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Abstract. Recent successes in image generation, model-based reinforce-
ment learning, and text-to-image generation have demonstrated the
empirical advantages of discrete latent representations, although the
reasons behind their benefits remain unclear. We explore the relation-
ship between discrete latent spaces and disentangled representations by
replacing the standard Gaussian variational autoencoder (VAE) with a
tailored categorical variational autoencoder. We show that the under-
lying grid structure of categorical distributions mitigates the problem
of rotational invariance associated with multivariate Gaussian distribu-
tions, acting as an efficient inductive prior for disentangled representa-
tions. We provide both analytical and empirical findings that demon-
strate the advantages of discrete VAEs for learning disentangled rep-
resentations. Furthermore, we introduce the first unsupervised model
selection strategy that favors disentangled representations.

Keywords: Categorical VAE · Disentanglement

1 Introduction

Discrete variational autoencoders based on categorical distributions [17,28] or
vector quantization [45] have enabled recent success in large-scale image gener-
ation [34,45], model-based reinforcement learning [13,14,31], and perhaps most
notably, in text-to-image generation models like Dall-E [33] and Stable Diffusion
[37]. Prior work has argued that discrete representations are a natural fit for
complex reasoning or planning [17,31,33] and has shown empirically that a dis-
crete latent space yields better generalization behavior [10,13,37]. Hafner et al.
[13] hypothesize that the sparsity enforced by a vector of discrete latent variables
could encourage generalization behavior. However, they admit that “we do not
know the reason why the categorical variables are beneficial.”
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Fig. 1. Four observations and their latent representation with a Gaussian and discrete
VAE. Both VAEs encourage similar inputs to be placed close to each other in latent
space. Left: Four examples from the MPI3D dataset [11]. The horizontal axis depicts
the object’s shape, and the vertical axis depicts the angle of the arm. Middle: A 2-
dimensional latent space of a Gaussian VAE representing the four examples. Distances
in the Gaussian latent space are related to the Euclidean distance. Right: A categorical
latent space augmented with an order of the categories representing the same examples.
The grid structure of the discrete latent space makes it more robust against rotations
constituting a stronger inductive prior for disentanglement.

We focus on an extensive study of the structural impact of discrete represen-
tations on the latent space. The disentanglement literature [3,15,25] provides a
common approach to analyzing the structure of latent spaces. Disentangled rep-
resentations [3] recover the low-dimensional and independent ground-truth fac-
tors of variation of high-dimensional observations. Such representations promise
interpretability [1,15], fairness [7,24,42], and better sample complexity for learn-
ing [3,32,38,46]. State-of-the-art unsupervised disentanglement methods enrich
Gaussian variational autoencoders [20] with regularizers encouraging disentan-
gling properties [5,6,16,19,22]. Locatello et al. [25] showed that unsupervised dis-
entanglement without inductive priors is theoretically impossible. Thus, a recent
line of work has shifted to weakly-supervised disentanglement [21,26,27,40].

We focus on the impact on disentanglement of replacing the standard vari-
ational autoencoder with a slightly tailored categorical variational autoencoder
[17,28]. Most disentanglement metrics assume an ordered latent space, which
can be traversed and visualized by fixing all but one latent variable [6,9,16].
Conventional categorical variational autoencoders lack sortability since there is
generally no order between the categories. For direct comparison via established
disentanglement metrics, we modify the categorical variational autoencoder to
represent each category with a one-dimensional representation. While regular-
ization and supervision have been discussed extensively in the disentanglement
literature, the variational autoencoder is a component that has mainly remained
constant. At the same time, Watters et. al [50] have observed that Gaussian
VAEs might suffer from rotations in the latent space, which can harm disentan-
gling properties. We analyze the rotational invariance of multivariate Gaussian
distributions in more detail and show that the underlying grid structure of cat-
egorical distributions mitigates this problem and acts as an efficient inductive
prior for disentangled representations. We first show that the observation from
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[5] still holds in the discrete case, in that neighboring points in the data space
are encouraged to be also represented close together in the latent space. Sec-
ond, the categorical latent space is less rotation-prone than its Gaussian coun-
terpart and thus, constitutes a stronger inductive prior for disentanglement as
illustrated in Fig. 1. Third, the categorical variational autoencoder admits an
unsupervised disentangling score that is correlated with several disentanglement
metrics. Hence, to the best of our knowledge, we present the first disentangling
model selection based on unsupervised scores.

