents the loss while predicting an output t and the ground truth y and
f represents decision function. Denoting R+

p (f) = EX∼pp(x)[L((f(X),+1)] ,
R−

n (f) = EX∼pn(x)[L((f(X),−1)], ordinary binary classification risk estimator
is directly approximated by:

R̂pn(f) = πpR̂
+
p (f) + πnR̂−

n (f) (6)

Meanwhile, the PU learning setting has no information on negative data,
but the risk estimator R(f) can be approximated directly [9]. Denotes R−

p (f) =
Ep[L((f(X), −1)] and R−

u (f) = EX∼p(x)[L((f(X),−1)], then as πnpn(x) =
p(x) − πppp(x), we can obtain

πnR−
n (x) = R−

u (f) − πpR
−
p (f) (7)

Using above, the unbiased risk of R(f) is approximated directly by:

R̂pu(f) = πpR̂
+
p (f) − πpR̂

−
p (f) + R̂−

u (f)

R̂−
p (f) =

1
np

np∑
i=1

L(f(xp
i ),−1), R̂−

u (f) =
1
nu

nu∑
i=1

L(f(xu
i ), −1)

(8)



250 J. Choi et al.

To overcome the issues with the convergence rate and complex estimation
error bounds, [21] suggested the non-negative risk estimator, which is denoted
by:

R̃pu(f) = πpR̂
+
p (f) + max(0, R̂−

u (f) − R̂−
p (f)) (9)

GraphSMOTE [53] oversampled minority class by introducing SMOTE [4] in
graph-structured data with training link generation simultaneously. The charge-
back fraud data of P2E MMORPG have the characteristics of imbalance in the
graph structure and the possibility of being labeled as a potential fraud even
though it is not yet labeled. Therefore, we adopted GraphSMOTE [53] and
nnPU learning [21] to handle the imbalance and the unlabeled situation in the
dataset.

4.4 Loss, Training and Inference

In this study, we train our model with the empirical estimation of risk with the
following loss function:

L = R̃pu(f) = πpR̂
+
p (f) + max(0, R̂−

u (f) − R̂−
p (f)), (10)

with the sigmoid function, �sigmoid(t, y) = 1/(1 + exp(t ∗ y)) for L(t, y) in
R̂+

p (f), R̂−
u (f), R̂−

p (f) as previously described in Sect. 4.3. To minimize L in
Eq. 10, output t has to be closer to label y. The sigmoid function is adopted
for L(t, y) since it is continuously differentiable across its entire domain and
can be minimized by the gradient-based algorithms [21]. The training task of
the loss function can be seen as a regression task since the output value, ŷ,
of the proposed model, lies in ŷ ∈ [−1,+1]. For the ablation study to verify
the effectiveness of the loss, the softmax function is used to retrieve ŷ, and
the cross-entropy between ŷ and one-hot label y is used as loss as follows:
L = CE(y, ŷ) = −∑

i=1{yilog(ŷi) + (1 − yi)log(1 − ŷi)}.

5 Experiments

This section introduces our datasets, baselines, implementation detail, experi-
mental results, and ablation study. Three real-world datasets had been collected
for the evaluation. Since the proposed method consists of player behavior mod-
eling and a graph structure-based model, we focus on comparing ours with other
approaches that can consider player behaviors or transaction histories.

5.1 Experimental Setup

Datasets. We retrieved three datasets from two popular P2E MMORPGs
played globally; MMORPG01 and MMORPG02 (The titles of the games and token
names have been anonymized). The datasets include players’ behavior activity
logs and P2E token transaction graphs. Figure 4 is the brief overview of the sam-
pled P2E token transactions. We chronologically and randomly sampled train,
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Fig. 4. A brief overview of sampled P2E token transaction networks. Each node and
link represents a player in P2E MMORPG and a token transfer respectively. The
colors of the nodes represent fraudsters (red) and unlabeled, a mixture of fraudsters
and benign, users (blue). (Color figure online)

validation, and test sets. The chargeback fraud labels include manual annota-
tion by game operation teams, with the consideration of the players’ network and
device information, and whether the players cancel the payments after transfer-
ring the purchased tokens. For the PU learning environment, we used half of the
positive labeled observations as positive and the rest are treated as unlabeled.
The test evaluations are done with positive and negative ground-truth labels.
The detailed statistics of the datasets are described in Table 1.

Table 1. Statistical details of chargeback and P2E MMORPG transaction graph
datasets

- DATASET01 DATASET02 DATASET03

Game MMORPG01 MMORPG01 MMORPG02

P2E Token TOKEN01 TOKEN01 + TOKEN02 TOKEN03

Date Jul.∼Aug. 2022 Aug.∼Oct. 2022 May∼Oct. 2022

|V| 32.9K 28.1K 5.6K

|E| 62.4K 67.4K 33.8K

Train (P :N) 2.4K : 10.5K 3.2K:9.8K 0.5K:2.3K

Validation 2.7K : 8.1K 1.4K:4.2K 0.2K:1.1K

Test 2.1K : 7.2K 2.3K:6.8K 0.4K:1.1K

Baselines. We compared the proposed model with several baseline models;
MLP, GRU [7], Self-attention [44], GCN [20], GraphSAGE [14], GAT [45],
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OCGNN1 [47], and DAGNN1 [27]. All non-PU experiments are done with cross-
entropy loss and experiments on GNNs are done in an inductive setting [14].

We compare the proposed PU GNN model with the following fraud detection
baseline models:

– MLP: Three-layer multi-layer perceptron classifier to map in-game behavior
features to fraud or benign labels.

– GRU [7]: An simple staked-GRU model to learn players’ sequential in-game
behavior patterns with their labels.

– Self-attention [44]: An self-attention mechanism to learn players’ in-game
behavior patterns.

– GCN [20]: A GNN-based model that learns contextual relations between
senders and receivers in P2E transaction graphs.

– GraphSAGE [14]: A GNN-based model aggregating neighbors’ embeddings
with current representation to earn relations between senders and receivers
in P2E transaction graphs.

– GAT [45] A GNN-based model with an attention mechanism to retrieve edge
weights in transaction networks.

– OCGNN [47]: A GNN-based anomaly detection model extended OCSVM [39]
to the graph domain to utilize hypersphere learning.

– DAGNN [27]: A GNN-based fraud detection model which leverages different
augmented views of graphs called disparity and similarity augments.

Implementation Detail. The proposed model is built with PyTorch, PyTorch
Geometric [11], and BigQuery in the Google Cloud Platform. 5 self-attention
with fully connected layer blocks and 2 GATv2 layer blocks are adopted. The
embedding size, denoted as Fx of 3, is 128 dimensions. BatchNorm [15] and
Dropout [42] are added between layers and Adam optimizer [18] and early stop-
ping [36] with the patience of 10 were adopted. We report the average results of
5 runs.

5.2 Performance Evaluation

Overall Detection Results (F1, AUC, Recall, Specificity). We report
the F1-score, ROC AUC, recall (true positive rate), and specificity (true nega-
tive rate) of the proposed model with baselines. The overall statistical details of
performance evaluations are shown in Table 2. Methods such as MLP and GRU
show that the chargeback fraud label could be classified with the aid of in-game
behavioral features in all three datasets. Sequential models such as GRU and self-
attention improved their performance by taking the sequential patterns of the
behavior logs into account. The graph-based models such as GCN, GraphSAGE,
and GAT outperform the sequence-based baselines; GRU, and self-attention. It
is been demonstrated the necessity of using both the in-game behavior features

1 We implemented the simplified versions of the models which borrowed key ideas to
adopt different situations from the original tasks.
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Table 2. The performance evaluations of chargeback fraud detection in P2E
MMORPGs. The evaluated metrics are F1-score, AUC, Pos (true positive rate; sensi-
tivity), and Neg (true negative rate; specificity). The best results of the F1-score and
AUC are in the underlines.

DATASET01 DATASET02 DATASET03

Method F1 AUC Pos Neg F1 AUC Pos Neg F1 AUC Pos Neg

TPR TNR TPR TNR TPR TNR

MLP 0.778 0.665 0.391 0.940 0.771 0.762 0.548 0.976 0.775 0.798 0.698 0.897

GRU [7] 0.811 0.753 0.634 0.872 0.847 0.835 0.706 0.964 0.780 0.748 0.885 0.610

Self-attention [44] 0.805 0.775 0.725 0.825 0.831 0.829 0.814 0.843 0.784 0.768 0.828 0.707

GCN [20] 0.816 0.734 0.549 0.919 0.849 0.846 0.819 0.872 0.776 0.798 0.703 0.893

GraphSAGE [14] 0.834 0.791 0.708 0.875 0.870 0.863 0.776 0.950 0.791 0.781 0.813 0.748

GAT [45] 0.836 0.847 0.886 0.807 0.867 0.859 0.769 0.948 0.782 0.803 0.710 0.895

OCGNN [47] 0.801 0.763 0.402 0.844 0.862 0.852 0.727 0.988 0.781 0.783 0.703 0.802

DAGNN [27] 0.846 0.835 0.827 0.831 0.875 0.869 0.792 0.946 0.801 0.787 0.812 0.810

PU GNN (Proposed) 0.855 0.854 0.866 0.843 0.884 0.876 0.788 0.965 0.811 0.801 0.832 0.771

and the token transfer network structures to detect chargeback fraud in P2E
MMORPGs. However, the features are not the only thing that affects the per-
formance. Although both types of behavior patterns and transaction patterns are
utilized, the classification result of OCGNN shows that the one-class abnormal
detection is not suitable for the chargeback fraud detection tasks. We believe that
the task that we are tackling is out of the scope of anomaly and more fitted with
classification. DAGNN utilizes augmented views of graphs and improves perfor-
mance compares to other GNN-based models. The proposed method, PU GNN,
outperforms other baseline methods by leveraging PU learning which takes the
assumption of un-chargeback paid players as unlabeled observations. Handling
the label imbalance with modified GraphSMOTE helps the model to robustly
learn player representations.

5.3 Ablation Study

(Ablation Study 1) T-SNE Visualization of the Components’ Output
Embedding. To take a closer look at what roles and advantages the compo-
nents of our method have, we separated and compared the proposed method
into three parts. Three components are (a) player behavior sequence modeling
(Sect. 4.1), (b) graph attention network (Sect. 4.2), and (c) leveraging both of
them. Figure 5 is the 2-dimensional t-SNE visualization of the output embedding
of each of the three parts. First, the player behavior sequence modeling com-
ponent utilizes players’ behavior features. In Fig. 5(a), large-scale clusters could
be identified which represent similar behavior log patterns left between charge-
back fraudsters. However, there were many overlapping parts with benign users
and fraudsters, thus the features are not enough to correctly detect the frauds.
Figure 5(b), where only the transaction networks are used as input features,
shows the multiple clusters of small node counts. The result is led by connected
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nodes sharing closer embedding spaces. Finally, when both the behavior patterns
and the transaction networks are used in Fig. 5(c), there are advantages in fraud
detection by leveraging the information of both the large and small clusters in
previous components.

Fig. 5. The t-SNE visualization of the sampled users’ by each component of the pro-
posed model. Each component handles (a) activity log sequences, (b) transaction pat-
terns, and (c) both. The color represents benign (green) and chargeback fraud players
(red) in P2E MMORPGs. (Color figure online)

(Ablation Study 2) Effects of PU and SMOTE. We conducted another
ablation study with different aspects to see the effectiveness of PU and SMOTE
in the proposed method. The series of ablation studies are combinations of the
below elements:

– w/o SMOTE: Constituting the original input data and its preprocessing,
training without the oversampling by GraphSMOTE [53].

– w/o PU: Without PU loss for the circumstances of unlabeled, trains model
with cross-entropy classification loss.

In Fig. 6, the experimental results of the F1-score, AUC, sensitivity (recall;
true positive rate), and specificity (true negative rate). First, the ablation study
w/o (SMOTE & PU) is conducted to verify whether there are solutions to deal
with the imbalance label problem and uncertainty of the unlabeled dataset. As
result, the metrics of this ablation study score the lowest among other abla-
tion studies in all four measures. Second, the ablation study only w/o SMOTE
(only with PU) is conducted to see the effect of the balancing process of the
proposed method. We can verify that using GraphSMOTE [53] and its modifica-
tion, the method can better handle the nature of label imbalance in chargeback
fraud detection, scoring higher F1 score and AUC respectively. Third, the abla-
tion study w/o PU (only with SMOTE) proves that it is proper to use PU loss
to consider users who have not yet canceled payment as unlabeled. The users
may cancel their payments after the inference of whether the users are charge-
back fraud or not. As the users are considered unlabeled, training our proposed
method with PU loss performs at least equal or better F1 score and AUC.
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Fig. 6. The bar plots of the effectiveness of PU and SMOTE with four different metrics.
The comparison consisted of w/o (SMOTE and PU), w/o SMOTE, w/o PU, and w/
(PU and SMOTE).

6 Conclusion and Feature Work

We propose a novel chargeback fraud detection model, PU GNN, for play-to-earn
(P2E) MMORPGs. The proposed model leverages both players’ in-game behav-
ior log sequences and P2E token transaction networks. The model adopts an
attention mechanism and graph attention networks to retrieve high-dimensional
representation for the players. With the positive and unlabeled (PU) learning
setup, the model is able to jointly learn positive (chargeback fraud) and unla-
beled labels. The conducted experiments on three real-world datasets showed
the proposed model outperforms other previously presented methods.

We believe there is still room for improvement. The time-related temporal
features such as collusive work times and the time interval between the payment
and its cancellation by the chargeback frauds are not yet considered which could
be handled by adopting hazard function from survival analysis as features to be
concerned. Another important aspect of graph-based fraud detection is handling
various node types and edge types by extending homogeneous graph learning
to heterogeneous graph learning. Early detection of chargeback fraud is also
an important topic to consider to prevent and minimize losses. Therefore, we
will further study the depth of these points to improve the performance of our
proposed method.
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Abstract. In the era of digital payment, abnormal behaviors such as
fraud pose a huge threat to E-commerce platforms. Traditional anti-fraud
approaches usually apply supervised learning which requires sophisti-
cated knowledge extraction and does not adapt to evolving anoma-
lous behaviors. In recent years, unsupervised learning methods has been
widely applied to anomaly detection. However, they still suffer from a
serious shortcoming, that they judge anomalies based on the global dis-
tribution while ignoring the user’s own historical information. In this
paper, we propose a novel problem of unsupervised anomaly transac-
tion detection focusing on the individual level. To tackle this problem,
we first derive behavior consistency hypothesis based on data explo-
ration. Then based on this assumption, we propose a new framework
named Behavior Consistency based Anomaly Detection (BCAD). Specif-
ically, BCAD learns representations for the target behavior and the
history behavior preferences respectively by contrastive learning, and
then measure the similarity between them to identify anomaly trans-
actions. Besides, to disentangle the behavior representation into several
attributes, we design an attribute gate module which can extract high-
level user preferences from historical behaviors. Overall, BCAD can not
only detect whether a target behavior is abnormal, even if the fraudulent
pattern never appeared before, but also give an interpretation from the
perspective of preference attributes. Extensive experiments on the real-
world business dataset demonstrate that BCAD can detect abnormal
behaviors effectively and provide insightful results for human beings.

Keywords: Anomaly detection · Interpretability · Behavior
consistency

1 Introduction

With the popularity of the Internet, online transactions through e-commerce
platforms are adopted by more and more individuals and companies. The rapid
advancement of online transactions has brought convenience to consumers, but
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Fig. 1. An example of an abnormal transaction that deviates from the user’s daily
purchasing habits. The historical behavior sequence shows that the user has a tendency
to purchase products with high cost-performance ratio in the past, while the target
behavior shows a low cost-performance product. This clearly deviates from the user’s
behavior preference, which could be a transaction after the account was stolen. The
abbreviations in figure are explained as follows: BA (Basic Attribute), PT (Payment
Type), TI (Time interval), PC (Product Category), AMT (Amount of money).

at the same time it has also spawned a wide range of fraudulent activities. With
the increasing complexity of fraud methods, the demand for anomaly transaction
detection is becoming more and more urgent in order to protect the rights of
both consumers and merchants. Anomaly transaction detection aims at detecting
possible fraud transactions that deviate from the normal behavior pattern, e.g., a
transaction for the purpose of stealing cash. These abnormal transactions could
lead to serious financial loss for the platform if left ignored, and hence a robust
method of anomaly detection is crucial to prevent the potential risks.

Most of existing fraud detection methods on e-commerce platforms are basi-
cally rule-based or supervised methods [1,10,21], which require in-depth under-
standing of fraud patterns that have emerged and are unable to effectively adapt
to fast-changing fraudulent tactics. To address these issues, many unsupervised
anti-fraud methods have been proposed recently [12,16]. These unsupervised
anti-fraud methods, usually learn a global distribution on a large-scale dataset,
as a normal distribution, and then treat the transactions which deviate from the
normal distribution as fraudulent transactions. However, this type of approaches
still suffer from an obvious shortcoming, that the global distribution used as an
anomaly detection benchmark is too coarse-grained to detect individual-level
anomalies. For example, a large amount transaction appears to be normal in
the global distribution, but its probability of be abnormal should increase, when
it occurs on a user whose historical behaviors reflects low level of consump-
tion. Essentially, the existing methods only considered the comparison across
all behavior samples, but ignored the longitudinal behavioral comparison within
a single user. In fact, we observe from real-world dataset that user behavior
is relatively consistent over time. Based on this phenomenon, in this paper we
revisit anomaly detection with a new perspective, which leads to a new class
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of anomaly detection methods as a complement to the existing methods. To
the best of our knowledge, we are the first attempt to study the problem of
unsupervised anomaly transaction detection at the individual granularity.

The behavior consistency assumption is the basic foundation of individual-
level anomaly transaction detection. Through data exploration and analysis,
we observe that most normal users show a certain behavior preference. These
behavior preferences remain consistent or evolve slowly over time. For example,
a thrifty person has always favored buying goods with a high cost-effectiveness
ratio. The anomalous behavior is usually a significant deviation from the user’s
daily purchasing habits, thereby violating the consistency with the behavior pref-
erences, as shown in Fig. 1. In a nutshell, the behavior consistency assumption
allows us to identify anomalous transaction by comparing the target behavior
and this user’s own historical behavior. The more inconsistent the target behav-
ior is with the historical behavior, the more likely it is an anomalous transaction.

In this paper, we propose a new framework named Behavior Consistency
based Anomaly Detection (BCAD). BCAD learns behavior representations that
can measure the consistency between the target behavior and the behavior pref-
erence. Specifically, we design a network structure with two towers to model the
target behavior and users’ historical behavior separately. Based on the behav-
ior consistency assumption, we construct a self-supervised learning task to pull
the representations of target behavior and users’ historical behavior from the
same user, and meanwhile push away the representations from different users.
To be concrete, by applying the framework of contrastive learning, given a
target behavior, our goal is to maximize its similarity against the behavioral
representations from the same user, and minimize that from different users.
Through this task, we can learn a behavior preference representation for each
user, which makes individual-level anomaly detection possible. Moreover, the
two-tower structure can also accelerate the online inference computation, by
pre-computing the behavior preference representations for all users.

Our framework can give interpretable anomaly detection results. Inter-
pretability is crucial for subsequent human analysis of detected anomaly trans-
actions. A user’s purchase behavior can usually be described from several basic
attributes, such as product category, price and payment type. Correspondingly,
the user’s behavior preferences can also be abstracted into preferences in several
aspects known as preference attributes, such as preferences of consumption
level, consumption frequency, and payment habits. It is noteworthy that the
preference attributes are not a directly one-to-one mapping of basic behavior
attributes. For example, to determine the purchase ability of a user, we need
to consider the product category and price simultaneously. A user who buys a
T-shirt with $200 may have stronger purchasing ability than a user who spends
$200 on a mobile phone. Based on the above analysis, we design an attribute
gate module to aggregate all historical behaviors to abstract high-level prefer-
ence attributes. With the help of the attribute gate module, we can get the
preference attribute for each user, so that we can explain in which aspects the
target behavior is abnormal to facilitate subsequent human intervention.
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Above all, the major contributions of this work are summarized as follows:
– To the best of our knowledge, we are the first attempt to study the unsu-

pervised fraud transactions detection problem that focuses on the individual
level. We bring to light the behavior consistency which is the cornerstone of
solving our problem.

– Based on the behavior consistency assumption, we propose a new framework
BCAD that models both target behavior and user’s behavior preferences, and
measure the consistency between them to identify fraudulent transactions.
Meanwhile, we can explain the detection results from the perspective of the
behavior preference attributes.

– We perform in-depth experiments on real-world datasets, and both the quan-
titative and qualitative analysis demonstrate the effectiveness of BCAD. We
also verify that BCAD can identify undiscovered anomalous behavior.

2 Related Work

Fraud transaction detection is a problem that has been studied for a long time,
and various machine learning-based methods based solutions have been proposed
in the literature. For instance, Zhu et al. [21] proposed a Hierarchical Explain-
able Network (HEN) to model users’ behavior sequences, which improves the
performance of fraud detection and makes the inference process interpretable.
Liu et al. [10] devised a tree-like structure named behavior tree to reorganize the
user behavioral data, in which a group of successive sequential actions denot-
ing a specific user intention are represented as a branch on the tree. However,
these supervised methods require a deep understanding of fraud patterns as
well as large amounts of manually labeled data, and they are not capable of
detecting the evolving new fraud schemes. To address the challenges mentioned
above, unsupervised fraud transaction methods are proposed. Min et al. [12]
developed a cluster-based approach that groups data points into clusters based
on similarity and then identifies the risky cluster. Several abnormal detection
methods [4,8,14–16,18,19] have also been explored. These methods typically
learn the overall distribution of the dataset as a normal distribution on a large
dataset and then identify transactions that deviate from the normal distribu-
tion as potentially fraudulent. However, these methods may not be suitable for
detecting abnormal transactions at an individual level.

Contrastive Learning is a self-supervised learning method for learning gen-
eral features of a dataset without labels by letting the model learn which data
points are similar or different. Recently, with the development of unsupervised
representational learning in NLP [6] and CV [3] in recent years, many unsu-
pervised representational learning methods based on behavioral sequences have
emerged [7,20]. Gu et al. [7] proposed the Self-supervised User Modeling Net-
work (SUMN), which uses historical behavior sequences to predict future behav-
ior distributions through a learning task. While these approaches aim to improve
downstream task effectiveness by encoding behavioral sequences as representa-
tions, the learned representations are not tailored to specific tasks and may not
be well-suited to our task.
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3 Method

In this section, we will describe our method in detail. We begin by clarifying
several important concepts of behavior in Sect. 3.1. We then give an overview of
our method in Sect. 3.2. Next, we introduce representation learning for both the
target behavior and the behavior preference in Sect. 3.3. Finally, we describe the
behavior consistency contrastive learning task in 3.4. Furthermore, we describe
the attribute consistency contrastive learning task in Sect. 3.5. The important
notations used in our paper are summarized in Table 1.

Table 1. Important notations for BCAD

Notation Description

m The number of basic attributes
n The number of preference attributes
l The length of a historical behavior sequence
ai The i-th basic attribute feature, i ∈ {1, · · · , m}
vi The representation vector for the basic attribute ai, i ∈ {1, · · · , m}
uk The basic attribute preference transform from the basic attribute vectors set

{v1,v2, · · · ,vm} thought the preference matrix Mk ∈ R
n×m, k ∈ {1, · · · , n}

e A behavior composed of a set of basic attribute features e = {a1, a2, · · · , am}
z The output representation vector of the behavior encoder for behavior e which is

computed from {v1,v2, ...,vm}
S A historical sequence composed of a set of behaviors S = {e1, e2, ..., el}
h The output behavior preference representation vector of the sequential encoder

and projector
hk The behavior preference attribute representation vector learned by the k-th

attribute gate, k ∈ {1, · · · , n}
I The mini-batch sample set
N(i) The negative sample set of the i-th sample in the mini-batch sample set I

τ τ ⊆ R
+ is a scalar temperature parameter [3]

3.1 Concepts of Behavior

Definition 1. Behavior. A behavior e = {a1, a2, ..., am} is consist of multiple
behavior attributes (such as product category and pay amount), where ai denotes
the i-th behavior attribute, and m indicates the number of basic attributes in a
behavior.

Definition 2. Target Behavior. A target behavior is the behavior et which is
the candidate behavior to be judged whether it is fraudulent or not.

Definition 3. Historical Behavior Sequence. A historical behavior sequence
S is the sequence of behaviors that occurred before the target behavior et of
the same user. The sequence S = {e1, e2, ..., el} is presented by chronologically
ordered behaviors, where ej denotes the j-th behavior, and l is the length of S.
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Fig. 2. Overview of BCAD, which consists of three main components: Representation
Learning, Behavior Consistency Contrastive Learning (BCCL), and Attribute Con-
sistency Contrastive Learning (ACCL). Representation Learning consists of a shared
behavior encoder and a sequential encoder to encode the target behavior and the his-
torical behavior sequence. Then BCCL learns the consistency of the behavior and the
behavior preference and ACCL learns the consistency of the attribute the preference
attribute. Finally, we obtain measurable representations of the target behavior and the
historical behavior sequence, enabling us to detect anomalous transactions.

3.2 Overview of BCAD

We consider the anomaly transaction detection as a contrastive learning problem
based on behavior consistency. The input of our model is the target behavior
et and the user’s historical behavior sequence S = {e1, e2, ..., el}. Our goal is to
predict the probability of the target behavior being abnormal given the historical
behavior sequence and meanwhile give an interpretation at the attribute level.
The overview of BCAD is shown in Fig. 2.

In our proposed BCAD model, a shared behavior embedding layer is first
employed to learn the vector representation of behavior and multiple attributes.
Then, the input of the historical behavior part is used by a behavioral sequence
learning model containing a sequence encoder as well as multiple attribute
gate modules to learn the user’s behavior preferences and multiple preferences
attributes. The model converts the target behavior and historical behavior
sequences into the same representation space. Similarly, we will also extract
the preference attribute representations from the historical behavior sequences
as well as the attribute representations of the target behavior and transform
them into the same representation space. Finally, the similarity of representa-
tions between the target behavior and the behavior preference is computed as the
output of the probability of being abnormal. Meanwhile, the similarity of repre-
sentations between multiple target attributes and multiple preference attributes
is computed as an output for interpretability analysis.
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3.3 Representation Learning

This section focuses on transforming the raw behavior data into a representation
vector. Most of the existing methods based on behavior sequences ignore the
target behavior or model the target behavior as a part of the historical behavior
sequence. However, in our problem, we must model the target behavior and
historical behavior sequences simultaneously to guarantee they are comparable.

Shared Behavior Encoder. We utilize look-up embedding to learn dense
representations from raw behavior data, following previous works [7,20,21]. To
make the representations of the target behavior and the historical behavior
sequence comparable, we allow them to share a embedding look-up table. As
mentioned before, a behavior e = {a1, a2, ..., am} is composed of m behavioral
attributes. The raw behavioral attributes contain both categorical and numerical
features. We need to discretize the numerical features into buckets and convert
them to categorical types. The embedding layer then uses embedding tables for
each raw behavioral attribute to transform it into low-dimensional dense vectors
{v1,v2, ...,vm}. The vectors {v1,v2, ...,vm} are concatenated and transformed
to a single embedding vector z using a multi-layer perceptron layer. As a result,
we can obtain the representation vector z of the behavior as well as the repre-
sentation vector of each behavioral attribute {v1,v2, ...,vm}.

Sequential Encoder. We employ a sequential encoder to extract the behav-
ior preferences representation h from a historical behavioral sequence S. First,
the historical behavioral sequence can be represented as {z1, z2, ..., zl} after
the shared behavior encoder. Next, in order to better model the dependencies
between behaviors, we follow the work of Chen et al. [2] and introduce the trans-
former block to encode the representation {z1, z2, ..., zl} of behavior sequence.
Then, we flatten the output of the transformer block and map it to a single
behavior sequence representation vector using a multi-layer perceptron layer.
Finally, to facilitate the computation of the similarity between the representa-
tions, a projector module is needed to reduce the dimensionality of the behavior
sequence representation vector to the same as the target behavior representation
vector and represent it as the behavior preference vector h.

3.4 Behavior Consistency Contrastive Learning

Data analysis shows that most users exhibit consistent behaviors over a rela-
tively long period. We calculate the mean statistic of the historical behavior on
each attribute and then compute the deviations between the historical behavior
and the target behavior. Our hypothesis is that the deviations of the abnormal
behaviors have no difference compared to the ones of the normal behaviors. We
calculate the one-sided t-test and the resulted p-value (average on all attributes)
is 3.4% (<5%) which means the deviations of the abnormal behavior are greater
than the ones of normal behaviors. Hence, we propose the behavior consistency
assumption which is the basis for solving the problem of individual-level anomaly
transaction detection.
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Assumption 1 Behavior Consistency Assumption. User behaviors show
consistency in the time dimension. Specifically, the target behavior et should be
consistent with the behavior preferences h of the same user.

Based on the above assumption, we propose a method named Behavior
Consistency Contrastive Learning (BCCL). We train the behavior encoder and
the sequential encoders in a self-supervised paradigm. Specifically, we build a
contrastive learning task that can be described as maximizing the similarity
between the behavior preferences representation vector and behavior represen-
tation vector of the same users and minimizing the similarity of different users.

In the training process, we construct samples consisting of the user’s histori-
cal behavior sequences and target behaviors. We adopt the strategy of negative
sampling within a batch, where the sequence of historical behaviors and tar-
get behaviors of the same user are positive pairs, and the sequence of historical
behaviors and target behaviors of different users are negative pairs. Then, we
obtain the behavior preference representation vector h and the target behavior
representation vector z through the model. And, our objective can be translated
into maximizing the similarity between positive pairs and minimizing the simi-
larity of the vectors between negative pairs and the objective function of BCCL
is shown in the following formula:

LBC =
∑

i∈I

−log
exp(f(hi, zi)/τ)

exp(f(hi, zi)/τ) +
∑

j∈N(i) exp(f(hi, zj)/τ)
, (1)

where hi is the behavior preference representation vector, and zi is the behavior
representation vector. The subscript i indicates the i-th sample in a mini-batch.
We utilize cosine similarity to quantify the similarity of these vectors, which is
implemented as:

sim = f(z1, z2) =
z1

‖z1‖2 · z2
‖z2‖2 , (2)

where z1 and z2 are vectors representing representations of the same dimension.
Thus the behavior preference representation vector and the behavior represen-
tation vector can project to a common feature space for quantitative evaluation
discrepancy.

3.5 Attribute Consistency Contrastive Learning

A user’s purchase behavior is usually described from several basic attributes,
such as product category, price, and payment type, etc. Correspondingly, the
user’s behavior preferences can also be abstracted into preference attributes in
several aspects, such as preferences of shopping interest, purchasing ability, and
payment habit. It is important to note that these preference attributes are explic-
itly semantic and can be understood by humans. Therefore, we can compare the
consistency between the target behavior attribute and the corresponding prefer-
ence attribute to explain the detection results from the perspective of behavior
attributes. More formally, in addition to Assumption 1 (the behavior consistency
assumption), we here propose the attribute consistency assumption.
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Assumption 2 Attribute Consistency Assumption. The attributes of a
target behavior should be consistent with the behavior preference attributes of
the same user. Specifically, the k-th preference of the target behavior should be
consistent with the corresponding k-th preference attribute hk extracted from the
historical behavior sequence.

For the historical behavior sequence, we propose an Attribute Gate mod-
ule for disentangling the behavior preference representation h into a historical
preference with multiple attributes. The attribute gate module is described in
Fig. 2 and the attribute representation vector is formulated as:

AttributeGate(h) = σ(Wh+ b) � (Wh+ b), (3)

where h is the behavior sequence representation vector and W ∈ R
da×ds is the

weight matrices, b ∈ R
da is the biases, ds and da indicate the dimension of

behavior sequence representation vector and preference attribute representation
vector, respectively. We extract representation for all preference attributes by
the following formula:

hk = AttributeGatek(h), k = 1, 2, · · · , n. (4)

Here each AttributeGatek has its own parameters and n is the number of prefer-
ence attributes. For the target behavior, we use a preference matrix M ∈ R

n×m

to transform the basic attributes to the preference u. The preference matrix is a
pre-defined matrix which encodes human knowledge about the behavior prefer-
ence. For example, the basic attribute representations of product category and
amount are transformed into a preference indicating the level of consumption.
In this way, we can use prior knowledge to guide the learning of attribute gates.

Based on Assumption 2, we here propose a method named Attribute
Consistency Contrastive Learning (ACCL) to optimize the attribute gate mod-
ule’s parameters. Specifically, the attribute representation of target behavior
is regarded as ground-truth through stop-gradient (stopgrad) operation, and we
need to maximize the similarity between it and the representation of the attribute
a to ensure the consistency assumption. The objective function of ACCL is imple-
mented as:

LAC = −
n∑

k=1

∑

i∈I

f(hi
k, stopgrad(ui

k)), (5)

where hk is the preference attribute representation vector and vk is the attribute
representation vector. The superscript k indicates the k-th preference attribute
and the n is the number of preference attributes. Finally, the overall objective
function of the BCAD is a combination of BCCL and ACCL:

L = LBC + λ · LAC , (6)

where λ is the hyperparameter used to balance those two losses.
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4 Experiment

In this section, we investigate the effectiveness of our proposed model. We con-
ducted extensive experiments on a large-scale real-world industrial dataset. First,
we validated the performance advantage of BCAD on the task of detecting
abnormal transactions. Then, we performed ablation study to verify the effect of
the module on the model. Finally, we demonstrated the interpretability of our
method through a case study.

4.1 Dataset

We curated a real-world transaction datasets containing desensitized samples
collected from a large e-commerce platform. We sampled 32.1 million users with
3.6 billion transactions (ranging from 2021/4 to 2022/4) for training, and 20
million transactions (ranging from 2022/5 to 2022/7) for testing. It is important
to note that we only included users with more than 20 transactions in the past
year. To assess the stability of the model effects, we further separate the test
dataset into three sub-datasets by month. Each transaction sample contains
attribute information including the time stamp, pay amount, product type, and
so on.

For evaluation, we need gold standard labels for the abnormal transactions.
In fact, according to the business rules, there are commonly two classes of risky
transaction. One is cash-out, which is a fake transaction with a purpose to cash
out from a credit card. The other one is interception, which means the user aban-
dons further payments after the transaction has been intercepted by some risk
control rules. Thereby, we collect two kinds of risk labels, cash-out and intercep-
tion, on the test dataset as the gold standard label to evaluate the performance
of our method. The detailed statistical information is exhibited in Table 2.

Table 2. Evaluation Labels on Test Dataset

May. Jun. Jul.
Label Pos Num Pos Ratio Pos Num Pos Ratio Pos Num Pos Ratio

Cash-out 9k 0.0016 26k 0.0028 11k 0.0021
Interception 60k 0.0102 77k 0.0084 90k 0.0171

4.2 Experiment Settings

Baselines. To verify the effectiveness of our proposed method, we choose two
categories of baseline methods, including both the anomaly detection based mod-
els and the representation learning based models.

(a) Anomaly detection based models

• LSTM-VAE [13]: A reconstruction-based model, which combines LSTM
and VAE by replacing the feed-forward network of VAE with LSTM.



BCAD: An Anomaly Detection System based on Behavior Consistency 269

• Transformer-VAE: A reconstruction-based model, which combines
Transformer and VAE by replacing the feed-forward network of VAE with
Transformer [5].

• DAEMON [4]: A reconstruction-based model based on a self-encoder
and a GAN structure.

(b) Representation learning based models

• SUMN [7]: A self-supervised universal user representation learning
method. We tailored the method to better fit our task as follows: 1)
SUMN-SIM: We separately compute the representations of the his-
torical behavior sequences and target behaviors. 2) SUMN-REC: We
predict the distribution of future behaviors using the historical behavior
sequences and then calculate the difference between the target behavior
and the predicted distribution.

Evaluation Metrics. We use two evaluation metrics to evaluate the perfor-
mance of our model. The first metric is AUC which is defined as the Area Under
the receiver operating characteristic (ROC) Curve enclosed by coordinate axes.
A higher AUC indicates better performance. The output of our model is the
similarity sim between the target behavior and the user’s historical preferences
within range [−1, 1], smaller values indicate more inconsistent, i.e., a higher prob-
ability of anomaly. In order to evaluate our results using AUC, we first convert
the similarity into a abnormal probability, using p = (1−sim)/2, where p denotes
the abnormal probability. We use the probability p and the gold standard label
to compute the AUC score.

Our unsupervised approach has the ability to identify anomalous patterns
that are not covered by the pre-defined anomaly types. As part of our evalua-
tion, we chose a small sample of data and asked experts to manually label the
anomalies within it. By computing the accuracy metric on this subset of labeled
data, we were able to assess the effectiveness of our approach.

Implementation Details. We implement our approach using Keras, and adopt
the Adam [9] optimizer with a learning rate of 0.001 and a batch size of 1024.
For the the shared behavior ecoder, the embedding size of each attribute is set
to 32 and the shared mlp is a multi-layer perceptron with 128 hidden units. For
the sequential encoder we use a transformer block [17] with 2 heads. For the
projector layer, a multi-layer perceptron with 128 hidden units is used.

4.3 Model Performance

We present the label evaluation results of our method and baseline methods in
Table 3. We observe that our model consistently and significantly outperforms
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Table 3. Model Performance

May. Jun. Jul.
Method Cash Out Intercept Cash Out Intercept Cash Out Intercept Average

LSTM-VAE 0.5733 0.5866 0.5818 0.5761 0.6753 0.5568 0.5917
Transformer-VAE 0.5714 0.5921 0.5770 0.5788 0.6722 0.5606 0.5920
DAEMON 0.5739 0.5866 0.5836 0.5762 0.6756 0.5568 0.5921
SUMN-SIM 0.5559 0.5297 0.5048 0.4790 0.5380 0.5307 0.5230
SUMN-REC 0.6611 0.6790 0.6502 0.6663 0.6870 0.6387 0.6637
(w/o) BCCL 0.5387 0.6392 0.5398 0.6462 0.5949 0.6560 0.6025
(w/o) ACCL 0.6956 0.6938 0.6785 0.7001 0.7116 0.6222 0.6836
BCAD 0.7011 0.7046 0.6824 0.6999 0.7221 0.6618 0.6953

all baselines on three month dataset in both two abnormal categories. Con-
cretely, among the baseline methods, the anomaly detection models (LSTM-
VAE, Transformer-VAE, DAEMON) have similar performance. This shows that
these general anomaly detection methods may not be applicable for detecting
individual-level anomalies in transaction data. We found that the direct use of
learned representations(SUMN-SIM), which were not designed for specific tasks,
was even less effective than anomaly detection methods. However, we were able
to enhance the performance of SUMN on our task significantly by computing
the difference between the predicted future behavior distribution and the target
behavior as the outcome (SUMN-REC). We achieved the best results among all
baselines by using this method (SUMN-REC). Additionally, our method BCAD
outperforms SUMN-REC on the AUC metrics by an average of 0.031. This
demonstrates that our unsupervised model, specifically designed for anomaly
detection tasks, is capable of achieving superior results compared to a generic
unsupervised model.

To further confirm the reliability of our model, we conducted manual evalu-
ations of the detection results on a small portion of the test data. Specifically,
we randomly picked 100 transactions classified as anomalous by BCAD and
delivered them to experts for manual evaluation. The experts categorized each
sample as normal, abnormal, or uncertain, and were also able to further clas-
sify the anomaly types into cash-out, interception, or label-undefined anomaly,
which was neither cash-out nor interception. Based on the expert evaluation,
we found that 56% of the detected anomalies were true abnormal transactions.
Among these, 21% were label-defined abnormal transactions, while the remain-
ing 35% were label-undefined. This highlights the ability of our model to detect
undefined abnormal types, as it is essentially an unsupervised learning approach.
Therefore, we can confidently confirm the reliability of our model in detecting
anomalous transactions task.

4.4 Ablation Study

To better illustrate the contribution of each module to our framework, we con-
ducted an ablation study in this section. Specifically, we compared three versions
of our BCAD framework: (1) the one without the ACCL module, (2) the one



BCAD: An Anomaly Detection System based on Behavior Consistency 271

without the BCCL module, and (3) the full BCAD framework. The results, as
shown in Table 3, indicate that the BCCL module is crucial for maintaining high
performance, as the model performance drops significantly after removing it. On
the other hand, the ACCL module not only provides interpretability but also
enhances performance, with an average AUC improvement of 0.01 compared to
the version without it.

Fig. 3. (a) Visualization of embedding space with two preference attributes. Differ-
ent colored dots represent different preference attributes. (b) Visualization of embed-
ding space with two preference attributes and the corresponding target behavior
attributes.The blue and green dots indicate the corresponding preference attribute and
target behavior attribute. Meanwhile the yellow and red dots indicate the correspond-
ing preference attribute and target behavior attribute. (c) An example of the attribute
level interpretability. Different-colored circles represent different behavioral preference
attributes, and different-colored cubes represent the degree of consistency between cor-
responding basic attribute preference and behavioral preference, with the longer ones
indicating greater consistency and the shorter ones indicating less consistency. (Color
figure online)

4.5 Interpretability

Analysis of Attributes. In this subsection, we demonstrate the capability of
our BCAD framework to separate different attributes and align the correspond-
ing preference and target behavior attributes. To achieve this, we use the t-SNE
method [11] to visualize the representation vector of two preference attributes,
as shown in Fig. 3(a). The representation vectors learned by ACCL for these two
preference attributes are evidently distinct from each other.

Furthermore, we visualize the representation vectors of both the correspond-
ing preference attributes and target behavior attributes in Fig. 3(b). It can
be observed that the representation vectors of the corresponding preference
attributes and target behavior attributes are closer to each other.
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Case Study. We present a typical case study to demonstrate the effectiveness
of our proposed BCAD framework. Specifically, we consider a user who has a
preference for products with a high cost-performance ratio based on their past
transaction history. The consistency between the user’s preference and the trans-
action attributes is illustrated in Fig. 3(c), where two transactions are considered,
one normal and the other abnormal.

For the normal transaction, the consistency between the preference attributes
and target attributes is high. However, for the abnormal transaction, although
the product category and consumption interval are highly consistent with the
user’s behavioral preferences, the product grade and payment method have little
consistency with the user’s preferences. Therefore, we can conclude that the
main reason for identifying this transaction as anomalous is that the product
grade and payment method of the transaction deviate from the user’s behavioral
preferences.

4.6 Ethics

We collected dataset in this work does not involve any Personal Identifiable
Information (PPI). We have taken a series of security measures to protect the
safety and privacy of this data. We promise not to disclose this data to any
third party and use it only for research purposes. We will anonymize the data
to ensure that no one’s identity information is leaked and destroy it after the
experiment.

5 Conclusion

In this paper, we propose an unsupervised anomaly transactions detection prob-
lem that focuses on the individual level. In order to solve the above problem,
we find that behavioral consistency is the key point and propose a novel unsu-
pervised model named BCAD. First, we model both the target behavior and
the user’s behavior preferences by learning measurable representations between
them using the BCCL method. Then, the ACCL method is proposed for learning
behavior preference, from the perspective of attributes. Finally, experiments on
a real-world dataset demonstrate that our proposed model is effective in the task
of anomaly transaction detection and the results are interpretable.

The study of unsupervised anomaly transaction detection problems focusing
on the individual level is still in the early stage. BCAD is one of the pioneer-
ing works to solve this understudied problem. Although our model has shown
promising performance on anomaly transaction detection, more anomaly detec-
tion models can also be constructed based on the assumption of behavioral con-
sistency, such as anomaly detection on the group level. Developing more anomaly
transactions detection model based on behavioral consistency capable of captur-
ing different type anomalies and ensemble the results is necessary for the robust
anomaly detection system. Extending our method to support more anomalous
detection scenarios based on behavioral consistency is our future work.
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Abstract. The rapid increase in digital transactions has led to a conse-
quential surge in financial fraud, requiring an automatic way of defend-
ing effectively from such a threat. The past few years experienced a
rise in the design and use by financial institutions of different machine
learning-based fraud detection systems. However, these solutions may
suffer severe drawbacks if a malevolent adversary adapts their behavior
over time, making the selection of the existing fraud detectors difficult.
In this paper, we study the application of online learning techniques to
respond effectively to adaptive attackers. More specifically, the proposed
approach takes as input a set of classifiers employed for fraud detection
tasks and selects, based on the performances experienced in the past,
the one to apply to analyze the next transaction. The use of an online
learning approach guarantees to keep at a pace the loss due to the adap-
tive behavior of the attacker over a given learning period. To validate
our methodology, we perform an extensive experimental evaluation using
real-world banking data augmented with distinct fraudulent campaigns
based on real-world attackers’ models. Our results demonstrate that the
proposed approach allows prompt updates to detection models as new
patterns and behaviors are occurring, leading to a more robust and effec-
tive fraud detection system.

Keywords: Fraud detection · Expert learning · Online learning

1 Introduction

The popularity of Internet banking services has led to a consequential growth of
financial fraud, one of the causes of economic losses for banking institutions [23].
In 2021, the total value of fraudulent transactions using cards issued in countries
within the Single Euro Payments Area was estimated to reach around e 1.53 bil-
lion [18]. Another estimation indicated that e 2.3 out of every e 1,000 exchanged
in Italy during 2020 through Internet banking transactions were associated with
fraudulent activities [26]. According to an industrial survey [23], institutions
recover less than 25% of the losses due to fraud. This leads to the conclusion

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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that banks must actively contain fraudulent activities. However, manual investi-
gations of customer activity can be challenging and expensive because the stream
of transactions that goes through a banking system is too large to be entirely
processed by analysts [12]. The collaboration of researchers and domain experts
produced software tools called Fraud Detection Systems (FDSs) to solve this
problem. The purpose of these systems is to analyze the large stream of transac-
tions automatically [36] and raise warnings over (or possibly block) fraudulent
transactions. State-of-the-art fraud detection systems employ Machine Learning
(ML) algorithms to learn the patterns associated with regular and fraudulent
activities from historical customer data. In particular, the resulting models’ goal
is to predict the label associated with each transaction (legitimate/fraudulent)
and provide suggestions on the priority of the transaction to analyze manually.

In the literature, many solutions adopt different ML approaches, ranging
from supervised systems [19,22,29], to anomaly detection and active learning [24]
ones. Even if these solutions have shown effective performance when applied to
specific cases [12,22,24], they are also exposed to the adaptation of the possible
attackers [13,15]. Indeed, classical ML relies on the assumption that the histor-
ical data can properly characterize the ones that will be observed in the future.
However, if the opponents can get information on the currently adopted fraud
detection method, they can easily circumvent the system by modifying their
behavior. For instance, if they infer that a specific range of a feature for a trans-
action is key to the ML system, they can generate fraudulent transactions with
values for that feature outside that range [14]. To circumvent this issue, finan-
cial institutions can use, at the same time, multiple ML fraud detection systems
basing their decision on different attacker behaviors so that the opponent cannot
exploit such systems. However, this approach introduces further complexity to
the fraud detection procedure since it requires selecting at each time the fraud
detection system that can mitigate the current opponent strategy most effec-
tively. In addition, the performance of the detection system poses a burden on
the financial institution. Undetected fraudulent activities bring higher potential
economic damage than false alarms, but large volumes of false positives can
affect the system’s availability because they need to be manually validated [2].

In this paper, we propose applying online learning techniques to dynam-
ically select the most promising fraud detection system over time. This app-
roach, based on the performance of each ML fraud detection system experi-
enced in the past, adapts the fraud detection strategy so that the opponent’s
exploitation chances are minimized. Indeed, applying the Multiplicative Weight
Update (MWU) algorithm [20] we have theoretical guarantees on the overall
loss w.r.t. the best unknown fixed method at the end of a predefined fraud
detection period. We conducted an experimental assessment using banking data
augmented with fraudulent campaigns inspired by real-world fraudsters. To vali-
date our methodology, we devised two distinct scenarios. In the first scenario, the
attacker dynamically changes behavior but is unaware of the possible FDS the
financial institution has available. In the second scenario, the attacker exploits
the knowledge of the deployed FDS to generate frauds dynamically. Our findings
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reveal the MWU algorithm facilitates updates to detection models whenever new
fraudulent patterns are detected, resulting in a more efficient FDS.

In summary, the novel contributions of the current paper are:

– the definition of a threat model based on real fraudulent behavior experienced
by real-world financial institutions;

– the application of online learning techniques to adapt the ML fraud detection
systems w.r.t. the strategy followed by the attacker;

– the test of the proposed online learning approaches on a real-world dataset
of transactions coming from a year of bank transactions analysis.

2 Background and Related Work

Supervised fraud detectors consider the fraud detection problem as a binary
classification task, and are trained on manually labeled tabular data. Notable
examples are the works of [5,6,8,9,21,28,32,33,36–38], which investigate possi-
ble solutions to the same task with different supervised learning algorithms. Con-
versely, unsupervised approaches usually follow an anomaly detection approach
and identify frauds as anomalies w.r.t. the legitimate behavior of the customers.
For instance, in BankSealer [12], the authors rank transactions according to an
anomaly score, i.e., the likelihood provided by a classification model of a trans-
action being a fraud. Such a score is provided by three different profiles: local,
global, and temporal. The local profiles compare the distance of the transaction
with the past activity of the customer. The global profile compares the transac-
tion with the ones from a cluster of customers with similar spending behavior
and power. The third profile evaluates with thresholds the temporal properties of
the time series of customer transactions. Instead, in [25], a custom hierarchical
clustering algorithm is proposed. Their algorithm recursively groups transac-
tions into smaller clusters, which are then given the labels (legitimate/fraud)
associated with the majority of the samples. The goal of their approach is to
identify fraud campaigns and organized fraudsters. There are also examples of
detection systems built on top of active learning approaches, such as [10], where
the authors provide a comparison of the performances of different active learn-
ing strategies in the context of fraud detection. They analyze the problem of
querying and labeling data points, balancing exploration and exploitation.

The proposed solutions, though, do not consider the possible performance
improvements that can be achieved by combining isolated models in mixtures of
experts, i.e., model ensembles [4,19,22,24,31,34]. The authors of [4,31,34] study
the performances of ensembles with majority voting. A fraud detection approach
based on an ensemble of LSTM and GRU as base classifiers is proposed in [19].
These models, trained on slices of the original datasets, provide the output fed
into a feedforward neural network. Such a network, a.k.a. voting classifier, is
trained on the output of the ensemble models, and it is responsible for producing
the final classification of a transaction. In Amaretto [24], the authors combine
supervised and unsupervised techniques under an active learning framework,
to better exploit the feedback of the institution’s analysts, and propose novel
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selection strategies to prioritize potentially new anomalous patterns. In [22], the
authors compare the performances of an ensemble model with a single deep
neural network model. For each sample, their ensemble outputs the average of
the fraud scores provided by the base classifiers, i.e., the probability of the sample
belonging to the fraud class. Their experimental results, however, show that the
single model outperforms the ensemble.

All the above approaches have the underlying assumption that the data dis-
tribution, i.e., the relationship between the transaction and the fact of being a
fraud, is stationary over time and cannot be influenced by external factors, like
a malevolent attacker. In this case, classical ML techniques can be exploited,
and their effectiveness might be compromised. In this work, we resort to the
online learning approach [16], a subfield of ML integrating a game theoretical
framework, in which the algorithms are intrinsically designed to deal with cases
where an opponent is influencing the underlying process. These techniques have
been applied successfully in many different fields, e.g., in solving dynamic pricing
problems [35], online internet advertising [27], drug dosage [3], and finance [7].
However, to the best of our knowledge, the application of such techniques to the
fraud detection field has been unexplored so far.

3 Threat Model

The existence of a large number of fraudulent transactions is due to the fact
that cybercriminals have banking services among their main targets. Indeed,
a compromised banking account can be used to steal funds from the available
balance directly or sold on the underground market [23]. Moreover, fraudsters
constantly improve their techniques to outwit online banking defenses. For this
reason, fraudulent behavior is dynamic, rare, and dispersed in very large and
highly imbalanced datasets [12,30]. However, we cannot rely solely on systems
that detect the change in the common transaction paths since also customer
habits change over time, making the task of distinguishing fraudulent transac-
tions from normal ones more challenging for defenders [29].

Definition 1. An electronic banking transaction b := (f ,x, a) is characterized
as a feature vector f ∈ R

m characterizing the transaction, a vector x ∈ R
n of the

so-called activity record, i.e., a set of features computed over past transactions
of the same client, and an amount a ∈ R

+, i.e., the quantity of money exchanged
by the transaction.

Relevant quantities included in the feature vector f are the date and time
of execution, geographic origin of the connection (e.g., the IP associated with
the connection), the identifier of the bank and of the account number (e.g.,
International Bank Account Number (IBAN)), and modes of verification (e.g.,
SMS sent to the customer’s phone). Instead, common elements constituting the
activity record x are features that summarize the past activity of the customer
over a fixed time window, commonly computed by aggregating past transac-
tions [36] (e.g., average transaction amount, total transaction count). Note that
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each activity record is a banking activity that may have originated by the rightful
customer or an anonymous fraudster. We associate a label y∗ ∈ {0, 1} depending
on whether the transaction is fraudulent. Specifically, we say it is a legitimate
transaction with the label y∗ = 0, while we assign y∗ = 1 when it is fraudulent.

3.1 Banking Fraud

Banking fraud can be defined as the act of illegally transferring funds from a
bank account with the use of Internet technology. We also refer to any attempt
to defraud unaware customers with the term attack. Over the course of the
years, financial institutions have faced threats of various natures. Following the
topology and the nomenclature provided in the work by Carminati et al. [13],
we defined the type of a fraud strategy by combining: 1© an attack technique,
i.e., the way the attacker generates the fraudulent transactions features x; 2©
an attack behavior, i.e., how the attacker selects the amount a to be set in the
fraudulent transaction and how frequently the attack is carried out. A detailed
description of the attack techniques and behaviors is provided below.

Attack Techniques. They define the technical mean adopted by the fraudster
to submit transactions on behalf of their victims. More specifically, it defines how
the feature vector f ′ of a fraudulent transaction b′ = (f ′,x′, a′) is generated. In
this work, we model the attacker by two different attack techniques [17]: Informa-
tion Stealing (IS) and Transaction Hijacking (TH). With Information Stealing,
the attacker possesses the victims’ credentials, so they can control the victims’
accounts and directly transfer funds toward controlled accounts. The attacker
may steal the credentials from databases of web services and reuse them to gain
access to other accounts of the victims. Alternatively, the attacker may deceive
the victim through phishing, which consists in presenting as a trustworthy entity.
With this scheme, the attacker is free to choose the feature vector f ′ arbitrarily,
i.e., they is generating a fake transaction from a generic customer of the finan-
cial institution. However, the connection is established by the attacker’s device.
Conversely, with Transaction Hijacking, the attacker halts and redirects legiti-
mate transactions toward a desired recipient. This attack is achieved via bank-
ing Trojan or infostealers. This type of malware intercepts and alters legitimate
webpages (e.g., the webpage of an e-Banking service) by exploiting a technique
known in the literature as Man-in-the-Browser (MitB). Infostealers can bypass
security measures such as two-factor authentication by infecting mobile devices.
This attack is called Man-in-the-Mobile (MitMo). Once the mobile device of
the victim (e.g., smartphone, tablet) is compromised, the attacker can inter-
cept one-time passwords sent by the financial institution with SMS or dedicated
applications [17]. With this attack, the fraudster uses the same user’s connec-
tion, and, therefore, the fraudulent activity will show the same connection of the
hijacked legitimate transaction, resulting in a greater challenge for identification.
Therefore, the attacker selects a bank client and generates a fraud so that the
elements of the feature vector f ′ corresponding to the above-mentioned features
are determined by the values of the chosen client.
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Fig. 1. Overview of a fraud detection system.

Attack Behavior. Once the technical mean is set, an attacker can act more
greedily or conservatively regarding the amount a′ set in the fraudulent transac-
tion and the frequency with which they will repeat the injection of such fraud.
Based on recent research works [11,12] and real-world fraudulent campaigns
shared by our industrial collaborators, we distinguish among three different
behavior: Short-Term (ST), Medium-Term (MT), and Long-Term (LT) cam-
paigns. With Short-Term, we refer to an attacker generating transactions b′,
with a large amount, i.e., a′ ≥ μ + 2σ, where μ and σ are the average and
standard deviation of the transaction amount computed over past legitimate
transactions, respectively.1 These attacks are typically carried out with a fre-
quency fr of 1 ≤ fr ≤ 2 per day to a single financial institution. The name ST
is because this behavior usually spans a short period (e.g., a few days). When the
amount per fraud a′ is more similar to the mean one μ, formally, a′ ∈ [μ, μ+2σ],
we have the so-called Medium-Term behavior. These frauds are harder to spot,
and therefore the attacker usually targets the same client multiple times, usually
with a frequency of fr ∈ [1, 2] over a week. Finally, a last class of fraud is the
Long-Term one, having small amounts, i.e., a′ ∈ (0, μ], but that is repeated more
often than others, i.e., with frequency fr ∈ [1, 4]. This behavior is commonly
repeated over temporal spans of months. Notice that the Short-Term behavior
defines a myopic attacker that prioritizes immediate gains. Conversely, the Long-
Term identifies an attacker who acts conservatively, with a long-lasting attack
of many low-amount transactions against the victims.

4 Fraud Detection Systems

A FDS M : Rm ×R
n ×R

+ → {0, 1} is a method that predicts a class y = M(b)
corresponding to the given activity record b. As mentioned before, the financial
institutions are given a set of FDS {M1, . . . MK}, K ∈ N, which are commonly

1 In the current work, we are assuming the attacker has access to the financial insti-
tution historical data.
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built using a data-driven approach, i.e., they are ML classifiers trained over his-
torical data on legitimate/fraudulent transactions. Among the most commonly
used models for building such methods are Logistic Regression (LR) [5,21,36],
Support Vector Machine (SVM) [8,32,33], Random Forest (RF) [5,8,33,36,37],
Neural Network (NN) [6,9,28], and Extreme Gradient Boosting (XGB) [38].
Therefore, for each transaction b, we are provided with a set of corresponding
predicted labels y1, . . . , yK corresponding to the prediction of the K different
FDSs. Once a transaction has been labeled, if it has been flagged as fraudu-
lent (yi = 1), they are blocked until a manual analysis is performed. The goal
of this work will be to understand how to exploit the set of predictions pro-
vided by the classifiers properly, using the most appropriate model to mitigate
the currently used attacker scheme and behavior. The path followed by each
transaction is summarized in Fig. 1, in which the transaction is first elaborated
using a transaction aggregator procedure to build the activity record. After that,
the transaction b is passed to the ML-based classifier and labeled. We remark
that our formulation of FDS follows the so-called system-centric approach [13],
in which fraud detectors are supervised models that learn a global concept of
fraudulent activity from a historical dataset of labeled transactions and provide
prediction looking at the information on the current transaction.2

5 Online Learning Approach

We consider a stream of transactions b1, b2, . . . that the bank has to flag as
either benign or fraudulent. For a specific transaction bt = (ft,xt, at), we want
to exploit the predictions provided by the already available K different FDSs. At
each time t the bank receives a transaction and, based on its activity record bt
(as detailed in Sect. 4), it has to classify the transaction as benign or fraudulent
by using the predictions made by all the available FDSs {M1, . . . ,MK}. Since
in the fraud detection setting the different types of misclassifications (i.e., False
Positives and False Negatives) induce different costs to the financial institution,
we define for a prediction y ∈ {0, 1} and transaction bt having y∗

t as true label
the following loss lt(y, y∗

t ) = lt(y) defined as:

lt(y) =

⎧
⎪⎨

⎪⎩

0 if y = y∗
t

at if y∗
t = 1 ∧ y = 0

d if y∗
t = 0 ∧ y = 1

, (1)

where d is a constant cost we incur if we incorrectly label a legitimate transac-
tion. Indeed, generating a false negative constitutes a loss for the bank equal to
the transaction’s amount at as the financial institution will have to refund the
customer. Conversely, a false positive detection incurs a fixed loss of d that can
be interpreted as the costs of verifying the transaction by a human expert.

As commonly done in online decision making [16], to account for the sequen-
tial nature of the problem, we consider the cumulative loss over a fixed period

2 An alternative approach is the user-centric approach, which consists in learning the
concept of fraud corresponding to each customer or groups of customers with similar
spending patterns.
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(e.g., a financial quarter) as the metric for the performance of FDS models. For
a model A and a sequence of transactions bt over a period {1, . . . , T} we define
the cumulative loss as:

LT (A) :=
T∑

t=1

lt(yt), (2)

where yt = A(bt) is the prediction provided by the method A.
We attack the problem of using at best the models Mj , by using a well-known

algorithms from the online learning literature, namely Multiplicative Weight
Update (MWU). This algorithm keeps track of the performance of all the meth-
ods and defines a set of weights wj,0 = 1/K for each j ∈ {1, . . . K}, where wj,0 is
the weight corresponding to model Mj at the beginning of the detection process
(t = 0). The following formula updates the weights:

wj,t =
wj,t−1e

−ηlt−1(yj,t−1)

K∑

i=1

wi,t−1e−ηlt−1(yi,t−1)

,

where yj−1,t = Mj(bt−1) is the prediction of model Mj for transaction bt−1 and
η ∈ R

+. Intuitively this update assigns a higher probability (greater weights) to
models that incurred a smaller loss during the previous transaction (multiplied
by a learning rate η). Finally, the algorithm samples a model Mj∗ (before the
new transaction bt is revealed), where j∗ is sampled proportionally to the weights
wj,t. Then the algorithm predicts the label yt = Mj∗(bt). Notice that the only
parameter required by the algorithm is the learning rate η which, in what follows,

is fixed to its theoretical value of η :=
√

logK
2G2T , where G is the maximum loss

that can be suffered. Moreover, this algorithm is able to guarantee that the loss
w.r.t. the best single model is limited (we refer to [20] for further details).

6 Experimental Evaluation

We empirically evaluate the use of the MWU online learning approach for FDS.
First, we describe the employed real-world experimental dataset, the baselines
we compare MWU with, and the used performances metrics. Finally, we discuss
the results. We design two different scenarios to evaluate our system. In the
former one, the attacker has a dynamically changing behavior but is not aware
of the possible FDS system the financial institution has available. In the latter,
the attacker uses the information about the performance of the base FDS to
choose how to create new fraudulent transactions.

6.1 Dataset

Our dataset contains real banking transfers belonging to a medium-sized Ital-
ian bank [12]. Notice that, due to the fact they are sensible data to the bank,
they cannot be disclosed. The dataset is a snapshot of 471, 199 banking trans-
fers exchanged by 58, 504 unique users. The dataset spans from 2014/10/22 to
2015/02/23, accounting for around 18 weeks of records. Each record is charac-
terized by the following set of features f for a specific transaction b:
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Table 1. Parameters of the attack behaviour. µ is the average amount a estimated
over historical data. The Attack Frequency unit measurement is 1 over days.

Fraud Strategy Amount a (EUR) Attack Frequency fr

ST [5.5µ, 27.7µ] [1, 2]

MT [1.1µ, 4.4µ] [1, 2]

LT [0.1µ, 0.55µ] [1, 4]

– IP : the IP address of the transaction originator;
– IBAN : the IBAN of the payment recipient;
– IBAN CC : the national code of the recipient;
– ASN CC : the pair of national code and identifier of the Autonomous System

Number (ASN) associated to the originator’s connection;
– SessionID : identifier of the originator’s browser session;
– time: a sin/cos encoding of the second of the day the transaction occurred;
– is national iban: a flag indicating if the beneficiary IBAN has the same nation-

ality of the online bank (i.e., IT country code);
– is international : a flag that indicates if the beneficiary international bank

account number (IBAN) has the same nationality of the customer;
– confirm SMS : a flag indicating the usage of a SMS for payment confirmation

The activity record x aggregates features over past transactions. This is per-
formed using different aggregation procedures (e.g., averaging over past transac-
tions or counting the past transactions) over time windows of different lengths,
i.e., in the set {1h, 1d, 7d, 14d, 30d}. For instance, one of the elements of the
activity record is the count of the previous legitimate transactions present in
the last 7d of the bank transaction record. Details about the feature engineering
creation are provided in [14]. Instead, for a complete analysis of the dataset, we
refer the reader to [12].

6.2 Fraud Strategy Modeling

Banking frauds usually represent around 1% of transactions. Therefore, banking
datasets are often imbalanced [12]. In our dataset, the flagged fraudulent activ-
ity represents only 0.13% of the transactions. Therefore, we have used the mod-
els of possible attackers based on real-world analysis of fraudulent transactions
described in Sect. 3 and introduced fraudulent activities in the real-world dataset.
We generate the synthetic fraud scenarios after analyzing the few records of
fraudulent activity in our possession, the patterns described in other works [11–
13], and the public technical reports of Italian government agencies [26]. The
parameters of the different attack schemes and attack behavior used in what
follows are reported in Table 1, in which, for each attack behavior, we specify
the ranges of amount a and frequency fr from which we generated the fraud-
ulent transactions. Each value has been generated by sampling uniformly over
the specified range. Regarding the feature vector f ′ for the generated fraud, we
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followed the rules described in the attack techniques in Sect. 3, and we randomly
generated the features that are left to the attacker’s choice. In particular, we
assume that the IBAN of the recipient is unknown to the victim, i.e., has been
generated as a random IBAN different from the ones observed in the client’s his-
tory. We assign the nationality of the IBAN following real fraud statistics: 40%
of the transactions are directed to an IBAN with the same nationality of the data
(i.e., Italian), the rest are distributed to the most frequent foreign country desti-
nations of frauds. Since the fraudster generally uses the same fraud b′ throughout
the duration of the attack, we opt to keep the transaction unchanged with a high
probability (95%) and with a low probability of changing the attributes in f ′.
Regarding the nationality of the IP , we assume that our fraudsters are able to
cover their real geographic location, so we assign a random value following the
same distribution as the one present in the legitimate data.34

6.3 Competing Models

We build our Fraud Detection Systems using as base classifiers several classifica-
tion ML algorithms: Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), Neural Network (NN), and Extreme Gradient Boosting
(XGB). We remark that the selected methods are the most commonly used in
practice for deployed FDS (see Sect. 2 for details).

The first 6 weeks of the bank records (consisting of ≈ 189, 140 transactions)
constitute the training dataset D used to train the FDS models as well as select-
ing the appropriate set of features and tune their hyperparameters.5 We create 6
different versions of D, namely D(r, s), each of which has been enhanced with the
introduction of frauds according to a different threat model, i.e., a combination
of an attack behavior r ∈ {SF, ST, LT} and an attack scheme s ∈ {IS, IH}.
For each model M ∈ {LR,SV M,RF,NN,XGB}, we have 6 different versions
M(r, s) corresponding to the training of M over the dataset D(r, s). The total
number of base models is K = 30. Notice that, depending on which attack strat-
egy they have been trained to detect, some models may be more or less effective
in detecting fraud during the operational life of an institution.6 As mentioned
before, the learning rate of MWU has been set to its theoretical optimal value
by setting G = 6000 as a proxy for the maximum loss, corresponding to the
95%-percentile of the transaction’s amounts in the test set. This results in a

3 From a technical point of view, in our dataset the values corresponding to IP ,
SessionID , and IBAN have been provided as hashed values. However, the above-
described operations can be performed even having the data in hash form.

4 The code corresponding to the above procedure and supplementary material is pro-
vided at [1].

5 We used as loss the Normalized Cost measure defined in [24,36] due to the imbalance
nature of the dataset. Moreover, we used a filter method based on Pearson’s cor-
relation for feature selection and 3-fold cross-validation to estimate the Normalized
Cost metric for the different models.

6 We provide the F1 score of the different models on different attack strategies in
supplementary material at [1].
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Fig. 2. Cumulative loss L̂t(A) for Exp. 1 (the smaller the better).

learning rate of η ≈ 3 · 10−5. On the basis of the above FDSs, we compare the
performance of MWU with two commonly employed ensemble learning methods.
More specifically, we use as baselines: 1) Majority voting [31]: the predicted is
computed by majority voting over the ones provided by the base methods, for-
mally y = arg maxl∈{0,1}

∑K
i=1 1(yi = l); 2) Mean prediction: the prediction is

the empirical average of the prediction provided by the base methods, formally
y =

∑K
i=1 yi

K . This is equivalent to making decisions as with MWU using constant
weights to all the models over the entire time horizon (wi,t = 1/K, for each i, t).

6.4 Performance Metric

We evaluate the methods in terms of cumulative loss of an algorithm A:

L̂t(A) =
t∑

h=1

lh(yh),

i.e., the empirical counterpart of the loss defined in Eq. 2 computed over t trans-
actions. In the loss lt(·), we set the cost of false positive to d = 100 as it is the
average cost in euro of analyzing a single transaction. We recall that the loss
provides an estimate of the real economic loss of the financial institution due to
different costs incurred by a false positive and false negative prediction.

6.5 Experiment 1: Alternation of Fraud Strategies

In this experiment, we simulate an attack scenario where, over time, an attacker
targets the base fraud detectors of the financial institution by changing each
week the fraud strategy. The different fraud strategies belong to the set of 6
strategies defined in Sect. 3, each of which has been used for two weeks. We test
the different FDSs methods on the 12 weeks of data (corresponding to 283, 499
transactions) we exclude from the training of the base models. Table 1 reports the
cumulative number of frauds over the weeks (second column) and the sequence
of the fraud strategies employed over the weeks (third column).
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Table 2. Weekly cumulative loss for the different FDS for Exp. 1.

Week Transaction Count Fraud Strategy Best Model Cumulative Loss

BestModel MWU Mean MajorityVoting

1 33670 MT,IS NN(MT,IS) 4.73 × 104 9.24 × 104 9.13 × 105 1.06 × 106

2 64475 MT,IS NN(MT,IS) 8.67 × 104 1.40 × 105 1.74 × 106 2.08 × 106

3 81070 MT,TH RF(MT,IS) 5.05 × 105 5.69 × 105 2.36 × 106 2.86 × 106

4 96037 MT,TH XGB(MT,TH) 5.75 × 105 6.47 × 105 2.77 × 106 3.41 × 106

5 115783 LT,IS XGB(MT,TH) 7.26 × 105 8.00 × 105 2.90 × 106 3.54 × 106

6 138499 LT,IS XGB(MT,TH) 8.96 × 105 9.70 × 105 3.05 × 106 3.69 × 106

7 155585 LT,TH XGB(MT,TH) 9.77 × 105 1.05 × 106 3.14 × 106 3.76 × 106

8 185245 LT,TH XGB(MT,TH) 1.07 × 106 1.15 × 106 3.26 × 106 3.84 × 106

9 218239 ST,TH SVM(MT,TH) 1.77 × 106 1.86 × 106 4.69 × 106 6.14 × 106

10 253612 ST,TH SVM(MT,TH) 1.90 × 106 2.00 × 106 5.98 × 106 8.21 × 106

11 279599 ST,IS SVM(MT,TH) 2.01 × 106 2.11 × 106 1.02 × 107 1.38 × 107

12 283499 ST,IS SVM(MT,TH) 2.03 × 106 2.13 × 106 1.04 × 107 1.42 × 107

Results. Fig. 2 shows the cumulative loss of the model ensemble based on mean
and majority voting, as well as the MWU algorithm, throughout the experiment.
The semitransparent area represents the range of the cumulative loss spanned
by the base models.7 All models display consistent loss increase rates over time,
with the most rapid increase occurring during the 8th week, attributed to the
attacker’s use of the ST fraud strategy, in which the attacker aims at maximizing
the amount stolen in the short period and, hence, the loss due to high-amount
frauds. The cumulative loss, instead, remains almost constant between weeks 4
and 8, where the attacker follows the LT fraud strategy, with low-amount frauds
distributed over a longer time span. In terms of relative performance, the online
learning approach (MWU algorithm) consistently has a lower loss compared to
the two ensemble methods. This strengthens the idea that using a dynamically
changing set of weights over the base models outperforms methods that use a
fixed combination of models if an attacker can change its strategy over time.8

Table 2 reports the losses of the different methods and the best base models
over the course of the weeks. As expected, the best base classifier changes over
the weeks, depending on the attacker’s strategy. This corroborates the idea that
such a dynamically changing (and possibly adversarial) environment requires an
online adaptation to the attacker’s strategies. The performances of MWU are
close to the ones of the base learner throughout the experiment, with a difference
in loss of only 5% at the end of the time horizon. This indicates that the online
learning method can provide performances similar to the best model even if we
do not know a priori the best base learner.

7 Note that the loss of the 30 base models has not been included in the figure for
visualization purposes, but can be found in [1].

8 The weight changes over time of the MWU methods are reported in [1].
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Fig. 3. Cumulative loss L̂t(A) for Exp. 2 (the smaller the better).

Table 3. Weekly cumulative loss for the different FDS for Exp. 2.

Week TransactionCount FraudStrategy BestModel Cumulative Loss

Best Model MWU Mean MajorityVoting

1 33590 ST,IS RF(ST,IS) 2.18 × 104 8.82 × 104 4.09 × 106 5.20 × 106

2 64156 ST,TH NN(ST,TH) 1.76 × 105 2.83 × 105 1.06 × 107 1.58 × 107

3 80883 MT,IS LR(MT,TH) 5.15 × 105 6.32 × 105 1.11 × 107 1.63 × 107

4 95984 MT,IS SVM(MT,TH) 7.49 × 105 8.66 × 105 1.16 × 107 1.69 × 107

5 115730 MT,IS LR(MT,TH) 9.65 × 105 1.09 × 106 1.21 × 107 1.75 × 107

6 138446 MT,IS SVM(MT,TH) 1.24 × 106 1.37 × 106 1.28 × 107 1.83 × 107

7 155687 MT,IS SVM(MT,TH) 1.50 × 106 1.63 × 106 1.33 × 107 1.90 × 107

8 185625 MT,IS SVM(MT,TH) 1.90 × 106 2.03 × 106 1.42 × 107 2.00 × 107

9 218930 MT,IS SVM(MT,TH) 2.28 × 106 2.41 × 106 1.51 × 107 2.12 × 107

10 254637 MT,IS SVM(MT,TH) 2.55 × 106 2.68 × 106 1.61 × 107 2.22 × 107

11 280624 MT,IS SVM(MT,TH) 2.80 × 106 2.94 × 106 1.68 × 107 2.31 × 107

12 284548 LT,IS SVM(MT,TH) 2.84 × 106 2.97 × 106 1.69 × 107 2.31 × 107

6.6 Experiment 2: Adversarial Alternation of Fraud Strategies

In this experiment, we simulate the relentless attack scenario in which the adver-
sary constantly adapts its strategy. The attacker’s adaptive strategy is based on
their in-depth knowledge of the employed models’ performance, which they use
to determine the most effective fraud strategy for the upcoming week. Indeed,
they dynamically select the fraud strategy that will cause the higher damage
(i.e., with the highest increases in the loss) to the best-performing model, the
one with the lowest cumulative loss. Similarly to the previous experiment, we
evaluate the 6 strategies defined in Sect. 3 over the 12 weeks of data excluded
from the base model’s training. For this experiment, we extend the threat model
presented in Sect. 3 with two further assumptions. First, the attacker must gain
(and keep) access to a dataset of banking transactions labeled by the target
institution’s classifiers. Second, the attacker must also be able to use the fraud
detectors under attack (or to re-construct exact copies as performed in [14]) to



288 T. Paladini et al.

test the crafted fraudulent banking transactions. This complex scenario requires
much more effort for the attacker. Nonetheless, it provides a worst-case attack
scenario for the banking institution. The experiment unfolds as follows. At the
beginning of each week, the attacker identifies the best FDS Mk among the
K competing models, i.e., the one with the lowest cumulative loss, formally
arg mink∈K Lt(Mk). Then, they test all the possible fraud strategies against it.
Finally, the attacker uses for the next week the fraud strategy that caused the
highest increase of the loss to the best classifier Mk.

Results. Table 3 provides a summary of results achieved in this experiment,
with the dynamic strategies employed by the attacker and the best-performing
base model by each week. Figure 3 presents the cumulative loss of the analyzed
algorithms over the experiment duration. The results are consistent with those of
Exp. 1, demonstrating the resilience of the MWU algorithm even against adver-
sarial strategies. Specifically, MWU achieves lower cumulative losses than the
ensemble models throughout the experiment. Despite this, MWU’s performance
is comparable to that of the best models, with a loss increase of less than 5%.
Notably, the loss increase is more significant when the attacker employs the ST
strategy. For instance, between week 1 and 2, MWU’s loss increases by 221%,
while the system with majority voting experiences a 203% increase from the pre-
vious week’s loss. However, after the first 5 weeks, a stationary regime is reached:
the minimum loss keeps being recorded by the base model SVM(MT, IS). This
suggests that one of the K base classifiers can provide good performance even
when facing different strategies. However, such performances are not consistent
over the entire experiment, and, therefore, evidence that selecting a single model
would not be robust w.r.t. switches in the attacker’s strategy.

7 Conclusion

This paper addresses the challenges adaptive attackers pose in the context of
fraud detection in digital transactions. The proposed approach leveraged the
Multiplicative Weight Update (MWU) online learning algorithm to dynamically
adapt the selection of classifiers employed for fraud detection based on their
estimated performance. We conducted an experimental evaluation using real-
world banking data enriched with diversified synthetic fraudulent activity, which
demonstrated that the proposed approach enabled prompt updates to detec-
tion models as new patterns and behaviors were identified, leading to a more
robust and effective fraud detection system. We also showed that MWU out-
performs static model ensembles commonly employed in fraud detection tasks,
such as those based on majority voting and the empirical average of the pre-
diction. These findings have significant implications for developing and deploy-
ing machine learning-based fraud detection systems in the financial industry,
and future research could focus on extending the proposed approach to other
domains beyond banking fraud detection, such as e-Commerce fraud and money
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laundering. Another possible development may focus on adopting online learning
techniques to predict attackers based on their fraudulent strategies.
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gence Research) project, funded by the NextGenerationEU program within the PNRR-
PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence).

Ethical Issues. Machine learning models have become increasingly ubiquitous in

decision-making processes across various industries, especially financial fraud detec-

tion ones. However, the ethical implications of these models have come under scrutiny

due to the potential for bias. Focusing on our work, if the base models are biased, any

approach built upon them may also be biased. This is especially concerning when the

models are used in sensitive areas such as fraud detection. On the other hand, since

we do not explicitly exploit transaction features, we may not introduce further bias

directly. However, it is important to note that the data used to train the models may

still contain hidden biases that could influence the model’s predictions. Therefore, it is

essential to ensure that the data sets used to train the models are diverse and repre-

sentative of the population to minimize bias and prevent harm to vulnerable groups,

as stated by the guidelines by the EU on AI methods (https://artificialintelligenceact.

eu/).
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bayes and knn machine learning algorithms for credit card fraud detection. Int. J.
Inf. Technol. 13(4), 1503–1511 (2021)

https://doi.org/10.1109/TAI.1999.809773
https://doi.org/10.1109/DSAA.2017.10
https://doi.org/10.1109/DSAA.2017.10
https://doi.org/10.1007/978-3-319-93411-2_10
https://doi.org/10.1016/j.cose.2015.04.002
https://doi.org/10.1145/3178370
https://www.usenix.org/conference/raid2020/presentation/carminati
https://www.usenix.org/conference/raid2020/presentation/carminati
https://ceur-ws.org/Vol-2808/Paper_4.pdf
https://doi.org/10.3233/JCS-15773
http://web.archive.org/web/20230521043629/https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport202110~cac4c418e8.en.html
http://web.archive.org/web/20230521043629/https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport202110~cac4c418e8.en.html
https://doi.org/10.1016/j.asoc.2020.106883
https://doi.org/10.1016/j.asoc.2020.106883


Advancing Fraud Detection Systems 291

22. Kim, E., et al.: Champion-challenger analysis for credit card fraud detection:
Hybrid ensemble and deep learning. Expert Syst. Appl. 128, 214–224 (2019).
https://doi.org/10.1016/j.eswa.2019.03.042

23. KPMG: Global Banking Fraud Survey. (2019). https://assets.kpmg/content/dam/
kpmg/xx/pdf/2019/05/global-banking-fraud-survey.pdf

24. Labanca, D., Primerano, L., Markland-Montgomery, M., Polino, M., Carminati,
M., Zanero, S.: Amaretto: An active learning framework for money launder-
ing detection. IEEE Access 10, 41720–41739 (2022). https://doi.org/10.1109/
ACCESS.2022.3167699

25. Marchal, S., Szyller, S.: Detecting organized ecommerce fraud using scalable cate-
gorical clustering. In: Balenson, D. (ed.) Proceedings of the 35th Annual Computer
Security Applications Conference, ACSAC 2019, San Juan, PR, USA, December
09-13, 2019. pp. 215–228. ACM (2019). https://doi.org/10.1145/3359789.3359810

26. Ministero dell’Economia e della Finanza: Rapporto statistico sulle frodi con
le carte di pagamento. Tech. rep. (2021). https://www.dt.mef.gov.it/export/
sites/sitodt/modules/documenti it/antifrode mezzi pagamento/antifrode mezzi
pagamento/Rapporto-statistico-sulle-frodi-con-le-carte-di-pagamento-edizione-
2021.pdf
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Abstract. We present a method that addresses the pain point of long
lead-time required to deploy cell-level parameter optimisation policies to
new wireless network sites. Given a sequence of action spaces represented
by overlapping subsets of cell-level configuration parameters provided
by domain experts, we formulate throughput optimisation as Contin-
ual Reinforcement Learning of control policies. Simulation results sug-
gest that the proposed system is able to shorten the end-to-end deploy-
ment lead-time by two-fold compared to a reinitialise-and-retrain base-
line without any drop in optimisation gain.

1 Introduction

One of the major factors influencing the Quality of Experience (QoE) in wire-
less networks is the parameter configuration of the cells in a base-station. Incor-
rectly configured cells can interfere with neighbouring cells and degrade quality
of service through inadequate coverage or over-utilisation. Traditionally, cell-
level parameter configuration is realised before deployment, at which time the
engineers have to anticipate diverse traffic conditions (i.e. user load), radio chan-
nel conditions, environment conditions (i.e. physical location and surroundings
of a cell), and the complex relationship of QoE objective with other conflicting
optimisation objectives in a wireless network (i.e. coverage, utilisation, power
consumption).

Existing approaches for configuring cell-level parameters are based on a dis-
crete black-box optimisation problem formulation, which is often solved with
surrogate-driven optimisation methods. Due to the combinatorial parameter
space defined by the large number of cell-level configuration parameters (> 500
parameters), and the variable impact of the same set of parameters on the QoE
in different deployment sites, selecting and configuring parameters for a new sys-
tem deployment is a stage-wise process. In this process, priorities are assigned to
subsets of parameters based on domain knowledge, and these subsets are then
configured in order of priority in a sequence of independent surrogate-driven
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Table 1. Challenges and technical solutions.

Challenge Technical Solution

Data limitation in real wireless network
trials, which are expensive and constrained
to real-time

Model-based RL

Time constraints on policy deployment
lead-time to address a new candidate
configuration parameter subset

Continual RL

High levels of noise in objective KPIs Probabilistic reward model
explicitly accounting for aleatoric
and epistemic uncertainty

Inference time constrained to under 5 min
for 20,000 cells

Learning-based solution as opposed
to online planning at decision time

optimisation runs. When QoS metrics reach target values, the parameter selec-
tion and configuration process is terminated and the parameter configuration is
executed to each cell. Each independent optimisation run is composed of 7 days
of data collection, followed by 10 days of iterative optimisation, amounting to a
total of 17 days. Each consecutive parameter subset optimisation will add this
amount of additional lead-time before the configured parameters are applied to
each cell.

In this work, we developed a technology to reduce the overall lead-time
required to optimise cell-level parameter configurations for a new wireless net-
work site. We formulated the problem of stage-wise optimisation of parameter
subsets as a Continual Reinforcement Learning problem. This approach lever-
ages forward transfer of knowledge between optimisation policies with overlap-
ping subsets of actions in order to learn the ultimate policy in a data-efficient
task-oriented fashion. Additionally it allows for a safe rollback to a policy of a
previous subset, if objective KPIs do not improve, by avoiding catastrophic for-
getting. Through a series of experiments, we demonstrate a two-fold reduction
in deployment lead-time compared to a Reinitialise-and-Retrain baseline. The
main challenges addressed in this paper, with corresponding technical solutions,
are summarised in Table 3.

The rest of the paper is organised as follows. Section 2 summarises previous
work on Reinforcement Learning (RL) for network parameter optimisation, and
outlines the main classes of methods for Continual RL (CRL). Section 3 presents
the detailed description of the real-world dataset, the problem formulation, and
the solution methods. Section 4 describes the experiment design, and Sect. 5
analyses the experiment results. Finally, we conclude in Sect. 6 and propose
future research.

2 Related Work

Previous research has addressed the problem of wireless network parameter
optimisation using rule-based methods [10,11], mathematical models [19], or
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RL [1,3–5,8,17,27,30]. A common characteristic of the aforementioned works is
that the action space (adjustable network configuration parameters) is defined
a priori at design time and is kept fixed. Scenarios where one wishes to dynam-
ically extend the action space with additional configuration parameters can be
solved in a sample-efficient way via a Continual RL problem formulation [13].
The main classes of methods for achieving positive forward transfer while miti-
gating catastrophic forgetting in CRL tasks are summarised as follows:

– Parameter storage based methods require multiple independently trained
models to be stored for the different tasks. Catastrophic forgetting is over-
come at the cost of storing parameters for each model. The space needed to
store policies is linear in the number of tasks addressed. Unfortunately, this
technique does not support knowledge transfer across tasks regardless of their
potential similarities.

– Distillation is the process of distilling a source model(s) to a target model
[22,26,29,31]. Distillation mitigates the need to store multiple models by
compressing them into a single neural network. Hence, models trained on
several source tasks can be distilled into a single network which captures
shared experiences from all tasks. Despite reducing storage space, distillation
still requires task specific layers to extrapolate features or to fit a task’s action
policy.

– Rehearsal consists of training using examples from both the current task
and old examples from previously encountered tasks. This requires either an
experience replay buffer to store old examples, or if storage space is lim-
ited, pseudo-rehearsal whereby examples are synthesized using a generative
model [12,15,21]. When solving a novel task, models can retain performance
achieved in previous tasks by continuously revisiting examples from same.

– Regularization based methods maintain a single model across multiple
tasks. Catastrophic forgetting is mitigated by preventing parameters that are
important for previous tasks from changing significantly when learning a new
task [14,32]. When compared to Parameter Storage methods, this approach
reduces the storage space required since only one model is maintained. A
drawback is that the initial model must have sufficient capacity to accommo-
date all future tasks, which are typically unknown upfront. Furthermore, it
is not clear how to handle extension of the action space.

– Modular architectures facilitate CL by exploiting flexibility and composi-
tionability of neural networks. Model capacity can be adjusted dynamically,
making adaptation to unseen tasks possible without over-parameterising the
model initially [23,26,32]. It is sometimes helpful to decompose complex prob-
lems into easier sub-problems. In this case, neural modules can be combined
and re-used across tasks [9,16]. For instance, a decision policy could be decom-
posed into one module to extract features and another to select actions. Mod-
ules are combined as required to achieve positive transfer, while catastrophic
forgetting is prevented by storing lightweight modules trained on prior tasks.

In our optimisation problem, the order and the type of overlap across the
sequence of cell-level configuration parameter subsets are defined by the domain
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expert. We selected Progress-and-Compress (P&C) [26], a method that has
demonstrated good performance in CRL scenarios of evolving action space. P&C
is a hydrid between the methods of distillation, regularisation and modular archi-
tectures, and it can be decomposed into two steps. Firstly, the progress step,
where the agent achieves positive transfer by expanding the architecture hor-
izontally via lateral connections from an existing knowledge base (assimilates
experience from all previous tasks) to a new active column (learns skills on the
new task). Secondly, in the compress step, model distillation is used to distill the
active column into the knowledge base without disrupting performance on previ-
ous tasks. As such, P&C mitigates unbounded growth in learned policies, while
ensuring transfer across similar tasks and preventing catastrophic forgetting.

3 Methods

In this section, the dataset is described and the problem is formulated as a
Markov Decision Process (MDP). Methods are introduced to achieve data effi-
cient continual learning of network control policies using model-based RL.

3.1 Description of the Dataset

A dataset Dinit was collected over 5 days in a real 5G network containing 966
cells, by executing random actions to random cells at hourly intervals. We
collected four different feature sets1: cell-level configuration parameters (CPs)
representing the actions, performance counters (PCs), engineering parameters
(EPs), and spatio-temporal (ST) context. PCs include time-varying features (e.g.
demand, channel quality, etc.) which are reported by cells hourly. EPs are fixed
characteristics of a cell such as its tilt, antenna type, etc. The optimisation
objective KPI is cell-level throughput measured in Gigabits per second (Gbps).
Exploratory analysis revealed the following challenging properties of the dataset.

High Dimensional State and Action Spaces: The composite action space
consists of 19 CPs. Three different groups of CPs were adjusted during the data
collection experiment. The three groups include: 4 CPs for power control on
cells, 6 CPs for modulation code scheme selection (method used by a cell to
encode digital data), and 9 CPs for rank selection (number of spatial streams
used to transmit data from a cell to users). CP are categorical variables that take
between 2 and 13 different values – the number of unique action combinations
is ≈ 4.6 × 1018. Raw network state is the union of PCs, EPs, and ST context. A
total of 410 features constitute the network state.

Throughput (TP) Time-Series Exhibits High Levels of Noise: A
seasonality-trend-noise decomposition of the time-series was performed for each
cell. It was observed that 49.41% ± 10.04% of the variance in TP is explained
by seasonal and trend components. The remaining variance can be attributed to
the noise component of the time-series.
1 The names of CPs, PCs, and EPs cannot be disclosed.
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The challenges and technical solutions are summarised in Table 3. A tabular
dataset was formed by aligning the four feature sets with respect to cell ID
and timestamp. The aligned dataset contained 966 [cells] ∗ 5 [days] ∗ 24 [hours]
examples. Rows with missing values due to energy saving enabled on some cells
in early morning hours were removed, resulting in a total of 103,648 examples.
CPs and EPs were transformed using min-max scaling. PCs were transformed
using the Yeo-Johnson method due to extreme values. Lastly, ST features were
cyclically encoded.

3.2 Problem Formulation

The problem is formulated as a MDP defined by the tuple 〈S,A, T,R, γ,D〉,
where S is the state space, A is the action space, T : S × A × S → R

|S| is the
transition function from a state s to s′ after taking action a, R : S × A → R is
the reward function, γ ∈ (0, 1] is the discount factor, and D is the initial state
distribution. The goal is to find a policy πθ : S −→ A that maximises expected
cumulative reward, defined as E

[∑H
t=0 γtr(st, at)|s0 ∼ D, at ∼ πθ(st)

]
, where H

is the planning horizon.

States: A raw state sraw
t ∈ S at hour t is composed of PCs observed between t−1

and t, EPs, and ST features. sraw
t is compressed into st using an auto-encoder

gψ : S → Z, S ∈ R
410, Z ∈ R

50.

Actions: The action space A is combinatorial, where each CP i may take
between 2 and 13 different discrete values represented by CP i ≡ {CP i,1,CP i,2,

. . . ,CP i,nCPi
}, giving a total of |A| =

∏N
i=1 nCPi ≈ 4.6×1018 distinct actions for

all 19 CPs. We train the policy to generate an action at = (a1,t, a2,t, . . . , aN,t) ∈
A at the beginning of hour t given network state st as input. Note that ai,t ∈ CP i

is a discrete value from the set CP i.

Reward: Defined as the value of throughput KPI observed on a cell between t
and t + 1.

Planning Horizon: Single-step episodes are considered, in which an action is
executed at time t, the reward is given at time t+1 and the episode terminates.

3.3 Model-Based Reinforcement Learning

Since we are optimising over a single-step horizon, the learned dynamics function
is limited to a one-step reward prediction model. This is defined as a probabilistic
model fφ(rt+1|st, at) = Pr(rt+1|st, at;φ) that outputs the conditional distribu-
tion of the reward given the current state and action. Learning a reward model
is a task of fitting an approximation model to the true reward function given the
training dataset Dtrain = {(si = gψ(sraw

i ), ai = CPi, ri = TPi)}M
i=1 collected

from the real network, where gψ : S → Z, S ∈ R
410, Z ∈ R

50 is a feature extrac-
tor in the form of an auto-encoder neural network trained to reconstruct the raw
state using dataset {(sraw

i )}M
i=1. The motivation of pre-processing of raw state
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Fig. 1. Architecture of the policy neural network πθ(s|a), which is composed of N
sub-policies πi

θ(ai|s) each represented by a separate output head. Output heads share
an embedding of the state computed by two hidden layers.

using an auto-encoder is to produce compact control polices for TP optimisation.
Algorithm 1 presents the pseudo-code for model-based RL.

The architecture of the policy network πθ(a|s) is shown in Fig. 1. In our
setting, the action components corresponding to CPs are chosen independently
from each other. Given N CPs, we decompose policy πθ into N sub-policies
πi

θ(ai|s) such that πθ(a|s) =
∏N

i=1 πθ(ai = CPi|s). Decomposition of the policy
network is achieved by branching N output heads from a shared embedding of
the state. The embedding is computed by two layers, where the first layer takes
the compressed state st as input. The ith output head returns a probability over
the ith action component corresponding to CPi.

Proximal policy optimisation (PPO) [25] is employed to train πθ(a|s). In step
k, the policy update is given by:

θk+1 = arg maxθ Es,a∼πθk
[LPPO(s, a, θk, θ)].

where the loss function is defined as:

LPPO(s, a, θk, θ) = min
(

πθ(a|s)
πθk

(a|s)Aπθk (s, a), g(ε, Aπθk (s, a))
)

. (1)

The advantage Aπθk (s, a) is clipped using function g(·) to prevent large changes
in the policy parameters: g(ε, A) = (1 + ε)A, if A � 0; otherwise g(ε, A) =

Algorithm 1. Model-based Reinforcement Learning
1: Collect dataset Dinit = {(sraw

i , ai = CPi, ri = TPi)}M
i=1 from real network.

2: Train feature extractor gψ on dataset {(sraw
i )}M

i=1
3: Process Dinit into dataset Dtrain = {(si = gψ(sraw

i ), ai = CPi, ri = TPi)}M
i=1

4: Train reward model fφ on Dtrain

5: Initialise control policy πθ

6: for E epochs do
7: shuffle Dtrain and partition it into mini-batches.
8: for number of mini-batches do
9: initialise training set DRL

10: for each example index i of a mini-batch do
11: âi ∼ πθ(si)
12: r̂i = fθ(si, âi)

13: compute advantage Âi via Equation 2
14: add (si, âi, Âi) to DRL

15: update πθ based on DRL using the Adam optimiser, given loss in Equation 1
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(1 − ε)A. Advantages are estimated by subtracting the mean reward in a mini-
batch B from the current reward:

Aπθk (s, a) = r(s, a) − 1
|B|

∑
i∈B

r(si, ai). (2)

3.4 Compressing High Dimensional Network State

A total of 383 performance counters (PCs) are combined with 9 engineering param-
eters (EPs), and 18 spatio-temporal features (ST) to form the raw network state
sraw

t ∈ R
410. An under-complete auto-encoder neural network gψ : S → Z,

S ∈ R
410, Z ∈ Z

50 is trained to compress the raw network state.
Compressed states produced by the encoder gencoderψ (srawt ) → st are passed to

the decoder, which reconstructs the input: gdecoderψ (st) → ŝrawt . A regulariser gregψ

predicts the throughput at t + 1 given st. Incorporating the regulariser was found
to improve predictive accuracy of the reward model and policy gain. Loss is defined
as the mean square error between the input state and reconstructed state:

L(sraw , r, ψ) = (λAE )

(
1

|S|
∑
i∈S

(sraw [i] − ŝraw [i])2
)

+ (1 − λAE )(r − r̂)2,

where ŝraw is the reconstructed state produced by the decoder at time t, r̂ is
predicted reward (throughput) at t+1 given by the regulariser, and λAE ∈ [0, 1]
weights contribution of the decoder and regulariser. Subscripts t are dropped for
clarity.

Fig. 2. High dimensional raw network state sraw
t ∈ R

410 at hour t is compressed using
a modular auto-encoder to st ∈ R

50. The reward model is an ensemble of probabilistic
neural networks. A single component model m is displayed.

3.5 Reward Model

The reward model fφ : S × A → R is based on the dynamics model described
by Chua et al. [6] termed as Probabilistic Ensemble with Trajectory Sam-
pling. Predicted reward is given by a probabilistic ensemble consisting of
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10 component models, each trained with different seeds and bootstrap sam-
ples of Dtrain collected from the real network. Figure 2b displays the archi-
tecture of a single component model. Each component model f i

φ parame-
terises a Gaussian distribution with diagonal covariance: Pφ(rt+1|st,ST t, at) =
N (μφ(st,ST t, at), σφ(st,ST t, at)2), from which the predicted reward (through-
put) at t + 1 can be sampled. Inputs at hour t include: the compressed network
state st, current time and location of the cell ST t, and actions produced by the
policy at = CP t.

We employ a causal inference-based regulariser to improve the generalisation
of the reward model similar to the work of [24]. Generalised Propensity Score
(GPS) [28] predicts the action at = CPt from a representation ξ of at, compressed
state st, and STt. The composite loss function contains terms for the negative
log likelihood and GPS regulariser:

L(s, a, φ) = λRM

(
(r − μφ(s, a))2

σ2
φ(s, a)

+ log σ2
φ(s, a)

)
+ (1 − λRM ) KL (a‖â) ,

where r is the ground truth reward (throughput), μφ(s, a) and σ2
φ(s, a) are the

predicted mean and variance, and λRM ∈ [0, 1] balances the contribution of the
negative log likelihood and GPS regularisation terms. Subscripts t are dropped
for clarify. The overall reward model architecture is shown in Fig. 2b.

Importantly, the probabilistic ensemble, consisting of component models
m ∈ M, quantifies the uncertainty associated with the predicted reward. Total
uncertainty is decomposed into an epistemic term reflecting model uncertainty
due to limited data, and an aleatoric term which represents irreducible noise:

σ2
epistemic(s, a) =

1
|M|

∑
m∈M

(
σ2

φ,m(s, a) + μ2
φ,m(s, a)

)−
(

1
|M|

∑
m∈M

μφ,m(s, a)

)2

,

σ2
aleatoric(x) =

1
|M|

∑
m∈M

σ2
φ,m(s, a).

Fig. 3. Analysis of the reward model.
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Reward Model Analysis: Experiments were carried out to confirm that the
reward model is an accurate simulator of the network environment dynamics.
The neural network ensemble was bench-marked against a random forest con-
taining 500 trees. Results from 10 fold cross-validation are displayed in Fig. 3.
Two conclusions are drawn from the plots. Firstly, the lowest error is achieved
by the reward model in all folds. Secondly, error residuals are symmetric around
zero, confirming that throughput is neither systematically overestimated nor
underestimated.

3.6 Continual Reinforcement Learning

Fig. 4. Training policies using progress and compress framework. Two hidden layers,
called as shared and branch, are dense layers with 128 and 64 neurons, respectively,
with tanh non-linearity.

Continual RL is formulated as a sequence of MDPs MDP (1), . . . , MDP (L)
where MDP(l) = 〈S(l),A(l), T (l), R(l), γ,D(l)〉 [13], l ∈ {1, 2, . . . , L}. In our
case, each action space A(l) is a subset of the next: A(1) ⊂ A(2) ⊂ . . . ⊂ A(L).
Therefore each consecutive MDP in the sequence represents a new task with an
expanding action space.

We employ the Progress-&-Compress (P&C) framework [26] for continual
RL. P&C enables the reuse of past information through layer-wise adaptors
to a knowledge base. The policy consists of two columns: the active column
acquires experience on a new task, and the knowledge base accumulates expe-
rience acquired over all previous tasks. The active column is trained during the
progress phase. The knowledge base is then updated during the compress
phase, in order to subsume new knowledge acquired by the active column. Catas-
trophic forgetting of the knowledge base is prevented through a regularisation
technique described below.

Progress Phase: When a new task is presented, the parameters of the knowl-
edge base are frozen – only those parameters in the active column are optimised.
Layer-wise connections between the knowledge base and the active column allow
reuse of representations produced by the knowledge base, thus enabling posi-
tive transfer from previously learned tasks. Lateral adaptors are implemented as
multi-layer perceptrons. The j-th layer of the active column is defined as follows:

hj = σ
(
Wjhj−1 + αj � Ujσ

(
Vjh

KB
j−1 + bKB

j

)
+ bj

)
,
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where αj is a trainable vector initialised by sampling from U(0, 0.1) with size
equal to number of units in layer j, and Wj , Uj , Vj are weight matrices. The
active column is trained using Algorithm 1.

Compress Phase: The compress phase distills the learned active column into
the knowledge base. At this stage, the parameters of the active column are frozen.
The compression optimisation objective is a distillation loss with the Elastic
Weight Consolidation (EWC) penalty. EWC protects the knowledge base against
catastrophic forgetting, such that all previously learned skills are maintained:

LKB

(
θKB

Tt

)
= E

[
KL(πθTt

(·|s)‖πθKB
Tt

(·|s))
]

+ EWC
(
θKB

Tt
, θKB

Ts

)

where πθTt
is the policy of active column after learning task Tt while πθKB

Tt
is the

knowledge base into which the active column is distilled.
The authors in [26] proposed online EWC to reduce the computational cost

of calculating the Fisher information matrix:

EWC(θKB
Tt

, θKB
Ts

) =
1
2

∑
i∈IKB

γFisher

(
F ∗

Ts,i(θ
KB
Tt,i − θKB

Ts,i)
2
)

where F ∗
Tt

= γFisher

(
F ∗

Ts

)
+ 1

|B|
∑

(s,a)∈S×A ∇ log πθKB
Tt

(a|s)
(
∇ log πθKB

Tt
(a|s)ᵀ

)
,

IKB are layers in the knowledge base excluding the output layers, B is the set
of examples in the mini-batch, and γFisher ∈ R is a hyper-parameter.

