
SimSky: An Accuracy-Aware Algorithm
for Single-Source SimRank Search

Liping Yan1 and Weiren Yu2(B)

1 Nanjing University of Science and Technology, Jiangsu, China
lipingyan@njust.edu.cn

2 The University of Warwick, Coventry CV4 7AL, UK

Weiren.Yu@warwick.ac.uk

Abstract. SimRank is a popular node-pair similarity search model
based on graph topology. It has received sustained attention due to its
wide range of applications in real-world scenarios. Considerable effort
has been devoted to devising fast algorithms for SimRank computa-
tion through either iterative approaches or random walk based meth-
ods. In this paper, we propose an efficient accuracy-aware algorithm
for computing single-source SimRank similarity. First, we devise an
algorithm, ApproxDiag, to approximate the diagonal correction matrix.
Next, we propose an efficient algorithm, named SimSky, which uti-
lizes two Krylov subspaces for transforming high-dimensional single-
source SimRank search into low-dimensional matrix-vector multiplica-
tions. Extensive experiments on various real datasets demonstrate the
superior search quality of SimSky compared to other competitors.

Keywords: SimRank · Single-Source Similarity Search · Low-order
Approximation

1 Introduction

A graph is a key structure for modeling complexity networks, in which nodes rep-
resent objects and edges represent relationships. Measuring similarity between
objects is an important task in graph mining, with many real applications,
e.g. link prediction [8], recommendation systems [3], web page ranking [17],
and so forth. A variety of similarity measures have been proposed over the
past decades, including Personalized PageRank [6], SimRank [5], RoleSim* [14],
CoSimRank [10,19], CoSimHeat [20]. Among them, SimRank is considered an
influential one. SimRank is based on the simple recursive concept [5] that “two
nodes are similar if their in-neighbors are similar; every node is most similar to
itself”. Let G = (V,E) be a digraph with |V | nodes and |E| edges. We denote
by I(i) = {j ∈ V | ∃(j, i) ∈ E} the in-neighbor set of i, and |I(i)| the in-degree
of i. The SimRank score s(i, j) between nodes i and j is defined as

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 226–241, 2023.
https://doi.org/10.1007/978-3-031-43418-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_14&domain=pdf
http://orcid.org/0009-0003-3710-8840
http://orcid.org/0000-0002-1082-9475
https://doi.org/10.1007/978-3-031-43418-1_14

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 227

s (i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = j;
c

|I(i)||I(j)|
∑

u∈I(i)

∑

v∈I(j)

s (u, v) , i �= j;

0, |I(i)| or |I(j)|= 0,

(1)

where c ∈ (0, 1) is a decay factor, typically assigned a value of 0.6 or 0.8.

SimRank Matrix Notations. Let S(k) be the k-th iterative SimRank matrix,
where each element [S(k)]i,j is the similarity score s(i, j) at iteration k. Let A
be the column-normalized adjacency matrix of a graph, and I be the identity
matrix. In matrix notations, the SimRank matrix S(k) can be expressed as

S(k) = cAT S(k−1)A + Dk

=
k∑

i=0

ci(AT)iDk−iA
i,

(2)

where S(0) = D0 = I, and Dk = I − (cAT S(k−1)A) ◦ I is called the diagonal
correction matrix. The symbol (∗)T stands for matrix transpose, and ◦ denotes
entry-wise multiplication.

Single-Source SimRank. Given a query j, single-source SimRank search returns
the similarity scores between node j and each node in the graph. Mathematically,
given the query vector ej (a unit vector with only a 1 in the j-th entry, and 0 s
elsewhere), the single-source SimRank vector [S(k)]∗,j at the k-th iteration can
be represented as

[S(k)]∗,j = S(k)ej . (3)

Recently, many endeavors [7,9,12,13,15,18] have been invested in design-
ing faster and more efficient algorithms for accelerating single-source SimRank
computation at the expense of accuracy. The low accuracy of SimRank arises
from two main barriers: (1) the challenge of dealing with the intractable diagonal
correction matrix; (2) the problem of high-dimensionality in SimRank iterations.

– Intractable Diagonal Correction Matrix. The challenge in retrieving single-
source SimRank via Eq. 2 lies in the computation of diagonal correction
matrix Dk. There are studies [4,7,16] that attempt to mitigate this issue
using the following equation:

S(k) = cAT S(k−1)A + (1 − c)I. (4)

However, the similarity models represented by Eqs. 2 and 4 are different.