2 Disentangled Representations

The disentanglement literature is usually premised on the assumption that a
high-dimensional observation x from the data space X is generated from a
low-dimensional latent variable z whose entries correspond to the dataset’s
ground-truth factors of variation such as position, color, or shape [3,43]. First,
the independent ground-truth factors are sampled from some distribution z ∼
p(z) =

∏
p(zi). The observation is then a sample from the conditional probabil-

ity x ∼ p(x|z). The goal of disentanglement learning is to find a representation
r(x) such that each ground-truth factor zi is recovered in one and only one
dimension of the representation. The formalism of variational autoencoders [20]
enables an estimation of these distributions. Assuming a known prior p(z), we
can depict the conditional probability pθ(x|z) as a parameterized probabilis-
tic decoder. In general, the posterior pθ(z|x) is intractable. Thus, we turn to
variational inference and approximate the posterior by a parameterized prob-
abilistic encoder qφ(z|x) and minimize the Kullback-Leibler (KL) divergence
DKL

(
qφ(z|x) ‖ pθ(z|x)

)
. This term, too, is intractable but can be minimized by

maximizing the evidence lower bound (ELBO)

Lθ,φ(x) = Eqφ(z |x) [log pθ(x|z)] − DKL

(
qφ(z|x) ‖ p(z)

)
. (1)

State-of-the-art unsupervised disentanglement methods assume a Normal prior
p(z) = N (

0, I
)

as well as an amortized diagonal Gaussian for the approximated
posterior distribution qφ(z|x) = N (

z | μφ(x),σφ(x)I
)
. They enrich the ELBO

with regularizers encouraging disentangling [5,6,16,19,22] and choose the rep-
resentation as the mean of the approximated posterior r(x) = μφ(x) [25].

Discrete VAE. We propose a variant of the categorical VAE modeling a joint
distribution of n Gumbel-Softmax random variables [17,28]. Let n be the dimen-
sion of z, m be the number of categories, αj

i ∈ (0,∞) be the unnormalized
probabilities of the categories and gj

i ∼ Gumbel(0, 1) be i.i.d. samples drawn
from the Gumbel distribution for i ∈ [n], j ∈ [m]. For each dimension i ∈ [n],
we sample a Gumbel-softmax random variable zi ∼ GS(αi) over the simplex
Δm−1 = {y ∈ R

n | yj ∈ [0, 1],
∑m

j=1 yj = 1} by setting

zj
i =

exp(log αj
i + gj

i )∑m
k=1 exp(log αk

i + gk
i )

(2)



596 D. Friede et al.

Fig. 2. We utilize n Gumbel-softmax distributions (GS) to approximate the poste-
rior distribution. Left: An encoder learns nm parameters aj

i for the n joint distribu-
tions. Each m-dimensional sample is mapped into the one-dimensional unit interval as
described in Sect. 3.1. Right: Three examples of (normalized) parameters of a single
Gumbel-softmax distribution and the corresponding one-dimensional distribution of z̄i.

for j ∈ [m]. We set the approximated posterior distribution to be a joint distri-
bution of n Gumbel-softmax distributions, i.e., qφ(z|x) = GSn

(
z | αφ(x)

)
and

assume a joint discrete uniform prior distribution p(z) = Un{1,m}. Note that
z is of dimension n × m. To obtain the final n-dimensional latent variable z̄,
we define a function f : Δm−1 → [0, 1] as the dot product of zi with the vector
vm = (v1

m, . . . , vm
m) of m equidistant entries vj

m = j−1
m−1 of the interval1 [0, 1], i.e.,

z̄i = f(zi) = zi · vm = 1
m−1

∑m
j=1 jzj

i (3)

as illustrated in Fig. 2. We will show in Sect. 3.2 that this choice of the latent
variable z̄ has favorable disentangling properties. The representation is obtained
by the standard softmax function r(x)i = f

(
softmax(log αφ(x)i)

)
.