4 Experimental Evaluation

A number of experiments are designed to assess the sample-efficiency of continual
RL in the wireless optimisation scenarios, where the action space CPsource in
a source task Ts is expanded to a set CPtarget in the target task Tt, where
CPsource ⊂ CPtarget. We are contrasting P&C against a baseline Reinitialise-
and-Retrain (R&R) method, which initialises πθ(s|a) and trains it solely on the
dataset Dinit specific to the CP set of a task in Algorithm 1.

4.1 Wireless Network Optimisation Scenarios

We defined three scenarios that demonstrate how domain knowledge of a network
operator is used to optimise sets of CPs for a new network site in a stage-wise
manner.

Scenario 1: Use of prior knowledge about the environment in which the cell
is deployed (e.g. height of surrounding buildings, density of buildings) and the
profile of services that are expected in this geographical area (e.g. ultra reliable
low-latency communication). In this scenario, based on domain knowledge, the
operator chooses initially a small subset of CPs known to have high impact to
the optimisation objective KPIs. The small subset is then extended to the full
set of CPs to leverage additional CP interactions.
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Fig. 5. Policies trained via Reinitialise-&-Retrain (R&R) use four days of data from
the target task (Tt). Policies trained via Progress-&-Compress (P&C) use two days of
data from Tt (50% less), and transfer knowledge from a source task Ts.

Scenario 2: Use of prior knowledge about the potential of certain CPs to cause
network disruptions or network performance degradation (i.e. exploring CPs
related to energy saving sleep-modes of a base-station, or CPs that determine
antenna configurations directly impacting coverage). In this scenario, network
optimisation starts with a set of CPs known to have low impact on the optimisa-
tion objective KPIs in order to reduce said risks. The initial set is then gradually
extended to the full set of CPs.

Scenario 3: A combination of considerations reflected in Scenarios 1 and 2.

4.2 Policy Training Setup

Five experiments were designed to assess policy deployment lead-time reduction
in the three scenarios described above. The experimental setups are outlined in
Table 2. In each experimental setup, policies trained using P&C were initialised
on a source task Ts and updated on the target task Tt. Policies trained using
R&R were trained on the Tt using twice the training data volume as P&C (4 days
as opposed to 2 days).

Table 2. Experimental setups to assess policy deployment lead-time reduction after
expanding the set of CPs from a source task (Ts) to target task (Tt).

Experiment Scenario CPs in Ts CPs in Tt

1 1 4 high-impact All 19

2 2 15 low-impact All 19

3 1 2 high-impact 4 high-impact

4 3 2 high-impact & 7 low-impact All 19

5 2 7 low-impact 15 low-impact

To ensure an unbiased evaluation, the dataset Dinit was partitioned into
disjoint subsets as follows:
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– 30% of the examples were reserved to train a test system model with similar
structure to the reward model.

– Of the 70% remaining; 70% of the examples were used to train the reward
model, state compressor, and policies, and 30% was used to assess TP gain
as described in the following section.

The datasets were further structured as outlined in Fig. 5 in order to evaluate
P&C under a 50% reduction in data volume compared to R&R.

4.3 Performance Metrics

Table 3. Hyperparameters used in the experimental evaluation.

Hyperparameter State Compressor Reward Model R&R P&C

Training Iterations epochs = 100 epochs = 100 epochs = 100 steps = 1000

Learning Rate 0.00015 0.00015 0.0001 0.0001

Batch Size 128 128 64 64

γFisher NA NA NA 0.9

λ λAE = 0.9 λRM = 0.9 NA NA

Policy deployment is constrained by real-time, and its lead-time is approx-
imately equivalent to the time required for the collection of dataset Dinit in
Algorithm 1. Our target is to demonstrate (i) 50% reduction in the amount of
data required by P&C relative to R&R, and (ii) positive TP gain. TP gain in
hour t is defined as:

TP Gain(t) [%] =

∑
c∈C T̂P

P&C

c,t − ∑
c∈C T̂P

R&R

c,t

∑
c∈C T̂P

R&R

c,t

× 100%, (3)

where C is the set of all cells, T̂P
P&C

c,t is the predicted TP when cell c ∈ C
executes CPs given by the P&C policy and T̂P

R&R

c,t is the predicted TP when
cell c executes CPs given by the R&R policy. Predictions are given by the test
system model. TP gain is computed in the test set as described in Sect. 4.2.

5 Results

Results are reported based on 20 independent runs of each experiment in Table 2.
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Training Performance: Figure. 6 shows the learning curves of P&C and R&R.
First, we observe that the runs of experiments for Scenario 1 that start with
high-impact CPs in the source task converge faster than those runs of Scenario
2, which start with low-impact CPs is source task. A context change occurs
between September 12th and 13th when training R&R policies incrementally.
The context change is associated with switching from the weekend to a week
day.

Fig. 6. Learning curves. Blue shading shows standard deviation over 20 independent
runs.

The jump in mean reward per epoch on September 13th is caused by a change
in the underlying user demand. This change is due to more users occupying
hotspots such as downtown business districts, transport hubs, etc. during week-
days. These areas are served by high capacity cells, resulting in a higher overall
throughput.

Assessment of TP Gain: Figure. 7 illustrates the distribution of median TP
gain over 20 independent runs calculated at hourly intervals as defined in Eq. 3.
The median of TP over 20 independent runs for the P&C and R&R methods
is given by TPX

c,t = median(TPX
c,t,1, TPX

c,t,2, . . . , TPX
c,t,20), X ∈ {P&C,R&R},

where TPX
c,t,run is the throughput for cell c at time t for run = 1, 2, . . . , 20.

Results displayed in Fig. 7 confirm that P&C achieves a positive median TP
gain along with a data reduction of 50% relative to the baseline R&R policy in
experiments 1, 2, 4, and 5. The highest median TP gain is attained in experiment
4 due to the presence of both high-impact and low-impact CPs in the source task.
P&C is most effective in experiments 1, 2, and 4 with all 19 CPs in the target
task. We observe smaller positive median TP gain in experiment 5 because of
the low impact CPs in both source and target tasks, while a negative median
TP gain is observed in experiment 3 due to few low-impact CPs in the source
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Fig. 7. Assessment of TP gain.

Fig. 8. Training resource footprint.

task. This result suggests that the effectiveness of continual RL as a sequence of
MDPs with an expanding combinatorial action space is mostly affected by the
strength of the causal effect of each consecutive action subset.

Training Resource Cost: The amount of training RAM and convergence wall
time are illustrated in Fig. 8. P&C results in a reduction of approx. 31% in
memory footprint compared to R&R baseline, amounting to a total of 6.7 GB.
This is crucial for training in resource-constrained hardware, which is typical for
on-premise deployments in telecommunication networks. Average training wall
time for P&C is measured at 80 min compared to 140 min for R&R. Reduced
training time allows us to allocate more resources for hyper-parameter tuning
and model selection, and enables more frequent model updates in highly-dynamic
wireless networks.

Inference Time: Inference for setting configuration parameters reduces to a
forward pass of the compact neural net policy, and it was measured at 80 ms of
wall-time for 20,000 cells.

6 Conclusions and Future Work

Learning optimisation policies from scratch in order to assess the performance
of different subsets of configuration parameters on the objective KPI is costly
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is terms of time required for data collection, particularly for unknown wireless
network environments with exploration challenges (i.e. safety constraints, limited
budget of interactions with the wireless network, high dimensional state/action
spaces, high noise levels). The contribution of our work is the application of
Continual Reinforcement Learning to a wireless network optimisation system
where the number of decision variables gradually increase throughout its lifetime.
By refraining from reinitialising-and-retraining the policy, we achieve a two-fold
reduction in end-to-end deployment time for each consecutive decision variable
subset, which has direct implications in reducing operational cost and overall
data collection requirement.

We defined three scenarios reflecting how domain knowledge of a network
operator can be leveraged to handcraft a series of CP subsets to be opti-
mised stage-wise. Five experiments based on these scenarios were conducted, and
empirical results demonstrated a positive throughput gain of up to 4% of P&C
continual RL method against the R&R baseline that used double the amount of
training data.

The selection of CP subsets for optimisation policies deployed to new wireless
network sites is traditionally an iterative trial-and-error process that predom-
inantly relies on domain knowledge. Going forward, there are two approaches
that will be investigated to further improve sample efficiency. The first approach
is based on causal structure learning to automatically identify the CPs that exert
the strongest causal effect on the optimisation objective KPI in a new environ-
ment, and hence complement and fine-tune operator’s domain knowledge during
selection of CP subsets. Of applicability here are methods that admit latent
confounders when learning causal graphs, for example the works of [7,18,20]
and also the auto-causal tuning method of [2]. The second approach is based on
policy warm-starting through the technology of sim-to-real transfer in RL [33],
some examples of which include domain adaptation, imitation learning and pol-
icy distillation.
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Abstract. Wearable sensors such as Inertial Measurement Units
(IMUs) are often used to assess the performance of human exercise. Com-
mon approaches use handcrafted features based on domain expertise or
automatically extracted features using time series analysis. Multiple sen-
sors are required to achieve high classification accuracy, which is not very
practical. These sensors require calibration and synchronization and may
lead to discomfort over longer time periods. Recent work utilizing com-
puter vision techniques has shown similar performance using video, with-
out the need for manual feature engineering, and avoiding some pitfalls
such as sensor calibration and placement on the body. In this paper, we
compare the performance of IMUs to a video-based approach for human
exercise classification on two real-world datasets consisting of Military
Press and Rowing exercises. We compare the performance using a single
camera that captures video in the frontal view versus using 5 IMUs placed
on different parts of the body. We observe that an approach based on a
single camera can outperform a single IMU by 10 percentage points on
average. Additionally, a minimum of 3 IMUs are required to outperform
a single camera. We observe that working with the raw data using mul-
tivariate time series classifiers outperforms traditional approaches based
on handcrafted or automatically extracted features. Finally, we show that
an ensemble model combining the data from a single camera with a sin-
gle IMU outperforms either data modality. Our work opens up new and
more realistic avenues for this application, where a video captured using
a readily available smartphone camera, combined with a single sensor,
can be used for effective human exercise classification.
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1 Introduction

Recent years have seen an accelerated use of machine learning solutions to assess
the performance of athletes. New technologies allow easier data capture and effi-
cient machine learning techniques enable effective measurement and feedback.
In this paper, we focus on the application of human exercise classification where
the task is to differentiate normal and abnormal executions for strength and
conditioning (S&C) exercises. S&C exercises are widely used for rehabilitation,
performance assessment, injury screening and resistance training in order to
improve the performance of athletes [18,19]. Approaches to data capture are
either sensor-based or video-based. For sensor-based approaches, sensors such as
Inertial Measurement Units (IMUs) are worn by participants [18,19]. For video,
a participant’s motion is captured using 3D motion capture [15], depth-capture
based systems [31], or 2D video recordings using cameras [22,25]. The data
obtained from these sources is processed and classified using machine learning
models. Classification methods based on sensor data are popular in the litera-
ture and real-world applications, and yet, video-based approaches are gaining
popularity [25,26] as they show potential for providing high classification accu-
racy and overcoming common issues of inertial sensors. Sensors require fitting on
different parts of the body and the number of sensors to be worn depends upon
the context of the exercise. For instance, the Military Press exercise requires
at least 3 IMUs for optimal performance. Despite their popularity, sensors may
cause discomfort, thereby hindering the movement of participants. In addition,
using multiple sensors leads to overheads such as synchronization, calibration
and orientation.

Fig. 1. Comparison of video (top) and sensors (bottom) to classify human exercise
movement. The upper box presents the process of obtaining multivariate data from
video (only 3 out of 25 body parts shown). The bottom box shows the raw Y-signals
from a single IMU placed on the participant’s body (only 3 signals shown here).



314 A. Singh et al.

Recent advances in computer vision have enabled the usage of 2D videos for
human exercise classification. Past work explored posture detection [22] and the
application of human exercise classification using pose estimation. Our previous
work [25] proposed a novel method named BodyMTS to classify human exercises
using video, human pose estimation and multivariate time series classification.
There is less work comparing sensors with video in real-world applications. In
this paper, we compare the performance of a sensor-based approach utilizing 5
IMUs with that of video from a single front-facing camera, on the same set of 54
participants, on two real-world datasets consisting of Military Press (MP) and
Rowing exercises. These are important S&C exercises and are widely used for
injury risk screening and rehabilitation [30]. Incorrect executions may lead to
musculoskeletal injuries and undermine the performance of athletes [1]. Hence,
correct detection of abnormal movements is crucial to avoid injuries and maxi-
mize performance.

The main requirements for an effective human exercise classification applica-
tion are [25]: accurate monitoring of body parts movement, correct classification
of deviations from normal movements, timely feedback to end users, simple data
capture using available smartphones and coverage of a wide range of S&C exer-
cises. Previous work [29] has shown that this task is difficult and has poor intra
and inter-rater accuracy in user studies with domain experts, with Kappa scores
for inter-rater agreement between 0.18–0.53, and intra-rater between 0.38–0.62.
Through discussions with domain experts, we established that an effective appli-
cation should achieve a minimum accuracy of 80% to be useful for end users.

Existing methods using IMUs involve pre-processing the raw data, creating
handcrafted features [18,20], and applying classical machine learning algorithms.
Handcrafted feature extraction is often tedious and time-consuming, requires
access to domain knowledge and is prone to cherry-pick features that only work
for a specific set of exercises. Deep learning methods [17] overcome this issue by
automatically constructing features during training, but still require expertise in
deep learning architectures along with hardware resources such as GPUs. Hence,
we take two approaches to feature extraction: (1) using lightweight packages such
as catch22 [13] and tsfresh [4] to automate the feature extraction from raw signals
and (2) using the raw time series data with time series classifiers, which implicitly
construct features inside the algorithm. For videos, we first extract multivariate
data using human pose estimation with OpenPose [3] to obtain (X,Y) location
coordinates of key body parts over all the frames of a video. Figure 1 shows data
captured with IMUs and video for the Military Press exercise. The top part shows
the Y-signal for 3 body parts for a total of 10 repetitions, while the bottom part
shows the X, Y, and Z signals of the magnetometer from an IMU worn on the
right arm for the same set of 10 repetitions. Our main contributions are:

– We compare 3 strategies for creating features from IMU data for human
exercise classification. We observe that directly classifying the raw signals
using multivariate time series classifiers outperforms the approach based on
handcrafted features by a margin of 10 and 4 percentage points in accuracy
for MP and Rowing respectively. Automatic feature extraction shows better
performance than handcrafted features.
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– We compare the performance of IMU and video for human exercise classifi-
cation. We observe that a single video-based approach outperforms a single
IMU-based approach by a margin of 5 percentage points accuracy for MP and
15 percentage points for Rowing. Additionally, we observe that a minimum
of 3 IMU devices are needed to outperform a single video for both exercises.

– We propose an ensemble model that combines the data modalities from IMU
and video, which outperforms either approach by a minimum of 2 percentage
points accuracy for both MP and Rowing. This leads to an accuracy of 93%
for MP and 87% for Rowing, using only a single IMU and a reduced-size
video. We discuss reasons why combining video and sensor data is beneficial,
in particular, the 2D video provides positional information, while the sensor
provides information on orientation and depth of movement.

– To support this paper we have made all our code and data available 1.

The rest of the paper is organized as follows. Section 2 presents an overview
of related work, Sect. 3 describes the data collection procedure, Sect. 4 describes
the data analysis and methodology for classification and Sect. 5 presents the
classification results using IMUs and video. Section 6 concludes and outlines
directions for future work and Sect.A discusses ethical implications of this work.

2 Related Work

This section describes the purpose of S&C exercises and provides an overview
of sensor-based and video-based data capture approaches.

2.1 S&C Exercise Classification

S&C exercises aim at improving the performance of human participants in terms
of strength, speed and agility, and they can be captured using sensor-based or
video-based techniques.

Wearable sensor-based approaches involve fitting Inertial Measurement Units
(IMUs) [18,19] on different parts of the body. This is followed by creating hand-
crafted features which are used in conjunction with a classical machine learning
model. Deep learning methods attempt to automate the process of feature extrac-
tion. CNN models work by stacking IMU signals into an image [17], whereas [28]
uses an attention mechanism to identify the important parts in a signal. Using
IMUs has its own limitations. First, the number of inertial sensors required and
their positions can vary from exercise to exercise [18,20,30]. Furthermore, sen-
sors require calibration and synchronization and may also hinder the movement
of the body and cause discomfort when used over longer time periods [11,30].

Video-based systems can be categorized into 3 types: 3D motion capture,
depth camera-based and 2D video camera. Though they are accurate, 3D motion
capture systems are expensive and require complex setups. In addition, fitting
multiple markers on the body may hinder the normal movement of the body [18].
1 https://github.com/mlgig/Video vs Shimmer ECML 2023.

https://github.com/mlgig/Video_vs_Shimmer_ECML_2023
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Microsoft Kinect is commonly used for depth camera-based systems [5,23,31].
These systems are less accurate and are affected by poor lighting, occlusion,
and clothing, and require high maintenance [18]. The third subcategory uses
video-based devices such as DSLR or smartphone cameras. Works based on
video rely on human pose estimation to track different body parts [16,25,26]
and have shown 2D videos to be a potential alternative to IMU sensors. The
video-based analysis also includes commercial software such as Dartfish [9] by
providing the option to analyze motion at a very low frame rate. However, these
are less accurate and require fitting body markers of a different colour to the
background.

2.2 Multivariate Time Series Classification (MTSC)

In multivariate time series classification tasks, the data is ordered and each
sample has more than one dimension. We focus on recent linear classifiers and
deep learning methods, which have been shown to achieve high accuracy with
minimal run-time and memory requirements [24,27].

Linear Classifiers. ROCKET [6] is a state-of-the-art algorithm for MTSC in
terms of accuracy and scalability. Two more extensions named MiniROCKET
[7] and MultiROCKET [27], have further improved this method. These classifiers
work by using a large number of random convolutional kernels which capture
different characteristics of a signal and hence do not require learning the kernel
weights as opposed to deep learning methods. These features are then classified
using a linear classifier such as Logistic or Ridge Regression.

Deep Learning Classifiers. Deep learning architectures based on Fully Con-
volutional Networks (FCN) and Resnet [10,24] have shown competitive perfor-
mance for MTSC, without suffering from high time and memory complexity.

3 Data Collection

Participants. 54 healthy volunteers (32 males and 22 females, age: 26 ± 5 years,
height: 1.73 ± 0.09 m, body mass: 72 ± 15 kg) were recruited for the study. Par-
ticipants were asked to complete multiple repetitions of the two exercises in this
study; the Military Press and Rowing exercises. In each case, the exercises were
performed under ’normal’ and ’induced’ conditions. In the ’normal’ condition the
exercise was performed with the correct biomechanical form and in the ’induced’
condition the exercise was purposefully performed with pre-determined devia-
tions from the normal form, assessed and confirmed in real-time by the movement
scientist. Please refer to these sources [25,26] for additional information on the
experiment protocol.

The data was collected using two video cameras and 5 Shimmer IMUs placed
on 5 different parts of the body. Two cameras (30 frames/sec with 720p reso-
lution) were set up in front and to the side of the participants. In this work,
we only use the video recordings from the front view camera which is a more
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common use case. The 5 IMUs with settings: sampling frequency of 51.2 Hz, tri-
axial accelerometer(±2 g), gyroscope (±500◦/s) and magnetometer (±1.9 Ga)
[20] were fitted on the participants at the following five locations: Left Wrist
(LW), Right Wrist (RW), Left Arm (LA), Right Arm (RA) and Back. The ori-
entation and locations of all the IMUs were consistent for all the participants.

Exercise Technique and Deviations. The induced forms were further sub-
categorized depending on the exercise.

3.1 Exercise Classes for Military Press (MP)

Normal (N): This class refers to the correct execution, involving lifting the bar
from shoulder level to above the head, fully extending the arms, and returning
it back to shoulder level with no arch in the back. The bar must be stable and
parallel to the ground throughout the execution. Asymmetrical (A): The bar
is lopsided and asymmetrical. Reduced Range (R): The bar is not brought
down completely to the shoulder level. Arch (Arch): The participant arches
their back during execution. Figure 2 shows these deviations using a single frame.

Fig. 2. Single frames from the Military Press exercise, depicting the induced deviations
for class A, Arch and R (left to right).

Fig. 3. Single frames for the Rowing exercise, depicting the induced deviations for class
A, Ext, R and RB (left to right).
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3.2 Exercise Classes for Rowing

Normal (N): This class refers to the correct execution, where the participant
begins by positioning themselves correctly, bending knees and leaning forward
from the waist. The execution starts by lifting the bar with fully extended arms
until it touches the sternum and bringing it back to the starting position. The
bar must be stable and parallel to the ground and the back should be straight.
Asymmetrical (A): The bar is lopsided and asymmetrical. Reduced Range
(R): The bar is not brought up completely until it touches the sternum. Ext: The
participant moves his/her back during execution. RB: The participant executes
with a rounded back. Figure 3 shows these deviations by depicting a single frame.

4 Data Analysis and Methods

This section presents the data pre-processing, features extraction and classifica-
tion models. We present the feature extraction for IMU data, followed by feature
extraction for video. We also provide a description of the train/test splits for
IMUs and video data.

4.1 IMU Data

We discuss three strategies to create features from IMU data. First, we directly
use the raw signal as a time series. Second, we use existing approaches to create
handcrafted features. Third, we use dedicated packages to automatically extract
features. Features extraction is performed after segmenting the full signal to
obtain individual repetitions.

Raw Signal as Multivariate Time Series. The raw signal from IMU records
data for 10 repetitions. Hence, we segment the time series to obtain signals for
individual repetitions. The Y signal of the magnetometer from the IMU placed on
the right arm is utilized to segment the signals. The time series obtained after this
step has variable length since the time taken to complete each repetition differs
from participant to participant. Further, current implementations of selected
time series classifiers cannot handle variable-length time series and therefore all
time series are re-sampled to a length of 161 (length of the longest time series).
This does not impact the performance as shown in the supplementary material.
Every single repetition constitutes a single sample for train/test data. The final
data D has a shape of D ∈ R

N×45×161, where N indicates the total samples.
Each sample denoted by xi in the data has a dimension of xi ∈ R

45×161, where
45 denotes the total number of time series (5 IMUs x 9 signals) and 161 is the
length of each time series.
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Handcrafted Features. Each of the 5 IMUs outputs 9 signals (X,Y,Z) for
each of the accelerometer, magnetometer and gyroscope. We follow the procedure
as described in [20] to create handcrafted features. Additionally, 5 signals were
created for each IMU: pitch, roll, yaw signal and vector magnitude of accelerom-
eter and gyroscope, giving a total of 70 signals (5 × (9 + 5)). For each repetition
signal, 18 handcrafted features that capture time and frequency domain charac-
teristics were created. Hence, we obtain the final data D ∈ R

N×1260, where N
is the total samples and 1260 represents the features extracted from 70 signals
with 18 features each for both MP and Rowing.

Auto Extracted Features. We use packages catch22 [13] and tsfresh [4] to
perform automatic feature extraction from a single repetition signal. These pack-
ages calculate a wide range of pre-defined metrics in order to capture the diverse
characteristics of a signal. They are straightforward to use and avoid the need for
domain knowledge and signal processing techniques. Catch22 captures 22 fea-
tures for each of the 45 signals (5 IMUs x 9 signals) giving a total of 990 tabular
features for MP and Rowing in the final dataset D ∈ R

N×990, where N indi-
cates the total samples. Similarly, tsfresh captures a large number of time series
characteristics by creating a large number of features. The final dataset D has
a shape of D ∈ R

N×15000 and D ∈ R
N×16000, for MP and Rowing respectively.

Both manual and automatic feature extraction are performed on the normalized
time series, as we observed that normalizing the time series leads to an increase
in accuracy.

4.2 Video Data

We follow the methodology presented in our previous work [25] to classify human
exercise from videos. OpenPose is used for human pose estimation to track the
key body parts, followed by a multivariate time series classifier. Each video
consists of a sequence of frames where each frame is considered a time step. Each
frame is fed to OpenPose which outputs coordinates (X,Y ) for 25 body parts.
We only use the 8 upper body parts most relevant to the target exercises but
also conduct experiments with the full 25 body parts. The time series obtained
from a single body part is denoted by bn = [(X,Y )1, (X,Y )2, (X,Y )3, ...(X,Y )T ]
where n indicates the nth body part and T is the length of the video clip.

Multivariate Time Series Data. Since each video records 10 repetitions
for each exercise execution, segmentation is necessary in order to obtain single
repetitions. Each repetition forms a single time series sample for training and
evaluating a classifier. We use peak detection to segment the time series as
mentioned in our previous work [25]. Similarly to the IMU case, every time series
obtained after this step has a variable length and therefore is re-sampled to a
length of 161. The final data is denoted by D ∈ R

N×16×161, where N indicates
the total samples. Each sample denoted by xi has a dimension of xi ∈ R

16×161,
where 16 indicates X and Y coordinates for 8 body parts and 161 is the length
of each time series.
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Auto Extracted Features. We use catch22 [13] and tsfresh [4] to perform
automatic feature extraction from each single repetition signal.

4.3 Train/Test Splits

We use 3 train/test splits in the ratio of 70/30 on the full data set to obtain
train and test data for both IMUs and video. Each split is done based on the
unique participant IDs to avoid leaking information into the test data. Train
data is further split in the ratio of 85/15 to create validation data to fine-tune
the hyperparameters. The validation data is merged back into the train data
before the final classification. The data is balanced across all the classes. Table 1
shows the number of samples across all classes for a single train/test split for
MP and Rowing respectively.

Table 1. Samples per class in train/test dataset for a single 70/30 split for MP (left)
and Rowing (right) for both IMU and video.

Class Train Test Total

N 370 150 520

A 340 150 490

R 366 155 521

Arch 350 140 490

Total 1426 595 2021

Class Train Test Total

N 360 160 520

A 362 150 512

Ext 340 130 470

R 380 150 530

RB 361 140 501

Total 1803 730 2533

4.4 Classification Models

We use tabular machine learning models to work with handcrafted and auto-
mated features. Informed by previous literature on feature extraction for IMU
data [18,20], we focus on Logistic Regression, Ridge Regression, Naive Bayes,
Random Forest and SVM as classifiers for tabular data. We select ROCKET,
MultiROCKET and deep learning models FCN and Resnet as recent accurate
and fast multivariate time series classifiers [2].

5 Empirical Evaluation

We present results on IMU data, video data and combinations using ensembles.
We report average accuracy over 3 train/test splits for all the results. We use the
sklearn library [21] to classify tabular data and sktime [12] to classify time series
data. All the experiments are performed using Python on an Ubuntu 18.04 sys-
tem (16GB RAM, Intel i7-4790 CPU @ 3.60GHz). The Supplementary Material2

2 https://github.com/mlgig/Video vs Shimmer ECML 2023/blob/master/
Supplementary material.pdf.

https://github.com/mlgig/Video_vs_Shimmer_ECML_2023/blob/master/Supplementary_material.pdf
https://github.com/mlgig/Video_vs_Shimmer_ECML_2023/blob/master/Supplementary_material.pdf
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presents further detailed results on leave-one-participant-out cross-validation,
demographic results, execution time, as well as the impact of normalization and
re-sampling length on the classification accuracy.

5.1 Accuracy Using IMUs

We present the classification results using 3 different strategies for creating fea-
tures from IMU data. For tabular features, we perform feature selection to reduce
overfitting and execution time. We use Lasso Regression (C=0.01) with L1
penalty for feature selection, where C is the regularization parameter. Logis-
tic Regression achieves the best performance followed by Ridge Regression and
SVM. These results suggest that linear classifiers are best suited for this prob-
lem. Hence we only present results using Logistic Regression here. We tune
hyperparameters, particularly regularization parameter C of Logistic Regression
using cross validation. We observed that Logistic Regression (LR) with C=0.01
achieves the highest accuracy (Table 3 presents results with Logistic Regression).

Table 2. Average accuracy on test data over 3 splits for selected multivariate time
series classifiers using IMU raw data as time series.

Classifier Acc MP Acc Rowing

FCN 0.86 0.77

ResNet 0.87 0.74

ROCKET 0.91 0.80

MultiROCKET 0.91 0.81

Table 2 presents the results using raw data and multivariate time series clas-
sifiers. ROCKET achieves the best performance with MultiROCKET having
similar accuracy for this problem. ROCKET has the added benefit that it can
also work with unnormalised data and it is faster during training and prediction,
so we select this classifier for the rest of the analysis. We analyse the average
accuracy using all 5 IMUs as well as combinations of IMUs using raw time series
with ROCKET as classifier. The goal is to select the minimum number of IMUs
needed to achieve the best performance for MP and Rowing. Table 3 presents the
average accuracy over 3 splits obtained using all IMUs whereas Table 4 presents
the average accuracy using different combinations of IMUs.

Results and Discussion: From Table 3 we observe that using raw data with
ROCKET achieves the highest accuracy when compared to the approaches based
on handcrafted and automated feature extraction. We tune hyperparameters
of ROCKET using the validation data, particularly the number-of-kernels and
observe no impact on the accuracy. The normalization flag is set to True here as
turning it off leads to a 4 percentage points drop in the accuracy. ROCKET can
easily be run on a single CPU machine without the need for much engineering
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Table 3. Average accuracy obtained on 5 IMUs data by using three feature selection
strategies. Logistic Regression (LR) is used for tabular data, whereas ROCKET is used
for time series classification.

Feature Type Acc MP Acc Rowing

Tabular

Handcrafted 0.80 0.76

Automated (catch22) 0.84 0.75

Automated (tsfresh) 0.88 0.80

Raw Signals

Time series 0.91 0.80

Table 4. Average accuracy obtained using the different placement of IMUs over three
train/test splits using raw data as time series with ROCKET as classifier.

Placement of IMU Acc MP Acc Rowing

5 IMUs 0.91 0.80

RightWrist 0.83 0.68

LeftWrist 0.84 0.70

RightArm 0.77 0.65

LeftArm 0.76 0.66

Back 0.71 0.71

LeftWrist + RightWrist 0.88 0.75

LeftWrist + RightWrist + Back 0.91 0.80

LeftArm + RightArm 0.82 0.70

LeftArm + RightArm + Back 0.86 0.78

effort (only 2 parameters to tune) and dedicated hardware. It is much faster than
using tsfresh or catch22 for feature extraction followed by classification. Table 4
presents the accuracy using different combinations of IMUs placed on different
parts of the body. Accuracy is lowest when using only a single sensor. Accuracy
starts to increase as more IMUs are included, for both MP and Rowing. We
observe that placing 1 IMU on each wrist and 1 at the back achieved the same
accuracy as using all 5 IMUs. The accuracy jumps from 0.83 to 0.88 moving
from one IMU placed on the right wrist to two IMUs placed on both wrists and
finally jumps to 0.91 when adding one more IMU at the back for MP. Similar
behaviour is observed for Rowing. This suggests that 3 IMUs are sufficient for
these exercises.

5.2 Accuracy Using Video

Here we present the results of classification using video as the data source. We
report the average accuracy over 3 train/test splits for MP and Rowing. We also
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Table 5. Average accuracy obtained by ROCKET using video as data source for MP
and Rowing over three train/test splits.

Feature Type Acc MP Acc Rowing

Tabular

Automated (catch22) 0.69 0.70

Automated (tsfresh) 0.77 0.77

Raw Signals

25 body parts 0.82 0.79

8 body parts 0.88 0.83

Elbow Pair [8] 0.83 0.82

present results using tabular classifiers with automated features for comparison
with the IMU based approach. For the raw data approach, we study the accuracy
when involving different body parts, e.g., all 25, the 8 upper body parts suggested
by domain experts and results using automated channel selection technique [8].
The normalization flag is set to False here as turning it on leads to a 4 percentage
points drop in accuracy. This is in contrast to the setting configured for IMUs.
We tune hyperparameters of ROCKET, particularly the number-of-kernels and
observe no impact on the accuracy. Table 5 presents the average accuracy using
these different approaches for classifying MP and Rowing exercises.

Results and Discussion: From Table 5 we observe that the average accuracy
achieved using raw time series is highest when using the 8 body parts suggested
by domain experts. Using automated features does not seem to work very well,
in this case, achieving accuracy below 80% for both exercises. Moreover, using
channel selection techniques leads to an improvement by 1 and 3 percentage
points in accuracy versus using the full 25 body parts.

5.3 IMU Versus Video

We compare IMU and video data for human exercise classification, using the
raw data approach for both IMU and video as it achieves the best performance.
We report the accuracy, the execution time and the storage space required.

Table 6 presents the results for both MP and Rowing exercises. We observe
that a minimum of 3 IMUs are required to achieve a higher accuracy than a
single video. A single video outperforms a single IMU for both exercises by a
minimum of 5 percentage points. Table 7 reports the real train/test time for
both approaches. This time includes time taken for data pre-processing and to
train/test the model. It also includes time to run pose estimation in case of video.
The IMUs approach takes the least amount of time to train/test as compared to
the video-based approach. For video, OpenPose extracts the multivariate time
series data. The total duration of all videos is 1 h 38 min for MP, whereas Open-
Pose took 1 h 12 min thus OpenPose can run faster than real-time, which is
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Table 6. Comparison of accuracy obtained using IMUs and video for MP and Rowing.

Data Source Acc MP Acc Rowing

Placement of IMUs

3 IMUs (Wrists and Back) 0.91 0.80

1 IMU (LeftWrist) 0.84 0.70

Video

25 body parts 0.82 0.79

8 body parts 0.88 0.83

Ensemble: video and IMUs

Video (8 body parts) + 3 IMUs 0.93 0.88

Video (8 body parts) + 1 IMU LeftWrist 0.93 0.87

important for getting fast predictions. Table 8 presents the storage consumption
for both approaches. We note savings in terms of storage space: 5 IMUs require 6
times more space than the time series obtained from videos. Even after selecting
the minimum number of sensors which is 3 in both exercises, the storage con-
sumption is more than 200 MB which is also higher as compared to using time
series from video. Our previous work in [25] explored the impact of video quality
such as resolution and bit rate on classification accuracy and demonstrated how
much video quality can be degraded without having a significant impact on the
accuracy, whilst saving storage space and processing power.

5.4 Combining IMU and Video

We create an ensemble model by combining individual models trained indepen-
dently on IMU and Video. For IMUs, we take the 3 sensors that achieved the
highest accuracy. When video is combined with just a single sensor, we take
the IMU placed on the left wrist, as it had the highest accuracy among single
sensors and it is the most common location for people to wear their smartwatch.
Probabilities are combined by averaging and the class with the highest average
probability is predicted for a sample during test time. Table 6 presents a com-
parison of different approaches, using ROCKET as a multivariate time series
classifier. From Table 6, we observe that an ensemble model achieves the best
average accuracy when compared to using any number of IMUs and a single
video-based approach. The accuracy for MP jumps by 2 percentage points when
transitioning from 5 IMUs to an ensemble approach, and by 5 percentage points
when moving from a single video to an ensemble. Similar results are observed
for Rowing. These results suggest that combining IMU and video modalities
enhances the performance of exercise classification. Combining video and IMU
data sources, with video providing 2D location coordinates for key anatomi-
cal landmarks and IMUs capturing acceleration and orientation of the body
parts, results in improved classification accuracy, as shown in this investigation



Wearable Sensors and Video Data Capture for Human Exercise Classification 325

Table 7. Average train/test time (minutes) obtained using IMUs and video as data
sources for MP over three train/test splits. We also report the average test (i.e., pre-
diction) time over a clip of 10 repetitions.

Data Type Training Time Test Time/

(minutes) Test time per clip of 10 reps

Sensor

3 IMUs (Wrists and Back) 8 6/0.10

Video

8 body parts 52 22/0.37

Ensemble: video and IMUs

Video (8 body parts) + 5 IMUs 60 29/0.50

Video (8 body parts) + 1 IMU 58 27/0.46

Table 8. Storage consumption using raw videos, IMUs and video as time series for
MP and Rowing exercises for the 54 participants in our study.

Data Size (MB) MP Rowing

5 IMUs 640 591

Raw Videos (720p) 813 1012

Videos as Time Series 97 114

(see supplementary material). This finding is consistent with previous work in
[14] that highlights the complementary nature of video and IMUs in enhancing
human pose estimation quality, while in this work we see a similar benefit for
human exercise classification.

6 Conclusion

We presented a comparison of IMU and video-based approaches for human exer-
cise classification on two real-world S&C exercises (Military Press and Rowing)
involving 54 participants. We compared different feature-creation strategies for
classification. The results show that an automated feature extraction approach
outperforms classification that is based on manually created features. Addition-
ally, directly using the raw time series data with multivariate time series classi-
fiers achieves the best performance for both IMU and video. While comparing
IMU and video-based approaches, we observed that using a single video signif-
icantly outperforms the accuracy obtained using a single IMU. Moreover, the
minimum number of IMUs required is not known in advance, for instance, 3
IMUs are required for MP to reach a reasonable accuracy. Next, we compared
the performance of an ensemble method combining both IMU and video with
the standalone approaches. We showed that an ensemble approach outperforms
either data modality deployed in isolation. The accuracy achieved was 93% and
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88% for MP and Rowing respectively. The criteria to select sensors or videos will
ultimately depend on the goal of the end user. For instance: the choice between
video and IMUs will depend on a combination of factors such as convenience
and levels of accuracy required for the specific application context.

We acknowledge the fact that the scenario that was tested in this research
does not accurately reflect real-world conditions. This does mean that we are
exposed to the risk that the induced deviation performances could be exagger-
ated, and therefore not reflective of the often very minor deviations that can
be observed in the real-world setting. However, we would argue that performing
exercises under induced deviation conditions, if done appropriately, is a very nec-
essary first step towards validating these exercise classification strategies in this
field. It would not be prudent to assume that this model could be generalised
to operate to the same level in real-world conditions. Having said that, the use
of conditioned datasets is a necessary first step in this kind of application and
provides the proof of concept evidence necessary to move onto the real-world
setting.

Acknowledgment. This work was funded by Science Foundation Ireland through
the Insight Centre for Data Analytics (12/RC/2289 P2) and VistaMilk SFI Research
Centre (SFI/16/RC/3835).

A Ethical Implications

Using videos for human exercise classification raises ethical implications that
need to be mitigated, prompting a discussion of potential ethical implications.

Data Collection. Participants in this study provided written consent and the
Human Research Ethics Committee of the university approved this study. All
experiments were conducted under the supervision of an expert physiotherapist.
The potential implications, in this case, can arise when the language used for
the consent form may not be native to all the participants. In our case, the
organizing authority or professional who was carrying out the data collection
made sure that all the participants have well understood the consent form and
the use of this data in the future.

Privacy and Confidentiality. This study uses videos which record participants
executing exercises. This poses obvious privacy challenges. A first step is to
blur the video to protect the participant’s identity. This work utilizes human
pose estimation to extract time series from video, thereby avoiding the need to
directly use the original video. By working with the extracted time series, it
largely safeguards the privacy and confidentiality of the participants.

Diversity of Representation. The participants considered in this study fall
into the age group of 20 to 46. Hence the results presented here may not gener-
alise for other age groups. Therefore the final use case will depend on the specific
target users, such as athletes competing in the Olympic games versus individuals
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with less intensive training goals. While there were slightly more male partici-
pants than female participants, it does not impact the conclusions drawn in this
work, as analysed in the supplementary material. However, this requires further
exploration to avoid any biases in the conclusion. Future studies should aim for
equal representation among participants in terms of age, sex, gender, race etc.,
from the start of the study.

Transparency and Feedback. The prediction of the model in this case outputs
whether the execution of the exercise was correct or incorrect. Deep learning-
based models and other posthoc explanation methods support saliency maps
which can be used to highlight the discriminative regions of the data that can
be mapped back to the original video thus providing more information about
the model decision to the participant.

The above list is not exhaustive and other inherent biases may appear because
of the chosen model and the way the data has been collected.
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Abstract. Detecting anomalies in time series has become increasingly
challenging as data collection technology develops, especially in real-
world communication services, which require contextual information for
precise prediction. To address this challenge, researchers usually use
time-series decomposition to reveal underlying patterns, e.g., trends and
seasonality. However, existing decomposition-based anomaly detectors do
not explicitly consider such contextual information, limiting their ability
to correctly detect contextual cases. This paper proposes Time-CAD , a
new context-aware deep time-series decomposition framework to detect
anomalies for a more practical scenario in real-world businesses. We ver-
ify the effectiveness of the novel design for integrating contextual infor-
mation into deep time-series decomposition through extensive experi-
ments on four real-world benchmarks, demonstrating improvements of
up to 46% in time-series aware F1 score on average.

Keywords: Time-Series Decomposition · Time-Series Anomaly
Detection · Context-Aware Decomposition · Deep Learning

1 Introduction

Time-series anomaly detection (TSAD) aims to identify data instances that
diverge significantly from the normal range. From a traditional perspective [16],
an anomaly is an observation that deviates from other observations, leading to
suspicion that it was generated by a different mechanism. For instance, the sud-
den increase in website traffic, which may be thrice the usual traffic, can be
attributed to various reasons such as competitor service breakdowns, natural
disasters, or elections.

Accurately detecting anomalies is critical for corrective measures and poten-
tial damage prevention in real-world businesses. As an example, engineers use
rich communication service traffic data to monitor the system status. Existing
anomaly detectors commonly assume specific periodic patterns of time-series
data; however, communication systems and businesses alike are often affected
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by unexpected events. Thus, we should adaptively detect anomalies based on
contextual information , such as days of the week and holidays, in such sys-
tems because what is normal on weekdays could be anomalous on weekends.
Considering the context when detecting anomalies in time series is essential for
precise prediction, which can be referred to as contextual anomaly detection [13].

Fig. 1. Conceptual idea of Time-CAD .

For contextual anomaly
detection, using time-
series decomposition has
several advantages over
raw time series. First,
directly extracting mean-
ingful features from high-
dimensional time series
is challenging due to
convoluted patterns. Sec-
ond, accurate decomposi-
tion reveals the underlying trends, seasonalities, and noises, which helps better
understand time series characteristics. Third, time-series decomposition elimi-
nates the need for an overly complex neural network often required when using
raw data; meanwhile, it improves the robustness of downstream tasks [31].

Nevertheless, since the existing methods of time-series decomposition rely
solely on statistical processes, the results are often overfitted to a particular time
series [33,34]. Furthermore, time series may not be decomposed appropriately as
they do not analyze the temporal components individually based on irregular
contextual information, such as spontaneous events and holidays, resulting in
a high percentage of false alarms. Motivated by these limitations, as depicted
in Fig. 1, we propose a novel Time-CAD framework designed specifically for
anomaly detection to address the complexities and irregularities within the real-
world time-series data by addressing the following challenges.

Challenge 1: How to properly integrate contextual information into time-
series decomposition? Previous decomposition methods are based on statistical
values such as the mean, median, or moving average. Consequently, they fail to
adapt to abrupt trends or seasonal changes caused by events and holidays. Here,
we inject sparse but informative variables—contextual information—to improve
the robustness of decomposition results and use a simple neural network to
increase the accuracy for a particular context.

Challenge 2: How to extract normal patterns from the time series so that the
residuals accurately represent potential anomalies? Even Prophet [30], the only
time-series decomposition method that considers auxiliary information, fails to
extract accurate residuals due to the post-processing of auxiliary information
after traditional decomposition. That is, the post-processing cannot explicitly
infer irregular temporal information. Thus, we directly inject the contextual
information into the decomposition process to accurately extract meaningful
residuals for anomaly detection.

To overcome these two challenges, the main contributions of this paper are
summarized as follows.
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– We propose Time-CAD , the first context-aware deep time-series decomposi-
tion model designed for anomaly detection, that is robust to aperiodic pat-
terns by explicitly considering contextual information.

– We show that Time-CAD produces flawless residuals and faithful normal
patterns using only a simple neural network, thus, reducing false alarms.

– We demonstrate that Time-CAD improves TSAD performance on several
real-world benchmarks through a series of experiments and verify its usability
as a detector-agnostic framework by incorporating it with other anomaly
detectors to enhance their detection accuracy.

2 Related Work

This section briefly discusses several TSAD methods based on the presence of
time-series decomposition. For extensive reviews, see recent surveys [4,9,11].

2.1 Anomaly Detection without Decomposition

Without decomposition, we can classify TSAD into statistical and machine learn-
ing approaches. The most popular statistical approaches are regressive mod-
els [7,24], such as AutoRegressive Integrated Moving Average (ARIMA). They
serve as a reference for effective statistical methods in time-series analysis.
ARIMA [5] calculates the deviation of the predicted values from the observed
values to solve the non-stationary problem in detecting anomalies after fitting
the model. However, these models are sensitive to abrupt changes in time series.

Alternatively, Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [12] and One-Class Support Vector Machine (OCSVM) [25] are the
popular machine learning methods. DBSCAN is a clustering-based anomaly
detection method that classifies the data points into a core, border, or anoma-
lous point. The anomalies are the data points that do not belong to any cluster.
OCSVM is a non-linear one-class classification method that leverages the SVM
trained on one particular class, i.e., normal instances. Anomalies will be deter-
mined if new samples do not belong to the class that is trained.

Recently, many studies [27,36,39,41] have shown the superiority of deep learn-
ing for TSAD over traditional machine learning algorithms. Among several
techniques [9], reconstruction-based [15,40] models are the most well-established
approach and have consistently reported state-of-the-art performance. Donut [35],
OmniAnomaly [29], and InterFusion [20] commonly adopted VAE-based mod-
els with additional mechanisms, such as Markov Chain Monte Carlo imputa-
tion, to improve detection accuracy. Similarly, USAD [2] and RANSynCoders [1]
also adopted reconstruction-based models but with more simple architectures to
enhance training and inference efficiency. To increase the detection performance
with more learning capability on raw multivariate time series, more recent stud-
ies [32,36] also proposed complex Transformer-based architectures.

Nevertheless, we argue that the overly complex neural architectures are
unnecessary if we use time-series decomposition together in TSAD, as demon-
strated by Time-CAD using simple reconstruction-based autoencoder models.
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2.2 Anomaly Detection with Decomposition

Methods in this family mostly conduct time-series decomposition before anomaly
detection. Twitter [17] developed a Seasonal Hybrid Extreme Studentized Devi-
ate (S-H-ESD) algorithm. It uses robust statistics of median absolute deviation
and generalized extreme Studentized deviate test after the decomposition pro-
cess to detect anomalies. However, S-H-ESD has low anomaly detection quality
in time series with high frequency, abrupt drop, and flat characteristics [33,34].
At Facebook [30], time-series forecasting was performed through the model fit-
ting with trends, seasonalities, holidays, and residuals as the results from time-
series decomposition. Likewise, Microsoft [23] proposed an anomaly detection
method that decomposes the time series and extracts spectral residuals using
the Fourier transform-based algorithm. Lately, Alibaba [38] proposed a time-
frequency analysis-based TSAD model by utilizing both time and frequency
domains with decomposition and augmentation mechanisms to improve perfor-
mance and interpretability.

Still, these studies heavily depend on statistical decomposition methods; thus,
they can easily overfit a specific time-series dataset. Besides, the decomposition
will not accurately work because temporal components that should be addressed
differently—sporadic contextual information—are not considered, leading to a
high rate of false alarms.

3 The Time-CAD Framework

This section presents the problem definition and details of Time-series anomaly
detection with Context-Aware Deep decomposition. Hence, Time-CAD .

3.1 Problem Definition

Time-Series Decomposition. Let X = {x1,x2, . . . ,xN} ∈ R
N×M be a time

series of length N and D(xt) be a decomposition algorithm, where M is the
number of variables1 (or features). Thus, we denote the values at timestamp t as
xt = {x1

t , x
2
t , . . . , x

M
t }. Since xt can be expressed by a combination of trend-cycle

τt, seasonality st, and residual rt components, we then have D(xt) = τt + st + rt

or D(xt) = τt ×st ×rt for additive or multiplicative decomposition, respectively.

Time-Series Anomaly Detection (TSAD). Let Wt = {xt−w+1, . . . ,xt−1,
xt} be a sliding window of length w at time t. Thus, we reformulate X as a
sequence of overlapping windows W = {W1,W2, . . . , WN−w+1} used to train a
TSAD model gφ. The goal is to assign an anomaly label yt ∈ {0, 1} for each test
data point x̂t ∈ Ŵt, where Ŵt /∈ W, based on anomaly scores At. If At exceeds
a predefined threshold δ, yt = 1; otherwise 0.

1 A univariate time series is a special case of a multivariate time series when M = 1.



334 Y. Nam et al.

TSAD with Time-Series Decomposition. Given a set of windows W, we
perform the time-series decomposition D(Wt) to obtain τt, st, and rt for each
window Wt ∈ W. Then, we input the residual component rt extracted from the
window Wt to the TSAD model gφ. Consequently, the model gφ computes the
anomaly scores At of all residuals rt.

Fig. 2. Overview of the Time-CAD framework.

3.2 Overall Framework

Figure 2 illustrates the overall Time-CAD framework consisting of two phases:
context-aware deep decomposition and anomaly detection.

3.3 Phase 1: Context-Aware Deep Decomposition

Fig. 3. Illustration of context-aware deep decomposi-
tion process (Phase 1).

As in Fig. 3, we train a neu-
ral network to extract nor-
mal patterns of time series,
i.e., the trend and season-
ality. Then, only the actual
remainders or noises are left
as the residual, which is the
main focus of this process.

In this work, we employ
the STL [10] algorithm as
D(Wt) to initially decom-
pose time series into τt+st+
rt. Since we will use only normal patterns xn

t to train a decomposition model
fθ, xn

t = τt + st. In particular, we use a Gated Recurrent Unit (GRU) [8]-
based autoencoder as the decomposition model fθ. The output of fθ is the
reconstructed normal pattern xn

t

′
. Thus, fθ minimizes the reconstruction errors

between the decomposed time-series normal patterns xn
t and their reconstructed

versions xn
t

′
with loss Lθ = ‖xn

t − xn
t

′‖2.
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Algorithm 1. Training Algorithm of Time-CAD
Input: Normal windows dataset W = {W1, · · · , WT }, contextual information η, hyper-

parameter λt

Output: Trained fθ, gφ

1: θ, φ ← initialize weights;
2: /* train deep decomposition model */
3: for epoch = 1 to epochsdecomposition do
4: for t = 1 to t = T do
5: τt ← trend component of D(Wt);
6: st ← seasonal component of D(Wt);
7: /* reconstruct normal pattern */

8: W n
t

′ ← fθ(τt + st);

9: Lθ ← ‖W n
t − W n

t

′‖2;
10: θ ← update weights using Lθ;
11: rt ← Ψ(Wt − fθ(τt + st) + λt · ηt);
12: end for
13: end for
14: /* train anomaly detection model */
15: for epoch = 1 to epochsdetection do
16: for t = 1 to t = T do
17: rt

′ ← gφ(rt);

18: Lφ ← ‖rt − rt
′‖2;

19: φ ← update weights using Lφ;
20: end for
21: end for
22: return fθ, gφ

After training the decomposition model fθ, we remove the normal pattern
xn

t

′
from the original time series xt. Here, we use temporal contextual informa-

tion to regulate the residuals so that the algorithm recognizes the contextual
information. Note that other contextual information (e.g., sensor location) can
also be used in this framework depending on the specific application domains.
The temporal contextual information includes whether the timestamp is a week-
end, holiday, day before holiday, and specific event. Formally, the contextual
information vector ηt = [Z(t);1(t ∈ H)], where Z(t) is the seasonal informa-
tion including the hour, month, and year, H is the list of holidays. For each
time t, we can additionally control λt depending on the requirements of each
application domain. λt · ηt = λt · [Z(t);1(t ∈ H)] ∀t ∈ {1, . . . , N}, where λt is
the hyperparameter denoting the degree of contextual information. Finally, we
apply Wavelet transform to remove trifling signal noises. As a result, the final
remaining residual is formulated by

rt = Ψ(xt − fθ(τt + st) + λt · ηt). (1)

Notably, thanks to non-linear mapping, we find that our context-aware deep
time-series decomposition is more robust and reliable than existing decom-
position without deep learning. That is, Ψ(xt − fθ(τt + st) + λt · ηt) is better
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Algorithm 2. Inference Steps of Time-CAD

Input: Test windows dataset ̂W = {̂W1, . . . , ̂WT̂ }, contextual information η̂, hyperpa-
rameter λt, threshold δ

Output: Labels y : {y1, . . . , yT̂ }
1: /* deep decomposition model */
2: for t = 1 to T̂ do
3: τ̂t ← trend component of D(̂Wt);

4: ŝt ← seasonal component of D(̂Wt);
5: r̂t ← Ψ(Wt − f∗

θ (τ̂t + ŝt) + λt · η̂t);
6: end for
7: /* anomaly detection model */
8: for t = 1 to T̂ do
9: r̂t

′ ← gφ∗(r̂t);

10: At ← ‖r̂t − r̂t
′‖2;

11: if At > δ then
12: yt ← 1 /* identify as an anomalous value */
13: else
14: yt ← 0 /* identify as a normal value */
15: end if
16: end for
17: return y : {y1, · · · , yT̂ }

than Ψ(xt − (τt + st) + λt · ηt) because the trend τt and seasonality st initially
extracted by the STL decomposition has the following limitation. While the
STL decomposition cannot ideally extract the trend and seasonality when the
raw time series has noises and potential contamination of anomalies in the train-
ing data, our model fθ eliminates the noise and potential contamination by the
denoising autoencoder, resulting in a more robust normal pattern. As in Fig. 6,
we empirically verify the effectiveness of the proposed deep decomposition model.

Lines 3–13 of Algorithm 1 and Lines 2–6 of Algorithm 2 summarize the
process of this phase.

3.4 Phase 2: Time-Series Anomaly Detection

In this phase, we use the derived residuals, Eq. (1) in Phase 1 (§3.3), as the input
features for an anomaly detection model. Here, we train the TSAD model gφ to
reconstruct the residuals of normal cases. If the residuals of anomalous instances
are input to the detection model, the model will give high reconstruction errors.
We later use these reconstruction errors as anomaly scores At. Figure 4 visualizes
the process of this phase.

In this work, we use a bidirectional GRU autoencoder network [26] as the
anomaly detection model gφ. The input is fed with the overlapping sliding
window Wt ∈ W, where Wt = {rt−w+1, . . . , rt−1, rt}. Accordingly, we train
the anomaly detection model gφ by minimizing the reconstruction loss Lφ =
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‖rt − rt
′‖2 between the original rt and reconstructed residuals rt

′
. During the

inference, the anomaly score At is computed by the reconstruction errors. Hence,
At = ‖r̂t − r̂t

′‖2, where r̂t is an unseen residual of a new time series and r̂t

′
is a

reconstructed residual. If the anomaly score At at time t is greater than a prede-
fined threshold δ, it is determined as an anomaly (i.e., 1); otherwise normal (i.e.,
0). Although we use simple bidirectional GRU autoencoders in Time-CAD , any
other architectures or models can also be used.

Fig. 4. Illustration of time-series anomaly detection pro-
cess (Phase 2).

Ideally, when a time-
series value xt is signif-
icantly diverse from the
learned normal patterns,
the detection model should
correctly identify it as an
anomaly. To achieve this,
unlike previous studies,
we thus use the residual
rt as the input to the
anomaly detection model
instead of the raw time
series. The underlying reason is that the residual—a remainder of the de-trend
and de-seasonality process—is associated with abnormality or noise. Therefore,
the model can detect the anomalies with much simpler input, yet achieve higher
accuracy. Lines 15–21 of Algorithm 1 and Lines 8–16 of Algorithm 2 outline the
process of this phase.

4 Evaluation

In this section, we design the experiments to answer the following questions:

Q1 How well Time-CAD performs TSAD compared with baseline methods?
Q2 How effective is the context-aware deep decomposition?
Q3 Is Time-CAD feasible to be deployed in production?

The source code is available at https://github.com/kaist-dmlab/Time-CAD.

4.1 Experimental Setup

Data Description. As summarized in Table 1, we use four real-world bench-
marks containing seven dataset entities to comprehensively evaluate the anomaly
detection performance on diverse businesses and industries. KPI2 is a single-
entity key performance indicator dataset used in a competition. It measures the
quality of Internet services. Energy3 benchmark measures the health status of
power equipment. This benchmark has two datasets of the different lengths and

2 https://github.com/NetManAIOps/KPI-Anomaly-Detection.
3 https://aihub.or.kr/aihubdata/data/list.do.

https://github.com/kaist-dmlab/Time-CAD
https://github.com/NetManAIOps/KPI-Anomaly-Detection
https://aihub.or.kr/aihubdata/data/list.do
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Table 1. Benchmark statistics.

Datasets Collection Date # Timestamp # Train # Test Entity×Dim. # Anomaly

(DD.MM.YYYY)

RCS 01.02.2021 – 01.04.2022 34,902 21,600 13,302 3 × 8 160 (0.46%)

KPI 31.07.2017 – 30.10.2017 111,370 66,822 44,548 1 × 1 1,102 (0.99%)

Energy 13.11.2020 – 16.12.2020 47,003 41,654 5,349 2 × 32 2,772 (5.90%)

IoT-Modbus 01.04.2019 – 25.04.2019 51,106 15,332 35,774 1 × 4 16,106 (31.51%)

is collected from 450 facilities on a minute-interval basis for 30 d. Each instance
in the test set is labeled with normal, caution, or warning status. IoT-Modbus4

is a public single-entity benchmark from an Internet of Things system. The data
is collected from realistic and large-scale networks having four features indicat-
ing Modbus function code: an input register, a discrete value, a holding register,
and a coil. Anomalous labels are DoS, DDoS, and backdoor attacks [22]. RCS is
a private benchmark complied by a cloud operation group at a mobile business
company measuring rich communication service traffic records, e.g., the number
of sent and received text messages. This benchmark consists of three datasets of
the same lengths and is collected every ten minutes.

Evaluation Metric and Threshold Setting. We adopt time-series aware
precision-recall metrics [18], TaPR, specifically designed for TSAD tasks to
reflect the feature of a series of instances. Since the conventional point-wise
metrics overlook the characteristics of a series of instances, they suffer from a
scarcity of evaluating the variety of the detected anomalies. At the same time, the
widely-used point-adjust metric suffers from overestimation issues [1,15]. There-
fore, we assess the performance with TaPR and the corresponding F1 scores:
TaF1.

To identify anomalies during testing, we enumerate 1, 000 thresholds δ dis-
tributed uniformly from the minimum to the maximum of the anomaly scores
At for all timestamps t in the test data to avoid highly relying on the threshold
policy [28,37]. Moreover, in practice, it is more important to have an excellent F1

metric at a certain threshold than a generally good result [14]. Thus, we report
the best TaF1 based on the optimal threshold of each model.

Comparison Baselines. We compare Time-CAD to both traditional and
recent state-of-the-art methods with and without time-series decomposition as
follows.

Traditional Methods.
1. Local Outlier Factor (LOF) [6] is an unsupervised outlier detector that mea-

sures the local deviation of the density of a given sample to its neighbors.
2. Isolation Forest (ISF) [21] is a well-known anomaly detection algorithm that

works on the principle of isolating anomalies using tree-based structures.

4 https://research.unsw.edu.au/projects/toniot-datasets.

https://research.unsw.edu.au/projects/toniot-datasets
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Table 2. Performance comparison between anomaly detection models in the best TaF1

with the highest scores highlighted in bold.

Datasets RCS-1 RCS-2 RCS-3 KPI Energy-1 Energy-2 IoT-Modbus Avg. ↑ Rank ↓
Non-Decomposition

LOF 0.474 (±0.00) 0.422 (±0.00) 0.434 (±0.00) 0.177 (±0.00) 0.701 (±0.00) 0.973 (±0.00) 0.701 (±0.00) 0.555 12

ISF 0.614 (±0.00) 0.745 (±0.00) 0.458 (±0.00) 0.823 (±0.00) 0.809 (±0.00) 0.975 (±0.00) 0.642 (±0.00) 0.724 9

OCSVM 0.619 (±0.00) 0.292 (±0.00) 0.562 (±0.00) 0.531 (±0.00) 0.954 (±0.00) 0.946 (±0.00) 0.690 (±0.00) 0.656 10

AE 0.472 (±0.08) 0.583 (±0.10) 0.435 (±0.02) 0.861 (±0.00) 0.954 (±0.00) 0.976 (±0.00) 0.894 (±0.00) 0.739 8

MS-RNN 0.514 (±0.02) 0.740 (±0.01) 0.484 (±0.01) 0.915 (±0.01) 0.954 (±0.00) 0.979 (±0.01) 0.826 (±0.05) 0.773 6

OmniAnomaly 0.503 (±0.00) 0.710 (±0.01) 0.922 (±0.00) 0.892 (±0.01) 0.950 (±0.00) 0.980 (±0.00) 0.762 (±0.01) 0.774 4

RANSynCoders 0.435 (±0.01) 0.613 (±0.01) 0.425 (±0.01) 0.227 (±0.03) 0.914 (±0.01) 0.986 (±0.01) 0.987 (±0.01) 0.655 11

TranAD 0.461 (±0.02) 0.941 (±0.00) 0.544 (±0.11) 0.934 (±0.04) 0.953 (±0.00) 0.915 (±0.06) 0.664 (±0.01) 0.773 5

Decomposition

AE-STL 0.867 (±0.02) 0.885 (±0.02) 0.911 (±0.03) 0.922 (±0.02) 0.936 (±0.02) 0.987 (±0.01) 0.894 (±0.00) 0.915 2

SR-CNN 0.547 (±0.00) 0.733 (±0.00) 0.594 (±0.00) 0.488 (±0.00) 0.952 (±0.00) 0.959 (±0.00) 0.977 (±0.00) 0.750 7

TFAD 0.539 (±0.02) 0.632 (±0.00) 0.762 (±0.11) 0.854 (±0.04) 0.956 (±0.00) 0.955 (±0.07) 0.886 (±0.01) 0.798 3

Time-CAD 0.944(±0.00) 0.955(±0.00) 0.944(±0.00) 0.937(±0.00) 0.961(±0.01) 0.986 (±0.00) 0.957 (±0.00) 0.955 1

3. OCSVM [25] is an unsupervised outlier detection algorithm based on SVM.
It maximizes the margin between the origin and the normality and defines
the decision boundary as the hyper-plane that determines the margin.

4. Autoencoder (AE) [3] is a simple neural architecture that uses the symmetri-
cal encoder and decoder network for anomaly detection. Anomaly scores are
the differences between the inputs and reconstructed outputs.

5. Autoencoder with STL decomposition (AE-STL) [10] is a combination of the
AE and the traditional time-series decomposition method, STL. The residuals
from STL are input to AE instead of the raw time series.

State-of-the-art Models.
6. Modified-RNN (MS-RNN) [19] is a modified version of an anomaly detector

that exploits sparsely-connected recurrent neural networks (RNNs) and an
ensemble of sequence-to-sequence AE for multi-resolution learning.

7. SR-CNN [23] is a time-series decomposition-based anomaly detector. It uses
spectral residual to extract saliency maps and use them as input for convo-
lutional neural networks to detect anomalies.

8. OmniAnomaly [29] is a GRU-based VAE that captures complex tempo-
ral dependency between multivariate time series and maps observations to
stochastic variables.

9. RANSynCoders [1] utilizes pre-trained AE to extract primary frequencies
across the signals on the latent representation for synchronizing time series.

10. TranAD [32] is a Transformer-based model that uses attention-based
sequence encoders to perform inference with broader temporal trends in
time series. It uses focus score-based self-conditioning to enable robust multi-
modal feature extraction and adversarial training to gain stability.

11. TFAD [38] is a time-frequency analysis-based anomaly detection model that
utilizes both time and frequency domains to improve performance in anomaly
detection. The model incorporates time series decomposition and data aug-
mentation mechanisms to enhance performance and interpretability.
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Table 3. Performance comparison between the different decomposition methods in the
best TaF1 with the highest scores highlighted in bold.

Datasets Time-CAD MS-RNN OmniAnomaly

w/CAD w/o CAD w/o DNN w/CAD w/o CAD w/CAD w/o CAD

RCS-1 0.944(±0.00) 0.633 (±0.00) 0.871 (±0.00) 0.789(±0.00) 0.514 (±0.09) 0.939(±0.00) 0.503 (±0.00)

RCS-2 0.955(±0.00) 0.710 (±0.01) 0.886 (±0.00) 0.829(±0.00) 0.740 (±0.01) 0.949(±0.01) 0.710 (±0.01)

RCS-3 0.944(±0.00) 0.622 (±0.00) 0.858 (±0.01) 0.785(±0.01) 0.484 (±0.01) 0.938(±0.01) 0.662 (±0.00)

KPI 0.937(±0.00) 0.905 (±0.00) 0.936 (±0.01) 0.916(±0.01) 0.915 (±0.01) 0.915(±0.01) 0.892 (±0.01)

Energy-1 0.961(±0.01) 0.953 (±0.00) 0.953 (±0.01) 0.927 (±0.00) 0.954(±0.00) 0.953(±0.00) 0.950 (±0.00)

Energy-2 0.986 (±0.00) 0.989(±0.00) 0.986 (±0.00) 0.980(±0.00) 0.979 (±0.01) 0.986(±0.00) 0.980 (±0.00)

IoT-Modbus 0.957(±0.00) 0.762 (±0.00) 0.894 (±0.01) 0.841(±0.00) 0.826 (±0.05) 0.942(±0.00) 0.762 (±0.01)

4.2 Performance Comparison

Anomaly Detection Performance (Q1). Table 2 presents the overall per-
formance in the best TaF1 metric. We run each model three times to ensure
reproducibility and avoid occasional results, then report the average and stan-
dard deviation. Time-CAD demonstrates state-of-the-art performance in most
datasets except for Energy and IoT-Modbus. On average, Time-CAD outper-
forms all baselines by a significant margin (up to 46%), especially on the RCS
datasets expected to be strongly affected by the temporal contextual conditions.
On the other hand, as Energy and IoT-Modbus datasets are machinery data
that do not directly associate with people, they show a regular pattern regard-
less of the temporal contexts. Thus, we conjecture that other types of contextual
information, such as spatial or environmental information, will further enhance
the detection performance on Energy and IoT-Modbus datasets.

Ablation and Case Study (Q2). To examine the contributions of the context-
aware deep decomposition (CAD), we perform ablation studies on both the pro-
posed Time-CAD and the baselines. As presented in Table 3, w/CAD denotes the
presence of context-aware deep decomposition, while w/o CAD is the absence.
Likewise, w/o DNN indicates the context-aware decomposition but without the
deep neural network (DNN) model fθ designed to evaluate the effect of DNN in
the decomposition process. According to the results, it is evident that w/CAD
performs significantly better than w/o CAD and w/o DNN counterparts in most
datasets. Therefore, we ascertain that Time-CAD can significantly boost the
TSAD performance of any anomaly detectors, demonstrating its high usability
as a model-agnostic framework.

Additionally, Fig. 5 depicts anomaly detection results where red lines indicate
the ground truths and the blue lines are prediction results on RCS-1 (Fig. 5a)
and RCS-3 (Fig. 5b) datasets. For each dataset, the upper plot shows anomaly
detection without Time-CAD , and the lower plot shows anomaly detection with
Time-CAD . In RCS-1, the upper plot illustrates many false positives while the
lower one adequately detects anomalies. In contrast, for RCS-3, the upper plot
has many false negatives, while the lower sufficiently detects anomalies, albeit
with a few errors.
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Fig. 5. Visualization of labels (red) and predicted anomalies (blue).

Lastly, we visually compare the extracted residual components between
the different decomposition methods. As in Fig. 6, we consider a festival from
September 20th to 22nd as a case study. The first plot exhibits different patterns
of the RCS time series, yet within normal ranges. Unfortunately, without the
contextual information and deep neural network, the second plot shows that the
original STL decomposition cannot decompose the valid residual components,
causing an increase in false positives when detecting anomalies. In the third
plot, the residual components during the festival time are relieved thanks to
the contextual information. Still, it has noises that may adversely affect detec-
tion performance. Finally, the fourth plot demonstrates the advantage of Time-
CAD in precisely extracting normal patterns during the distinct period, resulting
in meaningful residuals for anomaly detection. Compared to the without DNN
counterpart, the results confirm that the deep decomposition yields more ideal
residuals by robustly detaching normal patterns, thus, mitigating false positives.

4.3 Deployment Feasibility

As an answer to Q3, we study the feasibility of Time-CAD in detection quality
and computation time aspects on the real-world RCS datasets that contain
several business metrics.

Detection Quality. After the offline training on about 5-month multivariate
time-series datasets, Time-CAD detects nearly all anomalies in 3-month testing
data with a strong performance of 0.948 in TaF1 on average across three datasets.

Computation Time. We run the inference phase on a server equipped with
an NVIDIA GeForce GTX 3090Ti. Time-CAD takes only about 69 s for each
3-month-long dataset that contains about 13K instances, meaning that it takes
only 5 milliseconds for a single timestamp. Hence, Time-CAD is feasible to
detect anomalies in a real-time environment.
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Fig. 6. Comparison of the residual components between the different decomposition
methods on RCS dataset.

System Prototype. As a production prototype, we make a pilot deployment
with the trained Time-CAD detection model to detect anomalies in an online
batch-based web application5 by connecting it with a real-time database. Once
the time-series instances are satisfied with a predefined window size, the system
will run the detection model and return the anomaly scores for all timestamps
along with the original time series to facilitate users for a quick inspection and
interpretation in which locations potential anomalies have occurred.

5 Conclusion

This paper introduces a novel context-aware deep time-series decomposition
framework for anomaly detection called Time-CAD . With the collaboration of
5 https://time-cad.web.app.

https://time-cad.web.app
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deep learning and contextual information, we show that Time-CAD accurately
extracts a clear periodic pattern by enhancing the properties of each component
in a time series, leading to an improvement in anomaly detection performance
by up to 46%. Empirically, the proposed framework demonstrates its superior-
ity over state-of-the-art methods on four benchmarks in the time-series aware
F1 metric. We further verify that context-aware deep decomposition explicitly
adapts to aperiodic patterns by using contextual information through a series
of ablation studies. Finally, we expect the proposed Time-CAD framework to
advance the development of anomaly detectors with different types of contextual
information, which is crucial for various application domains and businesses.
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Abstract. Point clouds are often perceived as irregular and disorderly
data in Internet of Things (IoT) applications. However, these point
clouds possess implicit order and context information due to the laser
arrangement and sequential scanning process, which are often overlooked.
In this paper, we propose a novel method called Frustum 3DNet (F-
3DNet) for 3D object detection from point clouds in IoT. Our approach
utilizes the inner order of point clouds to construct a rearranged feature
matrix and generate a pseudo panorama from LiDAR data. Based on the
pseudo image, we extend 2D region proposals to 3D space and obtain
frustum regions of interest. For each frustum, we generate a sequence
of small frustums by slicing over distance, and introduce a novel local
context feature extraction module to incorporate context information.
The extracted context features are then concatenated with frustum fea-
tures and fed to a fully convolutional network (FCN), followed by a
classifier and a regressor. We further refine and fuse the output with
RGB input to improve the outcome. Ablation studies verify the effec-
tiveness of our proposed components. Experimental results on KITTI
and nuScenes datasets demonstrate that F-3DNet outperforms existing
methods in IoT.

Keywords: Point Clouds · 3D Object Detection

1 Introduction

With the increasing resolution and decreasing cost of LiDAR in IoT, there is a
growing interest in utilizing this technology for applications that require precise
environmental perception, such as autonomous driving, simultaneous localization
and mapping, and others. These applications typically capture data using laser
sensors on a mobile platform, enabling them to detect the environment from
a fixed perspective [4]. However, due to the limitations of LiDAR installation
location, only a partial surface facing the laser sensors can be measured, which
poses challenges to point cloud utilization, especially in 3D object detection. This
task is a hot-spot among point cloud applications as it requires the estimation of
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Fig. 1. Pseudo panorama generated from raw data. Ring view indicates a cylinder
surface surrounding LiDAR, then a pseudo panorama is obtained by spreading it.

oriented 3D bounding boxes that enclose full targets. In this paper, we propose a
workflow that focuses on 3D object detection using point cloud data, while also
exploring the benefits of fusing RGB images to improve model performance.

Extensive research has been conducted on 3D object detection [15]. How-
ever, most of these studies assume that point clouds are discrete, disordered,
and sparse. This poses a challenge for popular detection models used for RGB
images, which cannot be directly applied to 3D object detection. To overcome
this issue, researchers have attempted to transform 3D expressions to 2D by
generating a grid map [17] or projecting point clouds to the image plane [2,6]
through cross-sensor calibration. Although 2D convolutional operations can be
applied using this approach, valuable 3D information is lost due to dimension
reduction. Consequently, in the past three years, networks have been developed
to extract features directly from 3D space. Some methods convert sparse point
clouds to new 3D representations, such as VoxelNet [18] and SECOND [16].
PointNet and PointNet++ are typical methods used to process LiDAR raw data
directly. However, all the aforementioned methods assume that the point cloud
is disordered throughout the data processing.

LiDAR point clouds can be sparse and discrete due to equipment limitations.
However, they are naturally ordered based on their work mode. For instance,
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in the case of Velodyne-64E, LiDAR has a fixed laser head arrangement and
constant spinning speed, resulting in lasers sampling points in a natural order.
As depicted in Fig. 1, projecting point cloud on a cylindrical surface surrounding
LiDAR generates a panorama-like image. This work mode ensures that all points
have neighbors and context information. Inspired by this idea, we propose a new
network for 3D object detection. Our novelties are summarized as follows: (1) We
introduce a novel LiDAR data expression form that rearranges point cloud based
on its implicit order. Pseudo-panorama is generated based on this new form
and used for 2D region proposal generation without the need for cross-sensor
calibration. (2) We propose a novel local context feature extractor that takes
advantage of our new LiDAR data expression form. It explores 8-neighborhood
features for each point and enriches local contextual information to the main
workflow. (3) We propose a novel method called Frustum 3DNet (F-3DNet)
for 3D object detection. As far as we know, F-3DNet is the first deep learning
architecture that takes point cloud inner order into account in the 3D object
detection area. RGB input can also be fused into our detection framework for
further performance improvement.

2 LiDAR Frustum: Frustum 3DNet (F-3DNet)

To address detection tasks in driving scenes using raw data, we propose a new
method called Frustum 3DNet (F-3DNet) that fully utilizes LiDAR informa-
tion. As LiDAR rotates at a certain speed, it measures distance and intensity
simultaneously. Sampling with time series creates inner context in LiDAR data,
enabling the construction of a more comprehensive representation of the scene.

Fig. 2. Context feature extraction module. For each ph,w in point cloud, 8 neighbor-
hood point set is transferred to central point coordinates, then input to multilayer
perceptron and max pooling for context feature extraction.
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2.1 LiDAR Context Information

In the first step, we rearrange LiDAR data to create a feature matrix with spatial
relationships and low complexity. We use the Velodyne HDL-64 S2 LiDAR sensor
as an example, which is widely used in autonomous driving and is included in the
KITTI dataset [5]. It contains 64 laser heads, which are divided into two blocks
with 32 lasers each. All laser heads are mounted on a spinning base, providing a
360◦ horizontal field of view and a 26.8◦ vertical field of view. The original raw
output data of the LiDAR is arranged in a spherical coordinate system, consisting
mainly of the rotation angle θ, the measurement distance d, and the radiation
intensity I. The calibration file provided by the manufacturer also includes the
pitch angle φ of each laser head. Converting (d, θ, φ) in the spherical coordinate
system to (x, y, z) in the Cartesian coordinate system results in approximately
1.33 million sampling points detected per second. Therefore, it is essential to
rearrange the 3D LiDAR data before processing.

Fig. 3. Point cloud feature matrix. ScanID indicates laser head ID of LiDAR, while
Angle is discretized by preset angle resolution. In this way, clear neighbor relationship
is constructed and a continuous representation of point cloud is obtained. Here, H and
W indicate ScanID and Angle numbers, while N represents feature dimension.

To store LiDAR data, we construct a matrix where each vector contains all
the information of a sampling point, including its coordinates (x, y, z) and inten-
sity I. We use the scan line (ScanID) to which it belongs and the corresponding
spinning angle (θ) as references for the matrix width and height, as shown in
Fig. 3. We convert a point in spherical coordinates to Cartesian coordinates using
Eq. 1 as follows: ⎧

⎪⎨

⎪⎩

x = d cos φ cos θ

y = d cos φ sin θ

z = d sin φ

(1)

Here, ScanID indicates the laser head to which the sampling point belongs.
It ranges from 0 to 63 based on the pitch angle φ of the corresponding laser
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head. When the LiDAR is mounted on a flat plane, scan line 0 corresponds to
the nearest point to the LiDAR, while scan line 63 corresponds to the farthest
point. θ is the rotating angle of the point. We define one lap of LiDAR data as
a frame, and the LiDAR’s rotation speed is set at 10 Hz. Therefore, a frame of
LiDAR data consists of 64 scan lines with approximately 2000 sampling points
per line, since the angular resolution of the Velodyne HDL-64 S2 is 0.18◦ at
10 Hz.

We use ScanID and θ to arrange our feature matrix. We divide θ into bins
based on a preset angular resolution, and then construct our LiDAR data matrix
as shown in Fig. 3. In the H × W × N matrix, H indicates the laser head ID,
W represents the discretized rotating angle, and N indicates the feature vector
dimension of each point. We use the average value to describe the location of
several points in one cell and the maximum value as the intensity feature of
this cell. This way, the matrix width is adjusted according to the horizontal
resolution.

To visualize the data, we use dxy, I, and z as three channels in a color image
after normalization. This produces a pseudo-panorama, as shown in Fig. 1. Here,
dxy indicates the distance from the LiDAR to the sampling point on the ground
plane, I is the intensity, and z represents the height of the point. Rolling up this
panorama results in a cylinder view around the LiDAR, as shown in Fig. 1. We
then crop the region of interest from the pseudo-panorama and use 2D target
detection methods to locate the 2D bounding box, which serves as input to our
following 3D detection network. Unlike Frustum PointNet or Frustum ConvNet,
our model obtains the point cloud within the 2D bounding box directly without
requiring multi-sensor calibration. Next, similar to Frustum ConvNet, the can-
didate point cloud is sliced into several frustums for further feature extraction.

However, sliced frustums only consider point cloud location information. To
further utilize context information among point clouds, we introduce a local
context feature extraction module, as shown in Fig. 2. For a point ph,w in our
H × W × N feature matrix, we collect its 8-neighborhood points as P (ph,w),
which we believe contains local context information. We then define P̃ (ph,w) =
q − ph,w|q ∈ P (ph,w) to transfer ph,w as the center of this point set. As shown
in Fig. 2, we use a multilayer perceptron to process P̃ (ph,w), which includes
1×1 convolution, ReLU, and batch normalization. This way, a vector of context
features for each point is obtained. We concatenate the context feature matrix
with the original one and input it to our main network.

2.2 The Architecture of F-3DNet

In this section, we introduce the structure of Frustum 3DNet (F-3DNet), which
simultaneously utilizes spatial information and context features. F-3DNet has
two main branches that focus on spatial information and local context features,
respectively. The first branch is inspired by Frustum PointNet and F-ConvNet.
We extend the 2D detection outcome from the pseudo-panorama to 3D space
and obtain a candidate frustum. We then slice the frustum into pieces at differ-
ent resolutions, grouping points in regions of interest by location. The second
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branch focuses on local context information extraction, using the context fea-
ture extraction module we introduced earlier. The combined features are then
input into a fully convolutional network for final classification and bounding box
location. The entire workflow is shown in Fig. 4.

Fig. 4. Work flow of F-3DNet. A pyramid structure is used in fully convolutional net-
work for hierarchy representation. Notice that black triangles in FCN indicate merge
operations. Grey slices in Multi-resolution frustums section indicate different-scale divi-
sion on the frustum region proposal. In FCN section, white rectangles represent matri-
ces after convolution, blue ones indicate that they come from feature extraction from
original frustum slices, and orange ones are feature matrices after merge operation.
(Color figure online)

While arranging points in the panorama makes it feasible to use direct convo-
lution in 2D to extract features, the adjacent pixels’ depth can change drastically
in reality. Therefore, we turn to the slice operation to group nearby points. In
the Multi-resolution frustums section, we expand the original frustum from the
2D bounding box and slice it into smaller frustums based on four different res-
olutions. This operation groups nearby points, making the discrete point cloud
continuous based on location. We first locate the centerline of one frustum using
the 2D bounding box center. This is straightforward because the pitch and rota-
tion of each point in the bounding box are already known through the LiDAR
data rearrangement step. Then, a series of parallel planes with equal steps per-
pendicular to the center line splits the frustum into smaller ones. All points in
one small frustum are grouped together, and frustum-wise features are extracted
from it afterward. Specifically, we construct a local coordinate system based on
the centerline. The z direction represents the frustum centerline, and x is par-
allel to the ground plane while perpendicular to z. The slice step is set as s,
while the width of each small frustum is set as u. Here, overlap is allowed, and
we use u = 2s in actual experiments. Assuming that one small frustum contains
M points, we group the points together as a point set pi = (xi, yi, zi)i = 1M .
After concatenating intensity and context features point-wise, we use a multi-
layer perceptron and max pooling to abstract the feature representation. Then,
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Fig. 5. Updated work flow of F-3DNet+RGB. 2D proposals are generated from RGB
image of high resolution, while RGB features are added to feature matrix by cross-
sensor calibration. The rest procedures are kept the same as F-3DNet.

we obtain a frustum-wise semantic feature vector fii = 1L, fi ∈ Rd. We com-
bine L feature vectors of d dimensions and acquire a 2D feature map F with a
size of L × d. We use the same settings on the fully convolutional network as
F-ConvNet, in which four conv and three deconv blocks are utilized. The merge
operation is a combination among different resolutions. It uses convolution to
fuse two feature maps without depth change. Merge operations are represented
by black triangles in Fig. 4.

2.3 Detection Header and Refinement

The fully convolutional network is connected to two branches: a classifier and
a regressor, to fulfill 3D object detection in a multi-task way. For the classifier,
assuming that there are K different objects, the classifier compresses the FCN
output to L × (K + 1) by convolution. Here, K + 1 indicates that in addition to
the object category number K, the background is added as another object kind.
Due to the imbalance between foreground and background samples, we utilize
focal loss [9] in our method.

The target of the regressor is to generate an accurate 3D bounding box of the
object. In road scenes, vehicles, pedestrians, and cyclists can be assumed to be on
the same ground plane. Their directions or yaws are different, while pitches and
rolls can be neglected. In the KITTI dataset, the manually marked 3D bounding
box is described by seven parameters, including xg

c , y
g
c , z

g
c , lg, wg, hg, θg, in which

xg
c , y

g
c , z

g
c represent the center coordinates of the 3D bounding box, lg, wg, hg

indicate the length, width, and height of this box, and θg is its direction with
respect to the ground plane.

Inspired by PointRCNN [12], we quantize yaw from [−π, π) into N
blocks. For each frustum, we place K × N anchor boxes, covering all pos-
sible foreground objects and orientations. Each anchor is parameterized as
xa
c , y

a
c , zac , la, wa, ha, θa, where xa

c , y
a
c , zac are the center coordinates of the frus-

tum, la, wa, ha represent the average box size in the training set, and θa is the
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middle yaw angle in this bin. We calculate offsets between anchor boxes and the
ground truth bounding boxes according to the following formulas:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δx = xg
c − xa

c ,Δy = yg
c − ya

c ,Δz = zgc − zac

Δl =
lg − la

la
,Δw =

wg − wa

wa
,Δh =

hg − ha

ha

Δθ =
θg − θa

θa

(2)

Here, xg
c , y

g
c , z

g
c , lg, wg, hg, θg represent the ground truth values for the 3D

bounding box. We use Smooth L1 loss for regression to train the network.
The regression loss consists of normalized Euclidean distance for center, as

well as smooth L1 regression loss for size and angle offset. Additionally, the
Corner loss from Frustum PointNet [10] is utilized. The network is trained with
these three losses and the focal loss from the classifier branch.

The success of the whole network depends on the accuracy of the 2D detec-
tion proposals. However, the 2D boxes may not accurately bound the object.
To further improve the performance, we use the initial proposals from the 2D
detection step and input the points inside them to the same F-3DNet architec-
ture again for refinement. We expand each predicted bounding box by a factor
of 1.2 to include more background points and avoid missing foreground ones. A
local coordinate system is constructed based on the predicted box center and
orientation. We normalize the points inside the expanded box to transfer them
from the global coordinate system to the local one. These normalized points are
then used as input to the second F-3DNet as a refinement step.

2.4 F-3DNet+RGB

F-3DNet achieves impressive results solely based on LiDAR data, but the initial
2D detection could be further improved by incorporating RGB input, due to
the low resolution of the pseudo panorama resulting from the sparsity of LiDAR
data. The RGB image contains color and texture information, which are lacking
in LiDAR data, making it a valuable addition to the model. As a result, RGB
features are integrated into F-3DNet in two ways: (1) the replacement of LiDAR
pseudo panorama with an RGB image for initial 2D proposal generation, and (2)
the use of cross-sensor calibration to locate LiDAR points on the image plane and
the addition of RGB features to the point cloud feature matrix on a per-point
basis. The updated F-3DNet with RGB input is shown in Fig. 5.
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Table 1. Average precision (AP) comparison of 3D object detection on KITTI test set
(%).

Cars Pedestrians Cyclists

Easy Mod Hard Easy Mod Hard Easy Mod Hard

MV3D [2] 74.97 63.63 54.00 - - - - - -

Associate-3Ddet [3] 85.99 77.40 70.53 - - - - - -

Voxel-FPN [7] 85.64 76.70 69.44 - - - - - -

F-PointNet [10] 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01

AVOD-FPN [6] 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93

PointPainting [13] 82.11 71.70 67.08 50.32 40.97 37.87 77.63 63.78 55.89

PointPillars [8] 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92

PointRCNN [12] 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53

F-ConvNet [14] 87.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54

F-3DNet+RGB 85.48 78.48 71.62 51.93 43.79 40.15 78.61 63.50 57.11

3 Experiments

3.1 Dataset

Our model is evaluated primarily on the KITTI-OBJECT dataset, which con-
sists of 7481 training and 7518 testing scenes containing RGB images and point
clouds. The dataset focuses on three main object categories, namely Car, Pedes-
trian, and Cyclist. Results are evaluated on three levels, easy, moderate, and
hard, which are categorized based on target size and truncation. Similar to the
MV3D method [2], we use the same split on the original training set for super-
vised data. The new training and validation set contain 3712 and 3769 driving
scenes, respectively. We conduct an ablation study on the new data split, while
the final result comparison with other existing models is based on the KITTI
testing set. We set IoU thresholds on 0.7, 0.5, and 0.5 for Car, Pedestrian, and
Cyclist, respectively.

To further evaluate the efficiency of our model, we also tested F-3DNet on
the nuScenes dataset, which contains 28,130 training, 6,019 validation, and 6,008
testing samples. The objects are labeled into 10 categories: Car, Truck, Bus,
Trailer, Construction Vehicle, Pedestrian, Motorcycle, Bicycle, Traffic Cone, and
Barrier, where cars and pedestrians have the most instances and construction
vehicles and bicycles have the least. The LiDAR used in the nuScenes dataset
has 32 laser heads, which is different from that in the KITTI dataset. However,
this does not affect our local context information extraction module.

3.2 Implementation Details

On the KITTI dataset, we train two F-3DNets separately for the Car and Pedes-
trian/Cyclist categories due to the differences between these objects. During
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network training, we use the RRC [11] and MSCNN model [1] to obtain initial
2D bounding boxes for the Car and Pedestrian/Cyclist categories, respectively.
Data augmentation is achieved by scaling the 2D bounding box size and using
random shifts and flips, similar to Frustum PointNet, to prevent overfitting. To
normalize input points, we use a fixed point number of 1024 at the first stage
and 512 in refinement. We shrink the ground-truth boxes by a ratio of 0.5 to
generate positive and negative training samples. Foreground anchor boxes are
those whose centers are located in the shrunken ground-truth boxes, while anchor
boxes whose centers are located between the shrunken and ground-truth boxes
are ignored. The remaining anchor boxes are tagged as background.

We trained the F-3DNets on one GPU (Nvidia Titan V 12GB) using a batch
size of 32 and the Adam optimizer with a weight decay of 0.0001. The learning
rate was set to 0.001 and decayed by a factor of 10 every 20 epochs of a total of 50
epochs. We set the valid range from 0 to 72 m. For the Car category, we used frus-
tum resolutions at u = [0.5, 1.0, 2.0, 4.0] and steps equal to s = [0.25, 0.5, 1.0, 2.0].
Frustum-wise feature depths were set to d = [128, 128, 256, 512], while dimen-
sions were set to L = [288, 144, 72, 36]. All feature dimensions of different reso-
lutions were unified to L1 = 144 after deconvolution. For Pedestrian/Cyclist, we
used a finer frustum slice with u = [0.2, 0.4, 0.8, 1.6] and s = [0.1, 0.2, 0.4, 0.8].
Frustum-wise feature depths were set to d = [128, 128, 256, 512], and frustum
split numbers were set to L = [720, 360, 180, 90]. All feature dimensions of differ-
ent resolutions were unified to L2 = 360 after deconvolution. During evaluation,
we used non-maximum suppression (NMS) to reduce redundancy. The final score
of a 3D bounding box was calculated as the average of the 2D detection score
and the predicted 3D score.

On the nuScenes dataset, we used the same network settings as on KITTI,
with u = [0.2, 0.4, 0.8, 1.6] and s = [0.1, 0.2, 0.4, 0.8] for frustum slice. Frustum-
wise feature depths were set to d = [128, 128, 256, 512], and frustum split num-
bers were set to L = [720, 360, 180, 90]. All feature dimensions of different resolu-
tions were unified to L2 = 360 after deconvolution. The object category number
K on nuScenes is 11 (10 detection classes plus background), which is higher than
the 4 categories used in KITTI.

3.3 Main Results

Table 1 presents the performance of our proposed method (F-3DNet+RGB) on
the KITTI test set, compared to other listed methods. The results show that
our network model has significant advantages in car detection compared to other
models on the KITTI dataset. This is due to the fact that F-3DNet+RGB is more
sensitive to details, as it considers local context information, and the detection
accuracy of moderate and hard targets is significantly improved compared to
other networks. However, if the target is too close and contains too many points,
the redundant local details may affect the accuracy of our 3D detection. For a
clearer observation, visualizations on the KITTI dataset are shown in Fig. 6.
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Fig. 6. Qualitative results on KITTI dataset. 9 typical scenes are listed, including
images and LiDAR illustrations. Green bounding boxes represent groundtruth, while
blue, red and pink boxes indicate our model predictions for Car, Pedestrian and Cyclist
categories respectively. (Color figure online)

3.4 Ablation Study

Table 2. Influence of 2D proposal on average precision (AP) (%).

2D Detection 3D Detection

Easy Mod Hard Easy Mod. Hard

RRC+Pseudo 90.93 81.57 72.20 79.24 70.95 63.26

RRC+RGB 96.32 95.18 88.94 86.88 77.29 68.61

GT 100 100 100 88.33 85.97 78.75

To evaluate the efficiency of our method, we verified F-3DNet on the KITTI-
OBJECT dataset, including an ablation study and an efficiency comparison with
the state-of-the-art. The ablation study was conducted on the Car category,
which is believed to contain richer features, of the train/validation split. Table 2
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shows the influence of 2D proposal precision on F-3DNet outcomes without the
refinement stage. Here, we used the RRC model [11] for 2D region proposal
generation from both LiDAR pseudo-images and RGB images. The term “GT”
in the table indicates the use of 2D detection ground truth as an initial region
proposal.

According to Table 2, using the RRC model as the 2D detection method on
the pseudo image results in 81.57% accuracy on moderate targets. The preci-
sion of the 2D detection results increases significantly by replacing the RGB
input with the pseudo images, mainly due to the much higher resolution of RGB
images. Comparing the three different 2D proposal sources, the corresponding 3D
detection results are dramatically influenced by 2D proposal precision. In gen-
eral, F-3DNet achieves higher performance when cooperating with RGB images,
while better 2D region proposals are significantly conducive to 3D detection.

Table 3. Effect of context features and refinement step on average precision (AP) (%).

Easy Mod. Hard

w/o Context w/o Refinement 86.01 76.78 67.33

w/o Refinement 86.88 77.29 68.61

w/o Context 88.75 78.49 76.04

F-3DNet+RGB 89.67 79.05 77.56

To verify the efficacy of context features and refinement on our model, we
conducted an ablation study on F-3DNet with RGB proposals (F-3DNet+RGB).
The results in Table 3 demonstrate the effectiveness of each component in
our model. Specifically, the context feature contributes to approximately
1% improvement in F-3DNet performance, while the refinement step further
increases the model performance by around 2%.

4 Conclusion

We present a novel end-to-end method, F-3DNet, for 3D object detection, which
achieves high performance on both KITTI and nuScenes datasets. F-3DNet chal-
lenges the popular prior knowledge in LiDAR data processing that point cloud
is irregular and disordered by constructing a neighbor relationship among point
cloud obeying LiDAR operating mode and obtaining a pseudo panorama. Fur-
thermore, we introduce a local context feature extraction module that incorpo-
rates inner context information of LiDAR data into 3D object detection. To meet
real-time demand in autonomous driving, our model utilizes 2D CNNs based
on multi-resolution frustum slicing. In addition, cooperating with refinement
step and fusion with RGB input, the detection results of F-3DNet are further
improved. Future research will focus on investigating a concise and point-wise
network to further enhance the proposed model’s performance.
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Ethics. As the model proposed in our research mainly focuses on 3D object detection

using LiDAR and RGB data, we do not collect or process any personal data in this

study. Moreover, our research does not involve the inference of personal information

or the potential use of our work for policing or military purposes. Therefore, we do

not have any ethical concerns regarding our research. However, we understand the

importance of ethics in machine learning and data mining, and we will continue to

prioritize ethical considerations in our future research.

References

1. Cai, Z., Fan, Q., Feris, R., Vasconcelos, N.: A unified multi-scale deep convolu-
tional neural network for fast object detection. In: The European Conference on
Computer Vision (ECCV) (2020)

2. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network
for autonomous driving. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2022)

3. Du, L., et al.: Associate-3Ddet: Perceptual-to-conceptual association for 3D point
cloud object detection. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2022)

4. Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., Li, D.: Object classification using
CNN-based fusion of vision and lidar in autonomous vehicle environment. IEEE
Trans. Industr. Inf. 14(9), 4224–4231 (2022)

5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

6. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal
generation and object detection from view aggregation. In: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1–8 (2018)

7. Kuang, H., Wang, B., An, J., Zhang, M., Zhang, Z.: Voxel-FPN: multi-scale voxel
feature aggregation for 3D object detection from lidar point clouds. Sensors 20(3),
704 (2021)

8. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars:
fast encoders for object detection from point clouds. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2022)

9. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2018). https://
doi.org/10.1109/TPAMI.2018.2858826

10. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object
detection from RGB-D data. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2021)

11. Ren, J., et al.: Accurate single stage detector using recurrent rolling convolution.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

12. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detec-
tion from point cloud. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

13. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for
3D object detection. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2021)

https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826


F-3DNet: Leveraging Inner Order of Point Clouds for 3D Object Detection 359

14. Wang, Z., Jia, K.: Frustum ConvNet: sliding frustums to aggregate local point-
wise features for amodal 3D object detection. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2019)

15. Wen, L., Jo, K.H.: Three-attention mechanisms for one-stage 3D object detection
based on lidar and camera. IEEE Transactions on Industrial Informatics (2021)

16. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sen-
sors 18(10), 3337 (2018)

17. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point
clouds. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2021)

18. Zhou, Y., Tuzel, O.: VoxelNet: End-to-End learning for point cloud based 3D object
detection. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)



Constraint-Based Parameterization
and Disentanglement of Aerodynamic
Shapes Using Deep Generative Models

Asmita Bhat1(B), Nooshin Haji-Ghassemi1, Deepak Nagaraj2,
and Sophie Fellenz1

1 University of Kaiserslautern-Landau, Gottlieb-Daimler-StraSSe 47, 67663
Kaiserslautern, Germany

{bhat,nooshin,fellenz}@cs.uni-kl.de
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Abstract. Generating parametric shapes with respect to their struc-
tural and functional characteristics is a challenging and demanding prob-
lem. Conventional parameterization techniques are complex and require
manual intervention and multiple cycles to produce plausible shapes,
which makes the overall parameterization process extremely sensitive,
time- consuming and error-prone. Despite these techniques’ slow and
iterative nature, a significant amount of data has been gathered over
many years, prompting the community to turn to data-driven techniques
like deep generative models for automatic parameterization. However,
parameterizing shapes following necessary functional constraints is cru-
cial but notoriously difficult and still needs to be studied. Therefore,
we propose a data-driven framework that implicitly learns to generate
plausible parametric aerodynamic shapes under specified constraints.
We explore and compare several generative models, including genera-
tive adversarial networks and variational autoencoders, and systemat-
ically evaluate them for generation quality, diversity, and disentangle-
ment aspects. Our framework, including a β-VAE model, enables the
automatic generation of novel airfoils with watertight boundaries and
interactive generation with its distributed and disentangled latent space.
Through rigorous evaluation of our method, we demonstrate that the
generated distribution closely matches the true distribution, resulting in
the generation of highly realistic airfoils. Our method dramatically out-
performs the current benchmark in terms of the quality and diversity of
generated airfoils and establishes a new benchmark for constraint-based
parameterization.

Keywords: Aerodynamic shapes · Deep Generative Models · VAE

1 Introduction

Parametric shapes like airfoils, hydrofoils, fans, and turbines are used in a variety
of applications, including aerodynamics, electronics, and automobiles, and are
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developed by combining parameterization and optimization techniques. These
techniques aim to develop shapes that yield optimal performance in terms of their
functionality. The shapes are represented by one or more parametric functions
in a high-dimensional space, parameterized by a set of design variables.

Leading
edge

Trailing
edge

Chord

Lift

Drag

Fig. 1. An example of an airfoil from the UIUC dataset [33]. The chord of an airfoil
is zero-centered. The leading edge and trailing edge points coincide with the chord.
The direction of the lift component of aerodynamic force is perpendicular to the chord,
and that of the drag is along the chord towards the trailing edge. Feasible airfoils have
higher lift than drag.

Traditional parameterization techniques are explicit, meaning the parameters
of the designs are manually set by a human expert. They are further optimized by
employing numerical simulation tools such as computational fluid dynamics [31]
or Computer-Aided Engineering (CAE) that consider various functional restric-
tions and boundary conditions. To generate feasible designs with acceptable per-
formance using these techniques, several back-and-forth iterations through the
design and optimization phases are required, making the overall process exceed-
ingly time, memory, and computation intensive. Despite these challenges, the
aerodynamics community has produced a large number of viable airfoil designs
that may be utilized for a variety of tasks, including shape synthesis, optimiza-
tion, and flow field prediction [1].

Modern parameterization techniques, such as BézierGAN [6], are data-driven
models based on GANs [12], one of the prominent Deep Generative Models
(DGMs) that can automatically parameterize aerodynamic shapes, also known
as airfoils. An airfoil is a critical component of an aircraft design responsible for
the aerodynamic force generated during operation. Figure 1 illustrates the two
components of aerodynamic force: lift and drag. An airfoil must be streamlined
to generate more lift than drag to enable an aircraft to take off. As a result, the
coefficient of lift-to-drag, CL/CD, is an important functional characteristic of an
airfoil. However, generating realistic and practically viable airfoils while ensuring
such a functional characteristic is an extremely challenging problem mainly due
to scarcity of data and the high dimensionality of the shapes.

This paper proposes a hybrid DGM-CAE framework for automated,
constraint-based parameterization of airfoil designs while ensuring their mechan-
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ical functionality. We enforce the CL/CD values obtained from numerical simu-
lation software and constrain the airfoil generation using these values to generate
airfoils for specific CL/CD ratios. This approach simplifies and accelerates the
design process and can be used for effective and interactive shape parameteriza-
tion. To sum up, our contributions are as follows:

1. We develop a hybrid DGM-CAE framework for automated and constraint-
based airfoil parameterization while preserving their mechanical functionality.

2. We assess the results using relevant metrics for various generation aspects
such as quality, diversity, and disentanglement. In addition, we also evaluate
our framework’s ability to parameterize original designs from the dataset and
the precision of the enforced functional constraint.

3. The quantitative results demonstrate that our framework outperforms the
baseline BézierGAN model in terms of quality and diversity of generated
shapes.

4. To the best of our knowledge, this is a first attempt at conditionally generating
airfoil designs using their CL/CD, which is a continuous real-valued number,
unlike widely used conditional models [24] which use discrete labels.

2 Related Work

In this section, we discuss some of the traditional methods for parametric shape
synthesis and the most recent popular DGMs for both high-quality synthesis
and representation learning.

