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Abstract. This paper introduces the online state exploration problem.
In the problem, there is a hidden d-dimensional target state. We are given
a distance function between different states in the space and a penalty
function depending on the current state for each incorrect guess. The
goal is to move to a vector that dominates the target state starting from
the origin in the d-dimensional space while minimizing the total distance
and penalty cost. This problem generalizes several natural online discrete
optimization problems such as multi-dimensional knapsack cover, cow
path, online bidding, and online search. For online state exploration, the
paper gives results in the worst-case competitive analysis model and in
the online algorithms augmented with the prediction model. The results
extend and generalize many known results in the online setting.

Keywords: Online Search · Online Algorithms · Competitive Ratio ·
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1 Introduction

A recent trend in algorithmic design under uncertainty is making use of machine
learning to augment online algorithms [22]. In this emerging setting, we are
given some predictions of the future. These predictions are learned from histor-
ical data, and thus, their actual accuracy is unknown. The goal is to develop
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an algorithm with these predictions so that the algorithm can outperform tra-
ditional algorithms (without predictions) if the predictions are accurate, while
still retaining a theoretical worst-case guarantee even when the predictions are
arbitrarily wrong. The performance measure of an algorithm is competitive anal-
ysis. Take a minimization problem as an example. An online algorithm is said to
be c-competitive or have a competitive ratio c if the algorithm’s objective value
is at most a factor c larger than the optimal objective value on any instance.
We also follow the standard terminology stated in [23]: an algorithm with pre-
dictions is said to be α-consistent and β-robust if its competitive ratio is β with
any predictions and it improves to α with perfect predictions.

Many classical online problems have been considered in this novel model. For
instance, see the work by [15,20,24] on caching; [5,12] on the classic secretary
problem; [14,18] on scheduling; [3,23] on ski rental; and [8] on set cover. Among
them, the recent two works [2,4] inspire our paper. In [2], the authors introduced
the online search framework, and provided a 4-competitive algorithm and a
learning-augmented algorithm that is (1 + ε)-consistent and 5(1 + 1/ε)-robust
for any ε > 0. [4] considered the cow path problem with predictions and gave an
algorithm with (1+ ε)-consistency and (ε(1+2/ε)2 +1)-robustness. For both the
two problems, we find that whether in their pure online algorithms or learning-
augmented algorithms, the well-known guess-and-double technique is applied.
This key observation motivates our paper.

Guess-and-Double. This technique is one of the most widely used techniques in the
field of machine learning and algorithmic design under uncertainty. Many prob-
lems build on this technique to design algorithms, such as incremental cluster-
ing [9], online k-center [9] and online load balancing [6]. The basic algorithmic
idea is first developing competitive algorithms parameterized by the optimal value
(OPT) under the assumption that OPT is known, and then leveraging guess-and-
double to remove the assumption. More specifically, we keep running the parame-
terized algorithm with a guessed value OPT, and once the guessed value is found
to be wrong, we geometrically increase the guess. The analysis can guarantee that
such an operation only loses a constant factor on the competitive ratio.

Due to the rich applications of the guess-and-double technique, a natural
question then arises in the context of learning-augmented algorithms:

Is there any unified framework to integrate machine-learned predictions
with the guess-and-double technique?

The main contribution of this paper is proposing such a general framework.
We first introduce the online state exploration problem, which unifies appli-
cations where guess-and-double is used, and then design learning-augmented
algorithms for the problem.

1.1 The Online State Exploration Problem

The online state exploration problem (OSEP) is a generalization of many online
discrete optimization problems. This problem is defined in d-dimensional (state)
space R

d
≥0, where each point v ∈ R

d
≥0 is referred to as a state. For any two states
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u = (u1, . . . , ud) and v = (v1, . . . , vd), we define that u dominates v (u � v) if
ui ≥ vi ∀i ∈ [d]. There is a hidden target state t known only to an oracle, and
the algorithm is required to move from 000 to a state that dominates t. When the
algorithm moves from u to v, it needs to pay the moving cost c(u,v) and then
is told whether v dominates t. The goal is to minimize the total moving cost.

To see how this captures the guess-and-double framework, intuitively think
of t as the optimal value in the guess-and-double framework, which is generalized
to multiple dimensions. Then, the moving cost captures how much an algorithm
pays when using a particular guess of optimal.