3 Learning Disentangled Discrete Representations

Using a discrete distribution in the latent space is a strong inductive bias for
disentanglement. In this section, we introduce some properties of the discrete
latent space and compare it to the latent space of a Gaussian VAE. First, we
show that mapping the discrete categories into a shared unit interval as in Eq. 3
causes an ordering of the discrete categories and, in turn, enable a definition of
neighborhoods in the latent space. Second, we derive that, in the discrete case,
neighboring points in the data space are encouraged to be represented close
together in the latent space. Third, we show that the categorical latent space
is less rotation-prone than its Gaussian counterpart and thus, constituting a
stronger inductive prior for disentanglement. Finally, we describe how to select
models with better disentanglement using the straight-through gap.

1 The choice of the unit interval is arbitrary.
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3.1 Neighborhoods in the Latent Space

In the Gaussian case, neighboring points in the observable space correspond to
neighboring points in the latent space. The ELBO Loss Eq. 1, more precisely the
reconstruction loss as part of the ELBO, implies a topology of the observable
space. For more details on this topology, see Appendix 2. In the case, where the
approximated posterior distribution, qφ(z|x), is Gaussian and the covariance
matrix, Σ(x), is diagonal, the topology of the latent space can be defined in a
similar way: The negative log-probability is the weighted Euclidean distance to
the mean μ(x) of the distribution

C − log qφ(z|x) =
1
2

[(z − μ(x))ᵀΣ(x)(z − μ(x))]2 =
n∑

i=1

(zi − μi(x))2

2σi(x)
(4)

where C denotes the logarithm of the normalization factor in the Gaussian den-
sity function. Neighboring points in the observable space will be mapped to
neighboring points in the latent space to reduce the log-likelihood cost of sam-
pling in the latent space [5].

In the case of categorical latent distributions, the induced topology is not
related to the euclidean distance and, hence, it does not encourage that points
that are close in the observable space will be mapped to points that are close in
the latent space. The problem becomes explicit if we consider a single categorical
distribution. In the latent space, neighbourhoods entirely depend on the shared
representation of the m classes. The canonical representation maps a class j
into the one-hot vector ej = (e1, e2, . . . , em) with ek = 1 for k = j and ek = 0
otherwise. The representation space consists of the m-dimensional units vectors,
and all classes have the same pairwise distance between each other.

To overcome this problem, we inherit the canonical order of R by depicting
a 1-dimensional representation space. We consider the representation z̄i = f(zi)
from Eq. 3 that maps a class j on the value j−1

m−1 inside the unit interval. In
this way, we create an ordering on the classes 1 < 2 < · · · < m and define the
distance between two classes by d(j, k) = 1

m−1 |j−k|. In the following, we discuss
properties of a VAE using this representation space.

3.2 Disentangling Properties of the Discrete VAE

In this section, we show that neighboring points in the observable space are
represented close together in the latent space and that each data point is repre-
sented discretely by a single category j for each dimension i ∈ {1, . . . , n}. First,
we show that reconstructing under the latent variable z̄i = f(zi) encourages each
data point to utilize neighboring categories rather than categories with a larger
distance. Second, we discuss how the Gumbel-softmax distribution is encouraged
to approximate the discrete categorical distribution. For the Gaussian case, this
property was shown by [5]. Here, the ELBO (Eq. 1) depicts an inductive prior
that encourages disentanglement by encouraging neighboring points in the data
space to be represented close together in the latent space [5]. To show these
properties for the D-VAE, we use the following proposition. The proof can be
found in Appendix 1.
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Proposition 1. Let αi ∈ [0,∞)m, zi ∼ GS(αi) be as in Eq. 2 and z̄i = f(zi)
be as in Eq. 3. Define jmin = argminj{αj

i > 0} and jmax = argmaxj{αj
i > 0}.

Then it holds that

(a) supp(f) = ( jmin

m−1 , jmax

m−1 )

(b) αj
i∑m

k=1 αk
i

→ 1 ⇒ P(zj
i = 1) = 1 ∧ f(zi) = 1{ j

m−1}.