2.1 Parametric Shape Synthesis for Product Design

Methods for understanding design spaces and synthesizing new shapes or
designs can be categorized into two broad categories: knowledge-driven meth-
ods and data-driven methods [37]. Knowledge-driven approaches use explicit
rules to develop new shapes. Computational Design Synthesis is an example of a
knowledge-driven method for synthesizing new shapes, which is most popularly
used for gearboxes and bicycle frames [2]. Other methods include B-splines [22],
Bézier curves [38], Free Form Deformation [39], Class-Shape Transformations
(CST) [13], and PARSEC [9], which are parameterization methods that are
used to generate curves for aerodynamic shapes. These parameterization meth-
ods adjust the control points or parameters using random perturbation or Latin
hypercube sampling [39]. However, these knowledge-based methods suffer from
high dimensionality of the design space [6] and unknown limits to the parameters
that define the geometry. On the other hand, data-driven models [5,6,40] implic-
itly learn useful knowledge about the geometric representation from the existing
designs in the dataset. DGMs, in particular, address the issues mentioned above
by generating a compact latent representation that captures the most distinct
and informative features of real-world designs and their parameter constraints.
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2.2 Deep Generative Models

DGMs have proven to be successful in generating high-dimensional data in a
completely unsupervised setting. Ideally, a good generative model should learn
meaningful and compact representations for a qualitative and diverse generation.
Two of the most popular generative models are Variational Autoencoders (VAEs)
[19] and Generative Adversarial Networks (GANs) [12]. Although GANs are rel-
atively better at synthesizing realistic data, they are notoriously difficult to train
and often result in unstable models. VAEs on the other hand, are easier to train
and converge faster. In addition, they are more successful than GANs in creating
compact and effective representations in a continuous latent space. Such repre-
sentations are useful for transferring specific characteristics and allowing control
over the synthesis task, making it more productive and interactive [21]. To obtain
a better trade-off in quality and training, we implement different models based
on GAN and VAE frameworks for airfoil generation and systematically evalu-
ate them to find the best suitable model for our application. In the following
sections, we explain the theoretical foundations of both models in detail.

Variational Autoencoder. VAEs are rooted in Bayesian inference i.e., they
project the underlying training data distribution onto a distributed latent space
that comprises independent factors of variation in the data. At inference, a VAE
allows us to sample from the latent space to generate novel data that ideally
resembles real data. Consider x to be our input data and z to be a latent vector.
The VAE objective is to model the distribution of x which can be formulated as
shown in Eq. 1, where p(x|z) is known as conditional likelihood, and p(z) is the
prior distribution.

p(x) =
∫

p(x|z)p(z) dz (1)

Computing the conditional likelihood requires computation of an unknown quan-
tity known as the posterior of the true data p(z|x). The VAE uses an encoder
network to parameterize the variational approximation of the posterior distribu-
tion. The conditional likelihood is parameterized with a decoder network. The
loss function for a VAE is given by Eq. 2 where the first term represents the
reconstruction loss, and the second term is the KL divergence that minimizes
the distance between the posterior and the prior. The prior distribution is usually
a simple distribution, such as the standard normal distribution.

L = Eq(z|X)[− log p(X|z)] + KL (q(z|X)||p(z)) (2)

Generative Adversarial Networks. Generative adversarial networks (GANs)
[12,28] also model the true data distribution p(x) but use adversarial learning
instead. A typical GAN network comprises two components - a generator G and
a discriminator D. A generator generates new samples using a low-dimensional
noise vector and aims to fool the discriminator whose task is to distinguish real
samples from fake ones (samples generated by the generator). G and D are
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trained as a min-max in an adversarial fashion where each component strives to
be better than the other network at their respective tasks. The GAN objective
is given as

min
G

max
D

E(G,D) = Ex∼Pdata
[log Dx] + Ez∼Pz

[log(1 − D(Gx))], (3)

where x is sampled from the real data distribution Pdata, z represents the noise
vector sampled from the noise distribution Pz, and G(z) is the fake distribution.

2.3 Learning Disentangled Representations

Modeling real-world data using generative models like GANs and VAEs creates
a low-dimensional latent space. Ideally, this latent space represents the most cru-
cial and distinct features of the data. In the case of VAEs, choosing an isotropic
Gaussian prior has a latent space where every dimension is independent and pro-
duces what is generally known as a disentangled latent space. A latent space is
called disentangled if each of its dimensions represents one and only one under-
lying factor of variation in the data [16]. The disentangled latent space enables
interactive and controlled generation by allowing us to change specific features
or to obtain data having certain features from generative distribution. Unfortu-
nately, interactive generation is not possible with GANs as they cannot produce a
disentangled representation of the data. Instead the representation is entangled,
making it hard to interpret [7].

Several extensions based on the VAE framework, such as β-VAE [15], Fac-
torVAE [17], and those based on the GAN framework, including InfoGAN [7],
have been proposed to obtain a better generation quality and better disentan-
glement. Higgins et al. [15] and Chen et al. [4] provide simple modifications
to the original VAE objective to achieve a better trade-off between generation
quality and disentanglement, whereas Kim and Mnih [17] achieve this with the
help of a discriminator network. InfoGAN, on the other hand, uses additional
latent codes to encode some generative factors from the training data to encour-
age disentanglement. Other approaches, such as IDGAN [21], combine VAE and
GAN frameworks to produce effective disentanglement and generate high-quality
images. We explore several generative models such as β-VAE [15], DCGAN [28],
and FactorVAE [16] and compare them for several generation aspects. Through
evaluation of these models we find out that β-VAE is much simpler, faster and
more reliable for high quality generation and disentanglement. Further, we com-
pare our conditional β-VAE model with the popular BézierGAN model which
is based on InfoGAN. In the next section, we explain our approach for reliable
generation in more details.

3 Approach

Our goal is to produce high-quality airfoil designs that adhere to their perfor-
mance characteristics while also producing disentangled representations of the
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designs. Although GANs and VAEs can synthesize high-quality data, particu-
larly images, their potential to synthesize parametric shapes has yet to be fully
investigated. Therefore, we propose a conditional parameterization framework
for synthesizing new airfoil designs constrained by specific CL/CD values based
on GAN and VAE networks to obtain high-quality and diverse designs with
disentangled representations. Conditioning the airfoil designs on their CL/CD

values provides a mapping between the CL/CD and the intrinsic characteristics
of the designs. Thus, we develop conditional versions of β-VAE, FactorVAE, and
DCGAN networks.

Functional airfoils need to have smooth and watertight curve. To obtain
such curves, our framework first constructs a binary image representation of
the airfoils. The conditional DGMs are trained using these binary representa-
tions, along with their CL/CD values. In the following part, we discuss the data
representation and conditional parameterization more deeply.

3.1 Data Representation

The parameterization of airfoils is an important stage in aircraft design. The
shape, curvature, and edges of the airfoil have a significant impact on the air-
craft’s aerodynamic properties and the flow fields around it, influencing the
optimization outcomes [41]. As a result, accurately modeling the airfoil designs,
including all of the minute details regarding their geometries, is vital. In the
UIUC dataset [33], airfoils are represented by a defined set of discrete design
variables. These may be insufficient for complex airfoil shapes. As a result,
we convert the UIUC data into binary fields in order to create smooth and
watertight surfaces that preserve the geometry and its details perfectly. More
importantly, the smooth curves enable us to sample as many points from the
geometries as necessary. The airfoils in the UIUC dataset are first mapped onto
a high-resolution Signed Distance Field (SDF) [1] and then converted to binary
fields. As binary fields are equivalent to 2D images, we can learn their underly-
ing features using convolutional operations [32] in the same way as with images.
Another reason to map data onto an SDF is to have a common representation
for 2D and 3D objects, which is challenging to do with alternative data formats.
However, due to the lack of publicly available 3D airfoil data, we have limited
our research to 2D airfoil designs.

Signed Distance Field. An SDF [1] is formed using a signed distance function
that calculates and assigns a distance to each point in space, with positive dis-
tance for points outside the shape, negative distance for points inside the shape,
and zero distance for points on the shape. Mathematically, a signed distance
function for a set of points Q is given by the distance d of all the points q ∈ Q
from the shape boundary ω as shown in Eq. 4.

SDF (q) =

⎧⎨
⎩

d(q, ∂ω) q /∈ ω
0 q ∈ ∂ω

−d(q, ∂ω) q ∈ ω
(4)
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Binary Fields. The distances to all points within and outside the object are
essential only in applications where global geometry is required. However, for
airfoil parameterization, obtaining only the isosurface that represents the airfoil
shape suffices. Hence, we modify the signed distance function to obtain a binary
field, such that, if ω is the shape boundary, then the points on and inside the
shape boundary form an isosurface, whereas points outside the shape bound-
ary have a distance of one. Equation 5 represents the modified signed distance
function for binary fields:

SDFbinary(q) =

⎧⎨
⎩

1 q /∈ ω
0 q ∈ ∂ω
0 q ∈ ω

(5)

We fix all distances to be equal to one because it is inconsequential to know
how far the point lies outside the boundary. The obtained binary signed distance
fields are analogous to binary images except that they are obtained as a result
of binary SDF.

3.2 Conditional Parameterization Using Generative Models

We enable the conditional synthesis of new airfoil designs by providing the
CL/CD value as a condition to the generative component of the network. The
condition is enforced by concatenating CL/CD values c to the latent vector z.
c is a real-valued number between 0 and 1 which is obtained as a result of the
normalization of CL/CD values. Unlike other conditional models [35] that use a
discrete label as a condition, the CL/CD values are continuous real-valued num-
bers. As a result of such conditional synthesis, the generative component of the
implemented DGMs acts as an implicit parametric function that can generate
airfoils for a given CL/CD condition. At inference, we can sample a noise vector
from a Gaussian distribution N (0, 1) to which we can append any CL/CD value
between zero and one and generate the design that matches the condition. We
can also combine desired shape characteristics from our learned disentangled
latent space to customize the airfoil designs. This enables interactive design syn-
thesis and quick prototyping of desirable shapes. Our method can produce sharp,
smooth, and desirable airfoils without any smoothing function and without hav-
ing to learn any explicit parameters like control points for shape synthesis or
separate latent codes for disentanglement as used in BézierGAN [6].

4 Experimental Results

We explore three DGMs – Deep Convolutional GAN (DCGAN) [28], β-VAE
[15] and FactorVAE [16] – which are known to generate plausible images. We
assess the generated designs quantitatively using the manifold-based metrics
density and coverage. We also demonstrate the quality of disentanglement across
different dimensions of the latent space.
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4.1 Data Preparation

Obtaining Binary Fields. We use 2D airfoil designs from the UIUC dataset
[33] comprising nearly 1,600 diverse airfoil designs. It is a public dataset and
is widely used for aerodynamic research. Also, obtaining CL/CD values using
numerical simulation software is possible using this data, which aligns well with
our goal. Examples of airfoil designs and their CL/CD values, are shown in the
appendix1. Each airfoil design in the UIUC dataset is represented by a sequence
of discrete x- and y-coordinates along the airfoil curve. The order of coordinates
of every curve starts from the trailing edge point, followed by points along the
upper surface of the airfoil towards the leading edge, the leading edge point
and then the points along the lower surface of airfoil from leading edge towards
the trailing edge. The edges and surfaces can be seen in Fig. 1. The original
format of the data produces rough boundaries or requires additional functions
for smoothening the curves. To overcome these challenges, we convert each airfoil
curve into a binary SDF of size 500×500, (refer sect. 3.4 for data conversion
details).

Obtaining CL/CD . The CL/CD value represents the lift-to-drag ratio. It can
be obtained using simulation software to simulate the necessary flow fields under
the required settings to obtain optimal airfoil performance. For all the airfoils
in the dataset, we use XFOIL simulation [10] by setting the Reynolds number,
Re = 5 × 105, the Mach number, Ma = 0.0 and the angle of attack, α = 3◦ for
around 1,200 airfoils. Please refer the appendix for more information about the
distribution of the CL/CD values for all 1,200 airfoil designs. To condition on
these values for generation, we normalize them to be between zero and one.

4.2 Evaluation Metrics

Density and coverage (DnC) [26] are used as metrics to assess our model’s per-
formance in terms of quality and diversity. Inception Score (IS) [30] and Fréchet
Inception Distance (FID) [14] are some of the other metrics used to measure
the overall quality of generation, but they cannot distinguish quality from diver-
sity. For example, it is highly impractical if a generative model generates images
that are very similar or generates the same image every time, even if the qual-
ity of generation is good. In that sense, IS and FID are highly uninformative.
Furthermore, Kynkäänniemi et al. [20] show that IS and FID are unreliable for
evaluating generative models because they do not correlate well with the image
quality and produce an inconsistent evaluation.

On the other hand, DnC [26] overcame the earlier metrics’ shortcom-
ings. They are automatic evaluation techniques that directly compare the
fake (generated) data distribution to the real, allowing us to see how well the
generated distribution matches the training data. Unlike IS and FID, which
rely on activations of a pre-trained Inception model based on ImageNet data [8],

1 https://github.com/aeroshapesynthesis/constraint parametererization airfoils/
blob/main/Appendix.pdf.

https://github.com/aeroshapesynthesis/constraint_parametererization_airfoils/blob/main/Appendix.pdf
https://github.com/aeroshapesynthesis/constraint_parametererization_airfoils/blob/main/Appendix.pdf
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Fig. 2. Randomly sampled airfoil designs generated by β-VAE. The designs are realistic
and have sharp and watertight boundaries.

DnC are independent of any dataset or model, giving a straightforward and clear
evaluation method. The main idea behind DnC is to compare the manifold of
real samples to the manifold of fake samples, and then quantify the quality and
diversity of generated samples based on how the fake samples are placed around
the real samples. Any intermediate layer, especially the fully connected layers of
the generative part of the network (for example, the generator in the GAN or the
decoder in the VAE), can be used to create these manifolds. More information
on the metric and it’s mathematical definition is given in the appendix.

4.3 Training

We train the β-VAE, FactorVAE, and DCGAN models on the UIUC airfoil
dataset after preprocessing airfoils and extracting their CL/CD values. There
are approximately 1,100 airfoils divided into a training set of 900 and a test
set of 200. All models are implemented using Pytorch [27] and are trained on a
single Nvidia Tesla [23] V100-SXM2 32 GB GPU. The batch size is 16 and is
kept the same for all models. The learning rate for encoder and decoder in VAE,
β-VAE and FactorVAE is 10−4, the generator in DCGAN is 2 ∗ 10−4 and for
discriminator in DCGAN and FactorVAE is 10−4. Adam optimization [18] is used
for the training of all models because it can handle sparse gradients and combines
the best properties of the AdaGrad [11] and RMSProp [25] algorithms. VAEs are
generally stable to train and converge faster than GANs; hence we train β-VAE
and FactorVAE for 300 epochs and DCGAN for 500 epochs. Hyperparameter
optimization is an important part of training; therefore, using validation set we
heuristically search for the best hyperparameters for each model. A brief note
on hyperparameter optimization is included in the appendix.

4.4 Qualitative Results

A crucial first step is to visually inspect the results because the generated images
maybe distorted or blurry, and these problems are difficult to address using
quantitative analysis. From qualitative inspection, we observed that the β-VAE
model with a latent dimension of 25 generates the most plausible images with
sharp and watertight boundaries. Figure 2 shows the airfoils and their extracted
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boundaries (curves). From visual inspection it is evident that the generated air-
foils are very realistic as it is difficult to distinguish between real airfoils and
airfoils generated using β-VAE. In the case of DCGAN and FactorVAE, the
quality of generation is extremely poor as the generated designs are not sharp
with closed boundaries. We tune all the models for different latent dimension
sizes to find a better fit. But for DCGAN and FactorVAE, the quality of gener-
ated airfoils remain poor for all latent dimensions. Figure 3 shows airfoil designs
generated using DCGAN and FactorVAE. Since, all the generated airfoils for all
latent dimensions are distorted for both the models, these airfoils can’t be used
to extract watertight boundaries and thus, cannot be of any practical use. As
β-VAE model outperforms other models, we quantitatively evaluate its results
using DnC.

5 15 25 35 45

DCGAN

FactorVAE

Fig. 3. Airfoil designs generated by DCGAN and FactorVAE for different latent dimen-
sion sizes. Heuristic hyperparameter search does not improve the quality of generated
designs.

4.5 Quantitative Results: Analysis of Airfoil Designs

In this section, we evaluate our model using DnC and compare it to the state-
of-the-art BézierGAN model. For the β-VAE model, we randomly sample from
the prior and generate CL/CD values. The airfoils are then generated using the
decoder and the latent vectors are then extracted from the encoder to calculate
the DnC scores. In total, we extract latent vectors for 500 real and 500 fake
images and calculate the DnC scores. Figure 4 shows the DnC scores for the
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Fig. 4. Density and Coverage of designs generated using β-VAE model for different
latent dimensions. Latent dimension size of 25 produces high quality designs.

Table 1. Comparison of β-VAE vs BézierGAN for quality and diversity of generated
designs. β-VAE outperforms BézierGAN on all fronts.

Metric β-VAE BézierGAN

Density 0.82 0.63

Coverage 0.93 0.038

β-VAE models for latent dimension size from 5 to 50 with a step size of 5. For
lower latent dimension sizes (size below 30), the quality and diversity is better
than those of higher sizes. This is understandable because in high dimensional
spaces, the curse of dimensionality applies and the data becomes more sparse.
For latent dimension size of 25, we can see that the density is the highest which
positively correlates with the observations from the qualitative results. Coverage
is also high (slightly lower than the highest number) indicating more diversity
in the generated samples.

We compared our conditional β-VAE model (having latent size of 25) with
the popular BézierGAN model which also aims at generating novel airfoils, but
without any constraints. Table 1 shows the comparison between the two models.
The β-VAE model outperforms BézierGAN in terms of quality and diversity of
the generated designs.

4.6 Quality of Reconstructions

For successful parameterization, representing the original airfoil design accu-
rately is crucial. For traditional parameterization techniques like PARSEC [34],
MACROS DR [36], and CST [3], the geometric error between the actual airfoil
and the approximated airfoil is calculated using Root Mean Square (RMS) [41].
However, the input and output in our approach is a binary field. While obtaining
curves from the generated binary fields, the points along the curve are sampled
randomly and not in any particular order. Thus, RMS is not a suitable technique
to measure parameterization accuracy because thepoints that coincide with the
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Fig. 5. Traversing across different dimensions of a latent vector using β-VAE. It shows
automatic disentanglement based on geometric traits like shape, size and curvature in
a distributed and a continuous latent space.

coordinates of an input airfoil cannot be obtained. However, the difference in
geometries may be computed by directly comparing the binary fields of the orig-
inal and reconstructed designs using Intersection over Union (IoU) [29]. IoU is
a popular metric in the computer vision community to calculate the similarity
of any two 2D/3D objects. Let A and B be any two 2D/3D volumes of objects,
then IoU is defined as follows: |A ∩ B|

|A ∪ B| (6)

We can see that β-VAE generates designs with the sharpest and most water-
tight boundaries by comparing the outputs of the models shown in Fig. 2. Thus,
to calculate the IoU between actual and approximated airfoil designs, we use the
reconstructions obtained from a β-VAE model with β=60 and a latent dimen-
sion of 25. We calculate IoU for a whole image because as long as every input
and output has just one smooth and watertight airfoil without any deformity,
IoU can effectively calculate similarity. Figure 3 shows that there are possibilities
of distortion while generating airfoil designs and that it might result in multi-
ple broken objects. Hence we first run all the samples through an off-the-shelf
contour detection technique and select 50 samples for which only one contour is
detected. The average IoU is as high as 0.975, which indicates that the β-VAE
model can accurately reconstruct original airfoils, which makes the decoder of
β-VAE a good parametric function. Examples of real vs reconstructed airfoils
with their IoU are shown in the appendix.

4.7 Disentanglement

We illustrate latent traversal through several dimensions of the noise vector
as well as interpolations between different samples to highlight our model’s
potential to disentangle the latent space based on the geometric properties of
the airfoils and their CL/CD values. Latent traversal (-1 to 1) across different
dimensions of a noise vector is shown in Fig. 5. For each row in Fig. 5, we vary
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z1, c1

z1, c1

z1, c1

z2, c2

z2, c1

z1, c2

Fig. 6. Noise vectors, n1 and n2 are randomly sampled and CL/CD values c1 and c2
are 0.1 and 0.99 respectively. Changing both noise and CL/CD (top) changes size and
curvature, whereas, changing only noise (middle) changes the shape without affecting
the curve and changing only CL/CD (bottom) changes the leading curvature without
affecting the shape.

one dimension in the noise vector while keeping all other dimensions, including
CL/CD value fixed to see the contribution of the varying dimension in gener-
ating of airfoils. Different dimensions depict varying and independent factors of
variation based on the size, shape, nature of leading and trailing edges of air-
foils. The latent traversal is very smooth, and the model can generate feasible
designs for any noise sample, which shows that the latent space is continuous
and interpretable.

We further demonstrate in Fig. 6 that our model can distinctly disentangle
based on noise and CL/CD values by disentangling different properties of the
airfoils. We sample two noise vectors and two CL/CD values and interpolate
between the two samples, first by changing both noise and CL/CD, second by
only changing the noise while keeping the CL/CD fixed and last by changing
CL/CD while keeping the noise fixed, as shown in Fig. 6. From the first row of
Fig. 6 we can observe that, changing both noise and CL/CD changes the size
and the curve at the leading edge. In the second row, we can see that for a fixed
CL/CD, the change in noise only changes the size of the airfoil and no change
in any curves or edges. From the last row we can observe that by changing only
the CL/CD value while keeping the noise fixed only changes the curvature at the
leading edge but no change in airfoil’s size. Thus, our technique achieves success-
ful disentanglement based on geometry as well as the performance characteristics
(CL/CD) of the airfoils.

Table 2. The relative error between the CL/CD values of the original and reconstructed
airfoils, along with their high IoU scores. Shown are random samples from the test set.
The average relative error on the whole test set is XY.
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4.8 Precision of CL/CD Conditions

We investigate in Table 2 if the CL/CD values of the real airfoils match with their
reconstructed counterparts, to confirm if the reconstructed airfoils adhere to the
CL/CD values that they were conditioned on. The reconstructed airfoils are first
transformed to the data format required by XFOIL, and using the simulations in
XFOIL, we obtain their CL/CD values. However, XFOIL is extremely sensitive to
the coordinates and simulations therefore, not all airfoils converge and CL/CD

for them cannot be obtained. Table 2 shows some examples of the converged
airfoils from the test set, the IoU scores between them and their reconstructed
counterparts and the relative error of the CL/CD value of the reconstructed
airfoils. The accuracy of the reconstruction is very high, as can be observed from
the high IoU values. The relative error between the CL/CD of the test airfoils
and of the reconstructed airfoils is also low. Thus, the conditional β-VAE model
can enforce the CL/CD condition with high precision during the reconstruction
of a design.

5 Conclusion

In this paper, we proposed a hybrid DGM-CAE based framework for automated
and constraint-based parameterization of airfoil designs while ensuring their
mechanical functionality under the CL/CD value constraint. We show that the
conditional β-VAE model outperforms several other popular generative mod-
els and is best at generating realistic and diverse airfoils with sharp, smooth,
and watertight boundaries while also adhering to the CL/CD constraint. It can
also disentangle several physical properties of the data enabling interactive air-
foil generation much faster than traditional parameterization techniques. Our
framework also outperforms the previous state of the art in terms of quality
and diversity of the generated designs. To the best of our knowledge, this is the
first at attempt of generating airfoil designs conditionally based on their CL/CD

values, thereby creating a new baseline for such a constraint-based parameteri-
zation of aerodynamic shapes. In the future, this approach can be extended to
parameterize 3D airfoils, and depending on the availability of data, many more
additional constraints can be enforced.
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Abstract. Neural decoding involves correlating signals acquired from
the brain to variables in the physical world like limb movement or robot
control in Brain Machine Interfaces. In this context, this work starts from
a specific pre-existing dataset of neural recordings from monkey motor
cortex and presents a Deep Learning-based approach to the decoding
of neural signals for grasp type classification. Specifically, we propose
here an approach that exploits LSTM networks to classify time series
containing neural data (i.e., spike trains) into classes representing the
object being grasped.

The main goal of the presented approach is to improve over state-
of-the-art decoding accuracy without relying on any prior neuroscience
knowledge, and leveraging only the capability of deep learning models to
extract correlations from data. The paper presents the results achieved
for the considered dataset and compares them with previous works on
the same dataset, showing a significant improvement in classification
accuracy, even if considering simulated real-time decoding.

Keywords: Machine Learning · neural decoding · neural networks ·
brain machine interface

1 Introduction

Neural decoding refers to the task of correlating signals recorded from the brain
to variables in the outside world such as limb movement. This task is relevant for
neuroscientists trying to understand the information contained in neural signal
to improve our models of the brain, as well as for researchers developing Brain-
Machine Interfaces (BMIs) to control physical and virtual objects (e.g., robotic
prostheses, mouse cursors) [11]. While the role of Machine Learning (ML) in
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neural decoding is known [7,8], improvements in this field can positively affect
the quality of life of patients relying on BMIs to control their prosthesis (i.e., by
providing a more natural control or by reducing the need of frequent re-training).

This work was developed in the context of the B-Cratos EU project, which
deals with the real-time translation of intra-cranial brain signals, with the final
goal of controlling a robotic prosthesis. In particular, this paper reports the
results obtained in the simulated real-time decoding of the grasp type, based
on a specific dataset previously recorded from the motor cortex of two Non-
Human Primates (NHP) [12], investigated as a propaedeutic activity to the final
prosthesis controller model deployment based on experimental data acquisition
carried out within the project’s scope. The main contributions proposed are:

– an LSTM model to detect the grasping phase from time series of neural data;
– an LSTM model to classify the object being grasped by the monkey that

provides higher accuracy than the current state of the art for the same dataset.

Both models work on data provided as they would be in a real-time application:
the grasping phase detection is representative of the capability to identify the
beginning and the end of a grasp movement, while the classification of the object
is used as a proxy for the grip type. Importantly, in the presented approach,
the authors only focused on improving the predictive performance for practical
applications without introducing any prior neuroscience knowledge in the model,
and without the intent to provide any deeper understanding of neural activity
and its correlation to the outside world.

The paper is structured as follows: Sect. 2 discusses the most relevant prior
works that define the state of the art for neural decoding in general and this
specific task in particular. Section 3 and 4 describe in detail the dataset used
for this work and the ML approach for detecting movement and classifying the
grasp type. Section 5 reports and discusses the results obtained with the proposed
approach, along with some considerations about the real-life application of these
results. Finally, Sect. 6 provides an overview about the relevance of these results
and introduces ongoing research in the same direction.

2 Related Work

Glaser et al. [7] and Livezey et al. [8] recently provided comprehensive reviews
of the state of the art for ML and Deep Learning (DL) for neural decoding,
observing how most of the applications still rely on very simple models (i.e.,
linear regression, Kalman filters) [2,11]. These reviews also highlighted several
works that have shown how LSTM can be effective to model the time evolution
of neural signals [1,14]. Another interesting aspect is the different purposes that
models for neural decoding can serve: if the goal is to understand the information
contained in neural activity from a neuroscientist point of view, simple, explain-
able models are to be preferred over black-box machine learning algorithms,
which are conversely more suited to provide strong predictive performance for
BCI application. It should also be considered that advancements in explainable
ML/DL may change this scenario.
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With respect to the decoding performance of ML models, since the purpose of
this work is strictly related to the predictive performance on a specifc dataset,
comparing this approach to prior works that dealt with completely different
datasets is not trivial, nor particularly interesting for this work, as the task
performed by the NHP, the recording conditions, and the pre-processing applied
by each researcher can be completely different. As a consequence, the main
reference benchmark for this work is a paper from Schaffelhofer et al. [12], which
first tried to apply neural grasp decoding to this specific dataset. The approach
was based on a naive Bayesian model used to classify the type of object being
grasped by the NHP by looking at an entire region of interest in the neural
recording (i.e., the phase when the NHP was holding the object). The accuracy
obtained by Schaffelhofer et al. was of 62%, on 50 classes (i.e., objects), evaluated
using a leave-one-out cross validation technique. A recent thesis from F. Fabiani
[5] discussed the results obtained by applying a sliding window to a longer region
of the recordings, to simulate real-time operation. An LSTM network with a
convolutional layer on top was used in this case, and the decoding results are
reported not on the individual 50 objects, but grouping them by their shape
(6 groups, variable size within groups) and size (6 groups variable shape within
group): while the shape of the object was successfully classified with an accuracy
of 92% over 6 classes, the size decoding accuracy was around 25% over 6 classes.
Section 5 will discuss how the presented approach differs from the previous works
and how the results compare.

3 Dataset Structure

3.1 Acquisition and Original Pre-processing

The dataset used for this work was acquired by researchers at Deutsches Pri-
matenzentrum1 (DPZ) and involved recording neural signals from electrode
arrays implanted in the AIP, F5, M1 regions of the brain cortex of two purpose-
bred macaque monkeys (Macaca mulatta), animal M and Z. The specific task per-
formed by the NHPs is described in Fig. 1 and involved grasping a set of objects
at specific times, while recording the signal from 192 electrodes in the motor
cortex. The original recording sampled at 24 kHz has been processed through a
band pass filter (0.3–7 kHz) [9], then a spike sorting algorithm has been applied
offline to each recording session independently [12]. Spike sorting algorithms
recognise neurons activation patterns in the raw signal and can also identify
multiple patterns to isolate multiple neurons from the same physical channel.
The output of the spike sorting algorithm is defined as a multi-channel spike
train. A binary time series contains the information about activation time of
each neuron (as identified by the spike sorting) during the experiment. For each
animal involved in the experiment, three recording sessions acquired in during
different days were made available, each one with a different number of spike

1 https://www.dpz.eu/en/home.html.

https://www.dpz.eu/en/home.html
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channels (i.e., neurons) recorded due to the different outcome of the spike sort-
ing algorithm for each session. The details about the datasets used are provided
in Sect. 3.2.

Fig. 1. Experimental set up, adapted from [12]. a) Two macaque monkeys were trained
to grasp objects presented on computer-controlled turntable. b) The grasping objects
are grouped in 50 classes. c) Objects were presented in pseudorandom order and the
grasping taskfollowed pre-defined steps: Fixation; Cue; Planning; Movement and Hold.
d,e) Adding two supplementary LEDs the monkey is prompted to perform a precision
(yellow led) or a power (green led) grip on a special handle. (Color figure online)

The process described in this section was performed out of the scope of the
present work: only the final spike trains were available to the authors and are
used here.

3.2 Structure

The datasets corresponding to the six recording sessions were provided as Neo
[6] objects, with multi-channel spike trains segmented in trials, each one corre-
sponding to an instance of the grasp/release process described in Fig. 1. Figure 2
represents the recording of the spike trains for a single trial from animal Z, plot-
ting both the spike trains (top) and the same data discretised in 40 ms time bins
(bottom), where each bin contains the number of spikes counted in that time
interval for that channel. As also shown in Fig. 2, timestamps for each experi-
ment phase, corresponding to subsequent stages of the monkey task (e.g., visual
cue, planning, grasping, etc.) are reported in the data, as well as the information
about the object being grasped (object id). It should be noted that not all the
phases are reported in Fig. 1 and that time intervals between phases can change
between trials due to subject behaviour.
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Fig. 2. Example of recording for an experimental trial: the top plot reports the firing
times for individual spikes for each channel, while the bottom plot reports the intensity
map after a 40ms time discretisation. The color of each bin is correlated to the number
of spikes counted in that time interval and in that channel (increasing from purple to
yellow). Time on x axis is reported from the beginning of the recording session. (Color
figure online)

Table 1. Number of channels and number of trials for each experimental recording
session.

NHP identifier Dataset identifier # Channels # Trials

M MRec40 552 745

MRec41 568 757

MRec42 554 653

Z ZRec32 391 687

ZRec35 388 724

ZRec50 369 610

Table 1 reports the number of channels identified by the spike sorting for each
recording session, along with the dataset identifier and the number of trials for
that session. It should be also noted that the number of times each object appears
in the dataset is not constant among objects and recording sessions, resulting in
a class imbalance when training a classifier based on grasped objects.

4 Decoding Approach

4.1 Pre-processing

The proposed approach is aimed at simulating on-line decoding of grasped object
(used as a proxy for the grasp type), hence the data should be prepared to fit this
purpose. The pre-processing steps are split as follows, to separate the different
steps and support the development of models without the need of re-processing
the whole dataset every time, as intermediate data structures are always stored.
These steps are performed separately for each recording session of each animal.
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1) Time Discretisation. The spike trains are discretised in bins of 40 ms of
length. Also shorter time binning has been evaluated to understand if longer,
more detailed sequences could benefit the classification performance, but due
the lack of evidence of a positive impact, shorter sequences and larger time bins
have been selected to lower the computational cost. Each trial was converted to a
dense matrix with an ID and stored to disk, and the related metadata was stored
in a dedicated data structure (progressive bin number associated to experiment
phases; object id; data matrix id).

2) Training, Validation and Test Split. The split of each dataset in training,
validation and test sets is critical: in fact, since the sequences used to train the
model are partially overlapping, splitting data at sequence level would lead to
an artificially high accuracy as highly overlapped sequences can appear in all
sets. To avoid this effect and provide realistic validation of the approach, the
split was performed at the entire trial level (i.e., entire trials were assigned to
either train, validation or test set), setting apart 80% of the trials for training,
16% for validation, and 20% for testing. Moreover, class-based stratification2 was
performed to ensure sufficient representation of all classes in all the datasets.

In this phase, under-represented classes (i.e., objects appearing in less than
3 trials for each recording session) were removed from the dataset to ensure the
presence of at least one representative of the class in each dataset partition.
Moreover, object of identical shape and size are present in multiple groups (c.f.
columns of Fig. 1b) and were mapped to the same class.

3) Sequence Creation. After splitting the trials in the three datasets, a sliding
window was applied to each trial. The sub-sequences extracted by the sliding
window represent the data a real-time decoder would see at any given moment,
and were tagged either with a label indicating that the monkey was in rest
position, or with the grasped object id if the last bin of the sequence was falling in
the region of interest that has been defined as the hold phase of the experiment.
This choice was made to be coherent with the approach from Schaffelhofer et al.

The extraction of sequences is depicted in Fig. 3. From the sub-sequences,
two different datasets are created that will be used for different learning tasks:

– an grasping phase dataset, that contains all the sequences labelled as grasp
(if they fall in the region of interest) and rest (elsewhere). Class imbalance is
roughly 10 to 1 for rest vs. grasp;

– a classification dataset, containing only the sequences with the last bin falling
in the region of interest, labelled with the id of the grasped object.

2 https://scikit-learn.org/stable/modules/cross validation.html#stratification.

https://scikit-learn.org/stable/modules/cross_validation.html#stratification
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Fig. 3. Illustration of the sequence creation process. Each discretised trial is scanned
with a sliding window, advancing one time step at a time and extracting fixed-length
sequences (2D arrays of dimension channels× length). Each sequence is stored along
with a label that can be rest, if the last bin falls outside of the hold phase, or the object
id if it falls within.

These two datasets (for each recording session) are then passed on to the
model building step, discussed in the next section.

4.2 Decoding Model

Among the two tasks identified, the classification one has proven to be signifi-
cantly more challenging than the grasping phase one. All the effort to identify
a suitable architecture was then focused on the classification task, and the best
performing model was re-used for the grasping phase detection task.

Architecture. Based on previous literature, it has been decided to start the
search for a suitable architecture from LSTM networks. Additional experiments
were performed within the scope of this work with Bidirectional LSTM networks
[3,13], that demonstrated significantly better performance than simple LSTM
networks.

These experiments included a preliminary architecture and hyperparameter
search that led to identify the following subset of hyperparameters, which have
been used to run a final optimisation campaign for each dataset with KerasTuner
[10] bayesian optimiser; the search space was defined as in Table 2. An example
of model architecture is shown in Fig. 4.
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Table 2. Final hyperparameter search space. One model identified for each animal.

Hyperparameter Values Selected

(L1 = 0.01, L2= 0.01) M Z

LSTM layers { 1, 2, 3, 4 } 2 1

Hidden units { 16, 32, 40, 64 } 40 40

Dropout { 0, 0.2, 0.4, 0.6, 0.7, 0.8 } 0.8 0.7

Kernel regularisation { None, L1, L2, L1 + L2 } L2 L2

Recurrent regularization { None, L1, L2, L1 + L2 } L2 L1+L2

Initial learning rate { 10−3, 2 · 10−4, 10−4 } 10−3 10−3
(b
at
ch

, 1
2,

 5
52

)

In
p

u
tL

ay
er

in
pu

t: 
(b
at
ch

, 1
2,

 5
52

)

(b
at
ch

, 1
2,

 8
0)

B
id

ir
ec

ti
o

n
al

( 
L

S
T

M
 )

(b
at
ch

, 8
0)

B
id

ir
ec

ti
o

n
al

( 
L

S
T

M
 )

D
en

se
ou

tp
ut

: (
ba

tc
h ,

 3
9)

Fig. 4. Final architecture for classification network (animal M). Activation functions
for the LSTM layers are tanh and sigmoid (recurrent activation). Output layer activa-
tion is softmax. Loss function is categorical crossentropy.

Training. The model was implemented with Keras [4], to facilitate its future
deployment with Tensrflow lite on a dedicated embedded board3. Training used
a mini-batch size of 256 and typically converged within 100 epochs, which are
almost never reached due to an early stopping policy based on the evolution
of validation accuracy. A learning rate (LR) scaling policy was implemented to
halve the LR when loss is plateauing for more than 10 epochs.

5 Results and Discussion

5.1 Grasping Phase Detection

This is a binary classification task with a significant class imbalance towards the
rest class. The LSTM model reaches an accuracy of at least 98% for all datasets,
the F1 score is always greater than 0.95. Table 3 presents both the confusion
matrix for one dataset (MRec40) and the accuracy figures for all datasets: if
considering this model in the context of a finite-state prosthesics control scenario,
unwanted movements (rest classified as grasp) would amount to 1% of the time
steps considered, while unresponsiveness (grasp classified as rest) is around the
0.1% of time steps. The relevance of these results for a real-life prosthesics control
is discussed in Sect. 6.
3 https://coral.ai/docs/dev-board-mini/datasheet/.

https://coral.ai/docs/dev-board-mini/datasheet/
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Table 3. Grasping phase detection results.

(a) Confusion matrix for grasping phase
detection (MRec40).

Predicted

True rest grasp

rest 12824 173

grasp 25 1347

Grasping phase detection accuracy metrics.

Dataset id Accuracy F1 score

MRec40 99% 0.96

MRec41 99% 0.96

MRec42 99% 0.97

ZRec32 99% 0.96

ZRec35 98% 0.96

ZRec50 98% 0.95

5.2 Grasped Object Classification

The results for the classification of the grasped object represent the major contri-
bution of this work and Fig. 5 and 6 report the confusion matrices and accuracy
figures for each recording session available to the authors. To make a sensible
comparison with prior art, we should carefully consider the differences between
the presented approach and the previous works mentioned in Sect. 2.

In the original 2015 paper [12], Schaffelhofer et al. report an average accu-
racy for the hold phase of 62% over a total of 10 recording sessions (against the
six available for this work). This was obtained with an off-line naive bayesian
classifier applied to the whole hold phase and validated with a leave-one-out
(LOO) approach, hence the dataset fraction used for training was significantly
higher than what is used in this work. On the other hand, 50 classes were consid-
ered while in this case under-represented classes (i.e., less than 3 samples) were
removed, and identical objects with different IDs were collapsed onto the same
class. In general it is possible to say that the presented approach outperforms
the naive bayes classifier (significantly for animal M, and slightly for animal Z)
in a harder set-up (sliding window vs. fixed region; smaller training partition).
Additionally, as classes are ordered as the objects in Fig. 1, neighboring classes
represent the same object with a slightly different size, hence a very similar
grip type; in this sense it has been computed also the relaxed accuracy, count-
ing 1-class-away misclassification as correct. Relaxed accuracy results are also
reported in Table 4 and Fig. 5, 6, showing a better performance than previous
works.

With respect to the results reported by Fabiani [5] for the online decoding,
the approach is very similar (i.e., sliding window), although a larger region of
interest was considered, including also the go phase. In this case results are not
reported by individual objects, but by shapes and sizes (respectively rows and
columns in Fig. 1b): to compare the accuracy with the numbers presented in this
paper, shape and size accuracy figures are multiplied. The results obtained here
are even outperforming the offline decoding algorithm also proposed by Fabiani,
which considers a fixed, larger window of each trial for the classification. The
comparison of Table 4 shows that also in this case, the presented LSTM model
outperforms significantly the previous approach, which can be surprising given



388 P. Viviani et al.

that LSTM models are used in both cases; it is the author’s opinion that the
adoption of Bidirectional LSTM layers provide the most significant improvement
in the decoding performance, along with careful usage of regularisation strategies
(i.e., a high dropout fraction proved to be particularly effective).

Table 4. Comparison of results with previous works. Metrics are averaged over the
available recording session for the present work (standard deviation is referred to mul-
tiple recording sessions, not to multiple training shots) and for Schaffelhofer et al. [12].
The work by F. Fabiani only reports results grouped by object type and object size,
the individual object accuracy is calculated as the product between the two accuracies
[5]. Relaxed accuracy also considers as correctly classified objects belonging to the first
neighboring classes.

Animal Metric Present work Schaffelhofer, 2015 Fabiani, 2021

M Accuracy 69.7 ± 4% 62.9 ± 3.6% n/a

Z Accuracy 62.3 ± 1.2% 61.4 ± 4.1% n/a

Global Accuracy 65.9 ± 4.9% 62% 22%

Relaxed accuracy 94.4 ± 3.1% 86.5% 59%

5.3 Real-Life Usage and Current Deployment

Reduced Training Set. When testing real-time neural decoders in the context
of real NHP experiments, one of the requirements is the capability to quickly
start decoding signals and shortnening the training data acquisition as much as
possible. Moreover, neural signal evolves through time (i.e., due to mechanical
movement of the implant, inflammatory processes, brain plasticity, etc.), making
re-training models daily mostly unavoidable.

Here are reported the results of an investigation aimed at understanding how
the size of the training set w.r.t. the entire dataset is affecting the accuracy of
the trained model. This is particularly relevant as gathering samples is a time
consuming operation in both neuroscience research with non-human primates
and BMI clinical practice with patients. In this sense, the model capability to
retain a good accuracy is critical to ensure its usability in the real world. Table 5
reports the accuracy numbers for an increasing test set partition (and an equally
decreasing training+validation set). Qualitatively the accuracy remains quite
close to the previous state of the art up to a 30% training partition; moreover,
the relaxed accuracy is also better than the state of the art down to 30% of
training data.

Computational Cost. The training time for all the grasp classification cases
is lower than one minute on an Nvidia V100, suitable for on-the-fly re-training
when new data becomes available during experiments. The larger number of
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Table 5. Accuracy and relaxed accuracy for a progressively reduced training set.

Training + validation set Accuracy Relaxed accuracy

80% 74.1% 98.3%

70% 70.1% 97.1%

60% 69% 93.7%

50% 62.8% 94%

40% 63.8% 92.8%

30%∗ 59.2% 87.5%

20%∗∗ 51% 81%
∗validation is 30% of training set to ensure at least one rep-
resentative per class
∗∗validation is 40% of training set

sequences used to train the grasping phase detection model makes each epoch
longer, but the number of epochs required to reach a satisfactory accuracy is
smaller and contributes to keep the training time at around one minute.

Current Deployment of the Model. This work represents a preparatory
step toward an effective model for real-time continuous control of a prosthesis:
while this is a classification task, the data recorded from the brain is fully rep-
resentative of the kind of data that will be acquired within the scope of the
project during 2023, and the network architecture that has been identified will
be the starting point for the deployment of a real-time decoder on a dedicated
device. Since the final model will predict a limited number of real-valued degrees
of freedom, it has been built a synthetic dataset reproducing a trajectory of a
single degree of freedom based on the recordings used in this work and the same
model presented in Fig. 4 has been trained to predict this real value with good
accuracy. It is in fact currently being used to control the opening and closing of
a robotic hand for the first integration tests.

Reproducibility Note. The code used to achieve the presented results is avail-
able in a public repository4. Instructions to access a subset of the data (one
recording session) has been made available to reviewers as additional material
through the submission portal, and such dataset can be tested directly with
the code just mentioned. The entire dataset has been provided by DPZ out of
courtesy as part of an ongoing collaboration in the B-Cratos project, but the
ownership remains to the original researchers and its complete publication is
beyond the scope of this work.

4 https://github.com/LINKS-Foundation-CPE/Neural-decoding-paper-2023.

https://github.com/LINKS-Foundation-CPE/Neural-decoding-paper-2023
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Fig. 5. Confusion matrices and accuracy results for grasped object classification for
animal M. The models used are the best performing on the validation set among 10
training runs. It can be noted how most of the misclassified samples lie very close to
the diagonal.
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Fig. 6. Confusion matrices and accuracy results for grasped object classification for
animal Z. The models used are the best performing on the validation set among 10
training runs. It can be noted how most of the misclassified samples lie very close to
the diagonal.
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6 Conclusion and Future Work

The experimental results presented in the previous section demonstrated the
capability of bidirectional LSTM networks to match and outperform state-of-
the-art methodologies on known data. While this dataset, being used for a cate-
gorical classification task, is not immediately relevant for the continuous control
of a robotic prosthesis, it validates the suitability of LSTM models for neural
decoding of hand grasp actions. In particular, the very good results obtained for
the relaxed accuracy are more representative of the performance to be expected
when controlling a limited number of degrees of freedom or less nuanced cate-
gories (i.e., 5/6 grasp types, opening and closing). It is also worth to highlight
how these results were obtained without involving any prior neuroscience knowl-
edge.

With respect to the next steps, the main research activity ongoing is directed
towards making LSTM models robust to the evolution of the neural signal
through time. In this case this is reflected by the capability to retain information
learned during, for instance, the MRec40 session and re-use that information,
in the form of a pre-trained model, for decoding MRec41. The goal is to reduce
even more the need for time consuming data acquisition and re-training of the
models, hence, in a long term perspective, lowering the daily effort for BMI
patients and clinicians. In this specific case, the spike sorting applied separately
for each session is not helping, as it changes the number of channels and mixes
them up preventing the straightforward re-use of a model. In this sense, an effort
of applying this model to datasets from literature that are not spike-sorted per
session is ongoing. Relying on public datasets will also provide an opportunity
to validate this approach against a much wider prior literature.
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Abstract. A key challenge in wearable sensor-based fall prediction is
the fact that a fall event can often be performed in several different
ways, with each consisting of its own configuration of poses and their
spatio-temporal dependencies. Furthermore, to enable fall prevention of a
person from imminent falls, precise predictions need to be achieved as far
in advance as possible. This leads us to define a multi-channel temporal
network, which explicitly characterizes the spatio-temporal relationships
within a sensor channel as well as the interrelationships among channels
by a combination representation of positional embedding and channel
embedding to manage these unique fine-grained configurations among
channels of a particular fall event. In addition, a transformer encoder is
devised to exchange both inner-channel and inter-channel information in
the encoder structure, and as a result, all local spatio-temporal depen-
dencies are globally consistent. Empirical evaluations on two benchmark
datasets and one in-house dataset suggest our model significantly out-
performs the state-of-the-art methods. Our code is available at: https://
github.com/passenger-820/MCTN.

Keywords: Fall prediction · Wearable data · Multi-channel ·
Spatio-temporal dependency

1 Introduction

Fall prediction is an important research issue, given its role in facilitating the
identification and protection of people at increased risk of fall injuries at an early
stage by leveraging fall prevention devices such as airbags and walking sticks. As
shown in Fig. 1, falls can be divided into four stages: pre-fall, falling, impact and
post-fall. Many efforts have been devoted to the study of fall detection systems
(FDS) that identifies the fact of falling during the period from pre-fall to post-
fall (gray lines in Fig. 1). Real-time performance is not a priority for FDS, which
only requires accurate identification of a fall event within seconds to tens of
seconds after the subject has fallen. However, different from fall detection, fall
prediction systems (FPS) require high real-time performance, usually hundreds
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. De Francisci Morales et al. (Eds.): ECML PKDD 2023, LNAI 14174, pp. 394–409, 2023.
https://doi.org/10.1007/978-3-031-43427-3_24
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Fig. 1. The four stages of falls. For instance, two types of fall events are collected
by ourselves. (Top) forward fall; (Bottom) crouch-up backward fall and their corre-
sponding acceleration waveforms (Middle). [l, l + L] indicates the data segment for fall
predication, ϑ indicates the lead time before impact and Lim is the start point of impact
stage.

of milliseconds before impact, as the systems aim to reserve activation time
for fall prevention devices as much as possible. In addition, FPS uses fewer
data segments (red lines in Fig. 1), which poses greater challenges for accurately
predicting different falls and daily activities.

Computer vision-based approaches have been at the forefront of this field,
and are becoming mature to predict falls from visual acquisition equipments like
RGB and RGB-D cameras. Compared with the frames in the video, wearable-
based approaches have the advantages of smaller data size, leading to less com-
putational costs, and are robust to complex phenomena such as variable light-
ing effects and occlusions. Specifically, the inertial measurement unit (IMU)
is capable of collecting human posture information by recording data such as
acceleration and angular velocity attached at body position (e.g., waist) for fall
prediction. Currently wearable-based methods fall into three major categories,
threshold-based, conventional machine learning (ML) and deep learning (DL)
models.

Relation to Prior Works: Intuitively, the threshold-based algorithms com-
pare the raw data or extracted features with a predetermined threshold [4,6].
When the output value surpasses the threshold, a probable fall is predicted.
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For example, Jung et al. [6] employed roll, pitch, and sum magnitude vector
derived from the accelerometer and gyroscope, and set different thresholds for
each feature separately. It is concluded that a fall is about to occur when each
of these features exceeds their corresponding thresholds. On the other hand,
conventional ML models become increasingly popular to predict falls because of
their capability of managing features. For instance, Decision Tree (DT), Näıve
Bayes (NB), Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and
Random Forest (RF) [5,13] are adopted to forecast fall events by leveraging
features extracted from various types of sensors like pressure-sensitive insoles
and accelerometers attached on multiple body positions including head, pelvis,
and right and left calves. Although these two types of methods are capable of
responding to the falling events fast, yet either these features or thresholds need
to be manually encoded or be handcrafted from domain knowledge, which could
be rather difficult to scale up and is almost impossible for many practical scenar-
ios where those features are intricate among multiple sensors. Most importantly,
fall postures and their temporal relations are often inherently complex due to
multiple sensor types attached on various body positions. Consequently, they
are difficult to distinguish between temporally sensitive events such as quick
falls and gradual falls.

The most popular paradigm in recent years might be that of the DL models,
which include techniques such as Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN) and Long Short-Term Memory (LSTM). Due to the
capacity of generating high-level semantic features in the latent space, it is not
surprising that these neural network-based models generally surpass their con-
ventional counterparts that only consider utilizing channel-level information by a
large margin. However, they have difficulties in capturing rich fine-grained (inter-
channel) spatial relationships among channels. In fact, these models mostly focus
on coarse-grained (channel-level or pose-level) spatio-temporal information (e.g.
taking all the channels as a whole in a pose and describing their relations between
two adjacent frames on pose level), ignoring internal channel dependency within
a single frame and external channel relations among different frames. As a result,
only spatio-temporal dependencies associated with entire fall event can be suffi-
ciently captured. Hence, these models cannot be directly transferred to predict
fall events in relatively complex scenarios [2,9–11,15]. As the number of sen-
sor channels attached on body grows, these existing models are rather limited in
identifying multi-channel features with meaningful spatio-temporal relationships
in fall prediction.

To address the above issues in fall prediction, we present a multi-channel
temporal network (named MCTN) to explicitly model the channel context of
spatio-temporal relations. In particular, our model considers a principled way
of dealing with the inherit structural variability in fall events. Briefly speaking,
we first propose to introduce a set of latent vector variables, named positional
embedding and channel embedding, to represent inner-channel and inter-channel
spatio-temporal relations. Now each resulting vector from the embedding rep-
resentation contains its unique set of channel-level events together with their
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Fig. 2. The overall pipeline of our MCTN model. PE and CE embed temporal and
channel information for sequences. The Transformer encoder based on a self-attentive
mechanism computes the entire input sequence simultaneously. LPL and GPL select
and downscale the output of the encoder. BPL predicts whether a fall is likely to occur.

low-level pose features of temporal information. To fully characterize a certain
cluster of instances that possess similar fall events and their spatio-temporal
dependencies, a transformer network is devised to encode the spatial relation-
ships along with the temporal relations. In this way, a unified embedded unit
that represents a pose in a frame (i.e. sampling point) is updated by exchanging
information with other unit variables from the same frame and different frames,
allowing our model to manage both spatial and temporal dependencies among
channels from various frames. Specifically, the combination of scaled dot-product
attention and multi-head attention mechanisms are incorporated in each layer to
capture channel-level spatio-temporal relations, and subsequently it ensures fea-
ture consistency between the high-level event space and the low-level pose space
without loss of their internal spacial relations. In this way, our network-based
approach is more capable of characterizing the inherit spatio-temporal structural
variability in fall prediction when compared to existing methods, which is also
verified during empirical evaluations on two publicly-available datasets and one
in-house dataset collected by ourselves, which will be detailed in later sections.

2 Our Approach

2.1 Definition

Given a dataset D of N samples consisting of sensor data from S multiple sen-
sors attached on various body positions (e.g., accelerometer on waist). Each
sample is a sequence of T frames measured in time and spaced at uniform time
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intervals. Formally, given a sample of human events M = < pt|t = 1, · · · , T >,
a pose pt ∈ R

S×3 is associated with a collection of time series collected by S
sensors at the t-th frame, with each sensor having 3-axis coordinates. That is
to say, there are totally K = S × 3 channels of time series for each pose. Take
accelerometer attached at the waist as an example, a channel of time series
cj =< a(x)(s)1 , a(x)(s)2 , . . . , a(x)(s)T > (j = 1, 2, . . . ,K), where a(x)(s)t is a vector
collected from the x-axis of the s-th sensor at t-th frame. Here we design an
encoder-classifier model, which consists of two parts: a multi-channel temporal
transformer encoder that discovers the deep features by combining positional
embedding and channel embedding representations, and a linear projection-
based classifier to achieve the prediction tasks of classifying fall events.

2.2 Multi-Channel Temporal Transformer Encoder

Positional Embedding (PE). It is hard to represent the temporal informa-
tion directly within a channel by only using simple and raw sensor data. To
further characterize the internal temporal features from a single channel, first
we manually encode temporal information by adopting embedding representa-
tions, i.e., positional embedding. Let us denote P as the positional embedding
representation with the length of L, where L < T . Formally, the positional
embedding maps each channel cj into a latent vector of size L, with each item
Pj

i (i = 1, 2, . . . , L) as defined as follows:

Pj
i =

{
sin(ωk · i), if i = 2k − 1
cos(ωk · i), if i = 2k

, (1)

where k ∈ N
+ is introduced to distinguish the parity of i (i.e. k = � i

2�), and ωk

can be calculated as follows:
ωk =

1
T 2k/L

. (2)

Now the positional embedding Pj of the corresponding channel cj can be
expressed as follows:

Pj = [sin(ω1 · 1), cos(ω1 · 2), · · · , sin(ω�L
2 � · (L − 1)), cos(ω�L

2 � · L)] (3)

Without loss of generality, the positional embedding for all the channels in a
sample M can be concatenate as P = [P1,P2, . . . ,PK ], which in turn yields
an enhanced sample Ẽ that contains temporal information:

Ẽ = E + P , (4)

where E = < pt|t = l, l+1, · · · , l+L > (l = 1, . . . , T −L) is a window segment for
fall prediction, as shown in Fig. 1. It is worth noting that the determination of l
is divided into two steps in our fall prediction application. In short, we determine
the first frame of impact stage (Lim) by finding the maximum sum magnitude



MCTN: A Multi-Channel Temporal Network for Wearable Fall Prediction 399

Fig. 3. An example of determining a fall prediction window using data (25 Hz) from
Fig. 1 (Middle). Lim is the index corresponding to the maximum value of SMV, which
is 171 in this case. ϑ is the lead time, which is 0.6 s in this example, corresponding to 15
sample points at 25 Hz. Therefore, the index of the end point of the prediction window
can be obtained as l + L = 171 − 15 = 156, where L is the length of the prediction
window, corresponding to approximately 3 s of data points at 25 Hz, and L = 76 is
chosen in this example. Thus, the index of the starting point of the prediction window
is l = 156 − 76 = 80.

vector (SMV) of the accelerometer at waist, and the formula for calculating SMV
is as follows:

SMV =
√

a(x)2 + a(y)2 + a(z)2. (5)

After Lim is obtained, we trace back ϑ+L frames to obtain l = Lim −L−ϑ,
where ϑ is a hyperparameter used to indicate the lead time before impact, during
which protective devices such as hip airbags or crash vests can be activated. The
specific calculation example is shown in Fig. 3.

Channel Embedding (CE). Existing models often neglect the relations
among different sensor channels, leading to the spatial information loss. Inspired
by ViLT method [8], to further characterize the inherent spatial representa-
tions among channels, we employ an embedding representation, named channel
embedding, which can be readily generated by labelling in terms of channels.
Formally, we choose a simple and convenient way to generate an augmented
sample Ē by embedding channel information into Ẽ as follows:

Ē = c ⊕ Ẽ, (6)

where ⊕ is the concatenate operator and c = {c1, . . . , cK} is a vector of K
constants, with each item ck ∈ N

+ indicating a unique identification of the k-
th channel. For simplicity, we assign all the channels in the same sensor with
the same value in our work. In this way, the generated sample Ē can form
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a channel-based feature space that describes a unique fall event with spatio-
temporal representations.

Transformer Encoder. Now we are ready to construct the encoder by adopt-
ing transformer technique [16], which can effectively learn spatio-temporal rela-
tions from multiple channels in parallel. In particular, it includes two major
mechanisms, scaled dot-product attention (SDPA) and multi-head attention
(MHA). The centerpiece of SDPA is a self-attention mechanism (shown in Fig. 2),
in which Ē is first transformed into three different vectors: the query vector q,
the key vector k and the value vector v with the same dimension J , where
J = L + 1. Vectors derived from different inputs are then packed together into
three different matrices, namely, Q, K and V. Subsequently, the attention func-
tion for these three input vectors is calculated as follows:

Attention(Q,K,V) = softmax(
Q · KT

√
J

) · V. (7)

In details, we first compute the scores ς = Q·KT. Then, the scores are normalized
for the stability of gradient with ςn = ς/

√
J . After that, the normalized scores

are further translated into probabilities with softmax function ρ = softmax(ςn).
Finally, a weighted value matrix can be obtained with Z = ρ·V, which represents
the temporal features of Ē for each frame.

A single SDPA layer (named a head) may limit our ability to focus on one or
more specific channels without influencing the attention on other equally impor-
tant channel at the same time, which nevertheless results in spatio-temporal
information loss among channels. To boost the performance of vanilla SDPA
layer, MHA mechanism is adopted by allowing multiple attention layers with
different representation subspace. In this way, different matrices (i.e., Q, K and
V) are given their separate heads, which can be projected into different repre-
sentation subspace after training due to random initialization.

To formally elaborate, given the number of heads H, Ē is first transformed
into three groups of vectors: the query group, the key group and the value group.
In each group, there are H vectors with the same dimension J/H. These vec-
tors are then packed together into three different groups of matrices: {Qi}H

i=1,
{Ki}H

i=1 and {Vi}H
i=1. The MHA process can be formulated as follows:

MHA(Q,K,V) = (head1 ⊕ head2 ⊕ · · · ⊕ headH)Wo (8)

where headi = Attention(Qi,Ki,Vi), and Wo ∈ R
J×Φ is weight matrix with

Φ indicating the number of tuning parameters in this layer. In this way, the
shared space generated by the multi-heads attention ensures feature integrity and
consistency among various channels without loss of their global spatio-temporal
relations.
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2.3 Linear Projection and Prediction Module

In our decoder, since the features output by the above encoder have a large
number and high dimensionality, leading to the exhaustive computational cost,
we first need to reduce the dimensionality of the encoded feature space.

Linear Filtration Layer (LFL). Let Ei ∈ R
K×Φ denote an instance after

being encoded by our encoder, where i represents the index of batch size. We
first reduce the size of encoded feature space from Φ to λ (λ < Φ). Formally,
each Eij ∈ R

Φ(j = 1, · · · ,K) is mapped into a latent vector Ẽij ∈ R
λ, as defined

as follows:
Ẽij = Wl × Eij + Bl, (9)

where Wl is a weight matrix of size λ×Φ, and Bl is a bias vector of size λ. After
filtering the features of each channel of Ei, we now get a feature map Ẽi ∈ R

K×λ.

Global Projection Layer (GPL). Normally, these feature maps are generally
flattened into one dimension in fall prediction task of classification by using full
connection layer directly. However, it will retain all the channel information,
resulting in an excessive amount of model parameters, which nevertheless leads
to overfitting and low generalization performance. To this end, a global average
pooling (GAP) is employed to further reduce the dimension of features while
maximally remain the spatio-temporal information among channels. In details,
each feature map in Ẽi is averaged as follows:

Ēij =
1

|Ẽij |
∑

(p,q)∈Ẽij

xjpq, (10)

where Ēij represents the global average pooled output value of the j-th feature
map, xjpq represents the element at (p, q) in the j-th feature map area, and |Ẽij |
represents all the elements in the j-th feature map.

Binary Prediction Layer (BPL). Up to now, we get a one-dimensional fea-
ture matrix Ēi ∈ R

λ for each channel i, which is generated by the procedures
of feature selection and dimension reduction of the encoded instance E . Here we
simply convert the prediction task to a classification problem to determine, for
example, whether a subject is about to fall or non-fall by leveraging the sensor
data collected before impact stage. We build the prediction layer by mapping Ēi

to these two categories as follows:

Êi =WpĒi + Bp,

ŷ =softmax(Êi) =
Êij∑
K Êik

,
(11)

where Wp and Bp are weight matrix and bias vector, respectively, and ŷ rep-
resents the probability of the prediction results. The final result is recognized
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as the class with the maximal probability ŷ. For simplicity, we choose categor-
ical cross-entropy as the loss function which is commonly used during model
training. Finally, the parameters W = {Wo,Wl,Wp,Bl,Bp} in our encoder-
classifier model can be estimated by optimizing the loss function objective over
the dataset D. There are probably a number of KHΦ+(Φ+2)λ training param-
eters on W, which is acceptable for fall prediction in practice.

3 Empirical Evaluations

3.1 Datasets and Preprocessing

Three fall event datasets are considered in our experiments, including two
publicly-available benchmark datasets and one in-house dataset collected by our-
selves.

SisFall(200 Hz) [14]. This publicly-available dataset contains a total of 4505
samples, including 2707 samples of 19 activities of daily life (ADL) and 1798
samples of 15 fall actions collected from two accelerometers and one gyroscope
placed at the waist of 38 participants.

MobiAct (100 Hz) [17]. It is a public benchmark that contains 647 samples of
4 fall actions and 1879 samples of 9 ADL actions obtained by an accelerometer
and a gyroscope placed in the thighs of 57 participants.

SoftFall (25 Hz). To the best of our knowledge, these two publicly-available
datasets do not contain the scenario of falls of the elderly where their procedure
is often slower than and different from the other cases. To this end, we propose a
new dataset that includes simulated slow-paced movements of elderly individuals
(see Table 1). These samples were collected using a 9-axis MPU9250 sensor (one
accelerometer, one gyroscope and one magnetometer) attached at the subject’s
waist from 11 participants, who were instructed to perform 22 different activities
(7 ADL activities and 15 fall activities). A total number of 802 samples were
collected, including 203 ADL samples and 599 fall samples. A subset of samples
are provided in the supplementary material, and once ready we plan to share
the entire dataset in the community.

3.2 Experimental Set-Ups and Baselines

Our model is implemented by PyTorch on one GeForce GTX 1070Ti GPU. It
is optimized by SGD optimizer with the learning rate of 1 × 10−3. We set the
hyperparameters ϑ = 15, J = 77, H = 7, Φ = 16 and λ = 8 to ensure 0.6 s in
advance of the impact stage for fall prediction. The batch size is fixed to 128
and the number of training epochs is 600. The prediction performance of our
model is compared 14 commonly used methods in FPS. For fair comparison,
we did not apply any data augmentation or pre-trained weights to boost the
performance. Accuracy is employed as the evaluation metric, which is computed
as the proportion of true results among the total number of samples.
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Table 1. Fall and ADL events in SoftFall. All ADLs are slow-paced. Except for the
pre-fall phase in the falling data, the rest are only affected by gravity without external
interference.

Fall/ADL Number Activity

Fall 0 Basic falls (fall in four directions from front to back, left to right while standing)

1 Crouch-up lateral fall

2 Crouch-up backward fall

3 Bending knee to stand up and fall forward

4 Bending knee to stand up and fall backward

5 Bending forward to fall

6 Bending sideways and falling

7 Bending up and falling backward

8 Lying down and roll over to fall vertically

9 Slipping backward while walking

10 Tripping in forward direction while walking

11 Lateral collision while walking

12 Fainting directly to the side while walking

13 Tripping in forward direction while running

14 Slipping sideways while running

ADL 0 (Slowly) Flow ADL (a complete set of movements from ADL1 to ADL6)

1 (Slowly) Walking

2 (Slowly) Running

3 (Slowly) Picking up/bending down

4 (Slowly) Going up and down stairs

5 (Slowly) Lying-Sitting-Standing

6 (Slowly) Standing-Sitting-Lying

Table 2. Accuracy(%)/Computational time(ms) comparisons on fall prediction with
conventional methods. a-accelerometer, g-gyroscope.

Datasets Methods

MobiAct (a, g) SisFall (a, g) SoftFall (a, g)

20Hz 25Hz 50Hz 100Hz 20Hz 25Hz 50Hz 100Hz 200Hz 25Hz

Threshold1 [6] 66.30/3.7 67.19/3.9 69.84/4.9 72.28/8.5 72.36/3.4 75.39/4.5 77.11/5.1 79.43/8.5 79.57/9.6 71.08/4.3

Threshold2 [1] 70.51/2.8 72.44/3.1 73.85/4.6 75.16/8.2 74.34/2.7 76.80/3.5 78.17/4.5 79.24/8.4 80.03/9.2 69.11/3.4

KNN [13] 77.37/29.6 72.19/30.1 72.82/45.7 71.28/49.5 80.18/33.0 71.00/32.0 72.89/50.9 73.27/53.9 71.79/105.8 76.25/31.0

SVM [13] 59.63/193.7 58.11/188.3 56.38/317.4 58.91/605.8 58.87/202.5 57.82/170.5 55.88/329.1 59.55/631.3 55.67/1454.1 61.27/229.4

NB [12] 57.36/10.9 57.10/10.5 55.85/11.7 54.82/15.7 56.41/11.6 56.21/11.8 56.21/14.8 52.57/17.9 56.51/35.7 57.73/11.3

DT [13] 83.98/4.4 78.47/4.9 79.15/5.1 76.54/8.5 82.86/4.9 73.21/5.3 76.41/5.4 75.68/8.6 72.21/10.1 74.30/5.0

RF [12] 87.53/8.2 81.67/8.7 80.48/9.1 81.62/11.7 89.20/8.4 79.93/8.7 80.07/9.3 82.18/12.2 79.09/18.5 82.15/8.2

MCTN 99.46/30.1 99.41/28.3 99.30/28.5 99.35/28.7 99.28/37.2 99.36/34.8 99.45/34.1 99.30/40.5 99.45/70.0 98.89/9.5

3.3 Comparisons Against Other Competing Methods

In the context of fall prediction task with only 3 s of data, we compared the per-
formance of threshold-based methods and conventional ML methods. Table 2
presents the accuracy and computation time. The results indicate that the
threshold-based method has the fastest running time, while the ML method
and MCTN have similar speed. However, both threshold-based and ML meth-
ods cannot maintain high accuracy on all datasets.
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Table 3. Accuracy(%)/Computational time(ms) comparisons on fall prediction with
DL. a-accelerometer, g-gyroscope, m-magnetometer.

Datasets Methods

Tae [7] Dimitri [9] Mirto [11] Leyuan [10] Triwiyanto [15] Sravan [2] Iveta [3] MCTN

LSTM CNN Mirto LSTM CNN + LSTM CNN CNN + LSTM Transformer Transformer

MobiAct (a, g) 20Hz 80.56/65.6 77.37/33.2 81.56/38.1 78.86/48.2 79.78/24.4 83.13/86.5 85.76/30.9 96.46/30.1

25Hz 81.20/59.5 77.81/33.6 78.93/45.4 80.96/48.9 81.35/30.2 77.85/104.7 86.03/46.0 99.41/28.3

50Hz 77.74/75.0 80.08/26.6 74.62/40.4 77.92/58.5 82.60/53.6 80.94/130.8 85.46/41.8 99.30/28.5

100Hz 78.92/88.3 79.57/44.7 81.73/58.8 78.34/55.0 76.76/56.5 80.53/197.3 88.11/38.7 99.35/28.7

SisFall (a, g) 20Hz 80.29/87.2 79.87/42.2 82.42/51.9 81.37/58.0 82.02/43.7 79.72/106.1 85.05/50.6 99.28/37.2

25Hz 77.80/67.1 77.14/32.4 82.76/47.0 76.23/61.8 82.21/50.1 81.58/99.5 86.36/51.0 99.36/34.8

50Hz 81.72/88.7 79.26/40.0 78.53/59.2 78.04/55.9 77.58/41.3 77.74/156.5 84.68/48.7 99.45/34.1

100Hz 81.65/122.1 78.97/39.8 78.82/76.6 80.00/68.8 78.31/52.2 77.64/239.4 88.60/70.1 99.30/40.5

200Hz 82.16/161.7 81.31/77.0 81.18/176.7 80.24/102.9 79.33/92.3 80.70/486.9 89.69/84.7 99.45/70.0

SisFall (a, g, a) 20Hz 82.65/74.3 78.86/33.8 76.84/40.9 78.33/48.4 82.66/27.7 77.21/104.2 89.62/39.9 99.22/32.5

25Hz 94.57/69.9 78.79/28.7 76.02/34.3 80.31/42.2 75.61/27.9 81.42/95.4 92.63/36.4 98.52/41.9

50Hz 94.96/117.3 75.35/53.0 81.99/67.4 75.27/68.0 76.75/54.9 77.11/145.8 92.39/52.1 99.46/33.7

100Hz 92.87/108.9 78.25/52.9 75.08/72.9 83.02/86.5 81.79/52.7 78.11/227.2 93.31/62.9 99.33/49.3

200Hz 93.44/196.7 81.14/81.8 84.15/198.7 82.34/119.9 74.02/78.5 79.33/421.8 84.92/102.0 98.45/83.3

SoftFall (a, g) 25Hz 88.60/20.7 80.98 / 10.7 85.91/12.0 80.31/14.7 80.25/9.8 82.26/32.0 90.19/12.1 98.89/9.5

SoftFall (a, g, m) 25Hz 91.70/18.8 80.40/8.6 90.97/11.4 82.86/15.0 83.52/8.0 83.35/29.2 91.49/10.9 98.90/9.4

FLOPs/M (25 Hz) 314.62 18.67 392.23 129.32 454.81 591.50 91.64 14.69

Parameters/M (25 Hz) 0.245 0.002 0.094 0.109 0.092 0.027 0.119 0.018

Table 3 shows the averaged accuracy results and computational time over 10-
fold cross-validations. The MCTN model clearly outperforms the other methods
with a large margin on all three datasets. Our model is significantly more accu-
rate than other models with around 5%–30% performance boost. This mainly
due to its abilities to take advantage of the feature variables with rich spatio-
temporal dependency information among various channels of sensors. Unfortu-
nately, other competing models are rather limited in characterizing such fine-
grained relations, while ignoring those features with high correlation to pre-fall
and falling stages. Notably, MCTN performs stably over different sampling rates
and sensor modalities. It indicates that the features learned by our model are
more sensor-agnostic than those of other methods and can be adopted by differ-
ent FPSs even equipped with sensors of low sampling rate. In addition, although
our model is not the best on computational consumption (average 37 ms), it
achieves high accuracy with relatively low number of parameters and FLOPs,
which overall is affordable for practical usage in FPS with embedded deployment
of wearable devices. Theoretically, the time complexity of our prediction module
is O(KJ2Φ).

3.4 Ablation Study

In this section, we first conduct two ablation studies to measure the effective-
ness of two embedding representations (i.e., PE and CE) in our MCTN model.
It is worth noting that we show the results at 25 Hz here, and the studies from
other sampling rates are not shown due to page limitation, but similar results
are obtained in our experiment. We separately evaluate the effects of different
representations in our model by removing these two modules with MCTN. Fur-
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Fig. 4. Comparisons with/without PE or CE (epoch is down-sampled to one-third).
(a) Original MCTN; (b) Without PE; (c) Without CE.

thermore, we conducted two additional ablation experiments to investigate the
effects of different prediction window lengths and lead times on our model.

Effectiveness of PE. As shown in Figure 4, without the embedded temporal
information (PE), the model is less stable in training and its overall performance
is reduced significantly. It This might be due to the capability of the low-level
encoding of temporal information that can manage the internal temporal features
in a single channel rather than only using simple and raw sensor data.

Effectiveness of CE. Since PE handles single-channel temporal information,
CE aims to further characterize the spatio-temporal relations among different
channels of sensors. To keep the model consistent, we let all the items in c to be
−1, which represents no channel embedding, rather than simply discarding it. It
is shown that compared with baseline, the performance of the model without CE
has a slight drop, and the model convergence speed has been degraded (especially
for SoftFall). This may be because CE module is not directly removed, which in
turn leads to a model that can learn inter-channel information slowly through
a long process of iterations. However, it indicates that learning spatio-temporal
relations by distinguishing between different channels is helpful for the training
and performance of the model.

Different Length of Prediction Window L. As shown in Fig. 5(a), the win-
dow lengths we compared were from 1.5 s to 4 s with an interval of 0.5 s. The
results showed that with the increase of L, the accuracy of the model on differ-
ent datasets first increased and then decreased, achieving the best result at 3 s.
When L was greater than 3 s, increasing L decreased the accuracy of the model.
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Fig. 5. Performance of the model with different parameter settings on different
datasets.

This may be due to the increase in the proportion of ADL in the entire predic-
tion window, which increased the difficulty of the model to distinguish between
ADL data and fall data containing ADL.

Different Length of Lead Time ϑ. As shown in Fig. 5(b), a shorter lead time
does not necessarily enable the model to accurately predict falls on all datasets.
The model performs similarly at ϑ = 0.6 s and ϑ = 0.7 s, with the best perfor-
mance at ϑ = 0.6 s. However, when ϑ = 0.8 s, the model’s accuracy significantly
decreases. It can be observed that both shorter and longer lead times can reduce
the model’s accuracy. This may be due to the imbalanced distribution of ADLs
and falls in the predicted data in both cases, which increases the difficulty of
model prediction.

3.5 Real-World Scenario Testing

To validate the performance of our model in real-life scenarios, we deployed
MCTN on embedded devices as shown in Fig. 7(b). Specifically, we reproduced
MCTN using Keras and converted it to a TensorFlow Lite model, which was
then deployed on an ESP32S3-DevKit. We recruited six volunteers to assist in
our experiment, as shown in Fig. 6(b). All volunteers were required to wear our
device around their waist and perform six prescribed actions at any time during
free movement, with each action performed once. The device ran continuously
during this period, with the default state being ADL and the onboard RGB LED
being blue. When a fall was predicted, the RGB LED turned red and resumed
the default state after 15 s. Ultimately, our device correctly predicted all fall
actions in 9 to 11 milliseconds without any false positives. As shown in Fig. 7(a)
and Fig. 7(c), the acceleration and angular velocity changes for the four falls and
two ADLs were quite distinct, but the SMV for ADL was concentrated around
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Fig. 6. Process of embedded deployment of MCTN (a) and our embedded device (b).

Fig. 7. Six actions done by volunteers. (a) Acceleration (G) and the distribution of
SMV (G) of prediction windows; (b) Four falls (Fall2, Fall7, Fall10, Fall13) and two
ADLs (ADL3, ADL6) in Table 1; (c) Angular velocity (rad/s) of prediction windows.

1G, while that for falls was relatively dispersed, allowing our device to accurately
differentiate between these falls and ADLs.

4 Conclusion

In this paper, we present a multi-channel temporal network with positional
embedding and channel embedding representations for wearable sensor data,
which can capture the inherit spatio-temporal varieties of poses at pre-fall or
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falling stages. It is more efficient and flexible than existing methods on fall pre-
diction. As for future work, we will explore how to improve the performance
of our model in predicting falls with more than 0.6 s in advance. We will con-
sider lightening our network and further evaluating its performance in real-world
scenarios with more falls and ADLs.
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Abstract. Generating molecules with desired biological activities has
attracted growing attention in drug discovery. Previous molecular gen-
eration models are designed as chemocentric methods that hardly con-
sider the drug-target interaction, limiting their practical applications. In
this paper, we aim to generate molecular drugs in a target-aware man-
ner that bridges biological activity and molecular design. To solve this
problem, we compile a benchmark dataset from several publicly avail-
able datasets and build baselines in a unified framework. Building on the
recent advantages of flow-based molecular generation models, we pro-
pose SiamFlow, which forces the flow to fit the distribution of target
sequence embeddings in latent space. Specifically, we employ an align-
ment loss and a uniform loss to bring target sequence embeddings and
drug graph embeddings into agreements while avoiding collapse. Fur-
thermore, we formulate the alignment into a one-to-many problem by
learning spaces of target sequence embeddings. Experiments quantita-
tively show that our proposed method learns meaningful representations
in the latent space toward the target-aware molecular graph generation
and provides an alternative approach to bridge biology and chemistry in
drug discovery.

Keywords: AI for Science · Bioinformatics · Molecular Generation ·
Graph Neural Networks

1 Introduction

Drug discovery, which focuses on finding candidate molecules with desirable
properties for therapeutic applications, is a long-period and expensive process
with a high failure rate. The challenge primarily stems from the actuality that
only a tiny fraction of the theoretical possible drug-like molecules may have
practical effects. Specifically, the entire search space is as large as 1023–1060,
while only 108 of them are therapeutically relevant [45]. In the face of such
difficulty, traditional methods like high-throughput screening [19] fail in terms
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of efficiency because of the large number of resources required in producing
minor hit compounds. One alternative is using computational methods [44] such
as virtual screening [51] to identify hit compounds from virtual libraries through
similarity-based searches or molecular docking. Another alternative is automated
molecule design, such as inverse QSAR [53], structure-based de novo design [52],
or genetic algorithms [3].

Fig. 1. The computational drug discovery pipelines of traditional chemocentric and
target-aware molecular generation. The black arrows denote the main steps, the blue
arrows denote external considerations, and the red boxes denote the post-processing
process of generated molecules. (Color figure online)

Recent deep generative models have demonstrated the potential to pro-
mote drug discovery by exploring huge chemical space in a data-driven man-
ner. Various forms of variational autoencoder (VAE) [55], generative adversar-
ial networks (GAN) [47], autoregressive (AR) [46,58,62], and normalizing flow
(NF) [11,12,39,40,54] have been proposed to generate molecular SMILES or
graphs. Though these approaches can generate valid and novel molecules to some
extent, they remain inefficient because the generated candidate molecules need
further screened against given targets. As the primary goal of these chemocen-
tric methods is to generate drug-like molecules that satisfy specific properties,
directly applying them in drug discovery requires extra effort in predicting the
binding affinities between candidate molecules and target proteins.

While previous molecular generation methods scarcely take biological drug-
target interactions into account, we aim to generate candidate molecules based on
a biological perspective. This paper proposes target-aware molecular generation
to bridge biological activity and chemical molecular design that generate valid
molecules conditioned on specific targets and thus facilitate the development of
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drug discovery. As shown in Fig. 1, the pipeline of computational drug discovery
is supposed to be simplified to a great extent with the help of target-aware
molecular generation. Our main contributions are summarized as follows:

– We propose a target-aware molecular generation manner from a biological
perspective, while prior works on chemocentric molecular generation are inef-
ficient in practical drug discovery.

– We establish a new benchmark for the target-aware molecular generation
containing abundant drug-target pairs for evaluating generative models.

– We propose SiamFlow, a siamese network architecture for the conditional
generation of flow-based models. While the sequence encoder and the gener-
ative flow align in the latent space, a uniformity regularization is imposed to
avoid collapse.

2 Related Work

2.1 De Novo Molecular Generation

VAE-Based. VAE has been attractive in molecular generation in the virtue of
its latent space is potentially operatable. CharVAE [14] first proposes to learn
from molecular data in a data-driven manner and generate with a VAE model.
GVAE [31] represents each data as a parse tree from a context-free grammar, and
directly encodes to and decodes from these parse trees to ensure the validity of
generated molecules. Inspired by syntax-directed translation in complier theory,
SD-VAE [7] proposes to convert the offline syntax-directed translation check
into on-the-fly generated guidance for ensuring both syntactical and seman-
tical correctness. JT-VAE [23] first realize the direct generation of molecular
graphs instead of linear SMILES (Simplified Molecular-Input Line-Entry Sys-
tem) strings.

GAN-Based. An alternative is to implement GAN in molecular generation.
ORGAN [16] adds expert-based rewards under the framework of WGAN [2].
ORGANIC [50] improves the above work for inverse design chemistry and imple-
ments the molecular generation towards specific properties. MolGAN [10] pro-
poses GAN-based models to generate molecular graphs rather than SMILES.
Motivated by cycle-consistent GAN [64], Mol-CycleGAN [41] generates opti-
mized compounds with high structural similarity to the original ones.

Flow-Based. Molecular generation with the normalizing flow is promising as
its invertible mapping can reconstruct the data exactly. GraphNVP [40] and
GRF [20] are the early works on flow-based molecular generation. GraphAF [54]
combines the advantages of both autoregressive and flow-based approaches to
iteratively generate molecules. MolFlow [63] proposes a variant of Glow [26]
to generate atoms and bonds in a one-shot manner. MolGrow [32] constrains
optimization of properties by using latent variables of the model, and recursively
splits nodes.
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Though these approaches have achieved significant performance, we recog-
nize them as chemocentric molecular generation methods that lack biological
connections. We aim to bridge biological and chemical perspectives in molecular
generation for practical drug discovery.

2.2 Drug-Target Interaction

Recent progress in artificial intelligence has inspired researchers to utilize deep
learning techniques in drug-target interaction prediction. DeepDTA [43] and
DeepAffinity [24] are representatives of deep-learning methods that take SMILES
of drugs and primary sequences of proteins as input, from which neural networks
are employed to predict affinities. InterpretableDTIP [13] predicts DTI directly
from low-level representations and provides biological interpretation using a two-
way attention mechanism. DeepRelations [25] embeds protein sequences by hier-
archical recurrent neural network and drug graphs by graph neural networks
with joint attention between protein residues and compound atoms. MONN [33]
predicts binding affinities with extra supervision from the labels extracted from
available high-quality three-dimensional structures. Our proposed target-aware
molecular generation builds on the recent advances in data-driven drug-target
interaction prediction. We connect chemical molecular generation with biological
drug-target interaction to promote the efficiency of drug discovery.

2.3 Conditional Molecular Generation

Generating molecules with the consideration of some external conditions is a
promising field. CVAE [14] jointly trains VAE with a predictor that predicts
properties from the latent representations of VAE. [34] proposes applying con-
ditional VAE to generate drug-like molecules satisfying properties at the same
time. [15] employs constrained Bayesian optimization to control the latent space
of VAE in order to find molecules that score highly under a specified objec-
tive function. CogMol [5] and CLaSS [8] pretrain the latent space with SMILES
and train property classifiers from the latent representations. They sample from
the latent space that satisfies high scores from property classifiers to gener-
ate molecules. Though recent molecular generation methods [23,39,40,63] also
present property optimization experiments, they still barely take account of
drug-target interaction. [42] proposes stacks of conditional GAN to generate
hit-like molecules from gene expression signature. While this work focuses on
drug-gene relationships, we instead focus on the drug-protein case.

3 Background and Preliminaries

3.1 Problem Statement

Let T = {Ti}t
i=1 be a set of targets, and there exists a set of drugs MTi

=
{M

(Ti)
j }di

j=1 that bind to each target Ti. S(T,M) is defined as a function mea-
suring the interaction between target T and drug M . The target-aware molecular
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generation aims to learning a generation model pθ(·|Ti) from each drug-target
pair (M (Ti)

j , Ti) so as to maximize EM |Ti∼pθ
[S(M,Ti)].

3.2 The Flow Framework

A flow model is a sequence of parametric invertible mapping fΘ = fQ ◦ ... ◦ f1
from the data point x ∈ R

D to the latent variable z ∈ R
D, where x ∼ PX(x), z ∼

PZ(z). The latent distribution PZ is usually predefined as a simple distribution,
e.g., a normal distribution. The complex data in the original space is modelled
by using the change-of-variable formula:

PX(x) = PZ(z)
∣
∣
∣
∣
det

∂Z

∂X

∣
∣
∣
∣
, (1)

and its log-likelihood:

log PX(x) = log PZ(z) + log
∣
∣
∣
∣
det

∂Z

∂X

∣
∣
∣
∣

= log PZ(z) +
Q

∑

q=1

log
∣
∣
∣
∣
det

∂fq(z(q−1))
∂z(q−1)

∣
∣
∣
∣
,

(2)

where z(q) = fq(z(q−1)), and we represent the input z(0) by using z for notation
simplicity.

As the calculation of the Jacobian determinant for fΘ is expensive for arbi-
trary functions, NICE [11] and RealNVP [12] develop an affine coupling trans-
formation z = fΘ(x) with expressive structures and efficient computation of the
Jacobian determinant.

For given D-dimensional input x and d < D, the output y of an affine
coupling transformation is defined as:

y1:d = x1:d

yd+1:D = xd+1:D � exp(SΘ(x1:d)) + TΘ(x1:d),
(3)

where SΘ : R
d → R

D−d and TΘ : R
d → R

D−d stand for scale function and
transformation function. For the sake of the numerical stability of cascading
multiple flow layers, we follow Moflow [63] to replace the exponential function
for the SΘ with the Sigmoid function:

y1:d = x1:d

yd+1:D = xd+1:D � Sigmoid(SΘ(x1:d)) + TΘ(x1:d),
(4)

and the invertibility is guaranteed by:

x1:d = y1:d

xd+1:D = (yd+1:D − TΘ(y1:d))/Sigmoid(SΘ(y1:d)).
(5)
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The logarithmic Jacobian determinant is:

log
∣
∣det

∂y

∂x

∣
∣ = log

∣
∣
∣
∣
det(

[
I 0

∂yd+1:D
∂x1:d

Sigmoid(SΘ(x1:d))

]

)
∣
∣
∣
∣

= log Sigmoid(SΘ(x1:d)).
(6)

To further improve the invertible mapping with more expressive structures and
high numerical stability, Glow [26] proposes using invertible 1×1 convolution to
learn an optimal partition and actnorm layer to normalize dimensions in each
channel over a batch by an affine transformation. Invertible 1 × 1 convolution
is initialized as a random rotation matrix with zero log-determinant and works
as a generalization of a permutation of channels. Act norm initializes the scale
and the bias such that the post-actnorm activations per-channel have zero mean
and unit variance and learns these parameters in training instead of using batch
statistics as batch normalization does.

3.3 Flow on the Molecular Graph

Prior works on flow-based molecular graph generation are well developed.
Inspired by the graph normalizing flows of GRevNets [35], GraphNVP [40] pro-
poses to generate atom features conditioned on the pre-generated adjacency
tensors, which is then followed by other one-shot flow-based molecular graph
generation approaches, e.g., GRF [20] and Moflow [63]. Our proposed SiamFlow
follows this manner, that is, firstly transforms the bonds B of molecules to the
latent variables ZB with Glow [26], and then transforms the atom features A
given B into the conditional latent variable ZA|B with a graph conditional flow.

Let N,K,C be the number of nodes, node types, and edge types, respectively.
A molecular graph G = (A,B) is defined by an atom matrix A ∈ {0, 1}N×K

and a bond tensor B ∈ {0, 1}C×N×N , which correspond to nodes and edges in
the vanilla graph. A[i, k] = 1 represents the i-th atom i has atom type k, and
B[c, i, j] = 1 represents there is a bond with type c between the i-th atom and
j-th atom.

Flow-based molecular graph generation methods decompose the generative
model into two parts:

P (G) = P ((A,B)) ≈ P (A|B; θA|B)P (B; θB), (7)

where θB is learned by the bond flow model hB, and θA|B is learned by the atom
flow model hA|B conditioned on the bond tensor B.

With the strengths of the flow, the optimal parameters θ∗
A|B and θ∗

B maximize
the exact likelihood estimation:

arg max
θA|B ,θB

E(A,B)∼PG
[log P (A|B; θA|B) + log P (B; θB)] (8)
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Our work follows the one-shot molecular graph generation manner [20,40,63]
that employs Glow [26] as the bond flow model hB and graph conditional flow
as the atom flow model hA|B.

4 SiamFlow

4.1 Overview

While current flow-based molecular graph generation methods [20,32,39,40,54,
63] learn from drug-like datasets and generate without the invention of targets,
our proposed SiamFlow aims to serve as a conditional flow toward molecular
graph generation. Though the conditional flow has been well developed in com-
puter vision [1,28,30,36,48], there are limited works that can fit graph genera-
tion, especially when it comes to the molecular graph.

In this section, we introduce SiamFlow, a novel molecular graph generative
model conditioned on specific targets. As shown in Fig. 2, SiamFlow learns the
distribution of sequence embedding instead of the isotropic Gaussian distribution
like other flow-based methods.

Fig. 2. The framework of our proposed SiamFlow. In the training phase, the target
sequence embedding ZT aligns with the drug graph embedding ZM , while a uniformity
regularization term forces its distribution as a spherical uniform distribution. In the
generation phase, the target sequence embedding ZT is fed into reverse flows to generate
the desired drug.

4.2 Alignment Loss

Given a pair of target T and drug M , we decompose the drug M into an atom
matrix A ∈ R

N×K and a bond tensor B ∈ R
C×N×N . The sequence encoder gT

can be arbitrary mapping that maps the target sequence T into the sequence
embedding ZT ∈ R

D. The flow model contains a glow hB : RC×N×N → R
D
2 and

a graph conditional flow hA|B : RN×K → R
D
2 . The drug graph embedding ZM

is the concatenation of ZA|B and ZB .
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Instead of directly learning the isotropic Gaussian distribution, we impose
alignment loss between the target sequence embedding ZT and the drug graph
embedding ZM so that ZT can be used as the input of the generation process.
Thus, the generated atom matrix and the bond tensor are:

A′ = h−1
A|B(ZT [1 :

D

2
]), B′ = h−1

B (ZT [
D

2
: D]). (9)

While traditional flow-based models assume the latent variables follow the Gaus-
sian distribution, SiamFlow forces the flow model to learn the distribution of the
condition information instead of a predefined distribution. We define the align-
ment loss Lalign as:

Lalign : = E(T,M)∼Pdata ||ZT − ZM ||2
= E(T,M)∼Pdata ||ZT − [ZA|B , ZB ]||2

(10)

where [ZA|B , ZB ] denotes the concatenation of the atom embedding ZA|B and
the bond embedding ZB , and the pair of protein target T and molecular drug
M is sampled from the data Pdata.

The alignment loss bridges the connections between the target sequence
embedding ZT and the drug graph embedding ZM in the latent space, but there
are still challenges that will be revealed in Sect. 4.3 and Sect. 4.4.

4.3 Uniformity Loss

Simply aligning the target sequence embedding ZT and the drug graph embed-
ding ZM is not enough. There still remains three challenges: (1) the distribution
of ZT is uncertain, so that the alignment learning may be difficult to converge;
(2) sampling from an unknown distribution is indefinite in the generation pro-
cess; (3) the alignment loss alone admits collapsed solutions, e.g., outputting the
same representation for all targets.

To overcome the above issues, we design an objective to force the target
sequence embedding ZT to follow a specific distribution, in our case the uni-
form distribution on the unit hypersphere [18,29,49,60]. We recognize angles
of embeddings are the critical element that preserves the most abundant and
discriminative information. By fitting the hyperspherical uniform distribution,
the projections of target sequence embeddings on the hypersphere are kept as
far away from each other as possible; thus, discriminations are imposed. Specif-
ically, we project the target sequence embedding ZT into a unit hypersphere
S

D−1 by L2 normalization and require the embeddings uniformly distributed on
this hypersphere, as shown in Fig. 3.
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Fig. 3. The schematic diagram of the uniformity loss.

The uniform hypersphere distribution can be formulated as a minimizing
pairwise potential energy problem [4,38,60] while higher energy implies less dis-
criminations. Let ẐT = ZT

‖ZT ‖ ∈ C, and C is a finite subset of the unit hypersphere
S

D−1 ∈ R
D. We define the f -potential energy [6] of C to be:

∑

̂Z
(x)
T , ̂Z

(y)
T ∈C,x �=y

f(|Ẑ(x)
T − Ẑ

(y)
T |2). (11)

where Ẑ
(x)
T and Ẑ

(y)
T denote normalized sequence embeddings with index x, y.

Definition 1 (Universally optimal [6]). A finite subset C ⊂ S
D−1 is universally

optimal if it (weakly) minimizes potential energy among all configurations of |C|
points on S

D−1 for each completely monotonic potential function.

In SiamFlow, we consider the Gaussian function kernel Gt(x, y) : S
D−1 ×

S
D−1 → R as the potential function f , which is defined as:

Gt(x, y) = e−t|x−y|2 . (12)

This kernel function is closely related to the universally optimal configuration,
and distributions of points convergence weak* to the uniform distribution by
minimizing the expected pairwise potential.

Theorem (Strictly positive definite kernels on S
D [4]). Consider kernel Kf :

S
D × S

D → (−∞,+∞] of the form Kf (x, y) := f(|x − y|2), if Kf is strictly
positive definite on S

D × S
D and the energy IKf

[σD] is finite, then σD is the
unique measure on Borel subsets of SD in the solution of minμ∈M(SD) IKf

(μ),
and the normalized counting measure associated with any Kf -energy minimizing
sequence of point configurations on S

D converges weak* to σD.

This theorem reveals the connections between strictly positive definite kernels
and the energy minimizing problem. The Gaussian function is strictly positive
definite on S

D × S
D, thus well tied with the uniform distribution on the unit

hypersphere.
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Proposition 1 (Strictly positive definite of the Gaussian function). For any
t > 0, the Gaussian function kernel Gt(x, y) is strictly positive definte on S

D×S
D.

Though Riesz s-kernels Rs(x, y) := |x−y|−s are commonly used as potential
functions, we argue that the Gaussian function is expressive because it maps
distances to infinite dimensions like radial basis functions, benefiting from the
Taylor expansion of exponential functions. Moreover, the Gaussian function is a
general case of Riesz s-kernels and can represent Riesz s-kernels by:

Rs(x, y) =
1

Γ (s/2)

∫ ∞

0

Gt(x, y)ts/2−1dt. (13)

where Γ (s/2) =
∫ ∞
0

e−tts/2−1 for s > 0.
As the Gaussian function kernel is an ideal choice of potential functions, we

define the uniformity loss as the logarithm of the pairwise Gaussian potential’s
expectation:

Lunif := logE(T (x),T (y))∼PT [Gt(Ẑ
(x)
T , Ẑ

(y)
T )], (14)

where T (x) and T (y) are two different targets sampled from the target data PT .

4.4 One Target to Many Drugs

Implementing the alignment loss and the uniformity loss above, the flow model
can already generate validated molecular drugs conditioned on specific targets.
However, there are multiple affinable drugs for a single target in most cases. To
deal with this one-to-many problem, we reformulate learning target embeddings
into learning spaces of target embeddings in the latent space, as shown in Fig. 4.

Fig. 4. The schematic diagram of the one-to-many strategy. The blue circles denote
the possible spaces around the target sequence embeddings, and the green triangles
denote the instances sampled from the possible spaces. (Color figure online)

As the target embeddings have been pushed by the uniformity loss to stay
as far away as possible on the hypersphere, they preserve abundant and dis-
criminative information to a large extent. We design an adaptive space learning
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strategy that holds the discriminative angle information with a limited scope.
For a set of target sequence embeddings ZT = {Z

(0)
T , ..., Z

(L)
T }, we first calculate

their standard deviation by:

σ(ZT ) =

√
√
√
√ 1

L

L∑

i=1

(Z(i)
T − μ(ZT )), (15)

where μ(ZT ) = 1
L

∑L
i=1 Z

(i)
T is the mean of the set ZT . Then, we define a space

for each target sequence embedding:

Ω(ZT ) = {ZT + Z ′
T |Z ′

T ∈ N (0, λσ2(ZT ))}, (16)

where λ is the hyperparameter that controls the scale of the space and is empir-
ically set as 0.1.

Note that we define the space on ZT instead of the normalized ẐT , as nor-
malized embeddings lose the length information to the extent that the available
space is limited. Thus, we modify the alignment loss as:

Lalign = E(T,M)∼Pdata |Ω(ZT ) − ZM |. (17)

In the generation process, sampling from the same space is permissible to gen-
erate desired drugs.

In summary, the objective is a linear combination of the modified alignment
loss and uniform loss:

Ltotal = Lalign + Lunif (18)

5 Experiments

Baselines. Since we present a novel generative approach conditioned on tar-
gets, we primarily compare our approach to other conditional generative mod-
els, i.e., conditional VAE (CVAE) [56], CSVAE [27], PCVAE [17]. Furthermore,
an attention-based Seq2seq [57,59] neural translation model between the target
protein sequence and drug SMILES is considered a straightforward solution in
our setting. An explainable substructure partition fingerprint [22] is employed for
sequential drug SMILES and protein sequences. We also involve GraphAF [54],
GraphDF [39], and MolGrow [32] in the generative comparison.

Datasets. To evaluate the ability of our proposed SiamFlow, we collect a dataset
based on four drug-target interaction datasets, including BIOSNAP [65], Bind-
ingDB [37], DAVIS [9], and DrugBank [61]. We remove all the negative sam-
ples in the original datasets, and only keep the positive samples. Our dataset
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contains 24,669 unique drug-target pairs with 10,539 molecular drugs and 2,766
proteins. The maximum number of atoms in a molecular drug is 100 while 11
types of common atoms are considered. We split drug-target pairs by target pro-
tein sequence identity at 30%, and define the dataloader to ensure zero overlap
protein in the training, validation, and test set.

Metrics. To comprehensively evaluate the conditional generative models in terms
of target-aware molecular generation, we design metrics from two perspectives:
(1) Generative metrics. Following the common molecular generation settings, we
apply metrics including: Validity which is the percentage of chemically valid
molecules in all the generated molecules, Uniqueness which is the percentage
of unique valid molecules in all the generated molecules, Novelty which is the
percentage of generated valid molecules which are not in the training dataset. (2)
Biochemical metrics. We evaluate the similarities between the generated drugs
and the nearest drugs in the training set including: Tanimoto similarity which
is calculated based on hashed binary features, Fraggle similarity which focus
on the fragment-level similarity, MACCS similarity which employs 166-bit 2D
structure fingerprints, and Binding Score predicted by DeepPurpose [21].

Empirical Running Time. We implement our proposed method SiamFlow and
the other two baselines Seq2seq, CVAE by Pytorch-1.8.1 framework. We train
them with Adam optimizer with a learning rate of 0.001, batch size 16, and 100
epochs on a single NVIDIA Tesla V100 GPU. To evaluate the validity and chem-
ical similarities, we employ the cheminformatics toolkit RDKit in the assessment
phase. Our SiamFlow completes the training process of 100 epochs in an aver-
age of 1.06 h (38 s/epoch), while CVAE and Seq2seq take an average of 1.14 h
(41 s/epoch) and 8.33 h (5 min/epoch) respectively.

5.1 Target-Aware Molecular Graph Generation

We conduct experiments on molecular drug generation with specific targets for
comparisons. For each experiment, we repeat three trials with different random
seeds and report the mean and standard deviation.

Table 1 shows the results on generative metrics of our SiamFlow model in
comparison to the baselines. Our proposed SiamFlow inherits the strengths of
the flow and far surpasses other baselines in generative metrics. It can be seen
that Seq2seq suffers from low validity, uniqueness, and novelty, which indicates
Seq2seq’s generation relies on its memorization. CVAE has higher uniqueness
and novelty than Seq2seq though its validity is even lower. Besides, the stan-
dard deviations of metrics on CVAE are relatively high, suggesting it is volatile
to train. Moreover, compared to other baselines, SiamFlow obtains superior per-
formance with relatively low volatility.
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Table 1. Evaluation results on generative metrics of SiamFlow v.s. baselines; high is
better for all three metrics.

Method % Validity % Uniqueness % Novelty

Seq2seq 16.08 ± 4.14 13.87 ± 1.74 14.89 ± 11.41

CVAE 12.54 ± 7.56 72.30 ± 20.33 99.72 ± 0.39

CSVAE 76.53 ± 2.4 60.31 ± 6.56 99.37 ± 0.59

PCVAE 78.81 ± 2.4 89.32 ± 2.74 99.59 ± 0.32

GraphAF 100.00 ± 0.00 98.68 ± 0.40 100.00 ± 0.00

GraphDF 100.00 ± 0.00 96.97 ± 0.23 100.00 ± 0.00

MolGrow 100.00 ± 0.00 99.57 ± 0.01 100.00 ± 0.00

SiamFlow 100.00± 0.00 99.61± 0.16 100.00± 0.00

In addition to generative metrics, we also report chemical metrics in Table 2.
The generated molecular drugs are expected to have a chemical structure sim-
ilar to the ground-truth drugs in order to have a high binding affinity to the
target. SiamFlow is consistently better than other baselines in both the Tani-
moto and Fraggle similarity while obtaining relatively lower MACCS similarity
than Seq2seq. Considering that MACCS measures the similarity of encodings
of molecules, the sequence partition rules of Seq2seq may help it. Thus, we
pay more attention to the Tanimoto and Fraggle similarity because they are
structure-centric metrics.

We visualize the distribution of the Tanimoto similarity and the Fraggle sim-
ilarity evaluated on these methods in Fig. 6. SiamFlow consistently outperforms
other methods and generates desirable molecular drugs. The examples of gener-
ated drugs are shown in Fig. 5.

Table 2. Evaluation results on biochemical metrics of SiamFlow v.s. baselines.