Define that the moving cost c(u,v) = D(u,v) + P(u) consists of two parts:
the distance cost D(u,v) and the penalty cost P(u). The distance function is
assumed to satisfy the following three properties.

– (Identity) D(u,u) = 0 for all u. The distance of a point to itself is 0.
– (Domination Monotonicity) For any two states u � v, D(000,u) ≥ D(000,v). If
u dominates v then u has no smaller distance from the origin than v.

– (Domination Submodularity) For any two states u � v and any w ∈ R
d
≥0

with at most one non-zero entry, we have D(u,u+w) ≤ D(v,v+w). In other
words, making an affine move by w from u is no costlier than making the
same move from v. That is, distances are submodular.

For convenience, we call the last two assumptions monotonicity and sub-
modularity, respectively. For a state u in the space, define its distance vector
ũ = (ũ1, . . . , ũd), where ũi = D(000, uiei) and ei is the standard basis vectors
where the 1 appears in the i-th position. We define penalty P(u) ≤ γ · ||ũ||∞
where γ ≥ 0 is an input penalty factor. Intuitively, the penalty is incurred when
visiting an incorrect state u. The penalty generalizes the cost function and is
useful for capturing some applications that a submodular distance function is
not general enough to capture. Given a target t, we have a standard assumption
that the optimal solution is moving from 000 to t directly, i.e., OPT(t) = c(000, t),
and OPT(t) is scaled to always be at least 1.

In the learning-augmented algorithms model, the algorithm is given access to
a prediction. We consider predicting the target state t′. This prediction is con-
structed from data corresponding to prior instances of the problem considered.
The prediction helps the algorithm cope with uncertainty in the online setting.
As machine learning is often imperfect, the algorithm must cope with having an
erroneous prediction.

1.2 Applications of Online State Exploration

Online state exploration captures many natural and known problems. We intro-
duce three examples here. The detailed discussions of the reductions from these
problems to online state exploration are omitted in this version.

Online Bidding. In this problem, an algorithm can make a bid u for cost u. The
algorithm must make bids until the algorithm bids larger than some unknown
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Table 1. We only show the results of deterministic algorithms in the table. In the
table, d is the number of dimensions, γ ≥ 0 is the penalty factor, and e is the base
of the natural logarithmic. The pair (α, β) represents an α-consistent and β-robust
algorithm. For the full spectrum of (α, β) pairs that can be obtained, see the theorems
and corollaries below.

Problems Worst Case Algorithms Learning-Augmented Algorithms

Online State Exploration (γ + 1)ed + e (Theorem 1) (2(1 + γ)d − γ, 2(1 + γ)e2d − γe2) (Theorem 3)

Online Bidding 4 [10] (2, 4) (Theorem 5)

MD Cow Path 2ed + 1 [7] (2d + 1, 2ed + 1) (Corollary 3)

MD Knapsack Cover ed + e (Corollary 1) (2d, 2e2d) (Corollary 2)

target T . In the online setting, the target is revealed only when the algorithm
bids an amount larger than T . The goal is to minimize the summation of all
bids. See [10,13]. The problem admits a 4-competitive deterministic algorithm
and an e-competitive randomized algorithm, which are shown to be optimal.

Multi-Directional Cow Path. A cow is located at the meeting point of several
rays. There is only one gate that is located on some ray. The cow must locate
the gate by moving along the rays where each unit of distance traveled costs one
unit. The gate is only discovered if the cow reaches that location. The goal is
to discover the gate at a minimum cost. See [7,11,16,17]. The problem admits
a deterministic algorithm that can achieve 2ed + 1 and a randomized algorithm
that can achieve 3.088d + o(d). Both ratios are optimal.

Online Multi-dimensional Knapsack Cover. In this problem, there is a collection
of items that can be used to cover d dimensional space. Each item i costs ci units
and covers dimension j ∈ [d] by a non-negative amount wi,j . Each dimension j
must be covered to an amount at least hj ≥ 0. We refer to vector h = (h1, . . . , hd)
as the demand vector. If a set of items S are selected then dimension j is covered
by

∑
i∈S wi,j and the cost is

∑
i∈S ci. The goal is to choose items of minimum

cost to cover all dimensions. In the online setting, each dimension i covering
the amount hi is unknown, and it is only known when the algorithm purchases
enough items to cover all dimensions. And we assume that every item can be
used an infinite number of times, and the items cannot be revoked once they are
included in the solution. This problem is a natural generalization of the Multi-
Optional Ski-Rental problem. See [1,19,21,25] for the multi-optional ski-rental
problem. To our best knowledge, we introduce this problem for the first time.