– High Dimensionality. In reality, most graphs are large and sparse, leading to
the high dimensionality of the adjacency matrix. Most existing work [12,13]
employs random walk-based methods through Monte Carlo sampling. While
these methods excel in superior scalability on large graphs, they typically
exhibit low accuracy with a certain probability. For instance, the state-of-the-
art single-source SimRank algorithms (e.g. ExactSim [13] and SLING [12])
using Monte Carlo approaches can only achieve a precision level of up to 10−7

on diverse real datasets.

228 L. Yan and W. Yu

Contributions. Our main contributions to this work are summarized as follows:

– We first design an algorithm, ApproxDiag, to approximate the diagonal cor-
rection matrix D with guaranteed accuracy. To make approximation more
stable, we resort to a row orthogonal matrix to characterize D (Sect. 2).

– We next propose an efficient algorithm, SimSky, which transforms high-
dimensional single-source SimRank search into matrix-vector multiplications
over two small Krylov subspaces, eliminating much redundancy (Sect. 3).

– We conduct extensive experiments to demonstrate the superiority of SimSky
over other rivals on real datasets (Sect. 4).

2 ApproxDiag: Approximate Diagonal Correction Matrix

For any matrix X ∈ IRn×n, we denote by the column vectors
−−→
diag(X) and

d̃iag(X) the exact and approximate solution of the main diagonal elements of
X, respectively. Bekas et al. [1] showed that d̃iag(X) can be obtained by arbitrary
column vectors w1, w2, · · · , ws ∈ IRn as follows:

d̃iag (X) = [
s∑

l=1

wl ◦ (Xwl)] � [
s∑

l=1

wl ◦ wl], (5)

where � represents entry-wise division. Let W = [w1|w2| · · · |ws]. If WWT is a
diagonal matrix with all diagonals being nonzeros, then d̃iag(X) =

−−→
diag(X).

Construct Matrix W . Bekas et al. [1] chose the matrix W as a Hadamard matrix,
which takes only the entries ±1 so that WWT = nI. This type of matrix W is
suitable for approximating the main diagonal elements of a band matrix. How-
ever, in practice, the graph adjacency matrix is rarely a band matrix. Therefore,
we design a novel method to construct matrix W ∈ IRn×s as follows:

1) W (1 : s, 1 : s) is an identity matrix;
2) the element of W (1+s : n, s) is −1 at odd positions and 1 at even positions;
3) the remaining entries in W are all 0s.
As a special case, when s = n, W reduces to I and d̃iag(X) =

−−→
diag(X).

Subtracting the item
∑k

i=1 ci(AT)iDk−iA
i from both sides of Eq. 2 and

applying Eq. 5 yield the following equation:

d̃iag(Dk) =
−→
1 n − (

s∑

l=1

wl ◦ f(A,wl, k)) � (
s∑

l=1

wl ◦ wl), (6)

where f(A,wl, k) =
∑k

i=1 ci(AT)iDk−iA
iwl.

By virtue of the idea in [18], for k ≥ 2, we can express the vector f(A,wl, k)
as follows: ∀i = 1, 2, · · · , k, initialize x0 = wl,

xi = Axi−1; (7)

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 229

Algorithm 1: ApproxDiag(A, c, k)
Input: A - column-normalised adjacency matrix, c - decay factor, k - number of

iterations
Output: ̂D - contains (k + 1) approximate diagonal correction vectors

1 Custom matrix W and set denom = (W ◦ W) · −→
1 s;

2 Initialise ̂D = zeros(n, k + 1) and set ̂D(:, 1) =
−→
1 n;

3 for j = 1 to k do
4 Initialise nume = zeros(n, 1), X = zeros(n, j + 1);
5 for i = 1 to s do
6 X(:, 1) = W (:, i);
7 for a = 1 to j do
8 X(:, a + 1) ← A · X(:, a);
9 end

10 Initialise Y = zeros(n, j + 1), set Y (:, 1) = ̂D(:, 1) ◦ X(:, j + 1);
11 if j = 1 then
12 Y (:, j + 1) ← cAT · Y (:, j);
13 else
14 for b = 2 to j do

15 Y (:, b) ← cAT · Y (:, b − 1) + ̂D(:, b) ◦ X(:, j + 2 − b)
16 end

17 Y (:, j + 1) ← cAT · Y (:, j);

18 end
19 nume ← nume + W (:, i) ◦ Y (:, j + 1);

20 end

21 ̂D(:, j + 1) ← −→
1 n − nume � denom;

22 end

23 return ̂D;

∀j = 1, 2, · · · , k − 1, initialize y0 =
−−→
diag(D0) ◦ xk,

yj = cAT yj−1 +
−−→
diag(Dj) ◦ xk−j , (8)

thus we can get f(A,wl, k) = cAT yk−1 easily. Substituting f(A,wl, k) into Eq. 6,
we can get our ApproxDiag algorithm.