Method % Tanimoto (↑) % Fraggle (↑) % MACCS (↑) Binding Score (↓)

Seq2seq 26.27 ± 9.91 25.84 ± 7.27 37.98± 7.70 8.83 ± 4.70

CVAE 7.76 ± 6.61 12.31 ± 5.81 16.42 ± 7.17 10.92 ± 5.28

CSVAE 18.49 ± 3.92 16.67 ± 2.71 17.91 ± 3.21 6.91 ± 3.10

PCVAE 39.59 ± 2.17 24.56 ± 3.17 25.74 ± 1.14 4.87 ± 2.34

SiamFlow 48.55± 0.97 34.41± 0.35 29.30 ± 1.07 2.07± 0.15
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Fig. 5. Examples of the generated drugs.

5.2 Ablation Study

We conduct the ablation study and report the results in Table 3 and Table 4. It
can be seen from Table 3 that simply aligning the target sequence embedding
and drug graph embedding will result in extremely low uniqueness. Our one-to-
many strategy enriches the latent space so that one target can map to different
drugs. The absence of Lunif does not harm the generative metrics because it
only constrains the distribution of target sequence embeddings but has a limited
impact on the generation process.

Table 4 demonstrates the chemical metrics are well without the one-to-many
strategy. If we generate only one drug for a particular target, the nearest drug
similarity degrades to a special case, i.e., comparing the generated drug with its
corresponding one in the training set. Moreover, removing Lunif severely impairs
the chemical performance, suggesting uniformity loss promotes the expressive
abilities of target sequence embeddings.

Table 3. Ablation results on generative metrics.

Method % Validity % Uniqueness % Novelty

SiamFlow 100.00 99.39 100.00

w/o one-to-many 100.00 12.55 100.00

w/o Lunif 100.00 100.00 100.00

Fig. 6. The distribution of generative metrics evaluated on SiamFlow and baselines.
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Table 4. Ablation results on chemical metrics.

Method % Tanimoto % Fraggle % MACCS

SiamFlow 49.43 34.62 29.55

w/o one-to-many 48.83 34.93 31.23

w/o Lunif 18.49 15.70 17.91

6 Conclusion and Discussion

In this paper, we delve into the topic of target-aware molecular graph generation,
which involves creating drugs that are specifically conditioned on particular tar-
gets. While existing methods focus on developing drugs similar to those found in
drug-like datasets, target-aware molecular generation combines drug-like molec-
ular generation with target-specific screening to simplify the drug-target interac-
tion step. To thoroughly explore this problem, we compile a benchmark dataset
using several public datasets. Furthermore, we leverage recent progress in flow-
based molecular graph generation methods and propose SiamFlow as a solution
for target-aware molecular generation. Through the use of alignment and uniform
loss, our proposed method can effectively generate molecular drugs conditioned
on protein targets. Additionally, we address the challenge of generating multiple
drugs for a single target by aligning the embedding space, rather than relying
on a single embedding. Extensive experiments and analyses demonstrate that
SiamFlow is a highly promising solution for target-aware molecular generation.
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1 Introduction

The broad adoption of digital healthcare systems produces a large amount of
electronic health records (EHRs) data, providing us the possibility to develop
predictive models and tools using machine learning techniques that would enable
healthcare professionals to make better decisions and improve healthcare out-
comes. One of the EHR-based risk prediction tasks is to predict the mortality
risk of patients based on their historical EHR data [8,29]. The predicted mortal-
ity risks can be used to provide early warnings when a patient’s health condition
is about to deteriorate so that more proactive interventions can be taken.

However, due to a high degree of irregularity in the raw EHR data, it is
challenging to directly apply traditional machine learning techniques to perform
predictive modeling. We take the medical records of two anonymous patients
from the publicly available MIMIC-III database and present these in Fig. 1 as
an example. Figure 1 clearly indicates the irregularity problem, including many
missing values and varying time intervals between medical records.

Most studies have focused on exploiting variable correlations in patient medical
records to impute missing values and establishing time-decay mechanisms to take
into account the effect of varying time intervals between records [1,2,17,18,23–
25,31]. After obtaining the complete data matrices from the imputation task, the
complete data matrices are used as input for downstream healthcare prediction
tasks [1,2,13,17,18,22,23,27,30,31,35]. Although these studies have achieved sat-
isfactory imputation performance, consideration of using the information of sim-
ilar patients on the imputation task, which might lead to improved imputation
performance, has not yet been fully experimented. Furthermore, with imputation
data, high-quality representation must be applied, as the imputation data may
affect the performance of downstream healthcare prediction tasks.

Patient stratification refers to the method of dividing a patient population
into subgroups based on specific disease characteristics and symptom severity.
Patients in the same subgroup generally had more similar health trajectories.
Therefore, we propose to impute missing values in patient data using information
from the subgroup of similar patients rather than the entire patient population.

In this paper, we propose a novel contrastive learning-based imputation-
prediction network with the aim of improving in-hospital mortality prediction
performance using EHR data. Missing value imputation for EHR data is done
by exploiting similar patient information as well as patients’ personal contextual
information. Similar patients are generated from patient similarity calculation
during stratification modeling and analysis of patient graphs.

Fig. 1. Illustration of medical records of patients A and B.
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Contrastive learning has been proven to be an important machine learning
technique in the computer vision community [12]. In contrastive learning, repre-
sentations are learned by comparing input samples. The comparisons are made
on the similarity between positive pairs or dissimilarity between negative pairs.
The main goal is to learn an embedding space where similar samples are put
closer to each other while dissimilar samples are pushed farther apart. Con-
trastive learning can be applied in both supervised [10,33,39] and unsupervised
[14,15,26] settings.

Motivated by the recent developments in contrastive representation learning
[34,36,38], we integrate contrastive learning into the proposed network archi-
tecture to perform imputation and prediction tasks. The benefit of incorporat-
ing contrastive learning into the imputation task is that such an approach can
enhance patient representation learning by keeping patients of the same strati-
fication together and pushing away patients from different stratifications. This
would lead to enhanced imputation performance. The benefit of incorporating
contrastive learning into the prediction task is improved predictive performance
of the binary classification problem (i.e., the risk of death and no death), which
is achieved by keeping the instances of a positive class closer and pushing away
instances from a negative class.

Our major contributions are as follows:

– To the best of our knowledge, this is the first attempt to consider patient
similarity via stratification of EHR data on the imputation task.

– We propose a novel imputation-prediction approach to perform imputation
and prediction simultaneously with EHR data.

– We successfully integrate contrastive learning into the proposed network
architecture to improve imputation and prediction performance.

– Extensive experiments conducted on two real-world EHR datasets show that
our approach outperforms all baseline approaches in imputation and predic-
tion tasks.

2 Related Work

There has been an increased interest in EHR-based health risk predictions
[5,16,19–21]. It has been recognized that EHR data often contains many missing
values due to patient conditions and treatment decisions [31]. Existing research
addresses this challenge by imputing missing data and feeding them into the
supervised algorithms as auxiliary information [7]. GRU-D [2] represents such
an example. The GRU-D is built upon the Gated Recurrent Unit [4]. GRU-
D proposes to impute missing values by decaying the contributions of previous
observation values toward the overall mean over time. Similarly, BRITS [1] incor-
porates a bidirectional recurrent neural network (RNN) to impute missing values.
Since the incorporated bidirectional RNN learns EHR data in both forward and
backward directions, the accumulated loss is introduced to train the model.
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Another line of related work is based on the generative adversarial network
(GAN) architecture, which aims at treating the problem of missing data impu-
tation as data generation. The intuitions behind GAN can be seen as making
a generator and a discriminator against each other [6]. The generator generates
fake samples from random ’noise’ vectors, and the discriminator distinguishes the
generator’s fake samples from actual samples. Examples of research into GAN-
based imputation methods include GRUI-GAN [17], E2GAN [18], E2GAN-RF
[40], and STING [25]. These studies take the vector of actual samples, which
has many missing values, use a generator to generate the corresponding imputed
values and distinguish the generated imputed values from real values using a
discriminator.

Several studies have evaluated the effectiveness of applying transformer-based
imputation methods to EHR data. Examples of representative studies include
MTSIT [37] and MIAM [13]. The MTSIT is built with an autoencoder archi-
tecture to perform missing value imputation in an unsupervised manner. The
autoencoder architecture used in MTSIT includes the Transformer encoder [32]
and a linear decoder, which are implemented with a joint reconstruction and
imputation approach. The MIAM is built upon the self-attention mechanism
[32]. Given EHR data, MIAM imputes the missing values by extracting the rela-
tionship among the observed values, missingness indicators (0 for missing and 1
for not missing), and the time interval between consecutive observations.

3 Method

3.1 Network Architecture

The architecture of the proposed network is shown in Fig. 2.

Data Representation. We represent a multivariate time series X with up to
N variables of length T as a set of observed triplets, i.e., X = {(fi, vi, ti)}N

i=1. An
observed triplet is represented as a (f, v, t), where f ∈ F is the variable/feature,
v ∈ R

T is the observed value, and t ∈ R
T is the time. We incorporate a masking

vector mi to represent missing values in vi as:

mi,t =

{
1, if vi,t is observed

0, otherwise
(1)

Let δ ∈ R
N×T , δ(l) ∈ R

N×T , and δ(n) ∈ R
N×T denote three time interval

matrices. δt is the time interval between the current time t and the last time
t − 1. δ

(l)
i,t is the time interval between the current time t and the time where

the i-th variable is observed the last time. δ
(n)
i,t is the time interval between the

current time t and the time where the i-th variable is observed next time. δ
(l)
i,t

and δ
(n)
i,t can be written as:

δ
(l)
i,t =

{
δi,t, if mi,t−1 = 1
δi,t + δ

(l)
i,t−1, otherwise

(2)
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Fig. 2. Schematic description of the proposed network.
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δ
(n)
i,t =

{
δi,t+1, if mi,t+1 = 1
δi,t+1 + δ

(n)
i,t+1, otherwise

(3)

Let v(l) and v(n) denote two neighboring value matrices, the observed values
of the last time and next time. v(l) and v(n) can be written as:

v
(l)
i,t =

{
vi,t−1, if mi,t−1 = 1
v
(l)
i,t−1, otherwise

(4)

v
(n)
i,t =

{
vi,t+1, if mi,t+1 = 1
v
(n)
i,t+1, otherwise

(5)

where v
(l)
i,t and v

(n)
i,t are the values of the i-th variable of v

(l)
t and v

(n)
t .

Let D = {(Xp, yp)}P
p=1 denote the EHR dataset with up to P labeled sam-

ples. The p-th sample contains a multivariate time series Xp consisting of the
physiological variables, and a binary label of in-hospital mortality yp ∈ {0, 1}.
Let Xbase ∈ R

g denote the patient-specific characteristics (i.e., age, sex, ethnic-
ity, admission diagnosis) with up to g dimension.

Personalized Patient Representation Learning. Given an input multivari-
ate time series/a single patient data X = {(fi, vi, ti)}N

i=1, the embedding for the
i-th triplet ei ∈ R

d is generated by aggregating the feature embedding e
(f)
i ∈ R

d,
the value embedding e

(v)
i ∈ R

d×T , and the time interval embedding e
(t)
i ∈ R

d×T .
The feature embedding is similar to the word embedding, which allows features
with similar meanings to have a similar representation. Particularly, the value
embedding and time interval embedding are obtained by separately implement-
ing a multi-channel feed-forward neural network (FFN) as:

e
(v)
i,1 , · · · , e

(v)
i,T = FFN

(v)
i (vi,1, · · · , vi,T ),

e
(t)
i,1, · · · , e

(t)
i,T = FFN

(t)
i (δi,1, · · · , δi,T ).

(6)

Through the processes above, we are able to obtain e(f) ∈ R
Nd, e(v) ∈

R
Nd×T , and e(t) ∈ R

Nd×T , which are fed into the attention-based cross module to
generate an overall representation. Note that e(f) ∈ R

Nd is expanded into e(f) ∈
R

Nd×T . Specifically, we design the attention-based cross module to generate a
cross-attention matrix as:

ẽ = Wv · e(v) + Wt · e(t) + be,

E = ScaledDot(e(f), ẽ) =
e(f) · ẽ�

√
d

,
(7)

where E ∈ R
Nd×Nd is the cross-attention matrix that corresponds to the scaled-

dot similarity. We then apply a 1D convolutional layer to the cross-attention
matrix E as:

α = Softmax(Conv(E)), (8)
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where Conv is the 1D convolutional layer and α is the cross-attention score
matrix. We integrate α and ẽ into a weighted representation e as:

e = α � ẽ. (9)

Given a batch of patients, the embedding for them can be written as:

e = [e1, e2, · · · , eB ] ∈ R
B×Nd×T , (10)

where B is the batch size. Since e still takes the form of sequence data, we design
an attention layer to generate a series of attention weights (β1, β2, · · · , βT ) and
reweight these weights to produce an overall feature representation as:

β = Softmax(e · We + be),

ē =
T∑

t=1

βt � et,
(11)

where ē ∈ R
B×Nd is the new generated patient representation.

Similar Patients Discovery and Information Aggregation. Before con-
ducting patient similarity calculation, we encode Xbase ∈ R

g as ebase ∈ R
dg and

concatenate ebase with ē as:

ebase = Wbase · Xbase + bbase,

e′ = Concate(ē, ebase),
(12)

where Concate is the concatenation operation.
For the batch of patient representations, the pairwise similarities that corre-

spond to any two patient representations can be calculated as:

Λ = sim(e′, e′) =
e′ · e′

(Nd + dg)2
, (13)

where sim(·) is the measure of cosine similarity and Λ ∈ R
B×B is the patient

similarity matrix.
Moreover, we incorporate a learnable threshold ϕ into the patient similarity

calculation to filter out similarities below the threshold. The similarity matrix
can be rewritten as:

Λ′ =

{
Λ, if Λ > ϕ

0, otherwise
(14)

We take into account the batch of patients’ representations as a graph to
aggregate the information from similar patients, where the similarity matrix Λ′
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is the graph adjacency matrix. We apply graph convolutional layers to enhance
the representation learning as:

ê = [ê1, ê2, · · · , êB ]� = GCN(e′, Λ′)
= ReLU(Λ′ReLU(Λ′ · e′W e

1 ) · W e
2 ),

(15)

where ê is the aggregated auxiliary information from similar patients. A note of
caution is due here since we ignore the bias term. We replace e′ in Eq. (15) with
e′′ for the imputation task. By doing so, the output of graph convolutional layers
can take the form of sequence data. Particularly, e′′ is obtained by concatenating
e and ebase, where ebase ∈ R

dg is expanded into ebase ∈ R
dg×T .

Through the processes above, we are able to generate e′/e′′ and ê represen-
tations for the batch of patients. The e′/e′′ refers to the patient themselves. For
an incomplete patient p (i.e., the patient data has many missing values), we
generate the missing value representations with ê. For a complete patient, we
augment e′/e′′ with ê to enhance the representation learning.

We design an attention-based fusion module to refine both e′/e′′ (the two
representations used in prediction and imputation tasks) and ê. Since imputation
and prediction tasks involve the same process of modeling, we take the prediction
task as an example. The two weights γ ∈ R

B and η ∈ R
B are incorporated to

determine the importance of e′ and ê, obtained by implementing fully connected
layers as:

γ = Sigmoid(e′ · Wγ + bγ),
η = Sigmoid(ê · Wη + bη).

(16)

A note of caution is due here since we keep the sum of γ and η must be 1, i.e.,
γ + η = 1. We achieve this constraint by combining γ = γ

γ+η and η = 1− γ. The
final representation e∗ is obtained by calculating γ · e′ + η · ê.

Contrastive Learning. We integrate contrastive learning into the proposed
network architecture to perform imputation and prediction tasks. For the pre-
diction task, we augment the standard cross-entropy loss with the supervised
contrastive loss [10]. We treat the patient representations with the same label
as the positive pairs and the patient representations with different labels as the
negative pairs. For the imputation task, we augment the standard mean squared
error loss with the unsupervised contrastive loss [3]. We treat a single patient
representation and its augmented representations as positive pairs and the other
patient representations within a batch and their augmented representations as
negative pairs. The formula can be written as:

LSC = −
B∑

i=1

1
Byi

log

∑B
j=1 1[yi=yj ]exp(sim(e∗

i , e
∗
j )/τ)∑B

k=1 1[k �=i]exp(sim(e∗
i , e

∗
k)/τ)

,

LUC = −log
exp(sim(e∗

i , e
∗
j )/τ)∑2B

k=1 1[k �=i]exp(sim(e∗
i , e

∗
k)/τ)

,

(17)
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where B represents the batch size; 1[·] represents an indicator function; sim(·)
represents the cosine similarity measure; τ represents a hyper-parameter that is
used to control the strength of penalties on negative pairs; Byi

is the number of
samples with the same label in each batch.

Imputation and Prediction Tasks. For the prediction task, we feed e∗ into
a softmax output layer to obtain the predicted ŷ as:

ŷ = Softmax(Wy · e∗ + by). (18)

The objective loss is the summation of cross-entropy loss and the supervised
contrastive loss with a scaling parameter λ to control the contribution of each
loss as:

LCE = − 1
P

P∑
p=1

(y�
p · log(ŷp) + (1 − yp)� · log(1 − ŷp)),

L = λ · LCE + (1 − λ) · LSC .

(19)

For the imputation task, we take the neighboring observed values (of each
patient) as inputs to incorporate patient-specific contextual information. The
process of embedding used by v(l) and v(n) can be written as:

e
(v),(l)
i = FFN

(v),(l)
i (v(l)

i ), e(t),(l)i = FFN
(t),(l)
i (δ(l)i ),

e
(v),(n)
i = FFN

(v),(n)
i (v(n)

i ), e(t),(n)i = FFN
(t),(n)
i (δ(n)i ),

ẽ(l) = W (l)
v · e(v),(l) + W

(l)
t · e(t),(l) + b(l)e ,

ẽ(n) = W (v)
n · e(v),(n) + W

(n)
t · e(t),(n) + b(n)e ,

ec = Concate(ẽ(l), ẽ(n)),

(20)

where ẽ(l) and ẽ(n) are the representations of v(l) and v(n) after embedding. The
embedding matrix ec is obtained by concatenating ẽ(l) and ẽ(n).

Given the final representation e∗ and the embedding matrix ec, we use a fully
connected layer to impute missing values as:

v̂ = e∗ · W v
1 + ec · W v

2 + bv. (21)

The objective loss is the summation of the mean square error and the unsu-
pervised contrastive loss with a scaling parameter λ to control the contribution
of each loss as:

LMSE =
1
P

P∑
p=1

(mp � vp − mp � v̂p)2,

L = λ · LMSE + (1 − λ) · LUC .

(22)
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4 Experiments

4.1 Datasets and Tasks

We validate our approach1 on the MIMIC-III2 and eICU3 datasets. The 21,139
and 38,056 samples were taken from both datasets. Detailed information on both
datasets can be found in the literature [9] and [28]. Table 1 presents the summary
statistics for the MIMIC-III and eICU features used.

For the MIMIC-III dataset, we evaluate clinical time series imputation and
in-hospital mortality accuracy based on the data from the first 24/48 h after
ICU admission. Similarly, for the eICU dataset, we evaluate clinical time series
imputation and in-hospital mortality accuracy based on the data from the first
24/48 h after eICU admission.

4.2 Baseline Approaches

We compare our approach with GRU-D [2], BRITS [1], GRUI-GAN [17], E2GAN
[18], E2GAN-RF [40], STING [25], MTSIT [37], and MIAM [13] (see related work
section). We feed the output of GRUI-GAN, E2GAN, E2GAN-RF, STING, and
MTSIT into GRU to estimate in-hospital mortality risk probabilities. Moreover,
the regression component used in BRITS is integrated into GRU-D and MIAM
to obtain imputation accuracy.

Besides, we present two variants of our approach as follows:
Oursα: A variation of our approach that does not perform graph analysis-

based patient stratification modeling.
Oursβ : A variation of our approach in which we omit the contrastive learning

component.
All implementations of Oursα and Oursβ can be found in the aforementioned

Github repository.

4.3 Implementation Details

We implement all approaches with PyTorch 1.11.0 and conduct experiments on
A40 GPU from NVIDIA with 48GB of memory. We randomly use 70%, 15%,
and 15% of the dataset as training, validation, and testing sets. We train the
proposed approach using an Adam optimizer [11] with a learning rate of 0.0023
and a mini-batch size of 256. For personalized patient representation learning, the
dimension size d is 3. For similar patients discovery and information aggregation,
the initial value of ϕ is 0.56, and the dimension size of W e

1 and W e
2 are 34 and 55.

For contrastive learning, the value of τ is 0.07. The dropout method is applied
to the final Softmax output layer for the prediction task, and the dropout rate is

1 The implementation code is available at https://github.com/liulab1356/CL-
ImpPreNet.

2 https://mimic.physionet.org.
3 https://eicu-crd.mit.edu/.

https://github.com/liulab1356/CL-ImpPreNet
https://github.com/liulab1356/CL-ImpPreNet
https://mimic.physionet.org
https://eicu-crd.mit.edu/
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Table 1. MIMIC-III and eICU features used for clinical time series imputation and
in-hospital mortality prediction 48 h after ICU admission.

MIMIC-III Feature Data Type Missingness (%)

Capillary refill rate categorical 99.78

Diastolic blood pressure continuous 30.90

Fraction inspired oxygen continuous 94.33

Glasgow coma scale eye categorical 82.84

Glasgow coma scale motor categorical 81.74

Glasgow coma scale total categorical 89.16

Glasgow coma scale verbal categorical 81.72

Glucose continuous 83.04

Heart Rate continuous 27.43

Height continuous 99.77

Mean blood pressure continuous 31.38

Oxygen saturation continuous 26.86

Respiratory rate continuous 26.80

Systolic blood pressure continuous 30.87

Temperature continuous 78.06

Weight continuous 97.89

pH continuous 91.56

Age continuous 0.00

Admission diagnosis categorical 0.00

Ethnicity categorical 0.00

Gender categorical 0.00

eICU Feature Data Type Missingness (%)

Diastolic blood pressure continuous 33.80

Fraction inspired oxygen continuous 98.14

Glasgow coma scale eye categorical 83.42

Glasgow coma scale motor categorical 83.43

Glasgow coma scale total categorical 81.70

Glasgow coma scale verbal categorical 83.54

Glucose continuous 83.89

Heart Rate continuous 27.45

Height continuous 99.19

Mean arterial pressure continuous 96.53

Oxygen saturation continuous 38.12

Respiratory rate continuous 33.11

Systolic blood pressure continuous 33.80

Temperature continuous 76.35

Weight continuous 98.65

pH continuous 97.91

Age continuous 0.00

Admission diagnosis categorical 0.00

Ethnicity categorical 0.00

Gender categorical 0.00
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Table 2. Performance of our approaches with other baselines on clinical time series
imputation and in-hospital mortality prediction. Values in the parentheses are standard
deviations.

MIMIC-III/24 h after ICU admission Clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D 1.3134(0.0509) 87.33%(0.0341) 0.8461(0.0051) 0.4513(0.0124)

BRITS 1.3211(0.0923) 87.92%(0.0611) 0.8432(0.0040) 0.4193(0.0144)

GRUI-GAN 1.6083(0.0043) 107.20%(0.0029) 0.8324(0.0077) 0.4209(0.0280)

E2GAN 1.5885(0.0045) 105.86%(0.0032) 0.8377(0.0083) 0.4295(0.0137)

E2GAN-RF 1.4362(0.0031) 101.09%(0.0027) 0.8430(0.0065) 0.4328(0.0101)

STING 1.5018(0.0082) 102.53%(0.0047) 0.8344(0.0126) 0.4431(0.0158)

MTSIT 0.3988(0.0671) 38.44%(0.0647) 0.8029(0.0117) 0.4150(0.0165)

MIAM 1.1391(0.0001) 75.65%(0.0001) 0.8140(0.0044) 0.4162(0.0079)

Ours 0.3563(0.0375) 8.16%(0.0086) 0.8533(0.0119) 0.4752(0.0223)

Oursα 0.3833(0.0389) 8.78%(0.0089) 0.8398(0.0064) 0.4555(0.0139)

Oursβ 0.4125(0.0319) 8.95%(0.0077) 0.8417(0.0059) 0.4489(0.0182)

eICU/24 h after eICU admission Clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D 3.9791(0.2008) 52.11%(0.0262) 0.7455(0.0107) 0.3178(0.0190)

BRITS 3.6879(0.3782) 48.30%(0.0726) 0.7139(0.0101) 0.2511(0.0111)

GRUI-GAN 9.1031(0.0130) 119.29%(0.0016) 0.7298(0.0094) 0.3013(0.0141)

E2GAN 7.5746(0.0141) 99.20%(0.0018) 0.7317(0.0155) 0.2973(0.0253)

E2GAN-RF 6.7108(0.0127) 90.38%(0.0015) 0.7402(0.0131) 0.3045(0.0227)

STING 7.1447(0.0651) 93.56%(0.0083) 0.7197(0.0154) 0.2873(0.0182)

MTSIT 1.6192(0.1064) 21.20%(0.0139) 0.7215(0.0071) 0.2992(0.0115)

MIAM 1.1726(0.3103) 15.35%(0.0406) 0.7262(0.0179) 0.2659(0.0148)

Ours 0.5365(0.0612) 7.02%(0.0079) 0.7626(0.0117) 0.3388(0.0211)

Oursα 0.6792(0.0716) 8.89%(0.0093) 0.7501(0.0143) 0.3325(0.0151)

Oursβ 0.5923(0.0514) 7.75%(0.0067) 0.7533(0.0104) 0.3303(0.0175)

MIMIC-III/48 h after ICU admission Clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D 1.4535(0.0806) 86.47%(0.0482) 0.8746(0.0026) 0.5143(0.0077)

BRITS 1.3802(0.1295) 82.21%(0.0768) 0.8564(0.0040) 0.4445(0.0189)

GRUI-GAN 1.7523(0.0030) 104.50%(0.0018) 0.8681(0.0077) 0.5123(0.0166)

E2GAN 1.7436(0.0036) 103.98%(0.0022) 0.8705(0.0043) 0.5091(0.0120)

E2GAN-RF 1.6122(0.0027) 102.34%(0.0017) 0.8736(0.0031) 0.5186(0.0095)

STING 1.6831(0.0068) 100.46%(0.0035) 0.8668(0.0123) 0.5232(0.0236)

MTSIT 0.4503(0.0465) 30.42%(0.0314) 0.8171(0.0114) 0.4308(0.0189)

MIAM 1.3158(0.0003) 78.20%(0.0002) 0.8327(0.0024) 0.4460(0.0061)

Ours 0.4396(0.0588) 6.23%(0.0073) 0.8831(0.0149) 0.5328(0.0347)

Oursα 0.7096(0.0532) 8.85%(0.0066) 0.8671(0.0093) 0.5161(0.0151)

Oursβ 0.5786(0.0429) 7.47%(0.0056) 0.8709(0.0073) 0.5114(0.0176)

eICU/48 h after eICU admission Clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D 5.8071(0.2132) 44.53%(0.0164) 0.7767(0.0141) 0.3210(0.0182)

BRITS 5.5546(0.5497) 42.59%(0.0421) 0.7285(0.0114) 0.2510(0.0097)

GRUI-GAN 14.0750(0.0301) 107.96%(0.0021) 0.7531(0.0167) 0.2897(0.0201)

E2GAN 12.9694(0.0195) 99.47%(0.0015) 0.7605(0.0063) 0.3014(0.0137)

E2GAN-RF 11.8138(0.0161) 91.52%(0.0011) 0.7763(0.0057) 0.3101(0.0125)

STING 12.0962(0.0806) 92.79%(0.0062) 0.7453(0.0182) 0.2805(0.0190)

MTSIT 2.8150(0.2105) 21.58%(0.0161) 0.7418(0.0091) 0.3078(0.0120)

MIAM 2.1146(0.4012) 16.23%(0.0414) 0.7574(0.0127) 0.2776(0.0105)

Ours 0.9412(0.0930) 7.21%(0.0071) 0.7907(0.0123) 0.3417(0.0217)

Oursα 1.1099(0.1064) 8.51%(0.0081) 0.7732(0.0100) 0.3311(0.0265)

Oursβ 0.9930(0.0817) 7.61%(0.0062) 0.7790(0.0117) 0.3335(0.0178)
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0.1. For the imputation task, the dimension size of W
(l)
v , W

(l)
t , W

(n)
v , and W

(n)
t

are 28.
The performance of contrastive learning heavily relies on data augmentation.

We augment the observed value v with random time shifts and reversion. For
example, given the observed value v = [v1, v2, · · · , vT ], we are able to obtain
vshift = [v1+n, v2+n, · · · , vT+n] and vreverse = [vT , vT−1, · · · , v1] from random
time shift and reversion, and n is the number of data points to shift.

4.4 Evaluation Metrics

We use the mean absolute error (MAE) and the mean relative error (MRE)
between predicted and real-valued values as the evaluation metrics for imputa-
tion performance. We use the area under the receiver operating characteristic
curve (AUROC) and the area under the precision-recall curve (AUPRC) as the
evaluation metrics for prediction performance. We report the mean and standard
deviation of the evaluation metrics after repeating all the approaches ten times.

5 Experimental Results

Table 2 presents the experimental results of all approaches on imputation and
prediction tasks from MIMIC-III and eICU datasets. Together these results sug-
gest that our approach achieves the best performance in both imputation and
prediction tasks. For example, for the clinical time series imputation of MIMIC-
III (24 h after ICU admission), the MAE and MRE of Ours are 0.3563 and 8.16%,
smaller than 0.3988 and 38.44% achieved by the best baseline (i.e., MTSIT). For
the in-hospital mortality prediction of MIMIC-III (24 h after ICU admission),
the AUROC and AUPRC of Ours are 0.8533 and 0.4752, larger than 0.8461 and
0.4513 achieved by the best baseline (i.e., GRU-D).

As Table 2 shows, the RNN-based approach (i.e., GRU-D and BRITS) out-
performs the GAN-based approach (i.e., GRUI-GAN, E2GAN, E2GAN-RF, and
STING) in the imputation task. From the prediction results of the MIMIC-III
dataset, we can see that the transformer-based approaches (i.e., MTSIT and
MIAM) resulted in lower values of AUROC and AUPRC. From the prediction
results of the eICU dataset, no significant difference between the transformer-
based approach and other approaches was evident.

Ours outperforms its variants Oursα and Oursβ . This result confirms the
effectiveness of the network construction with enhanced imputation and predic-
tion performance.

6 Conclusion

This paper presents a novel contrastive learning-based imputation-prediction
network to carry out in-hospital mortality prediction tasks using EHR data.
This prediction makes timely warnings available to ICU health professionals
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so that early interventions for patients at risk could take place. The proposed
approach explicitly considers patient similarity by stratification of EHR data
and successfully integrates contrastive learning into the network architecture.
We empirically show that the proposed approach outperforms all the baselines
by conducting clinical time series imputation and in-hospital mortality prediction
on the publicly available MIMIC-III and eICU datasets.
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Abstract. One of the central tasks of medical text analysis is to extract
and structure meaningful information from plain-text clinical documents.
Named Entity Recognition (NER) is a sub-task of information extraction
that involves identifying predefined entities from unstructured free text.
Notably, NER models require large amounts of human-labeled data to
train, but human annotation is costly and laborious and often requires
medical training. Here, we aim to overcome the shortage of manually anno-
tated data by introducing a training scheme for NER models that uses an
existing medical ontology to assign weak labels to entities and provides
enhanced domain-specific model adaptation with in-domain continual pre-
training. Due to limited human annotation resources, we develop a specific
module to collect a more representative test dataset from the data lake
than a random selection. To validate our framework, we invite clinicians
to annotate the test set. In this way, we construct two Finnish medical NER
datasets based on clinical records retrieved from a hospital’s data lake and
evaluate the effectiveness of the proposed methods. The code is available
at https://github.com/VRCMF/HAM-net.git.

Keywords: Named Entity Recognition · Distant Supervision · Sample
Selection · Clinical Reports

1 Introduction

Although Electrical Health Records (EHR) are trending towards structured data,
documentation in plain text remains popular in clinical work. As a result, text
documents contain valuable information, which highlights the need for auto-
matic information extraction and data structuring techniques for research and
management purposes or to facilitate the clinician’s work. Electrical Health
Records (EHR) are nowadays widely adopted by healthcare institutes and med-
ical service providers. EHRs are created and maintained by healthcare service
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providers and consist of various information and data types related to patients’
healthcare. This includes narrative free-text reports, laboratory results, demo-
graphics, diagnosis codes, and images. During hospitalization, patients’ infor-
mation is synchronically updated to the EHR system where clinicians can query
the EHR system to obtain relevant medical information about patients. However,
most clinical notes are in free-text format. Named Entity Recognition (NER) is
a subtask of Natural Language Processing (NLP), aiming to detect and assign
labels to pre-defined categories or concepts as they appear in the text, such as dis-
eases, medicines, symptoms, anatomical structures, or procedures. NER is based
on supervised learning. Thus, a substantial amount of training data consisting of
input text and label sequences are required. To provide reliable token-level pre-
dictions, high-quality manually annotated data by clinical experts is necessary,
which implies considerable human effort. Earlier, NER systems have been trained
for different languages, such as for English text, such as n2c21, RadGraph [8],
MalwareTextDB [14], and CoNLL2003 [18], and for smaller languages such as
Finnish2, but to our knowledge, no NER dataset for medical Finnish exists.

One solution to tackle the scarcity of manually labeled training data is to
adopt distant supervision methods to generate labels for training samples based
on external knowledge sources. In this framework, earlier approaches include,
e.g., knowledge-based distant supervision, transfer learning from pretrained mod-
els, and dictionary-based methods, to name a few. For example, Zirikly et al. [25]
and Wang et al. [22] leverage the transfer learning to project the label knowledge
from resource-rich languages (English) into the low-resource one. Korkontzelos
et al. [10] and Shang et al. [20] establish NER datasets based on in-domain dic-
tionaries. It is necessary to generate entity-level supervision signals for training
data and capitalize on domain-specific dictionaries and language knowledge.

We propose a novel NER framework called Hybrid Annotation Mechanism
Network (HAM-net) to predict medical entities from clinical documents in an
extremely low-resource scenario. We fuse a Finnish medical dictionary3 and a
dependency parser for Finnish4 to enhance the annotation mechanism.

Considering the characteristics of medical-related NLP algorithms, we per-
form domain-specific continual pertaining (DCP) to resolve in-domain adap-
tation problems. Much research literature shows that language models suffer
from performance degeneration on downstream tasks without taking in-domain
adaptation into account [7,9]. Currently, advanced language models, such as
Bidirectional Encoder Representations from Transformers (BERT) [5] and Long-
former [3], incorporate biomedical and clinical knowledge through pre-training
on large-scale biomedical and clinical corpus [13]. We deploy domain-specific con-
tinual pretraining with the masked language modeling (MLM) objective on an
enormous Finnish medical text from the data lake of the hospital. To endow our

1 https://n2c2.dbmi.hms.harvard.edu/.
2 https://turkunlp.org/fin-ner.html.
3 https://finto.fi/mesh/en/.
4 http://turkunlp.org/Turku-neural-parser-pipeline/.

https://n2c2.dbmi.hms.harvard.edu/
https://turkunlp.org/fin-ner.html
https://finto.fi/mesh/en/
http://turkunlp.org/Turku-neural-parser-pipeline/
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framework with better domain specification, we perform domain-specific contin-
ual pretraining to obtain domain-aware model parameters to initialize the NER
model.

To validate the HAM-net in different medical documents, we retrieve patient
clinical records from the data lake of the hospital and divide them into four text
clusters based on frequent medical specialties to establish NER datasets. Also,
we develop the Sample Selection Module (SSM) to choose the most informative
data points as validation samples for better evaluation. The experiments show
that the SSM is better than random selection, such that the validation samples
generated by our module better represent the whole datasets.

Our contributions are illustrated in the following aspects:

– This paper proposes a novel framework to deal with the NER task in an
extremely low-resource scenario, i.e., extract customized medical entities from
clinical notes without human-annotated data.

– We integrate a Finnish medical dictionary and a Finnish language parsing
pipeline to construct the Hybrid Annotation Mechanism (HAM) module for
providing weakly labeled data.

– We design the Sample Selection Module (SSM) to select the representative
samples for human annotation, which enables the reliable evaluation of our
weakly supervised HAM-net and effectively reduces the annotation cost.

Patient
Clinical
Records

In-domain
MLM

HAM

SSM

Weakly
Labeled Data

NER Encoder

Model Parameter

Initialize

Predictions

Selected
Samples

Doctors

Annotation

Datalake

NER Decoder

Fig. 1. Overall architecture of HAM-net. The texts in patient clinical records from the
hospital data lake are written in a low-resource language (Finnish).

2 Related Work

Medical NER detects medically meaningful entities in unstructured documents
and classifies them into predefined labels, such as drug dosages, diseases, medical
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devices, and anatomical structures. Most early medical NER works utilize feature
engineering techniques and machine learning algorithms to resolve medical NER
tasks [17,19,21]. Deep learning-based NER approaches have recently achieved
state-of-the-art (SOTA) performance across NER tasks because of the semantic
composition and continuous real-valued vector representations through nonlinear
processing provided by deep neural networks [12]. For example, in the clinical
setting, Wu et al. [23] used the convolutional and recurrent neural networks
to encode the input sentences while the sequential labels were generated by a
task-specific layer, i.e., a classification layer.

Acquiring high-quality training data for deep learning models in the med-
ical setting can be difficult because human annotation is labor-intensive and
expensive. As a classical supervised learning task, the medical-named entity
recognition task requires a substantial amount of entity-level supervision signal,
e.g., anatomical structure and drug dosage, to learn the transformation func-
tion between input data and our desired targets from the training dataset. Two
common weak supervision schemes, i.e., incomplete and inaccurate supervision,
are extensively studied in research communities [24] to resolve the data scarcity
problem. Incomplete supervision approaches select a small set of training samples
from a dataset, and then human encoders assign labels to selected samples for
training the model. Ferreira et al. [6] leverage active learning strategies to select
the most informative samples on a clinical multi-label classification, i.e., interna-
tional classification disease (ICS) coding task. Inaccurate supervision approaches
generate weakly labeled data by assigning many training samples with super-
vision signals provided by outside resources, such as dictionaries, knowledge
graphs, and databases. Nesterov et al. [16] leverage Medical Dictionary for Reg-
ulatory Activities (MedDRA), a subset of UMLS, to construct a knowledge base
as annotation resources. The weakly labeled data generated by a rule-based
model is fed into a BERT model to generate entity-level predictions.

3 Method

This section introduces our proposed framework, i.e., Hybrid Annotation
Mechanism Network (HAM-net). It consists of a hybrid annotation mecha-
nism (HAM) and a Sample Selection Module (SSM). The overall architecture of
HAM-net is shown in Fig. 1. We retrieve Finnish patient clinical records from the
hospital data lake and deploy our framework in a real-world scenario. Domain-
specific Masked Language Modeling (MLM) is performed on a large-scale clinical
corpus from the data lake to learn medical knowledge that provides the HAM-
net with in-domain adaptation. The HAM automatically assigns weak labels to
training samples. The SSM selects the most informative data points as valida-
tion samples, and doctors annotate the selected samples. The NER model uses
weakly labeled data to train a model identifying and classifying entities into
pre-defined labels.



448 W. Sun et al.

keys

items

FinMesh

Hierarchical
Tree

Medical
Dictionary

label

Annotation
Dictionary

... ... ...

Input
Text

xxxx
xxxx
xxxx

Lemma

Mask

Origin

Beam Mapping

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

label

Annotation Dictionary Construction

Linguistic
Knowledge
Extraction

Weak
Label

Assignment

Fig. 2. Overall architecture of HAM-net. The patient clinical records from the hospital
data lake are Finnish text. Annotation Dictionary is constructed based on the FinMesh
ontology. Linguistic information, i.e., lemmatization and annotation mask, is derived
from the Finnish neural parsing pipeline and human-defined rules. We leverage medical
information from ontology and linguistic information to assign labels for given input
entities.

3.1 Hybrid Annotation Mechanism

The Hybrid Annotation Mechanism (HAM) is divided into three steps as shown
in Fig. 2, i.e., annotation dictionary construction, linguistic knowledge extrac-
tion, and weak label assignment. Firstly, we retrieve medical terms from the
Finnish Medical Subject Heading (FinMesh) ontology and utilize parent-child
relationships between subjects to establish hierarchical graphs. Each hierarchi-
cal graph consists of a root node and non-root nodes, which are used to construct
a medical dictionary, i.e., the root node for the key and all non-root nodes for the
terms. Based on clinicians’ suggestions, we merge “key-item” pairs in the med-
ical dictionary to provide an annotation dictionary with six pre-defined labels.
Secondly, we integrate linguistic knowledge of sequential input extracted by the
Finnish neural parsing pipeline and human-defined rules to provide tokenized
words, annotation masks, and lemmatization to facilitate the following entity-
level annotation. Thirdly, we design a beam-mapping algorithm that assigns
weak labels to entities for establishing NER training datasets.

Annotation Dictionary Construction. Assume a collection of medical
subjects related to a top-level concept, e.g., kudokset (tissue), is denoted as
H′

i = {hi}a+b+c+2
i=0 , where a, b, and c represents each branch’s depth in a hierar-

chical tree. Each medical subject stores relevant information, including their par-
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ent and child subjects, medical concepts in different languages (Finnish, Swedish,
and English), preferred labels, alternative concepts, and related subjects.

We define the hierarchical graph for the concept as Gi
h = (H′, E) where rel-

evant medical subjects H′ are the graph’s vertices and E represents the edges
or association rules of the hierarchical graph, i.e., parent-child relations between
subjects. The edges are E → {{hi, hj}|hi, hj ∈ H′

i and i �= j} while the associa-
tion rules of the hierarchical graph (refer to the Fig. 2) is defined as follows:

– h0 → h1 → · · · → ha+2,
– h0 → h2 → · · · → ha+b+2,
– h0 → h2 → · · · → ha+b+c+2.

To construct a medical dictionary Mi, we flatten the hierarchical graph Gi
h

by pooling all vertices or subjects in the graph (except the top-level vertex h0).
Retrieved subjects are regarded as the dictionary’s terms, and the top-level ver-
tex represents the dictionary’s key, so that the medical dictionary is denoted to
Mi(k0) = {hi}a+b+c+2

i=0 . We regard the top-level vertex h0 as a key of the medical
dictionary k0.

An annotation dictionary Aj (where j ∈ {1, 2, · · · , 6}) is provided by merging
related hierarchical graphs based on clinicians’ suggestions, and the annotation
dictionary is referred to as Aj = {M1(k1

0),M2(k2
0), · · · ,Mm(km

0 )} where m is
the number of related hierarchical graphs.

Annotation Masking and Lemmatization. Let X be a sentence with n
tokens in a clinical document from the data lake. The sentence is denoted as
X = {Xi}ni=1. The Finnish neural parser pipeline reads the sentence X and pro-
vides tokenized words (Xo), tokens’ lemmatization (X l), part of speech (POS),
morphological tags, and dependency parsing. Firstly, we provide an annotation
mask (Xm) to avoid the label assignment over entities with no specific meaning,
by leveraging the following pre-defined rules:

– Set Xm
i as “False” if the POS of Xi does not belong to [“NOUN ”, “VERB ”,

“ADJ ”, “ADV ”].
– Set Xm

i as “False” if the Xi is a unit, e.g., “cm”, “kg”, “sec”, to name a few.
– Remove all Finnish stop words provided by stopwords-fi5.

Secondly, the pipeline lemmatizes the token Xi and returns the original format of
the token. The reason for extracting tokens’ lemmatization is that tokens in the
clinical notes have different formats, such as past tense, plural, or misspellings,
which might affect the string mapping during the entity-level annotation. Finally,
the generated vectors, i.e., Xo, X l, and Xm, align with the lengths of input
sentence X to prevent dislocation mapping when the vectors participate in the
following label assignment.

5 https://github.com/stopwords-iso/stopwords-fi.

https://github.com/stopwords-iso/stopwords-fi
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Weak Label Assignment. We develop an algorithm called beam mapping to
assign weak labels to entities in the sentence. We adopt BIO scheme to define the
entity boundaries. BIO stands for the beginning, inside, and outside of a textual
segmentation. For example, NER systems assign [‘O’, ‘O’, ‘B-medical-condition’,
‘I-medical-condition’] for a given sequence [‘He’, ‘has’, ‘prostate’, ‘cancer’]. The
algorithm iterates through all tokens in the sentence X and generates BIO scheme
labels, i.e., a combination of tokens can be annotated, within the receptive windows
Win containing a list of w position shifting, Win ∈ [s1, s2, · · · , sw], where sw is a
token at w position of a given sequence. For example, “prostate cancer” should
be annotated as “B-Medical-condition” and “I-Medical-condition” rather than “B-
Anatomical-structure” and “B-Medical-conditional” because it is plausible to treat
the phrase “prostate cancer” as a unit instead of splitting them up.

Assume the beam mapping algorithm provides labels to tokens ranging from
Xi to Xi+sj where j ∈ {1, 2, · · · , w}. Firstly, we check the ith element in the
annotation mask Xm and see whether Xm

i is True because we directly assign
“O” to the Xi without executing the algorithm on the position i if the mask item
is False. Secondly, a token mapping function generates the candidate labels on
the lemmatizations of tokens {X l

i}i=i+sj
i=i by mapping each item in the anno-

tation dictionary A to the lemmatizations. During the mapping, the algorithm
selects candidates, i.e., terms in the annotation dictionary Aj , if the number of
input tokens and lengths of each token equal the dictionary’s terms. We denote z
selected candidates as C = {Ci}zi=1 and calculate Levenshtein distance between
the input string and the candidate to estimate the similarity between two strings
for choosing the most matched candidate. Merge the input list {X l

i}i=i+sj
i=i sepa-

rated by the space character to provide the input string Si:i+sj . The Levenshtein
distance between two strings (a and b) is shown as follows:

lev(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|a| if |b| = 0,
|b| if |a| = 0,
lev

(
tail(a), tail(b)

)
if a[0] = b[0]

1 + min

⎧
⎪⎨

⎪⎩

lev
(
tail(a), b

)

lev
(
a, tail(b)

)

lev
(
tail(a), tail(b)

)
otherwise,

(1)

where the tail(.) is to retrieve all elements in a string except the first one. Thirdly,
we get the best-matched terms for the tokens {Xi}i=i+sj

i=i based on the distances.
The weak labels {Y ′

i }i=i+sj
i=i is provided by leveraging the indexes of the best

candidates to look up the annotation dictionary A. The annotation rules for the
BIO scheme are shown as follows:

– If the first label is empty, i.e., Y ′
i = “O”, we re-run the algorithm on the

position i + 1.
– If the first label is not empty, the weak labels {Y ′

i }i=i+sj
i=i are:

• The first element is the beginning of the text segment, Y ′
i = “B-lb”.

• The rest elements are the inside of the text segment, {Y ′
i }i=i+sj

i=i+1 = “I-lb”.
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where “lb” is an arbitrary label from the annotation dictionary A. The
weakly labeled data for the sentence X with n tokens can be represented as
{(Xi, Y

′
i )}ni=1.

3.2 NER Backbone Network

We use the weakly labeled data provided by the HAM as input samples to
train a NER model. Also, the weakly labeled data contains inherent label noise
of distant supervision approaches, affecting predictions’ reliability. The noise
stability property [2] shows that the noise will gradually attenuate when the noise
propagates through a deep neural network. Therefore, a trained NER model, i.e.,
HAM-net, identifies and classifies entities into labels in a low-latency way. The
label noise can be suppressed by the deep neural network or additional noise-
suppressed approaches.

We leverage the word embedding technique to provide the word embedding
matrix Xi ∈ R

de×n of the ith sentence with n tokens. The input data is denoted
as {(Xi,Y′

i)}Ni=1 where N is the total number of sentences and the Y′
i ∈ R

1×n

is to store the indexes of labels. We load the domain-specific model obtained
with continual pretraining to initialize the encoder whose mapping function is
denoted as F ′(.). The vector Xi is encoded as:

Z′
i = Softmax(O′F ′(Xi)), (2)

where O′ ∈ R
dm×dh is the weight matrix of the fully-connected layer and dm is

the dimension of predefined label space. Z′ ∈ R
dm×n represents the encoder’s

output.
We also consider a CRF layer as the decoder of the NER model, denoted as

f(Z′
i, j,Y

′
j−1,Y

′
j) where j is the position of the label to predict, Y′

j−1 represents
the label for the (j − 1)th token of the input sequence X, and Y′

j is the label
for the jth token of the input sequence X. The conditional probability vectors
of the ith sentence is denoted as:

P (Y′
i|Z′

i, λ) =
1

G(Z′)
exp

n∑

j=1

λjfj(Z′
i, j,Y

′
i,j−1,Y

′
i,j)), (3)

G(Z′) = exp
N∑

i=1

n∑

j=1

λjfj(Z′
i, j,Y

′
i,j−1,Yi,j), (4)

where the λj is the learn-able weight of jth CRF feature function. The G(Z′)
represents the normalization factor of the CRF feature functions. The overall
training loss of the HAM-net is:

L(Z′, λ,Y′) =
N∑

i=1

logP (Y′
i|X′

i, λ) −
m∑

j=1

λ2
j

2σ2
, (5)

We train the model until convergence and use the Viterbi algorithm [11] to
generate a label sequence for a new input sentence in the inference stage.
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3.3 Sample Selection Module

To validate the effectiveness of our data annotation mechanism and NER model,
we need the test set with a small set of samples annotated by clinicians. How-
ever, human annotation is expensive and labor-intensive, especially for doctors
to assign entity-level labels to the test samples. To mitigate this problem, we
developed the Sample Selection Module (SSM) to select samples that largely
represent the datasets when constructing the test set. Compared with the ran-
dom selection, the distributions of test samples provided by the SSM are closer to
the distributions of each dataset. We provide the details about the SSM module
as follows.

Note a set of g sentences φ ∈ {φ1, φ2, · · · , φg} from an arbitrary dataset.
Firstly, we use the Finnish sentence transformer6 to embed sentences {φi}gi=1

into vectors {Φi}gi=1, where the ith vector is Φi ∈ R
1×ds . The principal compo-

nent analysis (PCA) [1] projects the high-dimension vector Φi ∈ R
1×ds into a

low-dimension vector Φ̂i ∈ R
1×dr for dimensionality reduction while retraining

the main patterns of the vectors. Secondly, we segment data points into different
clusters by applying the Kmeans++ algorithm on the dimension-reduced vec-
tors {Φ̂i}gi=1. For simplicity, we assume the vectors are in the same cluster, and
the center point of the cluster is referred to as Φ̂c

i ∈ R
1×dr . Note that the center

point might not be one of the vectors {Φ̂i}gi=1. The Euclidean distance between
the center point Φ̂c and the ith vector Φ̂i is denoted as follows:

d(Φ̂c, Φ̂i) =

√
√
√
√

n∑

j=1

(Φ̂c[j] − Φ̂i[j])2, (6)

where Φ̂c[j] is the ith element in the vector Φ̂c. We refer to the reciprocal of
the normalized distances as the data sampling probabilities so that the sampling
probability for the ith data point is denoted as:

p(i) =
invp(i)

∑g
j=1 invp(j)

, invp(i) =
1

d(Φ̂c, Φ̂i)
. (7)

We sample the data point from the cluster with the probabilities p as a part
of the test sample. After traversing all clusters, we obtain a collection of test
samples that can better represent the whole dataset.

4 Experiments

4.1 Dataset

We conduct experiments on these two real-world datasets, namely medical radi-
ology and medical surgery. We retrieve patient clinical records from the hospital’s
data lake to build the basic medical corpus. Following the clinicians’ suggestions,
6 https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase.

https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase
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we split the medical corpus into four text sets based on the medical specialties,
i.e., “RTG (radiology reports)”, “KIR (surgery text)”, “SAD (radiotherapy docu-
ments)”, “OPER (procedures notes)”. The detailed specialty information can be
found in the Kela - the Social Insurance Institution in Finland7. We combine the
RTG and SAD sets into the medical radiology dataset, and the KIR and OPER
sets into the medical surgery dataset. We only keep the main body of documents
as a medical corpus for each clinical document and split some documents into
sentences when constructing these two medical datasets. To better explore the
model performance variation on different datasets, we truncate and maintain
datasets at the same scale to eliminate the effect of data size.

Table 1. Numbers of weakly labeled entities based on four medical specialties. “B-X”
and “I-X” represents the beginning and inside of a clinical term. To ensure anonymity,
we represent values lower than 10 in the results as “<10”.

Medical Specialty Stru Meas Cond Devi Proc Medi O
B-X I-X B-X I-X B-X I-X B-X I-X B-X I-X I-X B-X

KIR 10002 23 3689 27 10705 189 1773 11 13756 101 2984 14 142002
SAD 6993 <10 2722 33 10602 273 913 <10 14292 108 3494 11 123220
RTG 8623 64 1957 <10 8204 138 1219 <10 6740 22 1674 <10 99083
OPER 12784 61 2663 <10 7913 74 2696 <10 8577 40 2457 <10 137150

We leverage the SSM module and HAM scheme for each medical specialty
to construct a human-annotated testing set and machine-annotated training set,
respectively. We select 1000 sentences from both datasets based on the dataset
sentence ratios, i.e., the number of sentences in each dataset over the number of
sentences in all datasets. The number of sentences in different human-annotated
datasets is 214 (KIR), 192 (RTG), 210 (SAD), and 192 (OPER). The rest of
the sentences are used to construct the machine-annotated datasets by applying
the HAM scheme mentioned in Sect. 3.1. Weakly labeled datasets generated by
the HAM and clinician-annotated data are divided into training, validation, and
test sets according to the predefined ratio, i.e., 7:2:1. For simplicity, we denote
predefined NER labels as “Anatomical Structure (Stru)”, “Body Function and
Measurement (Meas)”, “Medical Condition (Cond)”, “Medical Device (Devi)”,
“Medical Procedure (Proc)”, and “Medication (Medi)”. Table 1 shows the statis-
tical summary.

4.2 Baselines and Setup

We compare the three zero-shot baselines with different token classification layers
and two variants of our proposed method. Three baselines are ZS-BERT (i.e.,
a Zero-Shot BERT-based model), ZS-BERT-LSR (i.e., Zero-Shot BERT with
Label Smoothing Regularization), and ZS-BERT-CRF (i.e., Zero-Shot BERT
7 https://tinyurl.com/3ybbdyjr.

https://tinyurl.com/3ybbdyjr
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with Conditional Random Field). We equip two token classification layers, i.e.,
softmax-based linear layers (Linear) and conditional random fields (CRF). The
BERT model is pretrained over the collected corpus. All baselines are in the
zero-shot setting and summarized as follows:

– ZS-BERT: A BERT model encodes input documents, and the linear layer
decodes features into entity labels.

– ZS-BERTLSR: Overall architecture is the same as the ZS-BERT, except the
loss function is adjusted by the LSR.

– ZS-BERTCRF: A CRF rather than a linear layer follows a BERT model to
generate entity labels.

Accordingly, two variants of our proposed methods are HAM-Linear and HAM-
LSR. HAM-Linear replaces the CRF layer of the HAM-net with a linear layer
to generate token-level predictions; 2) HAM-LSR is the same as the HAM-
Linear except for the model optimization part. The HAM-LSR leverages the
label smoothing regularization (LSR) over the cross-entropy loss function.

We manually tune the hyper-parameter, select the best model evaluated on
the validation set and report the results on the clinician-annotated test set. We
use the base configuration of the BERT model to encode input sequences. The
batch size is 1. The maximum length of the input is 512. We set the drop rate
of all dropout layers as 0.03. The learning rate is 1e−5. We trained our neural
network with mixed precision, i.e., FP16, to accelerate the training speed. We
apply the early stopping strategy by monitoring the validation loss while the
patience round is 5. The optimal PCA dimension for four datasets is ten, and
the number of clusters is 2.

4.3 Main Results

To compare with baseline models, we report the model’s results on the precision,
recall, and F1 scores. Table 2 reports the performance of all models.

Table 2. Experimental results, i.e., precision (P), recall (R) & F1 scores in %, on the
medical surgery and medical radiology datasets.

Models Medical Surgery Dataset Medical Radiology Dataset
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

ZS-BERT 8.87 13.77 10.78 8.55 11.64 9.86
ZS-BERTLSR 8.87 13.74 10.78 8.56 11.65 9.87
ZS-BERTCRF 8.14 11.68 9.59 7.94 10.01 8.85
HAM-Linear 32.34 8.84 13.53 24.31 9.91 13.50
HAM-LSR 31.31 8.48 13.06 23.70 9.04 12.92
HAM 33.37 9.20 13.74 25.38 10.04 14.19
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Medical Surgery Dataset: Our model outperforms all baselines across evalu-
ation metrics. The HAM achieved better scores compared with the best linear-
decoding model, i.e., HAM-Linear. The HAM outperforms the HAM-LSR by
2.06, 0.72, and 0.68% points on precision, recall, and F1 scores.

Medical Radiology Dataset: Our model improves all evaluation scores on the
medical radiology dataset. Compared with the HAM-Liner, the HAM improves
the precision, recall, and F1 scores by 1.04, 0.13, and 0.69% points, respectively.
The HAM also outperforms the HAM-LSR with 1.68, 1.00, and 1.27% points on
all evaluation metrics.

4.4 The Effect of Sample Selection Module

We leverage Davies Bouldin scores [4] to find the optimal combination of the PCA
projection dimension and clustering number. Figure 3 shows the distributions of
Davies Bouldin scores with different PCA projection dimensions and clustering
numbers on four datasets. From the figure, we can observe that cluster num-
bers largely affect the Davies Bouldin scores while the lower values indicating
better clustering. Besides, we use different clustering algorithms, i.e., bisecting
k-means and ward agglomerative clustering algorithm, to plot distributions of
Davies Bouldin scores. The distributions show the same patterns as the k-means
algorithm.

Fig. 3. Davies Bouldin scores by different PCA projection dimensions and the number
of clusters.

To compare the random selection and SSM module, we exploit the Jensen-
Shannon divergence [15] to measure the distribution distances between the full
and selected datasets. Assume the distribution of the full dataset is P and the
selected dataset is Q so that the Jenson-Shannon divergence is shown as follows:

JSD(P ‖ Q) =
1
2
D(P ‖ M) +

1
2
D(Q ‖ M). (8)
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Table 3. Jensen-Shannon divergence between original label distributions and selected
labels’ distribution provided by different selection methods.

Method KIR RTG OPER SAD

Random 0.292 0.285 0.300 0.298
SSM 0.275 0.278 0.285 0.275

The SSM and random selection algorithms have been performed ten times and
averaged across all results. Table 3 shows that the SSM significantly outperforms
the random selection approach because the label distribution of the SSM is closer
to the entire dataset.

4.5 The Effect of Continual Pretraining

We conduct an ablation experiment to study the effectiveness of domain-specific
continual pretraining. Table 4 shows the results of the baselines and HAM with or
without the domain-specific continual pretraining. We can observe that continual
pretraining improves all scores on two medical NER datasets, validating that
continual pretraining is important for the domain-specific application in this
study.

Table 4. Comparison of the evaluation results of the model with or without the domain
continual pertaining (DCP) on two medical NER datasets.

Models DCP Medical Surgery Dataset Medical Radiology Dataset
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

ZS-BERT ✗ 6.04 6.50 6.26 6.43 6.30 6.36
✓ 8.87 13.77 10.78 8.55 11.64 9.86

ZS-BERTLSR ✗ 6.04 6.49 6.26 6.43 6.29 6.36
✓ 8.87 13.74 10.78 8.56 11.65 9.87

ZS-BERTCRF ✗ 7.56 9.84 8.55 8.29 9.72 8.95
✓ 8.14 11.68 9.59 7.94 10.01 8.85

HAM-Linear ✗ 33.50 4.46 7.82 20.83 4.95 7.98
✓ 32.34 8.84 13.53 24.31 9.91 13.50

HAM-LSR ✗ 24.95 3.24 5.69 23.06 5.96 9.30
✓ 31.31 8.48 13.06 23.70 9.04 12.92

HAM ✗ 34.00 4.43 7.80 21.79 5.16 8.32
✓ 33.37 9.20 13.74 25.38 10.04 14.19
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4.6 Discussion

One key limitation of this paper is that the experimental results of our model
are not superior in terms of those evaluation scores. This is mainly because the
training of our models uses weakly annotated labels. Automated annotated labels
with distant supervision methods naturally cannot achieve superior performance
over evaluation metrics in many cases. However, the proposed HAM method
paves the way for training NER models without human-annotated data. In our
experiments, we leverage the domain-specific continual pretraining to improve
the model performance further. Developed NER systems requiring limited or
zero supervision can be deployed to extremely low-resource scenarios, such as
resource-restrained language and medical NLP applications. The medical NER
task in extremely low-resource scenarios is very challenging. Future work can
combine the proposed HAM and semi-supervised methods to build more reliable
entity recognition systems. Our study used clinical notes in Finnish as a case
study. However, our proposed method can be replicated in other languages. Tak-
ing English as an example, we can use the English MeSH as the ontology and
the corresponding preprocessing techniques for English in our hybrid annotation
mechanism to generate weakly supervised labels.

5 Conclusion

This paper developed a novel framework, Hybrid Annotation Mechanism Net-
work (HAM-net), to extract entity-level medical information from the clinical
text in an extremely low-resource scenario. We design the Hybrid Annotation
Mechanism (HAM) to detect and classify entities in documents into predefined
labels by utilizing the distant supervision signals from the Finnish medical sub-
ject headings. The weakly labeled data produced by the HAM module is further
used to train a NER model based on contextualized representations and domain-
specific continual pretraining. Due to the scarcity of annotated evaluation data,
we developed the Sample Selection Module (SSM) to select the samples which
can better represent the original datasets than the random selection approach.
The proposed SSM method can effectively select more representative samples,
thus reducing the annotation cost. The experimental results show that our frame-
work can be adapted to train neural models and establish a strong baseline for
future studies when there are no explicit supervision signals provided by human
experts. And domain-specific continual pretraining can help to improve the per-
formance of NER models trained with weakly annotated data.
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Abstract. As machine learning (ML) systems are becoming pervasive
in high-stakes applications, the issue of ML fairness is receiving increas-
ing attention. A large variety of fair ML solutions have been developed
to ensure that bias and inaccuracies in the data and model do not lead to
decisions that treat individuals unfavorably on the basis of sensitive char-
acteristics. While most of the fair ML literature focus on classification
and regression setting, fairness of survival analysis for time-to-event out-
comes are under-explored. In contrast to existing fair survival analysis
solutions which typically incorporate fairness constraints in the learn-
ing mechanisms, we propose several pre-processing and post-processing
approaches. Due to the model-agnostic nature of pre-processing and
post-processing methods, they may offer more flexible fairness interven-
tion. Additionally, pre-processing and post-processing methods tend to
be more intuitive and explainable compared to in-processing methods.
We carry out experimental studies with medical and non-medical data
sets to evaluate the proposed fairness methods.

Keywords: Fair Survival Analysis · Pre-Processing · Post-Processing

1 Introduction

Nowadays, artificial intelligence (AI) and machine learning (ML) algorithms play
a significant role in decision-making processes. Automated systems are com-
monly used in various domains, including commercial and government applica-
tions, for tasks such as autonomous driving, application screening, crime predic-
tion, recommendations, and candidate ranking [25,26]. The growing use of AI
and ML raises concerns about ensuring unbiased and fair models as algorithms
are involved in making increasingly sensitive decisions across various domains
[24,34].

Survival analysis is a versatile statistical method for analyzing time-to-event
data, widely used in diverse fields such as healthcare, insurance, criminal justice,
customer retention, and employee turnover [12,18]. In the context of Covid-19,
survival analysis has become crucial for assessing patient outcomes, identifying
risk factors for severe illness or death, and studying the pandemic’s economic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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impact, such as time-to-default for affected firms [32]. However, it is essential
to ensure that these predictions are made in a fair and equitable manner. The
Covid-19 pandemic has highlighted the importance of fair distribution of lim-
ited medical resources, like hospital beds, ventilators, and vaccines, while biased
survival analysis models may lead to unfair resource allocations and unequal
access to care. Fairness is also vital in other fields, like insurance, where biased
models can result in discriminatory pricing based on factors like age, gender,
and medical history, disproportionately affecting marginalized individuals. In
criminal justice, survival analysis helps predict recidivism and determine sen-
tence lengths. Biased models could perpetuate existing inequalities and lead to
unequal treatment. Therefore, it is essential to investigate the fairness of survival
analysis models in these contexts to ensure that they do not perpetuate biases
and discrimination.

A growing literature in the emerging field of ethical machine learning have
proposed mechanisms to ensure that algorithmic decision systems do not lead
to unfair outcomes. An ever increasing array of fairness metrics have been pro-
posed in the literature to quantify fairness for classification problems. Fairness
metrics can be broadly classified into group-based fairness metrics and individ-
ual fairness metrics. Group-based fairness metrics are based on the notion of
protected or sensitive variables and on (un)privileged groups: groups that are
disproportionately (less) more likely to be positive classified. Statistical/demo-
graphic parity [9,20] is one of the most popular group-based fairness metric.
This metric defines fairness as an equal probability of being classified with the
positive label. As compared to group-based metrics, individual fairness metrics
do not focus on comparing two or more groups as defined by a sensitive variable,
but consider the outcome for each individual.

A major focus of machine learning fairness research is to develop techniques
to mitigate the unfairness in the data and models. Unfairness mitigation methods
can be classified into 1) pre-processing approaches which generally perform trans-
formations on the data with the aim to remove discrimination from the data;
2) in-processing approaches which often incorporating one or more fairness met-
rics or their proxies into the model objective functions; and 3) post-processing
approaches which apply transformations to model output to improve prediction
fairness. A detailed review of fairness metrics and mitigation methods can be
found in [5,13,24]. Compared to in-processing approaches, a key advantage of
pre- and post-processing approaches is that they do not modify the machine
learning models explicitly, and hence are more flexible.

Recently, algorithmic fairness in survival analysis has generated mild interests
in the literature [16,22,28,31]. A range of fairness metrics have been proposed
including fairness metrics based on hazard function [22], more general survival
function [28], and predictive performance based fairness metrics [31]. Previous
research on fair survival analysis has primarily focused on in-processing tech-
niques. For example, [22] proposed Fair Cox Proportional Hazards models to
promote equitable allocation of healthcare resources using a penalized maximum
likelihood estimation approach. Similarly, [28] uses pseudo value-based objective
functions and incorporate fairness metrics as constraints.
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While in-processing based fair survival analysis approaches have shown
promising results, pre-processing and post-processing approaches offer a more
flexible and efficient way to address fairness concerns in survival predictions,
thanks to their model-agnostic nature. A critical research question is whether
and to what extent existing pre-processing and post-processing methods, ini-
tially developed for binary classification or regression tasks, can be adapted and
applied to the context of survival analysis. By investigating this research ques-
tion, we aim to expand the arsenal of fairness techniques available for survival
analysis. This will provide practitioners and researchers with a wider range of
options to mitigate potential biases and promote fairness in survival predictions.

Our contributions are summarized below:

1. We adapt and extend several pre-processing and post-processing approaches
from classification and regression context to survival analysis, which are
model-agnostic, flexible, intuitive and explainable.

2. We conduct experimental studies with medical and non-medical data sets to
assess whether and to what extent the proposed methods improve fairness.

3. We assess the trade-offs among proposed methods in terms of group fairness,
individual fairness, and predictive performance.

The rest of the article is structure as follows: Sect. 2 introduces background and
related works on survival analysis and fairness metrics in survival analysis. The
proposed pre-processing and post-processing methods are presented in Sect. 3.
Experimental setting and six data sets are introduced in Sect. 4, and experimen-
tal results are presented and discussed in Sect. 5. Section 6 concludes the work
with a discussion of future research directions.

2 Background and Related Work

2.1 Survival Analysis

Survival analysis encompasses statistical techniques that model time-to-event
data while utilizing incomplete information from censored data [35]. Right cen-
soring or loss-to-follow-up, occurs when an individual’s survival time is not
directly observed but is known to exceed a certain value [15].

Time-to-event data can be represented as triplets {ti, ei, zi}N
i=1 where N is

the total number of observation units, ti is the observed event time for unit i
(i.e. ei is an event indicator, where ei = 1 if event occurred, and ei = 0 indicates
the observation is censored), and zi is a vector of observed covariates. Special
modeling techniques are required due to the presence of censoring as time-to-
event can not be observed when censoring occurs before the event of interest. A
key objective of survival analysis is to estimate the distribution of event times
conditional on covariates z defined by the survival probability S(t|z) = P (T >
t|z). For each z, S(t|z) is a non-increasing function of t with S(0|z) = 1 and
S(t|z) → 0 as t → ∞. The hazard function, h(t|z), defined as

h(t|z) := lim
δt→0

P (t ≤ T + δt|T ≥ t, z)
δt

,
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is another commonly used function which represents the instantaneous failure
rate.

The cox proportional hazards model is a classical semi-parametric method
for modeling time-to-event data [6]. The model assumes that the dependency
of hazard function on covariates is time-invariant and multiplicative. Paramet-
ric models, such as the accelerated failure time model [36], provide an alter-
native approach to proportional hazards model. These models assume that the
(logarithm of) survival times follow a theoretical distribution. Commonly used
distributions for parametric model include normal, exponential, and Weibull dis-
tributions.

Machine learning methods have gained popularity in modeling time-to-event
data due to their ability to capture non-linear relationships and make accurate
predictions. Neural network based methods [8,29] relax the assumptions of tradi-
tional regression based approaches whereby complex and nonlinear dependency
of hazard functions on covariates can be captured implicitly and the effect of
covariates can vary over time. More recently, there has been increasing interest
in modeling survival data using deep neural network approaches [21,23]. Desipte
their popularity, the lack of interpretability of deep neural network models and
the requirement of large sample size are major shortcomings.

Within the array of machine learning methods, the ensemble learning app-
roach, particularly the Random Survival Forest (RSF), has been employed for
modeling survival data. Random Survival Forest (RSF), proposed by [17], is a
non-parametric ensemble estimation method that extends the concept of Ran-
dom Forest [4] to survival data. The method uses an ensemble of survival trees,
each built using a bootstrap sample drawn from the training set, with the remain-
ing out-of-bag observations utilized for validation. For each bootstrap sample, a
full-size survival tree is grown using a specific splitting criterion without prun-
ing. At each internal node, a subset of candidate covariates is randomly selected
from all covariates to determine the optimal split that minimizes the risk or
maximizes the separation between nodes. The tree-growing process continues
until a stopping condition is met, such as reaching a minimum node size or a
maximum tree depth.

Given this backdrop, the focus of our work lies in the use of both semi-
parametric (CPH) and non-parametric (RSF) models in the context of survival
data analysis. By applying these models, we strive to provide a comprehen-
sive examination of our proposed fairness-aware processing techniques in diverse
modeling contexts.

2.2 Fairness Metrics in Survival Analysis

Compared to the wealth of literature on fairness in classification and regres-
sion, fairness in survival analysis is an under-explored field. Several fairness
metrics have been proposed for survival analysis recently [22,28,31]. These met-
rics extend the fairness metrics for classification and regression and address the
unique challenges of censoring in time-to-event data. Two fairness metrics, indi-
vidual fairness, and group fairness, for survival models are considered. Both
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fairness metrics were originally proposed by [22] which are only applicable for
hazard-based survival models. These metrics were later extended by [28] to both
hazard and non-hazard-based models. At any time t, individual fairness is defined
as,

FI(t) =
N∑

i=1

N∑

j=i+1

max(0,
∣∣∣Ŝ(t|zi) − Ŝ(t|zj)

∣∣∣ − αD(zi, zj)) (1)

where Ŝ(t|zi) is the predicted survival probability at time t for subject i and
D(zi, zj)) measures the distance (e.g., cosine or Euclidean distance) between
the covariates of subject i and j, and α is a scale factor which can be adjusted to
ensure that survival probability predictions and distance distances are similarly
scaled.

Let A be the set of values in the sensitive attribute, group fairness is defined
as

FG(t) = max
a∈A

∣∣∣Ea(Ŝ(t|Z)) − E(Ŝ(t|Z))
∣∣∣ (2)

where Ea is the expectation w.r.t. the covariates distribution pa for group a:

Ea(Ŝ(t|Z)) :=
∫

Ŝ(t|z)pa(z)dz,

and E is the expectation w.r.t. the population covariates distribution p:

E(Ŝ(t|Z)) :=
∫

Ŝ(t|z)p(z)dz.

That is, Ea(Ŝ(t|Z)) and E(Ŝ(t|Z)) measure the expected predicted survival prob-
ability for group a and the population, respectively. We note that both pa and p
can be estimated based on the sample and hence both Ea(Ŝ(t|Z)) and E(Ŝ(t|Z))
can be estimated. The group fairness definition measures the maximum deviation
between the average of group survival predictions and the average of population
survival predictions.

We note from (1) and (2) that both definitions of fairness are functions of
time t and 0 ≤ FI(t), FG(t) ≤ 1 for all t. One may summarize individual (group)
fairness using a single metric:

F
(p)
I :=

(
1
T

∫ T

0

|FI(t)|pdt

)1/p

=
(

1
T

∫ T

0

FI(t)pdt

)1/p

(3)

where T is the end time and

F
(∞)
I := max

t∈[0,T ]
{|FI(t)|} = max

t∈[0,T ]
{FI(t)}. (4)

F
(p)
G and F

(∞)
G are analogously defined.
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3 Methodology

We describe several pre-processing and post-processing mitigation methods
which aim to improve the group fairness metric in Eq. (2). We apply, adapt,
and extend pre-processing and post-processing mitigation methods developed
for classification and regression to the survival analysis context. The training
set is represented as D = {(ti, ei, zi)}N

i=1 where ti is the event time, ei is the
event type, and zi is a vector of attributes which consists of a vector of non-
sensitive attributes xi, and a vector of sensitive attributes ai. Thus, we also
write D = {(ti, ei,xi,ai)}N

i=1. While our focus is on the group fairness metric,
potential trade-offs between group fairness, individual fairness, and predictive
performance will be investigated in the experimental studies.

3.1 Pre-processing Methods

We consider four pre-processing mitigation methods, namely, disparate impact
remover, data augmentation with identical copies, correlation remover, and sam-
pling methods.

Disparate Impact Remover
The disparate impact remover [9] modifies the distributions of the ordinal non-
sensitive features in a way that preserves the original ranks. Recall that A is
the set of values of sensitive attributes, for each non-sensitive ordinal feature k
a “median” distribution FA,k is defined in terms of its quantile function:

F−1
A,k(u) := mediana∈AF−1

a,k(u),

where Fa,k is the distribution of the feature k restricted to sub-population with
sensitive attributes a. For each individual i and each non-sensitive ordinal feature
k, the algorithm applies the following transformation:

x̃i,k = F−1
A,k(Fai,k(xi,k)).

This algorithm is further extended to allow partial repair to balance the
trade-offs between classification accuracy and fairness of the resulting data.

Data Augmentation with Identical Copies
Motivated by disparate impact remover which ensures that the distributions of
features for all values of the sensitive attributes a ∈ A are similar (identical),
we consider a simple strategy to ensure that the training subsets for all values
of the sensitive attributes are identical. For each training instance (ti, ei,xi,ai),
|A| − 1 identical copies (ti, ei,xi,a) for a ∈ A,a �= ai are created. The resulting
training set is |A| times as large as the original one.

Sampling
A sampling based mitigation method for binary classification with a single binary
sensitive attribute was proposed by [19]. The method divides the data set into
four groups based on the sensitive attribute and class label: deprived community
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with positive class label, deprived community with negative class label, favored
community with positive class label, and favored community with negative class
label. The expected size of each group is computed under the assumption of
independence between class label and sensitive attribute. Each of the four groups
is then sampled separately until the expected group size is reached.

We extend the sampling approach to time-to-event data. We perform quantile
binning of the event times (0, t(1)], (t(1), t(2)], . . . , (t(m−1), t(m)] where m is the
number of bins and t(m) is the maximum event time in the data set. We then
partition the data set into groups based on event times (the bin the event time
belongs to), event types (censored or observed), and sensitive attributes. This
leads to a total of m×2×|A| number of groups. We compute the expected group
size under the assumption that the sensitive attribute is independent of event
types and event times

Pexp(ei = 1, ti ∈ (t(k), t(k+1)],ai = a) =
|{(ti, ei,xi,ai) ∈ D : ei = 1, ti ∈ (t(k), t(k+1)]}|

|D|

× |{(ti, ei,xi,ai) ∈ D : ai = a}|
|D| .

Each group is then sampled individually until its expected group size is reached.
We consider two alternative sampling approaches, over-sampling and under-

sampling. Suppose A = {a(1), . . . , a(J)} are the set of all possible values of the
sensitive attributes. For an arbitrary combination of event time bin (t(k), t(k+1)]
and event type e, we compute

n(j) := |{(ti, ei,xi,ai) : ti ∈ (t(k), t(k+1)], ei = e,ai = a(j)}|, j = 1, . . . , J.

The over-sampling approach involves randomly over sampling each minority
group until the group size reaches maxj n(j). The under-sampling approach ran-
domly sample each group (apart from the group with the smallest size) until the
grou size reaches minj n(j).

We illustrate the sampling methods using the NAFLD1 data set (Table 1).
We consider gender as a sensitive attribute with two levels (Male and Female).
The event times are divided into four bins which result in a total of 16 groups.
The expected group size for each group is calculated based on the independence
assumption. We note that under this approach the gender ratio is the same for
every combination of event time bin and event type. The number of observations
based on the under-sampling and over-sampling approaches are also provided in
the table.

Correlation Remover
One limitation of the three pre-processing methods introduced is that A must
be discrete and its size needs to be relatively small. In comparison, the correla-
tion remover method allows both continuous and discrete and multi-dimensional
sensitive attributes.

The method aims to project away the linear dependence between non-
sensitive and sensitive attributes while retaining as much details as possible from
the original data. Let xi ∈ R

q and ai ∈ R
p be the vectors of non-sensitive and

sensitive attributes for subject i, respectively. Let β ∈ R
p×q be the coefficient



Fairness-Aware Processing Techniques in Survival Analysis 467

Table 1. Sampling Methods on NAFLD1 [1] Dataset. This table shows the sampling
results for the NAFLD1 dataset, where gender is the sensitive attribute. The dataset is
split into eight groups based on the 25%, 50%, and 75% quantiles of the survival time
distribution and the event type (censored or observed). The table displays the number
of samples in each sub-group before and after applying resampling to reach the group
size.

Event Time
Bin

Event
Type

Gender
Identity

No.
Actual

Expected
Size

No.
Under-sample

No.
Over-sample

(0, 1145]

0
M 1055 972 1055 1135

F 1135 1217 1055 1135

1
M 170 142 151 170

F 151 178 151 170

(1145, 2318]

0
M 999 1032 999 1325

F 1325 1292 999 1325

1
M 98 84 91 98

F 91 105 91 98

(2318, 3330]

0
M 950 1041 950 1395

F 1395 1303 950 1395

1
M 78 75 78 89

F 89 93 78 89

(3330, 7142]

0
M 1054 1054 1054 1320

F 1320 1320 1054 1320

1
M 59 62 59 80

F 80 77 59 80

matrix to be estimated. The correlation remover method solves the following
optimization problem:

β̂ := argminβ

N∑

i=1

||xi − (ai − ā)T β||2,

where ā denotes the mean vector of sensitive attributes, and || · || is the L2 norm.
The residual vectors ε̂i ∈ R

q are then obtained from

ε̂i = xi − (ai − ā)T β̂.

Intuitively, (ai − ā)T β̂ captures the part of xi that can be linearly explained
by the sensitive attributes ai whereas ε̂i captures the part of xi that cannot
be linearly explained by the sensitive attributes. The transformed non-sensitive
features are given by

x̃i = αε̂i + (1 − α)xi,

where α ∈ [0, 1] is a tuning parameter.
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3.2 Post-processing Methods

Post-processing by Controlling for Sensitive Attributes
This method was introduced by [27] in a linear regression setting and later
extended to general regression and applied to insurance pricing by [38]. This
method first fits a model with both sensitive and non-sensitive attributes as pre-
dictors. The fitted model is then averaged across the values of sensitive attributes
in the population.

This approach can be naturally extended to survival analysis. Let Ŝ(·|x,a)
denote the estimated survival model. The post-processed model S̃(·|x,a) is given
by

S̃(t|x,a) =
1
N

N∑

i=1

Ŝ(t|x,ai).

Thus, the sensitive attributes are used in the model training, and are averaged
out in the prediction phase. This approach directly ensures that for any time t
and non-sensitive attributes x, the prediction is same for all values of sensitive
attributes a, S̃(t|x,a) = S̃(t|x,a′) for all a,a′ ∈ A.

4 Experiments

We evaluate the pre-processing and post-processing methods presented in Sect. 3
using several medical and non-medical data sets. The experimental section is
organized as follows: we first introduce the data sets and their characteristics
(refer to Table 2). Subsequently, we describe the baseline and experimental imple-
mentations of the processing techniques discussed in the methodology section.
Finally, we present the evaluation protocols for our experiment. Some related
materials are available at https://github.com/noorazhaoz/EquiSurv.

4.1 Dataset

We use six datasets in our study: (1) FLChain [7], a stratified random sample
exploring the link between serum FLC and mortality, with 7874 individuals;

Table 2. Overview of the Datasets

Dataset Size
%.

Censored
No.

Variables
incl. No.
Numerical

Gender Ratio
M:F

Response
Variable

FLChain 7874 72.45% 9 4 1:1.23 mortality

Whas 481 48.23% 9 3 1:1.48 mortality

Nafld1 17549 92.22% 5 4 1:1.14 mortality

Tumor 776 51.67% 7 2 1:1.46 mortality

Employee Turnover 1129 49.42% 13 6 1:3.09 resignation

Customer Subscription 63815 20.34% 9 3 1:0.74 un-subscription

https://github.com/noorazhaoz/EquiSurv
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(2) WHAS [14], the Worcester Heart Attack Study Dataset with 481 patients;
(3) Tumor [3], a dataset with information on 776 patients treated for cancer
in the stomach region; (4) Nafld1 [1], a dataset from a population study on
non-alcoholic fatty liver disease, containing 17,549 individuals; (5) Employee
Turnover [37], a dataset with 1129 samples predicting the probability of employ-
ees leaving their job; (6) Customer Subscription [10], a dataset from Kaggle
with a randomly selected subset of 63,815 samples (20% of the original dataset,
330,512 cases in total) to reduce the computational complexity while maintaining
the dataset’s diversity. For all six data sets, we consider gender as the sensitive
attribute with two levels (Female and Male).

The summary statistics of the data sets, including the sample size, percentage
of censored cases, number of covariates, number of numerical covariates, gender
ratio and response variables are presented in Table 2. We note from Table 2 that
the chosen data sets have sample size ranging from 481 to 63815, percentage of
censored cases ranging from 20.34% to 92.22%, and male-to-female ratio from
1:0.74 to 1:3.09. The response variables differ across data sets while mortality
for medical data sets represents the occurrence of death, resignation for the
employee dataset indicates termination of employment; and un-subscription for
the customer subscription dataset refers to customers discontinuing their ser-
vice or product subscription. This information offers a comprehensive overview
of each dataset’s characteristics, providing context for our fairness analysis in
survival models.

4.2 Implementation and Baseline

Evaluation of the seven proposed pre-processing and post-processing methods
are performed by using 80% of each data set as training sets and reserving the
remaining 20% as test sets. Random survival forest and CPH model with an
elastic net penalty [30] is used as the prediction model for all seven methods.

Consequently, the experimental results offer valuable insights into the perfor-
mance of our fairness-aware techniques across both ensemble learning method-
ologies, such as the Random Survival Forest, and traditional statistical models
like CPH. The Random Survival Forest (RSF) and Cox Proportional Hazards
(CPH) models, devoid of any pre-processing or post-processing methods, are
adopted as the baselines for our analysis. We have fine-tuned the hyperparame-
ters to ascertain optimal performance from this baseline approach.

4.3 Evaluation Protocols

We evaluate the model performance and fairness of the seven proposed methods
along with the baseline. We aim to assess: 1) whether and to what extent the
proposed methods improve group fairness and 2) the trade-offs between group
fairness, individual fairness and model performance.

Performance Evaluation. The following performance evaluation metrics are
used: concordance index (C-Index) [2], Brier score [11], and area under the curve
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(AUC) [33]. These performance metrics are designed to assess the accuracy of
survival predictions.

Fairness Evaluation. Both group and individual fairness are measured to
assess the success of the proposed methods in enforcing the fairness of survival
predictions. For each of the methods, we measure how group and individual
fairness vary over time using the fairness definitions in (2) and (1). For the com-
putation of individual fairness, we adhere to the methodology outlined by [28],
employing cosine as the distance metric and setting the scale parameter α to
0.01. Average group and individual fairness, F

(1)
G and F

(1)
I , over time are also

computed.

5 Results and Discussion

Table 3 displays the performance and fairness measures of the pre- and post-
processing methods along with the baseline on the six data sets described in
Sect. 4.1. Average group and individual fairness are reported in the table. Supe-
rior performance is indicated by higher values of AUC and C-index, and lower
values of Brier Score. Improved fairness is represented by lower values of Group
Fairness and Individual Fairness. The optimal results for each metric are empha-
sized in boldface, while group fairness measures inferior to the baseline model
are underlined.

We observe from Table 3 that the measured (averaged) individual fairness
for all eight methods are similar in both survival models - Random Survival
Forest (RSF) and Cox Proportional Hazards (CPH). This is expected since
the pro-processing and post-processing methods are designed to improve group
fairness. We also observe that the over-sampling, under-sampling, and post-
processing methods consistently outperform the baseline method in terms of
(averaged) group fairness, with the exception of the under-sampling technique
for the Employee data set. Since the Employee data set exhibits a highly skewed
gender ratio, the under-sampling strategy massively reduces its sample size and
hence leads to worse performance. On the other hand, disparate impact remover
does not lead to any improvement in group fairness for most data sets. This is
likely due to the fact that the majority of the features of the chosen data sets
are categorical.

5.1 Temporal Variation of Fairness

To investigate the temporal variations in fairness metrics, evenly spaced time
points are selected to compute the prevailing group fairness and individual
fairness values. These values, derived from the Random Survival Forest (RSF)
model, along with their respective time points, are subsequently utilized to gen-
erate graphical representations, illustrating the progression of group and individ-
ual fairness over time. For FLChain and Employee data sets, We observe from
Fig. 1(a) and 1(b) that disparate impact remover consistently under-performs rel-
ative to other methods in terms of group fairness whereas it consistently achieves



Fairness-Aware Processing Techniques in Survival Analysis 471

Table 3. Performance and Fairness Metrics of Various Techniques

RSF CPH

Dataset
Techniques

Metrics Performance Fairness Performance Fairness

AUC Brier Score C-index Group Individual AUC Brier Score C-index Group Individual

FLChain

W/O 0.8216 0.1052 0.7939 0.0061 0.1077 0.8181 0.0967 0.7980 0.0052 0.0996

DI Remover 0.8159 0.0960 0.7949 0.0115 0.0846 0.8096 0.0960 0.7907 0.0118 0.0728

Correlation Remover 0.8180 0.1019 0.7937 0.0047 0.1018 0.8169 0.0960 0.7968 0.0019 0.0969

Data Augmentation 0.8175 0.1078 0.7880 0.0058 0.1113 0.8141 0.0977 0.7938 0.0145 0.0991

Sampling - Expected size 0.8211 0.1057 0.7938 0.0059 0.1080 0.8181 0.0967 0.7981 0.0052 0.0996

Sampling - Oversampling 0.8219 0.1060 0.7938 0.0065 0.1095 0.8179 0.0964 0.7979 0.0037 0.1011

Sampling - Undersampling 0.8170 0.1054 0.7915 0.0004 0.1055 0.8140 0.0967 0.7940 0.0105 0.0946

Post-Processing 0.8192 0.1061 0.7939 0.0051 0.1071 0.8136 0.0979 0.7934 0.0151 0.0999

Whas

W/O 0.8617 0.1797 0.7703 0.0479 0.1120 0.8634 0.1653 0.7857 0.0228 0.1382

DI Remover 0.8605 0.1787 0.7734 0.0541 0.1122 0.8642 0.1638 0.7897 0.0471 0.1398

Correlation Remover 0.8599 0.1780 0.7746 0.0562 0.1137 0.8670 0.1640 0.7885 0.0458 0.1409

Data Augmentation 0.8591 0.1779 0.7651 0.0414 0.1267 0.8605 0.1653 0.7848 0.0116 0.1385

Sampling - Expected size 0.8620 0.1794 0.7685 0.0470 0.1117 0.8636 0.1657 0.7851 0.0221 0.1378

Sampling - Oversampling 0.8617 0.1849 0.7663 0.0346 0.1123 0.8524 0.1726 0.7888 0.0058 0.1388

Sampling - Undersampling 0.8624 0.1853 0.7694 0.0176 0.0953 0.8192 0.1786 0.7352 0.0419 0.1439

Post-Processing 0.8644 0.1783 0.7703 0.0360 0.1102 0.8592 0.1657 0.7820 0.0104 0.1375

Tumor

W/O 0.6898 0.1889 0.6411 0.0103 0.0576 0.6950 0.1838 0.6351 0.0142 0.0863

DI Remover 0.7068 0.1858 0.6429 0.0105 0.0586 0.6853 0.1857 0.6201 0.0104 0.0795

Correlation Remover 0.6901 0.1897 0.6459 0.0060 0.0600 0.6873 0.1856 0.6268 0.0060 0.0863

Data Augmentation 0.6812 0.1923 0.6274 0.0016 0.0640 0.6897 0.1848 0.6273 0.0016 0.0850

Sampling - Expected size 0.6804 0.1920 0.6389 0.0098 0.0578 0.6797 0.1925 0.6329 0.0225 0.0888

Sampling - Oversampling 0.6890 0.1776 0.6365 0.0092 0.0616 0.6933 0.1823 0.6399 0.0216 0.0938

Sampling - Undersampling 0.6613 0.2272 0.6208 0.0020 0.0543 0.6577 0.2265 0.6113 0.0030 0.0836

Post-Processing 0.6884 0.1879 0.6411 0.0004 0.0580 0.6872 0.1851 0.6270 0.0023 0.0857

Nafld1

W/O 0.8091 0.0703 0.7906 0.0216 0.0711 0.8064 0.0496 0.7926 0.0149 0.0380

DI Remover 0.7990 0.0718 0.7784 0.0042 0.0648 0.8054 0.0498 0.7915 0.0093 0.0327

Correlation Remover 0.7867 0.0747 0.7666 0.0130 0.0753 0.8049 0.0499 0.7910 0.0079 0.0401

Data Augmentation 0.7902 0.0725 0.7712 0.0047 0.0717 0.8020 0.0496 0.7879 0.0065 0.0376

Sampling - Expected size 0.7902 0.0736 0.7679 0.0045 0.0708 0.8050 0.0497 0.7911 0.0089 0.0381

Sampling - Oversampling 0.7927 0.0699 0.7706 0.0015 0.0719 0.8052 0.0491 0.7911 0.0093 0.0366

Sampling - Undersampling 0.7836 0.0545 0.7775 0.0095 0.0548 0.8018 0.0522 0.7882 0.0004 0.0453

Post-Processing 0.7805 0.0502 0.7710 0.0031 0.0416 0.8004 0.0504 0.7865 0.0019 0.0377

Employee Turnover

W/O 0.7414 0.1388 0.6590 0.0143 0.0349 0.7105 0.1350 0.6420 0.0342 0.0610

DI Remover 0.7291 0.1398 0.6426 0.0167 0.0353 0.7081 0.1352 0.6389 0.0413 0.0606

Correlation Remover 0.7323 0.1397 0.6459 0.0140 0.0346 0.7058 0.1348 0.6380 0.0507 0.0622

Data Augmentation 0.7400 0.1377 0.6712 0.0069 0.0436 0.7126 0.1350 0.6439 0.0288 0.0611

Sampling - Expected size 0.7386 0.1397 0.6636 0.0146 0.0342 0.7048 0.1370 0.6374 0.0385 0.0604

Sampling - Oversampling 0.7202 0.1388 0.6380 0.0058 0.0399 0.7052 0.1349 0.6307 0.0203 0.0663

Sampling - Undersampling 0.6232 0.1591 0.5609 0.0203 0.0271 0.6347 0.1630 0.5741 0.0567 0.0744

Post-Processing 0.7423 0.1390 0.6602 0.0088 0.0346 0.7127 0.1351 0.6441 0.0270 0.0607

Customer Subsription

W/O 0.7268 0.1722 0.6543 0.0126 0.0836 0.7278 0.1740 0.6618 0.0094 0.0667

DI Remover 0.7265 0.1721 0.6546 0.0127 0.0838 0.7278 0.1740 0.6618 0.0094 0.0667

Correlation Remover 0.7270 0.1719 0.6552 0.0107 0.0830 0.7278 0.1740 0.6618 0.0096 0.0668

Data Augmentation 0.7277 0.1714 0.6564 0.0096 0.0824 0.7275 0.1741 0.6617 0.0082 0.0666

Sampling - Expected size 0.7268 0.1722 0.6542 0.0127 0.0836 0.7278 0.1740 0.6618 0.0093 0.0667

Sampling - Oversampling 0.7266 0.1720 0.6553 0.0122 0.0837 0.7294 0.1559 0.6617 0.0060 0.1094

Sampling - Undersampling 0.7246 0.1556 0.6586 0.0012 0.1024 0.7305 0.1542 0.6621 0.0173 0.0783

Post-Processing 0.7286 0.1833 0.6543 0.0104 0.0892 0.7228 0.1319 0.6617 0.0072 0.0571

better individual fairness. We observe similar pattern in Fig. 1(c) and Fig. 1(d).
This is consistent with the finding in the binary classification fairness litera-
ture that group and individual fairness tends to be inversely related. However,
under-sampling method outperforms all other methods in terms of both group
and individual fairness (Fig. 1(e) and Fig. 1(f)).

5.2 Trade-Offs

We showcase the trade-offs among group fairness, individual fairness, and pre-
diction performance by presenting a graph (Fig. 2) that illustrates the variations
in each metric upon applying diverse processing techniques to a total of six
datasets, compared to the baseline scores.
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(a) FLChain - Group Fairness (b) FLChain - Individual Fairness

(c) Employee - Group Fairness (d) Employee - Individual Fairness

(e) Whas - Group Fairness (f) Whas - Individual Fairness

(g) Tumor - Group Fairness (h) Tumor - Individual Fairness

Fig. 1. Temporal Variation of Group Fairness and Individual Fairness on FLChain,
Employee, Whas, and Tumor Data sets. y-axis: the values of fairness. x-axis:
Time.
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Fig. 2. Comparative Analysis of Group Fairness, Individual Fairness, and Prediction
Performance Across Datasets Using Various Processing Techniques. y-axis: Evalua-
tion Metrics. x-axis: Data sets

The graph indicates that our processing techniques do not adversely impact
the performance metrics and individual fairness in both survival models; in fact,
some of them exceed the baseline scores. Consequently, our processing tech-
niques entail trade-offs between group fairness and model performance, as well
as between group fairness and individual fairness.

We strongly recommend selecting the processing technique based on the spe-
cific attributes of each dataset, such as size, distribution, and data imbalance.

6 Conclusion and Future Works

In this research, we proposed and validated several pre-processing and post-
processing methods to improve the fairness in survival analysis, considering both
semi- and non-parametric models. We have experimentally demonstrated that
the proposed methods generally lead to improvement in group fairness while
achieving similar level of predictive performance and individual fairness as the
baseline method. Compared to the commonly employed in-processing approach
in fair survival analysis literature, our model-agnostic methods offer more flexi-
bility. One potential future research direction is to develop fair survival analysis
approaches with time varying covariates. Another interesting research topic is
to develop fairness metrics and mitigation methods for survival analysis in the
presence of competing risk events.

Ethical Statement. This research aims to explore the discrimination mitigation pro-

cessing techniques (both pre-processing and post-processing) in time-to-event analysis.
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The following ethical considerations have been addressed in the research design and

procedures:

1. Voluntary participation: This study does not involve primary data collection.

2. Confidentiality: All data used in this study are publicly available and are properly

cited.

3. Potential for harm: There is minimal risk or potential harm associated with this

study.

4. Gender consideration: This study investigates potential biases and unfairness associ-

ated with using gender as a feature in survival analysis and proposes several approaches

to address the unfairness.

5. Results communication: The study’s results will serve academic purposes exclu-

sively and will be reported in academic journals or conferences. The results will be

presented accurately and without bias, acknowledging any limitations or ethical dilem-

mas encountered throughout the study.
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Abstract. The process of identifying and characterizing B-cell epitopes,
which are the portions of antigens recognized by antibodies, is important
for our understanding of the immune system, and for many applications
including vaccine development, therapeutics, and diagnostics. Computa-
tional epitope prediction is challenging yet rewarding as it significantly
reduces the time and cost of laboratory work. Most of the existing tools
do not have satisfactory performance and only discriminate epitopes from
non-epitopes. This paper presents a new deep learning-based multi-task
framework for linear B-cell epitope prediction as well as antibody type-
specific epitope classification. Specifically, a sequenced-based neural net-
work model using recurrent layers and Transformer blocks is developed.
We propose an amino acid encoding method based on eigen decomposi-
tion to help the model learn the representations of epitopes. We intro-
duce modifications to standard cross-entropy loss functions by extending
a logit adjustment technique to cope with the class imbalance. Experi-
mental results on data curated from the largest public epitope database
demonstrate the validity of the proposed methods and the superior per-
formance compared to competing ones.

Keywords: Amino acid sequence · Transformer · Class imbalance ·
Multi-task learning

1 Introduction

In our adaptive immune system, B cells play a critical role by producing anti-
bodies that detect, neutralize and help eliminate the pathogens, such as viruses.
Antibodies can recognize and bind to antigens, which are usually proteins, on the
pathogens. These bound regions are called epitopes and they can be divided into
linear and conformational epitopes. Although the majority of the B-cell epitopes
are conformational, much attention is concentrated on the identification of linear
epitopes, which consist of a contiguous sequence of amino acids (residues). The
reason is that linear epitopes can be used to design peptide-based vaccines and
replace infectious antigens in antibody production and diagnostic assay devel-
opment [41]. Since experimental epitope mapping is time-consuming, costly, and
laborious, computational prediction methods are desirable to reduce the number
of potential epitope candidates for experimental validation [45].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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With the ever-increasing data of verified epitopes, machine learning-based
approaches are developed to distinguish epitopes from non-epitopes given the
peptides (short chain of amino acids). Methods using classical machine learn-
ing require manual feature engineering on the primary sequence of peptides.
Their mediocre performances indicate the challenge of B-cell epitope predic-
tion [11]. Recently, several methods use embeddings derived from language mod-
els trained on large datasets of protein sequences to improve accuracy [3,6,7].
However, working with these huge models and neural embeddings is computa-
tionally expensive, especially for researchers with limited resources.

Antibodies can be classified into different types of immunoglobulins (Ig), each
with different functions. Also, studies have shown that particular antigens induce
specific types of antibodies [42]. For instance, IgA is vital against viral infections,
IgE is involved in allergy, and IgM is linked to inflammation and autoimmunity.
It is relevant to characterize epitopes potentially inducing specific classes of
antibodies for applications like developing processing methods that mitigate food
allergenicity. Only a few methods have been developed for Ig type-specific epitope
classification, using classical machine learning [17,22].

In this work, we propose a new deep learning-based unified framework for
the tasks of (non-)epitope prediction and Ig type-specific epitope classification.
Unlike most existing tools that first compute sequence-level features for each pep-
tide and then train a classifier, our end-to-end framework accepts variable-length
sequences as input, encodes features at the residue level, and learns representa-
tions of peptides for classification. To our knowledge, no previous research has
developed and trained Transformer-based networks for epitope prediction. We
also incorporate cost-sensitive learning into our framework and design objective
functions that handle the data imbalance, which is often overlooked in prior
works. Experiments on data comprising over 120000 peptides obtained from the
Immune Epitope Database (IEDB) [51] show results exceeding state-of-the-art
baselines in terms of prediction performance. Our framework achieves high pre-
dictive capacity with an area under the curve (AUC) of 86% and outperforms the
best baseline by 6% in accuracy. Ablation studies demonstrate the usefulness of
different components in the framework. More specifically, the main contributions
of our work are summarized below.

– We propose a simple encoding method for amino acids, leveraging the eigen
decomposition of an amino-acid scoring matrix.

– We extend a logit adjustment technique and design a general loss function to
address the class imbalance in binary and multiclass classifications.

– A neural network based on Transformer is developed for peptide classification,
without relying on large language models.

– B-cell epitope data are collected and processed to create new redundancy-
reduced datasets for benchmarking, concerning possible false negatives.
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2 Related Work

2.1 B-Cell Epitope Prediction

Most of the machine learning-based methods designed to predict and classify B-
cell epitopes are for linear epitopes rather than conformational epitopes, because
of the more readily available data on protein primary sequence and by contrast
the scarcity of data on protein three-dimensional structure. These methods vary
from support vector machines (SVM) [3,17,46], tree-based methods [21,22,34],
to neural networks [6,7,30,53]. No matter what kind of approaches they use,
the key point is how to extract appropriate features from the epitope sequences
as input for machine learning. The features used include the amino acid com-
position of the peptide [3,17,22,30,34,46] and propensity scales that depict the
physicochemical properties of residues, including hydrophilicity, flexibility, sur-
face accessibility, etc. [21,34]. Some models have the limitation that they only
process fixed-length sequences [17,30,46]. Besides, some do not address the sim-
ilarity between sequences before splitting training and test sets [17,22,30].