1.3 Our Contributions

Our main contributions are in the following two senses (Table 1):

– We introduce the online state exploration problem, which unifies many clas-
sical applications where guess-and-double is used, such as online bidding,
multidimensional cow path, and multidimensional knapsack cover;

– We design learning-augmented algorithms for the problem which have good
performance on each problem as long as the specific properties of each problem
are utilized during the analysis.
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We also consider the problem without a prediction in the traditional worst-
case competitive analysis model. This paper develops a deterministic algorithm
that has a competitive ratio linear in d when the penalty factor γ is given (The-
orem 1). We show that this is essentially tight deterministically (Theorem 2).
Then we show competitive ratio can be slightly improved via randomization.

We then consider the learning-augmented algorithm model. In this case, the
algorithm is given a prediction t′ of the target state that may be erroneous. We
give a deterministic algorithm that has a trade-off on consistency and robustness
with respect to the prediction error ||̃t − t̃′||∞ (Theorem 3). We remark that the
trade-off can also be improved by the randomized algorithm, which is omitted
in this version. Finally, we show that any algorithm with a bounded robustness
ratio has no smaller consistent ratio than ours (Theorem 2).

We show the consistency and robustness trade-offs can be further improved
for some special cases by using the specific properties of specific problems.

For online bidding, we show that there is a deterministic algorithm that
achieves the consistent ratio (1 + ε) and the robust ratio 2(1+ε)2

ε(1+ε/2) when ε < 1
(Theorem 5), which slightly improves the previous result (1+ ε)-consistency and
5(1+ 1

ε )-robustness [2]. Moreover, if we do not pursue a consistency ratio smaller
than 2, the robustness ratio can always be guaranteed no worse than the worst-
case bound 4 [10]. We also remark that the trade-offs can be further improved
if allowing for randomization.

For multi-directional cow path (MD cow path for short), we show that our
algorithm achieves the consistency ratio (1 + ε) and the robustness ratio (ε(1 +
2
ε )d + 1) for any ε > 0. Notice that if setting ε = 2d, the robustness ratio is
linearly dependent on d. When d = 2, our algorithm is (1 + ε)-consistent and
(ε(1 + 2

ε )2 + 1)-robust, this matches the previous work [4] for 2-directional cow
path which is shown to be Pareto optimal.

For online multi-dimensional knapsack cover (MD knapsack cover for short),
we show that the problem is a special case of OSEP. Thus, we can directly get a
worst-case algorithm and learning-augmented algorithm by setting the penalty
factor γ = 0 (Corollary 1 and Corollary 2).

In Sect. 4, we verify the theory empirically. The experiments show that our
algorithms can achieve desirable empirical trade-offs between consistency and
robustness. We also discuss the learnability of our prediction. Say that t is drawn
from an unknown distribution D. Then we prove that only a small (polynomial
in d) number of samples need to be drawn from D to efficiently learn t′ that
minimizes the expected prediction error. Due to space, this part and some proofs
are omitted and can be found in the full version.

2 Algorithms and Analysis

In this section, we start by introducing an algorithmic framework that is used
in our learning-augmented algorithms (Sect. 2.1). Then in Sect. 2.2, we discuss
worst-case algorithms for OSEP as a warm-up. Finally, we show the main algo-
rithmic results—the learning-augmented algorithms in Sect. 2.3.
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Algorithm 1. Algorithmic Framework for Online State Exploration (Budget
Solver)
Input: A target point t; a budget sequence B = (B1, B2, . . .); the cost function c(·, ·).
Output: A feasible solution S.
1: S ← {000}; k ← 0; u ← 000.
2: while the target point t has not been dominated do
3: φ(k) ← 1 + k (mod d). // the current dimension
4: Find the maximum x such that c(000, xeφ(k)) ≤ Bk.
5: Move to v, where vφ(k) = x and vi = ui for all i �= φ(k).
6: S ← S ∪ {v}; u ← v; k ← k + 1.
7: end while
8: return Solution S.