Proposition 1 has multiple consequences. First, a class j might have a high
density regarding z̄i = f(zi) although αj

i ≈ 0. For example, if j is positioned
between two other classes with large αk

i

(
e.g. j = 3 in Fig. 2(a)

)
Second, if

there is a class j such that αk
i ≈ 0 for all k ≥ j or k ≤ j, then the density

of these classes is also almost zero
(
Figure 2(a-c)

)
. Note that a small support

benefits a small reconstruction loss since it reduces the probability of sampling
a wrong class. The probabilities of Fig. 2 (a) and (b) are the same with the only
exception that α3

i ↔ α5
i are swapped. Since the probability distribution in (b)

yields a smaller support and consequently a smaller reconstruction loss while
the KL divergence is the same for both probabilities,2 the model is encouraged
to utilize probability (b) over (a). This encourages the representation of similar
inputs in neighboring classes rather than classes with a larger distance.

Consequently, we can apply the same argument as in [5] Sect. 4.2 about the
connection of the posterior overlap with minimizing the ELBO. Since the pos-
terior overlap is highest between neighboring classes, confusions caused by sam-
pling are more likely in neighboring classes than those with a larger distance.
To minimize the penalization of the reconstruction loss caused by these confu-
sions, neighboring points in the data space are encouraged to be represented
close together in the latent space. Similar to the Gaussian case [5], we observe
an increase in the KL divergence loss during training while the reconstruction
loss continually decreases. The probability of sampling confusion and, there-
fore, the posterior overlap must be reduced as much as possible to reduce the
reconstruction loss. Thus, later in training, data points are encouraged to utilize
exactly one category while accepting some penalization in the form of KL loss,
meaning that αj

i /(
∑m

k=1 αk
i ) → 1. Consequently, the Gumbel-softmax distribu-

tion approximates the discrete categorical distribution, see Proposition 1 (b). An
example is shown in Fig. 2(c). This training behavior results in the unique situ-
ation in which the latent space approximates a discrete representation while its
classes maintain the discussed order and the property of having neighborhoods.

3.3 Structural Advantages of the Discrete VAE

In this section, we demonstrate that the properties discussed in Sect. 3.2 aid dis-
entanglement. So far, we have only considered a single factor zi of the approxi-
mated posterior qφ(z|x). To understand the disentangling properties regarding
the full latent variable z, we first highlight the differences between the continuous
and the discrete approach.

2 The KL divergence is invariant under permutation.
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Fig. 3. Geometry analysis of the latent space of the circles experiment [50]. Col 1,
top: The generative factor distribution of the circles dataset. Bottom: A selective
grid of points in generative factor space spanning the data distribution. Col 2: The
Mutual Information Gap (MIG) [6] for 50 Gaussian VAE (top) and a categorical VAE
(bottom), respectively. The red star denotes the median value. Col 3 - 5: The latent
space visualized by the representations of the selective grid of points. We show the
best, 5th best, and 10th model determined by the MIG score of the Gaussian VAE
(top) and the categorical VAE (bottom), respectively.

In the continuous case, neighboring points in the observable space are rep-
resented close together in the latent space. However, this does not imply disen-
tanglement, since the first property is invariant under rotations over R

n while
disentanglement is not. Even when utilizing a diagonal covariance matrix for the
approximated posterior q(z|x) = N (

z | μ(x),σ(x)I
)
, which, in general, is not

invariant under rotation, there are cases where rotations are problematic, as the
following proposition shows. We provide the proof in Appendix 1.

Proposition 2 (Rotational Equivariance). Let α ∈ [0, 2π) and let z ∼
N (

μ, Σ
)
with Σ = σI, σ = (σ0, . . . , σn). If σi = σj for some i = j ∈ [n], then

z is equivariant under any i, j-rotation, i.e., Rα
ijz

d= y with y ∼ N (
Rα

ijμ, Σ
)
.

Since, in the Gaussian VAE, the KL-divergence term in Eq. 1 is invariant under
rotations, Proposition 2 implies that its latent space can be arbitrarily rotated
in dimensions i, j that hold equal variances σi = σj . Equal variances can occur,
for example, when different factors exert a similar influence on the data space,
e.g., X-position and Y-position or for factors where high log-likelihood costs of
potential confusion causes lead to variances close to zero. In contrast, the discrete
latent space is invariant only under rotations that are axially aligned.