Given the analogy between amino acid sequences and human languages, nat-
ural language processing (NLP) techniques are applied in many biological prop-
erty prediction tasks [33,37,48,49]. With sufficient data, deep neural networks
can automatically learn meaningful features, thus reducing the need for hand-
crafted features [25]. Recurrent neural networks (RNN), with long short-term
memory (LSTM) [19] as a representative, are dominant in NLP because their
chain-like structures allow them to process over sequences without pre-specified
constraints on the sequence lengths. In recent years, Transformer models have
become the state of the art by using attention and eliminating the need for
recurrent layers, thus overcoming the sequential bottleneck of RNNs [50]. There
is great interest in learning protein representation using language modeling, of
which the paradigm is pre-training a large model in a self-supervised way on
a large corpus of text, and then fine-tuning it in a supervised way for specific
tasks [9]. Following the successful applications in protein property prediction,
some studies use embeddings from protein language models as features to train
classifiers for epitope prediction [3,6,7], which require a large demand of com-
puting resources and time. Moreover, pre-trained models for proteins may not be
an optimal solution for peptides, which are typically much shorter than proteins.

2.2 Imbalanced Learning

In data mining, the imbalance problem occurs when the distribution of classes
(labels) is not uniform. This poses a challenge for the prediction on minority
classes and makes learning biased toward majority classes, especially when the
distribution is highly skewed. Fundamental approaches to coping with imbalance
can be broadly divided into re-sampling and re-weighting. Re-sampling modifies
the datasets, for example by under-sampling or over-sampling [23]. It is also used
by existing epitope prediction methods [17,30]. The drawbacks of re-sampling
are that under-sampling incurs information loss in the majority classes, while
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over-sampling increases the training workload and can lead to overfitting for the
minority classes. Alternatively, re-weighting modifies the model, for example by
changing the loss function. The core idea is to adjust the weights of different
samples in the loss, such as the misclassified ones and the under-represented
ones [8,29]. A recent paper proposed a strategy that modifies the inside of the
logarithm in the standard cross-entropy loss and presented a statistical ground-
ing for the strategy [35].

3 Methods

3.1 Task Definition and Solution Overview

Given a linear peptide, which can be represented as a linear sequence of amino
acids, our task contains two subtasks. The major one is to predict whether the
peptide is an epitope or non-epitope and the minor one is to classify an epitope
according to the specific class of Ig it potentially binds to. In addition, a score
between 0 and 1 inclusive is given to indicate the probability of the peptide
being an epitope. This allows users to choose different thresholds for determining
epitopes, which is a common practice in epitope prediction.

The problem is framed as a binary classification for (non-)epitope prediction
and a multiclass classification for Ig-specific epitope prediction. We preprocess
B-cell epitope data from the IEDB for model training and evaluation. A rough
overview of the proposed framework is shown in Fig. 1. Raw peptide sequences
are firstly tokenized at the residue level and then converted to numeric vectors by
the encoder as input for the neural network. These numeric representations are
passed through a bidirectional LSTM (BiLSTM) layer followed by two Trans-
former encoder blocks. Aggregated via an attention mechanism, the representa-
tions are classified using fully connected feedforward neural networks (FFNN).
The whole model is jointly trained in a supervised manner for both epitope and
Ig binding predictions, being aware of class imbalance.
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Fig. 1. A general illustration of our framework. The input peptide has been tokenized.
The network is trained by optimizing logit-adjusted losses.
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3.2 Tokenization and Encoding

Like sentences in natural languages, a peptide can be represented as a sequence
of characters, each representing a residue. Since machine learning models can
only work directly with numbers, the raw sequences have to be transformed
into numerical form before being fed to models. We follow the standard way
in NLP to tokenize peptide sequences and convert tokens into integers indices.
A vocabulary of size 20 is used, which contains tokens corresponding to the 20
kinds of standard amino acids. In addition, a [unk] token and a [pad] token are
added to the vocabulary. A peptide is tokenized, i.e., split into residues, with
uncertain amino acids in the raw sequence being replaced by [unk] token. For a
batch of peptides of varying lengths, [pad] token is added at the end of shorter
sequences to ensure they have the same length as the longest sequence in the
batch so that models can process the input in batches.

Many protein prediction methods use one-hot encoding to encode the residues.
The problem with this binary representation is that it does not reflect the biologi-
cal similarities between different amino acids. We propose an alternative encoding
method that exploits similarity scoring matrices based on observed alignments of
proteins. Generally, an amino-acid scoring matrix is a symmetric matrix of size
20 × 20, the entries of which are in the form of log qij

pipj
, where qij is the substitu-

tion frequency of two amino acids in a homologous sequence, and pi and pj are the
background frequencies [39]. The ratio provides a measure of the probability of two
amino acids appearing in an alignment with a biological sense relative to appear-
ing by chance, and therefore it captures the biological similarities between amino
acids. We choose the widely used BLOSUM62 matrix and take the exponential of
it, denoted by B. Note that B is positive definite and eigen decomposition factor-
izes B into the product of UΣU�, where U is orthonormal and Σ is a diagonal
matrix of eigenvalues (all positive). We propose the following encoding matrix E
in which each row represents an amino acid:

E = U
√

Σ. (1)

With this representation, the dot product of amino acid vectors corresponds to
their biological similarity. We find this idea analogous to some works in NLP, in
which word embedding methods maximize the dot product of similar words and
implicitly factorize pointwise mutual information matrices [27,36]. An advan-
tage is that we can perform truncated decomposition by selecting only the top
eigenvalues to get a lower-dimensional representation. We leverage the whole Σ
since the dimension is not high. An additional dimension is added for the [unk]
token, which is represented by a one-hot vector orthogonal to other amino acid
tokens. The [pad] token is represented by a zero vector. Consequently, a peptide
of length l is encoded as a matrix with size l×21. With this encoding, we intend
to inject some biological heuristics to help the downstream learning.

3.3 Neural Networks

In this section, we depict the architecture of the neural network model, following
a forward propagation through the model. The BiLSTM [16] layer combines
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two LSTM layers, one which processes the sequence in the forward direction,
and one which processes the sequence in the backward direction. An LSTM
layer can be regarded as multiple copies of the same LSTM cell, each passing
information encoded in the hidden state from one step to the next. This chain-
like structure is naturally applicable to sequential data. In particular, LSTM
augments the hidden state with a memory cell state and gates that control this
state. This leads to additive rather than multiplicative updates to the hidden
states to alleviate the vanishing gradient problem in ordinary RNNs [19]. For
each residue, the hidden state vectors computed by the forward and backward
layers are concatenated as the output of BiLSTM, hence taking into account the
contextual information in the sequence. In our implementation, the [pad] tokens
are not involved in computation and do not affect the output of other tokens.

Next, a Transformer encoder [50] takes the output of BiLSTM as input.
Since the output of BiLSTM already encodes the ordering information in the
sequence, positional encoding in the original Transformer model is not needed.
A Transformer encoder is a stack of multiple Transformer blocks, each of which
is made up of multi-headed self-attention and FFNN. Self-attention [5] enables
the model to attend other relevant residues in the sequence when processing
each residue, which may lead to improved representations of context. Multi-
headed attention expands the model’s capacity to capture different relationships.
The outputs of the self-attention layer are fed to a position-wise FFNN layer,
such that the same FFNN is separately applied to each residue. For both self-
attention layer and FFNN layer, residual connection [18] is used, followed by
layer normalization [2]. The trainable parameters of each Transformer block are
initialized according to Xavier uniform distribution [12]. Let d denote the size of
an output vector of a residue. The output of the Transformer encoder has the
same size of l × d as the input for a sequence of length l.

Attention mechanisms are often used in NLP to provide more flexibility in
the context representation at the sentence or document level [54]. To acquire a
sequence-level representation vector for the whole peptide based on the output
of the previous module, we introduce an attention layer as a pooling layer to
aggregate the information encoded in the residue vectors. Let vector ri ∈ R

d

denotes the ith residue in a peptide of length l, the peptide vector p is computed
as a weighted sum of the residue vectors as follows:

αi =
exp(q�ri/

√
d)

∑l
j=1 exp(q�rj/

√
d)

, (2)

p =
l∑

i=1

αiri. (3)

That is, we use scaled dot-product attention [50] and compute the attention
weights using the softmax function. The query vector q is initialized such that
its elements follow the standard normal distribution, scaled to avoid large vari-
ance in the products, and is jointly learned during the training. We implement
the attention layer using masks to ignore padded positions in the sequence. The
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peptide vector p is used as features for epitope classification in the subsequent
classifier. The classifier contains two heads of two-layer FFNNs for (non-)epitope
and Ig-specific classification, respectively. Rectified linear unit (ReLU) activa-
tion [13] is used in the FFNNs.

3.4 Loss Functions

Our data may exhibit an imbalanced label distribution. It is desirable to learn
a model that minimizes the balanced error, which averages each of the per-class
errors, instead of the naïve misclassification error. We modify the standard cross-
entropy losses, based on a logit adjustment technique [35] and focal loss [29]. Both
are originally proposed to address the imbalance problem in visual recognition.

One of the logit adjustment techniques is adding offsets to the logits in the
loss function during training. We illustrate the intuition behind the logit-adjusted
loss here. Suppose the unnormalized output (logits) of the model for all classes
are z = [z0, z1, ..., zC−1]�, where C is the number of classes. Given a sample with
instance x and class label y following distribution P, the loss E(x,y)∼P[�(z, y)]
is minimized during training. The standard softmax cross-entropy for a sample
(x, y) is defined as �(z, y) = − log(S(zy)) = − log(exp(zy)/

∑C−1
i=0 exp(zi)), where

S denotes the softmax function. One may view S(zy) ∝ exp(zy) as an estimate
of P(y|x), where P(y|x) ∝ P(x|y)P(y) (Bayes’ Theorem). However, to reduce
the balanced error, balanced class-probability Pbal(y|x) ∝ P(x|y) · 1

C instead
of the standard P(y|x) should be used in Bayes-optimal prediction. Noticing
Pbal(y|x) ∝ P(y|x)/P(y), the following logit-adjusted softmax cross-entropy loss
was proposed in [35]:

�softmax(z, y) = − log
exp(zy + τ log πy)

∑C−1
i=0 exp(zi + τ log πi)

, (4)

where πy are empirical class frequencies used to estimate priors P(y), and τ ≥ 0
is a scaling parameter. In this way, the model directly estimates Pbal(y|x) using
zy, while it can still be trained with cross-entropy loss. Note that the prediction
is still argmaxy zy as usual.

The original logit adjustment is for softmax loss in multiclass classification.
We extend it to modify sigmoid loss and generalize it for binary and multi-label
classification. In binary classification, suppose the logit for sample (x, y) is z.
Sigmoid is equivalent to softmax when C = 2 and z = [0, z]�, in that σ(z) =
1/(1 + e−z) = ez/(ez + e0) = S(z) and 1 − σ(z) = S(0), where σ denotes the
sigmoid function. Given this connection, following the idea on softmax loss, we
can derive the logit-adjusted sigmoid cross-entropy loss for binary classification:

�binary(z, y) = −y log(σ(z+τ log
π

1 − π
))−(1−y) log(1−σ(z+τ log

π

1 − π
)), (5)

where π is the empirical positive class frequency. Here we add the logarithm of
odds to the logit, in contrast to adding the logarithm of probability in logit-
adjusted softmax. In the balanced scenario (π = 0.5), it becomes the standard
sigmoid loss.
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We can treat multiclass classification as multiple one-vs-all binary classi-
fication tasks, i.e. multi-label classification, and thus use sigmoid loss. Unlike
softmax loss, sigmoid loss does not assume mutual exclusiveness among each
class. This aligns well with real-world data, where different classes might have
some overlaps. Using the same notation as Eq. (4), for convenience, we define
adjusted logits z∗

i as:

z∗
i =

{
zi + τ log πi

1−πi
if i = y

−zi − τ log πi

1−πi
otherwise.

(6)

The logit-adjusted sigmoid cross-entropy loss for multiclass classification is:

�sigmoid(z, y) = − 1
C

C−1∑

i=0

log
1

1 + exp(−z∗
i )

. (7)

Another approach is training with standard sigmoid loss and then adjusting the
logits to predict. The scaling parameter may be tuned in a post-hoc way, without
training with different τ . Similar to the procedure in [35], we instead predict:

argmax
y

zy − τ log
πy

1 − πy
. (8)

Furthermore, we apply focal loss [29] to Eqs. (4) and (7). Denote py = S(zy +
τ log πy), the focal softmax loss can be written as:

�focal-softmax(z, y) = −(1 − py)γ log py, (9)

and denote p∗
i = σ(z∗

i ), the focal sigmoid loss can be written as:

�focal-sigmoid(z, y) = − 1
C

C−1∑

i=0

(1 − p∗
i )

γ log p∗
i , (10)

where γ ≥ 0 is a focusing parameter. Intuitively, since the modulating factor
(1−p)γ becomes smaller when p is closer to 1, this focal term reduces the relative
loss for well-classified samples, putting emphasis on the difficult samples. The
losses defined above are quite flexible. When γ = 0 and τ = 0, they are equivalent
to the standard cross-entropy. Typically, we set γ = 1 and τ = 1.

We adopt the proposed loss functions in our task. The total cost function is
defined as L = αpLp + αigLig, where Lp is (non-)epitope classification loss and
Lig is Ig-specific classification loss, averaging over all training samples. The coef-
ficient can be set according to the relative importance of the subtasks in practice,
e.g., setting αig = 0 for only training epitope prediction. We use AdamW [32]
with AMSGrad [44] as the optimization algorithm to minimize the total loss
L. The learning rate is scheduled such that during training it increases linearly
from zero to a specified value in the warmup period [14], followed by a cosine
decay [31]. The purpose of this dynamic learning rate is to reduce the instability
at the early stage of optimization, avoid oscillation and help the model converge
to a local minimum near the end of optimization. Regularization techniques such
as dropout [47] and weight decay are applied to prevent overfitting.
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4 Data and Experiments

4.1 Datasets and Preprocessing

The IEDB catalogs experimental data on B-cell and T-cell epitopes studied in
humans and other species in the context of infectious disease, allergy, autoim-
munity, etc., curated from the scientific literature [51]. To our knowledge, it
is the most comprehensive epitope database containing the largest number of
experimentally verified (non-)epitopes. We downloaded all B-cell epitope data
for cleansing, which contains over 1.3 million entries of B-cell assays, associated
with around 0.6 million epitopes. Note that there is a many-to-one relationship
between assay and epitope. The data were processed in several steps as below.

We extracted linear peptides whose sequence contains only one-letter sym-
bols, discarding peptides that contain modified residues. Peptides of length not
larger than 25 were selected. The upper limit was set to reduce noise caused by
the curation into IEDB, as long peptides could be epitope containing regions
instead of exact epitopes. We counted the number of assays with positive and
negative outcomes for each peptide. Following the instruction of IEDB, peptides
having at least one positive measurement are defined as epitopes, and peptides
having only negative measurements are defined as non-epitopes. Note that an
epitope can have some negative assays. We further grouped epitopes by the type
of antibodies they bind to in positive assays. Among the five major types of anti-
bodies, there is no data on IgD. IgG is the predominant type that most epitopes
induce. A few epitopes induce more than one type among IgA, IgE, and IgM.
We labeled epitopes that specifically induce one of these three types but not the
other two, while others were not used in the Ig prediction subtask.

Taking into account the homology between sequences, we utilized CD-
HIT [10], a tool that uses a greedy incremental clustering algorithm and outputs
the longest representative sequence for each cluster. We clustered epitopes and
non-epitopes respectively using an identity threshold of 0.8 and removed redun-
dant sequences. The sequences in non-epitopes that are similar to epitopes were
further removed using the same threshold. There are several benefits of reducing
redundancy. First, it ensures training and test sets do not have near identical
sequences after splitting. Second, it reduces the bias of overrepresented sequences
in training. Third, many short peptides are removed, especially in non-epitopes.
It is beneficial since research shows that short peptides give false negative results
in experiments, which confound computational epitope prediction [43].

We filtered the peptides of the organism severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) to create a COVID dataset for a case study of
our framework. In the rest of the data, there are 64019 non-epitopes and 64940
epitopes, among which there are 443 IgA epitopes, 1450 IgE epitopes, and 7715
IgM epitopes. 5000 non-epitopes were randomly sampled, and 5000 epitopes were
stratified sampled according to the Ig label frequencies, resulting in a hold-out
test set of size 10000. We performed the same sampling to create a validation
set of size 10000. The remaining data constitute the training set.
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4.2 Baselines and Ablation Studies

For the (non-)epitope prediction subtask, we choose several recently published
machine learning-based methods as baselines, which not only have sufficient
implementation details but also state improvement over major methods. We also
use the publicly available dataset of NetBCE [53] for comparison. The dataset
was compiled from the IEDB but curated with different criteria from ours to
select epitopes and reduce homology, resulting in 97784 non-epitopes and 27095
epitopes, having a ratio of 3.6 between the numbers. Other public datasets are
not used since they are either not reduced or contain much fewer peptides.

DLBEpitope [30] uses dipeptide composition as the feature vector for pep-
tides. Dipeptide composition is represented by a vector of length 400, specifying
the fractions of all possible combinations of amino acid pairs in a peptide. The
classifier is an FFNN with four hidden layers. RMSprop algorithm [15] is used
to optimize the cross-entropy.

EpiDope [7] combines neural networks and a protein language model. Besides
a widely used module composed of an embedding, a BiLSTM, and a linear layer,
the architecture also involves a pre-trained model. The outputs of these two
modules are concatenated and fed to an FFNN for classification. The model is
trained as a whole with the weights of the language module being frozen.

NetBCE [53] applies one-hot encoding on the residues and uses a neural net-
work to extract representations and classify peptides, with cross-entropy opti-
mized by Adam [24] algorithm. The model contains a convolutional neural net-
work (CNN) to capture the pattern in the sequences, followed by a BiLSTM
layer to catch long-range dependencies. The CNN module is composed of a con-
volution [26], a batch normalization [20], and a max pooling layer.

Classical machine learning-based methods are also compared. LBtope [46] is
the first method that uses validated non-epitopes in training. It uses SVM on
composition-based features. iBCE-EL [34] is a framework that contains several
classifiers on the amino acid compositions and the physicochemical properties.
For a fair comparison, we select their best model, extremely randomized tree,
and use within ensemble learning, a variant of random forest, as a baseline.

For the Ig-specific epitope classification subtask, we choose IgPred [17] and
AbCPE [22] as the baselines. They are used to predict the antibody class based
on the input epitope sequences that are experimentally verified. IgPred trains
SVM using the radial basis function kernel while AbCPE trains AdaBoost classi-
fier on the dipeptide composition features of the epitope sequences. We improve
the performance by replacing AdaBoost with XGBoost [4] and use it instead for
comparison. Class weights are computed to account for the imbalance.

We conduct ablation studies to investigate the contributions of different
parts to the overall performance of our framework. We experiment with dif-
ferent sequence models. Particularly, besides the hybrid model, we also try a
two-layer BiLSTM and a four-layer Transformer encoder with positional encod-
ing being applied to the input. Also, our proposed encoding method and loss
functions are compared with conventional methods. All the models in this part
are trained for 100 epochs, using the AdamW optimizer with a warmup period
of 200 steps.
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In epitope prediction, the AUC of receiver operating characteristic (ROC),
summarizing the tradeoff between sensitivity and specificity, is used in nearly
all the papers for performance evaluation. Therefore we select AUC as the main
metric for the (non-)epitope prediction subtask. For the imbalanced Ig-specific
prediction subtask, balanced accuracy (Acc), i.e. the average of recall in each
class, is used as the metric. We try to attain a comparable AUC for epitope
prediction when comparing different loss functions.

We perform hyperparameter tuning and monitor the performance on the vali-
dation set during training to avoid overfitting and underfitting. Hyperparameters
include learning rate, batch size, weight decay coefficient, dropout probability,
hidden dimension size, number of heads in Transformer, etc. We evaluate the
models on the test set. The results are averaged across five runs with differ-
ent initialization of model parameters using different random seeds. All models
are implemented in PyTorch [38] and scikit-learn [40]. Experiments are done in
Ubuntu 20.04 with Intel Xeon 2.20GHz CPU or NVIDIA Tesla P100 GPU.

5 Results and Analysis

Table 1 shows that our model achieves better performance than baselines. Tradi-
tional models require manually designed and computed features, yet still do not
perform better than other sequence-based models. The primary structure, i.e.
the linear sequence of amino acids, of a peptide greatly determines the high-level
structures and functions of the peptide. It is analogous to how the arrangements
of words define the semantic meaning of a sentence in a context-dependent way.
Therefore, it is reasonable that employing NLP techniques can help understand
the information encoded in peptides. Unlike NetBCE, we do not use CNN in our
models. The rationale is that compared to self-attention in Transformer, convo-
lution has a limited receptive field, which depends on the kernel size, and does
not flexibly adapt to the input content due to the static weights of the filter.

Table 1. Performance (%) of baselines and our model for epitope prediction and Ig-
specific classification. Models are ordered by publication dates.

Model Our dataset NetBCE dataset
AUC Acc Acc (Ig) AUC Acc

LBtope [46] 78.84 71.80 - 81.70 61.93
IgPred [17] - - 70.14 - -
iBCE-EL [34] 80.38 73.05 - 83.17 64.76
DLBEpitope [30] 76.39 69.04 - 82.94 69.92
EpiDope [7] 81.62 73.19 - 83.44 70.72
AbCPE [22] - - 70.27 - -
NetBCE [53] 82.41 72.80 - 84.00 68.65
Ours 85.80 77.29 72.21 86.10 74.81
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Table 2 shows the results of ablation studies regarding our proposed model
and its variants on the test set. Our simple encoding method for amino acids
yields an improvement in performance for all three architectures, compared to
the conventional method that uses an embedding layer with learnable weights.
Incorporating this additional biological information is helpful in downstream
learning.

Table 2. Performance (%) of different models and encodings in ablation studies.

Interestingly, the hybrid architecture performs better than pure LSTM and
pure Transformer encoder. Typically, Transformer needs a lot of data to over-
come its relative lack of inductive bias. This could explain why a pure Trans-
former encoder does not perform well on Ig-specific epitope classification. For
a fair comparison, all of our sequence-based models are constructed such that
they cost roughly the same training time. Generally, the time complexity for a
recurrent layer is O(ld2), while the time complexity for a Transformer block is
O(l2d), where l is the sequence length and d is the hidden dimension size [50].
Fortunately, l is small in our task, with an average of approximately 15, and we
use d = 64 in LSTM layers and d = 128 in Transformer blocks.

Table 3 shows the performance of our best model on the test set with different
loss functions in Ig-specific epitope classification, which has an imbalance ratio of
approximately 17. The standard cross-entropy losses have a strong bias towards
the majority class IgM. Logit adjustment technique is conducive for both stan-
dard sigmoid and softmax loss. Focal loss further balances the per-class accuracy,
though it does not affect the balanced accuracy very much. Overall, our proposed

Table 3. Accuracies (%) of Ig-specific classification with different loss functions.

Loss function Balanced IgA IgE IgM

softmax 68.74 64.71 47.99 93.52
logit-adjusted softmax 70.78 70.59 51.79 89.98
focal logit-adjusted softmax 71.20 70.59 53.12 89.90
sigmoid 68.79 60.78 52.08 93.49
logit-adjusted sigmoid 72.01 68.63 56.25 91.13
focal logit-adjusted sigmoid 72.21 74.12 55.00 87.51
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logit-adjusted sigmoid loss (Eqs. (7) and (10)) achieves better performance than
logit-adjusted softmax loss. Also, it is versatile in that it is applicable to binary
(C = 1), multiclass, and multi-label classification. Alternatively, we can apply
the post-hoc approach and predict as per (8). Figure 2 shows the effect of tun-
ing the parameter. With suitable tuning, the accuracy is on par with using the
logit-adjusted loss.

Fig. 2. Post-hoc adjustment with varying scaling parameter on the logits of Ig-specific
classification. The models are trained using standard sigmoid loss.

6 Application and Discussion

We further demonstrate the validity of our framework in application on the small
hold-out COVID dataset, which contains 497 non-epitopes and 1180 epitopes,
and show the ROC curves in Fig. 3. Three recently published frameworks called
EpiDope [7], EpitopeVec [3], and BepiPred-3.0 [6] are used for comparison, all
of which use embeddings produced by language models, with AUC ranging from
63% to 78% reported in their papers. We directly input the COVID dataset to
these tools. For the tools outputting scores per residue, we average to obtain
a score for the peptide and compute the AUC. A decrease in performance is
observed for all four frameworks compared to the reported AUC on their test sets.
A possible explanation is that epitopes from different organisms could have dif-
ferent underlying data distributions, making a general model trained on a variety
of species underperform on specific organisms [1]. Nevertheless, our framework
still significantly outperforms the other three. Without a high computational
cost incurred by the large models, the inference time is only 5 s on this dataset,
while other tools using language models typically take over minutes.

The experimental results show that our framework is promising as a
pre-screening tool for prioritizing targets for laboratory investigation. Our
lightweight model can be trained on hundreds of thousands of sequences in mod-
erate time, spending a couple of hours on CPU. Thus, it is friendly to researchers
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Fig. 3. ROC curves of different tools for epitope prediction on the COVID dataset.

having limited resources such as only CPU or low-end GPU. Moreover, based on
the effectiveness and flexibility of the proposed methods, we believe our frame-
work has the potential to be applied to other peptide classification problems.
With the increasing availability of sequence and structure data, the informa-
tion of antibodies can be incorporated in the future to model antigen-antibody
interactions. Such studies will provide insights into the ligand-receptor interac-
tions during immune response [28] and benefit the research on individualized
immunotherapy [52].

7 Conclusion

This paper presents a deep learning-based multi-task framework, which is called
BeeTLe, for linear B-cell epitope prediction and antibody type-specific epitope
classification using Transformer and LSTM encoders. It involves a simple yet
effective residue encoding method, a model whose backbone combines recurrent
layers and attention mechanisms to learn feature representations for peptides,
and modified cross-entropy loss functions to address the imbalance problem. A
large dataset with potential false-negative epitopes being reduced is curated for
benchmarking. We implement and deploy a command-line tool to facilitate the
use and extension of our work. The code and the data are open-source at https://
github.com/yuanx749/bcell.

Acknowledgements. The author sincerely thanks all the reviewers for their construc-
tive feedback, and Jiarong Liang for the valuable discussions on the concepts and tools
in immunology.

Ethical Statement. In this work, we develop a novel computational framework for
predicting and classifying B-cell epitopes. The datasets we used are constructed from
a publicly available database downloaded from the IEDB website. We do not require
ethical approval during the research. Our work does not involve collecting personal
data. The major implication will be in the medical domain such as vaccine production
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and diagnostics development. With that being said, we are aware that some medical
applications may need to process personal data. Although the IEDB database does not
involve sensitive data such as information on patients, it could be interesting for the
community to investigate if the immunology data have a bias in race or gender.
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Abstract. StepMania is a popular open-source clone of a rhythm-based
video game. As is common in popular games, there is a large number
of community-designed levels. It is often difficult for players and level
authors to determine the difficulty level of such community contribu-
tions. In this work, we formalize and analyze the difficulty prediction
task on StepMania levels as an ordinal regression (OR) task. We stan-
dardize a more extensive and diverse selection of this data resulting in
five data sets, two of which are extensions of previous work. We evaluate
many competitive OR and non-OR models, demonstrating that neural
network-based models significantly outperform the state of the art and
that StepMania-level data makes for an excellent test bed for deep OR
models. We conclude with a user experiment showing our models’ super-
human performance.

Keywords: Ordinal regression · StepMania · Difficulty prediction

1 Introduction

Video game designers commonly order game levels in ascending order of diffi-
culty. The first levels act as tutorials, while the later levels challenge the play-
ers. Games that rely heavily on community contributions lack communication
present in game studios, leading to a more haphazard design and inconsistent
game-level difficulties. Portal 2, Super Mario Maker, Happy Wheels, and Roblox
are examples that profit heavily from community-created game levels. In this
work, we focus on StepMania, a rhythm-based video game in which players step
onto a keypad on the floor to the rhythm of a song. A level is represented by a
sequence of directional inputs that must be hit at a specific time (see Fig. 1).

As difficulties are commonly represented as natural numbers (or ordinals),
estimating the difficulty of video game levels is a natural ordinal regression (OR)
task. OR has a long history dating back to at least the 18th century [15]. It is
commonly applied in the social sciences for modeling human preferences, as it
allows for the representation of ordinal relationships. More recently, [2] raised
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Fig. 1. This example of StepMania play shows the basic steps tap (1 and 2) and hold
(3 and 4). Steps that coincide with notes of certain levels, like a quarter (2–4) or an
eight (1), have unique colors. Different steps can also be combined, requiring the player
to hit two or more keys simultaneously. Depending on how accurately in time a step is
hit, the player receives feedback (5).

greater interest from a machine learning (ML) perspective, while the use of deep
learning started with its advent around the 2000 s [1]. Outside of the social
sciences, OR also has applications in computer vision and natural language pro-
cessing, which commonly require deep learning. Examples include age estimation
[19], sentiment analysis [21], or depth estimation [10]. However, it has not yet
been applied to the difficulty prediction of video game levels.

There is a huge potential for applying ML methods such as OR on video
games other than StepMania, but so far, the number of publicly available labeled
data sets is limited. Crawling the largest repository of StepMania data, Step-
Mania Online1, results in 602 GB of labeled data. More data can also be found
on various platforms frequented by avid StepMania-level creators and players.
So far, only level generation [9,23], and difficulty prediction [5,24] have been
applied to this data. However, other tasks or subtasks of the former utilizing
this data may also be interesting. Examples include detecting salient events in
music, anomaly detection, and early anomaly detection. StepMania data is, in
essence, extensively labeled sound data, and we encourage using it as such.

Our Contributions. We propose using OR to predict the difficulties of StepMania
levels. Our contributions include the following:

– We provide the first analysis of deep OR methods on the task of difficulty
prediction on StepMania data, resulting in a new state of the art. (Sect. 5.1)

– We increase the number of standardized data sets and expand upon previ-
ous data sets, provide a fundamental description of the data, and extensive

1 https://search.stepmaniaonline.net/.

https://search.stepmaniaonline.net/
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data analysis about StepMania data and the relationships between different
StepMania data sets. (Sects. 4, 5.2 and 5.3)

– Finally, we demonstrate that OR models can improve human labels. For this,
we evaluate each model considered here on its accuracy on user rankings of
pairs of StepMania levels. (Sect. 5.4)

2 Related Work

We cover related work starting with previous work on StepMania and closely
related data. Then, OR surveys and OR taxonomies are discussed from an ML
and social sciences perspective.

2.1 StepMania and Related Data

[9] first investigated ML on StepMania data. They used ML for the task of
level generation or learning to choreograph. [23] improved upon this previous
work by blending more challenging and less challenging levels, creating levels of
intermediary difficulty. [13] transferred this general approach to another rhythm
game, Taiko no Tatsujin.

[24] first investigated the task of level difficulty analysis or difficulty predic-
tion of StepMania levels. They clustered levels based on automatically extracted
hand-picked features and found the resulting clusters to correlate with difficulty
levels. [5] built on this idea by combining features calculated for a level by Step-
Mania with the count and required speed of specific patterns occurring in the
levels to predict the level difficulty using a classification approach.

Broadening the perspective from just StepMania levels to musical charts,
which are very similar data, [22] distinguished four difficulty levels for piano
pieces, from beginner to virtuoso. Musical features, including playing speed,
chord ratio, and fingering difficulty, were automatically extracted and then sep-
arately classified and aggregated via human-validated decision rules. Similarly,
[7] also extracted features from symbolic music charts but used various regres-
sion methods to relate these features to nine different difficulty levels. Finally,
[11] developed a hybrid approach by combining the top-5 features from [7] with
a deep convolutional NN based on piano roll representation of the music.

In contrast to existing work, we apply methods from OR to the difficulty
prediction of StepMania levels. For this reason, we also list related work on OR.

2.2 Ordinal Regression Surveys

[12] conducted a comprehensive survey and experimental study of various OR
models. [25] recently provided a taxonomy of OR models and applied these to
a case study about public fear of nuclear energy. Similarly, [4] describe OR in
detail from a social sciences perspective.

Contemporary research shows that OR methods generally outperform their
non-OR counterparts on OR problems. [19] compare previous shallow and deep
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non-OR models with shallow and deep OR models and demonstrate the superi-
ority of OR on age estimation data and the need for deep models in this field.
[10] compare previous deep convolutional non-OR approaches against a deep
OR approach, again demonstrating deep OR superiority. [21] provide the first
application of OR combined with four ML models to a sentiment analysis task.

2.3 Difficulty Prediction in Games

Difficulty prediction is frequently studied in the area of player modeling [18,20,
27]. From a player modeling perspective, the goal is to model a level’s difficulty
given a particular player. To this end, data of humans interacting with the game
is commonly required [14]. In stark contrast, we are not interested in individual
players but in the game difficulty in the context of a given community of players.
The predicted difficulty should be consistent with other difficulty scores for levels
in the same community. In StepMania, there is extensive training data for this
approach. Therefore, we choose to model the difficulty of game levels directly
instead of using the indirect route via the modeling of players.

3 StepMania Difficulty as Ordinal Regression

We first describe the problem setting. Then, we argue conceptually why OR is
the superior approach for our problem. Lastly, we describe a selection of OR
methods that we consider most relevant to the analysis performed herein. More
details and the code can be found in the supplementary material2.

We want to train an ML model that estimates the difficulty of a StepMania
level, our data sequence xi = (x(1)

i , . . . , x
(d)
i ) of length d. We specify the x

(j)
i in

the experiments (Sect. 5). StepMania level difficulties are natural numbers and
our labels yi ∈ {1, . . . , K}. We aim for the smallest possible prediction errors.
Let ŷ be a model’s prediction. We assign a cost c(ŷ, y) := |ŷ − y| to a prediction
with label y. Training a model that minimizes this cost is an OR problem.

Readers might wonder why OR is separate from standard classification or
regression. Later in the experiments, we will consider these as non-OR baselines.
However, it is notable that both classification and regression do not inherently fit
the metric present in OR, i.e., the cost function c. Usual classification approaches
will minimize the negative log-likelihood (NLL). Based on this, the classifier loss
function is independent of the ordering of labels, meaning an off-by-one error is
treated the same as an entirely wrong prediction. Regression might seem more
suitable than classification. However, the whole-valued nature of our labels com-
plicates this approach. Training a regular regressor minimizing mean absolute
error (MAE) without rounding to the nearest integer will result in the regressor
not taking the rounding threshold into account.

In the following, we describe the OR methods considered in this work, chosen
based on previous studies [12] and their compatibility with deep architectures.

2 https://github.com/benjamin-dinkelmann/difficulty-estimation-stepmania/.

https://github.com/benjamin-dinkelmann/difficulty-estimation-stepmania/


Ordinal Regression for Difficulty Prediction of StepMania Levels 501

NNRank. [6] proposed using a set of binary classifiers to solve OR problems. A
model predicts K − 1 binary classifiers, where the i-th binary classifier predicts
the probability that i < y. In this sense, the target of an input is a vector of y−1
ones followed by K − y zeros, i.e., for y = 4, the target is t = (1, 1, 1, 0, . . . , 0).

RED-SVM. [16] introduced the reduction-based support vector machine (SVM)
for OR. They propose to reduce multiple binary classifiers (as in NNRank) to
just one binary classifier. For an input x, target y, and a category k, this classifier
decides whether k < y. In practice, one data point (x, y) is transformed into K−1
data points ((x, 1), 1 < y), ((x, 2), 2 < y), . . . , ((x,K − 1),K − 1 < y). An SVM
is then trained on this data. In the original SVM formulation, this translates to
learning a linear (or kernelized) regressor and K − 1 thresholds.

Laplace. [8] proposed using soft labels. Instead of learning to predict a classifi-
cation target vector t = (0, . . . , 0, 1, 0, . . . , 0), they propose learning a smoothed
target vector using a distance metric φ(y, i),

ti =
exp−φ(y,i)

∑K
k=1 exp−φ(y,k)

. (1)

These targets are discretely sampled common probability distributions normal-
ized by the denominator. For φ(y, i) = |y−i|, the distribution is a Laplace distri-
bution, and for φ(y, i) = ‖y − i‖2, the distribution is normal. The cross-entropy
between target and softmax predictions of a model is then used as training loss.

Binomial. With soft labels as distributions in mind, we also propose using a
Poisson binomial distribution with K+3 Bernoulli trials, mean (K+3)p = y+1,
and variance 1 as a target. More specifically, we choose y+1 Bernoulli trials with
probability p1 and K − y + 2 Bernoulli trials with probability p2, where

p1 :=
y + 1
K + 3

+

√
(K − y + 2)2

(K + 3)2
− (K − y + 2)

(y + 1)(K + 3)
(2)

p2 :=
y + 1
K + 3

−
√

(y + 1)2

(K + 3)2
− (y + 1)

(K − y + 2)(K + 3)
. (3)

These choices of p1 and p2 result in a mean of y + 1 and a variance of 1 if the
variance of a binomial with p = y+1

K+3 is larger or equal to one. This is guaranteed
by considering K+3 Bernoulli trials instead of K −1. We discuss this in greater
detail in the supplementary material.

4 StepMania Level Data

StepMania3 is an open-source game engine with over 100 contributors initially
developed as a clone of Konami’s arcade game series Dance Dance Revolution
3 https://www.stepmania.com/.

https://www.stepmania.com/
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(DDR). StepMania has become the engine for multiple games based on DDR,
including In the Groove, Pump It Up Pro, and others. In StepMania, a player
may choose a song and a difficulty level to “play”. This starts a game level in
which the player must step onto four arrows, left, right, up, and down, to a
certain rhythm on a controller on the floor, which is typically called a pad.
Usually, this rhythm is in line with the chosen song playing in the background.
The act of playing resembles dancing, where DDR likely got its name. Levels
appear in combination with songs and it is most common for authors to distribute
songs in packs, which is a collection of multiple songs. Most packs are created
by a single individual or a small group working closely together, guaranteeing a
homogeneous difficulty interpretation of levels in a pack.

Each song is associated with a music file and a background image or video.
An SM (for StepMania) file encodes the level data in a custom ASCII-based file
format. SM is an elementary file format used in StepMania and other rhythm
games. A newer file format SSC with more design features has been established
from StepMania version 5 (previously known as StepMania Spinal Shark Collec-
tive fork) and onward. Even though SSC contains more options for level design,
more songs are available in the SM format (newer levels usually encode both SM
and SSC), so we will use this format for this work. An SM file starts with header
information followed by encoding at least one level. The header contains features
that are consistent across levels, such as the title, artist, and tempo changes. A
sequence then describes a level by dividing the song into measures (from musical
notation), encoding which inputs are required at what time. Each measure can
be split into 4–192 equidistant parts that define the granularity in which notes
can be assigned. Together with the tempo, this defines the maximum speed at
which inputs may need to be entered and the possible rhythmic complexity.

From an ML perspective, there are a few complications with this data. Packs
are created for personal enjoyment rather than ML purposes, leading to cate-
gories with very few or no samples. Additionally, multiple levels per song with
different labels may be available. These different levels for the same song are
correlated both naturally and intentionally by the design process of the authors.
This needs to be considered when splitting data into training and test sets. These
issues are addressed in the experiments (Sect. 5).

Packs of songs for StepMania are freely available online, facilitating easy
access to labeled data. StepMania Online4 is one of these repositories, searchable
by pack name but also song names or authors. Crawling the packs available there
results in 602 GB of data, although this also includes the music file and, in some
cases, background videos, which we discard in our analysis. We also consider
packs that are released in other communities. Zenius-I-vanisher5, for instance,
has a relatively active community. Another notable community that was very
influential in the proliferation, organization of conventions, and tournament-play
of StepMania is DDRIllini6.

4 https://search.stepmaniaonline.net/.
5 https://zenius-i-vanisher.com.
6 https://ddrillini.club/.

https://search.stepmaniaonline.net/
https://zenius-i-vanisher.com
https://ddrillini.club/
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Table 1. Overview of all data sets with statistics. Statistics shown are the number
of packs used for construction, the number of songs included, the number of levels
included, and the minimum and maximum difficulty available in each data set. 1 indi-
cates expanded previous data sets. 2 indicates newly proposed data sets.

Name #Packs #Songs #Levels Min-Max

ITG1 4 297 1,469 1–14
fraxtil 3 90 450 1–15
Gpop2 12 542 2,710 1–18
Gulls2 7 70 260 2–14
Speirmix2 1 267 1,185 1–15

Some prolific individuals or groups create multiple packs, which we collate
into more extensive data sets with consistent themes. This is how the following
data sets were chosen. Table 1 provides an overview of all data sets.

ITG. [9] introduced the In The Groove (ITG) data set made up of 133 songs or
652 levels from multiple authors, which combine the packs ITG1 and ITG2. We
expand this ITG data set by adding ITG3 and ITGRebirth, yielding 297 songs
and 1,469 levels. ITG primarily contains electronic indie music. In contrast to
the other data sets, ITG originates from the game studio Roxor Games and has
been slightly modified by the StepMania community over time. Thus ITG is not
purely a community contribution.

Fraxtil. [9] also introduced the fraxtil data set, which combines three packs from
one level author, known as fraxtil, and contains 90 songs and 450 levels. fraxtil
primarily contains electronic music.

Gpop. We propose Gpop, encompassing 542 songs and 2,710 levels from twelve
packs. The levels are almost exclusively created by creator Gpop. Gpop features
mostly Japanese pop and Vocaloid music.

Gulls. We propose Gull’s Arrows, which consists of seven packs by creator
Gamergull with ten songs each, for a total of 70 songs and 260 levels. The
songs in this data set include mostly electronic music and some video game
soundtracks.

Speirmix. Lastly, we propose using Ben Speirs’ Speirmix Galaxy, consisting of
267 songs and 1,185 levels written chiefly by the creator Ben Speir. The genre of
Speirmix mainly focuses on modern music, featuring many pop songs from the
2000 s and 2010 s.

Notably, the distinctions in StepMania-play are more complicated than they
may have appeared. The StepMania community is split into multiple, overlap-
ping, groups. The differences between these groups vary from the type of con-
troller used to the design style of levels. Examples include (1) ITG, a common
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synonym for StepMania. (2) DDR, which is based on the original DDR style
levels. (3) Keyboard play, which uses a computer keyboard as a controller. (4)
Pump it Up, which uses a controller with up-right, down-right, down-left, up-
left, and center keys. (5) Rhythm Horizon, a newer development, which uses all
directions mentioned so far. Additionally, these communities have been split into
different genres at different times. Currently, there are three such sub-genres for
StepMania play. These groups referred to themselves as (1) Tech, which includes
players focussing on accuracy in their play. (2) Stamina, which includes players
that focus on long levels with continuous streams, i.e., continuous single steps
with no breaks. (3) Modding, which includes players that play levels where read-
ing is the main difficulty, meaning that each level’s visuals are modified to such
an extent that the required arrows are significantly harder to detect on screen.
This work focuses primarily on pad-play (as opposed to keyboard play) and tech
levels. The data sets also primarily feature older content starting around 2005.
We expect the methodology proposed here to also function on data from most
other groups. However, Modding levels would need entirely different approaches,
most likely including extracting video to determine the difficulty of levels.

5 Experiments

Data Sets. As mentioned previously, the data sets are unbalanced, with some
difficulty levels being rare. We first deal with small categories by joining adjacent
difficulty categories until every remaining category accounts for at least 2 percent
of all levels. We balance the data sets as part of the training procedure and
evaluation protocol described later.

Secondly, the data sets described here must be split into train and test sets.
We do not use regular cross-validation since multiple levels of the same song are
correlated. Instead, we use Monte Carlo cross-validation with rejection sampling.
Specifically, we choose 20% of songs (with all their respective levels) as a test
set and the remainder as the train set. We reject samples until all difficulties
are present in both sets. This results in an approximate 80–20 train-test split
with each label present in both sets. We repeat this Monte Carlo cross-validation
process 100 times yielding 100 different train-test splits for each data set.

Feature Extraction. From the SM files, we extract the level sequences. We encode
each sequence element as a 19-dimensional feature vector x

(j)
i ∈ R

19. This vector
contains the tempo (1 feature), a note-level encoding (7 features), level progress
in time (1 feature), level progress in sequence length (1 feature), time since the
last element (1 feature), a one-hot encoding of the step direction in case of a tap
(4 features) and hold (4 features), for a total of 19 features. Due to their rarity,
we ignore all other potential features of the level sequence, like tempo changes,
mines, or other effects. Find a more detailed description in the supplement.

Compared Methods. As our baselines, we evaluate PATTERN proposed by [5]
as a non-deep non-OR method and a classification and regression model as deep
non-OR methods. We compare all methods from Sect. 3 to these baselines.
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Model Architecture. For PATTERN, we use a three-layer multilayer perceptron
with a hidden size of 32. This model only uses a feature vector instead of a
time series. Building on the recent success in sequence processing with trans-
formers [3,26], we use the encoder of a transformer as the backbone to all deep
models. Specifically, we use three layers of dimensionality 64 with four attention
heads. Before applying the encoder, a small convolutional layer of kernel size
two projects the 19 input features to the embedding dimension. Then, we add
a positional encoding [26]. Global average pooling reduces the time series to a
single vector before each model’s head. We ensemble eight random sub-samples
of length 60 from each input sequence to produce a prediction.

A model’s head depends on the chosen method. We train PATTERN and the
classifier with NLL. The regressor is trained using MAE. NNRank consists of
K − 1 logits trained with NLL. We evaluate each data point for every threshold
in RED-SVM and train the binary classifier with NLL. The target is a discrete
distribution for Laplace, so we use cross-entropy between the target and a soft-
max multi-class head. For Binomial, we do the same as for Laplace, except that
we replace the Laplace target distribution with a Poisson binomial distribution.
Find more details in the supplement.

Training. We train each model on the training set for 200 epochs with a batch
size of 128, AdamW [17] as the optimizer with a weight decay of 5e-2, and
a learning rate of lr = #levels

1500 · 10−4 to adapt for data set size. Due to the
unbalanced data sets, we use a weighted random sampler to select data points,
resulting in each difficulty being drawn with equal probability. We train one
model for each method on each training set of all 100 train-test splits of each
data set. This results in a total of 3,500 models.

5.1 Evaluating our Methods on StepMania-Level Difficulty
Prediction

Metrics. Due to the unbalanced data sets, we consider a class-weight-normalized
version of the MAE as our metric. We refer to our metric as the weighted absolute
error (WAE). The WAE of a model f on a data set D with data points (x, y)
and K classes is defined as

WAED(f) =
1
K

∑

(x,y)∈D

1
wy

|y − f(x)|, with wy = |{x|(x, y) ∈ D}|. (4)

Notably, for a balanced data set, WAE and MAE are equal.
We evaluate each of the 3,500 trained models using WAE and compute the

mean and standard deviation across the 100 Monte Carlo cross-validation sam-
ples. The results can be found in Table 2a. The supplementary material contains
additional evaluations for other metrics, including MAE.

5.2 Difficulty Across Data Sets

Readers might wonder whether the different data set’s labels are consistent when
compared to one another. They are not consistent. See the confusion matrix in
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Table 2. OR and classification models outperform feature-extraction-based PATTERN
and regression models. This table shows WAE performance rounded to the third nearest
digit for different models on all StepMania data sets averaged over 100 models trained
on separate Monte Carlo cross-validation splits. Lower values are better. The smallest
value in each column is bold. According to a standard 5% significance t-test, all values
in a column insignificantly higher than the best value are underlined.

(a) Trained and evaluated on the same data set.

ITG fraxtil Gpop Gulls Speirmix

non OR PATTERN 0.457±0.043 0.736±0.092 0.460±0.028 0.695±0.101 0.297±0.037
Classification 0.366±0.033 0.480±0.080 0.342±0.027 0.273±0.063 0.274±0.046
Regression 0.379±0.030 0.489±0.058 0.356±0.025 0.284±0.064 0.278±0.043

OR NNRank 0.372±0.033 0.444±0.065 0.344±0.025 0.275±0.066 0.268±0.047
RED-SVM 0.368±0.030 0.481±0.058 0.349±0.024 0.262±0.057 0.268±0.043
Laplace 0.367±0.029 0.455±0.070 0.342±0.026 0.270±0.067 0.269±0.051
Binomial 0.368±0.031 0.448±0.072 0.344±0.027 0.264±0.069 0.265±0.047

(b) Trained on separate data sets from the one being evaluated.

ITG fraxtil Gpop Gulls Speirmix

non OR PATTERN 0.717±0.16 0.618±0.179 0.717±0.167 0.549±0.126 0.670±0.129
Classification 0.461±0.060 0.477±0.058 0.488±0.060 0.379±0.085 0.510±0.060
Regression 0.483±0.048 0.469±0.078 0.480±0.080 0.411±0.122 0.562±0.103

OR NNRank 0.455±0.046 0.461±0.065 0.469±0.064 0.403±0.107 0.472±0.089
RED-SVM 0.465±0.046 0.452±0.074 0.465±0.072 0.387±0.104 0.546±0.095
Laplace 0.475±0.057 0.458±0.074 0.469±0.069 0.388±0.108 0.529±0.095
Binomial 0.475±0.057 0.457±0.071 0.471±0.066 0.395±0.103 0.498±0.080

Fig. 2, where Binomial was trained on Speirmix but evaluated on Gulls, for a
visualization that difficulties can be offset significantly. More confusion matrices
can be found in the supplementary material. With this in mind, we evaluated for
each data set pair (A,B) how a model trained on A performs on B. Difficulties
from B are adjusted based on the pooling defined for A.

Specifically, for each pair of data sets (A,B) and method M , all 100 models
trained on A for method M are evaluated on the entire data set B and averaged.
This would produce a 5× 5× 7 tensor of evaluations. To make these evaluations
easier to compare to Table 2a, we present for a data set B and method M
the mean and standard deviation of method M trained on all data sets but B.
Table 2b contains this evaluation. Find the entire tensor of evaluations in the
supplementary material.
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Fig. 2. Difficulty depends on subjective perceptions of level creators. This confusion
matrix shows that there is often an offset of up to one category if a model trained on
one dataset (here Speirmix) is evaluated on another dataset (here Gulls). The confusion
matrix is averaged and category-normalized. The model was trained with the Binomial
loss.

5.3 Difficulty Prediction as a Ranking Problem

As shown in the previous section, the previous evaluations are structurally biased
because the given difficulty levels are inconsistent between data sets. However,
viewing the data sets as ranking problems will avoid this bias. Specifically,
instead of evaluating whether a data point x is predicted as label y, we evaluate
for a pair of data points x, x′ with y < y′ whether the prediction of x′ is larger
than x. Moving from OR models to ranking models is simple, as OR predictions
can be compared to get ranking predictions. From a data set D with data points
(x, y) we construct a new data set D′ := {((x, x′), sign(y − y′))|(x, y), (x′, y′) ∈
D)}. The sign function can then be considered +1, −1, or 0 for equal labels
affecting data set construction. We present the results here, assuming a separate
label 0 for equal labels.

On this data set D′, we can then measure accuracy. A slight inaccuracy
might occur if either the data set or the predictions claim that a pair of data
points is equal since the difficulties still do not align. For this reason, we will
only consider the accuracy for pairs that agree or disagree without equality. To
avoid confusion with previous experiments, we will refer to this metric as the
agreement of the ranking predictions with the ranked labels or just agreement.
We repeat both previous experiments using agreement. Models trained on a train
set are evaluated on their respective test set (all pairs are drawn just from the
test set), and models trained on all other data sets are evaluated on the one data
set can be found in Table 3.
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Table 3. Generalization is near perfect when considering StepMania difficulty pre-
diction as a ranking problem. This table shows agreement of different models on all
StepMania data sets averaged over 100 models trained on separate Monte Carlo cross-
validation splits. Higher values are better. The largest value in each column is bold.
According to a standard 5% significance t-test, all values in a column insignificantly
lower than the best value are underlined.

(a) Trained and evaluated on the same data set.

ITG fraxtil Gpop Gulls Speirmix

non OR PATTERN 0.988±0.003 0.981±0.005 0.990±0.001 0.971±0.009 0.995±0.001
Classification 0.992±0.002 0.991±0.003 0.994±0.002 0.996±0.003 0.995±0.002
Regression 0.992±0.002 0.992±0.003 0.994±0.001 0.996±0.003 0.996±0.002

OR NNRank 0.992±0.002 0.992±0.003 0.994±0.001 0.997±0.002 0.996±0.002
RED-SVM 0.992±0.002 0.992±0.003 0.994±0.001 0.997±0.003 0.995±0.002
Laplace 0.992±0.002 0.992±0.003 0.994±0.001 0.996±0.003 0.996±0.002
Binomial 0.992±0.002 0.992±0.003 0.994±0.002 0.996±0.003 0.996±0.002

(b) Trained on separate data sets from the one being evaluated.

ITG fraxtil Gpop Gulls Speirmix

non OR PATTERN 0.980±0.006 0.985±0.009 0.978±0.008 0.990±0.005 0.992±0.005
Classification 0.988±0.004 0.991±0.002 0.990±0.003 0.995±0.002 0.995±0.000
Regression 0.989±0.002 0.992±0.001 0.992±0.001 0.995±0.001 0.996±0.000

OR NNRank 0.990±0.002 0.993±0.001 0.992±0.001 0.995±0.002 0.996±0.000
RED-SVM 0.989±0.002 0.993±0.001 0.992±0.001 0.995±0.001 0.996±0.000
Laplace 0.989±0.004 0.993±0.001 0.991±0.002 0.995±0.002 0.996±0.000
Binomial 0.988±0.004 0.993±0.001 0.991±0.002 0.995±0.002 0.996±0.000

5.4 Does ML Improve the Original Difficulties?

We expect the labels created by authors for StepMania levels to be noisy. With
this motivation in mind, we evaluate whether the predictions of the models
considered here improve upon the labels from the original authors using user
feedback. Since StepMania players need context to rate levels, we decided to use
the previously mentioned ranking approach to evaluate agreement.

Experimental Setup. We provide a participant with two songs and ask them
which is more difficult. In essence, we ask the players to label a pair of StepMania
levels (a, b) with a binary label (rank(a) > rank(b)?).

We are left with a choice of which pairs to evaluate. Given the large number
of possible pairs and the expected low number of user evaluations, we choose
the pairs carefully. Specifically, we choose pairs for which different models or the
original labels disagree.

Similarly to the previous experiment, while our model predictions might
indicate that two StepMania levels have the same difficulty, players will always
consider one level easier. As with the previous experiment, we disregard equal
predictions entirely from the evaluation, i.e., the data set only includes pairs
for which the predictions are not equal since players will always disagree with
equality.
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Table 4. Most models improve upon the original labels of each data set, except for
ITG. This table shows the agreement with user evaluations on various data sets of
models trained on other data sets.

ITG fraxtil Gpop Gulls Speirmix

non OR Original 0.675 0.470 0.257 0.607 0.388
PATTERN 0.507 0.545 0.499 0.309 0.649
Classification 0.322 0.659 0.726 0.721 0.746
Regression 0.435 0.675 0.718 0.682 0.736

OR NNRank 0.384 0.664 0.716 0.701 0.734
RED-SVM 0.446 0.678 0.712 0.680 0.744
Laplace 0.418 0.669 0.713 0.702 0.747
Binomial 0.409 0.667 0.711 0.692 0.743

Conducting this experiment, we collected 217 human labels containing 105
unique pairs. Most pairs were evaluated more than once, and different players
sometimes disagreed on what order they should have. We assigned each ordered
pair a correctness value between 0 and 1, corresponding to the average support
for this ordering. This correctness is reflected in the agreement. Table 4 shows
models evaluated on a separate data set from the one they were trained on. The
results evaluating a model trained and evaluated on the same data set can be
found in the supplement.

6 Discussion and Conclusion

According to Table 2a, all OR methods, as well as just a basic classification app-
roach, perform very well. However, no one method can be determined to be the
best. In contrast to the varied results among the OR methods and classification,
a basic regression approach and the PATTERN method from [5] perform poorly.
The PATTERN method performs subpar in all experiments, likely because it is
limited to only a couple of static features extracted from the level sequences.
Regression performs close to the better methods, even though it is significantly
outperformed in most experiments. We do not know why classification generally
performs well, whereas regression does not.

Viewing StepMania data as a ranking task instead of an OR task demon-
strates a near-perfect generalization as shown in Table 3. Comparing Tables 2a
to 2b, however, highlights that these methods do not generalize from one data
set to another when viewed naively. From this, we can follow that the poorer
performance in Table 2b is due to labeling inconsistencies among authors of these
packs. Figure 2 exemplifies this by demonstrating an offset of up to one between
the difficulty scales of the Speirmix and Gulls data sets.

Finally, considering Table 4, we demonstrate that all OR models can unify dif-
ferent StepMania packs into one difficulty ranking. Except for ITG, all methods
improve upon the original authors labeling. The better performance of the orig-
inal labels for ITG is likely due to the ITG packs originating from a professional
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game studio instead of private individuals. We found that most errors made
as part of Table 4 are because the model is oblivious to some StepMania-level
features. The models investigated herein are limited by the feature extraction
performed on the SM files. Some rare design elements were entirely ignored.
Specifically, we ignored (1) mines, which require the player to step off of a direc-
tion not to trigger it, (2) tempo changes, which change the tempo during play,
(3) warps, which skip ahead in a level, (4) stops, which stop the progress of
the song for a predetermined time, and many more. These effects do affect the
difficulty of StepMania levels. However, due to their rarity, they can lead to
overfitting during training. Additionally, higher difficulties might also be caused
by salient events in the music, which were not considered herein, being hard to
detect, or by a level’s steps being aligned not with the lead beat but with some
salient events in the background.

Using all available StepMania data simultaneously during training is a signif-
icant challenge due to the labels not aligning, which is left as future work. The
OR models considered here are not created equal, considering their practical
use. RED-SVM specifically learns a regressor, which can be used to rank even
where other methods consider a pair equal. This, in addition to its generally
good performance, is why we suggest using RED-SVM to construct a unifying
difficulty estimator for StepMania. Assuming RED-SVM is trained in a multi-
task fashion on a large set of StepMania packs, each sharing a regressor but with
separate thresholds, the final regressor can produce difficulty estimates on any
of the trained scales. Additionally, scales can be hand-designed using standard
StepMania levels as a reference. Considering that most levels are for mid-level
play, a finer scale could split these mid-difficulty levels.

Based on our experiments, we conclude that StepMania-level difficulties are
noisy and that ML models can help remove this noise and define a standard
difficulty scale. Given its complexity, we also conclude that StepMania data
should provide an excellent future test bed for deep OR models.
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Ethical Implications. This work focuses on applications in the entertainment indus-
try. Specifically, the focus is improving the entertainment achieved when playing Step-
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is closely related to reducing the churn in games, that is, the rate at which players stop
playing a game for various reasons. While not the focus of this work, this does mean
there is a chance that this work can be used to make rhythm-based video games more
addictive.

Beyond the user experiment performed in Table 4, this work does not involve the
use of personal data. For Table 4, we merely collected for pairs of songs played by a
particular player which of the two was more difficult. This data is entirely anonymous,
and for each rated pair, it is no longer possible to determine which player was the
participant rating the pair.
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Abstract. Causal Impact (CI) measurement is broadly used across the
industry to inform both short- and long-term investment decisions of
various types. In this paper, we apply the double machine learning
(DML) methodology to estimate average and conditional average treat-
ment effects across 100s of customer action types for ecommerce and
digital businesses and 100s of millions of customers that can be used in
decisions supporting those busiensses. We operationalize DML through
a causal machine learning library. It uses distributed computation on
Spark and is configured via a flexible, JSON-driven model configura-
tion approach to estimate causal impacts at scale (i.e., across hundred
of actions and millions of customers). We outline the DML methodology
and implementation. We show examples of average treatment effect and
conditional average treatment effect (i.e., customer-level) estimates val-
ues along with confidence intervals. Our validation metrics show a 2.2%
gain over the baseline methods and a 2.5X gain in the computational
time. Our contribution is to advance the scalable application of CI, while
also providing an interface that allows faster experimentation, ability to
onboard new use cases, and improved accessibility of underlying code for
partner teams.

Keywords: Double Machine Learning · Potential Outcomes ·
Heterogeneous treatment effect · Invserse propenity weighting ·
Placebo tests

1 Introduction

Causal Impact (CI) is a measure of the incremental change in a customer’s
outcomes (usually spend or profit) from a customer event or action (e.g, signing
up for a paid membership). Business leaders commonly use some version of
CI values as important signals for driving various decisions, such as marketing
content ranking or capital investments.

The CI values are leveraged by partner teams to understand and improve
the value they generate through customer behaviors. Some examples include
customer actions such as ‘first purchase in category X’, ‘first stream in service Y ’,
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or ‘sign up for program Z’1. For many of these customer actions, we are unable
to conduct A/B experiments due to practical or legal constraints. We instead
use observational data, effectively leveraging rich customer data to isolate causal
relationships in the absence of a randomized experiment.

In this paper, we provide results for average treatment effects and condi-
tional average treatment effects (i.e., customer-level CI values) estimated using
a variant on the Double Machine Learning (DML) methodology [1]. The paper
is arranged as follows. In Sect. 2, we give a brief overview of the use of causal
measurement. In Sect. 2.1, we introduce an example of a conventional regression-
and-propensity-adjustment system used for calculating CI values. We discuss the
shortcomings of the traditional method and the advantages of moving to DML.

Section 3 covers the details of our DML implementation for calculating CI val-
ues. Our contributions include improving the robustness of CI estimates through
inverse propensity weighting, adding the ability to produce heterogeneous CI val-
ues, implementing customer-level confidence intervals with various assumptions,
and making available the JSON Machine Learning interface to accelerate experi-
mentation. We present results in Sect. 4 for a few customer actions and conclude
with the takeaways and ideas for future work in Sect. 6.

2 Causal Impact Estimation in Industry

Causal impact estimation drives a large number of business decisions across
industry. This includes multiple organizations such as retail, search, devices,
streaming services, and operations. To this end, most companies have invested
in developing and deploying models that vend CI values for the cutsomer actions
under consideration. In the next section, we give an overview of the traditional
potential-outcome based model which is widely used in the industry for CI esti-
mation. This will be the baseline model.

2.1 CI: P-Score Binning and Regression Adjustment Framework

CI framework applies the principles of observational causal inference. We rely on it
because A/B testing is not possible to evaluate the impact of certain treatments
due to practical constraints (e.g., the treatment is not effectively assignable, or
would be too expensive to assign at scale). Observational causal inference meth-
ods rely on eliminating potential confounders through adjustment on observed
variables. Under a “selection on observables” assumption, we believe we can esti-
mate the causal effect correctly on average. Applied to the customer’s next 365
days of spending, for example, the CI value represents the incremental spending
that a customer makes because of participating in a certain action compared to
the counterfactual case where they didn’t take that particular action. The formal
framework for this kind of counterfactual reasoning is the “potential outcomes”
framework, sometimes known as the Neyman-Rubin causal framework [3–5].

1 We use placeholder X,Y ,Z to maintain business confidentiality.
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There are many procedures aimed at estimating potential outcomes. One
example estimator is a combination of propensity score stratification and regres-
sion adjustment:

1. Propensity binning. Group the customer based on their propensity to par-
ticipate in the action. This is done based on features that relate to recency,
frequency, and the monetary behavior of customers along with their other
characteristics such as their tenure type.

2. Regression adjustment. In each of the groups, we build a regression model
on the control customers with customer-spend as the target. The trained
model is applied on the treatment customers to predict the counterfactual
spend (how much would customer have spent if they didn’t participate in the
action). The difference between the predicted counterfactual and the actual
spend is the CI value. We take a weighted average across different groups to
get the final CI value for the customer action.

In addition, we require the CI model to be able to scale to the business use
case. For instance, we may want generate CI values for hundreds of customer
actions in an automated way. In the rest of the paper, we refer to this estima-
tion procedure as “CI-PB” (short for “propensity binning”) and the DML-based
estimator as “CI-DML”.

3 CI: DML Framework

Note that one of the challenges in validating the causal estimates is posed by
the Fundamental Problem of Causal Inference [2]. The lack of observable ground
truth makes it difficult to validate the output of a causal model, but well-
constructed procedures can at least provide some guarantees of causally inter-
pretable estimates under certain assumptions. The Double/Debiased Machine
learning (DML) method proposed by Chernozhukov et al. [1] leverages the pre-
dictive power of modern Machine Learning (ML) methods in a principled causal
estimation framework that is free of regularization bias asymptotically.

For treatment D, features X, we express the outcome Y as an additively
separable function of D and arbitrary function of features X:

Y = Dβ + g(X) + ε (1)

DML’s estimation strategy is motivated by writing out the residualized repre-
sentation of Eq. (1) and its parts:

Ỹ = Y − E(Y |X) (2)
D̃ = D − E(D|X) (3)
Ỹ = D̃β + ε̃ (4)

We use ML models to estimate E(Y |X) and E(D|X). The residuals from out-
come equation (Eq. (3)) are regressed on residuals from propensity equation
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(Eq. (4)) to obtain the causal parameter β. We use ML models to predict E(Y |X)
and E(D|X). We leverage K-fold sample splitting so that training and scoring of
the ML models happens on different folds. We use a 3-fold sample split and follow
the “DML2” approach [1] where we pool the residuals outcome and propensity
residuals across all the folds to fit a single, final regression of the residualized
outcome on the residualized treatment (Eq. (4)).

3.1 Inverse Propensity Treatment Weighting

We use a weighted ordinary least squares to solve the residual regression equa-
tion (Eq. (4)). Where the weights are determined by the Inverse Propensity
Treatment Weighting (IPTW or IPW) [12]. Our IPTW weights correspond to
the Horvitz-Thompson (HT) weight [13], in which the weight for each unit is
the inverse of the probability of that unit being assigned to the observed group.
In Table 1 we define the weights that balance the distributions of covariates
between comparison groups for two widely used estimands, the Average Treat-
ment Effect (ATE) and Average Treatment Effect on the Treated (ATT). Weight-
ing helps achieve additional robustness, bringing us closer to a conventional Dou-
bly Robust estimator. Applying these weights when conducting statistical tests
or regression models helps reduce impact of confounders over and above what we
get from the regression adjustment [14]. Secondly, the weights allow us to target
the estimand; we prefer the ATT since it represents the treatment effects for
those customers actually treated historically who are marginally closer to those
who will be treated next. We refer to the customer-level counterparts of ATE,
ATT estimands as HTE and HTT respectively.

Table 1. IPW weights for different estimands. D is the treatment assignment and ê(X)
is the treatment propensity, E(D|X).

Estimand IPW weight

Average treatment effect (ATE)
D

ê(X)
+

1−D

1− ê(X)

Average treatment effect on the treated (ATT) D + (1−D)
ê(X)

1− ê(X)

3.2 Common Support and Propensity Score Trimming

For many treatments, propensity distribution has significant mass near 1 for the
treated group and near 0 for the control group (see an example histogram in
Fig. 1). Scores near the boundary can create instability in weighting methods.
In addition, these scores often represent units for whom we cannot make an
adequate treatment-control comparison. We limit analysis to the common sup-
port region, where propensity score distributions overlap between treated and
untreated samples.

We also use trimming to exclude customers whose estimated propensity is
outside of the range [α, 1 − α]. We experimented with different thresholds on
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Fig. 1. Representiative propensity scores distribution for control (top panel) and treat-
ment (bottom panel) groups.

various customer actions and observed that α = 0.001 with rescaled propensity
scores works the best.

Normalizing and Rescaling Weights. When using the IPW, we normalize
the weights by rescaling the propensity scores for each customer i as in Eq. (5).

ê(Xi)scaled =

(
D

ê(X)

)
∗ ê(Xi) (5)

D and ê(X) in Eq. (5) are the averages of treatment assignment and propensity
score respectively taken over both the treatment and control population com-
bined. Propensity trimming and rescaling reduces variance, leads to more stable
estimates, and tighter confidence intervals as seen in Fig. 2.

Fig. 2. Effect of propensity scores trimming and rescaling on estimated CI for a certain
customer action.
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3.3 Heterogeneity in DML

CI-DML implements a version of the heterogenous effects modeling proposed in
[6], by leveraging the treatment-feature interactions in the final stage of DML
to identify heterogenous (customer-level) responses. The general form of Eq. (4)
can be written as

Ỹ = h(X, D̃) + ε̃ . (6)

In fact, Eq. (4) is a special case of Eq. (6) with h(X, D̃) = D̃β. We interact
treatment with the features and define h(X, D̃) ≡ ψ(X) ∗ D̃ β, where ‘∗’ rep-
resents element-wise multiplication. Thus, the heterogeneous residual regression
becomes:

Ỹ = ψ(X) ∗ D̃ β + ε̃ (7)

We want ψ(X) to be low-dimensional so that we are able to extract the coefficient
β in Eq. (7) reliably.

Let N and M be the number of customers and features respectively. If the
dimension of ψ(X) is N × K, we want K � M . In our use case, M is typically
2000 and K is typically around 20. To get the low-dimensional representation,
ψ(X) we proceed as follows:

1. We project the original features onto an orthogonal space through Principal
Component Analysis (PCA).

2. We run a K-means clustering algorithm on the highest-signal Principal Com-
ponents. Dimension reduction from PCA helps to reduce dimensionality-
related problems when computing Euclidean distance for K-means clustering.

3. We calculate the K cluster scores for each customer, as ψi,c =
1/di,c∑K
k=1 1/di,k

where di,c is the distance of customer i’s value from centroid of cluster c (see
schematic in Fig. 3).

Fig. 3. Schematic for calculation of distance from cluster centroids. The red dot is
represented by three features which is the distance from centroids from blue, green,
and black clusters. (Color figure online)
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Once we have calculated the distance features ψ(X) for each customer, we
interact them with the propensity residuals and fit a linear regression model using
IPW (refer Sect. 3.1) to extract the coefficients β in Eq. (7). The heterogenous
estimates are given by

h = ψ(X)β . (8)

E.g., for K = 3, h = ψ1β1 + ψ2β2 + ψ3β3.
A schematic of CI-DML workflow is shown in Fig. 4.

Fig. 4. Schematic of the CI-DML modeling framework.

3.4 Confidence Intervals in DML

One of the disadvantages of CI-PB is that generating confidence intervals requires
bootstrapping around the multi-step process and is computationally expensive.
Obtaining confidence intervals in CI-DML is straightforward. For a single ATT
parameter estimate, we obtain the confidence interval simply by calculating the
variance of the estimate of β in Eq. (4). We also estimate Huber-White het-
eroscedasticity consistent standard errors [7,8]. For the ATT case, the steps for
calculating variance of the coefficient β̂ are as follows:

V ar(β) = HΣ̂H ′. (9)

For a customer, ‘p’:

σ̂2
p = Û2

p = (Ỹp − D̃pβ̂)′(Ỹp − D̃pβ̂) , (10)

where β̂ is the value of coefficient from solving Eq. (4). Note that Ỹp and D̃p are
scalars. Σ in Eq. (9) is a diagonal matrix with the squared prediction error σ̂2

p

for each customer on its diagonal and H in Eq. (9) is defined as

H = (D̃′ ∗ WD̃)−1D̃′ ∗ W (11)

where W are the IPW weights as defined in Sect. 3.1.
We compute the confidence intervals on the causal estimate β using V ar(β).
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Customer-Level Confidence Intervals. CI-DML also provides the ability to
obtain customer-level confidence intervals. From Eq. (8), we can write

V ar(h) = V ar(ψβ) =
∑
k

ψ2
kV ar(βk) +

∑
k �=l

ψkψlCov(βk, βl). (12)

We calculate variance of the heterogeneous coefficients following similar app-
roach as in Eqs. 9, 10 and 11. The only difference is we replace D̃p → ψ(Xp)∗D̃p

in Eq. (10) and D̃ → ψ(X) ∗ D̃ in Eq. (11).
For the ATT case, V ar(β) is a scalar whereas for the HTT case, V ar(β) is

a K × K matrix. The first and second terms in the summation in Eq. (12) are
the diagonal and the off-diagonal terms of the V ar(β) matrix respectively.

3.5 DML Implementation

We developed a causal ML library with JSON driven modeling configuration (see
Fig. 5). JSON ML Interpreter (JMI) translates JSON configuration to executable
Python ML application.

Fig. 5. JSON-Machine Learning Stage Interpreter modeling stages

The main advantages of JMI approach are:
Flexibility: Business questions from various domains cannot always be
addressed through a single unified configuration of a causal model. We address
this in our system where users can invoke different causal analysis frameworks
(DML, Causal Forests) and prediction algorithm type (regression, classification,
clustering).
Scalability: CI-DML utilizes distributed implementation of algorithms and file
system via Apache Spark which helps causal modeling at the big-data scale (100
millions customers, multiple targets, and time horizons)
Persistence: CI-DML inherits SparkML serialization and deserialization meth-
ods to persist and instantiate fitted models for live or batch inference.
Compatibility: In addition to Spark, interfaces to adapt ML libraries from
scikit-learn, tensorflow, and MXNet, and other communities can be onboarded
using the configurable abstraction support by JMI.

In the system, we dockerize the JMI Causal ML library which is platform
agnostic and has the flexibility to extend and utilize different compute engines
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like AWS EMR, Sagemaker or AWS Batch based on the use case and will abstract
the computation information from the user. Dockerization also helps version
control and the build environment via standard software development tooling.

4 Results

Next we present the results for CI-DML. The target variable we focus on is
customer spending, but our framework on can be leveraged to obtain the causal
impact on any other target variable of interest (e.g., net profit, units bought etc.).
For every CI run, we produce both the population-level ATT values (Eq. (4))
and the customer-level HTT (Eq. (8)) values.

We compared the CI-PB and CI-DML results for 100+ customer actions.
As noted earlier, two major advantages of CI-DML are the availability of cus-
tomer grain results (aka. HTT) and confidence intervals. In Fig. 6, we present
population-level (ATT) and customer-level values for selected representative cus-
tomer actions2. The reported confidence intervals are for both homoscedastic and
heteroscedastic error variances. To get a sense of the level of variance in customer-
grain results, we report the percentage of customers where the customer-level
confidence interval crosses zero. We also report the out-of-sample fit metrics for
outcome and propensity models in DML.

Fig. 6. CI values and confidence intervals for selected customer actions.

Our takeaways from the analysis of 100+ actions are:

1. Population-level CI-PB and CI-DML values are aligned for 86% of actions.

2 We anonymize actions to preserve business confidentiality.
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2. When the customer-level CI values are aggregated up, they are generally
aligned with the population-level CI-DML values.

3. The difference between the CI-PB and CI-DML values are larger either when
the data is noisy and/or we have a small sample size. For such cases, we also
see large confidence intervals and the mean of HTT values is farther away
from the CI-DML ATT values.

4. The homoscedastic confidence intervals are tighter than the heteroscedastic
confidence interval as expected. However, the homoscedastic confidence inter-
vals likely under-predict the variance. We recommend business stakeholders
to use the heteroscedasticity-robust confidence intervals.

5. The customer-level confidence intervals are economically reasonable. The per-
centage of customer-level confidence interval crossing zero increases for data
with lower participation and is small for customer actions with a long history.

6. The ML model metrics shown in Fig. 6 are using ridge regression for the
outcome model and logistic regression for the propensity model. We noticed
that the model metrics as well as the CI values are relatively insensitive to
the choice of ML model at the outcome/propensity stage. Accordingly, we
leverage ridge and logistic models due to their favorable compute time.

4.1 Hyperparameter Tuning

The hyperparameters (e.g., regularization strength) in the outcome and propen-
sity model are chosen based on the out-of-sample performance. For the HTT
estimates, the two main hyperparameters are the number of principal compo-
nents and the number of clusters.

We choose the number of principal components (PC) based on the percentage
of variance explained. We find that around 300 PC, about 80% of the variance
is explained (Fig. 7). The amount of variance explained grows much slowly as we
add more number of PC. To avoid sparsity issues in the downstream K-means
calculation, we choose the number of PC components to be 300.

Fig. 7. Amount of variance explained as a function of principal components.
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Choosing the number of clusters is less straightforward. Standard tools such
as elbow method and Silhouette score do not yield a clear answer for the optimal
cluster choice. In the current work, we choose 20 clusters, since we do not see
much change in any form of out of sample fit statistics beyond 20. We also find
that the mean of HTT values is robust with respect to the choice for number
of clusters. In future work, we aim to make this choice in a more data-driven
way (e.g., by evaluating how output scores perform in a downstream use case
measured through A/B tests), since there may be important variation in the
quality of output for decisions that is not picked up by conventional fit statistics.

4.2 Spread of Customer-Level CI Values

So far, we have only looked at the mean of customer-level values in Fig. 6. In
Fig. 8, we look at the customer-level CI scores for an example customer action.
We see that most of the customers have CI value close to the average HTT value.
We see that there are few customers with a low CI value which shifts the mean
to the left.

Fig. 8. Spread of customer-level CI values. The red line is the mean of customer-level
CI values. (Color figure online)

5 Validation

5.1 Placebo Tests

Placebo tests help us understand the relative ability of competing causal esti-
mates to account for selection bias. Selection bias occurs when customers who
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take an action (e.g., stream video) have unobserved characteristics not included
in the model that makes them systematically more or less likely to take the
action (e.g., high income, low age etc.). In placebo tests, we take the treatment
group customers and simulate as though they took the action a year before the
actual date. This is achieved by shifting the event date by one year and recalcu-
lating the features based on the shifted event date. The CI estimated in this set
up is the “placebo error”. Since, this is a fake event, a model with a lower placebo
error than another on the same underlying data suggests that it has smaller con-
tribution from selection bias in its estimate. Running placebo tests on all events
is computationally expensive, so we selected a few events for placebo analysis.
The results are shown in Fig. 9.

Fig. 9. Placebo results for selected customer actions for CI-PB and CI-DML model.

The key takeaways from Fig. 9 are:

– Selection bias is inherently event-dependent. When averaged across the
selected customer actions, we see a 2.24% improvement in placebo estimates
when going from CI-PB to CI-DML.

– Selection bias is primarily impacted by the modeling features. As CI-PB
and CI-DML use the same features, we did not expect big improvements
in placebo tests. The consistent improvement across the events shows that
double machine learning methodology is better able to adjust for observables
even when the same features are used.

5.2 Confidence Interval Comparison

One of the major wins in CI-DML is that we provide heteroskedasticity-
consistent confidence intervals at both a customer and aggregate level for every
CI analysis in a scalable and lower-cost fashion. We compare the uncertainty
estimates (specifically the width of confidence intervals) from CI-DML with the
bootstrap results in CI-PB for a few events in Fig. 10.
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Fig. 10. CI-PB bootstrap vs. CI-DML confidence interval width comparison

We find confidence interval width to be comparable among the two
approaches. On average, the CI-DML width (scaled with CI-PB point esti-
mate) is 1.5% smaller when compared to bootstrap-based confidence interval.
A bootstrap-enabled CI-PB run takes about 2.5X more time than a CI-DML
run. Bootstrap also does not scale for events with large number of customers. As
CI-DML approach for confidence intervals is based on a closed form implementa-
tion, we do not have any scalability issues. In addition, note that bootstrapping
has theoretical limitations when used for matching estimators [16].

6 Conclusion and Future Work

In this work, we introduced a state-of-the-art methodology used for calculat-
ing CI values. We noted that a DML based framework eliminates bias, allows
us to extract heterogeneity in CI values, and provides a scalable way to con-
struct heteroscedastic confidence intervals. We also made a case for using IPW
and common support to refine the CI estimates. We demonstrated how leverag-
ing PCA followed by K-means clustering allowed us to introduce customer-level
heterogeneity. Using JSON based config allows flexibility to experiment with a
wide variety algorithms and can take us from experimentation to production in
minimal steps.

We presented results for few anonymized customer actions across different
domains. Both the population-level and customer-level results for the customer
actions we have looked at so far are aligned with the CI-PB results and our expec-
tations, but we now can take advantage of convenient calculation of confidence
intervals, estimates of heterogeneous treatment effects, and greater scalability.



526 S. More et al.

Note that estimation of heterogeneous or context-aware treatment effects is
an active area of research with wide applications ranging from marketing to
health care. Distribution of treatment effects across different subgroups, or as
a function of specific individual-level characteristics provides researchers with
additional insights about the treatment/ intervention analyzed. Our work show-
cases a scalable real-world application for extracting average as well heteroge-
neous causal effects which we believe will be of interest to the broader scientific
community.

6.1 Future Work

Validating the causal estimates is challenging due to lack of ground truth. In
the current work, we relied on the model fit metrics in the DML steps, placebo
tests, and on bridging the CI-DML and CI-PB outputs. In the future, we plan to
include metrics which focus on the validation of heterogeneous treatment effects.
Examples of these include metrics based on Generic Machine Learning [17] and
empirically calibrated Monte Carlo resampling techniques [18].

Ethical Implication. The data presented in the paper is completely anonymized. It
cannot be used for inference of personal information of any kind.
The method presented in this paper falls in the domain of observational causal infer-
ence. Observational causal inference methods are used to gauge impact of things already
happened. The inference methods by itself do not aid in any wrong doing. But in the
unfortunate case of bad things happening to an individual (e.g., unfair economic pol-
icy/ smoking/ abuse), the causal methods can help identify the impact and help guide
the recovery methods. In that sense, work presented here can be used to seek justice
for the victim.
Of course, as a society we want to make sure that we do not subject individuals to an
unscrupulous treatment to extract the causal impact of that treatment. Because the
impact of such treatment could be adverse in some cases. But again the work presented
here is used to analyze the aftermath of an action/ treatment. The type of treatments
a person can be subjected to is outside the scope of current work.
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Appendix

A Sample JSON Config

We show a snippet of JSON config in Fig. 11. We can swap the specified models
in the outcome and propensity step with any ML model. Likewise we can easily
configure pre/post-processing steps and hyperparameters through JSON files.

Fig. 11. A sample JSON config where we are using Ridge regression for the outcome
model and the logistic regression for the propensity model.
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Abstract. Knowledge tracing (KT), or modeling student knowledge
state given their past activity sequence, is one of the essential tasks
in online education systems. Research has demonstrated that students
benefit from both assessed (e.g., solving problems, which can be graded)
and non-assessed learning activities (e.g., watching video lectures, which
cannot be graded), and thus, modeling student knowledge from multi-
ple types of activities with knowledge transfer between them is crucial.
However, current approaches to multi-activity knowledge tracing can-
not capture coarse-grained between-type associations and are primar-
ily evaluated by predicting student performance on upcoming assessed
activities (labeled data). Therefore, they are inadequate in incorporating
signals from non-assessed activities (unlabeled data). We propose Graph-
enhanced Multi-activity Knowledge Tracing (GMKT) that addresses
these challenges by jointly learning a fine-grained recurrent memory-
augmented student knowledge model and a coarse-grained graph neural
network. In GMKT, we formulate multi-activity knowledge tracing as
a semi-supervised sequence learning problem and optimize for accurate
student performance and activity type at each time step. We demon-
strate the effectiveness of our proposed model by experimenting on three
real-world datasets.

Keywords: Educational data mining · Knowledge tracing · Knowledge
transfer · Multi-activity · Transition-aware · Graph neural network

1 Introduction

The proliferation of large-scale online learning systems has facilitated distance
education and provided students with access to a vast array of courses and diverse
learning materials. One of the essential tasks in these systems is knowledge trac-
ing (KT), which aims to model student knowledge based on their past interac-
tions with the learning materials. Traditionally, KT models have focused on mod-
eling assessed learning activities, such as solving problems and quizzes, and pre-
dicting students’ performance in them [11,12,14,24,27]. However, recent research
has recognized that students learn from both assessed and non-assessed learning
activities, such as watching video lectures and studying worked examples [3,22].
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G. De Francisci Morales et al. (Eds.): ECML PKDD 2023, LNAI 14174, pp. 529–546, 2023.
https://doi.org/10.1007/978-3-031-43427-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43427-3_32&domain=pdf
http://orcid.org/0009-0008-3913-7836
http://orcid.org/0000-0002-8933-3279
https://doi.org/10.1007/978-3-031-43427-3_32


530 S. Zhao and S. Sahebi

Therefore, recently, multi-activity KT models [2,8,41,42] have emerged to incor-
porate students’ learning history of both assessed and non-assessed types of
learning materials, resulting in more accurate predictions of students’ future
performance. However, these models still do not fully utilize the observations
from non-assessed learning activities and cannot model long-range associations
and complex knowledge transitions between learning materials.

More specifically, similar to their traditional counterparts, current multi-
activity KT models are formulated as supervised sequence learning problems
that predict students’ future performance in non-assessed activities. Although
these models incorporate non-assessed learning activities as input, they are
not explicitly considered in the model’s objective function, and therefore, they
are not fully involved in optimization and training process. In effect, the non-
assessed activities are underrepresented and their impact on student knowledge
growth is diluted by these models. Moreover, similar to most modern KT mod-
els, multi-activity KTs are formulated as a form of recurrent neural network or
tensor factorization models with Markovian assumptions that represent learn-
ing materials in fine-grained latent-concept spaces. Thus, the long-range and
coarse-grained associations between learning materials are lost in these models.
Furthermore, most multi-activity KTs represent all learning activity types in
the same latent space and do not explicitly model student knowledge transfers
when students transition between different activity types. These models over-
look essential aspects of KT by ignoring processes by which student knowledge
is attained, transferred, and materialized when transitions happen between var-
ious activity types.

To solve these challenges, we propose Graph-enhanced Multi-activity Knowl-
edge Tracing (GMKT). GMKT fully represents both assessed and non-assessed
learning activity and incorporates the complex, long-range associations among
them. In GMKT, we represent the fine-grained learning material associations by
developing a knowledge transfer layer, and the coarse-grained long-range associ-
ations by constructing a multi-activity graph neural network (GNN [15]) layer.
We develop a transition-aware recurrent network for GMKT’s knowledge trans-
fer layer that traces student knowledge over different learning material types
and learns knowledge transfer patterns among them using transition-specific
knowledge transfer weight matrices. In GMKT’s graph neural network layer, we
construct a multi-activity transition graph according to the global transitions
between learning materials and learn coarse-grained learning material repre-
sentations by discovering transition-aware propagation and association matrices
between them. Moreover, we formulate multi-activity KT as a semi-supervised
learning problem and introduce a new activity-type learning objective for GMKT
that uses the student’s choice of learning activity type as an additional signal in
training the model. To summarize, the main contributions of this work are:

• We propose two transition-aware multi-activity recurrent and graph neural
networks in GMKT that jointly represent fine-grained and long-range coarse-
grained associations between different types of learning materials.
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• We formulate the multi-activity knowledge tracing, with a novel perspec-
tive, as a semi-supervised sequence learning task and add an activity type
objective to GMKT’s optimization problem to fully discern the signals from
non-assessed learning activities.

• We demonstrate the effectiveness of GMKT on three real-world datasets by
comparing it with 15 baseline methods from various research lines, conducting
ablation studies, and performing sensitivity analysis.

• We showcase the efficacy of GMKT’s transition-aware knowledge transfer
by analyzing knowledge transfer weight matrices between different material
types.

2 Related Work

Knowledge Tracing: KT approaches mainly rely on the predefined association
between learning material and knowledge concepts or components [5,11,13,26],
such as BKT [11] and Regression-based KT methods [5,6,13,18,26]. These
approaches measure student knowledge of learning material by quantifying stu-
dent mastery level of the set of knowledge concepts [13,18,19,21]. Later, models
like DKT and DKVMN have been proposed to learn the underlying latent con-
cepts of the learning materials [14,17,24,27,30,32,39], since predefined mapping
between materials and concepts is typically labeled by human experts, which is
costly and impractical for nowadays large-scale online education systems.

All these methods focus on assessed learning materials and do not model
students’ non-assessed learning activities. Zhang et al. and Choi et al. sug-
gest including non-assessed activities as additional features in modeling stu-
dent knowledge [8,40]. However, these models do not explicitly measure a stu-
dent’s knowledge state when interacting with non-assessed materials. To the
best of our knowledge, there are only a few multi-activity KT approaches that
explicitly model student knowledge from multi-type students’ learning activities,
including MA-Elo [2], MA-FM [1], MVKM [41], DMKT [34], TAMKOT [42].
However, except TAMKOT, these methods either require a predefined map-
ping between the learning materials and concepts, or explicitly represent the
dynamics of knowledge transfer among different learning activities. Moreover,
including TAMKOT, none of the methods mentioned above consider the global
neighborhood-based transitions and have an activity-type learning objective.

Graph Neural Network: More recently, GNN [15] is widely used to learn and
represent the structural information of a graph. It has been shown success in var-
ious domains [28,29,35,37]. Existing GNN-based KT methods include GKT [23],
GIKT [36], PEBG [20], SKT [33], and DGEKT [12]. Except for DGEKT build-
ing graphs through learning activities, these GNN-based methods all create
graphs between learning materials or knowledge concepts, neglecting the global
transition-structured information from student activity sequences. Additionally,
all of the previous GNN-based methods focus on single-type learning material,
while we propose to build graphs for multi-type materials.
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3 Problem Formulation

In this work, our goal is to model and trace student knowledge by practicing
both assessed and non-assessed learning activities. Assuming that there are two
types of learning materials, one assessed (e.g., questions) and one non-assessed
(e.g., video lectures), we represent a student’s whole trajectory of activities as
a sequence of tuples, {〈i1, d1〉 , ..., 〈it, dt〉}, where each tuple 〈it, dt〉 indicates a
student’s activity at time step t. Here, dt ∈ {0, 1} is a binary indicator that
represents the learning activity type at time step t, with 0 denoting assessed
and 1 denoting non-assessed type, and it indicates the learning material being

interacted with. Specifically, we formulate it as: it =

{
(qt, rt) if dt = 0
lt if dt = 1

, where

(qt, rt) represents the student’s interaction with the assessed material qt at time
step t, with performance rt, and lt represents the non-assessed material that
the student interacted with at time step t. Conventionally, knowledge tracing is
evaluated by the task of performance prediction in the target student’s upcoming
assessed learning activity qt+1, based on their past assessed activity records
{(q1, r1), . . . , (qt, rt)}. Here, given a student’s past assessed and non-assessed
learning activity history, {〈i1, d1〉 , . . . , 〈it, dt〉}, we aim to predict their upcoming
performance on the assessed material qt+1 at time step t + 1.

4 Graph-Enhanced Multi-Activity Knowledge Tracing

Our model, Graph-enhanced Multi-activity Knowledge Tracing (GMKT), com-
prises four key layers, including (1) The embedding layer for encoding each stu-
dent activity into a latent concept feature space; (2) The multi-activity transi-
tion graph layer that incorporates the coarse-grained long-range patterns among
learning materials; (3) The recurrent knowledge transfer layer that captures stu-
dent knowledge and fine-grained transfers as students transition between differ-
ent activities; and (4) The prediction layer that generates a prediction of a stu-
dent’s upcoming performance on an assessed material. We introduce the details
of each layer in the next sections and show GMKT’s architecture in Fig. 1.

Notations. We use lowercase letters, boldface lowercase letters, and boldface
capital letters to respectively denote scalars (qt), vectors(q t), and matrices (Aq).

4.1 Embedding Layer

The embedding layer is designed to learn the embedding of each learning activ-
ity it, which is then used as input for capturing the students’ knowledge state
and transfer from the latent concept space. To do this, GMKT learns the latent
representation of the material (qt and lt) and the student response (rt) for activ-
ity it. Assuming two learning material types, questions and video lectures, we
embed each material type separately. This design allows for a more flexible rep-
resentation by allowing different embedding sizes for each material type. Specif-
ically, GMKT learns two underlying latent embedding matrices Aq ∈ R

NQ×dq
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Fig. 1. The architecture of the GMKT model. The solid and dashed lines are identical.
Different line types are used to clarify between lines that cross/fall over each other.

and Al ∈ R
NL×dl to respectively map all questions and lectures to their spec-

ified latent spaces. Here, NQ and NL are the number of questions and video
lectures, and dq and dl are the respective latent embedding sizes. To incorpo-
rate student performance outcomes in assessed activities, GMKT maps rt into a
higher-dimensional performance latent space. We consider two scenarios for rt,
namely, binary outcomes (e.g., correctness in solving a question) and numerical
outcomes (e.g., normalized exam scores between 0 and 1). For the binary case,
we learn an embedding matrix Ar ∈ R

2×dr to map rt, where dr is the perfor-
mance embedding size. For the numerical case, we use Ar ∈ R

dr , and apply a
linear mapping function f(rt) = rtAr to the performance rt.

4.2 Multi-Activity Transition Graph Layer

Student learning activity sequences can provide coarse-grained insights into
relationships between different learning materials. Observing students interact-
ing with materials consecutively may indicate that they are similar or related.
To capture such coarse-grained aggregate information, we construct a multi-
activity transition graph G = (V, E), where V consists of all assessed and non-
assessed learning materials as nodes, and E represents the undirected edges
between materials that correspond to transitions between materials in a stu-
dent’s sequence. An edge exists between two materials if a student from the train-
ing sessions has interacted with them consecutively. For example, given a stu-
dent’s sequence {〈(question1, 0), 0〉 , 〈lecture4, 1〉 , 〈(question2, 1), 0〉 , ...}, edges
between question1 and lecture4, as well as question2 and lecture4, are added to
graph.
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To update a learning material’s representation, we use propagation matrices
to integrate the embedding of that learning material with its neighboring mate-
rials. Having assessed and non-assessed types of learning materials and their
different contributions, we also learn transition matrices to map the two types
to each other. Specifically, taking the material’s embedding q t or l t from the
embedding layer as the input, the material aggregation is formulated as:

qp
t =V T

Q

[
q t +

1

|N Q
qt |

∑
i∈NQ

qt

GT
QQq i +

1
|N L

qt |
∑

j∈NL
qt

GT
QLl j

]
+ bQ (1)

lpt =V T
L

[
l t +

1
|N L

lt
|

∑
i∈NL

lt

GT
LLl i +

1

|N Q
lt

|
∑

ij∈NQ
lt

GT
LQq j

]
+ bL (2)

where qp
t and lpt represent the coarse-grained embeddings of learning material qt

and lt after the GNN propagation. Transition matrices GQQ ∈ R
dq×dq , GQL ∈

R
dl×dq , GLL ∈ R

dl×dl , and GLQ ∈ R
dq×dl are learned to map each material

type’s embeddings to corresponding material space for propagation. N ∗
∗∗ denotes

the set of neighbors from type * for the material **. For example, N L
qt denotes all

the lecture neighbors (“L”) of question (“Q”) qt. V T
Q ∈ R

dq×dq and V T
L ∈ R

dl×dl

are weight matrices for propagation, bQ ∈ R
dq and bL ∈ R

dl are bias terms.
In this layer, in addition to the coarse-grained associations, the neighborhood-

based propagation enables the discovery of long-range relationships between
materials that cannot be easily captured in the recurrent knowledge transfer
layer of the architecture.

4.3 Knowledge Transfer Layer

We design the knowledge transfer layer to accurately learn the dynamic student
knowledge state and the fine-grained material representations. To do so, similar
to dynamic key-value memory networks (DKVMN) [39], we employ a static key
matrix M k ∈ R

N×dk to represent N latent concept features and a dynamic
value matrix M v

t ∈ R
N×dv to track the student’s mastery state in them. Each

vector in the static key matrix corresponds to a concept characterized by dk

latent concept features, while each vector in the dynamic value matrix is a dv-
size memory slot to monitor the student’s updated knowledge state (mastery
levels) of the corresponding concept over time steps.

Unlike DKVMN, GMKT further models different activity types and the tran-
sitions among them. As the way knowledge transfers between different material
types can vary depending on the order of the transition, we learn a unique
knowledge transfer pattern for each transition between every two distinct mate-
rial types. To model these transition-specific transfer patterns, we incorporate
current and previous activity types as additional inputs. GMKT uses a set of
indicators to activate corresponding knowledge transfer weight at each time t.
Having two material types, questions (“Q”) and lectures (“L”), four transition
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indicators at each time t are formulated based on material types dt and dt−1:

sQQ = (1−dt)(1−dt−1) sQL = dt(1−dt−1) sLQ = (1−dt)dt−1 sLL = dtdt−1

(3)
At each time step t, only one of the above transition indicators is equal to 1,

while the rest are 0. For example, sQL = 1 and sQQ = sLQ = sLL = 0 indicate
that the student has transitioned from attempting a question at time t − 1 to
watching a video lecture at time t. Then, the transition indicators s∗∗ are uti-
lized to activate the corresponding transition-specific weight matrices T ∗∗ for
updating the student’s knowledge state M v

t . Consequently, GMKT first com-
putes the attention weight vector w t, which represent the correlation between
learning material (qt or lt) and each of the N latent concepts. The coarse-grained
embedding of the material (qp

t or lpt ) from Eq. 1 and 2, and the static key matrix
M k are used to compute w t ∈ R

N as follows:

wt(i) = softmax(
[
(1 − dt) · RT

q q
p
t + dt · RT

l l
p
t

]TM k(i)) (4)

where wt(i) is the i-th element in the attention weight vector w t, and the
Softmax function softmax(mi) = emi/

∑
j emj is to ensure that the attention

weights sum to one. Rq ∈ R
dq×dk and Rl ∈ R

dl×dk are used to map question
and lecture activity embedding to the concept feature space of M k in size dk.

Then, at each time step t, the student’s knowledge state is updated based on
the learning activity it ((qr, rt) or lt), using the erase-followed-by-add mechanism
to modify the memory value matrix M v

t . It involves erasing previous redundant
information before adding new information to M v

t and is formulated as follows:

Erase:
et = σ

(
(1 − dt) · ET

q [q
p
t ⊕ r t] + dt · ET

l l
p
t + be

)
(5)

M̃
v

t (i) =
[
sQQ · TQQM v

t−1 + sLL · TLLM v
t−1

+ sQL · TQLM v
t−1 + sLQ · TLQM v

t−1

]
(i)·[1 − wt(i)et

] (6)

Add:
d t = Tanh

(
(1 − dt) · DT

q [q
p
t ⊕ r t] + dt · DT

l l
p
t + bd

)
(7)

M v
t (i) = M̃

v

t (i) + wt(i)d t (8)

Here, σ and Tanh are Sigmoid and Tanh activation functions. The erase vec-
tor et ∈ [0, 1]dv is formulated to remove redundant knowledge information from
M v

t−1. The add vector d t ∈ R
dv is formulated to capture the new knowledge that

the student acquires at time t. M̃
v

t (i) and M v
t (i) indicates the i-th knowledge

slot of M v
t after erasing and adding process. We acknowledge that knowledge

transfer can differ for the four possible transitions among different learning mate-
rial types, therefore, separate transfer weight matrices are utilized. These matri-
ces are activated by using the four different transition indicators s∗∗, namely
TQQ, TQL, TLQ, and TLL ∈ R

dv×dv . For example, when the student switches
from watching video lectures to solving questions, TLQ represents knowledge
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transfer from the previous student knowledge state M v
t−1 to the current state

and it is activated since sLQ = 1. In addition, (1−dt) and (dt) are used to deter-
mine whether the learning activity it is a question or a lecture attempt. They are
used to activate the corresponding matrices E q and Dq ∈ R

(dq+dr)×dv , E l and
D l ∈ R

dl×dv for mapping the learning activity embedding to concept feature
space of value matrix. be and bd ∈ R

dv represent the bias terms.
In this layer, representing student knowledge and learning material concepts

in fine-grained latent features and the transition-aware transfer matrices allow
for more precise student performance prediction and capture more detailed asso-
ciations between consequent learning materials in a sequence.

4.4 Prediction Layer

In this layer, GMKT predicts the performance of a student on a given question
qt+1 at the next time t+1, based on their knowledge state of the qt+1’s concepts.

wt+1(i) = softmax([RT
q q

p
t+1]

TM k(i)) (9)

ct+1 =
N∑

i=1

wt+1(i)
[
(1 − dt) · M v

tTQQ + dt · M v
tTLQ

]
(i) (10)

f t+1 = Tanh(W T
f [ct+1 ⊕ q t+1] + bf ) (11)

Initially, the correlation between question qt+1 and each of the N latent
concepts is determined by computing the attention weight vector w t+1 (Eq. 9).
The read content ct+1 is then retrieved to summarize the student’s knowledge
state of question qt+1 by using the weighted sum of all memory slots in the value
matrix M v

t and w t+1 (Eq. 10). Here, (1−dt) and dt are used to indicate whether
the knowledge transfer from time t to t+1 for predicting the performance of qt+1

is from a question or a lecture. Next, the concatenation of ct+1 and the next
question’s embedding vector q t+1, is passed through a fully connected layer
with a Tanh activation function to obtain a summary vector f t+1(equation 11),
where W f ∈ R

(dv+dq)×ds and bf ∈ R
ds is the weight matrix and the bias

term, with ds is the summary vector size. Finally, another fully connected layer
with the Sigmoid activation function is used upon f t+1 to predict the student’s
performance pt+1:

pt+1 = σ(W T
p f t+1 + bp) (12)

where a scalar pt+1 represents the probability of the student correctly answering
the next question qt+1, W p ∈ R

ds×1 and bp ∈ R are weight matrix and bias
term.