2.1 Algorithmic Intuition and Framework

The main difficulty of online state exploration is that the algorithm has very
little information available. Even if the algorithm arrives at a state with only
one dimension’s entry smaller than the target, the algorithm only knows that
the current state is yet to dominate the target.

Thus, there is a trade-off between distance and penalty costs. If the algorithm
increases all entries equally when deciding the next state, the total distance cost
may be far from optimal because perhaps only one entry needs to increase. We
call such a move a “big move” because all entries increase. Contrarily, if the
algorithm explores one dimension at a time, this will control the distance cost,
but the penalty is large. We refer to this strategy as a “small move” as only one
entry increases.

Algorithmic Intuition. We will say that two states are adjacent if they differ
in only one coordinate. Formally, u and v are adjacent if there exists a unique
r ∈ [d] such that ur �= vr and ui = vi for all i �= r. We first observe the following
property for two adjacent states.

Proposition 1. For any two adjacent states u and v, c(u,v) ≤ γ · ||ũ||∞ +
||ṽ||∞.

We can prove Proposition 1 easily by the monotonicity and submodularity. The
proof is omitted in this version. We will use this property to carefully choose
the next state each time so that the cost can be bounded. To see some intuition,
say ||ũ||∞ doubles each time the algorithm moves. Then it is the case that the
algorithm’s total moving cost is bounded by (2+2γ) times ||ũ||∞ where ũ is the
final state the algorithm visits. If this cost is bounded by optimal, then we can
bound the overall competitive ratio. Thus, we have the following framework.

Algorithmic Framework. Now, we present an algorithmic framework (Algorithm
1) that will be of use in several algorithms developed in this paper. The algo-
rithm runs in rounds. Inspired by the intuition above, our algorithm will make a
small move in each round. Based on the state selected by the previous round, the
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algorithm will increase the coordinate value of this state in a particular dimen-
sion. The key to the algorithm is selecting an upper bound of the moving cost
(budget) each time the algorithm moves states. Once the budget is determined,
Algorithm 1 will increase the coordinate value of the chosen dimension as much
as possible under the budget constraint.

The framework specifies a family of algorithms depending on different budget
sequences. All our algorithms will employ this algorithmic framework to obtain
a feasible solution, and as such, the budget sequence is the main remaining
technical challenge.

Our algorithms compute the budget sequence online, and together with Algo-
rithm 1 this yields a fully online algorithm. We use BUDSOL(B) to denote the
solution returned by Algorithm 1 when the budget sequence is B.

2.2 Warm-Up: Worst Case Algorithms

For the completeness of the story, before stating the learning-augmented algo-
rithm, we give a quick discussion of worst-case algorithms for the new defined
problem. The deterministic worst-case algorithm is technically simple: we set the
budget sequence B to be an infinite geometric progression, i.e., B = {1, a, a2, . . .},
where a is a parameter we can choose. The pseudo-code is omitted in this version.
Use A to denote this algorithm.

Theorem 1. Given an arbitrary target point t, use ALG(t) to denote the objec-
tive value of A. We have ALG(t) ≤ ((γ + 1)ed + e) · OPT(t), where d is the
number of dimensions, γ ≥ 0 is the penalty factor and e is the base of natural
logarithm.

We only present the statements of two key lemmas in this version.

Lemma 1. Given an arbitrary target point t, algorithm A terminates in at most
d + �loga(OPT(t))	 iterations, where OPT(t) is the optimal cost.

Lemma 2. The competitive ratio of algorithm A is at most
(

a+γ
a−1 · ad

)
.

The first lemma shows that A terminates in a polynomial number of iter-
ations. Then, by setting a = 1 + 1/d in the second lemma, Theorem 1 can be
proved. Notice that 1+1/d is not the best choice of a. By taking the derivation,
one can find a better multiplier a.

2.3 Algorithms Leveraging Predictions

This section gives the learning-augmented algorithm where the algorithm is given
an erroneous prediction of the target state. Given an arbitrary target point t, let
t′ = (t′1, . . . , t

′
d) be its predicted target point. We use a natural error measure-

ment as the prediction error, namely the infinity norm. The formal definition
can be found in Definition 1.
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Definition 1. (Prediction Error) Given a target point t and its prediction t′,
define the prediction error η(t, t′) := ||̃t − t̃′||∞.