Example 1. Given a graph and its column-normalised adjacency matrix A as
shown in Fig. 1, decay factor c = 0.8, number of iterations k = 2. Take 6 × 2
matrix W2, 6×3 matrix W3, 6×4 matrix W4, 6×5 matrix W5 and 6×6 identity
matrix W6, where

W2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 −1
0 1
0 −1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 −1
0 0 1
0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 −1
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

230 L. Yan and W. Yu

Fig. 1. A digraph with six nodes and its column-normalised adjacency matrix

According to our ApproxDiag algorithm, when W takes W2,W3,W4,W5,W6

respectively, the corresponding matrix contains approximate diagonal correction
vectors are

D̂2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2 0.2
1 0.6 0.68
1 1 1
1 0.2 0.2
1 0.2 0.04
1 0.6 0.92

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D̂3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2 0.2
1 0.6 0.52
1 1 1
1 0.2 0.2
1 0.2 −0.12
1 0.6 0.92

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D̂4 = D̂5 = D̂6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2 0.2
1 0.6 0.6
1 0.6 0.28
1 0.2 0.2
1 0.2 0.2
1 0.2 0.2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

�

Error Analysis. We analyze the error of
−−→
diag(Dk) and d̃iag(Dk). ‖·‖ represents

the L2 norm for a vector or the spectral norm for a matrix. First of all, suppose
that Z =

∑k
i=1 ci(AT)iDk−iA

i, subtract Z from both sides of Eq. 2 and vec-
torize the main diagonal elements,

−−→
diag(Dk) =

−→
1 n − −−→

diag(Z) can be obtained.
Similarly, combine with Eq. 5, we can get that d̃iag(Dk) =

−→
1 n −−−→

diag(WWT Z).
According to the definition of W , we know that (WWT −I)(1 : s−1, 1 : s−1) = 0,
and (WWT − I)ii = 0, except that all the other elements either 1 or −1.
Given column-normalised adjacency matrix A, due to c ∈ (0, 1), we have spec-
tral radius ρ(

√
cA) < 1. As per Theorem 5 in [2], exists a constant θ depends

only on
√

cA and σ, where ρ(
√

cA) < σ < 1, θ = max(1, σk

‖(√cA)k‖), such that

||(√cA)i−1|| ≤ θσi−1. At the same time, it’s obvious ‖√
Dk−i‖ ≤ 1. Finally,

combine the above equalities and inequalities, the gap between
−−→
diag(Dk) and

d̃iag(Dk) is bounded by

‖−−→
diag(Dk) − d̃iag(Dk)‖∞ ≤ θ2 c(1−σ2k)

1−σ2 max
s≤l≤n

n∑

j=s,j 	=l

‖Ael‖‖Aej‖, (9)

where el (resp. ej) is a n-dimensional unit vector with only a 1 in the l-th (resp.
j-th) entry. The equal sign “=” holds when s = n.

Cost Overheads. We analyze the computational cost of ApproxDiag as follows.
First, initializing A,W,D requires O (nd) ,O (ns) ,O (nk) memory, respectively1.
Second, computing D (lines 3–22) take O(

∑k
j=1 s(jnd + (j − 1)(n + nd))) time.

Therefore, it requires O (n · max(d, s, k)) memory and takes O (
k2snd

)
time.

1 d denotes the average node degree.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 231

3 SimSky

Yu et al. [18] demonstrated that single-source SimRank search [S(k)]∗,j can be
expressed as a double loop function, we notice that it can be further rewritten
as a piecewise function

[S(k)]∗,j = r2k, (10)

where

rl =

⎧
⎪⎨

⎪⎩

d̃iag(Dl+1) ◦ (Ak−1−lej), 0 ≤ l ≤ k − 1;−−→
diag(D0) ◦ (Akej), l = k;
cAT rl−1 + rl−1−k, k + 1 ≤ l ≤ 2k.

(11)

The calculation of the last item r2k can be divided into three parts to com-
plete: (1) approximating d̃iag(Dl+1) using our ApproxDiag algorithm, (2) com-
puting Ak−1−lej , A

kej via the Arnoldi algorithm [11], (3) computing rl by means
of our SimSky algorithm for k + 1 ≤ l ≤ 2k.