4.5 Optimization and Objective Function

Similar to traditional KT models, we aim to minimize the following binary cross-
entropy loss between actual and estimated student performance rt and pt:

L = −
∑

t

(rt log pt + (1 − rt) log (1 − pt)) (13)
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But, unlike previous KT models, our goal is to also learn from the unlabeled
data (non-assessed activities). To do so, we propose an additional objective to
accurately estimate the type of the next material. Accordingly, we propose a read
content of learning material type co

t to summarize a student’s behavior state of
material type at each time t by using an attention weight vector, denoted by wo

t :

wo
t (i) = softmax(

[
(1 − dt) · OT

q q
p
t + dt · OT

l l
p
t

]TM k(i)) (14)

co
t =

N∑
i=1

wo
t (i)M

v
t (i) (15)

where wo
t (i) is the i-th element of wo

t , and Oq ∈ R
dq×dk and O l ∈ R

dl×dk and
two weight matrices to map question and lecture embeddings. We then model
the type of material the student will interact with at time t + 1 using Eq. 16:

po
t+1 = σ(dt · W T

oqc
o
t + (1 − dt) · W T

olc
o
t + bo) (16)

where po
t+1 represents the probability that the next learning material student will

interact be a question. W oq and W ol ∈ R
dv×1 are two weight matrices, bo ∈ R

is the bias term. Finally, the activity-type objective function Lo is formulated
as a binary cross-entropy loss between po

t and the actual material type dt:

Lo = −
∑

t

(dt log po
t + (1 − dt) log (1 − po

t )) (17)

Eventually, we minimize a combination of the performance objective function
L Eq. 13) and the activity-type objective function Lo (Eq. 17) with a regulariza-
tion term to learn the parameters of GMKT, as shown in Eq. 18:

Ltotal = L + λoLo + λθ||θ||2 (18)

We use λo to balance between the contribution of student performance objec-
tive and activity-type objective. θ represents the set of all trainable parameters
in GMKT, and the term ||θ||2 corresponds to the regularization, while λθ denotes
the hyperparameter that determines the weight of this regularization term.

5 Experiments

We evaluate GMKT through two sets of experiments. First, we compare GMKT’s
student performance predictive ability with baseline KT methods and perform
ablation studies and sensitivity analysis of the model’s components. Then, we
compare transition weight matrices to examine knowledge transfer between
learning material types. Our code and supplementary material are available on
GitHub1.

1 https://github.com/persai-lab/2023-ECML-PKDD-GMKT.

https://github.com/persai-lab/2023-ECML-PKDD-GMKT
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Table 1. Descriptive statistics of datasets.

Dataset #Stu-dents #Assessed
Materials

#Assessed
Activities

Assessed
Responses
Mean

Assessed
Responses
STD

#Correct
Assessed
Responses

#Incorrect
Assessed
Responses

#Non-
assessed
Materials

#Non-
assessed
Activities

EdNet 1000 11249 200931 0.5910 0.2417 118747 82184 8324 150821

Junyi 2063 3760 290754 0.6660 0.2224 193664 97090 1432 69050

MORF 686 10 12031 0.7763 0.2507 N/A N/A 52 41980

5.1 Datasets

We use three real-world datasets for our experiments. Table 1 provides an
overview of the general statistics for each dataset.

EdNet2 [9]: This dataset is collected from Santa3, a multi-platform AI tutoring
service that was designed to provide Korean students with a platform to practice
for TOEIC4 English testing. Every time, students choose a bundle that includes
a set of problems to practice, and optional corresponding problem explanations
to read. We use the preprocessed data introduced in [42] for our experiments,
which use problems (assessed) and their associated problem explanations (non-
assessed) as two types of learning materials.

Junyi5 [10]: This dataset is sourced from a Chinese e-learning website that
teaches math to students. The website covers eight math areas with varying
difficulty levels. For our experiments, we use the preprocessed data made avail-
able in [7,42], with problems (assessed) and hints (non-assessed) as two distinct
learning material types. Each problem may be associated with multiple hints.
During practice, students have the option to request hints for solving problems.

MORF [4]: This dataset comprises data from an online course “Educational
Data Mining” offered on Coursera6 and accessed from the MOOC Replication
Framework (MORF) platform7. The course consists of modules covering various
topics, such as “classification”. During the course, students are expected to watch
several video lectures per module and complete an assignment, containing mul-
tiple problems. However, only coarse-grained assignment-level data is available.
Thus, we treat each submission of an assignment as one assessed activity and
consider the overall score as the activity response. For our experiments, the two
material types are assignments (assessed) and video lectures (non-assessed).

5.2 Baselines

To evaluate our proposed method on student performance prediction task, we
compare it with six state-of-the-art assessed-only supervised KT models and
2 https://github.com/riiid/ednet.
3 https://www.aitutorsanta.com/.
4 https://www.ets.org/toeic.
5 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275.
6 https://www.coursera.org/.
7 https://educational-technology-collective.github.io/morf/.

https://github.com/riiid/ednet
https://www.aitutorsanta.com/
https://www.ets.org/toeic
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
https://www.coursera.org/
https://educational-technology-collective.github.io/morf/


Graph-Enhanced Multi-Activity Knowledge Tracing 539

three multi-activity KT models. In addition, to ensure a fair comparison, we
also extend the six assessed-only supervised KT models to handle both assessed
and non-assessed activities and also include a multi-layer perceptron (MLP)
baseline that can handle both types of activities. We denoted these extended
models by “original model name +M”. Overall, we evaluated our method against
15 baselines, consisting of eight deep learning-based models and one tensor fac-
torization model among the original nine baselines. Notably, to ensure fairness,
we refrain from comparing with GNN-based KT models mentioned in Sect. 2, as
they require the predefined mapping between materials and concepts, whereas
we learn the underlying latent concept. For baselines that originally used the
knowledge concept of each question as inputs (e.g., DKT), we used each ques-
tion as a knowledge component. The assessed supervised KT baselines are:
DKT [27] employs recurrent neural networks to model the knowledge state of
students, and is the first deep learning-based KT method.
DKVMN [39] modifies MANN that utilizes a static key matrix to represent
knowledge concepts and a dynamic value matrix to update student knowledge.
DeepIRT [38] extends DKVMN by incorporating the one-parameter logistic
item response theory, which provides better interpretability of KT.
SAKT [24] applies a self-attentive mechanism to model the inter-dependencies
between student interactions and improve the effectiveness of KT.
SAINT [8] is a transformer-based method and is an encoder-decoder model that
employs deep self-attentive layers to separately encode exercises and responses.
AKT [14] is a context-aware KT model that utilizes a monotonic attention
mechanism to summarize the impact of past student activity performance on
the current activity’s knowledge state.
The baseline methods support both assessed and non-assessed activities are:
DKT+M [40], DKVMN+M, SAINT+M [8], AKT+M and AKT+M are
variants of DKT, DKVMN, SAINT, SAKT, and AKT. in these extended mod-
els, non-assessed learning activities embedding are summarized as an additional
feature, with the problem embedding as the model input.
MLP+M [16] is a simple multi-layer perceptron that takes the embedding of a
student’s three most recent assessed activities and three non-assessed activities
as input to predict student knowledge of a concept.
MVKM [41] can model student knowledge acquisition from multi-type learning
activities. It is a method based on multi-view tensor factorization that con-
structs separate tensors for student activities from each learning material type
but cannot explicitly capture the knowledge transition between material types.
DMKT [34] is based on DKVMN and models distinct read and write opera-
tions for assessed and non-assessed learning material types. However, it lacks the
ability to explicitly model knowledge transfer between assessed and non-assessed
learning materials. Moreover, it requires a fixed number of non-assessed learning
activities between every two assessed ones, making it less flexible in modeling
the student knowledge from the complete activity sequence.
TAMKOT [42] is a transition-aware KT model that builds based on LSTM. It
learns multiple knowledge transfer matrices to explicitly model the knowledge
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transfer between different activity types. However, it does not consider the global
neighborhood-based transitions its knowledge modeling layer is LSTM-based,
and its objective function only considers students’ assessed activities.

5.3 Experiment Setup

We adopt 5-fold student stratified cross-validation, following standard KT exper-
iments [27,34]. In each fold, 80% of students’ sequences are randomly chosen as
the training set, while the remaining 20% of students’ sequences are used as the
test set. For hyperparameter tuning, we separate 20% of students from training
set and use their sequences as the validation set. We conduct a coarse-grained
grid search to find the best hyperparameters, which are reported in Table 2.

5.4 Student Performance Prediction

In student performance prediction experiments, we report the mean results
across five folds of each method and present the paired t-test p-values that com-
pare each baseline to GMKT. For datasets where student performance is binary
(correctness), such as EdNet and Junyi, we evaluate model performance using
Area Under Curve (AUC). For datasets where student performance is numeric
values (scores), such as MORF, we normalize student assignment scores within
the range of [0, 1] using the assignment’s maximum possible score. We then use
Root Mean Squared Error (RMSE) to evaluate model prediction performance.

Comparison with Baselines: GMKT’s results along with the baselines are
presented in Table 3. We only run MVKM on MORF dataset due to its limita-
tions in handling high-dimensional data with large computational time costs.

We first observe that GMKT outperforms all baseline methods, particu-
larly in Junyi and MORF datasets, highlighting the importance of modeling
both assessed and non-assessed activities for accurate student knowledge rep-
resentation. The results demonstrate GMKT’s effectiveness in capturing knowl-
edge transfer between different material types and improving multi-activity stu-
dent knowledge tracing through neighborhood-based and transition-aware rep-
resentation learning. We also observe that the difference between GMKT and
the second-best baseline is more significant in Junyi and MORF datasets. A
potential explanation could be contrast in material associations and transition
variability between different datasets. Contrary to GMKT which uses a com-
plex key-value structure and neighborhood-based material representations, the
second-best baseline (TAMKOT) models knowledge transfer between assessed
and non-assessed materials using a simple LSTM-like structure. Hence, while the
complex structure of GMKT is needed for more complex datasets, TAMKOT’s
performance could be adequate for the less complex ones. Particularly, in EdNet,
related problems are bundled together, each problem is associated with one
explanation, and students follow similar transitions between materials within
bundles. So, the enhanced graph structure and complex knowledge representa-
tion may not provide much additional information in this dataset. Comparing
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Table 2. Best learned hyperparameters

Dataset dq dr dl dk dv ds N λo λθ

EdNet 64 32 32 32 32 32 8 0.1 0.05
Junyi 32 32 32 64 64 32 32 0.1 0.05
MORF 32 16 8 32 32 32 8 0.05 0.03

Fig. 2. Performance w.r.t. λo

Table 3. Student performance prediction
results. The best and second-best results
are in bold and underlined. ∗∗ and ∗ rep-
resent paired t-test p− values < 0.05 and
< 0.1, compared to GMKT.

Methods EdNet Junyi MORF
AUC AUC RMSE

DKT 0.6393∗∗ 0.8623∗∗ 0.1990∗∗

DKVMN 0.6296∗∗ 0.8558∗∗ 0.1995∗∗

SAKT 0.6334∗∗ 0.8053∗∗ 0.1975∗∗

SAINT 0.5205∗∗ 0.7951∗∗ 0.2190∗∗

AKT 0.6393∗∗ 0.8093∗∗ 0.2417∗∗

DeepIRT 0.6290∗∗ 0.8498∗∗ 0.1946∗∗

DKT+M 0.6372∗∗ 0.8652∗ 0.1942∗∗

DKVMN+M 0.6343∗∗ 0.8513∗∗ 0.2071∗∗

SAKT+M 0.6323∗∗ 0.7911∗∗ 0.1981∗∗

SAINT+M 0.5491∗∗ 0.7741∗∗ 0.2007∗∗

AKT+M 0.6404∗∗ 0.8099∗∗ 0.2226∗∗

MLP+M 0.6102∗∗ 0.7290∗∗ 0.2428∗∗

MVKM − − 0.1936∗

DMKT 0.6394∗∗ 0.8561∗∗ 0.1856∗

TAMKOT 0.6786 0.8745∗∗ 0.1857∗

GMKT 0.6819 0.8960 0.1802

GMKT to other two multi-activity methods, MVKM and DMKT, it shows that
GMKT significantly outperforms both of them in all datasets. This again high-
lights the importance of explicitly modeling knowledge transfer and activity-type
transitions, as well as incorporating graph-structured information in knowledge
modeling.

Moreover, the results indicate that the multi-activity variants of assessed-
only methods do not consistently improve prediction performance compared to
their original formulations. For instance, SAKT+M performs worse than SKAT
on EdNet and Junyi datasets, while DKVMN+M performs worse than DKVMN
on MORF dataset. These suggest that simply adding non-assessed activities
as additional features sometimes has a negative impact on performance predic-
tion. Nonetheless, it can improve performance when knowledge transfer between
assessed and non-assessed materials is adequately modeled, like GMKT.

Ablation Studies: We conduct two sets of ablation studies to validate the
impact of coarse-grained representations (the multi-activity transition graph
layer) and the type objective. First, we remove the GNN component from
GMKT, referred to as GMKT-G. Second, we remove the type objective term,
λoLo, from Ltotal, in Eq. 18 (GMKT-O). According to the results in Table 4,
removing either of these components has decreased performance in all datasets,
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Table 4. Ablation study results

EdNet Junyi MORF
Methods AUC AUC RMSE

GMKT-G 0.6759 0.8909 0.1888

GMKT-O 0.6761 0.8911 0.1867

GMKT 0.6819 0.8960 0.1802

Table 5. Spearman correlation coeffi-
cients with p-values between TQL and
TLQ

EdNet Junyi MORF

Correlation 0.0357 -0.0128 -0.0504
p-value 0.2531 0.4120 0.1072

Fig. 3. Heatmaps for weight matrices
TQL and TLQ for MORF dataset.

indicating that neighborhood-based representations and the type objective are
both necessary and can provide the most significant improvement when used
together. Comparing GMKT-G and GMKT-O, we observe similar results in
EdNet and Junyi. Whereas, for MORF dataset, GMKT-O outperforms GMKT-
G, meaning that neighborhood-based similarities are more important than the
type objective in MORF. A potential reason can be the material complexity in
MORF. Each problem covers one topic in EdNet and Junyi, but each MORF
assignment has multiple problems and video lectures cover multiple concepts. So,
more coarse-grained representation can provide richer information about mate-
rials in MORF.

Sensitivity Analysis: To have a deeper understanding of the impact of the type
objective on student performance prediction, we perform a sensitivity analysis
by changing λo in Eq. 18 while fixing all other hyperparameters to the best-
learned values. The experiment results in Fig. 2 show that prediction perfor-
mance initially improves, but gradually decreases after reaching a certain λo

for all datasets. This demonstrates that while adding the type objective helps in
achieving higher performance, a balance is necessary between the objective func-
tion components. Additionally, while the best λo varies slightly for each dataset
(0.1 for EdNet and Junyi and 0.05 for MORF), the overall range for optimal λo

is small and GMKT can robustly use a similar λo for different datasets.

5.5 Knowledge Transfer Modeling

In this set of experiments, we focus on examining the knowledge transfer between
assessed materials to non-assessed ones. Specifically, we compare the transition
weight matrices TQL and TLQ in Eq. 6 to determine if the knowledge trans-
fer from assessed to non-assessed materials differs from that of non-assessed to
assessed materials. These matrices represent the weight of knowledge transfer
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from one memory slot to another when a student switches from one material
type to another. We flatten these matrices and calculate the Spearman cor-
relation coefficient [31] between them. The resulting correlation coefficient and
p-value are presented in Table 5, indicating that there is no significant correlation
between TQL (assessed to non-assessed) and TLQ (non-assessed to assessed), as
the correlations are small and the p-values are greater than 0.1 for all datasets.
This implies that transition weights in TQL and TLQ are mostly different. To
further investigate, we plot the heatmap of TQL and TLQ for the MORF dataset
in Fig. 3(Heatmaps for the Junyi and Ednet are in the supplementary material
due to space limitations). A z-score normalization [25] is performed to TQL and
TLQ for better visualization. As evident from the heatmap, weight matrices
are considerably different from each other, indicating that knowledge transfer
weights depend on the order of transition between material types. Thus, model-
ing knowledge transfer between different material types is sufficient.

6 Conclusions

We focused on multi-activity knowledge tracing, modeling student knowl-
edge as they transition between various types of materials. We developed
GMKT, a model with a transition-aware dynamic knowledge transfer network
and a transition-aware graph neural network that captures both fine-grained
and coarse-grained associations between materials. We also proposed a semi-
supervised learning approach that considers both student performance and activ-
ity type objectives. Our experimental results on three real-world datasets showed
that explicitly modeling transition-aware knowledge transfers, capturing coarse-
grained associations by the transition-aware GNN, and adding the activity type
objective, are crucial for accurately representing student knowledge and predict-
ing their performance. Our analysis showed that student knowledge transfers
between assessed and non-assessed activities depend on transition order, indi-
cating that transition-aware models are essential for multi-activity knowledge
tracing.
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Abstract. Wearable devices for seizure monitoring detection could sig-
nificantly improve the quality of life of epileptic patients. However, exist-
ing solutions that mostly rely on full electrode set of electroencephalo-
gram (EEG) measurements could be inconvenient for every day use. In
this paper, we propose a novel knowledge distillation approach to transfer
the knowledge from a sophisticated seizure detector (called the teacher)
trained on data from the full set of electrodes to learn new detectors
(called the student). They are both providing lightweight implemen-
tations and significantly reducing the number of electrodes needed for
recording the EEG. We consider the case where the teacher and the
student seizure detectors are graph neural networks (GNN), since these
architectures actively use the connectivity information. We consider two
cases (a) when a single student is learnt for all the patients using pre-
selected channels; and (b) when personalized students are learnt for
every individual patient, with personalized channel selection using a
Gumbel-softmax approach. Our experiments on the publicly available
Temple University Hospital EEG Seizure Data Corpus (TUSZ) show that
both knowledge-distillation and personalization play significant roles in
improving performance of seizure detection, particularly for patients with
scarce EEG data. We observe that using as few as two channels, we are
able to obtain competitive seizure detection performance. This, in turn,
shows the potential of our approach in more realistic scenario of wearable
devices for personalized monitoring of seizures, even with few recordings.
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1 Introduction

Epilepsy is a neurological disorder that is characterized by recurring, unpro-
voked seizures caused by surges of electrical activity in the brain and affects
nearly three million people [26]. About one-third of the patients do not respond
to treatment by drugs [17]. Hence, real-time seizure monitoring is crucial for
improving the patients’ quality of life, for example, by alerting caregivers that
their assistance is needed once a seizure occurs. A continuous monitoring of the
electroencephalogram (EEG) is useful in identifying and even predicting seizures
in critically ill patients [19], particularly with the use of deep-learning approaches
[1,12,21,23,27] The monitoring is usually performed in a hospital environment
over the course of several days, which makes it infeasible to monitor patients
long-term in non-ambulatory settings. Wearable devices could overcome the need
of specialised intrusive medical equipment and hospital environment and enable
real-time seizure monitoring on a daily basis. Existing measurement devices [3]
that use EEG head caps with over 20 wired electrodes are however uncomfort-
able and difficult to wear over prolonged intervals and lighter and more discrete
wearables are desirable for patients. Previous studies have attempted to reduce
the number of EEG electrodes needed for seizure detection [8,9,28] with promis-
ing results. However, these solutions typically involve training detection systems
from scratch for the new setting and fail to incorporate the already existing
historical EEG data of the patient recorded with many electrodes. Due to the
nature of the disorder itself, seizure data is sparse in the number of available
seizures and difficult to collect, and it is thus important to meaningfully use
previous data. Further, it is known that the signals from the different regions
of the brain (captured through the EEG electrodes) are not independent and
exhibit strong inter-channel dependencies that could be viewed as a brain graph
or a network. Hence, we ask the question:

How to transfer information gained from a full set of channels/graph to
settings with a reduced number of channels/subgraph while actively using the

connectivity information?

In this paper, we address this question by developing a novel approach for
knowledge distillation (KD) with graph neural networks (GNNs) applied to
seizure detection. Our motivation for the use of GNNs comes from the observa-
tion that they have been used extensively in applications with graph-structured
data, and more recently have shown to result in promising seizure detection per-
formance [22,30]. More specifically, we propose a seizure detection model that
consists of three interconnected blocks. Firstly, we have the knowledge distilla-
tion block, whereby we transfer the knowledge from a pre-trained seizure detec-
tion model to obtain a model that is lightweight and uses only a reduced set of
input channels and the corresponding subgraph. Secondly, a channel selection
block, which takes the full multi-channel input and retains the signal only on a
reduced set of channels that are either pre-selected or learned in a fully data-
driven manner. Lastly, we have the GNN-based seizure detection model that
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classifies the multi-channel EEG input, from a reduced set of channels/electrodes
and the corresponding subgraph, into seizure or non-seizure segments.

Our goal is to also investigate the influence of two important aspects in seizure
detection performance with reduced channels: (i) prior knowledge (through the
use of the teacher model), and (ii) personalization/patient-specific detection.
The specific contributions of our paper are as follows:

– We propose new GNN models for epileptic seizure detection that build on
knowledge distillation to generate models that are both lightweight and work
on subgraphs of reduced channels. To the best of our knowledge, this is the
first KD approach dedicated to obtaining subgraph GNNs with reduced chan-
nels.

– We propose two different models for seizure detection with reduced channels,
namely one with pre-selected (clinically motivated) channels and one with
data-driven channels obtained from Gumbel-softmax channel selection.

– By applying our approach on pre-trained GNN that uses a full electrode
set, we obtain personalized (patient-specific) and global (non-patient-specific)
GNN models that are both lightweight (using only ≈ 3% of the parameters
of the teacher) and requires only a reduced subset of electrodes (requiring as
low as only 10% of the original electrodes).

– We demonstrate the results of our approach on the TUH Seizure Corpus,
which is one of the most popular and diverse datasets for epileptic seizures.

– We show empirically that the combination of personalization and KD could
significantly improve seizure detection in cases of very scarce data, and in
cases when the measurements from the less-informative electrodes.

Finally, it could be noted that epilepsy seizure detection is a very active
research problem. In particular, there has been a steady increase in the number
of graph-based approaches, and particularly GNNs applied to the problem of
seizure detection and classification [5,22,30]. However, to the best of our knowl-
edge, no prior works exist that tackle the problem of channel reduction with
GNNs and KD, particularly for seizure detection. While KD has been used in
multiple settings related to GNNs [4,6,7,15,31–33], it has not been employed to
the task of data-driven subgraph identification, which is the main objective in
this paper.

2 Preliminaries

We now briefly review some of the basic concepts from GNNs and KD.

Graph Neural Networks. Graph Neural Networks (GNNs) refer to a class
of deep learning models designed for graph-structured data [24]. GNNs learn
the representations of the nodes/channels in a graph and predict the labels or
properties of nodes/edges by actively using the underlying graph structure. Due
to the graph structure, GNNs naturally provide an aspect of interpretability
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or explainability. GNNs have been shown to significantly outperform the use of
CNNs or other non-graph approaches in many applications. While study and
development of GNNs is an active research area, we consider the specific case
of Graph convolutional networks (GCNs) in our work, since they form one of
the simplest and most popular GNNs that directly generalize the convolution
operation from CNNs to a graph setting [16]. A multi-layer GCN has the layer-
wise propagation rule in the hidden layers:

H(l+1) = σ(AH(l)Θ(l)) (1)

where H l ∈ R
N×D is the hidden node features at l-th layer; H0 denoting the

input, σ a non-linear activation function such as ReLU or sigmoid, A the adja-
cency matrix, and Θ(l) being the weight matrix in the l-th layer that is learned
from the data for a given task. Put simply, the graph convolution operation
takes the weighted sum of the features of the neighbors of a node and applies
a non-linear activation function to produce the updated features for the node.
This operation is repeated for each layer, allowing the model to learn more com-
plex representations of the graph structure and node features. The final output
of a GCN is typically obtained by applying a linear layer to the features of the
nodes in the final layer. Finally, depending on whether the task is regression
or classification, the parameters of the GNN are learned by minimizing a loss
function, respectively.

Knowledge Distillation. Knowledge distillation (KD) [11] refers to transfer-
ring knowledge from a large/sophisticated pre-trained neural network (known as
the teacher network) to a smaller network (known as the student network). The
student represents a lightweight model derived from the teacher while enforc-
ing the performance to be similar to that of the teacher. A distillation loss is
used during training to guide the student to replicate the teacher’s behavior as
closely as possible. Different types of knowledge can be transferred, but the most
straightforward one is response-based KD, which refers to the response of the
output layer of the teacher. A widely used example of this is the class probability
called as soft targets defined using a softmax function as

p(zi, T ) = exp(zi/T )/
∑

j

exp(zj/T ), (2)

where pi is the probability of belonging to class i, z is the vector of logits (outputs
of the last layer of the teacher to a given input). The temperature T controls the
contribution of each soft target to the knowledge. When T is equal to 1, we get
the standard softmax function, but as T increases, the probability distribution
is softened. The distillation loss can be seen as comparing the class probabilities
obtained from the teacher and the student. It enforces the distribution of the
outputs produced by the student to be close to that of the teacher. The Kullback-
Leibler (KL) divergence is therefore often used as the distillation loss function,
and minimizing this loss during training makes the logits of the student get closer
to the logits of the teacher [10].
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Let zt and zs denote the representation produced by the teacher and student
models, respectively, for the same input. Then, the final loss function used to
train the student is a weighted average of the two terms and is defined as

LS = (1 − δ)LD(p(zt, T ), p(zs, T ))+ δLCE(y, p(zs, 1)), (3)

where LD is the distillation loss function, p(zt, T ) are the teacher soft targets,
p(zs, T ) are the student soft targets, p(zs, 1) are the student soft targets obtained
when the softmax temperature is set to 1, i.e. using normal softmax function,
LCE is the cross entropy loss function, y are the ground truth labels, and α is
the weighting factor. The parameter δ represents the relative weight given to
the teacher’s knowledge over the new training data corresponding to the student
training − the higher δ, the lesser the model relies on the teacher for the training
of the student. We shall consider KD as part of our approach later in Sect. 3.

3 KD with GNNs for Seizure Detection

3.1 Proposed Model

We first propose our approach to design a global seizure detection student GNN
that works on data with reduced nodes/channels and the corresponding sub-
graph, obtained using KD from a teacher GNN that operates on the complete
node set. Let D denote the number of nodes/channels in the full measurement.
Let A denote the adjacency matrix of the graph capturing the inter-channel con-
nectivity. The adjacency matrix could be obtained in different ways like a cor-
relation matrix, functional connectivity, or simply the matrix that captures the
physical proximity of the electrodes on the scalp. In our work, we use the latter.

Let x ∈ R
D×T denote the input signal consisting of the record-

ings/measurements from all the D channels for T time samples. Let us consider
a GNN with parameters θ and let zθ(x, A) denote the output of the last layer
or the logits learned by the GNN, where A ∈ R

D×D denotes the graph between
the channels. Further, let us use subscripts t and s for the teacher and student
GNNs, respectively: zθt

(·, A) and zθs
(·, A) denote the output layers from the

teacher and student GNNs, respectively. The teacher network is learnt by min-
imizing the following binary cross entropy function BCE(·, ·) between the class
label y and the model prediction f t

θt
(x)

LCE(θt) = Ex (BCE(y, zθt
(x, A))) , (4)

with respect to θt, where E denotes the expected value obtained by averaging
over all training samples x. We use the BCE function since we consider here
only the seizure versus non-seizure classification problem. In order to train the
student GNN from the pre-trained teacher, we minimize a regularized BCE cost,
where the regularization term is given by the distillation loss that minimizes the
KL divergence between the soft output of the teacher and student GNNs:

LD(θt∗, θs) = Ex (KL(p(zθt∗(x, A), T ), p(zθs
(x, A), T ))) , (5)
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where θt∗ denotes the parameters of the pre-trained teacher and p(z, T ) is as
defined in (2). Then, the student network is trained by minimizing the loss

LS(θs) � (1 − δ)LD(θt∗, θs) + δ LBCE(θs). (6)

Our formulation so far uses the same input for both the student and teacher, and
hence, the same number of input channels. This is because the KD formulation
assumes that the input to both the student and the teacher are of the same
class, as we discussed in the Preliminaries. However, our ultimate goal is to
transfer knowledge to a student that uses the measurements from a reduced set
of nodes/channels xd with d < D, and not x. In other words, we wish to train a
student model that works on a subgraph A′ of the original graph A. We achieve
this by modifying the graph used by the student by deleting the edges from the
full graph with an adjacency matrix A as follows:

A′ = W� AW, (7)

where W ∈ R
D×d denotes the selection matrix which is a permutation of the

matrix given by concatenation of an identity matrix of dimension d with an all-
zero matrix of size (D − d) × d − retains only the subgraph of d-size subset of
the channels.1 The input xd is then given by xd = W�x ∈ R

d, corresponding to
the nodes of the subgraph defined by W . This in turn means that we must use
zθs

(xd, A
′) and not zθs

(x, A) in the total loss function in (6). Further, in order
for the hidden nodes corresponding to the deleted channels to not be pooled in
the GNN, we also multiply the output of each hidden layer of the GNN by W .
This in turn means that in practice the student GNN working on D nodes can be
fed with zeroes at test time on the discarded channels, corresponding to having
only the reduced set of measurement channels as input for seizure detection.
We note that, while the specific application setting used in this work is that of
scalp EEG channels, our proposed approach can be applied also to other multi-
channel settings such as fMRI, where there is knowledge of connectivity across
channels/measurements. The use of GNNs also makes our approach inherently
interpretable in terms of connectivity of the brain regions.

We consider three different instances of our model in this work: (a) Global
Student GNN with Pre-Selected channel reduction (GS-PS) model, (b) Global
Student GNN with data-driven channel reduction (GS-DD) model, and (c)
Personalized Student with Data-Driven channel reduction (PS-DD) model. We
describe them next.

3.2 GS-PS Model

We first consider the case when the reduced electrodes are preselected, or known
already. In particular, we chose the four channels of T3, T4, T5, and T6 of the
19 channels from the T-20 montage [14] as the reduced electrode set. This is

1 In general, A′ may not necessarily be a connected graph, unless specifically regu-
larized to be so.
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motivated by input from neuroscientists that these temporal channels can be
relatively more indicative channels for seizure in general [9]. In this case, the
W matrix from Eq. (7) corresponds to a diagonal matrix with ones only at the
indices corresponding to T3, T4, T5, and T6. We also validate the choice of these
channels through the following experiment. We conduct an experiment where a
new model with the same architecture as the teacher (keeping the full electrode
channels) is trained to learn relevance weights w for each electrode: this was
simply achieved by applying a learnable diagonal matrix M ∈ R

D×D to the
input before the GNN such that the effective input to the GNN was defined as
x′

M = M · x ∈ R
D×D. We notice that the weights assigned to the temporal and

some of the occipital electrodes were the highest, in particular, T2,T3,T4, and
T5, were given large weights. A more practical reason for the choice of temporal
channels is the development of wearable sensors: many state-of-the-art wearable
sensors are of the behind the ear type, corresponding to these four temporal
channels [9,28]. We apply the proposed GS-PS model for seizure detection by
training on the data from training patients and applying it to detect seizures on
new test patients. In this case, the subgraph is pre-determined.

3.3 GS-DD Model

We next consider the case of learning a student with channel reduction achieved
in a completely data-driven manner. We propose to use a Gumbel-softmax chan-
nel selection block akin to the approach pursued in [29]. Our proposed GS-DD
model consists of two connected blocks, first, the Gumbel-softmax block that
selects the subset of channels/electrodes, followed by the GNN block that pro-
duces a label as shown in Fig. 1. The details of the Gumbel-softmax block are
given next.

The Gumbel-softmax EEG channel selection block was first proposed by
Strypsteen and Bertrand [29], where channel selection was acheived through a
learnable layer in the Deep Neural Network (DNN) in an end-to-end differen-
tiable manner. The Gumbel-softmax layer represents a relaxation of the discrete
selection operation that allows for differentiation [13,18,29]. Let xn indicate the
feature vector derived from channel n, and xnewi

indicate the ith channel in the
reduced set of channels. During training, the output of each selection neuron k
is given by xnewk

= wT
k X, with wk sampled from the concrete distribution given

by [18]:

wnk =
exp((log αnk + Gnk)/β)

∑N
j=1 exp((log αjk + Gjk)/β)

, (8)

with Gnk independent and identically distributed samples from the Gumbel dis-
tribution and β ∈ (0,+∞) the temperature parameter of the concrete distribu-
tion. The effective subset of input node features is computed as Xnew = wT X.
The temperature parameter β controls the extent of this relaxation from the
one-hot selection: as β approaches 0, the distribution becomes more discrete, the
sampled weights converge to one-hot vectors. The continuous relaxation allows w
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Fig. 1. Proposed approach

to be jointly optimized with model parameters, and to match the channel selec-
tion to the target model. The most pertinent EEG channels are thereby selected
without prior expert knowledge or the need for manual feature selection. The
learnable parameters α of this distribution are jointly optimized with the other
network weights. At the end of training, the selection layer is made to select
discrete channels by hard-thresholding the entries of wk so that they select only

K channels as wnk =

{
1 if n = arg maxjα

∗
jk

0 otherwise,
, where α∗ is the learned matrix

after training. We note that during test time, the Gumbel-softmax block takes
the form of a fixed linear matrix multiplication W that acts to select the electrode
channels. We also note that unlike the pre-selected case presented in Sect. 3.2,
GS-DD model learns a data-driven subgraph.

In order to obtain a data-driven channel selection, we use the Gumbel-
softmax channel selection block as part of our GNN pipeline shown in Fig. 1.
In particular, we apply the GNN on the reduced subgraph obtained by selecting
only a subset of input EEG channel signals Xnew and that uses the adjacency
matrix Anew corresponding to the selected channels. As discussed above, the
Gumbel-softmax block is parameterized by a learnable matrix α ∈ R

N×K , where
N is the total number of electrodes, and K is the number of electrodes we wish
to keep after reduction. When being fed a sample X, the selection block samples
a weight matrix W ∈ R

N×K from the concrete distribution following Equation
(8). This can be viewed as a softmax operation, which produces a weight matrix
whose elements sum to one as continuous relaxation of one-hot vectors. In our
experiments, we use a similar method as in paper [29]. During training, we set
β(t) = βs(βe/βs)B , decreasing in an exponential manner where B is the total
number of training epochs. In particular, β(t) is the temperature parameter at
epoch t, βs and βs are respectively the starting and ending β. In our settings,
βs = 100, βe = 0.001. In this setting, we start from β = 100 with β approaching
0. Intuitively, this would allow us to have a relaxed selection at the beginning of
the training and approach the one-hot selection at the end. As we noted before,
while the complete set of electrodes is indeed used during training of the stu-
dent GNN, this is not the case during test time as the W matrix will be set to
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ones and zeros, thereby not requiring any measurements from the non-selected
electrodes.

Channel Consolidation. We note that, though we force the weight matrix
to select a reduced set of channels, it is possible that a given channel is chosen
multiple times since we have not actively enforced that there is no duplication.
In order to discourage duplicate channels, we minimize the total loss regularized
with the penalty given by [29]: Ω(P ) = λ

∑N
n=1 ReLU(

∑K
k=1 pnk − τ), where

ReLU(·) is the rectified linear unit, λ is the weight of the regularization loss, and
τ the threshold parameter. During training, we set τ(t) = τs(τe/τs)B , decreasing
in an exponential manner. In our settings, τs = 3, τe = 1.1. λ is set to be 5 to
control the strength of the regularization. Then, we learn the GS-DD model with
the regularized student loss, to obtain a seizure detection model that is global
and applicable to any patient.

3.4 PS-DD Model

Epileptic seizures vary significantly between individuals and personalized models
could be beneficial in taking into account their unique patterns and character-
istics. This motivates us to extend our previous model to a personalized setting
to for simultaneous electrode reduction and seizure detection for every single
patient. As with the GS-PS and GS-DD models proposed in Sects. 3.2 and 3.3,
our aim here is to arrive at light-weight models for seizure detection that use
only a subset of electrode channels using KD, but personalized to the patient.
As with GS-DD model, we let the channels be selected in a data driven manner.
Our hypothesis is that both knowledge-distillation and personalized models have
an important role to play in improving the seizure detection performance, par-
ticularly in the cases when the available data is scarce. The PS-DD model is in
its essence the same as the GS-DD model in the architecture, with the crucial
difference that the model is now trained in a patient-specific manner. This means
that the PS-DD model also learns a data-driven subgraph for every patient.

4 Numerical Experiments

4.1 Settings

Dataset. We apply our models for the task of seizure detection on the data from
the Temple University Hospital EEG Seizure Data Corpus (TUSZ) [20], which
is one of the most popularly used, and diverse datasets that consists of over 100
patients of a wide range of ages (8-80) with different seizure types, e.g., focal
seizure, tonic seizure, generalized non-specific seizure, and myoclonic seizure for
long durations. The data is in the form of 19 channel EEG recordings in the 10–
20 electrode placement system. As our work deals with the problem of seizure
detection, no distinction is made between seizure types and all seizures were
grouped into one class, resulting in a binary classification problem. The selected
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Table 1. Three bands of patients.

Data Bands # of Segments N # of Patients Batch Size Epoch

Rare Data 4 ≤ N < 20 65 2 20

Mid Data 20 ≤ N < 100 53 16 100

Rich Data N ≥ 100 33 64 100

seizure (ictal) segments ranged between 5 and 60 s in length. Corresponding
interictal segments of the same length were selected that ended one minute
before seizure onset, following the methodology pursued in [9]. This resulted in
a balanced dataset of 50% seizures and 50% nonseizure segments. The segments
are taken sequentially without overlap. All selected segments were then split
into five-second windows. The TUH dataset has two separate sets of recordings
for train and for dev, which correspond to different set of patients for training
and test, respectively. Similarly to the literature, we use only the patients from
train for training models, and the test patients from dev for testing the learnt
models on which the performance is reported. Finally, we have a total of 14382
samples for training and 4529 samples for testing, each sample being a 5-second
window of multi-channel EEG signal.

Data Preprocessing. As customary in EEG signal processing, each sample
is then filtered with a Butterworth bandpass filter of order 5 between 0.5 and
50 Hz to remove the artifacts and noise. Similarly to [25], the features were cal-
culated for each EEG channel: energy of the signal filtered in frequency bands
(from 0.5 Hz to 30 Hz with a bandwidth of 3 Hz and from 30 Hz to 50 Hz with a
bandwidth of 10 Hz), Hjorth complexity and mobility, decorrelation time, L2-
norm of the approximation and detail coefficients obtained from a six-level
wavelet decomposition using a Daubechies db4 wavelet, log amplitudes of the
non-negative frequency components. This results in 647 features in total for each
sample/window. The features are then normalized component-wise and taken as
input x to the GNN along with the distance based adjacency matrix.

Training Data. In order to train the teacher, no distinction is made between
patients or segments and the entire training data is used to train the teacher.
All the samples from all the test patients are used as test data. For training the
global models of GS-PS and GS-DD, we use the data of all training patients
during training and data from all test patients for testing. On the other hand,
since the PS-DD model is trained for each patient separately, the training and
test data segments are obtained by splitting the segments of the given patient
randomly. Further, in order to understand the effect of personalization, we divide
the patients into three bands based on the amount of data segments they possess
as shown in Table 1. 80% of the personal segments go into the training set, the
rest of 20% go into the test set.
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Model Training. We use a two-layer GCN network with 32 hidden nodes
in each hidden layer as the teacher model. It is trained with a batch size of
64 and a learning rate of 10−5. The student network in all three cases of GS-
PS, GS-DD, and PS-DD, is a lightweight model with just one-layer GCN of
only 1 hidden node. We note that the number of parameters to learn in the
student is just 3% of that of the teacher. Each of the three models is trained
and tested both with and without KD in order to determine the contribution
of the teacher knowledge. As described in Eq. (6), the KL divergence loss is
used as the distillation loss function and the binary cross-entropy loss is used
for the student loss function. We set T = 5, and δ values are set to 0.1, 0.5, 0.8,
where the hyperparameters in the total loss are obtained by performing 5-fold
cross-validation. For GS-DD, we consider the case of K = 4 channels to compare
the performance with that of GS-PS using the four temporal channels. For the
PS-DD model, we use K = 2 electrodes for every patient. We also consider a
non-graph baseline classifier using CNN to compare with our methods: A two-
layer CNN is used for the teacher model and trained using only the training
patients. For the convolutional layers we perform 2D convolutions with kernel
size (1, 80), (5, 40), and stride (1, 4), (1, 4) respectively, with batch-norm and
ReLU activation function. We also perform 2D max pooling at the end of each
layer, with pooling kernel size (1, 3), stride (1, 1). As with our approach, we
learn personalized student models using KD (called CNN PS-DD model) with
the student CNNs having a single hidden layer.

Evaluation Metrics. Following [2,5], we evaluate the performance of the three
models using two standard metrics used in evaluating seizure detection: F1-score
and the Area Under the Receiver Operating Characteristic (AUROC). In all the
cases, the performance is averaged over the different test patients.

4.2 Detection Performance Results

We now report the performance of the different approaches.

Non-graph CNN Baseline. The results of CNN teacher and CNN PS-DD
(personalized student) models are reported in Table 2. We observe that while
the highest test F1 and AUROC are reached when δ = 0.5, showing that per-
sonalization and knowledge distillation help improve the test performance with
lightweight and channel-compressed models.

GS-PS Model. The performance of the teacher and the global student with
the pre-selected temporal channels is presented in Table 2. In the pre-selected
student, we observe that KD significantly improves the performance in terms of
the f1-score that tends to be comparable to that of the teacher.
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Table 2. Test Results with Different Models

Model w/o KD w/ KD

Channel Personalization – δ = 0.1 δ = 0.5 δ = 0.8

Selection f1 auroc f1 auroc f1 auroc f1 auroc

GCN Teacher – 0.689 0.781 – – – – – –

GS-PS × 0.401 0.755 0.683 0.766 – – – –

GS-DD × 0.690 0.763 0.695 0.761 0.697 0.763 0.693 0.764

PS-DD � 0.788 0.814 0.755 0.777 0.784 0.829 0.795 0.829

CNN Teacher – 0.626 0.629 – – – – – –

CNN PS-DD � 0.689 0.741 0.654 0.703 0.699 0.774 0.675 0.747

GS-DD Model. Unlike in the temporal channel pre-selection case, we see that
the performance remains relatively constant to the different levels of KD. This
is probably because the Gumbel-softmax selection already results in a high per-
formance, and the teacher does not offer notable improvement.

PS-DD Model. In the case of a personalized student GNN with only two
electrodes (that we call PS-DD 2), we observe that the performance improves
as δ is increased, meaning more emphasis is given to the patient’s data over
the teacher’s knowledge, with the highest performance obtained at δ = 0.8. On
the other hand, we also observe that completely relying on the patient’s data
and not using the teacher (δ = 1) reduces the performance. Further, we note
that the performance of the student even without teacher’s knowledge (δ = 1)
is generally much better than that of the teacher or the global student. This
in turn supports our intuition and hypothesis that personalization also plays a
significant role in improving seizure detection performance. In the two plots in
Fig. 2, we depict the distributions of test F1 and AUROC of all test patients
in the circumstances with or without KD, respectively for the PS-DD model.
The averaged performances are indicated in numbers in the figures. The dashed
red/green lines show the general performances of models without personaliza-
tion. When trained on the general population, we obtain the test F1 of models
with and without KD as 0.7 and 0.4, respectively, whereas after personalization
the average test F1 scores are improved by 16% and 50% to around 0.8, cor-
responding to with and without KD, respectively. This shows that by tackling
the diversity in EEG seizure data on a large population, personalization has the
potential to improve seizure detection. The average test AUROC is improved by
8% to above 0.8. The detailed results are reported in Table 2. We also note that in
general that our graph-based approach significantly outperforms the non-graph
CNN approach, showing the relevance of the connectivity information. However,
the average performance of our approach with KD is only slightly higher than
the average performance without KD in both metrics. This in turn motivated
us to look into the performance in the three data bands individually next.
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Fig. 2. The effectiveness of personal-
ization: With personalization (P), both
test F1 and test AUROC are signifi-
cantly improved on average.

Fig. 3. The effectiveness of Knowledge
Distillation (KD) in different bands

4.3 Performance Analysis

To better understand the effectiveness of our models, we do a detailed perfor-
mance analysis by further dividing patients into three bands based on the number
of seizure segments (rare-data band, mid-data band, rich-data band) and delve
into the performances, respectively as shown in Table 1. In Table 3, we report the
seizure detection results when the model training relies differently on the new
patient data to different levels given by δ = 0.1, δ = 0.5 and δ = 0.8, respectively,
in (6). The setting of δ = 0.8 corresponds to the case where the student train-
ing relies more heavily on unseen patient-specific data than the teacher. Figure 3
shows the differences in the percentages of cases in each band where KD boosted
the model performance (in terms of test F1 and test AUROC). Overall, when
δ = 0.1, KD helps 72% (47 out of 65) patients in the rare-data band improve
their model testing performances. The number of patients that benefit from KD
increases when δ goes to 0.8, which explains the superior performance of PS-DD
with δ = 0.8 as seen in Table 2. In contrast, only 49% (26 out of 53) patients
in the mid-data band and 54% (18 out of 33) patients benefit from the teacher
when δ = 0.1. In general, we observe that patients with scarce data benefit the
most from KD. This gives us the motivation to further delve into the rare-data
band case.

In the rare-data band, we notice that we constantly encounter four patients
with the lowest performance that bias the overall performance significantly. It
turns out that these four cases correspond to the patients with the least training
data. We refer to these cases as the four “extremes” in our experiments. Since
the TUSZ dataset is rather diverse and we wish to see the averaged performance
without a strong bias, we chose to exclude the extremes out and recompute the
performance metrics. We notice from Table 4, that the performance improves
overall by excluding the extremes, and the best performance is obtained when
δ = 0.8. This indicates that the effectiveness of KD in personalized settings
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Table 3. PS-DD Test Results on Different Bands

Data Bands Personalization w/o KD w/ KD

– δ = 0.1 δ = 0.5 δ = 0.8

f1 auroc f1 auroc f1 auroc f1 auroc

Rare Data � 0.786 0.791 0.783 0.783 0.790∗ 0.816∗ 0.798* 0.827*

Mid Data � 0.791 0.837 0.726 0.756 0.774 0.819 0.786 0.833

Rich Data � 0.790 0.821 0.749 0.800 0.786 0.829 0.801* 0.828∗

Table 4. PS-DD Test Results on Rare-Data Bands

Model Extremes × Extremes �
δ Personalization f1 auroc f1 auroc

0.1 � 0.794 0.806 0.783 0.783

0.5 � 0.813 0.860 0.790 0.816

0.8 � 0.832 0.871 0.798 0.827

1 (no KD) � 0.816 0.833 0.786 0.791

widely varies with the amount of data each patient possesses, and potentially
across the patient types (since the dataset includes different types of seizures
that we do not currently account for) and also varies with the change of the
weight of student loss δ. In our experiments, δ = 0.8 gave the best scores on
average. A more exhaustive approach would be to compute personalized models
with personalized δ, but that is beyond the scope of the current work.

Effectiveness of KD When Lacking Informative Channels/Signals. To
further test the effectiveness of both personalization and KD in epileptic seizure
detection in a more lack-of-information case, we select to keep only signals from
channels FP1 and FP2 that belong to the frontal region, which are typically
known to be the least informative regions for epileptic seizure detection. The
Gumbel-softmax channel selection block is not involved in this section. The
experiment is conducted on the rare data band, with the hypothesis that the
combination of personalization and KD can help compensate for the adverse
situation brought by a) lack of informative channels, and b) lack of data. With
only personalization but no KD, 53.8% (35 out of 65) patients’ test F1 and
AUROC score still exceed 0.65, yielding fairly good performances. In the rest of
not ideal personalized situations, 90% (27 out of 30 patients) benefit from the
teacher. With even the less informative channels, we get 53.8% of the cases with
rather promising results. For the rest of the cases, the integrated application of
personalization and KD has been observed to be effective for detecting epilep-
tic seizures. We thus see that the combination leverages the strengths of both
techniques to provide highly accurate results in scarce data scenarios.
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5 Conclusions and Future Work

We proposed an approach to transfer the knowledge from a pre-trained GNN-
based seizure detection to the case when the number of measurement electrodes
is reduced. We showed that it is possible to obtain models that are (i) light-
weight (requiring just a 3% of the sophisticated network), and (ii) work with
reduced electrodes (requiring as low as only 10% of the original electrodes), yet
offer superior performance in seizure-detection, particularly in the personalized
setting. The approach resulted in patient-specific choice of the reduced set of
electrodes. Our experiments demonstrated the merit of both knowledge distil-
lation and personalization, particularly when dealing with patients with scarce
data. We observe that there is a trade-off between the use of prior information
(teacher) and patient-specific data: although teacher-knowledge is necessary, the
relative importance should be higher on the patient-specific data for maximum
performance. We believe that these results show that our approach can provide
meaningful insights and guidelines in the practical setting where there is need
to move from full scalp electrode measurements to reduced form factor measure-
ments, such as personalized wearable devices. We have currently restricted our
analysis to a relatively simple GNN teacher model and used the graph given
by physical placement of electrodes. The quality of the teacher and the graph
used both translate into the quality of the student model, and hence, we believe
that a more sophisticated GNN could be employed to further improve overall
performance. In the future, it would also be interesting to look into multi-class
seizure classification and identify the different types of seizures.

Ethical statement. We hereby draw the attention of the reviewers that in our experi-

mental work we have made use of only the publicly available dataset: Temple University

Hospital EEG Seizure Data Corpus (TUSZ). This dataset to the best of our knowledge

has been anonymized and great care has been taken by the providers of the dataset

during the acquisition, processing, and reporting of the dataset.

Additionally, to the best of our knowledge, we do not envision any ethical issues stem-

ming from the use of our work by any third party. We are aware that in general

personalized models could potentially have information that could be deemed as sen-

sitive. But we do not directly foresee this being an issue with our model given that we

make use of no personal information or identity of the patients/data in our work.
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12. Iešmantas, T., Alzbutas, R.: Convolutional neural network for detection and clas-
sification of seizures in clinical data. Med. Biol. Eng. Comput. 58(9), 1919–1932
(2020)

13. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

14. Jasper, H.H.: The ten-twenty electrode system of the international federation. Elec-
troencephalogr. Clin. Neurophysiol. 10, 370–375 (1958)

15. Joshi, C.K., Liu, F., Xun, X., Lin, J., Foo, C.: On representation knowledge dis-
tillation for graph neural networks. CoRR abs/2111.04964 (2021), https://arxiv.
org/abs/2111.04964

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

17. Kwan, P., Brodie, M.J.: Definition of refractory epilepsy: defining the indefinable?
Lancet Neurol. 9(1), 27–29 (2010). https://doi.org/10.1016/S1474-4422(09)70304-7

18. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

19. Maganti, R.K., Rutecki, P.: EEG and Epilepsy Monitoring. Continuum (Minneapo-
lis, Minn.) 19(3), 598–622 (2013). https://doi.org/10.1212/01.CON.0000431378.
51935.d8

20. Obeid, I., Picone, J.: The Temple University Hospital EEG Data Corpus. Front.
Neurosci. 10 (2016). https://doi.org/10.3389/fnins.2016.00196

https://arxiv.org/abs/2011.02255
https://doi.org/10.24963/ijcai.2021/320
https://doi.org/10.24963/ijcai.2021/320
https://doi.org/10.1145/3534678.3539320
https://doi.org/10.1145/3534678.3539320
https://doi.org/10.1016/j.clinph.2017.05.013
https://doi.org/10.1016/j.clinph.2017.05.013
https://www.sciencedirect.com/science/article/pii/S1388245717301980
https://www.sciencedirect.com/science/article/pii/S1388245717301980
https://doi.org/10.1016/j.artmed.2021.102084
https://doi.org/10.1016/j.artmed.2021.102084
https://doi.org/10.1016/j.artmed.2021.102084
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1611.01144
https://arxiv.org/abs/2111.04964
https://arxiv.org/abs/2111.04964
http://arxiv.org/abs/1609.02907
https://doi.org/10.1016/S1474-4422(09)70304-7
http://arxiv.org/abs/1611.00712
https://doi.org/10.1212/01.CON.0000431378.51935.d8
https://doi.org/10.1212/01.CON.0000431378.51935.d8
https://doi.org/10.3389/fnins.2016.00196


Knowledge Distillation with Graph Neural Networks 563

21. Raghu, S., Sriraam, N., Temel, Y.e.a.: EEG based multi-class seizure type clas-
sification using convolutional neural network and transfer learning. Neural Netw.
124, 202–212 (2020)

22. Rahmani, A., Venkitaraman, A., Frossard, P.: A meta-gnn approach to person-
alized seizure detection and classification. CoRR abs/2211.02642 (2022). https://
doi.org/10.48550/arXiv.2211.02642

23. Roy, S., Asif, U., Tang, J., Harrer, S.: Seizure type classification using eeg signals
and machine learning: Setting a benchmark. In: 2020 IEEE Signal Processing in
Medicine and Biology Symposium (SPMB), pp. 1–6. IEEE (2020)

24. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

25. Schiratti, J.B., Le Douget, J.E., Le Van Quyen, M., Essid, S., Gramfort, A.: An
ensemble learning approach to detect epileptic seizures from long intracranial EEG
recordings. In: 2018 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 856–860 (2018). https://doi.org/10.1109/ICASSP.
2018.8461489

26. Shafer, M.P.O.: What Is Epilepsy? (2014). https://www.epilepsy.com/learn/
about-epilepsy-basics

27. Siddiqui, M.K., Morales-Menendez, R., Huang, X., Hussain, N.: A review of epilep-
tic seizure detection using machine learning classifiers. Brain Inform. 7(1), 1–18
(2020)

28. Sopic, D., Aminifar, A., Atienza, D.: e-Glass: a wearable system for real-time detec-
tion of epileptic seizures. In: 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351728

29. Strypsteen, T., Bertrand, A.: End-to-end learnable eeg channel selection for deep
neural networks with gumbel-softmax. J. Neural Eng. 18(4), 0460a9 (2021)

30. Tang, S., et al.: Self-Supervised Graph Neural Networks for Improved Electroen-
cephalographic Seizure Analysis. In: Proceedings on the International Conference
on Learning Representations (2022)

31. Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling Knowledge from Graph
Convolutional Networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7074–7083 (2020)

32. Zhang, C., Liu, J., Dang, K., Zhang, W.: Multi-Scale Distillation from Multiple
Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intel-
ligence 36(4), 4337–4344 (2022). https://doi.org/10.1609/aaai.v36i4.20354

33. Zhou, S., et al.: Distilling Holistic Knowledge with Graph Neural Networks. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
10387–10396 (2021)

https://doi.org/10.48550/arXiv.2211.02642
https://doi.org/10.48550/arXiv.2211.02642
https://doi.org/10.1109/ICASSP.2018.8461489
https://doi.org/10.1109/ICASSP.2018.8461489
https://www.epilepsy.com/learn/about-epilepsy-basics
https://www.epilepsy.com/learn/about-epilepsy-basics
https://doi.org/10.1109/ISCAS.2018.8351728
https://doi.org/10.1609/aaai.v36i4.20354


Recommendation and Information
Retrieval



OptMSM: Optimizing Multi-Scenario
Modeling for Click-Through Rate

Prediction

Xing Tang1, Yang Qiao1, Yuwen Fu1, Fuyuan Lyu2, Dugang Liu3(B),
and Xiuqiang He1(B)

1 FiT, Tencent, Shenzhen, China
{shawntang,sunnyqiao,evenfu,xiuqianghe}@tencent.com

2 School of Computer Science, McGill University, Montreal, Canada
3 Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ),

Shenzhen University, Shenzhen, China
dugang.ldg@gmail.com

Abstract. A large-scale industrial recommendation platform typically
consists of multiple associated scenarios, requiring a unified click-through
rate (CTR) prediction model to serve them simultaneously. Existing
approaches for multi-scenario CTR prediction generally consist of two
main modules: i) a scenario-aware learning module that learns a set
of multi-functional representations with scenario-shared and scenario-
specific information from input features, and ii) a scenario-specific pre-
diction module that serves each scenario based on these representa-
tions. However, most of these approaches primarily focus on improv-
ing the former module and neglect the latter module. This can result
in challenges such as increased model parameter size, training diffi-
culty, and performance bottlenecks for each scenario. To address these
issues, we propose a novel framework called OptMSM (Optimizing
Multi-Scenario Modeling). First, we introduce a simplified yet effective
scenario-enhanced learning module to alleviate the aforementioned chal-
lenges. Specifically, we partition the input features into scenario-specific
and scenario-shared features, which are mapped to specific informa-
tion embedding encodings and a set of shared information embeddings,
respectively. By imposing an orthogonality constraint on the shared
information embeddings to facilitate the disentanglement of shared infor-
mation corresponding to each scenario, we combine them with the spe-
cific information embeddings to obtain multi-functional representations.
Second, we introduce a scenario-specific hypernetwork in the scenario-
specific prediction module to capture interactions within each scenario
more effectively, thereby alleviating the performance bottlenecks. Finally,
we conduct extensive offline experiments and an online A/B test to
demonstrate the effectiveness of OptMSM.
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1 Introduction

Click-through rate (CTR) prediction is a crucial component in online recommen-
dation platform [3,5,19,23], which aims to predict the probability of candidate
items being clicked and return top-ranked items for each user. In practice, a
business is usually divided into different scenarios based on different user groups
or item categories [4,6,20], and the resource overhead of customizing a propri-
etary CTR prediction model for each scenario is too high. Therefore, designing
and deploying a unified CTR prediction model to efficiently serve all scenar-
ios is a realistic challenge for a large-scale industrial recommendation platform.
Taking the Tencent Licaitong financial recommendation platform used in the
online experiment as an example, as shown in Fig. 1, these scenarios include
the homepage (HP), balanced investment portfolio page (BIP), and aggressive
investment portfolio page (AIP). Specifically, HP is the first page that each user
interacts with, where the users usually browse the items without specific intent.
The categories of items are mixed. The BIP and AIP pages list the items with
corresponding categories for the users with different specific intents, respectively.
We focus on how to effectively utilize all the user interactions in multiple sce-
narios to obtain a desired CTR prediction model.

Fig. 1. The scenarios in Tencent Licaitong financial recommendation platform.

Different from single-scenario modeling [35], multi-scenario modeling (MSM)
for CTR prediction is proposed in previous works to address the above goals.
Existing works for MSM usually adopt the idea of multi-task learning to model
the relationship between different scenarios [17,26,36]. They usually contain two
main modules, i.e., the scenario-aware learning module and the scenario-specific
prediction module. The former is used to learn versatile scenario-aware rep-
resentations, where scenario-shared and scenario-specific information are cap-
tured simultaneously. The latter uses a scenario-specific architecture to predict
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the corresponding scenario based on scenario-aware representations. Obviously,
the scenario-aware learning module carries more learning burden during train-
ing, and most of the existing works focus on improving the effectiveness of
this module in modelling the multi-functional representations, where increas-
ingly complex architectures are proposed [2,11,13,25,31,34,37]. Although these
works have shown promising results, these complex architectures also increase
both the model complexity and the training cost, which becomes an obstacle
to generalization to more business scenarios. On the other hand, improvements
for scenario-specific prediction modules are usually neglected in previous works,
i.e., they only utilize simple fully-connected layers as the architecture of the
predictor, which may lead to performance bottlenecks within each scenario.

In this paper, to address the above problems, we propose a novel Optimizing
Multi-Scenario Modelling (OptMSM) framework. We propose a novel scenario-
enhanced learning module to alleviate the first problem. Specifically, we incorpo-
rate scenario priors to partition the input feature set into scenario-specific and
scenario-shared features, mapped to an embedding encoding specific information
and a set of embeddings encoding shared information. After introducing adaptive
gating and orthogonality constraints on the latter to facilitate the separation of
shared information corresponding to each scene, it is combined with the former
to obtain the multifunctional representation. Since neither adaptive gating nor
orthogonality constraints require additional learnable parameters, and the sep-
arate modelling of feature sets eases the learning burden, the scenario-enhanced
learning module provides an effective and efficient way to obtain the desired
representations. Inspired by the effectiveness of feature interactions in single-
scenario modelling, we then develop a scenario-specific hypernetwork to deal
with the second problem, which generates adaptive network parameters based
on scenario-aware representations. In this way, scenario-aware representations
can fully interact with scenario-specific predictors to further improve perfor-
mance. Moreover, as shown in Sect. 4.2, our framework can also be effectively
integrated with existing multi-scenario models to improve performance.

2 Related Work

In this section, we briefly review some related works on two topics, including
single-scenario modelling and multi-scenario modelling for CTR prediction.

Single-Scenario Modeling for CTR Prediction. Traditional CTR predic-
tion aims to leverage the user interactions within a specific scenario to train
an effective model for this scenario [5,16,19,22]. Most existing works on this
topic focus on improving the modelling of feature interactions to enhance the
performance of models, and many representative methods have been proposed.
For example, DeepFM combines factorization machine and deep network layer
to model the feature interactions [8], DCN [29] and DCN-V2 [30] develop a novel
cross-network layer to further characterize the explicit feature interactions, and
APG [33] proposes an adaptive parameter generation network for deep CTR
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prediction models, which can enhance the representation of feature interactions
per instance with a larger parameter space. In addition, some recent works have
introduced various automated machine learning ideas to efficiently find a suitable
feature interaction architecture, such as AutoFIS [14] and OptInter [15]. Overall,
previous works have shown that the design of feature interaction architecture is
an important factor in improving the performance of single-domain CTR models,
which is neglected in multi-scenario modelling for CTR prediction.

Multi-Scenario Modeling for CTR Prediction. Multi-scenario CTR mod-
elling aims to leverage all the user interactions in different scenarios to train one
or more models to serve these scenarios simultaneously [7,11,13,24,25,31,37],
where the key question is how to use shared-specific information to learn the ver-
satile scenario-aware representations, and then use a scenario-specific architec-
ture for per-scenario prediction. A lot of work has been proposed to improve the
effectiveness of scenario-aware representation learning. For example, STAR [25]
designs a novel topological dependency to fully exploit the relationship between
different scenarios. SAR-Net [24] introduces a scenario-aware attention module
to extract scenario-specific user features, and a corresponding gating mecha-
nism is designed to fuse them with shared information. CausalInt [31] introduces
the priors on causal graphs to efficiently extract shared information and reduce
negative transfer. However, these methods will significantly increase the model
parameter size and training difficulty. Furthermore, ignoring the improvement
of scenario-specific predictor architectures will lead to performance bottlenecks.

3 Preliminary

In this section, we first give a formal definition of the multi-scenario CTR pre-
diction task. Given a set of scenarios S = {sm}Mm=1 and a set of training instance
{(x, y, sm)}Nn=1, where x ∈ X is the feature vector, y ∈ {0, 1} is the label, and
m ∈ {1, · · · ,M} is the scenario indicator corresponding to each instance. The
multi-scenario CTR prediction task needs to perform CTR prediction on these
M related scenarios,

ŷ = F(x, y, sm), (1)

where F is the multi-scenarios model and ŷ is the predicted label. Further, we can
decompose this task into two stages, i.e., scenario-aware representation learning
f(·) and scenario-specific prediction g(·),

Rsm = f(x, sm | W),

ŷ = g(Rsm | {Wsm}),
(2)

where W and {Wsm} are weight parameters of the two stages, respectively.
Therefore, the optimization objective for multi-scenario CTR prediction can be
formalized as,

Lmsm =
N∑

n=1

�(yn, ŷn), (3)

where � is an arbitrary loss function, such as a cross-entropy loss.
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4 The Proposed Framework

The proposed framework for optimizing multi-scenario modelling, or OptMSM
for short, is shown in Fig. 2. The OptMSM consists of three steps. First, the
input feature partition module incorporates the scenario priors to partition the
input features. Then, the scenario-enhanced learning module models the disen-
tangled representation corresponding to each scenario from the scenario-shared
features. Finally, after combining scenario-specific information and disentangled
representation, a scenario-aware representation interaction module is used to
explore the interactions within each scenario to enhance predictive performance.
We will describe each module in detail based on the training process.

Fig. 2. The architecture of our OptMSM framework.

4.1 The Input Features Partition Module

To ease the model’s learning burden for scenario-aware representations, we
propose to divide the input features into two groups and model them sepa-
rately, including scenario-specific features xm and scenario-shared features xc,
i.e. x = {xm,xc}. An example of different categories of input features is listed in
Table 1. It can be observed that some features are specific to certain scenarios,
such as scenario id, while others are shared among all scenarios, such as gen-
der. Note that previous modelling paradigms do not differentiate input feature
categories. Therefore, scenario-specific features are difficult to transfer across
scenarios during learning scenario-aware representations, and scenario informa-
tion is hard to capture in the final prediction. Hence, the intuitive motivation
for this module is to resolve these issues. In addition, the model needs more
effort to reasonably balance the modeling of two categories of features. Next, we
transform scenario-specific and scenario-shared features into corresponding low-
dimensional embeddings and feed them into the following modules for further
modeling.

em = Em(xm) & ec = E(xc), (4)
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Table 1. An example of features included in the online financial recommendation
platform used in the experiments.

Feature Category Example

User Common Features gender,age, user behaviors, etc.

Item Common Features item category, item price, etc.

Context Common Features time, market condition

User Scenario-specific Features user behaviors in scenarios

Item Scenario-specific Features item statistics, item appearance in scenarios, etc.

Context Scenario-specific Features scenario id, item position in scenarios, etc.

where Em, em, E, ec are the embedding tables and embeddings corresponding
to the two category features, respectively.

4.2 The Scenario Enhanced Learning Module

After receiving the scenario-shared feature embeddings ec generated by the pre-
vious module, we need to leverage cross-scenario information sharing and trans-
fer to learn effective scenario-aware representations for different scenarios. An
intuitive idea is that each scenario should pay extra attention to scenario-shared
features [11]. Therefore, we first introduce an adaptation gate for each scenario
to refine ec with scenario-specific information. In this paper, we take Squeeze-
and-Excitation (SE-Net) [10] as an example implementation,

zm = σ(Wm[average(ec1), ..., average(eci)] + bm),
emc = concat([zm1 ∗ ec1, ..., zmi ∗ eci]),

(5)

where zm = (zm1 , zm2 , · · · , zmi ) is the refined weight vector for scenario m, Wm

and bm are the corresponding learnable parameters, and i is the number of
scenario-shared features. Note that adaptive gates can be implemented differ-
ently, such as an attention layer [27] or a perceptual layer [24], and the SE-Net
block will be a lightweight approach for our purposes. Next, a built-in shared
information transfer module aims to utilize the information synergy among all
the scenarios to further distinguish different concerns of different scenarios on
scenario-shared information. The issues for this module focus on how to transfer
and what to transfer.

How to Transfer. A range of scenario-aware learning architectures have been
explored in previous works on multi-scenario modeling, and they are easily inte-
grated into this module. Here are some examples to illustrate the process:

– shared network: The shared network aims to extract commonality from all
the scenarios and can be expressed as follows,

rshared = MLPshared(emc ), (6)
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where MLPshared is the multilayer perception network shared by all the
scenarios. Note that multiple similar MLPshared are used in MMOE, the
parameters of MLPshared are shared without explicit output in STAR, and
the output of multiple MLPshared are used as a shared expert component in
PLE.

– scenario-specific network : The scenario-specific network aims to squeeze out
scenario-specific information from shared information, in which only scenario-
specific data are used,

rmscenario = MLPm(emc ), (7)

where MLPm is the scenario-specific network. Note that the number of
MLPm can be set according to the plugged module, e.g., 0 in MMOE, equal
to the number of scenarios in STAR, and a predefined value in PLE.

– transferring layer : In some previous works, different methods are introduced
to jointly model the above two networks. For example, STAR proposes the
FCN topology dependence, and PLE introduces the gated network. To illus-
trate the transfer process, we use FCN as an example,

rmtransfer = FCN(emc ) = (Wshared ⊗ Wm) · emc + bshared + bm, (8)

where {Wshared, bshared} and {Wm, bm} are parameters in MLPshared and
MLPm, respectively, and ⊗ denotes element-wise multiplication.

Finally, this module will generate representations for all the scenarios, denoted
as {rm | m ∈ [1,M ]}.

What to Transfer. Note that the scenario-aware representations are learned
based on the model that mixes samples from all the scenarios. As a result, neg-
ative transfer often occurs, which perturbs the scenario-aware representations
and misleads subsequent top-level predictions. A critical issue to mitigate the
negative transfer effect is disentangling the representations between different
scenarios. Inspired by the disentangled representation learning [21], we propose
an explicit orthogonality constraint on the representation obtained above as an
auxiliary loss to achieve this goal. Note that the number of samples in all the
scenarios is usually unbalanced, and it is difficult to deal with the constraints
of cross-sample representations. Therefore, we propose a strategy for enhanced
learning. More specifically, for a sample b, we generate its representations in all
the scenarios, i.e., {r1b , · · · , rmb }. Only one representation corresponding to the
real scenario will be used for prediction in subsequent layers, while the others
are used as contrastive representations to compute the orthogonality constraint.
Orthogonal constraints will make these representations perpendicular to each
other to ensure independence and successfully disentangle scenario-specific infor-
mation. Note that the idea behind this strategy is similar to contrastive loss [28].
Formally, the loss can be expressed as follows,

Lorth =
∑

i�=j
b∈B

< rib, r
j
b > , < rib, r

j
b >=

rib · rjb
‖rib‖2 · ‖rjb‖2

(9)
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where ‖ · ‖2 refers to the l2 norm, and B is the size of the mini-batch. Note that
although the loss is conducted on C2

m pairs, it can be efficiently implemented in
a vectorized manner at the mini-batch level and avoids loops.

4.3 The Scenario-Aware Representation Interaction Module

Although we get the disentangled scenario-aware representation, we still need
to augment the representation with prior scenario-specific features in Eq.(4).
On the one hand, scenario-specific information has a solid induction to the
corresponding scenario, which helps the final prediction. On the other hand,
considering complex interactions has been shown to benefit the performance of
single-scenario CTR modeling. Therefore, to give the prediction more perception
of prior information, we design a hypernetwork adaptively generating scenario-
aware parameters [2,9], which provides a full representation interaction. We give
a detailed illustration of this module as shown in Fig. 3.

Fig. 3. The scenario-aware hypernetwork for parameters generation.

To preserve the priors, we only concatenate the prior scenario-specific features
embeddings em with disentangled scenario-aware representation rm,

Rm
0 = rm ⊕ em. (10)

We then adopt a two-layer perception to generate parameters from the repre-
sentations, i.e.,

R0l = Relu(w0Rm
0 + b0),

R1l = 2 � σ(w1R0l + b1),
(11)

where σ is sigmoid function, R1l has the same shape as Rm
l , and l is is the

current layer number. Setting the coefficient to 2 in Eq.(11) is to scale the mean
of sigmoid output to 1. After parameters are generated, we interact R1l with
each layer in each scenario-specific predictor,

Rm
l = Rm

l ⊗ R1l, l ∈ {0, · · · , L − 1} (12)

where Rm
l is the latent output of layer l in the scenario m, and L − 1 is the

number of layers in each scenario. Finally, the final score for m-th scenario can
be get,

ŷm = σ(WL−1R
m
L−1 + bL−1), (13)
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where Wn−1, bn−1 is the parameters of classifier. After combining Eq.(3), (9) and
(13), We can get the final optimization objective,

L = Lmsm + λ · Lorth, (14)

where λ is a hyper-parameter controlling the orthogonality constraint.

5 Experiments

In this section, we conduct comprehensive experiments with the aim of answering
the following five key questions.

– RQ1: Could OptMSM achieve superior performance compared with main-
stream multi-scenario models?

– RQ2: Could OptMSM transfer to more multi-scenario models?
– RQ3: How does each module of OptMSM contribute to the final results?
– RQ4: Does OptMSM really get the optimal scenario-aware representation?
– RQ5: How does OptMSM perform in real-world recommendation scenarios?

5.1 Experiment Setup

Datasets. We conduct our offline experiments on three datasets, including two
publicly multi-scene CTR benchmark datasets (Ali-CCP and AliExpress) and a
private product dataset. Ali-CCP1 is collected from the traffic log of Tabao, and
we divide logs into three scenarios according to the scenario id. AliExpress2 is col-
lected from the AliExpress search system, which contains user behaviours from
five countries. We consider each country as an advertising scenario and select
four countries in our experiments following the setting of previous work [38].
The real product dataset comes from the financial business scenario of Tencent
Licaitong, and we collect consecutive 4 weeks of user feedback logs from four
scenarios, respectively. For Ali-CCP, following previous work [32], we use all the
single-valued categorical features and take 10% of the train set as the validation
set to verify models. For AliExpress, we split the training set and test set accord-
ing to the settings in the original paper [13]. For the production dataset, we keep
data on the last day as the test set, and the rest as the training and validation
sets. Table 2 summarize the statistics for these datasets. We can observe that
the data distribution in Ali-CCP and Production is obviously unbalanced.

Comparison Models. To verify the effectiveness of our proposed framework,
we compare OptMSM with the following models. Mix: The model with a 3-layer
fully-connected network is trained with a mixture of samples from all Scenarios;
S-B: We share the embedding table across scenarios, and each scenario-specific
network is the same as Mix, i.e., shared bottom model; MMoE [17]: We adopt a

1 https://tianchi.aliyun.com/dataset/408.
2 https://tianchi.aliyun.com/dataset/74690.

https://tianchi.aliyun.com/dataset/408
https://tianchi.aliyun.com/dataset/74690
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Table 2. Statistics of datasets used in offline experiments. For impression and click,
the percentages in each scenario are given in brackets.

Dataset #Scenarios #Impression #Click

Ali-CCP 3 85,316,519
(0.75/37.79/61.46)

3,317,703
(0.84/38.91/60.25)

AliExpress 4 103,814,836
(17.07/26.04/30.51/26.38)

2,215,494
(17.02/24.49/38.15/20.34)

Production 4 823,972,400
(68.96/3.93/8.05/19.06)

59,466,088
(47.38/7.21/14.09/31.32))

shared Mixture-of-Experts model, where each expert is a 3-layer fully-connected
network and the number of experts equals 2 ∗#scenarios; HMOE [13]: Except
for explicit relatedness in the label space introduced by HMOE, the other settings
are the same as MMOE; PLE [26]: The core module of PLE is CGC (Customized
Gate Control), which consists of scenario-specific experts and shared experts. We
keep the number of the former the same as MMOE with two additional shared
experts; STAR [25]: This model consists of a centered network shared by all sce-
narios and the scenario-specific network for each scenario. The architectures of
all networks are the same as Mix; and PEPNet [2]: This model adopts person-
alized prior information to enhance embedding and parameter personalization,
and only has scenario-specific towers for predictions.

Implementation Details and Evaluation Settings. All models are imple-
mented on Tensorflow [1] and trained with Adam optimizer [12]. We tune learn-
ing rate from [10−2, 10−3, 10−4, 10−5], L2 weight from [10−3, 10−4, 10−5, 10−6],
and dropout rate from [0.1, 0.2, 0.3, 0.4]. The batch sizes for each dataset are
set as 2048, 2048, and 512, respectively. The embedding dimensions are set as
20, 10, and 10. Besides, the hidden layers of the fully connected network are
fixed to [256, 128, 32]. Following the previous works [8,25], we use two common
metrics in CTR prediction, i.e., AUC (Area Under ROC) and Logloss (based on
cross-entropy).

5.2 RQ1: Overall Performance

We show the overall performance of our OptMSM and other baselines in Table 3.
We summarize our observations below: 1) OptMSM generally outperforms base-
lines in most scenarios in three datasets. Specifically, OptMSM performs consis-
tently well in three scenarios in the Ali-CCP dataset and improves significantly
in the first sparse scenario. In the other two datasets, our OptMSM performs
better in most scenarios to different degrees. Although OptMSM achieves the
second performance in some scenarios, note that the difference is within 0.1%,
which is also acceptable considering OptMSM gains statistical improvements in
other scenarios; 2) On the whole, MSM can boost performance in all scenar-
ios compared with the model trained with mixed data. However, this model
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Table 3. The overall performance over three datasets. The boldface and underline
indicate the highest score of all the models and baselines. � indicates significant level
p-value < 0.05.

Scenario Metric Mix S-B MMOE HMOE PLE STAR PepNet OptMSM

Ali-CCP S1 AUC 0.5921 0.5899 0.5955 0.5979 0.5943 0.5924 0.5941 0.6023�

Logloss 0.1838 0.1855 0.1811 0.1801 0.1811 0.1906 0.1922 0.1782�

S2 AUC 0.6166 0.6202 0.6183 0.6214 0.6198 0.6246 0.6203 0.6257�

Logloss 0.1673 0.1663 0.1657 0.1662 0.1657 0.1715 0.1724 0.1648�

S3 AUC 0.6141 0.6164 0.6151 0.6183 0.6165 0.6175 0.6168 0.6231�

Logloss 0.1641 0.1600 0.1596 0.1601 0.1596 0.1601 0.1693 0.1587�

AliExpress NL AUC 0.7256 0.7253 0.7257 0.7261 0.7256 0.7257 0.7258 0.7286�

Logloss 0.1087 0.1086 0.1081 0.1080 0.1079 0.1084 0.1078 0.1077

FR AUC 0.7247 0.7256 0.7258 0.7260 0.7263 0.7258 0.7266 0.7256

Logloss 0.1010 0.1013 0.1009 0.1007 0.1008 0.1009 0.1006 0.1004

ES AUC 0.7272 0.7276 0.7281 0.7285 0.7279 0.7277 0.7290 0.7301�

Logloss 0.1211 0.1210 0.1207 0.1207 0.1208 0.1211 0.1204 0.1201

US AUC 0.7084 0.7059 0.7082 0.7084 0.7084 0.7073 0.7088 0.7108�

Logloss 0.1015 0.1008 0.1008 0.1006 0.1006 0.1007 0.1004 0.1005

Production S1 AUC 0.8718 0.8853 0.8866 0.8811 0.8872 0.8875 0.8866 0.8890�

Logloss 0.0951 0.0914 0.0954 0.0982 0.0958 0.0862 0.0956 0.0848�

S2 AUC 0.8997 0.9065 0.9069 0.9004 0.9077 0.9069 0.9068 0.9071

Logloss 0.0246 0.0248 0.0256 0.0259 0.0258 0.0259 0.0317 0.0247

S3 AUC 0.8414 0.8478 0.8491 0.8502 0.8496 0.8515 0.8507 0.8524�

Logloss 0.0361 0.0288 0.0286 0.0286 0.0288 0.0276 0.0340 0.0273

S4 AUC 0.8665 0.8765 0.8759 0.8774 0.8768 0.8756 0.8773 0.8808�

Logloss 0.0569 0.0584 0.0581 0.0586 0.0585 0.0575 0.0654 0.0538�

performs slightly better than others in scenarios with sparse training samples.
For example, the Mix model performs better in Ali-CCP S1 and Production
S2. The possible reason for this is that samples in other scenarios are far more
than these two scenarios and can directly help prediction in these two scenarios;
and 3) PEPNet performs consistently better in AliExpress compared with other
baselines while achieving relatively poor performance in other skewed datasets.
Note that the distribution of AliExpress is more balanced than the other two
datasets. Hence, this comparison directly verifies the effectiveness of information
priors in some datasets and indirectly reflects that positive transfer is important
when spares scenarios exist.

5.3 RQ2: Transferability Analysis

In this subsection, we investigate the transferability of our framework. We intro-
duce FCN as our shared information transfer module in our framework. Here
we extend our framework to other operation modules to illustrate whether our
framework really optimizes the key factors for these modules. As shown in Fig. 4,
we extend our OptMSM with transfer operations, including FCN, MoE, and
CGC. Compared with the corresponding model, OptMSM improves its perfor-
mance in all the scenarios, further validating the effectiveness of our design opti-
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Fig. 4. Transferable analysis of OptMSM with different operation on Ali-CCP.

Table 4. Training cost comparison on the Ali-CCP.

Model Star OptMSM(FCN) MMoE OptMSM(MoE) PLE OptMSM(CGC)

Cost (s) 684 716 (+4.68%) 692 724 (+4.62%) 941 982 (+4.36%)

mizing module. To investigate whether the additional optimization will bring a
lot of computation cost, we report the training time of these models in Table 4.
Notably, the increment of training time of OptMSM is acceptable.

5.4 RQ3 and RQ4: Ablation Study

In this subsection, we validate the contribution of each component of OptMSM.
We conduct a series of ablation studies over the datasets by examining the
AUC after removing each component. The results are summarized in Table 5
and 6. The observations are summarized as follows: (1) All three components
play important roles in optimizing different architectures, proving our optimizing
framework’s effectiveness. (2) In both datasets, removing orthogonal constraints
generally suffers from the most decrement in AUC, which means the disentan-
gled representation is effective. (3)Because of the significant improvement of
PEPNet in AliExpress, removing hypernetwork in AliExpress is harmful to our
framework, which indicates that our framework optimizing scenario-specific pre-
diction module is useful. As the disentangled representation is a key factor in
our OptMSM, we further illustrate visual results by comparing the t-SNE [18]
representations with and without orthogonal constraint in Fig. 5. Note that our
constraint is effective in explicitly disentangling representation.

5.5 RQ5: Online Experiments

In this subsection, we report the online experiment results of our OptMSM
in a financial product recommender system for four consecutive weeks, and
the results further verify the effectiveness of our OptMSM. Firstly, we briefly
present the recommender system overview, shown in Fig. 6. This system has
two main components: Online Service and Offline Training respectively. When
users access any scenarios, a rank list request will be sent to the online ser-
vice. Meanwhile, the user’s attributes and contextual features will also be sent
to the ranker, which utilizes the offline model to predict the score. In offline
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Table 5. Ablation study on OptMSM with FCN for Ali-CCP. w/o means removing
the corresponding component, and the relative decrement is reported in the brackets.

Model S1 S2 S3

OptMSM 0.6023 0.6257 0.6231

w/o priors 0.6014 (−0.15%) 0.6247 (−0.16%) 0.6222 (−0.14%)

w/o constraint 0.6010 (−0.22%) 0.6246 (−0.18%) 0.6219 (−0.19%)

w/o hypernetwork 0.6016 (−0.12%) 0.6249 (−0.13) 0.6223 (−0.13%)

Table 6. Ablation study on OptMSM with CGC for AliExpress. w/o means removing
the corresponding component, and the relative decrement is reported in the brackets.

Model NL FR ES US

OptMSM 0.7290 0.7268 0.7312 0.7117

w/o priors 0.7288 (−0.03%) 0.7260 (−0.11%) 0.7302 (−0.14%) 0.7112 (−0.07%)

w/o constraint 0.7277 (−0.18%) 0.7263 (−0.07%) 0.7301 (−0.15%) 0.7108 (−0.13%)

w/o hypernetwork 0.7280 (−0.14%) 0.7265 (−0.04) 0.7302 (−0.14%) 0.7107 (−0.14%)

Fig. 5. Visualization results on the representation in AliExpress. Left: with orthogonal
constraint; Right: without orthogonal constraint.

training, the ranker leverages behaviour historical logs, and the trainer trains
the model based on the logs daily. Our OptMSM trains a unified model here
to serve multiple scenarios. We deploy the OptMSM on four scenarios in this
financial product recommender platform, which serves millions of daily active
users. And the model is trained in a single cluster, where each node contains
96-core Intel(R) Platinum 8255C CPU, 256GB RAM, and 8 NVIDIA TESLA
A100 GPU cards. Besides using Click Through Rate (CTR)(i.e. #click

#impression ), a
commonly-used online evaluation metric, we also use purchase amount per mille
(PAPM), defined as #purchase amount

#impression × 1000. Briefly, our OptMSM improve the
overall performance, achieving +1.42%, +1.76%, +1.26% and +0.84% lift
on CTR, and +6.58%,+7.10%,+5.82% and +6.90% lift on PAPM over 4
scenarios. The daily improvements are illustrated in Fig. 7.
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Fig. 6. Overview of the financial product recommender system.

Fig. 7. Online relative improvement ratios in four scenarios in consecutive four weeks.
(Upper is the CTR improvement, Bottom is the PAPM improvement).

6 Conclusion

In this paper, we propose a framework named OptMSM, which can optimize
multi-scenario modeling with disentangled representation and scenario-specific
interaction. First, we partition input features into two separate feature sets incor-
porating scenario priors, including scenario-specific and scenario-shared features.
Then we design a scenario-enhanced learning module with plugged scenario-
shared information transfer. With orthogonal constraints on both scenario-aware
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representation and contrastive representations, we obtain the disentangled repre-
sentation. Finally, the scenario-specific interaction module adopts hypernetwork
to make the scenario-specific information and scenario-aware representation fully
interact. Compelling results from both offline evaluation and online A/B exper-
iments validate the effectiveness of our framework.
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Abstract. Document-based Visual Question Answering examines the
document understanding of document images in conditions of natural
language questions. We proposed a new document-based VQA dataset,
PDF-VQA, to comprehensively examine the document understanding
from various aspects, including document element recognition, document
layout structural understanding as well as contextual understanding and
key information extraction. Our PDF-VQA dataset extends the current
scale of document understanding that limits on the single document page
to the new scale that asks questions over the full document of multiple
pages. We also propose a new graph-based VQA model that explicitly
integrates the spatial and hierarchically structural relationships between
different document elements to boost the document structural under-
standing. The performances are compared with several baselines over
different question types and tasks (The full dataset is released in https://
github.com/adlnlp/pdfvqa).

Keywords: Document Understanding · Document Information
Extraction · Visual Question Answering

1 Introduction

With the rise of digital documents, document understanding received much
attention from leading industrial companies, such as IBM [35] and Microsoft
[31,32]. Visual Question Answering (VQA) on visually-rich documents (i.e.
scanned document images or PDF file pages) aims to examine the compre-
hensive document understandings in conditions of the given questions [13]. A
comprehensive understanding of a document includes structural understanding
[18,25,26] and content understanding [6,7].

The existing document VQA mainly examines the understanding of the doc-
ument in terms of contextual understanding [21,29] and key information extrac-
tion [10,24]. Their questions are designed to ask about certain contents on a
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document page. For example, the question “What is the income value of con-
sulting fees in 1979?” expects the specific value from the document contents.
Such questions examine the model’s ability to understand questions and docu-
ment textual contents simultaneously.

Apart from the contents, the other important aspect of a document is its
structured layout which forms the content hierarchically. Including such struc-
tural layout understandings in the document, the VQA task is also critical
to improve the model’s capabilities in understanding the documents from a
high level. Because in real-world document understandings, apart from query-
ing about certain contents, it is common to query a document from a higher
level. For example, a common question would be “What is the figure on this
page about?” and answering such a question requires the model to recognize
the figure element and understand that the figure caption, which is structurally
associated with the figure, should be extracted and returned as the best answer.

Additionally, the existing document VQA limits the scale of document under-
standing to a single independent document page [21,29]. But most document
files of human’s daily work are multi-page documents with successively logical
connections between pages. It is a more natural demand to holistically under-
stand the full document file and capture the connections of textual contents and
their structural relationships across multiple pages rather than the independent
understanding of each page. Thus, it is significant to expand the current scale
of page-level document understanding to the full document-level.

In this work, we propose a new document VQA dataset, PDF-VQA, that
contains questions to comprehensively examine document understandings from
the aspects of 1)document element recognition 2) and their structural relation-
ship understanding 3) from both page-level and full document-level. Specifi-
cally, we set up three tasks for our dataset with questions that target different
aspects of document understanding. The first task mainly aims at the document
elements recognition and their relative positional relationship understandings
on the page-level, the second task focuses on the structural understanding and
information extraction on the page level, and the third task targets the hierarchi-
cal understanding of document contents on the full document level. Moreover,
we adopted the automatic question-answer generation process to save human
annotation time and enrich the dataset with diverse question patterns. We have
also explicitly annotated the relative hierarchical and positional relationships
between document elements. As shown in Table 1, our PDF-VQA provides the
hierarchically logical relational graph and spatial relational graph, indicating the
different relationship types between document elements. This graph information
can be used in model construction to learn the document element relationships.
We also propose a graph-based model to give insights into how those graphs can
be used to gain a deeper understanding of document element relationships from
different aspects.

Our contributions are summarized as 1) We propose a new document-
based VQA dataset to examine the document understanding of comprehensive
aspects, including the document element recognition and the structural layout
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Table 1. Summary of conventional document-based VQA. Answer type abbreviations
are MCQ: Multiple Choice; Ex: Extractive; Num: Numerical answer; Y/N: yes/no;
Ab: Abstractive. Datasets with a tick mark in Text Info. the column provides the
textual information/OCR tokens on the image/document page ROI. LR graph: logical
relational graph; SR graph: spatial relational graph.

Dataset Source Q. Coverage Answer Type Img. # Q. # Text Info. Relation Info.

TQA [15] Science Diagrams diagram contents MCQ 1K 26K ✓ ✗

DVQA [13] Bar charts chart contents Ex, Num, Y/N 300K 3.4M ✓ ✗

FigureQA [14] Charts chart contents Y/N 180K 2.4M ✗ ✗

PlotQA [22] Charts chart contents Ex, Num, Y/N 224K 29M ✓ ✗

LEAFQA [3] Charts chart contents Ex, Num, Y/N 250K 2M ✗ ✗

DocVQA [21] Single Doc Page doc contents Ex 12K 50K ✓ ✗

VisualMRC [29] Webpage Screenshot page contents Ab 10K 30K ✓ ✗

InfographicVQA [20] Infographic graph contents Ex, Num 5.4K 30K ✓ ✗

PDF-VQA TaskA Single Doc Page doc elements Ex, Num, Y/N 12k 81K ✓ LR graph SR graph

PDF-VQA TaskB Single Doc Page doc structure Ex 12K 54K ✓

PDF-VQA TaskC Entire Doc doc contents Ex 1147 5.7K ✓

understanding; 2) We are the first to boost the scale of document VQA questions
from the page-level to the full document level; 3) We provide the explicit annota-
tions of spatial and hierarchically logical relation graphs of document elements for
the easier usage of relationship features for future works; 4) We propose a strong
baseline for PDF-VQA by adopting the graph-based components.

2 Related Work

VQA is firstly proposed by [1] which categorizes the image source of the VQA
task into three types: realistic/synthetic photos, scientific charts, and document
pages. VQA with realistic or synthetic photos is widely known as the con-
ventional VQA [1,8,11,12,19]. These realistic photos contain diverse object types
and the questions of the conventional VQA query about the recognition of objects
and their attributes and the positional relationship of the objects. The later pro-
posed scene text VQA problem [2,23,27,30] involves realistic photos with scene
texts, such as the picture of a restaurant with its brand name. The questions of
scene text VQA query about recognising the scene texts associated with objects
in the photos. VQA with scientific charts [3,13,14,22] contain the scientific-
style plots, such as bar charts. The questions usually query trend recognition,
value comparison, and the identification of chart properties. VQA with docu-
ment pages involves images of various document types. For example, the screen-
shots of web pages that contain short paragraphs and diagrams [29], info-graphics
[20], and single document pages of scanned letters/reports/forms/invoices [21].
These questions usually query the textual contents of a document page, and
most answers are text spans extracted from the document pages.

VQA tasks on document pages are related to Machine Reading Comprehen-
sion (MRC) tasks in terms of questions about the textual contents and answered
by extractive text spans. Some research works [21,29] also consider it as an MRC
task, so it can be solved by applying language models on the texts extracted from
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Table 2. Data Statistics of Task A, B, and C. The numbers in Image row for Task
A/B refer to the number of document pages but the entire document number for Task
C.

Task Type Train Valid Test Total

Task A Image 8, 593 1, 280 2, 464 12, 337

Question 59, 688 7, 247 14, 150 81, 085

Task B Image 8, 593 1, 280 2, 464 12, 337

Question 37, 428 5, 660 10, 784 53, 872

Task C Document 800 115 232 1, 147

Question 3, 951 581 1, 121 5, 653

the document pages. However, input usage is the main difference between MRC
and VQA. Whereas MRC is based on pure texts of paragraphs and questions,
document-based VQA focuses on the processing of image inputs and questions.
Our PDF-VQA is based on the document pages of published scientific articles,
which requires the simultaneous processing of PDF images and questions. We
compare VQA datasets of different attributes in Table 1. While the questions of
previous datasets mainly ask about the specific contents of document pages or
the certain values of scientific charts/diagrams, our PDF-VQA dataset questions
also query the document layout structures and examine the positional and hier-
archical relationships understandings among the recognized document elements.

3 PDF-VQA Dataset

Our PDF-VQA dataset contains three subsets for three different tasks to mainly
examine the different aspects of document understanding: Task A) Page-level
Document Element Recognition, B) Page-level Document Layout Structure
Understanding, and C) Full Document-level Understanding. Detailed dataset
statistics are in Table 2.

Task A aims to examine the document element recognition and their rela-
tive spatial relationship understanding on the document page level. Questions
are designed into two types to verify the existence of the document elements and
count the element numbers. Both question types examine relative spatial rela-
tionships and understandings between different document elements. For example,
“Is there any table below the’Results’ section?” in Fig. 1 and “How many tables
are on this page?”. Answers are yes/no and numbers from a fixed answer space.

Task B focuses on understanding the document layout structures spatially
and logically based on the recognized document elements on the document page
level and extracting the relevant texts as answers to the questions. There are
two main question types: structural understanding and object recognition. The
structural understanding questions relate to examining spatial structures from
both relative positions or human reading order. For example, “What is the bottom
section about?” requires understanding the document layout structures from
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Fig. 1. PDF-VQA sample questions and document pages for Task A, B, and C.

the relative bottom position and “What is the last section about?” requires
identifying the last section based on the human reading order of a document.
The object recognition questions explicitly contain a specific document element
in the questions and require to recognition of the queried element first, such as
the question “What is the bottom table about?” in Fig. 1. Answering these two
types of questions require a logical understanding of the hierarchical relationships
of document elements. For instance, based on the textual contents, the section
title would be a logically high-level summarization of its following section and is
regarded as the answer to “What is the last section about?”. Similarly, a table
caption is logically associated with a table; table caption contents would best
describe a table.

Task C questions have a sequence of answers extracted from multi-pages
of the full document. It enhances the document understanding from the page
to the full document level. Answering a question in Task C requires reviewing
the full document contents and identifying the contents hierarchically related
to the queried item in the question. For example, the question “Which section
does describe Table 2 ?” in Fig. 1 requires the identification of all the sections
of the full document that have described the queried table. The answers to
such questions are the texts of the corresponding section titles extracted as
the high-level summarization of the identified sections. Identifying the items at
the higher-level hierarchy of the queried item is defined as the parent relation
understanding the question in PDF-VQA. Oppositely, Task C also contains the
questions of identifying the items at the lower-level hierarchy of the queried item,
and such questions are defined as the child relation understanding. For example,
a question, “What does the ‘Methods’ section about?” requires extracting all
the subsection titles as the answer.

The detailed question type distribution of each task is shown in Table 3.
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3.1 Data Source

Our PDF-VQA dataset collected the PDF version of visually-rich documents
from the PubMed Central (PMC) Open Access Subset1. Each document file
has a corresponding XML file that provides the structured representations of
textual contents and graphical components of the article2. We applied the pre-
trained Mask-RCNN [35] over the collected document pages to get the bounding
boxes and categories for each document element. The categories initially con-
sisted of five common PDF document element types: title, text, list, figure, and
table. We then labelled the text elements that are positionally closest to the
tables and figures into two additional categories table caption and figure caption
respectively.

3.2 Relational Graphs

Visually rich documents of scientific articles consist of fixed layout structures
and hierarchically logical relationships among the sections, subsections and other
elements such as tables/figures and table/figure captions. Understanding such
layout structures and relationships is essential to boost the understanding of this
type of document. The graph has been used as an effective method to represent
the relationships between objects in many tasks [4,18,33,34]. Inspired by this,
for each document, we annotated the hierarchically logical relational graph (LR
graph) and spatial relational graph (SR graph) to explicitly represent the logi-
cal and spatial relationships between document elements respectively. Those two
graphs can be directly used by any deep-learning mechanisms to enhance the fea-
ture representation. In Sect. 6, we propose a graph-based model to enlighten how
such relational information can solve the PDF-VQA questions. The SR graph
indicates the relative spatial relationships between document elements based on
their absolute geometric positions with their bounding box coordinates. For each
document element of a single document page, we identify its relative spatial rela-
tionships with all the other document elements among eight spatial types: top,
bottom, left, right, top-left, top-right, bottom-left and bottom-right. The LR graph
indicates the potential affiliation between document elements by identifying the
parent object and their children’s objects based on the hierarchical structures of
document layouts. We follow [18] to annotate the parent-child relations between
the document elements in a single document page to generate the LR graph.
The graph of the full document of multiple pages are augmented by the graphs
of its document pages.

3.3 Question Generation

Visually rich documents of scientific articles have consistent spatial and logical
structures. The associated XML files of these documents provide detailed logical
1 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.
2 It follows the XML schema module provided by the Journal Archiving and Inter-

change Tag Suite created by the National Library of Medicine (NLM) https://dtd.
nlm.nih.gov/.

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://dtd.nlm.nih.gov/
https://dtd.nlm.nih.gov/
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Table 3. Ratio and exact number of various question types of Task A, B and C.

Tasks Question Type Percentage Total

Task A Counting 17.74 14, 387

Existence 82.26 66, 698

Task B Structural Understanding 88.58 47, 722

Object Recognition 11.42 6, 150

Task C Parent Relationship Understanding 79.71 4, 506

Child Relationship Understanding 20.29 1, 147

structures between semantic entities. Based on this structural information and
the pre-defined question template, we applied an automatic question-generation
process to generate large-scale question-answer pairs efficiently. For example, the
question “How many tables are above the ‘Discussion’?” is generated from the
question template “How many 〈E1〉 are 〈R〉 the ‘〈E2〉’?” by filling the masked
terms 〈E1〉, 〈R〉 and 〈E2〉 with document element label (“table”), positional
relationship (“above”) and title name extracted from document contents (“Dis-
cussion”) respectively. We prepare each question template with various language
patterns to diversify the questions. For instance, the above template can also be
written as “What is the number of 〈E1〉 are 〈R〉 the ‘〈E2〉’?”. We have 36, 15,
and 15 question patterns for Task A, B, and C, respectively. We limit the param-
eter values of the document element label to only title, list, table, figure as asking
for the number/existence/position of text elements would be less valuable. The
parameter values include four document element labels, eight positional relation-
ships (top, bottom, left, right, top-left, top-right, bottom-left and bottom-right),
ordinal form (first, last) and the texts from document contents (e.g. section title,
references, etc.). We also replace some parameter values with their synonyms,
such as “on the top of” for “above”.

To automatically generate the ground truth answers to our questions, we first
represent each document page (for Task A and B)/the full document (for Task
C) with all the document elements and the associated relations from the two
relational graphs as in Sect. 3.2. We then apply the functional program, which
is uniquely associated with each question template and contains a sequence of
functions representing a reasoning step, over such document(page) representa-
tions to reach the answer. For example, the functional program for question
“How many tables are above of the ‘Discussion’?” consists of a sequence of func-
tions filter-unique → query-position → filter-category → count to filter out the
document elements that satisfy the asked positional relationships and count the
numbers of them as the ground-truth answer.

Moreover, we conduct the question balancing from answer-based and
question-based aspects to avoid question-conditional biases and balance the
answer distributions. Firstly, we conduct an answer-based balancing by down-
sampling questions based on the answer distribution. We identify the QA pairs
with large ratios, divide identified questions into groups based on the patterns,
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Fig. 2. The top 4 words of questions in Task A, B and C.

and reduce QA pairs with large ratios until the answer distributions are bal-
anced. After that, we further conducted the question-based balancing to avoid
duplicated question types. To achieve this, we smooth over the distributions of
parameter values filled in the question templates by removing the questions with
large proportions of certain parameter values until the balanced distribution of
parameter value combinations. Since the parameter values of Task C question
templates are almost unique, as all of them are the texts from document con-
tents, we did not conduct the balancing over Task C. After the balancing, Task
A questions are down-sampled from 444,967 to 81,085, and Task B questions are
down-sampled from 246,740 to 53,872.

4 Dataset Analysis and Evaluation

4.1 Dataset Analysis

The average number of questions per document page/document in Task A, B,
and C are 6.57, 4.37, and 4.93. The average question length for Task A, B and C
are 25, 10 and 15, respectively. A sunburst plot showing each task’s top 4 ques-
tion words is shown in Fig. 2. We can see that Task A question priors are more
diverse to complement the simplicity of document element and position recog-
nition questions and to prevent the model from memorizing question patterns.
For Task B and C, question priors distribute over “What”, “When”, “Can you”,
“Which”. And we also specifically design questions in a declarative sentence with
“Name out the section...” in Task C. 13.43%, 0.24% and 29.38% of the questions
in Task A, B, and C are unique questions. This unique question ratio seems low
compared to other document-based VQA datasets. This is because, rather than
only aiming at the textual understanding of certain page contents, our PDF
dataset targets more the spatial and hierarchically structural understandings of
document layouts. Our questions are generally formed to ask about the docu-
ment structures from a higher level and thus contain less unique texts that are
associated with the specific contents of each document page. Answers for Task A
questions are from the fixed answer space that contains eight possible answers:
“yes”, “no”, “0”, “1”, “2”, “3”, “4” and “5”. Answers for Task B and C are
texts retrieved from the document page/entire document. We also analyzed the
top 15 frequent question patterns in Task A, B and C as shown in Fig. 3 to show
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the common questions of each question type in each task. We used a placeholder
“X” to replace the different figures, table numbers or section titles that would
exist in the questions to present the common question patterns in this analysis.

Fig. 3. Top 15 Frequency Questions of Task A, B and C.

Table 4. Positive rates (Pos(%)) and Fleiss Kappa Agreement (Kappa) of human
evaluation.