We illustrate this with an example in Fig. 3. Here we illustrate the 2-
dimensional latent space of a Gaussian VAE model trained on a dataset gen-
erated from the two ground-truth factors, X-position and Y-position. We train
50 copies of the model and depicted the best, the 5th best, and the 10th best
latent space regarding the Mutual Information Gap (MIG) [6]. All three latent
spaces exhibit rotation, while the disentanglement score is strongly correlated
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with the angle of the rotation. In the discrete case, the latent space is, accord-
ing to Proposition 1 (b), a subset of the regular grid G

n with G = { j
m−1}m−1

j=0

as illustrated in Fig. 1 (right). Distances and rotations exhibit different geo-
metric properties on G

n than on R
n. First, the closest neighbors are axially

aligned. Non-aligned points have a distance at least
√

2 times larger. Conse-
quently, representing neighboring points in the data space close together in the
latent space encourages disentanglement. Secondly, Gn is invariant only under
exactly those rotations that are axially aligned. Figure 3 (bottom right) illus-
trates the 2-dimensional latent space of a D-VAE model trained on the same
dataset and with the same random seeds as the Gaussian VAE model. Contrary
to the Gaussian latent spaces, the discrete latent spaces are sensible of the axes
and generally yield better disentanglement scores. The set of all 100 latent spaces
is available in Figs. 10 and 11 in Appendix 7.

3.4 The Straight-Through Gap

We have observed that sometimes the models approach local minima, for which
z is not entirely discrete. As per the previous discussion, those models have
inferior disentangling properties. We leverage this property by selecting models
that yield discrete latent spaces. Similar to the Straight-Through Estimator [4],
we round z off using argmax and measure the difference between the rounded
and original ELBO, i.e., GapST (x) = |LST

θ,φ(x) − Lθ,φ(x)|, which equals zero if
z is discrete. Figure 4 (left) illustrates the Spearman rank correlation between
GapST and various disentangling metrics on different datasets. A smaller GapST

value indicates high disentangling scores for most datasets and metrics.

4 Related Work

Previous studies have proposed various methods for utilizing discrete latent
spaces. The REINFORCE algorithm [51] utilizes the log derivative trick. The
Straight-Through estimator [4] back-propagates through hard samples by replac-
ing the threshold function with the identity in the backward pass. Additional
prior work employed the nearest neighbor look-up called vector quantization [45]
to discretize the latent space. Other approaches use reparameterization tricks [20]
that enable the gradient computation by removing the dependence of the den-
sity on the input parameters. Maddison et al. [28] and Jang et al. [17] propose
the Gumbel-Softmax trick, a continuous reparameterization trick for categorical
distributions. Extensions of the Gumbel-Softmax trick discussed control vari-
ates [12,44], the local reparameterization trick [39], or the behavior of multiple
sequential discrete components [10]. In this work, we focus on the structural
impact of discrete representations on the latent space from the viewpoint of
disentanglement.
State-of-the-art unsupervised disentanglement methods enhance Gaussian VAEs
with various regularizers that encourage disentangling properties. The β-VAE
model [16] introduces a hyperparameter to control the trade-off between the
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Table 1. The median MIG scores in % for state-of-the-art unsupervised methods com-
pared to the discrete methods. Results taken from [25] are marked with an asterisk (*).
We have re-implemented all other results with the same architecture as in [25] for the
sake of fairness. The last row depicts the scores of the models selected by the smallest
GapST . The 25% and the 75% quantiles can be found in Table 5 in Appendix 7.

Model dSprites C-dSprites SmallNORB Cars3D Shapes3D MPI3D

β-VAE [16] 11.3∗ 12.5∗ 20.2∗ 9.5∗ n.a. n.a.

β-TCVAE [6] 17.6∗ 14.6∗ 21.5∗ 12.0∗ n.a. n.a.

DIP-VAE-I [22] 3.6∗ 4.7∗ 16.7∗ 5.3∗ n.a. n.a.