When the parameter is clear in the context, write η(t, t′) as η for short. We first
prove a lower bound of the consistency ratio and then show that our algorithms
can approach the bound arbitrarily close.

Lower Bound of Consistency

We give an Ω(γd) lower bound for (randomized) learning-augmented algorithms.

Theorem 2. In online state exploration, given the predicted target, for any algo-
rithm with a bounded robustness ratio, the consistency ratio is at least (1+γ)d−γ.

The main idea of this proof is to construct a specific instance such that the
moving cost between two non-adjacent states is infinitely large. Such an instance
will force any algorithm to move to the adjacent state in each step. Otherwise,
it cannot obtain a bounded robustness ratio. Thus, any algorithm has to go
through the dimensions one by one and visit many incorrect states, which will
incur an Ω(γd) penalty cost.

Remark. Note that the lower bound Ω(γd) also applies to traditional worst-
case algorithms since a worst-case algorithm is essentially a special learning-
augmented algorithm whose consistency and robustness are the same. From the
proof sketch of Theorem 2, we see that a big move may make the competitive
ratio unbounded. Thus, in our algorithms, only small moves are considered.

Deterministic Learning-Augmented Algorithm

In this section, we give a deterministic learning-augmented algorithm for OSEP.
For notational convenience, use ψ(γ, d) := (1+γ)d−γ to denote the lower bound
stated in Theorem 2.

Theorem 3. Given any ε > 0, there is a deterministic algorithm with a con-
sistency ratio of ψ(γ, d) · (1 + ε) and a robustness ratio of ψ(γ, d) · (1 + ε) ·
(
1 + 1+2/ε

d−γ/(γ+1)

)2d

. The ratio degrades at a rate of O(γε−(2d+1)d−(2d−1)) as the
error η increases. Moreover, by setting appropriate parameters, the algorithm
can be (2(1 + γ)d − γ)-consistent and (2(1 + γ)e2d − γe2)-robust.

Notice that for the online bidding problem, we have γ = 1 and d = 1. In
this case, the algorithm is (1 + ε)-consistent and O(1/ε2)-robust for any ε > 0.
Later in Sect. 3.1, we will show that by a more careful analysis specific to online
bidding (online search), the algorithm obtains a robustness ratio of O(1/ε) when
it is (1+ε)-consistent, which has been proved to be the best possible trade-off [2].

To prove Theorem 3, we first state a parameterized algorithm, and then show
that choosing appropriate parameters gives the claimed ratio. The algorithm is
described in Algorithm 2.
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The algorithm is parameterized by a and θ, where a is the common ratio of the
geometric progression. The parameter θ can be viewed as the degree of trusting
the prediction with smaller values reflecting high confidence in the prediction.
Define B1 :=

⋃
i∈[d−1] B(i) and B2 := B(d). The budgets in B1 are computed

based on the prediction, while the budgets in B2 are computed following the
manner of the deterministic worst-case algorithm.

Intuitively, B1 and B2 are two different types of budget sequences, and thus,
they split Algorithm 2 into two different phases. In the first phase, Algorithm 2
is indicated by the predicted target state. Informally, the algorithm will utilize
each coordinate of the predicted state to compute a initial budget (line 1 of
Algorithm 2). Thus, there are d initial budgets, one for each dimension. Starting
from the smallest initial budget, Algorithm2 grows the budget in a geometric
manner until Algorithm2 reaches a state that dominates the current coordinate
of the predicted target point. At the end of each round, Algorithm2 carefully
choose the next initial budget. If the actual target state is still not dominated by
Algorithm 2 at the end of B(d−1), the algorithm will be switched to the traditional
online deterministic algorithm and grow the budget in a pure geometric manner.

Algorithm 2. Deterministic Learning-Augmented Algorithm for Online State
Exploration
Input: Parameter a > 1 and θ ∈ (0, 1]; the predicted target point t′; the cost function

c(·, ·).
Output: A feasible solution S.
1: ∀j ∈ [d], compute the unique rj ∈ [−1, 0) such that (rj + zj)d = T ′

j + θd for some
integer zj , where T ′

j = loga(t̃′
j).