For k + 1 ≤ l ≤ 2k, rl can be expressed as

rl = BRl−1, (12)

where B =
[
cAT 0 · · · 0 I

]
, Rl−1 =

[
rT
l−1 rT

l−2 · · · rT
l−k rT

l−1−k

]T . Meanwhile, we

use the auxiliary equation
[
rT
l−1 rT

l−2 · · · rT
l−k

]T = Ikn · [
rT
l−1 rT

l−2 · · · rT
l−k

]T , Ikn

is a kn-dimensional identity matrix. Concatenate the Eq. 12 and the auxiliary
equation along the vertical direction, we can get the following expression

Rl =
[

B
Ikn 0

]

Rl−1 = CRl−1, (13)

where Rl =
[
rT
l rT

l−1 · · · rT
l−k+1 rT

l−k

]T , 0 is a kn × n null matrix, C is a sparse

block matrix. Set Rk =
[
rT
k rT

k−1 · · · rT
1 rT

0

]T , we can get that R2k = CkRk, and
r2k is the first component of R2k.

Therefore, Rk as the initial vector, C as the initial matrix, we can construct
the Krylov subspace

Km2 = span{Rk, CRk, C2Rk, · · · , Cm2−1Rk},

then we can again use the Arnoldi algorithm [11] to compute its basis matrix
and projection matrix, and calculate vector r2k according to Lemma 3.1 in [11].

Example 2. Given the graph and its column-normalised adjacency matrix as
shown in Fig. 1. Given the query vector e1 is a unit vector with only a 1 in the
first entry, decay factor c = 0.8, low-order parameters m1 = m2 = 3, number of
iterations k = 2. For brevity, we assume that diagonal correction matrix Dk−i is
an identity matrix. Then the process to calculate single-source SimRank search

[S(2)]∗,1 = c2(AT)2A2e1 + cAT Ae1 + e1 (14)

using our SimSky algorithm is as follows.

232 L. Yan and W. Yu

First, we convert Eq. 14 into a piecewise function

r0 = Ae1, r1 = e1, r2 = A2e1, r3 = cAT r2 + r0, r4 = cAT r3 + r1,

it’s obvious that [S(2)]∗,1 = r4.
Second, we construct the first Krylov subspace

Km1 = span{r1, r0, r2} = span{e1, Ae1, A
2e1},

its column orthonormal matrix U and projection matrix Y can be generated by
Arnoldi method [11], and a relationship is established

AU(:, 1 : 3) = UY.

As a result, according to Lemma 3.1 in [11], r0, r1, r2 can be rewritten as

r0 = UY e′
1, r1 = U3e

′
1, r2 = UY Y3e

′
1, (15)

where e′
1 is a 3-dimensional unit vector with only a 1 in the first component,

matrix U3 consists of the first three columns of matrix U , Y3 includes the first
three rows and first three columns of matrix Y .

Finally, we construct the second Krylov subspace

Km2 = span{v, Cv,C2v},

where block vector v =
[
r2 r1 r0

]
, block matrix C =

[
B

I12 0

]

and B =
[
cAT 0 I

]
, I12 is a 12-dimensional identity matrix.

Its column orthonormal matrix Q, non-orthonormal matrix P and projection
matrix H can be generated through the Arnoldi method [11] and the equality
holds as follows

cAT Q(:, 1 : m2) + P (:, 1 : m2) = QH.

Thus, r3, r4 can be rewritten as

r3 = ‖r2‖QHe′
1, r4 = ‖r2‖QHH3e

′
1,

where matrix H3 includes the first three rows and first three columns of matrix
H. In other words, we can transform high-dimensional single-source SimRank
search r4 into low-dimensional matrix vector multiplication ‖r2‖QHH3e

′
1 to

eliminate the barrier of redundant dimensionality. �

Cost Overheads. We analyze SimSky’s cost overheads step-by-step. At the begin-
ning, invoking the Arnoldi algorithm takes O(m1nd) time and requires O(m1n)
memory. Meanwhile, computing the scalar β takes O((k − 1)m2

1) time. Sec-
ond, invoking the ApproxDiag algorithm takes O(k2snd) time and requires
O(n · max(d, s, k)) memory. Then, initialising V,H require O(km2n),O(m2

2)
memory respectively. And, setting the first column V (:, 1) needs O(m2

1n) time.
Finally, computing matrices V,H (lines 7–20) take O(m2

2kn + m2nd) time,
and computing [Sm1,m2]∗,j (line 22) takes O(m2

2n) time. Add them up, in
the aggregate, it takes O((m1 + m2 + k2s)nd + (m2

1 + km2
2)n) time, requires

O(n · max(km2, d, s,m1)) memory.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 233

Algorithm 2: SimSky(A,m1,m2, k, c, ej)
Input: A - column-normalised adjacency matrix, m1, m2 - low-order

parameters, k - number of iterations, c - decay factor, ej - query vector
Output: [Sm1,m2]∗,j - single-source SimRank score

1 [U, Y, m1] ← Arnoldi(A, m1, ej);

2 Set Ym = Y (1 : m1, 1 : m1), β = ‖Y Y k−1
m e1‖ �= 0;

3 D ← ApproxDiag(A, c, k);
4 Initialise matrices V = zeros((k + 1)n, m2 + 1), H = zeros(m2 + 1, m2);
5 e1(e2) is an m1(m2)-dimensional unit vector with only a 1 in the first entry;

6 Set V (:, 1) = 1
β

⎡

⎢

⎢

⎢

⎢

⎢

⎣

D(:, 1) ◦ (UY Y k−1
m e1)

D(:, k + 1) ◦ ej

...