DIP-VAE-II [22] 6.2∗ 4.9∗ 24.1∗ 4.2∗ n.a. n.a.

AnnealedVAE [5] 7.8∗ 10.7∗ 4.6∗ 6.7∗ n.a. n.a.

FactorVAE [19] 17.4 14.3 25.3 9.0 34.7 11.1

D-VAE 17.4 9.4 19.0 8.5 28.8 12.8

FactorDVAE 21.7 15.5 23.2 14.9 42.4 30.5

Selection 39.5 20.0 22.7 19.1 40.1 32.3

reconstruction loss and the KL-divergence term, promoting disentangled latent
representations. The annealedVAE [5] adapts to the β-VAE by annealing the
β hyperparameter during training. FactorVAE [19] and β-TCVAE [6] promote
independence among latent variables by controlling the total correlation between
them. DIP-VAE-I and DIP-VAE-II [22] are two variants that enforce disentan-
gled latent factors by matching the covariance of the aggregated posterior to
that of the prior. Previous research has focused on augmenting the standard
variational autoencoder with discrete factors [8,18,29] to improve disentangling
properties. In contrast, our goal is to replace the variational autoencoder with a
categorical one, treating every ground-truth factor as a discrete representation.

5 Experimental Setup

Methods. The experiments aim to compare the Gaussian VAE with the discrete
VAE. We consider the unregularized version and the total correlation penalizing
method, VAE, D-VAE, FactorVAE [19] and FactorDVAE a version of FactorVAE
for the D-VAE. We provide a detailed discussion of FactorDVAE in Appendix 3.
For the semi-supervised experiments, we augment each loss function with the
supervised regularizer Rs as in Appendix 3. For the Gaussian VAE, we choose
the BCE and the L2 loss for Rs, respectively. For the discrete VAE, we select
the cross-entropy loss, once without and once with masked attention where we
incorporate the knowledge about the number of unique variations. We discuss
the corresponding learning objectives in more detail in Appendix 3.
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Fig. 4. The Spearman rank correlation between various disentanglment metrics and
GapST (left) and the statistical sample efficiency, i.e., the downstream task accuracy
based on 100 samples divided by the one on 10 000 samples (right) on different datasets:
dSprites (A), C-dSprites (B), SmallNORB (C), Cars3D (D), Shapes3D (E), MPI3D (F).
Left: Correlation to GapST indicates the disentanglement skill. Right: Only a high
MIG score reliably leads to a higher sample efficiency over all six datasets.

Datasets. We consider six commonly used disentanglement datasets which offer
explicit access to the ground-truth factors of variation: dSprites [16], C-dSprites
[25], SmallNORB [23], Cars3D [35], Shapes3D [19] and MPI3D [11]. We provide
a more detailed description of the datasets in Table 8 in Appendix 6.

Metrics. We consider the commonly used disentanglement metrics that have
been discussed in detail in [25] to evaluate the representations: BetaVAE metric
[16], FactorVAE metric [19], Mutual Information Gap (MIG) [6], DCI Disentan-
glement (DCI) [9], Modularity [36] and SAP score (SAP) [22]. As illustrated on
the right side of Fig. 4, the MIG score seems to be the most reliable indicator of
sample efficiency across different datasets. Therefore, we primarily focus on the
MIG disentanglement score. We discuss this in more detail in Appendix 4.

Experimental Protocol. We adopt the experimental setup of prior work
([25,27]) for the unsupervised and for the semi-supervised experiments, respec-
tively. Specifically, we utilize the same neural architecture for all methods so that
all differences solely emerge from the distribution of the type of VAE. For the
unsupervised case, we run each considered method on each dataset for 50 differ-
ent random seeds. Since the two unregularized methods do not have any extra
hyperparameters, we run them for 300 different random seeds instead. For the
semi-supervised case, we consider two numbers (100/1000) of perfectly labeled
examples and split the labeled examples (90%/10%) into a training and vali-
dation set. We choose 6 values for the correlation penalizing hyperparameter γ
and for the semi-supervising hyperparameter ω from Eq. 6 and 7 in Appendix 3,
respectively. We present the full implementation details in Appendix 5.