Task A Task B Task C

Perspective Pos(%) Kappa Pos(%) Kappa Pos(%) Kappa

Relevance 98.46 94.02 91.67 77.07 100 100

Correctness 99.49 98.12 89.44 72.56 94.55 80.93

Meaningfulness 96.94 88.97 93.61 77.67 99.27 97.34

4.2 Human Evaluation

To evaluate the quality of automatically generated question-answer pairs, we
invited ten raters, including deep-learning researchers and crowd-sourcing work-
ers. Firstly, to determine the relevance between the question and the correspond-
ing page/document, we define the Relevance criteria. Correspondingly, we define
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Correctness to determine whether the auto-generated answer is correct to the
question. In addition, we ask raters to judge whether our QA pairs are meaning-
ful and possibly appear in the real world by using Meaningfulness criteria3. After
we collect the raters’ feedback, we calculate the positive rate of each perspective
and apply Fleiss Kappa to measure the agreements between multiple raters, as
can be seen in Table 4. All three tasks achieve decent positive rates with sub-
stantial or almost perfect agreements. For Task A, Relevance and Correctness
can reach positive rates with nearly perfect agreements. Few raters gave nega-
tive responses regarding the Meaningfulness of questions about the existence of
tables or figures, while those questions are crucial to understanding the docu-
ment layout for any upcoming table/figure contents understanding questions. In
Task B, all three perspectives achieve high positive rates with substantial agree-
ments. The disagreements about Task B mainly come from the questions with no
specific answer (N/A), some raters thought those questions were incorrect and
meaningless, but these questions are crucial to understanding the commonly
appearing real-world cases. Because it is possible that a page does not contain
the queried elements in the question, and no specific answer is a reasonable
answer for such cases. Finally, for Task C, both positive rates and agreement
across three perspectives are notable. In addition, except for three perspectives,
raters agree most of the questions in Task C need cross-page understanding (the
positive rate is 82.91%).

5 Baseline Models

We experimented with several baselines on our PDF-VQA dataset to provide
a preliminary view of different models’ performances. We choose the vision-
and-language models that have proved good performances on VQA tasks and
a language model as listed in Table 5. We followed the original settings of each
baseline but only made modifications on the output layers to suit different PDF-
VQA tasks4.

6 Proposed Model: LoSpa

In this paper, we introduce a strong baseline, Logical and Spatial Graph-based
model (LoSpa), which utilizes logical and spatial relational information based
on logical (LR) and spatial (SR) graphs introduced in Sect. 3.2.

Input Representation: We treat questions as sequential plain text inputs and
encode them by BERT. For document elements of given document page I such
as Title, Text, Figure, we use pre-trained ResNet-101 backbones to extract visual

3 More details and human evaluation survey examples can be found in Appendix B
https://github.com/adlnlp/pdfvqa/blob/main/Appendix.pdf.

4 The detailed baseline model setup can be found in Appendix D https://github.com/
adlnlp/pdfvqa/blob/main/Appendix.pdf.

https://github.com/adlnlp/pdfvqa/blob/main/Appendix.pdf
https://github.com/adlnlp/pdfvqa/blob/main/Appendix.pdf
https://github.com/adlnlp/pdfvqa/blob/main/Appendix.pdf
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Fig. 4. Logical and Spatial Graph-based Model Architecture for three tasks. Task A,
B and C use the same relational information to enhance the object representation but
different model architectures in the decoding stage.

representations Xv ∈ R
N×df and use [CLS] token from BERT as the semantic

representation Xs ∈ R
N×ds for the texts of each document element.

Relational Information Learning: We construct two graphs: logical graph
Gl = (Vl, El) and spatial graph Gs = (Vs, Es) for each document page. For the
logical graph Gl, based on [18], we define the semantic feature as node represen-
tation Vl and the existence of parent-child relation between document elements
(extracted from the logical relational graph annotation in our dataset) as binary
edge values El {0, 1}. Similarly, for spatial graph Gs, we follow [18] to use the
visual features of document elements as node representation Vs and the distance
with two nearest document elements to weight edge value Es.

For each document page I, we take Xs ∈ R
N×ds and Xv ∈ R

N×df as the
initial node feature matrix for Gl and Gs respectively. These initial node features
are fed into a two-layer Graph Convolution Network (GCN) and trained by pre-
dicting each node category. After the GCN training, we extract the first layer
hidden states as the updated node representations X ′

s ∈ R
N×d and X ′

v ∈ R
N×d

that has augmented the relational information between document elements for
Gs and Gf respectively, where d = 768. For each aspect feature, we conduct
separated linear transformations to the initial feature matrices (Xv/Xs) and the
updated feature matrices (X ′

s/X
′
v). Inspired by [18], we apply the element-wise

max-pooling over them. The pooled features X ′′
s and X ′′

v are the final seman-
tic and visual representations of nodes enhanced by logical and spatial rela-
tions, respectively. Finally, we concatenate semantic and visual features of each
document element, yielding relational information enriched multi-modal object
representations O1, O2, ..., ON .

QA Prediction: We sum up the object features O1, O2, ..., ON with positional
embedding to integrate the information of document elements orders, which are
inputs into multiple transformer encoder layers together with the results of the
sequence of question word features q1, q2, ..., qT . We pass the encoder outputs into
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the transformer decoders and apply a pointer network upon the decoder output
to predict the answers. We apply a one-step decoding process each time using the
word embedding wi of one answer from the fixed answer space as the decoder
input. Let the zdeci be the decoder output for the decoder input wi; we then
conduct the score yt,i between zdeci and the answer word embedding wi following
yt,i = (wi)

T
zdect + bdeci , where i = 1, ..., C, and C are the total answer numbers

of the fixed answer space for each task. We apply a softmax function over all
the scores y1, ..., yC and choose the answer word with the highest probability as
the final answer for the current image-question pair. We treat Task B and C as
the same classification problem as Task A, where the answers are fixed to 25
document element index numbers for Task B and 400 document element index
numbers for Task C. The index numbers for document elements start from 0
and increase following the human-reading order (i.e. top to bottom, left to right)
over a single document page (for Task B) and across multiple document pages
(for Task C). OCR tokens are extracted from the document element with the
corresponding predicted index number for the final retrieved answers for Task B
and C questions. We use the Sigmoid function for Task C questions with multiple
answers and select all the document elements whose probability has passed 0.5.

7 Experiments

7.1 Performance Comparison

We compare the performances of baseline models and our proposed relational
information-enhanced model over three tasks of our PDF-VQA dataset in
Table 5. All the models process the questions in the same way as the sequence
of question words encoded by pretrained BERT but differ in other features’ pro-
cessing. The three large vision-and-language pretrained models (VLPMs): Visu-
alBERT, ViLT and LXMERT, achieved better performances than other base-
lines with inputting only question and visual features. The better performance of
VisualBERT than ViLT indicates that object-level visual features are more effec-
tive than image patch representations on the PDF-VQA images with segmented
document elements. Among these three models, LXMERT, which used the same
object-level visual features and the additional bounding box features, achieved
the best results over Task A and B, indicating the effectiveness of bounding box
information in the cases of PDF-VQA task. However, its performance on Task C
is lower than VisualBERT. This might be because Task C inputs the sequence of
objects (document elements) from multiple pages. The bounding box coordinates
are independent on each page and therefore cause noise during training. Surpris-
ingly, LayoutLM2, pretrained on document understanding datasets, achieved
much lower accuracy than the three VLPMs. This might be because LayoutLM2
used token-level visual and bounding box features, which are ineffective for the
whole document element identification. Compared to LayoutLM2 used the token-
level contextual features, M4C, as a non-pretrained model, inputting object-level
bounding box, visual and contextual features achieved higher performances. Such
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results further indicate that the object-level features are more effective for our
PDF-VQA tasks. The object-level contextual features of each document element
are represented as the [CLS] hidden states from the pretrained BERT model
inputting the OCR token sequence extracted from each document element.

Our proposed LoSpa achieves the highest performance compared to all base-
lines, demonstrating the effectiveness of our adopted GCN-encoded relational
features. Overall, all models’ performances are the highest on Task A among all
tasks due to the relatively simple questions associated with object recognition
and counting. The performances of all the models naturally dropped on Task B
when the ability of contextual and structural understanding are simultaneously
required. Performances on Task C are the lowest for all models. It indicates the
difficulty of document-level questions and produces massive room for improve-
ment for future research on this task.

Table 5. Performance Comparison over Task A, B, and C. Acronym of feature aspects:
Q: Question features; B: Bounding box coordinates; V: Visual appearance features; C:
Contextual features; R: Relational Information.

Feature Aspects Task A Task B Task C

Model Q. B. V. C. R. Val. Test Val. Test Val. Test

VisualBERT [17] ✓ ✗ ✓ ✗ ✗ 92.72 92.34 82.00 79.43 21.55 18.52

ViLT [16] ✓ ✗ ✓ ✗ ✗ 90.82 91.31 54.36 53.45 10.21 9.87

LXMERT [28] ✓ ✓ ✓ ✗ ✗ 94.34 94.41 86.61 86.36 16.37 14.41

BERT [5] ✓ ✗ ✗ ✓ ✗ 82.35 81.87 22.41 23.64 – –

LayoutLM2 [31] ✓ ✓ ✓ ✓ ✗ 83.27 83.49 22.70 23.73 – –

M4C [9] ✓ ✓ ✓ ✓ ✗ 87.89 87.98 56.80 55.29 12.14 13.77

Our LoSpa ✓ ✓ ✓ ✓ ✓ 94.98 94.55 91.10 90.64 30.21 28.99

Table 6. Validating the effectiveness of proposed logical-relation (LR) and spatial-
relation (SR) based graphs.

Configurations Task A Task B Task C

Val. Test Val. Test Val. Test

None 94.17 94.12 90.02 89.59 27.13 27.71

Logical Relation (LR) 94.59 93.72 90.97 90.67 29.22 27.91

Spatial Relation (SR) 94.58 94.27 90.39 90.02 28.11 27.90

LR&SR 94.98 94.55 91.10 90.64 30.21 28.99
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7.2 Relational Information Validation

To further demonstrate the influences of relational information on document
VQA tasks, we perform the ablation studies on each task, as shown in Table 6.
For all three tasks, adding both aspects of relational information can effectively
improve the performance of our LoSpa model. Firstly, Spatial relation (SR)
enhanced models can make the models of all three tasks more robust. Regarding
logical relation (LR), it can lead to more apparent improvements on Task B since
Task B involves more questions that require understanding document structure
more comprehensively. Moreover, since the graph representation of two relation
features is trained on the training set, most of the test set performance is lower
than the validation set during the QA prediction stage.

7.3 Breakdown Results

We conduct the breakdown performance comparison over different question types
of each task as shown in Table 7. Generally, all models’ performances on Exis-
tence/Structural Understanding/Parent Relation Understanding questions are
slightly better than Counting/Object Recognition/Child Relation Understand-
ing questions in tasks A, B and C, respectively, due to their larger question
numbers when training. Overall, all models’ performances are stable on differ-
ent question types of each task and follow the same performance trend as on
all questions in Table 5. However, M4C’s performance on Object Recognition is
much lower than its performance on the Structural Understanding questions.
This indicates that M4C is more powerful in recognizing the contexts and iden-
tifying the semantic structures between document elements. However, it does
not have enough capacity to identify the elements and related semantic elements
simultaneously. Also, the LXMERT’s performances on Parent Relation Under-
standing questions are much better than those on Child Relation Understanding
questions. This is because answers to parent questions are normally located on
the same page as the queried elements. In contrast, answers to child questions are
normally distributed over several pages, which is impacted by the independent

Table 7. Task A, B and C performance on different question types. Same as the overall
performance shown previously, the metric of Task A/B is F1 and Task C is Accuracy.

Model Task A Task B Task C

Existence Counting Struct-UD Obj-Reg Parent Child

Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test

VisualBERT [17] 94.11 91.62 92.52 92.45 83.24 80.86 71.49 70.30 21.55 19.91 19.64 18.52

ViLT [16] 92.34 93.40 90.62 91.01 53.41 51.97 59.54 61.66 11.04 10.21 8.75 8.79

LXMERT [28] 96.02 94.59 94.10 94.38 86.65 86.86 86.46 83.15 26.66 23.57 8.56 9.51

BERT [5] 86.25 86.04 81.80 81.31 30.42 30.55 21.37 22.33 – - – –

LayoutLM2 [31] 87.22 85.78 82.70 83.19 33.18 31.80 21.55 22.63 – – – –

M4C [9] 90.78 89.15 87.51 87.87 60.74 60.29 21.29 20.39 13.63 14.34 12.21 9.89

Our LoSpa 97.40 95.73 94.39 94.63 91.61 91.14 86.66 87.29 33.14 29.87 29.11 28.74
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bounding box coordinates of each page. The stable performances of M4C over the
two question types of task C also indicate that using contextual features would
eliminate such issues. Our LoSpa, incorporating relational information between
document elements, achieves stable performances over both question types in
Task C.

8 Conclusion

We proposed a new document-based VQA dataset to comprehensively exam-
ine the document understanding in conditions of natural language questions.
In addition to contextual understanding and information retrieval, our dataset
questions also specifically emphasize the importance of document structural lay-
out understanding in terms of comprehensive document understanding. This is
also the first dataset that introduces document-level questions to boost the doc-
ument understanding to the full document level rather than being limited to one
single page. We enriched our dataset by providing a Logical Relational graph and
a Spatial Relational graph to annotate the different relationship types between
document elements explicitly. We proved that such graph information integra-
tion enables outperforming all the baselines. We hope our PDF-VQA dataset
will be a useful resource for the next generation of document-based VQA models
with an entire multi-page document-level understanding and a deeper semantic
understanding of vision and language.

Ethical Consideration. This study was reviewed and approved by the ethics review

committee of the authors’ institution and conducted in accordance with the principles

of the Declaration. Written informed consent was obtained from each participant.
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Abstract. Sequential recommendation (SR) aims to provide appropri-
ate items a user will click according to the user’s historical behavior
sequence. Conventional SR models are trained under the next item pre-
diction task, and thus should deal with two challenges, including the
data sparsity of user feedback and the variability and irregularity of user
behaviors. Different from natural language sequences in NLP, user behav-
ior sequences in recommendation are much more personalized, irregular,
and unordered. Therefore, the current user preferences extracted from
user historical behaviors may also have correlations with the next-k (i.e.,
future clicked) items besides the classical next-1 (i.e., current clicked)
item to be predicted. Inspired by this phenomenon, we propose a novel
Future augmentation with self-distillation in recommendation (FASRec).
It considers future clicked items as augmented positive signals of the cur-
rent clicks in training, which addresses both data sparsity and behavior
irregularity and variability issues. To denoise these augmented future
clicks, we further adopt a self-distillation module with the exponen-
tial moving average strategy, considering soft labels of self-distillation
as confidence for more accurate augmentations. In experiments, FAS-
Rec achieves significant and consistent improvements on both offline and
online evaluations with different base SR models, confirming its effec-
tiveness and universality. FASRec has been deployed on a widely-used
recommendation feed in Tencent. The source codes are in https://github.
com/FASRec/FASRec.

Keywords: Future augmentation · Self-distillation · Recommendation

1 Introduction

Personalized recommendation attempts to recommend appropriate items for
users according to their interests [28]. User historical behaviors are essential
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information to predict users’ current preferences in personalized recommendation
[37]. Therefore, sequential recommendation (SR), which focuses on the sequen-
tial modeling of user historical behaviors to capture user preferences, has been
widely explored and deployed in real-world systems. A classical SR task takes a
user’s historical behavior sequence as the input, and outputs an item for the cur-
rent recommendation. Next item prediction is a classical training objective and
evaluation task in SR [14]. Due to the similar paradigm with language modeling
in NLP, lots of sequential models including GRU, CNN, and Transformer have
also been verified in SR to learn from behavior sequences [8,24,38].

historical behaviors
cat1 cat2 football1 football2cat3

current click future clicked items

Fig. 1. An example of the variability and irregularity in real-world sequential behaviors.

Different from the sequential modeling in NLP, sequential recommendation
has the following two major challenges: (1) The data sparsity of user feed-
back on items. Each user has his/her own personalized interests and behavioral
patterns, while the number of positive signals for a user merely equals the num-
ber of the user’s historical behaviors in SR (nearly 10 in our datasets). Moreover,
the tokens to be predicted in recommendation (i.e., items) are often million-level
in practice, which are far more than words in NLP. Hence, it is hard to build
good personalized sequential models for all users via the sparse user-item inter-
actions. (2) The variability and irregularity of users’ behaviors. Besides
the personalized sequential patterns, users usually have multiple interests that
switch or evolve frequently, which makes the sequential behavior modeling less
predictable. Moreover, in practical systems (especially for article or video feeds),
similar items having the same topic are usually deduplicated or dispersed via
various strategies considering the diversity to avoid over-exposure. In this case,
SR models are more difficult to find strict logical connections between adjacent
clicked behaviors for next item prediction. Sometimes the effect of the current
user interest may be delayed due to some diversification strategies (e.g., recom-
mending items of other interests), and then reawakened at certain future clicked
(next-k) items. The unpredictable randomness of user sequential behaviors and
the delayed positive feedback increase the difficulty of sequential modeling.

Figure 1 displays a typical example to reveal the variability and irregu-
larity of real-world user behaviors. We observe that this user mainly has two
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interested topics: cat and football, and interacts with them casually. Due to the
switched interests, even the golden clicked item football1 does not seem to per-
fectly match the current user interest of cat learned from historical behaviors
of [cat1→cat2 ]. Instead, the user interest revealed by [cat1→cat2 ] does func-
tion and lead to future clicks (i.e., the fourth clicked item cat3 ). Based on this
common observation, we assume that user preferences may be delayed and the
current historical behaviors will possibly have a long-term impact on future
clicks. Hence, an intuitive idea to make full use of this assumption is to conduct
future augmentations as labels, training SR models via the next-k item
prediction task besides the conventional next item prediction. However, simply
regarding all next-k clicked items as augmented positive signals of the current
prediction will inevitably bring in a large amount of noise (e.g., the next-3 item
football2 in Fig. 1 is noisy). The key challenge of future augmentation is how
to select high-quality future clicks related to the current historical behaviors as
additional training labels.

To address the above challenges, we propose a novel Future augmentation
with self-distillation in recommendation (FASRec) to take advantage of
the future information. Specifically, FASRec extends the classical next item pre-
diction objective, where the next-k items are sampled as the positive augmented
labels besides the current clicked items. We explore two classical sampling strate-
gies for future augmentation. To denoise these augmented future clicks, we design
a self-distillation mechanism that provides more informative soft labels to coop-
erate with the original hard labels as confidence-aware supervised signals in
training. We further adopt the exponential moving average (EMA) strategy [26]
to ensemble historical teachers for more effective and stable training. The advan-
tages of FASRec are summarized as follows: (1) Future augmentation provides
more labels for sufficient training against data sparsity. (2) Data augmentation
from future clicked items enables the model to capture more accurate but delayed
user preferences, which helps to better understand the variable and irregular user
behaviors. (3) The self-distillation with EMA also helps to alleviate the noises
caused by false positive augmentations from irrelevant future clicked items with
the current historical behaviors. (4) FASRec is effective, universal, and easy-to-
deploy with different base SR models and even other augmentation strategies,
which is welcomed by the industry.

In experiments, we adopt our FASRec with different base sequential recom-
mendation models on three public datasets. All FASRec models achieve signifi-
cant and consistent improvements over corresponding baselines, which confirms
their effectiveness and universality. We also deploy FASRec on a widely-used rec-
ommender system to verify its power in online scenarios. Moreover, we conduct
extensive ablation tests, model analyses and explorations for a better under-
standing. The contributions of this work are concluded as follows:

– In this work, we propose a novel future augmentation with self-distillation
framework for SR. To the best of our knowledge, we are the first to conduct
future augmentation with self-distillation in recommendation.
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– We explore different future augmentation sampling and self-distillation meth-
ods. FASRec is effective, universal, and easy-to-deploy in real-world systems.

– We achieve significant improvements on both offline and online evaluations
with four representative sequential models on three datasets. Moreover, FAS-
Rec has been deployed on a popular real-world recommender system of Ten-
cent for more than 6 months, affecting millions of users.

2 Related Works

Sequential Recommendation (SR). Recently, deep learning methods spring
up in SR, including RNN [8], CNN [25], GNN [19], and Transformer [24]. Lots
of SR model variants involve hierarchical structures [18,23], ranking loss designs
[7,25], external behaviors and information [1,32]. Attention-based methods also
achieve great successes [4,46]. Recently, there are also some works that adopt
pre-trained models for sequential recommendation [6,10,11,33,43]. GRU4Rec [8]
first brings the powerful RNN model into SR. SASRec [14] introduces a stacking
self-attention. BERT4Rec [24] is inspired by Transformer. CL4SRec [37] is one
of the SOTA models that further enhances SR with contrastive learning. These
four classical SR models are regarded as the base SR model in FASRec.

Data Augmentation in Recommendation. Recently, contrastive learning
(CL) [2] with augmentation has been verified in recommendation [12,20,30]. For
user augmentation, CL4SRec [37] adopts crop, mask, and reorder to build aug-
mentations of historical behavior sequences. [31] and [34] consider user behav-
ior sequences in two behavior types or domains as natural user augmentations.
Some works [40,42] consider contextual information to learn user representa-
tions inspired by the two-way data augmentation in NLP. Some efforts aim to
build item augmentations via mask or dropout [22,29,35,45]. In this work, we
purposefully consider the next-k items (natural high-quality positive item aug-
mentations) as additional training labels, which are ignored by most existing
methods.

Self-distillation. Knowledge distillation (KD) is a powerful tool to transfer
knowledge from teachers to students [9]. Different from KD, self-distillation
directly distills knowledge within the model itself [5,39,44]. [41] focuses on dis-
tillation between samples of the same class labels. Some studies apply outputs
from a single model (of different portions) to enhance itself [44]. [15] uses the
model at the last epoch as the teacher to soften hard targets. Besides, some
researches focus on building better teachers for self-distillation [26]. [16] con-
ducts self-distillation to filter and reuse false negative samples. There are very few
works that adopt self-distillation in recommendation. [13] adopts self-distillation
with a graph auto-encoder to enhance feature representations. In FASRec, we
first adopt self-distillation to denoise augmented labels in future clicks.
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3 Methodology

3.1 Preliminary

Notions. We first introduce some key notations in this work. Sequential recom-
mendation attempts to predict the next interacted (often clicked) item according
to the user’s historical behavior sequence. Let sn = {v1, · · · , vt, · · · , vn} repre-
sent the historical behavior sequence, where vi represents the i-th clicked item.
In training, given the historical behavior sequence st = {v1, · · · , vt} at time
t+ 1, SR models should predict the probability of the current clicked item vt+1

being clicked, formulated as P (vt+1|st). Items in sn after vt+1 are viewed as the
future clicked items (which are the sources of the training label augmentation in
FASRec). Since our FASRec framework has no constraints on model structures,
we apply FASRec to four representative backbones to calculate P (vt+1|st), i.e.,
SASRec [14], GRU4Rec [8], BERT4Rec [24], and CL4SRec [37]. Commonly, we
randomly sample negative items v−

t+1 for each positive item vt+1, and adopt a
classical cross entropy loss Lori for all users u as the original training loss:

Lori =
∑

u

n−1∑

t=1

(− log(P (vt+1|st)) − log(1 − P (v−
t+1|st))). (1)

Overall Framework. Fig. 2 illustrates the overall framework of FASRec. In
training, the base SR model Seq_Enc(·) takes the user’s historical behavior
sequence st = {v1, · · · ,vt} at t + 1 as input and outputs a user representation
as u = Seq_Enc(st), which is utilized to predict the current clicked item vt+1.
FASRec conducts future augmentation to extend the original positive label vt+1

from future clicked items {vt+2, · · · , vn}. To alleviate additional noises, we adopt
a self-distillation module with EMA to generate soft labels of these augmented
items as confidence, which are combined with their hard labels for training.

v1 v2

...
vt vt+1 vt+m

... ...
vt+n

user historical 
behavior sequence

the current clicked 
item to predict

future clicked items 
for label augmentation

FASRec 
(student)

sequential
modeling future augmenta-

tion sampling

vt+m

FASRec 
(teacher)

Ɵ1 ƟkƟ2

parameter sets 
in past epochs update and store

... EMA

self-distillation

hard labels

soft labels

Lori

Laug

Fig. 2. The overall structure of FASRec.
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3.2 Future Augmentation

We believe that future clicked items are natural high-quality augmentations of
the current clicked item. Here, we propose two future augmentation sampling
methods to extend target items, i.e., equal probability and exponential decay. (a)
For the equal probability method, we randomly sample vt+m of sn (1 ≤ m ≤ n−t)
with an equal probability 1/(n − t). (b) For the exponential decay method, we
sample vt+m with the positional decayed probability pt+m as follows:

pt+m =
{
(1 − β)m−1 ∗ β, 1 ≤ m < n − t,
(1 − β)m−1, m = n − t.

(2)

β is a hyper-parameter. Next, we consider vt+m as an augmented positive item
for the current state, replacing vt+1 with vt+m as an additional training label.

3.3 Self-distillation with EMA

To avoid extra noise brought by future augmentation, we involve self-distillation
to reweight our newly augmented positive samples vt+m. Specifically, we rely on
self-distillation to provide more reliable and stable soft labels for these augmen-
tations. We introduce two methods to obtain our teacher model: (a) Best in the
past [27], which directly adopts the previous model with the best performance
upon the validation set during the past epochs as the teacher of the current
epoch. (b) EMA [26], which combines the model parameters over recent training
steps with varied weights to generate the teacher model. Formally, the param-
eters θT (t) of the teacher at t is generated from the last teacher’s parameters
θT (t − 1) and the current model’s parameters θ(t) with a decay rate d as:

θT (t) = dθT (t − 1) + (1 − d)θ(t). (3)

Next, we combine the predicted probability PT (vt+m|st) of the teacher (i.e., soft
label) with the hard label y with a weight α, and obtain the final label ŷ as:

ŷ = αPT (vt+m|st) + (1 − α)y. (4)

y = 1 for positive samples vt+m and y = 0 for random negative samples v−
t+m. α

is the soften weight. Finally, similar to Eq. (1), the augmented loss Laug is as:

Laug =
∑

u

n−1∑

t=1

∑

vt+m

(−ŷ log(P (vt+m|st)) − (1 − ŷ) log(1 − P (v−
t+m|st))). (5)

In this way, we adopt an ensemble of historical models to lead the learning with
augmentations, which can alleviate extra noise and improve label quality.
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3.4 Model Training and Online Deployment

We have deployed FASRec on a widely-used real-world recommendation feed
used by millions of users. FASRec cooperates with an online best-performing SR
model (i.e., BERT4Rec [24]) in matching with other modules unchanged. Due to
anonymity, more details of the online system will be given in the final version.
In offline training, we conduct a two-stage training paradigm as in Algorithm
1. In the first warmup stage, FASRec is only optimized on the original positive
samples via Lori. In the second augmentation stage, FASRec is updated via
the augmented loss Laug (note that the current clicked item vt+1 could also be
sampled in this stage for a more stable training). Empirically, the warmup stage
takes nearly 1/3 of the entire training epochs. In this case, we can ensure the
quality of teachers to improve the accuracy of soft labels for augmented items.

Algorithm 1. Training Algorithm of FASRec.
Input: Training data D = {st}.
Output: Model parameters θ of FASRec.
1: Initialize model parameters θ.
2: while Lori descending rapidly do
3: For each st ∼ D, sample v−

t+1.
4: Calculate P (vt+1|st) and P (v−

t+1|st) via the base SR model with θ.
5: g ← �θLori, θ ← GradientUpdate(θ, g).
6: end while
7: while not converged do
8: For each st ∼ D, sample future augmentations vt+m and negative samples v−

t+m.
9: Get the teacher’s parameters θT as Eq. (3).

10: Get soft labels PT (vt+m|st) and PT (v
−
t+m|st) via the teacher.

11: Get final labels ŷ of vt+m and v−
t+m as Eq. (4).

12: Get P (vt+m|st) and P (v−
t+m|st) from the current student model with θ.

13: g ← �θLaug, θ ← GradientUpdate(θ, g).
14: end while

3.5 Discussions on FASRec and Other Future-Involved Models

Some works claim that they have used “future” information in recommendation.
[17] adopts historical behaviors of other users as supplements to the current user.
[36] uses future clicks as features to enhance the discriminator so as to spur the
generator to better recommend. [40,42] focus on using the past-future two-way
information in historical behavior modeling to build better user representations
for prediction. To some extent, the masked item prediction task [24] could also be
regarded as a certain future-involved strategy, among which CL4SRec [37] is one
of the SOTA models that adopts three types of augmented historical sequences.

Different from these models, FASRec uses future clicked items as augmented
training labels with the original historical behaviors. It focuses more on the
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ignored long-term correlations to address the issue of behavioral variability and
irregularity in practice. We deliberately design a simple and model-agnostic form
of positive label augmentation, making it more flexible to cooperate with differ-
ent base models. Very occasionally, some future augmentation cases (predicting
vt+m via st) could be generated in CL4SRec if all and only items after vt are
masked, while the proposed self-distillation with EMA enables a more accurate
and motivated future augmentation. In Sect. 4.2, we have verified that our FAS-
Rec could also cooperate well with CL4SRec and achieve further improvements.

4 Experiments

In this section, we conduct extensive experiments to answer five research ques-
tions related to FASRec’s offline performance with different base models (RQ1),
online performance (RQ2), effects of different components (RQ3), model param-
eters (RQ4), and future augmentation strategies (RQ5).

4.1 Datasets and Experimental Settings

Dataset. We evaluate our FASRec models on three widely-used public datasets,
namely Yelp, Amazon Beauty, and Amazon Sports. (a) Yelp. This dataset is a
classical business recommendation dataset collected from the Yelp platform1.
Following [47], we utilize the data after January 1st, 2019. It has nearly 30
thousand users and 316 thousand click behaviors on 20 thousand items. (b)
Amazon Beauty. This dataset is collected from a famous E-commerce system
Amazon [21] with items having the Beauty category. It has nearly 52 thousand
users and 395 thousand click behaviors on 57 thousand items. (c) Amazon
Sports. This dataset is collected from the Sports category in Amazon. It has 26
thousand users, 18 thousand items, and 296 thousand click behaviors. Following
classical settings [14], we select the second most recent user-item interactions of
all users as the valid set and select the most recent interactions as the test set,
with all other interactions viewed as the train set.

Competitors. FASRec is a universal training framework that brings in addi-
tional supervision via future augmentations. Different SR models could be easily
used as the base SR models in FASRec. Therefore, we implement several classi-
cal SR models as the corresponding baselines to their enhanced versions armed
with FASRec: (a) GRU4Rec [8]. GRU4Rec is a classical SR model that adopts
GRU for the sequential behavior modeling in recommendation. (b) SASRec
[14]. SASRec is a representative SR model that introduces a stacking multi-head
self-attention to behavior interaction modeling. (c) BERT4Rec [24]. BERT4Rec
uses the powerful transformer for sequential modeling. It further considers the
masked token prediction task besides next item prediction, which could also be
viewed as a future-involved strategy. (d) CL4SRec [37]. CL4SRec is one of the

1 https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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SOTA CL-based SR models. It adds additional CL tasks based on three histori-
cal sequence augmentations, which also benefit from the “future” information in
behavior modeling. It is a very relevant and strong baseline since it also adopts
augmentations. We should highlight that all baselines share the same training
instances and features as used in FASRec for fair comparisons.

Parameter Settings. In experiments, all our models and baselines are opti-
mized by Adam with the learning rate set as 0.001. The batch sizes are 128 for
all models. The maximum length of historical sequence is set as 50. In FASRec,
we select the equal probability strategy for simplicity. Both the augmented items
and randomly sampled negative samples are weighted by our self-distillation.
We conduct a grid search for hyper-parameter selection. We have evaluated the
soften weight α among {0.1, 0.3, 0.5, 0.7, 0.9} and the decay rate d of EMA among
{0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999}. FASRec models achieve the best performance
when α = 0.7 and d = 0.999. For other hyper-parameters of the base SR models
in FASRec, we follow the best original model settings in their corresponding
papers (e.g., behavior dimension sizes and model structures). Sect. 4.5 and Sect.
4.6 show detailed analyses on the selection of parameters and strategies.

4.2 Effectiveness and Universality of FASRec (RQ1)

This subsection aims to verify the effectiveness and universality of FASRec on
different datasets with various base SR models. Specifically, we randomly sample
99 items as negative samples for each positive sample in the test set as [14].
Similarly, we adopt two classical evaluation metrics, namely hit rate@k (HR@k)
and NDCG@k (N@k), with k = {1, 5, 10, 20}. The results are shown in Table 1,
from which we can observe that:

(1) All FASRec models significantly outperform their corresponding baselines on
all metrics in three datasets, verifying the effectiveness of FASRec in SR. We
have conducted significance tests of FASRec on all baselines and the signif-
icance level is p < 0.05. The advantages of FASRec over baselines mainly
come from the following two points: (a) the augmentation of positive labels
from future clicked items helps to address the sparsity issue. It successfully
captures users’ delayed interests, alleviating the information loss caused by
the variability and irregularity of user behaviors. (b) Self-distillation with
EMA can effectively denoise the augmented future clicks, enabling more pre-
cise training. FASRec has advantages over other future-involved models with
behavior augmentations (e.g., CL4SRec), which inevitably bring in noises.
EMA also helps to generate better teachers and soft labels. Section 4.4 gives
further analyses on these components of FASRec.

(2) All FASRec models have consistent improvements with different base SR mod-
els on all datasets and metrics. The improvements are larger with smaller k in
HR and NDCG. It confirms that our future augmentation with self-distillation
is universal and robust in different scenarios and can cooperate well with
different base models. Note that FASRec could even earn improvements on
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Table 1. Results on three datasets with four base SR models. The improvements of
FASRec are significant over all corresponding baselines (paired t-test with p<0.05).

Dateset Model HR@1 HR@5 HR@10 HR@20 N@5 N@10 N@20

Yelp GRU4Rec 0.1882 0.5246 0.7069 0.8687 0.3602 0.4194 0.4607
+FASRec 0.2086 0.5448 0.7292 0.8829 0.3810 0.4407 0.4797

BERT4Rec 0.2830 0.6124 0.7545 0.8682 0.4545 0.5005 0.5294
+FASRec 0.3041 0.6545 0.7929 0.8995 0.4869 0.5318 0.5590

SASRec 0.2620 0.6281 0.7758 0.8742 0.4525 0.5004 0.5255
+FASRec 0.2842 0.6398 0.7863 0.9022 0.4688 0.5163 0.5458

CL4SRec 0.2715 0.6243 0.7809 0.9031 0.4551 0.5059 0.5371
+FASRec 0.2809 0.6350 0.7930 0.9114 0.4651 0.5148 0.5461

Avg Improv 7.56% 3.58% 2.79% 2.34% 4.68% 4.07% 3.81%
Beauty GRU4Rec 0.1103 0.2929 0.4024 0.5305 0.2048 0.2402 0.2724

+FASRec 0.1237 0.3217 0.4332 0.5641 0.2261 0.2619 0.2949
BERT4Rec 0.1890 0.3796 0.4829 0.5941 0.2892 0.3225 0.3506

+FASRec 0.2100 0.3988 0.4978 0.6108 0.3087 0.3407 0.3693
SASRec 0.1930 0.3881 0.4854 0.6030 0.2951 0.3265 0.3562

+FASRec 0.2162 0.4121 0.5127 0.6213 0.3191 0.3515 0.3790
CL4SRec 0.2044 0.3940 0.4903 0.6049 0.3028 0.3340 0.3628

+FASRec 0.2240 0.4238 0.5239 0.6334 0.3284 0.3608 0.3883
Avg Improv 11.22% 7.16% 5.80% 4.22% 8.43% 7.59% 6.76%

Sports GRU4Rec 0.1037 0.2866 0.4111 0.5597 0.1969 0.2371 0.2745
+FASRec 0.1159 0.3074 0.4315 0.5817 0.2132 0.2531 0.2909

BERT4Rec 0.1468 0.3684 0.4858 0.6305 0.2607 0.2986 0.3351
+FASRec 0.1858 0.4015 0.5260 0.6559 0.2976 0.3376 0.3705

SASRec 0.1630 0.3967 0.5178 0.6429 0.2849 0.3240 0.3555
+FASRec 0.1788 0.4143 0.5344 0.6705 0.3014 0.3402 0.3746

CL4SRec 0.1707 0.3908 0.5144 0.6517 0.2858 0.3257 0.3604
+FASRec 0.1854 0.4089 0.5345 0.6727 0.3014 0.3416 0.3763

Avg Improv 14.16% 6.33% 5.09% 3.87% 8.42% 7.42% 6.58%

CL4SRec, which is a SOTA CL-based SR model that conducts data augmen-
tations on user historical behaviors. It indicates that our future augmentation
could cooperate well with other augmentation-enhanced methods to further
improve the performance. FASRec is a plug-and-play and developer-friendly
method to bring in more supervised signals without external information. It
is convenient to adopt our FASRec on most SR models in practice (refer to
Sect. 4.3 for online tests).
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Table 2. Online A/B tests on a real-world recommendation system (p<0.05).

Metrics CTR ACN

FASRec (online) +1.63% +2.01%

4.3 Online A/B Test (RQ2)

We also conduct an online evaluation on a widely-used feed recommender sys-
tem of Tencent to verify FASRec in practical scenarios. The original matching
module of this online system contains multi-channel matching models including
a BERT4Rec channel. We adopt FASRec with BERT4Rec and add it as an addi-
tional matching channel with other modules of this system unchanged following
classical settings. We mainly focus on two metrics: (a) CTR, and (b) average
click numbers per capita (ACN). We have conducted the online evaluation for
5 days, affecting nearly 1.3 million users. In Table 2, we observe that FASRec
achieves significant improvements over the original system without FASRec on
both CTR and ACN metrics. It shows that our future augmentation with self-
distillation could not only provide more accurate items, but also guide users to
consume more items in our online systems. Currently, FASRec has been deployed
online for more than 6 months and has been verified by millions of users.

4.4 Ablation Study (RQ3)

We conduct an ablation test to reveal the power of different components in FAS-
Rec. Specifically, we build 4 ablation versions of FASRec (SASRec) on Amazon
Beauty in Table 3. We find that: (1) The final FASRec significantly outperforms
all its ablation versions, while these ablation versions still perform better than
the baseline SASRec. We also find that the improvements are consistent across
different datasets and base SR models. (2) FASRec w/o self-distillation merely
adopts the hard labels for augmented future items, while this aggressive future
augmentation not only captures missing delayed clicks, but also inevitably brings
in noises and errors that may mislead the model training. Self-distillation is veri-
fied to be an effective denoising technique for augmentation. (3) FASRec achieves
better results than FASRec w/o EMA (i.e., with the Best in the past strategy),
which indicates that EMA is a better teacher. Figure 3 shows the training trends
with different self-distillation strategies. We have also verified the effectiveness
of the warmup stage, since the teacher’s quality is essential in future augmen-
tation. (4) To demonstrate the effectiveness of future information, we adopt the
self-distillation module only on the original next-1 clicked item to provide soft
labels without augmented future clicks (i.e., the third ablation version). This
ablation has worse results, which confirms the existence of delayed interests and
the necessity of adding confident future augmentations as labels. Future clicks
are high-quality label augmentations of the current next item prediction.
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Table 3. Results of ablation study. All improvements are significant (p<0.05).

Amazon Beauty HR@1 HR@5 HR@10 HR@20 N@5 N@10 N@20

FASRec (SASRec) 0.2162 0.4121 0.5127 0.6213 0.3191 0.3515 0.3790
w/o self-distillation 0.2032 0.3927 0.4947 0.6064 0.3026 0.3355 0.3637
w/o EMA 0.2095 0.4031 0.5065 0.6177 0.3105 0.3438 0.3719
w/o future augmentation 0.2060 0.4037 0.5001 0.6071 0.3100 0.3411 0.3682
w/o all 0.1930 0.3881 0.4854 0.6030 0.2951 0.3265 0.3562

4.5 Model Analyses (RQ4)

Analysis on Soften Weight α. We first analyze the effects of different soften
weights α in hard/soft label combination. The left two figures in Fig. 4 show the
results of FASRec (SASRec) with different α. We discover that the performance
first increases and then decreases with the soften weight growing, achieving the
best results when α = 0.7 (too large α may result in overfitting). It reveals the
importance of jointly combining hard and soft labels in future augmentation.

Fig. 3. Training trends of two self-distillation strategies EMA and best in the past (best)
over SASRec. Laug is activated after 300 epochs in our two-stage training.

Analysis on Decay Rate d of EMA. We also explore deeper into EMA and
test different decay rates d of our EMA in the right two figures of Fig. 4. We
find that the decay rate should be large (e.g., larger than 0.9) for relatively good
results. Note that FASRec has a warmup stage (where only the original next-1
items are used for training). Hence, the historical teachers’ parameters of EMA
are relatively high-quality. Therefore, FASRec is not that sensitive to d.
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Fig. 4. Results of parameter analyses on Amazon Beauty. The left two figures show
NDCG@10 and HR@10 results with different soften weights α, while the right two
figures show NDCG@10 and HR@10 results with different decay rates d of EMA.

4.6 Explorations on Different Augmentation Strategies (RQ5)

We further conduct explorations on various future augmentation strategies on
Amazon Beauty for more stable and effective training.

Effects of Different Future Sampling Strategies. We propose two straight-
forward future sampling strategies in FASRec, i.e., equal probability and exponen-
tial decay. Figure 5 shows the performance trends of two strategies and SASRec,
where both FASRec models perform better than the base SR model but are
comparable with each other. The average sequence lengths of our datasets are
not too long, and thus the equal probability based future sampling can perform
well. Based on Occam’s Razor, we adopt equal probability to select augmented
clicks.

Fig. 5. Training trends of different future sampling strategies.

Effects of Different Augmentation Triggers. In FASRec, future augmen-
tation is triggered for all positive instances. We attempt to investigate whether
some positive instances need future augmentation more. Specifically, we design
two types of augmentation triggers: (a) large_loss, which conducts augmenta-
tion for positive instances that have top larger losses than others (indicating
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this instance is noisy or under-optimized), and (b) large_variance, which con-
ducts augmentation for instances having top instable performance following [3]
(implying the conflicts between historical behaviors and clicked items). Table 4
gives the results of two augmentation triggers with different augmentation ratios
(ratio = 1.0 equals the final FASRec). Figure 6 shows the trends of two triggers
with ratio = 0.5. In general, the final FASRec (augmentation for all instances)
has the best performance. However, both augmentation triggers have more stable
trends from Fig. 6. The augmentation trigger is a promising exploration direc-
tion.

Table 4. Results of adopting the large_loss and large_variance augmentation triggers
on positive instances with different augmentation ratios on Amazon Beauty.

aug ratio large_loss trigger large_variance trigger
0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0

HR@5 0.4108 0.4124 0.4083 0.4121 0.4101 0.4102 0.4125 0.4121
HR@10 0.5095 0.5097 0.5088 0.5127 0.5044 0.5081 0.5106 0.5127
N@5 0.3168 0.3181 0.3175 0.3191 0.3145 0.3174 0.3176 0.3191
N@10 0.3486 0.3494 0.3501 0.3515 0.3449 0.3490 0.3492 0.3515

Effects of Historical Behavior Based Augmentation Cooperating with
Future Augmentation. We also combine our future augmentation with con-
ventional historical behavior based augmentations to see whether they could
cooperate well with each other. For simplicity, we build historical behavior based
augmentations via random cropping with CL. Figure 7 gives the results of 4
combinations. We find that FASRec+CL achieves the overall best results, and
combining two augmentations makes the performance more stable.

Fig. 6. Training trends of different augmentation triggers.
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Fig. 7. Training trends of combining future augmentation with other augmentations.

5 Conclusion and Future Work

In this work, we propose an effective, universal, and easy-to-deploy future aug-
mentation with self-distillation framework to address data sparsity and behavior
irregularity issues in sequential recommendation via additional future augmented
labels. FASRec achieves significant and consistent improvements on multiple
datasets with different base SR models, and is also verified in online. It provides
a promising and low-cost training framework to multiply high-quality super-
vised signals in real-world systems. FASRec has been deployed on a widely-used
recommender system and affects lots of users.

In the future, we attempt to explore better future augmentation strategies,
augmentation triggers, and combination methods to collect more accurate posi-
tive signals. We will also try to discover other types of high-quality, ubiquitous,
but ignored positive and negative signals in practice to fight against sparsity.

Ethical Statement This work focuses on personalized recommendation. For
offline evaluation, we conduct experiments on three classical public recommen-
dation datasets. For online deployment, all sensitive information (e.g., user infor-
mation) is preprocessed via data masking to protect user privacy. All user infor-
mation (e.g., user historical behaviors) is collected and used in the online system
with the users’ consent. The trained model will only be used inside the corre-
sponding online system.
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Abstract. With Reinforcement Learning (RL) for inventory manage-
ment (IM) being a nascent field of research, approaches tend to be lim-
ited to simple, linear environments with implementations that are minor
modifications of off-the-shelf RL algorithms. Scaling these simplistic envi-
ronments to a real-world supply chain comes with a few challenges, such
as minimizing the computational requirements of the environment, spec-
ifying agent configurations that are representative of dynamics at real-
world stores and warehouses, and specifying a reward framework that
encourages desirable behavior across the whole supply chain. In this
work, we present a system with a custom GPU-parallelized environment
that consists of one warehouse and multiple stores, a novel architec-
ture for agent-environment dynamics incorporating enhanced state and
action spaces, and a shared reward specification that seeks to optimize
for a large retailer’s supply chain needs. Each vertex in the supply chain
graph is an independent agent that, based on its own inventory, able to
place replenishment orders to the vertex upstream. The warehouse agent,
aside from placing orders from the supplier, has the special property of
also being able to constrain replenishment to stores downstream, which
results in it learning an additional allocation sub-policy. We achieve a
system that outperforms standard inventory control policies such as a
base-stock policy and other RL-based specifications for one product, and
lay out a future direction of work for multiple products.

Keywords: Multi-Agent Reinforcement Learning · Shared Reward ·
Inventory Management · Allocation Policy

1 Introduction

Inventory management (IM) is the process of overseeing and controlling the flow
of goods from the point of acquisition to the point of sale. The goal of IM is to
ensure that an organization has the right products, in the right quantities, at
the right time, and at the right place to meet customer demand while minimiz-
ing operation costs. A retail giant may consist of hundreds of stores dispersed
through a vast geographic area, with each offering thousands of products. For
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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each store, the inventory for these products is supplied by the warehouse to which
it is mapped to in the supply chain topology (refer Fig. 1a). The warehouses in
turn receive their replenishment from a dedicated supplier. The replenishment
orders are fulfilled by trailers at regular intervals of time. Stores and warehouses
are responsible for maintaining enough product inventory to cover for unexpected
delays in replenishment for a few time periods.

The process of managing inventory involves various trade-offs, including
maintaining inventory levels at the store and minimizing costs associated with
holding inventory. Some key concepts in IM are: stock-out, holding costs, and
lead time [15]. A stock-out at a store or warehouse occurs if the inventory for
a particular product at the store goes to 0. This is undesirable as it not only
leads to lost sales but also poor customer experience. Holding costs are incurred
by stores and warehouses to maintain on-hand inventory of products. These are
comprised of quantities such as electricity costs for the store, refrigeration costs
for food items, and storage area maintenance costs. Since these costs scale with
the amount of inventory being kept on-hand, it is suboptimal for a store or ware-
house to keep the maximum possible amount of inventory on-hand. Lead time
refers to the time it takes for a supplier or warehouse to deliver a replenishment
order to a warehouse or store, respectively.

In this work, we demonstrate that our proposed system is able to success-
fully manage inventory for a single product across a simulated supply chain that
mimics the complexities of its real-world counterpart. We discuss scaling the
products by including results for 10 products, and propose future research direc-
tions to address challenges associated with simultaneously managing inventory
for thousands of products. For simplicity, we study the setting consisting of one
warehouse replenishing the needs of all the stores mapped to it. In supply chain
networks that do not have inter-warehouse constraints and suppliers capacity
is unbounded, our work is readily generalizable to the multi-warehouse set-up
mapped either to the same supplier or receive their replenishment from multiple
suppliers. For this paper, we define an inventory management problem as: Given
the distribution of demand for each product at each store, find optimal replen-
ishment quantities for each product at each store and at the warehouse, such
that over a specified number of time periods, system-wide profit is maximized
(equivalently, cost is minimized).

1.1 Reinforcement Learning for IM

Previous literature makes a case for an RL-based approach to building IM solu-
tions over traditional optimization approaches, as RL systems have the ability
to consider long-term trajectories of the future, which day-to-day heuristic opti-
mization systems lack [8,19,21,26]. In fact, this enables RL systems to operate
without an additional demand forecasting model, as they implicitly learn to
predict customer demand during training. We demonstrate this property in our
experiments, where the inventory policies learned by RL agents are superior
compared to optimization methods such as base-stock policy (BSP) [1], without
requiring an additional demand forecasting model.
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Multi-agent RL (MARL) is a machine learning framework that uses multiple
agents to learn and adapt. MARL may be a better choice for IM in a supply chain
than heuristics-based optimization approaches, which often assume static supply
chain properties like constant demand or fixed lead times for procurement. In
a supply chain, product demand can fluctuate, and supplier delays and trans-
portation issues can affect lead times. MARL algorithms can learn and adapt to
environmental changes in real time without these assumptions (when trained on
historical data) [25]. This makes them more resilient to supply chain uncertainty
and variability. Unlike traditional optimization methods, MARL algorithms can
be implemented in a decentralized manner, with each supply chain agent making
decisions based on local information. This improves supply chain flexibility, as
minor changes to a supply chain’s topology do not require the entire system to
be re-trained from scratch.

1.2 Contributions

The main contributions of this paper are: (i) a novel multi-agent architecture for
IM where the warehouse agent has enhanced state and action spaces enabling it
to effectively learn an allocation policy, especially when it does not have sufficient
inventory to meet all the store requests, (ii) a novel reward specification to
encourage system-wide cooperation where all agents in the supply chain share
the same reward that is calculated for each time period based on the dynamics of
the supply chain as a whole, and (iii) a CuPy-parallelized environment that can
process all products in constant time, subject to GPU constraints. Henceforth,
we refer to our enhanced warehouse, shared reward, multi-agent RL system as
Cooperative MARL (CMARL).

2 Related Work

RL techniques frame the IM problem as a Markov Decision Process, with the
state space being the current levels of inventory and the action space being the
replenishment quantity for each item to be ordered at each time step. This app-
roach has been gaining popularity in small-scale proof-of-concept environments
in recent years. For instance, [19] extends deep Q-networks (DQN) to solve a
decentralized variant of the beer game problem [2] and finds that a DQN agent
learns a near-optimal policy when other supply chain participants follow a BSP.
For a single product, a technique based on semi-Markov average reward to man-
age inventory decisions across a supply chain is studied in [5]. The usage of Q-
learning [11] to minimize an operating cost target is proposed in [9] for managing
inventory of a single product, and the results are compared against stock-based
and age-based policies. Again, for a single product on a linear four-echelon supply
chain, the authors in [8] compare different operations research methods with the
proximal policy optimization (PPO) algorithm in environments with and with-
out backlogged orders. Their experiments indicate that PPO outperforms BSP
in both environments. An application of the vanilla policy gradient (VPG) algo-
rithm to address a 2-echelon supply chain with stochastic and seasonal demand
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is discussed in [21]. The quantity of products to ship is determined by consider-
ing the inventory present in the warehouses. In all experiments, VPG performed
better than the (s,Q)-policy employed as a baseline. A single agent RL (SARL)
approach to optimize inventory flow across a 2-echelon supply chain is discussed
in [25], where the authors compare their neuro-dynamic policies to an order-
up-to policy, benchmark PPO against the VPG and the A3C algorithms, and
conclude that PPO performs the best for managing the inventory. The works in
[3,13] propose a multi-product MARL approach on a linear supply chain with
one warehouse and one store, where each inventory for each product is man-
aged by a separate RL agent. The former approach is shown to surpass baseline
heuristics for up to 220 products, and the latter leverages a shared resource
structure for holding inventory to outperform other MARL frameworks for up
to 100 products.

The method that is closest to our CMARL and implements a MARL sys-
tem for IM across a 2-echelon supply chain with 3 stores and one warehouse
is [26]. However, there are fundamental differences in the specifications of RL
agents with regard to environment dynamics, action spaces, reward structure,
and training structure between the two methods. While [26] assumes the lead
times between the warehouse and stores are zero, which is unrealistic as replen-
ishment orders need to be transported and processed, our CMARL system explic-
itly encodes the notion of lead time in the environment dynamics. Having a single
action policy across all products, with all weight parameters shared as in [26],
results in training time increasing linearly with respect to the number of prod-
ucts. It could reduce performance across multiple products due to catastrophic
forgetting [6]. Our experimental results (refer Fig. 4b) indicate that having indi-
vidual action space for each product has higher reward values alongside the
ability to simultaneously train for all products. Unlike [26] both the warehouse
and store agents in CMARL share the system-wide cooperative reward which
we demonstrate to be superior, as it avoids sacrificing supply chain-wide optimal
agent policies for those where agents could compete for local rewards.

In our proposed CMARL approach, we enhance our warehouse agent with an
extended observation space also consisting of past store actions, and an extended
action space to explicitly learn an allocation sub-policy when it has limited inven-
tory to meet all the stores’ requests. This allows all our agents to be trained
simultaneously, unlike [26], which employs a phased training approach and rests
on assumptions of unbounded warehouse capacity so that the requested replen-
ishment quantities for all products are always available in the warehouse, while
exclusively training the store agents in the first phase. Once every store has con-
verged to a locally optimal policy, only then is the warehouse set to have a finite
shelf capacity, and is trained conditioned on converged store agents. However,
since store agent behavior that is locally optimal may not be globally optimal
across a supply chain, this phased training routine results in the warehouse agent
being conditioned on a set of subpar policies. Also in [26], while the warehouse
agent has access to replenishment requests from store agents at the current time
period, it does not have access to past replenishment requests. This lack of
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information results in the warehouse only being able to make a binary decision
on whether to replenish a store, and cannot intelligently allocate a constrained
amount of inventory to stores which our system can achieve. Our CMARL sys-
tem is able to successfully emulate a divergent supply chain, going beyond the
linear supply chains described in most other operations research literature.

3 MARL for Inventory Management

A Markov Decision Process (MDP) is defined as a tuple (S,A, T ,R, γ) where S
is the state space, A is the action space, T is the set of transition probabilities
between states, R is the set of rewards associated with each state, and γ is a
discount factor. At each time step, the MDP can be completely described by its
state s ∈ S, which is used by an agent to select an action a ∈ A. According to
the set of transition probabilities, the MDP will reach a new state s′ ∈ S in the
next time period: T (s′ ∈ S|s ∈ S, a ∈ A) : S × A → S. A RL agent learns a
stochastic policy π that prescribes the probability of each action a that can be
taken in state s, as π(a|s) : S × A → [0, 1].

We define a generalization of MDP to a multi-agent setting with the tuple
(U ,S,A,T,R, γ). Here, U = {u|1 ≤ u ≤ |U|} is the set of agents in the envi-
ronment, S is the Cartesian product of the state spaces of all agents u ∈ U :
S = S1 × S2 × · · · × S|U|, A is the Cartesian product of the action spaces of
all agents u ∈ U : A = A1 × A2 × · · · × A|U|, T denotes transition probabilities
between S and A: T(s′ ∈ S|s ∈ S,a ∈ A), R is the Cartesian product over each
agent’s reward function: R = R1 × R2 × · · · × R|U|, and γ is a scalar discount
factor. At each time step t, all agents synchronously take actions a ∈ A. The
goal of each agent in the environment is to maximize its long-term reward by
finding its own optimal policy πu : Su → Au [27].

3.1 MARL Implementation

In the context of our supply chain, U = V ∪ {wh} is the set of vertices with
each vertex being either the warehouse agent (wh), or the store agent v ∈ V
as shown in Fig. 1a. While there is a hierarchy present in this supply chain, all
agents execute synchronously. Each agent has its own individual policy, state
and action spaces, and no agent can directly access the state space of another.

3.2 Store Agents

Let the vector xv(t) = [xv(t, 1), . . . , xv(t,K)] denote the on-hand inventory of the
K products, and rv(t) = [rv(t, 1), . . . , rv(t,K)] be the accepted reorder quantity
(defined below) at time step t for the store agent v ∈ V. Its state space is defined
as: Sv = {xv(t)} ∪ {rv(t − i)}lvi=1, where lv is the lead time to transfer products
from the warehouse to store v. Since actions taken by an agent v during time
period t only affect the reward at time period t + lv after its corresponding
lead time lv, we preserve the Markov property [14] by accounting for the delay
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Fig. 1. Environment Dynamics.

with a history of past replenishment orders included in the observation space (as
described in Sect. 3). Thus, similar to TEXPLORE [7], agents are able to capture
correlations between actions at time t and corresponding rewards at time t + lv.

Each store agent learns a policy that performs an action Av of placing replen-
ishment orders r̂v(t) = [r̂v(t, 1), . . . , r̂v(t,K)] to the warehouse at t for all the
K products. We assume that both store and warehouse agents place orders in
batches of units, where the action space is quantized into n possible actions for
each product, i.e., r̂v(t, k) ∈ {0, 1, . . . , n}. The value n is empirically deduced
from historical data.

3.3 Warehouse Agent

The warehouse agent jointly learns two sub-policies. First, its own replenishment
policy for placing replenishment requests r̂wh(t) from its supplier. Second, an
allocation policy for distributing its on-hand inventory to the stores v ∈ V. In
situations when the warehouse does not have sufficient inventory to meet all the
store requests, the accepted reorder quantity rv(t) that the warehouse learns to
allocate to the stores could be lesser than the store’s requested quantity r̂v(t).

The warehouse state space is extended to include replenishment order quan-
tities r̂v(t) from all the stores in the last m time periods, as it enables the
warehouse to learn the allocation policy. Additionally, the state space includes
its own inventory xwh(t) as well as the replenishment orders r̂wh(t) placed in
the last m time periods to optimally learn a replenishment policy for itself. Here
m = maxu∈U lu is the maximum of all lead times in the network. Its state and
actions spaces are:
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Swh = {xwh(t)} ∪ {r̂wh(t − i)}mi=1 ∪ {{r̂v(t − i)}mi=1|v ∈ V}, (1)
Awh = {r̂wh(t)} ∪ {rv(t)|v ∈ V}. (2)

In Fig. 2b of Sect. 6, we observe that when the store replenishment order quanti-
ties r̂v(t) are excluded from the warehouse state space in Eq. 1, labelled LimWh-
ShRwd, its ability to learn the allocation policy rv(t) for each store agent
degrades with lower reward value. By additionally observing r̂v(t), labelled
EnWh-ShRwd, the warehouse agent is able to prioritize replenishment to rel-
evant stores. To the best of our knowledge, our work is the first to introduce this
specific multi-agent architecture for IM with enhanced state and action spaces
for the warehouse agent.

Demand r̂wh(t) is always met since the supplier is assumed to have infi-
nite capacity, i.e. r̂wh(t) = rwh(t). Ideally, the warehouse should have enough
inventory to fulfill all the store requests r̂v(t). The mechanism for penalizing
the system when the warehouse replenishes a lesser amount rv(t) ≤ r̂v(t) to the
stores is described in Sect. 5.

4 Environment for Inventory Management

The environment is implemented as a set of tables that keep track of quantities
x(t), s(t), ŝ(t), r(t), r̂(t) and internal tables to keep a log of replenishment order
status. These tables are implemented with CuPy [17] which leverages CUDA
Toolkit libraries [16] such as cuBLAS, cuRAND, and cuSOLVER to execute
matrix operations on a GPU. This allows updates to the environment tables
to execute in constant time (subject to GPU constraints) as shown in Fig. 1b.
While the environment can handle an arbitrary number of products, our MARL
algorithm implementation converges during training for up to K = 10 products,
as discussed in Sect. 6. We strongly believe the same environment can still be used
for our future work when we seek to implement MARL for managing inventory
of thousands of products.

A single episode in our environment starts with initial inventory levels at
warehouse and store vertices for each product, and executes for T = 30 time
periods. Each time period may be analogous to a day of sales, where each agent
places its respective replenishment order, which is received after an associated
lead time. Also, at each time period, a certain portion of the inventory is sold
at the stores according to the customer demand sampled from a demand distri-
bution corresponding to each product.

4.1 Dynamics at Stores

At each time t, customer demand ŝv(t) = [ŝv(t, 1), . . . , ŝv(t,K)] for all the K
products is sampled from a product-specific demand distribution. Bounded on
xv(t) the amount of actual inventory sold is: sv(t) = min (̂sv(t),xv(t)), where
the min() function operates element-wise on each product.
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At the end of each time period when the store vertex v receives accepted
replenishment orders rv(t − lv) placed lv time periods ago, its inventory gets
updated as: xv(t+1) = xv(t)−sv(t)+rv(t−lv). Based on xv(t) and replenishment
history {rv(t−i)}lvi=1, store v places a replenishment order r̂v(t) to the warehouse.
We do not need to explicitly model the future demand, as the agent implicitly
predicts it based on its learned policy and past demand. We demonstrate this
property in Fig. 2b of Sect. 6, where an oracle implementation that can see the
true customer demand, ŝv (t + lv), lv lead time period ahead does not outperform
CMARL. The environment enforces that the inventory xv(t) is always less than
the maximum shelf capacity cv of the corresponding product at all times, by
setting xv(t) = min (xv(t), cv) element-wise. Inventory that cannot be held on
the shelves gets discarded and not realized as sales. However, they need to be
procured and stored at the warehouse to be allocated to the stores. Any discarded
inventory proportionately penalizes the shared reward, defined subsequently in
Eq. (7), by incurring procurement and inventory holding costs at the warehouse
without generating any sales revenue. Hence, the stores implicitly avoid placing
replenishment requests that would result in exceeding their shelf capacity.

4.2 Dynamics at Warehouse

Based on the store replenishment requests r̂v(t), the warehouse uses its allocation
sub-policy to decide on the accepted replenishment order rv(t). At the end of
time t, when the warehouse receives its own replenishment rwh (t − lwh) placed
lwh lead time periods ago, its inventory gets updated as:

xwh(t + 1) = xwh(t) −
(∑

v∈V
rv(t)

)
+ rwh (t − lwh) .

Based on its available inventory, the warehouse places a replenishment order
r̂wh(t) to its supplier which is always accepted, as the supplier has no inventory
constraint. The maximum shelf capacity is again enforced by the environment by
setting xwh(t) = min(xwh(t), cwh) element-wise, where the vector cwh represents
the shelf capacities of each of the products at the warehouse. Any inventory
discarded due to shelf capacity constraints, though procured by the warehouse
when placing its replenishment request r̂wh (t − lwh), is not utilized in allocating
to the stores rv(t). The system-wide reward defined in Eq. (7) gets penalized
proportionally because the cost of procuring this additional inventory is not
realized as stores sales. Hence, the warehouse agent will implicitly minimize
placing surplus replenishment requests that cannot be held on its shelves.

5 Reward Structure

Since the desired goal is maximizing the system-wide reward (profit across the
entire supply chain), situations where agents compete for reward are undesirable.
To ensure that the agents are fully cooperative, a shared reward structure is
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imposed, where each agent is rewarded for choosing actions that benefit the
system as a whole. This is as opposed to the separate, local reward formulations
for store and warehouse agents as specified in [26]. Sharing rewards can help
the learning process converge faster and reach a more optimal solution [20], and
reduce the risk of suboptimal behavior like pursuing individual goals at the cost
of the system-wide goal [18]. Our results in Fig. 2b confirm this advantage of a
shared reward structure over individual rewards, and are discussed in Sect. 6.
Our shared reward function consists of the following components:

Sales Revenue. As described in Sect. 4.1, each store sells a certain portion of
its inventory sv(t) based on customer demand ŝv(t). The total revenue made by
all the stores is:

Pr(t) =
K∑

k=1

∑
v∈V

[sv(t, k) × θSP(k, v)] , (3)

where θSP (k, v) is the selling price of a single unit of the kth product at v. In
most large retailers’ supply chains, the transfer of inventory from the warehouse
to stores does not incur an intermediary sale. Thus, we do not explicitly model
sales at the warehouse and set its sales revenue to zero.

Inventory Holding Cost. Each unit of on-hand inventory at the stores
and warehouse typically incurs maintenance costs associated with refrigeration,
cleaning, electricity etc. Sans this cost, it would be optimal for both warehouse
and stores to keep their inventories stocked to near full-capacity at all times
by always placing maximal allowed replenishment orders. To discourage such
behavior, we introduce a penalty for holding inventory, defined as:

Ph(t) =
K∑

k=1

∑
v∈V∪wh

[xv(t, k) × θh(k, v)] , (4)

where θh(k, v) is the cost of holding one unit of kth product at v.

Procurement Cost. As mentioned before, the warehouse procures its replen-
ishment rwh(t − lwh) placed lwh lead time ago from the supplier. The total
procurement cost is:

Pp(t) =
K∑

k=1

[rwh(t − lwh, k) × θCP (k,wh)] , (5)

where θCP(k,wh) is the cost of procuring a single unit of product k. In most
retailers’ supply chains, the inventory transfer from the warehouse to stores does
not incur an intermediary sale, as they are internal to the organization. Hence,
we do not associate procurement cost with the stores.
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Unfulfilled Penalty. We impose an unfulfilled order penalty when the inven-
tory at the warehouse is insufficient to meet the sum of replenishment requests
from stores, and when stores do not have enough inventory to satisfy customer
demand. This penalty is formulated as:

Pu(t) = θu

K∑
k=1

ReLU

(∑
v∈V

r̂v(t, k) − xwh(t, k)

)
+ θu

K∑
k=1

∑
v∈V

[ŝv(t, k) − sv(t, k)] ,

(6)
where θu is a hyperparameter for this penalty, and ReLU() is the Rectified Linear
Unit function defined as: ReLU(x) = max(0, x).

Shared Reward Specification. The rewards and penalties in Eqs. 3–6 are
used to calculate a total reward for each time period in an episode, defined as:

P (t) = Pr(t) − (Pp(t) + Ph(t) + Pu(t)) . (7)

This expression can also optionally include transportation and labor costs. We
exclude them as our experiments deal with a small number of products.

6 Experimental Results

We implement all RL agents with proximal policy optimization (PPO) [23] over
vanilla policy gradient (VPG) as the former is known to have better sample
efficiency, improved training stability, more effective exploration of the action
space, and robustness to high-dimensional state spaces [10,11,22,24,27]. A single
product is assumed to have a Poisson distribution, with mean parameter 10 ≤
μ ≤ 1000. Each system is trained for 100, 000 episodes on an 8-core vCPU and
a single NVIDIA Tesla P4 GPU. We set θu � θh, as this is experimentally
determined to minimize stockout occurrences while keeping inventory stable.

6.1 Linear Supply Chain

We first consider a linear supply chain with 2 vertices U = {wh, v} consisting
of one warehouse and one store that deals with a single product. We compare
CMARL against inventory control policies such as base-stock policy (BSP) [1]
and the single-agent RL (SARL). In the BSP and SARL implementations, the
action and observation spaces are global and combined for both the warehouse
and the store. The action space is the set of all vertices’ requested replenishment
quantities at time t: A = {r̂wh(t), r̂v(t)}. Likewise, the observation space is the
set of all vertices’ on-hand inventories and their past accepted replenishment
orders: S = {xwh(t)} ∪ {rwh(t − i)}lwh

i=1} ∪ {xv(t)} ∪ {rv(t − i)}lvi=1. The BSP is
implemented following the approach described in [8].

For all the 3 approaches, we compute the rewards using Eq. 7 and plot them
in Fig. 2a. The reward from SARL (over 450) is higher compared to the BSP,
the latter of which does not exceed 300. This result is supported by [8,19,21,26]
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Fig. 2. Training rewards for: (a) linear supply chain, (b) divergent supply chain with
10 stores, both with 1 product.

where SARL, with enough training, is the superior choice to optimization-based
approaches. However, our proposed CMARL framework far outperforms SARL
with more than over 30 times the rewards. The proposed MARL system also
reached and surpassed the rewards reaped by the SARL framework in a fraction
of the time it took for the latter to reach its maximal value. This is likely because
in a multi-agent environment, agents can have different roles and behaviors,
leading to a more diverse and efficient exploration of the state space compared
to a single agent. As observed in [12,29], the presence of multiple agents allows
for an increase in the effective sample size, leading to faster convergence.

6.2 Divergent Supply Chain

Single Product. We now scale the environment to a divergent topology with
one warehouse vertex and 10 store vertices, and start with a discussion of our
experiments on a single product. An upper bound for the reward for the BSP
can be set at 10×360 = 3, 600. This is because a divergent supply chain with |V|
stores can be modelled as |V| linear supply chains with constraints at warehouse
vertices. Removing these constraints allows for a larger set of possible behaviors
in each of the |V| linear supply chains, thereby increasing potential rewards.
Over the course of training, the average reward reaches over 35,000 which is
approximately 10 times that of the projected reward for base-stock policy, as
shown in Fig. 2b.

We study multiple variants of our MARL system by: (i) limiting the observa-
tion space of the warehouse agent defined in Eq. (1) to only its past replen-
ishment actions, and excluding the stores’ replenishment requests (LimWh),
and (ii) having independent localized reward for each agent as opposed to a
system-wide shared reward (LocRwd). Specifically, we investigate 5 different
MARL configurations: (i) CMARL a.k.a. EnWh-ShRwd, (ii) EnWh-LocRwd,
(iii) LimWh-ShRwd, (iv) LimWh-LocRwd, and (v) Oracle implementation of
CMARL (O-CMARL) where the store agents at time t see the actual customer
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demand, ŝv(t+ lv), lv lead time periods ahead and make replenishment requests
r̂v(t) accordingly. As seen in Fig. 2b, our CMARL system that implements both
the enhanced observation space for the warehouse agent, and a shared reward
structure has the highest reward values. It is not outperformed by the oracle
implementation either, implying that we do not explicitly need a forecasting
model to foresee the future demand. The agents are able to implicitly predict
it based on their learned policy and past demand. The worst performing con-
figuration is the system-wide shared reward without an enhanced warehouse
agent (LimWh-ShRwd) which distributes rewards equally, and does not give the
system any strong signal on how to improve behavior. As a result, allocation
decisions are made essentially at random when the warehouse cannot fulfill all
replenishment requests and the warehouse fails from learning an efficient allo-
cation policy. Similarly, having an enhanced warehouse with individual rewards
(EnWh-LocRwd) for each agent results in the warehouse agent converging to
locally advantageous policies much faster than store agents, as it has access to
more information about the environment than store agents.

A system where the MARL uses neither an enhanced warehouse agent nor a
shared reward (LimWh-LocRwd) avoids these issues, as although agents compete
for reward they converge to policies more or less at similar rates with respect
to each other. Hence, it is the second-best performer as a system. However, this
still produces suboptimal behavior as depicted in Fig. 3b, where the inventory
levels for each time period are tracked by running the environment for one test
episode after the agents policies are converged in the training phase. In the
LimWh-LocRwd configuration in Fig. 3b, the warehouse agent converges to a
policy where it simply keeps placing maximal replenishment requests from its
supplier, and store agents are erratic with their replenishment requests, resulting
in frequent stock-outs (as their inventories frequently go to zero). In contrast, the
proposed CMARL system manages inventory much better. This is seen in Fig. 3a,
where the warehouse in the CMARL system has a relatively stable inventory that
isn’t continuously increasing or decreasing. This implies a lowered holding cost
as the leftover inventory after sales is minimized, while still fulfilling all orders
with inventories never reaching 0 to have stockouts.

Multiple Products. To extend CMARL to supply chains of retailers that deal
in multiple products, we experiment with up to 10 products. As described in
Sect. 3, each agent’s action and observation spaces increase linearly with respect
to the number of products in the supply chain. This, along with our particu-
lar GPU-parallelized environment implementation discussed in Sect. 4, enables
training agent policies for multiple products simultaneously, thereby avoiding
training time overhead, and allows us to independently capture variations in
demand distributions for each product individually. Figure 4a shows continu-
ously increasing training rewards for a supply chain that manages inventory of
10 products at each vertex, implying system-wide convergence to optimal policies
by agents.
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Fig. 3. Warehouse and average store inventories for 30 time periods with (a) CMARL,
and (b) LimWh-LocRwd for a supply chain with 10 stores, 1 product.

In contrast, an implementation that shares policy parameters across products
such as in [26] needs to be trained separately for each product, which increases
training time by a factor of K. It also results in a relative inability to capture
large variations between product types, leading to reduced overall performance.
As a motivating example, a perishable item such as a fruit has fundamental dif-
ferences with an electronic device such as a television in trading volume, shelf
life, and customer demand, so much so that sharing parameters of an inventory
management policy for the two is seldom the ideal choice. To emphasize this
property, we implemented a variant of CMARL (ShPol-CMARL) with an action
and observation space for each agent that can only handle a single product at
a time as input, and train it sequentially for each of the 10 products by shar-
ing policy parameters between different products. Figure 4b shows a comparison
between rewards for a single episode, between our CMARL system with inde-
pendent action and state dimensions for each of the 10 products as described in
Sect. 3 and 4, and the shared policy variant (ShPol-CMARL). We notice CMARL
to achieve double the reward of ShPol-CMARL. For the experiments in Fig. 4,
each one of the Poisson distributions governing product demand had a different
value for μ. Our current implementation of CMARL is unable to handle beyond
10 products for reasons described in the next section.
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Fig. 4. (a) Training rewards and (b) Test Reward for one episode for a divergent supply
chain with 10 stores, 10 products.

7 Conclusion and Future Work

We presented a system with a MARL formulation of the IM problem imple-
mented with a GPU-parallelized environment that consists of one warehouse
and multiple stores. Our agent-environment dynamics for the warehouse agent
with enhanced observation and action space enables it to effectively learn an
allocation sub-policy. Additionally, the shared reward formulation in CMARL
encourages cooperation between agents to jointly optimize for a retailer’s supply
chain needs. We demonstrated that for managing inventory of a single prod-
uct, CMARL outperforms optimization BSP approaches, single agent RL, as
well as other MARL configurations with individual reward structure and lim-
ited warehouse observation space. Our experimental results indicate that having
individual action/observation space dimensions corresponding to each product,
instead of sharing a single policy across all products as done in [26], leads to
superior reward values alongside the ability to simultaneously train for all prod-
ucts. Our synchronous training of both warehouse and store agents does not
require (perhaps unrealistic) assumptions of unlimited warehouse capacity while
exclusively training the store agents as performed in phases [26].

For our system, incorporating individual observation and action dimensions
for each product in terms of increased reward value, results in the combinatorial
explosion of agent’s action and observation spaces with increasing numbers of
products. This in turn limits the capacity of our current CMARL framework
to handle over 10 products, while an IM system for a large retailer requires the
ability to handle thousands of products. Our future directions of research include
investigating extensions that are equipped to deal with large action spaces such
as those proposed in [4], as well as alternatives such as Branching Deep Q-
Networks [28].
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Ethical Impact. We do not foresee any scenario where our work would put a certain

demographic or a specific organization to a systematic disadvantage. We do not use

any personal data in our experiments. We do not anticipate our algorithm to be used

in policing or military applications. Our work is only focused on developing a RL-based

solution to effectively manage inventory and optimize costs in a multi-echelon supply

chain system.

References

1. Anbazhagan, N., Wang, J., Gomathi, D.: Base stock policy with retrial demands.
Appl. Math. Model. 37(6), 4464–4473 (2013)

2. D’Atri, A., et al.: From supply chains to supply networks: The beer game evolution.
IFAC Proc. Volumes 42(4), 1316–1321 (2009)

3. Ding, Y., et al.: Multi-agent reinforcement learning with shared resource in inven-
tory management. CoRR abs/2212.07684 (2022)

4. Farquhar, G., Gustafson, L., Lin, Z., Whiteson, S., Usunier, N., Synnaeve, G.:
Growing action spaces. In: Proceedings of the 37th International Conference on
Machine Learning, vol. 119, pp. 3040–3051. PMLR (2020)

5. Giannoccaro, I., Pontrandolfo, P.: Inventory management in supply chains: a rein-
forcement learning approach. Int. J. Prod. Econ. 78(2), 153–161 (2002)

6. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211 (2013)

7. Hester, T., Stone, P.: Texplore: real-time sample-efficient reinforcement learning
for robots. Mach. Learn. 90, 385–429 (2013)

8. Hubbs, C.D., Perez, H.D., Sarwar, O., Sahinidis, N.V., Grossmann, I.E., Wassick,
J.M.: Or-gym: a reinforcement learning library for operations research problem.
CoRR abs/2008.06319 (2020)

9. Kara, A., Dogan, I.: Reinforcement learning approaches for specifying ordering
policies of perishable inventory systems. Expert Syst. Appl. 91, 150–158 (2018)

10. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Advances in Neural Informa-
tion Processing Systems, vol. 12 (1999)

11. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

12. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-
agent actor-critic for mixed cooperative-competitive environments. In: Advances
in Neural Information Processing Systems, vol. 30 (2017)

13. Meisheri, H., et al.: Scalable multi-product inventory control with lead time con-
straints using reinforcement learning. Neural Comput. Appl. 34(3), 1735–1757
(2022)

14. Miller, D.R.: Markov processes. In: Gass, S.I., Harris, C.M. (eds.) Encyclopedia of
Operations Research and Management Science, pp. 486–490. Springer, New York
(2001). https://doi.org/10.1007/1-4020-0611-X 582

15. Mittal, M., Shah, N.H.: Optimal Inventory Control and Management Techniques.
IGI Global, Hershey (2016)

16. NVIDIA, Vingelmann, P., Fitzek, F.H.: Cuda, release: 10.2.89 (2020). https://
developer.nvidia.com/cuda-toolkit

http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1509.02971
https://doi.org/10.1007/1-4020-0611-X_582
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit


634 M. Khirwar et al.

17. Okuta, R., Unno, Y., Nishino, D., Hido, S., Loomis, C.: Cupy: a numpy-compatible
library for NVIDIA GPU calculations. In: Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the Thirty-first Annual Conference on Neural
Information Processing Systems (NIPS) (2017)

18. Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized
multi-task multi-agent reinforcement learning under partial observability. In: Inter-
national Conference on Machine Learning, pp. 2681–2690. PMLR (2017)

19. Oroojlooyjadid, A., Nazari, M., Snyder, L.V., Takáč, M.: A deep q-network for the
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Abstract. While traditional Learning to Rank (LTR) models use query-
webpage pairs to perform regression tasks to predict the ranking scores,
they usually fail to capture the structure of interactions between queries
and webpages over an extremely large bipartite graph. In recent years,
Graph Convolutional Neural Networks (GCNs) have demonstrated their
unique advantages in link prediction over bipartite graphs and have been
successfully used for user-item recommendations. However, it is still dif-
ficult to scale-up GCNs for web search, due to the (1) extreme sparsity of
links in query-webpage bipartite graphs caused by the expense of ranking
scores annotation and (2) imbalance between queries (billions) and web-
pages (trillions) for web-scale search as well as the imbalance in anno-
tations. In this work, we introduce the Q-subgraph and W-subgraph
to represent every query and webpage with the structure of interaction
preserved, and then propose LtrGCN—an LTR pipeline that samples
Q-subgraphs and W-subgraphs from all query-webpage pairs, learns to
extract features from Q-subgraphs and W-subgraphs, and predict rank-
ing scores in an end-to-end manner. We carried out extensive experi-
ments to evaluate LtrGCN using two real-world datasets and online
experiments based on the A/B test at a large-scale search engine. The
offline results show that LtrGCN could achieve Δ NDCG5 = 2.89%–
3.97% compared to baselines. We deploy LtrGCN with realistic traf-
fic at a large-scale search engine, where we can still observe significant
improvement. LtrGCN performs consistently in both offline and online
experiments.
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1 Introduction

Large-scale Learning to Rank (LTR) is a central part of real-world information
retrieval problems, such as web search and content recommendations. Given a
query of web search, the search engine first retrieves relevant webpages from the
database and sorts the webpages by the ranking scores predicted by LTR mod-
els. While traditional LTR models transform ranking into regression problems
of various types, they usually fail to capture the structural information over the
interactions between billions of queries and trillions of webpages. These interac-
tions indeed characterize how all these queries and webpages connect each other
in a large bipartite graph of the web. To provide a better search experience, it
is inevitable to incorporate such structural information in LTR.

On the other hand, in recent years, Graph Neural Networks, such as Graph
Convolutional Neural Networks (GCN) [18], have been used for user-item recom-
mendations and demonstrated their unique advantages in modeling the problem
as link prediction over bipartite graphs [10]. Similar to LTR based on query-
webpage pairs, the user-item recommendation also needs to rank items (e.g.,
products or contents) subject to the given profile of every user. However, it is
difficult to directly adopt GCNs for LTR tasks at web-scale, due to the spar-
sity and imbalanced issues as follows. First of all, as shown in Fig. 1, links are
extremely sparse in the query-webpage bipartite graph extracted from LTR train-
ing datasets, as labeling query-webpage pairs by professional annotators is expen-
sive and time-consuming (difficult to scale-up). Furthermore, from the webpages’
perspectives, edges between queries and webpages are severely imbalanced—it is
quite common to link a query to dozens of webpages with both high and low rele-
vant scores, while a webpage hardly links to any queries, especially to the queries
that the webpage is less relevant or low-ranked, in the annotations. Apparently,
either sparsity or imbalance issue would significantly downgrade the performance
of GCN models [29]. Therefore, to tackle the above two challenges, there needs
a non-trivial extension on the GCN-based model for handling LTR at web-scale.

In this work, we propose LtrGCN to tackle the above two issues and adopt
GCNs for LTR tasks in a pipeline as follows. Given all query-webpage pairs in the
LTR training dataset, LtrGCN first leverages two advanced sampling strate-
gies to generate the Q-subgraph and W-subgraph for every query and webpage.
Then, LtrGCN leverages GCNs to extract feature vectors from the Q-subgraph
and W-subgraph as the representation of the query-webpage pair for ranking
score prediction. The feature extraction and ranking score prediction are opti-
mized in an end-to-end manner, so as to enable discriminative feature extraction
while preserving structural information in the bipartite graph. As sparsity and
imbalance issues are addressed, LtrGCN can work with the training datasets,
where it is sufficient that only a small proportion of query-webpage pairs are
labeled by experts. Furthermore, we conduct extensive experiments to evaluate
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Fig. 1. Sparsity and Imbalance Issues in the Query-Webpage Bipartite Graph.

LtrGCN using two real-world datasets (offline), and launch online experiments
based on an A/B test at a large-scale search engine. The offline results show
that LtrGCN could achieve the best performance on both datasets compared
to baselines. As for the online evaluation, we deploy LtrGCN with realistic
traffic at a large-scale search engine, where we still observe significant improve-
ment. LtrGCN performs consistently in both offline and online experiments.
Our main contributions are summarized as follows:

– We study the problem of the extreme sparsity of links in query-webpage
bipartite graphs caused by the expense of ranking score annotation and the
imbalance between queries and webpages for web-scale search. To the best of
our knowledge, this work is the first to investigate sparsity and imbalance in
query-webpage bipartite graphs for large-scale industrial LTR tasks.

– We propose LtrGCN consisting of three steps: (1) Q-subgraph Generation
via Self-tuned Labeling that annotates all unlabeled query-webpage pairs and
assigns every query webpages with ranking scores to generate Q-subgraphs,
(2) W-subgraph Generation via Negative Sampling that find irrelevant queries
for every webpage to construct W-subgraphs, (3) Learning to Rank based
on GCN with Q-subgraphs and W-subgraphs that learns the representations
of query-webpage pairs from Q-subgraphs and W-subgraphs and predicts
ranking scores in an end-to-end manner.

– We carry out extensive offline experiments on a public LTR dataset and a
real-world dataset collected from a large-scale search engine. We also deploy
LtrGCN at the search engine and implement a series of online evaluations.
The experiment results show that, compared to the state-of-the-art in web-
page ranking, LtrGCN could achieve the best performance on both offline
datasets. Furthermore, LtrGCN obtains significant improvements in online
evaluations under fair comparisons.

2 Methodology

2.1 Task Formulation

Given a set of search queries Q = {q1, q2, . . . } and all archived webpages
D = {d1, d2, . . . }, for each query qi ∈ Q, the search engine could retrieve a
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Fig. 2. The framework of LtrGCN consisting of three steps: (1) Q-subgraph Gener-
ation via Self-tuned Labeling, (2) W-subgraph Generation via Negative Sampling, and
(3) GCN-based LTR with Q-subgraphs and W-subgraphs.

set of relevant webpages denoted as Di = {di
j}

|Di|
j=1 ⊂ D. Through professional

labeling, a set of ranking scores yi = {yi
j}

|Di|
j=1 for qi is established to characterize

the relevance of the webpage di
j ∈ Di to the search query qi. In this paper, we

follow the settings in [26] and scale the relevant score from 0 to 4 to represent
levels of relevance (i.e., {bad-0, fair-1, good-2, excellent-3, perfect-4}). We
denote a set of query-webpage pairs with ranking score annotations as triples
S = {(q1,D1,y1), (q2,D2,y2), (q3, D3,y3), . . . }. We aim to learn an LTR scoring
function f : Q × D → [0, 4], which could be approximated through minimizing
the following ranking loss:

L =
1

|S|

|S|∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

�(yi
j , f(q

i, di
j))

⎞

⎠ , (1)

where � represents the loss of the ranking prediction for query qi with returned
webpage di

j against the ground truth label yi
j . Note that, LtrGCN is flexible

with standard loss functions (i.e., pointwise, pairwise, and listwise). As annota-
tors can barely label a small number of query-webpage pairs due to the limited
budgets, the key problem of LTR is thus to incorporate the unlabeled query-
webpage pairs denoted as set S ′

= {(q′
1,D

′
1), (q′

2,D
′
2), . . . }.

2.2 Overall Framework of LtrGCN

As illustrated in Fig. 2, LtrGCN consists of three steps: (1) Q-subgraph Genera-
tion via Self-tuned Labeling, (2) W-subgraph Generation via Negative Sampling,
and (3) Learning to Rank based on GCN with Q-subgraphs and W-subgraphs.
Specifically, in Step (1), LtrGCN first annotates all unlabeled query-webpage
pairs with pseudo ranking scores and then assigns every query webpages with
high ranking scores and also webpages with low scores to generate Q-subgraphs
from the training set. Then, in Step (2), LtrGCN proposes a negative sam-
pling strategy to find irrelevant queries for every webpage to construct W-
subgraphs. Eventually, in Step (3), given Q-subgraphs and W-subgraphs for
every high-ranked query-webpage pair, LtrGCN learns the representations of



LtrGCN: GCN-Based Learning to Rank 639

query-webpage pairs using a Light Graph Convolution Network (LightGCN) [12]
and enables LTR in an end-to-end manner.

2.3 Q-subgraph Generation via Self-tuned Labeling

As mentioned above, to leverage GCN for ranking, there needs to feed the
model with Q-subgraphs and W-subgraphs. Given query-webpage pairs that
are sparsely annotated with ranking scores in the training set, LtrGCN adopts
a labeling approach [23] that first annotates every unlabeled query-webpage pair
with a pseudo ranking score and then assigns every query webpages with high
ranking scores and also webpages with low scores, so as to generate Q-subgraphs
from the training set at full-scale. Thus, there needs the learning to predict
pseudo ranking scores with labeled/unlabeled samples in the training set.

LtrGCN first gets every possible query-webpage pair from query and web-
page datasets as (qi, d

j
i ) for ∀qi ∈ Q and ∀dj

i ∈ Di ⊂ D. For each query-
webpage pair (qi, d

j
i ), LtrGCN further extracts an m-dimensional feature vec-

tor xi,j representing the features of the jth webpage under the ith query.
Then, the labeled and unlabeled sets of feature vectors can be presented as
M = {(xi,j ,y

i
j)|∀(qi,Di,y) ∈ S and ∀di

j ∈ Di} and M′
= {xi,j |∀(qi,Di) ∈ S ′}.

Given the labeled feature set M and the unlabeled feature set M′
, LtrGCN

further takes a two-step strategy to accomplish the pseudo-label generation via
multi-loss learning as follows.

First, LtrGCN trains an LTR model with the listwise loss function as:

LList = − 1
|M|

|M|∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

softmax(yi
j) × log

(
softmax f(qi, di

j)
)
⎞

⎠ . (2)

The listwise-based LTR model is denoted as RankList. LtrGCN trains RankList

using both M and M′
through self-training, where RankList is first trained

using M through supervised learning. Then, RankList predicts the ranking score
for each feature vector in M′

and pseudo-labels the feature vector with the
prediction result. After that, LtrGCN combines M with pseudo-labeled data
MP and retrains RankList using the combined data MC .

Given the MC , M and M′
, LtrGCN (1) trains an LTR model with the

pointwise loss function as:

LPoint =
1

|MC |

|MC |∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

|f(qi, di
j) − yi

j |2
⎞

⎠ . (3)

The pointwise-based LTR model is denoted as RankPoint. LtrGCN first trains
RankPoint with MC and predicts pseudo-labels for each feature vector in M′

using trained RankPoint. Then, LtrGCN updates MP with the prediction
results of RankPoint and combines M with MP to conduct MC . LtrGCN
further retrains RankList using MC and predicts ranking scores for each feature
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vector in M′
using trained RankList. Finally, LtrGCN updates MP with the

prediction results of RList and combines M with MP to obtain MC . LtrGCN
repeats the above steps with T rounds and returns MC .

With pseudo ranking scores predicted for all unlabeled samples, LtrGCN
builds a Q-subgraph for every query with the (pseudo) ranking scores greater
than 2 (good). Specifically, to build the Q-subgraph, LtrGCN randomly picks
up a webpage that the query-webpage is with the ranking score lower than 1
(fair), and forms the three items (i.e., the query, a highly-ranked webpage of the
query, a low-ranked webpage of the query) into a Q-subgraph.

2.4 W-subgraph Generation via Negative Sampling

Though Q-subgraph Generation step could generate ranking scores for every
query-webpage pair in the training dataset, it is still difficult to construct W-
subgraphs using predicted scores at full-scale. While every query connects to
the webpages with high/low pseudo ranking scores, a webpage usually only con-
nects to one or very limited highly-relevant queries and the number of web-
pages is much larger than that of effective queries from a webpages’ perspective.
Thus, there needs to find irrelevant queries for every webpage. To build W-
subgraphs for a webpage, LtrGCN leverages a negative sampling strategy. Given
a webpage, LtrGCN retrieves all query-webpage pairs, builds a W-subgraph for
every query-webpage with the ranking scores higher than 2 (fair). Specifically,
LtrGCN randomly picks up a query that does not connect to the webpage as
the irrelevant query, then forms the three (i.e., the webpage, a query where the
webpage is highly ranked, and an irrelevant query) into a W-subgraph. Specif-
ically, for a query qi, LtrGCN randomly chooses the webpage from the other
query to conduct the negative samples and assigns the relevant score as 0 or 1
to represent poor relevance. Through this negative sampling method, LtrGCN
could build W-subgraphs for a webpage.

2.5 GCN-Based LTR with Q-subgraphs and W-subgraphs

Given Q-subgraphs and W-subgraphs for every high-ranked query-webpage pair,
in this step, LtrGCN learns the representations of query-webpage pairs with a
GCN and enables learning to rank (LTR) in an end-to-end manner.

In the initial step, given the Q-subgraph and W-subgraph, LtrGCN extracts
the feature vector of each query and webpage. Specifically, the feature of query
qi and webpage di

j is denoted as z(n=0)
qi and z

(n=0)

di
j

, where n indicates the feature

output from the nth GCN layer. Next, the GCN-based encoder utilizes the query-
webpage interaction graph to propagate the representations as:

z
(n+1)
qi =

∑

di
j∈Nqi

1√∣∣Nqi

∣∣
√∣∣Ndj,i

∣∣
z
(n)

di
j

,

z
(n+1)

di
j

=
∑

qi∈N
di
j

1√∣∣Nqi

∣∣
√∣∣Ndj,i

∣∣
z
(n)
qi ,

(4)
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where Nqi and Ndj,i
represent the set of webpages that are relevant to query qi

and the set of queries that are relevant to webpage di
j , respectively. Moreover,

1√
|Nqi |

√
|Ndj,i |

is the normalization term used to prevent the scale of representa-

tions from increasing as a result of graph convolution operations. After N layers
graph convolution operations, LtrGCN combines the representations generated
from each layer to conduct the final representation of query qi and webpage di

j

as follows:

zqi =
N∑

n=0

βnz
(n)
qi ; zdi

j
=

N∑

n=0

βnz
(n)

di
j

, (5)

where βn ∈ [0, 1] is a hyper-parameter to balance the weight of each layer repre-
sentation. Then, LtrGCN combines zqi and zdi

j
to conduct the learned query-

webpage pair representation as zi,j .
Given the learned vector zi,j , LtrGCN adopts a Multi-Layer Perception

(MLP)-based model with a fully-connected layer to calculate the predicted score
si,j . The whole process can be formulated as: si,j = fθ(zi,j), where θ is the set
of discriminative parameters. Against the ground truth, LtrGCN leverages the
discriminative loss function, which is defined as:

LDisc =
1

|Q|

|Q|∑

i=1

⎛

⎝ 1
|Di|

|Di|∑

j=1

�LTR

(
yi

j , fθ(zi,j)
)
⎞

⎠ , (6)

where �LTR represents the standard LTR loss function (i.e., pointwise, pairwise
and listwise).

3 Deployment of LtrGCN

In this section, we introduce the deployment settings of LtrGCN at a large-
scale industrial search engine. As illustrated in Fig. 3, we present the overall
workflow of the real-world deployment and the three-stage design of the search
engine as follows: (1) Webpage Collection, (2) Webpage Storage and Indexing,
and (3) Retrieval and Ranking.

Webpage Collection. To efficiently navigate the vast expanse of webpages avail-
able on the internet, the search engine employs high-performance crawlers known
as Web Crawlers. These crawlers play a vital role in collecting and downloading
webpages. The Web Crawler operates by systematically scanning a comprehen-
sive list of links, and actively searching for new webpages and updates to existing
ones. It selects and stores valid links containing the desired content, creating a
downloading list. Utilizing real-time web traffic data, the Web Crawler initiates
the downloading process, ensuring timely retrieval of information.
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Fig. 3. The overview of the large-scale search engine with LtrGCN deployed.

Webpage Storage and Indexing. The search engine stores downloaded webpages
in distributed archival storage systems and create efficient indices for high-
performance search. These storage systems utilize elastic resources across multi-
ple regional data centers, reducing storage costs. The indexing system balances
indexing workloads and achieves superb I/O efficiency through novel key-value
operations and in-memory computation. This combination allows search engines
to effectively manage large volumes of web content and provide fast and accurate
search results.

Retrieval and Ranking. Given a search query, the search engine first retrieves all
relevant webpages from the dataset and sorts top-K relevant webpages. Specif-
ically, the search engine adopts a pre-trained language model based semantic
retrieval algorithms to enhance the conventional retrieval approach. Then, the
search engine pairs each webpage with the query to conduct a query-webpage
pair and uses LtrGCN to accomplish ranking tasks. To ensure LtrGCN can
satisfy the rapid shift of internet interest, the search engine periodically picks up
new queries and relevant webpages, hires people to annotate scores and re-trains
LtrGCN with labeled data.

4 Experiments

In this section, we first detail experimental settings. Then, we introduce the
results of the offline experiments. Finally, extensive online experiments further
demonstrate the effectiveness of LtrGCN at a real-world search engine.

4.1 Experimental Settings

Datasets. To demonstrate the effectiveness of our proposed model, we present
extensive experiments on a common-used public dataset, MSLR-Web30K [26]
and a real-world dataset collected from a large-scale commercial web search
engine. MSLR-Web30K contains about 30,000 queries and 3,771,125 query-
webpage pairs. Each query-webpage pair is represented as a 136-dimensional
real-valued feature vector associated with a relevance label with a scale from 0
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(irrelevant) to 4 (perfectly relevant). In our experiments, we perform the five-fold
cross-validation [26] and report the average results across five folds.

Collected Dataset contains 15,000 queries and over 770,000 query-webpage
pairs from a large-scale industrial search engine. In our dataset, each query-
webpage pair is also represented as a 120-dimensional real-valued feature vector
associated with a relevant score. We randomly split the real-world dataset into a
training set (9,000 queries), a validation set (3,000 queries), and a test set (3,000
queries). All features are standardized before being fed into the ranking models
in our experiments.

Evaluation Metric. To evaluate the performance of LtrGCN, we utilize
Normalized Discounted Cumulative Gain (NDCG) [15], which is widely
adopted in LTR tasks. The NDCG score for the query could be computed as
follows:

NDCGN =
1
Z

N∑

i=1

2yi − 1
log2(1 + i)

, (7)

where Z is a normalization factor that is the ideal order of Discounted Cumula-
tive Gain [14], and yi is the ranking score of the ith webpage. Additionally, the
value of NDCG ranges between [0, 1], and a higher NDCGN indicates a better
LTR model. In our experiments, we consider the NDCG of the top 5 and 10
results (i.e., NDCG5 and NDCG10) for research and business purposes.

Interleaving [9] is a widely used metric for evaluating the performance of an
industrial search engine. In interleaved comparison, two results generated from
different systems are delivered to users whose click-through actions would be
attributed to the system that delivers the corresponding results.

Good vs. Same vs. Bad (GSB) [41] is an online pairwise metric evaluated by
professional annotators. In manual comparison, two results produced by the new
system and the legacy system are provided to human experts that are required
to judge which result is better.

Loss Functions and Competitor Systems. To evaluate the effectiveness of
our proposed model comprehensively, we adopt different state-of-the-art rank-
ing loss functions as follows: Root Mean Square Error (RMSE) is a widely
used pointwise loss. RankNet [6] and LambdaRank [5] are two popular pair-
wise losses for neural LTR tasks both in research and industry. More particular,
LambdaRank multiplies actual gradients with the change in NDCG by swapping
the rank positions of the two candidates. ListNet [7] and ListMLE [36] are two
listwise losses, which calculate the probability of the ideal permutation based on
the ground truth. ApproxNDCG [27] and NeuralNDCG [25] are two listwise
loss functions that directly optimize the metric.

For offline experiments, we compare LtrGCN with the state-of-the-art rank-
ing models to conduct comprehensive comparisons as follows: MLP is a com-
monly used ranking model. Context-Aware Ranker (CAR) [24] is a Trans-
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Table 1. Performance on MSLR-Web30k under various ratios of labeled data.

Methods 5% 10% 15% 20%
NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10

RMSE 35.26 38.02 39.12 41.95 43.31 45.65 46.04 48.86
RankNet 34.51 37.43 38.52 41.32 42.54 45.08 45.32 47.89
LambdaRank 35.84 38.50 39.65 42.47 43.69 46.23 46.57 49.56
ListNet 34.90 37.94 38.71 41.76 42.85 45.40 45.63 48.42
ListMLE 33.85 36.95 37.90 40.84 41.88 44.43 44.72 47.26
ApproxNDCG 34.29 37.20 38.32 41.01 42.37 44.70 45.26 47.50
NeuralNDCG 35.36 38.26 39.50 42.10 43.60 45.97 46.39 49.20
CARRMSE 35.89 38.82 40.24 43.02 44.16 46.51 46.96 49.78
CARRankNet 36.04 38.94 40.46 43.27 44.32 46.62 47.03 49.84
CARLambdaRank 35.83 38.79 40.05 42.84 44.03 46.39 46.83 49.62
CARListNet 35.52 38.54 39.80 42.60 43.84 46.19 46.59 49.38
CARListMLE 36.17 39.03 40.61 43.45 44.45 46.81 47.12 49.90
CARApproxNDCG 35.48 38.47 39.68 42.48 43.72 46.04 46.45 49.26
CARNeuralNDCG 35.66 38.64 39.87 42.70 43.90 46.25 46.72 49.53
XGBoost 33.63 36.94 37.68 40.81 41.67 44.46 44.53 47.28
LightGBM 35.14 38.12 39.63 42.32 43.38 45.98 46.05 49.39
+RMSE 35.62 38.64 39.49 42.29 43.64 46.05 46.42 49.21
+RankNet 35.64 38.67 39.22 42.48 43.98 46.48 46.73 49.24
+LambdaRank 35.96 38.72 40.24 42.75 44.01 46.62 46.95 49.92
+ListNet 36.13 38.87 40.47 43.03 44.26 46.73 47.02 50.14
+ListMLE 36.05 38.91 40.35 42.86 44.15 46.58 46.71 50.03
+ApproxNDCG 36.33 39.08 40.94 43.36 44.60 47.01 47.28 50.43
+NeuralNDCG 36.52 39.07 41.16 43.62 44.72 47.35 47.49 50.76

former [31]-based ranking model. XGBoost [8] and LightGBM [17] are two
tree-based ranking models with pairwise and listwise loss, respectively.

Considering the high expense of deploying ranking models and the prior expe-
rience, we only compare our proposed model with the aforementioned models
without including more previous ranking models [2,3,16]. For online experi-
ments, we only report the improvement between LtrGCN and the legacy sys-
tem .

4.2 Offline Experimental Results

Comparative Results. Tables 1 and 2 illustrate offline experimental results of
LtrGCN compared with baselines on MSLR-Web30K and Collected Dataset on
NDCG5 and NDCG10. We use the name of each loss to present MLP with the loss
and “+” to represent “LtrGCN+”. Intuitively, we could observe that LtrGCN
outperforms all baselines on two datasets. Specifically, LtrGCN+ApproxNDCG
obtains the best performance on NDCG10 with 5% labeled data on MSLR-
Web30K, which gains 1.88% improvements compared with the base model with
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Table 2. Performance on Collected Dataset under various ratios of labeled data.