2: Reindex dimensions in the non-decreasing order of rj .
3: k ← 0; p ← 1; q ← 1;
4: B0 ← ar1d; B(1), . . . , B(d) ← ∅.
5: while q < d do
6: φ(k) ← 1 + k (mod d). // the current dimension

7: if Bk ≤ aT ′
q+θd then

8: B(q) ← B(q) ∪ {Bk}; Bk+1 ← Bk · a.
9: else

10: q ← q + 1.
11: if Bk/a < aT ′

q+θd then
12: Bk ← Bk · a(rq−rp)d; p ← q.
13: end if
14: B(q) ← B(q) ∪ {Bk/a}; Bk+1 ← Bk.
15: end if
16: k ← k + 1.
17: end while
18: Let B(d) be the infinite geometric progression {Bk, Bk · a, Bk · a2, . . .}.
19: B ← B(1) ∪ . . . ∪ B(d).
20: S ← BUDSOL(B).
21: return Solution S.
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The algorithm is a bit subtle. So we first give two observations to help to
understand why we design B in this way.

Observation 1. For any q ∈ [d], B(q) contains at least one value and is a
geometric sequence with a common ratio a.

Observation 2. For any q ∈ [d − 1], let Bk and Bk+1 be the last term in B(q)

and the first term in B(q+1) respectively. We have Bk ≤ Bk+1.

The first observation is because if q increases by 1 in an iteration, we always
add a budget into B(q), while if q does not increase, the budget added in that
iteration must be a times the budget added in the previous iteration. The second
observation is due to rq ≤ rq+1 for any q ∈ [d − 1]. When q increases, the added
budget either remains the same or increases by a factor a(rq−rp)d ≥ 1. According
to the two observations, if we remove the last term of each B(q) (q ∈ [d−1]) from
B, we can round up each remaining term in {B(q)}q∈[d−1] such that the sequence
becomes a geometric progression with common ratio a. Denote such a sequence
by B′. Note that the increase rate of these rounded terms is at most ad because
|rj − ri| ≤ 1 for any i, j.

Now we are ready to analyze the algorithm. We first prove that the algorithm
always terminates in a polynomial number of iterations.

Lemma 3. Algorithm 2 terminates in at most 3d− 1+ �loga(OPT)	 iterations.

Proof. Since the last term B(d) is an infinite geometric progression, we can always
find the term Bh ∈ B which is the first Bh ≥ OPT. Following the proof of
Lemma 1, the algorithm terminates within h + d iterations. Now we show that
h ≤ 2d − 1 + �loga(OPT)	.

Due to Observation 1 and Observation 2, B is a non-decreasing sequence.
If removing the last term of B(q) for each q ∈ [d − 1], the ratio between any
two neighboring budgets in the new sequence is at least a. Observing that the
initial budget is at least a−d, the index of Bh in the new sequence is at most
d+�loga(OPT)	. Since the number of removed budgets is at most d−1, we have
h ≤ 2d − 1 + �loga(OPT)	, completing the proof.

We bound the consistency and the robustness of the algorithm by the follow-
ing two technical lemmas respectively.

Lemma 4. Given any target point t and its predicted point t′, let ALG(t) be
the solution returned by Algorithm2. Then, we have

ALG(t) ≤ f(a) · aθd ·
(

OPT(t) +
a2d − aθd

aθd − 1
· η

)

where a > 1, θ ∈ (0, 1] and f(a) =
(
(1 + γ)( 1

a−1 + d) − γ
)
.

Lemma 5. Given an arbitrary target point t and its prediction t′, let ALG(t)
be the solution returned by Algorithm2. Then, we have: ALG(t) ≤ f(a) · a2d ·
OPT(t). where a > 1 is the parameter and f(a) =

(
(1 + γ)( 1

a−1 + d) − γ
)
.
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Lemma 4 and Lemma 5 are sufficient to prove Theorem 3. By setting a =
1 + 2/ε+1

d−γ/(γ+1) and θ = 1
d loga(1 + ε/2), the first claimed ratio in Theorem3 can

be proved. The second mentioned ratio is obtained by setting a = 1 + 1/d and
θ → 0.