6 Experimental Results

First, we investigate whether a discrete VAE offers advantages over Gaussian
VAEs in terms of disentanglement properties, finding that the discrete model
generally outperforms its Gaussian counterpart and showing that the FactorD-
VAE achieves new state-of-the-art MIG scores on most datasets. Additionally, we
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Fig. 5. Comparison between the unregularized Gaussian VAE and the discrete VAE
by kernel density estimates of 300 runs, respectively. Left: Comparison on the MPI3D
dataset w.r.t. the six disentanglement metrics. The discrete model yields a better score
for each metric, with median improvements ranging from 2% for Modularity to 104%
for MIG. Right: Comparison on all six datasets w.r.t. the MIG metric. With the
exception of SmallNORB, the discrete VAE yields a better score for all datasets with
improvements of the median score ranging from 50% on C-dSprites to 336% on dSprites.

propose a model selection criterion based on GapST to find good discrete mod-
els solely using unsupervised scores. Lastly, we examine how incorporating label
information can further enhance discrete representations. The implementations
are in JAX and Haiku and were run on a RTX A6000 GPU.3

6.1 Improvement in Unsupervised Disentanglement Properties

Comparison of the Unregularized Models. In the first experiment, we aim
to answer our main research question of whether discrete latent spaces yield
structural advantages over their Gaussian counterparts. Figure 5 depicts the
comparison regarding the disentanglement scores (left) and the datasets (right).
The discrete model achieves a better score on the MPI3D dataset for each metric
with median improvements ranging from 2% for Modularity to 104% for MIG.
Furthermore, the discrete model yields a better score for all datasets but Small-
NORB with median improvements ranging from 50% on C-dSprites to 336%
on dSprites. More detailed results can be found in Table 6, Fig. 12, and Fig. 13
in Appendix 7. Taking into account all datasets and metrics, the discrete VAE
improves over its Gaussian counterpart in 31 out of 36 cases.

Comparison of the Total Correlation Regularizing Models. For each
VAE, we choose the same 6 values of hyperparameter γ for the total correlation
penalizing method and train 50 copies, respectively. The right side of Fig. 6
depicts the comparison of FactorVAE and FactorDVAE w.r.t. the MIG metric.
The discrete model achieves a better score for all datasets but SmallNORB with
median improvements ranging from 8% on C-dSprites to 175% on MPI3D.

3 The implementations and Appendix are at https://github.com/david-friede/lddr.

https://github.com/david-friede/lddr
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Fig. 6. Disentangling properties of FactorDVAE on different datasets: dSprites (A),
C-dSprites (B), SmallNORB (C), Cars3D (D), Shapes3D (E), MPI3D (F). Left: The
Spearman rank correlation between various disentangling metrics and GapST of D-
VAE and FactorDVAE combined. A small GapST indicates high disentangling scores
for most datasets regarding the MIG, DCI, and SAP metrics. Right: A comparison
of the total correlation regularizing Gaussian and the discrete model w.r.t. the MIG
metric. The discrete model yields a better score for all datasets but SmallNORB with
median improvements ranging from 8% on C-dSprites to 175% on MPI3D.

6.2 Match State-of-the-Art Unsupervised Disentanglement
Methods

Current state-of-the-art unsupervised disentanglement methods enrich Gaussian
VAEs with various regularizers encouraging disentangling properties. Table 1
depicts the MIG scores of all methods as reported in [25] utilizing the same
architecture as us. FactorDVAE achieves new state-of-the-art MIG scores on all
datasets but SmallNORB, improving the previous best scores by over 17% on
average. These findings suggest that incorporating results from the disentangle-
ment literature might lead to even stronger models based on discrete represen-
tations.