Methods 5% 10% 15% 20%
NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10 NDCG5 NDCG10

RMSE 50.12 53.42 54.45 57.86 57.62 61.34 59.64 64.76
RankNet 49.76 53.07 54.08 57.37 57.41 60.92 59.38 64.25
LambdaRank 51.19 54.24 55.38 58.62 58.38 62.05 61.30 65.28
ListNet 50.48 53.61 54.91 58.04 58.05 61.41 59.92 64.82
ListMLE 49.24 52.46 53.42 56.70 56.61 60.25 58.67 63.68
ApproxNDCG 49.50 52.75 53.73 57.02 57.08 60.61 59.05 64.01
NeuralNDCG 51.05 53.89 55.19 58.31 58.24 61.82 61.21 64.97
CARRMSE 51.24 53.71 55.42 58.78 58.16 62.08 61.43 65.42
CARRankNet 51.36 53.82 55.49 58.81 58.33 62.15 61.49 65.58
CARLambdaRank 51.60 54.08 55.76 59.13 58.73 62.19 61.62 65.89
CARListNet 51.68 54.14 55.85 59.24 58.84 62.27 61.75 65.92
CARListMLE 51.47 53.96 55.52 58.90 58.50 62.12 61.56 65.70
CARApproxNDCG 51.72 54.17 55.93 59.32 59.02 62.32 61.91 66.08
CARNeuralNDCG 51.98 54.38 56.02 59.43 59.17 62.39 62.04 66.12
XGBoost 50.70 53.19 54.91 58.36 58.16 61.75 61.43 64.75
LightGBM 51.53 53.94 55.74 59.05 58.87 62.28 62.15 65.98
+RMSE 50.68 53.86 54.66 58.35 57.94 61.65 60.13 65.10
+RankNet 50.83 53.92 54.92 58.42 58.23 61.69 60.56 65.19
+LambdaRank 51.34 54.47 55.82 59.06 58.87 62.27 61.62 65.61
+ListNet 51.62 54.60 55.95 59.23 59.06 62.36 61.87 65.88
+ListMLE 51.32 54.23 55.70 59.04 58.62 61.82 61.50 65.43
+ApproxNDCG 52.05 54.57 56.17 59.60 59.39 62.42 62.23 66.17
+NeuralNDCG 52.16 54.79 56.36 59.78 59.62 62.53 62.64 66.29

ApproxNDCG. LtrGCN with NeuralNDCG achieves the best performance on
MSLR-Web30K with the other settings. Moreover, LtrGCN with NeuralNDCG
obtains the best performance against all competitors. Specifically, LtrGCN+
NeuralNDCG achieves the improvement with 1.11%, 1.17%, 1.38% and 1.43%
that MLP with NeuralNDCG on NDCG5 on Collected Dataset. The performance
of our model improves consistently with the label ratio increasing. We also com-
pared LtrGCN with LightGCN [12], which cannot be trained at all with “Out
of Memory” flagged, due to the sparsity issue.

Ablation Studies. In this study, we conduct a series of ablation studies
to investigate the effectiveness of the three steps of LtrGCN. Specifically,
LtrGCN w/o Q-subgraph Generation via Self-tuned Labeling (QGSL) is the
model that replaces QGSL with a pointwise-based self-trained LightGBM to
pseudo data. As for LtrGCN w/o W-subgraph Generation via Self-tuned Label-
ing, it fails to train the model due to the sparsity issue. LtrGCN w/o GCN-based
LTR with Q-subgraphs and W-subgraphs (GLQW ) is the proposed model that
directly utilizes the MLP-based LTR model on the combined data. LtrGCN
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Table 3. Ablation studies of LtrGCN+NeuralNDCG on NDCG5 under various ratios
of labeled data on two datasets.

Methods MSLR-Web30K Collected Dataset
5% 10% 15% 20% 5% 10% 15% 20%

+NeuralNDCG 36.52 41.16 44.72 47.49 52.16 56.36 59.62 62.64
+NeuralNDCG w/o QGSL 35.71 40.34 43.87 46.65 51.29 55.48 59.12 61.78
+NeuralNDCG w/o GLQW 35.48 40.19 43.70 46.54 51.50 55.65 59.35 61.91
+NeuralNDCG w/o MLM 35.92 40.43 44.12 46.90 51.47 55.74 59.48 62.12

Table 4. Ablation studies of LtrGCN+ApproxNDCG on NDCG10 under various
ratios of labeled data on two datasets.

Methods MSLR-Web30K Collected Dataset
5% 10% 15% 20% 5% 10% 15% 20%

+ApproxNDCG 39.08 43.36 47.01 50.43 54.57 59.60 62.42 66.17
+ApproxNDCG w/o QGSL 37.84 42.15 45.76 49.24 53.21 58.23 61.01 64.74
+ApproxNDCG w/o GLQW 38.12 42.40 46.15 49.36 53.39 58.57 61.28 65.62
+ApproxNDCG w/o MLM 38.05 42.37 45.98 49.39 53.40 57.92 61.17 64.93

w/o MLP-based LTR Model (MLM ) is the proposed model that utilizes an MLP
model with two layers following GLQW.

As shown in Tables 3 and 4, we sample the ablation study results of LtrGCN
with NeuralNDCG on NDCG5 and LtrGCN with ApproxNDCG on NDCG10

under four ratios of labeled data. Intuitively, we could observe that the three
steps contribute to positive improvements for LtrGCN under all settings.
Specifically, GLQW gains the improvement with 1.04%, 0.97%, 1.02% and 0.95%
on NDCG5 for LtrGCN+NeuralNDCG on MSLR-Web30K. Similarly, QGSL
improves the performance of LtrGCN with ApproxNDCG on NDCG10 with
1.36%, 1.37%, 1.41% and 1.43% on Collected Dataset. All results of ablation
studies demonstrate the effectiveness of the three steps for LtrGCN.

4.3 Online Experimental Results

Interleaving and Manual Evaluation. Table 5 illustrates performance
improvements on ΔAB and ΔGSB. We first find that LtrGCN trained under
20% labeled data achieves substantial improvements for the online system on two
metrics, which demonstrates the practicability and effectiveness of our proposed
model. Specifically, the proposed model achieves the most significant improve-
ment with 0.26% and 3.00% on ΔAB and ΔGSB for random queries, respectively.
Also, we observe that the proposed model outperforms the legacy system for long-
tail queries whose search frequencies are lower than 10 per week. Particularly,
the largest advantages of ΔAB and ΔGSB are 0.41% and 6.50%.
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Table 5. Performance improvements of online evaluation.

Model ΔAB ΔGSB

Random Long-Tail Random Long-Tail

The Legacy System – – – –
LtrGCN+ApproxNDCG 0.14% 0.35% 2.50% 5.00%
LtrGCN+NeuralNDCG 0.26% 0.41% 3.00% 6.50%

Fig. 4. Online comparative performance (ΔNCDG5) of LtrGCN for 7 days (t-test
with p < 0.05 over the baseline).

Online A/B Test. To further verify the effectiveness of LtrGCN, we conduct
a series of online A/B test with real-world web traffic and compare it with the
legacy system at a large-scale search engine. According to offline experimental
results, we deploy the trained LtrGCN under four ratios of labeled data with
5% real-world web traffic, which contains millions of queries per day. The online
A/B tests last for 7 days. Due to the page limit, we only report the performance
of trained models under 15% and 20% labeled data. Figure 4 illustrates the com-
parison of LtrGCN with the legacy system on ΔNCDG5. LtrGCN could boost
the performance compared with the online legacy system all day, which demon-
strates that LtrGCN is practical for improving the performance of the large-
scale search engine. Moreover, we could observe that the trained LtrGCN with
NeuralNDCG under 15% and 20% labeled data achieves the most significant
improvement with 0.64% and 0.60%. The improvement reveals the effectiveness
of LtrGCN. Eventually, it could be observed that LtrGCN performs stably
on all days. Online performance is consistent with offline experiment results.

5 Related Work

Learning-to-rank (LTR) techniques generally pertain to machine learning meth-
ods that are utilized to solve ranking problems, which are crucial in various
applications, such as search engine and recommendation system. Based on the
loss function, LTR models could be divided into three types: pointwise [20],
pairwise [5,16] and listwise [7,25,27,36]. The pointwise loss formulates the LTR
problem into a regression task. The pairwise loss converts two documents into a
document pair to treat LTR tasks as binary classification problems. The listwise
loss treats the whole document list as a sample and directly optimizes the evalu-
ation metrics [28], such as NDCG [15]. Recently, deep models have been widely
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employed in LTR tasks, achieved by minimizing various ranking loss functions
in an end-to-end manner [4,22,32,39]. However, deep techniques have led to the
study of learning to rank using implicit user feedback, but biases cause unsat-
isfied performance, so unbiased learning to rank has been proposed to mitigate
these biases [30,34,38]. In this work, we focus on solving practical LTR problems
in the industrial scenario.

In recent years, the modeling graph structure is highlighted by the devel-
oped Graph Convolutional Networks (GCN). Existing GCN methods could be
categorized into two families [35,40]: spectral GCN and spatial GCN. Spectral
GCN leverages graph spectral representations to define graph convolutions, such
as SGCN [33], JK-Net [37] and MixHop [1]. Spatial GCN models suggest mini-
batch graph training on spatially connected neighbours [42]. Many works have
studied the problem of node representation and re-defined graph convolution in
the spatial domain, such as GraphSage [11] and ASGCN [13]. It is important to
note that several recent attempts offer comprehensive insights on GNNs [19,21].
Moreover, some outstanding works pay more attention to avoiding the unneces-
sary complexity of GCN, such as SGCN [33] and LightGCN [12]. In this work,
we leverage a GCN-based encoder to learn the representations of query-webpage
pairs for the downstream LTR task.

6 Conclusion

In this work, we design, implement and deploy a GCN-based LTR model
LtrGCN at a large-scale industrial search engine to address the problem of
extreme sparsity of links in query-webpage bipartite graphs and imbalance
between queries and webpages for web-scale search. Specifically, LtrGCN uti-
lizes two advanced sampling strategies to generate the Q-subgraphs and W-
subgraphs from all query-webpage pairs in the first two steps. Then, LtrGCN
leverages GCNs to extract feature vectors from Q-subgraphs and W-subgraphs
for LTR as the representation of the query-webpage pair or ranking score pre-
diction. The feature extraction and ranking scores prediction are optimized in
an end-to-end manner, so as to enable discriminative feature extraction while
preserving structural information in the bipartite graph. To demonstrate the
effectiveness of LtrGCN, we conduct extensive offline and online experiments
compared with a large number of baseline methods. Offline experiment results
show that LtrGCN could achieve significant performance compared with other
competitors. Furthermore, LtrGCN significantly boosts the online ranking per-
formance at the industrial search engine, which is consistent with offline results.
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Abstract. Counterfactual reasoning has recently achieved impressive
performance in the explainability of recommendation. However, existing
counterfactual explainable methods ignore the realism of explanations
and consider only the sparsity and proximity of explanations. Moreover,
the huge counterfactuals space causes a time-consuming search process.
In this study, we propose Prototype-Guided Counterfactual Explanations
(PGCE), a novel counterfactual explainable recommendation framework
to overcome the above issues. At its core, PGCE leverages a variational
auto-encoder generative model to constrain the modification of features
to generate counterfactual instances that are consistent with the distribu-
tion of real data. Meanwhile, we constructed a contrastive prototype for
each user in a low-dimensional latent space, which can guide the search
direction towards the optimal candidate instance space, thus, speed up
the search process. For evaluation, we compared our method with several
state-of-the-art model-intrinsic methods on three real-world datasets, in
addition to the latest counterfactual reasoning-based method. Extensive
experiments show that our model is not only able to efficiently gener-
ate realistic counterfactual explanations but also achieve state-of-the-art
performance on other popular explainability evaluation metrics.

Keywords: Recommender systems · Explainable recommendation ·
Counterfactual explanation

1 Introduction

Due to the explosive growth of information, recommender systems have been
playing an increasingly significant role in many online services, such as search
engines (Yahoo, Bing, etc.), e-commerce (Amazon, JD, etc.), and social networks
(Twitter, Facebook, etc.). It is fairly well-accepted that high-quality explanations
for the recommended content can help improve the performance of recommen-
dations, while being actionable toward improving the underlying models [33].
Explainable recommendation attempts to develop models that generate not only
high-quality recommendations but also intuitive explanations [31].

Existing methods for explainable recommendation can be divided into two
categories, model-intrinsic and model-agnostic [16]. The model-intrinsic methods
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. De Francisci Morales et al. (Eds.): ECML PKDD 2023, LNAI 14174, pp. 652–668, 2023.
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Fig. 1. Toy examples of counterfactual explanations based on unrealistic counterfactual
instance (above) and realistic counterfactual instance (below), respectively.

develop interpretable models, whose decision mechanism is transparent [34]. The
model-agnostic methods consider the underlying recommendation model as a
black-box and provide explanations after the recommendation decision has been
made. Despite effectiveness to some extent, existing methods are still limited
because the explanation is built with correlation, and correlation does not imply
causation [25]. Moreover, extracting correlations from the observed data without
the support of causal inference may lead to the wrong explanations [8].

Recently, some studies have considered the explainable recommendations
based on counterfactual reasoning from the causal perspective. A counterfactual
explanation is a necessary perturbation in input features that cause the recom-
mended items to be removed from the recommendation list. Existing methods
mainly take into account sparsity and proximity. Sparsity requires that the per-
turbation involves as few features as possible, and proximity requires that the
counterfactual instances formed after the perturbation are as relevant as pos-
sible to the user’s interest. However, these methods cannot effectively address
the following two challenges: (i) Perturbing each input feature independently
without considering the data-generating process can sometimes lead to infea-
sible counterfactual instances. We use a toy example in Fig. 1 for illustration.
A recommendation system recommends a factual phone instance vog to user u.
To explain this recommendation, the counterfactual explanation model perturbs
the original instance vog to generate a counterfactual instance vcf that will not
be recommended to user u anymore. However, a counterfactual instance v1

cf

generated by perturbing only the price-performance feature (i.e., the Price) is
not consistent with the real situation. In fact, features that are strongly corre-
lated with the Price should be changed at the same time, such as the Battery
or the Screen. Consequently, the distribution difference between the unrealistic
counterfactual data and the factual data leads to a counterfactual explanation
E1 that is equally unrealistic. On the contrary, a counterfactual instance v2

cf

that fits the real data distribution implies that its corresponding counterfactual
explanation E2 is realistic and therefore more understandable and persuasive to
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the user u. (ii) The perturbation space for generating counterfactual instances
is exponentially large with respect to the number of input features, which can
lead to time-consuming searches for counterfactual explanations.

Considering the above challenges in the explainable recommendation and
inspired by the wide success of leveraging causal inference, in this study, we pro-
posed a novel framework that takes advantage of the variational auto-encoder
(VAE) for explainable recommendation, namely the Prototypes-Guided Counter-
factual Explanations (PGCE). PGCE incorporates a VAE in the counterfactual
instance generation process, which constrains the perturbations of instance fea-
tures to ensure realism. Meanwhile, we construct a contrastive prototype for each
user, defined in the latent space of the VAE, to explicitly guide the perturbation
quickly toward an optimal candidate instance space and avoid the senseless per-
turbations. Through our formulated counterfactual learning framework, PGCE
aims to extract realistic explanations for the recommendation faster to ensure it
can be used in real-life settings.

The key contributions of this study are summarized as follows:

– We proposed the counterfactual explanation model PGCE within the con-
straints of the variational autoencoder, which is able to generate counterfac-
tual instances that are closer to the real data distribution enabling us obtain
realistic explanations.

– To the best of our knowledge, this is the first work leveraging contrastive
prototypes for explainable recommendation, which can explicitly guide the
search direction to make PGCE capable of searching the optimal candidate
counterfactual instance space efficiently.

– Based on three real-world datasets, we have conducted extensive experiments
to evaluate our model’s effectiveness. The results reveal that PGCE can sig-
nificantly advance state-of-the-art.

2 Related Work

2.1 Explainable Recommendation

Research on explainable recommendations can be divided into two categories:
model-intrinsic and model-agnostic. As for model-intrinsic approaches, various
types of explainable recommendation models have been proposed, ranging from
traditional recommenders, such as collaborative filtering [11,23], factorization
models [3,28,34]; up to modern recommenders, such as deep learning models
[5,7,14], knowledge graph models [18,36]. However, these methods require mix-
ing recommendation mechanisms with specific interpretable components, lim-
iting their application to specific recommendation models. The model-agnostic
approaches can provide explanations after the recommendation decision is made,
thus, can be flexibly applied in different recommendation models. Examples
include [24] that proposed an explainable tree-based model for the ranking list,
[22] that proposed a sparse linear model to approximate a complex model around
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a sample and thus explain which feature of the sample contributed to its rec-
ommendation, and [6] that employed influence functions to measure the effect
of training points on the predictions of black-box models and provided intuitive
neighbor-style explanation based on the most influential training data. However,
these existing methods are built with correlation, which may not reflect the true
causes of interaction. In this study, we consider explainable recommendations
from the causal perspective by using counterfactual reasoning.

2.2 Counterfactual Explanations

Counterfactual reasoning naturally can be applied to explainable AI research,
such as natural language processing [2,30,32] and computer vision [1,10,27].
In the recommender systems domain, there are some study that aim to pro-
vide counterfactual explanations for recommendations. Ghazimatin et al. [9]
proposed PRINCE, which uses a polynomial-time optimal algorithm for find-
ing the minimal set of a user’s actions from an exponential search space, based
on random walks over heterogeneous information graph. Inspired by [9], Tran
et al. [26] proposed ACCENT, which extends the influence function [6] to gen-
erate counterfactual explanations for neural recommenders. Considering that
finding concise counterfactual explanations is a hard search problem, Kaffes et
al. [12] used normalized length and the importance of a candidate to guide the
search of counterfactual explanations. Zhong et al. [37] proposed a counterfactual
explanation method enhanced by SHAP [17] for generating easily understand-
able explanations. Xu et al. [31] extracted counterfactual explanations through
a perturbation model and a causal rule mining model. While these works men-
tioned above generate counterfactual explanations based on user information,
Tan et al. [25] proposed CountER, which aims to find an counterfactual item
with minimal distance to the original item to reverse the recommendation result
for generating counterfactual explanations based on item aspects. Wang et al.
[29] proposed CERec, a reinforcement learning-based counterfactual explainable
recommendation framework over a collaborative knowledge graph to generate
counterfactual explanations on the item side. Counterfactual explanation models
are independent of recommendation models, therefore they are model-agnostic.

Our proposed model differs from the above mentioned study on two key
points: 1) These previous studies search for counterfactual explanations simply
considering sparsity and proximity, while we take into account the realism of the
explanation. 2) Previous studies performed heuristic search on the user side by
measuring the quality of candidate counterfactuals, while we explicitly guide the
counterfactual search direction on the item side by using contrastive prototypes.

3 Proposed Model

3.1 Preliminary

In this study, we denoted a user set with m users as U = {u1, u2, . . . , um} and an
item set with n items as V = {v1, v2, . . . , vn}. Each user u is associated with a
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list of recommendations, and we take the top-k recommended items denoted as
R(u, k). We say v ∈ R(u, k) if item v belongs to the top-k items recommended
to user u. Compared with using the isolated features from either the user or the
item, the textual review features are a better source of explanation because it
is the explicit interaction between the user and the item that can help to build
more informative explanations [38]. Following the same method as in [25,34],
we extract (Feature, Opinion, Sentiment) triplets from the textual reviews by
the sentiment analysis toolkit1 built in [35]. For example, in the Electronics
domain, the extracted features would include screen, battery, price, etc. We
further denoted a r-dimensional feature space as F = {f1, f2, . . . , fr} ⊆ R

r.
Then, we construct the user-feature attention matrix X ∈ R

m×r and the
item-feature quality matrix Y ∈ R

n×r. Each element Xi,k ∈ X measures to
what extent a user cares about the product feature, and each element Yj,k ∈ Y
measures the quality of an item for the corresponding product feature. More
specifically, suppose ti,k is the frequency that user ui mentioned feature fk, tj,k
is the frequency that item vj is mentioned on feature fk, and sj,k is the average
of the sentiment of feature fk in those tj,k mentions. We defined X and Y as:

Xi,k =

{
0, if user ui did not mention feature fk

1 + (N − 1)
(

2
1+exp (−ti,k)

− 1
)

, else

Yj,k =
{

0, if item vj is not reviewed on feature fk

1 + N−1
1+exp (−tj,k·sj,k)

, else

(1)

where the choice of N is 5 in many real-world five stars based reviewing systems.
The elements in the matrices X and Y are rescaled into the range of [1, N ] by
reformulating the sigmoid function.

3.2 Counterfactual Explanation

This subsection shows the proposed model, with its architecture of as illustrated
in Fig. 2. For a given black-box recommendation model F , if an item v is among
the top-k items recommended to user u, i.e., v ∈ R(u, k), then we look for a
counterfactual instance Ycf = Yog + Δ, where Yog ∈ Y is the item v’s origi-
nal quality vector and Δ = {δ0, δ1, . . . , δr} ∈ F is the perturbation vector for
Yog, such that if item v’s quality vector change to Ycf from Yog, then it will
be removed from the top-k list, i.e., v /∈ R(u, k). Intuitively, a counterfactual
instance Ycf should be closed to the original instance Yog but not belong to the
top-k list, which implies optimizing the following objective function:

minimize
Δ

Lpred(Ycf ) + Ldist(Ycf ) (2)

where Lpred(Ycf ) encourages the counterfactual instance Ycf to be removed from
the top-k list while ensuring the proximity of Ycf . We define it as a hinge loss:

Lpred(Ycf ) = η · max(0, F (Ycf ,u) − F (Yk+1,u) + α) (3)

1 https://github.com/evison/Sentires/.

https://github.com/evison/Sentires/
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Fig. 2. The overall architecture of our proposed model. In the figure, (f1
u, f2

u, . . . , fr
u)

and (f1
v , f2

v , . . . , fr
v ) are the feature attention vector of the user who requires an expla-

nation and the feature quality vector of the item to be explained, respectively, while
(δ1, δ2, . . . , δr) is the counterfactual explanation the model is searching for.

where F (Ycf ,u) is the ranking score of Ycf to user u, F (Yk+1,u) is the ranking
score of the k+1’s item in user u’s original recommendation list, and α ≥ 0
controls the required margin on the ranking score to flip a recommendation. In
this way, item v will be removed from the top-k list when Ycf ranked lower than
Yk+1. The other term Ldist(Ycf ) encourages minimizing the distance between
Ycf and Yog to generate sparse counterfactual instance, which takes a weighted
sum of the two factors:

Ldist(Ycf ) = β · ‖Ycf − Yog‖1 + ‖Ycf − Yog‖22
= β · ‖Δ‖1 + ‖Δ‖22

(4)

where L1-norm ‖Δ‖1 is used to constrain the number of features involved in
the perturbation vector Δ due to L0-norm ‖Δ‖0 being nonconvex and L2-norm
‖Δ‖22 to constrain the perturbation magnitude of the vector Δ on the features.

While the objective function (2) can generate counterfactual instances, Ycf

does not necessarily respect the real data distribution resulting in counterfactual
instances out of the distribution. Item features do not exist in a vacuum. They
come from a data-generating process that constrains their modification [19].
In this case, we can consider a VAE trained on dataset D = {Yj}m

j=1, where
Yj ∈ F is item-feature quality vector. More specifically, the VAE is composed of
an encoder (μ, σ) = ENC(Y) and a decoder Ỹ = DEC(z). The ENC(·) projects
an item-feature quality vector Y ∈ R

r onto a d-dimensional latent space R
d, and

extracts the variational information for the vector, i.e., mean and variance of the
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latent variables under independent Gaussian distribution. Then, given a latent
variable z ∈ R

d sampled from the Gaussian distribution, the DEC(·) tries to
reconstruct the input vector Y and Ỹ ∈ R

r is generated. We follow the standard
training regime to train the VAE by maximizing the variational lower bound of
the data likelihood [13] so that the VAE can accurately generate reconstructed
data close to the original data distribution.

After pre-training, the counterfactual instance Ycf is fed into the encoder
part ENC(·) of VAE, and the decoder part DEC(·) outputs the reconstructed
instance Ỹcf . We define a reconstruction loss term Lrec to impose a penalty on
the counterfactual instance that would be far from real data distribution due to
perturbing each feature independently, which equals the distance between Ycf

and its reconstruction Ỹcf :

Lrec(Ycf ) = λ · ‖Ycf − Ỹcf‖22 (5)

where Ỹcf = DEC(ENC(Ycf )). The reconstruction error between Ycf and Ỹcf

represents how successful the instance Ycf is reconstructed and how similar it
is to the training data D. Therefore, Lrec is to have the counterfactual instance
Ycf conform to the training data distribution.

The vast counterfactual space lead to a time-consuming search process. For-
tunately, the decision boundary of the recommendation model F can be a way of
partitioning the instance space (containing factual and counterfactual instances).
According to the definition of counterfactual explanation, suitable counterfac-
tual instances should be closer to the decision boundary. Since user u are almost
uninterested in instances far away from the decision boundary, the counterfac-
tual explanations generated from these instances will not be persuasive, whereas
instances close to the decision boundary but not in fact recommended imply
the critical reason why the original item Yog was recommended. Therefore, we
consider using the semantic information of factual instances close to the decision
boundary to guide the search direction for counterfactual instances.

Specifically, since measuring the distance between instances in a low dimen-
sional latent space can better capture the instance semantics [15], we defined
a contrastive prototype for user u based on the d-dimensional latent space R

d,
which equals to the mean encoding of the L items that are nearest to the top-k
recommendation list R(u, k) but not recommended:

Proto :=
1
L

k+L∑
l=k+1

ENC(Yl) (6)

where L is a hyperparameter that represents the number of items used to com-
pute the prototype. In the top-k recommendation scenario, L equals to the num-
ber of recommended items k, avoiding the bias introduced by other items that
are not of interest to the user, and Yl ∈ Y is the l-th item quality vector in
the original list of recommendations. If we consider that these L encoded items
ENC(Yl) (l = k + 1, . . . , k + L) define a cluster of the most desirable but not
yet recommended items, then Proto ∈ R

d is the center of the cluster, which
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represents the optimal candidate counterfactual instance space. Intuitively, it
should be given priority when generating counterfactual instances for Yog. Now,
the prototype loss Lproto can be defined as:

Lproto(Ycf ) = γ · ‖ENC(Ycf ) − Proto‖22 (7)

where ENC(Ycf ) ∈ R
d is the encoding of the counterfactual instance Ycf . As

a result, Lproto explicitly guides the search toward the optimal candidate coun-
terfactual instance space around Proto and avoids the senseless perturbations,
speeding up the counterfactual search process.

To summarize, a counterfactual instance Ŷcf = Yog+Δ̂ is found by optimizing
the following objective function:

Δ̂ ← minimize
Δ

Lpred(Ycf ) + β · ‖Δ‖1 + ‖Δ‖22 + Lrec(Ycf ) + Lproto(Ycf ) (8)

where the hyper-parameters (η, α, β, λ, γ) are the weights of the loss terms.

4 Experiments

4.1 Experimental Setup

Recommendation Model. The experiments aim to validate the effectiveness
of the model-agnostic counterfactual explanation model PGCE, so we choose a
simple deep neural network to implement the black-box recommendation model.
The recommendation model consists of a fusion layer and three fully connected
layers with {512, 256, 1} neurons respectively, which connect the user and item
feature vectors as input and finally output the ranking score of the item. We
take the last five interactions from each user to construct the testing set, and
use all previous interactions from each user as the training set.

Variational Autoencoder Model. The VAE model consists of an encoder and
a decoder, which are both deep neural networks with three fully connected layers
containing {1024, 1024, latent size} and {1024, 1024, original size} neurons,
respectively, and the original item feature as the input to the encoder while
the decoder outputs the reconstructed item feature. The original size and latent
size are the dimensions of the item feature in the real space and the latent
space, respectively. We optimize the model using the Adam optimizer with a
learning rate of 0.001. We freeze the parameters of the trained VAE model and
the recommendation model to recommend items and generate explanations.

Datasets. We choose the real-world review dataset in the Amazon2 e-commerce
system, which helps to better construct the feature quality data for items. The
Amazon dataset [20] contains 29 category product sub-datasets, and we adopt

2 https://nijianmo.github.io/amazon/.

https://nijianmo.github.io/amazon/
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Table 1. Summary of the datasets. Density is computed by #Reviews/(Users·Items).

Dataset #Users #Items #Reviews #Features Density

CDs and Vinyl 8,119 52,193 245,391 230 0.058%

Electronic 2,832 19,816 53,295 105 0.095%

Cell Phones 251 1,918 4,454 88 0.835%

three datasets of different scales, CDs and Vinyl, Electronic and Cell Phones,
to evaluate the proposed model. We remove all users with less than ten reviews
so that the profiles are big and balanced enough for learning discriminative user
models. A brief summary of the datasets is shown in Table 1.

Baselines. Since our model aims to solve the issue of nonrealism of counterfac-
tual explanations, it is generating multi-feature explanations at the item side.
Therefore, we compare PGCE against four feature-based baselines.

– EFM [34] extracts explicit item features from user reviews, and then aligns
the latent factors of matrix factorization with the item features to provide
explainable recommendations.

– MTER [28] integrates two companion learning tasks user preference model-
ing for recommendation and opinionated content modeling for explanation.
However, this model is not suitable for model-oriented evaluation since the
user prediction scores are not directly predicted based on item features.

– A2CF [4] leverages a residual feed-forward neural network to model the user-
item preferences and item-item relationships, and then generates explainable
recommendations by analyzing the features users currently care about.

– CountER [25] is a state-of-the-art model with insights into counterfactual
reasoning, which formulates a joint optimization problem to generate feature-
based counterfactual explanations on the item side for recommendations.

Initialization. We generated explanations for the top-5 recommendation list of
each user. The prototype is calculated for each user based on the L items behind
the top-k list, and we set L equal to 5. The L1-norm ‖Δ‖1 and L2-norm ‖Δ‖22
are of the same scale, thus, we set β to 1. We set the hyper-parameters α to
0.2 following the suggestions in [25]. Since our model additionally incorporates
constraint terms, we set θ to 400 in order to keep the relative weight of Lpred

terms to generate explanations for more items. The Lrec work on the whole
feature space while Lproto operates on the dimensionality-reduced latent space,
therefore, we set the hyper-parameters λ and γ to 1 and 10, respectively.

Evaluation Metrics. We adopted the following metrics for evaluation.

– User & Model-oriented Evaluation. A user’s true review of an item can
serve as the ground-truth reason why the user purchased the item [33]. The
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Precision measures the percentage of features in generated explanation that
is really liked by the user, the Recall measures how many percentages of
features liked by the user are really included in the explanation, and the F1

score is the harmonic mean between the two. Additionally, the PN and PS
measure the necessity and sufficiency of an explanation, respectively, and FNS

score is the harmonic mean between the two. A detailed definition of all the
above metrics can be referred to [25].

– Fidelity. The fidelity [21] as a measure to evaluate model-agnostic explain-
able recommendation methods, which is defined as the percentage of explain-
able items in the recommended items:

Fidelity =
|explainable items ∩ recommended items|

|recommended items| (9)

– Realism. The realism implies that the perturbations applied to each feature
of the original instance should be well-balanced without causing the counter-
factual instance to be far away from the real data distribution:

Realism =
‖Δ‖22
‖Δ‖0

(10)

where the denominator ‖Δ‖0 is the number of the perturbed features, and
the numerator ‖Δ‖22 is the magnitude of that perturbation. A lower value
indicates that the counterfactual instance lies closer to the data manifold.

– Speed. The speed is measured by the mean time required until a satisfac-
tory counterfactual instance is found. It should be noted that since realism
and speed are defined for counterfactual perturbation, it is not applicable to
evaluate the model-intrinsic methods.

Personalized Explanation. In the generation of counterfactual explanations,
although the recommendation model can discriminate users’ preferences to pre-
dict their ratings of counterfactual instances, it does not explicitly consider users’
linguistic preferences to generate more personalized explanations. Specifically, we
define the linguistic mask Mu = {m1,m2, . . . ,mr} for the user u, where mi = 1
if element Xu,i �= 0 in the user-feature attention matrix X and mi = 0 other-
wise. Then, we apply the mask Mu on the perturbation vector Δ to generate
an explanation by choosing features only from the user u’s linguistic preference
space. It means that let the Δ in equation (8) be equal to Δ 	 Mu.

4.2 Experimental Results

Table 2 summarizes the results of the fidelity and realism evaluations of the
counterfactual explanation. To ensure a fair comparison, we compare the origi-
nal model and the masked version separately. First, we can see that our model
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achieves the same good fidelity as the baseline, which indicates that counter-
factual reasoning can generate explanations for the majority of recommended
items. Moreover, we can observe that with or without the mask, our model per-
forms better than the baseline in terms of realism on all datasets. In detail, our
model has an average improvement of 5.15% and 21.54% on the realism than
the baseline with and without the mask, respectively, which indicates that the
perturbation on item features by our model take into account the correlation
between features, rather than aimlessly perturbing each feature independently.
As a result, the counterfactual instances are closer to the real data distribution
and the counterfactual explanations have better performance on realism.

Table 2. Fidelity and Realism evaluation of the counterfactual explanations. The
fidelity numbers in the table are percentage numbers with ‘%’ omitted.

Model CDs and Vinyl Electronic Cell Phones

Fidelity Realism Fidelity Realism Fidelity Realism

With Mask CountER 93.80 1.21 81.80 1.78 85.20 1.87

PGCE 93.87 1.15 81.84 1.67 85.20 1.79

Without Mask CountER 94.20 0.95 98.00 0.93 99.92 1.10

PGCE 94.55 0.78 98.21 0.69 100 0.87

Then we report the speed evaluation of the counterfactual explanation in
Fig. 3. To fairly validate the role of the contrastive prototype in the counterfac-
tual search process, we remove the reconstruction loss term Lrec (denoted by
“PGCE-R”) and prototype loss term Lproto from PGCE (denoted by “PGCE-
P”), respectively. We can see that the PGCE-R and PGCE have better per-
formance than their baseline speed on all datasets. In detail, the PGCE-R has
average improvement of 7.87% and 12.93% than the countER with and without
the mask, respectively. Meanwhile, the PGCE has the average improvement of
6.40% and 9.30% than the PGCE-P with and without the mask, respectively.
This indicates that the contrastive prototype successfully guides the search direc-
tion toward the optimal counterfactuals space it represents and thus speeds up
the search process. Another interesting observation is that compared to base-
lines, our model achieves a greater performance improvement on realism and
speed when there is no mask. The reason is that the perturbed feature space is
limited when applying a linguistic mask to the perturbation vector Δ, indicating
that PGCE has more advantages when the counterfactual search space increases.

Finally, we reported the user-oriented and model-oriented evaluations of the
explanations generated by the PGCE and the baselines, with the experimental
results shown in Tables 3 and 4, respectively. For the user-oriented evaluation,
we can see that on all datasets, the explanation generated by the masked PGCE
model outperforms all baselines in terms of F1 scores and has a 5.02% average
improvement over the best performance of the baseline models. This indicates
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(a) (b)

(c) (d)

Fig. 3. Speed evaluation of the counterfactual explanation model. (a) and (b) show the
comparison between CountER and PGCE-R under with and without a mask, respec-
tively. (c) and (d) show the comparison between PGCE-P and PGCE under with and
without a mask, respectively.

the model PGCE that considering personalized linguistic preference from the
user’s perspective can generate more agreeable explanations. Additionally, we
note that compared to CountER, which also belongs to the counterfactual expla-
nation method, our model has a significant improvement on recall (on average
16.29% and 21.49% with and without the mask, respectively) while it is slightly
decreasing on precision (on average 0.85% and 2.04% with and without the mask,
respectively). The underlying reason is that the explanations generated by PGCE
contain more necessary item features to ensure realism. Therefore, more item
features that users like are included resulting in a significant improvement on
Recall, despite the slight sacrifice on Precision. Similarly, because the linguistic
mask constrains the selection of perturbed features, the masked PGCE model
suffers little on precision compared to its original version.

For the model-oriented evaluation, we can see that on all datasets, the expla-
nation generated by the PGCE outperforms all baselines in terms of PS, PN,
and FNS scores and has 7.05%, 2.49%, and 5.24% average improvement over
the best performance of the baselines, respectively, which indicates that the
PGCE model correctly explains the essential mechanism of the recommendation
model. Additionally, we observe that although the model-intrinsic explanation
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Table 3. User-oriented evaluation of the explanations. Pr and Re in the table represent
the evaluation metrics Precision and Recall, respectively. The marker (m) represents
the mask version of the model. The best result on each column is highlighted in bold.

Model CDs and Vinyl Electronic Cell Phones

Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%

Model-Intrisic Explanation EFM 17.39 32.94 20.50 19.80 56.56 27.48 12.53 30.48 17.81

MTER 14.41 39.28 19.74 10.54 27.24 13.42 12.50 25.00 16.67

A2CF 19.39 57.84 26.62 18.07 53.72 25.32 16.05 28.29 18.76

Counterfactual Explanation CountER 16.21 33.55 19.96 17.42 45.72 22.13 19.13 47.70 25.05

CountER(m) 20.95 68.98 30.00 25.68 45.78 29.73 21.72 42.82 26.97

PGCE 15.79 39.48 20.83 16.97 57.74 23.75 18.95 57.48 26.30

PGCE(m) 20.62 82.08 31.36 25.57 53.26 31.45 21.60 48.62 28.25

Table 4. Model-oriented evaluation of the explanations.

Model CDs and Vinyl Electronic Cell Phones

PN% PS% FNS% PN% PS% FNS% PN% PS% FNS%

Model-Intrisic Explanation EFM 47.65 87.35 61.66 29.65 84.67 43.92 52.66 87.98 65.88

A2CF 49.12 91.52 63.93 59.47 81.66 68.82 56.45 80.97 66.52

Counterfactual Explanation CountER 80.89 88.60 84.57 97.08 96.24 96.66 99.52 98.48 99.00

CountER(m) 72.47 67.72 70.01 77.96 89.26 83.23 86.62 91.78 89.13

PGCE 95.46 96.31 95.97 98.80 97.39 98.21 99.84 99.52 99.64

PGCE(m) 81.11 76.04 79.12 80.39 90.81 85.31 88.66 93.60 91.03

(a) (b)

Fig. 4. Ablation Studies on constraint terms Lrec and Lproto. (a) and (b) show the
Realism and Speed for the different variant models, respectively.

has decreased by 12.43% average on PS compared to the counterfactual expla-
nation, it still has an acceptable performance of 86.19% on average, which shows
that the model-intrinsic explanation is indeed highly correlated with the rec-
ommendation result. However, the model-intrinsic explanation has a dramatic
decrease of 104.24% average on PN, which indicates that it is not the necessary
factor for the recommendation model to make the decision, while the counter-
factual explanation generated from the causal perspective is capable of revealing
the true cause for recommending the original item.
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4.3 Ablation Study

In this section, we first discussed the influence of the two additional constraint
terms Lrec and Lproto on realism, with models without linguistic masks as an
example. Particularly, we used the variant models PGCE-R and PGCE-P to see
how their performance changes on realism. The results are shown in Fig. 4(a). We
made three observations: 1) PGCE-R has a slight average improvement of 3.71%
on realism, the reason being that Lproto can guide the perturbation toward the
nearest contrastive prototype. The contrastive prototype is defined as the mean
encoding in the latent space of several real items, which is, to some extent, consis-
tent with the real data distribution. 2) PGCE-P has a significant improvement
of 18.91% on realism because the Lrec is to have counterfactual instance Ycf

respect the real data distribution. 3) The combination of Lrec and Lproto makes
the PGCE model further improve by 21.54% on realism, which indicates that
our model combines the advantages of both PGCE-P and PGCE-R to achieve
the best experimental result on the three different datasets.

In addition, in order to conduct a horizontal comparison of speed on the
four models, we redefined the speed as the number of iterative updates required
until a satisfactory counterfactual instance is found. The results are shown in
Fig. 4(b). Similarly, we made three observations: 1) PGCE-R has a significant
improvement of 21.39% on speed owing to the fact that Lproto explicitly guides
the search direction toward the optimal counterfactual instance space. 2) PGCE-
P has an average improvement of 5.64% on speed, the reason may be that the
additional constraint term Lrec has filtered out-of-distribution counterfactual
instances. 3) PGCE shows an average improvement of 22.05% on speed over
the baseline, while the performance gain compared to PGCE-P is marginal.
This indicates that our model PGCE is able to find satisfactory counterfactual
explanations faster mainly owing to the role of the contrastive prototype.

5 Conclusions

In this study, we proposed PGCE, a novel counterfactual explainable recommen-
dation framework. Particularly, we used a generative model VAE that fits the
real data distribution to discover realistic counterfactual instances. In addition,
we constructed a contrastive prototype to speed up the search process in the
vast counterfactuals space. The experimental results show that PGCE is not
only able to efficiently generate realistic explanations, but also achieves state-of-
the-art performance on other popular explainability evaluation metrics.

Acknowledgements.. This work is supported by the Project of Construction and
Support for High-level Teaching Teams of Beijing Municipal Institutions.

Ethical Statement. Firstly, the experimental data were all obtained from the pub-

licly desensitised Amazon Review Data, and therefore did not involve the collection,

processing or inference of private personal information. Secondly, there is no potential

use of our research work for the police or the military. Thirdly, this paper does not



666 M. He et al.

contain any studies with animals performed by any of the authors. Finally, informed

consent was obtained from all individual participants included in the study. All proce-

dures performed in studies involving human participants were in accordance with the

ethical standards of the institutional and/or national research committee.

References

1. Akula, A.R., Wang, S., Zhu, S.C.: Cocox: generating conceptual and counterfac-
tual explanations via fault-lines. In: Proceedings of the 34rd AAAI Conference on
Artificial Intelligence, pp. 2594–2601 (2020)

2. Alvarez-Melis, D., Jaakkola, T.S.: A causal framework for explaining the predic-
tions of black-box sequence-to-sequence models. In: Conference on Empirical Meth-
ods in Natural Language Processing, pp. 412–421 (2017)

3. Chen, J., Zhuang, F., Hong, X., Ao, X., Xie, X., He, Q.: Attention-driven factor
model for explainable personalized recommendation. In Proceedings of the 41st
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 909–912 (2018)

4. Chen, T., Yin, H., Ye, G., Huang, Z., Wang, Y., Wang, M.: Try this instead: per-
sonalized and interpretable substitute recommendation. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 891–900 (2020)

5. Chen, X., et al.: Sequential recommendation with user memory networks. In: Pro-
ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, pp. 108–116 (2018)

6. Cheng, W., Shen, Y., Huang, L., Zhu, Y.: Incorporating interpretability into latent
factor models via fast influence analysis. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 885–893
(2019)

7. Costa, F.S.D., Ouyang, S., Dolog, P., Lawlor, A.: Automatic generation of natural
language explanations. In: Proceedings of the 23rd International Conference on
Intelligent User Interfaces Companion, pp. 1–2 (2018)

8. Gao, C., Zheng, Y., Wang, W., Feng, F., He, X., Li, Y.: Causal inference in rec-
ommender systems: a survey and future directions. arXiv abs/2208.12397 (2022)

9. Ghazimatin, A., Balalau, O., Roy, R.S., Weikum, G.: Prince: provider-side inter-
pretability with counterfactual explanations in recommender systems. In: Proceed-
ings of the 13th International Conference on Web Search and Data Mining, pp.
196–204 (2020)

10. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual
explanations. In: International Conference on Machine Learning, pp. 2376–2384
(2019)

11. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recom-
mendations. In: Proceedings of the 2000 ACM Conference on Computer Supported
Cooperative Work, pp. 241–250 (2000)

12. Kaffes, V., Sacharidis, D., Giannopoulos, G.: Model-agnostic counterfactual expla-
nations of recommendations. In: Proceedings of the 29th ACM Conference on User
Modeling, Adaptation and Personalization, pp. 280–285 (2021)

13. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

http://arxiv.org/abs/1312.6114


Prototype-Guided Counterfactual Explanations 667

14. Li, C., Quan, C., Peng, L., Qi, Y., Deng, Y., Wu, L.: A capsule network for recom-
mendation and explaining what you like and dislike. In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 275–284 (2019)

15. Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through
prototypes: a neural network that explains its predictions. In: Proceedings of the
32rd AAAI Conference on Artificial Intelligence, pp. 3530–3537 (2018)

16. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM, 36–43 (2018)
17. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.

In: Conference on Neural Information Processing Systems, pp. 4768–4777 (2017)
18. Ma, W., et al.: Jointly learning explainable rules for recommendation with knowl-

edge graph. In Proceedings of the 28th International Conference on World Wide
Web, pp. 1210–1221 (2019)

19. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

20. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In: Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing, pp. 188–197 (2019)

21. Peake, G., Wang, J.: Explanation mining: post hoc interpretability of latent factor
models for recommendation systems. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 2060–2069
(2018)

22. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

23. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: Proceedings of the 10th International Con-
ference on World Wide Web, pp. 285–295 (2001)

24. Singh, J., Anand, A.: Posthoc interpretability of learning to rank models using
secondary training data. arXiv abs/1806.11330 (2018)

25. Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., Zhang, Y.: Counterfactual explainable
recommendation. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management, pp. 1784–1793 (2021)

26. Tran, K.H., Ghazimatin, A., Saha Roy, R.: Counterfactual explanations for neural
recommenders. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1627–1631 (2021)

27. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by
prototypes. In: Machine Learning and Knowledge Discovery in Databases. Research
Track: European Conference, pp. 650–665 (2021)

28. Wang, N., Wang, H., Jia, Y., Yin, Y.: Explainable recommendation via multi-task
learning in opinionated text data. In: Proceedings of the 41st International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
165–174 (2018)

29. Wang, X., Li, Q., Yu, D., Xu, G.: Reinforced path reasoning for counterfactual
explainable recommendation. arXiv abs/2207.06674 (2022)

30. Wu, T., Ribeiro, M.T., Heer, J., Weld, D.S.: Polyjuice: generating counterfactu-
als for explaining, evaluating, and improving models. In: Annual Meeting of the
Association for Computational Linguistics, pp. 6707–6723 (2021)



668 M. He et al.

31. Xu, S., et al.: Learning causal explanations for recommendation. In: CEUR Work-
shop Proceedings (2021)

32. Yang, L., Kenny, E.M., Ng, T.L.J., Yang, Y., Smyth, B., Dong, R.: Generating
plausible counterfactual explanations for deep transformers in financial text classi-
fication. In: International Conference on Computational Linguistics, pp. 6150–6160
(2020)

33. Zhang, Y., Chen, X., et al.: Explainable recommendation: a survey and new per-
spectives. Found. Trends Inf. Retr. 14(1), 1–101 (2020)

34. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor mod-
els for explainable recommendation based on phrase-level sentiment analysis. In:
Proceedings of the 37th International ACM SIGIR conference on Research and
development in information retrieval, pp. 83–92 (2014)

35. Zhang, Y., Zhang, H., Zhang, M., Liu, Y., Ma, S.: Do users rate or review?: Boost
phrase-level sentiment labeling with review-level sentiment classification. In: Pro-
ceedings of the 37th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 1027–1030 (2014)

36. Zhang, Y., Xu, X., Zhou, H., Zhang, Y.: Distilling structured knowledge into
embeddings for explainable and accurate recommendation. In: Proceedings of the
13th International Conference on Web Search and Data Mining, pp. 735–743 (2020)

37. Zhong, J., Negre, E.: Shap-enhanced counterfactual explanations for recommen-
dations. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Com-
puting, pp. 1365–1372 (2022)

38. Zhou, Y., Wang, H., He, J., Wang, H.: From intrinsic to counterfactual: on
the explainability of contextualized recommender systems. arXiv abs/2110.14844
(2021)



PCDF: A Parallel-Computing Distributed
Framework for Sponsored Search

Advertising Serving

Han Xu1 , Hao Qi2, Yaokun Wang2, Pei Wang1(B) , Guowei Zhang2 ,
Congcong Liu2 , Junsheng Jin2, Xiwei Zhao2, Zhangang Lin2, Jinghe Hu2,

and Jingping Shao2

1 Beijing, China
xhbj66@gmail.com, wangpei102595@gmail.com

2 JD.com, Beijing, China
{qihao1,wangkunyao,jinjunsheng1,zhaoxiwei,

linzhangang,hujinghe,shaojingping}@jd.com, cliubh@connect.ust.hk

Abstract. Traditional online advertising systems for sponsored search
follow a cascade paradigm with retrieval, pre-ranking, ranking, respec-
tively. Constrained by strict requirements on online inference efficiency,
it tend to be difficult to deploy useful but computationally intensive
modules in the ranking stage. Moreover, ranking models currently used
in the industry assume the user click only relies on the advertisements
itself, which results in the ranking stage overlooking the impact of organic
search results on the predicted advertisements (ads). In this work, we pro-
pose a novel framework PCDF (Parallel-Computing Distributed Frame-
work), allowing to split the computation cost into three parts and to
deploy them in the pre-module in parallel with the retrieval stage, the
middle-module for ranking ads, and the post-module for re-ranking ads
with external items. Our PCDF effectively reduces the overall inference
latency compared with the classic framework. The whole module is end-
to-end offline training and adapt for the online learning paradigm. To
our knowledge, we are the first to propose an end-to-end solution for
online training and deployment on complex CTR models from the sys-
tem framework side.

Keywords: Parallel and Distributed Mining · Advertising System ·
Online Serving

1 Introduction

CTR prediction is the core task of advertising systems, predicting the proba-
bility of the users’ click events on a certain item. A typical paradigm in online
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advertising systems is to retrieve a subset of advertisements relevant to the users
from a large corpus by a candidate generation network [1], and then rank these
candidates through a ranking network [1,2], leaving only a few items to present
to the user.

Driven by the advancement of deep learning, large-scale deep neural networks
are usually employed as ranking models in recommendation systems to achieve
good system performance. However, complex models are difficult to deploy under
extremely low system latency constraints in real-time recommendation systems.
Many existing works focus on improving the effectiveness and efficiency of recom-
mender systems [2–13]. Recent works [14–17] reduce computational latency and
improve system efficiency by using two-stage modeling methods. Although these
methods reduce the computation cost in the ranking stage, maintaining data
consistency between the two-stage brings the challenge to the online serving sys-
tem, and the ranking model doesn’t fully exploit the rich information contained
in the features generated in the one-stage model. Furthermore, these methods are
not suitable for the online learning paradigm, which further impairs the accuracy
of prediction. The above methods concentrate on pre-reducing online inference
time through model design in the ranking stage but ignore the rationality of the
overall framework.

From the system deployment side, many existing recommendation systems
decompose models and data to benefit from data parallelism and model par-
allelism [18–20]. However, the acceleration revenue of the above two strate-
gies reaches a bottleneck since model computing complexity keeps growing.
Pipeline parallelism [7] has been a handful solution to simplify the design of
algorithms and facilitate deployment, but many recommendation frameworks
applied pipeline parallelism suffer from the unbalanced load.

Given the above limitations, in this paper, we rethink the challenges of
deploying complex models in e-commerce search platform, from a system design
perspective and take user long-term behavior modeling and organic search infor-
mation modeling as the case study. Unlike other methods that design training-
inference inconsistent models to reduce online computational complexity, we
adopt end-to-end training and maintain training-inference consistency to achieve
good performance. More specifically, We split the precision ranking model into
three modeling stages: pre-modeling, middle-modeling, and post-modeling, and
perform parallel computing for pre-modeling and post-modeling with other mod-
ules in the recommendation system. Benefiting from the parallel framework, the
latency of the whole ranking model can be reduced even if adding a complex
target-independent module. The main contributions of this work are summa-
rized as follows:

– We propose a novel Parallel-Computing Distribution Framework(PCDF)
from the perspective of system framework design. To the best of our knowl-
edge, PCDF is the first systematic solution for deploying computationally
expensive target-independent modules in online advertising serving.

– A new pipeline parallelism recommendation inference strategy is proposed,
which split the deep rank stage into three modeling stages: pre-modeling,
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in-modeling, and post-modeling; the above three-stage deep rank process is
carried out in a pipeline parallelism way by one single deep rank model.
Computing power cost in the ranking stage is explicitly reduced by applying
PCDF. This further brings space for the advertising systems to apply more
complex deep models to reach better performance.

– We introduce a hands-on practice of the PCDF framework on both offline
training and online deployment for CTR prediction on a real-world advertising
platform.

– The modeling for Long-term user historical behavior and externalities is
deployed as a task and conduct comprehensive offline and online experiments
to validate our solution’s rationality. We achieve a 5% improvement on CTR
and 5.1% improvement on RPM in the online A/B test. And there is almost
no increase in inference time in the whole ranking system.

2 Related Work

2.1 Latency Optimization

There are generally several methods for optimizing the performance of online
inference. On the model side, two common methods are model pruning and
model quantization with low-precision inference. Model pruning reduces model
size by removing unnecessary weights or neurons, which speeds up inference.
Model quantization converts floating-point model parameters to integers or uses
lower bit-width data representation to accelerate inference [21–24]. However,
these methods may lead to a reduction in model parameters, which can decrease
the model’s accuracy and performance. Achieving optimal results requires signif-
icant experimentation and computational resources to adjust parameters. On the
framework side, parallel computing distributes the model or data across different
nodes for parallel modeling training, however, the parallel computing approach
does not conform to the paradigm of online learning and is rarely used in model
inference.

Once the traditional three stages have been carried out in e-commerce search
platform, a post-processing module is typically deployed. This module is utilized
for the reordering of strategies between items, as well as for handling new strate-
gies resulting from different business practices. Due to system latency limitations,
it is generally difficult to deploy complex models in the post-processing stage.
In order to cut down on the latency it takes to run the post-processing module,
optimization methods such as edge computing are used to eliminate latency from
the edge to the server [25,26]. Additionally, performance-enhancing algorithmic
strategies are applied to decrease computation cost [27,28].

To address the aforementioned issues, we propose a pipelined parallel frame-
work that divides the model inference process into three stages: pre-modeling,
middle-modeling, and post-modeling. Through pipeline parallelism and parallel
computing, we successfully deployed complex models without increasing model
latency. This approach improved model inference accuracy and achieved good
online performance benefits.
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3 Methodology

In this section, we explain the motivation behind the PCDF (Parallel Computing
Distributed Framework) framework and introduce its design considerations. We
then provide a detailed overview of the architecture of the deployment frame-
work, summarized the online serving framework of the e-commerce sponsored
search system, and introduce our proposed PCDF. Next, we briefly explain how
the models, including behavior modeling and external information modeling,
are applied in PCDF to demonstrate that PCDF provides scalable, efficient, and
easy-to-use deployment solutions for machine learning models.

3.1 Preliminaries

CTR Task. The CTR prediction is to predict the probability that a user clicks
an item. After retrieving hundreds of candidate items at the retrieval stage, a
ranking module is employed to make a prediction between user u and every item
x from candidate items X. In general, a CTR prediction model involves four
kinds of features:

CTR = f(L1:Tl
u , S1:Ts

u , xu, xt, xc) (1)

where L1:Tl
u and S1:Ts

u are long and short historical behaviors respectively, xu,
xt, xc corresponds to user profile, target item profile and contexts. As shown
in Fig. 1(a), the user request Ru from upstreams is handled by a retrieval Mod-
ule for hundreds of items IR this user u might be interested in. Followed by
predictions on all items made by Pre Rank Module and Deep Rank Module.
Each module has a Feature extract process, to process all Module required fea-
tures (L1:Tl

u , S1:Ts
u , xu, xt, xc). Since Rank Modules require the candidate items

responded from Retrieval Module, the whole process is serialized.

E-commerce Search Platform. A practical e-commerce search platform that
recommends multiple products to online users, usually through two separate sys-
tems, the Organic Search System (OS) and the Sponsored Search Advertisement
System (AS). To present a mix of search and advertising listings, the organic
results The list is first generated by the OS, and then the AS assigns the correct
ad on the correct ad slot [29]. In this paper, we mainly focus on the search adver-
tising system, which follows a three-stage design with recall, rough sorting, and
sorting. Specifically, a large number of items and Ads that are relevant to the
user are first retrieved from the query, which is then sent to a predictive model
that estimates various ad quality metrics, such as click-through rate. These can-
didate ads are then ranked by the metrics generated and advertiser bids. The
winning bid after these auction advertisements will ultimately be presented to
consumers along with organic search results [2,14,30].

3.2 Design Considerations and Motivation

1) Strict Online Serving Latency. The major target for designing a real-time
recommendation system is to reach peak recommendation accuracy under strict
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Fig. 1. Illustration of traditional recommendation workflow and PCDF workflow, tra-
ditional recommendation workflow illustrated in fig.(a) includes three stages: retrieval,
pre ranking, and deep ranking. The deep ranking stage includes three aspects of
work: target-independent pre preprocessing, model estimation, and post-processing.
PCDF workflow illustrated in fig.(b) adds a pre-computing stage to move the target-
independent processing of the fine ranking stage forward in parallel with the recall
and pre ranking, which reduces the burden of the deep ranking stage. in fig(c), the
deep ranking model is split into three stages: pre-modeling, mid-modeling, and post-
modeling, which can be performed in parallel to support target-independent and target-
dependent feature computation, as well as post-processing.

constraints of latency. Generally speaking, as prediction accuracy increases with
model complexity, the trade-off between prediction accuracy and system latency
has to been made, due to the limitation of latency. In our scenario with heavy
throughput, there are lots of optimization work, including multi-thread, data
parallelism, and tensorflow op parallelism to keep system latency under 60ms
which is the system latency of our recommendation system.

2) Deployment Costs. Given that GPU has a good acceleration effect
on many models, currently mainstream recommendation system will use GPU
for inference acceleration while the cost of GPU resources is higher than that
of CPU. Many recommendation system architectures deploy CPU resources and
GPU resources together, however, it is difficult to accurately adjust the allocation
ratio of GPU computing resources, bandwidth, and CPU computing resources;
with the iterative changes of the model, an unbalanced load of CPU and GPU
leads to higher deployment costs leading to high costs for large-scale commercial
recommendation system.

We formulate Large-scale Distributed Real-Time Prediction (RTP) system in
Fig. 1(a), which consists of three core components: Retrieval module, Pre Rank
Module, and Deep Rank Module. The computation latency is generally unsat-
isfying if complex model is performed on thousands of advertisements in the
retrieval stage [2]. Thus complex model is usually deployed and performed in
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the deep rank stage after ads are filtered in the retrieval stage. As introduced
in section3.1, the traditional three-stage recommendation process is serialized.
However, not all features are only accessible after the retrieval Module like target-
independent features (L1:Tl

u , S1:Ts
u , xu and xc) since we can know the user and

context information from the initial user request. We propose a stage-level par-
allel computing idea shown in Fig. 1(b) to reduce online reasoning time. Show
in Fig. 1(c), pipeline parallelism is used to support the splitting of the deep rank
stage process.

3.3 PCDF Framework

In this section, we will introduce our newly designed ranking system PCDF in
detail. The core idea behind PCDF is to take into consideration of both model
design and system design. The high-level architecture of PCDF is illustrated
in Fig. 2. PCDF consists of two components: the training component(shown in
the left, which contains model online learning, Feature Engineering, and model
detachment module) uses Tensorflow to train the model serving for online server,
and data used for training model comes from user and target features.

Deep Ranking Model in PCDF. As shown in Fig. 2, model designed for
online serving is divided into three sub-models (pre-model, mid-model, post-
model) and deployed on an online server, where the online serving component
recommends items to users based on their preferences in real-time. Specifi-
cally, when a front-end user requests recommended targets, it obtains task-
independent features and sends the processed features to the pre-processing
model. After the pre-processing stage is completed, the captured information
is sent back to the deep ranking module. These processes run in parallel with

Fig. 2. Illustration of online advertising system. Typically it consists of three impor-
tant components: real-time serving module, offline model training, and model deploy
module. Left is the feature log module and Model training module, after model train-
ing, the new model will be split and deployed in a real-time server. The same model
will perform different calculations at different stages to achieve a staged pipeline model
inference process.
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the retrieval module’s call. Once the deep ranking module receives feedback
from the pre-ranking and pre-processing modules, it reprocesses the features to
obtain item features and sends all the results to the ranking module in the deep
ranking model. As the main ranking stage, the mid-model and post-model rank
all candidate items based on item features, user features, context features, and
externalities in e-commerce sponsored search.

Shown in Fig. 1(c), we design a pipeline parallelism strategy that allows the
same model to provide modeling services for different stage modeling processes in
the deep ranking stage. Firstly, pre-modeling is used to model target-independent
features in the first stage. Then, the outputs of pre-modeling along with target
features are sent to the mid-modeling process to obtain prediction scores. Finally,
a post-modeling is applied to process the mid-modeling results and externality.
Next, we will introduce how PCDF is deployed in the online learning and serving
manner. In industry, online learning refers to updating the model parameters in
real-time through online requests during the online service stage, in order to
adapt to the dynamic distribution of data.

Training. As shown on the left side of Fig. 2, after the target-independent
modeling is finished, feature engineering is performed on the feature log with
hadoop [31], including fusing the outputs of the pre-computing server with other
features related to candidate items. In the way that all modules in the ranking
model are jointly learning to optimize the deep ranking task, the parameters of
the part for the target-independent model are synchronously updated with other
parts through training in an end-to-end way.

The model training process adopts the online learning paradigm to update
the model. With the continuous generation of data streams, the model can
dynamically update its parameters to adapt to the new data distribution as
new data arrives. During this process, the model’s training and inference are
performed alternately, and the model can continuously learn and improve from
new data. The model selection module will prioritize the selection of different
model and push it to the real-time recommendation system to start providing
services. Joint learning enables the information of target-independent features
fully utilized, compared to the two-stage models [17,30]. Besides, the end-to-end
model updated all parameters synchronously, which keeps consistency during
online learning.

Pipeline Parallelism Servering. Deep Ranking stage on the right of Fig. 2
is divided into three stages: pre-modeling, mid-modeling, and post-modeling.
1) Pre-modeling. target independent pre-modeling process is deployed in pre-
computing module❶ and triggered simultaneously with retrieval process by front
end user request. The results of pre-modeling are cached by redis [32]. 2) Mid-
modeling. After the processes of the retrieval and pre-ranking stage are com-
pleted, the pre-modeling result in the cache is fetched and sent to the mid-
modeling module along with pre rank result, mid-modeling module predicts all
targets score. 3) Post-modeling. a post-modeling stage is added, for differ-
ent business scenarios, the sorting strategies could be quite different. The post-
modeling stage performs personalized post-processing on the predicted items to
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meet business requirements, again, the pre-modeling result cached in redis is
fetched as input parameters for post-modeling. The key used for storing pre-
modeling results could be user id or request session id; the cached data life-cycle
is configurable according to recommended accuracy and system cost.

Design of Flexible Ranking Model. Unlike the previous modeling, which
reduces computing power cost by restricting model architecture and thus causes
loss of model performance, PCDF allows applying arbitrary complex architec-
ture of deep models to ensure the best model performance. For example, in our
real system, we take transformer based models [33] as our user behavior model
architecture in pre-stage. Figure 4 illustrates the results from pre-stage sent to
pos-model in fully connected layer with the concatenation of other features as
inputs. Other model for user behavior and model for other features indepen-
dent with Ads, are also applicable, which we leave readers for further trying. In
post-stage, the output from middle model is fused with the external items and
compute the final score for the candicate items.

Multi-thread is also used for better concurrency performance, each thread
accepts several user requests and business strategies will be applied to each
request. Finally, a cache is used to reduce feature search latency and network
communication costs.

3.4 Deployment

In this section, we give hands-on practice of the PCDF framework on online
deployment in the industry.

As mentioned above in Sect. 3.3, the model is split into three branches when
online serving: long-term behavior sequence module deployed in pre-modeling
module, the rest candidate item-dependent models deployed in mid-modeling
module and modeling external information in pos-modeling module.

Although three sub-models are responsible for different tasks and are called
sequentially, we export one dynamic computation graph and deploy the whole
graph on the same server. The Prediction Server can choose the PCDF or CTR
branch output corresponding to the request. Specifically, the Prediction Server
can know the rank stage from the requests sent by the interface Server. This
deployment method naturally supports online learning since there is actually
only one serving computation graph. Furthermore, deployment on the same
machine contributes to consistency and enables easy management of all model
versions, e.g., rollback or model structure updating.
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Fig. 3. CPU and GPU Isolation.

Isolation of CPU and GPU Computing Resources. As mentioned in
Sect. 3.2, it’s hard to balance CPU resources and CPU resources in large-scale
recommendation systems. To reduce the difficulty of deployment, we treated
recommendation processes as computationally intensive and io-intensive, shown
in Fig. 3. We designed a distributed computing architecture that isolates CPU
resources from GPU resources and split them to different nodes. RPC (Remote
Procedure Call) is applied to exchange data between GPU nodes and CPU
nodes. Using appropriate computing graph splitting strategy, hash operation and
request unpacking are handled by CPU nodes while model inference is performed
on GPU nodes. As the model changes, CPU and GPU computing resources are
adjusted independently. This distributed recommendation system architecture
can greatly alleviate waste of computing resources in large industrial scenar-
ios. Our hands-on practice shows that resource utilization increases from 35%
to 65%. It is expected that as the model calculation distribution continues to
change, the resource utilization rate will be further improved.

Other Optimization Trick. Apart from pipeline parallelism mentioned
in Sect. 1, which is good at accelerating target-independent modeling, we also
apply various data parallelism optimizations that may fit most recommendation
processes. In our system, the target item’s score ranking process is independent
of each other. That means score computing could be processed in parallel with
each other. At the front-end use request level, each request will be split into
several inference sub-requests; each sub-request handles part of targets, after all
sub-request processes are finished, results will be merged and ranked by score.
The trade-off will be made when split user request since RPC is used in our
recommendation system, too many RPC network communications means sub-
requests have more chance get failed.
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Fig. 4. Network Architecture of the CTR Model

4 Experiments

We carefully compare the prediction latency of the baseline and our proposed
framework at varying lengths of behavioral sequences. Furthermore, we compare
the proposed search framework with several state-of-the-art works in modeling
long-term behaviors on an industrial dataset. Finally, we conduct an A/B online
test to verify the performance of PCDF.

4.1 The Impact of the Sequence Length

For validating the newly designed framework’s effectiveness, we conduct the
prediction latency experiments carefully in our online advertising system.

Experimental Settings. For comparison of the impact of behavior lengths
between the baseline and our new framework, we adopt precisely the same model
in Sect. 3.3 and denote Baseline and PCDF as the deployment method men-
tioned in Sect. 3.2 respectively. Precisely, the Baseline deploys the whole CTR
model in Deep Rank module while PCDF deploys long-term modeling in pre-
computing module and the rest in Ranking module. Both the baseline and PCDF
deployed the same hardware environment. Retrieval server runs on a machine
with 1 Intel Xeon CPU E5-2683 and 8GB RAM, and deep rank module Server
runs on a machine with 1 Intel Xeon Gold 6267C CPU and 128GB RAM; The
connection bandwidth between each service is 10Gbps.
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Fig. 5. Illustration of system latency, (a) shows that baseline CTR prediction latency
increase as behavior sequences increases, while PCDF remains stable, (b) shows total
latency of deep ranking stage, the latency trend is consistent with (a)

Prediction Latency Results. PCDF achieve better performance on latency
compared with Baseline, demonstrating its high efficientness. Figure 5a gives the
overall latency of the PCDF and Baseline in the ranking stage under different
behavior lengths. With an increase in the length of behavior sequences, the
overall latency of Baseline shows an upward trend, where the latency increases
by 15 ms when the length goes up from 128 to 1024. In contrast, the latency
in the ranking stage of PCDF remains stable at about 38ms, even though the
length reaches 1024. It is noted that the predictor latency of Baseline is about
58 ms, which is not acceptable considering our strict online latency.

The results show that the latency of the baseline in the ranking stage keeps
increasing with increasing sequence length, while the latency of PCDF is stable.
It is noticed that about 60ms prediction latency in the original framework when
length at 1024, shown in Fig. 5b, is unable to deploy under the constraint of
extremely low system latency. Therefore, PCDF provides a solution and enables
our complex modules like long-term user behavior modeling deployment.

4.2 Experiments on Industrial Dataset

Competitive Models. SIM [30] is a CTR prediction model, which proposes
a search unit to extract user interests from long-term user behavior sequences in
a two-stage manner. SIM(hard) is the SIM that searches top-k behavior items
by category id in the first stage. We follow previous work to compare SIM(hard)
as the performance is almost the same as they deploy SIM(hard) online. ETA
[34] applies LSH to encode target items and user behavior sequences into binary
codes and then calculates the Hamming distance of the items to select top-k
similar items for subsequent target attention in an end-to-end manner.
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Experimental Settings. For all the baselines and PCDF, we use the same
features as input and adopt the same model structure except for the long-term
user behavior modeling module. All models use the same length of long-term
user behaviors.

Industrial Dataset. We select consecutive 15-day samples for training and
the next two days for evaluation and testing, the number of training examples is
about 10 billion. The recent 50 behaviors are selected as short-term sequences,
and the recent 1,024 behaviors are selected as long-term sequences.

Result on Offline Experiment. The evaluation results are shown in Table 1.
For industrial dataset, we report the result of baselines and PCDF. The best
performance is highlighted in bold. Results show that PCDF consistently out-
performs all baselines on the industrial dataset. Specifically, it achieves improve-
ments over the strongest baselines in terms of AUC by 2.51%, 1.60%. This vali-
dates the effectiveness of our module for modeling long-term historical behaviors
for CTR prediction task. Note that SIM(hard) performs worst in the baseline
models due to the loss of information caused by user behavior retrieval according
to category.

Table 1. Performance comparison of PCDF to other methods on modeling long-term
behavior sequence

Model AUC

SIM(hard) 0.7290

ETA 0.7355

PCDF 0.7473

4.3 Online A/B Test

The PCDF is deployed in our real display advertising system with a long-term
behavior sequence module with a length of 1024 and modeling the external
information.

A strict online A/B test is conducted. Table 2 shows online experimental
results using the proposed PCDF framework while the original framework with-
out long-term behavior module and post-module as a benchmark. Compared
to the benchmark, the PCDF achieves 5% CTR and 5.1% RPM (Revenue Per
Mille) gain. Note that 5.1% improvement on RPM is nontrivial improvement
given that all other components of our base model have already been highly
optimized and this leads to additional millions of revenues per day.

Finally, we analyze the efficiency of the proposed PCDF in online serving. The
comparison of latency is also examined at the peak of queries per second (QPS),
as shown in Table 2. Adding long-term behavior modeling and post-modelling
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almost brings no extra inference time compared with the base model, proving
the stability and effectiveness of our proposed framework.

We tested the performance of the pre-model and the post-model online
respectively. Among them, the effect of the long-term behavior modeling in
the pre-module achieves 3% CTR and 3.1% RPM gain and the post-module
modeling of organic search information achieves 2% CTR and 2% RPM gain,
respectively. All of them have little to no time-consuming addition to the overall
ranking stage.

Table 2. Online effectiveness and efficiency of the proposed framework on A/B test

CTR RPM latency in ranking stage

PCDF Framework +5.00% +5.10% +0.4 ms

5 Conclusions

In this paper, we propose an efficient framework PCDF for deploying complex
models and utilizing personalized externalities in CTR prediction for practical e-
commerce sponsored search systems. The framework is designed for online learn-
ing through joint training and online distributed deployment, without increasing
extra online inference time for complex computation modules. We comprehen-
sively present the rationale behind our deployment, offer practical experience
and conduct various experiments to demonstrate the superiority of our proposed
PCDF. To the best of our knowledge, our work represents the first systematic
solution to address the unacceptable efficiency of computationally intensive mod-
ules in CTR prediction, thus creating a new research direction.
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Abstract. Existing micro-video recommendation models exploit the
interactions between users and micro-videos and/or multi-modal infor-
mation of micro-videos to predict the next micro-video a user will watch,
ignoring the information related to vloggers, i.e., the producers of micro-
videos. However, in micro-video scenarios, vloggers play a significant role
in user-video interactions, since vloggers generally focus on specific topics
and users tend to follow the vloggers they are interested in. Therefore,
in the paper, we propose a vlogger-augmented graph neural network
model VA-GNN, which takes the effect of vloggers into consideration.
Specifically, we construct a tripartite graph with users, micro-videos,
and vloggers as nodes, capturing user preferences from different views,
i.e., the video-view and the vlogger-view. Moreover, we conduct cross-
view contrastive learning to keep the consistency between node embed-
dings from the two different views. Besides, when predicting the next
user-video interaction, we adaptively combine the user preferences for a
video itself and its vlogger. We conduct extensive experiments on two
real-world datasets. The experimental results show that VA-GNN out-
performs multiple existing GNN-based recommendation models.

Keywords: Recommender Systems · Micro-video Recommendation ·
Graph Neural Networks · Contrastive Learning

1 Introduction

Micro-video streaming platforms are hubs for uploading and watching micro-
videos. In recent years, micro-video apps such as TikTok, Kwai, etc. attract a
huge number of users, who spend most of their spare time watching diversified
micro-videos. This also promotes more people to become vloggers, producing and
publishing more micro-videos. With the increase in the number of micro-videos,
the micro-video recommendation in the app becomes indispensable to users.
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Currently, some deep neural network models have been proposed for the
micro-video recommendation, including ranking models and recall models. A few
of the ranking models leverage multi-modal information including visual, acous-
tic, and textual features to achieve the recommendation [1–4], thus being costly
in terms of time and computational power. On the other hand, existing mod-
els for recalling micro-videos are relatively few in number [5,6]. What is worse,
existing micro-video recommendation models only exploit interactions between
users and micro-videos for modeling and totally ignore the vlogger information.

We argue that vloggers play important roles in micro-video recommenda-
tion. Firstly, the vlogger of a micro-video can be treated as an attribute of the
micro-video, since the vlogger potentially reflects the style of the micro-video.
Meanwhile, a vlogger can also be treated as an attribute of a user, since the
vloggers a user follows reveal the user’s preferences. Taken together, treating
vloggers as the auxiliary information of users or videos cannot adequately reflect
the dynamic relationships among users, vloggers, and micro-videos. Secondly, the
“Follow” function permits a user to find micro-videos newly published by fol-
lowed vloggers. Thus, users are more likely to interact with the videos published
by vloggers they follow. These user-video interactions may result from either
user preferences for videos themselves or user preferences for their vloggers, the
latter factor is overlooked by existing recommendation models.

For taking the effect of vloggers on recommendation into consideration, in
the paper, we construct a heterogeneous graph with users, micro-videos, and
vloggers as nodes, and propose a model namedVA-GNN (Vlogger-Augmented
Graph Neural Networks) to exploit the complex semantic relationships among
users, vloggers, and micro-videos. VA-GNN learns node embeddings from two
different views, and set up meta-paths to build the connection between individual
views in the original heterogeneous graph, thus improving the performance of
micro-videos recommendations.

Our contribution can be summarized as follows.

• We model the relationships among users, micro-videos, and vloggers in a
tripartite graph and capture and combine user preferences for micro-videos
themselves and vloggers so as to take full advantage of user-video interactions,
user-vlogger interactions, and vlogger-video publishing relationships.

• We generate two embeddings for each node in the graph, using embedding
propagation over the video view and the vlogger view, as well as the propa-
gation along meta-paths which are formed by random walk across two views.
Moreover, we employ cross-view contrastive learning to keep consistency
between the two embeddings of the same node.

• We conduct extensive experiments on two real-world datasets. The experi-
mental results show VA-GNN outperforms the other five models, in terms of
Recall and NDCG.

2 Related Work

Our work is related to the research in three topics: GNN-based recommendation,
contrastive learning for recommendation, and micro-video recommendation.
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GNN-Based Recommendation. GNNs are the neural networks that capture
the dependence in a graph via message passing between nodes of the graph.
They have been adopted by some recommendation models to perform different
recommendation tasks, including the item recommendation [7] [8] [9], social rec-
ommendation [10], session recommendation [11], bundle recommendation [12],
and cross-domain recommendation [13].

Taking the item recommendation as an example, NGCF [7] models the user-
item interactions as a bipartite graph and performs graph convolutions to update
embeddings of nodes. Then the learned embeddings of nodes are used for the
item recommendation. Further, LightGCN [8] is proposed as a lightweight ver-
sion of NGCF, which removes the nonlinear activation function and the feature
transformation matrix in NGCF but has better performance than NGCF. More-
over, GTN [9] is also a GNN model on the user-item bipartite graph but it can
identify the reliability of the interactions, thus improving the performance.

Contrastive Learning for Recommendations. Contrastive learning is a
branch of self-supervised learning. It has obtained great achievements in the fields
of computer vision [14] and NLP [15], and also helps improve the performance
of recommendation models [16].

Some sequential recommendation models, e.g., CL4SRec [17] and DuoRec
[18], have been combined with contrastive learning. Typically, they generate the
augmented sequences for the original sequence and then design an auxiliary task
to pull positive sequence pairs closer to each other and push negative sequence
pairs away from each other.

Contrastive learning is also applied to GNN-based recommendation models.
Some models, e.g., SGL [19] and PCRec [20], design perturbations in the struc-
ture of the original graph to obtain augmented graphs, and then with the aid of
any GNN-based encoder, the contrastive learning task will drive embeddings of
the same node existing in augmented graphs closer. Some models, e.g., EGLN
[21] and BiGI [22], construct the contrastive loss to keep the consistency between
the local and global graphs. Further, SimGCL [23] adds uniform noise directly
to the embeddings of nodes in the graph, which develops a new way to obtain
self-supervised signals.

Micro-Video Recommendation. Existing micro-video recommendation
models have many model structures, including attention-based structures,
CNNs, or GNNs. For example, Wei et al. [2] construct a user-item bipartite
graph for each modality and generate modal-specific representations of users
and micro-videos.

Some micro-video recommendation models have supplemented the con-
trastive learning component in their models. For example, CMI [5] learns user
multi-interests in micro-videos from historical interaction sequences and proposes
a contrastive multi-interest loss to minimize the difference between interests
extracted from two augmented views of the same interaction sequence. PDM-
Rec [6] applies a multi-head self-attention mechanism to learn sequence embed-
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dings and proposes contrastive learning strategies to reduce the interference from
micro-video positions in interaction sequences.

Compared to the existing work, our work models the relationship among
users, micro-videos, and vloggers in a heterogeneous graph, and combines GNNs
with contrastive learning for micro-video recommendation for the first time.

3 Problem Formulation

We use U ,V,P to denote the set of users, micro-videos, and vloggers, and
define the user-video interaction matrix, user-vlogger interaction matrix, and
vlogger-video publishing matrix as X|U|×|V| = {xuv | u ∈ U , v ∈ V}, Y|U|×|P| =
{yup | u ∈ U , p ∈ P} and Z|P|×|V| = {zpv | p ∈ P, v ∈ V} , respectively. If there
is at least one explicit interaction (e.g., liking/thumb-up) between user u and
micro-video v, then xuv = 1, otherwise, xuv = 0. Similarly, yup = 1 indicates that
user u interacts with vlogger p, for example, user u follows vlogger p. Moreover,
zpv = 1 indicates that vlogger p publishes video v.

Our goal is to design a recommendation model to predict the probability of
interaction between any user u ∈ U and any candidate micro-video v ∈ V based
on the user-video interaction matrix X|U|×|V|, user-vlogger interaction matrix
Y|U|×|P| and vlogger-video publishing matrix Z|P|×|V|.

4 Our Model

We propose a model named VA-GNN, whose architecture is shown in Fig. 1.
VA-GNN is composed of the following components: heterogeneous graph con-
struction, embedding propagation, cross-view contrastive learning, prediction,
and multi-task learning, which are detailed below.

4.1 Heterogeneous Graph Construction

To explicitly model the relationships between users, micro-videos, and vloggers,
we construct a heterogeneous graph G = (U ∪ V ∪ P, E), where nodes consist
of user nodes u ∈ U , micro-videos v ∈ V and vlogger nodes p ∈ P, edges are
E consisting of user-video interaction edges (u, v) with xuv = 1, user-vlogger
interaction edges (u, p) with yup = 1, vlogger-video publishing edges (p, v) with
zpv = 1.

We use eu ∈ EU , ev ∈ EV , ep ∈ EP to denote the embeddings of user
u ∈ U , micro-video v ∈ V and vlogger p ∈ P, respectively, where EU ∈ R

d×|U|,
EV ∈ R

d×|V|, EP ∈ R
d×|P|, and d is the dimension of embeddings.

4.2 Video-View Embedding Propagation

In order to capture the high-order collaborative signals between users and micro-
videos and learn more expressive user and micro-video embeddings, we exploit
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Fig. 1. Architecture of model VA-GNN.

graph neural networks to propagate item-view information on the constructed
heterogeneous graph based on user-video interactions.

Meanwhile, we use the random walk to build the ‘user-vlogger-user’ meta-
path and ‘user-vlogger-video’ meta-path to capture the impact of vlogger on
users and micro-videos. Specifically, we construct a meta-path of length 3 by
starting from a user u and walking with probability q1 to a vlogger p interacted
by u. Then we walk with probability q2 to another user u′ interacted by p or
1 − q2 to a video v published by p, involving the nodes at the end of the meta-
path in the embedding propagation of the item-view. Here, we adopt a simple
but effective embedding propagation operation, as shown follows.

e(l)u,1 =
∑

v∈Vu

1√|Vu|√|Uv|
e(l−1)
v,1 , (1)

e(l)v,1 =
∑

u∈Uv

1√
|Uv|

√|Vu|
e(l−1)
u,1 , (2)

e(0)u,1 = eu, e(0)v,1 = ep, (3)

where Vu denote micro-video neighbors and the ‘user-vlogger-user’ meta-path
endpoints of user u. Uv denote user neighbors and the ’user-vlogger-video’ meta-
path endpoints of micro-video v. e(l)u,1 and e(l)v,1 denote the item-view embeddings
of user u and micro-video v at the l -th propagation step.

For a vlogger, we aggregate the item-view embeddings of all the videos he/she
published and obtain his/her item-view embedding, as follows.

e(l)p,1 = aggregate
(
e(l)v,1 | v ∈ Vp

)
(4)
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where Vp denotes the micro-video neighbors of vlogger p, i.e., the set of videos
vlogger p published. Here, we directly take average pooling as the aggregator.

After iteratively performing embedding propagation for L steps, we obtain
L embeddings for each user/video/vlogger node. We average the L embeddings
of each node to generate its final item-view embedding, as follows.

eu,1 =
1
L

L∑

l=0

e(l)u,1, ev,1 =
1
L

L∑

l=0

e(l)v,1, ep,1 =
1
L

L∑

l=0

e(l)p,1, (5)

where eu,1, ev,1, and ep,1 are item-view embeddings of user u, micro-video v and
vlogger p, respectively.

4.3 Vlogger-View Embedding Propagation

The videos published by the same vlogger usually fall in the same category.
Thus, vlogger-view user preferences can reflect user preferences for certain video
categories. For example, a vlogger who is a basketball coach mostly publishes
videos about basketball skills, and users who follow the vlogger have a high
probability of favoring basketball and are highly likely to be interested in other
vloggers and micro-videos about basketball.

Therefore, in order to learn the implied characteristics of each vlogger and
capture vlogger-view user preferences, we perform vlogger-view embedding prop-
agation based on user-vlogger interactions and calculate vlogger-view embed-
dings of users and vloggers. Similarly, we use the random walk to build the
’user-video-user’ meta-path to capture the impact of micro-videos on users and
vloggers, involving the nodes at the end of the meta-path in the embedding
propagation of the video-view. As shown follows.

e(l)u,2 =
∑

p∈Pu

1√
|Pu| √|Up|

e(l−1)
p,2 , (6)

e(l)p,2 =
∑

u∈Up

1√|Up|
√|Pu|e

(l−1)
u,2 , (7)

e(0)u,2 = eu, e(0)p,2 = ep, (8)

where e(l)u,2 and e(l)p,2 denote the vlogger-view embeddings of user u and vlogger p
in the l -th layer, respectively. Pu denote the neighbor vlogger nodes of user u. Up

denote the neighbor user nodes and the ’user-video-user’ meta-path endpoints
of vlogger p.

We calculate vlogger-view embeddings of micro-videos by aggregating the
vlogger-view embeddings of their user neighbors. For example, the vlogger-view
embedding of micro-video v is calculated as Eq. 9. For simplicity, we employ
mean pooling as the aggregation function.

e(l)v,2 = aggregate
(
e(l)u,2 | u ∈ Uv

)
(9)
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Similar to the final video-view embedding calculation in Sect. 4.2, we take the
average of the K vlogger-view embeddings of each node as the final vlogger-view
embedding, as shown as follows.

eu,2 =
1
L

L∑

l=0

e(l)u,2, ev,2 =
1
L

L∑

l=0

e(l)v,2, ep,2 =
1
L

L∑

l=0

e(l)p,2. (10)

4.4 Cross-view Contrastive Learning

After performing video-view and vlogger-view embedding propagation, we obtain
pairwise embeddings from two different views for each user, micro-video, and
vlogger, which are supposed to keep consistency. For example, user embeddings
at video-view and vlogger-view both imply user preferences.

Here, we facilitate embedding learning by conducting contrastive learning
that mines the consistency between embeddings from different views of the
same entity. Specifically, we treat the video-view and vlogger-view embeddings
of the same user/video/vlogger as a positive pair, the embeddings of different
users/videos/vloggers as negative pairs, and construct a cross-view contrastive
learning loss as follows.

Lcl
user =

1
|U|

∑

u∈U
− log

exp (sim (eu,1, eu,2) /τ)∑
u′∈U exp (sim (eu,1, eu′,2) /τ)

, (11)

Lcl
video =

1
|V|

∑

v∈V
− log

exp (sim (ev,1, ev,2) /τ)∑
v′∈V exp (sim (ev,1, ev′,2) /τ)

, (12)

Lcl
vlogger =

1
|P|

∑

p∈P
− log

exp (sim (ep,1, ep,2) /τ)∑
p′∈P exp (sim (ep,1, ep′,2) /τ)

, (13)

where sim(·) is the cosine similarity function, τ is the temperature parameter,
which is a hyper-parameter.

The final contrastive loss is obtained by calculating the average of the three
contrastive learning losses, as follows.

Lcl =
1
3

(Lcl
user + Lcl

video + Lcl
vlogger

)
. (14)

4.5 Prediction

We concatenate user embeddings from two different views and obtain the final
embedding of user u as eu = eu,1‖eu,2, where ‖ denotes vector concatenation
and eu ∈ R

2d. In the same way, final embeddings of micro-video v and vlogger
p are ev = ev,1‖ev,2 and ep = ep,1‖ep,2, respectively. The predicted preference
score between user u and vlogger p can be calculated as follows.

ŷup = eTuep. (15)
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Despite the target being micro-video itself, user preferences for vloggers who
publish the video also play important roles in user-video interaction prediction.
For example, in a situation where the target video does not fit well with the
video-view preferences of a user, the user is still highly likely to interact with the
video if he/she already follows the vlogger who published the video. Therefore,
it is necessary to take user preferences for the vlogger of the target video into
consideration when predicting the interaction score. Thus, we combine the user
preference score for the video itself and the user preference score for its vlogger
to obtain the final user-video interaction score as follows.

ŷuv = w × eTuev + (1 − w) × eTuepv
, (16)

where w ∈ (0, 1) is the weight of user preferences for the video v itself, pv denotes
the vlogger who published the video v.

It is reasonable that if the content of a video is highly consistent with the
focus of its vlogger, the video itself and its vlogger play comparable roles in
interaction prediction since users like/dislike the video and its vlogger at the
same time. But if the two are somewhat divergent, either the video itself or its
vlogger plays a more important role. Motivated by that, we build a gate based on
the correlation between the video and its vlogger to adaptively calculate weights
of preferences at two different views as follows.

w = σ(eTv Qepv
), (17)

where Q ∈ R
2d×2d is model parameter to be trained.

4.6 Multi-task Learning

We train our model by optimizing the multiple tasks, i.e., a micro-video rec-
ommendation task, a vlogger recommendation task, and a contrastive learning
task.

For the micro-video recommendation task, we construct a BPR (Bayesian
Personalized Ranking) loss as follows.

Lvideo = −
∑

(u,v,v−)∈S

ln σ (ŷuv − ŷuv−) , (18)

where σ is the sigmoid function, S = {(u, v, v−) | (u, v) ∈ Y+, (u, v−) ∈ Y−}
denote the pairwise training data with negative sampling, Y+ and Y− denote
observable and unobservable user-video interactions, respectively.

In order to make the most of user-vlogger interaction data and cap-
ture vlogger-view user preferences more accurately, we leverage the vlog-
ger recommendation task as an auxiliary task to train the model. Simi-
larly, the training data of user-vlogger interactions can be denoted as S′ =
{(u, p, p′) | (u, p) ∈ Z+, (u, p′) ∈ Z−}, where Z+ denotes the set of observable
positive user-vlogger pairs, and Z− denotes the set of unobservable negative
user-vlogger pairs, we construct vlogger recommendation loss as follows.
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Lvlogger = −
∑

(u,p,p−)∈S′
ln σ

(
ŷup − ŷup−

)
. (19)

Finally, we train the model by multi-task learning, and the final loss function
is as follows.

L = Lvideo + λ1Lvlogger + λ2Lcl + λ3‖Θ‖, (20)

where λ1, λ2, λ3 are hyper-parameters that balance each loss function, and ‖Θ‖
is the regularization term of the model parameters.

5 Experiments

5.1 Experimental Settings

Datasets. We conduct experiments on two real-world datasets, i.e., one public
dataset and one industrial dataset.

• WeChat-Channels: This dataset is released by WeChat Big Data Challenge
2021. The dataset contains 14-day user interactions from WeChat-Channels,
a popular micro-video platform in China.

• TakaTak: This dataset is collected from TakaTak, a micro-video streaming
platform for Indian users. The dataset contains user behaviors in four weeks.

Both two datasets include user-video interactions, user-vlogger interactions,
and vlogger-video publishing relationships.

We preprocess the datasets to clean user-video and user-vlogger positive
interactions. We define posting comment, reading comments, liking, sharing, and
so on as explicit positive feedback to videos. For the WeChat-Channels dataset,
only the interactions which indicate explicit positive feedback from a user or
the watching loop greater than 1.5 or the watching time greater than 60 s are
retained. For the TakaTak dataset, the interactions with explicit positive feed-
back or completion rate greater than 1.8 or watching time greater than 15 s are
defined as positive interactions. We also remove users and micro-videos with less
than 5 interactions and remove vloggers who publish less than 3 micro-videos.
As a result, the ratio of positive user-video interactions to non-positive ones
approximately is equal to 1:3 for both datasets.

As for user-vlogger interactions, we treat following and entering the homepage
as explicit positive behaviors and define a user-vlogger interaction if there exists
an explicit positive interaction between them or the user interacts with more than
two micro-videos published by the vlogger. Further, we remove users and vloggers
with less than 5 interactions and obtain the final user-vlogger interactions.

The statistics of the processed user-video interactions and user-vlogger inter-
actions are shown in Table 1.

After sorting user interactions in ascending order by timestamp, we use the
leave-one-out method to divide a dataset into train/validation/test sets. For each
user, the last interaction is used for testing, the interaction before the last one
is used for validation, and the remaining interactions are used for training.
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Table 1. Statistics of the datasets

Dataset #Users #Micro-videos #Vloggers #User-video
Interactions

#User-vlogger
Interactions

WeChat 19739 25976 2088 1490633 34450

TakaTak 14571 13133 912 1661032 262548

Metrics. We adopt Recall@K and NDCG@K as metrics of performance eval-
uation, where Recall focuses on whether the recommended micro-videos are hit
or not and NDCG focuses on the ranking of the recommended micro-videos. We
set K to 10, 20, and 50.

Competitors. To evaluate the performance of our model, we choose the fol-
lowing models as the competitors.

• NGCF [7]: a GNN-based recommendation model. Based on the idea of col-
laborative filtering, the model explicitly models the high-order connectivity
between users and micro-videos through GNN, which is beneficial to embed-
ding learning.

• LightGCN [8]: a GNN-based recommendation model. The model finds that
the nonlinear activation function and feature transformation matrix in NGCF
degrade the performance, and it only utilizes simple weighting and aggrega-
tion methods.

• GTN [9]: a GNN-based recommendation model. The model considers that
not all user interactions are reliable and designs graph neural networks to
capture interaction reliability.

• SGL [19]: a recommendation model that introduces contrastive learning to
GNN. The model generates contrastive views by employing node drop (ND),
edge drop (ED), or random walk (RW), and then adds a contrastive loss to
align the embeddings of positive pairs.

• SimGCL [23]: a recommendation model that integrates with a contrastive
learning task. The model gives up the data augmentation at the graph level
in SGL and proposes an augmentation method at the embedding level, that
is, to construct positive pairs by adding uniform noise to the embeddings.

Implementation Details. For all the competitors, we adopt the implementa-
tions of open-source code. The hyperparameters of competitors are tuned based
on their original papers. For a fair comparison, we initialize all the model param-
eters with a normal distribution, set the embedding size to 64, and set the batch
size to 4096.

Our model is implemented by PyTorch. We use a random negative sam-
ple method and set the number of negative samples to 1 for the BPR loss.
We use Adam with a learning rate of 0.001 to optimize our model. For
the other hyperparameters, we tune λ1, λ2 and τ within {0.01,0.05,. . . ,5,10},
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{0.0001,0.0005,. . . ,1,5} and {0.01,0.05,. . . ,1,5}, respectively. The model reaches
the optimal performance on the WeChat-Channels dataset with λ1, λ2, and τ
set to 5, 0.0005, and 0.5 and on the TakaTak dataset with λ1, λ2, and τ set to
5, 0.05, and 0.05.

We train the model with an early stopping strategy. That is, we stop training
the model if Recall@10 does not increase on the validation set for 10 epochs
consecutively. We adopt model parameters achieving the best performance on
the validation set for testing. Our model is not allowed to recommend micro-
videos that have been watched by the user. Our implementation code is available
at https://github.com/laiweijiang/VAGNN.git.

5.2 Performance Comparison

The performance of all models on two datasets is listed in Table 2. From the
results, we have the following observations.

Our model achieves the best performance and outperforms all the competi-
tors on all datasets in terms of all metrics, indicating the superiority of our
model. We attribute this result to that we effectively model the complex rela-
tionship among users, micro-videos, and vloggers, and utilize contrastive learn-
ing to further enhance the performance of the model. LightGCN outperforms
NGCF in all datasets, which is consistent with the claim in [8]. However, the
performance of the GTN model is lower than LightGCN, presumably because
we removed users, micro-videos, and vloggers with few interactions during the
data processing stage. It may also remove some noise data simultaneously, which
is not beneficial for GTN.

Our model outperforms LightGCN by a large margin. For example, our
model outperforms LightGCN by 14.06% and 30.13% on Recall@10 in WeChat-
Channels and TakaTak datasets, respectively. Compared to LightGCN which
conducts embedding propagation on the user-video bipartite graph, we perform
embedding propagation on the user-video-vlogger tripartite graph. The experi-
mental results show that vloggers do contain extensive information, such as the
implied user preferences, in the micro-video scenario. Mining the information
related to vloggers helps our model enhance the quality of embedding.

The three SGL variants and SimGCL outperform LightGCN in most metrics.
Besides, SimGCL and SGL-ND are the second-best models on WeChat-Channels
and TakaTak datasets, respectively, which demonstrates the effectiveness of con-
trastive learning in graph recommendation models. However, SimGCL only has
the average performance on TakaTak, and also SGL-ND shows mediocre perfor-
mance on WeChat-Channels. The reason might be that in the data augmentation
phase, the approach of adding uniform noise by SimGCL and the approach of
randomly dropping nodes and surrounding edges by SGL-ND greatly change
the original embedding and graph structure, respectively, resulting in unstable
performance on different datasets. On the contrary, VA-GNN adopts cross-view
contrastive learning that directly relies on the structure of the graph, thus ben-
efiting stably from contrastive learning.

https://github.com/laiweijiang/VAGNN.git.
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Table 2. Recommendation performance on two datasets.

WeChat-Channels

Model Recall NDCG

@10 @20 @50 @10 @20 @50

NGCF 0.0382 0.0698 0.1356 0.0185 0.0264 0.0393

LightGCN 0.0441 0.0742 0.1413 0.0221 0.0296 0.0428

GTN 0.0433 0.0721 0.1385 0.0214 0.0286 0.0417

SGL-ED 0.0451 0.0751 0.1454 0.0222 0.0297 0.0435

SGL-ND 0.0441 0.0723 0.1404 0.0220 0.0291 0.0425

SGL-RW 0.0452 0.0752 0.1451 0.0225 0.0300 0.0438

SimGCL 0.0470 0.0801 0.1518 0.0233 0.0317 0.0458

VA-GNN 0.0503 0.0826 0.1545 0.0248 0.0330 0.0471

Improv. (%) 7.02 3.12 1.78 6.44 4.10 2.84

TakaTak

Model Recall NDCG

@10 @20 @50 @10 @20 @50

NGCF 0.0437 0.0810 0.1769 0.0204 0.0298 0.0487

LightGCN 0.0478 0.0867 0.1837 0.0227 0.0324 0.0514

GTN 0.0461 0.0852 0.1779 0.0224 0.0321 0.0504

SGL-ED 0.0481 0.0885 0.1809 0.0229 0.0330 0.0511

SGL-ND 0.0497 0.0903 0.1840 0.0241 0.0341 0.0527

SGL-RW 0.0467 0.0881 0.1833 0.0226 0.0329 0.0516

SimGCL 0.0471 0.0863 0.1823 0.0229 0.0327 0.0516

VA-GNN 0.0622 0.0987 0.1870 0.0320 0.0411 0.0585

Improv. (%) 25.15 9.30 1.63 32.78 20.53 11.01

5.3 Ablation Study

We evaluate the effectiveness of designed modules through the ablation study. We
construct five variants as shown in Table 3, where variant A is VA-GNN without
contrastive loss. Variant B is VA-GNN without the vlogger recommendation loss.
Variant C is VA-GNN without video-view embedding propagation. Variant D is
VA-GNN without vlogger-view embedding propagation. The variant E is VA-
GNN that predicts interaction scores without considering user preferences for
the vlogger of the target video, i.e., predicting the user-video interaction score
between user u and video v as ŷuv = eTuev. The results on two datasets are
shown in Table 3.

From the results, we find that variants C and D have a substantial decline
in performance, compared to VA-GNN, indicating that embedding propagations
over video-view and vlogger-view are critical in modeling and mining the rela-
tionship among users, micro-videos and vloggers. The performance of variant
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Table 3. Ablation study.

WeChat-Channels

Model Recall NDCG

@10 @20 @50 @10 @20 @50

VA-GNN 0.0503 0.0826 0.1545 0.0248 0.0330 0.0471

(A) w/o CL loss 0.0470 0.0778 0.1492 0.0235 0.0312 0.0453

(B) w/o vlogger loss 0.0424 0.0732 0.1439 0.0214 0.0291 0.0430

(C) w/o video-view 0.0240 0.0421 0.0921 0.0114 0.0159 0.0257

(D) w/o vlogger-view 0.0443 0.0725 0.1313 0.0226 0.0296 0.0412

(E) w/o ŷup 0.0477 0.0811 0.1518 0.0238 0.0322 0.0461

TakaTak

Model Recall NDCG

@10 @20 @50 @10 @20 @50

VA-GNN 0.0622 0.0987 0.1870 0.0320 0.0411 0.0585

(A) w/o CL loss 0.0605 0.0980 0.1791 0.0303 0.0396 0.0555

(B) w/o vlogger loss 0.0488 0.0838 0.1721 0.0226 0.0314 0.0487

(C) w/o video-view 0.0349 0.0662 0.1371 0.0155 0.0233 0.0372

(D) w/o vlogger-view 0.0465 0.0817 0.1662 0.0215 0.0303 0.0469

(E) w/o ŷup 0.0463 0.0837 0.1727 0.0222 0.0315 0.0490

Fig. 2. Sensitivity of vlogger loss weight λ1 on two datasets.

E is comparable to LightGCN but shows a significant decrease compared to
VA-GNN. This indicates that user preferences for a micro-video originate from
both the micro-video itself and the vlogger who publishes the video. Therefore,
combining the user preference score for the video itself and the user preference
score for its vlogger to predict the final user-video interaction score can effec-
tively improve the model performance. Further, the performance of variant B
shows that learning from positive user-vlogger pairs can substantially improve
the model performance. Finally, the variant model (A) shows a slight perfor-
mance decline, compared to VA-GNN, this indicates that contrastive learning
can boost the performance of the model a bit.
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Fig. 3. Sensitivity of contrastive loss weight λ2 on two datasets.

Fig. 4. Sensitivity of the temperature τ on two datasets.

5.4 Hyperparameter Sensitivity Analysis

We conduct experiments on two datasets to observe the impact of different values
of hyperparameters (i.e., vlogger loss weight λ1, contrastive loss weight λ2 and
the temperature τ) on the performance. Figures 2, 3, and 4 show the performance
changes with the change of these hyperparameters, respectively.

From Fig. 2, we find that the model performance increases sharply when the
value of λ1 is set from 0.01 to 5 and achieves the maximum when λ1 is 5, and then
decreases slowly when λ1 is set from 5 to 10. Obviously, choosing an appropriate
λ1 has a large impact on the performance. From Fig. 3, we find the choice of λ2

is directly related to the dataset. On the WeChat-Channels dataset, the model
performs best with λ2 of 0.0005, on the WeChat-Channels dataset, the model
performs best with λ2 of 0.1 on the TakaTak dataset.

The temperature controls the sensitivity of hard samples and the tolerance
of similar samples. In general, a low temperature is beneficial for mining hard
negative samples, but a quite low value may damage the semantic structure.
From Fig. 4, we can find that a high or low τ has different impacts on different
datasets. Besides, TakaTak dataset is more sensitive to the temperature than
WeChat-Channels dataset, and deviating from the best setting will degrade the
performance remarkably. That is because the effect of temperature will be mag-
nified by λ2. λ2 on TakaTak dataset needs to be set relatively large to achieve
good performance. Therefore, changes in temperature on TakaTak dataset can
obviously affect the performance.

6 Conclusion

The popularity of micro-video apps benefits from a large number of micro-videos
produced by plenty of different vloggers. Inspired by this characteristic, VA-GNN
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models the relationship among users, micro-videos, and vloggers, and mines user
preferences for micro-videos as well as vloggers for recommendations. VA-GNN
also incorporates contrastive learning into graph neural networks, thus achieving
the best micro-video recommendation performance on two real-world datasets
while comparing to five existing models.
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