Remark for The Randomized Learning-Augmented Algorithm. Note that we
can also use the randomized technique to improve the competitive ratio in the
learning-augmented setting. For Algorithm 2 with any ε > 0, our randomized
algorithm can improve both of the consistency ratio and robustness ratio by at
least a factor of (1 + 2/ε) ln(1 + ε/2).

3 Applications of OSEP: Problem-Specific Analyses
and Better Results

3.1 Online Bidding

We first give a formal reduction from online bidding to online state exploration.

Theorem 4. A c-competitive algorithm for the OSEP implies a c-competitive
ratio for online bidding.

Proof. Given an arbitrary instance of online bidding, we construct an instance I
of OSEP as follows. There is only one dimension in the instance I. In the online
bidding problem, every bid u costs u. Thus, for every bid u in the online bidding
problem, we create a point u = u. Given two points u and v, we define the
distance cost from the point u to v as follows: D(u,v) := |v − u|. Note that, for
an arbitrary point u, the penalty cost P(u) = u since there is only one dimension.
Let the penalty factor γ = 1. Thus, the moving cost c(u,v) = |v − u| + u.
Clearly, the distance function defined above satisfies the identity, monotonicity
and submodularity property. Thus, the constructed instance is a special case of
the online state exploration problem.

Given an arbitrary feasible solution Sb = {v1, v2, . . . , vk} of the online bidding
problem, we can assume that vi ≤ vj if i ≤ j since any reasonable solution will
not include a smaller bid in the next iteration. Now, we construct a solution
Se = {v(1),v(2), . . . ,v(k)} to the OSEP. Clearly, Se is a feasible solution to the
OSEP. Let F(Sb) be the total cost of the solution Sb. Then, we have F(Sb) =∑

i∈[k] vi = F(Se). Conversely, any reasonable solution Se = {v(1),v(2), . . . ,v(k)}
to the constructed online state exploration instance also satisfies v(i) � v(j) if
i ≤ j. Thus, Se can also be easily converted into a feasible solution to the online
bidding problem with the same cost.

Moreover, an arbitrary online bidding instance has the same optimal solution
as the constructed online state exploration problem. Thus, a c-competitive algo-
rithm for the general online state exploration problem will imply a c-competitive
algorithm for the online bidding problem.
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Due to the reduction, applying Algorithm2 to online bidding directly gives a
competitive ratio claimed in Theorem 3. We further show that a better analysis
can be obtained by taking advantage of specific properties of online bidding.

Theorem 5. Given an arbitrary instance of online bidding, if we want a near
optimal consistency ratio (1 + ε) for a small ε > 0, Algorithm2 with appropriate
parameters can obtain

ALG ≤ min

{
2(1 + ε)2

ε(1 + ε/2)
OPT, (1 + ε)

(

OPT +
(

4
ε2

+
2
ε

− 1
)

η

)}

.

On the other hand, if we want an optimal robustness ratio 41, Algorithm 2 with
appropriate parameters can obtain

ALG ≤ min
{

4OPT, 2(1 + ε)OPT + (
1
ε

− ε)η
}

.

Since 2(1+ε)2

ε(1+ε/2) < 5(1 + 1
ε ), the trade-off is slightly better than [2]. Moreover,

we can also use randomization to further improve the consistent and robust ratio
by a factor of at least (1 + 2

ε ) ln(1 + ε
2 ). In Sect. 4, we show that both of these

two algorithms beat the algorithm in [2] in practice. Note that the consistency
and robustness trade-off is not unique.

Extended to Online Search. Our results for the online bidding problem can be
directly extended to the online search problem considered by [2]. Online search
is a generalization of online bidding, but we can show it is still captured by our
framework. The reduction from online search to OSEP is similar to the reduction
for online bidding.

3.2 Multi-dimensional Knapsack Cover

Multi-dimensional knapsack cover is a special case of the OSEP when γ = 0.
Intuitively, if the demand vector h is known in advance, we can solve the multi-
dimensional knapsack cover problem by standard dynamic programming (DP).
The state in the dynamic programming is defined to be the optimal value of the
sub-problem with a demand vector x � h, which is denoted by S(x). The key
idea of the reduction is to map the DP’s states to points in the OSEP. For a point
x in online state exploration, we let the distance between x and the origin 000 be
S(x). For two different points x,y, we define their distance as S(y−x). Then, a
c-competitive algorithm for the OSEP can imply a c-competitive algorithm for
multi-dimensional knapsack cover.