6.3 Unsupervised Selection of Models with Strong Disentanglement

A remaining challenge in the disentanglement literature is selecting the hyper-
parameters and random seeds that lead to good disentanglement scores [27].
We propose a model selection based on an unsupervised score measuring the
discreteness of the latent space utilizing GapST from Sect. 3.4. The left side
of Fig. 6 depicts the Spearman rank correlation between various disentangling
metrics and GapST of D-VAE and FactorDVAE combined. Note that the unreg-
ularized D-VAE model can be identified as a FactorDVAE model with γ = 0. A
small Straight-Through Gap corresponds to high disentangling scores for most
datasets regarding the MIG, DCI, and SAP metrics. This correlation is most
vital for the MIG metric. We anticipate finding good hyperparameters by select-
ing those models yielding the smallest GapST . The last row of Table 1 confirms
this finding. This model selection yields MIG scores that are, on average, 22%
better than the median score and not worse than 6%.
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Fig. 7. The percentage of each semi-supervised method being the best over all datasets
and disentanglement metrics for different selection methods: median, lowest Rs, lowest
GapST , median for 1000 labels. The unregularized discrete method outperforms the
other methods in semi-supervised disentanglement task. Utilizing the masked regular-
izer improves over the unmasked one.

6.4 Utilize Label Information to Improve Discrete Representations

Locatello et al. [27] employ the semi-supervised regularizer Rs by including 90%
of the label information during training and utilizing the remaining 10% for a
model selection. We also experiment with a model selection based on the GapST

value. Figure 7 depicts the percentage of each semi-supervised method being the
best over all datasets and disentanglement metrics. The unregularized discrete
method surpasses the other methods on the semi-supervised disentanglement
task. The advantage of the discrete models is more significant for the median
values than for the model selection. Utilizing GapST for selecting the discrete
models only partially mitigates this problem. Incorporating the number of unique
variations by utilizing the masked regularizer improves the disentangling prop-
erties significantly, showcasing another advantage of the discrete latent space.
The quantiles of the discrete models can be found in Table 7 in Appendix 7.

6.5 Visualization of the Latent Categories

Prior work uses latent space traversals for qualitative analysis of representa-
tions [5,16,19,50]. A latent vector z ∼ qφ(z|x) is sampled, and each dimension
zi is traversed while keeping the other dimensions constant. The traversals are
then reconstructed and visualized. Unlike the Gaussian case, the D-VAE’s latent
space is known beforehand, allowing straightforward traversal along the cate-
gories. Knowing the number of unique variations lets us use masked attention to
determine the number of each factor’s categories, improving latent space inter-
pretability. Figure 8 illustrates the reconstructions of four random inputs and
latent space traversals of the semi-supervised D-VAE utilizing masked atten-
tions. While the reconstructions are easily recognizable, their details can be par-
tially blurry, particularly concerning the object shape. The object color, object
size, camera angle, and background color are visually disentangled, and their
categories can be selected straightforwardly to create targeted observations.
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Fig. 8. Reconstructions and latent space traversals of the semi-supervised D-VAE,
utilizing masked attentions with the lowest Rs value. The masked attention allows
for the incorporation of the number of unique variations, such as two for the object
size. We visualize four degrees of freedom (DOF), selected equidistantly from the total
of 40. Left: The reconstructions are easily recognizable, albeit with blurry details.
Right: The object color, size, camera angle, and background color (BG) are visually
disentangled. The object shape and the DOF factors remain partially entangled.

7 Conclusion

In this study, we investigated the benefits of discrete latent spaces in the context
of learning disentangled representations by examining the effects of substituting
the standard Gaussian VAE with a categorical VAE. Our findings revealed that
the underlying grid structure of categorical distributions mitigates the rotational
invariance issue associated with multivariate Gaussian distributions, thus serving
as an efficient inductive prior for disentangled representations.

In multiple experiments, we demonstrated that categorical VAEs outper-
form their Gaussian counterparts in disentanglement. We also determined that
the categorical VAE provides an unsupervised score, the Straight-Through Gap,
which correlates with some disentanglement metrics, providing, to the best of
our knowledge, the first unsupervised model selection score for disentanglement.

However, our study has limitations. We focused on discrete latent spaces,
without investigating the impact of vector quantization on disentanglement. Fur-
thermore, the Straight-Through Gap does not show strong correlation with dis-
entanglement scores, affecting model selection accuracy. Additionally, our recon-
structions can be somewhat blurry and may lack quality.

Our results offer a promising direction for future research in developing more
powerful models with discrete latent spaces. Such future research could incorpo-
rate findings from the disentanglement literature and potentially develop novel
regularizations tailored to discrete latent spaces.
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