D(:, 3) ◦ (UY Y k−3
m e1)

D(:, 2) ◦ (UY Y k−2
m e1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

;

7 for i = 1 to m2 do
8 r ← cAT V (1 : n, i) + V (kn + 1 : (k + 1)n, i);
9 t ← V (1 : kn, i);

10 s ← concatenate r and t along the vertical direction;
11 for j = 1 to i do
12 temp ← inner product of r and V (1 : n, j);
13 s ← s − temp · V (:, j);
14 H(j, i) ← temp;

15 end
16 if H(i + 1, i) satisfies stop criterion then
17 m2 = i, V = V (:, 1 : m2 + 1), H = H(1 : m2 + 1, 1 : m2);
18 end
19 V (:, i + 1) ← s

H(i+1,i)
;

20 end
21 Q = V (1 : n, :), Hm = H(1 : m2, 1 : m2), P = V (kn + 1 : (k + 1)n, :);

22 return [Sm1,m2]∗,j = βQHHk−1
m e2;

Error Analysis. Finally, according to different value ranges of m1,m2, k, we ana-
lyze the error generated by our SimSky algorithm at length. Taking into account
the effects of k,m1,m2 on the error, we exclude the interference of diagonal
correction matrix Dk on the error, that is, we suppose that W is an identity
matrix. The error of single-source SimRank search caused by two aspects. On
the one hand, the iterative solution [S(k)]∗,j is used to approximate the accu-
rate solution [S]∗,j , which leads to the iterative error. On the other hand, the
dimension-reduced solution [Sm1,m2]∗,j generated by our SimSky algorithm is
used to approximate the iterative solution [S(k)]∗,j , which leads in the dimension-
reduced error.

Iterative Error. We analyze the iterative error. First, the same rationale as in
the error analysis in Sect. 2, we can obtain that ||(√cA)l|| ≤ θσl. Second, Lu et
al. [9] proved that ‖Dk − D‖ ≤ ck+2. And it’s obvious that ‖D‖ ≤ 1. Combine

234 L. Yan and W. Yu

the three aforementioned inequalities, we assume that θ = max(1, σk

‖(√cA)k‖), the

gap between [S]∗,j and [S(k)]∗,j is bounded by

‖[S]∗,j − [S(k)]∗,j‖ < θ2‖√
cAej‖(

σ2k+1

1 − σ2
+

ck+2(1 − σ2k+2)
σ − σ3

). (16)

Example 3. Taking the column-normalised adjacency matrix A in Fig. 1 as an
example, we set decay factor c = 0.8, scalars θ = 1 and σ = ρ(

√
cA) + 10−16,

query node j = 3, number of iterations k = 5, the result obtained after 30
iterations is taken as the accurate solution S. By substituting these values for
Eq. 16, the values on the left and right sides are 0.0996 and 1.4739. Numerical
example shows that our error upper bound is feasible. �

Dimension-Reduced Error. Dimension-reduced error should be discussed sepa-
rately according to the value ranges of m1,m2, k.

As per Lemma 3.1 in [11], for line 6 of the SimSky algorithm, we know that if
k ≥ m1+1, only those terms UY Y i−1

m e1 are accurate solutions to Aiej for 1 ≤ i ≤
m1, the rest terms are approximate solutions to Aiej for m1+1 ≤ i ≤ k. Through
the initial vector V (:, 1), which leads to the gap between the approximate solution
and the accurate solution of the last k’s terms in Eq. 11. Therefore, if there is
the dimension-reduced error on the former m1-dimensional Krylov subspace,
which is transmitted to the latter m2-dimensional Krylov subspace through the
initial vector. It’s difficult to give an explicit expression of the nested dimension-
reduced error, so our error analysis in theory only considers 1 ≤ k ≤ m1. In the
experiments, we cover all value ranges for m1,m2, k.

For 1 ≤ k ≤ m1 and 1 ≤ k ≤ m2, in accordance with Lemma 3.1 in [11],
we know that V (:, 1) in line 6 and [Sm1,m2]∗,j in line 22 are accurate solutions.
Therefore, the gap between the dimension-reduced solution [Sm1,m2]∗,j and the
iterative solution [S(k)]∗,j is bounded by 0.