Corollary 1. Given an arbitrary instance of multi-dimensional knapsack cover
and a target value vector t, there exist a deterministic algorithm such that
ALG(t) ≤ (ed + e) · OPT(t), where d is the number of dimensions and e is
the base of natural logarithmic.
1 The lower bound 4 of worst case algorithms is the best possible robustness ratio.
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Corollary 2. Given any ε > 0, there is a deterministic learning-augmented
algorithm for multi-dimensional knapsack cover with a consistency ratio of d(1+
ε) and a robustness ratio of d(1+ ε)(1+ 1+2/ε

d )2d. The ratio degrades at a rate of
O(ε−(2d+1)d−(2d−1)) as the error η increases. Moreover, by setting appropriate
parameters, the algorithm can be 2d-consistent and 2e2d-robust.

3.3 Multi-directional Cow Path

This section shows that online state exploration captures the multi-directional
cow path problem. Although both of them travel in a d-dimensional space, the
reduction is not that obvious, because, in MD cow path, the algorithm can only
visit a point with at most one non-zero entry while there is no such restriction
for online state exploration.

To build the intuition of the reduction, we define states on MD cow path.
Consider an algorithm A for MD cow path and an arbitrary time t during A’s
travel. Define the state that A reaches at time t to be a d-dimensional vector
v, where vi is the furthest point that A has visited in the i-th ray. Such a state
definition implies that A will terminate if and only if it gets to a state v that
dominates the target point t. We can also obtain a better competitive ratio on
MD cow path by more careful analysis.

Corollary 3. Given an arbitrary instance of the multi-directions cow path prob-
lem and its prediction, for any ε > 0, there exists a deterministic algorithm with
(1 + ε)-consistent and (ε(1 + 2

ε )d + 1)-robust. When ε = 2d, the algorithm is
(2d + 1)-consistent and (2ed + 1)-robust.

4 Experiments

This section shows the empirical performance of our algorithms. We investigate
our algorithms’ trade-offs between consistency and robustness on online bidding
and multi-directional cow path. We only present experimental results for online
bidding in this version. The experiments2 are conducted on a machine running
Ubuntu 18.04 with an i7-7800X CPU and 48 GB memory.

Setup. We compare the deterministic and randomized algorithm to the algorithm
Predict-And-Double (PAD) [2] on the online bidding problem. To show the trade-
off between consistency and robustness, we construct a set of (T, T ′) pairs, where
T is the target bidding and T ′ is the prediction, and test the worst empirical
performance of each algorithm when they share the same consistency ratio 1+ ε.
In the experiment, we let T, T ′ be integers in [1, 1000], thus, there are total 10002

pairs. We investigate 10 different values of ε = 0.1, 0.2, . . . , 1.0.

2 The code is available at https://github.com/Chenyang-1995/Online-State-
Exploration.

https://github.com/Chenyang-1995/Online-State-Exploration
https://github.com/Chenyang-1995/Online-State-Exploration
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Fig. 1. The consistency and robustness trade-offs on online bidding.

Results. The results are given in Fig. 1. We see that the experiments corrobo-
rate the theory. For each learning-augmented algorithm, the curve in the figure
matches our theoretical analysis, i.e., (1 + ε)-consistency and O(1ε )-robustness.
Both of our algorithms obtain better consistency and robustness trade-offs than
the baseline. Moreover, given the same consistency ratio, our randomized algo-
rithm always obtains the best robustness ratio.

5 Conclusion

This paper introduces the online state exploration problem (OSEP), which gen-
eralizes many new and hitherto studied problems and gives online algorithms
that can benefit from ML predictions. The problem formulation is distinguished
from the previous work for its multidimensional aspect and thus can be used
to capture a rich body of applications. Further, our results match or improve
upon the best-known results for problems like cow path and online bidding. One
interesting open problem is whether it is possible to further improve the trade-off
between consistency and robustness for OSEP. Another direction would be to
study the OSEP with different types of feedback. For example, if we get notified
when the current state dominates the target state on each dimension, can we
obtain stronger results? Also, it would be interesting to consider different types
of predictions.
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