For 1 ≤ k ≤ m1 and k ≥ m2 + 1, according to Lemma 3.1 in [11], there is
no dimension-reduced error on the former m1-dimensional Krylov subspace, and
only exists on the latter m2-dimensional Krylov subspace. We have to establish
a few auxiliary equalities to complete the analysis according to the SimSky
algorithm. Due to the limited space, we ignore the specific calculation process
and give a direct result. Let k−m2 = g, the gap between the dimension-reduced
solution [Sm1,m2]∗,j and the iterative solution [S(k)]∗,j is bounded by

‖[Sm1,m2]∗,j − [S(k)]∗,j‖ ≤ βhm2+1,m2(P1 + P2), (17)

where hm2+1,m2 is (m2 + 1,m2)-th entry of H, P1 =
g∑

i=1

‖ciAi‖|eT
m2

Hm2+g−1−i
m e2|,

P2 =
g−1∑

i=0

‖ciAi‖‖
m2+g−2−i∑

l=0

eT
m2

Hm2+g−2−i−l
m e2Ql (:, 1 + m2)‖. When g = 0, the equal sign

“=” is established.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 235

4 Experiments

Our experiments2 on real datasets will evaluate the search quality of the SimSky
algorithm, and verify our superiority over other competitors. We choose the
optimized single-source SimRank [18] as our baseline.

4.1 Experimental Setting

Datasets. We adopt the six real datasets from the Stanford Large Network Dataset
Collection3. They are email-Eu-core(euc), ca-GrQc(cag), Wiki-Vote(wiv),
p2p-Gnutella09(p2p09), ca-AstroPh(caa) and p2p-Gnutella25(p2p25).

Metrics. To evaluate search quality, we use two metrics:

(1) MaxError. Given the query node j, the approximate solution [S̃]∗,j and the
accurate solution [S]∗,j , MaxError= ‖[S]∗,j−[S̃]∗,j‖∞ = max{|[S]i,j−[S̃]i,j |}
for 1 ≤ i ≤ n.

(2) Precision@k. Given the query node j, the approximate top-k result V̂k =
{v̂1, v̂2, · · · , v̂k}, the accurate result Vk = {v1, v2, · · · , vk}, Precision@k =
∑k

i=1 δv̂ivi
|Vk| , where δ is Kronecker delta function. In our experiment, we use

Precision@500.

Parameters. We set the decay factor c = 0.8. In experiments verifying Eqs. 9
and 17, we set θ = 1 and σ = ρ(

√
cA) + 10−16, where ρ(

√
cA) represents the

spectral radius of the matrix
√

cA.
We evaluate the search quality of our SimSky algorithm and the other two

competitors, including SLING [12] and ExactSim [13]. For each dataset, we gen-
erate 50 query nodes randomly and calculate their average value of MaxError
and Precision@500. All experiments are run with an Intel(R) Core(TM) i7-8750H
CPU @ 2.20 GHz CPU and 32 GB RAM, on windows 10.

4.2 Comparative Experiments

Our SimSky is a dimensionality reduction algorithm, SLING [12] and Exact-
Sim [13] are random walk algorithms. To be fair, we compare their search preci-
sion and the time required under the same value of MaxError.

Precision. Fix k = m1 = m2 = 10, adjust the value of s, resulting in the
different values of MaxError. We compare the precision of our SimSky with other
competitors including ExactSim and SLING under the same value of MaxError
on real datasets, as shown in Fig. 2. We notice that the ExactSim has only the
ability to calculate the value of MaxError no less than 10−7 on all datasets.
When the value of MaxError is a double-precision floating-point number, such
2 https://github.com/AnonSimRank/SimSky.
3 http://snap.stanford.edu/data/index.html.

https://github.com/AnonSimRank/SimSky
http://snap.stanford.edu/data/index.html

236 L. Yan and W. Yu

Fig. 2. Precision comparisons on all datasets

as 10−16, none of our competitors are capable of doing so. However, our SimSky
is able to do it within a reasonable time. Even the value of MaxError exceeds
10−6, our SimSky attains competitive precision compared to our competitors.
Especially on dataset wiv, a precision of 100% can be achieved even with the
value of MaxError takes 10−2.

Time. Parameters are identical to the precision comparison experiments.
Figure 3 depicts the cost comparisons of our SimSky with other competitors.
The time required for our SimSky remains almost constant as the value of Max-
Error varies. This is consistent with our analysis, the reason lies in whatever
the value of MaxError is, the deviation between s and n is not too big. Taking
the dataset p2p09 as an example, when the values of MaxError are 1.0e − 2,
1.0e − 3, 1.0e − 4, 1.0e − 5, 1.0e − 6, 1.0e − 7 and 1.0e − 16, the corresponding
values of s are 7600, 8000, 8085, 8094, 8101, 8102 and 8108, and n = 8114, so
the time overhead for our SimSky doesn’t vary much as the value of MaxError
varies. For our competitors, although they require less time than our SimSky
when the values of MaxError are 1.0e − 2 and 1.0e − 3, there is no advantage in
their search precision.

4.3 Ablation Experiments

We will verify the influences of s,m1,m2, k on search quality and error through
a series of experiments.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 237

Fig. 3. Time comparisons on all datasets

Fig. 4. Effects of s on Precision@500 and MaxError

Effect of s. Fix k = m1 = m2 = 10, Fig. 4 depicts the effects of s on Max-
Error and Precision@500 on the datasets euc, cag and wiv. The gap between
the dimension-reduced solution [Sm1,m2]∗,j and the iterative solution [S(k)]∗,j

narrows, as the value of s approaches the value of n. As a result, the value of
error metric MaxError gets smaller. Instead, the value of search quality metric
Precision@500 gradually increases. And it demonstrates that our modified row
orthogonal matrix W is feasible.

Effects of m1,m2, k. Fix m2 = k = 10, s = n, Figs. 5a and 5b describe the
influences of m1 on MaxError and Precision@500 respectively. It can be seen
that the scale of the y-axis in the Fig. 5a is logarithmic. The value of MaxError
shrinks as the value of m1 approaches the value of k, which indicates that the gap
between our dimension-reduced solution [Sm1,m2]∗,j and the iterative solution
[S(k)]∗,j is shrinking. It also shows that the search quality of our SimSky is

238 L. Yan and W. Yu

Fig. 5. Effects of m1, m2, k on Precision@500 and MaxError

increasing. Our dimension-reduced solution is equal to the iterative solution if
the value of m1 exceeds the value of k, so that the gap between them can be
regarded as infinitesimal, and the value of precision is 1. Theoretical analysis is
consistent with Fig. 5b.

Fix m1 = k = 10 and s = n, Figs. 5c and 5d describe the influences of m2

on MaxError and Precision@500 on all datasets respectively. It is noteworthy
that the scale of the y-axis in the Fig. 5c is not logarithmic. Although the value
of MaxError decreases as the value of m2 approaches the value of k, the value
of MaxError cannot be ignored. In other words, our SimSky is more sensitive
to m2 in comparison to m1. This is consistent with the idea of our algorithm.
Because the dimensionality of the basis matrix is n by m1+1 on the previous m1-
dimensional Krylov subspace, but the dimensionality of the basis matrix is (k +
1)n by m2+1 on the subsequent m2-dimensional Krylov subspace. Experimental
results show that the value of m2 is not expected to be less than the value of
k. When the value of m2 exceeds the value of k, the theoretical analysis and
experimental results be similar with m1.

Fix m1 = m2 = 10 and s = n, Figs. 5e and 5f depict the effects of k on
MaxError and Precision@500 on all datasets respectively. When k ≤ 10, Sim-
Sky returns almost the same results as the conventional iterative method. When
k > 10, only the top-10 solutions are accurate, and the last 2 solutions are
approximate in the m1-dimensional Krylov subspace, leading to the dimension-
reduced error. These results will be passed to the m2-dimensional Krylov sub-
space by means of the initial vector V (:, 1) in the line 6. As such, the nested
dimension-reduced error cannot be ignored. This also shows that the precision
of our model has been significantly affected, as shown in Fig. 5f.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 239

Fig. 6. Effects of m1, m2 on error Fig. 7. Actual error and upper bound

Effects of m1,m2 on Dimension-Reduced Error. In the experiments to verify the
influences of m1,m2 on the dimension-reduced error, we set s = n and k = 10,
keep the remaining parameter at 10, as shown in Figs. 6a and 6b respectively.
Because we use the L2 norm of the vector to describe the dimension-reduced
error, the L∞ norm of the vector to quantify error metric MaxError, therefore the
tendency of influence of the single variable on them should be close to consistent,
as shown in Figs. 5a and 6a, 5c and 6b respectively.

Actual Error and Upper Bound. Figs. 7a and 7b depict the tendency of the
actual error and its upper bound in Eqs. 17 and 9 respectively. Fix s = n,
m1 = m2 = 10, the number of iterations k gradually decreases from 19 to 10,
Fig. 7a shows that our theoretical upper bound is tight. Figure 7b depicts the
tendency of actual error of the diagonal correction vector and its upper bound
as the value of n−s varies. When n = s, the values of the actual error and upper
bound are 0. The theoretical analysis is consistent with the experimental result.

5 Conclusions

In this paper, we propose an accuracy-aware algorithm for efficiently computing
single-source SimRank similarity. Firstly, we design an algorithm, ApproxDiag,
to approximate the diagonal correction matrix with guaranteed accuracy. Sec-
ondly, we present SimSky, an algorithm that leverages two Krylov subspaces to
transform high-dimensional single-source SimRank search into low-dimensional
matrix-vector multiplications. To evaluate the effectiveness of SimSky, we con-
ducted extensive experiments on various real datasets. Our results demonstrate
that SimSky outperforms competing algorithms in terms of search quality.

Acknowledgments. This work has been supported by the National Natural Science
Foundation of China under Grant No. 61972203.

Ethical Statement. We acknowledge the importance of ethical considerations in the

design of our ApproxDiag and SimSky algorithms. All the datasets used in this paper

are publicly-available online, and do not have any privacy issues. We ensure that our

algorithms do not lead to any potential negative influences. We declare that we allow

our algorithms to be used for the benefit of society.

240 L. Yan and W. Yu

References

1. Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix.
Appl. Numer. Math. 57(11–12), 1214–1229 (2007)

2. Boley, D.L.: Krylov space methods on state-space control models. Circuits Syst.
Signal Process. 13, 733–758 (1994)

3. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of
similarities between nodes of a graph with application to collaborative recommen-
dation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

4. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Onizuka, M.: Efficient search algorithm
for SimRank. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 589–600. IEEE (2013)

5. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538–543 (2002)

6. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th
International Conference on World Wide Web, pp. 271–279 (2003)

7. Kusumoto, M., Maehara, T., Kawarabayashi, K.i.: Scalable similarity search for
SimRank. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, pp. 325–336 (2014)

8. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

9. Lu, J., Gong, Z., Yang, Y.: A matrix sampling approach for efficient SimRank
computation. Inf. Sci. 556, 1–26 (2021)

10. Rothe, S., Schütze, H.: CoSimRank: a flexible & efficient graph-theoretic similar-
ity measure. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, pp. 1392–1402 (2014)

11. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix expo-
nential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

12. Tian, B., Xiao, X.: SLING: a near-optimal index structure for SimRank. In: Pro-
ceedings of the 2016 International Conference on Management of Data, pp. 1859–
1874 (2016)

13. Wang, H., Wei, Z., Yuan, Y., Du, X., Wen, J.R.: Exact single-source SimRank com-
putation on large graphs. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 653–663 (2020)

14. Yu, W., Iranmanesh, S., Haldar, A., Zhang, M., Ferhatosmanoglu, H.: Rolesim*:
scaling axiomatic role-based similarity ranking on large graphs. World Wide Web
25(2), 785–829 (2022). https://doi.org/10.1007/s11280-021-00925-z

15. Yu, W., Lin, X., Zhang, W., Pei, J., McCann, J.A.: Simrank*: effective and scalable
pairwise similarity search based on graph topology. VLDB J. 28(3), 401–426 (2019)

16. Yu, W., McCann, J.A.: Efficient partial-pairs SimRank search on large networks.
Proc. VLDB Endow. 8(5), 569–580 (2015)

17. Yu, W., McCann, J.A., Zhang, C., Ferhatosmanoglu, H.: Scaling high-quality pair-
wise link-based similarity retrieval on billion-edge graphs. ACM Trans. Inf. Syst.
40(4), 78:1–78:45 (2022). https://doi.org/10.1145/3495209

18. Yu, W., McCann, J.A.: High quality graph-based similarity search. In: Proceedings
of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 83–92 (2015)

https://doi.org/10.1007/s11280-021-00925-z
https://doi.org/10.1145/3495209

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 241

19. Yu, W., Wang, F.: Fast exact CoSimRank search on evolving and static graphs.
In: Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France, 23–27 April 2018, pp. 599–608. ACM (2018). https://
doi.org/10.1145/3178876.3186126

20. Yu, W., Yang, J., Zhang, M., Wu, D.: CoSimHeat: an effective heat kernel similarity
measure based on billion-scale network topology. In: WWW 2022: The ACM Web
Conference 2022, Virtual Event, Lyon, France, 25–29 April 2022, pp. 234–245.
ACM (2022). https://doi.org/10.1145/3485447.3511952

https://doi.org/10.1145/3178876.3186126
https://doi.org/10.1145/3178876.3186126
https://doi.org/10.1145/3485447.3511952

	SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search
	1 Introduction
	2 ApproxDiag: Approximate Diagonal Correction Matrix
	3 SimSky
	4 Experiments
	4.1 Experimental Setting
	4.2 Comparative Experiments
	4.3 Ablation Experiments

	5 Conclusions
	References

